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Editorial on the Research Topic

The Role of Biomembranes and Biophysics in Immune Cell Signaling

The plasma membrane is the ultimate demarcation between “in” and “out” for cellular life forms. It is
also the platform on which “cross border” communications take place, such as receptor ligand
interactions. Here, several thousand species of membrane proteins anchored by their transmembrane
domains on this platform specifically sense complex biological, biochemical, and biophysical cues in
the extracellular environment and trigger signaling cascades to determine various cellular functions.
While modern technologies permit our study into the structure, dynamic, and function of these
proteins, the reality is, the behaviors of this platform itself are likely more complex and in most cases
heavily shielded from our probing eyes. The challenge of studying how membrane properties affect
membrane-receptor functions is multi-faceted, and this is rooted in the complex heterogeneity of the
membrane itself. As each layer of complexity can affect cellular signaling, the question becomes where
we shall start to look. One of the issues is the limited availability of suitable tools. The most evident one
is the resolution power constrained by optical diffraction, the size below whichmost biophysical events
take place on the membrane. Another challenge is that the tools required for biophysical sensing and
manipulation are often of limited sensitivity of mechanical forces. In addition, different from protein
and nucleic acid related research, whereby clear causality can be established when all variables are
controlled, membrane biophysics is intrinsically chaotic with numerous factors working at the same
time in a promiscuous manner and events are often transitional.

In this Research Topic collection, the coverage reflects the complexity of this battle ground.
Significant attention is paid to the instrument development that is arguably more important to this
research scheme than conventional biochemistry-based research fields. In this editorial, we attempt
to establish a progressive line based on three dimensions of complexity in biomembrane research,
and settle the contributors’ insights into suitable spots on this logic chain.

Singer and Nicolson’s mosaic model is straight forward: that lipid species are randomly
distributed and proteins are present free from additional constraints. This view, however, is too
simplistic. It is generally accepted that membrane and membrane proteins have several layers of
complexity. 1. Heterogeneity of membrane bilayer. 2. Lipid-protein interface and secondary
membrane structure. 3. Receptor signaling in a lipid environment.

First layer of complexity comes from the lipid domains.One of the key features of eukaryotic cell forms
is the emergence of cholesterol synthesis, typically viamevalonate pathway in animals. This simple lipid
species changes the membrane behavior substantially and is a key player on the bilayer asymmetry.
org September 2021 | Volume 12 | Article 74037314
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In mammalian membrane, due to their peculiar packing
requirement, sphingolipids are only present on the outer leaflets.
The presence of sphingolipids and cholesterol forms the first layer of
complexity: lipid ordered domains, roughly equivalent of lipid rafts.
Physiological ordered domains on a cell surface likely involve
coupling between outer and inner leaflets, cytosolic components
such as cytoskeleton and several classes of transmembrane and
membrane-associated proteins. However, the fact remains that in
giant unilamellar vesicles with defined ternary mixtures of saturated
and unsaturated lipids with cholesterol, the phase separation still
takes place. Intriguingly, on >1000 component giant plasma
membrane vesicles (cell-derived vesicles that preserve largely
cellular plasma membrane composition), phase separation is still
observed and the ordered domains to some degree can be regarded
as “raft”-like (although larger). The domain behavior in model
systems (such as size, shape etc.) can be modulated via changing the
environmental conditions or adding external components (1–3).
The ordered domains have several essential features: they probably
sort the inner leaflet lipid species across the hydrophobic core, yet
this interleaflet coupling still needs extensive work both in model
systems and in live cell membranes. In this regard, role of
membrane asymmetry on membrane domains is also largely
unexplored. Recent work shows that plasma membrane is
asymmetric not only in lipid head groups but also in acyl chain
length and saturation (4). Therefore, it will be exciting to see future
work on how this multi-layer asymmetry affects the interleaflet
coupling, domain formation and their physicochemical properties.
The ordered domains are also assumed to be linked to cortical
cytoskeleton via linker such as ERM (ezrin/radixin/moesin) as a
result of inner leaflet lipid tuning. In laying the biophysical
grounds to establish a model that explains microvilli on T cells,
Cebecauer provided a sophisticated overview how this may work.
Sphingolipid-dependent lipid domains are distinguished from the
rest of the membrane by a lipid-lipid interface holing a definitive
line tension. This tension creates a circular entrapping effect that
drives lipid domains upwards. The accumulation of PIP2 likely
draws in FERM (Band 4.1 ERM)-domain containing proteins that
drive the growth of microvilli on T cells. The underlying principle is
likely applicable to ordered domains without invoking the extreme
curvature as in microvilli formation. Taking the angle of membrane
cholesterol, Zhang et al. discussed how receptorsmay be regulated by
this lipid domain. A key point, even from the narrow confines of
cholesterol, is that its impact on receptor signaling can be extremely
complex and stimulation-dependent. Cholesterol by itself inhibits
TCR b chain from entering a “primed” state. On the other hand, it is
also essential to potentiate T cell functions probably through
enhancing TCR and lipid domain clustering. Such regulation is
likely involved in BCR and FCR signaling. From the biochemical
standpoint, cholesterol stiffens the local lipid environment, which
may be a key platform for the receptor ligation to transduce
mechanical force across the membrane. From a theoretical
perspective, Lamerton et al. discussed the concept of protein and
lipid clustering. At the lipid level, clusteringmay be lipid rafts from a
different viewing angle, particularly when defined as saturated acyl
tails working together with cholesterol to form densely packed
lipid domains.
Frontiers in Immunology | www.frontiersin.org 25
The second layer of complexity is the interaction of lipid
membrane and proteins. Proteins in this case can be separated
into two groups per their association with the membrane. The first
group is those contained within the bilayer, such as Bin-
Amphiphysin-Rvs family proteins that intrinsically alter
membrane curvature. They interact with cytoskeletal regulators
which control actin nucleation and F-actin remodeling.
Realistically, all transmembrane proteins likely impact biophysical
properties of lipidmembranes to various extents, however, we shall
refrain from that discussion as the reciprocity therein becomes too
compounded for this editorial. The second group of proteins are
those approaching the membrane from the inside, mainly those of
cortical cytoskeleton. Chief among which are the ERM proteins.
Their central involvement can be deduced from their structure. N-
terminal FERMdomains areknown tobindadiverse set of cytosolic
tails of transmembrane proteins, such as CD44 and EGFR.
Cr i t i ca l l y , FERM domain has spec ifi c i t y to PIP2
(phosphatidylinositol (4,5) biphosphate), a lipid species known to
sort per influenceof lipid orders. TheC-terminal ofERMproteins is
a C-ERMAD domain, which binds to F-actin. FERM and C-
ERMAD domains self-associate and remain soluble in cytosol.
Binding of FERM to PIP2 activates those proteins. This design
creates numerous interactions as a consequence of membrane
dynamics on the inner leaflet and is likely responsible for the
more complex membrane protrusions, such as filapodia, lamina
podia, and as the “favorite child” of this collection, T cell microvilli.
Orbach and Su presented an abstract, yet vivid, reconstitution on
how those microvilli come to being on T cells surface. The role of
those often ignored features in T cell biology is also convincingly
illustrated and it is understood that such a finger-like feature may
increase the “scanning” of antigen presenting cells. From a different
perspective, these membrane protrusions may represent an
underappreciated hand in organizing lipid domains and receptor
complex components, which may have different preferences to a
particular lipid order. A key event described by the kinetic-
segregation model is the separation of CD45 from the rest of
signaling complex, which likely maintains a state of high
phosphorylation for the key factors associated with TCR/CD3
signaling. Apparently, structural features of microvilli favor this
segregation. Of particular interest is the piece by Dam et al. that
discussed a phenomenon related to this topic (5). Supported lipid
bilayers are commonly used a surrogate ofMHC/peptide to interact
with TCR. Such a design had led to an unexpected finding that
exclusion of CD45 from the TCR complex is sufficient to trigger
ligand free activation. Dam et al.’s data suggested that this might be
due to intrinsic binding to nickel-chelating lipids, rather than
specific TCR interactions, which serves a reminder that some
biophysical analyses must be carefully controlled to avoid artifacts.

The third layer of complexity is how lipid environment impacts
receptor signaling. Starting from a resting receptor, there are two
parameters to be determined. 1. Their preference with reference to
ordered domains. 2. Their state of aggregation prior to ligand
binding. Upon ligand binding, biophysical properties of the
membrane will significantly alter receptors’ signaling potential.
In the case of TCR, the story is complex. For a simple treatment of
cholesterol depletion, T cell activation can be either diminished or
September 2021 | Volume 12 | Article 740373
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enhanced. This outcome is setup-dependent, revealing that there is
much more information yet to be extracted. Likely, the association
of TCR b chain with cholesterol is inhibitory (this is still being
debated). The activation step requires a step that escapes this
association. Yet, src family kinases are located in ordered domains,
and at minimum final assembly of signaling complex requires
proper arrangements of TCR, CD3 chains, transmembrane
phosphatases, upstream ITAM-specific kinases, downstream
targets including LAT platform, as well as several enzymes
involved in PI metabolism. If the lipid order is integrated into
TCR signaling, there must be some type of rearrangement of each
component, not only for their positioning against each other, but
also for their interfaces toward the lipid environment – a
complexity likely beyond our current comprehension. Equally
important, the formation of the signaling complex is also
regulated by the cytoskeleton, which to some degree controls the
formation of transmembrane receptors. Either through individual
dissection, or a grand design of a formidably intricate experiment,
solving the details of this process will be the final answer to TCR
activation. At the moment, we know the lipid composition is
critical to TCR activation. For instance the in-situ TCR-pMHC
binding strength is likely lipid-dependent (Zhang et al.). This step
perhaps introduces a conformational change that turns both TCR
ectodomains and the CD3 chains, exposing ITAM motifs folded
into negatively charged inner leaflet. Membrane bilayer could also
provide physical platform to produce and transmit biomechanical
force to regulate TCR antigen recognition by inducing TCR/CD3
and pMHC conformational changes and to trigger signaling. As to
be expected, biophysical properties can affect receptor signaling,
thus impacting several categories of immune dysfunctions and
diseases. In this series, Gunasinghe et al. gave a comprehensive
review that can serve as an insightful reference for those interested
in biomechanical dysfunctions in chronic diseases. Shi and Ruan
presented another possibility in addition of organizing role of
ordered domains in receptor signaling, that the presence of lipid
domains may be an intrinsic property that prevents receptor from
spontaneous activation. Receptor activation may in some cases a
simple instruction from ligands to avoid this suppression.
Whether this proposal can stand the test of time will depend on
experiments of several major receptor ligand interactions,
especially with the aid of recent instrument development.
Frontiers in Immunology | www.frontiersin.org 36
With all the challenges discussed, we remain enthusiastic that
biophysical research on membrane is entering a new era. This
confidence is supported by the rapid arrival of new instruments.
Compared with other research fields, instrument and protocol
developments are the lifeline of new discoveries. A sobering
example is the transition in membrane domain research from the
sole dependence of detergent solubilizing extraction to polarity
sensing lipid dyes such as laurdan, as well as, sub-optical diffraction
imaging, as illustrated by Lamerton et al. in this series.With a focus
on cytoskeletal interaction with plasmamembrane, Schneider et al.
discussed at depth the new imaging tools currently available,
starting from more conventional TIRF, SPT to more sophisticated
fluorescence fluctuation-based FCS in combinationwith STEDand
fluorescence energy transfer-based techniques. This discussion
should be of considerable value in helping select best and latest
tools for all of us.Another interesting piece by Stanly et al. discussed
a new development in optical diffraction tomography in studying
intracellular sphericity, as well as refractive index in diseased
platelets, pointing to an uncommon biophysical angle of
evaluation (6). Using FLIM and FRET techniques, Vleeshouwers
et al. presented new findings on how prostaglandin E2 receptors
regulate podosomedissolution viamicrotubules.While this study is
not directly focused on biomembrane, it nevertheless reflects the
additional dimension biophysics in cell biology, such as how both
two systems of cytoskeleton, actin and microtubules, take part in
cellular adhesion.

In the original proposal to start this Research Topic, it was our
intension to gather thoughts on biophysical analyses of cellular
membranes, as the area is relatively uncoordinated in protocols,
standards and concepts. It was recognized that coordination can
only be started with a substantive exchange. At this moment of
closing off this series, we are excited by the breadth and insight of
submissions collected. This effort, in our view, is one of the very rare
series solely focusedonbiophysicsoncellularmembraneandagood
foundation for future growth of this research scheme.
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With advancements of modern biophysical tools and superresolution imaging, cell

biology is entering a new phase of research with technological power fitting for

membrane dynamics analyses. However, our current knowledge base of cellular signaling

events is mostly built on a network of protein interactions, which is incompatible with

the essential roles of membrane activities in those events. The lack of a theoretical

platform is rendering biophysical analyses of membrane biology supplementary to the

protein-centric paradigm. We hypothesize a framework of signaling events mediated by

lipid dynamics and argue that this is the evolutionarily obligatory developmental path of

cellular complexity buildup. In this framework, receptors are the late comers, integrating

into the pre-existing membrane based signaling events using their lipid interface as the

point of entry. We further suggest that the reason for cell surface receptors to remain

silent at the resting state is via the suppression effects of their surrounding lipids. The

avoidance of such a suppression, via ligand binding or lipid domain disruption, enables

the receptors to autonomously integrate themselves into the preexisting networks of

signaling cascades.

Keywords: plasma membrane, lipid rafts, evolution, receptor ligand model, lipid interaction, receptor activation

mechanism

INTRODUCTION

The main goal of this piece is to gather sufficient consensus regarding how biophysicists, or
other specialists so inclined, may approach life science research with a stronger footing of
legitimacy. In recent years, with advancements in superresolution imaging and computational
biology, biophysicists are given enormous probing power in our life science work. In comparison,
traditional biologists using more conventional tools are still making ground-breaking discoveries
at a pace appreciably faster than most of us. A sobering dichotomy is evident that findings made
with biophysical approaches are being regarded as “supplemental” to other paradigms. Using T cell
biology as an example, whereas many papers have been published in this area regarding membrane
behavior upon T cell receptor activation, the whole theoretical framework of T cell activation
can be completely explained without any reference to biophysical properties. Points of interest in
biophysics or membrane biology are generated to explain the details of how polypeptides work.
While we know for certain that this cannot be true, our strongest protest may be the insistence
that “no signaling can be fully understood without its membrane platform.” C’est la vie, such a
defensive stand will not change the “outsider looking-in” mentality. We need to move biophysics
and membrane biology to the frontlines of biological research. The questions are “why hasn’t it
happened?” and “what is the main roadblock?”
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MAIN TEXT

The current state of biological research is protein-centric. The
cause lies in its history and the availability of investigative tools.
Yet, conceptual inertia is not beyond reproach. Our inability to
delineate biological events with models built from membrane
biology is the core deficiency. It is time that we collectively reflect
on this dilemma. In this opinion piece, we make a call for change.

Membrane Structure, Critical Behavior, and
Their Preservation in Biology
Let’s start with the eukaryotic membrane. In the 70s, Singer and
Nicolson presented the mosaic model in which the membrane
bilayer was regarded as a fluid mixture of lipids and proteins
(1). With many years of work into the heterogeneity of vesicular
and plasma membranes, Kai Simons et al. in 1997 proposed the
concept of ordered and disordered membrane phases generically
known as the lipid raft theory (2). Aki Kusumi, mainly using
particle tracking, refined this model with an additional detail
that lipid domains are stabilized by membrane lipid binding
to cortical cytoskeleton, or the picket and fence model (3). As
those theories are discussed at length elsewhere and readers
of this writing are well versed in this stream of concepts, we
simplify our discussion with the most accepted membrane model
(4). Eukaryotic membrane inner leaflets are occupied by mostly
phospholipids with negative charge and are active in signal
exchange in abundance. In comparison the outer leaflets are
structurally dynamic. There, sphingolipids and gangliosides are
more enriched, perhaps due to their enlarged head groups more
suited to the positive curvature. Cholesterol, nimble in size and
low in charge, is free to move laterally (5) or change leaflets
via overcoming the energy barrier set by hydrophobic core of
the bilayer (6). The rendezvous of sphingolipids, cholesterol,
and saturated phospholipids at physiological temperatures forms
the structure of ordered lipid domains. The formation of
ordered vs. disordered lipid domains can be explained by the
combined entropic diffusion and energy conservation in special
lipid pairing (7, 8). Remarkably, this feature is common to all
eukaryotes despite the vast different collections of lipid species in
distinct cell types. About 5% of genes are dedicated to maintain
it (4). As current efforts have not been able to fully mimic
domains found in live cells with defined lipids, the remarkable
preservation implies an extreme cellular dedication in their
maintenance. This point alone should give us a strong clue that
this is something central to all aspects of eukaryotic biology.

Another intrigue of the lipid domains is the critical
behavior which refers to the state where at physiological
temperature, lipid domain formation (demixing) and dissolution
(mixing) are at a critical point (7). This feature, coupled to
cytoskeletal association, was vividly demonstrated with STED
superresolution microscopy, and with a clear linear correlation
to the temperature (9). Such a delicate feature allows large
phase transition with minimal energy input. For instance, minute
disturbance of receptor ligand interaction may force such a phase
change, an ingenious system of signal amplification (receptor
ligation can be viewed as a localized suppression of entropy,
or cooling). We shall return to this point later. Nevertheless, it

should be noted that such a behavior is unimaginable in a cohort
of protein molecules.

Current Status of Understanding
Since the proposal of lipid rafts, biologists have tried to
incorporate this feature into their models of membrane signaling.
To circumvent the optical diffraction limit which makes visual
observations of resting cell lipid rafts impossible, two surrogates
have been developed. One is to isolate detergent-resistant
membrane domains, hoping to capture proteins associated with
or free from lipid rafts at the moment of cell lysis (10). The
other, used by some, is to observe domain coalescence at the
point of “signalosome” formation (11) or visible lipid domains
found on GPMV (12). One of the most influential conclusions
is the partition of protein molecules into different phases of
membrane domains. From those experiments, it was understood
that the transition of those protein molecules with reference to
lipid domains is associated with their state of activation. Some are
activated in disordered phase, such as EGFR (13), while in others
transition into or residence inside the ordered domain is required
for their activation, such as death receptor Fas, IFNγR, and
Wnt receptor (14–16). In addition, protein signaling complex
formation with the participation of numerous components is
also controlled by the coalescence of lipid rafts, such as in TCR
activation (17). Regardless of the study subject, in a protein-
centric world, those events are regarded as the consequence of
receptor ligation and protein–protein interaction, which is taken
as the driving force of lipid domain alteration.

Those observations, however, are not without their own
peril. First, the selection of detergents has a tremendous
effect on the observed association, demanding caution in data
interpretation. Perhaps more importantly, this “snap photo”
approach will leave out spatial temporal regulation. Using TCR
as an example, the signaling is mediated by TCR ligation by the
MHC/peptide complex, yet the signal is initiated at Src family
kinase activation of the tyrosine residues in the ITAM motifs.
Thereafter, the signal has several bifurcations or multiplications;
some of downstream events such as Lck and LAT are clearly
dependent on lipid domains (18), while others such as TCR
itself and CD45 are not (19, 20). Likely due to those technical
limitations, some conclusions are not always in agreement. In
a remarkable demonstration of collegiality among biophysicists,
those differences are accepted as limits of one’s own research
unable to explain seemingly contradicting results. In fact, those
differences en masse reflect the lack of more sophisticated tools
as well as a biophysical explanation of how membranes work
in this setting. Happily, the constraint posed by tool selection
is being rapidly lifted in recent years. A particular case in point
is the newly gained ability to study the dynamics of lipid rafts
on the cell membrane, which in our opinion is the technological
foundation to introduce membrane dynamics into core concepts
of biology.

Evidence of Membrane Lipid Interface Is a
Biological Switch
Imagine a simplest eukaryotic cell with no cell surface receptor
and driven by a few signaling pathways that support the basic
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biology. All those regulations are anchored tomembrane sensing.
Earliest multicellular animals were found about 600 million
years ago. Shortly after, about 550 million years ago, life rapidly
diversified during the Cambrian explosion. Around that time
two rounds of whole genome duplication likely provided a
genetic playground for the emergence of vertebrates (20). It
is hard to imagine that receptor ligand interactions would
have been the dominant way of communication prior to these
junctures. The definition of receptor-ligand interaction is that
they must be evolutionarily coupled. As a single cell is exposed
to an unmalleable environment, this co-evolution lacked a
driving force. On the flip side, receptor-independent sensing
of environment, such as phagocytosis (21, 22), was a daily
occurrence that had propelled the evolution for at least 1.4
billion years. Many prominent signaling pathways came before
this time, including GTPase (23), MAPK (24), phagocytosis
(21), TNFRF (25), Jak/Stat (26) pathways, metalloproteases,
(27) and metabolic events with a possible exception of Wnt
pathway (28). All those pathways are regulated by membrane
events. In our own research, we first discovered that solid
particle binding to plasma membrane induces the accumulation
of lipid rafts which triggers phagocytosis (29, 30). Based on
this finding, we further revealed that immune receptors had
evolved out of a primordial phagocytic signaling that uses
the membrane anchoring protein moesin to sense the PIP2
accumulation in the inner leaflet as a result of particle binding.
Moesin binding to PIP2 opens its ITAM motif, for downstream
signaling, including Syk and PI3K. Remarkably, all those events
are used verbatim in immune signaling of all classes, including
BCR, TCR, and Fc receptors (21). Therefore, the adaptive
immunity hijacked the machinery of the ancient phagocytosis
following membrane sensing. If the intracellular events are
regulated by membrane activities, what argues against the
notion that modern immune receptors initiate signaling with the
same mechanism?

Let’s look at another set of events observed by most if not
all whom have attempted: the consequence of lipid domain
perturbation, mostly in the form of cholesterol depletion. EGFR
(31–33), TNFR1 (34), TLRs (35, 36), TCR (19, 37, 38), TGFβR
(39–41), and shedding events (42–44) are triggered by lipid
domain disruption. Figure 1 illustrates our own findings. There
are certainly good examples where clustering toward lipid rafts
is induced by ligand binding. Linked to the observation that
those receptors are sequestered in their own lipid environment at
the resting state, one can reasonably predict: 1. Some receptors
are self-activating depending on the lipid environment or
phase transition. 2. For one receptor to be accepted as useful
contributor to biology, it would have to obey the suppression
of the membrane. Therefore, membrane lipid phases are an
ingrained tool of suppression of receptors. Kai Simons noted that
due to the size of lipid domains, each raft would contain very
few polypeptides (45). Therefore, those receptors are blocked
by their spatial separation. Once the blockage is released, such
as in the case of domain disruption, they become activated.
Fessler and Parks used a number of examples to show how
lipid perturbation itself is sufficient to activate many receptors
(46). Yet, they stopped at the last step to connect the final

dots that lipid perturbation-mediated receptor activation and
ligand/receptor-based activation may be fundamentally the same
at least for some receptor families. To extrapolate this idea
further, we can imagine that a receptor ligation interaction,
rather than bringing in certain conformations to accommodate
their interaction binding partners, could easily regulate its
lipid interface to avoid the suppression. In light of the critical
behavior in membrane lipids, such a minute change can cause
the clustering of signaling molecules as a consequence of lipid
domain alteration at the energy level fitting for receptor ligand
interaction. This hypothesis, with modern tools, should be
testable in situ or on a model membrane without the need of
biological feedback, which often causes protein-centric analyses
becoming embroiled in incessant cycles of amplification. If a
receptor/lipid interface event is established as being autonomous,
this binary regulation certainly carries an enormous power of
prediction, with a simplistic elegance not seen in sometimes
chaotic search of how each protein receptor works with its
downstream partners (Figure 2). At minimum, it explains why
several thousand signaling receptors can stay silently together
on a cell, and during an activation event, several signaling
cascades are triggered at the same time, as those involved
are likely gated by their own membrane sequestration. This is
not to say that receptors are mere puppets in this chain of
events; they certainly play their role in the clustering and their
own complex formation as they also possess ranges of lipid
specificities and membrane dynamics (47, 48). But the activation
initiation point can be explained by lipid receptor interface, or
the sum of “collectives” of protein-lipid interaction following the
introduction of a ligand.

Toward a Simple Beginning
Our lab has preliminary data to suggest that “suppression
avoidance” is a core mechanism of some cell death receptors,
and the cellular signaling is initiated at the simple phase change
between the receptor and its surrounding lipid species. This
type of effort, while fulfilling the common wisdom that receptor
activation is responding to its ligand, is probably also suited
to explain some activation triggers, particularly those that are
not protein in nature. In such a scenario, many “ligands” can
activate their “receptors” via lipid alteration without the need
of direct engagement. For instance, a long acyl chain fatty
acid can alter the domain features, which allows a particularly
strong signaling receptor to become activated in response to
lipid domain change. Macroscopically, this would look like
a perfect receptor/ligand interaction. Current dogma would
require the search of how this pair of receptor/ligand works, but
the “suppression avoidance” model would relieve ourselves from
this futility. In fact, some of the low-hanging fruits should be easy
to spot.

We are not arguing against the vast network of protein
signaling in biology. However, from an evolutionary perspective,
membrane triggered events should be highly relevant and they
set the basic signaling principles in the cell. The numerical
imbalance between the vast number of cell/vesicle surface
receptors and limited signaling pathways clearly tells us that
the former hijacked the latter, to develop the mesmerizingly
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FIGURE 1 | Proposed mechanism for TNFR1 signal activation initiated as a negotiation between the receptor and its surrounding lipid species. (A) In the resting state,

TNFR1 mainly exists as monomers and dimers on the cell membrane under the suppression of dense lipid rafts. (B) Under TNFα ligand stimulation, TNFR1 negotiates

with lipid domains by changing its transmembrane domain conformation, and then enters lipid rafts for trimerization. (C) When the lipid rafts are disrupted by MβCD or

3oc [N-(3-oxododecanoyl) homoserine lactone], TNFR1 spontaneously trimerizes and activates signals without ligands as the membrane suppression is relieved.

FIGURE 2 | How receptors may enter the preexisting signal cascades: as many signaling events present in modern day eukaryotic cells predate the multicellular life

forms, those enclosed single cells interacted with the environment via lipid membrane. Those signal cascades are therefore coupled to membrane sensing, particularly

in response to lipid domain alteration. New receptors cannot reinvent a new signal cascade; rather than producing protein molecules as adaptors, they can also

regulate their own lipid interface, which is the legitimate and built-in mechanism of cell activation.

complex activation patterns in modern eukaryotic cells. Similar
to the preservation of amino acid codons, those basic signaling
events cannot be altered in the biological continuum. Then it is
reasonable to question how the late comers, the receptor-ligand
interaction, came into the theme. For our purpose, if they also
use the lipid interface as the initiation point, then we have the
theoretical prowess to establish a model toward a membrane-
based biology, to smooth out rough edges and peculiarities in the
protein-centric paradigm.

This opinion piece may be deemed inaccurate or even false
in the future. However, as a research discipline with cutting
edge tools and deals with some of the most autonomous
events that formed the platform for other late developed
biology, our collective attempt to create a landscape for this
new frontier, no matter how juvenile at the beginning, is
certainly worthwhile.
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Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton,
and found on almost all cell types. A growing body of evidence suggests that the
dynamic lymphocyte microvilli, with their highly curved membranes, play an important
role in signal transduction leading to immune responses. Nevertheless, challenges in
modulating local membrane curvature and monitoring the high dynamicity of microvilli
hampered the investigation of the curvature-generation mechanism and its functional
consequences in signaling. These technical barriers have been partially overcome by
recent advancements in adapted super-resolution microscopy. Here, we review the
up-to-date progress in understanding the mechanisms and functional consequences
of microvillus formation in T cell signaling. We discuss how the deformation of local
membranes could potentially affect the organization of signaling proteins and their
biochemical activities. We propose that curved membranes, together with the underlying
cytoskeleton, shape microvilli into a unique compartment that sense and process signals
leading to lymphocyte activation.

Keywords: microvilli, actin, membrane curvature, BAR protein, WASp, TCR, super-resolution microscopy,
T-cell signaling

INTRODUCTION

Sea looks calm miles away but wavy inches ahead; same applies to the plasma membrane.
A variety of membrane protrusions have been identified on the cell surface, including microvilli,
filopodia, lamellipodia, and cilia (see Table 1). Those structures play a classical function in sensing
the environmental cues as well as facilitating cell migration. Meanwhile, accumulating evidence
suggests that membrane protrusions also play an active role in regulating biochemical reactions
that transduce membrane-proximal signaling (1–3), and dysregulation of their formation has been
associated with diseases like Huntington’s disease, PAPA syndrome, Wiskott–Aldrich syndrome
(WAS), and renal dysfunction (4–6).

In the immune system, microvilli are among the most common types of membrane protrusions
found on lymphocytes. Although they have been well-described by electron microscopy (EM)
studies (7), the biochemical and signaling functions of microvilli remained neglected until recently.
In this review, we discuss the potential of physical feature of microvilli in regulating chemical
reactions that transduce membrane-proximal signaling. We also summarize the development of
new techniques for imaging cell surface topography at high spatial or temporal resolutions, and for
modulating membrane curvature in a precision manner, which could provide powerful tools for
investigating the signaling function of microvilli.
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FORMATION OF DYNAMIC MICROVILLI

Microvilli are thin finger-like membrane protrusions that are
found on the surface of a wide variety of cell types (8),
including intestinal epithelial cells (9), dendritic cells (10), and
neurons (11). They are supported by actin filaments (F-actin)
that are organized in parallel bundles of 10–30 filaments (12, 13),
which resemble the actin network that constitutes filopodia (14).
However, filopodia often protrude from the lamellipodial and
lamellar actin network (15), while the microvilli actin network
does not (16, 17). In the case of lymphocytes, EM studies showed
the presence of microvilli on the surface of both T cells and B cells
(18). The diameter of the microvilli ranges from 50 to 550 nm, as
revealed by EM and fluorescence microscopy studies, while their
length varies between 100 nm to several microns (Figure 1) (7,
13, 19, 20). Thus, microvilli dramatically increase the cell surface
area, while having a negligible effect on the cytosolic volume.
Furthermore, actin depolymerizing toxin Latrunculin A (LatA)
eliminates most microvilli within 1 min in a reversible manner,
suggesting that microvilli are highly dynamic structures (13).
Recent technological advances in lattice light-sheet microscopy
allow 3D real-time tracing of such dynamic microvilli (20). It
was discovered that microvilli move laterally on the plasma
membrane and survey antigen-presenting cells (APCs) within
1 min, which is, coincidently or not, the half-life of T cell–
APC contact duration in vivo (20). Therefore, the dynamics of
microvilli fits well into their function in searching antigens.

Despite a handful of studies on microvilli morphology, our
knowledge on the regulatory mechanism of microvilli size,
structure, and dynamics is still limited. Evidently, their fate
following the formation of immunological synapse is still a matter
of debate. Cai et al. (20) demonstrated that there is no change in
the microvilli density before and after the immunological synapse
is formed. In contrast, Kim et al. (21) showed that at an early stage
of synapse development microvilli polarize toward the synapse,
but as the synapse matures, most of the microvilli disappear.
The later was further supported by a recent study by Ghosh
et al. (22), showing the loss of the microvilli after T cell receptor
(TCR) stimulation.

The microvilli are also regulated by cytokines and chemokines.
Westerberg et al. (23) found that CD40 antibody together
with IL-4 induces microvilli on the surface of B cells. On the

other hand, the chemokines stromal derived factor 1α (SDF-
1α) and B lymphocyte chemokine (BLC) induce resorption
of microvilli (24, 25), which promotes B cell homing by
transition from rolling adhesion to integrin-mediated adhesion.
Not surprisingly, members of the ezrin-radixin-moesin (ERM)
family, which link the cortical F-actin cytoskeleton to the plasma
membrane, were found to regulate microvilli assembly, namely,
dephosphorylation of ERM proteins (ezrin, T567; radixin, T564,
moesin, T558), induced by chemokines, results in resorption
of microvilli within a few seconds (25, 26). Because ERM
dephosphorylation can be triggered by TCR activation (27), ERM
could mediate TCR-induced microvilli resorption (22).

Interestingly, changes in the microvilli shape and density
are also linked to several diseases. Uneven distribution of long
microvilli was observed on B cells from hairy cell leukemia
patients (28–31). Moreover, changes in microvilli morphology
were observed in WAS, a severe immunodeficiency disorder that
is caused by defective or missing Wiskott–Aldrich syndrome
protein (WASp). WASp activates Arp2/3 complex by inducing
a conformational change of Arp2/3 and by delivering the
first actin monomer of the nascent filament (32–36). On the

FIGURE 1 | Microvilli decorating the plasma membrane of lymphocytes.
(A) Scanning electron microscopy micrograph showing microvilli that protrude
from the cell surface of resting peripheral blood human T cells. Scale bar:
1 µm. Reproduced from Jung et al. (19). Copyright 2016 National Academy
of Sciences. (B) Transmission electron microscopy micrograph showing the
parallel arrangement of F-actin within the microvilli of 300.19 cell
(Abelson-transformed murine pre-B lymphoma) Scale bar: 50 nm.
Republished with permission of ASH from Ref. (13).

TABLE 1 | Comparison between common types of membrane protrusions.

Microvilli Filopodia Lamellipodia Cilia

Cell type Most cells Motile cells Motile cells All vertebrate cells,
except for

hematopoietic cells

Function Signaling and motility Sensory and guiding organelle Motility Signaling and motility

Diameter 50–350 nm 100–400 nm Sheet-like structure ∼250 nm

Length <4 µm Up to 40 µm 1–10 µm

Cytoskeleton core structure Actin Actin Actin Microtubule

Organization Parallel bundles Parallel bundles Branched network Motile cilia: “9 + 2”
Primary cilia: “9 + 0”

Other Often emerge from lamellipodial sheets Emerge from basal
body
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other hand, WASp could directly promote actin polymerization
independently of Arp2/3 (37). It has been demonstrated that
lymphocytes derived from patients with WAS, either in resting
or activated states, exhibit various microvillar morphological
abnormalities. These abnormalities include a decrease in
microvilli density and length, as well as formation of dysmorphic
structures (5, 24, 38–42). However, knockdown of Arp2 in Jurkat
T cells caused no significant effect on microvilli assembly (43),
which suggests that WASp might regulate microvilli formation
independent of Arp2/3. Meanwhile, further studies are required
to confirm the Arp2 phenotype in primary T cells.

CAN MICROVILLI SERVE AS A
SIGNALING CENTER?

The notion that microvilli could serve as a signaling center was
primed by studies showing that certain signaling proteins are
enriched in microvilli. Immunogold EM studies demonstrated
the enrichment of various receptors and adhesion molecules on
the microvilli, including insulin receptors, selectin, integrin, and
the T cell co-receptor CD4 (44–49). Mass-spectrometry analysis
was also implemented to compare the protein composition
between isolated microvilli and whole cell, from both human
peripheral blood T-lymphocytes and a mouse pre-B lymphocyte
line (50). It revealed that microvilli are enriched of GTP-binding
proteins, cytoskeletal proteins, and transmembrane proteins
as compared to the cell body (after removing the nucleus).
This study provides the first global mapping of the microvilli
proteome. However, it should be noted that using the cell body as
a control could lead to the identification of membrane-associated
proteins rather than microvilli-specific proteins, because the
surface-to-volume ratio is much higher in microvilli as compared
to the cytoplasm. It should be also noted that the identification of
membrane proteins by mass-spectrometry remains as a challenge
because of the proteins limited solubility in aqueous buffer (51).
Therefore, certain hits might be missing in the dataset. Thus,
orthogonal approaches will be needed to verify the microvilli-
enriched proteins.

For many years the dynamic nature of microvilli together
with their small dimensions have hindered the structural and
functional characterization of microvilli. Although EM provides
high spatial resolutions, understanding the signaling function
of microvilli requires characterizing microvilli morphology and
signaling protein localization with high temporal resolutions. The
advancement of fluorescence microscopy techniques in the past
decades has enabled an investigation of membrane morphology
and protein localization in microvilli at either high temporal
or spatial resolutions, though the combination of both is still
technically challenging (19–22, 52, 53).

The Haran group comprehensively characterized the
localization of TCR signaling proteins on the microvilli by a
unique imaging technique that allows accurate mapping of
membrane protein localization. By combining variable-angle
total internal reflection microscopy and stochastic localization
nanoscopy, the authors reconstructed 3D topographical maps
of T cells (19, 22). They have shown that TCR, co-receptor

FIGURE 2 | TCR localizes to the microvilli tip. Jurkat T cells expressing
GFP-V5G and TCRζ-tdTomato were imaged at the terminal stage of T cell
activation. Reproduced from Kim et al. (21) licensed under Creative Commons
(CC BY 4.0).

CD4, kinase Lck, adaptor LAT, and adhesion receptor CD2 are
highly enriched in the microvilli. On the sub-microvilli scale, the
Jun group, using Total Internal Reflection Fluorescence (TIRF)
microscopy, showed that TCR is specifically enriched on the
microvilli tip (Figure 2) (21). Thus, the tip localization of TCR
could promote searching of antigens and establishing contacts
with APCs (20). The Haran group also found that treatment
with LatA or expressing a dominant negative form of ezrin,
both of which reduce microvilli, leads to a random distribution
of TCR throughout the plasma membrane. Intriguingly, the
authors showed that following TCR stimulation, T cells lose
their microvilli, which consequently leads to an even distribution
of TCRαβ throughout the plasma membrane (22). This result
suggests that microvilli-dependent TCR enrichment could be
regulated by TCR triggering.

The “kinetic-segregation” model serves as one of the prevalent
mechanisms explaining TCR triggering (54–57). A key part to
this model is the segregation of the large tyrosine phosphatase
CD45 from the TCR-pMHC contact zone. Therefore, multiple
groups have investigated the localization of CD45 in the context
of microvilli and showed that the segregation between TCR and
CD45 occurs a few seconds after contacts are established (58–
61). Interestingly, although it has been assumed and supported
by experimental data that CD45 is evenly distributed on the
cell surface in resting T cells (19, 60), a new study revealed,
using expansion microscopy, that CD45 is excluded from the
microvilli tip even before contacts are established with APC
(53). These discrepancies could be caused by differences in T
cell subtypes, activation methods, and resolution of individual
imaging techniques.

Summarizing localization studies above, key components
mediating TCR-proximal signaling reside in microvilli. These
include TCR itself, kinase Lck, and adaptor LAT. It is expected
that cytosolic proteins that are associated with these membrane
proteins, including ZAP70, Grb2, Sos1, PLCγ1, Gads, and
SLP76, are likely to be enriched in microvilli as well. The
physical proximity of these molecules could increase the rate
of chemical reactions and efficiency of signal transduction.
Microvilli, therefore, could serve as a compartment to enrich
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FIGURE 3 | Schematic of the microvilli and the organization of different signaling proteins on the microvilli. Many of the signaling molecules that are involved in T cell
activation preferentially localize to the microvilli. Yet, their organization within the microvilli is not known (marked in question mark). Green, microvilli tip region; red,
microvilli body; black, plasma membrane.

signaling proteins to promote TCR signaling (Figure 3). In this
regard, T cell microclusters are another entity that has been
proposed for promoting TCR signaling (62, 63). Because both
microvilli-localized proteins and T cell microcluster components
display a puncta-like structure on the cell membrane, it raises
an interesting question on the relationship between the two.
Current evidence suggests that these two entities are different but
related structures. The microvilli-enriched proteins are mostly
characterized in resting T cells and microvilli disappear, at
least in some studies, after TCR activation (22). In contrast,
T cell microclusters are formed after TCR activation (62, 63).
They also displayed limited mobility as compared to the highly
mobile microvilli (20). Meanwhile, the “pre-enrichment” of
signaling components in microvilli could facilitate T microcluster
formation upon TCR activation.

Besides a potential signaling function in T cells, microvilli
have also been proposed by the Jun Lab to serve as
precursors for generating TCR-enriched extracellular vesicles (or
synaptosomes) that activate dendritic cells (21). It remains to be
determined whether the synaptosomes are similar or different
to other TCR-enriched microvesicles (synaptic ectosomes) that
were described by the Dustin Lab (64). Ectosomes are generated
by the ESCRT complex, of which TSG101 facilitates the sorting

of TCR into the ectosomes whereas Vps4 facilitates the scission
of ectosomes from the plasma membrane. Interestingly, CD40L,
a key effector delivered by helper T cells to activate APC, is
also enriched in the microvilli and ectosomes, though CD40L is
spatially segregated from TCR in ectosomes (65). This probably
suggests that TCR and CD40L are independently sorted into
microvilli, whereas the exact mechanism needs to be determined.
It also remains as an intriguing question on how many microvilli
and their associated TCRs end up in synaptosomes or ectosomes.
Is ESCRT, a general membrane-shaping machinery, involved in
microvilli dynamics regulation and resorption? Answering these
questions will help to generate a complete picture of the microvilli
life cycle during T cell activation (65).

MECHANISMS FOR INDUCING
MEMBRANE CURVATURE AND PROTEIN
ENRICHMENT

Highly curved membranes represent a unique feature of
microvilli, which could also serve as a platform for enriching
proteins in microvilli. Several mechanisms have been proposed
for generating curved membranes. Polymerization of actin
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filaments drives membrane protrusion; in parallel, membrane-
associated proteins can also induce membrane curvature by the
insertion of conical transmembrane proteins or hydrophobic
protein domains into the membrane (66, 67). Intriguingly,
intrinsically disordered domains, when attached to membranes,
can drive membrane protrusion either with a positive or negative
curvature (68–70).

The Bin-Amphiphysin-Rvs (BAR) superfamily is a key
player involved in regulation, formation, and detection of cell
membrane curvature (71). In this superfamily, the N-BAR
and the F-BAR are associated with positive curvatures (e.g.,
membrane invagination or endocytic pits). In contrast, the I-BAR
subfamily of proteins is associated with negative curvatures as
found in various membrane protrusions (72). Many members
of the BAR superfamily contain the structurally conserved SH2
or SH3 domains that recruit their binding partners to the
curved membranes (73). One particular interesting example is
the I-BAR protein IRSp53 (also known as BAIAP2) that binds
cytoskeletal effectors such as N-WASP through its SH3 domain
(74). In an in vitro biochemical assay, IRSp53 induces tubular
membrane protrusions with similar dimensions of microvilli
(75). IRSp53 is localized to filopodia when ectopically expressed
in neuronal NSC34 cells (76) and regulates filopodia dynamics
(77). Interestingly, IRSp53 is also expressed in T cells (78), raising
its possible role in regulating microvilli formation. Surprisingly,
the N-BAR protein sorting nexin 9 (SNX9), which is expected
to recognize positive curvatures, is involved the biogenesis of
filopodia (79). In a cell-free system for reconstituting actin
bundles of filopodia (80), immunodepletion of SNX9 resulted
in shorter actin bundles. Moreover, SNX9 localizes to the
filopodial tip and shaft in RPE-1 cells (79). The positive role
of SNX9 in filopodia formation is dependent on its activity in
stimulating N-WASp and Arp2/3 (81), which probably overrides
the curvature-sensing function of the N-BAR domain. In terms
of the function of SNX9 in T cells, SNX9 was found to interact
with WASp, p85, and CD28 to form a signaling complex
on endocytic vesicles when T cells are activated by soluble
CD3/CD28 antibodies (82). It remains to be determined if SNX9
can regulate microvilli when T cells are activated by surface or
bilayer-presented stimuli because stimuli with a physical support
could cause different outcomes as compared to those in a soluble
format. Previous reports showed that TCR is internalized through
endocytosis when T cells are treated with soluble MHC tetramer
(83), whereas TCR is sorted into extracellular microvesicles when
T cells are activated by supported lipid bilayer (SLB)-presented
pMHC (64).

While the BAR proteins sense membrane curvature within
the nanometer scale, there are proteins that can also sense a
larger length scale. Septins and stage V sporulation protein M
(SpoVM) sense positive micron-scale curvatures (84, 85). It was
suggested that these nanometer-sized proteins sense micron-
scale curvature by polymerization into micro-scale filaments. In
contrast, the protein machinery that directly senses micron- or
submicron-scale negative curvatures remains to be determined.

What is the cellular function of membrane deformation?
Various studies have highlighted the role of membrane curvature
in regulating sorting of transmembrane proteins (86–89). Using
patterned nanostructure surfaces, Zhao et al. (90) found that

the protein machinery mediating clathrin-mediated endocytosis
prefers a positive curvature with a radius below 200 nm. Liang
et al. (91) discovered that small GTPase Ras senses membrane
curvatures in an isoform-dependent manner. One isoform
binds to membranes with low curvatures, whereas the other
binds to membranes with high curvatures. The effect of local
membrane curvature may also influence cell polarization. For
many years it had been assumed that cell polarization is induced
exclusively by a gradient of a chemoattractant. A recent report
revealed that chemical signaling is not sufficient for inducing
cell polarization of neutrophils and CD8+ T cells (92). Instead,
the authors found that polarization initiates with the formation
of curved membranes, which recruits BAR domain protein
SRGAP2, activates PI4KA, and results in PtdIns4P polarization.
Furthermore, to understand the mechanism by which membrane
curvature affects actin-dependent processes, such as endocytosis,
focal adhesion maturation, and stress fiber organization, Lou et al.
(93) have used patterned nanostructure surfaces to study actin
rearrangement. Intriguingly, the authors found that the actin
nucleator Arp2/3 and its regulators N-WASP and cortactin are
recruited by BAR proteins to membranes with positive curvatures
(with radii <200 nm). Consequently, branched actin networks
assemble around curved membranes, depleting the monomeric
actin pool for assembling stress fibers and mature focal adhesions.
Interestingly, members of the formin family, which promote
the polymerization of linear F-actin, showed no preferential
localization to curved membranes.

The lipid composition of the plasma membrane also influences
membrane geometry and protein localization. The size of
the lipid headgroups, their charge, as well as the saturation
state of acyl chains determines lipid shapes, and consequently
the local membrane curvature (66, 94). Lipids with small
headgroups such as cardiolipin, phosphatidylethanolamine,
ceramide, diacylglycerol, and phosphatic acid induce negative
membrane curvatures, whereas lipids with large headgroups
like lysophosphatidylcholine and phosphatidylinositol phosphate
induce positive curvatures (95). Some of these lipids can also
recruit proteins to the membrane. For example, the negatively
charged lipids phosphatidylserine and phosphatidylinositol 4,5-
bisphosphate recruit positively charged proteins by electrostatic
interactions (96–98). Sphingomyelin was found to selectively
localize to the microvilli of epithelial cells and to induce microvilli
formation through the indirect recruitment of ERM proteins
(99). Whether this is also the case in lymphocytes and what the
role of sphingomyelinase is in regulating microvilli formation
need to be further explored. On the other hand, lipids can
mediate the exclusion of proteins from curved membranes.
A recent intriguing study from Jung et al. showed that CD45 is
excluded out of the tip of microvilli in a cholesterol-dependent
manner (53). Although the localization of cholesterol needs
to be determined in the context of microvilli, cholesterol was
previously reported to be enriched in the negative curved
membranes in vitro or in silico (100, 101), where it, together
with sphingomyelin, also thickens the membrane (102, 103). The
thickened membrane caused by the accumulation of cholesterol
was suggested to exclude CD45 of which the transmembrane
domain is not long enough to be integrated into the thickened
membrane. Depletion of cholesterol by cyclodextrin reduced the
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exclusion of CD45 from the tip, accompanied by a decrease in the
membrane thickness and number of microvilli (53, 104). Besides
the contribution from individual lipids, membrane tension,
by serving as a physical barrier, can antagonize actin based-
protrusion (105).

The composition and organization of the glycocalyx layer,
which covers the outer leaflet of the plasma membrane, also
contributes to cell morphology and membrane protrusions
(106). Mucins are flexible transmembrane glycoprotein polymers
within the glycocalyx that are enriched on the surface of
many membrane protrusions, such as epithelial microvilli (107).
A recent study has demonstrated the role of the mucins
in generating forces driving the tubularization of the plasma
membrane (108). In contrast, rigid glycoproteins have not shown
similar phenomenon as the mucins. In the case of T cells,
many cell surface proteins are highly glycosylated, among which
CD43 and CD45 are the most abundant glycoproteins (109,
110). Notably, different isoforms of CD45 are expressed at
different T cell development stages, and these isoforms differ
significantly in their extracellular domain sizes (58, 111). It
remains as an interesting question whether these isoforms
contribute differently to microvilli formation.

APPROACHES TO MANIPULATE
MICROVILLI AND MEMBRANE
CURVATURE

Investigation of the microvilli function can be extremely
challenging due to limited tools to specifically manipulate them in
cells without perturbing other actin-based processes. Moreover,
their small dimensions (r< 200 nm) and unique architecture (i.e.,
negative membrane curvature viewed from inside of microvilli)
hamper the application of traditional in vitro reconstitution
approach to the study of microvilli. Nevertheless, methods for
studying filopodia, which present similar structural properties as
the microvilli, as well as other recent technological advances that
enable the accurate shaping of membranes, can be implemented
to interrogate microvilli.

Genetic Approaches
In microvilli the actin filaments are organized in parallel bundles
(13). Various crosslinkers such as fascin, fimbrin, and espin
promote the formation of actin bundles (112–115). While direct
evidence is required, these actin crosslinkers can be attractive
targets for specifically modulating microvilli shape and density,
as demonstrated in filopodia (113). The ERM family, another
component involved in microvilli formation, plays a major
role in connecting actin cytoskeleton to the cell membrane.
Overexpressing a dominant-negative form of ezrin dramatically
reduces microvilli formation (24). Yet, a recent finding suggests
that the enrichment of ezrin around membrane protrusions is
facilitated by I-BAR-domain proteins (116).

Pharmacological Approaches
Complementing genetic manipulations, pharmacological
treatments perturbing membrane composition or cytoskeleton

can modulate microvilli in a rapid fashion. Greicius et al. (104)
reported a decrease in microvilli density by depleting cholesterol
using cyclodextrin. A similar effect could be achieved by using
the actin depolymerizing toxin LatA (13, 19). However, both
drugs are expected to affect the whole membrane structure,
actin network, and surface presence of many signaling proteins,
all of which may complicate the interpretation of the results
regarding microvilli-specific functions. Recently, an inhibitor of
the crosslinker protein fascin has been identified, which could
be potentially used to manipulate microvilli. This inhibitor
blocks the activity of fascin to bundle actin filaments in vitro,
and filopodial formation in multiple cell lines. Furthermore, it
blocks cancer cell metastasis, potentially by inhibiting filopodia
formation (117).

Physical Approaches
In vitro assays have been developed to isolate the effect of
membrane curvature from complex cellular environment. Yet,
while methods to generate positive membrane curvature are well
established, it is not the case with negative membrane curvatures,
especially in the range of microvillus sizes (r < 200 nm).
In one approach, a giant unilamellar vesicle (GUV) is held
by a micropipette at one side and pulled, on the other side,
by a polystyrene bead holding by optical traps (Figure 4A).
A membrane nanotube can be generated with controlled radii,
ranging from 7 to 100 nm, by adjusting the micropipette
pressure (118). Similarly, an optical trap has been used to pull
short tethers (r < 100 nm) from the cell membrane (119).
Meanwhile, these manipulations are technically challenging and
may be time-consuming. GUVs are also sensitive to osmotic
changes and therefore can bring difficulty to long-duration
experiments. Alternative approaches to study negative curvature

FIGURE 4 | Methods to physically manipulate membrane curvature. (A)
Schematic of optical trap that is used to pull a thin nanotube from GUV held
by a pipette (top). Confocal microscopy reveals that GFP-IRSp53 BAR protein
localizes to nanotube pulled from GUV (magenta) that is held by a pipette
(bottom). Scale bar: 5 µm. Reproduced from Prévost et al. (118) licensed
under Creative Commons (CC BY 4.0). (B) Schematic of a cell on a
nanofabricated surface with structures of different radii (top). Scanning
electron microscopy microfabricated of nanofabricated chip with a gradient
nanobar array with a variable width from 100 to 1,000 nm (100 nm increment;
bar length: 2 µm) (middle). The averaged nanobar images of anti-FBP17
immunostaining for 10 different nanobar widths. FBP17 localizes to positively
curved structures with a width <400 nm (bottom). Reproduced from (93).
Copyright 2019 National Academy of Sciences.
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employ substrates that serve as a mold to induce membrane
curvature on artificial membranes and cells (Figure 4B). Focused
ion beam has been applied to etch an array of invaginations with a
radius of 100 nm on a glass surface (120). The fabricated substrate
can then be covered with SLB to mimic the highly curved
membranes in microvilli. Another promising means to induce
membrane curvature is by using nanofabricated substrates (90,
121). Yet, the diffusion of membrane components may be
affected by the substrate (122, 123), which should be carefully
evaluated beforehand.

OUTLOOK

Looking forward, significant questions remain to be addressed
in terms of the mechanism and signaling function of T cell
microvilli:

(1) What are the mechanisms that regulate microvilli
formation and dynamics? Besides identifying the key
protein and lipid components regulating microvilli, it will
also be necessary to understand the relationship between
microvilli and other membrane structures, for example, the
recently identified CD2 Corolla which seems to be devoid
of microvilli (124).

(2) How do microvilli regulate the localization and
oligomerization state of proteins and lipids? Phase
separation, or the formation of liquid-like microclusters,
emerges as a new principle in regulating TCR signaling
(125, 126). The unique membrane topology in microvilli
could play an important role in regulating the assembly
of signaling microclusters. On the other hand, microvilli
could bring proteins physically close even if there are
no direct interactions between those proteins. Future
co-localization studies should be best performed in the
context of microvilli to understand the exact nature of the
entities that are examined. In addition, many other tiny and
transient proteo-lipid nanodomains have been identified
on the plasma membrane (127–130). It remains as an open
question on the relationship between these structures and
the microvilli-localized proteins.

(3) How do microvilli modulate chemical reactions? The src-
family kinase Lck has been shown to be enriched in
microvilli (22). Future studies are expected to reveal the
microvilli localization or even sub-microvilli localization
(tip, side, or base) of other enzymes in the TCR
signaling (e.g., PLCγ1, ZAP70, SHP1, CBL), together

with their corresponding substrates. Elegant reconstitution
approaches will be needed to recapitulate the essential
physical and chemical environment of microvilli to
understand how curved membranes in microvilli affect the
specific activity of kinases, phosphatases, and lipases.

(4) How do microvilli regulate TCR signal transduction? As
protrusive structures that search the surrounding space and
make contacts with the APCs, microvilli are constantly
experiencing mechanical forces from the environment
(131). These forces may be involved in the regulation of cell
recognition and calcium flux, as found in the microvillar
photoreceptor cells (132). Moreover, TCRs on the tip of
the microvilli receive stimuli from APCs. Meanwhile, what
happens after antigen recognition remains unclear. How is
signal transduced from the tip of microvilli to the cell body?
Do microvilli participate in kinetic proof-reading since
microvilli are enriched with proteins mediating multiple
steps along the TCR pathway? Do microvilli serve as a
signaling unit that integrates signals from TCR and co-
receptors first before sending them to the cell body, or
are different signals transduced individually across the
microvilli? With these questions being addressed, the
current map of T cell membrane signaling is likely to be
significantly expanded from a 2D surface to a 3D world.
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Platelets are specialized anucleate cells that play a major role in hemostasis following
vessel injury. More recently, platelets have also been implicated in innate immunity and
inflammation by directly interacting with immune cells and releasing proinflammatory
signals. It is likely therefore that in certain pathologies, such as chronic parasitic
infections and myeloid malignancies, platelets can act as mediators for hemostatic
and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly
analogous to human, providing a robust model for functional comparison. However,
traditional methods of studying platelet phenotype, function and activation status often
rely on using large numbers of whole isolated platelet populations, which severely
limits the number and type of assays that can be performed with mouse blood.
Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses
optical diffraction tomography (ODT), we were able to identify and quantify differences
in single unlabeled, live platelets with minimal experimental interference. We analyzed
platelets directly isolated from whole blood of mice with either a JAK2V617F-positive
myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis
of the platelets indicates previously uncharacterized differences in platelet morphology,
including altered cell volume and sphericity, as well as changes in biophysical
parameters such as refractive index (RI) and dry mass. Together, these data indicate
that, by using holotomography, we were able to identify clear disparities in activation
status and potential functional ability in disease states compared to control at the level
of single platelets.

Keywords: platelets, holotomography, MPN, JAK2V617F, leishmaniasis

INTRODUCTION

Maintaining blood flow in basal states and preventing excessive blood loss following injury
relies on an orchestrated response from different cell types and non-cellular components, such
as clotting factors. Platelets are key cells in this process, becoming rapidly activated following
injury and form a platelet plug to reduce blood loss, as well as initiating secondary hemostasis to
promote the formation of a stable fibrin-rich thrombus (Machlus and Italiano, 2013). Maintaining
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a physiological number of functional platelets is essential for
hemostasis. However, a wide variety of pathological conditions
lead to rapid and sustained changes in platelet counts
and functionality. Thrombocytopenia (sustained reduction in
platelets of <100 × 103/µL whole blood in humans) is common
in autoimmune conditions as well as acute and chronic infections
by bacterial, parasitic and viral pathogens including Salmonella,
Staphylococcus aureus, Plasmodium, Leishmania, and dengue
virus (Varma and Naseem, 2010; Cox et al., 2011; Lacerda et al.,
2011; Liu et al., 2016; Kullaya et al., 2018; Riswari et al., 2019).

Conversely, thrombocytosis (sustained excess platelet
count >450 × 103/µL whole blood in humans) is common
in myeloproliferative neoplasms (MPNs), such as essential
thrombocythemia (ET). Furthermore, platelet production by
megakaryocytes can be significantly altered by bone marrow
failure syndromes, whereas inflammatory conditions often
impact platelet functionality. In addition to being essential
for hemostasis, there is now compelling evidence suggesting
key roles for platelets in other processes including wound
healing, angiogenesis, inflammation, and innate immunity
(Machlus and Italiano, 2013; van der Meijden and Heemskerk,
2019). Platelets express a range of receptors that allow them to
interact with and respond to pathogens and assist in regulating
an immune response (Assinger, 2014; Hamzeh-Cognasse
et al., 2015; van der Meijden and Heemskerk, 2019). There
is complex interplay between platelets and bacteria during
infections, where the interaction of platelets with immune
cells, such as neutrophils generate neutrophil traps/net or
release immunomodulatory factors for trapping and clearance
of bacteria. Platelets can also bind directly to the bacteria to
form clots during inflammatory endocarditis. Platelets assist the
formation of the traps, and concurrently the nets contribute to
platelet activation, linking inflammation to thrombosis (Gros
et al., 2015; Hamzeh-Cognasse et al., 2015).

As platelet production and function is comparable between
mice and humans, murine models provide an excellent platform
to study the effects of diverse pathologies on platelet form and
function. However, traditional methods used for studying platelet
phenotype, function and activation status often rely on using
large numbers of whole isolated platelet populations. The limited
volume of the blood obtained for isolation of platelets severely
restricts the number and type of assays that can be performed
with mouse blood. Super-resolution imaging techniques have
recently enabled the study of structural changes in the protein
distribution or cytoskeleton changes of platelets in disease models
(Poulter et al., 2015; Bergstrand et al., 2019; Khan and Pike,
2020), However, it is important to note that with improvements
in resolution, the post-isolation processing which entails fixation,
permeabilization and labeling, can often lead to artifacts if not
carefully controlled (Schnell et al., 2012; Stanly et al., 2016; Pereira
et al., 2019; Khan and Pike, 2020).

Here, using cutting edge 3D quantitative phase imaging,
holotomography, which uses optical diffraction tomography
(ODT), we were able to identify and quantify differences in
single unlabeled platelets from very small sample volumes. The
technique measures 3D differences in the refractive index (RI)
tomograms that are generated due to alterations in the diffraction

patterns obtained from the cells. This allows the measurement
of cellular changes under live conditions, without experimental
interferences such as labeling or fixation. With this label-free
imaging of the samples we can obtain quantitative information
such as cellular dry mass (cytoplasmic concentration) and
information on the cell size or structure (Kim et al., 2017;
Lee et al., 2019).

Using this technique, we analyzed platelets directly isolated
from the whole blood of two different pathological mouse
models. In the first model, Jak/2E/B6 Stella-Cre mice express
a mutated version of human JAK2 (JAK2V617F) under the
control of the endogenous Jak2 promoter (Li et al., 2010). These
mice develop symptoms similar to a JAK2V617F-positive MPN,
including increased platelets and erythrocytes, megakaryocyte
hyperplasia and markers of chronic systemic inflammation.
However, the role of JAK2V617F in platelet function remains
unclear. In vitro analysis of platelets isolated from MPN patients
suggests there may be defects in signal transduction and integrin
activity (Moore et al., 2013; Lucchesi et al., 2020). While
in JAK2V617F-positive mouse models, studies have suggested
changes in platelet aggregation in vitro (Hobbs et al., 2013)
and others identify aberrant hemostasis in vivo, but no clear
platelet phenotype (Etheridge et al., 2014; Lamrani et al., 2014).
Furthermore, as chronic inflammation is now considered a key
characteristic of MPNs, the proinflammatory environment may
lead to functional changes in platelet activity, leading to the
increased incidence of bleeding abnormalities in these patients,
as reviewed in Hasselbalch (2012, 2014).

We also analyzed platelets taken from a mouse model
of visceral leishmaniasis (VL). In humans, VL causes
thrombocytopenia and anemia, a phenotype also mirrored
in experimental murine models of Leishmania donovani,
which is thought to be caused by defective medullary
erythropoiesis and thrombocytopenia (Varma and Naseem,
2010; Preham et al., 2018; Rani et al., 2019). The cause of severe
thrombocytopenia in the mouse models of VL is unclear, but is
likely to be multifactorial, with the parasite infection leading to
significant changes in the bone marrow microenvironment and
increased macrophage activity that would likely lead to excessive
platelet clearance.

In this study, using holotomography, we were able to identify
distinct platelet phenotypes in both disease mouse models that
may not have been identifiable using current standard assays.

MATERIALS AND METHODS

Ethics Statement
All animal care and experimental procedures were performed
under UK Home Office License (Ref # PPL 7008596 and
P49487014) and with approval from the Animal Welfare
and Ethical Review Board of the Department of Biology,
University of York.

Mice
C57BL/6 (WT) and Jak/2E/B6 Stella-Cre (Li et al., 2010; Kent
et al., 2013) (herein referred to as VF) mice were bred at
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the University of York. For platelet experiments, heterozygous
VF mice where used, which exhibit a JAK2V617F+ ET-like
phenotype with modest platelet increases, splenomegaly and
transformation to myelofibrosis.

For L. donovani infection experiments, C57BL/6 female mice
at 6–8 weeks of age used for the study. Mice were infected with
3 × 107 amastigotes of the Ethiopian strain of L. donovani (LV9)
via lateral tail vein, as described (Hasselbalch, 2014). All mice
were maintained in individually ventilated cages (at ACDP CL3,
where necessary for infection control). All experimental mice
were killed 4 weeks post infection.

Platelet Isolation
The WT and VF mice were euthanized with pentobarbital,
followed by collection of whole blood into acid citrate dextrose
(ACD) via cardiac punctures. The collected blood was topped
up with equal volume of wash buffer (150 mM NaCl, 20 mM
HEPES, at RT, pH 6.5) and centrifuged at 60 g for 7 min at
room temperature without breaks. The platelet rich plasma (PRP)
was collected and centrifuged at 240 g for 10 min at room
temperature to separate platelets and plasma. The platelet pellet
was resuspended in wash buffer containing 1 U/ml of apyrase
(Sigma-Aldrich, United Kingdom) and 1 µM of prostaglandin E1
(Sigma-Aldrich, United Kingdom) (Prévost et al., 2007).

For L. donovani infected mice, whole blood was collected via
cardiac puncture after anesthetizing the mice with isoflurane
inhalation in a secure chamber (Apollo TEC3 Isoflurane
Vaporize, Sound Veterinary Equipment, Rowville, VIC,
Australia). Blood was collected in 5 ml polystyrene tubes
(FalconTM) coated with ACD and isolated as above into wash
buffer without apyrase and prostaglandin E1.

Twenty microliter of the isolated platelets were then added to
a TomoDish (Tomocube Inc.) fluidic chamber assembly, where
the sample is sandwiched between two #1.5H coverslips.

Platelet Fixation and Granule Labeling
For monitoring the effect of fixation on platelets, 10 µl isolated
platelets in wash buffer were added to the TomoDish with a
coverslip and imaged, followed by addition of 10 µl 8% PFA to the
flow chamber in the TomoDish allowing it to diffuse in, making a
4% PFA final concentration within the chamber. This was allowed
to incubate and imaged every 10 min for a total of 30 min at room
temperature (RT).

For labeling the granules, the isolated platelets were incubated,
for 30 min at 37◦C, 5% CO2, with 50 µM Mepacrine (Q3251-
25G, Sigma-Aldrich, United Kingdom) to label dense granules
or 10 µg/ml of BQ-BSA Green (D12050, Invitrogen, Fisher
Scientific) to label the alpha granules. After incubation, the
platelets were washed and plated onto the TomoDish with 4%
PFA for 10 min at RT. The fixative was removed, and the platelets
were then imaged in wash buffer.

Microscopy
3D Quantitative phase images of platelets were generated using
a commercial holotomographic microscope (HT-2H, Tomocube
Inc.) that employs ODT using two UPLSAP 60X (NA 1.2) Water
dipping lenses (Olympus, Tokyo, Japan). Full details of the optical

configuration have been previously described here (Kim et al.,
2013; Lim et al., 2015). Samples in wash buffer were mounted on
specialized TomoDishes with No1.5H coverslips at RT.

Statistics
The data were plotted using GraphPad Prism 8 and data
analyzed using unpaired or paired two-tailed t-tests as indicated
in figure legends.

RESULTS

3D Holotomography Image Acquisition
and Data Analysis
Briefly, the HT-2H microscope is based on a Mach–Zehnder
interferometer equipped with a digital micromirror device
(DMD) (Figure 1A). Using a coherent monochromatic laser
(λ = 532 nm) divided into a sample and reference beam, 2D
holographic QPI images were generated at multiple illumination
angles (Figure 1B) where the incidence light is accurately
controlled by the DMD (Shin et al., 2015). The light beam
diffracted by the sample was collected using a high numerical
aperture (NA = 1.2) objective lens UPLSAP 60XW (Olympus,
Tokyo, Japan), with the subsequent holograms recorded on
a CMOS sensor. A 3D RI tomogram was then reconstructed
from the series of off-axis holograms using the TomoStudioTM

software (Tomocube Inc.) (Figure 1C). Further details of the
algorithms used and principles of ODT can be found here
(Shin et al., 2016).

The 3D RI Tomograms of individual platelets were visualized
and segmented to measure three-dimensional morphological
parameters, mean RI and dry mass within the TomoStudioTM

software (Figures 1D,E and Supplementary Videos 1A,B).

Platelets From Myeloid Malignancies
Show Changes in Platelet Morphologies
and Intracellular Components
Aberrant hemostasis and thrombosis is one of the most
common causes of morbidity and mortality in JAK2V617F-
positive MPN patients. Although some differences have been
identified in platelet protein expression levels that would lead to
a prothrombotic phenotype, the actual structure or morphology
of these platelets has yet not been visualized. In order to
study the differences in these platelets from WT vs. VF mice,
we used a previously characterized murine model system for
JAK2V617F+ mice (Li et al., 2010). Maximum RI projection
images of unfixed platelets, freshly isolated from WT and VF
mice indicated no visible change in the morphology (Figure 2A).
However, quantitative analysis of the RI projection data indicated
that had higher intensity compared to WT platelets (Figure 2B;
P < 0.001), suggesting differences in composition between
platelets from these two strains. There were no significant
differences between WT and VF platelets in surface area or
volume, but VF platelets had a significant increase in sphericity
(unpaired two-tailed t-test, P = 0.1921, P = 0.5062, and
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FIGURE 1 | Label-free 3D ODT imaging of platelets. (A) Simplified schematic of a holotomographic microscope based on Mach-Zehnder interferometric microscopy.
λ-532 nm, laser light source; DMD, digital micromirror device; L1–L3, lenses; CL, condenser lens 60× NA 1.2; Obj, objective lens 60× NA 1.2; M, mirror; BS1-2,
beam splitter; Pol, polarizer; FL LED, fluorescence light source. (B) Image acquisition/scanning of the sample based on sequential imaging at multiple angles to yield
a total of 49 holograms. (C) Representative cross-sectional 3D RI tomogram image of a platelet. Color bar represents refractive index. (D) Example of 3D surface
rendering of the platelet sample used to measure morphological parameters (see also Supplementary Video 1A). (E) Representative RI based rendering, where the
pseudo coloring represents different bands of refractive index to highlight intracellular features of the platelet (see also Supplementary Video 1B).

P = 0.0063, respectively; Figure 2C). Thus, platelets in VF mice
are altered in shape but not size.

We next created 3D iso-surface rendered images of the
platelets based on a range of RIs, to provide data about cytosolic
differences between cells (Kim et al., 2017; Lee et al., 2019). The
3D iso-surface rendered images of the platelets from WT and
JAK2V617F mice show a clear difference in the organization of
RI materials within the platelets (Figure 2D). corresponding with
the RI values (Figure 2E; unpaired two-tailed t-test, P ≤ 0.0001)
and a significant increase in the dry mass (unpaired two-tailed
t-test, P ≤ 0.0001).

Bioactive molecules, such as those stored in alpha granules
[containing membrane associated proteins – integrins, P-selectin,
and soluble factors – vWF, factor V to name a few (Blair and
Flaumenhaft, 2009; Flaumenhaft and Sharda, 2018)] and dense
granules [mainly contain calcium, serotonin, histamines, etc.,
(Flaumenhaft and Sharda, 2018)], are key components within
the platelets that make them active and respond to specific
agonists (Hamzeh-Cognasse et al., 2015). In order to identify
these granules and map the RI, we labeled the granules using
membrane permeable dyes (Hanby et al., 2017) and fixed the

platelets with 4% PFA for 10 min. The PFA fixation at 10 min
does not affect the size, shape, RI and dry mass of the platelets but
leaving them from longer than 10 min significantly alters these
parameters (Supplementary Figures S1A–E). Unfortunately,
although we could detect alpha and dense granules within the
platelets, we were unable to measure the exact RI for the granules
(Supplementary Figures S1F,G).

L. donovani Infected Mice Have Altered
Platelet Morphologies and Intracellular
Features
To determine whether similar changes occurred in another
pathological setting characterized by alterations in platelet
numbers, we examined platelets from mice with experimental VL
(Hasselbalch, 2014; Preham et al., 2018).

Visible changes in the morphology of the platelets was
observed in maximum RI projection images of the platelets
freshly isolated from naïve and L. donovani-infected WT
C57BL/6 mice (Figure 3A). In contrast to VF mice (Figure 2),
platelets from L. donovani-infected mice have a much lower mean
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FIGURE 2 | Morphological and biophysical differences in platelets from WT and JAK2V617F+ (VF) from murine blood. (A) Max RI projections of the 3D phase
images of platelets from WT and VF mice. (B) The mean intensity values from the RI projections between WT and VF platelets (unpaired two-tailed t-test,
P ≤ 0.0001, n = 80 platelets). (C) Morphological changes of platelets from WT and VF mice in surface area platelets (unpaired two-tailed t-test, P = 0.1921), volume
(unpaired two-tailed t-test, P = 0.5062), and sphericity (unpaired two-tailed t-test, P = 0.0063 n = 102 platelets, median represented by black line in the violin plot.
Scale bar 2 µm. (D) 3D rendered iso-surface image of platelets from WT and VF mice based on RI. (E) Changes in mean RI (unpaired two-tailed t-test, P ≤ 0.0001)
and dry mass (unpaired two-tailed t-test, P ≤ 0.0001) of the platelets. Scale bar 1 µm, RI scales; Pink: 1.3426–1.3483, blue: 1.3484–1.3519, green:
1.3520–1.3565, red: 1.3566–1.3628. **P ≤ 0.01, ****P ≤ 0.0001.

intensity (unpaired two-tailed t-test, P = 0.0038; Figure 3B).
Platelets from infected mice had increased surface area and
volume but reduced sphericity (unpaired two-tailed t-test all
P ≤ 0.0001; Figure 3C) Thus, platelets from infected mice had
an increase in size as well as an altered intracellular environment
and a suggestion, based on sphericity, of activation.

Similar to the VF model, we also studied changes in the
cytosolic parameters. Platelets from naïve and L. donovani-
infected mice also showed a visible difference in the RI
(Figure 3D), with a significant reduction in higher RI based
structures (unpaired two-tailed t-test, P ≤ 0.0001; Figure 3E).
Unlike VF platelets, platelets from L. donovani-infected mice

had an increase in dry mass (unpaired two-tailed t-test,
P ≤ 0.0001; Figure 3E).

DISCUSSION

Imaging based techniques are rising in popularity with the
advancement of super-resolution imaging and the amount of
quantitative information concerning the functioning of the cells
that can be derived from such experiments. The field of platelet
biology has taken advantage of these tools and a vast array of new
and exciting information relating to the changes in the internal
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FIGURE 3 | Morphological and biophysical differences in platelets from naïve and Leishmania infected mice. (A,B) Max RI projections of the 3D phase images of
platelets from Naïve and L. donovani infected mice n = 23 platelets. (C) Morphological changes seen in platelets in surface area, volume, and sphericity. n = 62
platelets, 10 platelets from each WT mice in study (6 mice) and n = 172 platelets from 17 L. donovani infected mice, median represented by black line in the violin
plot. Scale bar 2 µm. (D) 3D rendered iso-surface image of platelets from naïve and L. donovani infected mice based on RI. Scale bar 1 µm. (E) Changes in mean RI
(unpaired two-tailed t-test, P ≤ 0.0001), and dry mass (unpaired two-tailed t-test, P ≤ 0.0001) of the platelets. RI index scales; Pink: 1.3406–1.3525, blue:
1.3525–1.3621, green: 1.3622–1.3735, red: 1.3736–1.3822. **P ≤ 0.01, ****P ≤ 0.0001.

structure and function of platelets or platelet proteins during
activation processes or disorders has recently been produced
(Poulter et al., 2015; Westmoreland et al., 2016; Knight et al.,
2017; Bergstrand et al., 2019; Khan and Pike, 2020). With
fluorescence based imaging, the protein of interest often requires
the samples to have a fluorescent tag – either genetically modified
or by immuno-labeling, to provide the contrast required for
visualization. In our study, we use 3D holotomography, a RI-
based imaging technique, that requires no labeling or post-
isolation processing, enabling us to study alterations in the cell
morphology and changes in biophysical parameter of unaltered
cells or platelets in health and disease.

Obtaining enough platelets from mice to perform standard
in vitro functional assays, such as lumi-aggregometry or western

blotting, has always been significant restraint for platelet studies.
As a result, researchers are often limited to a single assay for each
mouse. However, the assays outlined here can be performed with
a minimum volume of 10–20 µl/chamber, allowing sampling
of 100–200 platelets at single cell level, sufficient to generate
quantitative information relating to platelet morphology and
RI/dry mass. Therefore, this imaging technique can serve as a
valuable additional or complementary technique to other in vitro
platelet function assays.

Here, we used this technique to study the morphological
changes and alterations in the cellular composition of platelets
directly isolated from two murine disease models. We isolated
and imaged platelets from mice with either somatic mutations
in JAK2, JAK2V617F, that cause MPNs or platelets from mice
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with experimental VL following infection with L. donovani.
Both of these models have characteristic alterations in their
platelets, leading to either thrombocytosis or thrombocytopenia
with chronic inflammation giving rise to these fatal thrombotic
or bleeding disorders (Goncalves et al., 2011; Hasselbalch, 2012,
2014; Etheridge et al., 2014).

Under normal physiological conditions, the vascular
endothelium continuously suppresses platelet activation via
expression of ectonucleotidases, thrombomodulin, or by
releasing prostaglandin I2 and nitric oxide. This is usually
altered when there is an inflammatory environment or vascular
injury that contributes to a prothrombotic phenotype, as seen in
bleeding disorders (van der Meijden and Heemskerk, 2019). We
have previously shown, using an alternative murine JAK2V617F-
positive MPN model, that expression of the mutated protein
in platelets did not have a significant effect on aggregation
in vitro, and aberrant hemostasis was largely due to extreme
thrombocytosis-induced acquired von Willebrand’s disease
and an inflamed endothelial environment (Etheridge et al.,
2014). An inflamed endothelium is common in MPNs due
to a chronic inflammatory environment and often leads to
atherosclerosis and secondary cancers (Hasselbalch, 2012, 2014).
This inflammatory environment is characterized by increases
in circulating thrombomodulin, selectins and von Willebrand
factor. This is turn activates the endothelial cells lining the
blood vessels, leukocytes and platelets (Hasselbalch, 2014).
Thus the platelets have a significant role to play in the MPN
bleeding complications, often with progression to secondary
complications (Hasselbalch, 2012; Etheridge et al., 2014). In our
study, platelets isolated from VF mice do not have a characteristic
change in morphology, but do show an increase in the mean
RI and dry mass (Figure 2) indicating intracellular changes
within the platelets, which may largely be due to platelets
being primed by the inflammatory environment for further
activation and function.

The larger the size of the platelets, the greater is reactivity
and prothrombotic ability (Slavka et al., 2011; Machlus and
Italiano, 2013). Platelets from L. donovani infected C57BL/6
mice were found to be much larger in size and less spherical
compared to the naïve platelets (Figure 3), presenting a much
more morphologically activated state, accompanied by changes
in the intracellular content. The larger platelets were also seen
in H&E staining of blood smears from infected mice (Rani
et al., 2019 and Rani G et al., unpublished). The mechanism(s)
underlying these changes in platelets during infection remain to
be determined. The inflammatory response to L. major infection
has previously been associated with platelet activation, release
of platelet derived growth factor (PDGF) and amplification
of monocyte recruitment via CCL-2 (Goncalves et al., 2011).
Platelet activation is also known to alter sialylation of surface
glycoproteins allowing recruitment to the inflamed liver and
clearance by hepatocytes via Ashwell-Morrell Receptor (Rani
et al., 2019 and Rani G et al., unpublished). Furthermore, an
increase in the number of IgG-bound platelets in L. donovani
infected mice likely underpins enhanced clearance of activated
platelets, leading to severe thrombocytopenia in these models.
The presence of larger platelets, as seen in our results, could also
be due to newly formed platelets owing to increased turnover

and changes in platelet biogenesis [Rani et al. (unpublished); and
Slavka et al. (2011)].

In both models studied, we noticed a different platelet RI
for the WT and naïve mice and a non-linear relationship of RI
and dry mass between naïve and L. donovani infected platelets
(Figures 2, 3). We currently do not know the effect of the
different platelet isolation methods and buffers (see “Materials
and Methods”) have on the RI of the platelets. We speculate this
to be one of the reasons resulting in the RI difference. Day to
day calibration of the system based on the “buffer background”
is done prior to imaging which could also cause these minor
alterations in the resulting RI between the two models.

Based on ODT literature, RI and dry mass are linearly
proportional (Kim et al., 2016, 2017; Lee et al., 2019). In the
L. donovani infection model, this does not seem to be the
case. The naïve platelets, in the infection model, show a broad
distribution of RI data sets – some with higher RI and others
lower. The corresponding dry mass shows a tighter distribution
of the data set. This difference is noted in both models, with the
WT mice having a tighter RI range and a broader dry mass in
contrast to the naïve platelets. But strangely, this occurs only in
the WT and naïve platelets, while the VF and L. donovani infected
platelets do not show this pattern. Human platelets isolated from
different donors have been shown to have some variation in their
morphological and cytosolic parameters and also have altered
activation patterns when stimulated (Lee et al., 2019). Therefore,
the differences in our results may be an inherent property of the
normal, uninfected platelets that may have gone unnoticed with
other platelet assays. Thus, from these two differences highlighted
in our results, we can only compare and contrast RI data from
within one experimental data.

Both mouse models used in our study share several
hematological pathologies such as splenomegaly, largely
associated with thrombocytopenia in leishmaniasis, and an
inflammatory environment (Hasselbalch, 2012; Sangkhae et al.,
2015; Preham et al., 2018). This inflammatory environment
causes an influx of immune cell responses, where platelets
can act as mediators for generating these responses (Garraud
and Cognasse, 2015; Gros et al., 2015). The role of platelets in
innate immunity is largely due to their capacity to internalize
viruses and bacteria, release of bioactive molecules stored in
their granules and interaction with other cells, i.e., leukocytes to
combat a potential threat (Li et al., 2012; Ali et al., 2015). Overall,
the complex nature of platelet function as either pro- or anti-
inflammatory, or the platelets having a beneficial or detrimental
effect is entirely dependent on the cause of the inflammation and
the pathophysiology of the disease as described in the review
by Gros et al. (2015). Here, using our label-free method of RI
imaging, we were able to highlight that platelets isolated from our
hematological and inflammatory disease models appear different
in structure and size and cytosolic concentrations, compared to
WT controls. Although there are some limitations in using the
fluorescence-based imaging with this platform, there is more
RI based information and real-time cell dynamics that can be
tracked over time (Lee et al., 2019), allowing this method to be
used for studying the effect of different drugs on the activation
states of platelets. The technique also highlights the amount of
valuable information that can be derived from only a fraction of
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the platelets isolated from mice, which will aid in complementing
other functional assays of platelet activation.
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FIGURE S1 | Four percentage PFA fixation on platelets at varying time scales.
(A–E) Morphological and biochemical parameters affected by PFA fixation (A)
Surface area (P = 0.3263, 0.0010, 0.0083), (B) Volume (P = 0.4913, <0.0001,
0.0004), (C) Sphericity (P = 0.1521, 0.0027, 0.0103), (D) RI (P = 0.4214, 0.9495,
0.6858), and (E) Dry mass (P = 0.7976, 0.0005, 0.0001). Paired two tailed t-test
was performed for all, n = 30. RI: Pink: 1.3444–1.3525, blue: 1.3526–1.3621,
brown: 1.3622–1.3719, red: 1.3720–1.3775.
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Cellular function is reliant on the dynamic interplay between the plasmamembrane and the
actin cytoskeleton. This critical relationship is of particular importance in immune cells,
where both the cytoskeleton and the plasma membrane work in concert to organize and
potentiate immune signaling events. Despite their importance, there remains a critical gap
in understanding how these respective dynamics are coupled, and how this coupling in
turn may influence immune cell function from the bottom up. In this review, we highlight
recent optical technologies that could provide strategies to investigate the simultaneous
dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on
current and future applications in immune cells. We provide a guide of the spatio-temporal
scale of each technique as well as highlighting novel probes and labels that have the
potential to provide insights into membrane and cytoskeletal dynamics. The quantitative
biophysical tools presented here provide a new and exciting route to uncover the
relationship between plasma membrane and cytoskeletal dynamics that underlies
immune cell function.

Keywords: plasma membrane, actin cytoskeleton, fluorescence correlation spectroscopy, fluorescence recovery
after photobleaching, immune cells, metal induced energy transfer, volumetric imaging, quantitative imaging
INTRODUCTION

Life is dynamic. Cellular components are in constant motion bridging various time- and length-
scales. This includes the plasma membrane and the cortical actin cytoskeleton, which form a
dynamic interface between the cell and its environment, working together to control cellular
signaling and morphology as well as to maintain the mechanical integrity of the cell. It is becoming
increasingly clear that the dynamics of the cortical actin cytoskeleton and the plasma membrane are
intimately linked to immune cell function, playing a critical role in, for instance, the regulation of
receptor organization, granule section, and specific cytoskeletal protrusions (1–4). Despite their
individual importance, how both the membrane and the cortical actin cytoskeleton dynamics are
coupled, and how feedback between the two structures shapes their interplay in immune cells
remains unknown. Crucially, to understand the functional significance of this interplay,
org January 2021 | Volume 11 | Article 612542134
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measurement techniques are required that allow the dynamics of
actin and membrane to be captured simultaneously, enabling
their direct correlation in both space and time.

Actin-Membrane Interactions at a Glance
The interactions between the membrane and the actin cortex are
numerous and complex and have been the subject of intense
research (5, 6) (Figure 1A). Underlying the plasma membrane
the actin cortex exists as a densely cross-linked meshwork of
filamentous actin (F-actin) formed by the polymerization of
globular actin (G-actin) monomers undergoing constant
Frontiers in Immunology | www.frontiersin.org 235
turnover on the second time-scale (7). The dynamic
architecture of the actin cortex is governed by two primary
modes of F-actin polymerization driven by either Arp2/3 or
formin nucleation leading to constantly varying actin mesh-sizes
from tens of nanometers to microns (8). The dynamic nature of
the cortex as well as its mechanical plasticity is largely mediated
by a variety of myosin motors that cross-link individual filaments
and induce active mechanical stress within the network (8).

Biochemically linking the actin cortex and the plasma
membrane are a series of specific protein-protein and protein-
lipid interactions (9). One of the most important membrane
A B

D E F

C

FIGURE 1 | Plasma membrane organization and actin cytoskeletal dynamics are intrinsically linked to immune cell organization and function over many length- and time-
scales (A–C). Techniques with the ability to quantify simultaneous dynamics present an exciting route to understand the interplay of cortical actin and plasma membrane in
immune cells (D–F). (A)On the nano-scale actin filaments are turning over and binding the plasma membrane influencing its organization which in turn impacts on actin
organization and the distribution of receptors, lipids and other membrane constituents. (B) Defined actin and membrane flows, organization and their integrity are crucial for
cell-cell contacts such as during immunological synapse formation on the meso-scale. (C)Within tissue, immune cells must navigate through biophysically diverse
environments, relying on both a dynamic plasma membrane and actin cytoskeleton to carry out their function. (D) Fluorescence correlation spectroscopy (FCS) and FCCS
measure fluctuation of fluorescently labeled molecules diffusing through the focus of a confocal microscope. Typical transit times range from µs to hundreds of ms
highlighting the large dynamic range and unrivaled temporal resolution of these techniques. Auto-correlation (AC) of the intensity traces (in two spectral channels CH1 and
CH2) allows to calculate diffusion coefficients and interactions (cross-correlation, CC). (E) Fluorescence lifetime imaging (FLIM) allows to monitor changes in fluorescence
lifetime. Acquiring FLIM images typically takes seconds to minutes. Functional probes can change their lifetime in accordance to their environment sensing, for example,
viscosity. In metal induced energy transfer (MIET) the lifetime change is correlate with the distance to the surface and allows the recalculation of heights yielding the
membrane topology, for example, during cell spreading. (F) Volumetric imaging using, for instance, a light-sheet approach allows to image the cellular context in 3D at
moderate time resolution (down to seconds). Combination with the dynamics techniques, single particle tracking (SPT), fluorescence recovery after photobleaching (FRAP),
and FC(C)S represents a promising route for mapping plasma membrane and actin dynamics in the full physiological setting by correlating their time- and length-scales.
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components mediating this interaction is the glycolipid
phosphatidylinositol-bisphosphate, PIP2. By binding the ERM
(ezrin, radixin, and moesin) proteins, an actin binding family of
proteins, PIP2 provides a linkage between cytoskeleton and
membrane (Figure 1A). In addition to the ERM proteins,
WASP and WAVE, key regulators of Arp2/3 driven actin
polymerization, are also able to bind PIP2 in the membrane,
leading to active polymerization of F-actin at the plasma
membrane (6). Notably, the conserved diversity of specific
linkages between cortex and membrane is indicative of the
importance of the tight coupling of these structures for their
function within the cell.

In addition to the specific molecular interactions between the
plasma membrane and actin cortex, there are a number of more
general biophysical interactions that havebeenwell characterized in
vitro (10), for example, the local charge of the membrane has been
shown to influence actin binding (11). Furthermore, curvature
introduced by the polymerization of the actin cytoskeleton during
the formationof specific protrusions can influence the diffusion and
distribution ofmembrane proteins (12, 13). Conversely,membrane
curvature induced by the physical membrane microenvironment
can lead to actin polymerization (14). Local changes in actin
polymerization can also induce changes in the rate and diffusion
mode of lipid and protein components as well as the membrane
tension (15–18). Crucially, membrane composition, dynamics, and
organization influence the underlying actin cytoskeleton. Similarly,
the dynamics and architecture of the actin cytoskeleton has been
shown to influence the plasma membrane (19). Therefore, the
complex interplay between membrane and cortical cytoskeleton
makes assessing causal links challenging, highlighting the unmet
need for techniques that allow the dynamics of both components to
be quantified simultaneously in space and time.

Actin-Membrane Interactions in
Immune Cells
Many stages of the immune response, for example, antigen
recognition, rely on the integration of information by immune cells
from their environment, often involving the formation of highly
specialized cell-cell contacts, such as the immunological synapse (IS)
that forms between T-cells, B-cells, and antigen presenting cells
(APCs) (Figure 1B). At these contacts, immunological signaling is
initiated and propagated via the interactions of a wide array of
molecules, occurring on and in the proximity of the plasma
membrane. Owing to this, the dynamics of both the plasma
membrane and the underlying actin cytoskeleton have a profound
impact on the organization and dynamics of crucial signaling
molecules. The process of immune cell activation spans a range of
time- and length-scales starting with nano-scale reorganization and
receptor engagement (sub-second), actin polymerization driven
retrograde flow (seconds), to micron-scale cellular activation,
spreading, and cytokine secretion (up to hours) (20–22).

DuringT-cell activation and IS formation, one of the key steps in
the adaptive immune response, there has been increasing interest in
the role of specific cytoskeletal protrusions in the initiation and
orchestrationof earlyT-cell signaling at the plasmamembrane (23–
25). Microvilli at the T-cell surface have been shown to provide an
Frontiers in Immunology | www.frontiersin.org 336
efficientmeans of environment scanning, while association of ERM
proteins to the plasmamembrane interface has been shown to lead
to the accumulation of signalingmolecules atmicrovilli (23, 24, 26).
Following T-cell receptor (TCR) triggering, the T-cell undergoes a
dramaticmorphological change driven by the rapid polymerization
of F-actin. This results in the formation of an increased contact area
between the two cells, which is characterized by the retrograde flow
of actin filaments within a lamellipodial structure at its periphery as
well as a ramified actin network at its center (27). Crucially, TCRs
are trafficked in coordination with the F-actin flow toward the
center of the IS and the continuedflowof actinhasbeen shown tobe
necessary for continued activation, sustainingPLCg1 signaling (28–
30). Notably, once the IS has formed, recent evidence suggests that
tension generated by specific dynamic actin structures influence the
symmetry and lifetime of the IS (31).

In contrast to its polymerization, the depletion of actin has
also been shown to play a role in immune cell function. Targeted
killing by cytotoxic T lymphocytes requires the precise spatio-
temporal control of actin depletion with recent studies pointing
to a complex and intricate mechanism, whereby the density of
the cortical actin underlying the membrane is tuned by the
interaction of the kinase PIP5K and the loss of the charged PIP2
lipid (32, 33).

Like the cortical actin cytoskeleton the plasma membrane is a
dynamic structure, constantly in motion and continuously
reorganizing (34, 35). The presence of defined domains or rafts
(tens of nanometer in diameter) has been evoked to explain a
number of phenomena, including lateral heterogeneity of the
plasma membrane and, for example, the non-random distribution
of membrane proteins on the cell surface (35–38). Along these lines,
the reorganization of immune receptors by specific incorporation
into such structures has been described (39–41). This is based on a
biophysical property of the membrane and the proteins themselves:
proteins can exhibit a preference for different lipid environments
preferring, for instance, a densely packed lipid environment (liquid
ordered phase, highly viscous) enriched in saturated lipids and
cholesterol (42, 43). In contrast, other proteins can prefer the liquid
disordered membrane environment, rather associating with loosely
packed, unsaturated lipids resulting in a low viscosity environment.
This could act as means of increasing interaction likelihood and
forming signaling platforms (44, 45). The degree of order and the
viscosity of the membrane are primarily tuned by the cholesterol
content and in addition likely by its specific interactions with
proteins and lipids (46–48). Intriguingly, the attachment of actin
filaments to the membrane has been seen to influence membrane
organization, resulting in the formation of ordered domains (49,
50), providing a potential mechanism for actin to indirectly
influence membrane protein organization.

As is evident, studies of the dynamics of the cytoskeleton and
membrane have led to important insights into the function of
immune cells (51–53).Despite this, there are only a limited number
of studies that have attempted to address the correlated biophysical
and biochemical dynamic mechanisms whereby membrane and
actinwork together in immune cells. Recent advances in correlative
imaging such as the combination of super-resolution microscopy
and electron microscopy have allowed for detailed insights into
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structural links between plasma membrane and cortical actin
organization (54–56). However, these approaches only allow
snapshots of a constantly evolving structure and thus do not
allow the dynamic interplay to be followed live, and therefore
make assessing causality challenging. Furthermore, little is known
about how these interactions influence the behavior of cells inmore
complex tissue environments or in their full physiological setting,
with our knowledge often restricted to in vitro single cell studies
(Figure 1C). This has primarily been due to a lack of accessible
technologies with sufficient temporal (< ms binding and transport
events) and spatial resolution (single proteins on the order of
nanometres can effect changes on cellular level beyond tenth of
micrometers) to assess the correlated dynamics of the plasma
membrane and the actin cytoskeleton without perturbing the
system. In addition to this, such lack of technology has been
confounded by a lack of membrane and actin probes that can
operate at physiological conditions and offer reliable performance
within the cellular environment.

Here, we review recent advances in both dynamic
measurement techniques and actin/membrane probes that have
not yet been widely applied to study immune cells. In our view,
these methods present a significant opportunity to address the
complex interplay between these two systems crucial to the
immune response by simultaneous quantification of both
membrane and actin dynamics.
FROM FLUORESCENCE IMAGING TO
QUANTIFICATION OF DYNAMICS

Live-cell fluorescence imaging is the method of choice to
understand the behavior of dynamic biological processes owing to
the specificity of labeling structures of interest and the minimal
invasiveness of the approach. Observing events crucial to the
immune response occurring in live cells has long been performed
by employing fluorescence microscopy with confocal and total
internal reflection fluorescence (TIRF) time-lapse imaging due to
their optical sectioning capabilities yielding key insights into the
dynamic nature of these processes (57, 58). This approach has
revealed, for example, the formation and trafficking of T-cell
receptor clusters (21, 59), which is crucial for initiation and
continuation of signaling and has been shown to be strongly
regulated by the dynamic interplay of the membrane and cortical
actin cytoskeleton flows (60, 61). Despite their success, imaging
alone restricts the level of quantitative information that can be
extracted from the biological system of interest, for instance, due to
the limited time resolution of time-lapse imaging acquisitions (tens
of ms to s).

An alternativequantitative route to assessing transient processes
such as cellular reorganization driven by molecular diffusion,
binding-kinetics, or flow has been the use of dynamic techniques
such as single particle tracking (SPT), fluorescence recovery after
photobleaching (FRAP), or fluorescence fluctuation spectroscopy
(FFS) approaches. For a detailed technical description, we refer the
reader to (62–64). In immunology, these traditional techniques and
their advancements have, for instance, been used to investigate the
Frontiers in Immunology | www.frontiersin.org 437
diffusion properties of key signalingmolecules such as BCR, CD1d,
TCR, CD45, or Lck in live cells (65–74).

Fluorescence Fluctuation Based
Approaches to Assess Simultaneous
Dynamics
The spatial heterogeneity across microns along with fast molecular
interactions within the cell membrane represent a challenge to all
dynamic techniques which rely on maintaining single molecule
sensitivity in the crowded cellular environment. Similar to
fluorescence time-lapse imaging FRAP and SPT are
conventionally limited to resolving processes in the ms time
regime. Using fluctuation based techniques such as fluorescence
correlation spectroscopy (FCS) offers unmatched temporal
resolution (down to ns) to cover the range from very fast
molecular binding dynamics (µs) to motion of large protein
complexes in the membrane (hundreds of ms). Unfortunately,
the spatial resolution remains diffraction limited (~200 nm).
Thus, inherently one will average many molecular interactions
missing precise details on dynamics and potential sub 100 nm
spatial heterogeneity which could be functionally important, for
instance, during receptor-ligand engagement. The combination of
stimulated emission depletion (STED) super-resolution
microscopy with FCS has proven itself as a valuable remedy and a
tool to assess nano-scale diffusion directly at the relevant spatio-
temporal scales (75, 76). It has revealed a vast heterogeneity in
diffusion behaviors of membrane constituents caused by
interactions with lipid domains, transmembrane proteins, or the
cortical actin cytoskeleton (16, 17, 77).While STED-FCS offers very
high spatial resolution in living specimens (<50 nm), it is limited by
comparatively high light exposure, requires dedicated equipment
(depletion beam), and necessitates special dyes (75).

By samplingnot onlya singlepoint, but rather a linearor circular
region, scanning fluorescence correlation spectroscopy (sFCS)
studies offer not only increased statistical power over
conventional FCS but also limited phototoxicity (78, 79), and
allow spatial heterogeneities in molecular diffusion dynamics to
be accounted for (Figure 1D). The increased statistical power of
sFCS can be exploited to decipher the diffusion mode of the
molecule of interest (determining if a molecule undergoes free
Brownian or hindered diffusion (80) due to nano-scale
interactions). On the one hand, changes in diffusion behavior can
initiate signaling pathways and on the other hand can be indicative
of a cellular state such as activation (81, 82). Similar to STED-FCS,
the statistical analysis of sFCS data can yield details of dynamic
molecular organization but notably does not rely on any special
equipment or dyes and can be performed on any turn-key confocal
laser scanning microscope (79, 80). Critically, two-color scanning
fluorescence cross-correlation spectroscopy (sFCCS) data can be
used to characterize the dynamics of two species of interest,
exploring their interplay in detail (83–86) (Figure 1D). Super-
resolved (STED) cross-correlation studies have not yet been
achieved, but in combination with beam scanning bare potential
to uncover short-lived interactions (87, 88). Together with
harnessing the statistical power of scanning approaches, we
anticipate that the advances in fast photon-counting acquisitions,
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high-count rateFCSand thus fast photonfilteringmaypave theway
to the realization of such techniques (89, 90). Cross-correlation
studies offer a unique opportunity to quantify cytoskeletal and
membrane dynamics simultaneously, for example, probing the
dynamic interactions between signaling molecules at the plasma
membrane and the flow of the actin cytoskeleton during synapse
formation, allowing cross-correlation on short (µs to ms) time-
scales. Such correlated, simultaneous acquisitions represent a
promising way to dissect causation and may decipher when the
actin cytoskeleton is driving the membrane organization and
vice versa.

Imaging larger regions allows for the mapping of diffusion
across space and delivers increased spatial information at the
expense of temporal resolution (> ms). Both TIRF and single-
plane illumination (SPIM) schemes have been combined with
camera based FCS acquisitions yielding similar and even larger
statistics compared to sFCS (91–93). Crucially, these techniques
provide subcellular or cellular imaging, contextualizing the
dynamic measurements and allowing routine correlation with
specific compartments of the cell. Expanding such approaches
using image mean squared displacement (iMSD) analysis can
even yield insights into the diffusion modes with a statistical
power similar to STED-FCS and sFCS (94, 95). For camera based
acquisitions the frame time (of about 1 ms minimum) represents
the most common bottleneck for resolving fast diffusion (96).
Given recent advances in camera technology this will likely not
pose a limitation for much longer. For example, interferometric
scattering (iSCAT) microscopy, which relies on collecting
scattered light from the sample rather than fluorescence
emission, allows frame rates of multiple kilo Hertz covering
most of the range of dynamic processes in biology (97–99).

Exploiting Fluorescence Lifetime to
Measure Dynamics and Topology
The time a fluorophore spends in the excited state is termed
fluorescence lifetime and can be used as an additional means for
introducing contrast in fluorescence microscopy with the
fluorescence lifetime strongly depending on the environmental
conditions and fluorophore properties (62). The unrivaled
temporal resolution of fluorescence fluctuation approaches offer a
promising route to decipher lateral membrane organization. Yet,
biology operates in all three spatial dimensions, for example, actin
polymerization causing plasma membrane deformations, and the
aforementioned methods are largely blind to changes in axial
organization. In the following, we discuss a possible remedy
exploiting fluorescence lifetime modulation.

The recent advances in commercially available fluorescence
lifetime imaging (FLIM) platforms enable fast acquisitions (few
seconds per frame) and easy access to this microscopy modality
(100). Typically, fluorescence lifetime information is used as an
intrinsic method to generate contrast in unlabeled samples (using
auto-fluorescence) or in conjunction with Foerster resonance
energy transfer (FRET), where the lifetime shortening of the
fluorescence donor is used to calculate the distance between two
fluorochromes (donor and acceptor) revealing molecular
interactions or conformational changes (101) (Figure 1E).
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A versatile variation of FRET makes use of the lifetime and
fluorescence quenching abilities of thin metal films on the glass
coverslip. Inmetal induced energy transfer (MIET), the lifetime can
be used to calculate the height (distance from the quenching
surface) of a fluorophore with nanometer precision across a range
of 0-150 nm (102) (Figure 1E). The dynamic range and localisation
precision can be tuned by the coating material (most commonly
gold andmore recently graphene) (103–105).MIETdisplays a great
opportunity toexploremembrane topologyandcurvature (106), for
example, in commonT cell surface interaction studies using plasma
membrane markers, as has been applied to study the epithelial-to-
mesenchymal transition of epithelial cells (107). This becomes even
more powerful when combined with two-color labeling (108, 109),
allowing the simultaneous spatio-temporal quantification of the
actin cortex and plasma membrane topology, which may elucidate
microvilli structures and allow axial mapping of segregation and IS
organization (109). Specifically, it could be used to differentiate
actual protein clusters from axially stacked molecules (as in
microvilli). MIET can be combined with FCS (or rather its cousin
fluorescence lifetime correlation spectroscopy) allowing for height
dependant dynamic measurements, giving the opportunity to
separate receptor dynamics proximal and distal from the surface
withinonemeasurement ina few seconds, allowingkey insights into
the mobility of receptors in the vicinity of specific actin structures
(110). As a further extension, the combination of fluorescence
lifetime imaging with functional probes paves the way for some
exciting applications, whereby membrane topology can be
correlated with other readouts, such as membrane tension,
curvature, or order (see below).

Fast Volumetric Imaging and
Its Combination With Dynamic Techniques
Theaforementionedapproachesgivehighlydetailed insightson fast
time- and short length-scales. Nevertheless, the actin cortex plasma
membrane interplay also affects larger-scale cellular dynamics such
as pushing/pullingof themembrane, cellmigration and samplingof
the immediate surroundings (see introduction) (Figure 1C). The
investigation of these processes necessitate tools that are able to
operate in in all three dimension (3D), capturing the complex
geometries and topologies of cellular and multicellular samples. In
biology, 3D (volumetric) imaging has typically been achieved using
axial scanning confocalmicroscopy, andmore recently using super-
resolution techniques such as 3D-SIM. Unfortunately, such
techniques are often restricted to relatively long (several seconds
tominutes) scan times, limiting their application to slowly evolving
biological systems. To investigate transient processes in a more
physiological setting (compared to a planar coverslip), great
advances in volumetric and in vivo imaging have been made,
primarily based on the use of light sheet technologies, allowing
for rapid 3D acquisition (111–116) (Figure 1F). These volumetric
imaging approaches present an opportunity to overcome a long-
standing issue for the investigation of plasma membrane and actin
cortex interactions in lymphocytes such as T-cells. Typically, due to
restrictions imposed by conventional imaging methods, specific
activation is achieved by replacing the antigen presenting cell by a
coverslip coated with an activing molecule or a supported lipid
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bilayer presenting target molecules (117, 118). This approach has
led to a great number of important insights into immune cell
biology, yet it omits a large proportion of the biological complexity
and three-dimensional geometry present within the physiological
interactions between immune cells and target cells. Consequently,
the opportunity to investigatingplasmamembrane and actin cortex
interactions in physiological geometry using volumetric imaging is
likely to yield great insights (33, 119, 120).

Crucially, instead of acquiring time-lapse imaging alone,
combing the aforementioned dynamic techniques such as FCS,
FRAP, or SPT with light-sheet imaging has the great advantage
of providing spatial context for the observations (121). Notably,
in contrast to FCS, the FRAP method can not only extract the
dynamics of one species of interest, but can also quantify reaction
processes, such as the binding of actin monomers within the
actin cortex (122). The combination of FRAP with volumetric
imaging therefore represents an exciting opportunity to correlate
diffusive processes, for example, at the plasma membrane with
the reaction driven turnover of the actin cortex beneath. Such
technologies will likely be key in providing insights into the
correlated dynamics of immune cell membrane and actin
cytoskeleton within physiologically relevant environments (123).

All these techniques and ideas, of course, rely on appropriate
and non-perturbing labeling strategies. Excitingly, a large variety
of actin and membrane labels are now available.
Labels and Probes for Quantification of
Plasma Membrane Dynamics
A variety of approaches can be chosen to label the plasma
membrane. Broadly speaking, labels can be divided in specific
labels, binding to or mimicking a certain lipid, and non-specific
labels, displaying usually hydrophobic compounds, which insert
into the membrane. The former can be used to study a specific
lipid or pathway, the latter as a general membrane label.

Non-specific labels such as DiO or DiI have been around for
decades and have even been used for in vivo cell tracking (124, 125).
They conveniently incorporate quickly into the membrane by
incubation alone which works well with model membranes but
can require optimisation for live-cell membrane staining (126).
Homogeneous membrane labeling can also be achieved using
various other commercial compounds such as the CellMask™

dyes (Life Technologies). More recently, the MemBright dyes
were developed allowing for higher photo-stability, lower working
concentration and super-resolutionmicroscopy applications (127).
Alternatively, specific labels can be used tomimic the structure of a
lipid ormembrane constituent. This can be a lipidmodifiedwith an
organic dye, a protein domain specifically binding to a lipid or even
an antibody (126, 128). Labeled lipid analogs have enabled
insightful studies of the dynamic nano-scale organization of the
membrane (76, 77, 87). Nevertheless, due to the comparable size of
dye and lipid it cannot be excluded that the analog does not exactly
represent the native lipid. An important constituent of the plasma
membranewith anabundance of about 30%–40% is cholesterol (35,
46). A variety of probes and cholesterol binding proteins are
available (47, 129), however how cholesterol is distributed
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laterally and axially in the plasma membrane remains under
heated debate.

It should be noted that fluorescent WGA conjugates are
commonly used to stain the plasma membrane. This protein
displays a lectin and rather binds the membrane adjacent
glycocalyx thus spatial variations can occur within one cell and
definitely when comparing different cell types (127). Some proteins
have specific domains to interact with lipids. Such proteins can be
tagged with a fluorescent protein and in this way be engineered to
become a lipid reporter. These are convenient probes as the cells do
not require any further labeling, but overexpression of such
reporters may sequester the native lipid species, infer with
endogenous signaling and membrane binding and lipid species
specificity is often modulated by multiple components. Lipid
binding domains include C1-domain (DAG), C2-domain
(phospholipids), FYVE- and PX-domain (PI3P), PH-domain
(phosphoinositide polyphosphates), and Annexin V (PS) (128,
130, 131).

A variety of compounds exists that not only label themembrane
but also report on its properties (environment-sensitive dyes),
known as functional probes. Polarity-sensitive dyes, for example,
change their fluorescence properties depending on the local order
(molecular packing, accessibility of the hydrophobic core to water
from the exterior medium) of the surrounding membrane (132,
133). This results in quantifiable changes in fluorescence spectra or
lifetimes and can be combined with super-resolution microscopy
(134, 135). Other probes sense different membrane properties such
as tension or viscosity (136, 137). Work with probes that change
their spectrum upon changes in the local environment is
experimentally convenient as it only requires acquisition in two
optimized spectral channels (even though spectral detection is
preferred) (138). Unfortunately, these dyes typically have a very
broad emission spectrum that makes it difficult to simultaneously
quantitatively image another structure such as actin in addition.
Therefore, we anticipate again that lifetime-based probes and
acquisitions may show better sensitivity (139, 140).

Approaches for Quantifying
F- and G-Actin Dynamics
Visualizing the dynamics of the actin cytoskeleton in living cells
remains challenging, largely owing to the rapid turn-over of the
molecular components of the cytoskeleton. Two main strategies
exists for the visualization of actin within living cells: either genetic
approaches modifying G-actin monomers directly with a
fluorescent protein or a self-labeling tag (SNAP/Halo), or by
using a variety of indirect filamentous F-actin binding labels, for
example, the short peptides Lifeact or F-tractin, which are
additionally modified with a fluorescent protein (141–143). As
with lipid labeling, care must be taken to use the appropriate
strategy for the desired dynamic output, for instance, FRAP or
FCS studies assessing actin diffusion must utilize a direct G-actin
approach to ensure that the measured diffusion is that of G-actin
and not the indirect actin probe e.g. Lifeact-filament binding. A
recent versatile approach is the visualizationofmembraneproximal
F-actin by a membrane-bound F-tractin reporter (MPAct) as this
directly reports on plasma membrane cortex interactions (144).
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This enables to investigate actin cortex remodeling in proximity of
the membrane, which could yield novel insights into actin-rich
protrusions and their dynamic reorganization during T-cell
activation. Labeling F-actin in live cells can also be performed
with a small organicmolecule, SiR-actin (143). This is derived from
a toxin and has the advantage that it can simply be added to the cell
of interest, is cell permeable and can readily be used with super-
resolution STEDmicroscopy (145). Because of its mode of binding
to actin filaments, it may perturb native actin dynamics. A rather
recent approach displays the use of anti-actin nanobodies
(Chromotek) (146–148) or direct delivery of mRNA encoding for
labeled Lifeact with certain advantages for primary cells (IBIDI). In
immunology both Lifeact and F-tractin have beenwidely applied to
visualize F-actin dynamics (141, 149). More recently, Lifeact has
also been implicated in changing endogenous actin dynamics (150–
152). As with any secondary labeling, careful optimisation and
controls are necessary. When investigating F-actin a comparison
with a (fixed) phalloidin stain can serve as a control.

Common to all labeling strategies applied to fluorescence
microscopy in living cells should be the use of probes that do not
disturb the native behavior of the tagged molecule and do not
influence the biological system. As mentioned above, lipids and
the attached fluorescent dyes are of a comparable size, and thus
measures should be taken to ensure that the lipid behaves as its
native counterpart. Often a variety of chemical structures need to
be screened in order to optimize labeling of a target molecule (i.e.
signaling function, cellular localisation, molecular interactions
and so forth need to be preserved and checked) (77, 129). Similar
issues arise with the use of fluorescent proteins which can
sterically hinder their target protein or artificially cause
oligomerisation (153). Therefore, it is advisable to use flexible
linkers and trial multiple labeling strategies, for example, C- and
N-terminal tagging (154, 155). Overall, we would like to
emphasize that controls ensuring the preserved function are of
the utmost importance.

Perturbation Studies Using Biochemical-
and Photo-Manipulation
Specific labeling of molecules allows the membrane or the
cytoskeleton to be studied in different physiological settings. A
common additional step of the analysis is to perform
perturbations, disturbing the steady-state of the actin assembly
or membrane structure or even the actin-membrane interplay.
By systematically perturbing different components of the system
independently, the impact of each on the signaling and function
within the living cell can be inferred and key-components, for
example, as drug targets be identified.

Perturbations at the plasma membrane are commonly
performed by altering the lipid composition. For transient
changes, lipid species can simply be fed but recent evidence shows
that the cells quickly counteract this to preserve the biophysical
properties of the membrane (156). More commonly, certain
membrane constituents are depleted. For instance, cholesterol
which is a major component of the plasma membrane, playing an
important role in signaling, and is proposed to be the major
organizer of nanodomains aka rafts and has a profound effect on
the overall biophysical properties such as viscosity and rigidity of
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the plasma membrane is a common target (46, 157). Treatments
with cholesterol oxidase or methyl-b-cyclodextrin are routinely
used to deplete cholesterol directly at the plasma membrane (158)
for studying fast time scales such as seconds to minutes.
Alternatively, drugs such as statins which interfere with
cholesterol synthesis in the cell enable investigations of longer
time scales up to hours and days (35). In that way, changes in
cellular function, membrane organization or signaling upon
variations in cholesterol content can be probed (77, 159).
Analogously the role of sphingomyelin can be studied by treating
the cell with sphingomyelinase or drugs such as fumonisin B1 or
myriocin, respectively (35, 47, 77, 160).

Similarly, the actin cytoskeleton and its turnover can be targeted
with various drugs or genetically modified (161, 162). For instance,
Latruncullin B alongwithCytochlasins or Phalloidin can be used to
rapidly block F-actin polymerization (163), specifically inhibiting
the addition of new actin monomers to the barbed end of F-actin
(27, 28, 163). In contrast, Jasplakinolide canbeused to stabilize actin
filaments and promote polymerization (2, 164). Other drugs can be
used to tune the cortex structure by influencing the nucleation of F-
actin. For example,CK666can inhibit actinbranchingbybinding to
Arp2/3which can in turnbeused to study the influenceof the cortex
organization and ultra-structure on the nano-scale diffusion
behavior within the membrane (16, 165, 166). Furthermore, the
formin inhibitor SMIFH2 can be used to remodel actin filaments
and cortex structure (167, 168). In addition, a number of drugs can
be used to target myosin molecular motors that drive stress
generation within cortex. Specifically, both blebbistatin (169), an
inhibitor ofmyosin II ATPase activity, and the rho kinase inhibitor
Y27632 (170), are commonlyused toperturb the ability ofmyosin II
to actively generate stress within the cortex.

While these studies provided profound insights, for example,
into actin reorganization during T-cell activation (27, 168), such
perturbations using small molecules and enzymes affect the cell as a
whole and can have unwanted side effects: For example, SMIFH2
has recently been indicated to inhibit myosins in addition to
formins (171). Because of this, care needs to be taken when
interpreting their effect on the structure or process of interest. A
remedy to looking at global changes may come with the
introduction of more photo-caged compounds or photo-
activatable proteins, offering the potential for spatio-temporal
control of perturbations (172–174). In addition, model systems
such as cell-derived vesicles offer more control but do not allow to
measure a living system (17, 35, 175).
DISCUSSION AND FUTURE PERSPECTIVES

The communication of immune cells with their environment, other
immune cells and target cells involves a diversity of complex
receptor-ligand interactions. These interactions all take place
within the context of the plasma membrane and the underlying
actin cortex. Consequently, their dynamics are intimately linked to
the biophysical properties of both the membrane and the actin
cytoskeleton and are constantly influencing one another. In this
review, we have sought to highlight tools and technologies that
present exciting opportunities to uncover the correlated dynamics
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of the plasma membrane and the cortical actin cytoskeleton at the
immune cell interface for the first time, harnessing the power of
simultaneous acquisitions. In particular, the presented methodologies
provide a route to pick apart the key determinants of actin-membrane
dynamics, unraveling the causal mechanistic relationships between
the two systems. Crucially, these technologies operate across a wide
range of length- and time-scales, allowing the investigation of
nanoscale interactions on the sub-millisecond time scale up to large
scale whole-cell measurements using volumetric imaging. Armed
with these new technologies, immunologists can address key
questions regarding the interactions of molecules on or in the
proximity of the plasma membrane. The ubiquity of membrane
interactions in immune cell functions means these techniques have
the potential to provide insight into a wide range of immunological
cell types, in both the adaptive and innate immune response.

As detailed, these new technologies together with novel
functional probes allow the assessment of important biophysical
parameters such as lipid order, charge, viscosity, and membrane
tension.Manyof these parameters have been implicated in immune
cell function, thus their systematic probing using these newly
available tools is timely (176–178). Coupled with established
immunological methods, such as fluorescence-activated cell
sorting (FACS), these techniques provide a powerful route to
better understand the function of a wide range of immune cells.

Tomaximize the gains fromthepresented techniques, theymust
be applied at the appropriate time- and length-scales. FCS, for
instance, operates at the ms to ms time scales and sub-micron
spatial-scales, and FRAP rather on ms to s and on micron scales.
MIET offers high sensitivity in the axial direction, but remains
diffraction limited laterally, and temporal resolution is limited by
the sample signal and lifetime acquisition (~s). Volumetric imaging
can be extremely rapid, but in most cases cannot surpass the
diffraction limit in spatial resolution. 3D-SIM is promising in the
regard of isotropic sub-diffraction resolutionbut sacrifices temporal
resolution (179, 180). Therefore, care needs to be taken to answer
the right questions with the right tools. In addition to this, as
discussed, probes and labels should be chosen such that they
maximize the potential of the applied technique, for example, in
FCS, dyeswith a highmolecular brightness andhigh photo-stability
Frontiers in Immunology | www.frontiersin.org 841
are desirable, whereas dyes utilized for FRAP should allow for
efficient photobleaching. For MIET, fluorescent dyes showing a
single exponential lifetime decay curve are desirable to allow for
more straightforward reconstruction of the topological features
from the quenched lifetimes. In addition, the labeling density
should be considered: SPT, for example, can only be applied in
the case that single molecules (single emitters) can be tracked,
whereas FRAP and FCS can operate over a much wider range of
molecular densities. Lastly, as for any multi-color microscopy
experiments, the emission spectra and the possible overlap of the
utilized dyes should be taken into account. Especially for dynamic
techniques spectral bleed-through can result in themeasurement of
false positive interactions.

While these techniques present exciting opportunities for
single cells and subcellular context, future work should focus
on extending the capabilities of these methods to operate in more
complex, more relevant multi-cellular environments including
tissues and living organisms. Indeed, work in this direction is
well underway with the introduction of rapid volumetric imaging
systems like those presented here. We believe that great potential
lies in the combination and integration of large scale volumetric
imaging with technologies such as FC(C)S, FRAP and SPT,
providing quantification of key biophysical parameters
throughout the functionally diverse life cycles of immune cells.
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Measuring nanoscale diffusion dynamics in cellular membranes with super-
resolution STED–FCS. Nat Protoc (2019) 14:1054–83. doi: 10.1038/s41596-
019-0127-9

76. EggelingC,RingemannC,MeddaR, SchwarzmannG, Sandhoff K, Polyakova S,
et al.Direct observationof thenanoscaledynamicsofmembrane lipids ina living
cell. Nature (2009) 457:1159–62. doi: 10.1038/nature07596

77. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R,
Leutenegger M, et al. STED Nanoscopy Reveals Molecular Details of
Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living
Cells. Biophys J (2011) 101:1651–60. doi: 10.1016/j.bpj.2011.09.006

78. Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW. Spatial-temporal
studies of membrane dynamics: scanning fluorescence correlation
spectroscopy (SFCS). Biophys J (2004) 87:1260–7. doi: 10.1529/
biophysj.103.036483

79. Waithe D, Schneider F, Chojnacki J, Clausen MP, Shrestha D, de la Serna JB,
et al. Optimized processing and analysis of conventional confocal
microscopy generated scanning FCS data. Methods (2017) 140–141:62–73.
doi: 10.1016/j.ymeth.2017.09.010

80. Schneider F, Waithe D, Lagerholm BC, Shrestha D, Sezgin E, Eggeling C,
et al. Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy
Data Differentiates Free from Hindered Diffusion. ACS Nano (2018)
12:8540–6. doi: 10.1021/acsnano.8b04080

81. Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J, Viaris de Lesegno C,
et al. Glycosylation-Dependent IFN-gR Partitioning in Lipid and Actin
Nanodomains Is Critical for JAK Activation. Cell (2016) 166:920–34.
doi: 10.1016/j.cell.2016.07.003

82. Guzmán C, Šolman M, Ligabue A, Blaževits ̌ O, Andrade DM, Reymond L,
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103. Benda A, Fagul’ová V, Deyneka A, Enderlein J, Hof M. Fluorescence lifetime
correlation spectroscopy combined with lifetime tuning: New perspectives in
supported phospholipid bilayer research. Langmuir (2006) 22:9580–5.
doi: 10.1021/la061573d

104. Kułakowska A, Jurkiewicz P, Sýkora J, Benda A, Mely Y, Hof M.
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Peter Jönsson1*

1 Department of Chemistry, Lund University, Lund, Sweden, 2 Department of Chemistry, University of Cambridge,
Cambridge, United Kingdom

Supported lipid bilayers (SLBs) are one of the most common cell-membrane model
systems to study cell-cell interactions. Nickel-chelating lipids are frequently used to
functionalize the SLB with polyhistidine-tagged ligands. We show here that these lipids
by themselves can induce calcium signaling in T cells, also when having protein ligands
on the SLB. This is important to avoid “false” signaling events in cell studies with SLBs,
but also to better understand the molecular mechanisms involved in T-cell signaling.
Jurkat T cells transfected with the non-signaling molecule rat CD48 were found to
bind to ligand-free SLBs containing ≥2 wt% nickel-chelating lipids upon which calcium
signaling was induced. This signaling fraction steadily increased from 24 to 60% when
increasing the amount of nickel-chelating lipids from 2 to 10 wt%. Both the signaling
fraction and signaling time did not change significantly compared to ligand-free SLBs
when adding the CD48-ligand rat CD2 to the SLB. Blocking the SLB with bovine serum
albumin reduced the signaling fraction to 11%, while preserving CD2 binding and the
exclusion of the phosphatase CD45 from the cell-SLB contacts. Thus, CD45 exclusion
alone was not sufficient to result in calcium signaling. In addition, more cells signaled on
ligand-free SLBs with copper-chelating lipids instead of nickel-chelating lipids and the
signaling was found to be predominantly via T-cell receptor (TCR) triggering. Hence, it is
possible that the nickel-chelating lipids act as ligands to the cell’s TCRs, an interaction
that needs to be blocked to avoid unwanted cell activation.

Keywords: calcium signal, T-cell receptor, CD45, kinetic segregation model, CD2, ligand-independent activation

INTRODUCTION

T-cell activation is initiated by the binding of T-cell receptors (TCRs) to their
cognate antigen on a meeting cell. This results in phosphorylation of cytoplasmic
immunoreceptor tyrosine-based activation motifs (ITAMs) in the TCR complex,
which starts a cascade of chemical reactions resulting in the release of calcium from
endoplasmic reticulum Ca2+ stores (Chakraborty and Weiss, 2014). The depleted Ca2+

stores in turn activate different Ca2+ release-activated calcium channels in the plasma
membrane to sustain the Ca2+ level, ultimately resulting in cytokine production and
cell activation (Lewis, 2001; Oh-hora and Rao, 2008). In a resting T cell the ITAMs are
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kept unphosphorylated by the phosphatase CD45, which
according to the kinetic segregation mechanism is excluded due
to its large size from the close contacts formed when the TCR
binds antigen (Davis and van der Merwe, 2006). TCR triggering
and subsequent calcium signaling has traditionally been studied
in vitro by ligating the TCR to antibodies coated on a glass
slide, but has also been achieved using supported lipid bilayers
(SLBs) containing peptide-presenting major histocompatibility
complex molecules specific for the TCR (Grakoui et al., 1999;
Huppa et al., 2010; O’Donoghue et al., 2013). However, recent
studies have shown that T-cell signaling can also be induced
without directly binding to the TCR (Chang et al., 2016; Ponjavic
et al., 2018; Santos et al., 2018; Fernandes et al., 2019). The
mechanism for this ligand-independent triggering is due to
exclusion of CD45 from the closed contacts formed between
the T cell and a functionalized surface. If the area of the close
contact is sufficiently large then the TCR will have time to be net
phosphorylated and triggered before it diffuses out of the contact
(Davis and van der Merwe, 2006).

Supported lipid bilayers are one of the most common
membrane model systems and have been used extensively
to study cell-cell interactions (Castellana and Cremer, 2006;
Dustin, 2009; Jönsson et al., 2016; Biswas and Groves, 2019;
Jenkins et al., 2019) including ligand-independent triggering
(Chang et al., 2016; Fernandes et al., 2019). Protein ligands
are typically anchored to the SLB via polyhistidine-tags that
bind to nickel-chelating lipids [DGS-NTA(Ni)] in the SLB
(Nye and Groves, 2008). However, ligand-free SLBs containing
5% DGS-NTA(Ni) have previously been observed to bind
Jurkat T cells and even induce calcium signaling in the cells
(Ponjavic et al., 2018). SLBs will generally not be ligand-
free, but instead functionalized with protein ligands that could
shield the influence of the nickel-chelating lipids on the cell.
The aim of this study was to investigate how DGS-NTA(Ni)
influences calcium signaling when there are also receptor-
binding ligands on the SLB and to better understand the
mechanism behind this. This is important to understand how
to keep SLB-binding cells in a resting state and to avoid
unwanted cell signaling, but also to utilize this phenomenon
as an artificial means to study the molecular mechanisms of
T-cell signaling.

As a model system we used Jurkat T cells expressing non-
signaling rat CD48 that binds fluorescently labeled rat CD2,
which was anchored to an SLB at different concentrations.
The rat CD2-CD48 (CD2-CD58 in humans) interaction is
argued to align immune-cell surfaces in vivo to facilitate the
interaction between TCRs and antigen (James and Vale, 2012;
Jönsson et al., 2016). It also creates a ∼15 nm cell gap
that effectively excludes CD45, an event that by itself can
induce T-cell signaling by ligand-independent triggering (Chang
et al., 2016; Fernandes et al., 2019). The cells were loaded
with a calcium-sensitive dye that upon calcium signaling in
the cells gave rise to a sharp increase in intensity. The cells
were added to SLB systems with different amounts of DGS-
NTA(Ni) and CD2 densities and both the fraction of cells
that signaled as well as the time between cell binding and
signaling was monitored. It was found that DGS-NTA(Ni) can

significantly induce calcium signaling in the cells even when
having CD2 in the SLB. It was furthermore demonstrated
that DGS-NTA(Ni) dominated over signaling caused by ligand-
independent triggering due to CD2 binding CD48 for the
current system, and the fraction of signaling cells decreased
to 11% when blocking the SLB with bovine serum albumin
(BSA) before adding the cells. The signaling was also found
to be predominantly via TCR triggering since TCR-deficient
J.RT3-T3.5 cells signaled significantly less on DGS-NTA(Ni).
To further investigate the mechanism by which DGS-NTA(Ni)
induces calcium signaling we labeled the cells with fluorescent
antibodies against CD45 and monitored how these molecules
distributed in the cell-SLB contact of the different SLBs. CD45
was observed to be excluded from the cell-SLB contacts at a
similar level for all CD2-containing systems, independent of
the signaling fraction, indicating that the main mechanism for
calcium signaling induced by DGS-NTA(Ni) in this study is
not ligand-independent triggering but could instead be due to
TCR binding.

METHOD

Cell Lines, Culture and Flow Cytometry
E6.1 Jurkat T cells (ATCC) expressing non-signaling rat CD48
and human leukocyte antigen DQ8-glia-α1 (HLA-DQ8-glia-
α1) were made as described by Junghans et al. (2020). The
cells were kept in RPMI 1640 medium (Sigma-Aldrich), which
was supplemented with 10% fetal bovine serum (FBS; Sigma-
Aldrich), 2% L-glutamine (Sigma-Aldrich), 1% sodium pyruvate
(Sigma-Aldrich), 1% HEPES (Sigma-Aldrich), and 1% Penicillin-
Streptomycin (Sigma-Aldrich). The Jurkat T cells were cultured
at 37◦C and 5% CO2 and had a concentration of 5 × 105

cells/ml on the day of the experiment. THP-1 cells and J.RT3-
T3.5 cells (ATCC) were cultured using the same conditions and
supplemented cell medium as described above.

The amount of CD48, TCR, and CD45 on the cells was
determined using flow cytometry and Quantibrite analysis (BD
Biosciences). 0.5 × 106 Jurkat T cells were centrifuged for
3 min at 1,200 rpm and washed twice with phosphate-buffered
saline (PBS, Merck) containing 0.05% sodium azide. The cells
were labeled for 45 min at 4◦C with isotype phycoerythrin
(PE) α-mouse IgG1 (clone MOPC-21, #400112, BioLegend, 1:10
dilution), PE α-rat CD48 (clone OX-45, #MA5-17528, Thermo
Fisher Scientific; 1:10 dilution), PE α-human CD45 (clone 2D1,
#368509, BioLegend, 1:10 dilution) and PE α-human CD3 (clone
OKT3, #317307, BioLegend, 1:10 dilution) and washed twice
with PBS + 0.05% sodium azide before analysis in a BD Accuri
C6 Flow Cytometer (BD Biosciences). BD Quantibrite PE beads
(#340495, BD Biosciences) were used for quantification purposes
and measured alongside the antibody-stained cells. This allowed
for the calculation of the total number of antibodies per cell,
which, at saturating concentrations of antibodies, was assumed
to be equal to the total number of receptors per cell (Poncelet
and Carayon, 1985). With the OKT3 antibody targeting CD3ε

the TCR number per cell was obtained by dividing the CD3
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count by two. All data were analyzed using FlowJo (v10.5.2, BD
Biosciences) and Microsoft Excel (Microsoft).

Calcium Imaging and Antibody Labeling
The cells were prepared for calcium imaging following
the protocol outlined by Santos et al. (2018) with minor
modifications. Approximately 1 × 106 Jurkat cells were loaded
with 1 µl of a 1 mM Fluo4-AM solution (#F-14217, Invitrogen)
with 100 µl of supplement-free RPMI 1640 medium (Sigma-
Aldrich) and 100 µl HEPES buffer saline solution (HBS; 10 mM
HEPES, 150 mM NaCl, pH 7.4) supplemented with 2.5 mM
probenecid (AAT Bioquest). The cell solution was incubated
for 10 min at 37◦C followed by a 20 min incubation at room
temperature. The cells were washed three times with HBS
buffer + 2.5 mM probenecid before being resuspended in 200 µl
of HBS-probenecid buffer solution. 15 µl of the Fluo4-AM-
loaded cell solution was added to different surfaces enclosed by a
press-to-seal silicon well (4.5 mm in diameter, 1.6 mm in depth,
Grace Bio-Labs).

To measure the distribution of CD45 and TCR in the cell-SLB
contacts 0.25× 106 Jurkat T cells were labeled either with 6 µg/ml
of Alexa Fluor 488 conjugated anti-CD45 antibodies (clone HI30,
#304017, BioLegend) or 8 µg/ml of Alexa Fluor 488 conjugated
anti-CD3 antibodies (clone OKT3, #16-0037-85, Invitrogen). The
anti-CD3 antibodies were fluorescently labeled using an Alexa
Fluor 488 antibody labeling kit (#A20181, Invitrogen). The cells
were centrifuged for 2 min at 2,000 rpm and resuspended in
250 µl HBS buffer, labeled with the respective antibody on ice
for 30 min and washed with HBS buffer. The cells were added to
the SLBs 15 min prior to imaging.

Supported Lipid Bilayers
Supported lipid bilayers were made using vesicle fusion
and rupture on clean glass. In short, small unilamellar
vesicles containing a mixture of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC, Avanti Polar
Lipids) and 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-
carboxypentyl)iminodiacetic acid)succinyl] (DGS-NTA(Ni),
#790404C; Avanti Polar Lipids) were made at different ratios.
In addition, for one experiment a lipid mixture of 10 wt% of
the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
(DOPS, Avanti Lipids) and 90 wt% POPC was used. Glass cover
slides (24 mm × 40 mm, thickness 1.5, Menzel-Gläzer) were
cleaned for 30 min using a 80◦C mixture of 75% sulfuric acid
(99.9%, Sigma-Aldrich) and 25% hydrogen peroxide (30%,
Sigma-Aldrich) and four press-to-seal silicon wells (4.5 mm in
diameter, 1.6 mm in depth, Grace Bio-Labs) were attached to
the clean glass slide. SLBs were formed by adding the different
vesicle solutions in HBS buffer (0.5 mg lipids per ml) to each well
and incubating for 1 h.

Rat CD2 molecules containing a double polyhistidine-tag
(12xH) at the C-terminus and the human L3-12 TCR containing
one polyhistidine-tag (6xH) each on the C-terminus of the α-
and β-chain were made as described in Junghans et al. (2020)
and were fluorescently labeled using an Alexa Fluor 647 antibody
labeling kit (#A20186, Invitrogen). Depending on the desired
ligand density, between 0.3 and 2.5 µg/ml of CD2 in HBS buffer

was incubated with the SLB for 15–30 min before rinsing. The
density of the CD2 molecules on the SLB was obtained from
the intensity of single CD2 molecules on glass as described
previously (Junghans et al., 2018, 2020). The successful formation
of a mobile SLB was confirmed by fluorescence recovery after
photobleaching before each experiment (Jönsson et al., 2008).

Blocking of the SLB was done with a 5% BSA solution
(#A5611, Sigma-Aldrich) in HBS buffer, which was incubated
with the SLB for 30 min before washing the sample. Stripping
of the nickel ions from DGS-NTA(Ni) was performed with
100 mM ethylenediaminetetraacetic acid (EDTA) in HBS buffer.
The EDTA solution was incubated with the SLB for 10 min before
washing, a procedure that was repeated twice before adding the
Jurkat T cells. In all the washing experiments the cells were added
to the SLB 15 min before washing with HBS buffer.

For a subset of experiments, the Ni2+ ions in DGS-NTA(Ni)
were replaced with either Cu2+ or Co2+ ions. A 5 wt%
DGS-NTA(Ni) SLB was first washed with 100 mM EDTA
as described above. The SLB was then reloaded with metal
ions by incubating the SLB with a 5 mM solution of either
(i) CoCl2 (Sigma-Aldrich), (ii) NiCl2 (Sigma-Aldrich), or (iii)
CuCl2 (Sigma-Aldrich) in HBS, adjusted to a pH of 7.4 with
tris(hydroxymethyl)aminomethane (TRIS, Sigma-Aldrich), for
40 min before rinsing again with HBS. It was verified using
fluorescence recovery after photobleaching that all the different
DGS-NTA complexes bound polyhistidine-tagged CD2.

Imaging
A customized inverted Nikon Eclipse Ti microscope with a
motorized stage was used for imaging of the samples using either
total internal reflection fluorescence (TIRF) or epi-fluorescence
microscopy. An Oxxius LBX diode laser operating at 488 nm was
used to monitor the Fluo4-AM signal inside the cells as well as the
anti-CD45 and anti-CD3 antibodies at the cell surface. An Oxxius
LBX diode laser operating at 638 nm was used to monitor CD2
on the SLB. The images were acquired on a Photometrics Prime
95B sCMOS camera.

Cell-SLB contacts were monitored with an 100x oil immersion
objective (NA 1.49, Nikon Corporation) in TIRF mode, whereas
to obtain signaling fractions of triggered Jurkat T cells, the cells,
containing Fluo4-AM, were visualized with a 10x air objective
(Nikon Corporation) in epi-fluorescence mode. To capture the
increase in Fluo4-AM intensity upon binding of Ca2+ ions a
150 frame long time-lapse video with a time between frames of
5 or 6 s was started at the time of cell addition to the sample.
The motorized stage was used to measure four samples in each
experiment. In each experiment, one of the four surfaces was
coated with the anti-CD3 antibody OKT3 (clone OKT3, #16-
0037-85, Invitrogen) at a concentration of 10 µg/mL for 60 min as
a positive control to confirm the ability of the cells to be activated.
All images were acquired with an exposure time of 100 ms via
µManager version 1.4 (Edelstein et al., 2010).

Image Analysis
Calcium signaling from the bound cells was analyzed using a
custom-written MATLAB script (R2020a, MathWorks). Only
the first 150 cells binding to the surface were used in the
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analysis, which were detected using the script pkfnd in MATLAB
(Blair and Dufresne, 2020; Supplementary Figure 1). Cells that
signaled directly on landing or were present already at frame
1 were removed from the analysis and were not included in
the 150 cells that were analyzed. The intensity for each cell was
plotted as a function of time. When the intensity increased above
a user-set threshold value and remained above this value the
cell was considered to have bound to the surface. When the
intensity increased more than 2.5 times above the baseline, non-
activated intensity of the bound cell, the cell was considered to
have signaled (Supplementary Figure 1). The intensity vs. time
plot for each cell was saved and inspected manually to verify
that the script had classified the cell correctly (Supplementary
Figures 2, 3). All images had the background intensity subtracted
using a rolling ball radius of 50 pixels in ImageJ (1.53e)
(Schneider et al., 2012).

The accumulation of CD2 in the cell contacts was detected
using a customized MATLAB script as described in detail
elsewhere (Jönsson et al., 2016). In short, the outline of the cell-
SLB contact was created by thresholding the intensity of CD2
in the SLB to detect regions of CD2 accumulation. The average
intensity in each contact was saved yielding the sum of bound and
free ligands in the contact. The intensity outside the contact gave
the free ligand density, which was corrected for ligand exclusion
in the cell-SLB contact by 25% (Junghans et al., 2020). The
intensities were converted to protein densities using the single
molecule intensity from one protein as described by Junghans
et al. (2018, 2020).

A line profile of the intensity through each of the cell-SLB
contacts was used to analyze the anti-CD45 antibody distribution.
The exclusion of CD45 from the contact was determined as 1-
Iin/Iout, where Iin is the intensity inside the contact and Iout
is the maximum intensity of the anti-CD45 signal in the area
outside the contact.

RESULTS

Cell Signaling on Ligand-Free SLBs
It was first assessed at what concentration of DGS-NTA(Ni)
in the SLB the cells attach. Jurkat T cells on SLBs without
DGS-NTA(Ni) could be washed off after being added to the
SLB (Supplementary Figure 4). When having 1 wt% DGS-
NTA(Ni) approximately half of the cells remained after washing,
which increased to 90% and higher for SLBs with ≥2 wt%
DGS-NTA(Ni) (Supplementary Figure 4). When blocking the
SLBs with 5% BSA before adding the cells, the majority of
cells could be washed off (Supplementary Figure 4). The
same was true when washing the SLBs with EDTA that
strips the nickel ions from the DGS-NTA(Ni) (Supplementary
Figure 4). In addition, replacing the net negatively charged
DGS-NTA(Ni) with 10 wt% of the anionic lipid DOPS did not
result in cell attachment (Supplementary Figure 4), altogether
indicating that it is the nickel ions in DGS-NTA(Ni) that are
responsible for the cell attachment. The cell attachment was
furthermore not restricted to Jurkat T cells since the human
monocytic cell line THP-1 also bound to DGS-NTA(Ni) SLBs,

and the cells could be detached after washing with EDTA
(Supplementary Figure 4).

Having established that SLBs containing ≥2 wt% DGS-
NTA(Ni) bind T cells, we investigated whether they also induces
calcium signaling in the cells (Figure 1A). It was found that
all SLBs induced calcium signaling, but to various extents. The
fraction of signaling cells increased with the concentration of
DGS-NTA(Ni) in the SLB and was 24 ± 5% (mean ± s.d.),
41 ± 11%, and 60 ± 10% at 2, 5, and 10 wt% DGS-NTA(Ni),
respectively (Figure 1B and Supplementary Movie 1–3). This is
similar to what was previously observed by Ponjavic et al. (2018)
who observed a signaling fraction of around 50% for a ligand-free
SLB containing 5% DGS-NTA(Ni). The fraction of cells showing
calcium signaling on glass coated with the anti-CD3 antibody
OKT3 was higher with 89 ± 7% (Figure 1B and Supplementary
Movie 4). Whereas the signaling fraction increased with the
amount of DGS-NTA(Ni) in the SLB no significant trend in the
time between cell landing and signaling was observed between
the different SLBs (Figure 1C). There was a higher spread in the
signaling times for cells on SLBs compared to cells binding to
OKT3-coated glass, the latter also having an average signaling
time that was more than twice as fast as that of the SLBs.

In addition, SLBs containing 5 wt% DGS-NTA chelated with
either (i) Co2+, (ii) Ni2+, or (iii) Cu2+ were also made. All
three DGS-NTA complexes showed significant signaling, with
DGS-NTA(Cu) signaling significantly more than the two other
complexes (Figure 1D). This is in agreement with the protein
affinity for Cu2+ being the highest of these three metal ions in
immobilized metal ion affinity chromatography (Porath, 1992),
illustrating that other factors than just the positive charge of the
nickel ions in DGS-NTA(Ni) influences calcium signaling. It is
possible that DGS-NTA(Ni) could induce calcium signaling by
another mechanism than TCR triggering, for example by acting
on mechanosensitive calcium channels in the plasma membrane
(Pottosin et al., 2015). To investigate this, calcium signaling
experiments were performed on a 5 wt% DGS-NTA(Ni) SLB with
the Jurkat T cell mutant J.RT3-T3.5 that lacks the beta chain of the
TCR. The J.RT3-T3.5 cells showed considerably lower signaling
than Jurkat T cells with 7± 2% (mean± s.d., n = 2) of the J.RT3-
T3.5 cells signaling on 5 wt% DGS-NTA (Figure 1E), indicating
that DGS-NTA(Ni) signaling is mainly via TCR triggering.

DGS-NTA(Ni) Dominates Signaling Also
With Ligands in the SLB
It was shown in the previous section that DGS-NTA(Ni)-
containing SLBs alone can induce T-cell signaling and that
the fraction of cells that signal increases with the amount of
DGS-NTA(Ni) in the SLB. However, SLBs will in general be
functionalized with protein ligands, which might be able to shield
and reduce interactions between the DGS-NTA(Ni) and the cell.
To investigate the influence of ligands on calcium signaling by
DGS-NTA(Ni) we next investigated how the fraction of signaling
Jurkat T cells, transfected with the non-signaling receptor CD48,
depends on the amount of the ligand CD2 in the SLB (Figure 2A).
SLBs containing up to 2,000 CD2 molecules per µm2 were made
and the ligands were observed to bind to CD48 in the contacting
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FIGURE 1 | T-cell signaling fraction increases with concentration of
DGS-NTA(Ni) in the SLB. (A) Schematic illustration showing calcium signaling
by either (left) DGS-NTA(Ni) in an SLB or (right) anti-CD3 antibodies on glass.
(B) The fraction of signaling T cells for either ligand-free SLBs with
DGS-NTA(Ni) or OKT3 on a glass slide (mean signaling fraction ± s.d.).
(C) The time between cell landing and calcium signaling for either ligand-free
SLBs with DGS-NTA(Ni) or OKT3 on a glass slide (mean signaling time ± s.d.).
(D) The signaling fraction binding to a ligand-free SLB containing 5 wt%
DGS-NTA(X), with X being either Co2+, Ni2+ or Cu2+. (E) The signaling
fraction of J.RT3-T3.5 cells (left) and Jurkat T cells (right) on SLBs with
ligand-free 5 wt% DGS-NTA(Ni) and on OKT3-coated glass. Data are shown
for three to five experiments, except for E which is from two experiments, with
150 cells in each experiment. A two-sample t-test in MATLAB was used for
statistical analysis with: * <0.05, ** <0.01, *** <0.001.

T cells (Figure 2B). The relative accumulation of CD2 in the
cell-SLB contacts could also be presented in a Zhu-Golan plot
(Figure 2C). The slope of the Zhu-Golan plot corresponds to
−1/Kd of the CD2-CD48 interaction, where Kd is the two-
dimensional dissociation coefficient, whereas the intersect with
the x-axis gives the density of mobile CD48 receptors on the
cell (Zhu et al., 2007). A linear fit to the data in Figure 2C
gave a Kd of 5 molecules per µm2, which agrees with what has
previously been measured for this interaction (Junghans et al.,
2020). From the x-intersect a density of mobile CD48 receptors
of 36 molecules per µm2 was obtained. Assuming a cell area
of 700 µm2 and a fraction of mobile CD48 receptors of 60%
(Junghans et al., 2020) this gave a total number of 42,000 CD48
molecules per cell. This is comparable to an average number of
47,000 CD48 molecules per cell measured using flow cytometry
(Supplementary Figure 5).

The concentration of CD2 in the SLB did not change
the fraction of signaling cells compared to ligand-free SLBs
(Figure 2D and Supplementary Movie 5,6). Thus, SLBs with
similar amounts of CD2 did signal approximately 50% more
on SLBs containing 10 wt% DGS-NTA(Ni) compared to SLBs
containing 5 wt% DGS-NTA(Ni). There was also no statistical
difference for the signaling time with and without ligand,
accessed by a two-sample t-test, although there was a larger
spread in this data (Figure 2E). At a density of 2,000 CD2
molecules per µm2 the average distance between two CD2
molecules is 22 nm, which appears to be enough for the cell
surface to be able to interact with DGS-NTA(Ni) in the SLB.
It is also worth stressing that there are of the order of 100,000
DGS-NTA(Ni) molecules per µm2 in a 10 wt% DGS-NTA(Ni)
SLB, and the number of available DGS-NTA(Ni) molecules
in the SLB is thus negligibly affected by CD2 binding under
these conditions.

BSA Blocking Reduces Calcium
Signaling Without Affecting CD45
Exclusion
When blocking the CD2-functionalized SLBs with BSA before
adding the cells (Figure 3A) the majority of cells still bound to
the SLB, but, the signaling cell fraction decreased to on average
11% (Figure 3B and Supplementary Movie 7). This was not
dependent on whether the SLB contained 5 or 10 wt% DGS-
NTA(Ni). There appeared to be a weak increase in signaling
fraction with CD2 density, but, the correlation between signaling
fraction and CD2 density in Figure 3B was not statistically
significant. A reduction of signaling to ∼10% was also observed
by Ponjavic et al. (2018) when blocking a ligand-free SLB
containing 5% DGS-NTA(Ni) with BSA solution, which could
indicate that this value is approximately the background signaling
level for these cells and that the signaling fraction above this value
for the blocked SLBs is due to ligand-independent triggering
caused by CD2 binding CD48.

Since the exclusion of the phosphatase CD45 from cell-
SLB contacts has previously been shown to be a key event in
inducing T-cell signaling (James and Vale, 2012; Cordoba et al.,
2013; Chang et al., 2016) we labeled the cells with fluorescently
labeled antibodies against CD45 to study the distribution of
CD45 in- and outside the cell-SLB contacts. Similar to previous
observations we found that CD45 was excluded from cell-SLB
contacts created by CD2-CD48 binding (Chang et al., 2016;
Bakalar et al., 2018; Fernandes et al., 2019; Figure 3C). Although
the signaling fraction of cells varied significantly between SLBs
with and without BSA the exclusion level of CD45 was 79% in
both cases [±5% (6%) s.d., n = 32 (47) for a 5 wt% DGS-NTA(Ni)
SLB containing ∼1,000 CD2 molecules per µm2 with (without)
BSA]. In contrast, antibodies against the TCR complex showed no
clear exclusion in the cell-SLB contact (Supplementary Figure 6).
Although the size of the antibody can potentially influence the
distribution of CD45 in the contact, the found exclusion levels
are nonetheless comparable to the CD45 exclusion that has
previously been observed for other systems having CD2 binding
CD48 on T cells (Chang et al., 2016; Fernandes et al., 2019).
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FIGURE 2 | DGS-NTA(Ni) dominates over ligand binding in inducing calcium signaling. (A) An illustration of a Jurkat T cell interacting with a rat CD2-functionalized
SLB to induce calcium signaling. (B) Fluorescence images of accumulated CD2 in four different cell-SLB contacts with varying free (bound) CD2 density: (i) 68 (381)
CD2 molecules per µm2, (ii) 189 (659) CD2 molecules per µm2, (iii) 249 (697) CD2 molecules per µm2, and (iv) 361 (739) CD2 molecules per µm2. The average
cell-SLB contact area increased from 19 to 26 µm2 between (i) and (iv). The scale bar is 5 µm and the scale is the same for all images. (C) Zhu-Golan plot for the
data in (B) (red circles) with: F, free CD2 density; B, bound CD2 density; and p, the fraction of the cell surface area within the cell-SLB contact. The solid line is a
linear fit to the data. (D,E) The signaling fraction and average signaling time at different densities of CD2 on SLBs containing 5 wt% DGS-NTA(Ni) (red circles) and
10 wt% DGS-NTA(Ni) (blue circles). Each data point represents one experiment with 150 analyzed cells. The dashed lines represent the average values on a
ligand-free SLB [5 wt% DGS-NTA(Ni): blue dashed line, 10 wt% DGS-NTA(Ni): red dashed line].

DISCUSSION

We demonstrate how nickel-chelating lipids in an SLB can induce
calcium signaling in T cells even when having protein ligands
on the SLB. The fraction of cells that signaled increased with
the concentration of nickel-chelating lipids and reached 60% for
an SLB with 10 wt% DGS-NTA(Ni), independently of whether
the SLB was functionalized with protein ligands or not. This
was lower than the ∼90% signaling fraction we obtained for the
same cells when using glass coated with the anti-CD3 antibody
OKT3, but still of the same magnitude as observed in other
studies where non-TCR ligands were responsible for inducing
calcium signaling (Chang et al., 2016; Ponjavic et al., 2018).
When blocking the SLB with BSA the signaling fraction decreased
to 11%, indicating that ligand binding only weakly, if at all,
induces calcium signaling for the current system and conditions.
A reduction in signaling by nickel-chelating lipids is expected by
using other blocking molecules as well, for example including
polyethylene glycosylated lipids in the SLB or having higher levels
of non-binding ligands. The difference in signaling fraction does
not appear to be due to different levels of CD45 exclusion in the
various systems, since both BSA blocked and unblocked SLBs
containing CD2 showed a similar level of exclusion of CD45. This
indicates that the calcium signaling induced by DGS-NTA(Ni)
is caused by a different mechanism than in ligand-independent

triggering. However, DGS-NTA(Ni) appears to induce signaling
via TCR triggering since the fraction of signaling cells decreased
significantly when using TCR-deficient J.RT3-T3.5 cells instead
of Jurkat T cells. A similar signaling fraction and signaling time,
both with and without BSA blocking (Supplementary Movies 8,
9), was furthermore observed when instead of CD2 having L3-12
TCR in the SLB, which bound to non-signaling HLA-DQ8-glia-
α1 on the Jurkat T cell, and which was expressed at considerably
higher levels than that of CD48 (Junghans et al., 2020).

To what extent DGS-NTA(Ni) influences calcium signaling
will likely depend on both the state of the cell, its T-cell
type and the experimental conditions, and for this reason it is
mainly the relative changes that are of general interest. We can
nevertheless say that for our system signaling via binding of
the TCRs directly to antibodies on glass was the most potent,
followed by DGS-NTA(Ni) and then lastly CD45 exclusion in
close contacts according to ligand-independent triggering. That
ligand-independent triggering caused by CD2-CD48 binding is
not clearly observable in this study is in contrast to previous
studies where it has been shown that creating close contacts
that exclude CD45 to a similar degree as found here will trigger
the TCR and induce calcium signaling for a majority of the
bound cells (Chang et al., 2016; Fernandes et al., 2019). One
reason for this could be that the cells used in this study express
lower amounts of TCR (on average ∼4,000 TCRs per cell with
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FIGURE 3 | Calcium signaling is significantly reduced upon blocking the SLB
with BSA, without affecting CD45 exclusion. (A) Schematic illustration of the
BSA-blocked and CD2-functionalized SLB in contact with a T cell. (B) The
signaling fraction of cells on BSA-blocked SLBs containing either 5 wt%
DGS-NTA(Ni) (red circles) or 10 wt% DGS-NTA(Ni) (blue circles) at different
CD2 densities. Each data point represents one experiment with 150 analyzed
cells. The solid lines represent the average values on a non-blocked SLB
[5 wt% DGS-NTA(Ni): blue line, 10 wt% DGS-NTA(Ni): red line], whereas the
dashed lines correspond to the average signaling fraction for the BSA-blocked
SLBs. (C) Fluorescence images of two representative cell-SLB contacts in the
CD2 and the CD45 channel without (left) and with (right) BSA blocking. The
SLBs contained 5 wt% DGS-NTA(Ni) and had ∼1,000 CD2 molecules per
µm2. The scale bars are 5 µm.

the flow cytometry peak corresponding to ∼8,000 TCRs per
cell; Supplementary Figure 5) compared to the Jurkat T cells
and primary CD4+ T cells used in these studies (12,000–14,000
TCRs per cell for the Jurkat T cells and ∼40,000 TCRs per
cell for the primary CD4+ T cells; (Fernandes et al., 2019) and
personal communication with Ricardo A. Fernandes). It was
found in Fernandes et al. (2019) that an average of 16 TCRs
were residing in the close contact zones upon calcium signaling
indicating that calcium signaling depends on multiple TCRs
being triggered in close proximity. That triggering of multiple
TCRs in close proximity is connected to T-cell activation has
also been demonstrated in other studies (Manz et al., 2011; Lin
et al., 2019). It is therefore possible that the lower density of
TCR for the cells in this study is not sufficient to give rise to
enough TCR triggering events to initiate calcium signaling by
ligand-independent triggering alone. It should also be noted that
in Chang et al. (2016), the dependence of bilayer contact on
CD2-CD48 binding per se was controlled for by showing that
cells lacking CD48 did not settle on CD2-presenting bilayers.
This indicates that the interaction between the cells and DGS-
NTA(Ni) was weaker for these cells than what is observed in
this study for similar levels of DGS-NTA(Ni) in the SLB. Why
signaling takes place when T cells bind to OKT3-coated glass or
to SLBs with DGS-NTA(Ni) in this study can only be speculated
about. However, one possibility is that both these systems engage
the TCR to some extent, which via conformational changes
could make the TCR more sensitive to signaling (Mariuzza
et al., 2020). It could also be, in line with the low amount of

TCR on the cells, that binding the TCR locally increases the
concentration of triggered TCRs above the threshold needed to
induce calcium signaling.

In summary, we show that DGS-NTA(Ni) can have a
significant effect on binding T cells and induce calcium signaling
even when having ligands in the SLB. The molecular mechanism
by which this happens can only be speculated about but appears
not to be due to increasing the level of CD45 exclusion, although
this is likely one crucial part for signaling on the ligand-free
SLBs. It is instead possible that the charged DGS-NTA(Ni)
acts as a weak ligand for the TCR which can induce calcium
signaling unless the nickel-chelating lipids are blocked. The
amount of calcium signaling induced by DGS-NTA(Ni) vs.
ligand-independent triggering can vary between different cells
and conditions. However, it should generally be of importance
to keep the nickel-chelating lipids in the SLB blocked in order
to ensure minimum influence on the cells and to keep them in a
resting state when binding to protein ligands on the SLB.
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Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune
cells such as macrophages and dendritic cells (DCs) through the activation of the G
protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an
elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the
stimulating Gas protein, EP4 also couples to the inhibitory Gai protein to decrease the
production of cAMP. The receptor-specific contributions to downstream immune
modulatory functions are still poorly defined. Here, we employed quantitative imaging
methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their
contribution to the dissolution of adhesion structures called podosomes, which is a first
and essential step in DC maturation. We first show that podosome loss in DCs is primarily
mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct
cAMP production profiles, with EP4 inducing a transient cAMP response and EP2
inducing a sustained cAMP response only at high PGE2 levels. We further find that
simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a
reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient
signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these
results enhance our understanding of early EP2 and EP4 signaling in myeloid cells.
Considering that modulation of PGE2 signaling is regarded as an important therapeutic
possibility in anti-tumor immunotherapy, our findings may facilitate the development of
efficient and specific immune modulators of PGE2 receptors.
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INTRODUCTION

The ability of cells to respond to their environment is critical for
their function. Important players for transmitting extracellular
information into intracellular signaling events are the G protein-
coupled receptors (GPCRs) (1). The spatiotemporal organization
of GPCRs within the cell membrane allows these receptors to
elicit fine-tuned cellular responses to different ligands.

Prostaglandins are lipid mediators that represent an abundant
type of GPCR ligand. Prostaglandins are derived from
cyclooxygenase (COX)-catalyzed metabolism of arachidonic
acid and exhibit versatile actions in a wide variety of tissues (2,
3). Prostaglandin E2 (PGE2) signals via the four GPCRs EP1-4,
expressed in various combinations at the plasma membrane of
cells (4). PGE2 modulates several key immunological processes
including the activation, migration and cytokine production of
different immune cells such as dendritic cells (DCs), macrophages
and T lymphocytes (3, 5–8). Despite being a known mediator of
inflammation, increased PGE2 concentrations have been associated
with a highly immunosuppressive tumor microenvironment (TME)
of several cancer types (9–13).

DCs are commonly observed in the TME of solid tumors (14).
Yet, despite their potential to generate anti-tumor immunity,
TME-resident DCs often exhibit impaired or defective function
(15). The high PGE2 levels in the TME might play a role in the
suppression of DC phenotype since PGE2 promotes IL-10
production by DCs (16). On the other hand, by stimulating the
dissolution of actin-rich adhesion structures called podosomes,
PGE2 is also important for inducing the highly migratory
phenotype typical of mature DCs and crucial in immunity (6).
Understanding how PGE2 exerts its dual function in DCs can
offer novel leads to reverse unwanted DC immunosuppression in
the context of anti-tumor immunity.

PGE2 modulates DC function exclusively via EP2 and EP4 (6,
17, 18). For example, PGE2 has previously been shown to induce
the dissolution of podosomes through the cAMP-PKA-RhoA
signaling axis downstream of EP2 and EP4 (8). PGE2-induced
podosome dissolution is an important step toward DC
maturation and the acquisition of a highly migratory
phenotype, but the receptor-specific contributions to these
processes are still poorly defined.

Signaling via EP2 and EP4 is predominantly transduced by
the stimulating Ga protein (Gas), leading to increased activity of
adenylate cyclase (AC) and subsequent elevation of intracellular
cyclic adenosine monophosphate (cAMP) levels (19, 20). An
important difference between EP2 and EP4 is the reported
capacity of EP4 to also couple to inhibitory Ga protein (Gai),
thereby inhibiting cAMP formation and activating a
phosphatidylinositol 3-kinase (PI3K) pathway (21, 22).
Furthermore, in contrast to EP2, EP4 is rapidly internalized
upon ligand binding (23–25). Altogether, these observations
suggest that signal modalities (intensity, duration, downstream
effectors) likely differ between EP2 and EP4 and that a better
understanding of EP2 and EP4 differential signaling is key to
understanding and predicting the effects of PGE2 in DC biology.

Here, we aimed to characterize EP2 and EP4 early signaling
events in response to PGE2 in myeloid cells and link them to the
Frontiers in Immunology | www.frontiersin.org 256
dissolution of podosomes in DCs. We first demonstrate that in
DCs, PGE2 leads to podosome dissolution primarily through
EP4 signaling. Next, we show that selective EP2 and EP4
stimulation leads to distinct cAMP production profiles and
suggest reciprocal control of receptor signaling efficiency.
Finally, we demonstrate that the integrity of the cortical
microtubule network is important for efficient EP2 and EP4
signaling. Modulation of PGE2 signaling is considered an
important therapeutic possibility in anti-tumor immunotherapy.
Our findings enhance our understanding of early EP2 and EP4
signaling and may thereby facilitate the development of efficient
and specific modulators of PGE2 signaling receptors that can
contribute to reverse tumor immunosuppression (26).
MATERIALS AND METHODS

Chemicals and Reagents
Cells were treated with several compounds that activated or
inhibited EP2 and EP4 (see database of FDA-approved
compounds at www.bindingdb.org for pharmacological
details): EP2 agonist (R)-Butaprost (Sigma), EP4 agonist L-
902688 (Cayman Chemicals), EP2 competitive antagonist
AH6809 (Cayman Chemicals), EP4 competitive antagonist
GW627368X (Cayman Chemicals) or AH23848 (Cayman
Chemicals), pertussis toxin (TOCRIS biosciences), PGE2
(Cayman Chemicals), Pertussis Toxin (PTx, Calbiochem, San
Diego, CA) and nocodazole (Sigma). Concentrations used for the
various compounds are based on previous literature (27–31) in
combination with viability assays (performed by Trypan Blue
staining). Compounds used for immunofluorescence staining
were mouse anti-vinculin antibody (Sigma, V9131), Goat anti-
Mouse-(H&L)-Alexa488 and Goat anti-Mouse-(H&L)-Alexa647
secondary antibodies (Invitrogen), Alexa488-conjugated
phalloidin (Invitrogen, A12379) and Texas Red-conjugated
phalloidin (Invitrogen, T7471), Mowiol (Sigma).

Cell Culture
RAW 246.7 cells were cultured in RPMI-1640 medium (Gibco)
supplemented with 10% Fetal Bovine Serum (FBS, Greiner Bio-
one), 1mM Ultra-glutamine (BioWitthaker) and 0.5% Antibiotic-
Antimytotic (AA, Gibco). iDCs were derived from PBMCs as
described previously (32, 33) and cultured in RPMI 1640 medium
(Gibco) supplied with 10% Fetal Bovine Serum (FBS, Greiner Bio-
one). Transfections with t-Epac-vv (34) (gift from K. Jalink), Gas-
GFP (gift from M. Rasenick), Gai-GFP and Gai1-Citrine (35) (gift
from A. Gilman), Gg2-CFP and Gb1 wildtype (both gifts from M.
Adjobo-Hermans) were performed with Fugene HD (Roche)
according to the manufacturer protocol and imaged after 24 h.
Stable cell lines expressing Gas-GFP and Gai-GFP was maintained
using the appropriate antibiotics. Cells were plated one day prior to
measurements or transfection inWillco dishes (WillcoWells BV) at
400,000 cells/dish or in 96 well-plate (microplate BD Falcon) at
40,000 cells/well or in 4-well Lab-Tek II chambered coverglass
(Nunc) at 100,000 cells/chamber. Prior to imaging, the mediumwas
replaced with 1 ml RPMI medium without phenol red to avoid
background fluorescence.
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Podosome Dissolution Assay
and Widefield Immunofluorescence
For agonist experiments, iDCs were treated with (R)-Butaprost,
L-902688 or 10 mM PGE2 for 10 min. For antagonist and
pertussis toxin experiments, iDCs were pretreated with 3 mM
AH6809 for 1 h, 10 mMGW627368X for 1 h, 100 ng/ml pertussis
toxin for 16 h as previously described (22) or left untreated prior
to the addition of PGE2. After stimulation, iDCs were fixed in
3.7% (w/v) formaldehyde in PBS for 10 min. Cells were
permeabilised in 0.1% (v/v) Triton X-100 in PBS for 5 min
and blocked with 2% (w/v) BSA in PBS. The cells were incubated
with mouse anti-vinculin antibody for 1 h. Subsequently, the
cells were washed with PBS and incubated with GaM-(H&L)
secondary antibody and phalloidin for 45 min. Lastly, samples
were washed with PB prior to embedding in Mowiol. Cells were
imaged on a Leica DM fluorescence microscope with a 63× PL
APO 1.3 NA oil immersion lens and a COHU high-performance
integrating CCD camera (COHU, San Diego, CA) or a Zeiss LSM
510 microscope equipped with a PlanApochromatic 63x/1.4 NA
oil immersion objective. Images were analyzed using Fiji-based
software (36).

Förster Resonance Energy Transfer
Experiments
RAW macrophages expressing t-Epac-vv were imaged using a
BD Pathway high-content imaging inverted widefield
microscope (BD biosciences) equipped with a 20X 0.75 N.A.
objective (Olympus LUCPLFLN). A mercury metal halide lamp
combined with an excitation filter (440/10) was used to excite
mTurqoise. The fluorescence emission was filtered using a
dichroic mirror (458-DiO1) and filters (479/40 and 542/27
for mTurquoise and Venus emission, respectively). Emission
was collected by a high-resolution cooled CCD camera
(1344x1024 pix, 0.32 mm/pix). Samples were prepared in a 96
well-plate (microplate BD Falcon) from which the inner 60
wells were used. Cells were pretreated with 100 ng/ml pertussis
toxin for 16 h or left untreated before adding 3 mM AH6809 for
1 h, or 10 mM GW627368X for 1 h, with and without 5 mM
nocodazole for 20 min, Six mTurquoise and Venus emission
images were acquired followed by automated addition of PGE2
and subsequent acquisition of another 20 mTurquoise and
Venus emission images (tlag=10 s). The mean fluorescence
intensity of the Venus and mTurquoise signal in a cell was
corrected by subtraction of the background signal in each image
and channel before dividing the Venus over mTurquoise mean
fluorescence intensity to obtain the FRET ratio. Values were
normalized to the average ratio value of the first six pre-
stimulus data points.

Fluorescence Lifetime Imaging
Experiments
Frequency-domain FLIM experiments on transfected RAW
macrophages were performed using a Nikon TE2000-U
inverted widefield microscope and a Lambert Instruments
Fluorescence Attachment (LIFA; Lambert Instruments) for
lifetime imaging. A light-emitting diode (Lumiled LUXEON
Frontiers in Immunology | www.frontiersin.org 357
III, lmax = 443 nm) modulated at 40 MHz was used to excite
CFP. Fluorescence detection was performed by a combination
of a modulated (40 MHz) image intensifier (II18MD; Lambert
Instruments) and a 640x512 pixel CCD camera (CCD-
1300QD; VDS Vosskühler). The emission of CFP was
detected through a narrow emission filter (475/20 nm;
Semrock) to suppress any fluorescence emission from the
Citrine fluorophore. FLIM measurements were calibrated
with a 1 mM solution of pyranine (HPTS), the lifetime of
which was set to 5.7 ns. All FLIM images were calculated
from phase stacks of 12 recorded images, with exposure times
of individual images ranging from 200 to 400 ms. A USH-
102DH 100 W mercury lamp (Nikon) was used for acceptor
photobleaching. Cells were pretreated with 25 mM AH23848
for 1 h or left untreated and cells were stimulated with 10 mM
PGE2 or 10 mM Butaprost.

Statistics and Reproducibility
All image processing was performed using Fiji/ImageJ software.
Podosome count was performed semi-automatically. Briefly, a
median filter (3 pixel radius) was applied to the phalloidin image
after which the podosome clusters were manually selected. The
Fiji maximum finder was subsequently used to detect and count
the podosomes. Data from the podosome dissolution assay and
the FRET experiments were processed using Microsoft Excel and
GraphPad Prism 8 software. Data from the FLIM experiments
were analyzed using OriginPro 8. All statistical analyses were
performed using GraphPad Prism 8. The specific statistical test,
the multiple testing corrections and the number of replicates
used for each Figure are specified in the Figure legend. The
normality of data distributions was assessed by visual data
inspection and the Shapiro-Wilk normality test. P-values <
0.05 were considered statistically significant for all
experiments. Statistical analyses were only performed for the
comparisons indicated in the Figures.
RESULTS

EP4 Primarily Contributes to Prostaglandin
E2-Induced Podosome Dissolution
in Dendritic Cells
To assess the different contributions of EP2 and EP4 in mediating
PGE2 signaling in DCs, we first determined whether both EP2 and
EP4 signaling can lead to podosome dissolution. For this, we treated
immature DCs (iDCs) with PGE2 or well-established and selective
EP2 and EP4 agonists and quantified the number of podosomes per
cell (Figures 1A, B). In line with our previous observations, the
addition of PGE2 resulted in an almost complete loss of podosomes
in iDCs. Interestingly, both EP2- and EP4-specific stimulation also
reduced the number of podosomes, with EP4 agonist stimulation
being slightly more efficient (Figure 1B). These results indicate that
individual EP2 and EP4 downstream signaling can both lead to
podosome dissolution.

After having established that both EP2 and EP4 signaling can
lead to podosome dissolution, we aimed to investigate the
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FIGURE 1 | Prostaglandin E2 (PGE2)-induced podosome dissolution in human immature dendritic cells (iDCs) is mostly mediated by EP4. (A) Representative
images of PBMC-derived iDCs that were left untreated or were treated with 1 mM EP4 agonist L-902688, 1 mM EP2 agonist (R)-Butaprost, both 1 mM L-902688 and
1 mM (R)-Butaprost, 1 mM PGE2 alone or 1 mM PGE2 after pretreatment with EP2 antagonist (ant.) AH6809, EP4 antagonist GW627368X or both AH6809 and
GW627368X. Cells were stained for actin (green) and vinculin (magenta). Scale bar = 10 mm. (B) iDCs were treated with different concentrations of EP2 agonist
(ago.) (R)-Butaprost, EP4 agonist L-902688 or both (R)-Butaprost and L-902688. Cells were stained for actin and vinculin and the number of podosomes per image
was quantified and normalized to untreated control. Cells treated with 10 mM PGE2 were included as positive control. The error bars represent mean ± SD. Data
presented are from two different donors. ns, not significant, *P<0.05; ###P<0.001 versus untreated control, Welch ANOVA with Dunnett’s T3 multiple comparison
test. (C) iDCs were treated with different concentrations of PGE2 with or without pretreatment with EP2 antagonist (ant.) AH6809, EP4 antagonist GW627368X or
both AH6809 and GW627368X. Cells were stained for actin and vinculin and the number of podosomes per image was quantified and normalized to untreated
control. The error bars represent mean ± SD. Data presented are from three different donors. ns, not significant, *P<0.05, **P<0.01, ***P<0.001; ##P<0.01,
###P<0.001 versus untreated control, Welch ANOVA with Dunnett’s T3 multiple comparison test.
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respective contribution of EP2 and EP4 signaling. We reasoned
that this would be difficult to assess by using the agonists because
of the different affinities for their respective receptor. Therefore,
we instead pretreated the cells with well-characterized and
selective competitive EP2 and EP4 antagonists to block
signaling, followed by the stimulation with the natural ligand
PGE2, and subsequently quantified podosome dissolution.
Figure 1C shows that inhibition of EP4 attenuates podosome
dissolution upon stimulation with 0.01–0.1 µM PGE2, while
blocking of EP2 has no effect. This indicates that at lower PGE2
concentrations, EP4 is responsible for the induction of podosome
loss. Interestingly, at 1 µM PGE2, EP4 blocking attenuates
podosome dissolution only when EP2 antagonist is co-
administered, suggesting that EP2 triggering by PGE2 could
somehow influence EP4 activity. At the highest PGE2
concentration (10 µM), one cannot fully exclude that the
antagonists are not displaced by the PGE2, which complicates
the interpretation of these specific results.

Together, these results suggest that EP4 primarily contributes
to PGE2-induced podosome dissolution. Importantly, in
subsequent experiments we use selective receptor antagonists
in combination with the natural ligand PGE2 to define the
individual contributions of EP2 and EP4 in mediating
PGE2 signaling.

EP2 and EP4 Differentially Stimulate cAMP
Production
PGE2-induced podosome loss in DCs is mediated by the cAMP-
PKA-RhoA signaling axis downstream of EP2 and EP4 (8). Since
our results strongly suggest that EP4 is primarily responsible for
podosome loss, we sought to determine whether EP4 induces
stronger cAMP responses to PGE2 than EP2. To determine the
individual contribution of EP2 and EP4 to the PGE2-induced
increase of intracellular cAMP levels, we measured the onset of
cAMP production in living RAW macrophages, which
endogenously express both EP2 and EP4 (Supplementary
Figure 1) (37) and are well-accepted as surrogate cell model to
study DCs (38), using ratio measurements of the Förster
Resonance Energy Transfer (FRET)-based cAMP sensor t-
Epac-vv (34). Since the binding of cAMP to t-Epac-vv reduces
FRET between the mTurquoise donor and Venus acceptor
fluorophores, a decreased FRET ratio in the macrophages is a
direct measure of cAMP production (Figures 2A, B). After the
addition of PGE2, cAMP was produced immediately and reached
a maximum concentration after about 40 seconds, subsiding to
Frontiers in Immunology | www.frontiersin.org 559
lower levels after 200 seconds (Figure 2C). To compare the
cAMP kinetics across different treatment conditions, we
quantified the peak of cAMP production and the production
rate, as shown in Figure 2D. Both parameters scaled with
increasing PGE2 concentrations, indicating that the rate and
the magnitude of the induced cAMP response is dose-dependent
(Figure 2E).

Compared to PGE2 only, EP2 inhibition led to higher cAMP
levels at all tested PGE2 concentrations, while cAMP
concentrations subsided to a similar extent (Figure 2F). The
PGE2-induced cAMP production rate and cAMP peak remained
dose-dependent upon EP2 inhibition as both parameters scaled
with PGE2 concentration (Figure 2G). These results indicate
that EP2 blockade increases the signaling efficiency of EP4 in
response to PGE2. Inhibition of EP4 led to a dramatically
different course of cAMP production. In contrast to EP2
inhibition, EP4 inhibition prevented robust cAMP production
at PGE2 concentrations up to 0.1 µM but allowed a strong cAMP
response at ≥ 1 µM (Figures 2H, I). Furthermore, this strong
cAMP response did not attenuate as observed in the absence of
EP4 inhibition. Compared to PGE2 only, the magnitude of the
strong cAMP response observed upon EP4 inhibition suggests
that EP4 activity may somehow impair the signaling efficiency of
EP2. To ascertain that EP2 and EP4 are completely blocked by
the antagonist concentrations used in our experiments, we
measured cAMP production upon simultaneous inhibition of
EP2 and EP4 (Figure 2J). Pretreatment with both antagonists
effectively inhibited total cAMP production at 0.1 and 1 mM
PGE2, showing that both receptors are completely blocked at
physiological concentrations of PGE2 (Figures 2J, K).
Importantly, since 10 mM PGE2 still induced a small amount
of cAMP, even in the presence of both antagonists (Figure 2J),
we decided to omit this condition in subsequent experiments,
since either one or both of the antagonist may be displaced by the
high concentration of PGE2.

Our results demonstrate that the selective stimulation of EP2
and EP4 by PGE2 induces kinetically distinct cAMP production
profiles. While PGE2-EP4 signaling results in a fast and transient
cAMP production that increases proportionally to the ligand
concentrations, PGE2-EP2 signaling is induced only by PGE2
concentrations of 1 µM and higher, and cAMP elevation is more
prolonged. We also show that co-stimulation of EP2 and EP4
mutually dampens their signaling efficiency, as both receptors
induce higher cAMP production when they are individually
triggered by PGE2.
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FIGURE 2 | EP2 and EP4 induce distinct cyclic adenosine monophosphate (cAMP) responses. (A) Schematic illustration of intramolecular cAMP FRET sensor t-
Epac-vv. Binding of cAMP to t-Epac-vv reduces Förster Resonance Energy Transfer (FRET) between the mTurquoise donor and Venus acceptor fluorophores of t-
Epac-vv, making a decreased ratio of the fluorescent intensities a direct measure of cAMP accumulation [adapted from (34)]. (B) The mTurquoise (cyan) and Venus
(yellow) signal were acquired with widefield microscopy (WF panels). After background subtraction in each image and channel, the FRET ratio was calculated as the
Venus intensity over the mTurquoise intensity for each timepoint and was normalized to the average of prestimulus values (FRET panels). Normalized FRET values
range from 0 (red) to 1 (blue). Scale bar = 5 mm. (C) FRET ratios of t-Epac-vv before and after the addition of different prostaglandin E2 (PGE2) concentrations were
measured in transiently transfected RAW macrophages. A control was performed with the addition of buffer only. The data presented are mean ± SD from ≥5 cells
per condition. (D) Example FRET curve that illustrates the definition of the relative cAMP peak and cAMP production rate. The amplitude of the cAMP peak was
defined as the maximal decrease in FRET ratio. The cAMP production rate was quantified by determining the slope between the final prestimulus timepoint and the
timepoint at which minimal FRET ratios were observed using a linear fit over all included timepoints. (E) The cAMP production peak and the cAMP production rate
were measured from the FRET curve of individuals cells from (C) and the average peak was plotted as a function of the average production rate per condition. The
error bars represent SD for both parameters. (F, H, J) FRET ratios were measured after the addition of PGE2 in cells pretreated with EP4 antagonist (ant.)
GW627368X (F), pretreated with EP2 antagonist AH6809 (H) or pretreated with both GW627368X and AH6809 (J). The data presented are mean ± SD from ≥4
cells per condition. (G, I, K) The relative cAMP production peak and the cAMP production rate were measured from (F, H, J), respectively. The error bars represent
SD for both parameters.
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calculated from frequency-domain FLIM images and the distributions were fitted with a Gaussian profile (solid lines) to obtain the average lifetimes. Photobleaching of
Gai-Citrine was used as a control for the occurrence of FRET. (B) The average donor lifetime in cells expressing both donor and acceptor is plotted before and after
addition of 10 mM PGE2 in absence or presence of EP4 antagonist AH23848 or after addition of 10 mM EP2 agonist Butaprost. The data presented are mean ± SD
from ≥2 cells. (C) FRET ratios of t-Epac-vv before and after addition of PGE2 were measured in transiently transfected RAW macrophages that were left untreated or
were pretreated with Gai inhibitor pertussis toxin (PTx). Controls were performed with the addition of buffer only. The data presented are mean ± SD of
measurements from ≥4 cells per condition. (D) The cAMP peak and the cAMP production rate were quantified as described in Figure 2D from (C) and the average
peak was plotted as a function of the average production rate per condition. The error bars represent SD for both parameters. (E) iDCs were treated with different
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Dunnett’s T3 multiple comparison test.
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EP4-Coupled Gai Fine-Tunes the
Prostaglandin E2-Induced cAMP
Production
Given that EP2 and EP4 differentially control cAMP dynamics,
we sought to identify factors that contribute to these differences.
Since the inhibitory G protein Gai has been shown to couple to
EP4 (22), we hypothesized that Gai dampens the PGE2-induced
cAMP response in cells expressing EP4. To demonstrate that EP4
selectively activates Gai also in macrophages, we performed
fluorescence lifetime imaging (FLIM) to measure FRET
between cyan fluorescent protein (CFP)-tagged Gg (Gg-CFP)
and Citrine-tagged Gai (Gai-Citrine). The fluorescent lifetime of
the FRET donor (CFP) decreased upon co-expression with the
acceptor (Citrine) and was restored to control levels upon
acceptor photobleaching (Figure 3A), indicating that FRET
occurred between Gg-CFP and Gai-Citrine. Since Gai is
known to undergo conformational rearrangements upon
activation (39) and FRET between Gg-CFP and Gai-Citrine is
likely affected by such rearrangements, a shift in fluorescence
lifetime is expected upon EP4 stimulation. Treatment with PGE2
induced a gradual reduction in the lifetime of the donor
fluorophore, whereas no shift in the lifetime phase was
observed upon either inhibition of EP4 or selective stimulation
of EP2 (Figure 3B). These findings confirm that PGE2 induces
Gai activation via EP4 only.

To determine the consequences of EP4-mediated Gai activation
on PGE2 signaling, we measured cAMP elevation using t-Epac-vv
upon inhibition of Gai with pertussis toxin (PTx). Gai blockade
significantly enhanced the cAMP peak concentrations and
production induced by 0.1 mM PGE2 and to a lower extent also
by 1 mM PGE2 (Figure 3C), indicating that Gai attenuates cAMP
production most strongly at lower PGE2 concentrations. The effect
of Gai inhibition on cAMP production is more clearly depicted in
Figure 3D, where a higher cAMP peak and an increased production
rate are observed after addition of PTx.

Next, to investigate whether EP4-mediated Gai activation
would dampen cAMP-dependent processes such as podosome
dissolution, we determined PGE2-mediated podosome loss in
iDCs with or without PTx treatment. We found that Gai

inhibition led to slightly increased podosome loss at all PGE2
concentrations tested, with 1 µM PGE2 being statistically
significant while 0.01 and 0.1 µM PGE2 show a non-significant
but clear trend (Figure 3E). It should be considered that such low
concentrations of PGE2 are less powerful in inducing podosome
dissolution (Figure 1C), making the effect of PTx treatment
more difficult to assess. Nonetheless, this result indicates that the
Gai-mediated dampening of cAMP production also affects
cellular decisions downstream of EP2 and EP4.

Together, these findings show that Gai dampens the onset of
cAMP production, suggesting that the PGE2-EP4-Gai axis might
act as signaling gatekeeper when low PGE2 levels fluctuate slightly.

EP2- and EP4-Mediated Signaling
Requires Cortical Microtubule Integrity
Since the interplay between G proteins and tubulin is well
documented as well as their localization along microtubules (40–
Frontiers in Immunology | www.frontiersin.org 862
42), we investigated whether microtubule integrity is important for
PGE2-induced cAMP production. We found that microtubule
disruption (Supplementary Figure 2) deregulates PGE2-induced
cAMP elevation (Figure 4A). More specifically, when both
receptors are activated, attenuation of the cAMP response by
nocodazole was only observed at 1 mM PGE2 and not at 0.1 mM
PGE2 (Figures 4A, B). Upon EP2 inhibition, however, the cAMP
production rate and the maximum cAMP levels induced by PGE2-
EP4 were reduced at all PGE2 concentrations tested (Figures 4C,
D). Finally, EP4 inhibition revealed that the strong and sustained
cAMP response of PGE2-EP2 is completely prevented by
microtubule disruption (Figures 4E, F). These results
demonstrate that the Gas-mediated cAMP response to PGE2
relies on an intact microtubule network and that disruption of
this network reduces the signaling efficiency of both EP2 and EP4,
with EP2 activity being more sensitive to microtubule integrity than
EP4 activity.
DISCUSSION

This study characterized the EP2 and EP4 signaling modalities to
better understand DC and macrophage responses elicited by
PGE2. Our first important observation is that selective activation
of EP2 and EP4 by agonists leads to different outcomes compared
to activation by PGE2 in the presence of selective receptor
antagonists. More specifically, when the receptors are individually
activated by a selective agonist, podosome dissolution is almost
equally induced by EP2 and EP4, whereas podosome dissolution is
mostly mediated by EP4 after the addition of natural ligand PGE2 in
the presence of selective antagonists. Throughout this study, we
consistently applied selective antagonists to determine individual
receptor contributions to PGE2 signaling and show that 1) both EP2
and EP4 signal more efficiently when selectively activated by their
natural ligand PGE2; 2) EP4 induces dose-dependent and transient
cAMP production, whereas EP2 induces a sustained cAMP
response only at high PGE2 concentration; 3) EP4-linked Gai

dampens both PGE2-induced cAMP generation and podosome
dissolution; 4) microtubule disruption obstructs efficient signaling of
both receptors, especially affecting EP2 strongly.

We here also show that PGE2-induced podosome loss in iDCs
(18) is differentially controlled by EP2 and EP4. PGE2-induced
podosome dissolution is a first step toward the acquisition of a fast
migratory phenotype by DCs (18, 43). In fact, PGE2 is an important
factor to induce DCmaturation and by using selective agonists, both
EP2 and EP4 have been proposed to play similar roles in this
process (6, 16). Our results suggest that this might not be the case
and that EP4 is likely the most predominant receptor in mediating
the PGE2 signaling that leads to podosome dissolution and the
induction of migratory mature DCs. This is in line with previous
findings in gene-targeting experiments in mice, where PGE2-EP4
signaling was found to promote migration and maturation of
Langerhans cells, thereby initiating skin immune responses (44).
Similarly, other PGE2-mediated immunological processes such
cytokine production and T cell activation have been reported to
be controlled differently by EP2 and EP4 (45–47). Knockdown of
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EP2 or EP4 in DCs possibly in combination with the use of agonists
and antagonists might eventually help to clarify these differences.
However, since EP2 and EP4 are always co-expressed in DCs, it
remains to be determined whether the knockdown of one receptor
does not affect expression patterns of the other receptor.
Frontiers in Immunology | www.frontiersin.org 963
Early studies characterizing the EP receptor signaling capacity
have mostly used cells that overexpress either EP2 or EP4 (22, 23,
25, 48–50), which makes it challenging to determine the differential
contribution of the receptors when they are co-expressed. Here, we
have addressed this question andmeasured the early onset of cAMP
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production in cells that endogenously express both EP2 and EP4.
Using selective EP2 and EP4 antagonists, we demonstrate that EP2
induces sustained cAMP, whereas EP4-mediated cAMP production
is faster but more transient. This difference may partially be
explained by the fact that EP4, and not EP2, is internalized
shortly after stimulation with PGE2, which halts further signaling
(23, 51). Furthermore, our results showing a sustained EP2-induced
cAMP production are in line with the previous observation that EP2
is the main cAMP generator after extended PGE2 stimulation (48).
We also know that EP4 can couple to both Gas and Gai (22). Here,
we provide additional evidence that Gai is only linked to EP4 and
not to EP2, and that Gai attenuates the cAMP response induced by
low PGE2 concentrations. Given that several GPCRs do not
precouple with Gai (52), it would be important to determine how
and when EP4 and Gai interact. In a recent study, hidden Markov
modeling classified G proteins into four diffusion states, of which
the slowest two states represent G proteins that interact in hot spots
for GPCR activation (53). The same study employed single-
molecule tracking to show that adrenergic receptors and Gai

proteins interact only transiently within these hot spots (53).
Single-molecule imaging methods are excellent tools to
understand the fundamental principles of G protein dynamics
and could be exploited to better understand the molecular
mechanisms regulating the spatiotemporal interaction between
EP4 and Gas or Ga i, which could shape the cAMP
production profile.

Our FRET measurements also reveal that the cAMP response
of EP4 is dose-dependent, whereas the EP2-induced cAMP
Frontiers in Immunology | www.frontiersin.org 1064
production is negligible at low PGE2 concentrations and
strong at high PGE2 concentrations. EP4 has a higher affinity
for PGE2 than EP2, as indicated by dissociation constants of 0.59
nM and 13 nM, respectively (54). The high affinity of EP4
explains its responsiveness to low PGE2 concentrations, but
the apparent irresponsiveness of EP2 to PGE2 concentrations
below 1 µM cannot be explained by its lower affinity for PGE2,
based on the magnitude of its dissociation constant. Therefore,
additional mechanisms that mediate the all-or-nothing response
of EP2 could exist and might include receptor hetero- or homo-
oligomerization, which are documented for other GPCRs (55)
but remain to be identified for EP2 and EP4. Importantly, our
results indicate that EP4 is the main producer and regulator of
cAMP production at low, possibly physiological, PGE2
concentrations, whereas EP2 boosts cAMP levels only when
PGE2 concentration increases above a certain threshold, as
could (locally) occur in inflamed or tumor tissues.

Interestingly, our experiments using a cAMP FRET biosensor
show that EP2 and EP4 both signal more strongly when
stimulated selectively. This indicates that simultaneous
activation of both receptors limits efficient signaling and
suggests the presence of signaling crosstalk between EP2 and
EP4. Since both EP2 and EP4 couple to Gas, competition for
downstream effectors could contribute to the attenuated cAMP
response observed in the absence of receptor antagonists.
Additionally, inhibitory interactions between activated
receptors at the plasma membrane could attenuate the PGE2-
induced cAMP response to establish an integrated signal that
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fine-tunes downstream effects. Although the mechanisms
underlying this potential crosstalk remains to be deciphered,
our results strongly indicate that the EP2 and EP4 signaling axes
may be closely intertwined.

The organization of GPCR signaling has previously been
linked to membrane domains and the cortical microtubule
network (56). Here, we show that an intact microtubule
network (and possibly microtubule dynamic properties too, as
shown in Supplementary Figure 2B) is necessary for efficient
signaling of both EP2 and EP4. Remarkably, several other studies
show that cAMP production is dampened by intact microtubules
and lipid membrane domains (56–58). Specifically, microtubules
were suggested to restrict the interactions of Gas with GPCRs
and AC, limiting the efficiency of cAMP responses (57, 59). Yet,
most previous research focused on adrenergic receptors, which
primarily localize to lipid-raft domains (60). By contrast, the
insensitivity of EP receptors to cholesterol depletion suggests that
EP2 and EP4 mainly localize in non-raft regions (61). Moreover,
the AC isoform 2, which is the AC isoform that responds most
strongly to PGE2, is also located in non-raft domains, further
supporting the notion that PGE2 signaling occurs outside lipid
rafts and possibly explaining their differential dependence on
the microtubule network that was reported for the
adrenergic receptors (61). Although a mechanistic explanation
is still lacking, the different sensitivity of EP2 and EP4 to
microtubule disruption is striking: whereas PGE2-EP4
signaling is partially reduced, PGE2-EP2 signaling is
completely abolished by nocodazole treatment. Imaging of
microtubules in combination with single-particle tracking of
EP receptors could reveal the role of microtubules in PGE2
signaling. Furthermore, a detailed molecular investigation of
Gas and Gai dynamics is required to accurately describe the
organization and receptor-coupling of the different Ga proteins
involved. The different sensitivity of EP2 and EP4 to nocodazole
together with the apparently contradictory results between
adrenergic and prostaglandin receptors strongly emphasizes the
complexity of GPCR spatiotemporal organization and the
importance of studying the regulation of a specific receptor in its
endogenous settings.

Based on our experimental observations, we here present a
schematic model for the cAMP responses established by EP2 and
EP4. Upon selective stimulation of EP4, both Gas and Gai proteins
are activated (Figure 5A). Active Gas proteins modulate the activity
of AC, resulting in a strong cAMP response. Gai functions to fine-
tune the cAMP production at low PGE2 concentrations. As EP4 is
subjected to desensitization and internalization (23, 25), the elicited
cAMP response subsides over time. When EP2 is selectively
stimulated instead, only Gas controls AC activity (Figure 5B).
The resulting cAMP response does not subside because EP2 is
insensitive to receptor desensitization and internalization (23).
Disruption of the microtubule network dampens the cAMP levels
induced by both EP2 and EP4, albeit with different strength,
showing that microtubules play an important role in the
organization of EP receptor signaling. Upon simultaneous
activation of EP2 and EP4, Ga proteins are activated by both EP2
and EP4, resulting in an integrated cAMP response (Figure 5C).
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Competition between EP2 and EP4 for Gas likely reduces the
signaling efficiency of individual receptors and thereby moderates
final cAMP levels. Since EP4 has a higher affinity for PGE2 than EP2
(54), EP4 is the main gatekeeper of cAMP levels, especially at low
PGE2 concentrations, while EP2 becomes important only at high
PGE2 concentrations that will result in strong and sustained
cAMP production.

Increased PGE2 concentrations have been reported in the
tumor microenvironment of several cancer types (9–12). Since
PGE2 regulates immune cell function, the selective modulation
of EP receptor signaling pathways has been proven to enhance
the antitumor immune response (62–64). Further insight into
the concerted action of EP2 and EP4 will be essential to efficiently
control the cellular responses to PGE2.
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Gogvadze V, et al. Autocrine Prostaglandin E2 Signaling Promotes Tumor
Cell Survival and Proliferation in Childhood Neuroblastoma. PloS One (2012)
7:e29331. doi: 10.1371/journal.pone.0029331

10. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon
cancer. J Lab Clin Med (1993) 122:518–23. doi: 10.5555/uri:pii:002221439
390010V

11. Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin
signaling and breast cancer. Breast Cancer Res (2007) 9:210. doi: 10.1186/
bcr1678

12. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, et al. Non-Small
Cell Lung Cancer Cyclooxygenase-2-dependent Regulation of Cytokine
Balance in Lymphocytes and Macrophages: Up-Regulation of Interleukin 10
and Down-Regulation of Interleukin 12 Production. Cancer Res (1998)
58:1208–16.

13. Kobayashi K, Omori K, Murata T. Role of prostaglandins in tumor
microenvironment. Cancer Metastasis Rev (2018) 37:347–54. doi: 10.1007/
s10555-018-9740-2

14. Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer
microenvironment. J Cancer (2013) 4:36–44. doi: 10.7150/jca.5046

15. Klarquist JS, Janssen EM. Melanoma-infiltrating dendritic cells: Limitations
and opportunities of mouse models. Oncoimmunology (2012) 1:1584–93. doi:
10.4161/onci.22660

16. Kubo S, Takahashi HK, Takei M, Iwagaki H, Yoshino T, Tanaka N, et al. E-
prostanoid (EP)2/EP4 receptor-dependent maturation of human monocyte-
derived dendritic cells and induction of helper T2 polarization. J Pharmacol
Exp Ther (2004) 309:1213–20. doi: 10.1124/jpet.103.062646

17. Harizi H, Grosset C, Gualde N. Prostaglandin E2 modulates dendritic cell
function via EP2 and EP4 receptor subtypes. J Leukoc Biol (2003) 73:756–63.
doi: 10.1189/jlb.1002483

18. van Helden SF, Krooshoop DJ, Broers KC, Raymakers RA, Figdor CG, van
Leeuwen FN. A critical role for prostaglandin E2 in podosome dissolution and
induction of high-speed migration during dendritic cell maturation.
J Immunol (2006) 177:1567–74. doi: 10.4049/jimmunol.177.3.1567

19. Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, Negishi M, et al. Cloning
and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype.
J Biol Chem (1993) 268:7759–62. doi: 10.1016/S0021-9258(18)53022-2

20. Regan JW, Bailey TJ, Pepperl DJ, Pierce KL, Bogardus AM, Donello JE, et al.
Cloning of a novel human prostaglandin receptor with characteristics
of the pharmacologically defined EP2 subtype. Mol Pharmacol (1994)
46:213–20.

21. Leduc M, Breton B, Gales C, Le Gouill C, Bouvier M, Chemtob S, et al.
Functional selectivity of natural and synthetic prostaglandin EP4 receptor
Frontiers in Immunology | www.frontiersin.org 1266
ligands. J Pharmacol Exp Ther (2009) 331:297–307. doi: 10.1124/
jpet.109.156398

22. Fujino H, Regan JW. EP4 Prostanoid Receptor Coupling to a Pertussis Toxin-
Sensitive Inhibitory G Protein. Mol Pharmacol (2006) 69:5–10. doi: 10.1124/
mol.105.017749

23. Desai S, April H, Nwaneshiudu C, Ashby B. Comparison of agonist-induced
internalization of the human EP2 and EP4 prostaglandin receptors: role of the
carboxyl terminus in EP4 receptor sequestration. Mol Pharmacol (2000)
58:1279–86. doi: 10.1124/mol.58.6.1279

24. Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RAJr,
et al. Arrestin specificity for G protein-coupled receptors in human airway
smooth muscle. J Biol Chem (2001) 276:32648–56. doi: 10.1074/
jbc.M104143200

25. Desai S, Ashby B. Agonist-induced internalization and mitogen-activated
protein kinase activation of the human prostaglandin EP4 receptor. FEBS Lett
(2001) 501:156–60. doi: 10.1016/S0014-5793(01)02640-0

26. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A. Inhibition of
tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived
suppressor cells and recovers natural killer cell activity. Clin Cancer Res
(2014) 20:4096–106. doi: 10.1158/1078-0432.CCR-14-0635

27. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S.
Ligand binding specificities of the eight types and subtypes of the mouse
prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol
(1997) 122:217–24. doi: 10.1038/sj.bjp.0701367

28. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ,
et al. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]
isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and
selective prostanoid EP4 receptor antagonist. Br J Pharmacol (2006)
148:326–39. doi: 10.1038/sj.bjp.0706726

29. Woodward DF, Pepperl DJ, Burkey TH, Regan JW. 6-Isopropoxy-9-
oxoxanthene-2-carboxylic acid (AH 6809), a human EP2 receptor
antagonist. Biochem Pharmacol (1995) 50:1731–3. doi: 10.1016/0006-2952
(95)02035-7

30. Luschnig-Schratl P, Sturm EM, Konya V, Philipose S, Marsche G, Frohlich E,
et al. EP4 receptor stimulation down-regulates human eosinophil function.
Cell Mol Life Sci (2011) 68:3573–87. doi: 10.1007/s00018-011-0642-5

31. Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, et al. The
EndocannabinoidMetaboliteProstaglandinE2(PGE2)-Glycerol InhibitsHuman
Neutrophil Functions: Involvement of Its Hydrolysis into PGE2 and EP
Receptors. J Immunol (2017) 198:3255–63. doi: 10.4049/jimmunol.1601767

32. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, et al.
Generation of large numbers of fully mature and stable dendritic cells from
leukapheresis products for clinical application. J Immunol Methods (1999)
223:1–15. doi: 10.1016/S0022-1759(98)00208-7

33. deVries IJ, Eggert AA, ScharenborgNM,Vissers JL, LesterhuisWJ,BoermanOC,
et al. Phenotypical and functional characterization of clinical grade dendritic cells.
J Immunother (2002) 25:429–38. doi: 10.1097/00002371-200209000-00007

34. Klarenbeek JB, Goedhart J, Hink MA, Gadella TW, Jalink K. A mTurquoise-
based cAMP sensor for both FLIM and ratiometric read-out has improved
dynamic range. PLoS One (2011) 6:e19170. doi: 10.1371/journal.pone.0019170

35. Gibson SK, Gilman AG. Gialpha and Gbeta subunits both define selectivity of
G protein activation by alpha2-adrenergic receptors. Proc Natl Acad Sci USA
(2006) 103:212–7. doi: 10.1073/pnas.0509763102

36. De Keijzer S, Meddens MB, Torensma R, Cambi A. The multiple faces of
prostaglandin E2 G-protein coupled receptor signaling during the dendritic
cell life cycle. Int J Mol Sci (2013) 14:6542–55. doi: 10.3390/ijms14046542

37. Hubbard NE, Lee S, Lim D, Erickson KL. Differential mRNA expression of
prostaglandin receptor subtypes in macrophage activation. Prostaglandins
Leukot Essent Fatty Acids (2001) 65:287–94. doi: 10.1054/plef.2001.0327

38. van Helden SF, van Leeuwen FN, Figdor CG. Human and murine model cell
lines for dendritic cell biology evaluated. Immunol Lett (2008) 117:191–7. doi:
10.1016/j.imlet.2008.02.003

39. Bünemann M, Frank M, Lohse MJ. Gi protein activation in intact cells
involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci
(2003) 100:16077–82. doi: 10.1073/pnas.2536719100

40. Wang N, Yan K, Rasenick MM. Tubulin binds specifically to the signal-
transducing proteins, Gs alpha and Gi alpha 1. J Biol Chem (1990) 265:1239–
42. doi: 10.1016/S0021-9258(19)40002-1
February 2021 | Volume 11 | Article 613286

https://doi.org/10.1038/nrm908
https://doi.org/10.1152/ajprenal.1992.263.2.F181
https://doi.org/10.1016/j.biocel.2009.09.015
https://doi.org/10.1016/j.lfs.2003.09.025
https://doi.org/10.4049/jimmunol.176.2.966
https://doi.org/10.4049/jimmunol.176.2.966
https://doi.org/10.1111/j.0818-9641.2004.01251.x
https://doi.org/10.1111/j.0818-9641.2004.01251.x
https://doi.org/10.1242/jcs.020289
https://doi.org/10.1371/journal.pone.0029331
https://doi.org/10.5555/uri:pii:002221439390010V 
https://doi.org/10.5555/uri:pii:002221439390010V 
https://doi.org/10.1186/bcr1678
https://doi.org/10.1186/bcr1678
https://doi.org/10.1007/s10555-018-9740-2
https://doi.org/10.1007/s10555-018-9740-2
https://doi.org/10.7150/jca.5046
https://doi.org/10.4161/onci.22660
https://doi.org/10.1124/jpet.103.062646
https://doi.org/10.1189/jlb.1002483
https://doi.org/10.4049/jimmunol.177.3.1567
https://doi.org/10.1016/S0021-9258(18)53022-2
https://doi.org/10.1124/jpet.109.156398
https://doi.org/10.1124/jpet.109.156398
https://doi.org/10.1124/mol.105.017749
https://doi.org/10.1124/mol.105.017749
https://doi.org/10.1124/mol.58.6.1279
https://doi.org/10.1074/jbc.M104143200
https://doi.org/10.1074/jbc.M104143200
https://doi.org/10.1016/S0014-5793(01)02640-0
https://doi.org/10.1158/1078-0432.CCR-14-0635
https://doi.org/10.1038/sj.bjp.0701367
https://doi.org/10.1038/sj.bjp.0706726
https://doi.org/10.1016/0006-2952(95)02035-7
https://doi.org/10.1016/0006-2952(95)02035-7
https://doi.org/10.1007/s00018-011-0642-5
https://doi.org/10.4049/jimmunol.1601767
https://doi.org/10.1016/S0022-1759(98)00208-7
https://doi.org/10.1097/00002371-200209000-00007
https://doi.org/10.1371/journal.pone.0019170
https://doi.org/10.1073/pnas.0509763102
https://doi.org/10.3390/ijms14046542
https://doi.org/10.1054/plef.2001.0327
https://doi.org/10.1016/j.imlet.2008.02.003
https://doi.org/10.1073/pnas.2536719100
https://doi.org/10.1016/S0021-9258(19)40002-1
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vleeshouwers et al. PGE2 Signaling in Myeloid Cells
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Plasma membrane provides a biophysical and biochemical platform for immune cells to
trigger signaling cascades and immune responses against attacks from foreign pathogens
or tumor cells. Mounting evidence suggests that the biophysical-chemical properties of
this platform, including complex compositions of lipids and cholesterols, membrane
tension, and electrical potential, could cooperatively regulate the immune receptor
functions. However, the molecular mechanism is still unclear because of the
tremendous compositional complexity and spatio-temporal dynamics of the plasma
membrane. Here, we review the recent significant progress of dynamical regulation of
plasma membrane on immune receptors, including T cell receptor, B cell receptor, Fc
receptor, and other important immune receptors, to proceed mechano-chemical sensing
and transmembrane signal transduction. We also discuss how biophysical-chemical cues
couple together to dynamically tune the receptor’s structural conformation or orientation,
distribution, and organization, thereby possibly impacting their in-situ ligand binding and
related signal transduction. Moreover, we propose that electrical potential could
potentially induce the biophysical-chemical coupling change, such as lipid distribution
and membrane tension, to inevitably regulate immune receptor activation.

Keywords: immune receptor, plasma membrane, biophysical-chemical coupling, electrical potential,
mechanical force
INTRODUCTION

The plasma membrane (PM) of cells, mainly consisting of lipid, cholesterol, and protein, is a lipid
bilayer structure. Its outer leaflet enriches phosphatidylcholine, sphingolipid, and cholesterol, and
the inner leaflet mainly contains cholesterol and acidic phospholipids (e.g. phosphatidylserine,
phosphatidylinositol, and phosphatidic acid) (1–3). The asymmetry mobility and dynamic
organization of lipid and membrane proteins have been proposed in the Fluid-Mosaic model
org February 2021 | Volume 12 | Article 613185168
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(4–7). In this model, the PM is a very dynamic structure, where
lipid-protein, lipid-lipid, and protein-protein interactions occur
at all times, and all of these interactions regulate membrane
receptor’s ligand recognition and triggering (6, 8). Moreover,
sphingolipid and cholesterol contribute to the formation of
nanodomains or lipid rafts, which are highly dynamic in many
receptor-activated cellular processes (9–12). It has been reported
that the biophysical-chemical properties of the PM, including the
asymmetry of lipid and protein distribution, the membrane
curvature and mechanical tension, and the membrane electrical
potential, could dynamically regulate diverse cellular processes
(13–16).

For immune cells, the PM tunes their essential physiological
processes. For example, the cholesterol accumulation could
increase T cell differentiation and proliferation, whereas it also
induces T cell exhaustion through T-cell receptor (TCR)
signaling (17–20). Phosphatidylserine directly tunes T cell
migration, adhesion, tissue infiltration, and rapid inflammatory
response (21, 22). Moreover, PM’s mechanical tension, driven by
the cytoskeleton and its associated molecular motors,
dynamically shapes PM morphology and regulates T cell
adhesion, migration, and activation cooperatively via many
immune receptors (e.g. TCR and integrin) (23–25). Also, PM
morphology (e.g. microvilli) facilitates the discrimination of
peptide major histocompatibility complex (pMHC) for TCR
(26–28). Membrane potential, another PM biophysical
property, might also regulate T cell proliferation and
cytotoxicity through TCR activation (29, 30).

Here, we review how PM couples with biophysical and
biochemical factors to regulate the functions of immune cells
(e.g. T cell, B cell, and natural killer cell) through the respective
immune receptor activation, such as TCR, B-cell receptor (BCR)
or Fc receptor (FcR), and further discuss and propose the
potential molecular mechanism.
DOUBLE-EDGED REGULATION
OF CHOLESTEROL

It has been reported thatmany receptors (e.g. acetylcholine receptor
and G protein-coupled receptor) contain the cholesterol
recognition/interaction amino acid consensus (CARC, mainly
containing Valine, Isoleucine, Alanine, Methionine, and Serine
amino acids) motif in the transmembrane domain (TMD) which
directly interacts with cholesterol (31, 32). This CARCmotif might
be conserved for many immune receptors. Based on previous
findings, we propose a double-edged model of cholesterol
regulation on receptor activation: 1) cholesterol directly binds
TMD to keep immune receptors in an inactive (close
conformation) state (33); 2) once the immune cell is stimulated,
cholesterol indirectly mediates the clustering of immune receptors
(34, 35), whichmight be in an activation (open conformation) state.
Cholesterol might finely tune the activation threshold to avoid
perturbations from non-specific noise signals. Once strong
stimulation activates the conformational change of receptor
TMD, cholesterol could facilitate immune receptors clustering to
Frontiers in Immunology | www.frontiersin.org 269
launch and amplify downstream signaling cascades. Therefore,
whether and which residues of receptor TMD mediate direct
interaction with cholesterol, and if so, how cholesterol keeps
immune receptors in the close conformation or resting state, and
how strong stimulation (e.g. ligand binding) could trigger the
conformational change of immune receptors to form the
cholesterol-mediated nano or micro clusters, need to be further
investigated with atomic resolutions.

As a major biochemical component of the PM, cholesterol can
bifunctionally regulate TCR dynamics and functions (Figure 1A).
On one hand, it associates with the TMD of the TCR b chain and
keeps TCR in a resting and inactive conformation, preventing CD3
phosphorylation and recruitment of downstream signaling
components, such as ZAP70 and ERK (33). On the other hand, it
can also enhance TCR nanoclustering to promote T cell activation
(36–38). Moreover, cholesterol can regulate TCR clustering and
signaling through dynamic lipid rafts (35, 39, 40). For example, the
increased cholesterol level in the PM by inhibiting cholesterol
esterification of CD8+ T cell in vivo can promote TCR clustering,
enhance immune synapse formation, and amplify the
phosphorylation of CD3, ZAP70, and ERK to produce more
cytokine, leading to T cell proliferation (41). Consistently,
cholesterol sulfate can inhibit CD3 immunoreceptor tyrosine-
based activation motif (ITAM) phosphorylation by replacing
cholesterol to disrupt the formation of TCR nano-clustering (42).
The depletionof cholesterol inT cells also drastically reduces in-situ
TCR/pMHC binding affinities and association rates, potentially
through regulating the conformation or orientation of TCR’s TMD
and ectodomains to impair TCR antigen recognition (43). In brief,
cholesterol possibly tunes TCR initial allosteric switch and
subsequent clustering, respectively. The detailed regulation
mechanism remains ambiguous, which requires further
investigation with atomic resolution to reveal how exactly
cholesterol dynamically associates with the TCR/CD3 complex.
The cryo-EM structure of TCR/CD3 complexwithmembrane lipid
and cholesterol will provide us more meaningful insights.

During the antigen recognition process of B cells, the micro-
cluster formation of the BCR complex is crucial to strengthen BCR
activation signaling (44, 45). Cholesterol has been reported to
regulate the distribution of BCRs in PM microdomains, and low
cholesterol level impairs BCRs aggregation further to affectVav and
Rac1phosphorylation (46, 47).Moreover, cholesterolmay affect the
formationofprotein islands,nanodomains,ormicrovilli on thePM,
which provides a platform for BCRs to form their unique signaling
complex with coreceptors (28, 48–50). Meanwhile, cholesterol
could also induce BCR endocytosis on anergic cells to inhibit
BCR signaling (51). Therefore, cholesterol also has double-edged
regulation (amplifying or attenuating) on BCR signaling. However,
the detailed molecular mechanism of these two regulatory effects
and their switching is still unclear.

The lipid raft, mainly consisting with cholesterol, can directly
tune activating receptor FcgRIIA signaling (e.g. phosphorylation
of CbI and NTAL) without ligand binding (52). The cholesterol
depletion can impair FcgRIIA association with CD55, GM1, and
Lyn kinase, and the related phosphorylation signaling (53).
Similar to FcgRIIA, FcgRIIIA activation could also be inhibited
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by cholesterol depletion to reduce ERK activation and prevent
IFN-g production (54). And the intracellular tyrosine
phosphorylation of inhibitory receptor, FcgRIIIB, can also be
significantly attenuated when the cholesterol level reduces (55,
56). Moreover, cholesterol can directly regulate the recognition
of FcgRI to IgG (57). These detailed regulation molecular
mechanisms still need to be further investigated.
SIGNALING MOTIFS PROTECTION BY
NEGATIVELY CHARGED LIPID/BASIC
MOTIF INTERACTION

The PM inner leaflet enriches negatively charged lipids (e.g.
phosphatidylserine, phosphatidylinositol, etc.) that can interact
with the polybasic regions of immune receptors to regulate their
Frontiers in Immunology | www.frontiersin.org 370
activation. Such interaction can embed the signaling motif of the
immune receptors in the PM hydrophobic core. The positively
charged Ca2+ ions flux, which is triggered by strong agonistic
ligand stimulation, can disrupt this interaction to uncover the
buried signaling site (58–61). The PM shields noise signal
interference through their selective association with critical
signaling motifs until strong stimulation is initiated. This
mechanism of signaling shielding and amplification by
regulating negatively charged lipid/basic motif interaction is
potentially shared by many other immune receptors.

The inner leaflet of T cell PM mainly consists of negatively
charged lipids, which associate with CD3ϵ/z cytoplasmic ITAM
motif through electrostatic interactions (Figure 1B). These lipid
and CD3 interactions protect CD3ϵ/z ITAMs from being
recognized and phosphorylated by downstream kinase
molecules, such as Lck (59, 60, 62, 63), thus keeping TCR/CD3
A

B

DC

FIGURE 1 | Schematic models of PM regulation on TCR complex signaling. (A) Double-edged regulation of cholesterol on TCR activation. Cholesterol could directly
bind with the TMD of the TCR b chain to keep TCR in an inactive state in the resting T cell. Cholesterol disassociation from the TCR b chain can switch the TCR
complex to the activation state. Meanwhile, cholesterol also indirectly mediates TCR clustering, following TCR initial activation. (B) The interaction between negatively
charged lipid and basic motif regulates CD3 ITAM motif exposure. TCR cytoplasmic domains contain polybasic regions, which directly interact with the negatively
charged lipid in the membrane inner leaflet to embed the ITAM motif in hydrophobic core of the PM in resting cell. The disruption of this interaction can expose the
signaling motif to amplify downstream signaling. (C) PM provides a platform to sense outside cues for immune receptors. On this platform, mechanical force
regulates TCR/pMHC recognition through conformation change. (D) Electrical potential might directly trigger TCR signaling. Since TCR TMD contains several
charged residues, PM potential depolarization might induce TMD titling conformation to further allosterically regulate dissociation of CD3 tails from inner leaflet and
activate intracellular downstream signaling.
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in the resting state and T cells in a quiescence state. As it has been
extensively reviewed before (60), we here just briefly discuss it.

For the mIgG-BCR, PM’s inner side could block non-specific
stimulation and keep mIgG-BCR in a resting state, providing the
critical activation thresholds for mIgG-BCRs (58). As the
cytoplasmic region of the mIgG (mIgG-tail) contains several
basic residues, it could electrostatically bind with negatively
charged acidic phospholipids of the PM’s inner leaflet to block
the interference from noise signals and keep mIgG-BCR in a
resting state in quiescent B cells (58). Ca2+ mobilization triggered
by suitable antigenic stimulation on the mIgG-BCR complex
could disrupt this protection, which further recruits pSyk,
pBLNK, and pPI3K into the immunological synapse to induce
a more potent Ca2+ mobilization response and B-cell
hyperproliferation. Moreover, phosphatidylinositol (4,5)-
bisphosphate (PIP2) triggers a signaling amplification loop to
induce the initial formation of BCR micro-clusters upon B cell
activation (64). PIP2 and phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) together tune the growth of BCR micro-
clusters by recruiting Dock2 to remodel F-actin cytoskeleton
(65). Remarkably, this electrostatical interaction mechanism
might not be suitable for mIgG-associated Iga and Igb as they
contain polyacidic regions (58, 60).
MECHANICAL REGULATION AND ITS
COUPLING WITH CHOLESTEROL AND
NEGATIVELY CHARGED LIPID

In general, the PM provides a platform for immune receptors to
sense outside physical and biochemical cues. Unlike
biomolecules in solution that can freely rotate and adopt many
different possible orientations, immune receptors’ orientations
are significantly restricted by the PM. They only can adopt
limited protein topologies, which are essential for receptor-
ligand binding and downstream signaling transduction. The
membrane anchor pattern, extracellular length, and orientation
of immune receptors all could influence the recognition of their
ligands by affecting ligand accessibility and association kinetics.
Meanwhile, the physical platform also tightly restricts immune
receptors diffusion, which is distinct to that in solution, thereby
drastically affecting immune receptor-ligand binding affinity
(66). Moreover, the immune receptors also experience
mechanical force induced by membrane tension and
cytoskeleton contractions (23–25). The mechanical force has
been reported to induce conformational changes of immune
receptor and ligand to regulate their binding strength and
immune functions. It is very likely that these mechanically
regulated protein conformational changes could propagate
across the PM and transduce toward the inside of the cell to
allosterically regulate the conformation of the receptors’
cytoplasmic tails and potentially their associated kinases or
other adaptor molecules. Such propagation could provide a
rapid physical activation of receptor signal transduction, other
than traditionally accepted biochemical ways. This mechanical
Frontiers in Immunology | www.frontiersin.org 471
regulation might be universal in immune receptors. During
cross-membrane mechanical propagation, cholesterol could
inevitably be integrated with force to collectively regulate the
conformation of receptor’s TMD. For example, cholesterol can
regulate PM tension, which in turn tunes cholesterol
distribution, membrane stiffness and bending (67–69), thereby
inducing immune receptors ectodomain conformational changes
and TMD titling. Cholesterol could potentially prevent or
facilitate the TMD tilting, which may be dependent on how
cholesterol dynamically interacts with receptor’s TMD.
Collectively, the mechano-biochemical coupling could
contribute to the conformational changes, triggering and
clustering of immune receptors.

The PM provides a physical platform for TCR/CD3 complex
to sense antigens (66). On this platform, TCR inevitably
experiences external mechanical forces when T cells contact
the antigen-presenting cell (APC) or migrate on the APC and
the extracellular matrix (ECM), and the internal mechanical
force produced by dynamic cytoskeleton contraction during T-
cell searching for foreign antigens on the APC or membrane
bending tension upon T-cell/APC contact formation (23, 70–73).
For TCR recognition of pMHCs, the mechanical force can
prolong the bond lifetimes for agonistic antigens but not
antagonists by selectively inducing conformational changes
(Figure 1C) of the agonistic pMHC to initiate the formation of
new hydrogen bonds (electrostatic attraction between the
hydrogen atom and negatively charged nitrogen or oxygen
atom) (72, 73). This force induced by pMHC/TCR binding
inevitably increases local membrane tension and further
induces membrane bending, which might disrupt the
interactions between CD3 polybasic regions and negatively
charged lipids of the inner leaflet to expose ITAM motifs for
Lck to phosphorylate and further trigger downstream signaling.

PM stiffness can also regulate the antigen discrimination of
BCRs. BCR has stringent affinity discrimination when contacting
with rigid APC PM during the invagination of antigens (74).
Also, PM shape can regulate BCR stimulation by affecting the
formation of BCR microclusters (75). On the PM platform, the
mechanical force provides multiple effects on different isotyped
BCRs, which influences the activation sensitivity of BCR by
pathological antigens (antigens that can induce a specific
immune response to cause the infectious, allergic or
autoimmune diseases) (76). Low mechanical force (<12 pN) is
enough to trigger the activation (e.g. BCR, pSyk, pPLCg2, and
pTyr clusters) of IgG- or IgE-BCR on memory B cells, but not
IgM-BCR on mature naive B cells (76).

Besides, PM curvature causes the redistribution of FcϵRI (77,
78). FcϵRI bond with IgE always locates at the contact membrane
regions which are less curved (79). Similarly, FcgRIIA also can be
regulated by the mechanical force under the physiological flow
conditions, which facilitates the capture of neutrophils directly
by endothelial cells (80). Moreover, the recognition of FcgRII and
FcgRIII to IgG is influenced by the anchor patterns (e.g. GPI and
transmembrane domain) on the immune cell PM (81, 82).

It has been reported that high membrane tension or
mechanical force helps CD28 (another costimulatory receptor
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of TCR complex) to facilitate TCR signaling on the PM platform
(83, 84). Also, LFA-1/ICAM-1 interaction is affected by the
mechanical force to regulate T cell migration (85–88). For
natural killer cells, PM stiffness can regulate the NKG2D/
MICA interaction to determine the cell cytotoxic activity (89).
ELECTRICAL POTENTIAL REGULATION
AND ITS COUPLING WITH MECHANICAL
AND BIOCHEMICAL CUES

The PM electrical potential, which is commonly overlooked in the
immunology field, is another essential biophysical factor that also
potentially regulates immune receptor functions. It is generally
defined as the electric potential difference between the
intracellular and extracellular solution. PM potential
depolarization can facilitate the opening of Ca2+ channels and
initiate the mitotic activity to regulate the activation and
proliferation of lymphocyte cells (90–92). The regulation of PM
potential on neural activity and the networks has been widely
reported. Its molecular regulationmechanismmainly divides into
threeways (93). First, TMDconformational change of the voltage-
dependent ion channels is triggered by PM potential
depolarization (94). Considering that the TCR complex TMD
contains several charged residues buried in the lipid bilayer, we
propose that PM potential depolarization, which is triggered by T
cell activation (95), might tilt the conformation of TCR TMD to
further allosterically regulate thedissociation ofCD3 tails from the
inner leaflet of PM and activate intracellular downstream
signaling (Figure 1D). However, this depolarization-induced
TCR allosteric activation needs to be further investigated with
detailed biophysical investigation. Second, ion influx, an indirect
effect of depolarization, regulates transmembrane proteins. The
possible mechanism might be that ion influx regulates ligand
binding and tyrosine phosphorylation (96, 97). It has been
reported that Ca2+ influx disrupts the interactions between CD3
cytoplasmic polybasic regions and negatively charged lipids to
favor CD3 ITAMs phosphorylation. However, whether PM
potential might directly tune CD3 ITAMs phosphorylation is
still unknown. Third, the electro-osmosis or electrophoresis
induced by local electric fields, re-distributes transmembrane
protein on the PM (98). Like neural synapses, the immune
synapses might also exist this electromigration to regulate
immune receptor distribution pattern, which favors the
recognition of APCs by T cells.

Notably, PM surface usually exists a ~2 nm electrical double
layer (EDL, a layer formed by freely diffusing electrolyte ions in
the nanometer range of the charged surface), which is regulated
by lipid distribution and intracellular/extracellular ions
concentration (16). Key proximal regions of TMD, usually
containing acidic or basic amino acids and locating in the
EDL, might respond to the electrical potential change to
regulate immune receptor conformations. For example, Ca2+

influx of T cell activation indeed changes the ion distribution and
reduces the interaction between the cytoplasmic domain of CD3
or CD28 and EDL, activating downstream signal transduction.
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PM potential can also affect other chemical and biophysical
properties, such as lipid distribution, membrane fluidity, tension,
and curvature of PM (99, 100), dynamically changing the
mechanical and biochemical environment where immune
receptors reside (23). For example, PM potential depolarization
can induce changes in PM curvature and tension, which could
further regulate the mechano-dependent behavior of immune
receptors, such as the conformational changes and ligand binding
kinetics (23, 100, 101). Meanwhile, the depolarization also reduces
the lateral diffusion of membrane components (e.g. cholesterol,
phospholipids, and protein) to affect the formation of lipid rafts,
receptor microclusters, and microvilli (12, 99, 102, 103), all
of which are crucial for immune receptor activation (12, 26, 28).

Inversely, the compositions of lipids and cholesterols can
directly affect the charge distribution on the PM surface, which
further determines the PM potential (12, 16, 30). PM tension and
curvature might also tune immune cell PM potential through
mechanosensitive Piezo1 channel (104), causing a series of
related regulation on immune receptor activation. However,
the detailed mechanism still needs further investigation.

Based on the above elaboration, the PM platform provides
mechanical-electric-chemical coupling to synergistically regulate
immune receptor-ligand recognition, conformational changes,
and cross-membrane activation. This is also exciting to be
investigated in the future.
CONCLUSION

In recent decades, the regulation of immune cell PM chemical
properties on the receptor activation has been broadly
investigated, and some of them have been revealed. However,
many other PM biophysical effects (e.g. membrane tension and
electrical potential) have not been clearly examined. Especially,
whether and how biophysical-chemical cues couple together to
tune receptors, and their molecular mechanism of these
regulation patterns all need to be further investigated.
Answering all these above questions will improve our
understanding of immune receptor activation, especially TCR,
thus contributing to immunotherapies development [e.g.
chimeric antigen receptor (CAR) T-cell design].
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Understanding the mechanisms behind T cell dysfunctions during chronic diseases is
critical in developing effective immunotherapies. As demonstrated by several animal
models and human studies, T cell dysfunctions are induced during chronic diseases,
spanning from infections to cancer. Although factors governing the onset and the extent of
the functional impairment of T cells can differ during infections and cancer, most
dysfunctional phenotypes share common phenotypic traits in their immune receptor
and biophysical landscape. Through the latest developments in biophysical techniques
applied to explore cell membrane and receptor–ligand dynamics, we are able to dissect
and gain further insights into the driving mechanisms behind T cell dysfunctions. These
insights may prove useful in developing immunotherapies aimed at reinvigorating our
immune system to fight off infections and malignancies more effectively. The recent
success with checkpoint inhibitors in treating cancer opens new avenues to develop more
effective, targeted immunotherapies. Here, we highlight the studies focused on the
transformation of the biophysical landscape during infections and cancer, and how T
cell biomechanics shaped the immunopathology associated with chronic diseases.

Keywords: T cell dysfunction, chronic diseases, infections, cancer, tumor microenvironment, immune receptor
landscape, biophysical landscape, biomechanics
INTRODUCTION

T cells are at the frontline of immune surveillance, acting against pathogens and malignancies to
maintain host homeostasis. Upon recognition of antigenic peptides presented on major
histocompatibility complex (MHC) or MHC-like molecules (1, 2), T cells become activated and
undergo clonal expansion, resulting in the generation of effector cells that help contain the spread of
the disease. During clonal expansion, changes can occur at transcriptional, epigenetic and metabolic
levels that enhance the effector functions of T cells (3). Effector T cells produce high amounts of
cytokines, including interferon (IFNg) and tumor necrosis factor (TNFa), and cytoplasmic granules
containing granzymes and perforin (4). During antigenic clearance, the majority of effector CD8+ T
cells follow an apoptotic cell death, but 5–10% of cells differentiate into memory T cells (5). Memory
T cells are capable of rapidly executing their effector functions upon re-encounter of the same
antigen or pathogen (6, 7). They have a unique transcriptional makeup, which allows them to be
distinguished from naïve and effector T cells (8). This unique transcriptional profile shapes the
functional characteristics of memory T cells as well as their phenotype to maintain the acquired
org February 2021 | Volume 12 | Article 600829176
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immunity. Hence, memory T cell differentiation is tightly
regulated and any alterations to this process can manifest in
various forms of T cell dysfunction (9).

Depending on phenotypic and functional features, T cell
dysfunctions can be classified into ignorance, tolerance,
exhaustion, anergy or senescence (Table 1). These different
states of dysfunctions can operate as mechanisms to reduce
autoimmunity (ignorance and tolerance), minimise
repercussions from inappropriate T cell stimulation (anergy),
or simply regulate T cell division (senescence) (9). However,
exhaustion brings a unique perspective to the state of T cell
dysfunction as it occurs despite physiologically appropriate T cell
stimulation. During the transformation of effector T cells into
dysfunctional phenotypes, the proliferative capacity along with
cytokine production gets reduced (10–12). Moreover, alterations
occur at the membrane level transform the immune receptor
landscape of T cells (13) and their biophysical properties (14–
16). This has ramifications in terms of maintaining optimal T cell
responses against pathogens and malignancies. In this review, we
highlight recent findings that helped to broaden our
understanding on how T cell dysfunctions can reform the
immune receptor and biophysical landscape of T cells, and
how it can ultimately influence the state of disease progression.
We primarily discuss dysfunctional T cell phenotypes in the
context of chronic infections and cancer to draw our conclusions.
MECHANISMS OF T CELL DYSFUNCTION
IN CHRONIC DISEASES

It is conceivable that all T cell dysfunctions stem from alterations
occur in the biological process of T cell activation or
differentiation. As a result, different dysfunctional T cells share
common phenotypic traits, which make the differentiation
between T cell dysfunctions subtypes difficult. However, in
depth understanding of different molecular mechanisms
driving T cell dysfunctions will help to identify signature
phenotypic traits to build much clearer and distinguishable
profiles for each subtype. Here, we attempt to highlight
different mechanisms that drive T cell dysfunctions and the
Frontiers in Immunology | www.frontiersin.org 277
most commonly associated dysfunctional T cells found in
chronic diseases.

T Cell Tolerance and Ignorance
Complete T cell activation requires three signals; first signal
provided by TCR-cognitive pMHC interaction, the second is a
costimulatory or coinhibitory receptor activation signal provided
by APCs, and the third is provided by extracellular cytokines. Of
these signals, the second signal becomes crucial in determining
the functional outcome of T cell signaling, which may promote T
cell effector functions (costimulation) or dampen excessive
immune responses (coinhibition) to maintain immunological
tolerance (17). Thus, both T cell activation and tolerance are
interconnected to tightly regulate and maintain optimal immune
responses against foreign antigens while preventing
autoimmunity against self-antigens. Failure to maintain
immunological tolerance may result in various types of
autoimmune diseases. T cell tolerance is primarily enforced by
central and peripheral tolerance. Central tolerance operates by
eliminating self-reactive T cell through negative selection in the
thymus during early stages of T cell development. These T cells
express high-avidity TCRs to self-antigens and are mainly
eliminated from the system via clonal deletion or diverted to
differentiate into regulatory T cells (Treg) through thymic
negative selection. These elimination mechanisms have been
reviewed elsewhere (18). Although majority of self-reactive T
cells get screened and eliminated though negative selection in the
thymus, this process alone is not sufficient to safeguard against
autoimmunity. Self-reactive T cells that escape thymic negative
selection are eliminated by peripheral tolerance which acts as the
second barrier to maintain immunological tolerance. It was
shown that peripheral tolerance is most effective in detecting
and eliminating mature T cells that express low-avidity self-
reactive TCRs, while central tolerance is effective against
eliminating thymocytes expressing high-avidity self-reactive
TCRs (19). Peripheral tolerance operates with various
mechanisms to inactivate self-reactive T cells that escaped
central tolerance. These mechanisms include clonal deletion
(20, 21), clonal suppression by Tregs (22–24) and induction of
functional non-responsiveness via intrinsic cell programming
mechanisms (25). It has been suggested that manifestation of a
large proportion of autoimmune diseases are linked with the
breakdown of peripheral tolerance mechanisms (26–29). In some
instances, self-antigens fail to induce negative selection of self-
reactive T cells and they become clonally ignorant (30–32). This
can be due to low expression of the self-antigen or its physical
sequestration at immune-privileged sites like the blood-brain
barrier (31). During self-antigen encounter, unlike self-tolerant T
cells, self-ignorant T cells remain functional. Most self-ignorant
T cells in the periphery are naive, but given the right stimulatory
conditions, they can initiate autoimmune responses (33–35).

T Cell Anergy
Another important state of T cell dysfunction is anergy. The
consensus that describe the mechanism behind T cell anergy is
based on T cell antigen-stimulation in the absence of the second
signal i.e. costimulation, which drives T cells into a
TABLE 1 | Classification of dysfunctional T cells.

T cell
dysfunction

Functional and Phenotypic features

Ignorance Self-reactive T cells that do not sense self-antigens due to
physical sequestration or low antigen expression.

Tolerance Central tolerance accounts for negative selection of thymocytes
expressing high-affinity TCRs to self-antigens. Thymocytes which
escape negative selection are inactivated by different mechanisms
of the peripheral tolerance.

Exhaustion Persistent antigen stimulation of T cells during chronic diseases
(infections or cancer) induce progressive loss of T cell effector
functions and lead to exhaustion.

Anergy A hyporesponsive state of T cells arise in suboptimal costimulatory
signal during T cell-antigen recognition.

Senescence State of non-reversible cell cycle arrest caused by telomere
shortening.
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hyporesponsive state for an extended period of time (36). Upon
re-encounter of the same stimuli with optimal costimulation,
anergic T cells fail to proliferate and produce cytokines (36). It
has been shown that one of the hallmarks of T cell anergy is the
reduced interleukin (IL)-2 production (37). T cell anergy has
been broadly classified into clonal anergy and in vivo anergy (36).
Clonal anergy can be induced in CD4+ T cells when stimulated
with a strong first signal (TCR-pMHC interaction) and in the
absence of the second signal. Low doses of agonist in the
presence of costimulation has also been shown to induce
clonal anergy (38). In vivo anergy also known as adaptive
tolerance can occur in the thymus or in the periphery and
often associates with naïve T cells during self-antigen
stimulation in a costimulation deficient or high coinhibition
environment (37, 39). For example, cancer cells and tumor-
antigen presenting cells are shown to express high levels of
coinhibitory receptor ligands (PD-L1, PD-L2 and many other)
with relatively low levels of costimulatory receptor ligands
(CD80 and CD86) in the tumor microenvironment to promote
T cell anergy (40–43). Despite overlapping functional and
phenotypic features, clonal anergy and in vivo anergy are
driven by distinct molecular mechanisms. For instance, while
both anergic phenotypes display either impaired IL-2 production
(clonal anergy) or impairment in all TCR-induced cytokine
production (in vivo anergy) as a key dysfunctional feature
during antigen stimulation, only clonal anergy can be rescued
by the addition of exogenous IL-2 or by diacylglycerol kinase-a
(DGK) inhibitor (44, 45). Clonal and in vivo anergy also differ in
their signaling defects. TCR-based signaling pathway seems to
have impairment in Zap-70 phosphorylation of LAT in the in
vivo anergy model (37). The signaling pathway of clonal anergy
shown to have defects in MAP-kinases activation and
mobilisation of NF-kB to the nucleus (46). Anergic phenotypes
are associated with a number of autoimmune diseases including
human type-1 diabetes (26), systemic lupus erythematosus (47),
autoimmune gastritis (48) and myasthenia gravis (49).

T Cell Senescence
Senescence is recognized as a T cell dysfunction that can play
paradoxical roles in adaptive immunity. Based on the triggering
mechanisms, T cell senescence can be classified into replicative
senescence or premature senescence (50). Replicative senescence
occurs as a consequence of telomere shortening after several
rounds of cell division, which is associated with the natural aging
process (51–53). Hence, an increased number of senescent T cells
have been found in the elderly population, which increase their
susceptibility for malignancies and chronic diseases (54, 55).
However, a number of studies have shown that accumulation of
senescent T cells is not limited to the ageing population, but can
be found in younger patients with chronic infections and cancer
(56–59). The second form of senescence: premature senescence is
independent of telomere shortening, and is induced by external
factors including cellular stress, particularly oncogenic stress (60,
61). During tumorigenesis, oncogenes become activated and
promote uncontrolled cell division, which is commonly
observed in many types of cancers. Adversely, a high
Frontiers in Immunology | www.frontiersin.org 378
proliferation rate in cancer cells can become a genetic and
metabolic burden which triggers cellular senescence pathways,
causing irreversible cell cycle arrest (62, 63). This demonstrates
the paradoxical nature of cellular senescence. Moreover, by
inducing DNA damage responses, both Tregs and tumor cells
can convert T cells to become senescent (64–66). Transformation
of effector to senescent T cells dramatically change the immune
receptor landscape of T cells. The marked decline of
costimulatory receptor expression (CD27 and CD28) (67, 68)
is one of the main biomarkers of senescent T cells alongside
higher expression of killer cell lectin-like receptor subfamily G
member 1 (KLRG-1), Tim-3, CD57 and CD45RA (69–71).

T Cell Exhaustion
Since its first characterisation in lymphocytic choriomeningitis
virus (LCMV) infection model in mice (72), T cell exhaustion has
been the topic of much debate and is implicated in a number of
chronic infections (primarily caused by viruses) and cancer (73–
76) (Figure 1). Over the past few years, the topic of T cell
exhaustion has become more relevant as we attempt to uncover
the molecular mechanisms behind chronic T cell dysfunctions and
develop effective immunotherapies to manage these conditions.

Although driving forces of T cell exhaustion may differ base
on different pathological settings, most, if not all proposed
mechanisms of T cell exhaustion centres around the three-
signal model of T cell activation. Persistent antigen-
stimulation, effects of native-regulatory cytokines and immune-
suppressive influence of immunoregulatory cells like Tregs are
known to promote exhaustion in effector T cells (79). Among
these exhaustion inducible factors, persistent antigen-
stimulation has been observed across several chronic infection
and cancer models in humans and mice (80–82). Accordingly,
the dose and the duration of antigen exposure can contribute to
the degree of T cell exhaustion. This has been reviewed in later
sections of the review.

A key difference has been identified in T cell differentiation
during acute and chronic phases of a disease. In the acute phase,
T cell mediated antigen clearance comprise of T cell expansion,
contraction, and generation of memory T cells. This pattern
diverges from the classic differentiation pathway during chronic
infections and cancer as a consequence of persistent, higher
prevalence of antigens. In this environment, T cells undergo
persistent antigen stimulation, which progressively impair their
effector functions and drive them to exhaustion. This functional
impairment in exhausted T cells, however, does not describe a
complete loss of effector functions. As reported by numerous
accounts, exhausted T cells still retain some degree of effector
functionality having control over the spread of the disease (83–
85). Moreover, exhausted T cells share characteristics with
memory T cells, which shows their capacity to survive long-
term and respond to rechallenge of the antigen (86–89). An
important differentiation arises from exhausted T cells having
memory characteristics with those do not. Exhausted T cells with
memory characteristics have shown to express transcription
factor TCF1 (86, 87, 89–91). This subpopulation is responsible
for maintaining immune responses during chronic diseases (86,
February 2021 | Volume 12 | Article 600829
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FIGURE 1 | Immune receptor landscape during T cell exhaustion. Exhaustion can be induced by chronic infections (in this instant viral infections) or cancer. Factors
that influence the onset and the extent of T cell exhaustion differ in these two exhaustion models. During a chronic infection, pathogen clearance become inefficient,
leading to persistent inflammation and chronic antigen stimulation of T cells which results in clonal deletion or exhaustion. In cancer, the immunosuppressive tumor
microenvironment plays a crucial role in shaping the outcome of T cell exhaustion. Tumor microenvironment comprised of stroma containing a fibroblast network and
a number of immune cells including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) which together promote tumorigenesis (77). Tumor
microenvironment can induce stromal cells to secrete growth factor to promote angiogenesis (i.e. grow new blood vessels that feed the tumor) (78). Overall, T cell
exhaustion in both chronic infections and cancer known to have several overlapping functional and phenotypic characteristics. The most common feature is
sustained upregulation of inhibitory receptors during the course of the disease.
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87, 92) and remains to be critical for the success of anit-PD-1
blockade therapy (87, 93, 94), while TCF1- exhausted T cells fail
to provide such responses. In numerous studies TCF+ exhausted
T cells were described as “stem-like” T cells (87, 89) or
“progenitor exhausted” cells (93) and more recently these
terms have been unified under “precursor exhausted T cells”
(TPEX) in contrast to TCF- terminally exhausted effector T cells
(TEX) (95). Several other transcription factors have been
identified to be coexpressed with TCF. Most notably, the T-
box transcription factors T-bet and eomesodermin homologue
(EOMES) which are known to regulate immune responses
during acute and chronic infections (96–98). Their role in
maintaining exhaustion phenotypes in both TPEX and TEX

needs further investigation. B lymphocyte-induced maturation
protein 1 (BLIMP1) is another critical transcription factor
required in lymphocyte subset differentiation (99, 100).
BLIMP1 suppresses multiple genes linked to T cell memory
regulation, therefore, found to be partially expressed in TPEX but
not in TEX (87, 91). Other transcription factors relevant in
maintaining T cell exhaustion phenotype have been reviewed
elsewhere (89, 101–103).

Cytokines play a major role in shaping the outcomes of T cell
activation. During the acute phase of infection, proinflammatory
cytokines (TNF-a, IL-1b, and IL-8) promote the development of
effector T cells to fight off the infection. When the pathogen
persists through to the chronic phase, negative regulatory
cytokines like IL-10 and TGF-b target different pathways to
suppress T cell activation and induce T cell exhaustion. IL-10 is
produced by mult iple different cel ls in the tumor
microenvironment (TME) including Tregs, tumor-associated
macrophages (TAM) and cancer cells (104–106). By inducing
PD-L1 expression in dendritic cells, IL-10 promotes T cell
exhaustion (107). Downregulation of MHCs, intercellular
adhesion molecule 1 (ICAM-1) and costimulatory ligands
(CD80 and CD86) on APCs promoted by IL-10 also contribute
to immunosuppression (108). Importantly, previous studies have
shown that IL-10 plays a role as an anti-inflammatory cytokine by
demonstrating its capacity to inhibit or downregulate the
production of proinflammatory cytokines (109). It is well known
that the surface lattice formed by galectin-glycoprotein can
influence membrane remodelling to suppress T cell mediated
immune responses (110, 111). Recently, IL-10 was shown to be
involved in an immune regulatory loop enhancing N-glycan
branching, which heightened galectin-3 binding, thereby
decreasing T cell antigen sensitivity (112). Although, IL-10 has
been broadly characterized as an immune suppressor, at higher
concentrations IL-10 and PEGylated IL-10 (pegilodecakin) has
shown to have properties that enhance cytotoxicity and
proliferative capacity of tumor-specific CD8+ T cells (113–115).
The mechanisms underlie this paradoxical nature of IL-10 remains
to be investigated. TGF-b is a pleiotropic cytokine and is produced
in large amounts in the TME. Generally, TGF-b restrict tumor
growth in early stages by inducing the Smad signaling pathway
(116). However, in late stages of the cancer, TGF-b has been linked
to tumor progression by modulating immune responses most
likely through a Smad-independent signaling pathway (117).
Frontiers in Immunology | www.frontiersin.org 580
Given the paradoxical role of TGF-b in cancer, makes it one of
the most complex factors to be studied in the TME.
Understanding how and when TGF-b switch from tumor
suppressor to tumor promoter is being actively investigated.

Immunoregulatory cells including Tregs (CD4 and CD8),
myeloid-derived suppressor cells (MDSC) and NK cells are
shown to induce T cell exhaustion in effector T cells during
chronic infections (118–122). Tregs at the site of the infection or
at the TME secrete negative regulatory cytokines, IL-10 and
TGF-b, to promote immune suppression (122), thereby limiting
anti-pathogen or anti-tumor activity of effector T cells. The exact
mechanism of how Treg induce immune suppression to drive
effector T cells into exhaustion is still unclear. However,
reinvigoration studies of exhausted CD8+ T cells associated
with chronic LCMV by blocking PD-1 signaling pathway and
depleting Tregs simultaneously, suggest a role for Tregs in T cell
exhaustion (123).

In summary, although persistent antigen stimulation remains
as a key driving force for T cell exhaustion, numerous other
factors differentially contribute to the development of
exhaustion. In the next section we attempt to highlight two
main models of T cell exhaustion found in chronic diseases.
T CELL EXHAUSTION MODELS

From studies reporting common phenotypic characteristics of
exhausted T cells, there is an emerging profile that describes T
cell exhaustion as a distinct state of cell differentiation.
Accordingly, exhaustion phenotypes have been identified in
both chronic viral infections and in cancer (Figure 1).
Although these exhaustion models share common functional
features, they differ substantially in some respects.

T Cell Exhaustion in Chronic Infections
The persistent overload of pathogens during chronic infections
leads to persistent antigenic stimulation of T cells. This drive T
cells into clonal deletion or exhaustion, both of which lead to
reduced pathogen clearance. This is more commonly reported in
infections associated with viruses, though T cell exhaustion has
also been identified in bacterial and parasitic infections (124,
125). Here, our focus will be on T cell exhaustion during chronic
viral infections. During chronic infections, reduced proliferative
capacity and low interleukin-2 (IL-2) production (126) are
known to be some of the earliest signs of loss of T cell effector
functions. At the intermediate state, TNF-a and IFN-g
production are reduced (73). The low cytotoxicity in CD8+ T
cells is also observed at this stage. Loss of these functional
properties occur partially or in severe exhaustion, completely.
Finally, these exhausted virus-specific T cells are deleted from the
system (72, 74). Hence, a stage-by-stage descent into exhaustion
has been observed (10). The level of T cell exhaustion primarily
depends on the amount and the strength of antigen stimulation
(127). Although the “strength” of stimulus is difficult to define,
prolonged exposure to a persistent viral load is an important
determinant in the process of exhaustion. For example, higher
February 2021 | Volume 12 | Article 600829
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antigen load with prolong exposure results in severe exhaustion
phenotypes seen in LCMV, untreated HBV, and HIV chronic
infections (79, 128–130). The role of helper CD4+ T cells are also
important for promoting effector CD8+ T cell functions, thus
their low availability has been linked to T cell exhaustion (131,
132). Hence, high viral load and low availability of helper CD4+

T cells generally correlates with severe exhaustion phenotype
(75). Overall, a number of factors including the viral load,
location of viral replication and the immunosuppressive
environment, contribute to the level of effector function
impairment in T cells during chronic infections.

Sustained Upregulation of Inhibitory Receptors
In addition to the gradual loss of effector functions, another
classic feature of exhausted T cell is the sustained upregulation of
inhibitory receptors (Figure 1). These surface expressed
inhibitory receptors include programmed cell death protein 1
(PD-1) (133), cytotoxic T lymphocyte associated antigen 4
(CTLA-4), lymphocyte-activation gene 3 (LAG-3), T cell
immunoglobulin and mucin-domain containing protein 3
(TIM-3), B and T lymphocyte attenuator (BTLA) and many
others (13). In non-pathological settings, the transient expression
of inhibitory receptors along with their co-stimulatory
counterparts (CD28 and ICOS) serve a key role in maintaining
the immunological tolerance. This is readily observed in acute
infections where inhibitory receptors contribute to restrain
immunopathology after pathogen clearance has been achieved.
In fact, upregulation of inhibitory receptors are commonly
observed during T cell activation (133–135), although steady-
state expression levels may vary depending on the state of cell
differentiation (136–138). As pathogen clearance progresses,
inhibitory receptors are downregulated and maintained at
low levels.

Many inhibitory receptors, including PD-1, can negatively
regulate T cell receptor (TCR) signaling via immunoreceptor
tyrosine-based inhibitory motifs (ITIM) or immunoreceptor
tyrosine-based switch motifs (ITSM) found in their
cytoplasmic tails (17). Upon binding ligands, ITIM/ITSM
domains within the cytoplasmic tails of inhibitory receptors
are phosphorylated and recruit Src homology region 2
domain-containing phosphatases (SHP-1 and SHP-2). Overall,
PD-1/PD-L1 signaling pathway can regulate exhaustion
phenotype by suppressing TCR signaling (139), inducing T cell
suppressor genes (140) and by reducing T cell motility (141).
TIGIT uses a similar strategy to negatively regulate T cell
function (142). However, inhibitory receptors can engage more
than one suppressive mechanism to attenuate T cell functions. In
contrast to ITIM signaling, LAG-3 is known to function through
KIEELE motifs located at its relatively short intracellular tail to
negatively regulate cell cycle progression (143). Tim-3 also
utilizes non-canonical inhibitory mechanisms that are distinct
from, and complementary to, PD-1 (144). High surface
expression of Tim-3 often correlates with severely exhausted T
cell subsets during chronic infections (145, 146). The inhibitory
receptor CTLA-4 functions by outcompeting CD28 stimulatory
receptor by binding to their common ligands CD80 or CD86 to
Frontiers in Immunology | www.frontiersin.org 681
suppress T cell functions (147). Uniquely, CTLA-4 can utilize
trans-endocytosis; a mechanism of capturing and removing
common ligands from the surface of an antigen presenting cell
(APC), thus making them unavailable for stimulatory receptor
binding (148). All these inhibitory receptors can employ non-
overlapping mechanisms of T cell suppression, making their
functional role in promoting T cell exhaustion rather diverse
and complex.

T Cell Exhaustion in Cancer
Immunosuppre s s i v e f a c to r s f ound in th e tumor
microenvironment and the tumor-antigen load greatly
influence the degree of cancer-mediated T cell exhaustion.
Similar to T cell exhaustion in chronic infections, tumor-
infiltrating CD8+ T cells display attenuated effector functions
including impaired cytokine secretion and sustained high surface
expression of inhibitory receptors (PD-1, CTLA-4, Tim-3, LAG-
3, and others) (76, 149–151). However, exhausted T cells in
cancer show subtle differences in their gene expression profiles
from infection mediated T cell exhaustion. For example, tumor-
specific CD8+ T cells derived from a late stage melanoma cancer
model showed overexpression of several genes involved in cell
cycle regulation, DNA repair and immune responses which was
comparatively different from gene expression profiles derived
from EBV-specific and CMV-specific exhausted CD8+ T cells
(152). These differentially expressed genes were related to
inhibitory receptors. Accordingly, CD160 and several other
inhibitory receptors were not co-expressed in tumor-specific
exhausted CD8+ T cells compared to virus-specific exhausted
CD8+ T cells. Some inhibitory receptors like BTLA are
upregulated in exhausted tumor-specific CD8+ T cells and not
in exhausted virus-specific CD8+ T cells (76). These distinct gene
expression profiles of multiple inhibitory receptors suggest
different underlying mechanisms governing receptor
upregulation in chronic viral infections and cancer mediated
exhaustion. As such, the differential expression of inhibitory
receptors may shape the extent of T cell exhaustion in each
scenario and provide a molecular signature that will help to
diagnose diseases.

Tumor Microenvironment
Despite several overlapping functional and phenotypic features
found in exhausted T cells induced by chronic viral infections or
cancer, the progression of cancer mediated T cell exhaustion is not
fully understood. This is partly because of the complexity
presented by the tumor microenvironment. The surrounding
environment of a developing tumor is comprised of stroma
(containing fibroblasts, immune cells, and extracellular matrix)
(77), blood vessels, infiltrating inflammatory cells and a number of
cells associated with host tissues (Figure 1). The cellular
environment inside the tumor is not homogenous throughout
the cancer (153–155). Hence, the tumor microenvironment
(TME) is continuously evolving with tumor progression.
Tumor-infiltrating lymphocytes, such as cytotoxic and
regulatory T, B and natural killer (NK) cells, associated M2
macrophages (TAM) (156, 157), infiltrating dendritic cells
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(TIDC) (158) make the TME a battle ground where highly
dynamic cellular interactions that take place between the innate
and adaptive immune system and the tumor (159). The process of
antigen presentation can become impaired inside the TME which
may result in incomplete T cell activation (160). Although some T
cells are able to infiltrate the tumor, components surrounding the
TME including malignant cells, inflammatory cells, stromal cells
and cytokines can induce and maintain an immunosuppressive
environment that would attenuate T cell effector functions which
eventually drive them to exhaustion (153).

Immunoediting
With cancer progression, the intense pressure applied by the
adaptive immune system and the antigenic heterogeneity of
malignant cells allow rare cancer subclones to survive through
the elimination phase, equilibrium phase and finally escape from
T cell-mediated cytotoxicity (161, 162). In immune-oncology
this is known as immunoediting. The theory of immunoediting
explains how immunity can play a dual role as a suppressor and
as a promoter in cancer (163). Cancer immunoediting is
composed of the three phases: elimination, equilibrium and
escape (164). In the first two phases, cancer is under control or
at a dynamic equilibrium with the immune system, rendering it
undetectable via clinical methods. As the cancer enters the final
phase, it escapes immune surveillance, leading to becoming a
clinically detectable progressing tumor.

Immunoediting comprises complex adaptive mechanisms
where cancer reduce its immunogenicity to evade recognition
and destruction of selected clones (162, 165). Examples of
immunoediting are the loss of tumor-associated antigen (TAA)
presentation or downregulation of PD-L1 driven by epigenetic
changes on cancer cells and abrogated IFNg—a key regulator of
antigen process and presentation—delivered by tumor-infiltrating
lymphocytes (TIL) in the TME (166–169), which can lead to
incomplete elimination and persistence of adapted tumors
becoming clinically evident (169). Insufficient TAA presentation
poses a challenge for adaptive cytotoxicity by driving
immunological ignorance (170, 171). The poor immunogenicity
of transformed cells that escaped recognition can further promote
insufficient activation of T cells, evident by unsuccessful
immunotherapy treatments in some clinical settings (162). Thus,
the selective advantage acquired by evasive cancer cells with
impaired T cell responses would follow changes in the immune
receptor landscapes on both sides of the immunological synapse.
The biophysics of T cell-APC encounter is highly dynamic. The
molecular forces at play during these encounters differ greatly in
their nature and can trigger unique signaling pathways for cellular
decision-making, which has been poorly discussed in the context
of T cell dysfunctions.
BIOPHYSICAL LANDSCAPE OF
DYSFUNCTIONAL T CELLS

T cell signaling and the cascade of events that follow T cell
activation require close encounter of two cell membranes: the
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plasma membrane of the T cell and the APC. The dynamic and
heterogeneous nature of the membrane environment, composed
of different types of lipids, receptors and ligands makes the
process of T cell-APC conjugation complex to understand. The
close contact between the two opposing membranes is
accompanied by the formation of unique structural features
that promote information transfer through receptor–ligand
interactions. The interface between a T cell and an APC is
known as the immune synapse and its formation involves
spatial redistribution of surface receptors and ligands to
facilitate the initiation of immune responses (172). T cells
continuously form membrane protrusions known as filopodia
or microvilli which help them probe the surface of APCs and to
sense biophysical properties in the surrounding environment
(Figure 2A). Formation of these structural features require
extensive membrane remodelling assisted by cytoskeleton
rearrangements (178). Moreover, due to relatively high cell
motility and relatively slow diffusion rates of engaged receptors
and ligands, both cells experience pulling-pushing and shear
forces. Recent studies have attempted to quantify these
mechanical forces during immune synapse formation (179,
180). It is generally thought that these forces enable T cells to
probe the surrounding environment and execute effector
functions at optimal levels. Changes to this biophysical
landscape could therefore abort T cell responses and disrupt
host immune regulatory mechanisms. In this section we
highlight the studies that attempt to unravel the link between
changes in biophysical properties of the membrane and T
cell dysfunction.

Structure and Functions of Immune
Synapses
The immunological synapse is crucial for T cell activation and is
sometimes referred to as an activation synapse. Immune
receptors, signaling molecules, cytoskeletal components and
cell organelles all participate in the formation of the immune
synapse (181). In cytotoxic T cells (CTLs), the immune synapse
is also the interface in which cytolytic granules are delivered to
the target cells and in these cases they have also been referred to
as cytotoxic synapses or lytic synapses (182).

Immunological Synapses for Activation
When forming activation synapses, key signaling molecules
congregate to form a distinct sub-synaptic domain known as
the supramolecular activation cluster (SMAC) (Figure 2B). The
central region of SMAC (cSMAC) primarily contains TCRs and
tyrosine kinases which are crucial for the initiation of TCR
signaling. The peripheral SMAC (pSMAC) surrounds the
cSMAC and contains integrins like LFA-1 which binds to
ICAM-1 expressed on APCs, facilitating the adhesion of T cell
to APC. Under some circumstances, T cell activation is achieved
via TCR microclusters and without the need of classic immune
synapse formation (183, 184). It has also been proposed that the
cSMAC serves as the site for signal termination and receptor
recycling (185). One of the main functions of activation synapse
is the initiation and amplification of TCR signaling. Upon TCR
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binding to its cognate pMHC, a cascade of signaling events take
place leading to T cell activation, proliferation and execution of
effector functions. TCR-pMHC ligation also triggers substantial
structural alterations in the membrane (186). These changes
permit the recruitment of crucial signaling molecules to the
synapse along with accumulation of actin polymers at the
pSMAC (187). The surge of F-actin facilitates the formation of
membrane structures like lamellipodial which help T cells to
spread across APC surface (188).

Overall, optimal T cell-APC contact and effective immune
synapse formation is regulated by several cytoskeletal changes.
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The Vav family of proteins are involved in modulating these
cytoskeletal changes at the immune synapse. As shown by
previous studies, Vav1 mediates downstream signaling in T
cells via PLCg1 and TCR-induced calcium flux (189–191). The
absence of Vav1 affects the stability of the TCR signaling clusters
and impair both calcium flux and MAP kinase phosphorylation
(192). By activating RHO GTPases such as RAC1 and CDC42
(193), Vav1 is implicated in series of events facilitating Wiskott-
Aldrich syndrome protein (WASP) andWASP-family verprolin-
homologous protein-2 (WAVE2) to activate actin-related
protein 2 and 3 (ARP2/3), which leads to polymerisation and
February 2021 | Volume 12 | Article 600829
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FIGURE 2 | T cell biophysical landscape. (A) Membrane protrusions. T cells continuously form actin-rich membrane protrusions known as filopodia or microvilli
which help them to sense biophysical properties in the surrounding environment. Microvilli are involved in early T cell activation (173) and where signaling
components including TCR and TCR-associated signaling molecules get accumulated (174, 175). The tip of a microvilli is zoomed in to illustrate the
accumulation of T cell signaling molecules. Compared to microvilli, filopodium membrane projections are larger in size ranging from 10-40 µm in length in
different cells (176). The function of filopodia is broad including crucial roles in cell-cell adhesion and cell migration (177). (B) Immune synapses. Formation of
immune synapses are important steps in T cell activation and executing T cell effector functions through cytotoxicity. When forming activation synapses,
signaling receptors (in T cells) and ligands (in APCs) spatially segregate into a bull’s eye-like structure forming the supra-molecular activation cluster that is
separated into central (cSMAC—red), peripheral (pSMAC—yellow) and distal (dSMAC—green) regions, where each zone preferentially recruit different signaling
receptors to initiate T cell signaling. Cytotoxic synapses are formed when a CTL encounters a target cell. Cytotoxic synapses differ from activation synapses in
the recruitment of lytic granules to the synaptic cleft with the help of Golgi apparatus and the microtubule organising centre (MTOC). Delivery of lytic granules
and exocytosis of granule contents are highly depended on calcium influx. (C) Mechanosensing. T cells are constantly being subjected to mechanical stresses
when undergoing kinapse formation with APCs. TCRs display mechanosensing properties by exerting pulling-pushing and shear forces on pMHC molecules on
APCs. When a TCR engage with cognate-antigen peptide, a catch bond is formed, which triggers conformational changes in the TCR-CD3 complex and initiate
T cell signaling. Conversely, TCR encounter with a non-cognate-antigen peptide results in a slip bond, where an exponential decay of bond lifetime is observed
with increasing force. Slip bonds fail to trigger TCR signaling.
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accumulation of actin filaments at the immune synapses
(194, 195).

Cytotoxic Immune Synapses
Cytotoxic synapses are crucial in executing T cell effector
functions. One important difference between a cytotoxic
synapse and an activation synapse is the recruitment of lytic
granules to the synaptic cleft (Figure 2B). CTLs exert their
cytotoxicity by first binding to the target cell and then
releasing lytic granules containing perforin and granzymes via
exocytosis, and finally detaching from the target cell (196).
Similar to activation synapses, attachment to the target cell is
primarily mediated by LFA-1 which also aids the formation of
SMAC (197). Importantly, the pSMAC has been implicated in
stabilising the cytotoxic synapses in CTLs, as the disruption of
pSMAC formation results in impaired target cell lysis (198).
During CTL mediated target cell lysis, granules containing
cytotoxic enzymes (lytic granules) are recruited to the immune
synapse with the help of the Golgi apparatus and the microtubule
organising centre (MTOC). In NK cells, it was shown that
dynein, a cytoskeletal motor protein is responsible for the
transport of lytic granules to the MTOC and then MTOC
polarises to deliver lytic granules to the synaptic cleft (199).
Targeted delivery of lytic granules and exocytosis of granule
contents are highly depended on calcium influx (200). Following
the detachment from the target cell, CTLs are capable of
effectively killing multiple targets sequentially (201).

Immune Synapse Dysfunctions in Chronic
Diseases
Chronic diseases are often associated with the phenotype of T
cell exhaustion. The root cause for a number of chronic diseases
stems from the inability of T cells to form functional immune
synapses with the target cells, leading to impaired T cell
activation resulting suboptimal immune responses (202, 203).
Understanding the mechanisms that induce impairments in
immune synapse formation is an important step in developing
effective therapeutics that can reverse T cell exhaustion by
restoring effector functions.

Disruption of T cell and target cell contact during T cell
activation or T cell-mediated cytotoxicity can impair the
formation of functional immune synapses. This can be
detrimental in terms of maintaining immunity against
pathogens and cellular malignancies. Leukocyte adhesion
disorder (LAD) is a classic example of a chronic disease caused
by defective expression (LAD type-I) or activation (LAD type-
III) of cell adhesion molecules, primarily b-2 integrins like LFA-1
(204). Since LFA-1 plays a crucial role in the assembly of
immune synapses, LAD patients often have recurrent bacterial
infections due to their compromised immune system (205).
Similarly, defects in WASP family of proteins directly affect
actin mediated cytoskeletal rearrangement during immune
synapse formation. This was shown in Wiskott-Aldrich
Syndrome where CTLs lose their cytotoxicity (206). In a rare
type of non-Hodgkin lymphoma known as anaplastic large cell
lymphoma (ALCL), it has been shown that WASP and WASP-
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interacting-protein (WIP) are expressed in low amounts (207).
In WASP knockout (KO) mice, fast onset of tumor growth has
been observed (208). In the same study, the metastatic rate of B16
melanoma was shown to be higher, indicating an overall loss of T
cell tolerance towards the cancer. However, somewhat
contradictory observations were made in mouse breast
carcinoma, where the metastatic spread was decreased in the
absence of WASP (209), suggesting differing roles for WASP in
cancer progression depending on the cancer model.
Interestingly, addition of exogenous IL-2 was able to rescue the
cytotoxicity of WASP KO NK cells by restoring their ability to
form immune synapses (210, 211). In fact, IL-2 treatment is
commonly used as an immunotherapy treatment in the attempt
to promote T cell proliferation and restore or enhance T cell
effector functions (212). WASP is one of many proteins in which
irregular protein expression can lead to immune dysfunctions
because of cytoskeletal organisation defects during immune
synapse formation. A growing number of putative proteins
including Dock8, RAC2, RHOH, CORO1A, ACTB and many
others have been implicated in modulating actin-dependent
cytoskeleton organisation to promote efficient T cell activation.
Their individual functions have been reviewed elsewhere (213).

Failure to deliver lytic granules to the synaptic cleft leave
CTLs with impaired cytotoxicity and reduced pathogen
clearance. The continual stimulation from the innate immune
system together with dysfunctional adaptive immune responses
can result in systemic inflammation which is detrimental to the
host homeostasis. This is readily observed in herpes viral
infections, particularly Epstein–Barr virus (EBV) and
cytomegalovirus (CMV). These viruses with their lifelong
latency in the host may result in persistent antigenic-
stimulation mediated by the innate immune system (214). This
has been linked to hemophagocytic lymphohistiocytosis (HLH),
a life-threatening syndrome presented with attenuated killing
capacity of T cells and NK cells (215).

In cancer models, much of the evidence for defects in the
formation of immune synapses comes from haematological
malignancies (15, 216, 217). For instance, one report
demonstrated that CD8+ and CD4+ T cells are unable to form
proper immune synapses with chronic lymphocytic leukemia
(CLL) cells, which hindered anti-tumor activity (15). The authors
show that when a healthy T cell encounters CLL-B cells, F-actin
polymerisation was suppressed and there was impaired
recruitment of key adhesion and signaling molecules to the
immune synapse of the T cells (15). These observations agree
with other cancer models where tumor-infiltrating lymphocytes
(TIL) showed similar defects in actin polymerisation (218, 219).
The exact mechanism behind tumor-induced immune synapse
defects in T cells is not yet clear. However, immuno-modulatory
drugs such as lenalidomide are shown to be effective in reversing
actin polymerisation defects in patients with follicular
lymphoma (216).

Human immunodeficiency virus type-1 (HIV-1) also induces
signaling dysfunctions in CD4+ T cells as a part of its viral
pathogenesis. The abundantly expressed viral protein Nef plays a
central role in impairing the immune synapse formation in HIV-
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1 infected T cells (220). Nef achieves this by hijacking the host
membrane protein trafficking machinery to promote the spread
of infection (221). HIV-1 infected T cells showed poor cell
spreading, suggesting a Nef-dependent inhibition of actin
polymerisation. In parallel, a reduced recruitment of TCR-CD3
complex, Lck and other actin polymerisation-related proteins to
the immune synapses was observed (222). Interestingly, Nef
sequesters Lck away from TCR-CD3 complex, in both the
presence or absence of CD4, and slows down TCR
internalisation (220), thereby arresting TCR recycling and
downregulation following TCR-pMHC ligation. This leads to
accumulation of TCRs on the cell surface, resulting in T cell
hyperactivation which is readily observed in untreated HIV-
infection (223, 224). Previous reports also show that Nef has
downstream effects on transcription factors like NFAT and NF-
kB which are important to execute T cell mediated immune
responses (225, 226).

From T cell-APC conjugation to T cell activation and cytolytic
granule trafficking to targeted cytotoxicity, these chronic diseases
highlight the importance of each stage in immune synapse
formation for the execution of optimal T cell immune responses.

T Cell Mechanosensing
The initial contact between T cell and APC demonstrated by
TCR binding to its cognate antigen-peptide triggers downstream
signaling events that would activate T cells to efficiently execute
their effector functions. However, the outcome of TCR signaling
is largely impacted by mechanical forces applied to the TCR-
pMHC complex (227, 228). Essentially, exogenous forces applied
to TCR-pMHC interactions are transmitted into the cell as
biochemical signals through mechanotransduction, the process
which describes how physical perturbation experienced by
receptors are translated into chemical signals (229).
Conversely, biochemical signals generated by the cell is being
translated into mechanical forces that are exerted on the
surrounding environment.

Attempts to ex vivo activate and expand T cells utilising
soluble anti-CD3 antibodies have largely failed (228, 230–232).
TCR triggering ex vivo can be achieved by immobilising CD3
complex activating antibodies on rigid surfaces such as beads or
tissue culture plates, as evidenced by the increased Ca2+ influx
and phosphorylation of ZAP70 in T cells (233, 234). One
explanation for why surface attached antibodies induce
activation but those in solution do not is that surface
association mimics mechanical forces created by the
movements of synaptic membranes on TCR-pMHC complexes
and suggests that TCR signaling cannot be initiated unless
pulling-pushing stresses or shear forces are applied to the
complex (Figure 2C) (234, 235).

Early studies showed that mechanical forces at the
piconewton (pN) range applied through pMHC-coated beads
were enough to induce Ca2+ influx and ERK phosphorylation in
T cells (236). However, when similar forces were applied to
CD28, CD62L, or ICAM-2 no significant increase in Ca2+ influx
was observed (234). Since these mechanical forces involving
antigen recognition by T cells operate at pN range, it poses
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technical challenges when elucidating them in biological systems.
Recently, using biomembrane force probe (BFP) a number of
studies have shown the threshold for cognate TCR-pMHC
interaction to be at the scale of ~10 pN (237, 238). In addition
to TCRs, other mechanosensors such as Piezo1 contributes to
optimal T cell signaling (232). However, the extent of Piezo1
involvement in TCR signaling and T cell responses is yet to be
elucidated. As the mechanical forces applied on TCR-pMHC
require some level of rigidity from both biological supports (i.e.
membranes), the stiffness of APC is expected to influence T cell
responses. Stimulating substrates with anti-CD3 and anti-CD28
antibodies on supports with relatively high rigidity drive greater
productions of IFN-g, TNF-a and IL-2, up-regulation of
activation markers and proliferative capacity compared with
softer substrates (180, 228, 239–241). Furthermore, CTLs
increase the stiffness of APC by stretching the synaptic region
to modulate the speed of the perforin pore formation and
consequently promote faster target cell lysis (242). These
studies highlight the importance of fine tuning the rigidity of
stimulating cultures for optimal T cell response which has
implications in adoptive T cell immunotherapies (239, 240,
243, 244). One may also question whether subtle mechanical
changes in TCR-pMHC affinity can trigger specific signal
transduction pathways and affect downstream T cell responses.

Forces applied on TCR-pMHC complex can affect their bond
lifetime in unexpected ways. For instance, catch bonds, where
pulling forces applied to the bond, increases its bond lifetime
(245), have been described for several receptor–ligand
interactions (Figure 2C) (246, 247) and recently also for TCR-
agonistic peptide MHC interactions (237, 238, 248). In contrast,
antagonistic peptides form slip bonds characterized by short
lifetimes (Figure 2C) (237). Independent reports using BFP (237,
238, 249, 250) and optical tweezers (248) on cell systems that
express transgenic TCRs and cell-free experiments also using
optical tweezers (248, 251) have demonstrated that while
agonistic-peptides can increase TCR-pMHC binding lifetime,
antagonistic-peptides tends to reduce it. These studies further
demonstrated that catch bonds reach their maximum lifetime
under a mechanical force in the range of ~10 pN and the lifetime
of slip bonds decreases exponentially with increased
mechanical force.

Another crucial aspect of T cell mechanosensing is to
understand how TCR and cognate-pMHC binding events get
translated into biochemical signals in T cells that are specific to
the antigenic peptide. One theory suggests a conformational
change of the TCR-CD3 complex during pMHC binding that
would dislodge and release the cytoplasmic tails of CD3 from the
inner leaflet of the plasma membrane. This would expose
immunoreceptor tyrosine-based activation motifs (ITAMs) to
get phosphorylated by tyrosine kinases Lck and Fyn.
Accordingly, a TCR specific antigenic peptide would expose
the cytoplasmic tails of CD3 for a longer period and permit
more efficient phosphorylation by tyrosine kinases to generate a
stronger signal to transduce (252, 253). A theory based on kinetic
segregation model explains a local disruption of the kinase-
phosphatase balance during TCR-pMHC binding is sufficient
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to generate a productive signal as TCRs get phosphorylated by
the segregation of phosphatase like CD45 (254, 255). Here, catch
bonds (formed with cognate ligands) or slip bonds (formed with
non-cognate ligands) formed during TCR-pMHC interactions
(Figure 2C) may generate differential segregation patterns that
would then be translated to a strong or weak signal,
respectively (250).

In summary, regulating mechanosensing capacity of TCR is
crucial to recognise and translate mechanical cues into cell
signals during T cell activation and in execution of
immune responses.

T Cell Mechanosensing in Chronic Diseases
T cells constantly patrol and migrate to different tissue
compartments in search of cognate-antigens. This tissue
migration involves continuous changes in T cell morphology
driven by actin polymerisation which impose considerable
mechanical force at the cellular level. During the contact
between T cell and APC, the role played by mechanical forces
in mediating immune responses are now becoming clear. The
highly dynamic interactions between the extracellular matrix
(ECM) and actin cytoskeleton is directly linked with translating
mechanical cues from the environment into cell signals.
Substrate stiffness is a mechanical cue that is implied to
regulate number of cellular functions including proliferation,
migration and differentiation (256–258). T cells are exposed to a
range of substrate stiffnesses during their lifespan as stiffness
values change substantially in different cells that T cells
encounter. For example, while skeletal muscles have a stiffness
in the range of ~10 kPa (259), elastic modulus of human bones
may vary from 7–25 GPa (260).

A number of studies reported that reduced stiffness in cancer
cells as a mechanism of promoting their growth independent of
ECM stiffness (261, 262). Since optimal T cell responses require
surfaces or biological membranes with relatively high rigidity, by
reducing surface stiffness, cancer cells can effectively evade
immune detection and subsequent cytotoxicity. Concurrently, a
local increase in ECM stiffness is associated with disease
progression (263). It has been reported that cancer cells are
able to modify their surrounding ECM stiffness in order to
promote metastasis (264). In fact, ECM associated adhesion
proteins are known to play a vital role in different stages of
cancer metastasis which overall influence the invasiveness of a
cancer (265). In some cases, cancer cells are shown to synthesise
their own ECM proteins to promote metastasis (266).
Additionally, ECM stiffness influence the outcome of
desmoplastic response (i.e. pervasive growth of dense collagen
stroma around a tumor) associated with tumors (267). For
instant, desmoplasia in pancreatic and breast cancer promote
tumor progression and results in poor prognosis (268, 269). In
mammary tumors, lysyl oxidase enzyme is linked to remodelling
and increasing ECM stiffness as the inhibition of this enzyme
reduced tissue stiffening and delayed tumor progression (270).
Several studies have demonstrated a correlation between collagen
density, a primary component of the ECM, and the infiltrative
capacity of T cells into tumor islets (271–273). Densely packed
collagen fibres are suggested to obstruct T cell entry into the
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tumor microenvironment, and overall reduce their proliferative
and cytotoxic capacity (273). Recently, a study using confocal
microscopy coupled with optical tweezers was able to track
changes in biophysical properties of cancer cells in a
multicellular 3D breast cancer model (274). The study was able
to identify a stiffness gradient decreasing outward from the core
of the growing tumor, suggesting cancer cells with softer
biophysical characteristics are likely to be located at the
periphery of the tumor. Moreover, this also implies that T cell
mediated cytotoxicity become less efficient at the edge of the
tumor, thereby increasing the invasiveness of the tumor at the
periphery. Whether modulation of cell stiffness is a reliant
mechanism for immune evasion during chronic infections is
yet to be determined. Overall, understanding T cell responses to
mechanical cues such as substrate stiffness may become crucial to
understand the biophysical landscape of exhausted T cells.

TCR Diversity in Immune Responses
In adaptive immunity, the engagement of TCR with pMHC
molecules plays a pivotal role in shaping the overall immune
responses against foreign pathogens, malignancies and allergens.
When TCRs recognise and bind to their cognate antigen, it
triggers intracellular signaling pathways that activate the
expression of multiple genes linked to several effector functions
in T cells. Hence, the quality and magnitude of T cell effector
functions are linked to the strength and quality of TCR-pMHC
interactions. Primarily, the strength of these interactions are
measured by TCR affinity to its antigen (275). T cell signaling is a
complex function that involves the affinity of TCR-pMHC
interactions, coreceptor binding and co-stimulatory and co-
inhibitory signal integration (276), but in general, affinity of
TCR-pMHC can predict the sensitivity of a T cell to a specific
antigen (277). TCR affinity also dictates selective polyclonal
expansion of antigen-specific T cells during immune responses.

Rearrangement within the variable regions of the TCR and
thymic selection generates an immune repertoire of T cells with
differing antigen specificities. During an infection, the expansion
of T cell clones specific to a small number of immunodominant
antigens can skew the immune repertoire (278). This form of
TCR bias can be influenced by multiple factors ranging from
thymic selection to initial immune response to an antigen (278).
Overall, the adaptive immune system is shown to maintain a
diversified population of antigen-specific T cell clones with
varying affinities which possess the capacity to clonally expand
and form memory T cells. In some cases a bias T cell clonal
expansion, either towards high or low affinity has been observed
(279, 280). During the acute phase of an infection, early models
of clonal selection have shown that antigen-specific T cells with
higher affinity are selectively expanded from the polyclonal T cell
population to mediate immune responses and proceed to
become memory T cells to retain acquired immunity (281–
283). This selective enrichment of antigen-specific high-affinity
clones has been described as a form of affinity maturation of T
cells (284). During persistent antigen exposure, however, the
profile of memory T cell clones shifts towards a low-affinity
repertoire (16, 279, 285). Hence, distinct affinity profiles for
antigen-specific T cells are generated and maintained during
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acute and chronic phase of an infection. Elucidating the
underline mechanisms behind this differential clonal expansion
under different phases of antigen exposure proven to be
beneficial in developing therapeutic interventions aimed at
restoring T cell immune responses in chronic diseases.

Measuring TCR Affinity
TCR affinity to its cognate antigen-MHC complex is generally
reported as the ratio of koff and kon rates, KD: the equilibrium
dissociation constant. In simple terms TCR-pMHC interactions
with low KD values (i.e. high affinity interactions) are typically
associated with longer binding dwell times. Due to rapid
dissociation (high koff) of TCR-pMHC complex, it is often
difficult to determine the affinity of TCR-pMHC interactions
using conventional kinetic measurements. Generally, TCR-
pMHC affinity is in the scale of micromolar range (1 to 300
µM), albeit with considerable variability (275, 286). Among
several approaches which have been useful in characterising
TCR-pMHC binding affinity, surface plasmon resonance
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(SPR), two-dimensional micropipette adhesion frequency assay
(2D‐MP) (287, 288) and pMHC multimer-binding have
demonstrated their wide applicability in physiological settings
(Figure 3).

The usage of SPR to determine TCR-pMHC affinity dates back
three decades (290, 291). SPRmeasures a signal that correlates to a
change in mass on a sensor-surface (i.e. sensor chip) where the
binding partner, in this case pMHCmolecules are immobilized on
the senor-surface and TCR molecules flown over to bind (Figure
3A). SPR offers much lower sample requirement and versatility
over earlier techniques like isothermal titration calorimetry (ITC),
but with some drawbacks which have been reviewed elsewhere
(292, 293). While SPR provides the means of directly measuring
TCR-pMHC binding affinity, in physiological settings, the TCR is
also attached to a surface where several other receptor–ligand
interactions would take place simultaneously. Moreover, SPR
would not account for the forces introduced with bystander
TCRs, auxiliary receptors, cell adhesion molecules and
membrane fluctuations which overall can modify TCR-pMHC
February 2021 | Volume 12 | Article 600829
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FIGURE 3 | Measuring TCR affinity. (A) Surface plasmon resonance (SPR). SPR measures the equilibrium dissociation constant (KD) of TCR-pMHC interactions in
which pMHC is immobilized on a sensor surface and TCR molecules are injected in a continuous flow. Binding of TCR to pMHC results in a change of mass on the
sensor surface and is recorded in a sensogram which is then used to calculate KD. (B) Micropipette adhesion assay. This technique uses two probes, one that is
stationary which contains a red blood cell (RBC) attached to a functionalized glass bead to act as the adhesion force transducer and a mobile force probe bearing a
T cell coupled to a piezotranslator. During adhesion-retraction cycles carried out by the mobile probe, the deformation of the RBC, displacement of the glass bead
and the force generated in each cycle is recorded. (C) Multimer staining. This technique enhances the binding avidity of TCR-pMHC by increasing the valency of the
interaction, results in more stable multimeric TCR-pMHC complexes for efficient labelling and detection. To date numerous forms of pMHC multimers have been
reported which includes tetramers, pentamers, octamers, and dextramers (289).
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binding affinity. Hence, measuring functional TCR-pMHC
binding affinity in native cell membrane environment would be
more physiologically relevant (288).

When predicting TCR-pMHC affinity in the context of T cell-
APC interactions, the 2D micropipette adhesion assay (2D-MP)
technique has proven to be useful. In 2D-MP, a human red blood
cell (RBC) decorated with the ligand of interest acts as a sensor
for measuring adhesion kinetics with the cell of interest
expressing the cognate receptor (Figure 3B) (294). A
micromanipulation device is used to bring these two cells into
close proximity, in a tightly controlled environment enabling
receptor–ligand binding. These binding events are captured as
the degree of deformation of RBC membrane when the T cell is
pulled away. These adhesion cycles were repeated and then
translated into a binding curve which allows the calculation of
binding kinetics for a given receptor–ligand interaction in two-
dimensional space. By measuring affinity in the native membrane
environment of a receptor, this method provides more
physiologically relevant binding kinetics that have more
applicability in cell biology. A modified version of 2D-MP
known as the fluorescence biomembrane force probe (fBFP)
uses osmolarity adjusted human red blood cell attached to a
functionalized glass bead to act as the adhesion force transducer
(Figure 3B) (237). This technique combined with single-
molecule force spectroscopy and fluorescence microscopy
enables the measurement of singular receptor–ligand binding
event kinetics. Both 2D-MP and fBFP have measured much
faster off-rates for TCR-pMHC interactions [30–8,300 fold faster
(287)] than reported by 3D kinetic measurements derived from
SPR. It should be noted that rapid 2D off-rates obtained for TCR-
pMHC do not necessarily correlate with the rapid off-rates in 3D,
indicating kinetics of TCR-pMHC interactions including off-
rates and antigen-peptide affinity differ substantially from 2D to
3D space. A major drawback of these techniques is their
requirement for highly specialized equipment to measure
cellular level kinetics. This limits their usage in predicting
population level kinetics during T cell-APC interactions.

Multimers of pMHC are the most commonly used method in
identifying antigen-specific T cells from a polyclonal population.
Due to their low affinity, monomeric pMHC are ineffective as a
labelling probe in detecting antigen-specific T cell clones from a
pool of other T cells. Multimer technology overcomes this by
increasing the valency of TCR-pMHC interaction by
multimerizing pMHC complexes to increasing avidity, which
results in more stable multimeric TCR-pMHC complexes for
efficient labelling and detection (295). The pMHC multimers can
be in the form of tetramers, pentamers or octamers (Figure 3C)
(296, 297). Recently, multimer labelling has been shown to
introduce biases towards detection of high-affinity TCR-pMHC
interactions and underestimation of interactions with low-affinity.
This may distort the overall view of antigen-specific T cell diversity
in a polyclonal population (298). Therefore, multimer binding
intensity does not necessarily correlate with the functional
responses produced by antigen-specific T cell population (299, 300).

It is evident that each affinity measurement technique in
isolation overlooks the clonal diversity of T cell immune
Frontiers in Immunology | www.frontiersin.org 1388
repertoire which is crucial to understand the full extent of
immune responses during a disease. When combined, these
techniques would resolve the shortcomings of affinity biases in
predicting antigen-specific polyclonal T cell diversity.

T Cell Affinity Repertoire in Chronic Diseases
TCR affinity and signaling strength in response to a specific
antigen sets the threshold for clonal selection to execute immune
responses. Based on the premise that high-affinity TCR-pMHC
interactions leads to efficient T cell activation, high-affinity T cell
clones have a selective advantage over other clonotypes in
mediating primary and secondary immune responses during
the acute phase of a disease (281, 283, 301). This observed lack
of affinity diversity becomes reduced when the disease progresses
into a chronic phase. Mounting evidence suggest that this
enhanced diversity in T cell clonal affinity is due to the
recruitment of low-affinity TCR expressing T cells in the
immune repertoire (280, 302–304). This distribution pattern of
affinity clones of antigen-specific T cells can differ between
disease models, and how this diversity is maintained to
produce life-long immune responses is still under investigation.
Moreover, screening affinity diversity in the T cell immune
repertoire is challenging as current detection methods are
suboptimal in identifying the full breadth of clonal diversity.
Excluding low-affinity clones from the measured T cell repertoire
will underestimate the full capacity of functional responses
exerted by the immune system during chronic diseases.

A number of studies have demonstrated the effectiveness of
low-affinity antigen-specific T cell clones in mediating immune
responses, combating infections and preventing tumor
progression similar to high-affinity counterparts (279, 280, 300,
305). Based on CD4+ T cell responses to six different LCMV-
antigens, Martinez et al. reported limited correlation between TCR
affinity and dominance in clonal expansion (280). Moreover, both
high and low-affinity T cell clones possess similar proliferative
capacity (306, 307) and phenotypic characteristics (302) which all
together challenge the prerequisite of high-affinity TCR-pMHC
interaction dominance in driving clonal expansion and mediating
immune responses. However, the strength of TCR-pMHC ligation
may determine the magnitude of clonal expansion and the onset of
contraction phase. This was demonstrated in Listeria
monocytogenes infection model using altered peptide ligands
with varying affinities (302). Despite the observed similarities in
rapid proliferation rates in low and high-affinity antigen-specific T
cell clones, Zehn et al. showed that weaker ligand interactions lead
to early onset of contraction of T cell proliferation (302). In the
same study, early appearance of low-affinity T cell clones in the
blood stream after antigen-stimulation suggest a role for TCR-
pMHC affinity in modulating the kinetics of T cell migration.
Moreover, the reducedmemory T cell expansion during successive
challenge of a weak ligand/antigen indicates a correlation with the
strength of recall stimulus and memory T cell responses.

Despite numerous attempts undertaken to predict the affinity
diversity of T cells in different disease models, most clonal
diversity observations of immune responsive T cells come from
unrelated models of acute and chronic diseases. It would be highly
February 2021 | Volume 12 | Article 600829

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gunasinghe et al. Biomechanics of T Cell Dysfunctions
relevant to demonstrate the evolutionary trajectory of antigen-
specific T cell affinity using longitudinal observations during acute
and chronic phase of the same disease model. Using two LCMV
infection models, Andargachew et al. showed that the overall
affinity diversity of CD4+ T cell clones were similarly maintained
throughout acute and chronic antigen exposure along with effector
and memory T cells showing similar affinity distribution patterns
in both phases (308). Their study accompanied 2D-affinity kinetic
measurements derived from 2D-MP assay. During the transition of
effector to early memory CD4+ T cells, both acute and chronic
LCMV infection showed an increased functional avidity. However,
the half-maximal effective concentration (EC50) for IFN-g and IL-2
production was much lower for acute-LCMV CD4+ T cells
compared to chronic exhausted CD4+ T cells, which indicates a
higher antigen sensitivity and functional avidity for CD4+ T cells in
the acute phase of LCMV infection. This study also drew parallels
between chronic and acute-LCMV with their selective recruitment
of low-affinity T cell clones into the immune repertoire.

More recently, a longitudinal study used memory T cell inflation
to illustrate the evolutionary trajectory of cytomegalovirus (CMV)-
specific CD8+ effector memory T cell affinity during acute and
chronic phase antigen exposure (16). T cell inflation is described as
the atypical accumulation of memory T cells in blood and
peripheral tissues in response to persistent low-level antigen
exposure (309). Using both human and mouse CMV models,
Schober et al. analyzed TCR affinity distribution among the CD8+

T cell population. The TCR-pMHC dissociation rate (koff)
measurements obtained from real-time fluorescence microscopy
(310) conclusively demonstrated that T cells with lower TCR affinity
were enriched in the inflationary CD8+ T cell pool compared to the
acute phase. Moreover, in-depth analysis of CMV-specific TCR
repertoire obtained from the mouse model showed clones under-
represented in the acute phase of the infection (medium to low-
affinity clones) were recruited at higher proportions to the immune
repertoire at later stages via clonal succession (311). The authors
also suggest that recruitment of low-affinity T cell clones
compensated the loss of functional avidity provided by high-
affinity clones which become senescent at late stages of the
infection. This form of “reversed-affinity maturation” could be an
important adaptation of the immune system to maintain life-long
effective T cell responses against persistent viral infections which
particularly exhibit low antigen expression levels. In the long-run,
selective expansion of low-affinity T cell clones may provide an
effective strategy in generating lasting pathogen control along with
reduced immunopathology.

Whether the above mechanisms prove to be effective in
regulating clonal diversity in T cell exhaustion related chronic
diseases remains to be explored. T cells with high-functional
avidity often exhibit exhaustion phenotypes under high levels of
antigen exposure (312, 313). This can increase the probability of
pathogen escape from the immune system, leaving low-avidity
clones of antigen-specific T cells to take up the task of pathogen
clearance or maintain a life-long host-pathogen equilibrium with
reduced immunopathology. It should be noted that low-avidity T
cell clones can also become functionally exhausted as reported by
several tumor models (314, 315).
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The affinity repertoire of effector T cells during cancer is less well
understood than in chronic infections. Previous studies suggest that
TILs with high-avidity are more likely show exhaustion markers
albeit having superior control in eliminating tumor cells compared to
their low-avidity counterparts (312, 316, 317). A growing number of
studies have recognized a distinct role for low-avidity TILs in tumor
clearance. Studies have shown low-affinity TCR interactions with
tumor antigens activate tumor-specific T cells in a similarmanner to
high-affinity TCR interactions with the tumor antigen (317, 318).
Moreover, with prolong exposure to the tumor, both clonotypes
showed exhaustion markers including sustained upregulation of
inhibitory receptors, with higher degree of exhaustion observed for
high-avidity tumor-specific T cell clones (317). Another study using
adoptive transfer of OT-I (high-affinity) and OT-3 (low-affinity)
transgenic tumor-specific CD8+ T cells was able to demonstrate that
OT-3 T cells were able tomediate tumor regression in pancreas with
minimum autoimmunity, contrast to OT-I T cells which in addition
to the rapid eradicationof the tumor, caused autoimmunediabetes in
the mouse model (314). These studies suggest a necessary role for
low-avidity tumor-specific T cells in anti-cancer immune responses.
Thus, elucidating variousmechanism underlying the expansion of T
cell affinity repertoire during cancer progression is important to
understand cancer immune surveillance and more complex
immune-oncology concepts like immunoediting. Immunoediting
ofmalignant cells cangenerate slightly variable neoantigenpresented
to the existing TCR repertoire in the TME causing decreases in the
overall TCR affinities and T cell-cytolytic responses, and
consequently tumor evasion (319–321).

Other Factors Influencing T Cell Affinity Diversity
Numerous other internal and external factors including the
expression level of co-stimulatory/inhibitory receptors in T
cells, co-stimulatory/inhibitory ligands on APC, and the dose
and density of antigen presentation by APCs play a key role in
shaping the functional avidity of antigen-specific T cell immune
repertoire. For example, the CD27/CD70 mediated co-
stimulation in T cells has been shown to lower the threshold of
TCR activation to respond to low-affinity antigens, which
promotes to generate a higher degree of memory T cell clonal
diversity (322). Conversely, higher expression of B7-1 along with
ICAM-1 and LFA-3 are linked to selectively enriching T cell
clones with high functional avidity (323, 324). De novo
expression of B7-1 by anti-myeloma cellular vaccines improves
cytotoxicity and helper-dependent memory formation of
subdominant CD8+ T cell clones by avoiding tolerogenic
effects (320). The antigen density presented by APCs during T
cell priming and during infections has been shown to influence
the functional avidity of immune responsive T cell populations
(325). For instance, higher antigen density on APCs can
compensate for low-affinity TCR-pMHC interactions. In
human melanoma model it was demonstrated that low antigen
doses presented by dendritic cells (DCs) produce melan-A-
specific CD8+ T cells with high functional avidity which had
lower dependence on CD8 coreceptors (326). B cells in infection
models like Friend virus (FV) are linked to efficient priming and
subsequent expansion of T cells with low functional avidity,
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overall diversifying CD4+ T cell immune repertoire (327).
Moreover, the degree of B cell activation correlates with B cell
mediated clonal expansion of low-avidity CD4+ T cells. Indeed,
antigen specific B cells have long been speculated to drive clonal
diversity in CD4+ T cells (328).

CONCLUSION

Dysfunctional T cells are distinct from effector and memory T
cells based on their functionality, metabolic activity, and
epigenetic makeup. Recent findings strengthen the link
between dysfunctional T cells and the progression of chronic
diseases, thus, unravelling potential mechanisms behind the
functional impairment of T cells with changes to its immune
receptor and biophysical landscape during disease progression.
In T cell exhaustion, the sustained upregulation of inhibitory
receptors becomes a key feature that modifies the immune
receptor landscape of T cells. Hence, these receptors have
become primary targets in developing checkpoint blockade
therapies aimed at restoring effector functions in non-
responsive T cells. Although this has shown much clinical
success in managing the progression of chronic diseases, there
remains to be several limitations which hinder its wide
applicability. Acquired resistance is one of the emerging
challenges faced by checkpoint blockade therapy and may be
overcome by combinatorial therapeutic strategies. The
effectiveness of these therapeutic approaches in rescuing
terminally exhausted T cells remains to be explored.

Apart from alterations in immune receptors expression profile,
understanding changes to the cellular physiology of T cells during
disease progression has become increasingly relevant to elucidate
factors that promote T cell dysfunctions. Throughout their lifetime
T cells are subjected to a myriad of mechanical forces experienced
during cell migration, cell–cell interactions or exerted by the
surrounding ECM. It is now becoming clear that these forces
have important roles in T cell activation and the resultant effector
functions, and may also play a central role in T cell dysfunctions.
The concept of mechanotransduction as a mechanism of regulating
cell behavior and function is not new (329), however, to understand
this process at a subcellular level by means of measuring these
infinitesimal forces require hypersensitive tools. As highlighted in
this review, we have discussed the application of biophysical tools
that can measure the strength of TCR-pMHC interactions as a
proxy to predict the quality and magnitude of T cell mediated
immune responses. Other techniques, including traction force
microscopy (TFM) (180, 330), micro-pillar array detectors
(mPADs) (331) and DNA-based molecular tension sensors (332,
333) have demonstrated to be useful in measuring mechanical
forces experienced by TCRs in vivo. Importantly, DNA-based
tension gauge tether was able to map mechanical forces during T
cell activation modulated on a nanoparticle surface (332). This
technique has been useful in determining T cell force threshold to
distinguish functionally relevant mechanical forces from those do
not trigger T cell activation, thus, providing a “fidelity checkpoint”
for antigen discrimination (332). Utilization of these techniques to
exploit single-molecule biomechanics of immune receptors may
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become useful in elucidating more complex cellular interactions
faced by T cells such as found in the TME. Further, with the aid of
these advanced biophysical tools, it is possible to develop new class
of immunotherapies that aims to revamp T cell effector functions by
recalibrating the mechanical force threshold of T cells to trigger
more effective anti-tumor immune responses against the stiffness
gradient of a growing tumor.

Lately, the usage of engineered chimeric antigen receptor (CAR)
T cells as an effective immunotherapy has been useful in treating
several cancer models (334–336). Importantly, previously observed
non-classical immune synapses formation in CAR T cells correlates
with the rapid recruitment of lytic granules to the synaptic cleft and
killing the target cells much faster than classic CTLs (184). These
unique functional features can be utilized to improve
immunotherapy treatments against solid tumors. However, the
potency of CAR T cells has been limited by several factors
including T cell exhaustion (337, 338). The early constructs of
CARs possessed affinities in the range of nanomolar scale, rendering
high-affinity interactions between CAR and antigens (339). These
interactions are much stronger than physiologically relevant
affinities displayed by TCR and pMHC, leading to off-target
toxicities. This emphasises the role of affinity modulation in
immunotherapy, which also becomes useful in designing
prophylactic vaccine strategies to develop lasting immunity against
pathogens. Immunotherapies aimed at treating patients in the acute
phase of an infection should utilize the proliferative capacity of high-
avidity T cell clones to achieve pathogen clearance. Accordingly,
when an acute infection exacerbates into the chronic phase where
pathogen clearance becomes inefficient, immunotherapies should
make use of low-avidity clones to promote lasting host–pathogen
equilibrium which delivers minimal immunopathology.

The importance of T cell biomechanics and how they differ
between T cell subtypes needs further investigation. So far, much
of the evidence of biomechanical influence in mediating T cell
immune responses comes from expansion of clonal avidity of
antigen-specific T cells during infections or cancer. Overall, in
depth understanding of the biophysical properties behind
mediating optimal immune reposes may help to identify
broader principles governing T cell dysfunctions in chronic
diseases and present new and improved avenues to develop
clinical interventions in the future.
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152. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, et al.
Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma
patients. J Clin Invest (2011) 6:209–17. doi: 10.1172/JCI46102

153. Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells
and tumour microenvironment: Focus on mesenchymal stem cells and
myeloid derived suppressor cells. Histol Histopathol (2011) 26:941–51.
doi: 10.14670/HH-26.941

154. Kouidhi S, Elgaaied AB, Chouaib S. Impact of Metabolism on T-Cell
Di ffe rent ia t ion and Funct ion and Cross Talk with Tumor
Microenvironment. Front Immunol (2017) 8:270. doi: 10.3389/fimmu.
2017.00270

155. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer
(2020) 20:516–31. doi: 10.1038/s41568-020-0273-y

156. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso
S, et al. Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of
CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.
Cancer Cell (2017) 32:654–68.e5. doi: 10.1016/j.ccell.2017.10.005

157. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid
deviation: when myeloid-derived suppressor cells meet tumor-associated
macrophages. J Clin Invest (2015) 125:3365–76. doi: 10.1172/JCI80006

158. Jiang L, Fang X, Wang H, Li D,Wang X. Ovarian Cancer-Intrinsic Fatty Acid
Synthase Prevents Anti-tumor Immunity by Disrupting Tumor-Infiltrating
Dendritic Cells. Front Immunol (2018) 9:2927. doi: 10.3389/fimmu.
2018.02927

159. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the
tumor microenvironment. Nat Immunol (2013) 14:1014–22. doi: 10.1038/
ni.2703

160. Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three
main stumbling blocks for anticancer T cells. Trends Immunol (2012) 33
(7):364–72. doi: 10.1016/j.it.2012.02.006

161. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor
and Microenvironment Evolution during Immunotherapy with Nivolumab.
Cell (2017) 171:934–49.e16. doi: 10.1016/j.cell.2017.09.028

162. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance
to T cell-based immunotherapy. Nat Rev Clin Oncol (2019) 16:151–67.
doi: 10.1038/s41571-018-0142-8

163. DunnGP,OldLJ, SchreiberRD.The threeEs of cancer immunoediting.AnnuRev
Immunol (2004) 22:329–60. doi: 10.1146/annurev.immunol.22.012703.104803
February 2021 | Volume 12 | Article 600829

https://doi.org/10.1128/IAI.00426-18
https://doi.org/10.1016/j.pt.2012.07.001
https://doi.org/10.1111/j.1365-2567.2010.03255.x
https://doi.org/10.1099/0022-1317-76-2-381
https://doi.org/10.1182/blood.v96.9.3094
https://doi.org/10.1084/jem.20011723
https://doi.org/10.1038/s41467-020-18256-4
https://doi.org/10.1128/jvi.68.12.8056-8063.1994
https://doi.org/10.1098/rstb.2000.0640
https://doi.org/10.1097/QAD.0b013e3282eee548
https://doi.org/10.1097/QAD.0b013e3282eee548
https://doi.org/10.1093/intimm/8.5.765
https://doi.org/10.1093/intimm/8.5.765
https://doi.org/10.1016/1074-7613(94)90071-X
https://doi.org/10.1073/pnas.1718217115
https://doi.org/10.1371/journal.pone.0030852
https://doi.org/10.4049/jimmunol.1001783
https://doi.org/10.1146/annurev.immunol.26.021607.090331
https://doi.org/10.1038/nm.2232
https://doi.org/10.1084/jem.20121416
https://doi.org/10.1016/j.ccell.2014.10.018
https://doi.org/10.1016/j.ccell.2014.10.018
https://doi.org/10.4049/jimmunol.169.10.5392
https://doi.org/10.1038/nri2366
https://doi.org/10.1073/pnas.1009731107
https://doi.org/10.1073/pnas.1009731107
https://doi.org/10.1038/nrgastro.2014.17
https://doi.org/10.1046/j.1365-2567.2000.00121.x
https://doi.org/10.1046/j.1365-2567.2000.00121.x
https://doi.org/10.1126/science.1202947
https://doi.org/10.1126/science.1202947
https://doi.org/10.1073/pnas.1003345107
https://doi.org/10.1084/jem.20100637
https://doi.org/10.1158/0008-5472.CAN-11-1620
https://doi.org/10.1172/JCI46102
https://doi.org/10.14670/HH-26.941
https://doi.org/10.3389/fimmu.2017.00270
https://doi.org/10.3389/fimmu.2017.00270
https://doi.org/10.1038/s41568-020-0273-y
https://doi.org/10.1016/j.ccell.2017.10.005
https://doi.org/10.1172/JCI80006
https://doi.org/10.3389/fimmu.2018.02927
https://doi.org/10.3389/fimmu.2018.02927
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/ni.2703
https://doi.org/10.1016/j.it.2012.02.006
https://doi.org/10.1016/j.cell.2017.09.028
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1146/annurev.immunol.22.012703.104803
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gunasinghe et al. Biomechanics of T Cell Dysfunctions
164. Smyth MJ, Dunn GP, Schreiber RD. Cancer Immunosurveillance and
Immunoediting: The Roles of Immunity in Suppressing Tumor
Development and Shaping Tumor Immunogenicity. Adv Immunol (2006)
90:1–50. doi: 10.1016/S0065-2776(06)90001-7

165. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and
adaptive immunity to cancer. Annu Rev Immunol (2011) 29:235–71.
doi: 10.1146/annurev-immunol-031210-101324

166. Dunn GP, Sheehan KCF, Old LJ, Schreiber RD. IFN unresponsiveness in
LNCaP cells due to the lack of JAK1 gene expression. Cancer Res (2005)
65:3447–53. doi: 10.1158/0008-5472.CAN-04-4316

167. Takeda K, NakayamaM, Hayakawa Y, Kojima Y, Ikeda H, Imai N, et al. IFN-
g is required for cytotoxic T cell-dependent cancer genome immunoediting.
Nat Commun (2017) 8:14607. doi: 10.1038/ncomms14607

168. Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Dual
Faces of IFNg in Cancer Progression: A Role of PD-L1 Induction in the
Determination of Pro- and Antitumor Immunity. Clin Cancer Res an Off J
Am Assoc Cancer Res (2016) 22:2329–34. doi: 10.1158/1078-0432.CCR-16-
0224

169. Chang C-C, Pirozzi G, Wen S-H, Chung I-H, Chiu B-L, Errico S, et al.
Multiple structural and epigenetic defects in the human leukocyte antigen
class I antigen presentation pathway in a recurrent metastatic melanoma
following immunotherapy. J Biol Chem (2015) 290:26562–75. doi: 10.1074/
jbc.M115.676130

170. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and
Acquired Resistance to Cancer Immunotherapy. Cell (2017) 168:707–23.
doi: 10.1016/j.cell.2017.01.017

171. Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner
H, et al. Immune surveillance against a solid tumor fails because of
immunological ignorance. Proc Natl Acad Sci USA (1999) 96:2233–8.
doi: 10.1073/pnas.96.5.2233

172. Dustin ML. The immunological synapse. Cancer Immunol Res (2014) 2
(11):1023–33. doi: 10.1158/2326-6066.CIR-14-0161

173. Razvag Y, Neve-Oz Y, Sajman J, Reches M, Sherman E. Nanoscale kinetic
segregation of TCR and CD45 in engaged microvilli facilitates early T cell
activation. Nat Commun (2018) 9(1):732. doi: 10.1038/s41467-018-03127-w

174. Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, et al.
Three-dimensional localization of T-cell receptors in relation to microvilli
using a combination of superresolution microscopies. Proc Natl Acad Sci
USA (2016) 113(40):E5916–24. doi: 10.1073/pnas.1605399113

175. Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, et al.
ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory
Molecules on Microvilli prior to Activation. Cell Rep (2020) 30(10):3434–
47.e6. doi: 10.1016/j.celrep.2020.02.069

176. Welch MD, Mullins RD. Cellular control of actin nucleation. Annu Rev Cell
Dev Biol (2002) 18:247–88. doi: 10.1146/annurev.cellbio.18.040202.112133

177. Mattila PK, Lappalainen P. Filopodia: Molecular architecture and cellular
functions. Nat Rev Mol Cell Biol (2008) 9(6):446–54. doi: 10.1038/nrm2406

178. Kumari S, Curado S, Mayya V, Dustin ML. T cell antigen receptor activation
and actin cytoskeleton remodeling. Biochim Biophys Acta - Biomembr (2014)
1838(2):546–56. doi: 10.1016/j.bbamem.2013.05.004

179. Husson J, Chemin K, Bohineust A, Hivroz C, Henry N. Force generation
upon T cell receptor engagement. PloS One (2011) 6:e19680. doi: 10.1371/
journal.pone.0019680

180. Hui KL, Balagopalan L, Samelson LE, Upadhyaya A. Cytoskeletal forces
during signaling activation in Jurkat T-cells. Mol Biol Cell (2015) 26:685–95.
doi: 10.1091/mbc.E14-03-0830

181. Dustin ML. What counts in the immunological synapse? Mol Cell (2014) 54
(2):255–62. doi: 10.1016/j.molcel.2014.04.001

182. Dustin ML, Long EO. Cytotoxic immunological synapses. Immunol Rev
(2010) 235:24–34. doi: 10.1111/j.0105-2896.2010.00904.x

183. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-
Tane A, Tokunaga M, et al. Newly generated T cell receptor microclusters
initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.
Nat Immunol (2005) 6:1253–62. doi: 10.1038/ni1272

184. Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, et al.
Chimeric antigen receptor T cells form nonclassical and potent immune
synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA (2018) 115:
E2068–76. doi: 10.1073/pnas.1716266115
Frontiers in Immunology | www.frontiersin.org 2095
185. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T Cell Receptor-
Proximal Signals Are Sustained in Peripheral Microclusters and Terminated
in the Central Supramolecular Activation Cluster. Immunity (2006) 25:117–
27. doi: 10.1016/j.immuni.2006.04.010

186. Mariuzza RA, Agnihotri P, Orban J. The structural basis of T-cell receptor
(TCR) activation: An enduring enigma. J Biol Chem (2020) 295:914–25.
doi: 10.1074/jbc.REV119.009411

187. Acuto O, Cantrell D. T Cell Activation and the Cytoskeleton. Annu Rev
Immunol (2000) 18:165–84. doi: 10.1146/annurev.immunol.18.1.165
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Lymphocytes must strike a delicate balance between activating in response to signals

from potentially pathogenic organisms and avoiding activation from stimuli emanating

from the body’s own cells. For cells, such as T or B cells, maximizing the efficiency and

fidelity, whilst minimizing the crosstalk, of complex signaling pathways is crucial. One

way of achieving this control is by carefully orchestrating the spatiotemporal organization

of signaling molecules, thereby regulating the rates of protein-protein interactions. This

is particularly true at the plasma membrane where proximal signaling events take

place and the phenomenon of protein microclustering has been extensively observed

and characterized. This review will focus on what is known about the heterogeneous

distribution of proteins and lipids at the cell surface, illustrating how such distributions can

influence signaling in health and disease. We particularly focus on nanoscale molecular

organization, which has recently become accessible for study through advances in

microscope technology and analysis methodology.

Keywords: nano-clustering, lymphocytes, T cell synapse, B cell synapse, lipid rafts

INTRODUCTION

In order for the immune system to effectively neutralize pathogens, cells must take part in complex
cell-cell communication interactions, such as those occurring between T or B cells and antigen
presenting cells (APCs), such as dendritic cells. At the level of whole cells, these interactions take
place through the formation of the immunological synapse (IS). Rather than being uniformly
distributed over the IS, proteins are segregated into a bullseye-like configuration, made up of
three concentric sections (1) easily resolved by conventional fluorescence microscopy. Termed
supramolecular activation clusters (SMACs), the original findings placed T cell receptor (TCR)
complexes in the central SMAC (cSMAC), adhesion molecules, such as the integrin LFA-1 in
a narrow ring-shaped peripheral SMAC (pSMAC) and negative regulators, such as the large
phosphatase CD45, with a dense cortical actin meshwork in the distal SMAC (dSMAC). Since then,
it has become widely accepted that actively signaling TCR molecules are more likely to be found in
the distal regions of the synapse and subsequently migrate into the cSMAC (2–4).

Whilst macroscale organization is also observed in B and NK cells, they form their own
uniquely structured IS for their specific functions. The B cell synapse typically lacks a well-
defined dSMAC, with B cell receptors (BCRs) concentrated in a large cSMAC specialized
for gathering antigen for internalization and further intracellular processing (5). The NK
cell synapse is more complex, with differently structured synapses corresponding to different
cellular outcomes—the lytic synapse, the inhibitory synapse and the regulatory synapse (6).
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The lytic synapse is somewhat similar to the B cell arrangement,
with a cSMAC containing lytic granules and the microtubule
organizing center (MTOC) with adhesion molecules
located in the pSMAC. The inhibitory IS differs, with killer
immunoglobulin-like receptors (KIRs) gathering in the
cSMAC. In each type of synapse, on top of these cell-scale
organizational layers on the scale of microns, is nanoscale
molecular organization—the clustering of proteins and lipids.
The composition and properties of the membrane, therefore,
have a profound effect on cell activation. These are reviewed
in (7).

There are a number of ways of mathematically defining what
wemean when we use the term “molecular clustering” (Figure 1).
One of the simplest is that on average, the distance from one
molecule, for example LAT, to its closest LAT neighbor is shorter
than would be expected had all the LATmolecules been randomly
distributed. Furthermore, the difference should be large enough
that with a given statistical test and experimental power, we can
distinguish the two cases, given the random degree of clustering
that might occur in any control dataset.

The same concept can be applied to lipids—if the average
distance from a sphingomyelin molecule to its nearest neighbor
is smaller than had all the sphingomyelin lipids been randomly
distributed, and by enough that this can be confirmed with
statistical significance, then sphingomyelin is said to be clustered.
In most biological scenarios almost all non-random distributions
of molecules will probably result in clustering but not necessarily
to a degree that chance clustering in a random distribution can
be ruled out with a given statistical certainty.

Almost all descriptions of heterogeneous molecular
distributions (proteins or lipids) are therefore descriptions
of clustering. It should also be made clear that protein clustering
does not imply any dynamic process or change in distribution,
which would be correctly described as an increase or decrease
in clustering. Here, we use clustering to denote a state, not
a process.

PROTEIN CLUSTERING

In T cells, many of the key proximal signaling molecules; TCRs
(8, 9), LAT (10, 11), Lck (12), and ZAP-70 (13, 14) have been

FIGURE 1 | Illustration of different molecule (protein or lipid) distributions on the cell surface. For dispersed distributions, the average distance between molecules is

larger than would be expected for randomly distributed molecules. In both the clustered examples shown here, the average nearest neighbor distance is smaller than

expected for randomly arranged molecules.

shown to form nanoclusters. With the need for both sensitivity
and selectivity in T cell responses, the spatial organization of
TCRs is emerging as a key factor in appropriate and adequate
T cell signaling. TCRs are generally thought to pre-cluster on
resting cells with several studies detecting clusters using optical
microscopy methods (8, 10), with approximately 7–30 TCRs
per cluster, and an average radius of 35–70 nm (10). Upon
cell activation, clusters become increasingly dense, with denser
clusters being linked to phosphorylation, and higher signaling
efficiency. Interestingly, cluster density appears to be determined
by the dose and affinity of the MHC-antigen to the TCR,
suggesting a relationship between antigen and signalingmediated
through clustering (8).

Similar to T cells, studies have shown resting BCRs in
IgM and IgG producing B cells cells are clustered with
an average radius below 60 nm, though a much broader
range of cluster sizes is observed in resting IgG producing
cells (15). These clusters might be lipid dependent and
exclude the phosphatase CD45 (16). In contrast to T cells,
the density of clusters in B cells tends to decrease upon
activation (15).

In NK cells, the nanoclustering properties differ again.

Rather than relying on one dominant activating receptor
being triggered, as occurs in T and B cells, the outcome

of NK cell interactions is controlled by the balance of

activating and inhibitory signals from multiple receptors.
KIR2DL1 is an inhibitory receptor arranged in clusters on
resting NK cells (17). Upon exposure to the activating
receptor NKG2D, causing formation of the cytolytic immune
synapse, the KIR2DL1 clusters become smaller and denser.
Resting KIR2DL1 clusters, as measured on IgG1-coated control
coverslips, were approximately 122 nm in diameter, decreasing
in size by almost 20% in samples activated by the NKG2D
receptor. There was also a 58% increase in KIR2DL1 cluster
density between the IgG1 control and NKG2D receptor
coverslips (17).

One of the key areas of debate is now whether important
signaling molecules are pre-clustered on the surface of resting
cells and if so, whether those pre-stimulus clusters are essential.
In 2005, a FRET study suggested BCRs existed as monomers on
resting cells (18), a finding that has also been shown by diffusion
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studies (19). More recent studies have shown pre-existing BCR
clusters in resting cells using electron microscopy (20) and
single molecule localization microscopy (SMLM) techniques,
such as direct stochastic optical reconstruction microscopy
(dSTORM) and photoactivated localization microscopy (PALM)
(15). Rossboth et al. (21) suggest that clusters may be detected
due to overcounting errors inherent to SMLM techniques.
They carried out robust studies using dSTORM, PALM, and
stimulated emission depletion (STED) to show that TCRs are
distributed randomly across the membrane in resting cells. In
a separate study, the notion that pre-clustering plays a role
in antigen sensitivity and specificity was questioned. Using
FRET and a single-molecule fluorescence brightness analysis
method, monomeric TCR-CD3 complexes were found to initiate
intracellular signaling, rather than TCR-CD3 oligomers (22).

Overall, much uncertainty about the presence or role of
pre-clusters still exists. The fact that pre-clustering has been
detected by independent techniques (SMLM, FRET, EM etc),
and in different cell types suggests non-random distributions
on the surface of non-stimulated cells is likely, at least for
some molecules. As we discussed in the definition of clustering,
different tests will have different statistical power and may have
been testing different definitions of clustering. If clustering is
low level with only small deviations from random distributions,
these different tests could account for the discrepancies and
controversy. Going forward, the community might agree a
definition for molecular clustering and work to establish how
clustering, by that definition, would be manifested in different
data types. In parallel, work is needed on the experimental sample
system to agree clear definitions of “resting cells” and other
biological descriptors to foster consistency between systems used
in competing claims.

LIPID CLUSTERING

The original “lipid raft hypothesis” suggested that interactions
between cholesterol and lipids with highly saturated acyl chains
can cause cholesterol clustering in which cholesterol-proximal
lipid acyl tails become highly ordered, as opposed to the
disordered tails in the surrounding membrane. These clusters,
it was hypothesized, can also preferentially accommodate some
proteins whilst excluding others (23), therefore leading to
clustered distributions for both the “raft enriched” and excluded
proteins (Figure 1). There is a wide variety of nomenclature in
the literature for describing the lateral distribution of lipids—
rafts, domains, territories, islands, and some open questions
about whether lipids “cluster” in the same way as has been
observed for proteins. Mathematically, however, the lipid raft
hypothesis, ordered phase domains and other similar models
are describing clustering, even if the particular lipid distribution
involves areas of exclusion (Figure 1). If you were to take a
particular lipid species, e.g., palmitoyl sphingomyelin (PSM)
for example, and plot the coordinates of each molecule on the
cell surface, almost all these membrane models would result in
clustering—the distance to a nearest neighbor would be smaller
than would be expected for a completely random distribution

of the lipid in question. We therefore consider rafts, domains
as well as concepts such as islands and territories—any area
in which a specific type of lipid is “enriched” or “excluded” to
be a form of clustering (which may or may not be detectable,
depending on the statistical strength of the experiment and
analysis). However, the exact properties of the clustering, the
biophysical determinants and the functions of lipid clusters could
be very diverse from protein clusters.

One method for studying such distributions is using
detergents, where, under specific conditions, clusters of sterols
and lipids with ordered acyl tails are resistant to solubilisation.
Detergent solubilisation assays of T cell derived giant plasma-
membrane vesicles (GPMVs), report that non-activated TCRs
are absent from detergent-resistant fractions and that TCRs only
translocate into detergent-insoluble fractions (i.e., co-cluster with
ordered-tail lipids and sterols) upon receptor activation (24). In
contrast, the adaptor protein LAT, the Src-family kinase Lck,
and the CD4/CD8 co-receptors involved in TCR signaling can
be recovered in detergent-resistant fractions independently of
TCR triggering (25, 26). Similarly, in B cells, the BCR is not
present in detergent-resistant fractions prior to crosslinking,
and will translocate to detergent-resistant fractions which are
also enriched with the Src-family kinase Lyn following BCR
ligand binding (27). The discovery that signaling complexes
co-cluster with sterols and ordered acyl tail lipids which are
resistant to detergent solubilisation, following receptor activation
suggests a functional role of lipid clusters as hotspots that
compartmentalize and regulate immunoreceptor activation and
subsequent downstream signaling events (26). The use of
detergent resistance, however, has started to fall out of favor,
mainly due to the potential artifacts of the procedure (for
example due to using cold temperatures) and often contradictory
results, reviewed in Lichtenberg et al. (28). Most studies now
focus on the less invasive optical microscopy methods, reviewed
in Sezgin et al. (29).

Environmentally-sensitive lipid dyes such as Laurdan and
Di-4-ANEPPDHQ exhibit spectral shifts in their fluorescence
emission dependent on the degree of lipid packing in the
membrane. These probes are solvatochromic, sensing the polarity
of their local solvent, and, in the case of membranes therefore,
the relative penetration of polar water molecules into the
bilayer. Multispectral imaging can therefore be used to probe
and quantify membrane lipid packing, which is dependent on
the ordering of the lipid tails by sterols (30). Inconsistent
with detergent solubilisation assays, Laurdan labeling of cells
shows that TCR proteins in resting cells co-localize with areas
of dense lipid packing and aggregate into even larger TCR
clusters following cross-linking (31). The disparity between
results observed using microscopy and those found using
detergent-resistant solubilisation assays might arise from the
instability of dynamic nanoclusters or artifacts from the detergent
solubilisation process, in particular whenmembrane constituents
might be associated with cortical actin.

Probes such as these can be used to map membrane properties
across the immunological synapse. Interestingly, condensation
of the membrane surrounding the TCR complex at the T cell
immunological synapse has been observed (32, 33). The pattern
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of increased membrane ordering at the immunological synapse
periphery supports the proposed pattern of actively signaling
TCR microclusters within the SMACs (34). Furthermore,
application of small molecule agents such as the cholesterol
analog 7-ketocholesterol (7KC), which disrupts lipid ordering,
also disrupts T cell activation and synapse formation (35).
Methyl-β-cyclodextrin depletion of cholesterol in the plasma
membrane has been shown to both inhibit and enhance the
activation of T cells, depending on experimental conditions (36,
37). It was recently found that following cell treatment with the
naturally occurring analog cholesterol sulfate, TCR nanoclusters
were disrupted, leading to reduced avidity for peptide-MHC and
reduced CD3 ITAM phosphorylation (38). This points the way
toward potential manipulation of membrane lipids in order to
control molecular distributions (clustering) and function and,
therefore, lymphocyte signaling.

Another way membrane lipids can influence the distribution
and dynamics of membrane proteins is via sub-synaptic
vesicles. Using SMLM and total internal reflection fluorescence
microscopy (TIRF), LAT-containing sub-synaptic vesicles were
found to be recruited to the plasma membrane in early cell
activation, and it was found that plasma-membrane associated
LAT may not be involved in signaling (11). Since then, it is
believed that two phases of T cell activation occurs, initiated
first by pre-existing clusters on the plasma membrane and
prolonged by the recruitment of LAT containing vesicles that
were found to have higher membrane order than non-LAT
containing vesicles (39, 40). Lipid composition, therefore, might
represent a novel mechanism for organizing cargo transport by
intracellular vesicles.

Finally, in addition to regulating protein distributions and
function, high lipid tail order has also been proposed to play
a protective role for cytotoxic CD8+ T cells, protecting against
accidental death by repelling perforin (41). In these cells,
phosphatidylserine is enriched at the immunological synapse
following antigen recognition (42). The negative charge of
phosphatidylserine was found to inactivate residual perforin as
an additional mechanism to prevent accidental cell death and
allow for successive killing of target cells (41). With this in mind,
elevated levels of negatively charged lipids on virus envelopes and
cancerous cell membranes may be immunoevasive.

PROTEIN AND LIPID CLUSTERING
RELEVANT TO DISEASE

Understanding of lymphocyte signaling protein cluster
properties, and their regulation, has significantly advanced
over the last 20 years, however, the next challenge is to exploit
this knowledge in the context of health and disease. There
is currently a lack of knowledge as to how these clustering
properties relate to disease states and whether their exploitation
could improve current clinical treatments.

One study looking at diffuse large B-cell lymphomas
(DLBCLs) has shown that, of the 5 activated B-cell-like
DLBCL cell-lines studied, all had pronounced BCR clustering,
a phenomenon that was not observed in the 16 other cell

lines tested from a variety of different B cell cancer types
(43). Furthermore, decreased BCR diffusion in these lines was
also observed, and it was suggested these clusters were actively
signaling, with phosphotyrosine accumulation in these cells.
This so-called “chronic active” signaling was required for cell
survival, therefore, highlighting a role for the BCR clusters and
the signaling they induce in activated B-cell-like DLBCL, and
revealing a possible new treatment target.

Inappropriate clustering has also been linked to autoimmune
diseases. The R620W variant in protein tyrosine phosphatase
non-receptor type 22 (PTPN22) is associated with rheumatoid
arthritis, lupus and type one diabetes and is a mutation present
in the human population (44). More recently, Burn et al. (45)
showed that PTPN22 inhibits LFA-1 signaling, with the R620W
variant being loss-of-function. It was found that the mutation,
in a non-catalytic protein binding domain, alters the clustering
profile of PTPN22 with a resulting failure to de-cluster upon
cell stimulation. The R620W mutation was also shown to be
associated with changes in LFA-1 integrin clustering in migrating
T cells (46).

Lipid clustering has also been implicated in a number
of lymphocyte-related diseases, including cancer and
autoimmunity. Hallmarks of systemic lupus erythematosus
(SLE) include chronic immune cell activation and increased
serum lipids, with interplay between the two being demonstrated
(47, 48). High membrane order and increased cholesterol and
glycosphingolipid levels have been observed in the plasma
membrane of T cells from SLE patients (49, 50). The altered lipid
environment is believed to drive an increase in glycosphingolipid
expression in CD4+ T cells in a liver X receptor (LXR)
dependent manner.

In vitro studies suggest that T cell function in SLE
patient derived cells can be restored through normalization
of glycosphingolipid expression using LXR antagonists (51).
Additionally, LXR activation of CD4+ T cells from healthy
donors can also upregulate expression of glycosphingolipids
leading to reduced membrane order at the TCR immunological
synapse. Altered spatiotemporal distribution of lipids promoted
Lck recruitment to the immunological synapse and increased
phosphorylation of CD3 and LAT, dysregulating effector
functions via disruption of ordered lipids (52). Additionally,
kinase phosphorylation in SLE patient-derived T cells is
restored by statin inhibition of cholesterol synthesis (53).
The cytotoxic effects of CD8+ T cells can be heightened
by ablation or inhibition of cholesterol esterification enzyme
ACAT1, which is upregulated upon TCR activation (54).
Together these findings suggest that tight regulation of lipid
properties and distributions is necessary for normal T cell
function. There are numerous processes that result in diseases
associated with lymphocytes where cholesterol plays a role.
For example HIV entry, associated with the surface marker
CD4, is significantly impaired by cholesterol depletion from
the plasma membrane (55). Further, although we have focussed
on cholesterol here, many other lipids display clustering
and for a more complete review, we point the reader
to Wu et al. (56). Many of these are also involved in
regulating membrane order and, therefore might be relevant
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to human health and disease (57) including cancer and
autoimmune disease.

CONCLUSIONS

In lymphocytes, protein clustering has been well-documented on
the micron-scale and with the development of super-resolution
microscopy, is beginning to be characterized on the nanoscale.
The challenge remains as to what biophysical mechanisms are
governing nanocluster formation and what the ultimate function
of such protein distributions is.

Cluster formation is likely due to a variety of competing
and non-exclusionary phenomena. Prominent among these are
the clustering properties of the lipids themselves within the
plasma membrane. This is important as it brings into play a
number of small molecule pharmacological agents, and even
genetic manipulations, to control the lipidome and, therefore,
cell fate and function. Protein-protein interactions and corralling
by the cortical actin meshwork are also potentially important
mechanisms and, thus, therapeutic targets.

The function of protein clustering in T cells has only been
minimally explored, in part due to the lack of molecular tools
to selectively manipulate the systems. In other protein pathways
clustering has been shown to create digital switches, for example,
in Ras signaling (58). Signaling via two protein species is
dependent on the frequency of collisions between them as they
diffuse, say in a 2D membrane. A similar situation exists for
example in the rate of a chemical reaction as two substrates
diffuse and react to form a product. In reaction kinetics,
whether a substrate is dimeric or oligomeric and whether
there is cooperativity between sites (allostery) will change the
rate of product production. In the same way, clustering will
change the rate of protein-protein interactions in a signaling
interaction (59).

The hypothesized role of clustering can be illustrated by
considering a hypothetical experiment in which two types of
interacting molecules–say kinases and their substrates (which
may be proteins or lipids, such as inositides) are observed
(Figure 2). The “input” to the system represents the amount
of kinase activity e.g., it may represent kinase concentration,
activation status or elapsed time through the experiment. The
“output” here might represent the amount of phosphorylated
substrate. We hypothesize that clustering determines the shape
of the curve relating this input and output and in particular,
that clustering produces more digital relationships featuring
input thresholds required to achieve any significant output.
On top of this, phosphorylation events are stochastic (because
of the random nature of diffusion) and so if the experiment
were repeated many times, different amounts of phosphorylation
would be observed each time, for a given input. In Figure 2, this is
represented by the hypothesised size of the error bars. We further
hypothesize that clustering affects the size of these variances,
decreasing “noise” in the system.

In reality of course, a cellular signaling pathway will have
many members and might involve complex feedback processes.
In addition, whilemany studies have been performed on proteins,

FIGURE 2 | Hypothesized effect of molecular nanoclustering on input-output

relationship of a generalized signaling pathway for two proteins. A hypothetical

kinase for example (red) can diffuse in the membrane and phosphorylate a

substrate with different clustering properties (blue, green, yellow). The input

can be conceptualized simply—as the amount of active kinase or more

generally—say as the strength of antigen binding by a receptor. The output

might be proximal downstream phosphorylation levels more distal, such as

gene expression—analogous to the rate of production of product in a chemical

reaction. The shape of the curve relating these two depends on the

stoichiometry, oligermerisation and cooperativity of the molecules involved, just

like a classical chemical reaction. In a cell signaling pathway however the

situation will be complex, with many interacting partners, feedback and so on.

The exact shapes of such hypothetical curves therefore remain an area for

future study.

here, lipids play a dual role. They may represent members
of a signaling pathway themselves (e.g., phosphatidylinositol)
and therefore their distribution/clustering may be directly
important, or they may be indirectly involved by influencing
the clustering of proteins. Despite the complexity of a complete
signaling pathway, there will still be some input-output curve
for the entire pathway. In lymphocytes, for example, the
input might represent the number or strength of engaged
TCRs/BCRs and the output might be the level of downstream
phosphorylation or even gene expression. We hypothesize that
even in this complex case, the shape of the curve will be
influenced by the clustering properties of the many proteins
and lipids that constitute the pathway. Since many pathologies,
for example autoimmune disease, may be caused by modified
immune cell activation thresholds, understanding molecular
clustering, and how to manipulate it, may lead to new types of
therapeutic interventions.

Clearly, several open questions remain to be answered.
For example, to relate protein clustering to the concepts of
allostery, stoichiometry and competition in classic enzyme
kinetics, requires accurate measurements of protein oligomers
even down to the level of dimers. In some contexts, this is
possible, but precise molecular counting and localization on the
scale of proteins is still difficult. Since much of the recent progress
has been made using optical microscopy, Table 1 summarizes
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TABLE 1 | Fluorescence methods applied to study membrane protein and lipid clustering, their limitations and suggestions for future development.

Method Limitations Required developments

Fluorescence microscopy with

environmentally sensitive probes

Dyes change the composition of the bilayers and may alter

properties (60). They also do not generally allow the environment

around specific molecules to be probed as the dyes are usually

untargeted. Probes often have low brightness and photostability.

Targeted, leaflet specific probes compatible with super-resolution

microscopy (61–63).

Single molecule localization

microscopy (SMLM)

Overcounting due to multiple blinking makes quantifying small

clusters challenging (64, 65). Labeling methodology generally

limited to proteins.

New, smaller probes, with well-characterized photophysics and

new analysis methods are needed. Further, the technology for

labeling lipids—to allow lipid clustering to be analyzed in the same

framework as proteins is also lacking and developments in this

area would be a significant boon.

Diffusion measurements such as

fluorescence correlation

spectroscopy (FCS)

Generally, point measurements are used making mapping

heterogeneity over the cell challenging. Can be difficult to interpret

data in complex membrane geometries.

Area based FCS measurements such as Imaging FCS (66).

Greater computational modeling approaches to single-molecule

tracking data.

Whole cell imaging Generally, artificial synapses are studied but more physiological

insights could be derived from cell-cell conjugate systems (67).

Application of light-sheet based approaches for long term, 3D

imaging.

the main methods that have been applied to study protein
and lipid clustering in lymphocytes and, in our opinion, what
developments are needed to further push the boundaries of
our understanding.

In addition to microscopy, tools to specifically alter protein
and lipid nanoscale clustering are required in order to better
draw causal links with cell phenotypic outcomes. On the
biological side, the role of pre-clustered surface proteins is an
emerging topic, still controversial but has the potential to have
a significant impact on our understanding of how B and T cells
are regulated.
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T cells communicate with the environment via surface receptors. Cooperation of surface
receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane
protrusions, microvilli, have been demonstrated to play a role in the organization of
receptors and, hence, T-cell activation. However, little is known about the morphogenesis
of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the
potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the
option that clustering of sphingolipids with phosphoinositides at the plasma membrane
results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding
proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical
actin opening and bundling of actin fibres to support the growing of microvilli. Critical
regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several
candidates with a potential to organize proteins and lipids in these structures.

Keywords: T cell, microvilli, sphingolipids, phosphoinositides, lipid rafts, membrane curvature, dimpling domains,
membrane-associated proteins
INTRODUCTION

T lymphocytes, important supervisors of the immune system, are activated and regulated through
receptors expressed on their surface. Surface of lymphocytes is densely covered by membrane
protrusions, mainly microvilli (1, 2), which allow for a more complex three-dimensional (3D)
organization of receptors compared to a flat membrane. Indeed, critical receptors of T-cell
activation, T cell receptor (TCR), CD2, CD4 and CD28 were shown to accumulate at the tips of
microvilli in recent studies benefitting from 3D imaging at high resolution (1, 3–7). On the contrary,
CD45 is excluded from these areas (6, 7). It was suggested that non-random 3D distribution of
receptors is important for optimisation of signalling and cellular responses (8–10). However, little is
known about the origin of microvilli and molecules involved in their formation and homeostasis in
T lymphocytes. Insight into molecular biophysics and structural details of these membrane
protrusions can help to better understand T-cell function in health and disease.

In this work, I suggest the role of lipids and lipid domains in deformation of membranes and
their potential role in the formation and organization of microvilli. I start with a brief introduction
to microvilli structure and function. These data almost exclusively originate from studies of
microvilli in epithelial cells. It is thus important to note here that microvilli of epithelial cells are
more stable and may differ in structural details when compared to microvilli on leukocytes. In the
central sections, I hypothezise a role of curved lipid domains in microvilli formation and describe
regulatory role of lipids for the function of proteins localized prevalently to these structures. I finish
org March 2021 | Volume 12 | Article 6135911108
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by discussing a handful of molecules with a potential role in
morphogenesis of T-cell microvilli. Like lipid domains, function
of these proteins in T cells needs to be determined.
MICROVILLI AND THEIR STRUCTURE

Microvilli are finger-like membrane protrusions at the surface of
metazoan cells (11). Microvilli consist of the tip, shaft, and base,
which connects these structures to the plasma membrane and
cortical actin (Figure 1). Actin bundles determine a shape of
microvilli and are responsible for their stability, but also a
dynamic character. In the shaft, the membrane is tightly linked
to actin bundles via actin- and membrane-binding proteins [e.g.,
myosins and ERM proteins; see Figure 1 (12)]. At the base, at
least in epithelial cells, actin bundle terminates in the network of
intermediate filaments known as ‘terminal web’ (13, 14). The size
of microvilli is regulated by the growth of actin fibres at the tip
(15). Microvilli on the surface of polarized epithelial cells
covering organs in direct contact with the exterior are rather
stable and long (11). Microvilli on T cells are smaller and highly
dynamic (1, 2, 16, 17). With ~100 nm in a diameter and a length
of 0.5–5 µm, they represent rather small surface structures
[Figure 1 in (17) and Figure 1 in (1)]. It is their abundance
and flexibility, which makes these structures important for T-cell
function. For example, vesicles with receptors and other effector
Frontiers in Immunology | www.frontiersin.org 2109
molecules can be shed off the microvilli tips. This phenomenon
was observed in epithelia, as well as in T cells, and can be part of
complex regulatory mechanisms in multicellular organisms
(1, 18).

The accumulation of receptors at the tip of microvilli is
beneficiary for an easy access to ligands, substrates or
mechanical forces and can determine cellular responses to such
stimuli (8, 9, 11). The shaft and the base potentially function as a
selecting region, segregating molecules to different membrane
environments. However, physico-chemical basis of such
selection remains unknown. Importantly, it is still unclear what
defines a local onset and chemical composition of microvilli. In
the following sections, I suggest a model (Figure 1), in which
membrane lipids and their physico-chemical properties trigger
the onset of microvilli formation.
LIPID DOMAINS AND LOCAL
BENDING OF MEMBRANES

In our review on membrane lipid nanodomains [(19), Section
8.4], we discussed a role of curvature in stabilization of domains
and prevention of their fusion. In general, formation of a lipid
domain with different properties (e.g., rigidity and thickness)
compared to the adjacent membrane results in line tension at the
boundary (borderline) between the two ‘phases’ (Figure 2A). In
FIGURE 1 | A model of T-cell microvilli morphogenesis. The onset of microvilli can be triggered by transient formation of dimpling lipid domains (see also Figure 2).
Sphingolipids together with phosphoinositides (e.g., phosphatidylinositol 4,5-bisphosphate; PIP2) own a high potential to form dimpling domains in asymmetric
membranes. Later, actin-binding proteins, which associate with plasma membrane via PIP2 (or phosphatidylserine), induce cortical actin opening and stabilize
dimpling domains. Similar proteins can stimulate bundling of actin fibres. The growth of microvilli is driven by polymerization of actin at the plus end of the fibres
(distal end of microvilli). Myosins dynamically anchor actin bundles to the membrane at the shaft. ERM (ezrin, radixin, and moesin) proteins function in a similar
fashion (membrane anchor) and regulate stability of microvilli. Proteins with affinity for rigid (sphingolipid-enriched) and/or for curved membranes accumulate at the tip
or shaft of microvilli. Little is known about T-cell signalling molecules in the lumen of microvilli. The existence of terminal web in microvilli of leukocytes remains
unknown. Components of microvilli are not drawn in scale.
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a growing domain, the length of boundary increases, and line
tension rises. However, lipid membranes prefer to minimize
tensions associated with their organization (20, 21). Since elastic
properties (bending modulus) of membranes are not changing
significantly, the size of a domain can reach the point, at which
Frontiers in Immunology | www.frontiersin.org 3110
membrane starts to bend and form dimpling domains [Figure
2B (22, 23)]. This is caused by the fact that line tension at the
boundary exceeds the bending energy (resistance) of a
membrane required for its deformation. Membrane bending
reduces the boundary length and, thus, line tension. Further
A

B

FIGURE 2 | Growth of lipid nanodomains and dimpling (curved) domain formation. (A) Schematic illustration of lipid membrane with a domain. The domain has
different physico-chemical properties (e.g., rigidity-conformational order, thickness) compared to the surrounding lipid bilayer. The two environments are separated by
the boundary. (B) Schematic illustration of a domain growth and formation of a dimpling domain. Certain lipids (e.g., sphingolipids and cholesterol) tend to segregate
into circular domains in synthetic membranes containing unsaturated glycerophospholipids due to their immiscibility at lower temperatures or in the presence of other
clustering factors (e.g., proteins). As the domain grows, line tension at the boundary increases, until it reaches the point, at which it exceeds bending energy required
for membrane deformation and dimpling domain is formed. The length of the boundary is reduced, and further growth of the membrane is accompanied by
membrane tubulation, but not increase in line tension. Hence, domain formation can lead to induction of membrane curvature and its tubulation.
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growth of a domain is enabled by enhanced curvature, which can
result in membrane tubulation. The length of boundary and line
tension remain constant for such growing domain/
protrusion (21).

In flat membranes, small domains diminish due to their
fusion into larger entities, as observed in model, phase-
separated giant unilamellar vesicles (24). Fusion of small
domains reduces the length of boundary and line tension (23).
However, large lipid domains are not frequent in cells. It is
currently agreed that the plasma membrane is highly
heterogenous due to the presence of small (nanometric)
domains (25, 26). One can thus speculate that plasma
membrane is prone to form dimpling domains, which cannot
fuse due to repulsive forces at their boundaries (19, 22).
CLUSTERING OF SPHINGOLIPIDS AND
PHOSPHOINOSITIDES TRIGGERS
MICROVILLI FORMATION

Cellular membranes are composed of a large variety of lipid
species. Among those, sphingolipids, with their long and
saturated acyl chains and affinity to cholesterol, are prone to
segregate from unsaturated glycerophospholipids and form
nanodomains (19, 27–29). Ikenouchi and colleagues suggested
that sphingolipids are required for the existence of microvilli
and, potentially, also initiation of their formation in epithelial
cells (30). Conversion of sphingomyelin to ceramides by acidic
sphingomyelinase in these cells led to impaired microvilli. In
untreated cells, sphingolipids accumulated on microvilli (30).
Accumulation of sphingomyelin (and cholesterol) in microvilli
was confirmed in another study, which employed lysenin
labeling of sphingomyelin (perfolysin O for cholesterol) and
sensitive nanoSIMS imaging in CHO-K1 epithelial-like cells
(31). Of note, only freely accessible lipids could be detected
using this method. In another study, interference with
sphingolipid or cholesterol synthesis lead to reduced presence
of microvilli on epithelial cells (32). All these studies indicate that
sphingolipids are essential for the morphogenesis of microvilli.

Membrane lipid composition considerably differs between
various cell types. Though sphingolipids consistently constitute
20-40% of plasma membrane lipids (33, 34). Local concentration
of sphingolipids is even higher due to chemical asymmetry of the
plasma membrane (lipid bilayer). Such high content of
sphingolipids in the outer leaflet can lead to their transient
clustering and, occasionally, formation of dimpling domains.
Indeed, bilayer asymmetry reduces bending modulus of a
membrane and, thus, facilitates its deformation (22, 35). In
cells, phosphatidylinositol 4,5-bisphosphate (PIP2) molecules
were found to cluster underneath sphingolipid domains during
membrane deformation induced by viral proteins [virion
budding (36, 37)]. PIP2 was also found to accumulate in
microvilli (30). But comprehensive analysis of lipids in
microvilli has not been performed to date (38). Therefore, it is
unclear what is the content of PIP2, sphingolipids and other
lipids (e.g., cholesterol) in these structures.
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The presence of PIP2 in the apical membrane of epithelial
cells, but of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in
basolateral membrane, further supports the involvement of this
lipid in microvilli formation (39). Microvilli can be found only
on the apical surface of epithelial cells. Apical membrane of
polarized cells is also enriched in sphingomyelin and cholesterol
(40). Moreover, PIP2 accumulates in the uropod of motile cells,
whereas PIP3 can be found in the leading edge. Microvilli are
often observed at the back of motile cells, including T cells (17,
41, 42). In analogy to sphingomyelin domains, cholesterol
facilitates clustering of PIP2 (43). Due to its high lateral and
transbilayer mobility (44, 45), cholesterol is expected to freely
access dimpling domains. Interestingly, cholesterol does not
influence bending modulus of synthetic membranes with
diverse lipid composition (46, 47). Thus, cholesterol does not
directly raise the energy required for membrane deformation and
establishment of dimpling membranes, but the effect can depend
on its intramembrane orientation and distribution between the
outer and inner leaflet (45).
LIPID-PROTEIN CROSSTALK IN
MICROVILLAR MORPHOGENESIS
AND FUNCTION

To further highlight the importance of lipids in microvilli
morphogenesis, I will describe three examples where lipid
metabolism determines the function of critical proteins in
microvilli. The examples were selected based on the depth of our
understanding of these regulatory processes. As in the case of
microvilli structure, this knowledge comes from microvilli of
epithelial cells, but similar regulatory mechanisms can be expected
in T-cells.

ERM family proteins (ezrin, radixin, and moesin) tightly
anchor actin-bundles to the membrane of microvilli. This is
facilitated by binding of their FERM domain to PIP2 (48). The
process is regulated by a local lipid environment. Conversion of
sphingomyelin to ceramide and of sphingosine to sphingosine-1-
phosphate negatively and positively, respectively, regulate
membrane-association of ERM proteins and, thus, stability of
microvilli (49, 50). The role of ERM proteins for microvilli is
evidently critical, since their knock-down leads to their reduced
size and number (51, 52).

Podocalyxin-1 accumulates in microvilli of epithelial cells.
Podocalyxin-1 interacts with ERM proteins via EBP50 (53). It
further interacts with phosphoinositide-4-phosphate 5-kinase
(PI5K) b and delivers this critical enzyme to microvilli. The
formation of podocalyxin-1 multiprotein complex with PI5K leads
to a local increase in PIP2 synthesis and stability of microvilli (30).
Interestingly, podocalyxin-1 associates with sphingolipid domains,
probably upon its palmitoylation (54). The crosstalk of diverse lipids
in the regulation of this protein remains unknown.

Another protein associating with sphingolipid domains on
microvilli is prominin-1 [also called CD133 (55)]. Overexpression
of prominin-1 increases a number of microvilli (56). This protein
directly binds cholesterol and GM1 ganglioside (57). These lipid-
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protein interactions were found essential for fine tuning of
microvillar structure. The protein is further regulated by
phosphorylation of its regulatory tyrosines [Y817/Y828 (56)].
Phosphorylation of these tyrosines regulates interaction of
prominin-1 with phosphoinositide 3-kinase (PI3K). In contrast to
PI5K, PI3K locally reduces available PIP2 by its conversion to PIP3
and destabilizes the anchorage of actin bundles to the
membrane (56).
POTENTIAL REGULATORS OF
MICROVILLI IN T CELLS

I have argued above that lipid domains induce curvature in flat
regions of the plasma membrane. Such domains would be transient
in the absence of supporting proteins (Figure 1). The process is well
described for the endocytosis or viral budding (36, 37, 58–61). For
example, matrix proteins (e.g., Gag of HIV-1) form a dome-like
structure under the curved membrane of nascent viral particles.

Proteins stabilizing dimpling domains at the sites of newly
assembling microvilli have not been described yet. A few proteins
(e.g., prominin-1/CD133, podocalyxin-1) reported to regulate
microvilli morphogenesis in epithelial cells (30, 55), are not
expressed in T cells or at highly variable levels in diverse T-cell
subsets. Their role in microvilli morphogenesis in T cells is thus
questionable. Here, I will focus on four proteins (protein families),
which exhibit great potential to induce or stabilizemicrovilli in T cells.

The geometry and chemistry of dimpling domains delineates
properties of potential supporting proteins. These must interact
with negative curvature and anionic lipids. I-BAR domain
proteins exhibit such properties. IRSp53 contains I-BAR
domain and was shown to induce negative curvature and
tubulation in synthetic vesicles (62). IRSp53 localizes to curved
membranes of neuronal cells (63) and filopodia of motile
fibroblasts (64). It supports membrane ruffling and protrusions
in T cells (65). In epithelial cells, it is expressed at the microvilli-
containing apical membrane and functionally associates with
podocalyxin-1 (66). As a protein of countless functions, it will be
important to characterize its specific role in microvilli of T cells.
Alternatively, other I-BAR domain-containing proteins can fulfil
this function in lymphoid cells.

Tetherin (also called CD317) with affinity for ordered,
sphingolipid-rich membranes interacts with BAR domain-
containing RICH family proteins (67). Tetherin/RICH-2 complex
forms a mechanical support of epithelial microvilli (68). Its analog,
RICH-1, is expressed in T-cells (Human Protein Atlas). BAR
domain of RICH proteins can induce positive curvature and
tubulate lipid vesicles containing PIP2 in the absence of tetherin
(69). The potential of tetherin/RICH complex thus lies at the neck
connecting microvilli (or dimpling domains) to membrane base via
a positively curved segment (Figure 1).

Unconventional myosins (e.g., myo1a, myo7b) link actin
fibres to membrane by their interaction with anionic lipids,
PIP2 or phosphatidylserine (70). Myosins also contribute to the
formation of a ‘hole’ in the cortical actin at the site of new
microvillus formation (71). Such local depletion of cortical actin
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is essential for the initiation of membrane protrusions (72). This
process may be also connected to the formation and stabilization
of dimpling lipid domains.

Members of tetraspanin protein superfamily (TM4SF)
accumulate at the microvilli of diverse cells. CD9, CD81,
CD82, and TSPAN33 were shown to control the size and
shape of microvilli in both, leukocytes and epithelial cells (73–
75). TM4SF proteins (e.g., CD81) require highly curved
membrane for their assembly into virus-like particles induced
by HIV-1 Gag protein (37, 76). The main role of TM4SF is thus
expected for growing or established microvilli with highly curved
tubular membrane.

None of the proteins mentioned in this section was already
determined as a microvilli regulator in T cells. However, I believe
that intense research in this direction may soon offer interesting
discoveries related not only to microvilli, but also to T-cell
signaling and function.
CONCLUSIONS

Recent observations demonstrate that microvilli play essential
role in T-cell activation. Key signalling molecules were found to
accumulate in different parts of these morphological structures.
Theoretical and biophysical studies indicate that sphingolipids
and phosphoinositides in complex asymmetric membranes tend
to generate dimpling domains. In the plasma membrane of T
cells, dimpling domains can be the sites of an onset of microvilli,
as indicated in the presented model. Specific lipids also fine tune
behaviour of critical regulatory proteins in microvilli. These data
substantiate the role of lipids in morphogenesis and function of
microvilli. However, in T cells, the identity of key proteins (and
lipids) in microvilli remains unknown. Future works are required
to discover these important organizers of signalling receptors at
the plasma membrane of T cells. Such research may open new
avenues for treatment of many human diseases, which are
associated with the malfunction of these critical immune cells.
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