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Editorial on the Research Topic
Advanced Deep-Transfer-Leveraged Studies on Brain-Computer Interfacing

Brain-computer interfacing (BCI) has attracted rapidly increasing research interest in the last
decade due to recent advances in neurosciences, wearable/mobile biosensors, and analytics. The
ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting,
augmenting, or repairing human cognitive or sensory-motor functions. Recently, many advanced
machine learning technologies have appeared, such as deep learning, transfer learning, and so
on. The deep learning method has achieved great success in the image and the video analysis,
the natural language processing, the speech recognition, etc., and recently has also started to find
applications in BCI. Transfer learning, which improves learning in a new task by leveraging data or
knowledge from other relevant tasks, can be particularly useful in BCI to cope with variability across
individuals or tasks, accelerating learning and improving performance. Advanced deep-transfer-
leveraged learning technologies can also be integrated to take advantage of both domains.

Although the studies of BCI using advanced deep learning and/or transfer learning methods
become more and more popular, there still exist many unsolved fundamental problems so far, such
as deep learning representation of some EEG-based BCI data from multiple modalities, mapping
data from one modality to another to achieve cross-source BCI data analysis, identifying, and
utilizing relations between elements from two or more different signal sources for comprehensive
BCI data analysis, fusing information from two or more signal sources to perform a more accurate
prediction, transferring knowledge between modalities and their representations, and recovering
missing modality data given the observed ones.

In the past decade, several EEG-based BCI methods and technologies have been developed
and shown promising results in some real-world examples such as neuroscience, medicine,
and rehabilitation, which led to a proliferation of papers showing accuracy/performance
and comparison, but most do not advance to real-time, translation, or application. Then,
these papers do not fare well, either because of lack of novelty (known technique) or no
bio/med/experiment/clinical translation. For all the reasons mentioned above, it inspires us to
exploit and develop effective advanced deep learning and/or transfer learning algorithms for
addressing fundamental issues in BCI and rehabilitation fields.

This Research Topic (RT) of the Frontiers in Neuroscience (section: Neuroprosthetics) is
a selection of 22 papers presented at the RT “Advanced Deep-Transfer-Leveraged Studies on
Brain-Computer Interfacing.” We provide a brief summary of these papers as follows.
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BCI APPROACHES

The brain computer interface (BCI) is a direct connection
between human or animal brain (and brain cell culture)
and external devices. In this RT, some scholars proposed
many novel methods on BCI technologies. For example,
Huang et al. proposed a classification method using sparse
representation (SR) and fast compression residual convolutional
neural networks (FCRes-CNNs). They obtained the features
of the EEG signal through the common spatial patterns
algorithm, and they constructed the redundant dictionary with
sparse representation based on these features. Subsequently,
they used sparse features as the input of fast compression
deep learning network to classify EEG signals. Meanwhile,
Zhang W. et al. proposed an EEG phase-dependent closed-
loop mechanical vibration stimulation method. This novel
method is an improvement on traditional vibration stimulation
enhancement research and helps to make the stimulation more
precise and effective.

BCI has been regarded as a newly developing intervention
in promoting motor recovery in stroke survivors. Several
studies have been performed in chronic stroke to explore
its clinical and subclinical efficacy. However, evidence in
subacute stroke was poor, and the longitudinal sensorimotor
rhythm changes in subacute stroke after BCI with exoskeleton
feedback were still unclear. In this regard, Chen S. et
al. studied the longitudinal sensorimotor rhythm changes
of BCI with exoskeleton feedback in subacute stroke. The
experiments showed that The BCI group showed larger
percentage points of improvement and good motor recovery than
the control group.

In theory, the BCI system can monitor the signals generated
by neural activities through a variety of sensors and other signal
acquisition equipment. Through the analysis and processing
of the signals, the signals are classified according to separate
thinking activities to generate corresponding control commands
to complete the interactive tasks between users and external
devices. To achieve this goal, Wang et al. explored the
classification method of EEG signals based on a multilayered
neural network that plays an important role in promoting
the practicality of the BCI. In this article, they developed
the left-handed and right-handed motor imagination EEG
classification model based on convolution neural network,
and they achieved 75.3% classification accuracy on the test
set of BCI common data set. The designed model can be
transplanted to mobile phones, computers, tablets, and other
terminal devices, used in BCI technology, medical rehabilitation,
the field of healthcare. Meanwhile, Chen Y. et al. developed a
knowledge-leverage-based support matrix machine (KL-SMM)
to improve the classification performance when only a few
labeled EEG data in the target domain (target subject) were
available. Different from most current model parameter transfer
learning methods, the proposed method can propagate the
structural information from the source model to the target
model. In addition, the proposed method can afford privacy
protection by leveraging only the model knowledge of the
source domain.

EEG APPROACHES

Electroencephalogram (EEG) as a biomarker plays an important
role in the BCL. The EEG signal can be used as a basis for
the prediction of brain behavior and diagnoses of disease. For
example, EEG signals are often used to determine the presence
and type of epilepsy in clinical diagnosis. In this Research
Topic, several papers focus on using different advanced artificial
intelligence methods to identify epileptic seizures via EEG
signal. Zhou and Li analyzed EEG signal features from linear
and non-linear perspectives, and dynamically extract effective
features using an improved radial basis function neural network.
Moreover, they introduced one against one strategy classifier to
reduce the probability of error classification.

Because the responses to EEG signals of different patients
in the same cognitive activity show a certain degree of
similarity, Zhang Y. et al. leveraged abundant labeled EEG
epochs from a related source domain and reused them in
the target domain. They proposed an online selective transfer
TSK fuzzy classifier underlying joint distribution adaptation
and manifold regularization. Their classifier can make use of
very few calibration data in the target domain to induce the
target predictive function. Using joint distribution adaptation
to minimize the marginal distribution distance and conditional
distribution distance between the source and target domains,
the computational complexity of the classifier can be reduced.
Meanwhile, Zhang G. et al. proposed a multi-scale non-local
(MNL) network to achieve automatic EEG signal detection.
Their MNL-Network is based on 1D convolution neural network
involving two specific layers to improve the classification
performance. One layer is named the signal pooling layer
and the other layer is called a multi-scale non-local layer.
The experimental results demonstrate that the MNL-Network
could achieve competitive results in the EEG classification task.
Additionally, Jiang K. et al. studied how to select effective
EEG features to guarantee high-efficiency artificial intelligence-
assisted clinical diagnosis. They constructed a stacked deep
structure for feature selection in a layer-by-layer manner so
as to add random projections into the original features, so
that the manifold structure existing in the original feature
space was continuously opened in a stacked way. Therefore,
according to the stacked generalized principle, the original input
feature space became more linearly separable. Moreover, Ni
et al. proposed a noise-insensitive Takagi-Sugeno-Kang (TSK)
fuzzy system for EEG signal recognition. In particular, they
developed a possibilistic clustering in Bayesian framework
with interclass competitive learning to determine antecedent
parameters of fuzzy rules. To further promote the noise
insensitivity of rules, they used the asymmetric expectile term
and Ho-Kashyap procedure to learn the consequent parameters
of rules. Comprehensive experiments on Bonn EEG dataset
revealed that the proposed fuzzy system achieved robust and
effective performances for EEG signal recognition. Besides,
Xu et al. proposed a one-dimensional convolutional neural
network long and short-term memory (1D CNN-LSTM) model
to automatically recognizes epileptic seizures through EEG
signal analysis. In short, a one-dimensional convolutional neural
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network (CNN) and long and short-term memory model
are used to extract temporal features from standardized EEG
sequence data. Several fully connected layers are used for
epilepsy recognition.

To exploit the diversity and complementariness of different
feature representations of EEG signals, Xue et al. developed a new
auto-weighted multi-view discriminative metric learning method
with Fisher discriminative and global structure constraints. On
the one hand, they exploited the multiple features of different
views in the scheme of the multi-view feature representation. On
the other hand, they considered both the Fisher discriminative
constraint and global structure constraint into the discriminative
metric space, in which the intraclass EEG signals were compact,
and the interclass EEG signals were separable as much as possible.
Meanwhile, Dong et al. developed a method combining the non-
negative matrix factorization technology and transfer learning.
They reported that the non-negative matrix factorization can
assure to obtain essential information between the testing and the
training dataset, and the combination of shared subspace and the
original feature space can fully use of the testing signals and the
training signals.

Accurate and automatic classification of the speech imagery
EEG signals from the BCI system is highly demanded in
clinical diagnosis. The key factor in designing an automatic
classification system is to extract essential features from
the original input. To achieve this goal, Zhang, Luo et al
proposed a dynamic multi-scale network. The whole
classification network was based on ResNet, and the input
signal first encoded the features by the Short-time Fourier
Transform (STFT). Finally, they incorporated a dynamic
multi-scale layer to allow the network to learn multi-
scale features from different receptive fields at a more
granular level.

Currently, the recognition method of EEG signals is one of
the important technology for human emotion recognition. The
traditional machine learning method has a major disadvantage
in that the feature extraction process is usually cumbersome.
Zhang Y. et al. focus on emotion recognition based on EEG
signals using deep learning model combination. They studied
the application of several deep learning models in the research
field of EEG-based emotion recognition, including deep neural
networks (DNN), convolutional neural networks (CNN), long
short-term memory (LSTM), and a hybrid model of CNN
and LSTM (CNN-LSTM). Then they used four deep learning
models to learn and predict emotion recognition on the DEAP
EEG dataset.

Changes in physiological functions during sleep lead to
corresponding changes in EEG signals. The acquisition and
processing of patients’ sleep data at night need the help of
automation and digital technology. Wen proposed a sleep
quality detection method based on EEG signals. He used the
discrete wavelet transform (DWT) for feature extraction and
adopted the transfer learning support vector machine (TL-
SVM) for classifying the feature data. The proposed method
was tested using 60 pieces of data from the National Sleep
Research Resource Library of the United States, and the
experimental results show that the classification performance

of the TL-SVM classifier is significantly higher than other
comparison algorithms.

CLINIC APPLICATIONS

In clinic medicine files, the computer-aided diagnosis of brain
diseases technology began to use some existing advanced
machine learning methods. For example, Cai et al. studied altered
patterns of functional connectivity and causal connectivity in
salience subnetwork of subjective cognitive decline and amnestic
mild cognitive impairment. Meanwhile, Jiang C. et al. studied the
numerical evaluation of the influence of skull heterogeneity on
transcranial ultrasonic focusing. They investigated how the focus
deviates after phase-aberration compensation with ray tracing
using time-reversal theory. They simulated the propagation of
ultrasound for transcranial focusing with the k-space pseudo
spectral method. The results revealed minimal deviation in the
focal region and suggested that transcranial focusing deflections
are caused mostly by ultrasonic refraction on the surface of
the skull bone. Besides, Cai et al. analyzed the altered patterns
of phase position connectivity in default mode subnetwork
of subjective cognitive decline and amnestic mild cognitive
impairment. Vestibular migraine (VM) is a multidisciplinary
disease under exploration. Moreover, Yan et al. investigated the
clinical features of VM under three temporal patterns. They
found that vestibular stimulation could inhibit the trigeminal
pain pathway, while painful trigeminal stimulation could excite
the vestibular system. This finding may contribute to the
clinical identification of VM and further clarification of its
pathogenesis. Furthermore, Hong et al. proposed a feature
fusion and attention network (FFA-DMRI) is proposed to
separate noise from brain magnetic resonance imaging (MRI).
Inspired by the attention-guided convolutional neural networks
(CNN) network and convolutional block attention module,
they designed a spatial attention mechanism to obtain the
area of interest in MRI. Furthermore, they marked full use
of the multilevel structure and boost the expressive ability
of network by the feature fusion block. The comprehensive
experiments on Alzheimer’s disease neuroimaging initiative
dataset demonstrated high effectiveness of FFA-DMRI with
maintaining the crucial brain details. Additionally, Ji et al.
developed a method to construct dynamic brain functional
networks (DBFNs) via hyper-graph manifold regularization
(HMR), and employed it to classify mild cognitive impairment
(MCI) subjects. Finally, they conduct classification experiments
to classify MCI subjects from normal subjects to verify the
effectiveness of our method.

CONCLUSION

This Research Topic focuses primarily on novel theories and
methods proposed for EEG single and health information
processes. New methods can be used to diagnose brain
neurological diseases predict and inhibit the onset of epilepsy,
and can also be used for some clinic applications. As
can be appreciated, these articles covered a wide range of
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advances and new insights in our understanding of the
brain neuroscience.
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Alzheimer’s disease (AD), which most commonly occurs in the elder, is a chronic
neurodegenerative disease with no agreed drugs or treatment protocols at present.
Amnestic mild cognitive impairment (aMCI), earlier than AD onset and later than
subjective cognitive decline (SCD) onset, has a serious probability of converting into
AD. The SCD, which can last for decades, subjectively complains of decline impairment
in memory. Distinct altered patterns of default mode network (DMN) subnetworks
connected to the whole brain are perceived as prominent hallmarks of the early stages
of AD. Nevertheless, the aberrant phase position connectivity (PPC) connected to the
whole brain in DMN subnetworks remains unknown. Here, we hypothesized that there
exist distinct variations of PPC in DMN subnetworks connected to the whole brain for
patients with SCD and aMCI, which might be acted as discriminatory neuroimaging
biomarkers. We recruited 27 healthy controls (HC), 20 SCD and 28 aMCI subjects,
respectively, to explore aberrant patterns of PPC in DMN subnetworks connected to
the whole brain. In anterior DMN (aDMN), SCD group exhibited aberrant PPC in the
regions of right superior cerebellum lobule (SCL), right superior frontal gyrus of medial
part (SFGMP), and left fusiform gyrus (FG) in comparison of HC group, by contrast, no
prominent difference was found in aMCI group. It is important to note that aMCI group
showed increased PPC in the right SFGMP in comparison with SCD group. For posterior
DMN (pDMN), SCD group showed decreased PPC in the left superior parietal lobule
(SPL) and right superior frontal gyrus (SFG) compared to HC group. It is noteworthy
that aMCI group showed decreased PPC in the left middle frontal gyrus of orbital part
(MFGOP) and right SFG compared to HC group, yet increased PPC was found in the left
superior temporal gyrus of temporal pole (STGTP). Additionally, aMCI group exhibited

Frontiers in Neuroscience | www.frontiersin.org 9

March 2020 | Volume 14 | Article 185



https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00185
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00185
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00185&domain=pdf&date_stamp=2020-03-20
https://www.frontiersin.org/articles/10.3389/fnins.2020.00185/full
http://loop.frontiersin.org/people/879461/overview
http://loop.frontiersin.org/people/847105/overview
http://loop.frontiersin.org/people/884362/overview
http://loop.frontiersin.org/people/910217/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Cai et al.

Phase Position Connectivity

decreased PPC in the left MFGOP compared to SCD group. Collectively, our results
have shown that the aberrant regions of PPC observed in DMN are related to cognitive
function, and it might also be served as impressible neuroimaging biomarkers for timely
intervention before AD occurs.

Keywords: subjective cognitive decline, amnestic mild cognitive impairment, default mode network, phase
position connectivity, neuroimaging biomarkers

INTRODUCTION

Alzheimer’s disease (AD), which occurs more commonly in
the elder, is a chronic neurodegenerative disease of impaired
cognitive and memory (Ren et al., 2019; Wessels et al., 2019).
Nevertheless, there are no agreed drugs or treatment protocols for
patients with AD. Therefore, the timely detection and treatment
of the early stages of AD is an urgent and realistic issue, which can
improve symptoms of illness and alleviate the progression of the
disease (Yang et al., 2019). Amnestic mild cognitive impairment
(aMCI), as the phase close to AD, has a 10-15% probability of
converting into AD per annum (Yang et al., 2017). Subjective
cognitive decline (SCD) is referring to the fact that impaired
cognition appealed by patients is entirely subjective without
objective behavior of cognitive decline (Funaki et al., 2019), which
has the certain likelihood of the development into aMCI and AD
stages (Caillaud et al., 2019; Kim et al., 2020). Thus, from the
above, we aim to adopt aMCI and SCD phases which may evolve
into AD to explore the neural mechanism of the early stage of AD.

Resting-state functional magnetic resonance imaging (rs-
fMRI), as one of the neuroimaging techniques, can offer
a noninvasive method for the assessment of the cognitive
mechanism of AD to a certain degree (Ferenci et al., 2002).
Besides, in most studies of the early stage of AD based on rs-fMRI,
the default mode network (DMN) has been emphasized highly
for a long time (Banks et al., 2018). Anatomically, it includes
the anterior DMN (aDMN) which is primarily composed of the
ventromedial prefrontal cortex (vmPFC), and posterior DMN
(pDMN) which mainly focuses on the posterior cingulate cortex
(PCC) (Xu et al,, 2016). Notice that the former mainly concerns
memory extinction and self-referential mental idealization, while
the latter is closely related to the function of episodic memory
retrieval (Yang et al., 2017, 2018). Previously, it has been reported
that amyloid deposits are detected with a great probability in the
PCC which served as a primary part of DMN (Wang et al., 2013).
The previous work has also indicated that the regions of DMN
are abnormal and may serve as prominent hallmarks in the early
stage of AD such as mild cognitive impairment (MCI) and SCD
(Huang et al., 2018a; Scherr et al., 2019; Xie et al., 2019). More
specifically, these disconnected areas that are connected from the
DMN to the whole brain are considered to be associated with
cognitive disorder (Huang et al., 2019; Zhao et al., 2020).

Hilbert transform (HT), which is characterized by rapidly
and accurately describing the instantaneous position phase, is
suitable for the analysis of non-stationary signals (Peng et al,
2005; Qian et al, 2015). A former study has suggested that
frequency domain estimations such as the instantaneous phase
position would provide a higher correlation between two signals

than time-domain signals (Mandel and Atkins, 2016). Previous
studies based on electroencephalography (EEG) have shown that
prominently increased and decreased alpha spectral powers are
found using HT in patients with AD in comparison with healthy
controls (HC) (Babiloni et al., 2006; Fraga et al., 2013; Wang et al.,
2020). Furthermore, it has been reported that time series from
EEG was employed to obtain the altered instantaneous phase
position of DMN using the HT method, which can be served as
biomarkers (Thatcher et al., 2014; Wang et al., 2019). A previous
investigation has also revealed that the brain activation patterns
of DMN measured by HT were altered between the eye open and
the closed eye (Wang et al., 2015). Besides, the former work on
depressive disorder has indicated that the signals, extracted from
the interesting regions of rs-fMRI, can reveal the aberrant brain
regions using the HT method (Yu et al., 2018). Until now no
experiments of HT in AD based on rs-fMRI, especially in DMN
subnetworks, have been reported, which may be a new way to
explore the neural mechanism of the early stage of AD.

Accordingly, our target aims to analyze the altered patterns
of instantaneous phase position connectivity (PPC) in DMN
subnetworks (include aDMN and pDMN networks) connected to
the whole brain, and to explore whether there exists a relationship
between the cognitive function and the aberrant regions. We
hypothesized that there exist distinct variations of PPC in DMN
subnetworks for patients SCD and aMCI, which might act as
discriminatory neuroimaging biomarkers.

MATERIALS AND METHODS
Participant

Our experimental participants in this work are briefly
summarized as follows: All subjects are obtained from the
public database of the second phase of Alzheimer’s Disease
Neuroimaging Initiative (ADNI-2)'. The emphasis of ADNI-2
is to survey neurological biomarkers of cognitive disorder.
Furthermore, it was announced in 2011 which had been lasting
for 5 years to implement. To further explore the gap between
the healthy subjects and patients with MCI, consider joining the
subjects with SCD for the first time in ADNI-2. All recruited
subjects are consist of three parts, HC (n = 28), SCD (n = 23), and
aMCI (n = 29), respectively. It deserves to be further mentioned
that we have precluded three subjects as the result of undue
head movement (cumulative translation or rotation >1.5 mm
or 1.5 degrees were executed in our work, #n = 3). At the same
time, we strictly control registration quality relying on artificial

'http://adni.loni.usc.edu/
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visual recognition due to the poor registration of certain subjects
(n=2). To sum up, we recruited 75 subjects, including 27 HC, 20
SCD, and 28 aMCI participants. The detail data selection process
is shown in Figure 1.

MRI Data Acquisition

The obtained participants underwent rs-fMRI on a clinical
3.0 tesla (T) scanner (Philips Medical Systems). The echo-
plane imaging (EPI) sequence consists of 140 volumes in
which subjects were required to lie flat, close eyes, avoid
conceptual work, and not turn the head during the process of
data acquisition. Here, the specific parameters can be briefly
described as: flip angle (FA) = 80 degree, matrix = 64 x 64,
voxel size = 3.31 mm x 3.31 mm X 3.31 mm, repetition
time (TR) = 3000 ms, echo time (TE) 30 ms, slice
thickness = 3.3 mm, respectively. T1-weighted structural MRI
were acquired from magnetization-prepared rapid gradient-echo
(MPRAGE) sequence (Chen et al, 2016), likewise, detailed
parameters are represented as: matrix 256 x 256, layer
thickness = 1.2 mm, voxel size = 1 x 1 x 1.2 mm?, TR = 6.81 ms,
FA =9 degree, TE = 3.16 ms, respectively.

Data Preprocessing

The data preprocessing with aspect to the rs-fMRI of this
work adopted Resting-State fMRI Data Analysis Toolkit
plus (RESTplus)®>, which is based on MATLAB2012a’ and
Statistical Parametric Mapping (SPM12)*. Briefly steps on
data preprocessing involving as follows: We discarded the first
5 of 140 points in time for each subject as the result of the
instability of MRI signal induced by machine or human. Then,
the remaining volumes were calibrated for controlling the effects
of between slices or between subject volumes. It is stressed
that we have ruled out the data on the condition of cumulative
translation more than 1.5 mm or angular motion more than

Zhttp://restfmri.net/forum/RESTplusV1.2
Shttp://www.mathworks.com/products/matlab/
*https://www.fil.ion.ucl.ac.uk/spm/

1.5 degrees. Next in the normalization process, registration from
the original space to Montreal Neurological Institute (MNI)
space using T1-weight volumes was implemented to reduce
the diversities between various subjects. To directly circumvent
the subject variations, the images generated above have been
smoothed using a Gaussian kernel of 6 x 6 x 6 of full width
at half maximum (FWHW). Following this, to eliminate the
influence of nuisance variables (Fox et al,, 2009; Huang et al,,
2018b), comprising of six head motion parameters, global mean
signal, white matter signal and cerebrospinal fluid signal, were
ruled out, respectively. At last, subject volumes were filtered at
0.01-0.08 Hz due to noise interferences, which may be induced
by heartbeat and breathing.

Statistical Analysis

For this study, the variance (ANOVA) and the chi-square test
within the Statistical Package for the Social Sciences (SPSS)
software version 22.0 were conducted to determine whether
there exist prominent differences (p < 0.05) as to the data
of demographic and neurocognitive between the HC, SCD
and aMCI groups.

To better illustrate the differences of PPC in aDMN and
PDMN networks between HC, SCD, and aMCI groups, one-
way ANOVA, which is integrated into the software of Data
Processing and Analysis for Brain Imaging (DPABI)®, was
adopted after controlling the gender and age. As mentioned in
former literature, multiple comparisons at cluster level using
non-parametric permutation test can availably control the false
positive rate existing in statistics (Winkler et al., 2016), and 1000
permutation times and the prominent cluster size >30 voxels
(810 mm?>, p < 0.05) were performed in this work. We have
employed the two-sample T-test for calculating the differences
between two groups (i.e., SCD and HC groups, aMCI and
HC groups, aMCI and SCD groups), and that mask used in
two-sample T-test was derived from ANOVA analysis. Besides,
according to the recent report, there have identified that the

Shttp://rfmri.org/dpabi

80 subjects

28 HC subjects

il

23 SCD subjects

29 aMCI subjects

]

2 subjects were
excluded for undue
head movement

1 subject was
excluded for undue
head movement

v

27 HC subjects
were used in the
analyses

1 subject was excluded

20 SCD subjects were
used in the analyses

registration quality

1 subject was excluded
for controlling
registration quality

for controlling

28 aMCI subjects
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analyses

FIGURE 1 | A flow chart depicting the data selection process. HC, healthy controls; SCD, subjective cognitive decline; aMCl, amnestic mild cognitive impairment.
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non-parametric permutation test with Threshold-Free Cluster
Enhancement (TFCE) can effectively achieve a good balance
between family wise error (FWE) rate and reliability (Chen et al.,
2018). Therefore, permutation test associated with TFCE, all
integrated into PLAM module of DPABI, were employed as the
method of multiple comparisons of this work, and we set cluster
size >10 voxels (270 mm?, p < 0.05) as a prominent cluster
(Xue et al., 2019).

PPC of Two Time Series Using Hilbert

Transform

The HT can analyze nonlinear and non-stationary signals, and it
is fully self-adaptive and suitable for mutation signals. Besides,
it is characterized by rapidly and accurately describing the
instantaneous phase position which was adopted to explore the
altered patterns of PPC of DMN subnetworks in this work
(Martis et al., 2012). Hence, the HT was adopted using complex
demodulation to compute the instantaneous phase position
difference between each pair of the time series. Among them,
one series is extracted from aDMN (or pDMN), the other series
is extracted from the voxel within the whole brain. The HT that
we follow can be briefly described as follows: Given a time series
name as x(t), and the HT later referred to as H(t), is shown in
formula (1).

+00
Ho=— [T 20 am =m0 )
) o T(t—71) Tt

We first take two time series which represent aDMN (or
pDMN) signal and the voxel signal of the brain as inputs to the
formula (1) respectively. Next, using analytic signal Z(t) of x(t) to
generate information about the phase position and amplitude, as
shown in formula (2). Therefore, two analytic signals of aDMN

(or pDMN) and the voxel of the brain are obtained.

Z(t) = x(t) + iH(t) = A(t)e 7 2)

where A(f) represents signal amplitude, and ¢.(f) is the
instantaneous phase position of the signal. Then, we obtain
phase difference D(t) according to phase positions of two signals,
consisting of ¢y, (t) and ¢y, (¢), and it is shown in formula (3).
Here, we set the phase lock ratio as m = n = 1, and it indicates
that the increase phase of two phase position is consistent.

D(t) = m@y, (t) — noy, (1) (3)

Phase synchronization exponent of two signals can be seen
from the formula (4).

A= ‘< PO >t‘:\/< cos D(t) >%+ < sin D(t) >% (4)

Note that <. >, is the average at each time point with
values ranging from 0 to 1. Furthermore, A = 0 indicates no
phase synchronization of two signals, whereas A = 1 shows
phase synchronization of two signals. That is, the larger the
value of %, the stronger the synchronization between two signals.
Moreover, the seed-based method was conducted to analyze the
altered PPC of DMN subnetworks. To identify the seed regions

about aDMN and pDMN, 10-mm spherical regions of interest
in aDMN (MNI space: 0, 52, —6) and pDMN (MNI space:
0, —53, 26) were adopted in our work (Zhang and Raichle,
2010; Xue et al., 2019). Collectively, we applied phase position
synchronization generated by HT to investigate the altered
connectivity between the DMN subnetworks and the whole brain,
and aim to explore the relationship between the aberrant regions
and cognitive function.

RESULTS

Demographic and Neurocognitive

Characteristics

Here, the demographic and neurocognitive characteristics of
experimental participants were described in Table 1. The
prominent differences verified by ANOVA analysis were the Age
(F = 8.248, p = 0.016), the MMSE score (F =9.129, p < 0.01), and
CDR score (F = 68.98, p < 0.01), respectively, yet no prominent
difference on the Gender (F = 2.026, p > 0.05). The results
showed that the MMSE values of the HC group (29.14 £ 1.49),
SCD group (28.94 £ 0.83) and aMCI group (26.87 £ 2.72)
decreased successively. It is noteworthy that lower MMSE scores
suggest the severe form of cognitive impairment, whereas higher
CDR scores show much more serious for dementia.

The Aberrant PPC of aDMN Network in
Patients With SCD and aMClI

The studies we have performed indicated that eight prominent
clusters, comprising of right superior cerebellum lobule (SCL),
right rectus (REC), left fusiform gyrus (FG), left inferior frontal
gyrus of triangular part (IFGTP), left middle temporal gyrus
(MTG), right middle frontal gyrus (MFG), left MFG and right
superior frontal gyrus of medial part (SFGMP), were revealed
according to one-way ANOVA analysis. Besides, patients with
SCD exhibited aberrant PPC in the clusters of right SCL, right
SEGMP and left FG as compared with HC group, by contrast, no
significant difference was found in patients with aMCI resulted
from two-sample T-test. Notably, aside from decreased PPC
found in the left FG, the clusters of increased PPC were involved
in the right SCL and right SFGMP. It is important to note that
patients with aMCI showed increased PPC in the right SFGMP in
comparison with the SCD group (TFCE-FWE corrected, cluster
size > 10 voxels, p < 0.05). In particular, we emphasize that our

TABLE 1 | Demographics and clinical measures of HC, SCD, and aMCI groups.

Group HC (n =27) SCD (n = 20) aMCl (n =28) p-values
Gender 20F/7TM 10F/10M 10F/18M 0.1392
Age (years) 72.63 +4.50  72.38 +5.31 69.71 + 7.26 0.016°
MMSE scores  29.14 +£1.49  28.94 + 0.83 26.87 £ 2.72 <0.01P
CDR scores 0.08 +£ 0.11 0.124+0.22 0.52 +£0.10 <0.01P

Numbers are given as means =+ standard deviation (SD) unless otherwise stated.
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; @The
p-values were obtained by the chi-square test. °The p-value was obtained by
one-way ANOVA analysis.
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TABLE 2 | The aberrant PPC in aDMN network.

Region Peak/MNI T-score Cluster

size
X y z

ANOVA

R Superior cerebellum lobule -15 —-99 -3 10.0818 323

R Rectus 3 33 -—18 10.3223 45

L Fusiform gyrus -30 -72 -—-12  9.5211 69

L Inferior frontal gyrus of triangular part  —48 51 3 9.9487 167

L Middle temporal gyrus -51 —-63 6 6.7590 37

R Middle frontal gyrus 54 39 15 10.7230 98

L Middle frontal gyrus -36 27 12 7.8551 102

R Superior frontal gyrus of medial part 12 60 36 8.9812 204

SCD > HC

R Superior cerebellum lobule 21 -93 =27 4.0315 227

R Superior frontal gyrus of medial part 12 48 51 3.9014 10

HC > SCD

L Fusiform gyrus -30 -72 —-12 4.369 28

aMCI > SCD

R Superior frontal gyrus of medial part 3 42 39 3.9141 24

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster
size >30 voxels in one-way ANOVA analysis, p < 0.05. Cluster size >10 voxels in
two-sample T-test, p < 0.05, TFCE-FWE corrected; L, left; R, right.

experiments are after controlling the effects of age and gender (see
Table 2 and Figures 2-4).

The Aberrant PPC of pPDMN Network in

Patients With SCD and aMCI

For pDMN network, the one-way ANOVA analysis we have done
suggested the prominent differences in four clusters, consisting
of the left superior temporal gyrus of temporal pole (STGTP), left
MFL, left superior parietal lobule (SPL) and right superior frontal
gyrus (SFG). Compared to HC group, patients with SCD showed
decreased PPC in the left SPL and right SFG. It is noteworthy
that aMCI group showed decreased PPC in the left middle frontal
gyrus of orbital part (MFGOP) and right SFG, yet increased
PPC was found in the left STGTP. Additionally, aMCI group
exhibited decreased PPC in the left MFGOP as the comparison
with SCD group (TFCE-FWE corrected, cluster size > 10 voxels,
p < 0.05). The experimental data used in the PPC analysis are
after controlling the influences of gender and age (see Table 3
and Figures 5-8).

L SEGMP R

'SCLRNS w¢

FIGURE 3 | Compared to HC group, the SCD group exhibits prominent
differences in PPC of the aDMN network based on two-sample T-test. L, left;
R, right; FG, fusiform gyrus; SCL, superior cerebellum lobule; SFGMP,
superior frontal gyrus of medial part.

FIGURE 4 | Compared to SCD group, the aMCI group exhibits prominent
differences in PPC of the aDMN network based on two-sample T-test. R,
right; SFGMP, superior frontal gyrus of medial part.

DISCUSSION

The work presented in this paper is that it focuses on investigating
aberrant patterns of PPC of the DMN subnetworks connected
to the whole brain between HC, SCD, and aMCI groups, and
analyzing whether the aberrant areas are related with cognitive
function. The result was consistent with the hypothesis that the
SCD and aMCI groups exhibited distinct abnormal PCC in DMN
subnetworks and the alerted regions were related to cognitive
function. Besides, the altered regions in DMN subnetworks might
regard as neuroimaging biomarkers and may be used to better
understand the neural mechanism for the early stages of AD.

For aDMN, patients with SCD have prominently altered
regions of the right SCL, right SFGMP and left FG resulted from
the two-sample T-test. Based on earlier finds, SCL is involved in
articulatory control and non-motor cognitive function (Ferenci
et al, 2002). The left FG plays a critical role in semantic
dementia and is repeatedly reported to be involved in visual word
processing (Peterburs et al., 2019). SFG, which is located on top of
the brain, plays a role in several higher-level cognitive processes

RGTP.L¢

‘REC.R
N

\

SCL.RAC

of medial part.

FIGURE 2 | The prominent differences of the brain in PPC of the aDMN network using one-way ANOVA analysis. L, left; R, right; MTG, middle frontal gyrus; REC,
rectus; FG, fusiform gyrus; IFGTP, inferior frontal gyrus of triangular part; SCL, superior cerebellum lobule; MFG, middle frontal gyrus; SFGMP, superior frontal gyrus

/e SEGMP.REIEN N
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TABLE 3 | The aberrant PPC in pDMN network.

Region Peak/MNI T-score Cluster

size
X y z

ANOVA

L Superior temporal gyrus of temporal pole —48 0 —15 11.6797 40

L Middle frontal lobule —-36 63 3 12.6064 94

L Superior parietal lobule —-15 —-60 69 9.1601 32

R Superior frontal gyrus 18 —12 72 12.0896 52

HC > SCD

L Superior parietal lobule —-15 —-60 69 3.8077 25

R Superior frontal gyrus 12 —-15 75 3.9821 36

aMCI > HC

L Superior temporal gyrus of temporal pole —48 0 —15  4.5391 31

HC > aMClI

L Middle frontal gyrus of orbital part —-36 63 3 3.8683 16

R Superior frontal gyrus 18 —-12 72 4.4364 18

SCD > aMClI

L Middle frontal gyrus of orbital part —-36 63 3 4.7242 90

The x, y, z coordinates are the primary peak locations in the MNI space. Cluster
size > 30 voxels in one-way ANOVA analysis, p < 0.05; Cluster size > 10 voxels in
two-sample T-test, p < 0.05, TFCE-FWE corrected; L, left; R, right.

and working memory according to a previous report (Alagapan
et al., 2019). Combining the altered regions mentioned above,
these regions are related to language and memory, which are
consistent with the manifestation of cognitive function (Samaras
et al., 2014). Interestingly, no prominent regions were found in
aDMN network in aMCI group, while aMCI group exhibited
prominent regions in left STGTP, left MFGOP and right SFG in
pDMN. A former study has reported that STG is anchored in the
auditory association cortex involving spoken word recognition
and MFG is related to working memory (Fegen et al., 2015;
Kajikawa et al., 2015). Hence, the altered regions we found might
involve in language cognitive disorder, and pDMN first appears
abnormal connections compared to aDMN, which might suggest
that the aDMN and pDMN have different manifestations in the
early stages of AD.

We found that both aMCI and SCD groups showed a
prominent region in SFG that is connected to DMN subnetworks,
and according to the previous research that the altered functional
connectivity between the pDMN and the SFG might be a
compensatory response of brain (Xue et al., 2019). We assume
that the aberrant PPC in SFG connected to the DMN may also
be caused by the brain’s compensation. Compared to HC group,

FIGURE 6 | Compared to HC group, the SCD group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
R, right; SPL, superior parietal lobule; SFG, superior frontal gyrus.

MFGOP.Ly¢

FIGURE 7 | Compared to HC group, the aMCI group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
R, right; STGTP, superior temporal gyrus of temporal pole; SFG, superior
frontal gyrus; MFGOP, middle frontal gyrus of orbital part.

-

MEGOPL

FIGURE 8 | Compared to SCD group, the aMCI group exhibits prominent
differences in PPC of the pDMN network based on two-sample T-test. L, left;
MFGOP, middle frontal gyrus of orbital part.

aMCI group showed a prominent region in STG which did not
belong to the altered region of SCD group, while SCD group
showed prominent regions in SCL which did not belong to
the altered region of aMCI group. It can be deduced that SCL
and STG, related to articulatory control and working memory,
respectively, are sensitive and might as neuroimaging biomarkers
to distinguish the SCD and aMCI. Interestingly, compared to
patients with SCD, DMN subnetworks in aMCI group showed
obvious differences in right SFGMP and left MFGOP belonging

STGTP\AL

FIGURE 5 | The prominent differences of the brain in PPC of the pDMN network based on one-way ANOVA analysis. L, left; R, right; STGTP, superior temporal
gyrus of temporal pole; MFL, middle frontal lobule; SPL, superior parietal lobule; SFG, superior frontal gyrus.
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to FG. In previous studies, aMCI group showed more
widespread topological changes involving the frontal lobes
(Barban et al, 2017), and aberrant connectivity was also
found in patients with SCD between DMN and FG due to
cognitive impairment (Xue et al., 2019). Besides, an increasing
trend of values of amplitude of low-frequency fluctuation
(ALFF) and fractional ALFF were detected in FG (Yang
et al., 2018). Therefore, changes in FG may be related to
cognitive dysfunction.

CONCLUSION

Our study mainly shows that the PPC of the DMN
subnetworks which are connected to the whole brain has
different disconnection patterns in SCD and aMCI stages.
Moreover, the significant difference in DMN subnetworks

varies considerably, which might act as neuroimaging
biomarkers of sensitivity for timely detection of the
early stage of AD.
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Vestibular migraine (VM) is a multidisciplinary disease under exploration. Multiple
temporal patterns of vertigo and migraine make it difficult to diagnose VM, and their
effect on the clinical features of VM is still unclear. Here we investigated the clinical
features of VM under three temporal patterns. 172 VM patients were enrolled in this
study and divided into three groups: 86 patients in group A had an earlier onset of
migraine than vertigo, 35 patients in group B had an earlier onset of vertigo than
migraine, and 51 patients in group C had concurrent vertigo and migraine. No significant
difference was found among three groups regarding types, intensity and accompanying
symptoms of the vestibular attack. Patients in group C presented higher frequency and
longer duration of vertigo than group A and B, while patients in group A presented
lower frequency and shorter duration of headaches than group B and C. Additionally,
the frequency, duration, intensity and accompanying symptoms of headache in group
A decreased significantly after the onset of vertigo, especially in women around
menopause. We hypothesized that vestibular stimulation could inhibit the trigeminal
pain pathway, while painful trigeminal stimulation could excite the vestibular system.
Our findings may contribute to the clinical identification of VM and further clarification of
its pathogenesis.

Keywords: vestibular migraine, temporal patterns, vestibular symptoms, migraine features, interaction

INTRODUCTION

Vertigo and migraine are both very common complaints among patients, and a strong link between
them has been proved. The co-occurrence of migraine and vertigo in the same individual was
expected in 1% of the population based on the prevalence of migraine and vestibular vertigo, but the
actual percentage was about three times higher than expected (Neuhauser et al., 2006). Moreover,
migraine patients had a two- or three-fold higher risk for vertigo than those without headache
(Vukovic et al., 2007). In 1999, Dieterich and Brandt introduced the term “vestibular migraine”
(VM) to describe the clinical condition that associated with vestibular symptoms and migraine
headache (Dieterich and Brandt, 1999). In recent years, VM, including definite VM and probable
VM, has been considered as an independent diagnostic entity and one of the most common causes
of vertigo (Lempert et al., 2012; Arnold, 2018; Huang et al., 2020).

However, VM has been remained underdiagnosed despite ongoing studies in recent years.
Only 8-20% of VM patients were correctly diagnosed in practice (Neuhauser et al., 2006;
Geser and Straumann, 2012; Formeister et al., 2018). A big challenge for diagnosis is multiple
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195 patients with vertigo and migraine

Were the inclusion criteria fulfilled?

No

A\ 4

23 patients were excluded

Yes

172 patients with vestibular migraine

temporal relationships

A 4 A

group A (n = 86)
the onset of migraine
was earlier than vertigo

group B (n = 35)
the onset of vertigo was
earlier than migraine

group C (n =51)
vertigo was accompanied
with headache

FIGURE 1 | Flow diagram of participants’ selection.

temporal patterns of vertigo and migraine in VM. 51-65.6%
of VM patients suffered from migraine before the onset of
vertigo (Morganti et al,, 2016; Zhang et al, 2016; Beh et al,,
2019), and there was an interval of 8-20 years between the
two symptoms (Cohen et al., 2011; Pagnini et al., 2014). 10.2—-
13% of patients had an earlier onset of vertigo than migraine
(Qiu et al.,, 2014; Zhang et al., 2016). 34-49.6% of patients had
migraine headaches during vestibular attacks (Zhang et al., 2016;
Beh et al., 2019). Since most of VM patients experienced vertigo
separately from headache, and even some patients had vestibular
symptoms years after the headache disappeared, they often did
not actively report headache history. One study showed that
only 9.8% of VM patients reported headache symptoms before
being carefully asked (Ren et al., 2014). Likewise, clinicians often
neglect to ask the history or associated symptoms of migraine
in patients complaining with vertigo, which often results in
misdiagnosis or missed diagnosis. Therefore, the investigation
of temporal patterns of vertigo and migraine and their impact
on patients with VM is very important for understanding and
management of VM.

The aim of this study was to describe and compare
the clinical features of VM patients with different temporal
patterns, and investigate the interaction between vertigo and
migraine headache in VM.

MATERIALS AND METHODS

Participants
Patients who met diagnostic criteria of definite VM (Arnold,
2018) or probable VM (Lempert et al., 2012) in neurology

and headache clinics of First Affiliated Hospital of Soochow
University from January 2018 to April 2019 were enrolled
(Figure 1). The exclusion criteria were as follows: other causes
of vestibular attack such as benign paroxysmal positional
vertigo (BPPV), Meniere’s disease or transient ischemic attack
of posterior circulation; history of head trauma; severe physical
illness; abnormal computed tomography or magnetic resonance
imaging (MRI); history of alcohol or drugs abuse; other primary
or secondary headaches; dizziness associated with chronic
anxiety; history of intracranial infection.

Data Collection

A structured questionnaire was used to interview the participants
regarding the following aspects: Demographics, familial
history of headache or vertigo, age of onset of vertigo and
migraine, vertigo intensity (Arnold, 2018) (moderate: vestibular
symptoms interfere with but do not prevent daily activities;
severe: daily activities cannot be continued), pain intensity
[visual analog scale (VAS)], frequency (number of attacks
within 3 months before enrolled), duration (minutes to
hours), accompanying symptoms of vertigo (nausea, vomiting,
phonophobia, photophobia, tinnitus), accompanying symptoms
of headache (nausea, vomiting, phonophobia, photophobia,
osmophobia, neck stiffness, scalp allodynia). Vestibular attacks
included spontaneous vertigo (internal or external vertigo),
positional vertigo (occurring after a change of head position),
visually induced vertigo (triggered by a complex or large moving
visual stimulus), head motion-induced vertigo (occurring during
head motion), head motion-induced dizziness with nausea
(dizziness is characterized by a sensation of disturbed spatial
orientation) (Arnold, 2018). Furthermore, psychiatric comorbid
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disorders [anxiety, depression, persistent postural-perceptual
dizziness (PPPD) (Staab et al., 2017) and sleep disorders] were
assessed at enrollment.

We defined the temporal patterns between migraine and
vertigo as follows: (A) the onset of migraine was earlier than
vertigo: (i) between migraine and vertigo there was a symptom-
free interval (at least one year), (ii) migraine shifted directly
into vertigo without a free interval (iii) migraine gradually
changed into vertigo; (B) the onset of vertigo was earlier than
migraine; (C) vertigo was accompanied with headache. Moreover,
headache features before the onset of vertigo in group A were
additionally collected, including frequency, duration, intensity
and accompanying symptoms.

Statistical Analyses

All statistical analyses were performed in SPSS software version
22.0. Categorical variables were compared using Chi-square
test and presented as frequency counts and percentages. As all
continuous variables in this study were non-normal distribution,
they were presented as the median and interquartile range,
and the Mann-Whitney U test was used for comparison
between two groups or the Kruskal-Wails H test among
three groups. Statistically significance was set at a two-sided
p-value < 0.05.

RESULTS

172 VM patients were enrolled in this study and divided into
three groups based on the temporal patterns of vertigo and
migraine as shown in Figure 2. In group A, 86 patients (50.0%)
had an earlier onset of migraine than vertigo. Nine patients
(5.2%) reported vertigo attacks after the migraine headaches
disappeared, with a symptom-free interval of 1-10 years. Six
patients (3.5%) reported that vertigo occurred immediately after
the disappearance of headaches without any interval. 71 cases
(41.3%) reported the gradual shift of the two symptoms, with
a partial overlap. In group B, 35 patients (20.3%) had an
earlier onset of vertigo than migraine. In group C, 51 patients
(29.7%) had concurrent vertigo and migraine headache. Among
them, thirty patients (17.4%) initially presented with vertigo and
headache simultaneously, and 21 patients (12.2%) complained
that vertigo occurred together with headache after a period of
migraine headache attacks alone.

Three groups were female-dominated, but more female
subjects in group A developed vertigo around menopause than
in group B (p < 0.05) and C (p = 0.084). Patients in group B
presented a lower age of onset of vertigo compared to group A
and C (p < 0.01) as expected. Patients in group A presented a
lower age of onset of migraine compared to group B (p < 0.05),
but similar age of onset to group C [p: not significant (NS)].
The proportion of familial history of migraine in group B was
lower than that in group A and C (p < 0.05). The proportion of
motion sickness history in group C was higher than that in group
B (p < 0.05) (Table 1).

No significant difference was found among groups regarding
types, intensity and accompanying symptoms of vestibular attack

(p: NS). Patients in group C presented higher frequency and
longer duration of vertigo than group A and B. (Table 2).

Patients in group A presented lower frequency and shorter
duration of migraine headaches than group B and C (p < 0.05)
(Table 3). Furthermore, the frequency, duration, intensity and
accompanying symptoms of headache in group A decreased
significantly after the onset of vertigo (Table 4). Patients in group
C presented stronger intensity of headache and reported nausea
and vomiting during headache attacks more often compared to
patients in group A (p < 0.001) and B (p < 0.05) (Table 3).

Following the onset of vestibular or headache symptoms,
many were diagnosed with anxiety (36.6%), depression (47.7%),
PPPD (34.9%) and sleep disorders (70.3%). Except that the
proportion of anxiety in group C was higher than that in group
A (p < 0.05), no significant difference in the proportion of
psychiatric comorbid disorders was found among groups (p:
NS) (Table 5).

DISCUSSION

Temporal patterns of vertigo and migraine in VM patients
and how they affect the clinical features of VM have not yet
been systematically described. In this study, we investigated the
clinical features of VM under three temporal patterns and found
that patients with vertigo and migraine occurred simultaneously
presented higher frequency and longer duration of vertigo, while
patients with earlier onset of migraine than vertigo presented
lower frequency and shorter duration of headache.

Previous studies have suggested that headaches significantly
decreased in frequency and strength or disappeared after the
onset of vertigo in VM patients (von Brevern and Lempert, 2016;
Teggi et al, 2018). This phenomenon was more common in
women around menopause (Lempert et al., 2009; Park and Viirre,
2010). A 13-year observational study showed that headaches

TABLE 1 | Demographic data among subjects in group A, B, and C.

A (n = 86) B (n = 35) C (n=51)
Age at inclusion 49 (37, 59) 43 (33, 60) 47 (33, 57)
(years)
Sex (female %) 69 (80%) 30 (86%) 41 (80%)
Vertigo occurred 28 (41%) 5(17%)* 10 (24%)
around menopause
(of females)
Age of onset of 43 (33, 54) 29 (22, 37) 40 (30, 49)t
vertigo (years)
Age of onset of 32 (25, 41) 37 (31, 42) 32 (25, 43)
migraine (years)
Familial history of 21 (24%) 9 (26%) 18 (35%)
vertigo
Familial history of 36 (42%) 7 (20%)* 21 (41%)t
migraine
Motion sickness 50 (568%) 17 (49%) 37 (73%)+

history

A: the onset of migraine was earlier than vertigo; B: the onset of vertigo was earlier
than migraine; C: vertigo was accompanied with headache. *p < 0.05 vs. group A;
tp < 0.05 vs. group B.
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FIGURE 2 | Schematic diagram of temporal patterns of vertigo and migraine in VM patients. Group A, patients had an earlier onset of migraine than vertigo; group B,
patients had an earlier onset of vertigo than migraine; and group C, patients had concurrent vertigo and migraine. Height and width of rectangles indicate,

completely ceased after vertigo attacked in 57% of patients and
substantially improved in 43% (Pagnini et al., 2014). However,
there were no detailed data to clarify the specific changes in
migraine headache features before and after the onset of vertigo.
In our cases, we noticed a 50% reduction in frequency and
duration of headache after the onset of vertigo, a 17% reduction
in pain intensity and a 22-50% reduction in accompanying
symptoms such as nausea, vomiting, photophobia, phonophobia,
osmophobia, neck stiffness, and scalp allodynia. The difference
between our study and the previous study (Pagnini et al., 2014)
was that only 19 patients (22%) reported complete cessation of
headache in this study, 35% noticed a considerable reduction in

frequency of headache after vertigo, 23% got relief for duration,
intensity or accompanying symptoms, but in 20% cases, headache
symptoms were unaffected by vertigo, which was partly due to the
different inclusion criteria. We included all patients diagnosed
with VM, and the previous study (Pagnini et al., 2014) only
included patients who developed vestibular symptoms after the
disappearance or remarkable reduction of headache. Another
reason was that this study was not a longitudinal study, and there
was recall bias in the features of migraine headache prior to the
onset of vertigo.

The mechanisms of disappearance or attenuation of headache
after recurrent vertigo in VM are unclear. We hypothesized
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TABLE 2 | Vestibular symptoms among subjects in group A, B, and C.

TABLE 4 | Headache symptoms before and after the onset of vertigo in group A.

Vestibular symptoms A (n = 86) B (n = 35) C (n =51) Headache symptoms Before (n = 86) After (n = 86) p-value
Vestibular attack Frequency (times/3 months) 6(3,9) 3(0,8) 0.015
Spontaneous vertigo 38 (44%) 14 (40%) 15 (29%) Duration (h) 24 (7.5, 36) 12 (2, 24) 0.001
Positional vertigo 26 (30%) 11 (81%) 15 (29%) Intensity (VAS score) 6(5,7) 5(3,6) < 0.001
Head motion dizziness with 24 (28%) 12 (34%) 22 (43%) Accompanying
nausea symptoms
Head-motion vertigo or 4 (5%) 1(3%) 1(2%) Nausea 44 (51%) 34 (40%) 0.126
visual vertigo Vomiting 29 (34%) 20 (23%) 0.128
Frequency (times/3 months) 3(1,9) 3 (0.6, 10.5) 6 (3, 12)*+ Photophobia 38 (44%) 26 (30%) 0.058
Duration (h) 2(0.3, 18.5) 2.5(0.5, 30) 18(2.5,24)"  Phonophobia 60 (70%) 47 (55%) 0.041
5min-1h 33 (38%) 14 (40%) 9(18%)"t  Osmophobia 8 (9%) 4 (5%) 0.369
1-24h 38 (44%) 13 (37%) 25 (49%) Neck stiffiness 23 (27%) 13 (15%) 0.061
24-72h 15 (17%) 8 (23%) 17.33%)"  Scalp allodynia 22 (26%) 14 (16%) 0.134
Intensity (severe %) 33 (38%) 11 (31%) 13 (26%) Number of accompanying 22, 4) 2(0,3) 0.002
Accompanying symptoms
symptoms — - - -
Group A: the onset of migraine was earlier than vertigo, VAS: visual analog scale.
Nausea 61 (71%) 20 (57%) 37 (73%)
Vomiting 51 (59%) 17 (49%) 26 (51%)
Photophobia 42 (49%) 18 (51%) 21 (41%) TABLE 5 | Psychiatric comorbid disorders among subjects in group A, B, and C.
Phonophobia 57 (66%) 23 (66%) 33 (65%)
Tinnitus 20 (23%) 6 (17%) 11 (029 ~ Disorders Aln=86) B(n=35) Cln =51
A: the onset of migraine was earlier than vertigo; B: the onset of vertigo was earlier Anxiety 24 (28%) 13 (37%) 26 (51%)"
than migraine; C: vertigo was accompanied with headache. *p < 0.05 vs. group A;  Depression 40 (47%) 15 (43%) 27 (53%)
tp < 0.05 vs. group B. PPPD 30 (35%) 15 (43%) 15 (29%)
Sleep disorders 56 (65%) 29 (83%) 36 (71%)

TABLE 3 | Headache symptoms among subjects in group A, B, and C.

Headache symptoms A (n =86) B (n = 35) C (n =51)
Frequency (times/3 months) 3(0.3,7.9) 6 (3, 12)* 7.5 (3, 16.5)
Duration (h) 12 (2, 24) 24 (5, 36)* 24 (4.5, 36)*
Intensity (VAS) 5(3,6) 5(4,7) 55, 7)t
Accompanying symptoms

Nausea 34 (40%) 18 (51%) 38 (75%)*t
Vomiting 20 (23%) 10 (29%) 27 (53%)*t
Photophobia 26 (30%) 17 (49%) 21 (41%)
Phonophobia 47 (65%) 23 (66%) 35 (69%)
Osmophobia 4 (5%) 4 (11%) 6 (12%)
Neck stiffness 13 (15%) 9 (26%) 14 (27%)
Scalp allodynia 14 (16%) 5 (14%) 5 (10%)

A: the onset of migraine was earlier than vertigo, B: the onset of vertigo was earlier
than migraine; C: vertigo was accompanied with headache. VAS: visual analog
scale. *p < 0.05 vs. group A; tp < 0.05 vs. group B.

that one potential mechanism was the interaction of the
vestibular and trigeminal systems. The main mechanism of
VM is currently considered as the connection of trigeminal
caudal nucleus with vestibular nucleus (Furman et al., 2013;
Huang et al., 2020), so the vestibular stimulation and migraine
headache could interact with each other. A study showed
that headaches completely disappeared or reduced in strength
after vestibular thermal stimulation during migraine attacks
(Kolev, 1990), which suggested that the painful conduction
pathway might be inhibited after the activation of the vestibular
pathway. On the other hand, both the prevalence of migraine
and VM was significantly higher in females than males, and

A: the onset of migraine was earlier than vertigo, B: the onset of vertigo was earlier
than migraine; C: vertigo was accompanied with headache. PPPD: persistent
postural-perceptual dizziness. “p < 0.05 vs. group A.

the conversion from headache to vertigo was more common
around menopause (Lempert et al., 2009; Park and Viirre, 2010;
Pagnini et al., 2014), which has been confirmed in our data.
Moreover, migraine tended to improve when sex hormone levels
stabilized after menopause (Vetvik and MacGregor, 2017), and
hormone fluctuations during the perimenopausal period were
associated with an increased risk of vertigo (Park and Viirre,
2010). Hence, another possible hypothesis was the role of female
sex hormones as a facilitating factor for the transformation of
migraine headaches into vestibular attacks.

An interesting aspect verified in our study was that VM
patients with vertigo and headache occurred simultaneously
presented higher frequency and longer duration of vertigo.
Similarly, this phenomenon might be due to the interaction
of the vestibular and trigeminal systems. A study showed
that trigeminal stimulation induced nystagmus in patients with
migraine but not controls, which suggested increased vestibular
excitability in migraine patients (Marano et al., 2005). Functional
imaging of the brain showed that the activation of temporo-
parieto-insular areas and bilateral thalami was increased during
vertigo attacks in VM patients (Shin et al, 2014), and the
magnitude of thalamic activation was positively correlated with
the frequency of migraine attacks (Russo et al., 2014). Based
on this, we hypothesized that vestibular excitability increased
when vertigo occurred together with migraine headaches, and
the thalamus and other brain regions might be activated more
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significantly after both vestibular and painful stimulation. That
is to say, painful trigeminal stimulation might enhance the
excitability of the vestibular system, and the threshold of
vestibular perception of VM patients decreases and the sensitivity
increases, similar to the central sensitization effect. In addition,
patients with concurrent vertigo and headache experienced
severer headaches accompanied with nausea and vomiting more
often, which might be associated with more frequent attacks
of vertigo. But no significant correlations were found between
other clinical features of migraine (e.g., disease duration, pain
intensity, migraine disability) and thalamic activation, except for
the frequency (Russo et al., 2014). And the influence of migraine
symptoms on vestibular attacks remains to be further studied.
Other factors that should be considered were the contributions of
motion sickness history and anxiety, which were more common
in VM patients with concurrent vertigo and migraine. Anxiety
was associated with significantly increased recurrence of VM
(Formeister et al., 2018) and motion sickness could enhance
motion intolerance (Wang and Lewis, 2016).

The special temporal patterns of vertigo and migraine make
it difficult for many clinicians to accurately diagnose VM,
and patients usually undergo a painful and protracted course
until they visit a headache or vertigo specialist. During the
course, VM patients are usually anxious about unexpected and
intense vertigo attacks, afraid of falling and avoid going out
or entering various environments triggering dizziness (Kutay
et al., 2017). Additionally, many of them complain of decreased
daily activities and nearly constant dizziness and lightheaded
(von Brevern and Lempert, 2016). Many studies suggested that
VM patients were prone to psychiatric comorbidities, such as
anxiety (19.8-70.2%) (Langhagen et al., 2014; Beh et al., 2019),
depression (21.8-40.5%) (Vuralli et al., 2018; Beh et al.,, 2019),
PPPD (32.8-41%) (Neff et al., 2012; Eggers et al., 2014; Beh
et al, 2019) and sleep disorders (29-67.4%) (Vuralli et al,
2018; Beh et al, 2019; Wu et al, 2019), regardless of the
frequency of vertigo. Our study showed that VM patients also
had high rates of psychiatric comorbidities regardless of the
temporal patterns. Vestibular attacks increase the incidence of
psychiatric comorbidities, and psychiatric disorders aggravate
the severity of vestibular symptoms. Then a vicious circle
is formed, and the disease becomes deferred. Therefore, we
should make an effort to understand these temporal patterns
in VM, in order to give patients correct diagnosis and
timely treatment.

This study had several potential limitations. Firstly, we lacked
data on the features of vertigo before the onset of migraine
in group B to further support our hypothesis that migraine
headaches could increase the vestibular excitability and aggravate
the manifestations of vertigo. Moreover, we only described the
clinical features of VM by a cross-sectional study. A long-
term longitudinal study will be of great help to understand the
temporal patterns of VM and identify this entity. Secondly, we
enrolled patients with probable VM, the diagnostic criteria of

which have not been included in the International Classification
of Headache Disorders 3rd edition (ICHD-3). But some studies
have shown that there was no significant difference between
definite and probable VM (Eggers et al., 2011; Van Ombergen
et al., 2015; Cho et al,, 2016), and most probable VM patients
would develop definite VM over time during long-term follow
up (Radtke et al., 2011).

CONCLUSION

We found that the temporal patterns of vertigo and migraine
affected the clinical features of VM. Migraine headaches
usually disappeared or relieved after recurrent vertigo attacks,
especially in women around menopause, while vestibular vertigo
was more frequent and lasted longer when accompanied
with migraine headaches. The underlying mechanism might
be that vestibular stimulation inhibits the trigeminal pain
pathway, while painful trigeminal stimulation could excite the
vestibular system.
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In transcranial penetration, ultrasound undergoes refraction, diffraction, multi-reflection,
and mode conversion. These factors lead to phase aberration and waveform distortion,
which impede the realization of transcranial ultrasonic imaging and therapy. Ray tracing
has been used to correct the phase aberration and is computationally more efficient
than traditional full-wave simulation. However, when ray tracing has been used for
transcranial investigation, it has generally been on the premise that the skull medium
is homogeneous. To find suitable homogeneity that balances computational speed
and accuracy, the present work investigates how the focus deviates after phase-
aberration compensation with ray tracing using time-reversal theory. The waveforms
are synthetized with ray tracing for phase aberration, by which the properties of the skull
bone are simplified for refraction calculation as those of either (i) the cortical bone or
(i) the mean of the entire skull bone, and the focusing accuracy is evaluated for each
hypothesis. The propagation of ultrasound for transcranial focusing is simulated with
the elastic model using the k-space pseudospectral method. Unlike the fluid model, the
elastic model does not omit shear waves in the skull bones, and the influence of that
omission is investigated, with the fluid model resulting in a focal deflection of 0.5 mm.
The focusing deviations are huge when the properties of the skull bone are idealized with
ray tracing as those of the mean of the entire skull bone. The focusing accuracy improves
when the properties of the skull bone are idealized as those of the cortical bone. The
results reveal minimal deviation (8.6, 3.9, and 3.2% in the three Cartesian coordinates)
in the focal region and suggest that transcranial focusing deflections are caused mostly
by ultrasonic refraction on the surface of the skull bone. A heterogeneous skull bone
causes wave bending but minimal focusing deflection. The proposed simplification of
a homogeneous skull bone is more accurate for transcranial ultrasonic path estimation
and offers promising applications in transcranial ultrasonic focusing and imaging.

Keywords: transcranial focusing, k-space pseudospectral method, ray tracing, time-reversal theory, skull
heterogeneity
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INTRODUCTION

The transmission of ultrasound through the human cranial
bone is very important for non-invasive transcranial acoustic
imaging (Errico et al, 2016; Jordan et al., 2017), therapeutic
applications such as the ablation of brain tumors (Pernot
et al.,, 2007; Colen and Jolesz, 2010; Mcdannold et al., 2010;
Damianou, 2019), and mechanical brain thrombosis ablation
angioplasty (Behrens et al., 2001; Liu et al., 2014; Lee et al., 2016;
Levinsky et al., 2016). Recently, transcranial ultrasound becomes
an alternative approach for neuromodulation techniques, as
ultrasound can non-invasively transmit to deep targeted brain
circuits (Darrow, 2019; Li et al.,, 2019). The focusing capability
of transcranial ultrasound determines the region and volume
of neuron stimulation in deep brain (Tyler, 2011; Ibsen et al,
2015). In addition, it shows capability to detect mental activity
based on transcranial acoustic images and functional images
(Myrden et al., 2011).

The above applications suggest that transcranial ultrasound
can be a promising modality for brain computer interface
(BCI) systems. However, the irregular geometrical shape
and complicated composition of the cranial bones lead
to inevitable distortions in ultrasonic waves, such as
propagation-path deflection and phase aberration (Pernot
et al., 2003; Kyriakou et al., 2013). Therefore, phase-aberration
correction is an important aspect of transcranial ultrasound
focusing and imaging.

Over the years, researchers have presented diverse models for
studying transcranial ultrasound. For instance, the skull has been
idealized as a spherical shell, thereby making it easier to calculate
the acoustic speed and thickness in the skull (Hatakeyama
et al,, 2002). The skull has also been idealized as a shell
with non-parallel boundaries, thereby facilitating investigation
of the transmission of shear waves in the skull bones by using
spectral decomposition (Clement et al., 2004). By considering
the irregular surfaces and complex inner structure of the skull,
full-wave simulation guided by magnetic resonance imaging and
computed tomography (CT) is close to reality (Hayner and
Hynynen, 2001; Connor et al, 2002). Different types of full-
wave simulation have been used for transcranial ultrasound.
The finite-difference time-domain (FDTD) method, which is a
conventional full-wave simulation method (Yilmaz and Ciftci,
2013), has been used to estimate the velocity of longitudinal and
shear waves in the human skull (Hughes and Hynynen, 2017).
The Fourier pseudospectral time-domain method, utilizing fast
Fourier transform to solve acoustic equations, tends to be more
efficient in solving large-scale problems (Liu, 1998; Mufioz and
Hornikx, 2017). The k-space method, which is accurate for weak
scattering media, has also been applied in transcranial studies
(Mast et al., 2001; Robertson et al., 2017).

However, three-dimensional acoustic full-wave simulations
are limited by excessive time consumption and memory
requirements (Pichardo et al., 2017). Recently, ray tracing
(RT) has been implemented in long-bone structure imaging
(Renaud et al., 2018) and phase compensation for B-mode image
reconstruction (Szostek and Pidrkowski, 2016). It shows potential

for wave-path prediction and phase-aberration compensation
for transcranial ultrasonic focusing. Commonly used in vision
graphics and seismic tomography (Wei et al., 2014), RT is more
efficient and requires less computational capability than full-
wave simulation. However, the spatially varying porosity of the
skull limits the use of RT because the acoustic properties differ
spatially even in one ultrasound wavelength, which is beyond
the ray regime. Consequently, the skull is generally idealized as
being either homogenous or less heterogeneous to satisfy the RT
requirements (Jin et al., 2008; Wang and Jing, 2013; Vassilevski
et al., 2016). In previous papers, several transcranial ultrasound
models have treated the skull as a homogenous medium, for
which the ultrasound speed was simplified as the average of the
entire skull (Jin et al., 2008; Renaud et al., 2018). However, the
validity of that simplification is yet to be discussed.

In the present study, to satisfy the RT requirements, the
porosity of the skull bone is simplified and the heterogeneous
skull bone is regarded as being homogenous. In turn, for
refraction calculation with Snell’s law (SL), the homogeneous
properties of the skull bone are simplified as those of either (i) the
cortical portion of the skull or (ii) the mean of the entire skull.
For each simplification, the transcranial focusing deflections
are evaluated and compared with those obtained using the
time-reversal method. The paper is organized as follows: in
methods section, RT method, k-space pseudospectral based
full wave-simulation and time-reversal theory are introduced.
Then, the numerical implement is introduced, including CT-
based heterogeneous assumption of skull bone, homogeneous
assumption in RT and simulation setup. In the simulation
setup, focusing deflections caused by (i) the shear wave
neglection after phase correction, (ii) the presence of skull
with conventional focusing algorithm and (iii) homogeneity
assumption in RT are investigated. In the discussion section,
the focusing deflections of the simulations are given and
corresponding discussion is presented. The present investigation
of transcranial focusing deflection with RT should (i) improve
the understanding of directional wave deflection for ultrasound
transmission and (ii) help in choosing optimal acoustic properties
to reduce wave-path estimation errors. The present results have
meaning for fast and accurate transcranial phase-aberration
calculation with RT.

MATERIALS AND METHODS

Ray Tracing for Transcranial Ultrasound

There are two ways to implement RT numerically. The gridded-
velocity model, which is based on the Fourier plane-wave
assumption, details the velocity field in two or three dimensions;
the ray trajectories are then found by solving the geometrical
spreading equation %VZA — VAVT =0, where A and T are
the amplitude and the travel time functions, respectively, both
of which vary with position (Kendall and Thomson, 1989).
The alternative model, which assumes multiple layers, specifies
the geometrical boundary between different velocity layers and
implements SL calculations at the boundary (Waltham, 1988;
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Clement and Hynynen, 2003). The gridded-velocity model is
the simpler of the two models because the RT calculation is
reduced to the geometrical spreading equation that incorporates
SL; however, computer memory consumption and computational
inefficiency impede its use for three-dimensional simulation. The
second approach requires complex geometrical calculations for
the detailed boundary confirmation and is suitable only in cases
of relatively few layers. In the present work, the skull bone
is idealized as an isotropic homogenous medium for RT, and
a three-layer model is solved by using the latter method for
transcranial ultrasonic transmission.

Transmission Coefficient

When the spherical wave generated by a point source refracts at a
liquid-solid boundary, the ultrasound energy decreases and the
amplitude of the velocity potential decreases to approximately
(Teng and Zhang, 1997).

QZ = (Qreflref/ll)Trl/z/(l/z + er)- (1)

Here, we have I, = I;sinacos®B/ (sinpcos?a), where I and I, are
the lengths of the incoming and refracted rays, respectively, a
and B are the incoming and refracted angles, respectively, Qyf
is the velocity potential reference, and I, is the corresponding
distance between the reference and the source. As shown in the
Appendix, T, is the plane-wave transmission coefficient. For
the three-layer model, the amplitude of the velocity potential
decreases approximately as

Q = QTh/ (5 + 13). 2

Here, we have by = L, + I, and I = l;sina/cos?’ / (sinp’cos?al’),
where o and B’ are the incoming and refracted angles,
respectively, on the second layer, I, is the ray length between
the two layers, I3 is the refracted ray length on the second layer,
and Q) is the velocity potential of the incoming ray at the
second intersection.

Phase Calculation and Waveform Synthesis

Based on the ray shooting method of RT theory, the optimal
refraction positions on the two layers can be acquired and the
corresponding travel time can be calculated as t = Z?:l(li /¢i)s
where ¢; is the wave speed in layer i. The frequency deviation
caused by the acoustic attenuation can be calculated in the
frequency domain. The distorted waveform and the amplitude
of the velocity potential can thus be predicted as P(f) =
FYF (Pref(t))A(oo)}, where F and F~! are the forward
and inverse Fourier transforms, respectively, and A(w) is the
frequency-dependent attenuation coefficient. The ultrasound
amplitude after refraction can be acquired with the transmission
coefficient as shown in the section entitled “Transmission
coefficient.” The multi-reflection at the middle layer can be
neglected when the attenuation there is high compared with those
at the adjacent layers. The first transmissive waves are considered
with the RT method. Because longitudinal and shear waves exist
in the middle layer, two rays are derived separately and combined
to synthesize the final waveform.

Full-Wave Simulation

As the theoretical model of ultrasonic propagation, we choose the
Kelvin-Voigt elastic wave equation, which includes basic elastic
properties such as density, Lamé constants, and attenuation. The
corresponding time-domain numerical solutions are acquired
using the k-space pseudospectral method. In a previous study,
various k-space algorithms were applied for acoustic wave
simulation. The simplest version, which is based on the second-
order wave equation, applies to isotropic and homogeneous or
weakly homogeneous media (Mast et al., 2001). The second
version, which is based on coupled first-order equations, suits
sharper-varying materials and requires additional memory to
store the displacement vector or the velocity vector (Tabei
et al., 2002). Compared with the FDTD method, the second
version is more efficient because it requires fewer grid points
for the same simulation accuracy. For instance, it is perfectly
accurate for homogenous media, even with the two grid points
per wavelength that are used in the second version of the
k-space algorithm, whereas at least six grid points per wavelength
are required with the FDTD method (Liu, 1998). The k-space
pseudospectral algorithm, which is a combination of the two
versions, is suitable for large-scale wave simulation because
it saves memory and increases computing speed by requiring
fewer grids.

Kelvin-Voigt Model
In the linear acoustic regime, coupled first-order equations
determine the wave propagation in a viscoelastic medium. In
temporal differential form, the coupled equations are given as
(Carcione et al., 2004).

ij (r,t+ At)
3
ovi (r, t) ovi(r,t)  0ovj(r,t)
= At{N (1) 85 Y ————
{ (r) ¥ ; 6x,~ th (1’) axj + 6x,-
+)\/()8 Zalazvi(r,t)
EY I A
! ox;ot
k=1
v (r, 1) 8%v; (r, 1)
/ i\, j\T
ij 2 t 2
e (r)( oxot T oxar )01
i:j:1)23 39 (3)
3
At aclj (r, 1)
vl(r,t—l—At):—( — +f(r,0)
l p(r) ]:ZI 0% /
+vi(r,t), i=12,3, (4)
where ojandv; are the stress and velocity vectors,
1 i
respectively,f is the external stress, §; = l 0 i #j, is

the delta function, and x; and x; are spatial directions as
x = {x1,x2,x3} in Cartesian coordinates. Moreover, p(r)
is the density, A(r) and p(r) are the first and second
Lamé constants, respectively, \'(r) and W'(r) are the
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attenuation coefficients, and At is the temporal differential
step. Note that the second-order derivation in Eq. 3 can be
simplified to

%v; (r, t ovi (r, t
vi (r ):a vi (r, 1) Jox;
oxjot ot

3
_ 1 00ijj (r, t)
—a[m(]zzla@)”“”]/@"f’
i,j=1,2,3. (5
K-Space Pseudospectral Method

The first-order derivation of variables (o or v) can be obtained by
using the forward and inverse Fourier transforms of the variables

a()
é’xi

= FH{ikisinc (cmkAt/2) F ()}, (6)

where ¢, is the maximum wave velocity and F and F!
are the three-dimensional forward and inverse spatial Fourier
transforms, respectively. The operator ik; is generated from the
conventional pseudospectral method. The scalar Green’s function
operator sinc (c,kAt/2) is derived from the dyadic Green’s
function solution of the second-order elastic wave equation (Liu,
1998). This is an improvement from the pseudospectral method.
The elastic wave equations are divided into compressional and
shear wave components. The compressional stress matrix G‘Z and
the shear stress matrix ij are calculated independently in Eq.3,

while the total stress 6;; in Eq. 4 is the sum of G‘Z and oj;. Although
staggered grids are not necessary in this method, they are used to
improve the stability and efficiency (Firouzi et al., 2012).

When the shear modulus matrix p is set to zero, the coupled
viscoelastic first-order equations degenerate into the acoustic
wave equations for a fluid medium. Under that hypothesis,
the stress vector o in the elastic equations is equivalent to
the sound pressure p in the fluid medium. During transcranial
ultrasonic propagation, the stress vector o and the sound pressure
p are continuous at the boundary between solid and liquid,
whereas the velocities are continuous at the boundary. Therefore,
the viscoelastic model is applicable for simulating ultrasound
transcranial transmission.

Time-Reversal Theory

For conventional ultrasonic focusing with a phased-array probe,
the phase aberrations are based on the assumption of constant
sound velocity in soft tissue. However, the wave velocity
difference between soft tissue and bone impedes its application
in transcranial focusing. Phase correction with time-reversal
theory is a valid way to compensate for the distortion that is
caused by the skull. Time-reversal theory, which is based on
the reciprocity principle, takes advantage of the invariance of
the wave equation and assumes that forward and backward
ultrasonic propagation have the same time-frequency response.
Ultrasound from a virtual or real source that is located at
the desired focal point should be recorded by each channel
of the phased array (Figure 1). The time-reversed wave that

[ . Detector arrays

Skull

Point source

FIGURE 1 | The diagram of VS (point source), skull and detector arrays. VS
emits ultrasound wave, which will go through skull and recorded by detector
arrays.

propagates backward to the source will focus optimally on
the source (Thomas and Fink, 1996). For conventional time-
reversal theory, when the source transmits a pulsed signal,
the receivers must record all of the temporal waveforms.
The signals are time-reversed and transmitted backward to
the source to guarantee the optimal pulse waveform at the
focal point. However, transmitting ultrasonic signals with the
source deep inside the skull in vivo tends to be difficult,
especially for clinical trials. An alternative option is to use
geometrical information about the skull bone to estimate the
waveforms with a virtual source (VS) transmitting a signal
inside the skull. For the RT method in the present work,
diffraction and multilayer reflections are neglected. Diffractions
are omitted because diffraction is weak with the assumption
that microstructure (trabecular bone) is not considered and
thickness of bone is significantly larger than wavelength.
Multilayer reflections are omitted because the energy of reflected
waves is neglectable compared with that of the wavefront as
a result of attenuation in bone and reflectional energy loss
at the tissue-bone boundary. The longitudinal-longitudinal-
longitudinal and longitudinal-shear-longitudinal transmission
modes are calculated separately and then combined as the signal
received by the phased array, while the remaining temporal
waveforms are set to zero.

NUMERICAL IMPLEMENT

CT-Based Heterogeneous Plastic

Material Properties for k-Space
Pseudospectral Full-Wave Simulation

In transcranial ultrasonic investigations, the assumption that the
skull’s elastic properties vary along with Hounsfield unit in CT-
images has been verified experimentally for transcranial focusing
(Top et al., 20165 Pichardo et al., 2017). Under that hypothesis,
the elastic properties of the computational region, such as density,
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FIGURE 2 | Density distribution of skull and degassed water in vertically
spaced slice mode.

wave velocity, and attenuation, can be acquired with the following
equations (Pichardo et al., 2011, 2017; Top et al., 2016):

_q Hu
llf — 4 TM’
P = PminV + Pmax (1 — V), (7)

. =cwl +c, (1 =),

N = x/min + ()\;nax - )\/min) x \bﬁ’

where Hu is the Hounsfield unit, Hu,, represents the Hounsfield
windowing of CT data, \{ is the porosity matrix, which is
relevant to the bone trabecular density, and p is the density
matrix, with p;, = 1000kg/m?® as the density of water and
Pmax = 2100kg/m3 as the maximum density of the skull. The
density distribution can be acquired for the entire computational
region (Figure 2). In addition, ¢y, is the longitudinal wave speed
matrix, with ¢,, = 1500m/s as the sound speed in water and ¢;, =
2900m/s as the maximum longitudinal wave speed in the skull.
The shear wave speed is approximated as ¢; = 7¢;/11 in the skull
(Pichardo et al.,, 2017). The term A/ is the frequency-dependent
longitudinal wave attenuation matrix, with X/, = 12Npm™! as
the minimum attenuation coefficient and )/, = 460Npm ™! as
the maximum attenuation coefficient (Pichardo et al., 2011). The
shear wave attenuation matrix is set to 20%’/19 (Top et al., 2016),
with  =0.5.

Homogeneous Models for Ray Tracing

In the idealization of using conventional homogeneous elastic
properties for transcranial focusing and imaging, a uniform
velocity has been treated as being the average for the entire skull,
whereas the focusing accuracy remains to be evaluated (Tretbar
et al., 2009). However, we consider the velocity in the cortical
bone as being superior to an average velocity, this being because
the cortical bone covers the skull and refraction occurs at the
boundary. We investigate the accuracy of the two idealizations.
For the first case, the constant ultrasonic longitudinal velocity
in the skull layer is taken as c,; = 2358m/s and shear velocity

is taken as c,s = 1500m/s, which is the average velocity of the
skull. The constant density is taken as the average value, namely
p = 1656kg/m>. For the second case, the velocity on the surface
of the skull layer is taken to be that in the cortical bone, namely
¢ = 2900m/s and shear velocity is taken as c,; = 1845m/s. The
density is taken as being the maximum density, namely p =
2100kg/m?, which is used for the SL-based refraction calculation.
The internal skull velocity is taken as being the average value on
the ray paths, namely ¢ = 2358m/s, which influences the travel
time in the skull layer.

Simulation Setup

Because the acoustic properties of soft tissue, such as the scalp,
cerebral spinal fluid, and intracranial soft tissues, are comparable
with those of water, all the soft tissues are treated as water. An
in vitro skull is assumed to be immersed in degassed water to
avoid the adverse effects of bubbles, such as acoustic scattering,
energy attenuation, and non-linearity. The pixel interval for
the whole computational region is interpolated to be 0.5 mm
to meet the minimum demand of full-wave simulation, that
the mesh size (pixel interval) is approximately one-fourth the
wavelength A = 1.93 mm in water. The corresponding grid size is
512 x 512 x 512, with the skull placed in the central region. With
a central frequency of 0.8 MHz and an active element spacing
of 10 mm for transcranial focusing, the planar phased array is
located 5 mm above the upper surface of the skull and comprises
10 x 10 elements. Although the relatively large element spacing
leads to grating lobes, it does not interfere with the main lobe,
which is the present emphasis. The default VS is located at the
center of the grid of the computation region, which is also the
origin of the rectangular coordinate system. In addition, the
axial line of the entire computation region, namely the z axis of
the rectangular coordinate system, runs perpendicularly through
the middle of the planar phased array. However, we do not
consider the size and direction sensitivity of each element or the
bandwidth of the phase array (Hu et al., 1988).

The k-space pseudospectral method based on the elastic
model tends to be superior to the conventional fluid model
because neglecting shear waves in the latter influences the
transcranial ultrasonic focusing position and intensity even when
the incoming incident wave does not exceed the critical angle
for shear-wave omission. The transcranial propagations in this
section are calculated with the CT-based heterogeneous-medium
assumption, and simulations are implemented to evaluate the
impact of neglecting shear waves. In the first case, longitudinal
and shear waves in the skull are considered both for the VS
to array receiver (VS2AR) process and the array receiver to
VS (AR2VS) process. In the second case, longitudinal and
shear waves in the skull are considered for the VS2AR process,
whereas the shear waves are neglected for the AR2VS process.
The neglecting of shear waves is discussed in this section
only; in all other sections, longitudinal and shear waves are
considered by default for wave-propagation simulations. Note
also that in all other sections, transcranial propagation is
calculated with the heterogeneous-medium assumption using the
elastic model based on the k-space pseudospectral method for
the AR2VS process.
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Focusing zone deflection of transcranial ultrasound has been
investigated with spherically focusing phased array (Hughes and
Hynynen, 2017). However, deflection with planar phase array
remains to be investigated. Thus, simulations are implemented
to evaluate the tremendous impact on focusing zone of skull-
induced distortion. Firstly, temporal waveforms are derived with
the conventional focusing algorithm without considering the
skull’s presence for the VS2AR process. The waveforms are time-
reversed and transmitted backward toward the VS. Secondly, the
skull is not considered for the AR2VS process in the first case
but is located between the transducer array and the VS in the
complementary case.

In order to evaluate the influence of middle layer
(cancellous bone) on focusing zone deflection. Simulations
were implemented where temporal waveforms are derived with
different homogenous idealizations by using the RT method
for the VS2AR process. Re-focusing the deviations with the
two homogenous idealizations, the mean velocity value of the
entire skull and of the cortical bone are evaluated separately,
as mentioned previously. The purpose is to investigate the
optimal choice for efficient and accurate RT-based transcranial
focusing. Groups of simulations are implemented with VSs
other than the default one. The focusing deviations, whose
temporal waveforms are calculated by using RT when the
homogenous properties of the skull are idealized as those
of the cortical bone for the AR2VS process, are measured
and compared with those of the conventional time-reversal
method. When the temporal waveforms are derived with
RT, the time-reversed signal that is emitted from each
array element is normalized according to the channel with
the highest intensity. The waveform is also set as that for
the channel with the highest intensity. This normalization
makes sense because the present concern is the focusing
deviation, not the power.

RESULTS

Accuracy and Calculation Efficiency

The k-space pseudospectral method, the pseudospectral method,
and the FDTD method are compared to evaluate the accuracy
of the full-wave simulation. The waveform with the k-space
pseudospectral method (A = 4Ax, tpaxAt/Ax =0.1) has a
phase-error ratio of 0.7% compared with that with the
FDTD method (A = 16Ax, tya At/ Ax = 0.015), where \ is
the wavelength, Ax is the grid width, At is the time interval.
Phase-error ratio is represented by A¢/2w x 100%, where A
is the phase difference. The waveform with the pseudospectral
method has a phase-error ratio of 7.3% compared with that
with the FDTD method under the same setting. The k-space
pseudospectral method is suitable for the present simulation as
it has better accuracy under the same sparse spatial and temporal
grids compared with the pseudospectral method. After refraction
at the liquid-solid boundary, the waveforms of the acoustic
velocity are calculated using RT and the k-space pseudospectral
method separately (Figure 3). The results confirm the feasibility
of RT with an amplitude error (A;“ﬁ — 1) x 100% of 5.35% and
a phase-error ratio of 1.2%, where A is the amplitude with k-space
pseudospectral method or with pseudospectral method and
Arpprp is the reference amplitude with FDTD. The computational
time is reduced from 23 h 35 min 13 s with the k-space
pseudospectral method to 37 min 24 s with RT (Intel® Xeon®
E7-4830 v4; MATLAB 2017; 12 cores for parallel computation).

Focusing Deviation Caused by Omission

of Shear Waves

The angles between the incident incoming waves from the array
elements to the VS and skull surfaces are less than 20°, which
meets the demand of shear-wave omission. The acoustic pressure
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FIGURE 3 | (A) Diagram of ultrasonic refraction at liquid—solid boundary. (B) Corresponding waveforms of velocity in x direction with k-space pseudospectral
method (black) and ray tracing (RT) (red). The first pulse is caused by a longitudinal wave and the second pulse is caused by a shear wave.
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0.8+
) showing them with their coordinates moving up in the axial
-§ direction (Figure 5). The phased array achieves optimal focusing
= using the conventional phased-array focusing algorithm without
E 0.4 the presence of the skull, while the focusing position with the
presence of the skull shows deflections of 79.0 mm in the axial
direction and 3.5 mm in the focal plane. For conventional
focusing without the skull, the maximum pressure in the focusing
0.0 area is approximately 46.5 Pa, whereas that with the skull is
40 0 40 approximately 1.95 Pa. The pressure in the focusing area is
Z (mm) low because the ultrasound transmitted from phased array are
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FIGURE 4 | Three-dimensional pressure distributions using conventional is attributed to the acoust}c ﬁeld of'the phas'ed array, which
time-reversal method considering (A) and without considering (B) the shear elongates the main lobe with increasing focusing depth. Note
wave for the virtual source to array receiver (VS2AR) process. (C) The that the attenuation disparity leads to the difference in pressure
corresponding normalized pressure distribution in the axial direction. amplitude between the two cases.

distributions are illustrated in vertically spaced slice mode, and
the deviations in focal position are small compared with the
large ultrasonic field space when shear waves are considered
(Figure 4A) and when they are not (Figure 4B). The maximum
pressure in the focusing area when shear waves are considered
is approximately 3.65 Pa, while that when shear waves are not
considered is approximately 4.85 Pa. The normalized pressure
distributions in the axial direction are illustrated for better
distinction (Figure 4C); they reveal an overall distortion of
0.5 mm beyond the VS when shear waves are not considered and
perfection at the VS when shear waves are considered.

Presence of Skull-Induced Focusing
Error With Conventional Phased Array

Focusing
When evaluating the tremendous impact of skull-induced
distortion, the focusing deviations are illustrated better by

Focusing Deviation After
Phase-Aberration Correction With Ray
Tracing

When the temporal waveforms are derived with RT under the
assumption that the homogenous properties of the skull are
simplified as those of the cortical bone for refraction calculation,
the focusing distribution reveals deflections of 0.5 mm in the
axial direction and 0.5 mm in the focal plane compared with the
VS (Figure 6A). By contrast, the focusing distribution reveals
deflections of 9.5 mm in the axial direction and 1.5 mm in
the focal plane when the homogenous properties of the skull
layer are simplified as those of the mean of the entire skull
(Figure 6B). The focusing deflections are evaluated when the
homogenous properties of the skull are those of the cortical
bone for refraction calculation with RT (Figure 6A) and are
compared with those of the conventional time-reversal method
(Figure 4A). The normalized pressures are extracted and reveal
a quasi-Gaussian distribution with a main-lobe width of 11 mm
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FIGURE 6 | Three-dimensional pressure distributions with temporal
waveforms derived using RT when the homogenous properties of the skull are
simplified as those of the cortical bone (A) and the whole-skull average (B) for
refraction calculation for the VS2AR process.
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FIGURE 7 | Normalized pressure distribution in axial direction when temporal
waveforms are calculated using RT with homogenous properties of the skull
idealized as those of the cortical bone for refraction calculation (broken line),
and the conventional time-reversal method (solid line) for the VS2AR process.

in the axial direction (Figure 7) and a two-dimensional quasi-
Gaussian distribution with a main-lobe width of 1.5 mm in
the focal plane (Figure 8). The focusing deviations, including
source position, spatial deviation, main-lobe width, and deviation
ratio in each direction, are given in Table 1 to illustrate the
influence of homogeneous idealization using RT. The deviation
ratio is the result of dividing the spatial deviation by the main-
lobe width.

DISCUSSION

For the AR2VS process, the ultrasonic pressure and focusing
position differ slightly depending on whether shear waves

are considered. To some extent, the results show that shear
waves can be neglected in less-rigorous cases in which the
incident wave does not exceed the critical angle for shear-wave
omission. However, neglecting the shear waves influences the
focusing accuracy and is better when using the elastic model
rather than the fluid model. The deviations can be interpreted
as the fact that the longitudinal wave in the skull plays a
major role as that of the small incident wave, and a small
portion of ultrasound energy in fluid medium is transformed
into shear waves in solid medium during longitudinal-shear-
longitudinal transmission. Different velocities of longitudinal
and shear waves in the skull lead to different refractions
and wave paths if the longitudinal-shear-longitudinal and
longitudinal-longitudinal-longitudinal transmission models are
considered separately. In the present work, the focusing position
of the longitudinal-shear-longitudinal model happens to be
lower than that of the VS, while the focusing position of
the longitudinal-longitudinal-longitudinal model is higher than
that of the VS. The two focuses are mixed to form the VS.
So, the focusing position is a little above the VS if shear
wave in bone is not considered. In addition, the maximum
amplitude of the focus region with shear waves considered
is smaller than that with shear waves neglected, this being
because shear waves are attenuated more than are longitudinal
waves. It is predictable that this phenomenon should become
more obvious as the VS moves closer to the skull, which is
equivalent to increasing the angle of the incident wave. The
extensive applicability of the elastic model shows its advantages in
transcranial investigation, especially for rigorous circumstances.
Certain studies have discussed how neglecting shear waves
influences transcranial investigations. For example, neglecting
the refraction and mode conversion of shear waves in the
skull layer for transcranial ultrasonic imaging has led to the
images of the absorbers being blurred and dislocated; such
phenomena become more evident as the absorbers move closer
to the skull both in simulations and in experiments (Jin et al.,
2008). Also, the effects of shear-wave propagation in three layer
models have been investigated to estimate the compensation
of Fourier components in plane-wave representation for image
reconstructions using photoacoustic tomography (Schoonover
et al., 2012). In conclusion, the elastic model based on the
k-space pseudospectral method is superior in both computational
efficiency and accuracy and is optimized for the transcranial
ultrasonic scenario.

The illustrations in Figure 5 reveal the distinct influence
of skull-induced distortion on transcranial focusing. The high
attenuation of the skull bone is attributed to the marked
difference in the focusing amplitude. In addition, the focusing
deviations are large—especially in the axial direction—compared
with the results of some studies on transcranial focusing
therapy (Kyriakou et al., 2013). That is because focused array
transducers are generally used for ultrasonic therapy, and the
corresponding distortion was not intense, especially when the
VS was not far from its self-focus point (Kyriakou et al., 2013).
In ultrasound imaging, using the conventional delay-and-sum
reconstruction algorithm for transcranial imaging is expected
to give either erroneous or distorted images of brain tissue.
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FIGURE 8 | Normalized pressure distribution in focal plane when temporal waveforms are calculated using the conventional time-reversal method (A) and RT with
the homogenous properties of the skull idealized as those of the cortical bone for refraction calculation (B) for the VS2AR process.

Wang and Jing (2013) discussed transcranial imaging with skull
aberration, where the positions rising of wire phantom images in
the axial direction considering the skull without phase correction
is caused by a sound-speed mismatch between skull and tissue.
The shape disorder and image deflection in the radial direction
are caused by the deflection of the focusing position in the radial
plane. There are some unexpected wire phantom artifacts that
can be interpreted as the influence of side-focuses (or sidelobes)
from skull-induced ultrasonic distortion (Figure 5B). The related
studies indicate that phase-correction algorithms are required to
solve the skull-induced distortion.

Comparing the focusing deviations indicates that the velocity
value of cortical bone, instead of the average velocity value, is
more suitable for temporal waveform estimation with RT for
refraction calculation. The reason is that the skull comprises three
layers, namely (i) the upper cortical layer, (ii) the cancellous layer,
and (iii) the lower cortical layer. The cortical layer, which is the
hardest portion of the skull, is likely to play a decisive role in
ultrasonic refraction at the skull-liquid boundary. Cancellous
bone, which has a trabecular structure, will not change the

TABLE 1 | Focusing deviations with different VSs (mm).

Deviation in each direction

Virtual source X Y z

(0.0, 0.0, 0.0) (1.0, 4.0, 25) 0, 4.0,0) (0.5,16.0, 3.0)
(10.0, 0.0, —10.0) (0.5, 4.0, 12.5) 0, 4.5,0) (0.5,17.0, 3.0)
(=10.0, 0.0, —10.0) 0,3.5,0) 0,4.5,0) (0.5,16.5, 6.7)
(0.0, 0.0, =10.0) (0,3.0,0) 0,3.5,0) (0.5,16.5, 3.1)
(10.0, 10.0, 0.0) (1.0, 3.5, 14.3) (1.0, 4.0, 12.5) (0.5, 14.5, 3.5)
(10.0, —10.0, 0.0) (1.0, 3.5, 14.3) (1.0, 4.0, 12.5) (0.5,14.5, 3.5)

Format of deviations in each direction is as follows: focusing-position deviation
(mm), main-lobe width (mm), deviation ratio (%).

ultrasonic propagation path significantly. In this idealization,
the fine structure of cancellous bone (heterogenous medium)
is simplified as homogenous medium, where refraction-induced
ray-path deflections inside the skull are neglected. The focusing
deviations indicate that heterogeneity inside the skull has
limited influence on the ultrasonic path deflection. The focusing
deviation result also supplements the discussion of how the fine
structure influences phase aberration, namely that the phase
of the ultrasound rarely changes even if the fine structure in
the skull is down sampled to half-wavelength resolution (Jing
et al, 2012). To investigate the feasibility of the homogenous
idealization with RT, deviations with diverse VSs were examined.
The focal positions and widths were always integers in multiples
of 0.5 mm, as a result of the fixed spatial resolution and the
locations. The deviation lengths for different VSs are random
and less than 1 mm, revealing average deviation ratios of 8.6%
in the x direction, 3.9% in the y direction, and 3.2% in the z
direction. The deviation ratios in the focal plane are higher than
their counterparts on the axial line because the semi major axis of
the ellipsoidal focal area lies in the axial direction. The deviations
reveal the reliability of using RT to estimate the temporal
waveforms when the skull surfaces are idealized as cortical bone
for refraction calculation. The present results contribute to the
analysis of unpredictable bending of wave trajectories caused by
the trabecular layer and thus provide further insight into major
and minor factors of transcranial wave directional deflection,
which can be meaningful for fast and accurate phase-aberration
correction calculation.

CONCLUSION

Transcranial focusing deviations are evaluated when the phase
aberrations are corrected with RT. The homogenous properties
of the skull are idealized as those of either the cortical bone
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or the average of the whole skull. The results reveal that the
cortical bone, instead of the average of the whole skull, should
be used for homogenous idealization with RT. The deviations
also indicate that the heterogeneity inside the skull bone plays a
marginal role in transcranial aberration, which can be neglected if
precise calculation is not demanded. The transcranial ultrasonic
transmission process was implemented with the Kelvin-Voigt
viscoelastic model using the k-space pseudospectral method,
where longitudinal waves, shear waves, and attenuation are
all considered. The model shows extensive applicability and
accuracy compared to the regularly used fluid model, offering
guaranteed reliability of transcranial investigation. The present
results could help with estimating wave paths for fast and accurate
phase correction using RT, which contribute to application of
transcranial ultrasound in brain computer interface systems.
Our future work will focus on the in vivo experiments of
transcranial ultrasound focusing and neuromodulation with the
focused ultrasound.
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APPENDIX

According to the Zoeppritz equations (Shuey, 1985), the plane-
wave transmission coeflicients can be derived for the liquid-
solid boundary. A longitudinal wave in the liquid material will
transform into shear and longitudinal waves in the solid material.
The reflection and transmission coeflicients are presented as

Ay B G Ry D,
Ay By G Ty | =| D2 |>
A3 B3 G Tis Ds

where  A; = —1, B; = pa2/p1cos Q6;) , C1 = —p2/p1cos 26y ,
Di=1,A,=0,B, = sin(zeﬂ)/c%l, C, = cos(26,s)/c§t, D, = 0;
Az = cos(0;)/cy1, B3 = cos(0y) /car, C; = —sin(0s) /s
D3 = cos(8;)/cy;, and Ry, Ty, and Ty are the longitudinal-
wave reflection coeflicient, longitudinal-wave refraction
coefficient, and shear-wave refraction coefficient, respectively.
Here, p; and ¢j; are the density and longitudinal wave speed,
respectively, of the liquid material, p, ¢y, and ¢, are the density,
longitudinal wave speed, and shear wave speed, respectively,
of the solid material, and 6;, 64, and 6y are the angles of the
incoming wave, refracted longitudinal wave, and refracted shear
wave, respectively.

The longitudinal wave transforms into longitudinal and shear
waves after reflection in the solid material while remaining a
longitudinal wave in the liquid material. The reflection and
transmission coeflicients are presented as

A 1 B] C1 Rll D 1
Ay By G Rs|=1{D2],
A3 By G Ty D;

where A} = cos (6;) /¢y, Bi = —sin (8y5) /c15, C1 = cos (8y) /ca,
Dy = cos (6;) /c1;; Az = —cos (20,5), By =sin(20,), Cy =
p2/p1, Dz = cos(20y); A3 = c},/c2sin®(6;), B3 = cos(20y),
C3 =0, D3 = /csin’(0;), and Ry, Ry, and Ty are the
longitudinal-wave reflection coefficient, shear-wave reflection
coefficient, and longitudinal-wave refraction coeflicient,
respectively. Here, p;, ¢1;, and ¢ are the density, longitudinal
wave speed, and shear wave speed, respectively, of the solid
material, p, and ¢y; are the density and longitudinal wave speed,
respectively, of the liquid material, and 6;, 6,4, and 6,s are the
angles of the incoming wave, the refracted longitudinal wave,
and the reflected shear wave, respectively.

e shear wave transforms into longitudinal and shear waves
after reflection in the solid material and transform into a
longitudinal wave in the liquid material. The reflection and
transmission coeflicients are presented as

A1 Bl C1 Rss Dl

Ay B, G Ry |=|D2},

A3 B3 C3 Ty Ds
where Ay = —sin (0;) /c15, B1 = —cos (6;)) /ey, C1 =
cos (0y) /e, D1 =sin(8;) /cis; Az =0, By = pjcos(26)),

Cy = p2, Dy =0; Az = —cos (26;), B3 = sin(20,)c},/c}), C3 =
0, D3 = cos (26;), and Ry;., Rj;, and T are the longitudinal-wave
reflection coefficient, shear-wave reflection coefficient, and
longitudinal-wave refraction coefficient, respectively. Here, pj,
c1> and ¢y are the density, longitudinal wave speed, and shear
wave speed, respectively, of the solid material, p, and ¢;; are the
density and longitudinal wave speed, respectively, of the, and 6;,
By, and 6, are the angles of the incoming wave, the refracted
longitudinal wave, and the reflected shear wave, respectively.
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The subjective cognitive decline (SCD) may last for decades prior to the onset of
dementia and has been proposed as a risk population for development to amnestic
mild cognitive impairment (aMCI) and Alzheimer disease (AD). Disruptions of functional
connectivity and causal connectivity (CC) in the salience network (SN) are generally
perceived as prominent hallmarks of the preclinical AD. Nevertheless, the alterations
in anterior SN (aSN), and posterior SN (pSN) remain unclear. Here, we hypothesized
that both the functional connectivity (FC) and CC of the SN subnetworks, comprising
aSN and pSN, were distinct disruptive in the SCD and aMCI. We utilized resting-state
functional magnetic resonance imaging to investigate the altered FC and CC of the
SN subnetworks in 28 healthy controls, 23 SCD subjects, and 29 aMCI subjects. In
terms of altered patterns of FC in SN subnetworks, aSN connected to the whole brain
was significantly increased in the left orbital superior frontal gyrus, left insula lobule,
right caudate lobule, and left rolandic operculum gyrus (ROG), whereas decreased
FC was found in the left cerebellum superior lobule and left middle temporal gyrus
when compared with the HC group. Notably, no prominent statistical differences were
obtained in pSN. For altered patterns of CC in SN subnetworks, compared to the HC
group, the aberrant connections in aMCI group were separately involved in the right
cerebellum inferior lobule (CIL), right supplementary motor area (SMA), and left ROG,
whereas the SCD group exhibited more regions of aberrant connection, comprising the
right superior parietal lobule, right CIL, left inferior parietal lobule, left post-central gyrus
(PG), and right angular gyrus. Especially, SCD group showed increased CC in the right
CIL and left PG, whereas the aMCI group showed decreased CC in the left pre-cuneus,
corpus callosum, and right SMA when compared to the SCD group. Collectively, our
results suggest that analyzing the altered FC and CC observed in SN subnetworks,
served as impressible neuroimaging biomarkers, may supply novel insights for designing
preclinical interventions in the preclinical stages of AD.

Keywords: subjective cognitive decline, amnestic mild cognitive impairment, salience network, functional
connectivity, causal connectivity
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INTRODUCTION

Alzheimer disease (AD) is a chronic neurodegenerative disorder
presented in elderly individuals with conspicuous decline in
cognitive deterioration and lapse of memory (Huang et al,
2019; Wessels et al.,, 2019; Zhang et al., 2019). As one of the
phases between normal aging and dementia, amnestic mild
cognitive impairment (aMCI) subjects have a 10-15% possibility
of developing into AD per year (Petersen et al., 2002; Yang et al.,
2017). Subjective cognitive decline (SCD) is the stage referring
to the elderly subjects that can last for decades earlier than
the onset of dementia when persons subjectively complain of
memory impairment without corresponding objective clinical
manifestations, while person’s scores are in the normal scope
through standardized neuropsychological tests (Huang et al.,
2018a; Funaki et al, 2019; Yu et al, 2019). Furthermore,
converging evidence suggests that SCD poses risk for developing
into MCI and AD, although it may likewise be of early preclinical
stages of other neurodegeneration diseases (Berger-Sieczkowski
et al., 2019; Caillaud et al., 2019). Thus, it stands to reason that
SCD can be utilized in conjunction with aMCI to explore the
mechanism of the early phases of AD and to detect it timely.
Numerous authors have applied resting-state functional
magnetic resonance imaging (rs-fMRI) as one of the principal
means to clarify the cognitive mechanism of AD (Yang et al.,
2017; Marchitelli et al., 2018; Passamonti et al., 2019). Besides, the
brain network researches relying on rs-fMRI serve the purpose
of revealing the mechanism of neural activity in the brain,
which have also important application value and significance
in exploring the pathogenesis of AD (Donofry et al, 2019
Lee].etal, 2019). Among them, plentiful works have been
examined by scholars involving in the relationships between
salience network (SN) and other networks in the brain
(Fredericks et al., 2019; Lee S. E. et al., 2019). More specifically,
the SN, which is typically involved in detecting stimulus salience,
is a large-scale brain network within the human brain (Cai et al.,
2019). Anatomically, it can be spilt into anterior SN (aSN) and
posterior SN (pSN) and is primarily anchored in frontoinsular
cortices and dorsal anterior cingulate cortex (dACC) (Menon
and Uddin, 2010). Recent large-scale works of literature point at
the altered patterns of FC and causal connectivity (CC) between
SN and other networks. A published study has confirmed that
individuals with AD exhibit decreased FC within and between
the default mode networks (DMNs) and SN in comparison with
healthy controls (HCs) (Liu et al., 2019). Additionally, patients
with MCI showed increased FC in the right insula lobule (IL)
and claustrum within the SN when compared to the HC group.
Similarly, for the aMCI subjects, the FC of the SN-centered
model [includes SN, DMN, executive control network (ECN)] is
impaired compared to the patients with AD, and these alterations
in SN-centered model may result in a decline in cognitive
disorder (Aguirre et al., 2019). The basic idea of Granger causality
analysis (GCA) is based on multiple linear regression to explore
whether there is a causal relationship between the two time
series; it helps to accurately forecast the current value of another
series and is widely utilized to brain science research field
(McBride et al., 2015; Xue J. et al., 2019). A recent study using

GCA to analyze CC patterns of aMCI has revealed that CC
alterations observed in the SN, ECN, and DMN networks may
be regarded as impressible neuroimaging biomarkers for the
preclinical intervention and detection of aMCI (Zhang et al,
2019). Former investigation has also revealed that pathological
alterations existed in the CC of dACC within SN of AD (Petersen
et al., 1985). So far, the majority of SN studies have almost
focused on the SN network or between SN and other networks,
yet very few researches have previously examined whether CC
and FC based on SN subnetworks can be used as neuroimaging
biomarkers for identifying aMCI and SCD and to explore how the
altered regions of FC and CC relate to cognitive function.

Herein, the objective of our work is to analyze the disruptions
observed in FC and CC of SN subnetworks for SCD and aMCI.
We hypothesized that there be distinct alterations of the FC and
CC in SN subnetworks, and they might be regarded as sensitive
neuroimaging markers.

MATERIALS AND METHODS
Participant

Data recruited in this article were acquired from the second phase
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-
2) database'. ADNI-2’s primary goal is to focus on finding
biomarkers of cognitive impairment and measures of outcome.
ADNI-2 was announced and implemented in 2011 and began
with a $67 million foundation. Furthermore, it lasted about
5 years. To investigate the gap between the HC and MCI, patients
with SCD were included in ADNI-2 for the first time; detailed
descriptions of ADNI-2 can be found in www.adni-info.org.
Subjects with HC (n = 28), SCD (n = 23), and aMCI (n = 29)
were recruited in the present work. Additionally, five individuals
were excluded because of excessive head motion (we controlled
cumulative translation or rotation > 1.5 mm or 1.5°, n = 3) and
quality control in normalization (n = 2). Ultimately, a total of
75 subjects were recruited, comprising 27 HC, 20 SCD, and 28
aMCI subjects.

MRI Data Acquisition

All participants recruited in our work underwent rs-fMRI of 3.0-
T Philips Medical Systems (Amsterdam, Netherlands) scanner.
The echo-planar imaging sequence contained 140 volumes, and
the subjects were separately required to lay subjects on their
back, with eyes closed, avoid mentally active brain, and maintain
head position during data acquisition. The specific parameters
of the scan were as follows: each subject contains 140 time
points, flip angle (FA) = 80°, matrix = 64 x 64 x 48, voxel
size = 3.31 x 3.31 x 3.31 mm?, repetition time (TR) = 3,000 ms,
echo time (TE) = 30 ms, slice thickness = 3.3 mm. T1-weighted
image volumes were obtained by using magnetization-prepared
rapid gradient-echo sequence (Chen et al., 2016), and the
parameters were as follows: matrix = 256 x 256 x 170, slice
thickness = 1.2 mm, acquisition plane = sagittal, TE = 3.16 ms,
TR = 6.81 ms, voxel size = 1 x 1 x 1.2 mm>, FA = 9°. All

'http://adni.loni.usc.edu/
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the data involved in this article are universally available to the
scientific community.

Data Pre-processing

For rs-fMRI data, Resting-State fMRI Data Analysis Toolkit
plus (RESTplus)* was applied for data pre-processing, which is
based on MATLAB2012a* and Statistical Parametric Mapping
(SPM12)*. Pre-processing for rs-fMRI data involved the
following steps: the first five volumes in 140 volumes for
each subject were removed for possible instability of rs-fMRI
signal, and the remaining 135 points in time were corrected for
controlling time differences between slices and head motion
effects of volumes. Cumulative translation of more than 1.5 mm
or angular motion of more than 1.5° was excluded. Next,
normalization was adopted to register the original space to the
Montreal Neurological Institute (MNI) space by T1 images to
mitigate the differences in brain structure between different
individuals. Then, the normalized brain volumes were smoothed
using Gaussian kernel of 6 x 6 x 6 full width at half maximum
in order to reduce individual variations. Following this, nuisance
variables, such as six head motion parameters, global mean
signal, white matter signal, and cerebrospinal fluid signal, were
severally removed to reduce the effect on the dependent variable
(Fox et al., 2009; Huang et al., 2018Db). Finally, to control noise
interferences such as heartbeat and breathing, the subjects’ brains
generated in the previous step were filtered at 0.01-0.08 Hz.

Statistical Analysis
The distinctions between the HC, SCD, and aMCI groups
of demographic and neurocognitive data were estimated by
employing analysis of variance (ANOVA) and the x -test within
the Statistical Package for the Social Sciences (SPSS) software
version 22.0 (IBM, Armonk, NY, United States), and then
P < 0.05 was set to indicate significant difference in our work.
Comparison and analysis for differences between HC, SCD,
and aMCI groups, one-way ANOVA, implemented in the Data
Processing and Analysis for Brain Imaging (DPABI)® software,
was performed through voxel-by-voxel way within the brain
mask after regression of age and gender covariates. As suggested
in former research, the false-positive rate can be effectively
controlled for multiple comparisons using the non-parametric
permutation test at the cluster level (Winkler et al., 2016). Here
we adopt 1,000 permutation times, and a cluster size > 30
voxels (810 mm?>) was set as the significant cluster. Besides,
the significance level was set at 0.05 in the permutation test
process. The two-sample t-test was employed to calculate
differences between two groups within the mask generated by
ANOVA. Previous study has identified that the non-parametric
permutation test with Threshold-Free Cluster Enhancement
(TFCE) can strike a good and strict balance between family-
wise error rate and reliability (Chen et al., 2018). Consequently,
permutation tests with TFCE, implemented in PLAM within

Zhttp://restfmri.net/forum/RESTplusV1.2
Shttp://www.mathworks.com/products/matlab/
*https://www.filion.ucl.ac.uk/spm/
>http://rfmri.org/dpabi

DPABI, were utilized to perform multiple comparisons in this
work, and then a cluster size > 10 voxels (270 mm?) was adopted
as the significant cluster, and the significance level was set at 0.05
(Xue C. et al., 2019).

Independent Component Analysis

Independent component analysis (ICA) is a data-driven and
robust analysis technique for separating statistically independent
signal sources, which is desirable in exploring neuroimaging
data (Beckmann, 2012). Based on former researches, we aimed
to use GIFT toolbox (v4.0b)° and the infomax algorithm to
obtain SN subnetwork components of all subjects (Duc et al.,
2019; Liu et al.,, 2019). To obtain more accurate aSN and pSN
components, we first split the data into 20, 25, 30, 35, 40, 45,
and 50 components. It is noted that the aSN and pSN templates
were acquired by pre-decessors’ research (Shirer et al., 2012).
A previous study has shown that the component with the highest
spatial correlation value is most similar to the template (Cai et al.,
2017), and then mean spatial maps of each component were
severally utilized to run spatial correlations with SN subnetworks
templates (Aguirre et al.,, 2019). Furthermore, a former study
has reported that visual recognition of components through
observation and comparison of three researchers was the same as
or better than machine recognition approaches (Cherubini et al.,
2009). Taken together, we obtained 40 independent components
through the collaboration of three researchers and ICA for
subsequent analysis, and the components most corresponding to
aSN and pSN were 34 and 14, respectively. Since the intensity
values in the ICA spatial map have been converted to z-values,
we directly performed one-sample ¢-test (p = 0.05, TFCE-FWE
corrected, cluster size > 10 voxels) of all subjects to ascertain the
aSN and pSN components, respectively.

Functional Connectivity Analysis

Two types of masks, comprising aSN and pSN masks, were
obtained according to the ICA analysis. Then, mask-based FC
analysis was carried out to examine the alteration patterns
between SN subnetworks and the whole brain. Following this,
Fisher r-to-z transformation was applied in generated FC brains
to further improve normal distribution and facilitate subsequent
statistical analysis.

Causal Connectivity Analysis

In the present work, GCA, implemented in Resting-State fMRI
Data Analysis Toolkit (REST)” and as one of the effective methods
for inferring causal relationships, was applied to measure the CC
between the two time series based on the previous researches
(Wang et al., 2015). We first extracted time series of each subject
from the SN subnetwork masks mentioned above and voxel in
the brain, respectively, and the CC result can be then obtained
using GCA. A brief introduction of GCA based on coefficient
is provided below. For two given rs-fMRI series x(t) and y(t),
supposing that it is more accurate to predict x(¢) using the past
time points of x(t) and y(f) than to predict x using x, then there

Chttp://icatb.sourceforge.net
7http:/ /www.restfmri.net/forum/REST_V1.8

Frontiers in Neuroscience | www.frontiersin.org

April 2020 | Volume 14 | Article 288


http://restfmri.net/forum/RESTplusV1.2
http://www.mathworks.com/products/matlab/
https://www.fil.ion.ucl.ac.uk/spm/
http://rfmri.org/dpabi
http://icatb.sourceforge.net
http://www.restfmri.net/forum/REST_V1.8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

Cai et al.

Altered Patterns in Salience Subnetwork

exists a causal relationship between x and y, where y is called
the cause and x is the effect. This is also analogous to other
case analysis. The mathematical formula is constructed in the
following form:

P P
x(t) = axo + Z Ay, ix(t — i) + Zayx,,-y(t — i)+

i=1 i=1

p
D beizi(t — i) + &(t)

i=1

p p
y() = ayo+ ) ayx(t—i) + D ayy(t—i)+

i=1 i=1

P
D obigt—D+&0 (1)

i=1

where p is the model order to measure the lag of time series, and
it was set to 1 in our work; & represents forecast error regression
coefficient. ay, and ay, are the autoregressive coefficient, whereas
ayy and a, are regression coefficients that we used in our work; z
denotes noise signal, and the covariate effect coefficient is denoted
by b. In consequence, the problem mentioned above aimed to
explore the CC alterations between the selected SN subnetworks
and the whole brain across three groups.

RESULTS

Demographic and Neurocognitive

Characteristics

The demographic and neurocognitive data of all subjects
are summarized in Table 1. One-way ANOVA presented the
significant differences on age (F = 8.248, p = 0.016), Mini-Mental
State Examination (MMSE) score (F = 9.129, p < 0.01), and CDR
score (F = 68.98, p < 0.01). Nonetheless, it showed no significant
difference on gender (F =2.026, p = 0.139). Whereas lower MMSE
scores indicate a greater degree of cognitive impairment, higher
CDR scores show greater dementia. For the MMSE scores, the
order from high to low was as follows: HC group (29.14 + 1.49),
SCD group (28.94 £ 0.83), and aMCI group (26.87 + 2.72).
Compared to the HC group (0.03 £ 0.11), the CDR scores
increased in the SCD group and the aMCI group successively.

TABLE 1 | Demographics and clinical measures of HC, SCD, and aMCI groups.

Group HC SCD aMClI P
(n=27) (n =20) (n =28)

Gender, female/male 20/7 10/10 10/18 0.1392

Age (years) 72.63+4.50 72.38+5.31 69.71+7.26 0.016°

MMSE scores 20144149 2894+0.83 26.87+272 <0.01°

CDR scores 0.03+0.11 0124022 0524010 <0.01P

Numbers are given as means =+ standard deviation (SD) unless otherwise stated.
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating. @The
p-values were obtained by x°-test. bThe p-value was obtained by one-way
ANOVA.

Identified Regions of SN Subnetworks
Using ICA

The SN subnetworks, including aSN and pSN networks, were
extracted by ICA of all subjects. Spatial correlations of ICA
indicated that the 34th component (r = 0.34) was the component
most closely related to the aSN network; similarly, the 14th
component (r = 0.36) was the component corresponding to the
pSN. Subsequently, we obtained five clusters within the aSN
and six clusters within the pSN of all subjects using one-sample
t-test separately, consisting of two clusters of right IL, left IL,
right supplementary motor area (SMA), left middle frontal gyrus
(MFG), right MFG, left superior temporal gyrus (STG), right
supramarginal gyrus (SG), left SG, right middle cingulum, and
left pre-cuneus (PreCU), respectively (p < 0.05, TFCE-FWE
corrected, cluster size > 10 voxels) (Table 2).

Altered FC Patterns of SN Subnetworks
in the SCD and aMCI Groups

In the aSN, one-way ANOVA revealed four distinct clusters
within the brain of three groups, including the left cerebellum
superior lobule (CSL), left inferior temporal gyrus (ITG),
right orbital inferior frontal gyrus, right lingual gyrus. Besides,
compared to HC group within the mask after ANOVA, the aSN
connected to the whole brain were separately increased in left
orbital superior frontal gyrus, left IL, right caudate lobule (CL),
left rolandic operculum gyrus (ROG), whereas decreased FC was
found in the left CSL and left middle temporal gyrus (MTG) using
two-sample ¢-test. Compared to the SCD group, the aMCI group
exhibited decreased FC in the left MTG. Notably, compared to
the HC group, decreased and increased FCs were both found in
the SCD group, whereas no significant differences were found
in the aMCI group (TFCE-FWE corrected, cluster size > 10
voxels, p < 0.05). Moreover, the influences of age and gender
were controlled in all of the results. At last for the pSN, we found
no obvious differences at the 0.05 level using two-sample ¢-test
(Table 3).

Altered CC Patterns of SN Subnetworks
in SCD and aMCI Groups

At first, we assumed that the selected aSN network was the cause,
and the whole brain was the effect to explore the altered CC
patterns between the aSN and the whole brain. The ANOVA
demonstrated that the prominent differences have focused on the
regions of right cerebellum inferior lobule (CIL), left CSL and
right superior parietal lobule (SPL), respectively. In comparison
with the HC group, the SCD group showed increased CC in the
right SPL, whereas aMCI group exhibited decreased CC in the
right CIL region. It is worth noting that we found no prominently
significant differences within the brain between the aMCI and
SCD groups in aSN (TFCE-FWE corrected, cluster size > 10
voxels, p < 0.05) (Table 4).

We next presumed that the whole brain was the cause, and
the selected aSN network was the effect. The cluster of left
CSL was given by the ANOVA. We found that compared to
the HC group the SCD group exhibited decreased CC in the
region of the right CIL, yet increased CC in the aMCI group.
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TABLE 2 | Five significant clusters of the aSN and six significant clusters of pSN
using one-sample t-test, respectively.

Subnetwork Region Peak/MNI t-Score Cluster size
X Y z

asN RIL 39 12 0 6.1223 69
LIt —-51 12 -3 7.4987 45
R SMA 3 9 57 20.2433 809
R MFG 30 39 30 6.6647 73
L MFG -30 45 30 4.8756 65

pSN RIL 39 -9 -9 8.4505 40
L STG -36 —-12 -9 5.9294 25
R SG 60 36 27 20.1412 266
LSG —-60 -30 27 20.4620 339
R MC 12 -33 45 8.107 20
L PreCU -6 —54 57 11.2489 29

The x, y, and z coordinates are the primary peak locations in the MNI space.
p < 0.05, TFCE-FWE corrected, cluster size > 10 voxels. L, left; R, right; IL,
insula lobule; SMA, supplementary motor area; MFG, middle frontal gyrus; STG,
superior temporal gyrus; SG, supramarginal gyrus; MC, middle cingulum,; PreCU,
pre-cuneus.

TABLE 3 | The significant differences in FC in aSN network.

Region Peak/MNI t-Score Cluster size
X y z

ANOVA

L cerebellum superior lobule —45 —72 =30 7.063 462

L inferior temporal gyrus —-57 54 33 10.8394 3060

R orbital inferior frontal gyrus 30 18 —24 11.4223 908

R lingual gyrus -3 -63 6 7.7562 265

SCD > HC

L orbital superior frontal gyrus  —24 42  -15 4.2171 29

L insula lobule —-33 12 6 3.7921 127

R caudate lobule 12 18 -9 3.9469 22

L rolandic operculum gyrus —42 -6 12 3.8651 42

HC > SCD

L cerebellum superior lobule -51 —-66 -39 3.6833 25

L middle temporal gyrus -57 -9 =24 3.893 114

aMCI > SCD

L middle temporal gyrus 30 18 —-24 4.6672 42

The x, y, and z coordinates are the primary peak locations in the MINI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

Further, compared to the SCD group, the aMCI group exhibited
no prominent differences within the brain in aSN (TFCE-FWE
corrected, cluster size > 10 voxels, p < 0.05) (Table 5).

Then, we supposed that the selected pSN was the cause,
and the whole brain was the effect. The ANOVA exhibited
prominently significant differences in the right ITG, right inferior
parietal lobule (IPL), right angular gyrus (AG), and right SMA,
respectively. In comparison with the HC group, the SCD group
exhibited decreased CC in the left IPL, left post-central gyrus
(PG), and right AG, whereas the aMCI group exhibited decreased
CC in right SMA. Compared to the SCD group, the aMCI

TABLE 4 | The significant differences in CC in aSN network when the selected
aSN network is the cause and the whole brain is the effect.

Region Peak/MNI t-Score Cluster size
X y z

ANOVA

R cerebellum inferior lobule -6 -54 51 8.2648 296

L cerebellum superior lobule —15 —-60 —18 7.4053 243

R superior parietal lobule 30 -72 57 12.7877 251

SCD > HC

R superior parietal lobule 48 —51 54 4.8878 198

HC > aMClI

R cerebellum inferior lobule -6 =57 -51 4.063 165

The x, y, and z coordinates are the primary peak locations in the MINI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

TABLE 5 | The significant differences in CC in aSN network when the whole brain
is the cause and the selected aSN network is the effect.

Region Peak/MNI t-Score Cluster size
X y z

ANOVA

L cerebellum superior lobule 42 -36 —33 10.1827 680

HC > SCD

R cerebellum inferior lobule 15 =380 33 —3.9058 519

aMCI > SCD

R cerebellum inferior lobule 27 -b54 33 3.6655 32

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

group exhibited decreased CC in the left PreCU, corpus callosum
(CCA), and right SMA. Interestingly, the SCD and aMCI groups
all showed decreased CC in aSN when compared to the HC group
(TFCE-FWE corrected, cluster size > 10, p < 0.05) (Figure 1 and
Table 6).

And finally, we assumed that the whole brain was the cause,
and the selected pSN was the effect. The ANOVA showed a
statistically significant difference in the left STG. By comparison
with the HC group, we found the regions of decreased CC
in SG in the SCD group, whereas the aMCI group showed
decreased CC and increased CC in the left IPL and left ROG,
respectively. It is interesting that decreased CC was found in
IPL, yet increased CC in ROG. Compared to the SCD group, the
aMCI group exhibited a significant difference of increased CC
in left post-central gyrus (LPG). It is noticeable that all of the
results have been controlled for the influences of age and gender
(Table 7).

DISCUSSION

We mainly aimed to explore the alteration patterns of FC and
CC of the aSN and pSN networks to the whole brain in the
aMCI and SCD groups and to investigate how this altered the
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FIGURE 1 | A flowchart depicting the CC process.

regions of FC and CC to cognitive function. The novel aspect of
our research is that we demonstrated the FC and CC alterations
of SN subnetworks in the SCD and aMCI groups, accompanied
by significant brain region analysis. Our results support the
hypothesis that was put forward before to a great extent, and the
research in this work also provides a new way to understand the
stages of aMCI and SCD.

Over the years, the analysis in altered FC and CC of SN
and other networks has been a research hotspot, but rarely
investigations in SN subnetworks connected with the whole
brain. Consistent with previous studies, the hub regions of
aSN and pSN networks in this article using ICA, such as IL
and cingulum, have been frequently reported to be the major
hub regions of SN (Seeley et al, 2007; Menon and Uddin,
2010; Gao et al, 2020a,b, Wang et al, 2020). Then, for FC
analysis, we found an interesting phenomenon that only aSN
network showed the altered FC using a two-sample ¢-test across
groups, proving that aSN might have more disruptive FC when
compared to pSN. Notably for aSN, the patients with SCD
have more brain regions with remarkable abnormalities than
the aMCI group. Compared with the HC group, the patients
with SCD have prominently altered CC in both left IL and
right CL, which is consistent with previous studies that IL
and CL are activated simultaneously (Postuma and Dagher,
2006). Besides, combining the prior research that CL plays a
critical role in the brain’s learning and memory system and
IL is closely related to somatosensory and motor functions
(Murray et al., 1984; Bick et al, 2019). Taken together, the
altered CC in left IL and right CL where patients with SCD
showed prominent differences within the brain might lead
to abnormal cognitive functions such as auditory processing,
somatosensory, motor, and memory. Specifically, the region

where the SCD group patients showed decreased FC in the
left MTG in SCD compared to the HC group was similar to
that in the aMCI group compared to the SCD group, yet only
the former FC was reduced, and the latter FC was increased.
According to a previously reported study, the MTG brain region
is primarily involved in verbal or semantic cognition and is
also associated with oral short-term memory (Vandenberghe
et al., 1996). Moreover, the MTG brain region of the AD group
showed increased FC, and it has been proved that function
involved in semantic knowledge extraction is preserved and
may be owed to the compensation mechanism to address
memory and cognitive impairment (Peters et al., 2009; Cha et al.,
2013). Hence, the alteration in the FC of left MTG found in
this study may be explained by a compensation mechanism
that exists in the human brain, and left MTG’s compensation
mechanism of SCD may be stronger than aMCI. Interestingly,
patients with SCD primarily appeared to have a decreased FC
in left CSL when compared to the HC group, whereas no
significant difference was found in patients with aMCIL The
cerebellum is involved in motor and balance as well as advanced
cognitive functions according to previous research (Gottwald
et al, 2003), suggesting that the cerebellar-related cognitive
functions of SCD might be subject to a potential effect inferred
by the altered FC of aSN to the whole brain. A previous study
has indicated that the SN is mainly responsible for cognition-
related aspects and is the key interface for the cognitive system
(La Corte et al., 2016). Meanwhile, according to the previous
relevant studies, there exists obvious cognitive impairment in
patients with aMCI when compared to SCD (Yan et al., 2018).
Consequently, our results reveal that there might be a different
impairment in FC of aSN in cognitive function across the aMCI
and SCD.
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TABLE 6 | The significant differences in CC in pSN network when the selected
pSN is the cause and the whole brain is the effect.

Region Peak/MNI t-Score Cluster size
b'¢ y z

ANOVA

R inferior temporal gyrus 48 -9 -39 8.0983 212

R inferior parietal lobule —24 =57 36 9.5386 858

R angular 39 -63 36 9.4243 308

R supplementary motor area 9 24 60 10.0099 282

HC > SCD

L inferior parietal lobule —24 =57 36 4.0374 30

L post-central gyrus -39 -34 36 3.7147 13

R angular gyrus 39 -63 36 4.0322 42

HC > aMCI

R supplementary motor area o =27 63 4.0201 85

SCD > aMClI

L pre-cuneus —-18 —45 9 3.8167 21

Corpus Callosum —-15 -39 24 3.3527 49

R supplementary motor area 3 =21 63 3.7881 10

The x, y, and z coordinates are the primary peak locations in the MINI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

TABLE 7 | The significant differences in CC in pSN network when the whole brain
is cause and the selected pSN is the effect.

Region Peak/MNI t-Score Cluster size
X y V4

ANOVA

L superior temporal gyrus —45 -39 24 12.0664 606

HC > SCD

Supramarginal gyrus -36 -39 30 3.8585 17

HC > aMCI

L inferior parietal lobule -39 48 39 3.4764 20

aMCI > HC

L rolandic operculum gyrus ~ —45 -39 24 4.8525 137

aMCI > SCD

L post-central gyrus —45 —-18 27 3.8486 12

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

A recent study has indicated that within-SN CC between the
dACC and the striatum is abnormal in aMCI when compared to
the HC group (Yu et al,, 2019), yet there are only a few studies on
the altered CC patterns between the SN subnetworks (aSN and
PSN networks) and the whole brain. Then, a previous study has
proven that directed connectivity, implemented in GCA within
DPABI, can reveal the compensatory or pathological mechanisms
of AD to some extent (Menon, 2011). Thus, in this follow-
up, we analyzed the alterations of directed CC between the SN
subnetworks and the whole brain. Compared to the HC group, in
patients with aMCI, it was shown that aberrant connections are
separately involved in the right CIL, right SMA, and left ROG,

whereas patients with SCD exhibited more aberrant connection
regions, comprising the right SPL, right CIL, left IPL, left PG,
and right AG. Except for the right CIL region, the regions of
significant difference between aSN and pSN were all different,
proving that there might exist different communications for
information between the SN subnetworks and other brain
regions. Compared to the HC group, patients with SCD showed
increased CC in the right CIL and left PG, whereas patients
with aMCI showed decreased CC in the left PreCU, CCA, and
right SMA. The PreCU is associated with many high levels of
cognitive functions, such as episodic memory and the processing
of self-related information (Herbet et al., 2019). The CCA is
mainly connected with motor language center, bilateral visual
hearing center, and so on, which is the communication channel
of bilateral cerebral hemisphere cognitive function (Prendergast
et al., 2018). In addition, PG is located in the parietal lobe of
the cerebral cortex, between the central sulcus and the central
posterior sulcus, corresponding to the somatosensory center
(Yoshino et al.,, 2017). Thus, the aberrant CC in this article
indicates that both the SCD group and aMCI group have different
degrees of cognitive impairment, which is consistent with the
findings of a previous study (Yan et al., 2018), and the altered
CC may be affected by the brain’s compensation mechanism. Our
research suggests, whether the aSN is the cause or effect, both
exhibited statistical differences in the right CIL region, and no
prominent difference for pSN was found. Also, no matter the
PSN is the cause or effect, both showed statistical differences
in the left PG region, and no difference for aSN was seen.
Therefore, according to the aforementioned cerebellum involved
in motor and balance, as well as advanced cognitive functions,
and the PG involved in the somatosensory center, it can be
deduced that CIL and left PG are sensitive and might be used as
neuroimaging biomarkers to distinguish the cognitive function
impairment of aSN and pSN. Interestingly, we also find that the
altered CC of pSN is found prominently outnumbering that of
aSN, signifying that pSN may have far more serious functional
impairment and more compensation requirements and can be
used as neuroimaging biomarkers for diagnosis of the early
preclinical AD.

In conclusion, our findings show that both the FC and CC of
the SN subnetworks (aSN and pSN) are distinctively disruptive in
the early preclinical stages of AD consisting of SCD and aMCL
Moreover, the prominent difference in the distribution of aSN
and pSN varies considerably, which may be used as neuroimaging
biomarkers for diagnosis of the early preclinical AD.

CONCLUSION

This study mainly reveals that the SCD and aMCI groups exhibit
distinct alternations in aSN and pSN networks compared to the
HC group. It turns out that the altered FC and CC in SCD
and aMCI groups may reflect the changes in cognitive function,
and there may be a compensation mechanism. Further, the
sensitive neuroimaging biomarkers found in the FC and CC of
SN subnetworks may provide new insight for the early detection
of AD.
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To recognize abnormal electroencephalogram (EEG) signals for epileptics, in this study,
we proposed an online selective transfer TSK fuzzy classifier underlying joint distribution
adaption and manifold regularization. Compared with most of the existing transfer
classifiers, our classifier has its own characteristics: (1) the labeled EEG epochs from
the source domain cannot accurately represent the primary EEG epochs in the target
domain. Our classifier can make use of very few calibration data in the target domain to
induce the target predictive function. (2) A joint distribution adaption is used to minimize
the marginal distribution distance and the conditional distribution distance between the
source domain and the target domain. (3) Clustering techniques are used to select source
domains so that the computational complexity of our classifier is reduced. We construct
six transfer scenarios based on the original EEG signals provided by the Bonn University
to verify the performance of our classifier and introduce four baselines and a transfer
support vector machine (SVM) for benchmarking studies. Experimental results indicate
that our classifier wins the best performance and is not very sensitive to its parameters.

Keywords: seizure classification, brain-computer interface, transfer learning, joint distribution adaption, manifold
regularization, TSK fuzzy classifier

INTRODUCTION

The maturity of the brain-computer interface (BCI) technology has provided an important channel
for the human to use artificial intelligence (AI) to explore the cognitive activities of the brain. For
example, many Al methods have been proposed for an intelligent diagnosis of epilepsy instead of
neurological physicians through electroencephalogram (EEG) signals (Ghosh-Dastidar et al., 2008;
Van Hese et al., 2009; Wang et al., 2016). In this study, we also focus on the intelligent diagnosis
of epilepsy through EEG signals. The classic diagnostic procedure for epilepsy by using intelligent
models is illustrated in Figure 1. We observe that, for an emerging task, a large number of labeled
EEG epochs are required to train an intelligent model. Therefore, it needs to consume a lot of
effort to manually label EEG epochs. Because the responses to EEG signals of different patients in
the same cognitive activity show a certain degree of similarity, we expect to leverage abundant
labeled EEG epochs, which are available in a related source domain for training an accurate
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FIGURE 1 | The classic diagnostic procedure for epilepsy.

intelligent model to be reused in the target domain. To
this end, transfer learning is often used, which has been
proven to be promising for epilepsy EEG signal recognition.
For example, Yang et al. (2014) proposed a transfer model
LMPROJ for epilepsy EEG signal recognition underlying the
support vector machine (SVM) framework. In LMPROJ, the
marginal probability distribution distance measured by the
maximal mean discrepancy (MMD) between the source domain
and the target domain is used to minimize the distribution
difference. Jiang et al. (2017c) improved LMPRO] and generated
a model A-TL-SSL-TSK for epilepsy EEG signal recognition
underlying the TSK fuzzy system framework. Comparing with
LMPROJ, A-TL-SSL-TSK not only used the marginal probability
distribution consensus as a transfer principle but also introduced
semisupervised learning (cluster assumption) for regularization.
Additionally, in our previous work (Jiang et al, 2020), we
proposed an online multiview and transfer model O-MV-T-TSK-
FS for EEG-based drivers’ drowsiness estimation. It minimized
not only the marginal distribution differences but also the
conditional distribution differences between the source domain
and the target domain. But it did not derive any information
from unlabeled data. More references about transfer learning for
epilepsy EEG signal recognition can be found in Jiang et al. (2019)
and Parvez and Paul (2016).

Although existing intelligent models, for example, LMPRO]
and A-TL-SSL-TSK, underlying the transfer learning framework
are effective for epilepsy EEG signal recognition, there still exist
some issues that should be further addressed.

e To tolerate the distribution difference between the source
domain and the target domain, it is not enough to only
minimize the marginal distribution difference between the
two domains.

e Most of the existing models use only one source domain for
knowledge transfer. That is to say, all available labeled data in
the source domain are leveraged for model training. However,
some labeled data may cause negative transfer.

TABLE 1 | Epilepsy EEG data archive and collection condition.

Volunteers Groups #Group Collection conditions
Health A 100 Volunteers with eyes open
B 100 Volunteers with eyes closed
Epileptic C 100 From hippocampal
formation during seizure free
intervals
D 100 From within epileptogenic
zone during seizure free
intervals
E 100 During seizure activity

Sampling rate: 173.6 Hz; duration: 23.6 s.

Therefore, in this study, by overall considering the above two
issues, we propose a new intelligent TSK fuzzy classifier (online
selective transfer TSK fuzzy classifier with joint distribution
adaption and manifold regularization, OS-JDA-MR-T-TSK-FC)
for epilepsy EEG signal recognition. First, it further explores the
marginal probability distribution adaption between the source
domain and the target domain from two aspects. One is that
it additionally introduces conditional probability distribution
adaption to further minimize the distribution difference. The
second is that it preserves manifold consistency underlying
the marginal proba