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Editorial on the Research Topic

Fetal-maternal monitoring in the age of artificial intelligence and

computer-aided decision support: A multidisciplinary perspective

Introduction

Across the globe, each day, we continue to have term babies arrive at delivery wards

in good condition in utero, only to be born hours later with neurological injuries (1). The

consequences are profound and life-long for the babies, parents, siblings, and their wider

family (2). Clinical staff involved in the obstetric management are severely impacted

in multiple ways. On the other hand, Cesarean section to avoid oxygen deprivation

during labor carries multiple risks for mother, fetus, future pregnancies; as well as

costs. But achieving safe spontaneous delivery is sometimes challenging due to poorly

understood and complex fetal physiology, and often, conflicting healthcare needs for

mother and baby.

In developed countries, the standard of care for pregnancies deemed at risk

is continuous electronic fetal monitoring with cardiotocography (CTG) during
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labor—displaying fetal heart rate (FHR) along uterine

contractions on a long paper strip, typically assessed by eye.

CTG interpretation continues to be a massive challenge with

high false positive rate and poor sensitivity (3). The evidence

how to interpret CTG traces is relatively limited, derived by

subjective clinical experience and by animal studies, which have

own limitations, but provide invaluable core evidence (4–7).

For example, there has been an ongoing concern about the

persistent use of “increased” or “decreased” heart rate variability

(HRV) which goes against the evidence of what variability

represents—a complex dynamic multi-dimensional pattern,

such that a single-order description of this pattern in terms of

“ups” and “downs” discards most of its predictive information

(8). Furthermore, the CTG technology itself is imperfect with

frequent signal loss, noise, and confusion between maternal and

fetal heart rates (3).

So, the main challenge remains lack of technology to

monitor reliably the fetus in utero, at a time when labor brings

unprecedented challenges to fetal oxygen supply and forces

the fetus to rely on compensatory mechanisms and reserves.

Consequently, the adverse outcomes we wish to prevent are

both heterogeneous and rare. This means that, to develop new

detection/prediction methods or algorithms based on the CTG

and utilize our modern computing and data science capabilities,

we need to obtain CTG and maternity data at scale (9). And

there is a need of “feature engineering”, i.e., bespoke signal

processing methods to account for the noisy, low sampling rate

nature of the signal (10). Despite these known shortcomings and

promising opportunities tomake considerable impact on human

health, improving fetal monitoring through novel technologies

continues to be a niche field, especially for large scale clinical

use. It remains unclear how to best apply computers and

large datasets for clinical benefit, hand-in-hand with novel

engineering solutions.

Therefore, we assembled this first of its kind Frontiers

Research Topic, focused on multidisciplinary intrapartum

risk assessment through technology and clinical insights.

It builds on our experience and existing collaboration

in organizing the bi-annual international workshop—

Signal Processing and Monitoring in Labor—providing

multidisciplinary forum for the clinical and engineering

challenges of fetal monitoring during labor. These workshops

have included experts from academia and industry representing

multidisciplinary domains of clinical medicine (obstetrics,

neonatology), physiology, physics, epidemiology, data sciences,

statistical signal processing, artificial intelligence (AI), and

signal feature and software engineering. We hope that the

multi- and transdisciplinary character of these workshops

can serve as a template for the framework in which solutions

to the problem of fetal monitoring intrapartum can be

found. In the following, we synthesize the core insights

provided by the 15 contributions (four systematic reviews,

one opinion and ten original research articles) of this

Research Topic. We then discuss the future directions for

this field.

Systematic reviews

O’Sullivan et al. review the decision support systems

used in three RCTs for intrapartum CTG, summarizing the

algorithms, the outcomes of the trials and the limitations

(O’Sullivan et al.). Preliminary work suggests that the

inclusion of clinical data can improve the performance of

AI-assisted CTG. Combined with newer approaches to the

classification of CTG traces, this offers promise for rewarding

future development.

Castel et al. screened 256 studies in four languages and

arrived at 40 studies in the qualitative and quantitative analysis

of the intrapartum fetal electroencephalogram (fEEG). The

authors show its potential to act as a direct biomarker of fetal

brain health during delivery, ancillary to FHR monitoring and

readily feasible using the presently used fetal scalp electrode.

Real world evidence of fetal EEG acquired from a regular fetal

scalp electrode is also presented. Highlighted is the need for

clinical prospective studies to further establish the utility of

intrapartum fEEG monitoring intrapartum, suggesting suitable

clinical study designs.

Ribeiro et al. focused on non-linear analysis of FHR based

on concepts of chaos, fractality, and complexity: entropies,

compression, fractal analysis, and wavelets. The authors aim

to increase our knowledge about cardiovascular dynamics in

healthy and pathological fetuses. Two hundred and seventy

articles are included in the review. The top five primary research

objectives covered by the selected papers are detection of

hypoxia, maturation or gestational age, intrauterine growth

restriction, and fetal distress.

This review shows that non-linear indices can be used but

are not yet applied in clinical practice. Some studies show that

the combination of several linear and non-linear indices would

be ideal for improving the analysis of the fetal wellbeing. Future

studies should narrow the research question so a meta-analysis

could be performed, probing the indices’ performance.

Castro et al. review the spectral bands reported in

intrapartum FHR studies and evaluate their performance in

detecting fetal acidemia. Twenty-five (out of 176) studies

are included. An open-access FHR database is used, with

recordings of the last half an hour of labor of 246 fetuses. Four

different umbilical artery pH cut-offs are considered for fetuses’

classification into acidemic or non-acidemic: 7.05, 7.10, 7.15,

and 7.20. The area under the receiver operating characteristic

curve (AUROC) is used to quantify the frequency bands’ ability

to distinguish acidemic fetuses.

Bands referring to low frequencies, mainly thought to be

associated with neural sympathetic activity, are found to be

the best at detecting acidemic fetuses, with the more severe
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definition (pH ≤ 7.05) attaining the highest values for the area

under the ROC–AUROC [0.770 (0.608–0.932)].

This study shows that the power spectrum analysis of the

FHR is a simple and powerful tool that has potential for CTG

evaluation and helping healthcare professionals to accurately

identify fetuses at risk of acidemia. Naturally, prospective clinical

evaluations are needed. Despite the clear potential of many HRV

metrics to predict fetal acidemia, the proxy of fetal acidemia itself

has been proven to not be appropriate for predicting clinical

outcome (11, 12). As such, while to date, most studies in the field

have sought to predict pH at birth, some studies in this Research

Topic and elsewhere have sought to predict physiologically more

direct outcomes related to fetal compromise, either using FHR

data as time series or as scanned CTG tracings (Gold et al.; Roux

et al.).

In this context, the opinion paper by Schifrin provides

insights into the complexities of CTG interpretation that

transcend the conventional scientific reasoning applied in this

field and extend to historical and medicolegal confines as well

as epistemological biases. The author emphasizes the problem

of the poor definition of outcome, centered on pH prediction

and avoidance of low pH while providing little guidance to

intrapartum management. He discusses opportunities for future

research which, in part, are tackled in the above-mentioned

reviews, as well as in the research articles of this topic we discuss

in the following paragraphs.

Original contributions

It has been striking to observe that all studies in the present

Research Topic relied on retrospective data analysis. It highlights

the major issue in our field which impedes rapid innovation:

the data required to test models predicting adverse outcome

with clinically actionable performance must be large (millions

of CTGs) and no single institution, company or research team

have access to such data at this time.

Several studies deal with the signal quality issues which also

hamper the progress in the field. While some approaches seek

to improve the ultrasound-based CTG signal and its derived

HRV estimates by thoughtfully engineering signal processing

and machine learning techniques (Roux et al.; Vargas-Calixto

et al.), others focus on the emerging technologies such as

transabdominal ECG (Fotiadou and Vullings; Vullings and van

Laar). It is worth noting that both EEG, reviewed by Castel et al.,

and transabdominal ECG technologies have been studied for at

least 80 and 40 years, respectively. However, these technologies

have not yet found a broad clinical adoption.

Pursuing further the issue of FHR signal quality in

conventional CTG, Vullings and van Laar conduct a quantitative

comparison of FHR derived from two commercial intrapartum

ECG-based fetal monitors, one using fetal scalp electrode

and another using transabdominal ECG sensors. The authors

compare the FHR detection rates to those from a conventional

ultrasound-based CTG. They report a reliable FHR in >95% of

time intrapartum which represents a substantial improvement

over Doppler ultrasound. During second stage of labor, given

stronger contraction and FHR drops to below 100 bpm,

the signal processing challenges remain considerable and

the performance of the method decreases. However, with

a reliability higher than 80%, the proposed method still

outperforms Doppler ultrasound and other reference methods

by a significant amount.

Vargas-Calixto et al. deploy a signal processing approach to

identify robustness of select HRV estimates to noise contained

in conventional ultrasound-based FHR. Such insights hold

promise of improved fidelity of HRV estimation given the

constraints of CTG signal in terms of quality of beat-to-beat

estimation and noisiness. Their work highlights the importance

of considering the nature of the underlying FHR signal when

selecting and trusting the HRV metrics derived from the signal.

Fotiadou and Vullings turn their attention to the alternative

approach of FHR derivation promising superior signal quality

and patient experience compared to conventional ultrasound

methods, the transabdominal ECG recorded antepartum and

intrapartum. The authors present a method to extract the entire

multi-channel fetal ECG waveform using deep convolutional

neural networks (CNN), a broadly used deep learning technique

for tasks such as image analysis and here showing promise for

maternal-fetal ECG deconvolution. Meanwhile, in Frasch et al.,

CNN was also used to detect pathognomonic CTG patterns

directly from images. This highlights the broad potential of deep

learning techniques in various settings of fetal monitoring.

Costa et al. report the performance of their intrapartum

CTG system SisPorto, focusing on prediction of pathological

FHR patterns from hitherto underutilized HRV fragmentation

metrics using the open-source Brno/Prague CTG database. In

another retrospective study, Lovers et al. used computerized

methods to analyze CTGs from ∼28,000 births and identify

presence of abnormalities in the first hour CTG as well as

associated clinical risk factors. This highlights the importance of

admission CTG analysis for labor management/triage. Another

facet of this study is the indication of the importance of

antepartum fetal health that likely precipitates the abnormalities

seen in the admission CTG. The creation of maternal-fetal

monitoring technologies that track health of mother-fetus dyad

antepartum is much needed and subject of ongoing research

and development.

In addition, Pini et al. contribute to the detection of

late intrauterine growth restriction (IUGR) in a retrospective

case-control design at 38 weeks of gestation, on a publicly

available dataset of CTGs (Pini et al.). The HRV feature

engineering the authors present for their machine learning

model accounts for the CTG’s properties such as signal

duration and signal quality. Future studies should attempt to

validate these findings in larger datasets and in admission
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CTGs to mimic the clinical scenario of intrapartum triaging

at admission.

In their complementary work, Gold et al. and Roux et al.

study a fetal sheep model-based FHR dataset of umbilical cord

occlusions (UCO) of increasing severity mimicking the uterine

contractions as they may occur during first and second stage

of human labor. Both teams engineer novel machine learning

techniques for prediction of a physiologically and clinically

meaningful outcome of fetal cardiovascular decompensation,

rather than acidemia, and to address the complex nature of fetal

HRV signal accounting for the constraints on signal quality in

terms of sampling rate and noise. Both studies present novel

individualized approach to machine learning of FHR data. This

is a promising avenue to exploit in future studies, even when the

data size is relatively small, as it leverages individual variability

at different time scales, to identify departure from the “normal”

phenotype. And, using the same experimentally derived dataset,

Rivolta et al. present novel HRV features of deceleration reserve

as a distinguishing property of chronically hypoxic fetuses.

Finally, in their study on scanned CTG recordings,

Frasch et al., for the first time, deploy computer vision

techniques of deep learning, a form of AI, to identify

important patterns of CTG on images, rather than the raw

data. Importantly, the authors open-sourced their algorithm

including the approach to annotate online the CTG data.

This could potentially lead to better collaboration, for example

crowdsourced CTG annotation.

Conclusions and outlook for the
future

Intrapartum fetal monitoring is, hopefully, on the verge

of technological disruption thanks to the recent advances in

and convergence of computing resources on edge and in the

cloud, AI and the resulting emergence of digital health as a

field. The clinical need remains unmet and, more than ever

the chasm, between technological advances and possibilities

and the reality of fetal monitoring around the world is wide

and asking for closure. Thankfully, the technological disruption

through innovative devices and algorithms is being pursued

in Europe and USA as we have seen from the academic and

industry partners in this Research Topic, as well as in the

relevant Signal Processing and Monitoring Workshops in 2019

(Porto, Portugal) and the most recent 2022 workshop inMunich

(Germany). There is a strong consensus across the board that

FIGURE 1

Key insights from the Research Topic and future directions. There is a growing awareness of the antecedents of intrapartum fetal reserve for the
trial of labor which require an integration of the physiology of whole pregnancy and the well-known relationships between intrauterine adversity
on one hand, and the perinatal and postnatal developmental trajectories on the other hand (Developmental Origins of Health and Disease, the
DOHaD concept). Another key insight is the requirement for clinically actionable outcome labels in the prediction models that are being
developed and the recognition of the fundamental constraints on the data sizes of the individually accessible cohorts. Therefore, there is a clear
need for multinational and multidisciplinary work to address the di�erent challenges and research questions, which are all integral to
successfully improving the technologies for intrapartum fetal monitoring.

Frontiers in Pediatrics frontiersin.org

8

https://doi.org/10.3389/fped.2022.1007799
https://doi.org/10.3389/fped.2021.593889
https://doi.org/10.3389/fped.2021.660476
https://doi.org/10.3389/fmed.2021.626450
https://doi.org/10.3389/fped.2021.736834
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Georgieva et al. 10.3389/fped.2022.1007799

the challenge of intrapartum fetal monitoring can only be

solved through collective, multinational effort. The big data

(millions of CTGs) required is impossible to collect by any

single stakeholder. In parallel, physiological research needs to

continue to address the fundamental questions raised in this

Research Topic and elsewhere about the mechanisms of injury.

Also required is the push for innovative technologies that can

acquire other important signals for the fetus, i.e., ECG, EEG,

and beyond.

As the challenge is enormous, for a proposed shared

partnership effort to succeed, we need to form a cohesive view

of the shared direction. In Figure 1, we present such a cohesive

view of the shared and interacting priorities, representing also

our main take-home message from this Research Topic.
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Non-invasive fetal electrocardiography represents a valuable alternative continuous fetal

monitoring method that has recently received considerable attention in assessing fetal

health. However, the non-invasive fetal electrocardiogram (ECG) is typically severely

contaminated by a considerable amount of various noise sources, rendering fetal ECG

denoising a very challenging task. This work employs a deep learning approach for

removing the residual noise from multi-channel fetal ECG after the maternal ECG has

been suppressed. We propose a deep convolutional encoder-decoder network with

symmetric skip-layer connections, learning end-to-end mappings from noise-corrupted

fetal ECG signals to clean ones. Experiments on simulated data show an average

signal-to-noise ratio (SNR) improvement of 9.5 dB for fetal ECG signals with input SNR

ranging between −20 and 20 dB. The method is additionally evaluated on a large

set of real signals, demonstrating that it can provide significant quality improvement of

the noisy fetal ECG signals. We further show that employment of multi-channel signal

information by the network provides superior and more reliable performance as opposed

to its single-channel network counterpart. The presented method is able to preserve

beat-to-beat morphological variations and does not require any prior information on the

power spectra of the noise or the pulse location.

Keywords: convolutional neural networks, encoder-decoder network, fetal ECG denoising, fetal ECG

enhancement, fetal electrocardiography

INTRODUCTION

The fetal electrocardiogram (ECG) can be used to monitor the condition of the fetal heart
from early pregnancy until delivery (1). Nowadays, fetal monitoring is mainly performed by
cardiotocography or by ECG recordings where an electrode is directly placed on the fetal
scalp. Cardiotocography records the fetal heart rate together with the uterine contractions. The
advantages of the method are that it is performed non-invasively and is safe for the patient. On the
other hand, it is prone to signal loss, while recorded changes of the heart rate are not always precise
(2). Scalp ECG recordings are a more reliable means of monitoring the fetal health. However, they
are invasive, may pose a health risk to the fetus, and can only be performed during labor, when the
membranes have ruptured.

Non-invasive fetal electrocardiography, performed by placing electrodes on the maternal
abdomen, is a promising alternative to standard fetal monitoring. In comparison with
cardiotocography, it provides more accurate information because it does not need to average over
multiple beats for the heart rate extraction. Moreover, it provides the possibility to assess the ECG
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morphology, related to the electrical activity of the fetal heart.
The advantage of the method over the scalp ECG measurements
is that it can be performed already during pregnancy, it is safe for
the fetus and comfortable for the mother. However, the difficulty
to extract a clean fetal ECG from the abdominal mixture is the
main reason that the application of themethod in clinical practice
is still limited. The interferences and noises in the abdominal
recordings among others include the maternal ECG, powerline
interference, baseline wander, muscle noise from the fetus and
mother and movement artifacts. Considering that the signals of
some of these interferences overlap both in time and frequency
with the fetal ECG, the extracted fetal ECG signals usually have
very low signal-to-noise ratio (SNR). Therefore, the non-invasive
recordings are in practice merely used for heart rate analysis.

There are typically three main steps in the fetal ECG
extraction process; preprocessing, separation and postprocessing
(3). Preprocessing includes removal of unwanted noise such as
powerline interference and baseline wander. In the separation
step, the maternal ECG is estimated and then subtracted from
the signals to obtain the fetal ECG. Finally postprocessing is
employed to enhance the quality of the extracted fetal ECG
signals. The work on non-invasive fetal ECG analysis has mainly
targeted the first two steps, together with the improvement of
the acquisition devices (4), while only few works focused on the
postprocessing of the obtained signals. Beat-to-beat averaging is a
traditional method which is often used to improve the SNR of the
extracted signals, at the expense of losing individual variations
in pulse shape (5). Different wavelet denoising techniques were
additionally proposed in the literature for the postprocessing of
the extracted fetal ECG signals (6, 7). In a previous work (8),
the authors employed an augmented time-sequenced adaptive
filter to enhance the quality of the extracted fetal ECG. Despite
the significant quality improvement that the method achieves,
the location of the fetal pulses is required to synchronize the
filter and the method cannot handle abrupt changes in fetal ECG
morphology, e.g., in cases of arrhythmia.

Recently, deep neural network models such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs) and
stacked denoising autoencoders have been successfully applied
for a variety of purposes including signal and image denoising (9–
13). Moreover, few works reported adult ECG signal denoising
(14, 15), fetal QRS detection (16, 17), and fetal ECG signal
reconstruction (18). Zhong et al. (19) presented a deep
convolutional encoder-decoder framework for preprocessing
abdominal recordings to remove noise. However, they did not
extract the fetal ECG from the preprocessed signals to ensure that
it is not suppressed by the network. The authors were the first
to propose a deep convolutional encoder-decoder network for
postprocessing non-invasive single-channel fetal ECG (20, 21),
achieving a substantial quality improvement of the noisy signals.
The method tackled some of the shortcomings of the state-of-
the-art non-invasive fetal ECG postprocessing methods, since
it can preserve beat-to-beat morphological variations and does
not require prior knowledge about the location of the fetal
pulses. However, in cases of heavily corrupted signals, themethod
was unable to reliably reconstruct some relevant morphological
features of the ECG, sporadically even causing presence of “fake”

waves, i.e., waves in the reconstructed ECG that should not have
been there or should have had opposite sign. For a practical
application this might be dangerous, leading to wrong diagnosis.

In this work, we are dealing with the aforementioned problem
by extending our model to handle multiple fetal ECG channels.
Multiple electrodes measure the electrical activity of the heart
from different angles. We propose to use a deep convolutional
encoder-decoder network with symmetric skip connections that
learns how to optimally combine the input channels to deliver
a reliable clean, multi-channel ECG as output. The method
eliminates the residual noise in the fetal ECG by capturing the
signal structure in the convolutional layers and recovering the
details by the transposed convolutional layers.

MATERIALS AND METHODS

Data
Simulated Data
For the training, but also for the evaluation of the proposed
network, we created an extensive simulated fetal ECG dataset that
consists of two parts. The first part was built by employing the
fecgsyn toolbox developed by Behar et al. (22, 23). The toolbox
enables the creation of abdominal mixtures with adjustable noise
sources, heart rate, heart rate variability, fetal movement, ectopic
beats and contractions. A Gaussian model is used to simulate
the ECG beats, as originally developed by McSharry (24) and
further improved by Sameni (25). Any number of electrodes
can be positioned on the maternal abdomen for the simulations.
Unfortunately, the simulated fetal ECGs are based merely on
9 available vectorcardiograms (VCGs). Since there is limited
variation in the shape and lengths of the individual PQRST
waves in these VCGs, there is an increased risk of overfitting the
network. This means that the network might learn to reproduce
these limited morphologies and enforce resemblance of the
denoised signals with the training data. In fact, what happened in
our initial experiments is that the P and T waves of the denoised
signals were shifted with respect to their ground truth data to
match the locations of the training data. For this reason, we
built a modified version of the toolbox that creates a variety of
new ECG morphologies based on the already available VCGs.
The modified toolbox receives a VCG as input, alters the length
of the VCG intervals along with the amplitudes of the PQRST
waves and subsequently uses it as a base to form the abdominal
fetal ECG. Initially, for all 9 VCGs, the points of interest, which
are the beginning and end of the P wave, T wave, and QRS
complex were annotated and saved to be later available to the
simulator. In every iteration of the modified simulator, one of
the 9 VCGs is randomly selected and subsequently the start and
the end of the waves are randomly shifted in position. Since
the shift of the start and shift of the end point of each wave
are not identical, also the length of the waves is automatically
varied this way. The amplitude of each wave is changed as well
by random scaling. The modified VCG is the starting point
that the abdominal fetal ECG can be created. With the help of
the modified toolbox we created a large dataset of four-channel
abdominal mixtures, where different physiological events were
considered, such as heart rate decelerations and accelerations,
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fetal movement, ectopic beats, uterine contraction etc., similar to
the Fetal ECG Synthetic Database (26). The VCG alterations were
chosen so as to include an ample range of variations of the ECG
morphological features, while still ensuring their physiological
plausibility. When obtaining the simulated data, we varied the
placement of the four electrodes to make the method invariant to
variations in the electrode position.

To further enrich the ECG morphologies in our dataset and
reduce the risk of overfitting to the training data we generated
an additional set of simulated signals based on adult ECG
from the PTB Diagnostic ECG Database of Physionet (27). The
database comprises of both normal and pathological signals with
15 leads, sampled at 1,000Hz. 549 records from 290 male and
female subjects are available. Adult and fetal ECG have similar
morphology but the adult ECG intervals and amplitudes are
larger compared to the fetus. The adult ECG was preprocessed
to remove noise and resemble the fetal ECG. First, a high-pass
filter with cut-off frequency of 1Hz was applied followed by
Savitzky-Golay filtering of order 8 and length 31. Afterwards,
considering that the fetal heart beats two to three times faster
than the adult heart, the signals were resampled to half frequency.
Adjustment of the signals amplitude was not necessary because
they were, in a later data preparation step, anyway normalized
before entering the network. As a next step, four-channel signals
were created by making random combinations of four leads,
where a maximum of two was chosen out of the six first limb
leads. Finally, “real” noise was added to the signals. For the “real”
noise we employed a set of six-channel abdominal recordings
of an ongoing study of which the protocol is described in (28).
In a subset of these recordings we found it impossible to detect
the fetal ECG, either because of the shielding of the fetus by
the vernix caseosa or because the fetal heart was far from some
electrodes. We considered that these measurements, after the
maternal ECG suppression and powerline interference removal,
consist of pure noise and added them to the preprocessed adult
ECG to generate our simulated fetal ECG signals.

Real Data
In order to evaluate how well our algorithm performs in real
signals we employed two databases. The first one is a private set of
non-invasive fetal ECGmeasurements, obtained in collaboration
with the Máxima Medical Center, Veldhoven, the Netherlands
(28, 29). The dataset contains 462 six-channel recordings of
different women, at least 18 years old, between 18 and 24 weeks
of gestation. The fetal ECG was recorded with adhesive Ag/AgCI
electrodes on the abdomen of the pregnant women while
they were in semi-upright position. Six electrodes were placed
around the navel to produce six channels of electrophysiological
measurements, while two additional electrodes, placed close
to the navel, served as common reference and ground. Each
recording lasted from 5 up to 50min and was digitized and
stored at 500Hz sampling frequency by a fetal monitoring system
(Nemo Healthcare BV, The Netherlands). Since the signals were
measured through six electrodes, we selected the first, third,
fourth and fifth dimensions to form the four-channel fetal
ECG signal.

The second real dataset is the Abdominal and Direct Fetal
Electrocardiogram Database which consists of four-channel
abdominal fetal ECG recordings obtained by five women in
labor, between 38 and 41 weeks of gestation (30). Each recording
comprises four different signals acquired from the maternal
abdomen together with a reference direct fetal ECG registered
from the fetal head. The configuration of the abdominal
electrodes consisted of four electrodes placed around the navel,
a reference electrode placed above the pubic symphysis and
a common reference electrode placed on the left leg. The
recordings have duration of 5min and are sampled at 1,000 Hz.

Data Preprocessing
The signals of all the datasets were preprocessed before entering
the network. The fetal ECG extraction was performed with the
help of the open-source algorithm of Varanini et al. (31) and the
signals were resampled to 500Hz to have a common reference.
Finally, the fetal ECG signals were divided in segments of 1920
× 4 samples and normalized to have zero mean and unity
standard deviation. The normalization was performed along each
channel separately.

Network Description
The proposed fetal ECG denoising CNN network is illustrated
in Figure 1. It consists of an encoder of eight convolutional
layers and a decoder of eight symmetric transposed convolutional
layers. The network receives a noisy fetal ECG signal as input and
delivers a denoised one as output. The convolutional layers act
as a feature extractor which captures the abstraction of the fetal
ECG while eliminating the noise. Subsequently, the transposed
convolutional layers decode the fetal ECG abstraction to recover
the signal details. The convolutional layers are symmetrically
connected with the transposed convolutional ones via skip
connections. The role of the skip connections is two-fold. First,
they help back-propagating the gradients to bottom layers,
facilitating the training of our deep network. Second, they pass
signal content from the bottom to top layers to aid in recovering
the signal details.

The non-invasive fetal ECG typically contains a high amount
of noise and thus a large denoising patch can lead to more
efficient noise removal by using context information from
a larger signal region. It was indicated in the literature
that the denoising patch is highly correlated with the
receptive field of the network, i.e., the region in the input
space that a CNN feature can be affected by (11, 32). The
receptive field of the network is determined by the kernel
size, the depth of the network and whether subsampling or
dilation is used in the convolution operations. A common
approach to increase the receptive field is to increase the
number of layers in the network but this is computationally
expensive. We chose to use a relatively deep network of eight
convolutional and eight transposed convolutional layers.
Since our data are temporal, we adopt one-dimensional
convolutions and transposed convolutions. In addition,
subsampling by two is performed after each convolutional
layer, apart from the first, and upsampling by two after
the transposed convolutional layers, apart from the last
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FIGURE 1 | The architecture of the proposed multi-channel fetal ECG denoising network. The network consists of an encoder of eight convolutional layers and a

decoder of eight transposed convolutional layers, which are linked symmetrically by skip connections.

one. Subsampling operations are not generally preferred in
denoising tasks in order to preserve the signal details (10).
On the other hand, in our case they lead to a significant
increase of the receptive field, necessary for removing the large
amount of noise present in the fetal ECG signals. Moreover,
in order to exploit the self-similarity of the ECG signals
the network should permit the convolutions to extend to
several heartbeats. Regarding the kernel size we empirically
determined that 15 achieves satisfactory results by being
large enough to include sufficient signal information without
excessively increasing the number of network parameters.
The input and output of the network have dimension 1920
× 4 which corresponds to four-channel ECG of 3.84 s. For
non-linearity after each layer, leaky rectified linear units
(LeakyRelu) with a slope of 0.2 are utilized. The aforementioned
parameter choices led to a receptive field of roughly 4 s
that corresponds to 5–10 heartbeats. A detailed description
of the network architecture and the parameters is given
in Table 1.

Skip Connections
In shallow networks transposed convolutions works well for
recovering the signal details but as the network goes deeper,
they do not longer work satisfactory (9). Our network is
deep and heavy subsampling is performed for the sake of
increasing the receptive field of the network, resulting in
significant loss of signal information. To address this issue,
skip connections are added between every two convolutional
and mirrored transposed convolutional layers as shown by
the arrows in Figure 1. The skip connections carry signal
information and account to a great extent for the lost signal
details introduced by the subsampling. Moreover, these skip
connections allow the gradient update rules to back-propagate
to the bottom layers directly, dealing with the gradient
vanishing problem occurring in deep architectures. The way
that the skip connections are used in the network is depicted
in Figure 2.

Network Training
For training the network the normalized mean squared error loss
was minimized, which is defined as:

L =
1

N∗L∗M

∑

N
n=1

∑

L
l=1

∑

M
m=1

(

Xcleann,l,m − Xdenoisedn,l,m

)

X
2
cleann,l

2

,

(1)

where N is the number of the training data in a batch, L is the
number of channels, M is the length of the signals, X represents

the fetal ECG and X
2
is the mean squared amplitude of X. In our

experiments N = 64, L = 4 and M = 1920. The Adam algorithm
was selected (33) as an optimization algorithm while the learning
rate was set to 0.00001. The training method that we followed
is supervised, meaning that we need clean fetal ECG signals as
labels together with the noisy signals. For this reason, the training
of the network was performed based only on simulated data.
The simulated data were separated in two sets for the training
and testing of the method. The training set contains the signals
simulated by themodified fecgsyn toolbox based on VCG 1-7 and
449 preprocessed records from 212 subjects of the PTB dataset.
The test set contains the simulated signals based on VCG 8-9
from themodified fecgsyn toolbox, plus 100 preprocessed records
of 78 subjects of the PTB dataset. The SNR of the training set
ranges from−15 to 15 dB. The network was trained for 21 epochs
until convergence was reached.

Performance Evaluation
In the simulated dataset, the performance of the method was
evaluated based on the SNR improvement of the fetal ECG signals
achieved by the network. The metric is estimated for a channel, l,
of a signal as:

SNRimp = 10log10

∑M
m=1

∣

∣

∣
Xnoisyl,m

− Xcleanl,m

∣

∣

∣

2

∑M
m=1

∣

∣Xdenoisedl,m − Xcleanl,m

∣

∣

2
. (2)
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TABLE 1 | Detailed overview of the proposed network architecture.

Layer Output size Filter size Kernel size

Encoder Convolution (stride = 1)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

1920 × 64

1920 × 64

960 × 128

960 × 128

480 × 256
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FIGURE 2 | Detailed illustration of the way that the skip connections (represented by the arrows) are applied in the network. Only two skip connections are shown for

simplicity. Conv stands for convolution and ConvT for transposed convolution.

The metric was computed for each channel and subsequently
averaged over all the ECG channels and test signals.

For real fetal ECG signals there is no ground truth available,
because even after the maternal ECG suppression there is still
noise present in the signals. Thus, it is impossible to have a
gold reference to quantitatively validate the results. Simultaneous
scalp recordings may help but they can be performed only during
labor. Unfortunately, since our real private dataset was obtained
during the second trimester of pregnancy, it was not possible
to measure the scalp ECG to have a clean reference. For this
dataset, in order to provide some quantitative results along with

the qualitative, we decided to generate a surrogate “clean” ground
truth signal by calculating the running median of 100 heartbeats.
We thenmeasure howwell the quality of the denoised signals was
enhanced by computing the improvement in SNR performance
defined by Equation (2). The metric was calculated for 455 cases,
where sufficient QRS complexes were detected for the generation
of the “ground truth” signal.

In the Abdominal and Direct Fetal Electrocardiogram
Database, since simultaneous scalp measurements are provided
together with the non-invasive fetal ECG, the performance of our
method was evaluated by comparing with the scalp electrode.
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The scalp ECG is however a different lead than the abdominal
ones and we cannot compare them directly since, even in case
of perfect denoising by our method, the morphology of the
ECG will not be the same between different leads. Instead, we
estimated a denoised scalp ECG as a linear combination of the
four abdominal fetal ECG channels:

X̂scalp = aTXdenoised, a = (XdenoisedXdenoised
T)

−1
XdenoisedX

T
scalp,

(3)

where Xscalp is the [1 x 250] scalp ECG and X̂scalp the [1 x
250] estimation of the scalp ECG from the abdominal fetal ECG
channels. The coefficients of the [4 x 1] linear combination, a,
were computed on windows of half a second that corresponds to
250 samples. The dimension of Xdenoised is 4 x 250. Because the
scalp ECG measurements contain considerable amount of noise
and this could affect the comparison, we denoised the scalp ECG
by high pass filtering followed by averaging of 30 ECG complexes.
Nevertheless, we provided comparative results both when the
estimation was done based on the noisy scalp ECG as well as on
the denoised scalp ECG.

Four different quantitative measures were employed for the
comparison, the Pearson correlation coefficient (R), the mean
squared error (MSE), the mean absolute error (MAE) and the
signal-to-noise ratio (SNR). The metrics are defined by the
following equations:

R =
cov(X̂scalpXscalp)

σX̂scalp
σXscalp

, (4)

MSE =
1

K

∑

K
i=1 (Xscalpi − X̂scalpi )

2, (5)

MAE =
1

K

∑

K
i=1|Xscalpi − X̂scalpi |, (6)

SNR = 10log10

∑

K
i=1

∣

∣

∣
Xscalpi

∣

∣

∣

2

∑K
i=1

∣

∣

∣
Xscalpi

− X̂scalpi

∣

∣

∣

2
, (7)

where cov stands for the covariance, σ the standard deviation and
K the length of the signals. The metrics were computed for the
five signals of the database and subsequently averaged to obtain
one final value.

Reference Methods
Our method was evaluated in comparison with 3 other ECG
denoising methods. The first method is the single-channel CNN
denoising network, where each fetal ECG channel is denoised
separately (21). The second method is a wavelet denoising
algorithm that removes the noise by thresholding the detail
coefficients after the signal decomposition. The symlet wavelet
was selected due to its resemblance with an ECG, while a fixed
threshold was used, estimated by the minimax principle (34). The
lastmethod is the widely used beat-to-beat averagingmethod.We
selected to average 30 beats similar to the averaging performed by
the STAN method (35). The QRS complexes were detected by a
Pan Tompkins detector in the clean fetal ECG signals and not the

noisy ones because we do not intend to assess the performance of
the QRS detector but the performance of the averaging method.
However, we should note that it is not guaranteed that the
QRS complexes can be accurately estimated in the presence of
acute noise.

RESULTS

Performance on Simulated Signals
The improvement in SNR performance of the proposed network
in comparison to the other denoising algorithms, for input SNR
from −20 to 20 dB, is illustrated in Figure 3. As demonstrated
in this figure, the CNN network provides a considerable amount
of SNR improvement throughout the whole range of input SNR.
The proposed method outperforms the beat-to-beat averaging
and the wavelet denoising methods for all the input SNR
values. This was anticipated because the averaging method does
not preserve individual variations among complexes, while our
method is capable of doing so. Moreover, the wavelet denoising
distorts the signal amplitude, whereas the proposed network
preserves it better. The multi-channel network additionally
outperforms the single-channel nearly for the whole range of
input SNR values. More specifically, for input SNR <0 dB
the multichannel algorithm provides an SNR improvement of
at least 10 dB with respect to the input signal and at least
2 dB further improvement as compared to the single-channel
method. As the input SNR increases the performances of the
two methods become gradually comparable, while for input SNR
more than 11 dB the single-channel network slightly surpasses
the multi-channel. This was something to expect because for
signals of lower quality, information from multiple channels will
be beneficial for recovering the ECG structure. On the other

FIGURE 3 | Performance of the proposed multi-channel convolutional

network in comparison with other denoising methods in terms of improvement

in SNR of the denoised fetal ECG signals when compared with the noisy ones.
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hand, if a fetal ECG channel has sufficiently high quality not
only the other channels are unnecessary for denoising it but
could also slightly affect the quality of the denoised fetal ECG,
especially in case their SNR is low. This can be explained better
by the following: By using any set of three linearly independent
ECG leads, the VCG can be constructed, which is the three-
dimensional representation of the electrical activity of the heart.
A VCG can explain about roughly 90% of an ECG signal (36).
This means that when a signal is reconstructed from different
channels, 10% of the signal information should be considered as
not reconstructable. In case of very high signal quality, the single-
channel denoiser can perform better than themulti-channel since
it could theoretically reconstruct 100% of the signal.

By observing Figure 3, we see that, for all methods, there is an
input SNR for which the denoisers decrease the SNR. This input
SNR value is 9, 12, 18, and 20 dB for the wavelet, averaging, multi-
channel network and single-channel network denoisingmethods,
respectively. Since it is not common to obtain fetal ECG signals
of very high quality (more than 18 dB), we do not consider it as
a limitation of our method. We additionally noticed that there is

a upgoing trend for the SNR improvement metric as the input
SNR decreases. However, we did not test for signals of quality
even lower than −20 dB because real fetal ECG signals typically
do not have quality less than−20 dB.

Figure 4 depicts two typical denoising results from our test
dataset. The SNR values of the signals before and after denoising
are provided in Table 2. Note that in Figure 4 the vertical axes
limits for the noisy signals differ from those of the ground truth
and denoised signals for better visualization. However, the axes
limits for the clean and denoised fetal ECG are the same to allow
for their comparison. As can be noted, the network suppresses
the noise in a great extent for both signals simulated-A (SA)
and simulated-B (SB). In the case of signal SA the similarity of
the network’s output with the clean signals is very high for all
channels and all ECG waves are clearly distinguishable. Even for
channel 4, with input SNR of −12 dB, the network provides a
high-quality result, since it combines all channels to reconstruct
it. For signal SB the majority of ECG channels have very low
quality (around −9 dB). The SNR after denoising with our
network is significantly higher (3.75 dB on average). However, we

FIGURE 4 | Denoising results by the proposed method for two simulated signals (SA and SB) of the test dataset. For both signals: each panel in the left presents one

channel of the noisy four-channel fetal ECG signal (red), in the middle the corresponding channels of the clean signal (blue) are shown and in the right the denoised

fetal ECG signal by our network (green). The horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals. The SNR values of the noisy

and the denoised fetal ECG for both signals are given in Table 2 (SNRin and SNRout, respectively).
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TABLE 2 | The SNR values in dB for the four channels of the simulated signals

depicted in Figure 4, before (SNRin) and after (SNRout) denoising.

Channel Signal SA Signal SB

SNRin SNRout SNRin SNRout

1 1 17 −9 5

2 −2 13 −9 4

3 −3 14 −10 3

4 −12 8 0 3

notice some distortion on the signal amplitude, while particularly
the P-waves are suppressed by the network. Moreover, despite
channel 4 having the least amount of noise before entering
the network, we observe the least improvement after denoising,
evidencing that indeed the network’s output is obtained through
combination of information from all leads.

Evaluation on Real Fetal ECG Signals
The proposed method was evaluated on our extensive non-
invasive fetal ECG dataset (28) and the results are presented in
Figure 5. Figure 5 illustrates the improvement in SNR for input
SNR ranging from−17 to 1 dB. The input SNR corresponds to
the SNR of the noisy fetal ECG signals when we assume that
the ground truth signal is the running median of 100 heartbeats.
We need to stress that this is not the actual SNR of the signals
but merely an approximation of it. In fact, the more noise is
present in the signals or the more physiological variation, the
less accurate the constructed “clean” signal is. Examining the
Figures 3, 5, where the performance in the simulated dataset is
illustrated, we observe an analogy between them. In both graphs
themulti-channel denoiser surpasses the single-channel for lower
input SNR while for higher SNR values the two methods perform
comparably. The performance improvement as compared to the
single-channel approach is lower for the real signals than for the
simulated ones but this might be due to the lack of actual ground
truth signals for comparison. By all means the evaluation in this
dataset is suboptimal but it provides a performance indicator in a
large real dataset.

Figure 6 demonstrates the result of denoising two signals of
this database, while Table 3 provides the corresponding SNR
values before and after denoising. Note that the vertical axes
limits for the noisy signals differ from the ones of the “clean”
and denoised ones for clearer visualization. Both signals in
Figure 6, especially signal real-B (RB), have a significant amount
of noise before denoising (see Table 3). The “clean” reference
signals as well contain few noise but in most of them the ECG
morphology is relatively clear. On the other hand all the possible
variations among the successive complexes is lost due to the
heavy averaging performed. Themulti-channel network achieved
a fairly remarkable result in denoising those signals. Comparing
the morphology of the denoised with the “clean” reference
signals, the various ECG waves and segments correspond
relatively well. In this comparison, we acknowledge that the
running median of 100 heartbeats is not the gold standard.

FIGURE 5 | Performance of the proposed fetal ECG denoising method in a

large real dataset (28) in terms of improvement in SNR of the denoised signals.

However, the averaging of the heartbeats brings evidence for the
location of the ECG waves, especially the P-waves, information
that cannot be seen in the noisy signals. It is important to
recognize that in the denoised signals by our network, these
locations seem to correspond with the locations in the median
signals. As a matter of fact, the denoised signals appear to exhibit
better quality and clearer morphology than the reference. Some
morphological features seem to be distorted, as we can see in
Figure 6 for signal RB. However, the overall performance in those
low-quality signals is relatively good.

Figure 7 illustrates the performance for a fetal ECG signal of
on non-invasive fetal ECG dataset in comparison to the single-
channel network, 30-complex averaging and wavelet denoising.
For simplicity we present only one channel out of the four. As
shown in the figure, all methods provide a noise-free result.
However, our method retains the individual ECG complex
differences as opposed to the averaging method and does not
distort the signal amplitude as opposed to wavelet denoising. In
addition, the morphology of the denoised ECG is clearer in our
case. The single-channel network provided a similar result to the
multi-channel for this signal.

The performance of the network on the Abdominal andDirect
Fetal ECG Database is illustrated in Table 4. The scalp ECG
was compared with the aforementioned linear combination of
abdominal signals, as described in Equation (3). In Table 4 we
provide the results of this comparison for 2 cases; when we
used the original scalp ECG and when we denoised it. For each
performance metric the values before and after denoising with
the multi-channel and single-channel network are presented,
while with bold the best performing method is marked.

First, we believe that denoising of the scalp ECG was
important to allow for better comparison with the scalp ECG
estimation from the denoised abdominal leads. By averaging
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FIGURE 6 | The results of denoising two signals (RA and RB) from our private real fetal ECG dataset (28). For each signal: the noisy four-channel fetal ECG signal

extracted from the abdominal measurements is presented in the left (red), the running median of 100 heartbeats for each channel in the middle (blue) and the

denoised fetal ECG signal by our network in the right (green). The horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals in µV.

The SNR values of the noisy fetal ECG signals (SNRin) together with the values for the denoised ones (SNRout) are given in Table 3.

TABLE 3 | The SNR values in dB for the four channels of the real signals depicted

in Figure 6, before (SNRin) and after (SNRout) denoising.

Channel Signal RA Signal RB

SNRin SNRout SNRin SNRout

1 −8 3 −13 3

2 −3 3 −8 5

3 −8 2 −6 6

4 −1 6 −14 1

30 successive ECG complexes we might have lost some
morphological variations among the successive beats of the scalp
lead but achieved significant quality improvement. Even the
scalp ECG approximated by the noisy fetal ECG signals has
better resemblance with the denoised scalp lead, e.g., correlation
coefficients of 0.74 vs. 0.53. Second, we observe that both the
multi-channel and single-channel networks achieve significant

quality improvement of the fetal ECG signals for all the metrics

presented in Table 4. We should note here once more that by
no means the scalp estimation is expected to be the same with

the scalp ECG even after perfect denoising, because the latter

is a different lead than the abdominal leads. Last, the multi-

channel network outperforms the single-channel in terms of all
computed performance metrics. However, the differences are
relatively small. It might be because the extracted fetal ECG
signals already have decent quality and, as we have already
found in simulated signals, employing multiple channels is more
advantageous in cases of signals exhibiting lower SNR. Larger
difference was found regarding the MSE metric (62.1 vs. 68.4
µV2), indicating that the single-channel network may provide
more outliers, while the multi-channel a smoother outcome.

Figure 8 provides two qualitative results of the scalp
estimation, when fetal ECG denoising is performed with the
proposed multi-channel method. In both cases, the scalp
estimated by the denoised fetal ECG is free from noise and the
individual waves and intervals correspond relatively well to those
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of the scalp ECG.We do not expect absolute correspondence, not
only because the scalp ECG is a different lead, but also because it
was averaged over 30 complexes.

DISCUSSION

We have proposed a CNN network for postprocessing non-
invasively extracted multi-channel fetal ECG signals to improve
their quality. The non-invasive fetal ECG is substantially
contaminated by various noises, even after the application of
various signal processing tools proposed in literature, such as

FIGURE 7 | The result of denoising a real fetal ECG signal from our private

dataset (28) with different denoising algorithms. For simplicity, only one

channel is displayed. The panels show: (A) the noisy extracted fetal ECG, (B)

the denoised signal by the proposed method, (C) the denoised signal by the

single-channel denoising network, (D) the result of 30-complex averaging and

(E) the result after wavelet denoising. The horizontal axis depicts the samples

at 500Hz, while the vertical the amplitude of the signals in µV.

maternal ECG suppression. The low quality of the fetal ECG is
the principal reason that the applicability of non-invasive fetal
electrocardiography in clinical practice is limited. The suggested
multi-channel network was trained on awide dataset of simulated
four-channel ECG signals, with SNR ranging from−15 to 15 dB,
while it was extensively validated both on simulated as well as on
real datasets.

Experiments on simulated data showed a significant
improvement in the quality of the noise-corrupted fetal ECG
signals. The network combined information from all the
channels to efficiently remove the noise and uncover the ECG
signal morphology even in the presence of acute noise. However,
the network suppressed some morphological characteristics
in cases there was not sufficient content for denoising i.e.,
when most signal channels were severely corrupted. The
multi-channel network outperformed the single-channel (21)
in cases of low SNR of the input signals, while for SNR more
than 11 dB the single-channel network exhibited slightly better
performance. This behavior could be anticipated. A multi-lead
signal configuration captures the spatiotemporal nature of the
cardiac electrical activity. For low quality signals this is beneficial
as more signal information can be exploited to better reconstruct
each channel. However, if we wish to denoise a channel that
already has high quality, using spatiotemporal content may be
not always the best choice. Nevertheless, it is very uncommon
in practice to obtain fetal ECG of such high quality. Yet, in case
this would happen, the output of the multi-channel network
would still be of such quality that it could be used for further

clinical interpretations.
The evaluation of our network on a large real fetal ECG dataset

showed an analogous behavior to that on the simulated data; for

low quality fetal ECG the multi-channel network outperformed

the single-channel, while for higher SNR the performances

of the networks were comparable. We cannot make a direct

comparison because the evaluation method for the real signals

was suboptimal. We are aware that the approximation of the

ground truth signals with the running average of 100 heartbeats
was not very accurate. However, it gave us an indication that the
method is efficient in real data too. We additionally presented
some qualitative denoising results for two signals of this database
in Figure 6 to support our claim. The network outputted clean
denoised signals with good correspondence of the individual

TABLE 4 | Performance of the multi-channel CNN network vs. the single-channel one on the Abdominal and Direct Fetal ECG Database in terms of comparison of the

scalp ECG with a scalp estimated from the denoised abdominal fetal ECG.

Metric Original scalp ECG Denoised scalp ECG

Noisy input Multi-channel

output

Single-channel

output

Noisy input Multi-channel

output

Single-channel

output

R 0.53 0.66 0.65 0.74 0.87 0.85

MSE (µV2 ) 555.8 440.7 449.3 116 62.1 68.4

MAE (µV) 15 12.9 13 7.3 5.4 5.5

SNR (dB) 1.5 2.7 2.5 3.7 6.4 6.1

The best performing method is marked with bold.
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FIGURE 8 | Comparison of the scalp ECG with an estimation of it as a linear combination of the abdominal fetal ECG for 2 records (r10 and r08) of the Abdominal and

Direct Fetal ECG Database. In the first row (red) the scalp ECG estimated from the noisy fetal ECG is presented, in the second (blue) the ECG as measured by the

scalp electrode (running average of 30 complexes) and in the last one (green) the scalp ECG estimated from the denoised fetal ECG by the proposed network. The

horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals in µV.

ECG waves between the reference and denoised signals. A few
recordings in our dataset had input SNR that was even lower
than−17 dB. Based on visual analysis of the output of our
proposed denoiser, we could argue that the performance of the
denoiser breaks down at these very low signal quality levels and
the network is no longer capable of reconstructing a reliable
fetal ECG. This limitation probably comes from the fact that
the network was trained for input SNR range of−15 to 15 dB.
Thus, the network did not learn to remove efficiently the noise
when the quality of the signals is even lower. This indicates that
we might need to perform experiments for a wider SNR input
range. However, the capacity of the network might no longer be
sufficient for handling such an ample range of signal qualities and
further research is needed to evaluate this.

The CNN network was additionally evaluated in the
Abdominal and Direct Fetal ECG Database. Simultaneously
recorded scalp ECGs were compared to an estimated scalp ECG
from the denoised abdominal channels, also here demonstrating
that the method can provide significant quality improvement of
the noisy fetal ECG signals. Comparison of the performances of
the multi-channel and single-channel networks for this database,
revealed that they achieve comparable results, probably because
the input signals were of relatively good quality. It is difficult
to compare the performances between the two real datasets for
several reasons. Most importantly, the sizes of the two datasets
differ a lot (455 vs. 5) and so do the gestational ages of the subjects
(18-24 vs. 38-41 weeks).

As mentioned in the introduction and also in (21), the
shortcoming of denoising single-channel fetal ECG with a
convolutional network is that the network can output signals
that look as if they were ideally denoised, but that can have
“fake” waves that can differ both in location and polarity when
compared to the actual ECG waves. This happens mostly when

the quality of the input signals is relatively low and the network,
not having enough signal information, reconstructs a clean
signal from unreliable information in the encoded latent space.
We demonstrated that by employing multichannel signals this
problem is eliminated to a large extent. When the quality of
the signals is very low, the amplitude of the small signal waves,
like the P-wave and T-wave, and less often of the R-peaks in
the denoised signals can be distorted rather than “fake.” This
means that some waves may be virtually absent, or the output
does not even resemble an ECG anymore. This makes themethod
safer to use in clinical practice, because clinicians will typically
discard a distorted signal but a signal that looks like a high-
quality ECG but in fact contains “fake” information might lead
to erroneous decision-making.

To summarize, we have shown the potential of deep CNNs
for removing noise from non-invasive multi-lead fetal ECG. We
validated the method on a wide dataset of simulated but also
real recordings with both early as well as late gestational ages
(18 to 24 and 38 to 41 weeks). Primarily, we demonstrated
that employing multi-channel information for denoising does
not only lead to more clean signals but also to more reliable
results, when compared to single-channel information. The main
advantage of the method is that, as opposed to the widely used
averaging method, no prior processing of the signal is needed
to extract the locations of the R-peaks and variations in ECG
morphology among consecutive heartbeats are preserved. This is
especially important in case that arrhythmias are present. Up to
now, arrhythmia is assessed through echocardiography because
the averaging that was performed to enhance the quality of
the fetal ECG hinders its application for arrhythmia analysis.
Moreover, the quality of the denoised signals is high enough to
allow for measuring the timing of intervals, like the PR and QT
interval. However, in order to confirm this, we need to perform a
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thorough comparison of the ECG intervals between the denoised
and the clean signals. If we wish to obtain reliable results, a large
annotated dataset is necessary, but this requires time and experts
to perform these annotations.

Certainly, there is room for improvement of our method.
Most importantly, the capacity of the network could be further
increased to handle even more noisy signals. Moreover, we can
explore denoising directly the raw abdominal signals, without
cancelling the maternal ECG. Most probably a more complex
network architecture is needed for such a task and appropriate
data for training.

CONCLUSION

An end-to-end trained deep CNN network was presented for
denoising of fetal ECG signals. Convolutions and transposed
convolutions were combined in the network, modeling the
denoising problem as an encoding of primary signal content and
subsequent decoding to recover details. Essentially, we proposed
to employ spatiotemporal information in the ECG signal by
usingmultiple ECG leads simultaneously as input to the network.
The network then learned how to combine the input channels
and deliver a reliable clean ECG as output. Experiments on
simulated as well as in real data showed that the network can
achieve a substantial quality improvement of the noisy signals
and outperform a single-channel alternative.
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INTRODUCTION

This commentary represents a response to two recent contributions to the literature on electronic
fetal monitoring (EFM) (1, 2). One article by Hirsch, raises concerns about the value of fetal
monitoring in light of a very large judicial award of $50 million against an obstetrical service for
a “brain-damaged baby” (1). In the other article entitled: “Fetal Heart Rate Monitoring: Still a
Mystery More than Half a Century Later,” the authors present a Category II EFM tracing which
creates for them uncertainty about whether the “fetal acid-base balance may be affected” and
whether they may await spontaneous vaginal delivery or must consider more expedient operative
delivery (2).

BEWILDERING FHR PATTERNS

The authors of the two articles share a bewilderment about the meaning of fetal heart rate (FHR)
patterns and the problems of responding responsibly to them. They observe that despite the
longevity of its implementation, the ubiquity of its use, and modifications to the classification of
FHR patterns over the past 50 years, the interpretation of FHR patterns has continued to “befuddle
obstetric care providers.”

In these responses, the authors are reflecting a broader bewilderment in the society of
obstetricians. In the most recent coverage of the topic in Up-To-Date the author finds no
unequivocal benefit to the use of EFM; further insisting that it is equivalent to intermittent
auscultation (3). In a publication on the evaluation and response to Category II patterns, eighteen
well-known authors confess that “As a medical community, we seem to know less than we thought
we did 30 years ago regarding the utility of this ubiquitous technology.” They also aver that
“Unfortunately, this body of work [EFM research] has primarily served to raise more questions
than it has answered” (4). In a subsequent study their proposed scheme to manage Category II
patterns was found to be of very limited benefit (5). One is reminded of Churchill’s description of
Russia as a “riddle wrapped in a mystery, inside an enigma.”

The “befuddlement” of obstetric care providers comes not only from the
promulgation of what may be considered “defensive” classifications of FHR patterns
(including—Categories I–III from ACOG), but also from a monolithic, and ill-considered
view of the role of acidemia in the provenance of adverse fetal neurological outcome.

THE CLASSIFICATION OF FHR PATTERNS

The currently popular, three-category classification of fetal heart rate patterns in the United States
(Category I–III) was introduced in 2008 without proper vetting and without attention to
fundamental physiological principles (6). These comments may be applied to classifications from
other national/regional organizations as well. These classifications, tied exclusively to the estimate
of fetal acidemia and ensuing hypoxic-ischemic injury, attributes little importance to the proper
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assessment of uterine activity and ignores the concept of using the
individual FHR pattern, over time, as its own control. Moreover,
it imposes arbitrary definitions of tachycardia and bradycardia
and takes no instruction from the recovery of the fetus from the
individual deceleration or its evolution over time; there is no
recognition of the importance of fetal behavior or the potential
for the prospective identification of fetal neurological injury or
intracranial hemorrhage (7, 8). They do not obey physiological
principles (9).

Category II patterns offer disparate combinations of
(1) decelerations (early, late or variable) with normal
baseline features or (2) abnormal baseline features (altered
variability, absent accelerations, tachycardia, bradycardia)
without decelerations. Given the breadth of physiological and
pathological conditions that may present with a Category
II tracing or equivalent designation in other classifications
(cord compression, head compression, placental insufficiency,
medication effects, prematurity, fetal sleep cycles, existing injury,
anomaly, etc.), it is unreasonable to consider that the metabolic
status or the tissue oxygen reserve of each fetus, or the time to
decompensation is the same. Indeed, “Category II” pattern may
reflect a normal healthy fetus, but it does not exclude either fetal
acidosis or fetal neurological injury (10–13).

Combining these disparate features and etiologies into a single
classification and offering vague guidelines for their management
including “continued surveillance and reevaluation” (3, 14)
appears to have contributed to the “conundrum” for those
providers trying to decide what the ubiquitous (identified in 70–
80% of fetuses during labor) (15) Category II tracings mean, how
to respond to them, it and how to counsel patients.

IMPLEMENTATION OF THE CATEGORY

SYSTEM

The argument that the introduction of EFM was not
accompanied by rigorous studies can also be made about
the adoption of the various systems of classifying FHR patterns
and tying it exclusively to the presence or absence of fetal
acidemia. A greater deficiency was the failure to understand the
provenance of intrapartum fetal injury based on the assessment
of both immediate and long-term outcome, not just injury
associated with a very low pH. Although ACOG guidelines,
at least, accept the evolution of Category I to Category III as
confirmation of an intrapartum injury, most babies injured
during labor do not have severely pathological patterns (11), nor
are they acidemic at birth. The de rigueur requirement of acidosis
to make the correlation between fetal heart rate patterns and
injury made a virtue out of necessity in that no measurements
of greater relevance, such as fetal blood pressure or cerebral
perfusion, were available.

Why is EFM not beneficial? It is universally agreed that
fetal heart rate patterns reliably detect fetal hypoxia and are
strongly related to adverse outcomes (16, 17). If the test of its
value, however, rests with the correlation with pH or base deficit
(BD) at the time of birth and not with long-term outcome,
then the wrong question is being asked. On the other hand, if

EFM has no preventive value, except to increase the cesarean
section rate, what can possibly be the justification for either it or
intermittent auscultation?

One can only agree with the enlightened notion of Andrews
and Tivo that “measures should be employed in an effort to
convert the category II to a category I tracing” (2). In this
recommendation lies the likely reengineering of the approach to
EFM as an instrument of preventive care rather than one geared
to rescuing the fetus from an obviously hostile, presumably
acidemic, environment (18). In this respect, it is necessary to
place monitoring in its proper context by a careful evaluation
of maternal, fetal and obstetrical risk factors. It is especially
necessary to ensure adequate fetal reserve at the outset of
monitoring; to scrupulously avoid excessive uterine activity (an
independent risk factor for adverse outcome) irrespective of heart
rate pattern and to titrate the mother’s expulsive efforts according
to the response of the fetus. Expulsive efforts dramatically
increase further the intrauterine pressure and the distortion
(molding) of the fetal head with potential compromise of fetal
cerebral blood flow. These should be considered as primary
instruments to prevent or improve abnormal FHR patterns
and minimize the need for urgent intervention. Further, these
initiatives must be taken as early as possible, and assessed for
trajectory with each contraction. Failure to observe improvement
after a reasonable number of contractions, not time, gives
credence to the notion of a fetus on a trajectory of decreasing
fetal reserve, irrespective of whether some specific pH or base BD
value has been reached. There appears to be no clinical virtue to
seeing how close one comes to catastrophe before intervening
(rescuing). Indeed, withholding intervention until the pattern
reaches Category III makes the determination of fetal acidemia
more important than a normal fetal outcome.

MALPRACTICE ALLEGATIONS

Finally, we come to the proverbial elephant in the room—
the allegation of obstetrical malpractice that rests with the
interpretation of the EFM tracing—a concern so ubiquitous that
it appears in many if not most articles on fetal monitoring. This is
not without cause; the substandard response to FHR patterns is a
conspicuous mainstay of preventable injury worldwide whether
the tribunal is the courtroom or organizational review (19, 20).

In his article, Hirsch provides neither the tracing nor sufficient
information to evaluate its role in the outcome of the patient
or the medico-legal encounter. We are also not informed of the
positions of the attorneys for either side or most critically, the
credibility of the various witnesses including the experts and the
defendant. One conclusion that can be drawn without knowing
any of these details, however, is that the jury was dismayed by the
deportment of the defense.

The $50 million award that “hinged on the disputed
interpretation of the fetal heart rate pattern,” was certainly an
unusually large award and well above the “average” $1 million
estimated average lifetime costs of health care, including costs
for productivity, and for social outlays (Morbidity and Mortality
Weekly Report-MMWR). These estimates do not include out of
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pocket expenses, lost wages, emergency room visits, over-the-
counter medications, caregiving expenses, among others which
are greater than average if the infant with severe brain-damage
has a close to normal life expectancy. Nor does it include
the toll paid by the participants on both sides of the often
lengthy, often dispiriting, process of discovery that characterizes
Western litigation. Nevertheless, the questions must be asked:
what fact pattern could have so impelled the jury not only to
a verdict of negligence, but to such a very large award? And
does this not represent a breakdown of the legal system—a
lottery? Was it the high-flown oratory of the plaintiff ’s expert?
Andrews and Tivo allege that “only individuals with post-hoc
knowledge of the neonatal outcome (plaintiff experts?) seem to
be proficient at interpretation” (2). Was it the severity of the
injury? Was the afflicted child brought into court to prey on the
sympathies of the jurors? My own experience suggests that it
is not negligence alone that accounts for such rare, “runaway”
awards, but deception by the defense; by distorting the evidence
about the value of both EFM and hands-on obstetrical care as
vouchsafed by “authoritative” sources. The jury has no other
mechanism for penalizing the defense team—it has no option to
say: “We award the plaintiff a fraction of the amount that we were
considering and perhaps he/she will need, but we also want to
show how disappointed we were by the actions of the defense that
diminished our notion of the honor of the medical profession.”

Consider the following heart-felt testimony of an empathetic,
defendant physician: “I am so sorry about this outcome; I grieve
for the child and for the parents. I have never intended to harm
anyone, much less a patient. I believed, then and now, that I
was acting reasonably under the circumstances. Both for the
patient’s sake and my own, I wish we had the day to do over
again.” Imagine the response of the very human jurors to this
confession, not of medical error, but of human value, even of
fallibility. Even in the dock (the witness stand) the doctor was
trying to heal. Sometimes substandard care harms babies and
mothers and is deserving of honest reckoning and adequate
compensation. An award, however generous, can perhaps palliate

the injury or perhaps lessen the heartache, but it is the humanity
of the defendant that not only prevents “runaway” verdicts, but
most importantly, also offers some solace (healing) to the parents
while holding open the option of learning something from the
experience that will benefit a future patient.

CONCLUSION

Obstetrical health care providers continue to look for
guidance in the poorly conceived classifications of FHR
patterns largely unrelated to our understanding of fetal-
maternal physiology and predicated on the notion of EFM
as an instrument of rescue from “threatening” acidemia.
We should acknowledge that these constructs and the
“vagueness” of the management guidelines better protect
the physician from the allegation of malpractice than the fetus
from the potentially harmful stresses of labor and delivery.
As the emotions present in these two contemporaneous
articles clearly convey, we are all paying a dear price for
that approach.

The quotation from Churchill cited above ends with: “but
perhaps there is a key.” The “key” is to have a better
understanding of the language (physiology) and trends of fetal
heart rate patterns and to broadly adopt a less defensive posture
that reorients our priorities so that we are more offended
by bad outcomes than the specter of malpractice litigation.
We must increase our support for parents before, during and
after pregnancy and embrace the notion that what we do as
obstetrical care providers does matter, perhaps long after the
pregnancy is over. Health care providers also need support, but
the classification of FHR patterns cannot immunize us against
accountability or empathy.
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Background: Studies about the feasibility of monitoring fetal electroencephalogram

(fEEG) during labor began in the early 1940s. By the 1970s, clear diagnostic and

prognostic benefits from intrapartum fEEG monitoring were reported, but until today,

this monitoring technology has remained a curiosity.

Objectives: Our goal was to review the studies reporting the use of fEEG including the

insights from interpreting fEEG patterns in response to uterine contractions during labor.

We also used the most relevant information gathered from clinical studies to provide

recommendations for enrollment in the unique environment of a labor and delivery unit.

Data Sources: PubMed.

Eligibility Criteria: The search strategy was: (“fetus”[MeSH Terms] OR “fetus”[All

Fields] OR “fetal”[All Fields]) AND (“electroencephalography”[MeSH Terms] OR

“electroencephalography”[All Fields] OR “eeg”[All Fields]) AND (Clinical Trial[ptyp]

AND “humans”[MeSH Terms]). Because the landscape of fEEG research has been

international, we included studies in English, French, German, and Russian.

Results: From 256 screened studies, 40 studies were ultimately included in the

qualitative analysis. We summarize and report features of fEEG which clearly show its

potential to act as a direct biomarker of fetal brain health during delivery, ancillary to

fetal heart rate monitoring. However, clinical prospective studies are needed to further

establish the utility of fEEG monitoring intrapartum. We identified clinical study designs

likely to succeed in bringing this intrapartum monitoring modality to the bedside.

Limitations: Despite 80 years of studies in clinical cohorts and animal models, the field

of research on intrapartum fEEG is still nascent and shows great promise to augment the

currently practiced electronic fetal monitoring.

Prospero Number: CRD42020147474.

Keywords: EEG, labor, fetus, neonates, infant, magnetoencephalogram, electrocorticogram
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INTRODUCTION

Perinatally-acquired fetal brain injury is a major cause of
long-term neurodevelopmental sequelae, and the single greatest
contributor to disability worldwide (1, 2), accounting for
1/10th of all disability-adjusted life years (3). Moreover,
intrapartum-related death is the 2nd leading cause of neonatal
mortality and the 3rd leading cause of death in children
under five (4). Thus, there is an urgent need to identify
early signs of fetal distress during labor to allow timely and
targeted interventions.

Fetal acidemia contributes to perinatal brain injury (5), and
is one of the most common and potentially devastating labor
complications. Acidemia occurs in about 25 per 1,000 live births
overall and in 73 per 1,000 live preterm births (6, 7) and
the risk of subsequent brain injury rises 9-fold in the setting
of preterm birth. These risks are even higher with additional
complications, such as intraamniotic infection or intrauterine
growth restriction (IUGR). Over 90% of children with perinatal
brain injury, including that causing cerebral palsy, have a normal
life expectancy, but many cannot fully participate in society or
fulfill their developmental potential (8).

Today, continuous fetal heart rate (FHR) monitoring is used
as an indirect surrogate indicator to suspected fetal acidemia
during labor and it fails at that (9). Fetal acidemia per se is a
poor proxy to fetal brain injury (10). It is then not surprising
that FHR monitoring intrapartum does not reliably predict fetal
brain injury. Moreover, the fear of missing fetal distress increases
the rate of cesarean delivery, with significant maternal risk
(11). Meanwhile, about 50% of cesarean sections are deemed
unnecessary (12, 13). Conversely, labor is sometimes allowed to
proceed when current FHR monitoring technology suggests that
the fetus is tolerating it, only to discover later that fetal brain
damage occurred, causing a range of signs from subtle neurologic
deficits to more overt conditions like cerebral palsy.

Fetal electroencephalogram monitoring intrapartum (fEEG),
as a direct monitor of fetal brain activity, was a focus of clinical
research as early as the 1940s (14) and into the 1970s (15) and
1990s (16, 17). Notably, Eswaran et al. used a regular FHR scalp
electrode and a routine GE HC Corometrics FHR monitoring
device to record auditory evoked brainstem potentials, i.e.,
evoked fEEG activity (16). Due to technical limitations and the
difficulty of data interpretation, this research into fEEG was not
able to be adopted into clinical practice.

The goal of this article is to provide a systematic review of the
current literature on intrapartum fEEG. Using the most relevant
information gathered from studies on this subject, the second
goal of this review is to provide recommendations in order to
help ensure successful fEEG study enrollment in the unique
environment of a labor and delivery (L&D) unit.

Abbreviations: CRI, continuous rate infusion; CTG, cardiotocogram;

fECoG, fetal electrocorticogram; fECG, fetal electrocardiogram; fEEG, fetal

electroencephalogram; fMEG, fetal magnetoencephalogram; FHR, fetal heart rate;

IUGR, Intrauterine growth restriction; PROM, premature rupture of membrane;

UCO, umbilical cord occlusion.

METHODS

The methods for searching and analyzing the relevant literature
and for data extraction followed recommendations from
the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) statement. The review has
been registered with the PROSPERO database under the
number CRD42020147474.

We conducted a literature search in the database
PubMed covering all dates and using the following
keywords: (“fetus”[MeSH Terms] OR “fetal”[MeSH
Terms]) AND (“electroencephalography”[MeSH Terms]
OR “electroencephalography”[All Fields] OR “eeg”[All Fields])
AND (“humans”[MeSH Terms]). All the studies retrieved
with this search and available in English, French, German and
Russian were screened for pertinence by the co-authors who
are proficient in these languages. The literature review was
completed on April 4, 2020. The eligibility criteria used to
determine whether a study was included in this review or not
were that the abstract and the full text described the use of EEG
on the fetus during labor and provided details about how it was
performed. Study selection relied on two reviewers applying
the eligibility criteria and selecting studies for inclusion. More
specifically, one reviewer screened all the studies and determined
if they were relevant or not and the other reviewer examined
all the decisions. In case of a disagreement, a joint decision was
made upon discussion with the second reviewer. Non-systematic
literature reviews were excluded.

The following information was extracted from each study
retrieved with the above-mentioned search, and logged in a
preformatted spreadsheet: the article name, authors, PubMed
identification number, publication year, whether it passed
screening or not (1 = passed, 0 = excluded), eligibility (1 =

passed or 0 = excluded), the study type (human or animal
model), the study size (number of subjects), the gestational
age of the subjects when available, the follow-up period if
applicable, the electrode configuration, sampling frequency, and
monitor type. For excluded studies, the reason for its exclusion
was also noted: for those excluded at screening, the reason
was categorized and recorded [1 = EEG not mentioned in
abstract or article, 2 = irrelevant]. For studies considered
non-eligible, the reason was also categorized and recorded
[1 = No EEG monitoring, 2 = No information about EEG
acquisition or analysis, 3 = EEG done on older children or
adults and 4 = fEEG not recorded during labor or fetal
magnetoencephalogram (fMEG)].

To present individual study data, quantitative data (such
as gestational age) were presented as averages and standard
deviations. A Prisma flow diagram was created and all
the eligible studies reported in this diagram were reviewed
and synthesized.

Each study was classified according to its level of evidence
according to the Oxford Center for Evidence-Based medicine
level of evidence (18). Level 1 represented a systematic
review of inception cohort studies, a systematic review
of randomized trials, or n-of-1 trials. Level 2 represented
either inception cohort studies, individual cross-sectional
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studies with the consistently applied reference standard and
blinding, randomized controlled trials or observational study
with dramatic effect. Level 3 represented non-consecutive
studies, or studies without consistently applied reference
standards and non-randomized controlled cohort/follow-
up study. Level 4 represented a case series, case-control
studies, or poor-quality prognostic cohort study. Finally, level
5 represented expert opinions without an explicit critical
appraisal, expert recommendations, or first principles as
well as case reports (or case series of less than or equal
to 5 cases).

Finally, we summarized systematically individual study
findinigs and used information gathered from some of the clinical
studies to provide recommendations for successful enrollment in
future studies in L&D units.

RESULTS

A Prisma flow diagram showing the results of our database
search and presenting the final number of studies included in the
systematic review is shown in Figure 1.

FIGURE 1 | PRISMA flow diagram summarizing the study selection process and the number of studies ultimately deemed eligible to be included in the meta-analysis.
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Our initial search yielded 248 results. Eight additional studies
were added following cross-referenced review bringing the total
number of identified studies to 256. Of these, 34 articles were
discarded because they were in a foreign language other than
French, German or Russian, 23 additional articles because they
were non-systematic reviews and 1 more was excluded because
we could not get access to the full text. The initial screening
with abstract reviewing was therefore performed on 198 studies
and the number of relevant studies was further reduced to 136:
14 additional articles were excluded because there was no EEG
performed; the remainder of the studies (n = 48) was excluded
because they were deemed irrelevant to the subject of our review
because the subject of the study did not cover fEEG intrapartum
or only mentioned it in passing.

Of these 136 studies, 11 were excluded because they were
literature reviews that were not caught in the initial screen and
one was an abstract only. The full text was examined for eligibility
in the remaining 124 studies.

Of these, 4 studies were excluded because fEEG was not
performed as part of the experiment (only as a side test), 16
studies were excluded due to lack of information about the fEEG
acquisition or analysis, 22 studies were excluded because EEG
(or fMEG) was performed on the fetus but not intrapartum (5
of them were in preterm fetal sheep, 2 in preterm guinea pigs,
and the rest in a preterm fetus in utero) and 40 studies were
excluded because the EEGwas performed on neonates after birth,
or on older children (i.e., not on fetus or neonates) or adults (the
mother). In an additional study, fEEGwas studied just before and
after labor (but not during), so it was also excluded. One last study
was excluded because it was found to be a duplicate from another
study written in a different language. Therefore, 40 studies were
ultimately included in our analysis.

A summary of the 40 eligible studies is provided in Table 1.

Critical Evaluation of the Level of Evidence
Among the 40 eligible studies, none had a level of evidence of
1, 10 studies had a level 2, 11 studies had a level 3, 12 studies
had a level 4 and 7 had a level 5. With our search criteria,
we identified only a small number of studies with a high level
of evidence (i.e., 2 or above), especially studies in humans.
In particular, the older studies were mostly either the author’s
personal experience, case reports, or poor-quality cohort studies
as fEEG was in the early experimental stages. However, these
studies have the benefits of describing how the technique was
developed and perfected over the years to allow determination
of normal intrapartum fEEG pattern as well as recognition of
patterns that could be indicative of fetal distress. We summarized
below themost relevant information gathered from the 40 eligible
studies on intrapartum fEEG. We divided them between studies
in human fetuses and studies using animal models.

Results of the Individual Studies
Details about the condition under which the fEEGwas performed
and the monitoring characteristics for all eligible studies are
provided in Table 2.

Studies in Human Subjects
The first report of fetal EEG was a case report by Lindsley
(14) who studied his own child during the 3rd trimester of his
wife’s pregnancy. For this recording, abdominal probes were used
and the tracing had a significant amount of artifacts preventing
proper assessment.

Most of the eligible studies in humans date back from the
1960s-70s and more precisely originate from Rosen, Chik, and
their team who are among the pioneers of fEEG recording during
labor. Several of the findings described in these studies seem to
overlap and are summarized below.

Electrodes
The use of fEEG in humans using scalp electrodes during labor
was initially reported by Bernstine et al. (59). Later, Rosen and
his team perfected the technique (47). A good electrode was
defined as: (1) safe to use and easily applied during labor, (2)
screening out electrical artifacts such as the movement of the
fetal head, maternal movements and the electrical “noise” of
uterine contractions, (3) eliminating the electrical pattern of the
FHR from the tracing and (4) providing EEG of a technical
quality equal to that in the extrauterine environment (49). The
group tried different techniques. They initially reported the use
of metal skin clips soldered to a shielded cable, coated with
non-conductive plastic glue, and filed at their tip to prevent
deep scalp penetration (51). This type of electrodes was replaced
by cup electrodes, initially with a platinum needle embedded
in a lucid disc (49, 51) (with possible skin penetration of 1–
2mm), later replaced by a central silver or platinum pin avoiding
penetration of the fetal skin (31). Although this technique seemed
to provide reliable and interpretable fEEG signals, artifacts
from fetal electrocardiogram (ECG) or movements of the leads
remained a common occurrence and these electrodes required
continuous suction to stay in place. Mann et al. (45) described
the use of a vacuum electrode similar to Rosen et al. but with a
silver disc electrode used instead of their platinum needle, thus
preventing puncture of the fetal scalp. The main feature of their
electrode was the 100% conductivity with a silver cup, wire and
plug, low resistance, good suction, and no clogging of the orifices
to the vacuum source with the use of a mesh filter (45).

In 1974, Heinrich et al. reported the use of a new intrapartum
multimodal fetal monitoring device, the RFT Fetal Monitor
BMT-504, that was capable of recording fEEG and tissue oxygen
pressure among other parameters (ECG, pressure signals like
intraamniotic pressure, temperature, heart rate) combined with
either stainless steel clip electrodes or the current standard of
care screw electrodes by Corometrics (USA) (35). Weller et al.
(19) later described the use of a flexible electrode incorporating
a guard ring surrounding the recording sites and forming the
indifferent and common electrodes, with the guard ring acting
as a short circuit for fECG to prevent its artifact on the EEG
tracing. Suction was not needed to maintain in place this
type of electrode and its pliability allowed it to be inserted
through a 3 cm dilated cervix even if the two electrodes were
23mm apart. Infrared telemetry was used to display and record
fEEG, preventing power line interference, avoiding trailing
leads between patient and monitoring equipment, and ensuring
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TABLE 1 | Summary of the 40 eligible studies and their level of evidence, number of subjects included and their gestational age.

Authors/year Level of evidence Type of study Number of

subjects

Gestational age of subjects

Studies in human

Thaler et al., 2000 (17) 3 Non-consecutive cohort study 14 39.9 ± 1.2 weeks

Weller et al., 1981 (19) 4 Case series 20 Term fetus

Kurz et al., 1981 (20) 3 Cohort study 20 Not reported

Wilson et al., 1979 (21) 2 Inception cohort study 25 Full term

Chik et al., 1979 (22) 5 Author’s recommendations N/A N/A

Borgstedt et al., 1978 (23) 4 Poor quality cohort study (biased

recruitment of high-risk cases)

158 40.1 ± 2.1 weeks

Nemeadze, 1978 (24) 3 Non-randomized controlled cohort 105 N/A

Chik et al., 1977 (25) 3 Retrospective cohort study 61 39.4 ± 3 weeks

Revol et al., 1977 (26) 4 Case series 140 125 term fetus, 6 near-term and 9

premature between 31 and 36 weeks

Sokol et al., 1977 (27) 2 Prospective cohort study with good

follow up

38 Not reported

Chik et al., 1976 (28) 3 Retrospective cohort study 11 Term fetus (mean 40.5 weeks).

Chik et al., 1976 (29) 3 Retrospective cohort study 9 39.1 weeks: 7 term fetus, one 37

weeks and one 34 weeks

Hopp et al., 1976 (30) 4 Retrospective cohort study with poor

follow up

85 Not reported

Borgstedt et al., 1975 (31) 2 Prospective cohort study with good

follow up

96 Not reported

Chik et al., 1975 (32) 3 Retrospective cohort study N/A Not reported

Challamel et al., 1974 (33) 4 Case series 100 92 term fetuses and 8 preterm (<36

weeks).

Fargier et al., 1974 (34) 4 Prospective cohort study with poor

follow up

120 Not reported

Heinrich and Seidenschnur,

1974 (35)

5 Proof of concept 1 Not reported

Beier et al., 1973 (36) 2 Prospective cohort study with good

follow up

34 Not reported

Carretti et al., 1973 (37) 4 Individual case control study 20 36 to 40 weeks

Hopp et al., 1973 (38) 2 Inception cohort study 37 Not reported

Peltzman et al., 1973 (39) 5 Case series ≤ 5 cases 5 Term fetus

Peltzman et al., 1973 (40) 5 Case series ≤ 5 cases 2 Not reported

Rosen et al., 1973 (41) 4 Poor quality cohort study 6 Not reported

Rosen et al., 1973 (42) 4 Case series 300 Not reported

Chachava et al., 1972 (43) 2 Inception cohort study Not reported

Hopp et al., 1972 (44) 4 Case series 5 Not reported

Mann et al., 1972 (45) 5 Observation/ first principles 50 Not reported

Feldman et al., 1970 (46) 5 First principles N/A N/A

Rosen et al., 1970 (47) 4 Poor quality cohort study 125 Not reported

Chachava et al., 1969 (48) 3 Cohort study 30 Not reported

Rosen and Scibetta, 1969

(49)

5 First principles (technique description) 14 N/A

Barden et al., 1968 (50) 4 Case series 6 Not reported

Rosen and Satran, 1965

(51)

3 Non-consecutive cohort study 15 Not reported

Studies in animals

De Haan et al., 1997 (52) 2 Individual RCT 21 Fetal lamb: 126.5 ± 2.8 day of

gestation (term 147 d)

(Continued)
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TABLE 1 | Continued

Authors/year Level of evidence Type of Study Number of

subjects

Gestational age of subjects

Thorngren-Jerneck et al.,

2001 (53)

3 Exploratory cohort study 16 Near-term fetal lambs at mean (range)

gestational age 136 (134–138) days

Kaneko et al., 2003 (54) 3 Exploratory cohort study 8 Fetal lamb: 127–130 days of

gestation

Gerrits et al., 2005 (55) 2 Individual RCT 22 Fetal lamb: 117–124 days of

gestation

Frasch et al., 2011 (56) 2 Individual cohort study 10 Fetal lamb: 125 ± 1 days gestation

Wang et al., 2014 (57) 2 Individual cohort study 20 Near term fetal lamb: 123 ± 2 days

electrical safety. Artifacts due to the movement of leads were
also prevented by incorporating the first stage of amplification in
the composite assembly thus avoiding long wires carrying low-
level signals. With this device, artifact-free fEEG recordings were
obtained 80% of the time and uterine contraction did not affect
the signal. However, in the case of a breech presentation, no fEEG
could be recorded.

Problems and Limitations of the Technique
The two major problems associated with intrapartum fEEG
precluding its routine use were technical issues and data
interpretation. Placement of electrodes over the occipital area is
the area where electrodes are most easily applied but because
the occiput is a relatively quiet electrical area of the brain, the
parietal area is preferred (51). Because of the limited space,
there is only a limited number of electrodes that can be placed
precluding comparison of homologous areas of the brain (51).
Additionally, the moist scalp and uterine environment can
attenuate potentials. Therefore, isolating the scalp from the
environment by using suction allowed the recording of higher
amplitude potentials.

Failure to obtain adequate EEG tracing was reported to
most often occur when the signal was obscured by fECG (49).
Simultaneous recording of fEEG and fECG was shown to aid
in the recognition of ECG artifacts (Figure 2) (44). Thankfully,
newer electrodes were later developed to help limit the number
of artifacts from fECG and movements (19). Finally, the use
of infrared telemetry to transfer the fEEG to display and
recording equipment helped to prevent power line interference
as previously mentioned (19).

Another initial limitation of the technique was the amount of
information that needed to be visually interpreted. Indeed, visual
interpretation had significant methodologic and interpretation
bias and required certain expertise preventing routine use of
fEEG as part of intrapartum monitoring. Evaluation of the
value of digitized minute-to-minute and even second-to-second
fluctuation in fEEG amplitude and frequency was reported by
Peltzmann et al. (39). These authors used a computer system
to extrapolate the mean baseline fEEG line crosses (per 5-s
epochs) as well as the mean integrated fEEG amplitude and
presented the data in graphs with plotted point corresponding
to the calculated mean by 5-s epochs. This represented the

first steps toward simplification and standardization of fEEG
signal analysis.

At the same time, computer algorithms were created to
facilitate fEEG signal interpretation and standardize their
evaluation (32). A computer program was developed to
help fEEG analysis by replacing the cumbersome visual
analysis in an effort to integrate fEEG in computer-assisted
intrapartum data management and was shown to provide 85–
95% consistency with visual interpretation (32). This program
classified fEEG patterns as Low Voltage Irregular, Mixed, High
Voltage Slow, Trace Alternant, VoltageDepression, Isoelectricity,
and Artifact.

Visual processing of the fEEG in the form of the spectral
display as an adjunct to digital analytic technique to reduce
the ambiguity in fEEG interpretation was initially described by
Peltzmann et al. (40). Years later, Kurz et al. (20) described
the use of spectral power analysis performed in 30 s intervals
with the results plotted continually over the course of the
entire observation in waterfall style. The authors suggested that
continuous fEEG spectral power plotting helped detect artifacts
on the fly which still occur and must be dealt with during the
interpretation of the fEEG patterns.

Thaler et al. (17) reported the use of real-time spectral analysis
to monitor fEEG during labor as more objective analysis of
fEEG signal. Real-time Fast Fourier Transform algorithm allowed
the representation of the EEG signals in terms of the relative
power of the various frequencies of which it is composed. These
frequencies were then displayed by using a density spectral
array technique which helps visualize the contribution of each
frequency band to the overall power spectrum: delta (0.3 to 3Hz),
theta (4 to 7Hz), alpha (8 to 11Hz), sigma (12 to 14Hz) and
beta (15 to 32Hz). The brightness of a given pixel represented the
relative power present at the corresponding frequency element in
the fEEG. A spectral time record appeared as a black and white or
grayscale image in which a given spectrum would take up only a
single row of pixels. In addition, the display of the Spectral Edge
Frequency (SEF) indicated the highest dominant frequency of the
fEEG signal (i.e., the frequency below which 90% of the spectral
power resides).

More recently, our team created automated algorithms for
unsupervised fEEG-FHR monitoring and for the detection of
fEEG-FHR patterns pathognomonic of adaptive brain shut-down
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TABLE 2 | Summary of the method used for fetal electroencephalogram (or electrocorticogram) recording and the condition of recording for the 40 eligible studies.

Authors/year (ref) Electrode type and placement Mode/frequency Condition of recording

Studies in human

Thaler et al., 2000 (17) Two custom-made circular scalp EEG

electrodes (suction silicone rubber cups

applied by continuous negative pressure)

with a central metal probe applied at the

occipitoparietal or parietal region (with at

least 4 cm between electrodes). FHR

recorded with a scalp electrode.

Signals sampled at 250Hz, stored

and displayed by a Cerebro-trac

2500 (SRD Medical Ltd. Shorashim,

Israel) using real-time Fourier

transform (FFT) algorithm to calculate

the power spectrum of fEEG. Epochs

length acquisition: 4 s. Band-pass

filter: 1.5–30Hz. Amplifier sensitivity:

200 µV.

Low risk pregnancies in the active stage of

labor.

(20, 58) N/A FHR, uterine contractions, fetal blood

analysis and fEEG recorded

polygraphically. Spectral power

analysis was performed in real time

sequentially and plotted in 30 s

intervals continually over the course

of the entire observation in waterfall

style.

Normal deliveries (n = 20)

Weller et al., 1981 (19) Flexible electrode minimizing ECG artifact

with an incorporated guard ring

surrounding the recording sites and

forming the indifferent and common

electrodes (acting as a short circuit to the

fECG). The two electrodes are 23mm

apart and inserted through a 3 cm dilated

cervix (after membrane rupture).

Amplifier circuit: microminiature

resistors and standard low noise

operational amplifier (SF C 2776UC).

Input resistance: 2.5 + 2.5 Ohms.

Gain: 32 dB. Power requirement ± 5

volts (100 µA). Noise level set at < 2

µV peak to peak (1 to 40Hz).

Infrared telemetry used to convey the

fEEG to display and record

equipment.

Monitoring during the second phase of

uncomplicated labor in primigravid mothers

with term fetus under epidural anesthetic.

Recording in a standard delivery room.

Wilson et al., 1979 (21) 8 channel portable Elena Schonander

Recorder.

Continuous recording. Fetal EEG

analyzed in 10 s epochs.

High-risk African primigravida mother.

Chik et al., 1979 (22) N/A N/A N/A

Borgstedt et al., 1978

(23)

Same as Rosen et al., 1973b (42) Same as Rosen and Scibetta, 1970 Selected high risk cases (based on prenatal

maternal complication or suspected

intrapartum fetal distress)

Nemeadze, 1978 (24) Simultaneous fetal EEG and ECG

recording from fetal head from the

moment of the first stage of labor when

cervical dilation was 4-6 cm. No further

details provided.

N/A Study of the impact of premature rupture of the

membrane in a group of healthy women (n =

60) and a group of women with mild

nephropathy (n = 45). fEEG and fECG are

recorded simultaneously during labor and

correlated to onset of PROM and the Apgar

score.

Chik et al., 1977 (25) 2 scalp cup electrodes held by applied

suction on fetal head with a central silver

or platinum pin avoiding penetration of the

fetal skin.

Same as Rosen and Scibetta, 1970 File selection of high-risk infants monitored for

at least 1 h during labor.

Revol et al., 1977 (26) 2 scalp cup electrodes held by continuous

suction with a central silver pin, placed on

the parietal region of the skull.

Continuous recording during labor

and after. EEG device: Mingograf

EEG 8 Siemens (ink jet print). Filter

from frequencies >30Hz. Band-pass

with 0.15 s time constant. Calibration

1 s, 50 µV.

125 cases: normal labor (35), abnormal labor

(18), fetal distress (19), under anesthesia

(alfatesine n = 21) or ketamine (n = 26).

Sokol et al., 1977 (27) Same as Rosen et al., 1973b PMID:

4681833

Same as Rosen and Scibetta, 1970 EEG recorded in suspected increased risk

deliveries. EEG findings assessed in relation to

follow up at 1 year.

Chik et al., 1976a (28) Same as Rosen et al., 1973b Same as Rosen and Scibetta, 1970 Same as Rosen et al., 1973b

Chik et al., 1976b (29) Same as Rosen et al., 1973b Same as Rosen and Scibetta, 1970 Same as Rosen et al., 1973b

Hopp et al., 1976 (30) Same as Hopp et al., 1972 (44) Same as Hopp et al., 1972 (35) Simultaneous recording of fEEG and CTG in

220 fetuses, (85 cases ultimately included).

with some under conditions of intermittent

hypoxia due to uterine contractions and after

maternal administration of drugs.

(Continued)
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TABLE 2 | Continued

Authors/year (ref) Electrode type and placement Mode/Frequency Condition of recording

Borgstedt et al., 1975

(31)

2 scalp cup electrodes held by applied

suction on the fetal head with a central

silver or platinum pin avoiding penetration

of the fetal skin. Electrodes implanted

once cervix dilation reached 2 cm.

Same as Rosen and Scibetta, 1970 Patients selected because of increased

prenatal risk or suspected fetal distress during

labor.

Chik et al., 1975 (32) Same as Rosen et al., 1973b Same as Rosen and Scibetta, 1970 Retrospective evaluation of fEEG recording.

Challamel et al., 1974

(33)

3 Modified Dassault electrode (cup with

central pin) placed on the scalp with one

placed in parietal position and a minimal

distance between electrodes of 4 cm.

EEG device: Mingograf EEG 8

Siemens (ink jet print). Filter from

frequencies >30Hz. Band-pass with

0.15 s time constant. Calibration 1 s,

50 µV. Continuous recording (30min

to 5 h intrapartum). Best derivation

exploited.

Monitoring during different conditions of labor

(including fetal distress).

Fargier et al., 1974 (34) Same as Challamel et al., 1974 Same as Challamel et al., 1974. No

filter <70Hz.

Monitoring during different conditions of labor

and different drug administrations.

Heinrich and

Seidenschnur, 1974

(35)

Same as Rosen et al., 1973 (42) Intrapartum multimodal fetal

monitoring device: RFT Fetal Monitor

BMT-504.

One example of EEG recorded in a neonate to

show how the new monitor can be used.

Beier et al., 1973 (36) 1 cup electrode consisting of a central

needle pin surrounded by a 4 cm disc and

two suction grooves connected with a

suction device to ensure firm electrode

placement over the fetal skull.

1-channel EEG; simultaneous

recording of fetal ECG, FHR and

intraamniotic pressure channels.

Calibration 1 s, 50 µV.

About 30min duration intrapartum monitoring

in 34 fetuses from healthy pregnancies, labor

and postnatal outcomes. In 15

fetuses/neonates, the corresponding postnatal

recordings were also made.

Carretti et al., 1973 (37) Plexiglas suction cup with 6 electrodes

around its periphery placed on the fetus

occiput following >4 cm cervix dilation.

Galileo apparatus allowing multipolar

EEG recording.

Comparison of fEEG in healthy mother before

and after oxygen administration.

Peltzman et al., 1973

(39)

2 flexible stainless-steel screw electrodes

(impedance <400 Ohms in all cases)

FEEG is continuously monitored on a

polygraph (Grass instrument Co.,

Quincy, Massachusetts). Band-pass

filter: 1.0 to 35.0Hz. A PDP-7

computer allows real time analysis

and storage of the fEEG before the

information is transmitted to a

64-channel analog/digital converter.

The fEEG for each 5 s epochs is set

to zero mean. Mean fEEG and time

integrated fEEG amplitude are also

computed. The program then

computes a zero line-cross count on

the zero-mean fEEG by checking

along the wave within each 5 s epoch

and recording the line cross each

time the polarity changes. Data based

upon 12 to 19 continuous 5 s epochs

are presented as graphs with plotted

points from the beginning of the

recording and represent artifact-free

analog fEEG.

Uneventful labor and delivery (3 out of 5 were

induced labor). Effect of analgesia with

meperidine (n = 3) and diazepam (n = 2) or

paracervical block (n = 2) evaluated.

Peltzman et al., 1973

(40)

2 flexible stainless-steel bipolar screw

electrodes placed 3–4 cm apart of the

parietal area of the fetal scalp.

Similar to Peltzman et al., 1973 Uneventful labor with paracervical block (1%

mepivacaine) administered

Rosen et al., 1973a (15) Same as electrodes as Rosen et al., 1970

Electrodes placed along the sagittal suture

and between the fontanelles to avoid the

forceps blade in forceps birth (over the

parietal region for spontaneous birth)

Similar to Rosen and Scibetta, 1970 FEEG during expulsion efforts and during low

forceps deliveries are compared to EEG during

spontaneous deliveries. Pre-forceps EEG also

recorded for comparison.

Rosen et al., 1973b

(42)

2 electrodes applied over the parietal and

consisting of a silver pin in the center of a

lucite disc maintained in place by

continuous suction after application with

an interelectrode distance of at least 4 cm.

Similar to Rosen and Scibetta, 1970 EEG recording during different labor situations

(eventful vs. complicated labor in neurologically

abnormal infants).

(Continued)
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TABLE 2 | Continued

Authors/year (ref) Electrode type and placement Mode/Frequency Condition of recording

Hopp et al., 1973 (38) Same as Hopp et al., 1972 (44) Same as Hopp et al., 1972 (44) Simultaneous recording of fetal EEG, fECG and

CTG in 37 fetuses during labor in the late first

stage and in the stage of active pushing

(second stage).

Chachava et al., 1972

(43)

Two fEEG and fECG electrodes placed onto

the fetal head, as remotely from each other as

possible, fixated using vacuum suction.

N/A fEEG, fECG and maternal EEG recorded

following cervical dilation and rupture of

membranes during the first stage of labor.

Hopp et al., 1972 (44) 3 cup electrodes made of a 40mm silver disc

with a 5mm center pin are used: two biparietal

and one on midline, placed and held by

suction.

Fetal ECG, CTG and intra-amniotic

pressure acquired with an 8-channels

EEG device. Artifact free fEEG was

achieved when bimodal rejection

mode was chosen (i.e., biparietal

EEG electrode against a ground).

Simultaneous recording of fEEG and CTG

during different labor conditions including

normal labor and cardiac decelerations.

Mann et al., 1972 (45) Two silver disc electrodes consisting of a

vacuum contact cup, tube and wire connection

and a vacuum electric plug to the vacuum

module are placed with membranes ruptured

after cervix dilation reaches 3–4 cm. The

electrodes are placed up against the vertex

about 1 to 2 cm apart.

Serial bipolar EEG are obtained by

direct write out on the dual-channel

San’Ei electroencephalograph (San’Ei

Instrument Co., Div. of Medical

System Corp, Great Neck, New York)

Description of the electrode used to record

fetal EEG during labor (50 recordings). Specific

conditions of recording not documented.

Rosen and Scibetta,

1970 (47)

Two electrodes consisting of a platinum needle

embedded in the center of a lucite disc with the

firm margin of the disc preventing deep

penetration of the needle. Continuous suction

is applied within the disc to draw the scalp up

to the needle recording point (with possible

skin penetration of 1–2mm). Circular grooves

into the lucite disc prevent the skin from

occluding the suction. Electrodes implanted as

soon as cervical dilation reached 3 cm over the

parietal areas.

Bipolar EEG recording using an

8-channel Dynograph Recorder run at

30 mm/s. Time constants are

arranged to allow recording wave

frequencies between 0.5 and 32

Hz/min. Recording amplitude of 20

µV/cm and 50 µV/cm are used.

125 fetuses recorded during different

conditions (normal labor, forceps assisted

delivery and following drug administration).

Chachava et al., 1969

(48)

Two fEEG scalp electrodes were held with

vacuum suction and placed 2–3 cm apart on

the fetal head (after 3–4 cm cervical dilation and

ruptured membranes).

Bipolar EEG recorded with either a

4-channel locally made device or an

8-channel EEG device by Orion.

fEEG recorded intrapartum: 20 with normal

labor and 10 with complications.

Rosen and Scibetta,

1969 (49)

Two electrodes made of an outer shell

in silicone rubber with its periphery

circumscribed by a silicon rubber guard ring

impregnated with powdered silver (the outer

ring is a patient ground) and a platinum needle

sheathed in a Teflon tube soldered to a silver

plate wire with its distal 2mm left bare, are

used. The electrodes are introduced after

membranes ruptured once cervix dilation

reached 3 cm. Suction is turned on after the

electrode is applied on the fetal head.

Recording in standard EEG fashion

with filters admitting wave frequencies

between 0.5 and 32Hz. Paper speed

is 30 mm/s recording amplitude at 20

to 50 µV/cm. To document the EEG

activity as brain waves, the technique

of evoked response to a 34 dB, 35ms

sound (repeated every 4 s) is used.

Fetal EEG during labor (no more detail

provided).

Barden et al., 1968 (50) Skin-clip electrode placed on the presenting

vertex.

A summing computer (Mnemotron

Corporation CAT-Model 400 B). is

used to accentuate fEEG response

time locked to an acoustic signal and

to cancel non time-locked fECG and

random electrical noise signals. FEEG

responses were sequentially

averaged.

Elective induced labor. FEEG recorded before,

during and after the onset of a 1,000Hz, pure

tone of 450 s duration (88 to 105 dB).

Rosen and Satran,

1965 (51)

Metal skin clips soldered to shielded cable,

coated with non-conductive plastic glue and

filed at their tip to prevent deep scalp

penetration and attached to the vertex with a

modified uterine packing forceps. Mother

grounded to the machine by a strap around the

thigh.

Grass Model III portable EEG (Grass

Instrument Co., Quincy, Mass).

Normal labor condition studied.

(Continued)
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TABLE 2 | Continued

Authors/year (ref) Electrode type and placement Mode/Frequency Condition of recording

Studies in animals

De Haan et al., 1997

(52)

Two pairs of EEG electrodes (AS633-5SSF,

Cooner Wire Co., Chatsworth, CA) placed

on the parasagittal fetal dura through burr

holes (skull coordinates relative to bregma:

anterior 5mm and 15mm, lateral 10mm).

The total fEEG intensity is median

filtered to remove short-term

(<20min) fluctuations, log

transformed to get a better

approximation of the normal

distribution and normalized with

respect to the 12-h baseline. Total

EEG intensity, EEG spectral edge

(upper 90% of frequency), and

cortical impedance are measured in

15-min periods during UCO and in

5-h intervals after the last occlusion.

Epileptiform activity and spike

detection software (Monitor, Stellate

Systems, Quebec, Canada) is used to

scan the raw EEG file.

FEEG recorded after UCO with fetuses

randomized to one of three groups: group I,

repeated total UCO for 1min every 2.5min;

group II, repeated total UCO for 2min every

5min; and group III, no occlusions (sham

controls). UCO is repeated until fetal arterial

blood pressure had fallen below 2.7 kPa

(20mm Hg) during two successive occlusions,

or until fetal blood pressure failed to recover to

baseline levels when the next occlusion is due.

Thorngren-Jerneck

et al., 2001 (53)

Two EEG electrodes (shielded stainless

steel) placed bilaterally over the parietal

cortex (10mm anterior of bregma and

15mm lateral of midline), inserted through

drilled holes in the parietal bone. A

subcutaneous reference electrode is

placed posteriorly in the midline of the

skull.

No detail provided. 16 near-term fetal lambs: 8 lamb fetuses

exteriorized and subjected to total UCO in a

water bath, four lamb fetuses exteriorized and

serving as sham controls and four lamb fetuses

immediately delivered after minimal preparation

and serving as healthy controls

Kaneko et al., 2003 (54) Electrodes of Teflon-coated stainless-steel

wire (Cooner Wire, Chatsworth, Calif)

implanted biparietally on the dura for

recording of electrocortical activity.

No details provided. ECoG recording following repeated UCO for

4min, every 90min, and over 6 h (total 4 UCO).

Gerrits et al., 2005 (55) Two pairs of EEG electrodes

(AS633-5SSF; Cooner Wire Co.,

Chatsworth, CA) placed on the dura over

the parasagittal parietal cortex (5 and

15mm anterior and 10mm lateral to the

bregma), with a reference electrode sewn

over the occiput.

Fetal parietal EEG and impedance

recorded continuously. Signals are

averaged at 1-min intervals and

stored to disk by custom software

(Labview for Windows; National

Instruments Ltd, Austin, TX), running

on an IBM compatible computer. The

EEG signal is low pass filtered at

30Hz, and the intensity spectrum and

impedance signal are extracted. The

raw EEG signal is recorded for off-line

detection of seizure events.

Fetal lamb subjected to selective cooling of the

head following cerebral ischemia (with one

control group)

Frasch et al., 2011 (56) Stainless steel ECoG electrodes are

implanted biparietally on the dura through

small burr holes in the skull bone placed

∼1–1.5 cm lateral to the junction of the

sagittal and lambdoid sutures. The bared

portion of the wire to each electrode is

rolled into a small ball and inserted into

each burr hole to rest on the dura with a

small plastic disk covering each burr hole

held with tissue adhesive against the skull

bone. A reference electrode is placed in

the loose connective tissue in the midline

overlying the occipital bone at the back of

the skull.

ECG and ECoG are recorded and

digitized at 1,000Hz. For ECG, a

60Hz notch filter is applied. For

ECoG, a band pass 0.3–30Hz filter is

used. The ECOG signal is sampled

down to 100Hz prior to analysis.

Voltage amplitude and 95% spectral

edge frequency (SEF), are calculated

over 4 s intervals (Spektralparameter,

GJB Datentechnik GmbH,

Langewiesen, Germany).

Fetal lamb studied after series of mild,

moderate and severe UCO until fetal arterial pH

fell below 7.00

Wang et al., 2014 (57) Fetal instrumentation after exteriorization:

a modified FHR electrode with a double

spiral placed on the fetal head is used.

A PowerLab system is used for data

acquisition and analysis (Chart 5 For

Windows, AD Instruments Pty Ltd,

Castle Hill, Australia). For fEEG

recording, a band pass 0.3–30Hz

filter were used. Prior to analysis,

fECoG and fEEG were sampled down

to 100Hz.

FEEG (and fECoG) recorded in near term fetal

lamb during repeated UCO.

fECG, fetal electrocardiogram; fECoG, fetal electrocorticogramm; fEEG, fetal electroencephalogram; UCO, umbilical cord occlusion.
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FIGURE 2 | (A) Simultaneous recording of fECG and fEEG. Artifacts from fECG effect on fEEG can be identified by recording both traces simultaneously. From Hopp

et al. (44). (B) Intra and post-partum fetal/neonatal EEG recordings showing the great similarity between both traces. From Hopp et al. (44). EEG,

electroencephalogram. (C) Cardiotocogram (top) and fEEG (bottom) recorded during early cardiac deceleration. The fEEG pattern represents the change during

contractions with high amplitude low-frequency waves and the recovery once the contractions ceased. From Hopp et al. (44). fEEG, fetal electroencephalogram. (D)

Simultaneous recording of fECG (top trace), two-channel fEEG (middle two traces), and FHR (bottom trace). This figure shows fEEG changes during severe variable

deceleration. The fEEG trace shows waves of low amplitude and near isoelectricity as well as intermittent spike potentials between contractions. From Hopp et al.

(30). fECG, fetal electrocardiogram; fEEG, fetal electroencephalogram; FHR, fetal heart rate.

as an early response to incipient acidemia and cardiovascular
decompensation (57).

Intrapartum EEG Findings
The early studies described the fEEG signal observed during labor
under different conditions and while most of them were initially
just observations, they allowed to gain the experience needed to
determine what a normal fEEG during labor should look like and
what should be interpreted as abnormal (15, 26, 33, 36, 42, 45, 49,
51, 60).

To document the fEEG activity, the technique of evoked
response can be used (49), although results can be quite
unpredictable with significant artifacts (50).

A summary of fEEG findings associated with normal labor,
abnormal labor, and following drug administration is presented
in Table 3.

1. EEG findings during normal labor

During labor, a low voltage baseline pattern is noted (51). The
study of 14 acceptable fEEG revealed that the voltages varied from
5 to 50 µV/cm and the wave frequencies were found between 1
and 25Hz (49). A small change in electrical activity was noted

after delivery and rarely low voltage (20µV), faster (8 per second)
waves compared to the fEEG trace seen 30 s after delivery, and
not seen before were observed after the umbilical cord was
clamped. On most tracings, the electrical activity before and
after the first breath and before and after the cord was clamped
did not appear to change abruptly (34, 51). As the recording
continued, the electrical activity slowly increased in voltage and
approached that seen in similar brain regions in neonates. About
5min after delivery, the tracing could not be distinguished from
the tracing of alert neonates several hours old. Rosen and Satran
(51) concluded that fEEG activity recorded early in labor has a
baseline pattern similar to that of the alert neonate. Studies of
125 additional fEEG by the same team confirmed that the fEEG
patterns observed during normal labor were similar to those
present in neonates of the same weight. The wave frequencies
varied between 0.5 and 25Hz with the predominant frequencies
in the 2.5–5Hz (47). Similarly, Chachava et al. (48) reported
fEEG findings during 20 normal labors and found that healthy
(physiological) fEEG was characterized by low-amplitude waves
of 0.04–2 s duration which the authors note was within the range
of the reported spectrum of antenatal fEEG frequencies observed
(0.5–30Hz according to Humar & Jawinen as well as according to
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TABLE 3 | Summary of the possible findings in fetal EEG tracings, as reported in the different studies, under different labor conditions.

Fetal EEG conditions Observations

Baseline fEEG during

normal labor

Rosen and Satran, 1965: Low voltage baseline pattern with a low voltage (20 µV), faster frequency (8Hz) after umbilical cord

clamping. On most tracings, the electrical activity before and after the first breath and before and after umbilical cord clamping did

not appear to change abruptly. FEEG activity recorded early in labor has a baseline pattern similar to that of the alert neonate (51).

Chachava et al., 1969: Low amplitude waves (10–30 µV) of 0.04–2 s in duration with observation of alpha, beta, theta and delta

waves (48).

Rosen and Scibetta, 1969: The fEEG voltages vary from 5 to 50 µV per cm with waves frequencies between 1 and 25Hz.

Rosen et al., 1970: The wave frequencies vary between 0.5 and 25Hz with the predominant frequencies in the 2.5–5Hz. Patterns

similar to those present in neonates of the same birth weight (60).

Hopp et al., 1972: Amplitude of fEEG ranges between 10 and 70 µV. Frequency varies considerably and ranges between 2 and

20Hz (44).

Mann et al., 1972: Rhythm consisting of 1 to 3Hz waves with an amplitude of about 40 to 75 µV and superimposed faster

frequencies of 4 to 8Hz and 10 to 30 µV (45).

Fargier et al., 1974: Similar to that of neonates of same gestational age with presumptive alternance of awake/sleep states (both

deep and active sleep) (34).

Borgstedt et al., 1975: Wave frequencies of 0.5 to 25Hz with an amplitude generally between 50 and 100 µV/cm similar to neonatal

EEG (31).

Thaler et al., 2000: Two fundamental EEG patterns are identified: high voltage slow activity (HVSA) (quiet behavioral state) and low

voltage fast activity (LVSA) (active behavioral state). On average, LVSA was present 60.1% of the time and HVSA was present 39.9%

of the time (17).

Contractions Mann et al., 1972: No fEEG changes (even with very intense oxytocin-induced contractions) (45).

Rosen et al., 1973: No fEEG changes even with stronger contractions during the second stage of labor (15, 42).

Beier et al., 1973: No fEEG patterns associated with contractions in most cases, but in some fetuses, a 20–40 s delayed increase in

amplitude which normalized 5–10 s after contractions ended is observed (36).

Hopp et al., 1976: fEEG shows reduction of frequency and increase in wave amplitude during contractions (30, 61).

Chachava et al., 1972, Fargier et al., 1974, Revol et al., 1977, Weller et al., 1981: No fEEG changes with normal contractions

(19, 26, 34, 43).

Spontaneous birth Rosen et al., 1973b: Low voltage irregular activity. Artifactual distortion of the fEEG baseline characterized by large rolling waves of

almost 2 s in duration due to electrodes movements when the vertex moves rapidly and the fEEG is recorded in the microvolt range

(42).

Abnormal situations

Fetal heart rate (FHR)

decelerations

Rosen et al., 1970: Previously recorded higher voltage fEEG pattern abruptly changed in association with depression of the FHR to

an almost flat or baseline pattern. The tracing returned to pre-existing patterns after FHR returned to normal. This change was found

to be most commonly associated with delayed FHR decelerations (60).

Hopp et al., 1972: Fetal bradycardia, especially during contraction-associated late decelerations, was accompanied by reduction in

fEEG waves (lower frequency) and occurrence of fEEG spike potentials (44).

Rosen et al., 1973b: No change with early decelerations. With variable and late deceleration, the fEEG appeared to lose the faster

rhythms, followed by a more apparent slowing. Then, isoelectric to almost flat periods with rare bursts of fEEG are seen and finally a

totally isoelectric interval might be observed sometimes for longer than 10 s (rarely more than 30 s). As the FHR returns to its baseline

rate, the reverse of this progression takes place. The entire sequence from onset to return may last from 30 s to longer than 1min

(42).

Fargier et al., 1974: No changes with early deceleration (34).

Revol et al., 1977: Early deceleration was only associated with fEEG changes only with FHR below 90 bpm (26).

Hopp et al., 1976: During severe variable decelerations, fEEG showed waves of low amplitude and near isoelectricity and intermittent

spike potentials between contractions (30, 61).

Wilson et al., 1979: A significant relationship was noted between the increasing percentage of electrocerebral silence and the

development of FHR deceleration patterns during labor. Early FHR deceleration was also associated with prolonged silence in the

fEEG (21).

Tachycardia Rosen et al., 1970: fEEG changes consistent with voltage suppression, i.e., generalized decrease in the wave amplitude of a

constant nature often associated with increasing intervals of flattening without EEG activity (60).

Thaler et al., 2000: FHR accelerations typically associated with periods of low voltage slow activity (17).

Fetal distress Chachava et al., 1969: fEEG of a baby born asphyxiated and demised within 15min postpartum showed fast activity around 6Hz

that may represent brain hypoxia. High amplitude low-frequency waves were suspected to be signs of brain injury during labor (48).

Hopp et al., 1973: Patterns pathognomonic for abnormal fEEG and suspected fetal brain injury: (1) extremely high voltage activity

(>80 µV), (2) extremely low voltage activity (< 10 µV), (3) spike potentials as a sign of epileptiform activity, (4) bihemispheric

differences, (5) Reduction of fEEG frequency during pathologically silent FHR pattern (38).

Rosen et al., 1973b: Non-transient fEEG changes such as sharp waves were defined as repetitive waves, always of the same polarity,

generally higher in amplitude than the surrounding fEEG and generally <50ms in duration. When observed, they were usually present

at the onset of recording and continued throughout labor. These sharp waves seemed to be more frequent in the developmentally

abnormal child at 1 year of life. The combination of sharp waves and low voltage did not occur in the normal population. Therefore,

this type of activity may suggest fetal distress (42).

Borgstedt et al., 1975: Isolated sharp waves were more frequent in newborn with abnormal neurologic findings than in those

neurologically normal (31).

(Continued)
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TABLE 3 | Continued

Fetal EEG conditions Observations

Revol et al., 1977: Cases with the combination of abnormal fEEG, abnormal cerebral blood flow, low pH (<7.25) and abnormal Apgar

score had the lowest Apgar score. FEEG did not always normalize after in utero resuscitation despite the correction of FHR and pH

(26).

Borgstedt et al., 1978: Prolonged voltage suppression (<20 µV) (during the entire recording or for at least several seconds,

alternating with normal trace and continuing through birth) is correlated with lower 1 min- and 5 min- Apgar score and the need for

post-partum resuscitation (23).

Wilson et al., 1979: Significant correlation between the development of electrocerebral silence in the fEEG and the development of

fetal acidosis. The rapid deterioration in fEEG occurred as the pH fell and even at preacidotic levels (pH of 7.2 to 7.25) marked

changes were present with the cessation of electrical activity in the fetal brain (21).

Nemeadze, 1978: No effect of PROM on fEEG, but pregnancy history compounds fEEG response to PROM as follows. The brief

fEEG period in response to a PROM event including the immediate 5-min post-PROM represents an adaptive functional response of

the fetal brain indicative of fetal reserve. Under normal delivery, this response subsides within 1–3min post-PROM and is associated

with a healthy birth (in the absence of any other delivery complications). In contrast, prolongation of this recovery period post-PROM

to 4–5min indicates a reduction in fetal adaptation capability and was associated with brain injury at birth (24).

Head compression from

cephalopelvic disproportion.

Wilson et al., 1979: Head compression did not appear to influence fetal brain activity (21).

Uterine hypertonia or

hyperkinesis

Challamel et al., 1974, Fargier et al., 1974, Revol et al., 1977: Decreased activity and flattening of the fEEG signal (26, 33, 34)

Forceps Rosen et al., 1973a: Forceps application was not associated with any change, but traction was, with an almost flat fEEG tracing

observed (15, 62).

Challamel et al., 1974, Fargier et al., 1974: High forceps extraction compared to low forceps extraction was always associated with

fEEG changes during the traction phase and characterized by flattening of the trace returning to normal after a few seconds if the

extraction was short and not too intense. Repeated and prolonged tractions were associated with persistent isoelectric trace up to

the birth of the child with changes persisting for 20min after (33).

Revol et al., 1977: During forceps or vacuum extraction, fEEG changes that disappear just before the expulsion effort or persistent

fEEG changes sometimes to the point of isoelectric trace were noted in all but one case (26).

Oxygen administration to

the mother

Carretti et al., 1973: FEEG changes within 1.5–2min after initiation of O2 are characterized by a progressive increase in amplitude

and frequency of the waves (from 1–5Hz to 8–12Hz) reaching a maximum at 7–8min followed by a decrease in the activity of the

trace to return to baseline activity after 12–15min in half of the cases (37).

Drugs

Meperidine Rosen et al., 1970: Early responses: a transient increase in delta wave frequencies (2.5–5Hz), about 50 µV in amplitude first seen

between 1 and 2min after IV injection of the drug followed by trace alternance-like pattern of bursty activity with 5min after the

mother was given the medication. This pattern could last as long as 2 h after the injection. As the time interval after injection

increased, the presence of faster, lower voltage forms (5–10 µV) and (15–25Hz) in the beta range became more obvious (47, 60).

Peltzman et al., 1973a: No identified fEEG changes (39, 40).

Ketamine Fargier et al., 1974: Development of sharp theta activity on an initially normal baseline, then progression to fewer waves and flattening

of the trace to the point of isoelectricity with occasional bursts of theta activity (34).

Pethidine Hopp et al., 1976: One min post injection of a 50mg dose, there is a reduction of amplitude and frequency of fEEG activity. These

changes are more pronounced 4min post injection. At 6min post injection, resynchronization is observed. These effects persisted for

25min post injection and fEEG normalized more or less within 105min post injection (30, 61).

Barbiturate Fargier et al., 1974: Sodium thiopental: same as ketamine as well as small high-frequency low voltage waves on a normal baseline

progressing to decreased activity and flattening of the trace (34).

Revol et al., 1977: Significant changes with long periods of isoelectric traces (26).

Local anesthesia Rosen et al., 1970: With local carbocaine, transient increase in higher voltage (50 µV/cm) bursty waves (15–25Hz) was noted. These

changes appeared to be transient (47, 60).

Peltzman et al., 1973a and Peltzman et al., 1973b: Decrease in fEEG amplitude (39, 40).

Challamel et al., 1974: Local epidural with marcaine or bupivacaine associated with a high-frequency rhythm (when using a filter

frequency >30Hz) with clusters of rhythmic theta waves (33).

Penthrane (anesthetic gas) Rosen et al., 1970: Trace alternant picture persists while the gas is being administered during the terminal stages of labor (47, 60).

Diazepam Peltzman et al., 1973a: No identified fEEG changes (39, 40).

Hopp et al., 1976: The fEEG frequency decreased within 30min post injection of 10mg of diazepam and the amplitude increased to

80 µV. The EEG was normal when recorded in the neonate 40min after the injection (30, 61).

Less mature infant with

analgesic medications

Rosen et al., 1973b: Persistence of all voltages below 20 µV with prolonged intervals of isoelectricity (low voltage tracing) associated

with an initially normal amplitude and pattern of recording that then changes to persistent low voltage with prolonged periods of

isoelectricity (42).

Long-term outcome

Infants with normal

long-term outcome

Chik et al., 1976a: Study of fEEG of children neurologically normal at 1 year of age: the mixed pattern was predominant accounting

for 41.2% of the epochs. Trace alternants accounted for 32.2%, high voltage slow for 21.5% and low voltage irregular for 4.4% of the

patterns. Less than 0.2% showed depression or isoelectricity. In the neonatal EEG studied, there was a decrease in the relative

frequency of mixed and an increase in high voltage slow patterns (28, 29).

(Continued)
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TABLE 3 | Continued

Fetal EEG conditions Observations

Infants with abnormal

long-term outcome Borgstedt et al., 1975: Sharp waves that appear in isolation and not as part of burst activity were identified as abnormal (31).

Chik et al., 1976b: Study of fEEG of children neurologically abnormal at 1 year of age: the relative frequency of the low voltage

irregular pattern is increased with a consequently decrease in mixed and high voltage slow patterns. The mean relative frequency of

the low voltage irregular pattern was significantly greater with the lower Apgar scores (<9). Therefore, low voltage irregular activity

occurred more frequently in the neurologically abnormal group (compared to the neurologically normal group) (28, 29).

Sokol et al., 1977: The detection of the presence of sharp waves alone on fEEG allowed to correctly classify 76% of patients in terms

of the neurological outcome at 1 year (normal vs. abnormal). Detection of voltage depression alone appropriately identified 68%

patients. The observation of a combination of sharp waves and/or prolonged voltage depression improved the identification of

abnormal infants but misclassified half of the normal infants as abnormal (66% correct). These results confirm the relationship

between sharp waves and voltage depression in the fEEG and abnormal infant outcome (27).

bpm, beat per minute; EEG, electroencephalogram; fEEG, fetal electroencephalogram; FHR, Fetal heart rate; Hz, Hertz; s, seconds.

Bernstine and Borkowski) (59, 63) They reported an amplitude
of 10–30 µV with the observation of alpha, beta, theta, and
delta waves.

Hopp et al. (44) reported simultaneous acquisition of fEEG
and cardiotocogram (CTG) during labor using 3 scalp electrodes
(2 biparietal and 1 midline). Normal fEEG was characterized by
an amplitude ranging between 10 and 70µVwith high variability
in frequencies ranging between 2 and 20Hz. They also concluded
that fEEG and neonatal EEG are basically identical and could
not be differentiated from each other (Figure 2). Borgstedt et al.
(31) also reported normal fEEG showing wave frequencies of
0.5 to 25Hz with an amplitude generally between 50 and 100
µV/cm, similar to neonatal EEG (31). Three studies from the
same group reported similar findings with intrapartum fEEG
showing alternance of active and quiet sleep phase similar to
neonates (26, 33, 34).

In a study by Mann et al. (45), adequate fEEG were obtained
and studied in 50 patients. The EEG prior to, during and
following a very intense contraction (∼95 mmHg after oxytocin
infusion) was characterized by a rhythm consisting of 1 to
3Hz waves with an amplitude of about 40 to 75 µV with
superimposed faster frequencies of 4 to 8Hz and 10 to 30
µV. There were no significant changes in the fEEG signal
during the uterine contraction and this fEEG was very similar
to that of the same patient examined 18 h after birth. The
lack of influence of uterine contractions or expulsion on the
fEEG signal was also documented by Chachava et al. (43)
and Challamel et al. (33). Similarly, fEEG recorded during
the second stage of labor did not show any alteration in
frequency, amplitude, and pattern despite the increase in uterine
pressure associated with maternal pushing (a contraction of
abdominal wall muscles) (15). Conversely, in a study using
simultaneous CTG and fEEG recording under conditions of
intermittent hypoxia due to uterine contractions, fEEG showed
a reduction of frequency and increase of wave amplitude during
contractions (30).

During spontaneous birth, a low voltage irregular activity
was noted as well as artifactual distortion of the fEEG
baseline characterized by large rolling waves of almost 2 s
in duration due to electrodes movements when the vertex
moves rapidly and the fEEG is recorded in the microvolt

range (15). This appears to be a common problem during the
birth process.

The effect of head compression associated with cephalopelvic
disproportion on fetal brain activity was studied and no
significant differences in fEEG findings between the group with
cephalopelvic disproportion and the group without it were
noted (21).

Using real-time spectral analysis, a more objective method of
fEEG assessment, Thaler et al. (17) identified two fundamental
fEEG patterns in the recording: high voltage slow activity
(HVSA) (quiet behavioral state) and low voltage fast activity
(LVFA) (active behavioral state). FHR accelerations were typically
associated with periods of LVFA but there was no relationship
between uterine contractions and SEF or density spectral array
(DSA) (power spectrum). The 90% SEF was found to be an
excellent index of cyclic EEG activity. When combining the
results of the 14 fetuses, it was found that on average, LVFA
was present 60.1% of the time and HVSA was present 39.9% of
the time.

2. Abnormal EEG findings

Chachava et al. (48) first reported fEEG during complicated
labor and presented the case of a baby born asphyxiated and
demised within 15min postpartum. The fEEG showed fast
activity around 6Hz that was suggested to represent brain
hypoxia but the changes were not considered unique and
pathognomonic. High amplitude low-frequency waves were, in
their experience, signs of intrapartum brain injury.

During labor, transient or persistent fEEG changes can be
observed. Usually, persistent changes are considered to be
abnormal if they occur between two events such as uterine
contraction or expulsion efforts leading to a progressive
deterioration of the fEEG activity (26).

Evaluation of the fEEG signal associated with FHR changes
revealed different situations which we summarized below.

Simultaneous recording of fEEG and CTG/FHR revealed that
slow waves and frequency decrease could be observed during and
shortly after uterine contractions and were seen as an expression
of short-term brain ischemia due to an increase in intracranial
pressure (Figure 2). The vagal stimulation inducing the early
decelerations in CTG was thought to be due to an increase
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of intracranial pressure, but indirectly, with the primary vagus
stimulation trigger being due to transient cerebral hypoperfusion
during uterine contraction. Fetal bradycardia, especially during
contraction-associated late decelerations, was accompanied by a
reduction in fEEG waves (lower frequency) and occurrence of
fEEG spike potentials (44).

In one study by Rosen et al. (42), transient fEEG changes
were noted during FHR deceleration. The fEEG appeared to lose
faster rhythms, followed by a more apparent slowing. As the
condition persisted, isoelectric to almost flat periods with rare
bursts of fEEG were seen. Finally, a totally isoelectric interval
was observed sometimes for longer than 10 s (rarely more than
30 s). As the FHR returned to its baseline rate, the reverse of this
progression took place with the entire sequence from onset to
return lasting from 30 s to sometimes longer than 1min. These
changes were not seen with early FHR deceleration but were
observed with variable decelerations and late decelerations. They
were also observed during prolonged spontaneous expulsion
or expulsion of a distressed infant (33). In another study,
using simultaneous CTG and fEEG recording, severe variable
decelerations were also associated with waves of low amplitude
and near isoelectricity and intermittent spike potentials between
contractions (Figure 2) (30).

Revol et al. (26) documented the fEEG changes during
spontaneous expulsion and noted the following events: either
no fEEG changes or transient fEEG changes not exceeding 20 s
(Type I); EEG changes that disappear just before the expulsion
effort (Type II); and persistent fEEG changes (Type III). During
expulsion, the relationship between fEEG and FHR revealed that
Type I fEEG was 85% of the time associated with transient or no
FHR changes whereas Type II and Type III fEEG changes were
associated with bradycardia. In their cases, early deceleration was
only associated with fEEG changes with FHR below 90 bpm (26).
Spontaneous tachycardia (>160 bpm) and bradycardia were both
associated with fEEG changes (decreased activity and flattening
of the trace) (34). However, tachycardia following atropine
administration was not associated with any fEEG changes (34).
Using spectral power analysis, (20) also observed a similar
relationship between the degree of spectral fEEG suppression and
the FHR decelerations induced by uterine contractions (20).

Simultaneous recording of fEEG and fECG during labor
after premature rupture of membranes (PROM) in a group of
healthy women and a group of women with mild nephropathy,
was reported by Nemeadze (24). Normal fEEG characteristics
were 1–16Hz, 10–30 µV, asynchronous, dysrhythmic activity;
PROM had no significant effect on these parameters of fEEG
or fECG over the course of labor. However, the immediate
response of fEEG to the PROM event, identified as a period of
5min, was shown to be reflective of incipient perinatal brain
injury. Specifically, in some fetuses, regardless of maternal health
status, PROM induced a response in fEEG characterized by
pathological activity with high-amplitude slow 1–3Hz waves,
periodically acquiring a group-rhythmical character; fEEG
normalized gradually within 1–3min and fetuses showing this
rapid recovery of fEEG all had a healthy birth. Fetuses whose EEG
recovered within 3–5min and belonging to mothers with mild
nephropathy, however, were diagnosed with brain injury at birth.

It is thus concluded that pregnancy complications, but not the
PROM itself, impact the acute fEEG response to PROM and may
provide valuable insights into therapeutic labor management.

The effect of forceps birth on fetal brain activity was also
evaluated (15, 26, 33, 34, 51). FEEG recorded during labor
involving forceps application required placement of the two
electrodes along the sagittal suture and between the fontanelles
to avoid the forceps blade (compared to their placement over
the parietal region for normal birth) (15). Aperiodic, 50 µV, 0.5–
5Hz slow waves were reported to become more apparent when
forceps was applied or when the vertex was on the perineum
and the mother bore down (51). Forceps application was not
associated with any changes in the fEEG signal but during
traction, an almost flat tracing was observed. Tracing resembling
a burst suppression pattern could also be observed in some cases
(15). Another study comparing high and low forceps extraction
revealed that high forceps extraction was always associated with
fEEG changes during the traction phase and was characterized by
flattening of the trace returning to normal after a few seconds if
the extraction was short and not too intense (33). Repeated and
prolonged tractions were associated with persistent isoelectric
trace up to the birth of the child and sometimes persisting for
at least 20min after birth (33, 34).

A significant correlation between the development of
electrocerebral silence in the fEEG during the final hour of the
first stage of labor and the development of fetal acidosis at the
end of the first stage of labor was reported (21). The rapid
deterioration in the fEEG occurred as the pH fell and even
at preacidotic levels (pH of 7.2 to 7.25), marked changes were
present with the cessation of electrical activity in the fetal brain.
A significant relationship was also noted between the increasing
percentage of electrocerebral silence and the development of FHR
deceleration patterns during labor. In the study by Wilson et al.
(21), different from Rosen et al. (15), early FHR deceleration
was associated with prolonged silence in the fEEG. Similarly,
intermittent suppression of fetal brain electrical activity during
FHR decelerations induced by umbilical cord occlusions and also
arising at around pH values of 7.2 was reported in fetal sheep
models of human labor (56, 64).

Another fEEG study in 11 cases of fetal distress revealed a loss
of fEEG variability, sometimes similar to the awake state. These
changes were usually transient during events or maneuvers (33).
A decrease in fEEG amplitude and frequency has been reported
with the uterine hypertonicity of hyperkinesia (26, 33). Revol and
his team studied fEEG changes associated with fetal distress in 37
cases (fetal distress diagnosed with a combination of abnormal
scalp pH, umbilical blood pH, and Apgar score at 1min). In
4 additional cases, some changes in fEEG were suspicious for
fetal distress. The fEEG was abnormal in 39 of these 41 cases.
The 26 cases for which all the aforementioned criteria of fetal
distress were present had the lowest 1min Apgar score (between
1 and 7). In 8 of these cases, in utero resuscitation measures
allowed improvement of biological (i.e., pH) values and FHR.
However, only in 2 cases did the fEEG normalize before birth
which supports a delay in fEEG recovery compared to other
criteria (26). Another study looked at the correlation between
abnormal fEEG findings and the 1min and 5min Apgar scores
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in high-risk cases (23). Prolonged voltage suppression periods
(below 20 µV), usually present from the beginning of the fEEG
recording and persisting throughout, represented a distinctive
pattern significantly correlated with a low 1min and 5min Apgar
scores. This pattern was also correlated with the employment
of postpartum resuscitative measures and with the degree of
resuscitation (23).

In a study by Hopp et al. (38), simultaneous evaluation of
fEEG, fetal ECG, and CTG, during the first and second stages of
labor was shown to improve the detection of the fetus at risk of
brain injury. They reported a series of patterns pathognomonic
for abnormal fEEG: (1) extremely high voltage activity (> 80
µV), (2) extremely low voltage activity (< 10 µV), (3) spike
potentials as a sign of epileptiform activity, (4) bihemispheric
differences, and (5) reduction of fEEG frequency during a
pathologically silent FHR pattern (44).

During the same period, Rosen and his team also reported one
major fEEG abnormality, the non-transient sharp waves defined
as repetitive waves always of the same polarity, generally higher
in amplitude than the surrounding fEEG and generally <50ms
in duration (42). When observed, they were usually present at the
onset of recording and continued throughout labor and seemed
to be more frequent in children neurologically abnormal at 1
year of age. This observation was later confirmed by retrospective
fEEG evaluations to see if the infant outcome at 1 year of age with
regard to neurological status could be predicted (27, 31). Sharp
waves that appeared in isolation and not as part of burst activity
were identified as abnormal. Once again, isolated sharp waves
were noted to be more frequent in newborns with abnormal
neurologic findings than in those neurologically normal and were
significantly associated with neurological abnormalities at 1 year
of age (27, 31).

Furthermore, retrospective comparison of intrapartum fEEG
from neurologically abnormal infants at 1 year of age to
neurologically normal children revealed that the combination
of sharp waves and low voltage did not occur in the normal
population suggesting that this type of activity may indicate fetal
distress requiring intervention (27, 42) To further confirm these
findings, the previously described computer program developed
by Chik et al. (32) was used to retrospectively evaluate artifact-
free EEG of these neurologically normal and neurologically
abnormal infants (25, 28, 29). In the neurologically normal group,
the mixed pattern was predominant accounting for 41.2% of the
10,511 epochs evaluated. The trace alternant pattern accounted
for 32.2%, high voltage slow pattern for 21.5%, and low voltage
irregular pattern for 4.4% of the patterns. Less than 0.2% showed
depression or isoelectric signal. In the neurologically abnormal
infants, low voltage irregular activity accounted for 17.85% of
the epochs, mixed activity for 30.5%, high voltage slow activity
for 18.1%, and trace alternant for 33.2%. Less than 0.2% of the
epochs showed depression or isoelectric signals. The number
of observed fEEG patterns in abnormal cases was significantly
different from normal cases. The relative frequency of the low
voltage irregular pattern was increased with a decrease in mixed
and high voltage slow patterns. The mean relative frequency of
low voltage irregular pattern was significantly greater in the 1min

lower Apgar score (<9). Therefore, low voltage irregular patterns
were shown to occur more frequently in the neurologically
abnormal group (compared to the neurologically normal group).
The same group used a computer-interpreted EEG to try to
predict the infant neurological outcome at 1 year. Using fEEG
patterns alone (by looking at the relative frequency of low voltage
irregular, high voltage slow, mixed, and trace alternant patterns),
almost two-thirds of the neurologically normal infants and of
the abnormal infants were correctly classified. Using intrapartum
fEEG and FHR patterns simultaneously provided slightly better
results to predict neurologically normal infants but gave the
same results for the neurologically abnormal ones. Combining
intrapartum data with postpartum data, including 1min, 5min
Apgar scores, and neonatal neurologic examinations, about 80%
of the infants were correctly classified (25, 65). These results show
that combining multiple methods of peripartum fetal monitoring
allows better detection of fetal distress that could affect long term
neurological outcome.

3. Effect of drugs

Six studies reported their observations of fEEG following
maternal general anesthesia with different drugs and described
some characteristic changes (26, 30, 33, 34, 39, 47).

FEEG recorded following maternal anesthesia with alfatesine
at a continuous rate infusion (CRI) showed changes between 1
to 11min (mean 3.5min) following the beginning of the CRI.
Initially, theta waves occurring in clusters altering the baseline
rhythm were noted. These fEEG changes eventually disappeared
to the point of reaching a discontinuous aspect with alternance of
theta wave clusters and isoelectric state. Electrical silence could
also be observed. Theta activity was noted to persist for about
30min after birth. The fEEG baseline activity reappeared about
40min after birth with the persistence of occasional theta activity
during different vigilance states associated with anesthesia. FEEG
changes were more pronounced if fetal distress was also present.

The effect of ketamine on fEEG showed similar changes
with sharp theta activity on an initially normal baseline with
a progression to fewer waves and flattening of the trace to the
point of isoelectricity with occasional bursts of theta activity
approximately within 3min following drug administration (26,
34). Barbiturates such as sodium thiopental were associated with
the more significant changes with long periods of isoelectric
traces (33, 34). Meperidine and diazepam were not found to be
associated with any fEEG changes in a very small case series
(39). Conversely, meperidine was associated with early fEEG
changes characterized by a transient increase in delta and theta
wave frequencies (2.5–5Hz), about 50 µV in amplitude, first
seen between 1 and 2min after intravenous injection of the
drug followed by a trace-alternant-like pattern of bursty activity
within 5min after the mother was given the medication (47).
This pattern could last as long as 2 h after the injection. These
results suggested a rapid transfer of the drug from the mother
to the fetus. As the time interval after injection increased, the
presence of faster, lower voltage forms (5–10 µV, 15–25Hz) in
the beta range would become more obvious (47). The effect of
the administration of 50mg of pethidine revealed a reduction of
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amplitude and frequency of fEEG activity about 1min after the
injection (30). These changes were more pronounced at 4min
post-injection. At 6min post-injection, resynchronization was
observed. These effects persisted for 25min and fEEG normalized
more or less within 105 min post-injection.

Minor fEEG changes were noted with local anesthesia and
were characterized by high-frequency rhythms with clusters
of rhythmic theta waves (33). FEEG changes associated with
anesthetic persisted for 1 to 3 days after birth. In two very
small case studies, paracervical block with 1% mepivacaine
was associated with a decrease in fEEG amplitude with a
questionable effect on the frequency (39, 40). Caudal or
paracervical carbocaine administration was shown to produce
transient pattern changes consisting of an increase in higher
voltage (50 µV/cm) bursty waves (15–25Hz) (47). In the
presence of penthrane, a trace alternant picture persisted while
the gas was being administered during the terminal stages of
labor (47). Finally, the effect of diazepam injection (10mg) on
fEEG was also reported. The fEEG frequency decreased within
30min post-injection and the amplitude increased to 80 µV
with normalization of neonatal EEG recorded 40min after the
injection (30).

Of interest, the persistence of all recording voltages below
20 µV with prolonged intervals of isoelectricity, described as
low voltage tracing, was observed in less mature infants in
the presence of analgesic medications (42). This pattern was
associated with an initially normal amplitude and the pattern
of recording changing to persistent low voltage with prolonged
periods of isoelectricity.

Finally, in a study comparing fEEG before and after oxygen
(O2) administration by mask to 20 mothers during labor, it was
shown that O2 administration caused fEEG changes within 1min
30 s to 2min after initiation of O2 characterized by a progressive
increase in amplitude and frequency of the waves (from 1–5Hz to
8–12Hz) reaching a maximum at 7–8min followed by a decrease
in the activity of the trace to return to baseline activity after
12–15min in half of the cases (37).

Studies Using Animal Models
All the animal studies deemed eligible used a fetal sheep model.
Because of the similarities between ovine and human fetal
physiology (66), this species is considered a reliable model to
study fetal cerebral development (67). First, the sheep fetus
displays cerebral hemodynamics similar to that in humans.
Second, the sheep fetal cardiovascular and EEG data can be
derived in the unanesthetized state. Third, similar to the human
fetus (68–71), the sheep fetus displays a very limited range
of cerebral autoregulation under normal conditions and they
both have a pressure-passive cerebral circulation when subjected
to systemic hypoxia and the associated hypotension (72–76).
Such hypotensive response is amplified in chronically hypoxic
pregnancies, such as with IUGR, where fetal myocardial glycogen
reserves are more rapidly depleted under conditions of umbilical
cord occlusions (UCO) (77, 78).

The 6 studies selected used transient UCO mimicking what
can happen during labor with uterine contractions and therefore
represent a good model compromise to study intrapartum

fetal distress and fEEG. Some of these studies recorded fetal
electrocorticogram (fECoG) where electrodes are placed directly
on the dura for optimal signal quality by comparison with fEEG
where electrodes are sewed into fetal sheep’s skin.

De Haan et al. (52) recorded fECoG, allowing to record brain
electrical activity similar to fEEG in sheep fetuses following
repeated UCO of different duration (1min every 2.5min or
2min every 5min) compared to sham controls. During the
occlusions, there was a progressive fall in fEcoG intensity, more
pronounced in the group with the longer UCO. FEcoG activity
at the final occlusion and recovery to normal sleep cycling
patterns were similar in the two UCO groups. A fall in SEF
during UCO followed by rapid normalization during recovery
was similar in the two asphyxiated groups. Two characteristic
patterns of electrophysiologic changes were noted. In the baseline
period, there was normal sleep cycling characterized by an
alternation of high voltage and low voltage fEcoG activity. During
the occlusions, the fECoG intensity decreased to eventually
reach a trough at the final occlusion and recovered thereafter.
In fetuses that subsequently developed only selective neuronal
loss as assessed on histologic evaluation, the fECoG rapidly
recovered, associated with very little epileptiform or spike
activity. Conversely, fECoG tracing indicating more epileptiform
activity was seen in the fetuses with most extensive neurological
damage on histology and the fECoG recovery was slower in the
more severely damaged fetuses. In comparison, sham fetuses
showed no changes in fECoG activity (and at postmortem
evaluation). Despite a similar frequency of the asphyxia periods,
the longer episodes of cord occlusion appeared to have a greater
initial effect on the fEcoG with significantly more epileptiform
and spike activity than the shorter one reflecting the cumulative
effect of intermittent ischemia with longer hypotensive periods
on fECoG (and consequently fEEG) and brain injury.

Thorngren-Jerneck et al. (53) also reported the effect of
UCO on fEEG and compared the fEEG signal of 3 groups: one
subjected to total UCO until cardiac arrest, one sham control
group and one healthy control group. The fEEG became rapidly
flat during the cord occlusion in all lambs subjected to UCO and
remained isoelectric during the 4 h after delivery. Conversely,
the fEEG was “normal,” i.e., showing continuous activity with
mixed frequencies, in sham and healthy controls during the 4 h
after delivery. Using positron emission tomography, they also
demonstrated that global cerebral metabolic rate was significantly
reduced 4 h after fetal asphyxia induced by UCO. Their findings
suggest that prolonged isoelectricity identified on EEG after birth
is an indication of severe fetal distress and that a reduction in
the brain’s metabolic rate represents an early indicator of global
hypoxic cerebral ischemia.

In another study by Kaneko et al. (54), fetal sheep were
subjected to UCO without regard to the electrocortical state
activity every 90min, and over 6 h (for a total of four UCOs).
The fECoG was monitored continuously and assessed by visual
analysis into periods of high voltage (>100 µV) and low voltage
(<50 µV). Following UCO, an indeterminate electrocortical
pattern became apparent with initially lower than baseline
electrocortical state and then gradually increasing toward a high
voltage electrocortical state but with no evident cycling. The
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fetal electrocortical activity was disrupted markedly by 4min of
UCO, with an abrupt flattening of the fECoG. With the release
of the cord occluder, the fECoG amplitude increased steadily
over several minutes. These results show that UCO resulted in
a progressive decrease in fECoG amplitude with most animals
showing a flat ECoG by 90 s but with rapid recovery in voltage
amplitude after the release of the occluder. These results are
similar to what has been reported in humans following severe
cardiac deceleration (21, 42).

Our team conducted several studies using a fetal sheep model
of human labor and showed that certain changes in fEEG
and fECoG accurately predicted severe acidemia during labor
with sufficient lead-time to potentially intervene and perform a

cesarean section (56, 57, 64, 79). This method was shown to have
a positive predictive value (PPV) of 70% and a negative predictive
value (NPV) of 100% (57). Using ECoG and EEG recordings,
we identified pathognomonic changes in fetal electrocortical
activity predictive of cardiovascular decompensation and severe
acidemia allowing early (∼60min) recognition of a critical
situation and giving sufficient time to perform an emergency
cesarean section (56, 57).

The utility of joint fEEG-FHR monitoring is based on the
consistent emergence of synchronized UCO-triggered blood
pressure, and fEEG-FHR changes, prior to reaching a severe
level of fetal acidemia where brain injury might occur.
The fetal blood pressure showed a pathological hypotensive

FIGURE 3 | Emergence of EEG-FHR pattern in a fetal sheep model. A representative 10min recording made during the early stage of severe umbilical cord

occlusions (UCOs) at a pH of about 7.2 and about 60min prior to pH dropping to <7.00 indicated cardiovascular decompensation (hypotensive fetal systemic arterial

blood pressure; ABP) in response to FHR deceleration triggered by UCO. It shows the pathognomonic fEEG pattern (black bar = 2.5min). Red arrows indicate the

pathognomonic burst-like EEG activity correlated in time to the FHR decelerations and pathological ABP decreases during the UCOs. UCOs continued until pH <

7.00 was reached in each fetus (about 4 h). Fetal arterial blood samples were taken each 20min. This timing corresponds to pH of 7.20 seen in 20% of births (62).

From Wang et al. (57) EEG, electroencephalogram, µV; ECoG, electrocorticogram, µV; ABP, fetal systemic arterial blood pressure, mmHg; FHR, fetal heart rate, bpm;

UCOs, umbilical cord occlusions, mmHg (rise in occlusion pressure corresponds to an UCO).
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behavior concomitant with the fEEG-FHR changes during FHR
decelerations (Figure 3) (57). These changes are thought to be
due to adaptive brain shut-down, triggered at a pH of about
7.20. Of note, Yumoto et al. also reported a pH of 7.20 to
be the critical value, below which fetal myocardial contractility
begins to decrease (80). Adaptive brain shutdown prevents the
brain from passing from upper to lower ischemic flow thresholds
(81, 82). When the fetal brain blood flow falls beneath the
lower ischemic flow threshold, permanent neurological injury
occurs (56).

Finally, the chronically instrumented non-anesthetized fetal
sheep model with UCO was also used to study the presence
of epileptiform activity during rewarming from moderate
hypothermia, one of the undesirable outcomes associated
with this common therapy for HIE (55). Cerebral ischemia
was induced by transient carotid occlusion corroborated
by the onset of an isoelectric fEEG signal within 30 s
of occlusion. Sheep fetuses were randomized to either
cooling or sham cooling starting at 6 h after ischemia and
continued until 72 h. Rebound electrical seizure events were
observed in about 50% of the cooled animal and 7% of
the sham-cooled animals. These results demonstrated that
following a severe ischemic insult treated with moderate
cerebral hypothermia, rapid rewarming was associated
with a significant but transient increase in EEG-defined
seizure events.

Taken together, these findings, similar to what has been
reported in humans, further emphasize the relevance of the fetal
sheep model to study labor-associated fetal and neonatal cerebral
ischemia and help develop and validate new monitoring and
therapeutic interventions.

Synthesis of Results
The systematic analysis of the literature on intrapartum fEEG
remains relatively scarce and somewhat outdated with a lot of
redundant or confirmatory information. However, studies in
human patients, corroborated by studies using animal models
suggest that this monitoring modality can provide valuable
information about fetal brain activity that significantly influences
and predicts the neurological development of the newborn (28,
29, 31, 57).

One of the key features of fEEG is the ability to potentially
detect cerebral activity changes secondary to fetal distress sooner
than with evaluation of FHR alone and more continuously than
by relying only on fetal scalp blood pH, a technique hardly used
in the modern practice (21, 55, 56). If the technical difficulties
associated with electrode placements have been mostly removed
(19), the problem of objective data analysis and interpretation,
although improved by the use of computer algorithms (28, 29,
32, 57) and spectral analysis (17, 20, 39, 40) remains a significant
limiting factor in democratizing the use of intrapartum fEEG
as part of the routine labor monitoring. Despite compelling
evidence that joint fEEG and FHR monitoring and detection of
pathognomonic patterns associated with fetal distress are key
features of intrapartum fetal health assessment, the development
of methods allowing unsupervised monitoring of these two

variables without requiring a high level of expertise, remains in
its infancy.

Furthermore, as most human studies were either retrospective
cohort studies or case series, more clinical prospective studies
are needed to further establish the utility of fEEG monitoring
intrapartum.We identified clinical study designs likely to succeed
in bringing this monitoring modality as a bedside test in the
unique setting of L&D and will be discussing them below.

Risk of Bias Across Studies
To limit the risk of bias for each individual study, we ought
to assess the studies at the outcome level. However, because
the majority of the eligible studies, particularly the ones in
humans, reported mainly descriptive findings, this turned out
to be extremely challenging. Indeed, a lot of these studies just
described fEEG traces of selected cases (19, 22, 26, 33, 39, 40, 42,
49–51, 60). In fact, only 4 studies analyzed the fEEG in relation
to the outcome at 1 year and are from the same group (with the
same cohort for all but one study) (27–29, 31).

We did try to limit bias in study selection by not just
including studies in English, but also those in French, German
and Russian which added 30 studies to the screening process with
14 ultimately deemed eligible.

DISCUSSION

Summary of Evidence
The review of the aforementioned eligible studies allowed us to
establish some key-points about intrapartum fEEG. A normal
baseline intrapartum fEEG activity was reported in several studies
with evidence of alternance of sleep/wake states including two
types of sleep behaviors (active and quiet) (34, 45, 49, 51, 60, 83).
This “normal” intrapartum fEEG activity was similar to that of a
newborn of the same age and same birth weight. Similarly, several
studies identified patterns suggestive of fetal distress. Drugs, in
particular, if given systemically, were shown to influence fEEG
activity. Finally, a correlation was established between fEEG
activity, FHR deceleration, Apgar scores (1min and 5min), and
these factors were shown to be useful to predict the neurological
outcome of the infants at 1 year of age. Animal studies using
fetal sheep models and UCO were able to reproduce some
of the abnormalities associated with fetal distress and showed
that fEEG activity assessment could be a useful monitoring
tool to help detect abnormal fetal brain activity associated with
intrapartum complications.

The “normal” intrapartum fEEG activity was reported by
several studies as a low voltage baseline pattern that varies from
5 to 50 µV per cm, with waves frequencies between 0.5 and
25Hz. A predominant theta activity or an alternance of delta
and theta activity were observed (45, 60). It is interesting to
note that none of these early studies reported fEEG amplitude
above 200 µV. We were able to record human intrapartum fEEG
with a fetal scalp electrode with amplitudes around 400 µV. The
data was acquired at 1,000Hz. In this case, the amplitude of
the raw signal is about twice the reported maximum of about
200 µV (45, 49, 83). It is possible that this high amplitude is
the result of the effect of diazepam administration as reported
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by Hopp et al. (30) and Khopp et al. (61). It is also possible
that the older technologies and the filters used about 50 years
ago might have prevented the capture of the intermittent faster
waves with higher amplitude. This assumption is supported by
the following: if we filter our recording similarly (i.e., 0.5–12Hz),
the fEEG tracing resembles more what these studies presented
(amplitude below 200 µV) (Figure 4). A distinctive high-/low-
frequency behavioral state pattern during the first stage of labor
is seen as an alternance of 10Hz and 2Hz fEEG activity (Figure 4,
TOP). It would, therefore, be interesting to repeat some of these
older studies with the newest digital EEG technology.

Different studies have identified distinctive patterns suggestive
of fetal distress and potentially associated with an abnormal
outcome at 1 year of age. Particularly, sharp waves and long
voltage depression were both reported to be more commonly
identified in cases of fetal distress and neurologically abnormal
children at 1 year of age (15, 23, 28, 29, 31).

The effect of intrapartum drug administration to the mother
(for analgesia or anesthesia) was also reported in different studies
and appeared more significant if the drug was given systemically
(in comparison to local anesthesia) (26, 33, 34, 39, 40, 47).

One of the current limitations for routine use of fEEG
monitoring remains the expertise required to read and interpret
the tracing. Computer algorithms and methods to digitize the
fEEG signal (including spectral analysis) have been developed but
have remained experimental, failing to be translated to day-to-
day practice (17, 32, 57). Computer-assisted fEEG reading and
interpretation should be further developed to help democratize
this tool allowing its routine use in an L&D unit.

The information gathered from fEEG, FHR monitoring, scalp
pH measurements, Apgar score used as control measures of fetal
health, and their relationships with one another were studied
and the invaluable information they can provide have been
demonstrated in several studies (15, 21, 23, 25, 26, 31). The
2019 Early Notification scheme progress report of the National
Health System identified 70% of perinatal brain injuries as
avoidable with continuous CTG monitoring (84). Therefore,

both fEEG and FHR monitoring should ideally be part of the
standard of care for intrapartum surveillance allowing earlier
detection of fetal distress and identification of infants at risk
of abnormal neurological long term outcomes to allow timely
course corrections before the irreversible injury occurs. We
emphasize the intentional choice of the term “ideally” in this
recommendation, as the present reality in many L&D units is that
continuous EFM is not utilized and scalp electrode placement is
reserved to higher-risk deliveries. We suggest that this practice
is to an extent the result of disagreement about the benefits of
continuous EFMor scalp electrode placement and demonstration
of such benefits for prevention of brain injuries may shift the
preferences toward a broader adoption of these technologies.

Animal studies, and more precisely the ones using sheep
model and UCO mimicking condition of fetal ischemia have
proven useful to yield better knowledge of fEEG and its usefulness
as a monitoring tool during labor (53, 54, 56, 57, 85). They are
also useful in comparing treatment outcomes as shown by Gerrits
et al. (55). However, while the benefit of translational medicine is
indisputable, proper studies in human subjects and particularly
prospective studies are still required to further establish the utility
of fEEGmonitoring intrapartum. Because this type of studies can
be very challenging to conduct, in addition to the research aspects
of fEEG, the research setting, and organization of the protocol are
important for eventual success.

Recommendations for Successful Case
Recruitment in Clinical Prospective Studies
Below we summarize our experience with conducting a
prospective fEEG study at an L&D unit (Figure 5). The
study recruitment process begins with two forms of passive
engagement. A potential participant’s first exposure to the study
is an informational near the L&D reception desk. As the
potential participant moves through the L&D ward, they will
encounter bright purple door flyers denoting another occupant’s
participation in the study. Both of these engagements are
low to medium impact and do not require interaction with

FIGURE 4 | FEEG recording from the standard fetal scalp electrode during the first stage of labor. A period of 10min is shown with fEEG tracing (bottom) filtered

0.5–12Hz and the corresponding power spectral analysis (top left) and wavelet transform (top left) to demonstrate the time-frequency behavior of fEEG. Note

switching between delta and alpha-band activity. The X-axis shows time, with each segment corresponding to 0.5min for a total of 10min. Signal processing was

performed in EEGLAB using Matlab 2013b, MathWorks, Mattick, MA. fEEG: fetal electroencephalogram.
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FIGURE 5 | Suggested study protocol. Fetal EEG recording during labor will

be followed by cord blood measurements at birth to determine the degree of

acidemia and the neonatal morbidity score. FSE, fetal scalp electrode; EEG,

electroencephalogram; HR, heart rate.

study personnel. However, the name recognition and potential
assurance of other families participating in the study lay the
foundation for later direct interaction with study personnel. The
next step in the recruitment process is this direct interaction.
L&D staff identify potential study families and communicate
the room numbers to recruiting personnel. This personnel
approaches the family with an informed consent form and a
summary sheet that further simplifies the objectives of the study.
This step only gains initial interest from the family and is
dependent on the placement of a fetal scalp electrode (FSE). If
an FSE is utilized during the delivery, L&D staff will inform the
technical study personnel to confirm consent and connect the
study device. The device will record the data for future analysis.

Obtaining clinical data for assessing the automated algorithms
proved more difficult than the initial study design anticipated.
Recruitment of eligible families fell well below the initial
study benchmarks. We, therefore, reviewed the consent and
recruitment process to better communicate the goals of
collecting the necessary data. Our review determined that
simplifying a study’s intervention down to the required effort by
families and direct impact helped cut through many potential
barriers to initial participant interest. Simple solutions included
accompanying a three to five bullet-point summary sheet to
complement the informed consent process. When reviewing
the required informed consent form, the bullet point summary
helped remind a laboring mother what the study required of her
family. Another way we revised our process was to be cognizant

of the laboring mother’s attention span and the number of
hospital personnel involved with the family’s clinical visit. We
retrained staff to keep interactions as brief as possible. Families
are inundated with rounding clinical staff across multiple shifts; a
lengthy interaction with study personnel for an optional study
was likely to be dismissed by a laboring mother. It is also
important to avoid approaching laboring women in the second
stage of labor or after a significant deceleration when they
are overwhelmed.

Upon review of other studies, we discovered that this
was a common mistake in subject recruitment. Often, L&D
studies overlook a subject’s combination of being unfamiliar
with their situation, being mentally/physically overwhelmed,
and being unfamiliar with the consent process. We felt that
our simple mitigating processes helped increase our potential
subjects’ interest.

Fetal EEG During Pregnancy
Although the focus of this review was on intrapartum fEEG
studies, we cannot completely overlook the valuable information
gathered from antepartum fetal magnetoencephalogram (fMEG)
studies. As mentioned before, fEEG recording was first described
by (14) in a 7-month fetus in utero and later described by
Okamoto and Kirikae (86) who identified EEG activity in the
fetus as early as 12 weeks old. In 1985, Blum et al. described
a new technique, the fMEG, to record fetal brain electrical
activity in utero (87). The technique had the benefit of being
non-invasive, yet allowing to obtain fMEG traces of decent
quality. The technique was further perfected by Eswaran et al.
to minimize artifacts mainly from maternal ECG and fECG as
well as from the environment (88). The fMEG allowed to study
MEG patterns associated with fetal brain maturation similar to
what is seen in preterm infants (89). The technique was also
used to study behavioral states and sleep patterns associated
with the gestational age allowing to gain better insight into the
developing brain (90). These studies in humans are paralleled by
findings in the fetal sheep model of human development where
the relationship between fetal brain maturation and properties
of fetal ECoG with regard to sleep states architecture and
development was reported (91–93).

As the knowledge on antepartum fMEG/fEEG expands
further, it will necessarily affect the more specific intrapartum
situation. Therefore, to better understand intrapartum fEEG,
staying up to date on the literature related to the antepartum
EEG/MEG monitoring is necessary.

CONCLUSIONS

In this systematic review of the literature on intrapartum
fEEG, we found that if a “normal” baseline EEG activity can
be successfully recorded, abnormal patterns suggestive of fetal
distress can also be observed. The combination of fEEG analysis
with FHR monitoring as well as Apgar score can help identify
patients at risk allowing early intervention. This should also
help identify when the situation is not alarming, preventing
unnecessary interventions such as C-section. The majority of
the studies date back from the 70s with the potential that
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some of their data could be invalidated by newer technologies.
Despite the paucity of recent studies on the subject, the over
50 years of literature on fEEG clearly demonstrates that fEEG
represents a clinically tested bedside monitoring technology of
fetal well-being during labor with a clear potential to detect fetal
distress, complementary to FHR monitoring. FEEG intrapartum
warrants prospective clinical research with modern technical
capabilities of data acquisition and computerized interpretation
in L&D setting.
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Fetal monitoring is important to diagnose complications that can occur during pregnancy.

If detected timely, these complications might be resolved before they lead to irreversible

damage. Current fetal monitoring mainly relies on cardiotocography, the simultaneous

registration of fetal heart rate and uterine activity. Unfortunately, the technology to obtain

the cardiotocogram has limitations. In current clinical practice the fetal heart rate is

obtained via either an invasive scalp electrode, that poses risks and can only be applied

during labor and after rupture of the fetal membranes, or via non-invasive Doppler

ultrasound technology that is inaccurate and suffers from loss of signal, in particular

in women with high body mass, during motion, or in preterm pregnancies. In this

study, transabdominal electrophysiological measurements are exploited to provide fetal

heart rate non-invasively and in a more reliable manner than Doppler ultrasound. The

performance of the fetal heart rate detection is determined by comparing the fetal heart

rate to that obtained with an invasive scalp electrode during intrapartum monitoring.

The performance is gauged by comparing it to performances mentioned in literature

on Doppler ultrasound and on two commercially-available devices that are also based

on transabdominal fetal electrocardiography.

Keywords: electrophysiology, cardiotocography, fetal heart rate, fetal electrocardiogram, signal processing,

artificial intelligence

1. INTRODUCTION

One in every five pregnant women experiences complications during her pregnancy (1). Although
most of these complications are relatively harmless, some are more severe and will lead to fetal
morbidity, or even mortality. The most important pregnancy complications, in terms of severity
and occurrence, are premature birth, birth hypoxia, intrauterine growth restriction, and congenital
anomalies. Together, this “big four” of pregnancy complications accounts for the majority of
perinatal morbidities and mortalities (2).

Early detection of these pregnancy complications is of the utmost importance to prevent
irreversible damage, but is unfortunately hampered by limitations of the technology that is used in
daily clinical practice. Essentially, this technology comprises of cardiotocography and ultrasound
imaging. The former constitutes a simultaneous registration of fetal heartrate (FHR) and maternal
uterine activity (UA). It is used to screen for patterns in FHR or heartrate variability that could
reveal a compromised condition, e.g., acidaemia (3). The latter is mostly used to screen for
anomalies such as growth restriction or congenital heart disease (CHD).
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The cardiotocogram (CTG) is obtained in daily practice
by either invasive means, using a fetal scalp electrode (FSE)
and intrauterine pressure catheter (IUPC), or non-invasive
means, using a Doppler ultrasound probe and an external
tocodynamometer. The invasive methods suffer from the
limitations that they can only be used during labor after rupture
of the fetal membranes and impose risks to mother and child
(4). In some countries, these invasive methods are therefore no
longer used. The non-invasive methods can be used throughout
pregnancy, but are known to be unreliable (5, 6).

The Doppler ultrasound employed in cardiotocography
consists of a rather narrow beam of ultrasound that insonifies
a small volume in the maternal abdomen (7). If the fetal heart
is within this volume, the signal to noise ratio of the reflected
ultrasound beam is typically good enough to extract a reliable
FHR. However, movement of mother or fetus, or high body
mass of mother causes poor insonification of the fetal heart, with
corresponding poor reliability of the derived FHR (8, 9). Also in
preterm fetuses or multiple pregnancies, Doppler ultrasound is
known to perform poorly.

Over the past decades, extensive research has focused on non-
invasive fetal electrophysiological recordings for measurement
of the CTG (10). Other than Doppler ultrasound, these
electrophysiological recordings are hardly affected by movement
and bodymass (11, 12). However, the recordings are corrupted by
many electrical interferences, of which the maternal heart is the
dominant source. Many studies have been published on methods
to remove this interference, i.e., the maternal electrocardiogram
(ECG), and virtually all with good performance (13–18). Yet, in
many practical situations, removal of the maternal ECG alone
is not enough to enable reliable measurement of the FHR (18,
19). For example, during labor the maternal abdominal muscles
cause interferences that exceed the fetal electrical cardiac activity
(i.e., fetal ECG) in terms of amplitude and that overlap in the
frequency domain.

Perhaps due to these practical limitations, to date, only a
few solutions exist that constitute an electrophysiology-based
device for CTG acquisition and that are ready for use in clinical
practice. A few examples of such solutions include the GE Novii
(GE, USA, formerly the Monica Healthcare Novii), the Philips
Avalon Beltless (Philips, the Netherlands), and the Nemo Fetal
Monitoring System (NemoHealthcare, the Netherlands, of which

FIGURE 1 | Schematic illustration of the data acquisition and signal processing steps that are used to obtain FHR.

one of the authors is co-founder). The use of these solutions in
clinical practice is still fairly limited, mainly due to the relatively
poor performance during second stage of labor (6, 12).

This paper proposes a practical solution to solve the
problems that limit the application of non-invasive fetal
electrocardiography-based cardiotocography, especially during
second stage of labor. The focus of the paper lies on the
acquisition of FHR; for assessing the maternal uterine activity,
the reader is referred to literature such as (20–22). The
performance of the method is assessed by comparing the FHR
to that determined with a simultaneously applied FSE during
intrapartum monitoring.

This paper is organized as follows: In section 2, the
methodology for acquiring electrophysiological data and the
signal processing toward cardiotocography are discussed and
details are provided on the datasets used in this paper. In
section 3, results of the signal processing methods are illustrated
and in section 4 the results are discussed.

2. MATERIALS AND METHODS

The various methodological steps that are needed for acquiring
electrophysiological data and signal processing toward FHR are
schematically depicted in Figure 1. These steps will be discussed
in more detail in the subsections below. Because some of these
steps have been described in detail in other publications, we will
discuss the methodology in terms of a “cookbook recipe” and
will focus our description on the steps that have not yet been
published in detail, i.e., the FHR detection step with artificial
intelligence (AI) extension.

2.1. Data
The study protocol for the data used in this study was approved
by the institutional review board of the Máxima Medical Center
in December 2017 (NL63732.015.17). Women in established
labor, carrying a healthy singleton fetus in cephalic presentation
and with a gestational age between 36 and 42 weeks were eligible
to participate. After written informed consents, participants
received an adhesive electrode patch (Nemo Healthcare BV, the
Netherlands) that comprises four unipolar electrodes, a ground
electrode, and a common reference. Data were recorded locally
on the patch and digitized at 500 Hz sample rate with a resolution
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of 22 nV. Subsequently, data was transmitted wirelessly to a data
processing device to yield instantaneous output of FHR, maternal
heart rate, andUA. In parallel, digitized signals were stored on the
data acquisition system to enable offline processing. All results in
this paper are obtained via offline processing of stored data to
allow for quantitative evaluation. To facilitate such evaluation,
for all patients, a simultaneous FHR recording using a FSE was
performed. The FHR of the scalp electrode was determined by a
Philips Avalon FM30 cardiotocograph (Philips, the Netherlands)
at sampling period of 4 Hz. The output of the cardiotocograph
was stored digitally as well.

In total, 136 recordings were performed with an average
duration of 185 ± 135 min, with the shortest recording 17 min
and the longest 600 min. The evaluation of the presented method
was only performed on 26 of these 136 recordings. The other
110 measurements were used to develop the methods presented
in this study. More details on this splitting of the dataset are
provided in section 2.2.3.2. Details on the age and body-mass-
index of themother are provided inTable 1; other relevant details
such as fetal gender, weight, and presentation were unfortunately
not registered.

2.2. Signal Processing
2.2.1. Preprocessing
The recorded signals were preprocessed to suppress interferences
from e.g., abdominal muscles, baseline wander, and mains
powerline. This preprocessing consists of the application of zero-
phase delay highpass and lowpass filters, with cutoff frequencies
of 1 and 70 Hz, respectively.

For the mains powerline, depending on geographical location
(e.g., 50 Hz for Europe, 60 Hz for USA), a Kalman smoother
was used to effectively suppress the powerline interference,
while avoiding so-called ringing that characterizes conventional
(in)finite impulse response filters (23). Details of the applied
Kalman smoother are provided in (23).

2.2.2. Maternal ECG Suppression
After preprocessing, the dominant interference in the
electrophysiological abdominal recordings is the maternal
ECG. As mentioned in section 1, many studies have been
published on methods for suppressing the maternal ECG. Most
of these methods perform good enough to the point where the

TABLE 1 | Age and body-mass-index (BMI) of the patients included in the study,

subdivided over patients that were used in the training of the proposed methods

and patients that were used in the evaluation of the methods.

n Age (years) BMI (kg ·m−2) p-value

Training 110* 31.2 ± 4.4 28.5 ± 5.0 0.74

Testing 26† 30.9 ± 2.3 28.1 ± 5.5 0.70

The number of patients per group is indicated by n. A unpaired t-test was performed to

determine whether the age and BMI between train and test datasets were significantly

different.

*For two subjects from the train dataset the age was not known, for one subject the BMI

was not known.
†For one subject from the test dataset the BMI was not known.

(possible) residuals of maternal ECG are no longer the dominant
interference and where the methods do not cause any significant
degradation to the quality of the remaining fetal ECG.

In this work, we use a template-based maternal ECG
suppression method. First maternal QRS complexes are detected
using a low-complexity R-peak detection method, presented
in (24). Then the recorded signals are segmented, based on
the detected maternal R-peaks, to yield one maternal ECG
complex per segment. Each ECG complex is then further
segmented to yield individual ECG waves. For each wave, a
template is generated from the linear prediction of corresponding
waves from preceding ECG complexes. The wave templates are
subsequently combined to yield a template ECG. This method
is discussed in detail in (15). Because the FHR is typically not
correlated to the maternal heart rate, fetal ECG complexes occur
in random places in the maternal ECG segments. In the linear
prediction step, these fetal ECG complexes are therefore strongly
attenuated in the template.

As a final step in the maternal ECG suppression, the templates
per ECG complex are concatenated to produce an estimate of
the maternal ECG signal which is then subtracted from the
recorded signal, ideally preserving the fetal ECG. This procedure
is illustrated in Figure 2.

2.2.3. Fetal Heart Rate Detection
Despite the accurate maternal ECG suppression that can be
achieved, often the fetal ECG is still obscured by other
interferences that remain after maternal ECG cancelation. In
such cases, reliable detection of the FHR is still challenging. In
Figure 3 and example of a low-quality fetal ECG signal is shown.

2.2.3.1. Hierarchical Probabilistic Framework for R-peak

Detection
In (19), we have introduced a model-based approach for
detecting the fetal R-peaks. This approach leverages models on
the fetal QRS waveform, on the heartrate, and on the noise
dynamics to yield a robust fetal R-peak detection, even in case of
low-quality signals. In this work, we extend our previous method
with AI to further improve its robustness.

The method by Warmerdam et al. is based on the following
state-space equation:

µk+1 = µk + Ewk
Eθk+1 + vk+1 (1)

Eyk+1 = G
(

Et,µk+1, Ezk+1
)

+ Eξk+1. (2)

In Equation (1), µk+1 is the location of the (k + 1)th fetal R-
peak, Ewk are previously detected interbeat (i.e., RR) intervals,
Eθk+1 are the coefficients from an autoregressive (AR) model, and
vk+1 is a term that accounts for heartrate variability. Essentially,
the location of the next fetal R-peak is estimated to be the
location of the previous R-peak, plus the expected RR-interval,
plus a random term. This random term vk+1 is sampled from a
zero-mean normal distribution.

In Equation (2), Eyk+1 is the (k + 1)th segment of the recorded
signal y, G(·) is a function that describes the linear combination
of three Gaussian functions:
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FIGURE 2 | Illustration of maternal ECG estimation. In the (top) panel, one of the recorded signals after preprocessing is shown. The (middle) panel shows the

estimate of the maternal ECG signal, and the (bottom) panel shows the signal that results after subtracting the maternal ECG estimate. Here, the fetal QRS

complexes are clearly visible.

G(t,µk, Ez) =

(

a1 + a2 (t − µk)+ a3

(

1−
(t − µk)

2

b2

))

e
−

(t−µk)
2

2b2 ,

(3)
Ezk+1 = [a1, a2, a3, b] are the parameters (i.e., amplitudes Ea and
variance b) for these Gaussian functions, and Eξk+1 represents
measurement noise.

Using Bayes’ rule, themaximum a posteriori estimate µ̂k+1 can
be obtained as:

µ̂k+1 = argmax
µ











−

(

µk+1 − µ̂k + ŵT
k+1
Eθk+1

)2

Ŵ
HR

−

(

Eyk+1 − Êyk+1

)T
Ŵ
QRS−1

(

Eyk+1 − Êyk+1

)











. (4)

Here, Ŵ
HR and Ŵ

QRS are estimates of the heart rate variability

and measurement noise, respectively, and Êyk+1 is the estimate
of the recorded signal (cf. Equation 2). The first term on the
righthandside is in following paragraphs referred to as the prior
model and the second term the likelihood model. All model
parameters are updated using (extended) Kalman filters. For
exact details on this method, the reader is referred to (19).

2.2.3.2. Artificial Intelligence Extension
Although the method by Warmerdam et al. was designed and
shown to be robust against low-quality signals, situations occur
where its performance rapidly decreases. This happens for
instance when noise or interferences cause erroneous updates
of the model parameters. At that point, a vicious circle will
cause the next R-peak detection to go wrong, which in turn
further diverges the model parameters, and so on. Therefore, in
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FIGURE 3 | Example of relatively low quality fetal ECG signals after maternal ECG suppression. The two panels show the signals from two different electrodes at the

same moment. The dashed vertical lines indicate the locations at which the fetal heart rate detection method did detect fetal R-peaks.

this paper we propose an AI-based extension of the method to
prevent such scenarios.

In this AI-based extension the RR-intervals are estimated
using an AI model that is described in (25). Although this model
at first seems to outperform other methods, its main limitation
is that it can provide FHR outputs that look physiologically
plausible but are in fact incorrect (25). Yet, in this work we use
the RR-intervals detected by the AI model to validate the RR-
interval estimate by the ARmodel: ŵT

k+1
Eθk+1. As described above,

heartrate variability is modeled in the state-space representation
as random values vk+1 sampled from a zero-mean normal
distribution. Assuming that this distribution has variance 6k+1,
in case of poor agreement between the AR and AI model, this
variance is increased as:

6k+1 ← 6k+1 +

∣

∣

∣
ŵT
k+1
Eθk+1 − RRAIk+1

∣

∣

∣
, (5)

where RRAI is the RR-interval determined by the AI model. In
case the two models are not in agreement, the variance of the
prior model in Equation (4) is increased to the degree where this
distribution can become virtually flat and no prior knowledge on
the location of the new fetal R-peak is assumed. New fetal R-peak
detections will therefore only be based on the agreement between

the expected shape Êyk+1 of the fetal R-peak and the recorded
signal Eyk+1.

To prevent erroneous updates of the model parameters, when
the difference between the RR-intervals detected by the presented
method and the AI model exceeds 0.05 s, the model parameters
are not updated. Likewise, no FHR output is shown to the
clinician to prevent showing unreliable FHR information.

To train the AI model, 110 of the 136 recordings that had
simultaneous FHR recording with the presented method as
well as with FSE were randomly selected. The remaining 26
recordings were used as holdout set to evaluate the performance.
A validation of only 26 recordings is relatively small, albeit that
these 26 recordings together comprise of 84.2 h of multi-channel
abdominal fetal electrophysiological recordings. With common
use of such AI, a significant risk of overfitting to the training data
might occur. In the method proposed here, this risk is largely
mitigated by using the RR-intervals that are determined by the
AI to increase the variance 6k+1. In case the RR-intervals would
be overfitted, this variance would increase and the fetal R-peak
will be based more on the likelihood model of Equation (4). Yet,
to provide insights in the potential overfitting of the AI to the
training data, in the section 3 we will provide results from the
validation data as well as from the training data.

2.2.3.3. Postprocessing of Fetal Heart Rates
The FHR can be calculated from the detected fetal R-peak
positions, yielding a FHR on a beat-to-beat basis. However, to
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facilitate the communication with central monitoring systems
(CMS) and ease the comparison to other methods for which
the FHR has been acquired via CMS, this beat-to-beat FHR was
resampled to 4 Hz using linear interpolation. Prior to resampling,
outliers, which were defined as FHR values that differ more than
20 % from the previous FHR values (26), were omitted and
replaced by zeros.

2.3. Methodology for Evaluation
For evaluation of the presented method, the performance of
FHR detection can be assessed by comparing the FHR to that
of the FSE. Moreover, the performance of our method can
be gauged by comparing it to that of other methods reported
in literature. However, the various models in our method are
initialized such that they work optimally when always the
same electrode positions are chosen. This is also illustrated
in Figure 1, where it is shown that a single electrode patch
is used to guarantee consistent placement of the electrodes.
Because of this limitation, we cannot apply our method to public
datasets such as the Physionet Non-invasive Fetal ECG Database,
as in this dataset “electrode positioning was varied in order
to improve SNR” (27). Yet, we can compare our method to
results from (6) and (12) where similar devices are tested on
similar datasets. Both devices from these studies (i.e., Monica
Healthcare AN24 and Nemo Fetal Monitoring System) use
transabdominal electrodes to record a multi-channel fetal ECG
and use proprietary signal processing methods to extract the
FHR from these recordings. In fact, with respect to the study of
Lempersz et al., our work presents an extension of the algorithms
and datasets presented in that paper. With respect to the study
of Cohen et al., it should be noted that the comparison on FHR
detection performance is only indirect because different datasets
are used.

As evaluation metrics, we opt to express the performance in
FHR estimation in terms of success rate, reliability, and accuracy.
Here, success rate is defined as the percentage of time the method
can provide a FHR estimation (6, 12). Reliability is expressed in
terms of positive percent agreement (PPA) which is defined as the
percentage of FHR values provided by the method that are within
a 10% margin from a valid simultaneous FHR from the FSE (6).
For accuracy we use bootstrapping of the absolute differences
between the FHR from our method and that of the FSE. This
metric is different from the definitions by Cohen et al. and by
Lempersz et al., which are also different from each other. The
reason for choosing a different way of calculating the accuracy
is described below.

In Cohen et al., the accuracy is determined by the root-
mean-squared error of the difference between the FHR from
two devices vs. the expected difference that is determined by
regression in the Bland-Altman plot. In case of a bias between
the two FHR measurements, the regression in the Bland-Altman
plot will correct for this, yielding a very small metric, even when
the FHR determined from the non-invasivemeasurements differs
significantly from the FHR from the FSE. In their paper, Cohen
et al. did present the slope and y-intercept of the regression plots,
making it possible to appropriately appreciate their findings, but
in this work we prefer to show the accuracy as a metric that can

be interpreted independent from other metrics such as the slope
of the regression.

In Lempersz et al. the accuracy is determined based on
bootstrapping over differences between the FHR from the non-
invasive measurements and that of the FSE. If the FHR from the
non-invasive measurements would be inaccurate, but without a
significant bias, again the metric would be very small. By using
the absolute difference instead of the signed differences, this issue
is resolved.

Next to mean and standard deviations of the success rate,
reliability, and accuracy, we also provide 95% confidence intervals
(CI) and for the accuracy limits of agreements. For accuracy,
all analyses are done using bootstrapping (28). Each bootstrap
sample was generated by drawing a random pair of non-invasive
FHR and FSE FHR for each woman included in the analysis.
For the bootstrap sample, mean absolute difference and standard
deviation of absolute differences were determined. This process
was repeated 10,000 times to yield a large distribution for the
mean absolute difference. The average accuracy and 95% CI
were determined by taking the mean of the distribution and
the 2.5 and 97.5% centile of the distribution, respectively. From
the 10,000 bootstrap samples, also the mean standard deviation
was determined, which was subsequently used to calculate
limits of agreement as mean accuracy ± 2 × mean standard
deviation (12).

3. RESULTS

In Figures 4, 5, two examples of FHR tracings that were obtained

with the presented method are shown relative to the FHR that

was simultaneously obtained with a FSE. These two examples are
from different patients and show FHR during the first and second
stage of labor, respectively.

It can be seen in both these Figures that the resemblance
between FHR patterns obtained with the presented method is
high compared to the FHR patterns obtained with FSE. When
looking in more detail, in Figure 5 it can be seen that the
FHR deceleration at 67.5 min is slightly underestimated by the
presented method. While the FSE reveals a drop in FHR to 65
beats-per-minute (bpm), the presented methods shows a drop to
75 bpm. Despite this difference, the depicted FHR patterns can be
considered to be clinically equivalent.

In Tables 2–4, the results of the quantitative comparisons
between the developed method and the reference methods are
provided. In Table 2, the overall results are provided, while in
Tables 3, 4 the results are divided in first and second stage of
labor, respectively.

Asmentioned before, the tables do not only provide the results
of the presentedmethod on the validation set but also on the train
set, to enable the assessment of potential overfitting of the AI
to the train set. When comparing the results for the train and
validation set, it can be argued that these are comparable and
hence the risk that the results are indeed overfitted is small. In
fact, the performance on the validation set might be even slightly
better than that on the train set.
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4. DISCUSSION

In this paper a new modular methodology for non-invasive
electrophysiology for FHR acquisition was described. The
method consists of various modules that have been individually

developed and published, but with the ultimate goal of reliable
FHR monitoring in mind. In the current paper, the mutual
dependencies of the modules are described and an improved
module for FHR detection was described that, based on the
results, makes a relatively large difference in performance.

FIGURE 4 | FHR tracing during first stage of labor. In the (top) panel, the FHR from FSE is depicted. In the (bottom) panel, the FHR determined from the non-invasive

fetal ECG (FHRNI) with the proposed methods (corresponding to “This work” in Tables 2–4) is shown.

FIGURE 5 | FHR tracing during second stage of labor. In the (top) panel, the FHR from FSE is depicted. In the (bottom) panel, the FHR determined from the

non-invasive fetal ECG (FHRNI) with the proposed methods (corresponding to “This work” in Tables 2–4) is shown.
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For the comparison between the presented method and other
non-invasive FHR methods, the discussion below focuses on the
results that are presented in the column “This work (validation)”
in Tables 2–4. In this comparison, the presented method shows

TABLE 2 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Overall

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate

(%)

99.9 ± 0.2 99.6 ± 3.4 89.5 ± 10.8 83.4 ± 20.1 82.5 ± 21.1

CI (%) 99.9–100.0 99.5–99.6 87.9–91.1 78.8–87.9 77.8–87.3

Reliability (%) 95.7 ± 4.3 95.7 ± 6.2 86.8* ± 16.3 81.7 ± 20.5 73.0 ± 24.6

CI (%) 95.3–96.0 95.6–95.8 84.2–89.5* 77.1–86.4 67.4–78.5

Accuracy

(bpm)

3.2 ± 1.4 3.0 ± 0.6 −1.5** ± 4.2 5.3 ± 2.4 10.9 ± 5.8

CI (bpm) 3.1–3.3 2.9–3.0 −3.4–0.5 4.7–5.8 9.6–12.2

LoA (bpm) −9.2–15.5 −9.1–15.0 −29.2–26.3 Not provided Not provided

The results are aggregated over all patients and entire recordings. Confidence intervals for

success rate and reliability are truncated at 100.0% and confidence intervals for accuracy

are truncated at 0.0 (except for NI-fECG due to the different accuracy metric used). *In the

paper by (12) on NI-fECG a margin of 10 bpm difference with FHR from FSE was used,

instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences. CI, 95% confidence interval; LoA, limits of agreement.

TABLE 3 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Stage 1

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate 99.9 ± 0.2 99.5 ± 3.7 91.3 ± 9.9 86.4 ± 21.1 82.6 ± 24.4

CI 99.5–100.0 92.1–100.0 89.8–92.8 81.6–91.2 77.0–88.2

Reliability 96.0 ± 3.4 95.7 ± 6.4 88.4* ± 14.6 84.9 ± 21.5 74.7 ± 28.2

CI 88.8–100.0 83.0–100.0 86.0–90.8* 80.0–89.8 68.2–81.2

Accuracy

(bpm)

3.0 ± 1.8 2.9 ± 0.6 −1.4** ± 3.7 4.5 ± 2.4 7.9 ± 4.2

CI (bpm) 0.0–6.8 1.7–4.0 −3.2–0.4 3.9–5.0 7.4–10.0

LoA (bpm) −8.3–14.3 −8.5–14.3 −27.2–24.4 −8.7–8.4 −28.4–22.7

The results are aggregated over all patients and for first stage of labor of the recordings.

Confidence intervals for success rate and reliability are truncated at 100.0% and

confidence intervals for accuracy are truncated at 0.0 (except for NI-fECG due to the

different accuracy metric used). *In the paper by (12) on NI-fECG a margin of 10 bpm

difference with FHR from FSE was used, instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences. CI, 95% confidence interval; LoA, limits of agreement.

overall, and during the first stage of labor, significantly higher
success rate and reliability, with an accuracy that is comparable
to other electrophysiology-based methods and that is better than
that of Doppler ultrasound. It should be noted here that the
quantitative measure for accuracy is chosen according to the
literature (6, 12) and defined such that the lower the value, the
better the accuracy.

During the second stage of labor, success rate is significantly
higher, reliability is more than 10% higher than that of Monica
AN24, but the accuracy is only slightly better than that of Monica
AN24 and of the previous version of the Nemo Healthcare
product (i.e., NI-fECG in Tables 2–4). The main reason for this
relatively smaller yield in accuracy is that the presented method
has a success rate of close to 100%. During strong contractions
with active pushing of the mother, the signal quality of the
electrophysiological data is reduced significantly and the chance
of providing inaccurate results is therefore higher. Moreover,
during these episodes the FHR typically decelerates to <100
bpm. As can be seen in Figure 5, the proposed method also
shows these decelerations but they are typically slightly less
pronounced, yielding the same clinical picture, but at the same
time producing difference between FHRs that are in the range of
10–15 bpm. In comparison, the Monica AN24 and the previous
version of the Nemo Healthcare monitor show lower success
rates which in practice means that during these decelerations,
when the signal quality is lower, they do not show FHR, ensuring
that inaccurate FHR during these episodes does not lead to
erroneous interpretation but also that these inaccurate FHRs do
not accumulate in a even further reduced accuracy.

TABLE 4 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Stage 2

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate 99.9 ± 0.1 99.8 ± 0.2 63.3 ± 21.7 75.2 ± 19.2 77.8 ± 21.1

CI 99.5–100.0 99.4–100.0 58.7–67.8 69.4–81.1 71.4–84.1

Reliability 85.9 ± 8.6 81.5 ± 11.4 68.5* ± 24.5 71.9 ± 20.4 61.7 ± 24.8

CI 58.5–100.0 58.1–100.0 62.9–74.1* 65.7–78.1 54.2–69.2

Accuracy

(bpm)

6.6 ± 6.3 9.4 ± 2.7 −1.7** ± 8.2 7.9 ± 4.2 16.1 ± 7.6

CI (bpm) 0.0–26.6 4.0–14.9 −5.4–2.0 6.6–9.2 13.8–18.5

LoA (bpm) −11.4–24.6 −19.1–37.9 −42.4–39.0 −12.3–12.4 −40.9–34.0

The results are aggregated over all patients and second stage of labor of the recordings.

Confidence intervals for success rate and reliability are truncated at 100.0% and

confidence intervals for accuracy are truncated at 0.0 (except for NI-fECG due to the

different accuracy metric used).

*In the paper by (12) on NI-fECG a margin of 10 bpm difference with FHR from FSE was

used, instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences.

CI, 95% confidence interval; LoA, limits of agreement.
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4.1. Limitations
This study has four main limitations. First, in this study we
have followed a common approach in evaluating the performance
of AI methods by using a holdout dataset for validation. This
holdout set can demonstrate the generalizability of the trained AI.
In this study, however, the size of the validation set is relatively
small. To still provide some insights in the potential of the
proposedmethod on a larger dataset, we have included the results
on the training data in Tables 2–4. While these results might be
overestimating the performance of the proposed method due to
overfitting, it should be noted here that the chance of overfitting
is small. Not only are the results of the validation set similar to
those of the training set, but also are the results of the AI not
used directly to determine the FHR. More specifically, the results
of the AI are used in the prior model of the hierarchical R-peak
detection method and additional models—that e.g., consider the
morphology of the signal at the expected position of the R-
peak—are employed that likely prevent the detection of overfitted
FHR values.

A second limitation of the study is that the comparison to
other methods is indirect. The various methods have each been
evaluated on their own data sets, with different numbers of
patients, different patient characteristics, and different lengths of
recordings. Therefore, no quantitative comparison can be made
and no strong conclusions can be drawn about the performances
of all methods. Yet, in our opinion the number of recordings in
each study and the difference in performances is large enough to
argue that the presented method outperforms the other methods
in FHR detection during all stages of labor.

A third limitation is that the presented method, but also all
reference methods, provide a FHR at 4 Hz sampling intervals.
Fetal electrophysiological recordings potentially enable the study
of beat-to-beat variability in the FHR which has been reported
to yield better performance in detecting fetuses in distress when
using linear features of fetal heart variability (3, 29). On the
other hand, data resampled to 4 Hz has been reported to
yield similar effects on features that reveal physiological changes
during progression of labor and even better performance on
detecting fetuses in distress when using entropy features of heart
rate variability (29). Moreover, the communication protocols
for most central monitoring systems require FHR values to be
communicated at fixed frequency of 4 Hz. Because of the absence
of a clearly best method to communicate FHR values (i.e., on
a beat-to-beat basis or at a fixed frequency) and to adhere to
the existing communication protocols and bring the methods
presented in this paper already one step closer to implementation
in clinical practice, we have chosen to equidistantly resample our
data to 4 Hz.

The fourth limitation of the study is that all data processing
presented in this study was done offline, on a desktop computer.
While the non-AI parts of the method can be processed online
(i.e., processing e.g., 1 s of data takes <1 s) on a normal desktop
computer, the AI extension takes on average 2 s to process 1 s of
data on a GPU (Titan V, NVIDIA, USA), when implemented in
Tensorflow-Keras. Related to this limitation, unlike the reference
methods shown in Tables 2–4, the presented method is not yet
implemented in a medical device. Efforts to achieve this are
currently ongoing.

4.2. Future Potential
Other than the implementation of the presented methods in
a clinical device for reliable and unobtrusive FHR monitoring,
the presented methods might have further potential to support
obstetrical healthcare. Because the transabdominal recordings
can, with relatively small additional effort, also provide the
fetal ECG (30), further analysis of the ECG morphology, such
as ST analysis might be possible. For ST analysis, accurate
normalization of the fetal orientation would be crucial however.
Fetuses in cephalic, transverse, or breech position would give
different ECG morphology. We have shown in a previous study
(31) that a different fetal orientation, or a different orientation of
the electrical heart axis with respect to the abdominal electrodes,
affects the degree of ST elevation and as such might affect ST
alarms triggered on an obstetrical ward. Normalization for the
fetal orientation would be possible by using ultrasound imaging
(30) or different (i.e., relative) ST alarm mechanisms (32).

5. CONCLUSIONS

In this paper, a new method for FHR detection from non-
invasive, transabdominal electrophysiological measurements
was presented. The method is able to determine a reliable FHR
in >95% of time during labor, making it substantially more
reliable and accurate than Doppler ultrasound—the current
clinical standard for non-invasive cardiotocography. During
second stage of labor, the performance of the method decreases,
but with a reliability higher than 80% it still outperforms
Doppler ultrasound and other reference methods by a
significant amount.
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Late intrauterine growth restriction (IUGR) is a fetal pathological condition characterized by
chronic hypoxia secondary to placental insufficiency, resulting in an abnormal rate of fetal
growth. This pathology has been associated with increased fetal and neonatal morbidity
and mortality. In standard clinical practice, late IUGR diagnosis can only be suspected in
the third trimester and ultimately confirmed at birth. This study presents a radial basis
function support vector machine (RBF-SVM) classification based on quantitative features
extracted from fetal heart rate (FHR) signals acquired using routine cardiotocography
(CTG) in a population of 160 healthy and 102 late IUGR fetuses. First, the individual
performance of each time, frequency, and nonlinear feature was tested. To improve the
unsatisfactory results of univariate analysis we firstly adopted a Recursive Feature
Elimination approach to select the best subset of FHR-based parameters contributing
to the discrimination of healthy vs. late IUGR fetuses. A fine tuning of the RBF-SVM model
parameters resulted in a satisfactory classification performance in the training set
(accuracy 0.93, sensitivity 0.93, specificity 0.84). Comparable results were obtained
when applying the model on a totally independent testing set. This investigation
supports the use of a multivariate approach for the in utero identification of late IUGR
condition based on quantitative FHR features encompassing different domains. The
proposed model allows describing the relationships among features beyond the
traditional linear approaches, thus improving the classification performance. This
framework has the potential to be proposed as a screening tool for the identification of
late IUGR fetuses.

Keywords: late intrauterine growth restriction, machine learning, perinatal medicine, predictive monitoring, support
vector machines

INTRODUCTION

Antenatal fetal heart rate (FHR) is a widely used tool to monitor fetal wellbeing (Chen et al., 2011).
The assessment of fetal heart rate variability (HRV) has been reported to inform on the functional
state of the autonomic nervous system (ANS), thus providing an indication on the fetal development
throughout pregnancy. In the context of fetal pathological states, intrauterine growth restriction
(IUGR) is one of the most relevant complications of pregnancy and it has been reported to alter HRV
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(Huhn et al., 2011; Signorini et al., 2020b). IUGR is associated
with a decreased rate of fetal growth, which is the result of an
abnormal supply of maternal nutrients and placental transfer to
the fetus. IUGR is a pathological fetal state characterized by an
increased mortality and/or morbidity (Rosenberg, 2008; Smith
et al., 2013; Sharma et al., 2016). The two phenotypes of IUGR
(early and late) can be identified based on onset, evolution,
Doppler parameters modifications, and postnatal outcome
(Esposito et al., 2019).

In this paper we will focus on a population of late IUGR which
is a condition with substantial increased prevalence if compared
to early IUGR (Villar et al., 2014; Gordijn et al., 2016). The main
cause for the insurgence of late IUGR is fetal hypoxemia/hypoxia
secondary to placental insufficiency. Moreover, it is often
associated with multiple placental anomalies that by contrast
have less influence on placental resistance. Therefore, the
umbilical Doppler indices are often unaffected, thus making
the diagnosis of late IUGR more difficult, due to the large
variability of fetal parameters on growth charts in the third
trimester (Mureşan et al., 2016). Late IUGR is suspected when
the fetal growth curve slows down or does not physiologically
increase as a function of gestational age. Undetected IUGR in the
third trimester of pregnancy represents the main cause of
unexplained stillbirths in low-risk pregnancies, thus better
antenatal diagnosis and treatment and timely delivery could
diminish the risks significantly (Warland and Mitchell, 2014).
In order to investigate identification of late IUGR through FHR
analysis, we used the cardiotocography (CTG), which combines
the measure of FHR through a Doppler ultrasound probe with the
detection of uterine contractions using a pressure sensor.
Although CTG analysis is still performed visually in the
majority of Ob-Gyn clinical settings [following guidelines
edited by national and international scientific societies, such as
the International Federation of Gynecology and Obstetrics
(FIGO) (FIGO, 1986)], a progressive transition to
computerized approaches has been reported in recent years.
Computerized systems are able to extract FHR parameters
from multiple domains [time domain and frequency domain,
complexity/nonlinear methodologies (Task Force of The
European Society of Cardiology and The North American
Society of Pacing and Electrophysiology, 1996)] and represent
the initial step toward multiparametric and multidimensional
FHR analyses able to benefit from machine learning algorithms.
As a matter of fact, the FHR regulation is the result of multiple
and diverse neurological feedback loops, hormones, and various
external factors, thus resulting into complex temporal dynamics,
which are usually missed by the simple visual inspection.
Additionally, previous studies have shown the strength of a
multivariate framework in detecting fetal acidemia (Spilka
et al., 2017) and a previous paper from our group used
machine learning approaches to diagnose IUGR, but mainly
focusing on the early phenotype (Signorini et al., 2020b).

In this study, classical FHR features were complemented with
advanced nonlinear features and subsequently employed to train
several machine learning algorithms for the detection of late
IUGR in a database of 262 fetuses. Results highlighted the
enhanced performance of nonlinear features over traditional

parameters and the significant improvement in specificity and
sensitivity of multiparametric machine learning approaches over
univariate analysis. Furthermore, by utilizing an interpretable
variant of support vector machines, we were able to identify the
features that contributed the most to classification accuracy. This
implementation provided meaningful and interpretable results
with the potential of their translation into clinical practice.

MATERIAL: DATABASE AND
PREPROCESSING

Dataset
Antepartum FHR recordings were collected at the Azienda
Ospedaliera Universitaria—Federico II (Napoli, Italy). Data
analyzed in the investigation were collected as part of the
routine clinical examinations administered to pregnant women
by the Italian healthcare system. Pregnant women signed
informed consent for the utilization of their data for research
purposes. The ethical committee and the IRB of Azienda
Ospedaliera Universitaria—Federico II, Napoli, Italy, approved
the enrollment of pregnant women as participants in the study
and the utilization of the routine examination for research
purposes. Traces were recorded in a controlled clinical
environment, with participants lying supine on a bed
undergoing a standard nonstress test protocol. Data were
acquired using Philips cardiotocography (CTG) fetal monitor
Avalon FM30 connected to a computer. The device employs an
autocorrelation technique to compare the demodulated Doppler
signal of a given heartbeat and the subsequent one. The resulting
resolution for beat detection is below 2 ms. The derived CTG
signal consists of a series of FHR values sampled at 2 Hz and
expressed in beats per minute (bpm). Additionally, each FHR
sample is accompanied by an indication of signal quality: optimal,
acceptable, or insufficient based on the results of autocorrelation
technique. We excluded pregnant women with maternal health
conditions known to affect FHR regulation (gestational diabetes,
preeclampsia, and hypertension), psychiatric medication use
during pregnancy (SSRIs, antidepressants, classic
antipsychotics, atypical antipsychotics, mood stabilizers,
stimulants, antianxiety medications, or anticonvulsants), any
recreational drug use during pregnancy, and congenital heart
anomalies. Fetuses with congenital heart anomalies and genetic
disorders were also excluded. The cohort analyzed in this work
comprised 102 late intrauterine growth restriction (IUGR) fetuses
and 160 healthy fetuses matched for GA at the first CTG
examination. Fetuses in both groups underwent a routine
ultrasound examination at approximately 34 weeks GA which
did not exhibit any alteration in fetal growth or abnormalities in
neither the middle cerebral artery nor the ductus venosus
Doppler velocimetry. Once subsequently admitted for a CTG
recording at 37.54 ± 0.77 (mean ± std) weeks, fetuses in the
healthy group did not show any abnormality in the FHR trace,
whereas IUGR fetuses (admitted at 36.94 ± 0.59 weeks) did
present irregularities in their CTG recordings. A concurrent
ultrasound examination showed alteration in both growth and
Doppler profiles in this group of fetuses. The clinical definition of
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late IUGR adopted in this work reflects the guidelines reported in
Gordijn et al. (2016). The adopted classification combines
standalone information from multiple domains—gestational
age, congenital abnormalities, absolute size measurements, and
functional parameters—as well as their interactions (Gordijn
et al., 2016). Each prenatal fetal condition was verified after
delivery to confirm group membership previously suspected at
the CTG timepoint. The length of the CTG recordings considered
in this study is 40 min in both populations. This guaranteed that
FHR data were acquired during both activity and quiet periods for
any given fetus included in the study. Participants were not
included in the analysis if their associated recordings were of
insufficient duration and/or with <30 usable 1-min epochs and/or
<10 3-min epochs (see next section for definition of epochs).
Clinical data of the analyzed populations are reported in Table 1.
Fetuses in the healthy group were characterized by higher
birthweight, Apgar score 1 min, and rate of spontaneous
vaginal delivery compared to the considered IUGR population.
Similar results have been reported in other populations of early
(Stampalija et al., 2015) and late (Esposito et al., 2019) IUGR
fetuses.

Fetal Heart Rate Time Series and
Preprocessing
The equipment used to record the data under investigation
provides each FHR sample with an indication of signal quality:
optimal (green), acceptable (yellow), or insufficient/absent (red)
based on the results of the embedded autocorrelation procedure
utilized to extract the signal itself (Lawson et al., 1983; Signorini
et al., 2003). The first preprocessing step toward the computerized
analysis of the acquired traces consisted in subdividing each FHR
recording in shorter segments of length 120 points (60 s) or 360
points (180 s). The choice of 1-min or 3-min subintervals is
related to the different time scales on which CTG-derived features
are computed, whose procedure will be described in the following
sections. Subsequently, segments including more than five
consecutive red-quality points or more than 5% of red-quality
samples (6 FHR values out of 120 points per subinterval or 18
FHR values out of 360 points per subinterval) were discarded in
further analysis. Lastly, isolated insufficient-quality points were
substituted, through a moving average procedure, with the

average of the nearest five FHR points. For an in-depth
description of the preprocessing steps adopted in this
investigation, see previous publications by our group (Arduini
et al., 1993; Signorini et al., 2003; Magenes et al., 2007).

METHODS: FEATURES AND RADIAL BASIS
FUNCTION SUPPORT VECTOR MACHINES

Features
The present contribution focuses on building a machine learning-
based screener of late IUGR pathology fed with a set of FHR
features rather than a single feature design-oriented approach.
Thus, the employed features were selected on the basis of the a
priori knowledge on various quantifiers of fetal ANS dynamics in
different domains, complemented by fetal and maternal
information. Figure 1 reports a schematic workflow for the
framework implemented in this work.

Morphological and Time Domains
Morphological and time domain features represent the
computerized and automated extraction of FIGO guidelines
from FHR recordings, in terms of baseline evolution,
accelerations/decelerations, and variability. Starting from the
identification of FHR baseline [by means of Mantel’s approach
(Mantel et al., 1990)], it is possible to derive the automatic counts
of large accelerations (more than 15 beats per minute over the
baseline lasting 15 s or more) (#acc_large), small accelerations
(fewer than 15 beats per minute) (#acc_small), decelerations
(#dec), and contractions (#contr) (Rabinowitz et al., 1983;
FIGO, 1986). FHR variability features are derived from FHR
signal excluding events of accelerations and decelerations.
Specifically, the overall variability is quantified by the mean
and standard deviation of entire FHR signal (FHR_mean and
FHR_std). Short Term Variability (STV), Interval Index (II), and
Delta provide estimates of short term FHR variability considering
1-min FHR intervals. Long Term Irregularity (LTI) quantifies
variability on a longer time scale (3-min FHR intervals). A more
comprehensive description and characterization of the employed
FHR variability features can be found in previous publications by
our group (Arduini et al., 1993; Signorini et al., 2003; Magenes
et al., 2007).

Frequency Domain
Power Spectral Density (PSD) is a largely exploited method for
HRV frequency analysis. It decomposes the signal power in
oscillatory components which are an indirect measure of ANS
modulation over the cardiac system. PSD is computed employing
autoregressive (AR) modeling, specifically by Levinson-Durbin
algorithm. Based on previous findings, three specific frequency
bands of interest can be identified, namely, low frequency (LF)
(0.03–0.15) Hz; movement frequency MF (0.15–0.5) Hz; high
frequency HF (0.5–1 Hz), which quantifies the different branches
of ANS modulation (Signorini et al., 2003; Faes et al., 2015; Spilka
et al., 2017). The FHR signal undergoes an automatic
decomposition into a sum of sinusoidal contributions
identified by their central frequencies and the associated

TABLE 1 | Clinical data for the healthy and IUGR populations.

Healthy n = 160 IUGR n = 102

GA at CTG (weeks)† 37.54 ± 0.77 36.94 ± 0.59
Maternal age (years) 32.23 ± 5.16 32.36 ± 5.82
Birthweight (g)† 3,311.62 ± 373.87 2,038.40 ± 348.15
Umbilical cord pH† 7.28 ± 0.08 7.32 ± 0.06
Fetal sex (male) 55.00% 46.08%
Apgar score 1 min >7† 91.88% 78.43%
Apgar score 5 min >7 100.00% 98.04%
Mode of delivery† 59.38% vaginal 28.43% vaginal

40.62% caesarean 71.57% caesarean

Expressed asmean ± standard deviation or number (%). †denotes a significant difference
between healthy and IUGR fetuses, p < 0.05.
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amount of power, thus obtaining the power in the LF band
(LF_pow), MF band (MF_pow), and HF band (HF_pow) for each
3-min FHR segment.

Complexity Domain
The application of nonlinear methodologies to investigate FHR
variability has demonstrated its usefulness in predicting fetal
wellbeing in several investigations (Signorini et al., 2003;
Spilka et al., 2012; Gonçalves et al., 2018). In the context of
early IUGR detection, Lempel Ziv Complexity (LZC) (Lempel
and Ziv, 1976) has been previously reported to have enhanced
discriminative power in both univariate (Ferrario et al., 2007) and
multivariate (Signorini et al., 2020b) approaches, considering
binary (LZC_bin) and ternary (LZC_ter) alphabets. Additional
measures of complexity such as Approximate Entropy (ApEn)
(Pincus and Viscarello, 1992) and Sample Entropy (SampEn)
(Lake et al., 2002) have been employed for the quantification of
ANS profiles in the perinatal period. The above described features
are computed for each 3-min FHR segment. The last nonlinear
technique is Phase Rectified Signal Averaging (PRSA) (Bauer
et al., 2006). Average Acceleration and Deceleration Capacities
(AC and DC) are among the various parameters which can be
derived from the PRSA curve (Fanelli et al., 2013). More recently,
Deceleration Reserve (DR) (Rivolta et al., 2019) was defined as the
simple summation of AC and DC and it has been shown to
achieve enhanced performance in detecting fetal hypoxia
compared to AC and DC standalone parameters in the context
of intrapartum FHR recordings. Regarding the specific
implementation of these methodologies in this work, for the

computation of LZC_bin and LZC_ter the factor value (p) was set
to zero, whereas for entropy computation the length of the
pattern (m) and tolerance (r) were set equal 1 and 0.1,
respectively, accordingly with the prior knowledge on their
application for fetal investigations (Faes et al., 2015; Gonçalves
et al., 2018; Signorini et al., 2020b). On the other hand, a technical
aspect that complicates the physiological understanding of PRSA-
derived features is their dependence on three parameters, namely,
T, s, and L. Different combinations of the former parameters
allow gaining insight about the ANS branches separately. In this
work, AC, DC, and DR were computed considering T � 1 and s �
2, T � 5 and s � 5, T � 9 and s � 9, T � 40 and s � 1, and L was
constant and equal 100.

Fetal and Maternal Domain
The evolution of fetal ANS regulation throughout pregnancy has
been extensively investigated in regard to GA, sex, and various
aspects (Giuliano et al., 2017; Gonçalves et al., 2017, 2018). This
evidence is consistently reported among MTd, Fd, and Cd
features. To address this issue, GA at the recording
(GA_CTG), fetal sex (fetal_sex), and maternal age (mat_age)
are included in the machine learning analyses.

Feature Preprocessing
The time series of each parameter was averaged throughout the
recording to derive a single set of features for each subject. At this
step, features were preprocessed for outliers [Winsorization in the
interval (Q1 – 3IQR, Q3 + 3IQR), where Qi is defined as the ith
quartile and IQR � Q3 – Q1]. Lastly, features were standardized

FIGURE 1 | A schematic depiction of the machine learning framework to monitor the emergence of late intrauterine growth restriction. The starting point was the
extraction of fetal heart rate physiology features. Morphological and Time Domains (MTd) –mean, standard deviation of entire FHR signal (FHR_mean, FHR_std); Short
Term Variability (STV); Interval Index (II); Delta; Long Term Irregularity (LTI); large accelerations (more than 15 beats per minute over the baseline lasting 15 s or more,
indicated by green arrows) (#acc_large); small accelerations (fewer than 15 beats per minute) (#acc_small); decelerations (#dec, indicated by red arrows);
contractions (#contr). Frequency domain (Fd) – power in the low frequency (LF) band (LF_pow); power in the movement frequency (MF) band (MF_pow); power in the
high frequency (HF) band (HF_pow). Complexity domain (Cd)—Approximate Entropy (ApEn); Sample Entropy (SampEn); binary, ternary Lempel Ziv Complexity
(LZC_bin, LZC_ter); Average Acceleration, Deceleration Capacities (AC_T_s, DC_T_s); Deceleration Reserve (DR_T_s). Fetal and Maternal domain (FMd) – GA at the
recording (GA_CTG); fetal sex (fetal_sex); maternal age (mat_age). Radial basis function support vector machine (RBF-SVM) model was developed to discriminate
between healthy and late IUGR fetuses. The ensemble of previously described features was reduced by means of Recursive Feature Elimination technique (RBF-SVM-
RFE). The optimization of RBF-SVM parameters C and c aimed at maximizing sensitivity is shown in the bottom graph of the Machine Learning Framework panel.
Performance was assessed by splitting the database of 160 healthy and 102 late IUGR fetuses in a training (60%) and independent testing set (40%). Several figures of
merit were computed. Additionally, the proposed implementation of RBF-SVM allowed deriving interpretable feature importance ranking and standalone feature
contribution to accuracy, sensitivity, and specificity (left and right (only sensitivity shown) graphs in the Performance Assessment panel).
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across the entire population to obtain zero mean and unitary
variance distributions.

Radial Basis Function Support-Vector
Machines
From Linear to Radial Basis Function Support Vector
Machines
Support Vector Machines (SVM) are a class of machine learning
algorithms highly exploited for the purposes of data classification
and regression. As a general consideration, SVM aim to derive a
model learned on the training data, which is able to predict the
target values contained in the test data (Cortes and Vapnik, 1995;
Guyon et al., 2002; Hsu, Chang and Lin, 2003). Given a training
set of labeled instance pairs (xi, yi), i � 1,. . .,l, where xi ∈ Rn and
y ∈ {1,−1}l, l is equal to the number of observed pairs, n is the
dimensionality of the feature space, and y corresponds to healthy/
late IUGR binary classification assigned to each participant. SVM
searches for the optimal hyperplane wTϕ (xi) + b, which
maximizes the separation margin between the two classes by
solving an optimization problem. In the context of classical SVM,
such function is linear; thus the corresponding term reads wTxi +
b, which translates into a linear separating hyperplane.C > 0 is the
so-called penalty parameter of the error term. C controls the
tradeoff between misclassification and data sparsity. Large values
of C constrain the optimization procedure to derived smaller-
margin hyperplane if such boundary contributes to the training
points classified correctly. Conversely, a smaller value of C causes
the optimizer to search for larger margins, even if the derived
hyperplane misclassifies more observations. Classical SVM
promote data sparsity given only few subjects contribute to
the margin determination at the expenses of involving all the
features, thus being affected by the curse of dimensionality (Hsu
et al., 2003). To address the described issues, we propose to
employ a more efficient kernel function: Radial Basis Function
SVM (RBF-SVM) (Hsu et al., 2003), and a novel feature
elimination algorithm, namely, RBF-SVM Recursive Feature
Elimination (RBF-SVM-RFE) (Liu et al., 2011). The main
shortcoming of classical SVM is the constraint of describing
the relationship between the class labels and the features as
linear. On the opposite, the kernel of RFB-SVM maps
observations into a higher dimensional space, thus allowing
for a nonlinear relationship between observations and
attributes. In this scenario, the function ϕ can be expressed
according to (Eq. 1):

K(xi, xj) � e−cxi−x
2
j , c> 0 , (1)

where K is called kernel function, and the parameter c defines
the radius of influence of a given training example. Specifically,
low values of c code for far influence and a very broad decision
region, whereas high values of c result in the opposite.
Furthermore, it can be shown that RFB kernel is equivalent
to the linear one for some combinations of (C, c) (Lin and Lin,
2003). RBF-SVM are suitable to be employed in the presented
study given the well-documented nonlinear relationship
between several features and the target binary outcomes:

healthy or IUGR fetuses (Signorini et al., 2003; Spilka et al.,
2017; Gonçalves et al., 2018).

Radial Basis Function Support Vector Machine
Recursive Feature Elimination
Linear SVM Recursive Feature Elimination (SVM-RFE) is a
largely exploited category among the wrapper models (Kohavi
and John, 1997) which performs feature selection (Guyon et al.,
2002). Wrapper methodologies are computationally demanding
but they exhibit enhanced performance compared to filter
approaches (Sun, 2007). If SVM-RFE allows deriving an
interpretable feature ranking, the same is not valid when
considering nonlinear SVM (as for RBF-SVM). This relates to
the fact the mapping function ϕ is unknown; thus the vector w
cannot be explicitly computed and consequently cannot be used
to rank features as for SVM-RFE. In this work, we employed a
recent extension of SVM-RFE which performs feature
elimination in the context of nonlinear SVM, namely, RBF-
SVM Recursive Feature Elimination (RBF-SVM-RFE) (Liu
et al., 2011). In a nutshell, RBF-SVM-RFE expands RBF kernel
into its Maclaurin series. The weight vector w is derived from the
series by computing the contribution made to the classification
hyperplane of each feature. The algorithm allows ranking features
by their relative importance starting by including all features and
progressively eliminating each of them until all attributes are
ranked. Moreover, RBF-SVM-RFE allows deriving the most
informative subset of feature among all possible permutations
of the original set. A comprehensive and rigorous description of
the algorithm can be found in Liu et al. (2011).

Performance Assessment
Performance is quantified in terms of the area under receiver-
operation-characteristic (ROC) curve (AUC), sensitivity (SE),
and specificity (SP). In the context of supervised machine
learning approaches as for RBF-SVM, it is usually required to
perform the following: 1) make use of cross-validation (CV) to
identify the best pair of parameters C and c; 2) train the whole
training set using the previously identified Copt and copt and
evaluate the performance; 3) test the validity, replicability, and
stability of the model on a new set of observations which have
never been used in the training phase. The prediction accuracy
obtained from the unknown observations is thought to reflect in a
more precise way the classification performance of the trained
algorithm. In the context of this work, the training set was
obtained by including 60% of the original dataset and utilized
to perform task 1) and task 2), whereas the remaining 40% was
used to derive the independent test set and employed in task 3).
The operation of testing the model performance uniquely on
validation dataset does not guarantee unbiased results as the
model is fitted on the training dataset while tuning model
hyperparameters. On the contrary, the utilization of an
independent test has been shown to provide an unbiased
evaluation of the final model. The ratio between healthy and
IUGR (∼1.5:1) was maintained constant in both sets. Copt and copt

were derived by performing a grid search on C and c using cross-
validation. Specifically, several pairs of (C, c) were tested and the
one achieving the best cross-validation figure of merit was chosen.
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Exponentially growing sequences of C and c were employed in a
the grid search framework (Hsu et al., 2003; Spilka et al., 2017)
along with a 10-Fold CV repeated 5 times on the training set to
identify Copt and copt. In this work, SE was identified as the figure
of merit to be maximized to the aim of deriving a screening tool
suitable to be employed in clinical practice for the identification of
late IUGR. Despite its straightforward implementation compared
to more advanced methodologies, a grid search approach has the
advance of avoiding approximations by performing an exhaustive
parameter search. Additionally, it can be easily parallelized since
each (C, c) pair is independent. On the opposite, iterative
processes can hardly be run simultaneously (Hsu et al., 2003).

RESULTS

Univariate Analysis
For benchmark, the performance in discriminating healthy vs.
IUGR fetuses for each of the previously described features was
computed. Specifically, a set of logistic regression models were
trained including each attribute individually. The optimal cut-off
(c) for a given feature was derived by the maximization of Youden
Index (Fluss et al., 2005) defined as J �maxc (SE (c) + SP (c) – 1). J
allows computing the optimal c and consequently the
corresponding SE (c), SP (c), and AUC (c) values. Table 2
reports the ten best performing features ranked by their
AUCs. Cd features yield the best univariate classification
results, followed by MTd ones. Notably, neither Fd nor FMd
attributes have a significant individual power. The selected
features clearly point to the importance of more sophisticated
analyses of FHR, rather than the traditional time and frequency
approaches. Despite satisfactory values of AUC, the
corresponding SE and SP suggest the need for a multivariate
framework in order to improve and balance the overall
performance. Prior to multivariate classification, correlation
among all pairs of features was performed: 1) short and longer
term MTd features were moderately correlated; 2) short term
variability measured in the different domains: ApEn, SampEn,
HF_pow, LZC_bin, and LZC_ter was highly correlated as
expected given their definitions; 3) ApEn, SampEn, LZC
parameters did not exhibit any relationship with PRSA-derived
features; 4) ACs and DCs at different scales exhibited marked

negative correlations; 5)DRs were weakly positive correlated with
the corresponding DCs but not with ACs.

Multivariate Analysis
The performance of several machine learning classifiers was
tested against the proposed RBF-SVM methodology. An
exhaustive description of the employed techniques is reported
in a previous publication by our group (Signorini et al., 2020b).
Following the procedure illustrated by Zhang et al. (Zhang et al.,
2002), the ROC curves associated with these methodologies were
independently compared to the results of RBF-SVM model in a
paired design. Results showed that all the tested techniques were
statistically inferior to the RBF-SVMmodel. Nonetheless, features
were ranked similarly among the tested machine learning
classifiers, supporting the robustness of the proposed
physiology based heart rate indices.

Feature Selection
The original set of features comprised n � 32 attributes, of which
n � 10 fromMTd, n � 3 from Fd, n � 16 from Cd, and n � 3 from
FMd. The first step prior to multivariate analysis was to reduce
the feature space according to RBF-SVM-RFE, as described in the
Methods section. The minimum and maximum allowed numbers
of features for each subset were n � 1 and n � 32, respectively.
Among the tested subsets, the selected one consisted of 25
retained features and seven eliminated. Specifically, the
features with the least squared weights were FHR_mean, II,
#acc_small, #dec, LF_pow, DR_T1_s2, and mat_age. This result
was in accordance with the findings for the univariate analysis.
Consistently, the dropped attributes exhibited poor
discriminative performance as standalone parameters.
Additionally, the results of the correlation analysis for
FHR_mean, II, and mat_age highlighted their independence of
any other variable included in this analysis. LF_pow and

TABLE 2 | Univariate performance.

AUC Sensitivity Specificity

LZC_bin (bits) 0.78 0.78 0.68
LZC_ter (bits) 0.78 0.88 0.57
#acc_large 0.72 0.84 0.48
AC_T9_s9 (bpm) 0.68 0.76 0.50
AC_T5_s5 (bpm) 0.67 0.66 0.58
FHR_std (bpm) 0.66 0.72 0.55
#Contr 0.65 0.66 0.58
LTI (ms) 0.63 0.66 0.58
Delta (ms) 0.62 0.83 0.40
STV (ms) 0.61 0.98 0.21

Feature cut-offs associated with the optimal values of sensitivity and specificity are
derived based on Youden’s index maximization.

FIGURE 2 | Distribution of J as a function of misclassification cost C and
SVM-RBF kernel parameter c. x- and y-axes are expressed in logarithmic units
for better interpretability of the adopted grid search. Jopt is achieved by
considering the pair (Copt, copt), which is indicated by the red box.
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DR_T1_s2 were highly correlated with frequency and PRSA-
extracted indices; thus it is likely that their contribution in
classification resulted as limited. Lastly, #acc_small and #dec
did not exhibit substantial variations in the two groups.

Radial Basis Function Support Vector Machine
Parameter Optimization
Various pairs of (C, c) were tested to identify the combination
(Copt, copt) which corresponded to the maximization of the figure
of merit J. Each value of J was obtained by training the model on
the whole set of selected features employing a 10-Fold CV
scheme, repeated 10 times. Exponentially growing sequences
of C � c � 2−15, 2−14,. . ., 214, 215 were adopted as practical
implementation of the RBF-SVM grid search previously
described. The distribution of J as a function of C and c is
shown in Figure 2. About half of the tested pairs (corresponding
to positive exponents of c) resulted in an unsatisfactory
performance (J � 0), which is mapped in the lower half of the
plane displayed in Figure 2. The remaining portion of the
investigated two-dimensional space is associated with more
satisfactory values of SE and SP. Specifically, the optimal
combination was achieved by setting Copt � 212 and copt �
2−14. In this case, Jopt was equal to 0.7682 and the
corresponding SE and SP were equal to 0.9287 and 0.8395,
respectively. Noticeably, SE associated with the reported Jopt is
the highest achieved for the presented parameter searching. On
the other hand, the best SP was equal to 0.8881 but the
corresponding SE was 0.7467 (Copt � 25 and copt � 2−15), thus
being unsatisfactory from the perspective of building a
screening tool.

Performance Assessment on Training and Testing
Sets
The pair Copt � 212 and copt � 2−14 was employed as optimal set of
parameters for the final adopted model. This was learned on the
training set by a 10-fold CV scheme repeated 10 times, including
the restricted set of selected features. The resulting AUC was
0.9277 (0.9109, 0.9445), corresponding to SE equal 0.9287
(0.9095, 0.9479) and SP equal 0.8395 (0.8024, 0.8766). Results
are reported as mean and 95% confidence interval. A main
drawback of the proposed pipeline is the opportunity for
overfitting the model on the training data. The practice of
testing the derived model on a validation set aims at
evaluating its robustness and insensitivity to overfitting. As
previously described, the validation set encompasses 40% of
the original dataset with the requirement of a similar ratio of
healthy vs. IUGR cases. The model tested on the validation set
achieved a close agreement with the one obtained on the training
data. In detail, classification accuracy was 0.8462 (0.7622, 0.9094)
and the associated values of SE and SP were 0.8438 and 0.8500,
respectively. The resulting performance did not exhibit a drastic
decrease of AUC, SE, or SP, strengthening the validity of the
proposed model as a screening tool. This assumption was
highlighted by additional figures of merit such Positive
Predicted Value (PP V), 0.9000, and Negative Predictive Value
(NPV), 0.7727.

Feature Importance
The main advantage in employing interpretable fetal heart rate
features becomes evident for the purpose of providingmeaningful
machine learning findings. Specifically, the combination of heart
rate attributes and RFB-SVM-RFE allows investigating the
relative influence of each attribute toward classification. The
results of described approach are displayed in Figures 3, 4.
The operation of ranking features according to the weight
vector w was also found to reflect the mean decrease in
accuracy of classification when a given feature was removed
from the original set employed in the training phase, as shown
in Figure 3. The features that, when removed, generated the
biggest decrease in accuracy were found to belong to different
domain, namely, LZC_ter for Cd, #acc_large for MTd, and
HF_pow for Fd. Additionally, the reported mean decrease in
discriminative power appeared limited if compared to the
reference accuracy achieved in the training set. At the same
time, the associated SE and SP highlighted a more pronounced
decrease in performance as displayed in Figure 4. The feature
specific decreases in SE shown in the left-hand panel in Figure 4
were highly correlated with the results reported in Figure 3. In
fact, LZC_ter, #acc_large, and HF_pow accounted for the greatest
decrease in SE, whereas SE stayed stable once the remaining
features were removed from the model. SP exhibited a similar
behavior as reported in the right-hand panel in Figure 4. The
described evidence suggests that the employed features contribute
similarly to SE and SP. Based on these results, we can conclude
that both SE and SP appear as robust figure of merit in the context
of the proposed model.

DISCUSSION

In this investigation, we provided evidence for the successful
application of a machine learning framework for the
identification of late IUGR condition based on a single routine
CTG examination. Starting from the unsatisfactory results of
traditional univariate analysis (as reported in Table 2) we
proposed an interpretable RBF-SVM model to be employed as
screening tool in a clinical setting. The potential of early
identification of late IUGR represents a noticeable step toward
a better clinical management aimed at improving fetal outcome
(Rosenberg, 2008). Discussing the model performance, the
achieved values of AUC, and the associated SP and SE
demonstrated the consistent ability of the proposed
methodology to discriminate healthy vs. late IUGR fetuses in
the training and in the validation set. This result is a consequence
of the accurate tuning of model parameters (C, c) designed to
prevent overfitting. The proposed grid search for the optimal pair
C, c aimed at balancing the tradeoff between the values of model
variance and bias. As a general consideration, high values of the
misclassification cost (C) contribute to hard margin, thus forcing
the model to a stricter interpretation of training data, potentially
resulting in overfitting the training data. On the opposite, small
values of gamma (c) lead to low bias and high variance models. In
this work, the selected pair consistently points to a high variance
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and low bias model. This translates in a separation hyperplane
characterized by shaper boundaries and a strong penalization of
misclassification error, suitable for the screening tool-oriented

applications. Additionally, the absence of a potential bias toward
overfitting is supported by the presented results on the
validation set.

FIGURE 3 | Feature ranked by mean decrease in accuracy in descending order from top to bottom. Mean decreases in accuracy computed as the difference
between the optimal accuracy (obtained by including the entire set of selected features in the training set) and themodels learned excluding each feature alternatively. The
displayed colors code for the different feature domains: green for MTd, blue for Fd, orange for Cd, and pink for FMd.

FIGURE 4 | Left and right panels show the resulting SE and SP (mean and CI) when each feature is alternatively excluded from the trained model. The reference
values of SE and SP are reported in red, solid and dashed lines correspond to mean and CI, respectively. The displayed colors code for the different feature domains:
green for MTd, blue for Fd, orange for Cd, and pink for FMd.
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A crucial aspect for the clinical application of the presented
model was the possibility to interpret the data-driven results
assessing the features importance. The most noticeable advantage
of RFB-SVM-RFE is its peculiar insight on the individual feature
contribution to classification accuracy, SP, and SE. The feature
ranking reported in Figure 3 highlighted that the combination of
features from different domains is effectively enhancing the
model discriminative performance compared to traditional
univariate analysis. Specifically, the top three features
encompassed Cd, Fd, and MTd domains, respectively. This
finding supports the notion that IUGR condition is effectively
impairing the fetal ANS under different aspects; thus a
comprehensive set of attributes are required for an accurate
determination of such pathological condition. Moreover, the
presented methodology allowed evaluating the contribution of
each feature in terms of SE and SP as reported in Figure 4. If the
SE contributes appeared moderately distributed among the
features included in the model, this was not verified for SP.
This figure of merit achieved the optimal performance only when
all the selected attributes were included in the SVM framework. It
is possible to speculate that the described behavior is a
consequence of the grid search design. Specifically, the
requirement of SE maximization allowed achieving an
adequate SP at the expense of its robustness.

An additional advantage of RFB-SVM is the opportunity to
define the relationship between features as nonlinear; thus, it
allows overcoming the limitation of linearity imposed by
traditional SVM approaches. At the same time, despite
increasing the overall complexity of classification if compared
to more traditional SVM implementations, the radial kernel
tuning is on average of reduced complexity with respect to
polynomial kernel given the fewer hyperparameters to be
optimized. Lastly, RBF kernel is mathematically more stable in
contrast to polynomial kernel which tends to converge to either
infinity or zero for larger degrees (Hsu et al., 2003).

To our knowledge, this work is the first attempt toward a CTG
and quantitative feature-based discrimination of late IUGR
condition. Previous research mainly focused on the
investigation of animal models (Poudel et al., 2015) and
analyses of metabolic (Sanz-Cortés et al., 2013) and Doppler
profiles (Parra-Saavedra et al., 2013) of chronic hypoxia in the
fetal period. Nevertheless, the underpinning and widely reported
consequence of long-lasting oxygen deprivation is responsible for
a delay in the maturation of the branches of ANS and their
subsequent integration with the central nervous system (CNS).
The impairment in ANS maturation was consistently found in
this investigation by various quantitative CTG-derived
parameters which have been extensively associated with the
fetal ANS modulation throughout pregnancy as standalone
features (Signorini et al., 2003; Gonçalves et al., 2018). In
comparison with previous machine learning-derived and
univariate results by our group in different populations of
early IUGR (Ferrario et al., 2007; Fanelli et al., 2013; Signorini
et al., 2020b), it is possible to observe a consistent discriminative
power of features LZC,HF_pow, and LTI. Specifically, the average
value of each feature was greater in the control group vs. late
IUGR fetuses. On the other hand, we also report an enhanced

classification contribution of SampEn, which outperformed
ApEn. Lastly, in the described late IUGR population, short
scale (T � s � 5 and T � s � 9) PRSA-extracted features were
characterized by a greater discriminative power compared to
global ones (T � 40 and s � 1). The reported findings are in
accordance with the univariate results and support the hypothesis
of an impaired fetal beat-to-beat responsiveness regulation in the
context of nutrient restriction and chronic hypoxemia (Fanelli
et al., 2013; Rivolta et al., 2019). Lastly, toward enhancing the
general applicability as well as interpretability of the proposed
RBF-SVM model, we tested its performance once excluding the
information of fetal sex. The knowledge about the sex of the fetus
is banned in several countries across the globe; thus a fetal sex-
independent model is expected to achieve wider applicability.
Additionally, the influence of sex of the fetus over several of the
physiology based heart rate features is object of open debate in the
scientific community. Results showed nonstatistically different
performances of fetal sex-removed RBF-SVM compared to the
reference. Specifically, classification accuracy, sensitivity, and
specificity were equal to 0.9208 (0.9012, 0.9413), 0.9247
(0.9018, 0.9493), and 0.7905 (0.7492, 0.8322); 0.8077 (0.7187,
0.8784), 0.8125, and 0.8000 in the training/testing and validation
sets, respectively.

CONCLUSION

This contribution aims at promoting the application of machine
learning methodologies in the context of fetal and perinatal
medicine, following the growing trend of the artificial
intelligence application in medicine (Topol, 2019; Ghassemi
et al., 2019). The presented approach demonstrated the
reliability of an SVM inspired framework, encompassing the
automatic selection of a subset of CTG-derived features, a
satisfactory classification performance in terms of AUC, SE,
and SP in both the training and validation sets, and
interpretable set results suitable to be translatable in the
clinical environment. Findings reported in this investigation
support the importance of multivariate approaches to
investigate the variety of implications resulting from a
pathological condition such as late IUGR.

Despite satisfactory and promising classification performance,
improvements may be envisioned under various aspects. First, the
inclusion of additional features such as the ones inspired to
multiscale and fractal analysis might further contribute to
classification accuracy as reported in the context of
intrapartum (Spilka et al., 2017). Second, the performance of
different machine learning approaches as well as deep learning
methodologies should be investigated and compared to RFB-
SVM-RFE. Lastly, the validation of the presented approach
should be carried out on external datasets to ultimately test
the model performance as a function of different reference
values of the input features. Additionally, it would be relevant
to evaluate the validity of the proposedmodel in the context of the
early insurgence of the pathology. A recent dataset of FHR indices
extracted from a population of early IUGR fetuses can be found in
Signorini et al. (2020a).
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Background: When exposed to repetitive umbilical cord occlusions (UCO) with

worsening acidemia, fetuses eventually develop cardiovascular decompensation

manifesting as pathological hypotensive arterial blood pressure (ABP) responses to fetal

heart rate (FHR) decelerations. Failure to maintain cardiac output during labor is a key

event leading up to brain injury. We reported that the timing of the event when a fetus

begins to exhibit this cardiovascular phenotype is highly individual and was impossible

to predict.

Objective: We hypothesized that this phenotype would be reflected in the individual

behavior of heart rate variability (HRV) as measured by root mean square of successive

differences of R-R intervals (RMSSD), a measure of vagal modulation of HRV, which is

known to increase with worsening acidemia. This is clinically relevant because HRV can

be computed in real-time intrapartum. Consequently, we aimed to predict the individual

timing of the event when a hypotensive ABP pattern would emerge in a fetus from a

series of continuous RMSSD data.

Study Design: Fourteen near-term fetal sheep were chronically instrumented with

vascular catheters to record fetal arterial blood pressure, umbilical cord occluder

to mimic uterine contractions occurring during human labor and ECG electrodes

to compute the ECG-derived HRV measure RMSSD. All animals were studied

over a ∼6 h period. After a 1–2 h baseline control period, the animals underwent

mild, moderate, and severe series of repetitive UCO. We applied the recently

developed machine learning algorithm to detect physiologically meaningful changes

in RMSSD dynamics with worsening acidemia and hypotensive responses to FHR

decelerations. To mimic clinical scenarios using an ultrasound-based 4Hz FHR

sampling rate, we recomputed RMSSD from FHR sampled at 4Hz and compared

the performance of our algorithm under both conditions (1,000Hz vs. 4 Hz).
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Results: The RMSSD values were highly non-stationary, with four different regimes and

three regime changes, corresponding to a baseline period followed by mild, moderate,

and severe UCO series. Each time series was characterized by seemingly randomly

occurring (in terms of timing of the individual onset) increase in RMSSD values at different

time points during the moderate UCO series and at the start of the severe UCO series.

This event manifested as an increasing trend in RMSSD values, which counter-intuitively

emerged as a period of relative stationarity for the time series. Our algorithm identified

these change points as the individual time points of cardiovascular decompensation with

92% sensitivity, 86% accuracy and 92% precision which corresponded to 14 ± 21min

before the visual identification. In the 4Hz RMSSD time series, the algorithm detected

the event with 3 times earlier detection times than at 1,000Hz, i.e., producing false

positive alarms with 50% sensitivity, 21% accuracy, and 27% precision. We identified

the overestimation of baseline FHR variability by RMSSD at a 4Hz sampling rate to be

the cause of this phenomenon.

Conclusions: The key finding is demonstration of FHR monitoring to detect fetal

cardiovascular decompensation during labor. This validates the hypothesis that our

HRV-based algorithm identifies individual time points of ABP responses to UCO with

worsening acidemia by extracting change point information from the physiologically

related fluctuations in the RMSSD signal. This performance depends on the acquisition

accuracy of beat to beat fluctuations achieved in trans-abdominal ECG devices and fails

at the sampling rate used clinically in ultrasound-based systems. This has implications

for implementing such an approach in clinical practice.

Keywords: HRV, hypotension, brain Injury, Bezold Jarisch reflex, machine learning, time series, anomaly detection,

changepoint detection

A. Why was the study conducted?

During labor, fetuses may develop pathologically
hypotensive arterial blood pressure responses to fetal heart

rate (FHR) decelerations triggered by uterine contractions.
The timing of this event is difficult to predict clinically. We

developed a machine learning method to detect this event
from an individual FHR tracing.

B. What are the key findings?

This real-time algorithm performs well on noisy FHR data

requiring ∼2 hours to train on the individual FHR tracings in

the first stage of labor; once trained, the algorithm predicts the
event with 92% sensitivity, 86% accuracy, and 92% precision.

The algorithm’s performance deteriorates to 50%

sensitivity, 21% accuracy, and 27% precision when the
FHR is acquired at a sampling rate of 4Hz used in the
ultrasound (CTG) monitors compared to the ECG-derived
signal as it can be acquired from maternal abdominal ECG.

C. What does this study add to what is already known?

This is the first demonstration of the ability to detect fetal
cardiovascular decompensation, a prequel to brain injury,
intrapartum. The approach is ready for clinical testing.
Computerized CTG monitoring cannot predict fetal acidemia
intrapartum as well as ECG-based FHR monitoring. This
study adds to this knowledge that a computerized approach
for objective detection of cardiovascular compromise from

FHR in real-time from an individual FHR tracing also
performs better when using ECG-derived FHR tracing than
CTG tracing.

INTRODUCTION

Electronic fetal monitoring (EFM) cannot identify fetuses at risk
of incipient brain injury. The efforts to identify intrapartum
acidemia using EFM have failed, in particular using fetal
heart rate (FHR) monitoring, because fetal brain injury is
poorly correlated with acidemia (1). Brain compromise due
to hypoxia-ischemia (HI) can ensue when the fetal cerebral
blood flow is persistently reduced e.g., due to precipitous drop
in cerebral perfusion pressure resulting from cardiovascular
decompensation (2, 3). Bezold-Jarisch reflex (BJR) is a vagal
depressor reflex observed in fetal sheep under the conditions of
umbilical cord occlusions (UCO) with worsening acidemia which
leads to cardiovascular decompensation (4). We asked whether
FHR monitoring can capture the BJR-mediated vagal sensing
of acidemia. We studied the relationship between fetal systemic
arterial blood pressure (ABP) and FHR in an animal model of
human labor.

We had reported that sheep fetuses have an individual
cardiovascular phenotype in their responses to increasing
acidemia due to repetitive intermittent hypoxia (3). We
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hypothesized that such phenotype would be reflected in
individual responses of heart rate variability (HRV) as measured
by root mean square of successive differences of R-R intervals
(RMSSD), a measure of vagal modulation of HRV known to
increase with worsening acidemia (5–7). Consequently, a series
of continuously computed RMSSD data will consistently predict
the event when a hypotensive ABP pattern emerges in an
individual fetus (3).

The current standard of EFM relies predominantly on
ultrasound-based FHR monitoring. Because the vagally
mediated HRV is found on a time scale that is not captured
at 4Hz sampling rate, we also tested the impact of its
inherently lower FHR sampling rate precision of 4Hz vs.
the golden standard electrocardiogram (ECG)—derived
1,000Hz on the ability to individually predict cardiovascular
decompensation. We hypothesized that the lower temporal
precision will result in a poorer prediction of the timing of
cardiovascular decompensation.

MATERIALS AND METHODS

Experimental methods and data acquisition have been presented
elsewhere (8). Briefly, fourteen near-term fetal sheep were
chronically instrumented with vascular catheters to record fetal
arterial blood pressure, umbilical cord occluder to mimic uterine
contractions occurring during human labor and ECG electrodes
to compute ECG-derived HRV measure RMSSD. Animal care
followed the guidelines of the Canadian Council on Animal Care
and was approved by the University of Western Ontario Council
on Animal Care.

Surgical Preparation
Fourteen near-term ovine fetuses [123 ± 2 days gestational age
(GA), term = 145 days] of the mixed breed were surgically
instrumented. The anesthetic and surgical procedures and
postoperative care of the animals have been previously described
(3, 9). Briefly, polyvinyl catheters were placed in the right and
left brachiocephalic arteries, the cephalic vein, and the amniotic
cavity. Stainless steel electrodes were sewn onto the fetal chest
to monitor the electrocardiogram (ECG). A polyvinyl catheter
was also placed in the maternal femoral vein. Stainless steel
electrodes were additionally implanted biparietally on the dura
for the recording of electrocorticogram, ECOG, as a measure
of summated brain electrical activity [results reported elsewhere
(3, 8, 10)]. An inflatable silicon rubber cuff (In vivo Metric,
Healdsburg, CA) for UCO induction was placed around the
proximal portion of the umbilical cord and secured to the
abdominal skin. Once the fetus was returned to the uterus, a
catheter was placed in the amniotic fluid cavity. Antibiotics were
administered intravenously to the mother (0.2 g of trimethoprim
and 1.2 g sulfadoxine, Schering Canada Inc., Pointe-Claire,
Canada) and fetus and into the amniotic cavity (1 million
IU penicillin G sodium, Pharmaceutical Partners of Canada,
Richmond Hill, Canada). Amniotic fluid lost during surgery
was replaced with warm saline. The uterus and abdominal wall
incisions were sutured in layers and the catheters exteriorized

through the maternal flank and secured to the back of the ewe
in a plastic pouch.

Postoperatively, animals were allowed 4 days to recover
prior to experimentation and daily antibiotic administration was
continued intravenously to the mother (0.2 g trimethoprim and
1.2 g sulfadoxine), into the fetal vein and the amniotic cavity
(1 million IU penicillin G sodium, respectively). Arterial blood
was sampled for evaluation of the maternal and fetal condition
and catheters were flushed with heparinized saline to maintain
patency. Animals were 130 ± 1 day GA on the first day of the
experimental study.

Experimental Procedure
All animals were studied over a ∼6 h period (Figure 1). Fetal
chronic hypoxia was defined as arterial O2Sat <55% as measured
on postoperative days 1–3 and at baseline prior to beginning
the UCOs. The first group comprised five fetuses that were
also spontaneously hypoxic (n = 5, H/UCO). The second
group of fetuses was normoxic (O2Sat>55% before UCOs) (n
= 9, N/UCO). The experimental protocol has been reported
(7, 9, 11). After a 1–2 h baseline control period, the animals
underwent mild, moderate, and severe series of repetitive UCOs
by graduated inflation of the occluder cuff with a saline solution.
During the first hour following the baseline period, mild variable
FHR decelerations were performed with a partial UCO for 1min
duration every 2.5min, with the goal of decreasing FHR by ∼30
bpm, corresponding to a ∼50% reduction in umbilical blood
flow (12, 13). During the second hour, moderate variable FHR
decelerations were performed with increased partial UCO for
1min duration every 2.5min with the goal of decreasing FHR by
∼60 bpm, corresponding to a∼75% reduction in umbilical blood
flow (13). Animals underwent severe variable FHR decelerations
with complete UCO for 1min duration every 2.5min until the
targeted fetal arterial pH of <7.0 was detected or 2 h of severe
UCO had been carried out, at which point the repetitive UCOs
were terminated. These animals were then allowed to recover
for 48 h following the last UCO. Fetal arterial blood samples
were drawn at baseline, at the end of the first UCO of each
series (mild, moderate, severe), and at 20min intervals (between
UCOs) throughout each of the series, as well as at 1, 24, and 48 h
of recovery. For each UCO series blood gas sample and the 24 h
recovery sample of 0.7ml of fetal blood was withdrawn, while
4ml of fetal blood was withdrawn at baseline, at pHnadir < 7.00,
and at 1 and 48 h of recovery. The amounts of blood withdrawn
were documented for each fetus and replaced with an equivalent
volume of maternal blood at the end of day 1 of the study.

All blood samples were analyzed for blood gas values,
pH, glucose, and lactate with an ABL-725 blood gas analyzer
(Radiometer Medical, Copenhagen, Denmark) with temperature
corrected to 39.0◦C. Plasma from the 4ml blood samples was
frozen and stored for cytokine analysis, reported elsewhere.

After the 48 h recovery blood sample, the ewe and the
fetus were killed by an overdose of barbiturate (30mg sodium
pentobarbital IV, MTC Pharmaceuticals, Cambridge, Canada).
A post mortem was carried out during which fetal sex and
weight were determined and the location and function of
the umbilical occluder were confirmed. The fetal brain was
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FIGURE 1 | Experimental protocol and a representative example of the analytical approach (animal ID 473378). The RMSSD time series derived from 1,000Hz (blue)

and 4Hz (orange) sampled ECG are displayed superimposed in the top panel, with declared change points from the BOCPD algorithm and the Sentinel (expert

detection) marked with arrows. Sequential fetal arterial pH measurements are indicated. Experimental stages are demarcated by background colors; short black bars

over X-axis indicate the zoomed-in segments shown in the bottom panel. Bottom panels show fetal heart rate (FHR, bpm), fetal arterial blood pressure (ABP, mmHg)

and umbilical cord pressure (UCP, mmHg) indicating when UCO were triggered (increasing UCP). Note the failure of the change point algorithm to detect the sentinel

time point correctly (i.e., around the Sentinel time point) when using 4 Hz—derived RMSSD signal: the detection occurs 1 h earlier than with the 1,000Hz signal. This

is due to unphysiological fluctuations in FHR variability at baseline as demonstrated in Durosier et al. (7) and Li et al. (19).

perfusion-fixed and subsequently dissected and processed for
later immunohistochemical study as reported (14).

Data Acquisition and Analysis
A computerized data acquisition system was used to record
fetal systemic arterial and amniotic pressures and the ECG
signal, as described (7). All signals were monitored continuously
throughout the experiment. Arterial and amniotic pressures were
measured using Statham pressure transducers (P23 ID; Gould
Inc., Oxnard, CA). Arterial blood pressure (ABP) was determined
as the difference between instantaneous values of arterial and
amniotic pressures. A PowerLab system was used for data
acquisition and analysis (Chart 5 For Windows, ADInstruments
Pty Ltd, Castile Hill, Australia). Pressures, ECOG and ECG were
recorded and digitized at 1,000Hz for further study. For ECG, a
60Hz notch filter was applied.

R peaks of ECG were used to derive the heart rate variability
(HRV) times series. Beat detection was performed using a mix of

two algorithms, a custom wavelet-based detection and Elgendi’s
method with an added refractory period step (15). Both methods
include bandpass filtering as an initial step that removes baseline
wandering and high frequency noise. Beat detection was also
verified for accuracy using a custom developed ECG annotation
and reviewing tool. This was necessary to validate beat detection
in UCO periods where the noise level was high and where
there were artifacts generated by the contractions. R-R intervals
were further filtered based on the morphology of the ECG
waveforms, the level of noise/artifacts within short windows
and the proportion of disconnected/saturated periods, if any
(16, 17). Windows of low quality were not retained in the HRV
analysis. Low quality was defined over analysis windows (5min)
as a weighted sum of the percentage of time without non-
physiologic beats (artifacts), the percentage of time uninterrupted
by disconnections/saturations, the percentage of time with high
quality beats according to Clifford et al.’s (16, 17). Ectopies
were not filtered out as there were a large number of them
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during UCO periods and it would effectively remove most of the
UCO periods if filtered out. The average percentage of original
ECG signal ultimately discarded for the HRV analysis was
5.5% (range: 1–20%).

The time series of R-R peak intervals were uniformly
resampled at 4Hz. Technically, the resampling was performed as
an interpolation since we need to go from a pseudo-frequency
of 2.5–3Hz to a sampling frequency of 4Hz. The interpolation
method used was a piecewise cubic Hermite interpolation. Next,
the RMSSD was calculated continuously on both the original R-R
interval time series (with 1-millisecond resolution) and the R-
R interval time series resampled at 4Hz, from each 5min HRV
segment in 2.5min overlapping sliding windows. For the ∼6-h
time series, this corresponded to roughly 150 data points.

During UCO series, the point at which hypotensive ABP
responses to UCO had been detected by “expert” visual detection
was termed ABP “sentinel,” defined as the time between the onset
of such ABP responses to UCO and the time when pH nadir (pH
< 7.00) is reached in each fetus.

To detect changes in RMSSD values corresponding to the
above sentinel time point in the ABP responses, we used the
previously reported machine learning algorithm, referred to as
Delta point method, based on change point detection (18).
Briefly, Delta point method is a real-time change point detection
method, robust to false-alarms, designed to filter a vector of
suspected change points. It proceeds by fitting a probabilistic
Gaussian process model to the RMSSD time series baseline data
and computing online predictions of the RMSSD values within
the range of the model. Suspected change-points are declared
as significant (p < 0.05) deviations from pointwise model
predictions and observations. These are viewed as observations
of a doubly stochastic Poisson process, with observation rate
governed by the Gaussian process model. Based upon this theory,
the points are grouped into time intervals, within which the Delta
point is selected as the most significant change.

To perform hyper-parameter training, we segmented the data
into a 60 point training set, or 2.5-h training time on the baseline
and mild UCO periods of each time series (i.e., corresponding
to the first stage of labor). Our method uses an n = 10 point
or 25-min interval to segment the time series for delta point
evaluation. The choice of 10 points or 25-min interval is to
provide a reasonable number of points per interval for the Delta
point method, so that a reasonable average may be calculated for
the average run in each interval.

We defined a successful detection as the agreement between
the Delta point and the sentinel value, with Delta point
detection no later than 2min behind expert detection. False
negative detections were defined as Delta point being declared
2min behind expert detection. False positive detections were
defined as detection occuring 25min prior to expert detection,
corresponding to one Delta point sampling interval. This
demonstrates the effectiveness of the method, suggesting clinical
benefits for earlier decision making.

Statistical Analysis
The differences in the change point detection at 4Hz compared to
1,000Hz were evaluated with the Wilcoxon signed-rank test with

TABLE 1 | Confusion matrix.

1,000 Hz Positive Negative 4 Hz Positive Negative

Positive 12 1 Positive 3 8

Negative 1 0 Negative 3 0

a P< 0.05 was considered significant. Detection performance was
analyzed by computing the accuracy, sensitivity, and precision of
the method defined as,

Accuracy =
Successful detections
Number of examples

(1)

Sensitivity= True Positive
True Positive + False Negative (2)

Precision=
True Positive

True Positive + False Positive (3)

Results
The physiological characteristics of the experimental groups have
been reported (8, 10, 11).

Delta point method was able to match the expert prediction
with Delta point declaration occurring at a median 8.5 (IQR =

10.5) minutes before ABP sentinel time. This corresponded to
92% sensitivity, 86% accuracy, and 92% precision.

In the 4Hz RMSSD time series, the algorithm triggered change
point at a median 36 (IQR = 44.3) minutes failing to match the
expert prediction by yielding 8 times earlier detection times than
at 1,000Hz, i.e., producing false positive alarms in 8 out of 14
cases (p = 0.003). This corresponded to 50% sensitivity, 21%
accuracy, and 27% precision. We report the confusion matrix
for both the 1,000Hz RMSSD and 4HZ RMSSD time series
in Table 1.

A representative example of the experimental data is shown in
Figure 1 and the individual findings for all subjects are reported
in Table 2.

The visual inspection of the RMSSD tracings suggested that
the overestimation of the baseline FHR variability by RMSSD
at the 4Hz sampling rate is the cause of this false detection
phenomenon. To verify this assumption we determined the
RMSSD values computed from the 1,000Hz and 4Hz sampled
FHR data sets at baseline and during the UCO series. Confirming
our hypothesis, we found a smaller difference in the average
normalized RMSSD values during the UCO series compared to
the baseline in the 4Hz data set (0.52 ± 0.16) compared to the
1,000Hz data set (0.85± 0.4, p= 0.027).

DISCUSSION

Principal Findings
Our findings validate the hypothesis that Delta point method,
applied to the FHR-derived HRV measure RMSSD, identifies
individual time points of ABP responses to UCO with worsening
acidemia by extracting change point information from the
physiologically related fluctuations in RMSSD time series. The
present findings also show the dependence of this method on
high temporal precision of FHR acquisition to capture correctly
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TABLE 2 | Performance of the anomaly detection algorithm in predicting the individual time points of cardiovascular decompensation from FHR.

Group Animal Sentinel 1,000Hz detection 4Hz detection 1,000Hz delta 4Hz delta

H_UCO 8003 15:56:00 15:49:00 15:52:00 0:07 0:04

H_UCO 473351 13:38:00 13:28:00 13:04:00 0:10 0:34

H_UCO 473362 11:05:00 11:03:00 11:35:00 0:02 0:30

H_UCO 473376 12:36:00 12:38:00 11:59:00 0:02 0:37

H_UCO 473726 12:04:00 11:50:00 11:54:00 0:14 0:10

N_UCO 461060 12:42:00 12:31:00 12:21:00 0:11 0:21

N_UCO 473361 12:51:00 12:36:00 12:16:00 0:15 0:35

N_UCO 473352 13:17:00 12:53:00 12:06:00 0:24 1:11

N_UCO 473377 12:12:00 12:14:00 12:50:00 0:02 0:38

N_UCO 473378 13:22:00 13:09:00 12:09:00 0:13 1:13

N_UCO 473727 11:03:00 11:10:00 11:08:00 0:07 0:05

N_UCO 5054 12:53:00 11:27:00 11:19:00 1:26 1:34

N_UCO 5060 11:26:00 11:24:00 10:29:00 0:02 0:57

N_UCO 473360 13:59:00 13:52:00 11:55:00 0:07 2:04

Sentinel, time of detecting the onset of pathological ABP decreases during UCOs by an expert (visual analysis); 1,000 and 4Hz detection, times of detecting the same using the change

point algorithm on RMSSD data derived from 1,000 or 4Hz sampled ECG; 1,000 delta and 4Hz delta, the time difference (sentinel-1,000 or sentinel-4Hz) between expert and change

point algorithm detection performance: detection by the algorithm preceded in most cases the expert detection, median 8.5 (IQR = 10.5) minutes and median 36 (IQR = 44.3) minutes,

respectively; Red font, cases when the algorithm detection happened after the expert detection; note that in the case of 4Hz delta, 2 out of 3 instances the detection was more than

30min too late compared to ∼3min too late in the three cases at 1,000 Hz.

the physiological fluctuations of FHR at baseline. This is in line
with the previous observations in the pregnant sheep model and
human fetuses intrapartum (7, 19).

RESULTS

We had reported consistent changes in fetal brain electrical
activity, the electrocorticogram (ECOG), with amplitude
suppression and frequency increase during FHR decelerations
accompanied by highly correlated pathological decreases
in fetal ABP, referred to as adaptive brain shutdown (3).
These changes in ECOG occurred on average 50min prior
to attaining a severe degree of acidemia (i.e., fetal arterial
pH<7.00). However, we noted a high degree of inter-
individual variability in the timing of the onset of these
brain electrical and cardiovascular responses. Importantly
for the neonatal outcome, we found a relationship between
the ensuing neuroinflammation measured by the number of
microglia, the brain’s immune cells, and the timing of the
adaptive brain shutdown onset (14). An individualized and
timely detection of the onset of hypotensive responses to
worsening acidemia and hence the timing of the adaptive
brain shutdown would provide clinically relevant information
on the degree of neuroinflammation after birth. Perinatal
neuroinflammation has been identified as relevant prognostically
not only short-term during early life, but also long-term for adult
neurodevelopmental sequelae (20–29).

We suggest that the robust performance of the algorithm
is owed to selecting causally linked phenomena which are
reflected in the two different time series: RMSSD is known
to rise with worsening acidemia due to chemoreceptors
activation for example (6, 7). Meanwhile, fetal ABP responses

to worsening acidemia deteriorate over time with an initial
phase of hypertensive responses during each UCO to compensate
for the drop in FHR, followed by the gradual decline of this
hypertensive component and eventually ensuing pathological
hypotensive ABP responses (3). This is at least partially due to
a cardiac decompensation with growing levels of acidemia (30,
31). Acidemia impacts myocardial contractility which decreases
cardiac output and ABP. It is plausible to expect that such
transition in cardiac behavior will be reflected in HRV, RMSSD
in particular, because HRV reflects not only the influences of
the autonomic nervous system’s vagal modulation of the cardiac
sinus node activity, it also depends on the intrinsic cardiac
rhythm fluctuations and health as evidenced by a decrease in
HRV in patients after heart transplants and by presence of
intrinsic HRV as early as in term fetuses of gestational age similar
to the present study (31–35).

The RMSSD time series were highly non-stationary, with four
different regimes and three regime changes, corresponding to
a baseline period followed by mild, moderate and severe UCO
series. Each time series was characterized by seemingly randomly
occurring (in terms of timing of the individual onset) increase
in RMSSD values at different time points during the moderate
UCO series and at the start of the severe UCO series. This
event manifested as an increasing trend in RMSSD values, which
counter-intuitively emerged as a period of relative stationarity
for the time series. The Delta point algorithm effectively declared
these points as the change point of clinical importance. Overall,
we found the Delta point algorithm’s predictions to be reliable
even in the instances when the signals were noisy (18). This
is based on the tests of the algorithm in various data sets as
published (18) and on our observation that here, to mimic
the online recording situation, no correction for ectopies or
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non-sinus rhythms was undertaken on RMSSD as is usually
done for HRV offline processing (34). To our knowledge, no
comparable statistical or machine learning methods for FHR
analysis exist.

The reliance on a high-quality RMSSD signal (i.e., derived
from 1,000Hz sampled true beat-to-beat variability signal) is
also what explains the failure of the algorithm to detect relevant
changepoints at 4Hz sampling rate when the RMSSD signal
becomes distorted due to undersampling and the resulting
overestimation of baseline variability (7, 19).

Clinical Implications
We demonstrate that computerized FHR monitoring
intrapartum deploying machine learning can detect fetal
cardiovascular decompensation during labor. Considering the
average duration of labor of 12 h for nullipara, the requirement
of a 2-h training window on the individual patient’s data for the
proposed algorithm is trivial (36, 37). Possible decision support
such an algorithm can provide is alerting the healthcare provider
to ease on contractions or to expedite the delivery to prevent
fetal brain injury. Development of the actual clinical workflow
will require retrospective and prospective clinical studies.

Our findings have direct clinical implications since high
precision HRV can be recorded non-invasively in human fetuses
from maternal abdominal ECG (38–42). Moreover, the present
results validate and extend the insight we and others reported
earlier in sheep and human fetuses whereby the reduced
sampling rate of FHR acquisition decreases the precision of
HRV—derived measures such as RMSSD for the detection of
acidemia (7, 19, 43). Here, we show that the Delta point
method performs 3-times more precisely in alerting to fetal
cardiovascular decompensation when the underlying FHR signal
was sampled at the gold standard 1,000Hz rate available with
today’s fetal ECG monitors rather than at the 4Hz rate as
acquired with the ultrasound monitors.

Research Implications
Future prospective clinical studies will investigate the utility
of this discovery in the early detection of fetal cardiovascular
compromise intrapartum using EFM. Our findings indicate
the superiority of abdominal ECG-derived FHR signal for
the prediction of cardiovascular decompensation. The present
machine learning approach relies on the individual tracing to
learn its properties and detect the timing of fetal cardiovascular
compromise. That is, unlike most of the artificial intelligence (AI)
technologies based on other machine learning methodologies or
deep learning (artificial neural networks), our algorithm does
not require a large amount of data from multiple subjects
(thousands of subjects) to be fed into it in order to perform.
Nevertheless, the advent of deep learning may also open new
applications for more precise, individualized decision support
using the conventional ultrasound-derived FHR tracings. In this
context, future studies could focus on building big datasets of
FHR recordings intrapartum to enable large scale testing of the
AI-based algorithms such as the one presented here or the ones
based on deep learning approaches, e.g., as recently pioneered in
EFM by Georgieva et al. (44).

Strengths and Limitations
The present findings from an established preclinical translational
experiment present a conceptual advance in the clinical
EFM demonstrating a novel machine learning approach for
individualized detection of fetal cardiovascular compromise
using FHR. The individual machine learning time of∼2 h during
the first stage of labor is clinically realistic. The main limitation
of the present study is that its insights are derived from an animal
model paradigm, albeit well validated. As such, prospective
human clinical studies of FHR intrapartum are needed. Such
clinical studies will also shed light on our a priori choice of 25min
prior to the sentinel event as a cut-off for true positive detection.
It is possible that an earlier detection and decision support
for intervention in labor will be found beneficial for mother’s
and child’s health. In such case, the 4 Hz-based conventional
ultrasound FHR monitoring may turn out to also be amenable to
such an algorithm. The risk of increasing the already alarmingly
high rate of unnecessary cesarean sections speaks against this
notion at this time. Furthermore, our approach so far took no
advantage of the information contained in the changes in the
uterine pressure during contractions in the first and second
stages of pushing and the FHR response to it as is routinely
done clinically during the FHR assessment. A combination of
the present machine learning approach with information from
uterine contractions will likely boost the performance of the
presented algorithm in a clinical setting.

Conclusions
The novelty of the current work is that its EFM algorithm
permits statistical-level predictions about concomitant
changes in individual FHR tracings which alert about fetal
cardiovascular decompensation, an important mechanistic
prequel to brain injury. The presented approach now awaits
direct clinical validation in retrospective or prospective
clinical studies.

CONDENSATION

Fetal heart rate (FHR) algorithm based onmachine learning from
individual FHR tracings detects early cardiovascular compromise
in a sheep model of human labor.
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SUPPLEMENTARY METHODS -

EXPLANATION OF DELTA POINT METHOD

The Delta point method is a change point detection algorithm
for the online interrogation of suspected change points in
non-stationary time series. The algorithm proceeds by identifying
suspected change points in a non-stationary time series by

fitting a non-parametric function representation to the real-time
observed time series data. The fitted functional representation
then forecasts future values of the time series and a statistical
algorithm is applied to the realized and forecasted values
to determine if a significant divergence occurs between the
respective values. When a statistically significant difference is
observed, a suspected change point is declared.

Due to the noisy nature of biologically collected non-
stationary time series, this noise often causes many false-positive
detected change points for which real-time processing must be
applied to determine the temporal location of a true change.
The Delta point method uses the expanding returned vector
of suspected change points and applies a windowing procedure
to the temporal locations of the suspected changes. The rate
of suspected change points is then fit to a doubly-stochastic
point process to determine the rate at which suspected change
points occur in the time series overall, as well as within each
window. Due to the functional representation of the time series,
this additional information is used to tune the estimated hazard
rate of the point process. Based upon this representation, the
window of interest is determined as the location with the greatest
temporal difference between suspected change points. The Delta
point - the change point of true interest - is then selected as the
last occurring change point in the identified window.
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It is fundamental to diagnose fetal acidemia as early as possible, allowing adequate

obstetrical interventions to prevent brain damage or perinatal death. The visual analysis

of cardiotocography traces has been complemented by computerized methods in order

to overcome some of its limitations in the screening of fetal hypoxia/acidemia. Spectral

analysis has been proposed by several studies exploring fetal heart rate recordings while

referring to a great variety of frequency bands for integrating the power spectrum. In

this paper, the main goal was to systematically review the spectral bands reported

in intrapartum fetal heart rate studies and to evaluate their performance in detecting

fetal acidemia/hypoxia. A total of 176 articles were reviewed, from MEDLINE, and 26

were included for the extraction of frequency bands and other relevant methodological

information. An open-access fetal heart rate database was used, with recordings of the

last half an hour of labor of 246 fetuses. Four different umbilical artery pH cutoffs were

considered for fetuses’ classification into acidemic or non-acidemic: 7.05, 7.10, 7.15,

and 7.20. The area under the receiver operating characteristic curve (AUROC) was used

to quantify the frequency bands’ ability to distinguish acidemic fetuses. Bands referring

to low frequencies, mainly associated with neural sympathetic activity, were the best

at detecting acidemic fetuses, with the more severe definition (pH ≤ 7.05) attaining the

highest values for the AUROC. This study shows that the power spectrum analysis of the

fetal heart rate is a simple and powerful tool that may become an adjunctive method to

CTG, helping healthcare professionals to accurately identify fetuses at risk of intrapartum

hypoxia and to implement timely obstetrical interventions to reduce the incidence of

related adverse perinatal outcomes.

Keywords: fetal acidemia, fetal heart rate, spectral analysis, frequency bands, intrapartum

INTRODUCTION

The fetus depends on the mother for oxygen and carbon dioxide exchange and for glucose supply,
through the placenta, to maintain aerobic metabolism and adequate energy production. If there is
a problem in maternal circulation, maternal respiratory function, placental blood supply, blood gas
exchange within the placenta, or fetal and umbilical circulation, the fetus may suffer hypoxia. This

82

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2021.661400
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2021.661400&domain=pdf&date_stamp=2021-08-02
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:luisacastro@med.up.pt
https://doi.org/10.3389/fped.2021.661400
https://www.frontiersin.org/articles/10.3389/fped.2021.661400/full


Castro et al. Fetal Heart Rate Spectral Analysis

decreased oxygen concentration in fetal arterial blood—
hypoxemia—can lead to decreased oxygen in the tissues—
hypoxia/metabolic acidosis—which, if not reversed, may cause
a series of long-term sequelae, such as hypoxic-ischemic
encephalopathy – (HIE) leading to the later development of
cerebral palsy, or perinatal death (1). In order to prevent brain
damage or perinatal death, it is important to diagnose hypoxia
as soon as possible, allowing obstetrical interventions to reverse
it before irreparable damage develops. To make this possible
and practical to screen for, intrapartum fetal monitoring with
cardiotocography (CTG), a technique which evaluates fetal heart
rate (FHR) and uterine contractions, has been widely used to
help detect fetal hypoxia/acidosis and prevent related adverse
perinatal outcomes (2).

FHR signals can be extracted using external or internal
methods. The most common mode of acquisition in clinical
practice is non-invasive and consists of using a Doppler probe
applied on the maternal abdomen. In some situations, invasive
FHR acquisition through an electrode placed on the fetal scalp
(FSE), using fetal electrocardiogram, is preferred, enabling a
more effective signal acquisition, when a satisfactory trace
cannot be obtained by external FHR, for example, due to
maternal obesity. FSE can only be used during labor, after
the rupture of membranes and the beginning of cervical
dilatation (3). Although not yet fully available in clinical
practice, another promising technique is the transabdominal
electrocardiogram which is more reliable than the ultrasound
to acquire FHR signals, but still having some limitations in
separating the fetal from the maternal heart rate signal. At
last, fetal magnetocardiography (fMCG), the magnetic analog
of fetal ECG, used in research settings and a highly effective
method to evaluate fetal arrhythmias, uses the complexity
of Superconducting Quantum Interference Device (SQUID)
technology and is very expensive, therefore not being suitable for
clinical routine use (4).

CTG visual analysis has limitations regarding its validity,
reproducibility, and inter and intra-observer agreement due to
the complex nature of FHR traces (5, 6). In addition, it can
sometimes lead to unnecessary obstetrical interventions, such
as cesarean section and operative vaginal delivery, which are
associated with maternal and perinatal risks (7–9). To tackle
these problems, attempts have been made to analyze CTGs
with computerized systems, automating the diagnosis of fetal
hypoxia/acidosis (10). Linear and non-linear algorithms have
been applied to FHR signals aiming at improving performance
results in the prediction of acidemia (11–13). However, although
promising results have been achieved with non-statistical and
complex indices (14–16), only statistical tools have been
included in clinical practice, probably enabling a more intuitive
interpretation by the practicing obstetrician. A crucial feature of
the FHR traces is variability, which is physiologically related to
the fetal heart autonomous nervous system control (17). When

Abbreviations: AUROC, area under the receiver operating characteristic curve;

CTG, cardiotocography; FHR, fetal heart rate; HF, high frequency; LF, low

frequency; LLF, low low frequency; MF, movement frequency; PSD, power spectral

density; ROC, receiver operating characteristic; VLF, very low frequency.

compared to statistical indices, spectral analysis has been referred
to as providing a more appropriate evaluation of the FHR non-
linear periodic changes (18). As such, spectral analysis of the
FHR has been extensively explored for the detection of several
pathological conditions in the fetus (19–23).

Spectral analysis determines the energy in specific frequency
components of heart rate variability, and changes in the
power distribution of the FHR have been considered as a
predictor of fetal distress in antepartum and intrapartum settings,
reflecting the autonomic nervous system (ANS) activity (24–
26), which is activated by hypoxemia (25, 27). Parasympathetic
and sympathetic systems compose the two divisions of the
ANS, which regulates the body’s unconscious actions. While
the parasympathetic system acts in rest-and-digest and feed-
and-breed situations, the sympathetic system acts in fight-or-
flight situations. This method takes into consideration various
frequency domains that cause complex heart rate changes and
are related to diverse systems of the human body (28). Although
several promising results were observed in various studies
using this technique, comparison problems arise when different
authors use a disparate selection of frequency bands to integrate
the spectrum (24).

Several methods have been proposed for power spectral
estimation of real time series, which basically fall into two
groups: non-parametric techniques such as the periodogram
and the Welch method (modified periodogram), and parametric
techniques which identify a model representing a good
approximation of the sampled signal, such as autoregressive
models. Autoregressive models are defined by some order,
and their coefficients can be estimated by the least-squares
procedure or through the Yule-Walker equations. While all
spectral methods provide only estimates of the real power
spectral density (PSD) of the signal and comparable results,
non-parametric methods have the advantages of simplifying the
algorithm and its high processing speed. On the other hand,
parametric methods provide accurate PSD estimation even on
a small number of samples but require the verification of the
selected model’s suitability and its order or complexity (29, 30).

It is known that in the FHR power spectrum, one observes
four regions, different from the components observed in the
power spectrum of an adult heart rate signal (17, 29). These four
components in the spectrum of the FHR have been proposed
in 2003 by Signorini et al. (17) and adopted by several studies
(3, 31–35). The lowest is the very low frequency (VLF), ranging
from 0 to 0.03Hz, being related to long period events and
non-linear contributions; followed by the low frequency (LF),
ranging from 0.03 to 0.15Hz and being mainly associated with
neural sympathetic activity. These two low frequency bands,
VLF and LF, are also associated with clinical variability such
as accelerations and decelerations. The next is a typical band
of the FHR spectrum, the movement frequency (MF), located
between 0.15 and 0.5Hz, marking maternal breathing and fetal
movements (36, 37). The high frequency (HF) ranges from 0.5
to 1Hz and indicates the presence of fetal breathing. Other
parameters are recommended besides these specific spectral
power bands, such as FHR mean and variance values and
the LF/(HF + MF) ratio. This ratio quantifies the autonomic
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balance between neural control mechanisms from sympathetic
and parasympathetic origins (17), in parallel with the ratio
formulated as LF/HF, normally calculated in adults (29).

Thereby, the primary goal of this work was to determine which
frequency bands are the best at screening fetal hypoxia/acidosis.
First, a systematic review of the literature was conducted to
collect all the different frequency domain bands used for FHR
spectral analysis. Then, the power of the different bands found
was computed on an open-access dataset using non-parametric
spectral analysis in order to address their performance at
screening fetal hypoxia/ acidosis.

MATERIALS AND METHODS

Systematic Review of FHR Spectral
Analysis
A systematic review was conducted in order to obtain a collection
of the original papers reporting FHR spectral analysis for revision
of the spectral bands employed. All original research articles
reporting spectral power analysis of real human fetal heart rate
(or RR intervals) signals, published until the end of June 2020,
and available in PubMed, were included in the analysis. For
this purpose, papers were obtained from an online search on
PubMed/Medline with the following query:

(“spectral”[All Fields] OR “spectrally”[All Fields] OR
“frequency domain”[All Fields] OR “frequency analysis”[All
Fields] OR “frequency parameters”[All Fields] OR “linear
models”[All Fields])

AND “fetal heart rate”[All Fields]) AND (“human s”[All
Fields] OR “humans”[MeSH Terms] OR “humans”[All Fields]
OR “human”[All Fields]).

From the set of papers obtained with the query described,
two researchers, familiar with signal analysis, selected the
papers to include. This selection was based on the title and
abstract only, and performed independently, by each researcher.
The papers to include were then distributed randomly to
three of the authors who extracted, from the full paper, the
relevant information for this study. During full revision of
the studies, referenced papers, which were not captured by
the query, were also manually selected. Previous studies have
shown that the distribution of the frequency spectrum suffers
changes with the baby maturation (38), hence the revision
was limited to articles reporting analysis of signals referring
to the term of pregnancy and to the intrapartum period.
The exclusion criteria were: language other than English; no
report of signal analysis (mainly reviews); reported analysis
in simulated signals or from non-human fetuses; reported
analysis on signals obtained from magnetocardiography (by
its lack of applicability in clinical practice); and used data
from the antepartum period. In the end, a consensus was
reached about the papers that accurately reported spectral
analysis of intrapartum FHR and that were included in the
final revision. The information extracted from the studies,
beyond the frequency bands used, included, if available, the
employed spectral analysis method, the interpretation of the
bands used, the type of signal spectrally analyzed (FHR or

RR intervals) and its sampling frequency, and the signal
acquisition mode.

A total of 172 abstracts were identified for screening, selected
automatically by the query, and 3 additional articles were
obtained from reference checking during the eligibility step. After
exclusions, 26 articles remained to be included in the review
(Figure 1). This systematic review focused on the frequency
spectral bands being used and reported for spectral analysis of
FHR in the literature. It was not in the scope of this research
to consider other information from those articles, commonly
addressed in systematic reviews such as main outcomes,
discriminatory validity or other results. In this research, the
information retrieved from the reviewed studies concerned only
the methodology regarding the spectral bands used.

Application in Fetal Acidemia Detection
FHR Data
In order to compare the performance of the various spectral
indices used in the articles reviewed, the first open-access
database for research analysis in intrapartum CTG was used,
enabling the objective comparison between results from different
methods (39). The open-access database CTU-UHB consists of
a total of 552 intrapartum FHR recordings obtained, between
April 2010 and August 2012, at the labor ward of the University
Hospital in Brno, Czech Republic. Along with the intrapartum
CTGs, relevant fetal (including biochemical parameters of
umbilical arterial blood samples) and maternal clinical data were
available (39). All recordings refer to singleton pregnancies, with
more than 36 completed weeks. The CTU-UHB recordings start
no more than 90min before the delivery, and each is at most
90min long, sampled at 4 Hz (39).

Before labor, the arterial pH of a healthy fetus is around 7.35,
whereas, at birth, the average pH of the umbilical artery blood
is around 7.25. In this sense, moderate neonatal acidosis will
occur when the pH is at least below 7.15 (40). However, not all
fetuses in this situation are at risk for immediate or long-term
complications, which will depend on the type of acidosis and
its severity. Respiratory acidosis per se does not carry long-term
neurological complications, while metabolic acidosis is related to
prolonged hypoxia and needs more time to reverse, even after
hypoxia is corrected. By its turn, prolonged metabolic acidosis,
involving lower pH values, is associated with irreversible organ
damage (40). Fetal metabolic acidosis is defined by an umbilical
artery pH below 7.00 and a base-deficit in the extracellular fluid
(BDecf) above 12 mmol/l (24, 40, 41). However, there is already
an association with adverse short-term perinatal outcomes when
pH values are below 7.05 and the BDecf is above 10 mmol/l
(40). Lower arterial pH values are not common in regular
cross-sectional studies or even in large randomized controlled
trials conducted in the intrapartum setting and considering fetal
acidemia as a main outcome measure (42, 43), being a rare event
in nowadays’ clinical practice (incidence lower than 0.6%) (42),
in developed countries. Thus, cutoffs such as 7.20 (31), 7.15 (28),
7.10 (31), and 7.05 (35, 44) are regularly employed in studies of
fetal acidemia/hypoxia detection. Accordingly, in this study, four
different arterial pH cutoffs were considered for the definition of
fetal acidemia: 7.05, 7.10, 7.15, and 7.20. The 7.00 pH cutoff was
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FIGURE 1 | PRISMA flow diagram of the article selection process for the systematic review (FHR, fetal heart rate; RR, interval between R peaks; PSA, power

spectral analysis).

not considered for this analysis since only three of the included
CTGs referred to newborns with an arterial pH below 7.00
(incidence of 0.54%, in line with the aforementioned literature).

Signal Pre-processing
Pre-processing of the FHR signal was required to remove artifacts
and signal loss that is commonly present in the final minutes
before delivery, related to the movements of the descending
fetus and the pregnant woman who is pushing and the improper
placement of the sensors. The algorithm used, described in detail
in (3), detects samples lower than 60 bpm and above 200 bpm
and consecutive differences higher than 25 bpm. The segments
detected were then replaced by linear interpolation if referring
to <2 s. For longer periods, segments were substituted by the
previous segment of the same length. All samples were rounded
to units. After discarding the last 5min of each recording, the
final 30min were selected for the following analyses. After pre-
processing the available signal, FHR recordings with signal loss
above 15% in the last hour (excluding the last 5min) were
rejected, ending with 246 traces selected for spectral analysis.

Spectral Analysis
Parseval’s theorem states that the total energy of a signal in the
time domain is equal to its energy in the frequency domain
and, for this reason, the square of the magnitude of the Fourier
Transform of a signal represents its power density (22). Using the
Fast Fourier Transform (FFT) and the frequency domain bands
reported in the literature, various indices of FHR’s power spectral
density (PSD) were computed.

To estimate the PSD of the FHR, a non-parametric method
was employed, the Welch method, with a window length of
256 samples with a 62.5% overlap, similarly to previous studies
(3, 11, 13, 31, 34). The Welch periodogram-based estimation
method corresponds to integrating the periodogram (using
the rectangular method) in windows of overlapped segments,
modified periodograms, that are averaged to obtain the PSD
estimate, allowing an estimation of the average power of the
signal. The integration was done between limited frequency
ranges. The FHR power percentages were computed, following
previous recommendations (45), corresponding to the power
of each frequency band divided by the average power of the
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whole signal (46). These normalized values allow the detection of
relative changes, instead of changes in the total power, that would
mask the first ones (25).

Computing a PSD estimation directly on the FHR signal
results in a high impulse around 0Hz frequency, the DC
component, corresponding to the signal’s average value over
a period, disguising relevant signals with relatively small
amplitude. Thus, after preprocessing the signals, and before
the spectrum estimation, the mean FHR was removed for
each signal to reduce the DC-offset of FHR. All preprocessing
computations and spectral analysis were done using MATLAB
(R2020b, MathWorks, Natick, MA, USA).

Statistical Analysis
Descriptive measures and statistical tests were employed to
properly compare the FHR power percentage of the acidemic
and the non-acidemic fetuses on various frequency bands. The
normality of quantitative variables was verified visually and
confirmed with the Kolmogorov-Smirnov test. Since almost all
indices could not be assumed as normally distributed, median
and interquartile interval (first quartile, Q1 - third quartile, Q3)
were employed. Categorical variables were described by absolute
and relative frequencies.

For the comparison between acidemic and non-acidemic
groups of fetuses, the Mann-Whitney test was employed,
comparing the distribution functions of the spectral indices
between the two groups. Subsequently, and for the frequency
bands where significant differences were found, a receiver
operating characteristic (ROC) curve was computed (47). The
spectral indices’ ability to distinguish acidemic fetuses from non-
acidemic ones was evaluated using the area under the ROC curve
(AUROC). These curves relate sensitivity—ability to recognize
acidemic fetuses correctly—and specificity—ability to identify
non-acidemic fetuses—for each cutoff of the discriminating
index (31), or power spectral band, in our case.

For descriptive and inference statistics, SPSS Statistics (v.25;
IBM SPSS, Chicago, IL) was used. For all statistical tests, a
significance level of 0.05 was pre-defined.

RESULTS

Literature Review of Spectral Analysis of
FHR
Overall, a total of 176 papers were reviewed by abstract. At
the abstract screening step, 73 papers were excluded for several
reasons: 6 referring to animal studies, 6 to reviews (with no signal
analyses), 14 did not analyze FHR nor RR, 33 did not apply
power spectral analysis at all, and finally, 14 were excluded as
they used magnetocardiography for FHR acquisition. As for the
analyses of full-text articles for eligibility, another 76 documents
were excluded for the same set of reasons described in the
previous step (Figure 1) together with: one article which referred
to the analysis of simulated signal and 48 studies reporting
analysis of antepartum signals (plus two with no information).
Three additional articles obtained from reference checking were
also included. In the end, 26 different original papers reporting

spectral analysis of intrapartum FHR (or RR intervals) were
included in the analysis, from 1975 to 2019.

The most frequent aim in the studies included was the
assessment of acidemia state alone (n = 14) or combined
with other characteristics of the fetus such as gender (32) or
prematurity (48). There was also a study addressing the relation
between PSD indices and cord arterial base deficit values at birth
(49). Other than acidemia, the study of the impact of signal
preprocessing for artifact correction on PSD features (50), and
the effect of different acquisition modes (3), were the aim of
other studies. Power spectral analysis was also employed for the
characterization/detection of a great diversity of other situations:
maturity (19, 20), weight or/and gender (21, 22), and conditions
of fetal distress (23). Included articles described analysis on FHR
and RR-intervals, mainly acquired through fetal scalp ECG (n =

14) and fetal Doppler transducer (external ultrasound, n = 12).
The majority of articles (n = 14) reported the use of the Fast
Fourier Transform method for computing the spectral density of
the signals, without further details. From the remaining studies,
six employed the Welch method, three the autoregressive model,
one used the matching pursuit technique (51), and the other used
the standard periodogram method (35). Regarding signal and
sample rate, the great majority of the articles included analyzed
FHR (n = 22) signals sampled at 4Hz (n = 10) or 2Hz (n
= 5). Other sampling rates were also analyzed, although less
frequently, such as 1, 10, and 16Hz. From the 4 studies reporting
power spectral analysis on RR signals, three used signals sampled
at 4 Hz.

To address the main aim of this study, all the frequency
bands used in the power spectral analysis were extracted
from the 26 articles included in the revision. A wide variety
of frequency bands’ limits was found, and only two articles
did not report the use of any specific interval or frequency
bands: one from 1975 aiming at characterizing spectral density
for premature infants or prolonged labor (19) and a more
recent one aiming at computing FHR from beat-to-beat signal
(52). From the remaining 24 (Table 1), regarding very low
frequency, the bands’ limits employed were 0–0.03Hz in seven
articles, 0–0.04Hz in three, and 0.003–0.004Hz in one study.
In contrast, thirteen studies did not refer to the very low
frequency power energy. From the eleven studies reporting
the power in the very low frequency band, six attributed its
activity to the thermoregulation and slow regulating systems
of peripheral vessels, as stated in 1996 Task Force (29). One
study reported the use of an intermediate frequency, named
as low low frequency (LLF), referring to the range 0.04–0.08
Hz (51).

The low frequency was addressed in all the 24 articles, where
the most common band was within the interval 0.04–0.15Hz,
used in 12 studies, followed by 0.03–0.15Hz, addressed by 8
articles. Regarding the power in the LF band, most articles
attribute it to the activity of the sympathetic system (3, 28, 31,
32, 34, 49, 59, 60, 62), while others link it to the combined
activity of sympathetic and parasympathetic activity (11, 13, 20,
21, 44, 48, 57, 61). This different interpretation cannot, in some
cases at least, be attributed to the different frequency limits of
the bands used for the LF computation (check Table 1), and is
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TABLE 1 | Information on different frequency bands and related contents of the 24 articles reviewed.

Frequency band (Hz) Signal-sampling

rate

PSD method Main goal Origin of the bands

(and their

references)

Publication year

(article reference)

VLF (0–0.04)

LF (0.04–0.15)

HF (0.15–0.4)

VHF (0.75–1.5)

FHR – 2Hz FFT Diagnose fetal acidemia Adults 2001 (28)

LF (0.03–0.07)

MF (0.07–0.13)

HF (0.13–1)
FHR – 4Hz FFT

Association PSD with fetal cord arterial

base deficit values at birth
Adults (53–55) 2001 (49)

LF (0.04–0.15)

HF (0.15–1.0)

FHR – 16Hz

FFT Diagnose fetal acidemia Adults

2005 (44)

RR – 500Hz 2007 (56)

FHR – 16Hz 2013 (57)

LF (0.04–0.15)

HF (0.15–0.4)
FHR – 10Hz Welch method Diagnose fetal acidemia Adults 2015 (11)

VLF (0.003–0.04)

LF (0.04–0.15)

HF (0.15–0.4)

FHR – 10Hz Welch method Diagnose fetal acidemia Adults 2017 (13)

VLF (0–0.04)

LF (0.04–0.15)

HFA (0.15–0.4)

HFN (0.4–1.5)

RR – 4Hz FFT
Compare real signal with artifacts and

without artifacts
Neonates and Adults 2008 (50)

LF (0.04–0.15)

HF (0.4–1.5)

FHR – 4Hz FFT Compare near to post term during

active and quiet sleep Neonates (45, 58)

2009 (20)

RR – 4Hz FFT
Diagnose fetal acidemia

2010 (27)

FFT 2011 (59)

VLF (0–0.03)

LF (0.03–0.15)

MF (0.15–0.5)

HF (0.5–1)

FHR – 2Hz Welch method Diagnose fetal acidemia

Fetuses (Antepartum)

(17)

2006 (31)

FHR – 2 and 4Hz Welch method Internal vs. external acquisition modes 2006 (3)

FHR – 4Hz

Not reported Diagnose Fetal Acidemia/gender

differences

2009 (32)

Autoregressive model Diagnose fetal acidemia 2011 (33)

Welch method Indices in beat-to-beat vs. 4Hz 2013 (34)

Welch method Differences in fetal gender 2017 (60)

Periodogram Diagnose fetal acidemia 2019 (35)

LF (0.03–0.15)

MF (0.15–0.5)

HF (0.5–1)
FHR – 4Hz Autoregressive model Diagnose fetal acidemia

Fetuses (Antepartum)

(17)
2010 (61)

LF (0.04–0.15)

MF (0.15–0.5)

HF (0.5–1)

FHR – 2Hz FFT
Diagnose fetal acidemia and prematurity

Fetuses (Antepartum)

(17)

2012 (48)

Differences in fetal weight and gender 2014 (21)

VLF (0–0.04)

LLF (0.04–0.08)

LF (0.08–0.15)

HF (>0.15)

FHR – 1Hz Matching pursuit Diagnose fetal acidemia Not mentioned 2006 (51)

LF (0.03125–0.1) FHR – 2Hz FFT Diagnose fetal distress Not mentioned 2010 (23)

LF (0.02–0.14)

MF (0.1–0.4)

HF (0.4–1.4)
FHR – 4Hz Autoregressive model Diagnose fetal acidemia Not mentioned 2015 (62)

VLF, very low frequency; LLF, low low frequency; LF, low frequency; MF, movement frequency; HF, high frequency; VHF, very high frequency; FHR, fetal heart rate; RR, interval between

R peaks; PSD, power spectral density; FFT, fast Forrier transform.
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FIGURE 2 | FHR (A,B) and respective power spectra (C,D, with specific frequency limits) for two fetuses in the CTG database: with arterial blood pH = 7.02 (A,C)

and pH = 7.2 (B,D), at birth.

probably inherited by the same controversial interpretation of the
LF component in adults’ heart rate analysis (29).

Only 12 studies assessed the power in the movement
frequency, and ten of them computed its energy within the limits
0.15–0.5Hz. One article reported limits of 0.07–0.13Hz for the
MF band (49). Fetal movements and maternal breathing are
the activities most associated to the MF band (3, 21, 34, 62),
with only one article (49) attributing both sympathetic and
parasympathetic nervous control to the activity in this frequency
band. This difference in the interpretation can be attributed
to the different ranges in the MF band, which shows a large
superposition with the LF component.

The high frequency band was employed in 23 studies, and
the interval 0.5–1Hz was the most used, being reported in
10 articles. Only one study mentioned the use of a very high
frequency band, within 0.75–1.5Hz, aiming to the detection of
fetal acidemia (28). The majority of the articles addressing the
HF band interpreted its power as reflecting the activity on the
parasympathetic systems, as advocated by the 1996 Task Force
(29), and only a few specify the connection to fetal breathing

(61, 62) due to the vagal nerve (28). The VHF was reported once,
interpreted as reflecting the domain of the heart beating (28).

Regarding the ratio of spectral bands, interpreted as the
sympathovagal balance in the control of heart rate activity
(between the parasympathetic and the sympathetic branches),
three of the included articles reported the use of LF/(MF +

HF) and eight, who did not report the use of movement
frequency band [with one exception (21)], preferred LF/HF.
Three studies reported both ratio measures LF/(MF + HF)
and LF/HF (32, 34, 48), referring that the two ratios
provide different balances between the autonomic nervous
system branches.

No clear relation was found between the type of signal
analyzed or sampling rate regarding the bands adopted.

From the 24 papers using specific frequency bands, seven refer
to bands inspired in human adults’ signals, four in newborns
and ten used bands defined based on power spectral analysis of
the FHR, spanning a wide range of publication years (2001–2017
for adult bands and 2006–2019 for fetal analysis inspired bands)
(Table 1).
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Spectral Analysis on CTG Intrapartum
Open-Access Database
A total of 246 FHR recordings were included in the analysis,
referring to the last half an hour (excluding the last 5min)
of the recordings from the CTU-UHB open-access database,
with <15% of signal loss. The FHR signals were slightly more
often from female fetuses (51%), with occipital presentation
(91%), a median (Q1–Q3) of 40 (39–41) weeks of gestation,
and mother’s age of 29 (26.8–32) years old. Only 7, 12, 39,
and 72 cases were classified as acidemic babies, considering
arterial blood pH cutoffs of 7.05, 7.10, 7.15, and 7.20, respectively
(Figure 2 - two FHR examples with the respective power
spectral estimate).

Descriptive statistics of the several spectral indices
computed on the 246 CTU-UHB recordings are presented
in Supplementary Tables 1–4, together with their comparison
between acidemic and non-acidemic groups of fetuses. Acidemic
groups were defined for each pH cutoff, namely pH ≤ 7.20,
pH ≤ 7.15, pH ≤ 7.10, and pH ≤ 7.05. Overall, acidemic
cases pointed to higher values of VLF power and lower
powers in all other spectral bands (LF, LLF, MF, HF, and VHF
ranges), and significant differences were found between the
two groups defined by all four pH cutoffs, for some spectral
bands (Supplementary Tables 1–3). In particular, for cutoff 7.20,
significant differences were found only for VHF band 0.75–1.5Hz
(28) and a low AUROC of 0.593 was obtained (see Table 2). For
cutoff 7.15, significant differences between acidemic and non-
acidemic groups were detected for VLF, LLF, LF, and VHF indices
(Supplementary Table 2), and their AUROC were computed
(Table 3). For those, the best AUROC values were: 0.626 for LF
0.04–0.15Hz (11, 13, 20, 21, 27, 28, 44, 48, 50, 56, 57, 59) and
0.624 for LLF 0.04–0.08Hz (51) and for LF 0.03125–0.1Hz (23),
as depicted in Table 3.

For cutoff 7.10, significant differences were found for all
spectral bands’ indices (Supplementary Table 3), and highest
AUROC values were achieved, comparing with the previous
acidemic definition (see Table 4). Overall, the best AUROC
values were: 0.731 for LF 0.04–0.15Hz (11, 13, 20, 21, 27, 28, 44,
48, 50, 56, 57, 59); 0.730 for LF 0.03125–0.1Hz (23) and 0.729 for
LLF 0.04–0.08Hz (51) (see Table 4).

For cutoff 7.05, although the acidemic group had only 7
subjects, significant differences were found for VLF and LF
spectral bands (Supplementary Table 4), and their AUROCwere
computed (Table 5). Overall, the best AUROC values were: 0.770
for LF 0.03–0.07Hz (49); 0.763 for LF 0.02–0.14Hz (62) and
0.762 for LF 0.03–0.15Hz (3, 31–35, 60) (see Table 5).

TABLE 2 | Area under ROC curve and correspondent non-parametric confidence

interval, for the bands significantly different between groups of fetal acidemia

defined with pH cutoff of 7.20, in the CTU-UHB open-access database (section

Spectral Analysis on CTG Intrapartum Open-Access Database).

Frequency band (Hz) (reference) Area 95% confidence interval

VHF (0.75–1.5) (28) 0.593 (0.514–0.672)

VHF, very high frequency.

DISCUSSION

A total of 26 articles were included in the systematic review
presented here, surveying for spectral analysis of intrapartum
fetal heart rate. As suspected, a great panoply of frequency
bands has been applied, some inspired in fetal heart rate
spectrum evidence and others in adult and neonatal heart
rate studies. Although it seems, from our results, that most
recent studies preferably select frequency bands inspired in the
fetus, as normally expected, we also found some recent studies
choosing a spectrum of adult-derived bands. This finding might
reflect that there is some controversy regarding the proper
bands to use in fetuses (11, 13). In a study comparing the
performance of spectral analysis and the Hurst parameter for
fetal acidemia detection, the Hurst parameter revealed to be a
potential marker of fetal acidosis, overcoming the performance
of the spectral index LF/HF, with the advantage of not depending
on the choice of the partitioning of frequency bands (11).
This interest in providing an alternative to the spectrum
splitting is also fostered by the fact that several conditions
impact the association between the power in the spectral bands
and ANS activity in the fetus, such as maturity differences
between the sympathetic and parasympathetic systems; uterine
contractions affecting the intrathoracic fetal pressure, which
influence the FHR absolute values and variability (63, 64).
As noticed in a 2008 review by Van Laar et al. (45), the
different heart rate and pattern of breathing movements of
fetuses compared to adults suggest that adult-inspired frequency
bands may not be perfectly chosen for FHR analysis, and
their recommendation of an agreement on the frequency bands

TABLE 3 | Areas under ROC curves and correspondent non-parametric

confidence interval, for the band significantly different between groups of fetal

acidemia defined with pH cutoff of 7.15, in the CTU-UHB open-access database

(section Spectral Analysis on CTG Intrapartum Open-Access Database).

Frequency band (Hz)

(references)

Area 95% confidence

interval

VLF (0–0.03)

(3, 31–35, 60)

0.610 (0.521–0.699)

LLF (0.04–0.08)

(51)

0.624 (0.533–0.716)

LF (0.02–0.14)

(62)

0.617 (0.520–0.714)

LF (0.03–0.07)

(49)

0.617 (0.521–0.713)

LF (0.03–0.15)

(3, 31–35, 60, 61)

0.617 (0.521–0.714)

LF (0.03125–0.1)

(23)

0.624 (0.532–0.715)

LF (0.04–0.15)

(11, 13, 20, 21, 26–28, 44, 48, 50, 56, 57, 59)

0.626 (0.534–0.717)

VHF (0.75–1.5)

(28)

0.615 (0.519–0.710)

In bold are the three best AUROC values. VLF, very low frequency; LLF, low low frequency;

LF, low frequency; VHF, very high frequency.
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TABLE 4 | Areas under ROC curves and correspondent non-parametric

confidence interval, for the bands significantly different between groups of fetal

acidemia defined with pH cutoff of 7.10, in the CTU-UHB open-access database

(section Spectral Analysis on CTG Intrapartum Open-Access Database).

Frequency band (Hz)

(references)

Area 95% confidence

interval

VLF (0–0.03)

(3, 31–35, 60)

0.724 (0.597–0.852)

VLF (0–0.04)

(28, 50, 51)

0.717 (0.584–0.851)

VLF (0.003–0.04)

(13)

0.717 (0.584–0.851)

LLF (0.04–0.08)

(51)

0.729 (0.598–0.860)

LF (0.02-0.14)

(62)

0.703 (0.544–0.863)

LF (0.03–0.07)

(49)

0.700 (0.542–0.859)

LF (0.03–0.15)

(3, 31–35, 60, 61)

0.703 (0.543–0.864)

LF (0.03125-0.1)

(23)

0.730 (0.601–0.859)

LF (0.04–0.15)

(11, 13, 20, 21, 26–28, 44, 48, 50, 56, 57, 59)

0.731 (0.605–0.856)

LF (0.08−0.15)

(51)

0.710 (0.583–0.837)

MF (0.07−0.13)

(49)

0.722 (0.597–0.846)

MF (0.1-0.4)

(62)

0.698 (0.564–0.832)

MF (0.15–0.5)

(3, 21, 31–35, 48, 60, 61)

0.680 (0.542–0.818)

HF (>0.15)

(51)

0.684 (0.538–0.829)

HF (0.13-1)

(49)

0.677 (0.533–0.821)

HF (0.15–0.4)

(11, 13, 28)

0.683 (0.548–0.818)

HF (0.15–1.0)

(44, 56, 57)

0.679 (0.535–0.824)

HF (0.4–1.5)

(20, 27, 50, 59)

0.678 (0.512–0.844)

HF (0.4–1.4)

(62)

0.675 (0.509–0.841)

HF (0.5–1)

(3, 21, 31–35, 48, 61)

0.673 (0.511–0.835)

VHF (0.75–1.5)

(28)

0.702 (0.540–0.865)

In bold are the three best AUROC values. VLF, very low frequency; LLF, low low frequency;

LF, low frequency; MF, movement frequency; HF, high frequency; VHF, very high frequency.

chosen remains present. Nevertheless, several studies have
been conducted for fetal acidosis detection, wherefrom all the
bands and ratios used, the VLF and LF bands are revealed as
promising in separating acidemic groups (13, 27, 33, 35, 51,
59).

TABLE 5 | Areas under ROC curves and correspondent non-parametric

confidence interval, for the bands significantly different between groups of fetal

acidemia defined with pH cutoff of 7.05, in the CTU-UHB open-access database

(section Spectral Analysis on CTG Intrapartum Open-Access Database).

Frequency band (Hz)

(references)

Area 95% confidence

interval

VLF (0–0.03)

(3, 31–35)

0.692 (0.514–0.870)

LLF (0.04–0.08)

(51)

0.759 (0.617–0.900)

LF (0.02-0.14)

(62)

0.763 (0.593–0.932)

LF (0.03–0.07)

(49)

0.770 (0.608–0.932)

LF (0.03–0.15)

(3, 31–35, 60, 61)

0.762 (0.589–0.936)

LF (0.03125-0.1)

(23)

0.759 (0.616–0.902)

LF (0.04–0.15)

(11, 13, 20, 21, 26–28, 44, 48, 50, 56, 57, 59)

0.759 (0.611–0.906)

In bold are the three best AUROC values. VLF, very low frequency; LLF, low low frequency;

LF, low frequency.

The early detection of acidemic fetuses was the most common
aim (16/26) in the papers included in the systematic review. The
capacity of each individual spectral band found in the literature,
computed on the 246 FHR’s signals for discriminating acidemic
from non-acidemic fetuses was accessed, for four pH cutoffs:
7.05; 7.10; 7.15 and 7.20. The highest AUC values were obtained
when using lower pH cutoffs. Lower cutoffs are indicative of
more severe acidemia, which probably causes a more notorious
change in the variability of the fetal heart rate. This allows a
more efficient detection of acidemic fetuses, in particular using
power spectral analysis, although it is commonly hampered by
the small number of severely acidemic fetuses in available datasets
(42, 43). Considering the detection of acidemic fetuses with pH
≤ 7.05, the best frequency bands, with AUC above 0.760, were all
low frequency bands. This indicates that the low frequency band
might be the best at distinguishing acidemic from non-acidemic
fetuses, at least in more severe cases.

The LF bands with the highest AUC, for a cutoff of 7.05, have
their origins in different studies, from fetuses, 0.03–0.15Hz (17),
0.02–0.14Hz (62), to adults-based, 0.03–0.07Hz (49). Differences
between these frequency ranges are small on the lower limits
(0.02–0.03) but include, in the upper limits, larger differences
(from 0.07 to 0.15) (17, 49). Results for this severe group
should be considered with caution, due to the fact that this
was a very limited set of cases, with only seven fetuses. The
main limitation of this study relates to the very low incidence
of severe acidemic fetuses in this FHR database, which is in
accordance with previously published studies (42, 43). This
limitation, combined with many band cutoffs used, has resulted
in a very wide CI of the AUC. This methodology needs to be
validated in a larger dataset (combination of clinical datasets)
with an increased prevalence of acidemic fetuses to overcome
this limitation.
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For the less severe cutoffs, 7.10 and 7.15, results were similar,
with the same three low frequency bands as the most promising:
0.04–0.08 (51); 0.03125–0.1 (23) and 0.04–0.15 (11, 13, 20, 21, 26–
28, 44, 48, 50, 56, 57, 59). For these, the last was inspired in
evidence stemming from neonatal/adult spectra (29, 45, 58),
while the two previous were probably derived from empirical
studies. These results do not confirm our intuition that the
bands derived from FHR spectra should be more accurate for
the detection of pathological cases. Indeed, the human fetus has a
different heart rate and distinct pattern of breathing movements
compared to a human adult or even newborns (45). Additionally,
in all discriminative LF bands presented, the reduced power
found in the case of acidemic cases was in accordance with
previous studies (45).

Several studies (18/24) do not evaluate the VLF bands. This
approach might be related to the attempt to quantify changes in
the FHR baseline. To our views, clinically, in the case of sub-acute
fetal hypoxia (slowly evolving hypoxia, e.g., as a result of non-
reversed excessive uterine contractions during labor), the change
of variability in the baseline, especially after an increased baseline
shift, is very informative and therefore is not essential to evaluate
LF or VLF bands. On the other hand, in acute events, such as
a cord prolapse, a decrease of variability within the deceleration
is specifically related to fetal hypoxia (2), and therefore the
evaluation of the LF or VLF bands must be considered.

In this review, we have chosen to restrict our analysis to the
intrapartum period, in an attempt to provide homogeneity to
the included studies, reducing the variation of the encountered
frequency bands. There is evidence that the spectral density of
spectral bands is changed not only by the resting state of the
fetus (38), but also, and easier to control, by the gestational age
or developmental maturity (64).

Despite the multitude of definitions encountered for
frequency bands, methods used and signals employed in the
conducted literature review, the consistency of the results across
three of the four definitions of fetal acidemia here evaluated
and the performance metrics’ values obtained, spectral analysis
remains a powerful method to understand the dynamics of the
fetal autonomic system. Studies encompassing more detailed
characterization of the included subjects, namely the fetus’
physiological state, should be fostered in order to develop a
better performance of spectral based indices and to get them
ready to be incorporated in computerized systems that aid
in the clinical assessment of fetal well-being. Regarding the
power spectrum of antepartum signals, and given the difficulty
in providing a standard recommendation for the selection of
spectral bands, the idea of partitioning the power spectrum in
empirical bands, or in consecutive bands of equal bandwidth,
might be a secure approach (52, 64, 65) in comparison to the
compromise of choosing predefined band definitions.

Behind the efforts reflected in many studies to obtain
an effective computational tool to disclose fetal distress,
is the hypothesis that the frequency decomposition of the
FHR can help clinicians to predict it, specifically metabolic
acidosis. This could be an adjunctive methodology to the CTG

that would help clinicians to implement adequate obstetrical
interventions, before metabolic acidosis is severe enough to
produce irreversible damages.

CONCLUSION

In conclusion, this work shows that, in general, most research
papers do not agree on the definition of frequency bands to be
used, which is essential for their application in clinical practice.
The low frequency bands are the most promising in detecting
fetuses at risk of acidosis. Furthermore, the power spectrum
analysis of FHR is a powerful tool to help physicians diagnose
fetal acidemia in the intrapartum period. Thus, it is essential
to determine an exact diagnostic value of spectral analysis to
be considered for the identification of fetuses at risk of severe
acidosis and to standardize the methods used in signal pre-
processing and in the spectral analysis itself to allow a better
comparison between studies. In addition, to enable adequate
clinical applicability, a focus on real-time intrapartum fetal
monitoring should also be a priority in future research.
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Distance to Healthy Metabolic and
Cardiovascular Dynamics From Fetal
Heart Rate Scale-Dependent
Features in Pregnant Sheep Model of
Human Labor Predicts the Evolution
of Acidemia and Cardiovascular
Decompensation
Stephane G. Roux 1, Nicolas B. Garnier 1*, Patrice Abry 1, Nathan Gold 2,3 and

Martin G. Frasch 4

1 Laboratoire de Physique, Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Lyon, France, 2Department of

Mathematics and Statistics, York University, Toronto, ON, Canada, 3Centre for Quantitative Analysis and Modelling, Fields

Institute, Toronto, ON, Canada, 4Department of OBGYN, Center on Human Development and Disability, University of

Washington, Seattle, WA, United States

The overarching goal of the present work is to contribute to the understanding of the

relations between fetal heart rate (FHR) temporal dynamics and the well-being of the

fetus, notably in terms of predicting the evolution of lactate, pH and cardiovascular

decompensation (CVD). It makes uses of an established animal model of human labor,

where 14 near-term ovine fetuses subjected to umbilical cord occlusions (UCO) were

instrumented to permit regular intermittent measurements of metabolites lactate and

base excess, pH, and continuous recording of electrocardiogram (ECG) and systemic

arterial blood pressure (to identify CVD) during UCO. ECG-derived FHR was digitized

at the sampling rate of 1,000 Hz and resampled to 4 Hz, as used in clinical routine.

We focused on four FHR variability features which are tunable to temporal scales of

FHR dynamics, robustly computable from FHR sampled at 4 Hz and within short-time

sliding windows, hence permitting a time-dependent, or local, analysis of FHR which

helps dealing with signal noise. Results show the sensitivity of the proposed features

for early detection of CVD, correlation to metabolites and pH, useful for early acidosis

detection and the importance of coarse time scales (2.5–8 s) which are not disturbed by

the low FHR sampling rate. Further, we introduce the performance of an individualized

self-referencing metric of the distance to healthy state, based on a combination of the

four features. We demonstrate that this novel metric, applied to clinically available FHR

temporal dynamics alone, accurately predicts the time occurrence of CVD which heralds

a clinically significant degradation of the fetal health reserve to tolerate the trial of labor.

Keywords: fetal heart rate, animal model, cardiovascular decompensation, distance to healthy state, entropy rate,

sliding window analysis, time-scale analysis, sampling rate
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1. INTRODUCTION

Monitoring fetal heart rate (FHR) during labor is a common
clinical routine worldwide, aiming to asses fetal well-being and
ensure safe delivery. The main objective is to decide on timely
operative delivery or uterine relaxation to prevent brain injury
and adverse outcomes (1). In clinical practice, fetal well-being
is assessed by obstetricians principally by visual inspection of
cardiotocograms (CTG, bivariate time series of beat-per-minute

FHR and uterine activity). The interpretation is guided by a
set of rules combining a collection of features, aiming to probe
various aspects of the CTG, such as baseline FHR, FHR variability
and deceleration shape and timing as well as the relation of the
various FHR features to the patterns of uterine activity. One

such set of features and rules was defined by the International
Federation of Gynecology and Obstetrics (2, 3). Applying such
procedure has however been documented as yielding significant
inter-and intra-observer variability (4), one of many causes of

the failure of the present FHR monitoring to predict fetal brain
injury (5–7).

These short-comings in FHR monitoring during labor
triggered significant efforts to develop computerized and
automated assessment of FHR patterns intrapartum. Beyond
the direct computation of the FIGO features themselves [cf.,
e.g., (8–10)], from digitized CTG usually sampled at 4 Hz
in clinical practice, a large variety of features stemming from
advanced signal processing and information theory tools has
been computed for FHR assessment. These advanced features,
however, have not reached performance benchmarks to lead to
a consensus in the research and medical communities. These
observations leave open a significant number of issues ranging
from the choice of relevant FHR features and the construction
of decision rules for such features to the assessment of the
relationships between FHR time series and fetal well-being.
Interested readers are referred to Georgieva et al. (11) (and
references therein) for a recent (lack of) consensus overview and
the interdisciplinary discussions.

Besides the need for large labeled databases to make machine
learning on FHR data effective (12), a recurrent issue is
associated with the ground truth being based on pH from
the immediate post-birth umbilical cord pH measurements.
However, it has been documented that fetal brain injury poorly
correlates with measures of acidemia at birth such as pH (7,
11, 13). First, pH is only available after delivery hence when
FHR is no longer available. Second, brain compromise due
to hypoxia-ischemia can ensue when the fetal cerebral blood
flow is persistently reduced, e.g., due to precipitous drop
in cerebral perfusion pressure resulting from cardiovascular
decompensation (CVD) (7, 14, 15).

In a recent series of experiments, to better assess the relations
between FHR, systemic arterial blood pressure (ABP) and
fetal health state (including the impact of chronic hypoxia)
sheep fetuses were surgically instrumented and subjected
to an umbilical cord occlusion (UCO) protocol in Frasch
et al. (16), in a well-established animal model of human
labor. CVD onset was observed at individually variable times,
regardless the presence of chronic hypoxia (7, 16–19). This

animal experimental model generated the dataset used in the
present study.

Consequently, based on this dataset, the goal of the present
work is to assess whether FHR monitoring permits detection
of the individual onset of CVD accounting for the presence of
chronic hypoxia prior to the onset of UCOs in some fetuses.
More particularly, we aimed to assess the sensitivity of FHR
temporal dynamics, probed by four scale-dependent features, to
CVD, metabolites and pH measurements.

We propose four features which all have the temporal scale of
the signal as a parameter. We compute these four quantities from
the whole FHR signal to probe its dynamics along the complete
experiment. The first quantity measures the average variation
of the FHR over the prescribed time scale. The second one
measures the FHR variability over the time scale as the standard
deviation. The third one is the ratio of the first two and provides
a normalized version of the average variation. The fourth one
is very similar to Approximate Entropy or Sample Entropy and
provides a measure of the information content of the FHR signal
at the given time scale. These four quantities can be computed
with any signal and give robust results even with the clinically
relevant low sampling rate of 4 Hz. This feature choice is also
designed to allow computation within short-time time windows,
thus permitting to achieve a sliding-window, time-dependent
analysis of FHR, which may eventually be exploited to perform
real-time FHR monitoring on noisy data.

We show the importance of coarse time scales (2.5–8 s) and
construct an individual self-referencing "distance to healthy state"
metric based on combination of the four features. We then
demonstrate the use of the novel composite distance metric to
predict individual CVD from FHR time series alone.

2. MATERIALS: SHEEP ANIMAL MODEL
AND UMBILICAL CORD OCCLUSIONS

Fetal sheep model of labor and surgical preparation. The
anesthetic and surgical procedures, postoperative care of the
animals and the UCO model of labor have been previously
described Frasch et al. (16). Briefly, 14 near-term ovine fetuses
(123 ± 2 days gestational age (GA), term = 145 days) of the
mixed breed were surgically instrumented. Animal care followed
the guidelines of the Canadian Council on Animal Care and
was approved by the University of Western Ontario Council on
Animal Care.

Polyvinyl catheters were placed in the right and left
brachiocephalic arteries, the cephalic vein, and the amniotic
cavity. The fetal arterial lines were used for measuring ABP,
sampling arterial blood gases, metabolites and cytokines. The
fetal venous line was used for administration of fluids and post-
operative antibiotics. Stainless steel electrodes were sewn onto the
fetal chest to monitor ECG. A polyvinyl catheter was also placed
in the maternal femoral vein. Stainless steel electrodes were
additionally implanted biparietally on the dura for the recording
of electrocorticogram, ECOG, as a measure of summated brain
electrical activity [results reported elsewhere (16)]. An inflatable
silicon rubber cuff (in vivo Metric, Healdsburg, CA) for UCO
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induction was placed around the proximal portion of the
umbilical cord and secured to the abdominal skin. Once the fetus
was returned to the uterus, a catheter was placed in the amniotic
fluid cavity. Antibiotics were administered intravenously to
the mother (0.2 g of trimethoprim and 1.2 g sulfadoxine,
Schering Canada Inc., Pointe-Claire, Canada) and fetus and
into the amniotic cavity (1 million IU penicillin G sodium,
Pharmaceutical Partners of Canada, Richmond Hill, Canada).
Amniotic fluid lost during surgery was replaced with warm saline.
The uterus and abdominal wall incisions were sutured in layers
and the catheters exteriorized through the maternal flank and
secured to the back of the ewe in a plastic pouch. Postoperatively,
animals were allowed 4 days to recover prior to experimentation
and daily antibiotic administration was continued intravenously
to the mother (0.2 g trimethoprim and 1.2 g sulfadoxine), into
the fetal vein and the amniotic cavity (1 million IU penicillin G
sodium, respectively). Arterial blood was sampled for evaluation
of the fetal condition and catheters were flushed with heparinized
saline to maintain patency. Animals were 130± 1 day GA on the
first day of the experimental study.

Umbilical cord occlusion protocol. The experimental
protocol has been reported (16, 20, 21). Briefly, all animals were
studied over a ∼6 h period. Fetal chronic hypoxia was defined
as arterial O2Sat <55% as measured on postoperative days 1–3
and at baseline prior to beginning the UCOs. The first group
comprised five fetuses that were also spontaneously hypoxic
(n = 5, H/UCO). The second group of fetuses was normoxic
(O2Sat more than 55% before UCOs) (n = 9, N/UCO). As
reported, after a 1–2 h baseline control period, the animals
underwent mild, moderate, and severe series of repetitive
UCOs by graduated inflation of the occluder cuff with a saline
solution (16). During the first hour following the baseline
period, mild variable FHR decelerations were performed with
a partial UCO for 1 min duration every 2.5 min, with the goal
of decreasing FHR by ∼30 bpm, corresponding to a ∼50%
reduction in umbilical blood flow (22, 23). During the second
hour, moderate variable FHR decelerations were performed with
increased partial UCO for 1 min duration every 2.5 min with
the goal of decreasing FHR by ∼60 bpm, corresponding to a
∼75% reduction in umbilical blood flow. Animals underwent
severe variable FHR decelerations with complete UCO, i.e.,
∼100% reduction of umbilical blood flow, for 1 min duration
every 2.5 min until the targeted fetal arterial pH of <7.00 was
detected, at which point the repetitive UCO were terminated. A
summary of timings is reported in Table 1. These animals were
then allowed to recover for 48 h following the last UCO. Fetal
arterial blood samples were drawn at baseline, at the end of the
first UCO of each series (mild, moderate, severe), and at 20 min
intervals (between UCO) throughout each of the UCO series,
as well as at 1, 24, and 48 h of recovery. When pH <7.00 was
measured, the UCO were stopped and this time point noted as
the end of the occlusions. We then obtained the precise pH =
7.00 time point by linear interpolation from this last measured
pH value. All blood samples were analyzed for blood gas values,
pH, lactate and base excess (BE) with an ABL-725 blood gas
analyzer (Radiometer Medical, Copenhagen, Denmark) with
temperature corrected to 39.0◦C. Plasma from the 4 ml blood

samples was frozen and stored for cytokine analysis, reported
elsewhere (24). After the 48 h recovery blood sample, the ewe
and the fetus were killed by an overdose of barbiturate (30 mg
sodium pentobarbital IV, MTC Pharmaceuticals, Cambridge,
Canada). A post mortem was carried out during which fetal
sex and weight were determined and the location and function
of the umbilical occluder were confirmed. The fetal brain was
perfusion-fixed and subsequently dissected and processed for
later immunohistochemical study (25).

Data acquisition and pre-processing. A computerized data
acquisition system was used to record fetal systemic arterial and
amniotic pressures and the ECG signal (26). All signals were
monitored continuously throughout the experiment. Arterial
and amniotic pressures were measured using Statham pressure
transducers (P23 ID; Gould Inc., Oxnard, CA). Fetal systemic
ABP was determined as the difference between instantaneous
values of arterial and amniotic pressures. A PowerLab systemwas
used for data acquisition and analysis (Chart 5 For Windows,
ADInstruments Pty Ltd, Castile Hill, Australia). Pressures, ECOG
and ECG were recorded and digitized at 1,000 Hz for further
study. For ECG, a 60 Hz notch filter was applied. R peaks of
ECG were used to derive the heart rate variability (HRV) times
series (26). The time series of R-R peak intervals were then
uniformly resampled at 4 Hz (26). A representative FHR signal
is shown in Figure 1A: a visual assessment of the whole FHR
trace reveals that FHR variability increases when UCO strength
is increased.

Metabolites data (pH, lactate and BE) is obtained by blood
sampling performed at specific times during the experiment
(vertical dashed lines in Figure 1B). In order to have metabolites
data at any time, we assume a linear drift between two successive
measurements and consequently perform a linear interpolation
between two measurements times. We thus obtain a piece-wise
linear time series sampled at 4 Hz, depicted in Figure 1B as a
black curve. Using this interpolated data, as noted above, the time
tpH when pH = 7.00 is computed in each fetus as indicated in
Table 1.

Fetal cardiovascular decompensation (CVD).CVD has been
reported in detail in Frasch et al. (15, 16) and Gold et al.
(27). The visual representation of CVD can be found in these
publications, e.g., in the Figure 2 in Frasch et al. (16). The reader
can readily observe the pronounced pathological hypotensive
responses to the UCO-triggered FHR decelerations during the
CVD. This behavior is in stark contrast to the normally observed
ABP increases during the occlusions which compensate the
hypotension caused by the FHR decelerations. As we reported,
once this pattern conversion from hypertensive to hypotensive
responses occurs, it persists until the UCOs are stopped. Its effects
are also seen directly in the brain electrical activity (15, 16).
It is hence easy to reliably visually identify the timing of the
onset of CVD in each recording. Consequently, during UCOs,
by expert visual inspection, we noted the individual time point
tCVD at which three successive hypotensive ABP responses to
UCO-triggered FHR decelerations occurred. Quantitatively, with
hypotensive ABP response we refer to the failure of ABP to rise
during UCO-triggered FHR deceleration above the preceding
baseline value when compared to the average ABP rise during the
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TABLE 1 | Individual onset times for each UCO regime (mild, moderate, severe and recovery, colored green, magenta, red and white in Figure 1), counted from the first

UCO.

UCO start time pH = 7.00 time

Animal Mild Moderate Severe Recovery tpH

(ID) (hh:mm) (hh:mm) (hh:mm) (hh:mm) (hh:mm)

Hypoxic

8003 (01:14) 00:57 (02:11) 02:00 (03:14) 02:07 (03:21) 02:07 (03:21)

473351 (NaN) 00:00 (04:08) 01:08 (05:16) 02:33 (06:41) 01:44 (05:52)

473376 (02:53) 00:55 (03:48) 01:51 (04:44) 02:54 (05:47) 01:58 (05:51)

473726 (02:09) 01:00 (03:09) 01:55 (04:04) 03:17 (05:26) 03:16 (05:25)

473362 (02:08) 01:01 (03:09) 01:54 (04:02) 02:20 (04:38) 02:31 (04:39)

Normoxic

473352 (NaN) 00:00 (03:59) 01:00 (04:59) 01:46 (05:45) 01:39 (05:38)

5054 (01:31) 00:56 (02:27) 02:00 (03:31) 03:51 (05:22) 03:51 (05:22)

461060 (02:59) 00:54 (03:53) 01:59 (04:58) 03:30 (06:29) 03:30 (06:29)

5060 (01:09) 00:57 (02:06) 01:59 (03:08) 02:58 (04:07) 02:53 (04:02)

473360 (02:11) 01:05 (03:16) 02:02 (04:13) 03:59 (06:10) 03:59 (06:10)

473378 (03:17) 00:58 (04:15) 01:53 (05:10) 02:31 (05:48) 02:28 (05:45)

473727 (01:38) 01:05 (02:43) 02:02 (03:40) 04:10 (05:48) 03:40 (05:18)

473377 (02:28) 01:04 (03:32) 02:03 (04:31) 04:04 (06:32) 03:59 (06:27)

473361 (01:56) 01:03 (02:59) 02:05 (04:01) 03:26 (05:22) 03:29 (05:25)

Values in parenthesis are times counted from the beginning of the recording as represented on the time-axis of Figures 1, 8, 9, 10. For animals 473351 and 473352, the first UCO had

a moderate effect (of decreasing FHR by about 60 bpm), so phase names have been shifted accordingly.

FIGURE 1 | Typical data recorded in the experiment (here, animal 473726). (A) FHR resampled at 4 Hz. The color indicates the strength of UCO during the

experiment: blue and black for no UCO (baseline and recovery), green for mild UCO, magenta for moderate UCO and red for severe UCO. (B) Fetal arterial pH values

during the experiment. The pH (as well as the other blood measurements) is obtained at specific time points, indicated by the vertical lines; the open black circles

correspond to the actual measurements from blood sampling and the black lines correspond to a linear interpolation.

UCO series prior to the CVD. We refer to this animal-specific
time point as the ABP sentinel corresponding to the timing of
CVD. As an illustration, tCVD is reported in Figure 1B as a
vertical black line.

3. METHODS: TIME SCALE-DEPENDENT
FEATURES

3.1. Sliding Window Analysis
Analysis of FHR and metabolites data are performed in sliding
time-windows of size T = 20 min. The time-windows are shifted

by dT = 5 min, thus implying a T − dT = 15 min (75%)
overlap. The k-th time-window thus corresponds to time ranging
in [kdT, kdT + T]. This sliding window analysis permits the
assessment of the temporal evolution of cardiovascular responses
to changes in UCO strength.

3.2. Scale Dependent Features
Using FHR, xt , four quantities, whose definitions rely on the
choice of a time scale τ , are computed, for each time-window
k: increment mean mk(τ ), increment standard deviation σk(τ ),
the corresponding Student ratio Rk(τ ), and the entropy rate
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hk(τ ). The first one, mk(τ ), measures the average change of
the FHR signal over the time lag τ . It can be pictured as the
derivative of the signal on the time-scale τ , averaged in the time-
window k. The second one, σk(τ ), is the standard deviation of
the signal estimated on chunks of the signal of duration τ , and
then averaged in the time-window k. The third one, Rk(τ ), is
a normalized version of the first quantity mk(τ ): the average
variation is now expressed in standard deviation units, before
being averaged along the time-window k. The last one, hk(τ ), in a
measure of the information or complexity of the signal at scale τ ,
similar to Approximate Entropy or Sample Entropy, estimated at
scale τ over the time-window k. As described below, the first three
quantities are averages over the time-window k of dynamical
quantities mt(τ ), σt(τ ),Rt(τ ) defined at scale τ ; these quantities,
along with FHR, are shown for illustration purposes in Figure 2

for arbitrarily chosen 20-min window, time scale τ and animal.

3.2.1. Mean Variation (or Local Trend) at Time-Scale τ

For all t in window k, the average increment over a time scale τ is
computed as:

mt(τ ) =
1

τ

t
∑

i=t−τ+1

(xi − xt−τ ) =
1

τ

t
∑

i=t−τ+1

xi − xt−τ . (1)

These mt(τ ) are then averaged across window k, for all non-
overlapping time-intervals [(j− 1)τ ; jτ ]:

mk(τ ) =
1

⌊T/τ⌋

⌊T/τ⌋
∑

j=1

mkT+jτ (τ ) , (2)

where ⌊T/τ⌋, the floor of the fraction T/τ , indicates the number
of time-intervals of size τ available in the time-window of size
T. An illustration of the methodology is given in Figure 2B for
the window k = 0: values of mt(τ ) are depicted in black, and the
single valuemk(τ ) is represented in red.

The quantity mk(τ ) measures the average variation — either
an increase or a decrease — of FHR on the time scale τ . The
average is indeed a double average: first over all time scales
smaller than τ , according to Equation 1, and second over all
available intervals available in the kth time-window of size T=20
min, according to Equation (2). mk(τ ) can also been interpreted
as the averaged derivative of the signal after a low-pass filtering
using a finite impulse response with cut-off frequency 1/τ .

3.2.2. Standard Deviation at Time-Scale τ

Given a time-interval [t − τ ; t], we define the variance of the set
of increments {(xt−i − xt−τ ), t − τ < i ≤ t}. This indeed is
nothing but the variance of xt , computed over the set of values in
the time-interval [t − τ ; t]:

σ
2
t (τ ) =

1

τ

t
∑

i=t−τ+1

x2i −

(

1

τ

t
∑

i=t−τ+1

xi

)2

. (3)

We then average its square root over the ⌊T/τ⌋ non-overlapping
time intervals of size τ available in the kth time-window of size T:

σk(τ ) =
1

⌊T/τ⌋

⌊T/τ⌋
∑

j=1

σkT+jτ (τ ) . (4)

This quantity measures the average — in the kth time-window of
size T — amplitude of the fluctuations of xt over τ consecutive
points. The methodology is illustrated in Figure 2C.

3.2.3. Normalized Local Trend at Time-Scale τ

The Student ratio, or normalized local trend, at time-scale τ , is
defined for each time interval [t − τ ; t], as:

Rt(τ ) =
mt(τ )

σt(τ )
. (5)

It is averaged across all available non-overlapping intervals in the
kth time-window:

Rk(τ ) =
1

⌊T/τ⌋

⌊T/τ⌋
∑

j=1

RkT+jτ (τ ) . (6)

This quantity, up to a factor
√

τ , would correspond to a random
variable drawn from the distribution of the t-value if the data xt
were independently drawn from aGaussian distribution. It can be
interpreted as the average variation over a time step τ , normalized
by the local standard deviation; as such, it provides a normalized
measure of the trend of the signal xt to depart from its expected
value when observed across a duration τ .

3.2.4. Entropy Rate at Time-Scale τ

One commonly used feature in heart rate analysis, both for
adults and fetuses, is sample entropy (SampEn) (28–30), an
elaboration on approximate entropy (ApEn) (31, 32). It was
shown recently that the entropy rate provides a related tool to
probe FHR with better performance than ApEn or SampEn to
detect acidosis (33–35).

The entropy rate of order 1 in the kth time-window at time-
scale τ is defined as:

hk(τ ) = H(xt , xt−τ )−H(xt) , (7)

where

H(Ex) = −

∫

p(Ex) ln p(Ex)dEx , (8)

denotes the Shannon entropy (36) of either a vector Ex = (xt , xt−τ )
or a scalar Ex = xt . hk(τ ) is computed using all the pairs of
points (xt , xt−τ ) available in the k-th time-window, and following
Theiler’s prescription (34) to avoid spurious correlation.

hk(τ ) measures the extra information conveyed by the vector
(xt , xt−τ ) when (xt) is known, or in other words, the extra
information given by the knowledge of the signal at an earlier
time t − τ . The entropy rate probes the dynamics of the signal,
and to better focus on this dynamical aspect, we compute it on the

normalized signal (xt−〈xt〉)/
√

〈(xt − 〈xt〉)2〉, where 〈.〉 stands for
the time average on the window of size T.
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FIGURE 2 | Illustration of the methodology in the first time-window [0;T ] of size T = 20 min, using the fixed time scale τ = 25s. (A): FHR. (B): mt (τ ). (C): σt (τ ). (D):

Rt (τ ). The black circles in (B–D) correspond each to a value obtained in a time-interval of size τ = 25 s, according to Equations (1), (3), (5). The horizontal red lines in

(B–D) indicate the values mk=1 (τ ), σk=1(τ ) and Rk=1(τ ) obtained after averaging all the black circles, i.e., over all available time-intervals of size τ in the time-window,

according to Equations (2), (4), (6).

4. RESULTS AND DISCUSSION:
FEATURES, TIME-SCALES AND DISTANCE
TO HEALTHY STATE

In section 4.1, the four features — computed in overlapping
time-windows — evolution in time are firstly presented and
studied with respect to their relations to UCO strength. Because
these features are computed at a given time-scale τ , they offer
a description of the FHR dynamics at this time-scale. We thus
explore the correlation between the features at a given time-scale
τ and the measured values of the metabolites — including the
pH. This global analysis, presented in section 4.2, is performed
using all available time-windows and all available animals. We
then reduce the dimensionality of the analysis by averaging
results over the long-term time-scales, as defined and presented
in section 4.3. This allows us to examine more clearly how the
features evolve jointly with the UCO strength for the entire
cohort, while quantifying the variability between animals. We
then examine quantitatively in section 4.4 how these long-term
features correlate with metabolites. We then combine them in
an appropriately normalized vector; we are then able to describe
the large variability across the subjects in the population as the
variability of this vector in the early stages of the experiments.
This allows us to define ameasure of the degradation of the health
state of an animal as the distance from healthy state. Finally,
we propose in section 4.5 to use this "individual" distance as
a novel indicator — or sentinel — to alert for the degradation
of the health status due to CVD. We also show that this
indicator/sentinel matches very well with pH measurements.

4.1. Features and UCO Strength
We first examine on a single animal how the four FHR features
evolve throughout an experiment, depending on the time-scale τ .
The values obtained in the k-th time-window [kdT; kdT+T] are
assigned to the date tk = kdT + T/2 at the center of the time-
window. The dynamical evolutions of mk(τ ), σk(τ ), Rk(τ ) and
hk(t, τ ) are depicted in Figure 3 for a large band of time scales τ .

Such a time-scale representation reveals qualitatively that
when the UCO strength is increased, mk(τ ), Rk(τ ) and hk(τ )
decrease along time, while σk(τ ) increases along time. This agrees
with the previous studies where the decrease of the entropy rate
hk(τ ) was associated with fetal acidosis (33–35).

Qualitatively, although the four features barely evolve in
time for smaller values of τ (below 2 s, bottom of the images
in Figure 3), a noticeable time evolution can be observed for
large values of τ and especially in the severe UCO regime.
To better observe the dependence of the four features on
the scale τ , we plot in Figure 4 their evolution with τ

for the time points when blood sampling was performed.
Figure 4 therefore presents the evolution of the four features
along the vertical color lines indicated in the images of
Figure 3.

We observe in Figure 4 that the evolution of mk(τ ) is
rather linear in τ , but the slope depends on the time, and
hence on the UCO level. We observe almost no evolution
of R(τ ) with τ , but the value of R(τ ) depends on time,
so on the UCO level. On the contrary, both σ (τ ) and
the entropy rate h(τ ) present a distinct change of their
evolution with τ below and above τ = 2.5 s, which
emphasizes the distinction between short (< 2.5 s) and
large (> 2.5 s) time scales, in accordance with previous
literature (26, 37, 38). We use this information on the time scales
as follows.

4.2. FHR Features, Arterial Metabolites and
pH
We now examine, for a fixed time-scale τ , how the features
relate to the health state of the animal, as described by the
metabolites and pH. To do so, we use all time-windows of
size T on one side, and interpolated metabolites data on the
other side. We compute the correlation between any of the four
features (for a fixed τ ) and any of the biochemical measurements,
by averaging over all time-windows (average over k) and over
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FIGURE 3 | Representation of the time evolutions of mk (τ ) (A), σk (τ ) (B), Rk (τ ) (C), hk (τ ) (D), depending on the scale τ for animal 473726. The time in abscissa is

kdT + T/2, the location of the kth time-window of size T where the quantity is computed, and the ordinate represents the scale τ . Vertical color lines indicates the

times at which blood sampling was performed (same color code as in Figure 1: green in the mild UCO regime, magenta in the moderate UCO regime, and red in the

severe UCO regime). In the severe UCO regime and for larger time scales τ , stronger variations are observed.

FIGURE 4 | Quantitative representation of the evolution of m(τ ) (A), σ (τ ) (B), R(τ ) (C), and h(τ ) (D) over the time scale τ for a single animal. The data represented here

is extracted from Figure 3: each curve corresponds to a time-window of size T for which a fetal arterial blood sample was taken. The color of the curve represents the

corresponding UCO level, with the same color code as in Figures 1, 3: blue is the baseline prior to any UCO, green in the mild UCO regime, magenta in the moderate

UCO regime, red in the severe UCO regime, and then black in the recovery regime (after UCO). Vertical black dashed lines indicate the time-scales 2.5 and 8 s.

all animals. Results are plotted in Figure 5 as a function of
the scale τ .

As suggested by Figure 4 and confirmed by Figure 5, we can
isolate two bands of time scales: shorter scales τ < 2.5s (i.e., high
frequency band, above 0.4 Hz, short term time scales, labeled ST)
and larger ones τ > 2.5s (low frequency band, below 0.4 Hz, long
term time scales, labeled LT).

For any of the four features and any of the three biochemical
measurements, the correlation in the range [2.5 − 8] s is not
only the largest—in absolute value—but also the most stable:
it fluctuates less and does not depend much onτ . Above 8
s, all correlations decrease in absolute value, which may be
attributed in part to poorer statistics: the number ⌊T/τ⌋ of
available time-intervals of size τ in a time-window of size T
decreases, which impacts the averages, see, e.g., Equation 2).

As a consequence, we choose in the following to restrict the
long term (LT) range to τ ≤ 8 s in order to have enough
statistical power.

4.3. Long-Term Scales Averaged FHR
Features
For the sake of simplicity, we now eliminate the dependencies
of our features on τ and focus on the LT range. To do so,
we compute the area under the curve (AUC) of our four FHR
features in the range 2.5 < τ < 8 s. For a given time-window
indexed by k, we compute:

mLT
k =

τ=8s
∑

τ=2.5s

mk(τ ) (9)
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FIGURE 5 | Correlation coefficient between the biochemical measurements (a: lactate, b: pH, c: BE) and the four FHR features: mk (τ ) (magenta), σk (τ ) (blue), Rk (τ )

(red), and entropy rate hk (τ ) (black), as function of the scale τ .

and we define accordingly σ
LT
k

, RLT
k

and hLT
k
. These features

depend only on time, via the index k of the time-window in which
they are computed.

Time evolutions of these four LT features are depicted in
Figure 6 for the complete set of 14 animals. For some animals,
there may be missing data due to experimental conditions, and
hence there may be less consecutive time-windows of size T
available than expected in a given UCO region; in that situation,
we have then chosen to assign the dark blue color (arbitrary) for
the quantity—see, e.g., the second line (a hypoxic animal), where
no data is available in the mild UCO region, and only 4 windows
are available in the severe UCO region.

Using the first column (on the left of the vertical green line)
of each subfigure as a reference, we observe that every quantity
evolves as the UCO strength is increased. Although very few
changes are observed in the mild UCO region, much larger
variations are observed in the severe UCO region. After the
stopping of UCOs (on the right of the vertical black line), we
observe that the four features seem to regain their original value,
which we interpret as indicating the recovery of the animal,
typically after 1 window of size T, so typically 20 min after the
end of UCOs.

4.4. Distance to Healthy State, Metabolites
and pH
We now explore how our four FHR features relate to the
metabolites’ levels, and especially to the pH value, which is a
widely used indicator of fetal well-being. We report in Table 2

the correlation coefficient between each of the four features
mLT, σLT, RLT and hLT on one hand, and the three biochemical
measurements pH, BE and lactate on the other hand. To
increase the statistical power, we use all available time-windows
of size T and so all linearly interpolated values of the three
biochemical measurements.

We observe that the four FHR features correlate well with
the pH and BE, while the correlation with the lactate is smaller.
All features but σ

LT — the LT amplitude of fluctuations —
have a correlation coefficient with pH that is at least 0.50, and
a correlation coefficient with BE that is at least 0.43. This is

interesting, as RLT appears strongly correlated with mLT while
relatively uncorrelated with σLT.

We believe that each of the four FHR features contributes
a particular piece of information about FHR and we therefore
aggregate them as follows. For a single animal and a single
time-window indexed by k, we consider the vector

Euk =

(

mLT
k

mLT
RMS

,
σ
LT
k

σ
LT
RMS

,
RLT
k

RLTRMS

,
hLT
k

hLTRMS

)

, (10)

where each component is normalized by its standard deviation
computed over all animals and over all available time-windows
of size T. The four values (mRMS

LT , σRMS
LT ,RRMS

LT , hRMS
LT ) used for

this normalization are hence the same for all animals and all
time-windows; they are reproduced in the third line of Table 3.

For a given animal and for a given time-window indexed by k,
we use the L2 norm in R

4 to project any vector Euk into a positive
real number ‖Euk‖ as follows. For each animal, we assume it is in a
healthy condition when the experiment is started (so the FHR is
fluctuating around the baseline) and we use the first time window
of size T as a reference. We thus define the distance between Euk
which describes the state in the k-th time-window and Eu0 which
describes the state in the first time-window [0;T]:

Dk = ‖Euk − Eu0‖ . (11)

We interpret this distance Dk for a single animal as a measure
of the deviation from the animal’s "healthy" state during
the experiment.

We report in Table 3 global statistics — obtained by
considering all animals — of the four FHR features used as the
four components of the vector Eut .

The third line of Table 3 reports the valuesmLT
RMS, σ

LT
RMS,R

LT
RMS

and hLTRMS used to normalize the vector Euk. Their amplitude is
notably different, and the normalization is necessary to ensure
that each component of Euk contributes equally to its norm ||Euk||.
Whereas, this normalization uses all available data (using all
times and all animals at once), it is important to stress that
we have accounted for the large variability from one animal to
another by definingDk with a reference relative to the very animal
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FIGURE 6 | Long term AUC of the four FHR features mLT (A), σLT (B), RLT (C), and hLT (D) for all 14 animals. For a given quantity, each line represents an animal

(ordered from top to bottom as in Table 1); chronically hypoxic ones are above and normoxic ones are below. Each column represent a time-window of size T and

time is increasing from left to right. The region of mild UCO starts at the vertical green line and lasts for four windows, up to the vertical magenta line, followed by 4

windows in the moderate UCO region, and then up to six windows in the severe UCO region, and up to three windows in the recovery region.

TABLE 2 | Correlation coefficients between the four individual features, their

vectorial combinations, and the three measurements pH, BE, and Lactate.

mLT σLT RLT hLT ||Eu|| D pH BE Lactate

mLT 1.00 –0.51 0.77 0.60 0.29 –0.87 0.53 0.48 –0.36

σLT –0.51 1.00 –0.19 –0.43 –0.35 0.61 –0.42 –0.36 0.35

RLT 0.77 –0.19 1.00 0.42 0.14 –0.63 0.50 0.48 –0.35

hLT 0.60 –0.43 0.42 1.00 0.89 -0.76 0.50 0.43 –0.32

norm ||Eu|| 0.29 –0.35 0.14 0.89 1.00 –0.50 0.35 0.29 –0.21

distance D –0.87 0.61 –0.63 –0.76 –0.50 1.00 –0.61 –0.53 0.44

pH 0.53 –0.42 0.50 0.50 0.35 –0.61 1.00 0.95 –0.77

BE 0.48 –0.36 0.48 0.43 0.29 –0.53 0.95 1.00 –0.72

Lactate –0.36 0.35 –0.35 –0.33 –0.21 0.44 –0.77 –0.72 1.00

Data from all 14 animals and all available time-windowswere used. Colored values indicate

the quantity which correlates better with the biochemical measurement; it is always the

distance D.

under consideration. The variability of the reference point can be
seen in the fourth line ofTable 3: it accounts for a large part of the
RMS values used in the normalization. Comparing the first two
lines of Table 3 brings an additional observation leading to the
same conclusion: the position of the healthy state Eu0 is on average
over the animals (second line of the table) sensibly different from
the position of Euk averaged over all animals and all times (first
line of table). UsingDk instead of ||Euk|| removes a large part of the
inter-animal variability and definitely improves the relevance of
the distance, as measured by the correlation with the metabolites,
see Table 2.

TABLE 3 | Means and standard deviations (std) of the four FHR features over the

population of 14 animals.

mLT σLT RLT hLT

Mean, over animals and over k –0.0067 0.0688 –0.0262 0.5957

Mean, over animals, fixed k = 0 –0.0009 0.0579 0.0128 0.8811

Std, over animals and over k 0.0155 0.0282 0.1630 0.4127

Std, over animals, fixed k = 0 0.0040 0.0221 0.1082 0.1970

First and third lines: averages over animals and over time-windows (k). Second and fourth

lines: averages over animals, using the first (k = 0) time-window [0; T ] only.

We present in Figure 7 the 14 trajectories of the vector Eu(k)
in its phase space, for the complete cohort. Euk has 4 coordinates
so there are 6 different projections in a plane defined by two
variables. Each subplot in Figure 7 corresponds to one of these
possible projections. Along each trajectory, the color changes
to indicate the interpolated pH value. Although the trajectories
wander in a large region of the phase space, their color-coding
seem to only depend on the distance from the origin: blue
(larger pH) close to the origin, and orange or red (lower pH)
outside of the circle defined by D = 2. During an experiment,
the UCO’s strength increases and, as a consequence, the pH
decreases. We observe that the distance Dk appears to increase
concomitantly, and more precisely we observe its correlation
with the pH value. The correlation coefficients between the
distance D and the biochemical measurements, computed over
all animals, are reported in Table 2 (gray-colored cells). We
observe that among all FHR features we have computed, the
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distance D is the one that is the most correlated with pH,
as well as with the other metabolites. This confirms that
using all four FHR features simultaneously—by considering
the vector Eu—not only mitigates the various evolutions of
single features with the metabolite value but also aggregates
their correlations.

4.5. Distance to Healthy State as a New
Sentinel for CVD
To better illustrate the relation between the dynamical features—
especially the distance Dk—on one hand, and the health status
as assessed by the metabolites—especially the pH—and blood
pressure responses to UCOs on the other hand, we examine
in detail in Figures 8, 9 how these are co-evolving for each
individual animal. From now on, we discard any indication of
the UCO level.

Figure 8 presents jointly the time-trace of the FHR signal
(Figures 8a,e) and the evolution of the distance D (Figures 8b,f),
which we color-code using the pH value, as in Figure 7 for two
typical normoxic animals. We also present two projections of
the trajectory of Euk in its phase space in order to illustrate the
evolution of each of the four quantities.

Because the vector Euk has been carefully normalized, and
appropriately centered to define the distanceDk, this last quantity
has no dimension and can be compared to absolute values.
The particular value D = 1 (gray circle) defines the standard
deviation range in a healthy situation and the value D = 2
(black circle) corresponds to variations with an amplitude of
2 standard deviations. Looking at the trajectory projections in
Figures 8, 9, we see that during the early stages of the experiments
the trajectory remains close to the origin, hence the distance D
remains small, albeit fluctuating, and the pH value remains close
to its normal value (bluish color, indicating a pH close to 7.4).
More interestingly, we see that when the pH decreases down
to 7.2 (greenish color), the trajectory usually reaches the black
circle, hence the distance increases up to 2. Finally, we observe
that when the trajectory is outside the black circle, hence D > 2,
the pH has low values but more importantly, values of pH≤7.00
(orange to red color) are only observed on the trajectory much
later after the trajectory wandered outside the black circle.

The very same observations can be made for hypoxic animals,
see Figure 9 for two examples.

We now examine quantitatively for each animal the time
evolution of the distance from its own reference healthy state.
In every time-window [kdT, kdT + T] of size T indexed by k,
we have a value Dk which we assign to time t = kdT + T/2;
we plot the time-evolution of the distance in Figures 8b,f, 9b,f
with a color that indicates the pH value. This allows for the
following interesting observations. First, before the occurrence
of UCO, the distance fluctuates with a typical standard deviation
of 1. This confirms that the normalization step is valid, albeit
it uses values averaged over all animals and all available time-
windows. Second, we see that the distance D is substantially
larger when UCOs are performed, and more precisely, we see
that D increases as the UCO strength is increased or UCOs are
being applied to the animal with the same strength but for a

longer period of time. As such, the distance D seems to be a
good representation of the health condition of the animal. More
interestingly, we showed (Table 2) thatD is highly correlated with
the pH value throughout the complete experiment, but we now
observe that a large value of D, above 2, proves to be a very
good indicator of a low pH value signaling an acidemia with
pH < 7.2.

To further test the ability of the distance D to alert on the fetal
condition, we now try to relate the large values of the distance D
to the onset of the fetal CVD, i.e., failure of the fetus to mount
a hypertensive arterial blood pressure response to UCOs and the
UCO-induced FHR decelerations, a prerequisite to maintaining
an adequate cerebral perfusion pressure. To do so, we use tCVD
as the reference time when CVD occurs (vertical red line in
Figures 8b,f, 9b,f), which offers a valuable benchmark for an
early detection of hypotensive blood pressure response.

tCVD appears on group average for a pH of 7.20 and 60
min prior to pHnadir of <7.00, but shows a considerable inter-
individual spread. To quantify the hypotensive behavior at tCVD,
we report the individual pressure differential 1ABP at tCVD
in Table 4 following the same approach as reported in Table
1 of Frasch et al. (16). Here, 1ABP=ABPmax − 〈ABP〉 is the
difference between ABPmax, the maximal ABP during a UCO,
and 〈ABP〉, the mean ABP between UCOs. The average of 1ABP
is 4±6 mmHg for hypoxic fetuses and 4±8 mmHg for normoxic
fetuses. Overall, we see no difference in 1ABP between hypoxic
and normoxic groups (p = 0.97). The corresponding drop in
1ABP during the CVD period compared to the preceding UCO
period is −19 [−24; −1] mmHg, i.e., during CVD, fetuses
failed to mount hypertensive response to UCO-triggered FHR
decelerations with a median drop of 19 mmHg compared to
1ABP preceding the CVD. These values clearly indicate the
pathological hypotensive responses of the sheep fetuses during
the UCOs at tCVD and onward until the end of the UCOs. The
noted inter-individual variability in 1ABP values is subject of
ongoing research.

Here we see on phase-space projections in Figures 8c,d,g,h,
9c,d,g,h that the criterion D ≥ 2 offers a similar early alert
on the deterioration of the animal condition with regard to
CVD timing. Looking at either the phase space representation
or the time traces of the distance D, we see that this quantity
evolves continuously in time, on typical time-scales larger than 20
min, the duration we have chosen to compute our quantity. The
distance increases over the duration of the experiment and one
can easily measure the time tD at whichD crosses the valueD = 2
(red circle, or horizontal red line in Figures 8, 9). Unfortunately,
the distanceD is very sensitive and it can be seen on the examples
that it is possible for D to reach values larger than 2 early in the
experiment. To overcome these events—and, hence, to make our
new sentinel less sensitive—we arbitrarily adjust our criteria and
require Dk > 2.5 for at least 3 consecutive time-windows, so
for a long enough duration of about 40 min. Table 1 presents
the various timings corresponding to the various UCO regimes
for each animal, together with an estimate of the pH nadir
time, while Table 4 presents a summary of our findings, together
with the CVD time (ABP sentinel), the two of them appearing
before pH≤ 7.00.
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FIGURE 7 | Trajectories of the vector Euk − Eu0 for all 14 animals in the phase space; the 6 subplots (A–F) correspond to the 6 possible projections onto planes (using 2

coordinates of the vector). Each trajectory corresponds to an animal and is colored to indicate the pH value at the time k: in this way, we observe the joint temporal

evolution of Euk and of the pH throughout the experiment. Trajectories have been centered by subtracting Eu0, according to Equation (11) to account for the variability

between animals: the thick black dot at the origin thus represents the starting point of all trajectories. The gray circle corresponds to D = 1 and the black circle to

D = 2.

The agreement between the CVD time and the distance time
is very satisfying:

the difference between tCVD and tD is not only always smaller
than the difference between tpH and tCVD, but also smaller than
20 min, the size of the time-windows we have used.

However, for one animal (number 473360, last line inTable 4),
a large discrepancy is observed. A closer examination of both
the data and our distance for this animal is given in Figure 10

and allows us to discuss the sensitivity of our measure. We have
used the 4 Hz FHR dataset which was also studied in earlier
literature. This dataset is obtained from the R-R intervals data
at 4 Hz, which is interpolated from the raw ECG-derived R-R
intervals data recorded at 1,000 Hz. As can be seen in Figure 10,
the genuine 1,000 Hz dataset (in red) is missing some values
during short intervals and the resampling process, which uses
splines interpolation, creates arbitrary values for the 4 Hz FHR
dataset (in black) within such intervals. This results in additional
values which exhibit large and fast fluctuations which are non-
physiological. Whereas, most of these do not impact the value
of the distance D (see Figures 10e,f,g,h), there is a time interval
(at about t = 172 s, see Figures 10b,d where D is unexpectedly
large, reaching a value around 4. This is concomitant with a sharp
drop in FHR, as can be seen in Figures 10a,c. This sharp drop is
exacerbated on the 4 Hz signal compared to the 1,000 Hz signal,
and is very localized in time, which leads to a later decrease of D,
contrary to the pathological situation reported in Figures 10g,h

where D remains at a large value. As a consequence, we obtain
a false positive sentinel time tD which corresponds to this event
and is hence much earlier than tCVD, although in agreement with
previously reported results using the same 4Hz FHR dataset (19).
We conclude that splines interpolation should be avoided, and
we suggest instead not to add or create artificial data points when
genuine data is not available. Additionally, each of the quantities
we propose, and hence the distance D, can still be computed,
as they are all robust with respect to missing data, as seen for
example in Figures 8e,f.

The robustness with respect to missing data is 2-fold. First,
all quantities we compute do not require equi-sampled data: this
is in contrast to a power spectrum for example, where missing
points prevent the estimation and jeopardize the estimated value
if using interpolated values. For our quantities, missing data only
impacts the number of points used to compute averages, as can
be seen in Figure 2. Second, having missing data only reduce the
number of points over which statistics are computed: a reduced
number of points increases the bias and the variance of the
estimators. As can be seen in Figures 10b,d,f,h, the distance D
evolves smoothly which suggest the standard deviation is not
strongly impacted. However, one may wonder if an increased
bias impacts the reported values, especially when a lot of data
is missing. We report in Table 5 the average fraction of missing
data points in a time-window of size T=20 min: increasing the
UCO strength is typically associated with an increase of missing
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FIGURE 8 | Two examples of normoxic animals (right: animal 473361, left: animal 461060). (a,e): FHR. (b,f): distance D along time; the horizontal dashed line

indicates the value D = 2 and the red vertical line indicates the CVD time (ABP sentinel), i.e., the time point when we visually confirm the onset of CVD. (c,g):

projections of the trajectory of the vector Eu on the plane (mLT, hLT ) (the two features that individually better correlate with the pH). (d,h): projections of the trajectory on

the plane (σLT,RLT ) (the other two components of Eu). The distance D and the trajectories are color-coded with the pH values in each time-window of size T. For clarity,

the last part of the trajectory where D decreases below D = 2 is omitted.

data. Let’s focus on the entropy rate hk(τ ), which is algorithmicaly
the most complex quantity: it has been reported that the bias
of hk(τ ) not only behaves as 1/

√

N (39, 40), similar to the bias
of a sliding average over N points like mk(τ ), but also that this
bias is small. A time-window of 20 min should contain N =

20 × 60 × 4 = 4, 800 points, and even a reduction of 50% of
available data points should leave more that 2,000 points so a bias
smaller than 1% (40). We are thus confident that the reported
results are not an indirect measure of the number of missing
data points.

A deeper examination of each experiment, using animal’s
systemic arterial blood pressure data, should clarify the
relationship between the increases of the distance from
healthy condition and the incipient arterial hypotension. This
work is out of scope of the present article which focuses
on the dynamics of the clinically relevant 4 Hz-sampled
FHR signal.

As such, we propose that the distance D has the potential to
serve as an individual biomarker of the incipient CVD, i.e., an
early sentinel of the fetal brain injury.

5. CONCLUSIONS AND OUTLOOK

Following achievements in adults and the seminal contribution in
Akselrod et al. (41), frequency-based features were used to model

linear temporal dynamics in FHR (42–46). To permit richer
descriptions of the non-linear dynamics of FHR, information
theoretic quantities were used such as entropy rates (34, 47–
50), as well as several nonlinear transforms (45, 51–53), and
scale-free or (multi)fractal paradigms (54–57). For overviews,
interested readers are referred to, e.g., (9, 11, 58–64). An
important limitation in the use of these features lies in their
dependence on high quality fetal electrocardiogram (ECG) or
magnetocardiogram (MCG) data as input. Such data are not
readily available in the majority of clinical settings, with over 90%
of North American hospitals, for example, still relying on CTG
monitors during labor. CTG however provides FHR at a 4 Hz
sampling rate, to be compared to 1,000 Hz sampling rate golden
standard available with ECG or MCG, while vagally mediated
HRV is found on a time scale that goes beyond what is captured
at 4 Hz sampling rate. This results in information loss (19, 26,
65, 66). Beyond the mere design of features and their standalone
use, numerous efforts were devoted to devise multiple-feature
decision rules, often based on supervised learning and machine
learning [cf., e.g., (9, 12, 62, 63, 67–69, 69–72)].

In the present work, four FHR features, whose definitions
depend on the timescale, are computed on the whole FHR
dataset derived from an animal model of human labor to
quantify the evolution of FHR temporal dynamics. That means
that in our approach we do not rely on considering UCO
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FIGURE 9 | Two examples of hypoxic animals (right: animal 473726, left: animal 473362). See caption of Figure 8.

periods only, but are able to process the entire FHR signal
as it would be available in real-time in clinical setting. These
quantities are local statistical averages that probe the variation,
the amplitude of fluctuations and the information content
at a given time scale. They are purely statistical quantities
that can be computed even when some data points are
missing. Firstly, we qualitatively related the variations of such
timescale-dependent quantities to the UCO strength; secondly,
we quantitatively computed their correlation to metabolite and
pH measurements.

As to the etiology of CVD, we propose a role for the
Bezold-Jarisch reflex, a vagal cardiac depressor reflex, as part
of a complex dynamic interplay, based on the observations of
acidemia-triggered inflammation in fetal sheep (16, 17, 25), and
studies in adult species linking rising systemic acidemia and
inflammation with worsening cardiac contractility, impaired
beta-adrenergic and potentiated bradycardic responses (25, 73–
77). We suggest that the integrated ability of the four FHR
features introduced in this study to track the individual
evolution of acidemia and cardiovascular responses stems
from capturing the individual complex interplay of the
vagally mediated sensing of acidemia and the Bezold-Jarisch
reflex, i.e., also vagally mediated intermittent hypotensive
ABP responses to UCO-triggered FHR decelerations. This
hypothesis needs to be validated in specifically designed
animal experiments, for example by repeating the experiments
underlying the present study with the variation of performing
cervical bilateral, left or right vagotomies. This would
allow evaluating the contribution of the vagus nerve to the

dynamic interplay between the progressive systemic acidemia,
the ensuing systemic inflammatory response, accounting
for vagus nerve’s lateral asymmetry, to the evolution of
FHR decelerations and ABP responses over the period of
worsening UCOs comparable in duration to stages 1 and 2 of
pushing (18).

We show the relevance of timescales ranging in [2.5 −

8] seconds (equivalently [0.125 − 0.4] Hz in frequencies) for
early detection of both acidemia and CVD, matching the
scales classically used in FHR analysis and referred to as long-
term (57, 63). We observed that reduced pH closely relates
to larger mLT which may be interpreted as an increase of
baseline FHR (62, 63), and lower entropy rate hLT, in agreement
with earlier findings reported in the literature (34). More
importantly, a per-individual distance metric was constructed
from these four (population-normalized) features to quantify a
self-referencing departure from a healthy state for each subject
independently. Such a definition raises two issues. Firstly, it
requires, as is often the case, that monitoring is started early
enough while the fetus is still in a healthy condition, so as
to create a self-reference to normal on a per-individual basis.
If fetuses are already in distress when monitoring is initiated,
the distance, albeit increasing with distress, may fail to detect
CVD correctly. Secondly, the definition of the vector, and hence
the distance, requires a normalization, which is performed in
the present work at the population level, i.e., using an average
across subjects. Although such an average should converge
rapidly with the population size, this dependence requires
further investigations.
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It has been documented that sheep fetuses have an
individual cardiovascular phenotype in their responses to
increasing acidemia due to repetitive intermittent hypoxia (15).

TABLE 4 | Cardiovascular decompensation (CVD) times.

CVD time D time Delta

Animal tCVD 1ABP tD tCVD − tD

(ID) (hh:mm) (mmHg) (hh:mm) (hh:mm)

Hypoxic

8003 01:55 (03:09) –6 01:56 (03:10) –00:01

473351 01:11 (05:19) 5 01:11 (05:19) 00:00

473376 01:50 (04:43) 2 02:07 (05:00) –00:17

473726 02:01 (04:10) 8 01:55 (04:04) 00:06

473362 00:59 (03:07) 11 01:16 (03:24) –00:17

Normoxic

473352 01:09 (05:08) 1 01:06 (05:05) 00:03

5054 03:25 (04:56) 13 03:29 (05:00) –00:04

461060 02:03 (05:02) -9 01:51 (04:50) 00:12

5060 02:35 (03:44) -6 02:20 (03:29) 00:15

473360 03:41 (05:52) 0 00:44 (02:55) 02:57

473378 02:07 (05:24) 13 01:58 (05:15) 00:09

473727 01:34 (03:12) 15 01:51 (03:29) –00:17

473377 02:14 (04:42) 6 02:22 (04:50) –00:08

473361 03:09 (05:05) 5 02:49 (04:45) 00:20

Comparison of the visually determined vs. computed predictions: tCVD from Gold et al.

(27) as reference, and our new distance time tD, computed by requiring D > 2.5 for at

least 3 consecutive time-windows, spanning a total duration of 30 min. Times are counted

from the first UCO, and values in parenthesis indicate times counted from the beginning of

the experiment, to compare with figures. 1ABP indicates the ABP difference at tCVD. The

color indicates during which UCO phase CVD occured: mild (green), moderate (magenta)

or severe (red). The last column reports the difference tCVD − tD between the reference

CVD time, always earlier than tpH, and the new tD. Positive values indicate a detection

earlier than tCVD. All data are derived from 4 Hz sampled FHR signal.

Chronically hypoxic fetuses have diminished cardiovascular
defenses to hypotensive stress (78). Studying the same dataset,
we demonstrated that under the conditions of repetitive UCOs
and in comparison to the fetuses who were normoxic on the
onset of the UCOs, the hypoxic fetuses exhibit accelerated
acidosis (21), altered temporal profile of neuroinflammation
following UCOs (20) and deceleration reserve (79). In the

TABLE 5 | Average fraction of missing data points in the FHR signal in a given

regime.

Animal ID Baseline Mild UCO Moderate UCO Severe UCO

Hypoxic

8003 1% 2% 6% 22%

473351 3% NaN 4% 9%

473376 2% 1% 3% 8%

473726 0% 1% 1% 16%

473362 2% 2% 16% 8%

Normoxic

473352 5% NaN 1% 11%

5054 1% 0% 1% 2%

461060 1% 0% 11% 42%

5060 9% 20% 1% 23%

473360 9% 4% 4% 18%

473378 0% 0% 2% 24%

473727 5% 3% 8% 17%

473377 1% 0% 1% 6%

473361 5% 3% 1% 10%

For each time-window of size T = 20 min, we divide the number of missing data points

by the expected number of points (=20×60×4), and we then average this ratio over all

time-windows available in a given regime.

FIGURE 10 | A representative example of FHR and the corresponding distance D (colored by pH value) for animal 473360. The 4 Hz dataset used in the analysis is

reproduced in black, and the original 1,000 Hz dataset is presented in red. (a,b) : complete time trace for all available data. (c,d) : zoom in the problematic region,

where D is unexpectedly large. (e,f) : zoom in a region where D is small, as expected. (g,h) : zoom in a region where D is large, as expected. See text.
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present study, we could not identify any influence of the
phenotype (normoxic/hypoxic) in any of the metrics including
the distance D. We are currently exploring whether the initial
vector Eu0 may contain such information. Conversely, the
finding that the presented approach functions well without
the consideration of a pre-existing hypoxia or pattern of
labor contractions (UCO severity) is an additional bonus
from the clinical viewpoint. Lastly, we recognize that the
group of chronically hypoxic animals may have failed to

recover from surgical instrumentation adequately, i.e., they were

already decompensating rather than becoming “spontaneously”
hypoxic for reasons of utero-placental dysfunction preceding
the surgery.

Overall, the constructed distance proves able to detect

accurately the occurrence of acidemia and CVD from the analysis
of FHR only, and without recourse to pH. This opens the

route to investigating the relevance of such metrics in clinical
practice, as it is non-invasive and much faster than biochemical

measurements like pH. Further, for practical purposes, the

present studies show that the computation of features and
distance is robust to FHR sampled at 4 Hz and, to some
extent, to missing data. Also, the FHR features and distance

are computed in sliding-windows, permitting an on-line and
quasi-real time analysis of the evolution of the dynamics of
FHR, and thus in relation to a local health state of the fetus.
The extent to which the 20-min sliding-window size, chosen

here for proof-of-concept developments, can be further reduced
to 10 or 5-min, is under investigation. In conclusion, we
propose a real-time FHR-based metric predicting CVD which
should be of a great help for health practitioners managing
the delivery.
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Estimation and Discriminability of
Doppler Ultrasound Fetal Heart Rate
Variability Measures
Johann Vargas-Calixto1*, Philip Warrick1,2 and Robert Kearney1

1Department of Biomedical Engineering, McGill University, Montreal, QC, Canada, 2PeriGen Inc., Montreal, QC, Canada

Continuous electronic fetal monitoring and the access to databases of fetal heart rate
(FHR) data have sparked the application of machine learning classifiers to identify fetal
pathologies. However, most fetal heart rate data are acquired using Doppler ultrasound
(DUS). DUS signals use autocorrelation (AC) to estimate the average heartbeat period
within a window. In consequence, DUS FHR signals loses high frequency information to an
extent that depends on the length of the AC window. We examined the effect of this on the
estimation bias and discriminability of frequency domain features: low frequency power
(LF: 0.03–0.15 Hz), movement frequency power (MF: 0.15–0.5 Hz), high frequency power
(HF: 0.5–1 Hz), the LF/(MF + HF) ratio, and the nonlinear approximate entropy (ApEn) as a
function of AC window length and signal to noise ratio. We found that the average
discriminability loss across all evaluated AC window lengths and SNRs was 10.99% for LF
14.23% for MF, 13.33% for the HF, 10.39% for the LF/(MF + HF) ratio, and 24.17% for
ApEn. This indicates that the frequency domain features are more robust to the ACmethod
and additive noise than the ApEn. This is likely because additive noise increases the
irregularity of the signals, which results in an overestimation of ApEn. In conclusion, our
study found that the LF features are the most robust to the effects of the AC method and
noise. Future studies should investigate the effect of other variables such as signal drop,
gestational age, and the length of the analysis window on the estimation of fHRV features
and their discriminability.

Keywords: fetal heart rate, cardiotocography, autocorrelation, Doppler ultrasound, classification, fetal heart rate
variability

INTRODUCTION

Continuous electronic fetal monitoring (EFM) is a standard of care during the antepartum and
intrapartum periods (American College of Obstetricians and Gynecologists, 2014). EFM involves
measuring two signals: fetal heart rate (FHR) and uterine pressure (UP). These two signals make up
what is known as cardiotocography (CTG). Non-invasive Doppler ultrasound (DUS) is the preferred
FHR acquisition method in clinical settings (Kupka et al., 2020). Uterine pressure is commonly
acquired using external sensors that measure the tension in the maternal abdominal wall (Smyth,
1957). There are other acquisition methods: fetal scalp electrocardiography (ECG) for FHR; and
intrauterine probes for uterine pressure (Ayres-De-Campos and Nogueira-Reis, 2016). However,
these methods are invasive and are typically used only when external monitoring is not possible.

During the antepartum period, FHR monitoring has been shown to provide information about
fetal reactivity (Romano et al., 2006) and abnormalities such as intrauterine growth restriction
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(Signorini et al., 2003; Signorini et al., 2020). During labour, the
fetus is exposed to repeated periods of hypoxia during uterine
contractions (McNamara and Johnson, 1995). If severe enough,
sustained hypoxia can lead to metabolic acidosis and hypoxic-
ischemic encephalopathy (HIE). Clinicians assess the risk of
acidosis and HIE by visually monitoring the EFM for
characteristic FHR patterns such as the baseline, accelerations,
and decelerations (American College of Obstetricians and
Gynecologists, 2014; Lear et al., 2018). Nevertheless, visual
assessment of FHR tracings has low specificity and sensitivity
as well as high intra- and inter-observer variability (Farquhar
et al., 2020). The application of computerized analysis to quantify
FHR signals has been proposed to reduce intra- and inter-
observer variability (Keith and Greene, 1994). However, recent
studies show that automating the analysis of classical FHR
patterns does not yield a significant improvement in the
detection of acidosis or HIE (Elliott et al., 2010; Clark et al.,
2017; Campanile et al., 2018).

It is thought that the development of new FHR indices
reflecting the physiological phenomena of acidosis and HIE
could improve the ability to identify fetuses at risk (Hamilton
and Warrick, 2013). In this context, fetal heart rate variability
(fHRV) shows promise to be an important marker of fetal status
(Signorini et al., 2003). Heart rate variability (HRV) quantifies
variations in the length of the RR interval in successive heartbeats
and has been widely used in adults (Acharya et al., 2006). Most
HRV analysis algorithms are based on RR intervals derived from
ECG signals (Ramshur 2010). However, it is difficult to use these
methods for fetal monitoring since DUS measures of FHR do not
provide the RR intervals. For this reason, clinical use of fHRV is
generally limited to the visual analysis of FHR variations around
its baseline.

The DUS transducer emits an ultrasound wave towards the
fetal heart. The movement of the fetal heart changes the
frequency of the reflected wave due to the Doppler effect
(Hamelmann et al., 2020). As a result, both the amplitude and
phase of the reflected wave are modulated and consequently its
envelope varies with a frequency related to FHR (Hamelmann
et al., 2020). FHR is then estimated from the autocorrelation (AC)
of the DUS signal envelope computed over a window several
seconds long. The AC, which measures the similarity of the signal
to itself across time, will have a maximum at a lag equal to the
average RR interval (Kupka et al., 2020). FHR is estimated as the
inverse of this average RR interval. Fetal monitors use sliding
windows to estimate FHR at a uniform sampling rate.

As a result of the averaging associated with computing the AC
method, estimates of fHRV features derived from DUS (FHRDUS)
will differ from those estimated from RR intervals (FHRRRI).
Thus, estimates of power spectral density (PSD) features
computed from uniformly sampled HR have been shown to
overestimate the low frequency power and underestimate the
high frequency power compared to those computed from non-
uniformly sampled RR intervals (Clifford and Tarassenko, 2005).
Thus, FHRDUS estimates are smoother and have less high
frequency (HF) power. Attempts to reconstruct FHRRRI from
FHRDUS have not been able to recover the short-term variability
features associated with HF fHRV (Cesarelli et al., 2007; Kupka

et al., 2020). The errors in fHRV estimates computed for FHRDUS

will depend on the AC window length. Longer windows yield
more averaging and thus underestimate HF power.
Unfortunately, manufacturers of CTG monitors do not
disclose the details of their AC algorithms, making it difficult
to compare the estimation errors of different monitors.

More sophisticated methods have been proposed to improve
the estimation of FHRDUS (Alnuaimi et al., 2017). Peters et al.
(2004) used a low-pass filter to roughly estimate the location of
the cardiac cycles and defined an AC window that contained only
two heart cycles, improving the estimation of spectral features.
Similarly, Jezewski et al. (2011) proposed an algorithm which
varied AC window length according to an adaptive estimate of
beat-to-beat intervals. Valderrama et al. (2019) developed an
open-source AC method that optimizes the peak search
parameters using Bayesian optimization. Another approach by
Katebi et al. (2020) applied unsupervised hidden semi-Markov
models to segment the DUS signal for FHR estimation. This
approach was able to recover HF features that were very close to
those of fECG (Katebi et al., 2020). Despite their improvements,
none of these sophisticated methods have yet been applied in
bedside monitors (Jezewski et al., 2017).

The availability of large cohorts of perinatal EFM recordings
has motivated the development of machine learning (ML)
classifiers to improve the early detection of fetal distress and
reduce the risk of further injury (Georgieva et al., 2017;
Petrozziello et al., 2019). Thus, fHRV features from FHRDUS

have been used to identify fetuses with fetal abnormalities
using ML and deep learning (DL) (Georgieva et al., 2017;
Petrozziello et al., 2019; Signorini et al., 2020). Nevertheless,
the discriminability of these algorithms will be adversely
affected by errors in the estimation of fHRV features. Durosier
et al. (2014) found that the root mean square of the successive
differences (RMSSD) of FHR estimated from FHRDUS had worse
discriminability than when estimated from FHRRRI . Similarly, it
has been suggested that HF FHRDUS features are less
discriminative than from FHRRRI (De Jonckheere et al., 2019).
The decreased discriminability of fHRV features, along with the
undisclosed differences in commercial FHRDUS estimation
algorithms, will likely affect the performance of ML classifiers.

This paper analyzes the influence of the AC window length
and noise on the estimation and discriminability of some
important linear and non-linear fHRV features. These features
considered have all been proposed previously for the detection of
fetal distress (Signorini et al., 2003). Despite the development of
the new sophisticated AC algorithms, we focus on the classical
AC method which is the basis of current monitors. The rationale
behind this is the desire understand the properties of fHRV
computed from EFM data acquired at bedside with current
monitors. Thus, our objectives are twofold: 1) To determine
how fHRV features computed from FHRDUS differ from those
computed from FHRRRI ; and 2) To evaluate how these differences
influence the ability to classify signals with different fHRV
properties. To do so, we explored how different AC window
lengths and noise levels affect the estimation of linear PSD
features and the nonlinear feature approximate entropy
(ApEn). Our results showed that the low frequency power
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(LF) is least affected by the AC and noise, while ApEn is affected
the most. Furthermore, we examined how the discriminability of
each feature varied with ACwindow length and noise and showed
that LF was the most stable feature.

MATERIALS AND METHODS

This section describes the methods used for:

1) Simulating RR intervals and associated DUS signals with PSD
and ApEn properties similar to those of normal and acidotic
fetuses.

2) Estimating PSD and ApEn features.
3) Evaluating differences between fHRV features estimated from

FHRDUS and FHRRRI .
4) Evaluating the discriminability of different simulated fHRV

features when applied to normal and acidotic signals.

PhysioNet Fetal ECG Database
We used 80 FHRRRI tracings to validate our simulated RR intervals.
These signals were acquired from two databases that included fetal
ECG signals and reference annotations indicating the location of the
QRS complexes. These annotations were provided by a mixture of
experts, volunteers, and specialized algorithms. The first database
was acquired by Jezewski et al. and published in PhysioNet
(Goldberger et al., 2000; Jezewski et al., 2012). This database

contains abdominal and direct fetal ECG records from five term
fetuses (gestational ages 38–41 weeks), for 5minutes each. The
second database comprises 75 annotated fetal ECG recordings,
each 1minute long, utilized in the PhysioNet Computing in
Cardiology Challenge 2013 (Goldberger et al., 2000; Silva et al.,
2013). This database does not indicate the gestational age of the
subjects, although the annotations were usually done using
simultaneously acquired direct fECG signals. The application of
direct fECG is only possible during labor after the rupture of the
membranes. The databases do not indicate whether any the fetuses
presented any pathological condition. Given the high incidence of
normal fetuses, it is likely that the signals were acquired from normal
fetuses. The databases also include the location of each R-wave. We
used these locations to estimate RR intervals and extracted fHRV
features from the RR intervals. We used these fHRV features to
validate that our simulations were representative of real data.

Simulation of FHRRRI and FHRDUS
Figure 1 outlines the process for simulating RR intervals, DUS
signals, and uniformly sampled FHR. We first generated a
sequence of random RR intervals with spectral features for
normal or acidosis fetuses similar to those reported by
Gonçalves et al., 2013. The 95% confidence intervals (CI) of
the power in the low frequency, movement frequency, and high
frequency bands reported by Gonçalves et al. are reported in
Table 1. Afterwards, we generated the DUS envelope signals
corresponding to the simulated RR intervals with added noise.
Finally, we applied the AC method with a sliding window to
generate uniformly sampled FHRDUS.

RR Interval Simulation
We simulated realizations of RR interval sequences, with
controlled fHRV PSD structure and nonlinear complexity, as
follows:

PSD
We first generated a continuous FHR signal, sampled at 4 Hz,
with the desired fHRV spectrum. To do so, we filtered the same
white Gaussian noise with three bandpass filters, corresponding
to the three bands of interest for fHRV [from (Signorini et al.,
2003)]: Low frequency (LF) 0.03–0.15 Hz; Movement frequency
(MF) 0.15–0.5 Hz; and High frequency (HF) 0.5–1 Hz band. The
three filter outputs were summed in different proportions to
generate a signal whose spectrum matched the fHRV spectra
reported by Gonçalves et al. (2013).

We then generated a continuous RR interval signal, RRC(t), from
this FHR as RR � 60

FHR, and upsampled it to 1 kHz using spline
interpolation. However, the RR sequence is actually a point process
in which the only information of interest is the time of occurrence of
an event. Consequently, we transformed the continuous RRC(t)
signal into a point process, RRPP[i ], using the method of Clifford
and Tarassenko (2005) which proceeds as follows:

1) Sample RRC(t) at time t1. Its amplitude, RRC(t1), determines
the length of the first RR interval. Thus, RRPP[1 ] � RRC(t1).
Find the value RRC(t2), where t2 ≥RRC(t1) + t1. Then,
RRPP[2 ] � RRC(t2).

FIGURE 1 | Diagram of the simulation of FHRRRI and FHRDUS signals.
The PSD and ApEn distributions reported by Gonçalves et al. (2013) are used
to generate random simulations of FHRRRI with similar fHRV. Then, we
simulate DUS signals that correspond to the FHRRRI and we add noise.
Finally, we use the AC to estimate the FHRDUS.
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2) Repeat for the length of RRC(t). At each point RRPP[i ] �
RRC(ti) such that ti ≥RRC(ti−1) + ti−1.

The resulting RRPP[i ] sequence was fitted to an Autoregressive
(AR) model using the Yule-Walker method (“aryule” in the Matlab
Signal Processing Toolbox). Multiple RR interval sequences were
then generated by filtering independent realizations of white
Gaussian noise with this AR model.

Approximate Entropy
ApEn is a measure of signal complexity, and thus random signals
will have higher ApEn compared to periodic signals. To control
the ApEn of our simulated RR intervals we modified the MIX
process of Ferrario et al. (2006). The original MIX process
switches randomly between a periodic signal and a uniformly
distributed random signal and so does not permit the control of
the realization’s PSD. To do so, we modified the MIX process to
switch randomly between

1) A random sequence RRr[i ], with the desired PSD, generated
by filtering white noise with the RR AR model.

2) A semi-periodic signal RRsp[i ] generated by concatenating
segments of signal RRr2[i ] with the desired PSD. Each
segment has the same length l ≥ 33 s and a randomly
selected initial point i1 ≤ lpOf , where Of is the overlap
factor. This will generate sequences with a limited number
of patterns. Varying the overlap makes it possible to generate
signals with different values of ApEn but the same PSD.

The MIX process switching is controlled by a binary random
variable x, that will have a value of one with probability p, and
zero otherwise. Varying pwill change ApEn without changing the
PSD. The iith RR interval is generated by the MIX process as:

RRMIX[i] � x[i]pRRsp[i] + (1 − x[i])pRRr[i]

DUS Envelope Simulation
Each RR interval sequence was transformed into a corresponding
DUS envelope signal, sampled at 1 kHz, as follows:

1) A template DUS envelope cycle DUSt was selected randomly
from 15 available periods of the DUS signal envelope shown in
Hamelmann et al. (2020).

2) For each RR interval, the selected DUSt was stretched or
contracted to a length equal to RRMIX[i ] to give DUS(t, i).

3) Consecutive DUS(t, i) were concatenated to generate the
DUS(t) signal.

4) A random additive noise signal, n(t), with a uniform distribution
and a LF PSD was generated using an algorithm proposed by
Nichols et al. (2010).We limited the power of the noise to 7.7 Hz,
the same band of the envelope of the DUS(t) signal.

5) The amplitude of n(t) was varied along each realization to
control the signal-to-noise ratio (SNR).

6) Finally, we generated DUS’(t) � DUS(t) + n(t).

Figure 2A shows a segment of a simulated DUS’(t) using the RR
intervals froma subject in the PhysioNetDatabase and a SNRof 20 dB.
Separate bursts of activity corresponding to cardiac cycles are apparent.

The AC Method
FHR was estimated from the DUS signal by computing its
autocorrelation function (AC). The autocorrelation function of a
periodic signal is also periodic with the same period. Consequently,
the first non-zeromaxima in the AC function will reflect the average
RR interval. Figure 2B shows the AC coefficient function of the DUS
signal in Figure 2A, estimated from a 4s window. The first non-zero-
lag peak occurs at ∼0.5 s indicating an FHR � 120 bpm. Sliding the
AC window across the signal with steps of 0.25 s will generate an
FHR signal sampled at 4 Hz. The blue curve in Figure 2C shows the
FHRDUS computed in this way from the signal in Figure 2A. (Note
that Figure 2C covers a longer time span than Figure 2A). The black
stars show the FHRRRI computed from the original RR intervals for
comparison purposes. The AC estimates follow the trend of the
FHRRRI but deviate around this trend due to the additive noise.

fHRV Differences Between FHRRRI
and FHRDUS
Figure 3 shows the procedure used to compare the fHRV
estimates from the RR intervals and DUS FHR.

TABLE 1 | 95%Confidence intervals (CI) for the fHRV estimates reported by Gonçalves et al., 95%CI of the simulated RR intervals fHRV, and the difference of the limits of the
95% CI between the Normal and Acidosis distributions.

Normal Acidosis Difference

Gonçalves Simulated Gonçalves Simulated Gonçalves Simulated

95% CI 95% CI 95% CI 95% CI

LF 19.3 52.78 26.39 129.41 7.09 76.63
77.21 86.52 264 231.13 186.79 144.61

MF 2.79 2.87 3.36 22.67 0.57 19.8
13.60 18.96 54.77 110.20 41.17 91.24

HF 0.89 1.63 0.91 10.03 0.02 8.4
2.25 21.3 8.09 23.35 5.84 2.05

LF/(MF + HF) 4.06 1.80 4.19 1.56 0.13 −0.24
5.06 9.60 6.19 5.63 1.13 −3.97

ApEn 0.35 0.42 0.25 0.58 −0.1 0.16
0.52 0.69 0.76 0.79 0.24 0.10
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1) RRMIX[i ] sequences were generated with fHRV distributions
similar to those reported by Gonçalves et al. for normal and
acidotic fetuses.

2) These RRMIX[i ] sequences were then used to generate
corresponding FHRDUS signals and FHRRRI � 60

RRMIX
.

3) fHRV estimates were obtained from FHRDUS and FHRRRI .
4) The estimates were compared as a function of AC window

length and SNR.

We simulated 1,000 Monte Carlo (MC) FHRRRI signals having
normal and acidotic properties. This yielded a total of

2,000 FHRRRI . For each realization of FHRRRI we generated
DUS’(t) signals with 21 SNR values (ranging from −10 to
30 dB in 2 dB steps). These signals were then transformed into
FHRDUS, as described above, using 17 AC window lengths
(ranging from 1 to 5 in 0.25 s steps). This resulted in
714,000 FHRDUS signals.

FHR Preprocessing
The FHRDUS signals were preprocessed before estimating fHRV
features. In some cycles, the additive noise in the DUS signal
prevented the peak-finding algorithm from finding the peak that
corresponded to the average FHR. To reduce the effect of these
outliers, we estimated the moving median of FHRDUS over a 5s
window. Estimates that deviated more than 40 bpm from the
moving median were removed and replaced by linear
interpolation of the adjacent samples. Finally, we limited the
estimated FHRDUS to a range of 60–180 bpm.

FIGURE 2 | (A) Simulated envelope of the DUS’(t) signal using a series of
FHRRRI extracted from the PhysioNet Database and 20 dB SNR. (B) AC
coefficient (blue) and peaks (black triangles) of the DUS envelope using a 4 s
window. (C) Simulated FHRDUS (blue), and the non-uniformly sampled
FHRRRI (black stars).

FIGURE 3 |Outline of the assessment of the fHRV estimation differences
between FHRRRI and FHRDUS. We simulate a set of RR intervals, and estimate
the fHRV features. We also use these sequences to simulate FHRDUS varying
AC window length and SNR. Finally, we estimate fHRV from these
signals and compare the differences in estimates from FHRRRI and FHRDUS.
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fHRV Features
The PSDs of the non-uniformly sampled FHRRRI , and the
uniformly sampled FHRDUS signals were estimated using the
Lomb-Scargle (LS) periodogram as implemented in the
function “plomb” in the Matlab Signal Processing Toolbox.
We chose the LS periodogram, since it provides unbiased
estimates of the power spectrum in non-uniformly sampled
signals (Clifford and Tarassenko, 2005). Using alternative
methods, such as the Welch periodogram or AR models,
would require resampling FHRRRI to a continuous signal,
which leads to a biased estimate of the power spectrum
(Clifford and Tarassenko, 2005). The normalized power in
three frequency bands was then computed as:

LFpow � ∑0.15
0.03 LS( f )Δf

∑1
0.03 LS( f )Δf

MFpow � ∑0.5
0.15 LS( f )Δf

∑1
0.03 LS( f )Δf

HFpow � ∑1
0.5 LS( f )Δf

∑1
0.03 LS( f )Δf

where LS( f ) is the PSD estimated using the LS periodogram. In
addition, we estimated the LF/(MF + HF) ratio.

ApEn, a measure of the nonlinear complexity of FHR, was
estimated as follows:

1) FHR was decimated to 2 Hz, following Gonçalves et al., 2013
who found that sampling the FHR at 2 Hz provided better
ApEn estimates than 4 Hz.

2) The function “approximateEntropy” in the Matlab Predictive
Maintenance Toolbox was used with an embedding
dimension of 2, and radius of 0.2.

Feature Comparison
Differences between features computed from the RR and DUS
signals were quantified in terms of their bias and random
differences:

bd � E[ fDUS] − E[ fRRI]
E[ fRRI]

p100%

rd �
�������������
∑( fDUS − fRRI)

2
√

E[ fRRI]
p100%

where bd and rd are the normalized bias and random differences,
fDUS is a feature estimated from FHRDUS, fRRI is a feature estimated
from FHRRRI and E[x ] is the expected value.

Discriminability of fHRV
Figure 4 describes the procedure used to assess fHRV
discriminability. We simulated normal and acidotic FHRRRI . To
remove the effect of the signal amplitude, each realization of FHRRRI

was scaled to have a standard deviation of 21.63 bpm, midway
between the two reported distributions. Then FHRDUS signals were
generated for each FHRRRI realization. PSD features and ApEn were
computed for the RR and DUS signals. We constructed a Neyman-
Pearson classifier for each signal that used the likelihood ratio of the

normal and acidosis distributions, and we estimated the area under
the curve (AUC) for the FHRRRI and FHRDUS realizations. The AUC
and 95% confidence intervals (CI) were estimated from 1,000
bootstrap samples of the normal and acidotic distributions. To
compare features, we computed the following metrics:

1) AUCRRI is the median of the 1000 AUC estimates obtained
from bootstrap sampling each pair of fHRV distributions
estimated from FHRRRI . AUCDUS(wl, SNR) is the median of
the 1000 AUC estimates obtained from bootstrap sampling
each pair of fHRV distributions as a function of the window
length wl, and the SNR.

2) The normalized difference between AUCRRI and
AUCDUS(wl, SNR) given as follows:

DAUC � E[
AUCRRI − AUCDUS(wl, SNR)

AUCRRI
]

where DAUC is the normalized difference, and AUCDUS (wl, SNR)
is the AUCDUS as function of AC window length and SNR. DAUC

FIGURE 4 | Outline of the assessment of the discriminability of fHRV
features as functions of the AC window length. We simulated two sets of
FHRRRI sequences with different PSD and ApEn distributions. Then, we
extracted the fHRV of the simulated FHRDUS for each case, and we used
these estimates to assess the discriminability of each feature using the AUC of
Neyman-Pearson classifiers.
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quantifies the mean variation in the discriminability of each
feature across all simulated window lengths and SNRs.

3) The normalized standard deviation of AUCDUS for all lengths
and SNR given as follows:

σAUC �
�������������������������������
E[(AUCDUS(wl, SNR) − E[AUCDUS])2]

√

AUCRRI

where σAUC is the normalized standard deviation. This metric
quantifies how the discriminability of each feature varies as the
window length and SNR vary.

RESULTS

Simulation of FHRRRI and FHRDUS
We first compared the features of the simulated FHRRRI

sequences to those reported by Gonçalves et al. (2013) for
fetuses with normal umbilical cord blood-gas pH (≥7.20) and
those with acidotic pH (<7.20). Table 1 compares the 95%

confidence intervals of the PSD and ApEn features reported
by Gonçalves et al. to those estimated from our simulated
sequences. Table 1 also shows the difference in the limits of
the acidosis and normal distributions. Although the absolute
limits of the simulated distributions differ from the reported
distributions, they have similar trends; all features except for the
LF/(MF + HF) ratio, are larger for the acidosis than the
normal class.

We also compared the features of our simulated sequences to
those of the 80 subjects in the PhysioNet database. Figure 5
shows boxplots of the normalized FHRRRI features for three
populations: simulated normal (left), PhysioNet data, and
simulated acidosis (right). The notches, or indentations, in
the box plots indicate the 95% CI of the median of each
distribution. From these, it is evident that the medians
obtained of the PhysioNet subjects and the simulated normal
sequences were not statistically different for any feature. The
95% CI of the medians from the 80 subjects also overlap those of
the acidosis FHRRRI except for the MF power and the ApEn.
Thus, the distribution of the fHRV features estimated from our
simulated FHRRRI were similar to those of real data.

FIGURE 5 | Feature distributions for (A) LF, (B)MF, and (C)HF (D) LF/(MF + HF) ratio, and (E) ApEn. Each panel show the samples (scattered points) and boxplots
for the features for simulated normal (left), the PhysioNet data (middle), and simulated acidosis FHRRRI features (right). The notches, or indentations, in each boxplot
indicate the 95% CI for the median of each distribution. These plots show that the PhysioNet data and the simulated normal are not significantly different for any of the
features. In contrast, the simulated acidosis distributions are significantly different for the MF and ApEn.
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FIGURE 6 | Contour plots of the bias difference, bd, and random difference, rd, of the LF (A,B), MF (C,D), HF (E,F), LF/(MF + HF) (G,H), and ApEn (I,J) features
from FHRDUS for the acidosis distributions and varying AC window length (horizontal axis) and SNR (vertical axis). The differences are coded in colors blue (negative),
white (zero), and red (positive) according to their magnitude. For visualization, 10 isolines are used in each panel.
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fHRV Differences Between FHRRRI
and FHRDUS
Next we examined the differences between features computed
from the simulated FHRRRI and FHRDUS. Figure 6 shows contour
plots for the bias (left column) and random (right column)
differences of the five features as functions of window length
and SNR. The magnitude of the differences are color coded from
blue (negative) to white (zero) and to red (positive). Figure 6A
shows the LF power is underestimated when the SNR is low or the
window length is short; the bias difference is close to zero
difference when the window length is longer than 2 s and the
SNR is greater than 10 dB. Figure 6B shows that the random
difference of LF behaved similarly; variability was higher for low
SNR and short AC window lengths and decreased as either
parameter increased.

Figures 6C,E show that the MF and HF powers were
overestimated for low SNR and short AC windows while for
long windows and high SNRs they were underestimated. The bias
differences had larger magnitude for HF than for MF. Thus, the
HF power was most sensitive to the AC window and additive
noise. Figures 6D,F show that the random difference for bothMF
and HF were larger for low SNR and short AC windows but
decreased as the SNR and window length increased.

Figures 6G,H show that LF/(MF + HF) ratio bd and rd
behaves as expected from the individual trends. Thus, for low
SNR and short windows, the ratio was underestimated: smaller LF
divided by larger MF and HF estimates produce an
underestimated ratio. Similarly, for longer windows and higher
SNR, the ratio was overestimated; an almost unbiased LF divided
by smaller MF and HF produce an overestimate. The random
difference in Figure 6H is more complicated to interpret. It was
higher for low SNR and short windows, and decreased as either
parameter increased. However, it reached a minima at an SNR of
10 dB and window length of 2.5 s and then increased for higher
SNRs and window lengths. This might be explained if we consider
that the denominator of this ratio (MF +HF) is underestimated in
this area. Thus, any variability in the LF estimate, divided by a
smaller estimate of (MF + HF) will yield a more variable estimate.

TABLE 2 | Median AUCRRI and 95% confidence intervals.

AUCRRI

LFpow 0.83
(0.81–0.84)

MFpow 0.86
(0.84–0.87)

HFpow 0.82
(0.80–0.83)

LF
MF+HF 0.82

(0.80–0.84)
ApEn 0.92

(0.91–0.93)

FIGURE 7 | Contour plots of the median AUCDUS of the (A) LF, (B) MF,
(C) HF, (D) LF/(MF + HF), and (E) ApEn features for varying AC window length
(horizontal axis) and SNR (vertical axis). The AUCDUS are coded in colors white
(0.65), and red (0.85) according to their magnitude. For visualization, 5
isolines are used in each panel.
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Figure 6I shows that ApEn was always overestimated with the
error decreasing as the SNR and window length increased. The
random error of ApEn (Figure 6J) behaved similarly.

Discriminability of fHRV
We evaluated the discriminability of the features in terms of the
AUC of the Neyman-Pearson classifiers for varying AC window
length and SNR. As a reference, Table 2 shows the median and
95% CI AUCRRI . Figure 7 shows in contour plots the AUCDUS of
each of the LF, MF, HF, LF/(MF +HF), and ApEn features. For all
cases, AUCDUS decreased with respect to AUCRRI due to the AC
method and additive noise. The plots are color coded from the
minimum AUCDUS � 0.65 (white) to a maximum AUCDUS � 0.85
(red). Figure 7 describes two main trends: 1) for all features,
AUCDUS decreases as the SNR decreases, and 2) for all features,
AUCDUS decreases as the AC window length increases.

Figures 7A,B show that the discriminability of LF andMF was
greatest for SNR larger than 0 dB and windows shorter than 2 s.
Thus, in this region, their discriminability was not affected much
by the AC method. However, outside this region the color
contrast is strong, indicating a large drop in discriminability.
In contrast, Figure 7C shows that the reduction in HF
discriminability was less marked as the window length
increased or SNR decreased.

These observations can be contrasted with the results in
Table 3. Table 3 shows the 95% CI of the differences between
AUCRRI and AUCDUS, the mean difference DAUC , and σAUC for
each feature, AC window 1–5 s long, and −10–30 dB SNR. The
DAUC estimates show that in average the LF power loses 10.99%,
MF power loses 14.22%, and HF power loses 13.32% of their
discriminability. However, the variability of this discriminability,
according to σAUC , is considerably higher for LF and MF (5.02
and 5.40%) than for HF (2.05%). Thus, although HF loses 13.32%
of its discriminability due to the AC method and additive noise,
the obtained discriminability only varies in 2.05% with respect to
the AC window length and the SNR.

Figure 7D shows that the discriminability of LF/(MF + HF)
ratio decreases with longer windows and lower SNR. It follows a
similar trend to the LF and MF. The estimated D_AUC showed a
decrease of 10.39% of its discriminability, and σAUC showed a
variability of 5.15%. These estimates were close to those of the
LF power.

Finally, Figure 7E shows that the discriminability of ApEn
behaved similarly to HF AUCDUS. In this case, DAUC showed the
largest loss of discriminability (24.17%) but the smallest σAUC

variability (1.76%). This means that although ApEn loses much of
its discriminability due to the AC method, the remaining
discriminatory information is affected little by varying SNR or
AC window lengths.

DISCUSSION

This paper has two objectives: 1) to analyze differences in fHRV
features estimated from FHRRRI and FHRDUS; and 2) to determine
how these differences influenced their ability to discriminate
between two fHRV distributions. In our analysis, we simulated
sequences of RR intervals for which we controlled the PSD and
ApEn. Then, we simulated the DUS sampling and AC method, and
extracted the relevant features for each objective. Our results indicate
that 1) our simulated FHRRRI sequences have fHRV features with
distributions similar to those of real data, 2) the estimation of HF
power and ApEn are the most affected by the AC method and
additive noise, and 3) the loss of discriminability due to the AC
method is largest for the ApEn and smallest for the LF power and
LF/(MF + HF) ratio. We discuss below each section of these results.

Simulation Issues
The results presented in this paper are based on simulations in
which we generated artificial RR intervals and the corresponding
DUS signals. The significance of our results will depend on the
validity of these simulations. We believe they are valid for the
following reasons:

First, an important feature of our simulation of RR intervals
was that we were able to generate sequences having both power
spectral and entropy features similar to those of real data. Table 1
and Figure 5 show that the distribution of fHRV features of our
FHRRRI simulations fall within the distributions estimated from
the available real data. All features of the simulated RR intervals
were comparable to the features estimated from clinical data. This
contrasts with previous simulations which controlled only the
PSD (Clifford and Tarassenko, 2005), or the entropy
independently (Ferrario et al., 2006).

Secondly, we opted to simulate the envelope of the DUS
signals rather than the raw DUS signal itself. Raw DUS signals
are subject to multiple artifacts during clinical acquisition:
movement of the probe or signal loss introduce noise in the
signals (Shakespeare et al., 2001; Jezewski et al., 2017). As a
solution, fetal monitors use the envelope of the signal, which
serves as a LF filter (Hamelmann et al., 2020). This envelope
trades the amount of information contained in the signal, such as
the location of specific cardiac events (Shakespeare et al., 2001),
for robustness in the estimation of the FHR (Hamelmann et al.,
2020). Investigating the effect of extracting the envelope of the
signal is out of the scope of this study as we focused specifically on
the AC method applied to the DUS envelope. Furthermore, we
introduced noise in our signal in two ways: 1) we use 15 DUS
envelopes reported in the literature (Hamelmann et al., 2020) as
templates, which have intrinsic acquisition noise, and 2) we
added bandlimited uniform noise, where the cut-off frequency
was set to 7.7 Hz. Thus, even for our simulations with the highest
SNR, there is noise inherent to the templates that cannot be

TABLE 3 | Mean, DAUC, and 95% CI of the difference between AUCRRI and
AUCDUS and standard deviation of the estimated AUCDUS, σAUC, for AC
windows 1–5 s long and −10–30 dB SNR.

Mean difference DAUC

(%) and 95% CI
Standard

deviation σAUC (%)

LFpow −10.99 (−17.29–1.25) 5.02
MFpow −14.23 (−20.92–−0.40) 5.40
HFpow −13.33 (−16.39–−8.38) 2.05

LF
MF+HF −10.39 (−16.82–−2.14) 5.15
ApEn −24.17 (−26.30–−20.18) 1.76
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removed. This introduces heterogeneity in the signal, each DUS
cycle is different from the others.

Finally, it is important to consider the method used to
compute FHRDUS from the DUS signal: the estimation of
fHRV features will depend on this. We chose to use a
standard AC estimation method since this is what is currently
used in clinical monitors. Thus, our results are directly relevant to
understanding how the properties acquired with current
monitors behave. We are aware that a number of more
sophisticated methods have been proposed to improve the
accuracy of the beat-to-beat estimation of the FHR. These
methods are based on the AC method with adaptive
parameters, or utilize ML models to extract the beat-to-beat
sequence from the DUS signal (Peters et al., 2004; Jezewski
et al., 2011; Alnuaimi et al., 2017; Valderrama et al., 2019;
Katebi et al., 2020). The effect of those methods on fHRV as
function of their parameters is an important question to be
explored but is beyond the scope of the present paper.

fHRV Differences Between FHRRRI
and FHRDUS
Our experiments aimed to analyze the error of fHRV feature
estimation from using the AC method. We found that the length
of the autocorrelation window, which determines the extent of
signal averaging, had a strong influence on these errors. Longer
windows provide more AC averaging, which reduces the effect of
additive noise at the cost of beat-to-beat accuracy in the
estimation of FHR. In other words, longer averaging windows
act as low-pass filters with lower bandwidths. Accordingly,
Figure 6A shows underestimation of the LF power for short
AC windows and low SNR, but the bias difference increases to be
almost zero as AC window length and SNR increase. In contrast,
the MF and HF powers were increasingly attenuated as the
window length increased. As expected, the AC method
attenuates the MF and HF power while increasing the relative
magnitude of the LF power. This is in agreement with the findings
of Clifford and Tarassenko (2005) which showed that
interpolated heart rate signals (without averaging) overestimate
LF power with respect to higher frequency bands.

Showing a different behavior, ApEn (Figure 6I) is always
overestimated, which might be due to the effect of additive noise.
The ApEn is an estimate of a signal irregularity, and it is higher
for random than for periodic signals. Thus, adding random noise
increases the signal irregularity which directly increases the
ApEn. However, Figure 6I shows a decrease when SNR or the
window length increase; less noise or more averaging reduces the
irregularity in the signal and lowers the ApEn.

In summary, these results show that data from multiple
monitors with different parameters may yield different
estimates of fHRV. The extent of these differences is
documented in our contour plots as a function of window
lengths and SNR. Unfortunately, information about the
window length used is rarely available for commercial
monitors. Unless the manufacturers start to disclose the
parameters of their acquisition algorithms, data analysis of
such signals must take into account that the variability in the

estimated fHRV does not only depend on fetal state but also the
CTG monitor.

Discriminability of fHRV
FHR monitoring during the intrapartum aims to detect fetuses at
risk and to use this information to determine whether an
emergency cesarean delivery is warranted. Thus, it is
important to study how discriminability of certain features is
affected by the CTG acquisition methods. Our simulations
showed that the discriminability of PSD and ApEn features
changed with AC window length and SNR. For all features,
the AUC of a Neyman-Pearson classifier decreased as the SNR
decreases. This is explained by loss of discriminatory information
due to additive noise or large magnitude. Similarly, the AUC
decreased as the AC window length increased. This is explained
by the loss of discriminatory beat-to-beat information associated
with longer AC windows (more averaging).

Two different behaviors can be observed for the five fHRV
features analyzed. LF, MF, and LF/(MF + HF) lose less

FIGURE 8 | Contour plots of the median AUCDUS of the (A) LF1 and (B)
LF2 sub-bands for varying AC window length (horizontal axis) and SNR
(vertical axis). The AUCDUS are coded in colors white (0.65), and red (0.85)
according to their magnitude. For visualization, 5 isolines are used in
each panel.
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discriminability on average as defined by DAUC . However, they
have higher σAUC variability across the whole range of AC
window lengths and SNRs. This means that under ideal
conditions (short AC windows and high SNR) the
discriminatory information in these features is well preserved
by the AC method. However, samples obtained from monitors
that use different AC window lengths could carry quite different
discriminatory information, as σAUC is higher. In contrast, the HF
and ApEn features lose more DAUC discriminability on average,
but show less σAUC variability. Thus, these features are more
affected by the AC method itself, but they are less dependent on
the parameters of this method. This means that when considering
data from multiple sources, the LF, MF, and LF/(MF + HF)
features might be the best discriminatory parameters if the data is
analyzed for each source independently. However, if the data is
mixed, then the HF and ApEn features will have the similar
discriminatory behavior regardless the source.

The AC method is expected to preserve low frequencies and
attenuate high frequencies. Thus, we hypothesized that there
might be an LF sub-band that the AC method would not
affect. To this end we explored the effects of dividing the LF
band into two sub-bands LF1 (0.03–0.072 Hz) and LF2
(0.072–0.15 Hz). Figure 8A shows that by doing so, there was
no loss in discriminability for LF1 across different AC window
lengths and SNR. In contrast, Figure 8B shows that the
discriminability of LF2 AUCDUS decreased with longer AC
windows and lower SNR. Table 4 quantifies these changes;
LF1 loses 0.02% of its DAUC discriminability, and has 0.74% of
σAUC variability across all the range of AC window lengths and
SNRs. In contrast, LF2 loses 3.38% of its DAUC discriminability
and has 1.74% of σAUC variability. These results show that the use
of the AC method reduces the discriminability of higher
frequencies but that frequencies below 72 mHz are not affected
by the acquisition method. Therefore, the power in these
frequencies provides a discriminatory feature that is
independent of the acquisition method and its parameters (AC
window length and SNR).

Limitations
We believe these results provide important insight into the effects
of computing FHR features using the AC method. Nevertheless
there are a number of limitations of the work to consider.

First, the reference distributions that we used to define the
normal and acidotic classes were estimated from a handful of
cases, which might not be enough. Gonçalves et al. (2013)
reported features extracted from 21 normal fetuses and six

acidotic fetuses. Thus, a larger database would be necessary to
better characterize the distributions of both classes. Furthermore,
we use 15 DUS templates in our simulations. Although the use of
these templates result in variation of the simulated DUS waves,
using a larger number of DUS envelopes as templates might
produce more realistic DUS simulations.

Secondly, our model only controls the PSD and ApEn of the
simulated FHRRRI . However, it is important to highlight that the
power in each band was controlled independently of the others.
The fact that the LF/(MF + HF) ratio have a defined distribution
suggests that these features are correlated in a way. Our model did
not consider this correlation in the features, which resulted in
differences between the target distribution and the obtained
distribution as shown in Table 1. This limitation might have
an impact on the interpretation of the results that correspond to
the LF/(MF + HF) ratio. In addition, there are many other fHRV
features that are used to characterize the variability of FHR
signals, namely the short-term variability, long term
irregularity, the root mean square of successive differences,
among others. It is clear that an ideal simulation would be
able to account for all the relevant fHRV features and generate
as realistic simulations as possible. Nevertheless, we consider that
information available in the PSD of the FHR signal is relatable to
some of the time-domain features; the LF power carries
information about the long-term evolution of the signal, and
the HF power carries information about the short-term beat-to-
beat variability of the signal. Similarly, nonlinear indicators of
signal irregularity can be related to the ApEn of the signal. Thus,
although our study does not control nor account for all the
features used in the literature, we consider that our results provide
a representative understanding of how different fHRV features
behave in response to the AC method and the SNR.

Thirdly, our model does not account for signal loss.
Implementing signal loss requires to add a different noise
model, which behaves as a switch between signal and no
signal. We consider that a future study could expand our
model to include such a switch using information from real
databases. Parameters such as number of drops, or the duration of
the artifact can be characterized in their distributions to generate
a realistic DUS signal and FHRDUS estimation.

Fourthly, our model does not account for the nonstationary
behavior of intrapartum FHR signals. The simulated FHR signals
were time invariant within a window of 10 min. However, real
FHR signals are nonlinear and time-varying. For a single subject,
it is expected that the fHRV distribution will vary across labor:
increased uterine activity will generate responses in the FHR and
fHRV (Warrick and Hamilton, 2012; Lear et al., 2018). Thus, the
length of analysis window is an important parameter to consider
and optimize: short analysis windows will provide large
variability in the estimated features, while long analysis
windows will include nonstationary FHR. Another factor that
will affect the estimated fHRV is fetal state. It has been shown that
fetuses have variable fHRV distributions when they are in quiet
and active periods (Signorini et al., 2003). Thus, a long analysis
window might contain more than one fetal state, which is also
nonstationary behavior. An alternative approach to optimizing
the length of the analysis window is to consider time-varying or

TABLE 4 |Median AUCRRI and 95% CI, mean difference of AUCRRI and AUCDUS,
DAUC, and standard deviation of the estimated AUCDUS, σAUC, for LF1 and
LF2. These estimates were done for AC windows 1 to 5 s long and −10 to
30 dB SNR.

AUCRRI Mean
difference DAUC (%)

Standard
deviation σAUC (%)

LF1 0.69 (0.67–0.70) −0.02 (−1.40–1.49) 0.75
LF2 0.72 (0.70–0.74) −3.38 (−5.48–1.04) 1.74
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parameter-varying models to describe FHR and fHRV. Future
studies should consider these models in the analysis of
intrapartum FHR.

Finally, our model does not consider the effect of gestational
age (GA). It has been reported that the distribution of fHRV
features vary with GA (Gonçalves et al., 2018). However, no
significant difference was reported in PSD or ApEn features for
term infants (GA > 36 weeks). Considering that our simulations
took as reference fHRV distributions from term infants or
intrapartum signals, we believe that our results are valid
regardless GA in term infants. Further studies should analyze
if the trends of the bd and rd are different when GA < 36 weeks.

CONCLUSION

Our results demonstrate the susceptibility of fHRV features to the
AC method and additive noise in the clinical acquisition of FHR.
The dependency of the estimation error on the AC window
length, which is part of the proprietary information of the
FHR monitor manufacturers, is a limitation in comparing data
acquired from different monitors. There is an increasing interest
in applying machine learning techniques to FHR tracings on large
databases to identify fetuses at risk during antepartum (Signorini
et al., 2020) and intrapartum monitoring (Georgieva et al., 2017;
Petrozziello et al., 2019). Although the discriminability of fHRV
features depends on the AC window length of the FHR monitor
and the SNR, it has low variability (<5.4%). Moreover, a feature
based on the power below 72 mHz is not affected by the AC
method. Thus, understanding the effects of the AC method on
fHRV discriminability would potentially lead to a better
implementation of ML classifiers of FHR signals when dealing
with multiple sources. LF power, MF power, and the LF/(MF +

HF) ratio are least affected by the AC method in average but are
more influenced by changes in the AC window length and SNR.
Classifiers based on these features would benefit from including
the fetal monitor model, or acquisition center, as part of the
regressor. On the other hand, HF power and ApEn experience the
largest loss of discriminability in average, but with lower
dependency on AC window length and SNR. Thus, classifiers
based on these features would not need to account for differences
in the acquisition fetal monitors.
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Intrapartum fetal monitoring’s primary goal is to avoid adverse perinatal outcomes

related to hypoxia/acidosis without increasing unnecessary interventions. Recently, a

set of indices were proposed as new biomarkers to analyze heart rate (HR), termed

HR fragmentation (HRF). In this work, the HRF indices were applied to intrapartum

fetal heart rate (FHR) traces to evaluate fetal acidemia. The fragmentation method

produces four indices: PIP-Percentage of inflection points; IALS-Inverse of the average

length of acceleration/deceleration segments; PSS-Percentage of short segments;

PAS-Percentage of alternating segments. On the other hand, the symbolic approach

studied the existence of different patterns of length four. We applied the measures to 246

selected FHR recordings sampled at 4 and 2 Hz, where 39 presented umbilical artery’s

pH ≤7.15. When applied to the 4 Hz FHR, the PIP, IASL, and PSS showed significantly

higher values in the traces from acidemic fetuses. In comparison, the percentage of

“words”Wh
1 andWs

2 showed lower values for those traces. Furthermore, when using the

2 Hz, only IASL,W0, andW
m
2 achieved significant differences between traces from both

acidemic and normal fetuses. Notwithstanding, the ideal sampling frequency is yet to

be established. The fragmentation indices correlated with Sisporto variability measures,

especially short-term variability. Accordingly, the fragmentation indices seem to be able

to detect pathological patterns in FHR tracings. These indices have the advantage of

being suitable and straightforward to apply in real-time analysis. Future studies should

combine these indexes with others used successfully to detect fetal hypoxia, improving

the power of discrimination in a larger dataset.

Keywords: fetal heart rate, fragmentation, symbolic dynamics, short-term variability, acidemia, umbilical cord pH

1. INTRODUCTION

In the twentieth century, technical advances led to the development of continuous electronic
monitoring of fetal heart rate (FHR) and uterine contraction (UC) signals, a technology known
as cardiotocography (CTG) (1). This technology constitutes the primary screening method to
allow early recognition of fetal distress related to intrapartum fetal hypoxia/ acidosis. Intrapartum
fetal monitoring’s principal goal is to avoid adverse perinatal outcomes related to hypoxia/acidosis
without causing an increase in unnecessary obstetrical interventions, such as cesarean sections
or instrumental vaginal deliveries, which are associated with higher maternal and perinatal risks
perinatal (2). Intrapartum fetal hypoxia is associated with the lack of an adequate oxygen supply to
the fetus, which may lead to metabolic acidosis that, if not reversed, may cause cell dysfunction and
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death. The involvement of important fetal organs and systems
may cause permanent sequelae, such as hypoxic-ischemic
encephalopathy (HIE) in the short-term and cerebral palsy in the
long-term or perinatal death. Before labor, on average, the arterial
pH of a healthy fetus is around 7.35, whereas, at birth, the average
pH of the umbilical artery blood is around 7.25. In this sense, it is
considered that moderate neonatal acidosis/acidemia will occur
when the pH is, at least, below 7.15 (1).

CTG became widely disseminated in industrialized countries,
despite controversial scientific evidence in favor of its routine
employment (1). The resulting graph is complex in nature and
challenging to interpret. Considerable intra- and interobserver
disagreement have been demonstrated in its analysis (3–5), both
by inexperienced and experienced healthcare professionals (6–8),
which limit CTG sensitivity and specificity. Computer analysis
of CTGs was developed to overcome the poor inter and
intraobserver agreement on tracing interpretation, to provide
an objective evaluation of CTG features that are difficult to
assess visually, and also to allow objective quantification of
variability (9–11), a parameter that is closely related to the state
of fetal oxygenation (12). There are different systems currently
available that use different mathematical algorithms to elicit
real-time alerts when changes associated with fetal hypoxia are
detected (13, 14). Therefore, this is an adjunctive technology to
CTG that aims to aid clinicians in the labor ward practice to
intervene on time in order to avoid adverse perinatal outcomes
related with hypoxia.

Commercially available FHR monitors acquire from Doppler
or electrocardiographic signals, beat-to-beat intervals measured
in milliseconds, and then convert and round off these values to
provide a sequence of instantaneous FHRs, expressed in beats
per minute (bpm) (15–17). When data is then exported from the
FHR monitors to other devices, it is sampled at 4 Hz (there is
an interpolation of signals so that an instantaneous FHR value
is provided every 0.25 s) (15–17). Previous studies showed that
while the linear time-domain parameters obtained from traces
acquired at 2 or 4 Hz are correlated, the similar is not verified
when using variability indices and nonlinear parameters, such as
entropy (17, 18). In Romagnoli et al. (19) the authors compare
several indices from 4 Hz traces and the corresponding down-
sampled at 2, 1, 0.4, and 0.2 Hz. A better performance was
obtained when using 2 Hz signals.

Recently, Costa et al. (20) proposed a new approach to analyze
the heartbeat fragmentation to measure the short-term heart rate
variability (STV). The assumption was that pathologic systems
manifest the highest degree of heart rate fragmentation. The
authors showed that these indices successfully distinguished the
heartbeat of normal subjects from those with coronary artery
disease. Furthermore, in a subsequent study, Costa et al. (21)
introduced a similar approach to the previous analysis but using
symbolic dynamics in order to get additional information on the
temporal structure of heart rate fragmentation. Modanlou et al.,
in their study (22), observed that the STV was reduced along
with neonatal hypoxemia, while more severe hypoxemia leads
to the loss of long–term variability. On the other hand, Druzen
et al. (23) showed that fetal hypoxia’s early effects increased short
and long term variability.

In this work, the new indices of both fragmentation methods
were applied to FHR intrapartum traces to detect acidemia,
comparing the traces sampling at 4 and 2 Hz.

2. MATERIALS AND METHODS

2.1. Data
The database used in this work is available at Physionet (24)—
CTU-UHB Intrapartum Cardiotocography Database (25). It
contains 552 cardiotocography (CTG) intrapartum recordings
with a maximum duration of 90 min each. For this work, it
was only selected the last hour of the FHR recordings where the
signal loss was lower than 15%. From the 246 selected recordings
sampled at 4 Hz, 39 presented the umbilical artery’s pH ≤ 7.15,
which were considered cases of fetal acidemia (pathological). The
2 Hz traces were created, ignoring every other beat of 4 Hz
sampling. The main clinical characteristics of the database are
summarized in Table 1.

2.2. SisPorto
The Omniview-SisPorto system (26, 27) was created for CTG
interpretation and analysis, incorporating FIGO 2015 guidelines,
in its last version (2). The traces were analyzed using the
Omniview SisPorto 4.1 at a sampling frequency of 4 Hz. Four
basic CTG features were extracted from the SisPorto analysis:

1. Basal linemean level of themost horizontal and less oscillatory
FHR segments, in the absence of fetal movements and uterine
contractions, associated with periods of fetal rest;

2. Abnormal short-term variability (STV)—percentage of
subsequent FHR signals differing less than 1 bpm;

3. Abnormal long-term variability (LTV)—percentage of FHR
signals with a difference between theminimum andmaximum
values in a 1 min window lower than 5 bpm;

4. Saltatory Index—>35% signals outside a filtered band
exceeding 25 bpm in last 30, 20, 10, and 5 min.

2.3. Fragmentation Analysis
Considering the time series X = {X1,X2, ...,XN}, where Xi

represents the time of occurrence of the fetal normal sinus beat
in the instance i, the differences between consecutive beats were
defined as 1Xi = Xi − Xi−1.

2.3.1. Fragmentation Indices
From these time series, four fragmentation indices were
computed as proposed by Costa et al. (20). Briefly,

1. PIP-Percentage of inflection points.
For the calculation of this index, Xi was considered an
inflection point when the condition 1Xi ∗ 1Xi+1 ≤ 0 was
verified. Furthermore, the points considered could also be
divided into two different types of inflection points:

1.1 PIPhard—when 1Xi ∗ 1Xi+1 < 0.
1.2 PIPsoft—when 1Xi ∗ 1Xi+1 = 0.

These points represent the instants in which either the
acceleration sign inverts (PIP hard) or it changes to or from
zero (PIP soft).
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TABLE 1 | Patient and labor characteristics for the CTU-UHB database (25).

med [Q1, Q3]
Normal

(n = 207)

Pathologic

(n = 39)

Mann-Whitney U-test

P-value

Cliff’s delta

effect size

Gestational age (weeks) 39 [40, 41] 40 [41, 41] 0.007 –0.26 (s)

Weight (grams) 3,075 [3,370, 3,625] 3,225 [3,390, 3,650] 0.336

Mother age 27 [30, 33] 26 [28, 30] 0.068 0.18 (s)

n (%)
Fisher Test

P-value

Sex (female) 102 (49%) 19 (49%) 1

Diabetes 18 (9%) 1 (3%) 0.324

Hypertension 20 (10%) 2 (5%) 0.543

Preeclampsia 11 (5%) 1 (3%) 0.697

Pyrexia 4 (2%) 0 1

Meconium stained fluid 29 (14%) 4 (10%) 0.797

Induced labor 95 (46%) 14 (36%) 0.293

Vaginal delivery 207 (100%) 38 (97%) 0.159

med, median; Q1, first quartile; Q3, third quartile. s, small effect size.

2. IALS-Inverse of the average length of acceleration and
deceleration segments.
An acceleration or a deceleration can be defined as a
segment between two consecutive inflection points in
the fetal heart rate. For each segment, if the difference
between two beats is negative (1Xi < 0) it is considered
a deceleration. On the other hand, if the difference is
positive it is considered a acceleration (1Xi > 0). However,
there can also be cases in which 1Xi = 0, meaning
that it is not either an acceleration or a deceleration.
For the computation of this parameter, these segments
were disregarded.
The size of each acceleration/deceleration is given
by the number of points belonging to Xi within
that segment.

3. PSS-Percentage of short segments.
A short segment is considered short if it contains<3 intervals.
The PSS was calculated as the complement of the percentage
of points in segments of accelerations or decelerations with
three or more intervals. It translates to groups of three or
more 1Xi points with the same negative or positive signals
in a row.

4. PAS-Percentage of alternating segments.
An alternating segment is a sequence of at least four 1Xi

points where the sign differs in every single beat. The
PAS measure is looking for the percentage of patterns of
accelerations (acc) and deceleration (dec) like “acc-dec-acc-
dec” or “dec-acc-dec-acc.”

The approach is based on the assumption that the higher
the signal’s alternation, the more fragmented the time series
translates into higher indices.

Figure 1A, shows 50 s (101 points) of a FHR trace sampled
at 2 Hz. The trace presents 53 inflection points in which 11 are
classified as hard. The PIP indices for this trace are the following:
PIP =

53
101 ≈ 53%; PIPhard =

11
101 ≈ 11%; PIPsoft = 42

101 ≈ 42%.
Also, there are 33 segments between inflection points
that are accelerations or decelerations, therefore IALS =
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3+ 1+ 1+ 3+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1
+1+ 2+ 2+ 1+ 3

33

















−1

≈ 66%. At last, PSS = 1 −
5+4+3+3+3

101 = 1 −
18
101 ≈ 82%;

PAS = 0.

2.3.2. Symbolic Fragmentation Indices
The vector 1Xi = Xi − Xi−1 was mapped to a ternary symbolic
sequence as follows: si = 0 if 1Xi =0, si = 1 if 1Xi >0, and si =
2 if 1Xi < 0. That means that an acceleration corresponded to
the number 2, a deceleration corresponded to the number 1, and,
in the case of two equal consecutive intervals, it corresponded
to 0. Considering i the index of the ternary symbolic sequence,
short-terms with 4 elements named “words” (w) were build as
follows wi = {si, si+1, ..., si+4−1}.

Transitions from symbol “1” to “2” or vice versa, were
termed hard (H) inflection points. Transitions to or from zero
were termed soft (S) inflection points. Word groups with only
hard, only soft, and a combination of hard and soft inflection
points (mixed) were, respectively, labeled Wh

j , W
s
j , and Wm

j ,

j indicates the number of inflection points. To calculate each
word’s percentage, we use the total number of each word
as denominators.

Figure 1B exhibits 25 s (101 points) of a FHR trace sampled
at 4 Hz. Eight words of length four were selected and classified to
better illustrate the symbolic fragmentation indices analysis.

2.4. Statistical Analysis
The normality of the fragmentation indices in both groups
(normal vs. pathological) was verified by observing the
histograms and Q-Q graphs. Since almost all indices’ distribution
was skewed, values were described with the median and
interquartile interval [first quartile-Q1, third quartile-Q3]. The
Mann-Whitney U-test was used to compare the indices in each
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FIGURE 1 | (A) Representation of 50 s of a fetal heart rate time series sampled at 2 Hz. The trace presents 53 inflection points (*) and there are 33 segments between

inflections points that are accelerations or decelerations. PIP =
53
101 ≈ 53%; PIPhard =

11
101 ≈ 11%; PIPsoft = 42

101 ≈ 42%; IALS ≈ 66%; PSS ≈ 82%; PAS = 0.

(B) Representation of 25 s of a fetal heart rate time series sampled at 4 Hz with the classification of eight words as an example.

of the two groups. Cliff ’s delta was computed to estimate the
effect size. Small effect size was considered when Cliff ’s delta
was between 0.15 and 0.33, medium effect size if Cliff ’s delta
was between 0.33 and 0.47 and large effect size when Cliff ’s
delta was higher than 0.47. The correlation between the matching
time series’ computed indices was calculated using the Spearman
correlation coefficients. For descriptive and inference statistics,
SPSS Statistics (v.25; IBM SPSS, Chicago, IL) and R software (28)
were used. For all statistical tests, it was used a significance level
of 0.05.

3. RESULTS

When analyzing the original signals sampled at 4 Hz, from the
basic CTG features, only the saltatory index showed significantly

higher values in the tracings of the group of fetuses with acidemia
compared to those of normal ones. Using the fragmentation
measures, we found values of PIP, IASL, and PSS values
significantly lower in the tracings of the pathological group
(Table 2). The higher PIP in the traces from healthy fetuses
represent more inflection points, this is, they oscillate more. The
lower value of IASL in the tracings of pathological fetuses means
that the size of accelerations or decelerations is higher in that
group. In agreement with the previously described results, these
traces present less beat-to-beat oscillations. Complementary, PSS
as a measure of short segments of three or more beats that
are not accelerations or decelerations are also lower in the
acidemia group. The results also show that the traces analyzed
have a large percentage of two consecutive points of equal value
(PIPsoft), which implies a low value of PAS (mostly zeros).
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TABLE 2 | Comparison of fragmentation indices for both groups using Mann-Whitney U-test when analyzing the 4 Hz fetal heart rate time series.

Normal Pathologic Cliff’s delta

effect size

Spearman

correlation
med [Q1–Q3] med [Q1–Q3] P-Value

4 Hz

Basal line 128 [120–138] 136 [123–142] 0.091 0.17 (s)

Abnormal STV 46 [39.5–57] 44 [39–55] 0.321

Abnormal LTV 2 [0–6] 2 [0–5] 0.750

Saltatory index 79 [48–114] 98 [66.5–134.5] 0.028 0.22 (s)

PIP 97.0 [95.8–97.9] 96.0 [95.0–97.3] 0.016 −0.24 (s)

PIPhard 2.5 [1.4–4.2] 3.2 [1.9–4.6] 0.122

PIPsoft 94.2 [91.3–96.1] 93.6 [90.9–94.5] 0.056 −0.19 (s)

IASL 0.92 [0.89–0.94] 0.89 [0.87–0.92] 0.001 –0.33 (m)

PSS 99.4 [98.8–99.8] 99.0 [98.2–99.6 ] 0.007 −0.27 (s)

PAS 0.00 [0.00–0.03] 0.00 [0.00–0.06 ] 0.471

W0 15.7 [8.9–22.2] 17.0 [10.0–22.2] 0.926

Ws
1 16.9 [15.1–19.0] 16.7 [14.9–18.4] 0.336

Wh
1 0.03 [0.01–0.06] 0.06 [0.03–0.11 ] 0.003 0.30 (s)

Ws
2 31.0 [28.9–32.9] 32.1 [30.8–35.0 ] 0.010 0.26 (s)

Wm
2 1.9 [1.3–3.3] 2.5 [1.6–3.6 ] 0.079 0.18 (s)

Wh
2 0.01 [0.00–0.01] 0.01 [0.00–0.02 ] 0.277

Ws
3 21.6 [16.6–30.5] 20.30 [17.0–24.1] 0.290

Wm
3 8.9 [6.3–11.4] 9.6 [7.5–13.10] 0.141

Wh
3 0.00 [0.00–0.00] 0.00 [0.00–0.00 ] 0.136

2 Hz

PIP 76.6 [72.3–82.5] 76.8 [72.2–79.9] 0.316 0.33∗∗

PIPhard 21.0 [14.8–24.2] 18.6 [14.7– 22.9] 0.262 0.53∗∗

PIPsoft 58.1 [48.4–65.0] 57.2 [51.1–61.6] 0.657 0.21∗∗

IASL 0.6 [0.6–0.7] 0.6 [0.6–0.7] 0.046 −0.26 (s) 0.39∗∗

PSS 79.5 [75.0–85.5] 78.7 [73.1–82.3] 0.091 −0.17 (s) 0.16∗

PAS 8.8 [4.5–11.2] 7.8 [4.6–9.4 ] 0.074 −0.18 (s) 0.29∗∗

W0 10.3 [7.8–13.0] 11.6 [9.9–13.4] 0.026 0.22 (s) 0.71∗∗

Ws
1 16.0 [13.4–21.1] 18.1 [14.3–21.5] 0.260 0.86∗∗

Wh
1 6.2 [4.3–9.3] 6.7 [5.4–10.6 ] 0.160 0.04

Ws
2 20.1 [18.6–23.2] 21.2 [19.4–22.8 ] 0.385 0.23∗∗

Wm
2 11.8 [10.7–12.8] 11.0 [10.4–11.8 ] 0.024 −0.23 (s) 0.40∗∗

Wh
2 5.9 [3.6–8.2] 5.1 [4.1–7.1 ] 0.632 0.32∗∗

Ws
3 7.4 [6.5–8.3] 6.9 [6.0–8.1] 0.120 −0.44∗∗

Wm
3 16.5 [13.0–18.9] 15.1 [12.5–17.2] 0.077 −0.18 (s) 0.58∗∗

Wh
3 3.1 [1.5–4.0] 2.7 [1.4–3.6 ] 0.194 0.23∗∗

med, median; Q1, first quartile; Q3, third quartile. s, small effect size; STV, short-term variability; LTV, long-term variability; ∗p < 0.05, ∗∗p < 0.001; m, medium effect size.

Bold P-value represent the values lower than 0.05.

Furthermore, using the symbolic approach in the original traces,
the indices Wh

1 and Ws
2 presented significantly higher values in

the tracings of the group of fetuses with acidemia compared
to those of normal fetuses. The number of words with soft
transitions is much higher than both hard and mixed words.
These values corroborate the high percentage of two equal
consecutive values.

When the down-sampled 2 Hz signals are analyzed, PAS
values increase while PSS values decrease, indicating less
repetitive values in the 2 Hz traces than the 4 Hz ones (Table 2).
However, the hypoxia classification power reduces for all indices.

Moreover, the symbolic indices applied to these 2 Hz traces show
significantly higher values of W0 in traces from pathological
fetuses, meaning that the traces of pathological fetuses present
more patterns of four repeated values than the healthy fetus.
Also, we found significantly lower values of Wm

2 , meaning that
patterns with two inflection points are more frequent in traces
from healthy fetuses than pathological ones.

In Table 2, the Spearman correlation coefficients between
the indices obtained when using the 4 Hz and the matching
2 Hz time series are presented. The achieved correlations are
moderate for the fragmentation, being higher for the PIPhard
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TABLE 3 | Spearman correlation, and corresponding 95% confidence intervals, between Sisporto clinical features, computing using 4 Hz fetal heart rate time series and

fragmentation indices for the 4 and 2 Hz fetal heart rate time series.

Basal line Abnormal STV Abnormal LTV Saltatory index

4 Hz

PIP –0.37 [–0.48; –0.25] 0.22 [0.10; 0.34] 0.17 [0.04; 0.29] –0.33 [–0.44; –0.21]

PIPhard 0.65 [0.57; 0.73] 0.29 [0.17; 0.40] 0.29 [0.17; 0.40] –0.11 [–0.24; 0.01]

PIPsoft –0.63 [–0.70; –0.54] –0.11 [–0.23; 0.02] –0.13 [–0.25; 0.00] –0.05 [–0.18; 0.07]

IASL –0.34 [–0.45; –0.23] 0.19 [0.07; 0.31] 0.18 [0.06; 0.30] –0.38 [–0.48; –0.26]

PSS –0.07 [–0.20; 0.05] 0.22 [0.10; 0.34] 0.17 [0.05; 0.29] –0.45 [–0.54; –0.33]

PAS 0.29 [0.17; 0.40] 0.06 [–0.07; 0.18] 0.08 [–0.05; 0.20] 0.04 [–0.08; 0.17]

W0 0.20 [0.08; 0.32] 0.59 [0.50; 0.67] 0.40 [0.29; 0.51] –0.36 [–0.47; –0.24]

Ws
1 –0.05 [–0.17; 0.08] 0.36 [0.24; 0.47] 0.09 [–0.04; 0.21] –0.33 [–0.44; –0.21]

Wh
1 0.02 [–0.11; 0.14] –0.26 [–0.37; –0.13] –0.18 [–0.30; –0.05] 0.45 [0.34; 0.55]

Ws
2 0.12 [–0.01; 0.24] –0.46 [–0.56; –0.36] –0.34 [–0.45; –0.22] 0.48 [0.37; 0.58]

Wm
2 0.73 [0.66; 0.79] 0.43 [0.32; 0.53] 0.38 [0.26; 0.49] –0.18 [–0.30; –0.05]

Wh
2 0.13 [0.00; 0.25] –0.12 [–0.25; 0.00] –0.10 [–0.22; 0.03] 0.27 [0.15; 0.38]

Ws
3 –0.65 [–0.72; –0.56] –0.62 [–0.70; –0.53] –0.44 [–0.54; –0.33] 0.33 [0.21; 0.44]

Wm
3 0.49 [0.39; 0.59] 0.05 [–0.08; 0.17] 0.11 [–0.02; 0.23] 0.01 [–0.11; 0.14]

Wh
3 0.29 [0.17; 0.40] –0.01 [–0.13; 0.12] 0.01 [–0.12; 0.13] 0.13 [0.01; 0.26]

2 Hz

PIP 0.35 [0.24; 0.46] 0.86 [0.82; 0.89] 0.67 [0.58; 0.74] –0.63 [–0.70; –0.54]

PIPhard 0.02 [–0.11; 0.14] –0.15 [–0.27; –0.02] 0.00 [–0.12; 0.13] 0.01 [–0.11; 0.14]

PIPsoft 0.22 [0.09; 0.33] 0.64 [0.55; 0.71] 0.41 [0.30; 0.52] -0.42 [–0.52; –0.31]

IASL 0.36 [0.24; 0.47] 0.85 [0.80; 0.88] 0.68 [0.60; 0.75] -0.72 [–0.78; –0.65]

PSS 0.37 [0.25; 0.47] 0.88 [0.85; 0.91] 0.69 [0.60; 0.75] –0.71 [–0.78; –0.64]

PAS 0.09 [–0.03; 0.22] 0.04 [–0.09; 0.16] 0.12 [0.00; 0.25] –0.16 [–0.28; –0.03]

W0 0.20 [0.08; 0.32] 0.22 [0.10; 0.34] 0.15 [0.03; 0.27] 0.06 [–0.07; 0.18]

Ws
1 0.03 [–0.10; 0.15] 0.22 [0.10; 0.34] 0.05 [–0.08; 0.17] –0.08 [–0.20; 0.05]

Wh
1 –0.30 [–0.42; –0.18] –0.80 [–0.85; –0.74] –0.54 [0.50; 0.67] 0.60 [0.51; 0.68]

Ws
2 –0.18[–0.30; –0.05] 0.02 [–0.11; 0.14] –0.13 [–0.25; –0.01] –0.01 [–0.14; 0.11]

Wm
2 0.19 [0.07; 0.31] 0.36 [0.24; 0.47] 0.38 [0.26; 0.48] –0.37 [–0.48; –0.26]

Wh
2 –0.08 [–0.20; 0.05] –0.36 [–0.47; –0.24] –0.19 [–0.31; –0.07] 0.18 [0.05; 0.30]

Ws
3 –0.03 [–0.15; 0.10] 0.33 [0.22; 0.44] 0.10 [–0.02; 0.23] –0.32 [–0.43; –0.20]

Wm
3 0.15 [0.02; 0.27] 0.30 [0.18; 0.41] 0.35 [0.23; 0.46] –0.32 [–0.43; –0.20]

Wh
3 0.09 [–0.03; 0.22] 0.02 [–0.11; 0.14] 0.13 [0.00; 0.25] –0.10 [–0.22; 0.02]

STV, Short-term variability; LTV, Long-term variability; bold correlation values represent moderate to high correlations |r| > 0.40.

index (r = 0.53). Notwithstanding, the values obtained with the
2 Hz time series are almost 10 times higher. In the symbolic
fragmentation approach, the words W0, W

s
1, and Wm

3 , exhibited
higher correlation values (r = 0.71, 0.86, and 0.58, respectively).
We highlight the no significant correlation found in theWh

1 index
(r = 0.04) and the moderate negative correlation obtained in the
indexWs

3 (r = –0.44).
The Spearman correlations between the SisPorto features,

computed using the fetal heart rate traces at 4 Hz, and the
fragmentation indices at 4 and 2 Hz are presented in Table 3.
The fragmentation indices PIPhard and PIPsoft, computed in
the FHR time series at 4 Hz, are moderately correlated with the
basal line values. Moreover, the symbolic fragmentation indices
presented moderate correlations with the variability indices.
Furthermore, when analyzing the FHR time series at 2 Hz,
the PIP, the IASL, the PSS and the Wh

1 indices are strongly
correlated with the SisPorto variability indices, in particular

with the STV. Higher values of the fragmentation indices are
correlated with higher values of abnormal STV and LTV. On
the other hand, higher values of fragmentation indices represent
lower values of Saltatory index.

4. DISCUSSION

The recently proposed fragmentation measures analyze the
short-term fluctuations in cardiac beat-to-beat intervals. The
novelty of this study is to apply this new fragmentation approach
to FHR signals. When applied to FHR, we found that the
indices seem to detect pathological patterns in FHR tracings,
such as those from acidemic fetuses. In fact, we observed that
five of the fragmentation indices, the PIP, IASL, PSS, Wh

1 , and
the Ws

2, successfully distinguished the traces of fetuses with
acidemia from normal fetuses. These indices also have the
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advantage of being suitable and straightforward to apply in
real-time analysis.

Both fragmentation approaches, the original and the symbolic
one, analyze the signal taking into account consecutive
accelerations or decelerations, ignoring their magnitude. This
procedure relates to the analysis of the STV of the signal. The
STV characterizing the beat-to-beat variability is, on average, 2 or
3 bpm and reduced if one or less (1). LTV represents broad-based
swings in fetal heart rate, or “waviness,” occurring up to several
times a minute—it is normal in a bandwidth amplitude of 5–25
bpm. One form of long-term variability of particular significance
is a fetal heart “acceleration.” These usually occur in response
to fetal movement, and are 15 bpm above the baseline or more,
lasting 15 s or longer (12). The presence of fetal accelerations
is reassuring that the fetus is healthy and tolerating the intra-
uterine environment well. Its absence during labor is of no
significance. The STV has been studied as one of the predictors
of fetal wellbeing in labor, measuring the dynamic interaction
between the fetal sympathetic and parasympathetic nervous
systems and its effects on fetal cardiovascular activity (29).
As the parasympathetic nervous system is more responsible
for variations in STV, it might be reduced in central nervous
system hypoxia/ acidosis (23). As described before, if hypoxia
is sustained and increases in severity, it leads to the loss of
long–term variability (22)—resulting in a global decrease of
sympathetic and parasympathetic activity. On the other hand,
it has been shown that fetal hypoxia’s early effects increased
short and long term variability (23). The saltatory pattern
or increased variability pattern is described as a bandwidth
value exceeding 25 bpm lasting more than 30 min (12)—the
pathophysiology of this pattern is incompletely understood,
but it may be seen linked with recurrent decelerations, when
hypoxia/acidosis evolves very rapidly. It is presumed to be
caused by fetal autonomic instability/hyperactive autonomic
system (30).

Additionally, in the FHR analyzed, the number of consecutive
points with the same value is high. The rationale for this finding
may be related to the nature of these indices and the redundant
values of FHR signals obtained at 4 Hz. A normal fetal heart
rate will be expected to vary from 110 to 160 beats-per-minute
in an intrapartum setting, corresponding to frequencies between
1.8 and 2.7 Hz. Therefore, we decided to study the indices
applied to 2 Hz downsampled time series. Our results verify this
theory once correlations were found between the fragmentation
indices and the SisPorto variability features. In fact, we found
stronger correlations between the fragmentation indices and
the SisPorto variability features, especially with the abnormal
STV, when considering the 2 Hz time series. In contrast, no
correlations were observed if one analyzed the 4 Hz FHR
time series.

Our results were consistent with the results observed
in previous studies (17–19). We encountered a moderate
correlation between the indices computed in the time series with
the different sampling rates, but their values varied greatly. In
fact, in Romagnoli et al. (19) the authors used the same database
used in this paper and considered the 2 Hz acquisition the

ideal for their analysis. The results obtained with the 2 Hz seem
to be more physiological, but its ability to distinguish traces
from acidemic fetuses appears to decrease. A reason for the
obtained results might be that when the FHR signal is sampled
at 4 Hz when there is no new beat within 0.25 s, a repetition
of FHR values will occur, suggesting that 2 Hz sampling may
be the best solution. Figure 1B is good example of repetitive
values in the 4 Hz time series. Almost always, there are at
least two consecutive points with the same values. Although,
in tachycardia where the FHR increases, more common in the
pathologic cases, some information might be lost when using 2
Hz acquisition (17–19).

Furthermore, we believe that the symbolic fragmentation
outcomes can be improved. The percentage of non-inflection
points might be one of the conditions to be further studied,
as well as the length of the word chosen. In the original
paper, the choice of words of size four was based on the
coupling between the cardio-respiratory systems in adults.
In FHR, other sizes should be probed to capture the
correct dynamic.

The reduced number of pathologic fetuses limited the
number of indices to probe in the logistic regression. Future
studies should test the combination of these indexes with
others used to detect fetal hypoxia to improve the power
of discrimination.

5. CONCLUSION

In this exploratory work, the recently proposed fragmentation
measures emerge to detect pathological patterns in FHR tracings.
Both fragmentation approaches have the advantage of being
quick and straightforward to calculate what may be essential
for using these measures in real-time settings. In addition, these
measures are related to the Sisporto variability indices, especially
with the short-term variability of the signal. The question
of the ideal sampling frequency for the FHR time series was
raised. If, on one hand, the 2 Hz time series avoid multiple
duplicated values, it might lose relevant information when the
FHR arises in accelerations and tachycardia episodes. On the
other hand, this duality might affect the discriminant power of
the indices. Future studies should test the combination of these
indexes with others used successfully to detect fetal hypoxia
to improve the power of discrimination in a larger dataset.
This may contribute to developing new computerized algorithms
that may improve CTG diagnostic ability to detect fetal
hypoxia/ acidosis.
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Challenges of Developing Robust AI
for Intrapartum Fetal Heart Rate
Monitoring
M. E. O’Sullivan1*, E. C. Considine1, M. O’Riordan1,2, W. P. Marnane1,3, J. M. Rennie4 and
G. B. Boylan1,5

1INFANT Research Centre, University College Cork, Cork, Ireland, 2Department Obstetrics and Gynaecology, University College
Cork, Cork, Ireland, 3School of Engineering, University College Cork, Cork, Ireland, 4Institute for Women’s Health, University
College London, London, United Kingdom, 5Department of Paediatrics and Child Health, University College Cork, Cork, Ireland

Background: CTG remains the only non-invasive tool available to the maternity team for
continuous monitoring of fetal well-being during labour. Despite widespread use and
investment in staff training, difficulty with CTG interpretation continues to be identified as a
problem in cases of fetal hypoxia, which often results in permanent brain injury. Given the
recent advances in AI, it is hoped that its application to CTG will offer a better, less
subjective and more reliable method of CTG interpretation.

Objectives: This mini-review examines the literature and discusses the impediments to
the success of AI application to CTG thus far. Prior randomised control trials (RCTs) of CTG
decision support systems are reviewed from technical and clinical perspectives. A
selection of novel engineering approaches, not yet validated in RCTs, are also
reviewed. The review presents the key challenges that need to be addressed in order
to develop a robust AI tool to identify fetal distress in a timely manner so that appropriate
intervention can be made.

Results: The decision support systems used in three RCTs were reviewed, summarising
the algorithms, the outcomes of the trials and the limitations. Preliminary work suggests
that the inclusion of clinical data can improve the performance of AI-assisted CTG.
Combined with newer approaches to the classification of traces, this offers promise for
rewarding future development.

Keywords: cardiotocography (CTG), fetal heart rate (FHR), hypoxic ischaemic encephalopathy (HIE), labour,
pregnancy, fetal hypoxia, artificial intelligence, machine learning

1 INTRODUCTION

Ensuring the safe passage of a baby through the birth canal remains a major challenge globally.
Despite improvements in stillbirth and neonatal mortality rates, intrapartum-related hypoxia (“birth
asphyxia”) is estimated to contribute to almost a quarter of the world’s annual 3 million neonatal
deaths and almost a half of the 2.6 million third trimester stillbirths (Lee et al., 2013). The WHO
estimated in 2005 that as many as 1 million survivors of birth asphyxia may develop cerebral palsy,
learning difficulties or other disabilities each year. In England, the 2019/20 annual report of NHS
Resolution (NHSR), the body that oversees clinical negligence claims, stated that £2.3 billion was
spent on clinical negligence payments, of which 50% went on settling obstetric claims (which
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represented just 9% of the total claims made). NHSR estimated
that for every baby born in England £1100 was paid in indemnity
costs (NHS Resolution, 2019).

Currently, the only non-invasive way of assessing the fetus in
labour is by monitoring fetal heartrate. Cardiotocography (CTG)
is a technique that measures changes in fetal heart rate (FHR) and
relates it to uterine contractions (UC) in order to identify babies
who are becoming short of oxygen (hypoxic). CTG monitoring
was introduced in the 1960s despite the absence of RCTs. Since
then, a Cochrane review of 13 trials involving 37,000 women has
shown that continuous CTG monitoring compared to
intermittent auscultation was associated with a 50% reduction
in neonatal seizures (Alfirevic et al., 2017). The review was
dominated by the large Dublin trial which enrolled 12,964
women in 1981–1983 (MacDonald et al., 1985). This trial
showed no difference in neonatal mortality or cerebral palsy
rates. Many guidelines and textbooks on CTG interpretation have
been published over the years, the most recent being the NICE
intrapartum care guideline of 2014, updated in 2017 (National
Institute for Health and Care Excellence (NICE), 2017). CTG
interpretation is heavily dependent on pattern recognition, in
particular the FHR response to UCs. Abnormal patterns, such as
“late” decelerations, can indicate fetal hypoxia, but the CTG is an
overly sensitive test; 60% of babies born after their CTG showed
such changes were not acidotic (Beard and Finnegan, 1974). CTG
interpretation has low inter- and intra-observer agreement rates,
and even experts can differ in their interpretation of the
same CTG.

The potential of CTG monitoring has not been realised in
spite of major efforts aimed at training staff. NHSR has
conducted several reviews (10 years of maternity claims
(NHS Resolution, 2018) and 5 years of cerebral palsy claims
(NHS Resolution, 2017). Errors with the interpretation of FHR
monitoring was the most common theme and were often
related to systemic and human factors. Uninterpretable
CTGs were also common, with a wait and see approach
being taken when there was possible loss of contact. The
Royal College of Obstetricians & Gynaecologists (RCOG)
“Each Baby Counts” report reached the same conclusion
(Royal College of Obstetricians and Gynaecologists, 2020).
The latest NHSR review recommended that CTG
interpretation should not occur in isolation, but as part of a
holistic assessment.

With artificial intelligence (AI), we can now take a fresh,
unbiased look at the CTG. Previous attempts at using AI analysis
of CTG have not proved successful. Most aimed to mimic human
methods of analysis (e.g. recognition of FHR baseline, FHR
variability and decelerations). However, modern computer
systems using more advanced machine learning methods can
include wide ranging analysis. AI systems are available 24/7, and
are not affected by human factors such as fatigue, distraction,
bias, poor communication, cognitive overload, or fear of doing
harm. All of these were identified as limiting factors by the RCOG
“Each Baby Counts” reports. Better ways of using and
interpreting the CTG have the potential to reduce death and
disability, and to prevent significant litigation costs.

2 REVIEW OF PRIOR ART IN AI FOR CTG

2.1 Algorithms Used in Randomised Control
Trials
Recent systematic reviews of AI for CTG concluded that prior
studies did not manage to improve rates of neonatal acidosis,
seizures, death, unnecessary interventions or ICU admissions
(Campanile et al., 2018; Balayla and Shrem, 2019; Garcia-
Canadilla et al., 2020). One study found that inter-rater
reliability between humans and AI was moderate but that AI
models that mimic human interpretation is akin to adding a
“second evaluator with similar instructions” (Balayla and Shrem,
2019). This suggests that for decision support to be effective, it
should add value through features that are not obvious to the
human. The three RCTs included in the review paper, which are
the only trials that compare human and AI CTG interpretation,
are revisited below. The three systems used hand-crafted features
that generally aimed to replicate the International Federation of
Gynecology and Obstetrics (FIGO) guidelines (Ayres-de-Campos
et al., 2015).

The INFANT (Intelligent Fetal AssessmeNT) system was
developed over 20 years ago to extract and quantifies the
following FHR features: signal quality, baseline, variability,
accelerations, decelerations and their timing in relation to
contractions. These are the features that are typically
interpreted by the human in current clinical practice. The
INFANT system extracts these features using numerical
algorithms and artificial neural networks (Keith and Greene,
1994). Relevant clinical information, including cervical
dilation, analgesia, fetal blood sampling and risk factors (intra-
uterine growth restriction, placenta abruption and meconium)
are also considered in the AI model. The system uses over 400
rules to interpret the data and provide decision support. It does
not provide any recommendations for actions that should be
taken in response to detected FHR abnormalities (Keith and
Greene, 1994).

A multicentre RCT of this system on 47,000 patients was
completed in 2017, which found that the decision-support
software did not improve clinical outcomes, despite its
effectiveness in correctly detecting FHR abnormalities
(Brocklehurst et al., 2017). The hypotheses that substandard
care was due to failure to identify non-reassuring CTG and
that a decision-support system would reduce unnecessary
interventions were not supported. The study suggests that
substandard care was due to management decisions after
identifying CTG abnormalities. The decision-support system
used in the trial did not include clinical information
pertaining to the labour (i.e. labour duration and progress).
Including this information in the decision support system may
have improved decisions to escalate.

Omniview-SisPorto 3.5 provides alerts based on computer
analysis of CTG. It classifies CTG into four classes (reassuring,
non-reassuring, very non-reassuring and pre-terminal) based on
FIGO guidelines (Ayres-de-Campos et al., 2015), including
definitions of late/prolonged/repetitive decelerations, reduced
variability and baseline variation (Ayres-de-Campos et al.,
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2008). Their preliminary results showed that the agreement
percentage between human and computer classification of
contractions, accelerations and decelerations was 87, 71 and
68%, respectively (Costa et al., 2010). An RCT of the system
on 7,320 patients was recently conducted (Nunes et al., 2017).
The study concluded that while very low rates of acidosis were
observed, the reduction in the rates of acidosis and obstetric
interventions between the two arms of the study were not
statistically significant.

A smaller RCT was conducted on a quantitative
cardiotocography (qCTG) decision-support system, which
enrolled 720 patients (Ignatov and Lutomski, 2016). The
qCTG system computes features based on three domains:
FHR, FHR micro-fluctuations, and decelerations. The features
derived from FHRmicro-fluctuations are the extrema per minute,
the mean beat-to-beat variability per minute, and the oscillation
amplitudes. A score of 0–6 is calculated for each domain and
summed, giving an overall score of 0–18. The primary outcomes
of the trial were hypoxia, acidemia, caesarean section and forceps
extraction. Secondary outcomes were 5-minute Apgar, neonatal
seizures and NICU admission. Reduced risks were observed for
all outcomes in the interventional arm compared to the control
arm. However, due to the small sample size of this study, a larger
RCT is required to validate these findings.

2.2 Alternative Approaches
The aforementioned RCTs used computer-based algorithms that
were largely based on features defined by the thresholds for
baseline, variability and decelerations in the FIGO guidelines.
Alternative approaches have been investigated which provide AI-
based CTG interpretation in a manner that applies feature
engineering theory from other domains that may complement
existing human interpretation. While such systems have not yet
been validated in RCTs, preliminary results are promising.

A control theory approach has been proposed to model the
dynamic relationship between FHR and UC as an impulse response
function (IRF) (Warrick et al., 2009). Pairing FHR and UC as an
input-output system is clinically relevant, as decelerations are
classified in response to the contractions. Early decelerations
coincide with contractions, and do not indicate fetal hypoxia or
acidosis. Late decelerations occur more than 20 s after a contraction
and are indicative of hypoxia. Prolonged decelerations spanmultiple
contractions and are indicative of hypoxia (Ayres-de-Campos et al.,
2015). This method showed that IRFs in pathological cases resulted
in longer delays between contractions and corresponding
decelerations. IRF, FHR baseline and FHR variability were used
as input features to a support vector machine (SVM) to classify
normal and pathological CTGs. The training dataset consisted of 189
normal outcome cases and 31 pathological outcome cases. Their
definition of a pathological case was death, or evidence of hypoxic
ischemic encephalopathy (HIE), or a base deficit of more than
12mmol per litre (mmol/L) meaning an acidic pH. The SVM
correctly detected 50% of pathological cases with a false positive
rate of 7.5% (Warrick et al., 2009).

A method using phase-rectified signal averaging to compute
the mean decelerative capacity (DC) of FHR has been proposed
(Georgieva et al., 2014). DC was compared to short-term

variability (STV), which is considered a strong indicator of pH
and has been used in previous studies. The results showed that
DC predicted acidemia with 0.665 Area under the Curve (AUC).
By comparison, STV achieved 0.606 AUC. Correlation between
DC and STV was low, indicating that both may be used in
multivariate analysis for improved prediction.

The FHR frequency content can be segmented in to low-
frequency (0.04–0.15 Hz), mid-frequency (0.15–0.5 Hz) and
high-frequency (0.5–1.0 Hz) bands. These bands correspond to
sympathetic activity, fetal movement, and fetal breathing,
respectively. The spectral densities and ratios between bands
have been previously used to classify normal and pathological
CTGs (Signorini et al., 2003; Spilka et al., 2013; Zhao et al., 2018).
Fractal analysis and the Hurst parameter have been shown to be a
robust alternative to using arbitrarily defined frequency bands,
and predicted fetal acidosis with an AUC of 0.87 (Doret et al.,
2015).

CTG is a very dynamic signal and the evolution of the CTG
toward delivery is significant. An approach described in (Dash
et al., 2014) segments the full CTG record into much shorter
segments, extracts features and thus represents each full CTG
record as a sequence of feature values, which are used as input to a
Bayesian classifier. This method achieved a true negative rate
(TNR) and true positive rate (TPR) of 0.817 and 0.609,
respectively, outperforming SVM models trained on the same
dataset.

The aforementioned methods use traditional machine
learning, which requires a feature extraction and selection
stage before classification. Deep learning is a subset of
machine learning, which uses a layered structure of
calculations known as neural networks on unstructured data,
whereby feature extraction and classification is performed in an
optimised end-to-end routine, as depicted in Figure 1 (Garcia-
Canadilla et al., 2020). While deep learning approaches require a
relatively larger dataset, it offers the ability to learn complex
features from the raw data, which may not be obvious to human
experts. Deep Neural Networks (DNNs) were shown to
outperform conventional machine learning algorithms, such as
SVM and K-Means Clustering, for CTG classification on a
database containing 162 normal cases and 162 abnormal cases
(defined as pH < 7.20 and/or Apgar at 1 min <7) (Ogasawara
et al., 2021). A multi-modal convolutional neural network
(MCNN) architecture trained on over 35,000 patients was
recently published (Petroziello et al., 2019). The MCNN takes
input from the UC, FHR and signal quality measures. Its
performance was assessed by measuring the percentage of
interventions that were false positives and true positives. A
retrospective analysis showed that current clinical practice
resulted in a 15% false positive rate (FPR) and a 31% true
positive rate (TPR), while the MCNN achieved a 14% FPR
and a 50% TPR.

The RCT of the INFANT system concluded that including
additional clinical information pertaining to labour could
improve outcomes (Brocklehurst et al., 2017). Clinical
information including maternal age, prior obstetric outcomes,
thick meconium and uterine rupture were shown to be
independent risk factors of severe neonatal acidosis
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(Maisonneuve et al., 2011). Similarly, results have shown that
data-driven systems that use clinical risk factors result in
improved classifier performance (Georgieva et al., 2017).

Table 1 summarises the above studies based on method,
inputs, target, dataset size, and findings.

3 CHALLENGES IN AI FOR CTG

3.1 Case Definition and Class Imbalance
CTG provides information on how the fetus is coping during
labour, with the aim of allowing clinicians to detect non-
reassuring fetal status so that adverse outcomes can be avoided
through intervention. However, non-reassuring fetal status can
result in a spectrum of outcomes, from a wholly unaffected fetus
(due to a false positive CTG) to death (Gravett et al., 2016).
Therefore, the question arises as to how a “control” patient versus
a “pathological case” patient should be labelled in a machine
learning architecture.

The incidence rate of HIE is 1-3 per 1,000 in high income
countries (Kurinczuk et al., 2010). HIE is the primary condition
that a CTG classifier should be trying to predict so that clinicians
can intervene and prevent adverse outcome. However, this results
in a significant class imbalance between normal and HIE classes,
which leads to challenges from amachine learning perspective. At
the higher range of 3 per 1,000, it would require over 30,000
deliveries to obtain a database with 100 HIE cases. Minority class
oversampling techniques, such as Synthetic Minority
Oversampling Technique (SMOTE), have been successfully

used in CTG classification studies to introduce synthetic
examples in the feature space (Spilka et al., 2013) (Hoodbhoy
et al., 2019). However, a sufficient number of genuine cases are
still required to use such techniques to synthesize examples.
Similarly, weighted errors for misclassifying an example from
the minority class has been used to rectify the class imbalance
problem (Petroziello et al., 2019).

Due to the difficulty of acquiring a database with
comprehensive NICU records and HIE diagnoses, proxy
metrics are often used to label classes. There are many proxies
for HIE, both objective (pH, base deficit, lactate, and transfer to
NICU) and subjective (Apgar scores), with varying degrees of
correlation to HIE. Metrics such as pH are generally used as
indicators of poor outcome (Malin et al., 2010). However, there is
literature that shows ambiguity in the correlation between pH and
outcome (Yeh et al., 2012). Quite often, only the umbilical venous
pH is measured or recorded, whereas the arterial pH can be
significantly lower than the venous pH in babies exposed to a
period of acute cord compression shortly before delivery
(Westgate et al., 1994). As highlighted in Table 1, there is no
consistency in the prior art as to what outcome, metric or
combination of metrics are used to define a pathological case.
A recent systematic review of intrapartum uterine activity and
neonatal outcomes found that, of the 12 studies that met the
inclusion criteria, 7 used pH as an individual outcome, Apgar
scores and base excess were reported as individual outcomes in 4
studies and only 1 study reported neonatal encephalopathy as an
outcome. No study examined long-term neurodevelopment as an
outcome (Reynolds et al., 2020a). The Apgar score was not

FIGURE 1 | Pipeline of machine learning steps for CTG.
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designed as a measure of birth asphyxia, and a recent cohort study
including 85,076 infants concluded that although there is a close
association between Apgar score and acidosis, Apgar score should
not be used as a measure of birth asphyxia (Cnattingius et al.,
2020).

3.2 Weak Labels Versus Expert Annotated
Labels
As previously discussed, proxy metrics, such as pH, are often used
as individual metrics to distinguish between normal and
pathological outcome. CTU-UHB CTG database is a publicly
available database hosted on Physionet, which is commonly used
for research purposes (cited by over 150 papers) (Chudácek et al.,

2014). The database includes 552 CTG recordings from 9,164
recordings acquired from one hospital over a three-year period.
Of the 552 patients, 44 had a pH value less than 7.05, which is the
threshold commonly used in literature to define pathological
cases (Spilka et al., 2013). Annotation by three experts on the
same database labelled 149 as normal CTG, 115 as pathological
CTG and 275 as suspect CTG. This highlights the disparity
between low pH and abnormal CTG (Spilka et al., 2013).

A major challenge with developing machine learning
architectures based on proxies and neonatal outcomes is the
fact that these labels are “weak.” The raw CTG in these cases are
not labelled by event or by epoch. Instead, there is one overall
label for the patient based on clinical metrics (i.e. pH < 7.05),
regardless of the duration of the CTG abnormality, or the type of

TABLE 1 | Prior art comparison.

Author, year ML methods Input features Target/labels No. of
patients

Type of
study

Key finding

Brocklehurst
et al. (2017)

Numerical
algorithms and
artificial neural
network

Signal quality, baseline,
variability, accels, decels and
clinical data (dilation, analgesia,
fetal blood sampling, growth
restriction, placenta abruption
and meconium)

Manually labelled CTG 47,000 RCT Effective in identifying abnormal
CTG, however clinical
outcomes not improved

Nunes et al.
(2017)

Contractions, accels, decels Manually labelled CTG 7,320 RCT Low rates of acidosis observed,
however reduction in acidosis
between the control arm and
the interventional arm were not
statistically significant

Ignatov and
Lutomski (2016)

FHR, decels, FHR micro-
fluctuations (extrema per minute,
mean beat-to-beat variability,
oscillation amplitudes)

Hypoxia (cord-artery blood ph <
7.20), acidemia (umbilical-artery
blood pH < 7.05), intervention
(caesarean or forceps)

720 RCT Reduced risks observed for all
targets in interventional arm

Warrick et al.
(2009)

Support vector
machine

Baseline, variability, impulse
response function for decels and
contractions

Base deficit (>12 mmol/L), death
or HIE

213 Rtrspec.
study

50% of pathological cases
correctly detected with a false
positive rate of 7.5%

Georgieva et al.
(2014)

Decelerative capacity Acidemia (pH < 7.05) 7,568 Rtrspec.
study

AUC of 0.665 as a single feature
in predicting acidemia

Doret et al.
(2015)

Hurst parameter Acidemia (pH < 7.05) 45 Case
control
study

AUC of 0.87 in predicting
acidosis

Dash et al.
(2014)

Generative
models and
Bayesian theory

FHR baseline, variability,
accelerations, decelerations,
FHR response to contractions in
4.5–30 mHz, variability in
30–1000 mHz band

Acidemia (ph < 7.15) 83 Rtrspec.
study

0.817 TNR and 0.609 TPR

Ogasawara
et al. (2021)

CNN FHR Acidemia (umbilical artery pH <
7.20) or Apgar at 1 min <7

324 Rtrspec.
study

AUC of 0.73 with CNN, which
was higher than traditional ML

Petroziello et al.
(2019)

Multi-modal CNN Signal quality, FHR, UC Acidemia (pH < 7.05) and severe
compromise (stillbirth, neonatal
death, neonatal encephalopathy,
NICU admission)

35,429 Rtrspec.
study

Improved prediction of
acidemia/compromise
compared with clinical practice
(14% FPR & 50% TPR versus
15% FPR & 31% TPR)

Georgieva et al.
(2017)

Decelerative capacity and clinical
data (presence of thick
meconium or preeclampsia)

Acidemia (pH < 7.05) and severe
compromise (stillbirth, neonatal
death, neonatal encephalopathy,
NICU admission)

22,790 Cohort
study

Improved sensitivity and false-
positive rate in detecting
acidemia/compromise
compared to clinical practice

Hoodbhoy et al.
(2019)

XGBoost 21 features including basic
quantitative values (max, min,
median), STV, and number of
fetal movements, decelerations
and contractions

Manually labelled CTG 2,126 Rtrspec.
study

Overall accuracy of 93%
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hypoxia. Different types of fetal hypoxia (acute, subacute,
evolving, chronic) generally manifest in different forms in the
CTG, and are associated with widely differing clinical events
(Yatham et al., 2020). This introduces problems, as in an acute
event (such as cord prolapse, uterine rupture, or acute cord
compression) the CTG may only change during the event.
Therefore, labelling an entire CTG record as fetal hypoxia may
introduce noisy labels and misclassifications. This is particularly
problematic if weak labels are being applied to short epochs (i.e.
overlapping windows of 15–30 min segments), as there is a
significant risk of introducing predominantly noisy labels,
unless the fetal hypoxia is chronic and prevalent throughout
the duration of the recording. Furthermore, studies have shown
that not all infants diagnosed postnatally with HIE have evidence
of intrapartum hypoxia in the CTG (using current human
interpretation) (Yatham et al., 2020).

Machine learning architectures that use hand-labelled CTG
at an event/epoch level by an expert annotator would result in
stronger labels and, in theory, achieve improved performance.
In light of this, an expert obstetrician has manually labelled the
aforementioned CTB-UHB database, which has also been
made publicly available to supplement the original database
(Romagnoli et al., 2020). Several studies have obtained
significantly high percentage agreements between algorithm
and human labels (Reynolds et al., 2020b). However,
introducing human labels may result in similar clinical
outcomes to those observed in the prior RCTs, whereby
high algorithm-human agreement is achieved but it is akin
to adding a second evaluator with similar instructions.
Similarly, multiple studies have shown inter-observer
agreement for human CTG interpretation in the range of
30–50% (Yatham et al., 2020) (Hruban et al., 2015) (Rhöse
et al., 2014). Therefore, there is a risk that human annotations
may introduce human bias into the classification, given that
expert use of CTG in general is still widely debated (Garcia-
Canadilla et al., 2020).

Classification of CTG at an event level alone, without context
of the labour progress and duration is not ideal, as features and
patterns that may be considered non-reassuring in 1st stage of
labour can be considered normal during the active 2nd stage of
labour where contractions become more intense. As the end of
the CTG often coincides with the time of birth, it is likely that
relevant data pertaining to outcome would be most evident in the
later stages of CTG. However, there is considerably more noise
and motion artifacts in the later stage. Therefore, classifier
performance can vary depending on the stage of labour.
Studies have shown that the performance of features for
classification of fetal compromise vary significantly as labour
progresses (Spilka et al., 2014). As such, many studies in the
literature omit 2nd stage data, which may reduce the clinical
usefulness of a decision support tool in practice (Spilka et al.,
2016).

Having access to large databases, capable of training a deep
learning model may help resolve this issue, as the feature
extraction and classification process could be completed in an
optimized routine. The variation in model performance based
on the stage of labour was demonstrated in (Petroziello et al.,

2019) using a MCNN trained on 35,000 CTGs. The
performance of the MCNN trained on the last 60 min of
1st stage was 0.65 AUC, while the same MCNN model
trained on the last 30 min of 2nd stage was 0.71 AUC. The
best performance of 0.77 AUC was achieved by training on the
last 60 min of CTG, regardless of stage (Petroziello et al.,
2019).

4 DISCUSSION

Previous feature-based approaches to automated CTG
interpretation that closely follow established CTG clinical
guidelines achieve high inter-observer agreement with human
interpretation. However, they do not result in improvements in
clinical outcomes. The findings of these studies suggest that
developing systems to mimic existing guidelines and human
interpretation will not improve outcomes. More recent
methods, facilitated by more computing power, comprehensive
electronic health records, and access to larger datasets have
resulted in promising developments. However, these
approaches are yet to be validated in a RCT.

The major challenges identified in developing robust AI
for CTG interpretation are centred around case definition,
labelling and class imbalance, which are inherently linked.
The table demonstrates the variability in case definition
across the prior art, with many using proxy metrics, such
as pH, to label cases as healthy versus HIE. At an incidence
rate of 1-3 per 1,000 births, class imbalance is a major
concern, and perhaps an anomaly detection approach may
be best suited.

While accurately detecting non-reassuring CTG patterns is
important, it is not the primary challenge. The primary
challenge is determining whether non-reassuring CTG
patterns require intervention or not based on the
progression of labour and on the risk profile of the mother.
Our previous work has demonstrated that improvements in
classification performance are achievable by adding both
clinical variables (such as gestation, parity and
hypertension), as well as duration of labour stages
(O’Sullivan et al., 2021). The importance of accurate
medical records is critical to the clinical decision-making
process. Pre-existing maternal medical conditions such as
chronic hypertension, and underlying conditions such as
intrauterine growth restriction, can render the utero-
placental system more vulnerable to hypoxia during labour
(Scheidegger et al., 2019). The clinical team need to consider
the risk profile of a pregnancy to aid their assessment of a fetus’
tolerance to labour and need to be vigilant for any non-
reassuring patterns in high-risk pregnancies. Providing a
decision support tool that is developed without
consideration of these personalised risk factors and their
relationship to neonatal outcomes may result in an increase
in unnecessary C-sections and operative delivery rates.

To conclude, there is significant scope and promise for
decision support tools in the area of CTG, as demonstrated by
prior art. We believe that accurate case definition and
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segmentation of the data, combined with the inclusion of pre-
existing clinical variables and labour progression data will
facilitate the development of an explainable artificial
intelligence decision support tool.
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During labor, uterine contractions trigger the response of the autonomic nervous system

(ANS) of the fetus, producing sawtooth-like decelerations in the fetal heart rate (FHR)

series. Under chronic hypoxia, ANS is known to regulate FHR differently with respect to

healthy fetuses. In this study, we hypothesized that such different ANS regulation might

also lead to a change in the FHR deceleration morphology. The hypothesis was tested

in an animal model comprising nine normoxic and five chronically hypoxic fetuses that

underwent a protocol of umbilical cord occlusions (UCOs). Deceleration morphologies in

the fetal inter-beat time interval (FRR) series were modeled using a trapezoid with four

parameters, i.e., baseline b, deceleration depth a, UCO response time τu and recovery

time τr. Comparing normoxic and hypoxic sheep, we found a clear difference for τu

(24.8± 9.4 vs. 39.8± 9.7 s; p < 0.05), a (268.1± 109.5 vs. 373.0± 46.0 ms; p < 0.1)

and 1τ = τu − τr (13.2 ± 6.9 vs. 23.9 ± 7.5 s; p < 0.05). Therefore, the animal model

supported the hypothesis that hypoxic fetuses have a longer response time τu and larger

asymmetry 1τ as a response to UCOs. Assessing these morphological parameters

during labor is challenging due to non-stationarity, phase desynchronization and noise.

For this reason, in the second part of the study, we quantified whether acceleration

capacity (AC), deceleration capacity (DC), and deceleration reserve (DR), computed

through Phase-Rectified Signal Averaging (PRSA, known to be robust to noise), were

correlated with the morphological parameters. DC, AC and DR were correlated with

τu, τr and 1τ for a wide range of the PRSA parameter T (Pearson’s correlation ρ >

0.8, p < 0.05). In conclusion, deceleration morphologies have been found to differ

between normoxic and hypoxic sheep fetuses during UCOs. The same difference can

be assessed through PRSA based parameters, further motivating future investigations

on the translational potential of this methodology on human data.

Keywords: phase-rectified signal averaging (PRSA), animal model, fetal heart rate (FHR), electronic fetal

monitoring (EFM), heart rate variability (HRV), fetal hypoxia, labor
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1. INTRODUCTION

During labor, a fetus might suffer considerable stress due
to uterine contractions, causing transient oxygen reduction
and head compression, resulting in vagal and sympathetic
stimulations. Nutrient deprivation, hypoxemia, hypoxia,
acidemia and cardiovascular decompensation directly impact
the autonomic nervous system (ANS) and thus affect the fetal
heart rate variability (FHRV) (1, 2). The cardiotocography
(CTG) remains the best available proxy of ANS’ functional state
through the analysis of fetal heart rate (FHR) and its variability.
Considering that the standard processing of CTG series has been
found poorly correlated to the relevant clinical outcomes, such
as fetal brain injury or death, new FHR biomarkers are needed to
better quantify the risk of fetal morbidity and mortality during
labor (3, 4).

Phase-Rectified Signal Averaging (PRSA) analysis extracts
quasi-periodic oscillations from HRV series and it is more
resistant to non-stationarities, signal loss and artifacts (5)
than conventional HRV analysis techniques, such as the well-
known spectral analysis. It provides two measures that quantify
the average cardiac acceleration (AC) and deceleration (DC)
capacities from an inter-beat time interval series (RR). Practically,
these measures quantify the average RR increase (or decrease)
in milliseconds. When quantified on CTG signals or fetal RR
series (FRR), AC and DC seem to perform better than the short
term variation of FHR in identifying fetal growth restricted
fetuses (6–8) and adverse outcome (9). In a study of fetal sheep
exposed to repetitive umbilical cord occlusions (UCOs), a model
of uterine contractions during labor, we found that there was
a high correlation between AC and DC and acid/base balance
(10); particularly, AC and DC progressively increased with the
severity of the UCOs, suggesting an activation of ANS of healthy
normoxic fetus exposed to acute hypoxemia.

In the same animal model, we recently observed that, at the
beginning of each UCO, FRR adapted by a progressive increase
(reduction in FHR) and quickly recovered when pressure was
released. In order to quantify such adaptations, we modeled the
FRR deceleration using a first-order exponential model, one of
the possible models typically employed for systemmodeling tasks
(11), for both response and recovery phases (10). These models
were characterized by time constants, describing the speed of
FRR adaptation (the larger the time constant, the slower the
adaptation) and we found that healthy normoxic fetuses had
longer UCO response times than the time necessary to return
to the baseline level (10), suggesting the presence of asymmetric
trends in the series during labor.

Motivated by this observation, we also proved that
dissimilarities in AC and DC values arise when asymmetric
increasing/decreasing trends appear in the series (12), which
seem to occur during labor. We thus introduced the deceleration
reserve (DR), a new PRSA-based metric for the quantification
of such asymmetry (12). The DR is computed as the difference
between DC and AC. Up to date, DR was tested on a near-term
pregnant sheep model and human CTG recordings, obtaining
promising results for distinguishing between normoxic and
chronically hypoxic fetuses, and to detect fetal acidemia at birth.

Even though PRSA processes the FRR series in its whole entirety,
it is reasonable to hypothesize that AC, DC and DR are deeply
linked with the FRR adaptation time due to uterine contractions
during labor.

In this study, we hypothesized that the different ANS
regulation under chronic hypoxia might also lead to a change
in the FHR deceleration morphology, as a result of the uterine
contraction, and that the adaptation times would be different
from those of healthy fetuses. The hypothesis was tested in an
animal model comprising nine normoxic and five chronically
hypoxic fetuses that underwent a protocol of UCOs. Deceleration
morphologies on the FRR series were modeled using a trapezoid
with four parameters characterizing the adaptation times,
baseline and deceleration depth. The parameters were compared
between the two groups.We also quantified their correlation with
biomarkers of acid/base balance. Assessing these morphological
parameters during labor is challenging due to non-stationarity,
phase desynchronization and noise. For this reason, in the second
part of the study, we quantified whether AC, DC and DR were
correlated with themorphological parameters. Given the fact that
PRSA is more robust with respect to phase-desynchronization,
a correlation might further support the opportunity of using
AC, DC and DR in the clinical settings. In addition, given the
link between the deceleration morphology and the area under
the deceleration, i.e., the so-called “Deceleration Area” (DA),
we quantified the relationship between PRSA-based parameters
and DA.

2. MATERIALS AND METHODS

2.1. Animal Model and FHR Data
An established pregnant sheep model of labor was retrospectively
analyzed. A comprehensive review on the pregnant sheep model
and its translational significance for human physiology, in
particular for studies of the ANS, can be found in Morrison
et al. (13). The animal cohort comprised of nine normoxic and
five spontaneously chronically hypoxic near-term pregnant sheep
fetuses which underwent periodic UCOs mimicking uterine
contractions during labor.

The animal and experimental models were described
elsewhere (14). The animal study was reviewed and approved
by University of Western Ontario Council on Animal
Care/Canadian Council on Animal Care. Animal care followed
the guidelines of the Canadian Council on Animal Care and
was approved by the University of Western Ontario Council on
Animal Care. Briefly, sheep fetuses were monitored over a 6 h
period during which a mechanical stimulation was applied to
the umbilical cord by using an inflatable silicon rubber cuff. A
baseline period of approximately 1 h with no occlusion preceded
the study. After that, UCOs were delivered every 2.5 min and
lasted for 1 min. Three levels of occlusion strength, from partial
to complete, were performed: mild (MILD, 60 min), moderate
(MODERATE, 60 min) and complete (SEVERE, 60 min or until
pH < 7.00 was reached). The stimulation protocol ended with
a recovery period. During the stimulation protocol, pH, base
deficit (BE) and lactate (hereafter referred to as “biomarkers”)
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were quantified by means of fetal arterial blood samples collected
every 20 min.

Sheep fetuses were categorized as chronically hypoxic if
O2Sat < 55%, as measured before the beginning of the
UCO stimulation protocol. In this study, we refer to the two
models as “normoxic” and “chronically hypoxic,” respectively. As
per experimental protocol, both models showed a progressive
worsening acidemia of the hypoxic status until pH < 7.00 was
reached [see Figure 2 in (12)].

Fetal ECGs were collected by means of electrodes implanted
into the left supra-scapular muscles, in the muscles of the right
shoulder and in the cartilage of the sternum, and digitized at
1,000 Hz. FRR series were automatically extracted from the fetal
ECG (15).

In this study, we only considered the SEVERE phase of UCOs
since FHR mostly changed during this condition.

2.2. FHR Series Preprocessing
A preprocessing similar to the one proposed in Rivolta et al. (12)
was adopted for both datasets. Briefly, FRR series were analyzed
to determine whether they were suitable for further analysis in
terms of noise level, by excluding those recordings with more
than 10% gaps during the SEVERE phases. Two normoxic fetuses
were excluded from the analysis because of the high amount
of missing beats. Furthermore, FRR intervals greater than 1,500
ms (40 bpm) were labeled as artifacts and substituted with an
equivalent number of beats (calculated dividing the length of
each artifact by the median of the 20 nearby FRR samples). The
reconstructed samples were used neither in the model fitting nor
as anchor points in the PRSA analysis (in this latter case, however,
they contributed to the selection of nearby anchor points).

2.3. Geometrical Model of Deceleration
Morphology and Its Fitting to FHR Data
In this analysis, we quantified the average characteristics of the
FHR response to UCOs in terms of baseline level, deceleration
depth, time necessary to reach a steady condition of the FRR
during both UCO stimulation and resting phase in the normoxic
and hypoxic datasets. To do so, we used a simple model to
describe the time evolution of FRR during each cycle of UCO and
rest and extract the relevant information. The procedure took two
steps. First, we time-aligned all the FRR segments of 150 s starting
from the beginning of each UCO. Second, a piecewise linear
model was fitted using a semi-automatic approach based on least
squares. The model was as follows during UCO stimulation

yu(t) = b+











0 t < 0
a
τu
t 0 ≤ t < τu

a τu ≤ t < 60

(1)

and the following one for the resting phase

yr(t) = b+

{

a− a
τr
(t − 60) 60 ≤ t < 60+ τr

0 60+ τr ≤ t < 150
(2)

where t was the time (seconds), b (milliseconds), a
(milliseconds), τr (seconds), and τu (seconds) were the

FIGURE 1 | Example of model fitting along with variable definition. ◦ refers to

FRR values from the beginning of the UCOs.

morphological parameters to be estimated. In particular, b was
the baseline FRR value in absence of UCOs, τu the time to
reach the steady condition during UCO, a is the amplitude
change of FRR, and τr the time to reach the baseline b after
releasing the UCO. In addition, the difference 1τ = τu − τr was
considered as measure of asymmetry to the response to UCO
stimulation. Figure 1 shows an example of model fitting and a
visual description of the morphological parameters.

2.4. Correlation of Deceleration
Morphology With Time and Biomarkers
In the second analysis, we determined whether the time intervals
τu, τr and 1τ changed over time and were correlated with
pH, base deficit and level of lactates, along the entire SEVERE
phase. According to the stimulation protocol, blood samples
were collected every 20 min up to the termination of the study.
The same morphological parameters of Equations (1) and (2)
were therefore estimated on all 20 min windows preceding each
blood sample. Two correlation analyses were thus performed.
First, we computed the correlation coefficients between τu, τr and
1τ , and blood sample time points. Second, we determined the
correlation between τu, τr and 1τ with the biomarkers (pH, BE
and lactate). To compensate for the fact that biomarkers’ values
changed over time according to the stimulation protocol, partial
correlation coefficients were computed, by accounting for the
progress of time.

2.5. PRSA, AC, DC, DR, and DA
A complete description of the PRSA algorithm can be found in
Bauer et al. (5) and Rivolta et al. (12). The algorithm is divided
into two steps. First, anchor points are identified on the time
series x[k]. Each time index k that satisfies the condition

1

T

T−1
∑

i=0

x[k+ i] >

1

T

T
∑

i=1

x[k− i], (3)
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is inserted in the DC anchors’ point list (for AC, the inequality
sign must be flipped). The parameter T refers to the number
of FRR intervals involved in the identification of anchor points.
Second, all the windows of 2L elements centered on each anchor
point are aligned (anchor points are located at the L+ 1 sample)
and then averaged. The parameter L defines the slowest FRR
oscillation detectable by the algorithm (5). Such series of 2L
averaged elements is the PRSA series.

From the PRSA series, AC and DC are then derived with

DC (or AC) =

∑s
i=1 PRSA[L+ i]− PRSA[L− i+ 1]

2s
. (4)

DR is instead defined as the sum of DC and AC (note that AC is
a negative quantity for RR series) (12).

We quantified AC, DC and DR for multiple values of T
(s = T and L = 50). A correlation analysis was performed
to assess which range of T mostly correlated with the time
constants derived from the piecewise linear models. In particular,
we computed the correlation between τu and DC, τr and AC, and
1τ and DR while varying the T value between 1 and 50.

Given the fact that: i) AC, DC and DR depend on the power
of the series (12); ii) a difference in the power of FRR signals was
previously observed between the normoxic and hypoxic fetuses
in this dataset (12); and iii) a high variability in the deceleration
depth a was observed (see section 3.1), we computed the partial
correlation coefficients, while compensating for the amplitude a
and baseline b. In this way, correlations were insensitive to linear
relations of such quantities.

Finally, we derived the relationship between the PRSA-based
parameters and DA. To do so, we first computed the DA by
means of the area of the trapezoid (after converting the FRR into
the FHR) for both normoxic and chronically hypoxic fetuses.
Then, we compared the values obtained and discussed the
relationship found with the PRSA-based parameters.

2.6. Statistical Analysis
Results are reported as mean± standard deviation and quantities
were compared between the normoxic and hypoxic fetuses
using a student t-test. Correlations and partial correlations
were computed using the Pearson’s correlation coefficient.
Considering the low sample size, hypothesis tests and correlation
coefficients were considered statistically significant when p < 0.1
(we also specify when p < 0.05).

3. RESULTS

3.1. Comparison of Morphological
Parameters Between Normoxic and
Hypoxic Sheep Fetuses
The morphological parameters obtained after model fitting were
compared between the normoxic and hypoxic sheep fetuses. We
obtained a model fitting achieving R2 values of 0.8±0.1. Figure 2
reports the scatter plots for all pairs of morphological parameters
for both animal models. A clear difference was found for τu

(normoxic vs. hypoxic; 24.8 ± 9.4 vs. 39.8 ± 9.7 s; p < 0.05), no
difference for τr (11.6± 4.8 vs. 16.0± 3.9 s; p > 0.1), a difference

in FRR change a (268.1±109.5 vs. 373.0±46.0 ms; p < 0.1), and
no difference for the baseline b (357.0± 34.1 vs. 372.6± 23.6 ms;
p > 0.1). 1τ was found different between normoxic and hypoxic
fetuses (13.2± 6.9 vs. 23.9± 7.5 s; p < 0.05).

3.2. Time Progression of FHR Deceleration
Morphology and Correlation With
Biomarkers
A correlation analysis was performed to assess the time
progression of the morphological parameters over the entire
duration of the SEVERE phase.We found no correlation between
the morphological parameters and time for both animal models
when considered together (correlations between time vs. τu, τr ,
and 1τ were −0.2, −0.1, and −0.3, respectively; p > 0.1) or
separated (normoxic fetuses: −0.1, 0.1, and −0.1 and hypoxic
fetuses: 0.1, 0.3, and −0.1; p > 0.1). Non-significant correlations
were likely due to the limited sample size. In fact, a similar
analysis performed on the biomarkers resulted in a moderate
(significant) correlation with time (pH vs. time: −0.5, p < 0.05;
BE vs. time:−0.6, p < 0.05; lactate vs. time: 0.34, p < 0.1).

Consequently, when correlation was assessed between
morphological parameters and biomarkers, partial correlation
coefficients were calculated to account for this possible time
variation. Partial correlations were found statistically significant
for pH vs. τu (−0.5; p < 0.05) and pH vs. 1τ (−0.6; p < 0.05),
and for BE vs. τu (−0.6; p < 0.05) and BE vs. 1τ (−0.7;
p < 0.05), whereas no significant correlation was found for
lactate. Such significant correlations were mostly due to the
normoxic dataset (pH vs. τu: −0.5, pH vs. 1τ : −0.6, BE vs. τu:
−0.6, BE vs. 1τ : −0.7; p < 0.05). Indeed, pH and BE were
found correlated with the morphological parameters only for
the normoxic data (p < 0.05). On the other hand, lactate was
found correlated with only the morphological parameters of the
hypoxic fetuses (coefficients for τu and 1τ were −0.8 and −0.8;
p < 0.05).

3.3. Correlation Analysis Between PRSA
and Morphological Parameters, and DA
Computation
Partial correlation coefficients were calculated between the PRSA
and morphological parameters on both animal models. Partial
correlation coefficients were computed to compensate for the
a and b values. An example of FRR after this compensation,
for both animal models, is shown in Figure 3. A slower FHR
adaptation, as response to UCO, becomes clearly visible for the
hypoxic fetus. A wide range of statistically significant correlations
was found for DC vs. τu, AC vs. τu and DR vs. 1τ , reaching
values larger than −0.9 (p < 0.1) for T < 20. In particular,
the normoxic fetuses showed correlations between T = 6 and
T = 18 (Figure 4A), whereas the hypoxic ones between T = 1
and T = 13 (Figure 4B).

For both animal models, DA was quantified and a comparison
between the DA of the two populations was performed. DA was
not found significantly different between normoxic and hypoxic
fetuses in our data (62.9± 19.5 vs. 64.4± 6.6 beats; p > 0.1).
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FIGURE 2 | Scatter plot for each pair of the morphological parameters, i.e., (A) τu vs. τr , (B) τu vs. a, (C) τr vs. a, (D) b vs. τu, (E) b vs. τr and (F) b vs. a, for both

normoxic (black triangle) and hypoxic fetuses (red circle). Contour plots are also reported (prepared with an assumption of Gaussianity, made for

visualization purposes).

FIGURE 3 | Example of normalized FRR signals from one normoxic and one hypoxic fetus (a median filter was applied to the signals to enhance the trend). The

shaded area corresponds to UCOs.

4. DISCUSSION

4.1. Morphological Differences in FHR
Decelerations
When comparing the morphological differences of FHR
decelerations, the significant differences in τu, 1τ and a between
normoxic and chronically hypoxic fetuses suggest a different FHR
response to the ANS stimulation caused by UCOs in hypoxic

fetus. These findings are in line with other reports of different
response to external hypoxic stimulation, as in our case by UCOs,
in normoxic vs. already hypoxic fetuses (16). The reduction
of FHR in the presence of hypoxic stimuli in a normoxic
fetus represents a protective mechanism while it reduces the
oxygen consumption via reduced myocardial work (17). In the
presence of already established acidemia, the ANS modulation
changes (18, 19), and some of the adaptive mechanisms, such
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FIGURE 4 | Partial correlation coefficient ρ between τu vs. DC (red line), τr vs. AC (yellow line) and 1τ vs. DR (green line), for different values of T. Coefficients were

computed from the (A) normoxic and (B) hypoxic fetuses. It is worth noting that the number of data points available for the computation were 7 and 5 at each T-value.

∗ (p < 0.05) and ▽ (p < 0.1) refer to statistically significant correlations.

as chemoreceptor-mediated circulatory adaptation, might be
altered due to progressive tissue damage, including brain damage.
In this view, the fact that the correlation between biomarkers
(pH and BE) and time was driven mainly by the normoxic
fetuses should not be surprising. Both pH and BE are strong
stimulators of chemoreceptors in normoxic fetus (20). Thus,
we speculate that the absence of the correlation between pH
and BE in hypoxic fetus might represent a sign of already
altered ANS and chemoreceptor function which are no longer
able to respond and contribute to maintaining the balance of
the aerobic metabolism. Moreover, large observational studies
shows that the risk of neonatal morbidity only increases with
very low pH values (< 7.00) (21, 22). Certainly, it has to be
acknowledged that the number of available measurements was
different for normoxic and hypoxic fetuses (21 vs. 9), resulting
in a much shorter SEVERE phase for the hypoxic ones. On
the other hand, we found that the lactate correlated only with
the morphological parameters in the hypoxic fetuses. A possible
explanation could be due to the fact that the lactate represents the
end product of anaerobic glucose metabolism, reflecting, thus,
the metabolic acidosis (23). Indeed, it has been suggested that
lactate concentrations, on fetal scalp and umbilical artery at birth,
might be a better predictor of poor neonatal outcome than pH
(24) and even if its use has not been universally adopted, lactate
monitoring is recommended in several national and international
guidelines (23).

4.2. Correlation Between Morphological
Parameters and AC, DC and DR
Morphological parameters τu, τr and 1τ were found to correlate
with DC, AC and DR for T values less than 20. In our previous
study on the same animal model, we found that DR achieved
the highest discriminatory power in distinguishing between
normoxic and hypoxic sheep fetuses during the SEVERE phase
of the protocol, with T ranging between 5 and 9 (12). Such

high discriminatory power was likely related to the larger 1τ

measured on hypoxic fetuses in this study. In other words, we
found that the ANS regulation of already hypoxic fetuses during
labor affects the deceleration morphology (particularly 1τ ), thus
further highlighting that the presence of asymmetric trends in the
series is relevant for risk stratification.

Correlations were not statistically significant for the entire
range of T values considered. This was an expected result because
the T value acts as frequency selector, specifically as a band-
pass filter (25), whose frequency band shrinks when T increases.
Although there is no clear evidence about the optimal T value
for the detection of already hypoxic fetuses, previous studies
employed effectively, for the detection of intra-uterine growth
restriction (IUGR) during antepartum fetal monitoring, values
of T corresponding to the range 2.5 s to 10 s (6, 9, 26). On the
other hand, fetal acidemia occurring during labor seems better
detected at lower time scales between 0.5 and 1.25 s (12, 27),
thus suggesting a different mechanism for healthy fetuses during
acute stress.

The PRSA series is also amplitude-dependent. In our previous
study, we found a perfect linear relationship between the
standard deviation of the series and the PRSA parameters (12) for
Gaussian processes during stationary condition (e.g., a situation
likely occurring during antepartum fetal monitoring). A similar
relation is expected for other indices of variability, such as the
short-term variation (STV). In fact, considering results obtained
during fetal monitoring of IUGR fetuses, Huhn et al. (26) and
Graatsma et al. (28) found a correlation of about 0.7 between
STV and AC for IUGR fetuses antepartum. On the other hand,
given the non-stationary nature of FHR series during labor
and the fact that the PRSA algorithm is applied to the entire
recording, the relationship between STV and PRSA may break,
as supported by the study of Georgieva et al. (27) who reported
a significant correlation of about 0.3 during labor. It sounds
therefore reasonable that the long-term variability of FHR series
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may better correlate with PRSA parameters during labor. In fact,
the deceleration depth a affects the variability of the entire FHR
series (the standard deviation of the FHR series is proportional to
a), and in turn, it affects the values of AC, DC and DR. However,
while a was found larger in the hypoxic dataset, it is still unclear
whether such morphological parameter would turn out to be
important for risk stratification or needs to be considered as a
confounding factor.

Assessing whether AC, DC and DR reflect changes in the
acid/base balance is challenging. On one hand, for the normoxic
fetuses, we found that i) AC/DC varied across the phases of
the stimulation protocol and were correlated with changes of
the biomarkers (10), ii) morphological parameters τu and 1τ

were correlated to pH and BE in the SEVERE phase, and iii)
correlations between morphological parameters τu vs. DC, τr vs.
AC, and 1τ vs. DR were observed in the SEVERE phase. In this
normoxic condition, the acid/base balance of the healthy fetus is
continuously maintained by the placenta and its gas exchanges.
The establishment of hypoxia, and a subsequent metabolic
acidosis, depends both on the extent, duration and repetitiveness
of the events responsible for a reduced supply of fetal oxygen, and
on the metabolic reserves of the fetus at the onset of labor (29).
These findings suggest that the advancing labor, along with the
increased intensity and frequency of uterine contractions, causes
fetal ANS adaptation that directly affects the acid/base balance
and produces modifications of the deceleration morphology. The
latter is thus captured by the PRSA algorithm. Our speculation
is corroborated by the superior performance of PRSA-based
parameters to detect acidemia at birth with respect to STV (27).
On the other hand, for chronically hypoxic fetuses, we found that
only lactate correlated with τu and1τ during the SEVERE phase.
It is difficult to speculate about additional relationships between
PRSA-based parameters and the acid/base balance during labor
for these fetuses. In fact, to the best of our knowledge, no studies
quantified the correlation between PRSA-based parameters and
the biomarkers in animal models of chronic hypoxia. However,
several are the clinical studies suggesting that the PRSA-based
parameters may differentiate between healthy and IUGR fetuses
(whose our chronically hypoxic sheep are a model of) at different
gestational age (6, 8) or detecting the short-term outcome for
these compromised fetuses (9). Thus, confirming that the PRSA
algorithm detects a deterioration of the acid/base balance of
chronically hypoxic fetuses, rather than other factors, is at this
point difficult to claim. We leave the quantification of the
correlation between biomarkers and PRSA-based parameters on
our chronically hypoxic sheep model for future works.

4.3. Comparison With Deceleration Area
The results reported so far are in line with other attempts of
“capturing” the deceleration morphology for risk stratification.
For example, the well-known DA quantifies the severity of the
deceleration taking into account both its depth and duration (the
number of “missed” beats due to the deceleration). In the work
of Cahill et al. (30), DA was quantified by approximating the
deceleration by a triangle having a base as long as its duration
and height corresponding to the depth, and then computing its
area. DA was found to perform well for detecting fetal acidemia

(AUC = 0.76). Using the morphological parameters, which are
depicted in Figure 1, DA is then given by

DA =
1000

2
×

dUCO + τr

60
×

(

60

b
−

60

b+ a

)

(beats), (5)

where dUCO = 60 s is the duration of the UCO, and 1, 000
is the conversion factor from milliseconds to seconds. In our
case, given the severity of the stimulation protocol, UCOs caused
FHR responses which were better approximated by a trapezoidal
model than a triangle. Thus, it was possible to calculate DA using
also the following formula

DA =
1000

2
×

2dUCO − 1τ

60
×

(

60

b
−

60

b+ a

)

(beats). (6)

From these formulas, the relationship between DA and the
morphological parameters, which we studied in this paper, is
evident. The second formula also points out a link between
DA and the asymmetry value 1τ = τu − τr , which is not
captured in the triangular approximation usually employed.
The relationship with 1τ hints the importance of looking at
asymmetric trends in the series present during labor. We leave
this point to future investigations.

In our study, however, DA was not found significantly
different between normoxic and hypoxic fetuses in our data
(62.9 ± 19.5 vs. 64.4 ± 6.6 beats; p > 0.1). A possible
explanation could be the fact that 1τ and a were higher for
the hypoxic fetuses, and such quantities correlated with DA in
opposite directions, thus making DA values indistinguishable
due to balancing effects and (likely) the limited sample size.
Another possible reason is that chronic hypoxia (in this study)
and acidemia at birth (30) might trigger different regulatory
ANS responses.

4.4. Clinical Implications
Over the past 50 years, the cardiotocography has become the
most frequently usedmethod for intrapartum surveillance of fetal
wellbeing. Intrapartum FHR monitoring, in particular as part
of the CTG and computerized systems such as those developed
by Dawes and Redman, has reduced perinatal mortality (31). In
1991, Dawes et al. (32) reported that low short-term variation
was associated with adverse perinatal outcome, however its
application required antepartum monitoring to identify at-risk
fetuses which to-date has not become the standard of care. Recent
developments in the remote transabdominal ECG technology are
enabling the antepartum monitoring, so more progress is to be
expected in incorporating various computerized FHR algorithms
into the standard of care in the coming years (33). In the
meantime, the intrapartum CTG as currently practiced in over
90% of the delivering hospitals remains to be characterized by
high intra and inter-observer interpretative variability, and by
low specificity in identifying fetal acidosis and fetal acidosis at
birth. Its poor performance is compounded by the fact that fetal
acidosis itself is a poor predictor of perinatal brain injury (34).
Thus, CTG does not reduce perinatal morbidity and mortality,
but it does increase the rate of operative deliveries (35, 36).
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Indeed, there is still debate regarding CTG application during
labor (37). Randomized controlled trials failed to demonstrate
improved outcomes with the use of CTG during labor (38, 39).
Moreover, recent evidence suggests that the type of deceleration
[defined by NICHD FHR parameters criteria (40)] does not
predict low pH at birth (30), and that the deceleration area is
the most discriminative in the identification of fetal acidemia
(41). Thus, the authors concluded that there is no need to
determine the type of deceleration at all, which is prone to high
interobserver variation. However, this statement is not shared
by other authors (42), arguing that the success of CTG depends
on team effort by the obstetricians with in-depth practical
knowledge.

Since singular parameters generally have been shown to have
a poor predictive value, a multiparametric approach to FHR
patterns is also emphasized. Recently, Eden et al. (43) developed
a new promising multiparametric metric, the fetal reserve index,
that showed a reduction in emergency operative deliveries and
in adverse fetal/neonatal outcomes (44, 45). Building upon the
notion of multiparametric approaches and the focus on fetal
outcomes instead of poorly correlated outcome metrics such as
fetal acidemia and leveraging deep learning, recent advances have
been made in detecting preventable fetal distress and brain injury
from multiple CTG patterns (34). Overall, there is evidence to
suggest the new metrics and types of analysis of FHR might
improve what, at the moment, represents the standard clinical
practice. Based on our result, AC, DC and DR, computed
through PRSA, are linked to the deceleration morphology
itself. Thus, they may lead to a better categorization of the
deceleration type. Moreover, the deceleration morphologies have
been found to differ between normoxic and hypoxic sheep
fetuses during UCO, thus, motivating future investigation on
the translational potential of this methodology. Clinical cohorts
are needed to validate these findings and evaluate the clinical
performance of these new metrics in identifying compromised
fetuses during labor.

4.5. Limitations of the Study
First, the sample size is small, dictated by the complexity
of the animal model. Second, UCOs implemented in the
experiments do not necessarily generalize to human labor, where
the contractions are not equally regular nor are they all producing
a complete occlusion of the umbilical cord. Third, sheep were
analyzed during complete UCOs. However, changes in ANS
activity in response to UCOs also occur earlier in time, when
the UCOs are less severe or the recovery time between the
UCOs is longer, and may reflect differences in the chronically
hypoxic fetuses compared to the normoxic ones. Identifying

these potentially earlier differences will be the subject of future
studies. Fourth, all sheep fetuses displayed an individual pattern
of pathological hypotensive responses to UCOs with regard to
the timing of its emergence, with hypotensive responses to FHR
decelerations showing well ahead of the severe UCOs in some
instances (46, 47). As our present study focused on the differences
between the hypoxic and normoxic fetuses in the severe stage
of UCOs, it did not investigate the relationship between the
PRSA-based metrics and the timing of the onset of pathological
hypotension. We leave this to future work.

4.6. Conclusions
Our study motivates further investigations on PRSA-related
quantities to determine their potential advantage for risk
stratification. It might also open interesting scenarios for
interpreting PRSA-based results and improving FHRmonitoring.
The evaluation of the performance of these new metrics in
identifying compromised fetuses during labor is still underway.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: The dataset can be made available upon
request. Requests to access these datasets should be directed to
Martin G. Frasch, mfrasch@uw.edu.

ETHICS STATEMENT

The animal study was reviewed and approved by University of
Western Ontario Council on Animal Care.

AUTHOR CONTRIBUTIONS

MR designed and implemented the analyses and drafted the
manuscript. MF collected the data. MR and RS optimized
the proposed mathematical framework. MB, TS, and MF were
involved in the clinical interpretation of the results. All authors
read, revised, and approved the final manuscript.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. Bryan Richardson
and his Perinatal Research Lab at the University of Western
Ontario for the original design of the animal experiments that
enabled the acquisition of the dataset underlying the present
study. The preprint version of this manuscript is available on
biorxiv.org (48).

REFERENCES

1. Divon MY, Muskat Y, Platt LD, Paldi E. Increased beat-to-beat variability

during uterine contractions: a common association in uncomplicated

labor. Am J Obstet Gynecol. (1984) 149:893–6. doi: 10.1016/0002-9378(84)

90611-2

2. Bennet L, Gunn AJ. The fetal heart rate response to hypoxia:

insights from animal models. Clin Perinatol. (2009) 36:655–72.

doi: 10.1016/j.clp.2009.06.009

3. Jonsson M, Agren J, Nordén-Lindeberg S, Ohlin A, Hanson U. Neonatal

encephalopathy and the association to asphyxia in labor. Am J Obstet Gynecol.

(2014) 211:667.e1-8. doi: 10.1016/j.ajog.2014.06.027

Frontiers in Medicine | www.frontiersin.org 8 November 2021 | Volume 8 | Article 626450149

mailto:mfrasch@uw.edu
https://biorxiv.org
https://doi.org/10.1016/0002-9378(84)90611-2
https://doi.org/10.1016/j.clp.2009.06.009
https://doi.org/10.1016/j.ajog.2014.06.027
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rivolta et al. Deceleration Morphology During Labor

4. Alfirevic Z, Devane D, Gyte GM, Cuthbert A. Continuous cardiotocography

(CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment

during labour. Cochrane Database Syst Rev. (2017) 2:CD006066.

doi: 10.1002/14651858.CD006066.pub3

5. Bauer A, Kantelhardt JW, Bunde A, Barthel P, Schneider R, Malik M, et al.

Phase-rectified signal averaging detects quasi-periodicities in non-stationary

data. J Phys A. (2006) 364:423–34. doi: 10.1016/j.physa.2005.08.080

6. Stampalija T, Casati D, Montico M, Sassi R, Rivolta MW, Maggi V,

et al. Parameters influence on acceleration and deceleration capacity based

on trans-abdominal ECG in early fetal growth restriction at different

gestational age epochs. Eur J Obstet Gynecol Reprod Biol. (2015) 188:104–12.

doi: 10.1016/j.ejogrb.2015.03.003

7. Stampalija T, Casati D, Monasta L, Sassi R, Rivolta MW, Muggiasca ML, et al.

Brain sparing effect in growth-restricted fetuses is associated with decreased

cardiac acceleration and deceleration capacities: a case-control study. BJOG.

(2016) 123:1947–54. doi: 10.1111/1471-0528.13607

8. Tagliaferri S, Fanelli A, Esposito G, Esposito FG, Magenes G, Signorini MG,

et al. Evaluation of the acceleration and deceleration phase-rectified slope to

detect and improve IUGR clinical management. Comput Math Methods Med.

(2015) 2015:1–9. doi: 10.1155/2015/236896

9. Lobmaier SM, van Charante NM, Ferrazzi E, et al. Phase-rectified signal

averaging method to predict perinatal outcome in infants with very preterm

fetal growth restriction- a secondary analysis of TRUFFLE-trial. Am J Obstet

Gynecol. (2016) 215:630.e1–630.e7. doi: 10.1016/j.ajog.2016.06.024

10. Rivolta MW, Stampalija T, Casati D, Richardson BS, Ross MG,

Frasch MG, et al. Acceleration and deceleration capacity of fetal

heart rate in an in-vivo sheep model. PLoS ONE. (2014) 9:e104193.

doi: 10.1371/journal.pone.0104193

11. Warrick PA, Hamilton EF, Precup D, Kearney RE. Classification of normal

and hypoxic fetuses from systems modeling of intrapartum cardiotocography.

IEEE Trans Biomed Eng. (2010) 57:771–9. doi: 10.1109/TBME.2009.2035818

12. Rivolta MW, Stampalija T, Frasch MG, Sassi R. Theoretical value of

deceleration capacity points to deceleration reserve of fetal heart rate. IEEE

Trans Biomed Eng. (2020) 67:1176–85. doi: 10.1109/TBME.2019.2932808

13. Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford

KL, et al. Improving pregnancy outcomes in humans through studies in

sheep. Am J Physiol Regul Integr Comp Physiol. (2018) 315:R1123–53.

doi: 10.1152/ajpregu.00391.2017

14. Xu A, Durosier LD, Ross MG, Hammond R, Richardson BS, Frasch MG.

Adaptive brain shut-down counteracts neuroinflammation in the near-term

ovine fetus. Front Neurol. (2014) 5:110. doi: 10.3389/fneur.2014.00110

15. Durosier LD, Green G, Batkin I, Seely AJ, Ross MG, Richardson BS,

et al. Sampling rate of heart rate variability impacts the ability to

detect acidemia in ovine fetuses near-term. Front Pediatr. (2014) 2:38.

doi: 10.3389/fped.2014.00038

16. Parer J, Dijkstra H, Harris J, Krueger T, Reuss M. Increased fetal heart rate

variability with acute hypoxia in chronically instrumented sheep. Eur J Obstet

Gynaecol Reprod Biol. (1980) 10:393–9. doi: 10.1016/0028-2243(80)90025-8

17. Fletcher AJW, Gardner DS, Edwards CMB, Fowden AL, Giussani DA.

Development of the ovine fetal cardiovascular defense to hypoxemia

towards full term. Am J Physiol Heart Circ Physiol. (2006) 291:H3023–34.

doi: 10.1152/ajpheart.00504.2006

18. Murotsuki J, Bocking AD, Gagnon R. Fetal heart rate patterns in growth

restricted fetal sheep induced by chronic fetal placental embolization.

Am J Obstet Gynecol. (1997) 176:282–90. doi: 10.1016/S0002-9378(97)70

486-1

19. Siira S, Ojala T, Vahlberg T, Rosén K, Ekholm E. Do spectral bands of fetal

heart rate variability associate with concomitant fetal scalp pH? Early Hum

Dev. (2013) 89:739–42. doi: 10.1016/j.earlhumdev.2013.05.007

20. Itskovitz J, Rudolph AM. Denervation of arterial chemoreceptors and

baroreceptors in fetal lambs in utero. Am J Physiol Heart Circ Physiol. (1982)

242:H916–20. doi: 10.1152/ajpheart.1982.242.5.H916

21. Yeh P, Emary K, Impey L. The relationship between umbilical

cord arterial pH and serious adverse neonatal outcome: analysis

of 51,519 consecutive validated samples. BJOG. (2012) 119:824–31.

doi: 10.1111/j.1471-0528.2012.03335.x

22. Mittendorf R, Won SY, Gianopoulos JG, Pryde PG, Roizen N. Relationships

between umbilical cord arterial blood pH levels at delivery and bayley

psychomotor development index scores in early childhood. Perinat Med.

(2008) 36:335–40. doi: 10.1515/JPM.2008.043

23. Cummins G, Kremer J, Bernassau A, Brown A, Bridle H, Schulze H, et al.

Sensors for fetal hypoxia and metabolic acidosis: a review. Sensors. (2018)

18:2648. doi: 10.3390/s18082648

24. Kruger K, Hallberg B, Blennow M, Kublickas M, Westgren M. Predictive

value of fetal scalp blood lactate concentration and pH as markers

of neurologic disability. Am J Obstet Gynecol. (1999) 181:1072–8.

doi: 10.1016/S0002-9378(99)70083-9

25. Sassi R, Stampalija T, Casati D, Ferrazzi E, Bauer A, Rivolta MW.

A methodological assessment of phase-rectified signal averaging through

simulated beat-to-beat interval time series. Comput Cardiol. (2014) 41:601–4.

Available online at: https://www.cinc.org/archives/2014/pdf/0601.pdf

26. Huhn EA, Lobmaier S, Fischer T, Schneider R, Bauer A, Schneider KT, et al.

New computerized fetal heart rate analysis for surveillance of intrauterine

growth restriction. Prenat Diagn. (2011) 31:509–14. doi: 10.1002/pd.2728

27. Georgieva A, Papageorghiou AT, Payne SJ, Moulden M, Redman CW.

Phase-rectified signal averaging for intrapartum electronic fetal heart rate

monitoring is related to acidaemia at birth. BJOG. (2014) 121:889–94.

doi: 10.1111/1471-0528.12568

28. Graatsma EM, Mulder EJH, Vasak B, Lobmaier SM, Pildner von Steinburg

S, Schneider KTM, et al. Average acceleration and deceleration capacity of

fetal heart rate in normal pregnancy and in pregnancies complicated by

fetal growth restriction. J Matern Fetal Neonatal Med. (2012) 25:2517–22.

doi: 10.3109/14767058.2012.704446

29. Yli BM, Kjellmer I. Pathophysiology of foetal oxygenation and cell damage

during labour. Best Pract Res Clin Obstet Gynaecol. (2016) 30:9–21.

doi: 10.1016/j.bpobgyn.2015.05.004

30. Cahill AG, Tuuli MG, Stout MJ, López JD, Macones GA. A prospective

cohort study of fetal heart rate monitoring: deceleration area is

predictive of fetal acidemia. Am J Obstet Gynecol. (2018) 218:e1–523.e12.

doi: 10.1016/j.ajog.2018.01.026

31. Redman C. 45 years of fetal heart rate monitoring in BJOG. BJOG. (2015)

122:536. doi: 10.1111/1471-0528.13101

32. Dawes GS, Moulden M, Redman CW. The advantages of

computerized fetal heart rate analysis. J Perinat Med. (1991) 19:39–45.

doi: 10.1515/jpme.1991.19.1-2.39

33. Mhajna M, Schwartz N, Levit-Rosen L, Warsof S, Lipschuetz M, Jakobs

M, et al. Wireless, remote solution for home fetal and maternal

heart rate monitoring. Am J Obstet Gynecol MFM. (2020) 2:100101.

doi: 10.1016/j.ajogmf.2020.100101

34. Frasch MG, Strong S, Nilosek D, Leaverton J, Schiffrin BS. Detection of

preventable fetal distress during labor from scanned cardiotocogram tracings

using deep learning. Front Pediatr. (2021).

35. Clark SL, Hamilton EF, Garite TJ, Timmins A, Warrick PA, Smith S.

The limits of electronic fetal heart rate monitoring in the prevention of

neonatal metabolic acidemia. Am J Obstet Gynecol. (2017) 216:163.e1–163.e6.

doi: 10.1016/j.ajog.2016.10.009

36. Johnson GJ, Salmanian B, Denning SG, Belfort MA, Sundgren NC, Clark

SL. Relationship between umbilical cord gas values and neonatal outcomes:

implications for electronic fetal heart rate monitoring. Obstet Gynecol. (2021)

138:366–73. doi: 10.1097/AOG.0000000000004515

37. Frasch MG, Boylan GB, Wu HT, Devane D. Commentary: computerised

interpretation of fetal heart rate during labour (INFANT): a randomised

controlled trial. Front Physiol. (2017) 8:721. doi: 10.3389/fphys.2017.00721

38. Vintzileos AM, Antsaklis A, Varvarigos I, Papas C, Sofatzis I, Montgomery

JT. A randomized trial of intrapartum electronic fetal heart rate monitoring

versus intermittent auscultation. Obstet Gynecol. (1993) 81:899–907.

39. The-INFANT-Collaborative-Group. Computerised interpretation of the fetal

heart rate during labour: a randomised controlled trial (INFANT). Lancet.

(2017) 389:1719–29. doi: 10.1016/S0140-6736(17)30568-8

40. ACOG. ACOG Practice Bulletin No. 106: Intrapartum fetal

heart rate monitoring: nomenclature, interpretation, and general

management principles. Obstet Gynecol. (2009) 114:192–202.

doi: 10.1097/AOG.0b013e3181aef106

41. Furukawa A, Neilson D, Hamilton E. Cumulative deceleration area: a

simplified predictor of metabolic acidemia. J Matern Fetal Neonatal Med.

(2019) 30:1–8. doi: 10.1080/14767058.2019.1678130

Frontiers in Medicine | www.frontiersin.org 9 November 2021 | Volume 8 | Article 626450150

https://doi.org/10.1002/14651858.CD006066.pub3
https://doi.org/10.1016/j.physa.2005.08.080
https://doi.org/10.1016/j.ejogrb.2015.03.003
https://doi.org/10.1111/1471-0528.13607
https://doi.org/10.1155/2015/236896
https://doi.org/10.1016/j.ajog.2016.06.024
https://doi.org/10.1371/journal.pone.0104193
https://doi.org/10.1109/TBME.2009.2035818
https://doi.org/10.1109/TBME.2019.2932808
https://doi.org/10.1152/ajpregu.00391.2017
https://doi.org/10.3389/fneur.2014.00110
https://doi.org/10.3389/fped.2014.00038
https://doi.org/10.1016/0028-2243(80)90025-8
https://doi.org/10.1152/ajpheart.00504.2006
https://doi.org/10.1016/S0002-9378(97)70486-1
https://doi.org/10.1016/j.earlhumdev.2013.05.007
https://doi.org/10.1152/ajpheart.1982.242.5.H916
https://doi.org/10.1111/j.1471-0528.2012.03335.x
https://doi.org/10.1515/JPM.2008.043
https://doi.org/10.3390/s18082648
https://doi.org/10.1016/S0002-9378(99)70083-9
https://www.cinc.org/archives/2014/pdf/0601.pdf
https://doi.org/10.1002/pd.2728
https://doi.org/10.1111/1471-0528.12568
https://doi.org/10.3109/14767058.2012.704446
https://doi.org/10.1016/j.bpobgyn.2015.05.004
https://doi.org/10.1016/j.ajog.2018.01.026
https://doi.org/10.1111/1471-0528.13101
https://doi.org/10.1515/jpme.1991.19.1-2.39
https://doi.org/10.1016/j.ajogmf.2020.100101
https://doi.org/10.1016/j.ajog.2016.10.009
https://doi.org/10.1097/AOG.0000000000004515
https://doi.org/10.3389/fphys.2017.00721
https://doi.org/10.1016/S0140-6736(17)30568-8
https://doi.org/10.1097/AOG.0b013e3181aef106
https://doi.org/10.1080/14767058.2019.1678130
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rivolta et al. Deceleration Morphology During Labor

42. Sholapurkar SL. The present and future of intrapartum computerized

cardiotocography: role of pattern recognition incorporating single vs.

multiple parameters. J Matern Fetal Neonatal Med. (2021) 17:1–7.

doi: 10.1080/14767058.2021.1949453

43. Eden RD, Evans MI, Evans SM, Schifrin BS. The “Fetal reserve

Index”: re-engineering the interpretation and responses to fetal heart

rate patterns. Fetal Diagn Ther. (2018) 43:90–104. doi: 10.1159/0004

75927

44. Eden RD, Evans MI, Britt DW, Evans SM SB. Safely lowering the

emergency cesarean and operative vaginal delivery rates using the

fetal reserve index. J Matern Fetal Neonatal Med. (2020) 33:1473–9.

doi: 10.1080/14767058.2018.1519799

45. Evans MI, Eden RD, Britt DW, Evans SM SB. Re-engineering the

interpretation of electronic fetal monitoring to identify reversible

risk for cerebral palsy: a case control series. J Matern Fetal

Neonatal Med. (2019) 32:2561–9. doi: 10.1080/14767058.2018.14

41283

46. Gold N, Frasch MG, Herry CL, Richardson BS, Wang X. A doubly

stochastic change point detection algorithm for noisy biological

signals. Front Physiol. (2018) 8:1112. doi: 10.3389/fphys.2017.

01112

47. Gold N, Herry CL,Wang X, FraschMG. Fetal cardiovascular decompensation

during labor predicted from the individual heart rate: a prospective study in

fetal sheep near term and the impact of low sampling rate. arXiv e-prints.

(2019) arXiv:1911.01304.

48. Rivolta MW, Barbieri M, Stampalija T, Sassi R, Frasch MG. Relationship

between deceleration morphology and phase rectified signal averaging-based

parameters during labor. bioRxiv. (2021) doi: 10.1101/2021.04.21.440741

Conflict of Interest: MF has a patent pending on abdominal ECG signal

separation for FHR monitoring (WO2018160890).

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Rivolta, Barbieri, Stampalija, Sassi and Frasch. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 10 November 2021 | Volume 8 | Article 626450151

https://doi.org/10.1080/14767058.2021.1949453
https://doi.org/10.1159/000475927
https://doi.org/10.1080/14767058.2018.1519799
https://doi.org/10.1080/14767058.2018.1441283
https://doi.org/10.3389/fphys.2017.01112
https://doi.org/10.1101/2021.04.21.440741
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


SYSTEMATIC REVIEW
published: 30 November 2021

doi: 10.3389/fmed.2021.661226

Frontiers in Medicine | www.frontiersin.org 1 November 2021 | Volume 8 | Article 661226

Edited by:

Patrice Abry,

École Normale Supérieure de Lyon,

Université de Lyon, France

Reviewed by:

Maria G. Signorini,

Politecnico di Milano, Italy

Giovanni Magenes,

University of Pavia, Italy

*Correspondence:

Maria Ribeiro

maria.r.ribeiro@inesctec.pt

†These authors share last authorship

Specialty section:

This article was submitted to

Obstetrics and Gynecology,

a section of the journal

Frontiers in Medicine

Received: 30 January 2021

Accepted: 04 November 2021

Published: 30 November 2021

Citation:

Ribeiro M, Monteiro-Santos J,

Castro L, Antunes L, Costa-Santos C,

Teixeira A and Henriques TS (2021)

Non-linear Methods Predominant in

Fetal Heart Rate Analysis: A

Systematic Review.

Front. Med. 8:661226.

doi: 10.3389/fmed.2021.661226

Non-linear Methods Predominant in
Fetal Heart Rate Analysis: A
Systematic Review
Maria Ribeiro 1,2*, João Monteiro-Santos 3,4, Luísa Castro 3,4,5, Luís Antunes 1,2,

Cristina Costa-Santos 3,4, Andreia Teixeira 3,4,6† and Teresa S. Henriques 3,4†

1 Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal, 2Computer Science

Department, Faculty of Sciences, University of Porto, Porto, Portugal, 3Centre for Health Technology and Services Research,

Faculty of Medicine University of Porto, Porto, Portugal, 4Department of Community Medicine, Information and Health

Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal, 5 School of Health of Polytechnic of Porto, Porto,

Portugal, 6 Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal

The analysis of fetal heart rate variability has served as a scientific and diagnostic

tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being.

Many mathematical analyses were proposed to evaluate fetal heart rate variability. We

focused on non-linear analysis based on concepts of chaos, fractality, and complexity:

entropies, compression, fractal analysis, and wavelets. These methods have been

successfully applied in the signal processing phase and increase knowledge about

cardiovascular dynamics in healthy and pathological fetuses. This review summarizes

those methods and investigates how non-linear measures are related to each paper’s

research objectives. Of the 388 articles obtained in the PubMed/Medline database and

of the 421 articles in the Web of Science database, 270 articles were included in the

review after all exclusion criteria were applied. While approximate entropy is the most

used method in classification papers, in signal processing, the most used non-linear

method was Daubechies wavelets. The top five primary research objectives covered

by the selected papers were detection of signal processing, hypoxia, maturation or

gestational age, intrauterine growth restriction, and fetal distress. This review shows that

non-linear indices can be used to assess numerous prenatal conditions. However, they

are not yet applied in clinical practice due to some critical concerns. Some studies show

that the combination of several linear and non-linear indices would be ideal for improving

the analysis of the fetus’s well-being. Future studies should narrow the research question

so a meta-analysis could be performed, probing the indices’ performance.

Keywords: fetal heart rate, non-linear methods, entropy, data compression, fractal analysis, wavelet analysis,

systematic review

1. INTRODUCTION

Worldwide, it is estimated that the number of fetal deaths after week 20 of gestational age is around
2.6 million per year. Although the numbers have been decreasing in the past decades, the stillbirths’
rate still ranges from about 1 in 250 births in developed countries and 1 per 33 in South Asia and
Sub-Saharan Africa (data from 2009), according to Cousens et al. (1).
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Cardiotocography (CTG) combines fetal heart rate (fHR)
measurement, obtained through a uterine contraction
monitoring probe and a Doppler ultrasound probe for fHR,
recorded using an abdominal pressure transducer. In developed
countries, clinical decisions during labor are firmly based on fHR
monitoring (2, 3), being CTG the most used tool to assess fetal
well-being since the early ’60s according to Spencer (4). However,
the information provided by CTG is limited since a complete
electrocardiogram (ECG) signal of the fetus is not available.
Moreover, the CTG is highly sensitive to both fetal and maternal
movement. The use of an electrode placed on the fetus’s scalp is
more reliable as it retrieves fetal electrocardiogram, containing
not only fHR but also other crucial clinical parameters (5, 6).
On the other hand, this is an invasive method only possible
during labor, after the beginning of cervical dilatation and the
membranes’ rupture, carrying with it risks of infection (7, 8).
However, other methods for fetal monitoring are used such as
fetal phonocardiography (9–11), fetal echocardiography (12, 13),
and fetal magnetocardiography (14, 15). Each one of the methods
has its own advantages and disadvantages. For more detail on
this matter, see Jaros et al. (16) and Hoyer et al. (17).

Electronic fetal monitoring came with high expectations since
it offered continuous monitoring, compared to the intermittent
auscultation done until then. However, a meta-analysis of large
multicenter studies did not prove any significant improvement.
Also, electronic fetal monitoring became the main suspect for the
increased rate of cesarean sections (18). These procedures result
in a slight increase in poor outcomes in low-risk pregnancies.
The cesarean sections also require a longer time to heal than
a vaginal birth and present increased risks, including baby
breathing problems, amniotic fluid embolism, and postpartum
bleeding for the mother (19). Despite the importance of
the fetus and mother well-being assessment, low concordance
between physicians is still present, even among experienced
obstetricians, resulting in a high rate of false-positives (2, 20,
21). In daily practice, fHR is subject to the clinician visual
interpretation, even when following the guidelines provided
by the International Federation of Obstetrics and Gynaecology
(FIGO) (22, 23), which although being associated with high
sensitivity but low specificity (24), might leads to a chance
of more harmful than beneficial adherence to conventional
guidelines (25).

The autonomic nervous system (ANS) is involved in the
control of almost every organ system, and the beat-to-beat
variation of fHR reflects the influence of the fetus’ ANS
and its components (sympathetic and parasympathetic) and,
therefore, is an indicator of fetal well-being (8). A certain
level of unpredictable fetal heart rate variability (fHRV) reflects
sufficient capabilities of the organism in search of optimal
behavior. Reduced fHRV is linked with limited capabilities
and mental disorders (26). The linear modeling approaches
quantify sympathetic and parasympathetic control mechanisms
and their balance by measuring spectral low and high-frequency
components. However, it has been shown that not all information
carried by beat-to-beat variability can be explained by these
components (27). For this matter, in the past couple of decades,
and with the fast development of computation, new signal

processing, and pattern recognition methodologies have been
developed and applied to many different fields, including the
analysis of fHRV using non-linear parameters (28, 29). These
approaches can reveal relevant clinical information not exposed
by temporal or frequency analysis (30).

Variability and complexity are different terms. While a
complex system requires variability, the other way around is not
guaranteed. For example, a set of random notes in music can be
interpreted as having high complexity for its non-predictability,
whereas a set of consecutive notes is highly predictable, and
both have high variability. Thus, complexity signals, such as
those produced by self-regulatory physiological systems, present
temporal or spatial structures over a varied range of scales.
Because of their non-linearity and non-stationarity, conventional
indicators, such as the mean and the standard deviation, do not
fulfill their purpose (31). In the end, complexity is a property of
any system that quantifies the amount of structured information.

Chaffin et al. (32), in 1991, were the first to use non-linear
analyzes in fHR. The authors applied fractal analysis (correlation
dimension) to study 12 normal fetuses’ well-being in labor. Later,
in 1992, Pincus and Viscarello (33) found statistically significant
results using approximate entropy (ApEn) when comparing
a group of acidemic fetuses with non-acidemic ones. These
results supported the hypothesis that regular fHR patterns are
associated with acidemia. Datian and Xuemei (34), in 1996,
introduced a new wavelet analysis method used to detect fetal
electrocardiogram from the abdominal signal and compared to
other methods in practice. Signorini et al. (35), in 2005, applied
data compression (Lempel Ziv complexity) for the first time in
the fHR analysis to improve the early detection of fetal distress
conditions such as intrauterine growth restriction. The same
authors, also in 2007 (36), used the Lempel Ziv complexity
to successfully discriminate between severe intrauterine growth
restriction (IUGR) (premature birth) and non-severe IUGR
(term delivery) and normal fetuses. In the subsequent year,
using a compressor-based clustering algorithm called normalized
compression distance (NCD), Santos et al. (37) managed to
clustered abnormal and suspicious tracks, regardless of the
monitoring system used. Barquero-Pérez et al. (38) also used
NCD for automatic detection of perinatal hypoxia.

The main contribution of this article is to provide a systematic
review of articles that apply entropy, compression, fractal, and
wavelet analysis to study the dynamics of fHR and analyze the
research objectives of these articles. As far as we know, there is no
systematic review for this purpose in the literature.

We begin by describing the methodology used, specifying the
sources of information, the eligibility criteria, the study selection,
data extraction, and quality assessment in section 2. Based on
the systematic review results, we describe in detail the most
commonly used non-linear methods to assess the dynamics of
fetal heart rate and analyze how the study of the complexity
of fHR has evolved over the years (section 3). In section 4,
we describe the most frequent goals in research. We analyze
the evolution of the non-linear methods’ applications to these
objectives and probe how the research objectives are related
to non-linear methods. In section 5, we reflect on some open
questions regarding the application of non-linear measurements
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TABLE 1 | Online queries in Pubmed and Web of Science.

Pubmed (https://www.ncbi.nlm.nih.gov/pubmed)

(“Nonlinear Dynamics”[Mesh] OR “Nonlinear Dynamics”[Title/Abstract] OR

Nonlinear[Title/Abstract] OR “Entropy”[Mesh] OR Entropy[Title/Abstract]

OR “Data Compression”[Mesh] OR “Data Compression”[Title/Abstract]

OR Compression[Title/Abstract] OR complexity[Title/Abstract] OR

“fractals”[MeSH Terms] OR fractals[Title/Abstract] OR “Wavelet

Analysis”[Mesh] OR “Wavelet Analyses”[Title/Abstract] OR

wavelet[Title/Abstract])

AND

(“Heart Rate, Fetal”[Mesh] OR “Fetal Heart Rate”[Title/Abstract] OR “foetal

heart rate”[Title/Abstract])

Web of Science (https://www.webofknowledge.com)

(TS=(“Nonlinear Dynamics” OR nonlinear OR entropy OR Compression

OR complexity OR fractal OR wavelet) OR TI=(“Nonlinear Dynamics” OR

nonlinear OR entropy OR Compression OR complexity OR fractal OR

wavelet))

AND

(TI=(“Heart Rate, Fetal”) OR TI=(“Fetal Heart Rate”) OR TI=(“foetal heart

rate”) OR TS=(“fetal heart rate”) OR TS=(“foetal heart rate”))

to fHR dynamics. We finish this paper with the main conclusions
in section 6.

2. SYSTEMATIC REVIEW METHODS

This systematic review focused on original papers that include
non-linear analysis, such as complexity measures, fractal
approaches, and wavelets, of human fetal heart rate during
ante and intrapartum. The online search was performed on
Medline, through PubMed, and the Web of Science databases,
searching all the papers published until the 4th of October
2020. The following terms were used as descriptors/Mesh: “non-
linear dynamics,” “entropy,” “data compression,” “complexity,”
“fractals,” “wavelets,” “fetal heart rate,” “foetal heart rate.” The
queries used in each database can be found in Table 1. This study
was conducted according to the Preferred Reporting Items for
Systematic Reviews andMeta-analyses (PRISMA) statement (39).
The review protocol was not registered prospectively.

Inclusion criteria for selecting studies were the following:
observational or experimental papers presenting complexity
analysis of fetal heart rate; abstract found online; reported
original research in peer-reviewed journals; at least one
measure from the following was used in the analysis (entropy,
compression, fractal, or wavelet). Papers using non-human
fetal heart rate analysis, papers without an English version,
reviews, case studies, dissertations, and thesis were excluded (see
Figure 1).

All authors were involved in the selection of studies, data
extraction, and quality assessment. Two authors independently
assessed each title and abstract found in the databases. The
full texts of potentially relevant studies have been retrieved
and revised in depth. Disagreements between reviewers were
resolved by consensus or by the decision of a third independent
reviewer. For each article, the following data were collected: year
of publication, study design, objective, sample size, measure(s)

used to analyze fHR, and conclusions. Both reviewers made sure
that all included papers met the criteria defined in the first stage.

A total of 603 abstracts were assessed, 368 of which retained
for full-text screening. Two hundred and seventy papers were
then included in the review after meeting all the criteria.
Figure 1 contains the PRISMA flow diagram for study selection,
including reasons for exclusion. The most used non-linear
analysis measures to study the dynamics of fHR obtained in the
systematic review are also represented in Figure 1.

3. NON-LINEAR METHODS

Although linear indices have been extensively used in fetal
monitoring for the past decades, it is established that biological
systems are more complex than they appear. Non-linear
measures based on concepts of chaos, fractality, and complexity
have gained space and demonstrated promising results in the
analysis of fetal well-being and the prediction of pathologies. The
application of non-linear measures to study the dynamics of fHR
has increased over the years. The non-linear methods covered by
this review are entropy, compression, fractal analysis, and wavelet
analysis. The results show that entropy is the most applied
measure in fetal heart rate, followed by fractal analysis, wavelet
analysis, and the least applied is the compression (see Figures 1,
2). Although the application of entropy methods stands out, we
can see that compression and wavelet analysis methods have been
increasingly used in recent years (see Figure 2).

In the following sections, the most applied non-linear
methods are described. In our systematic review, other non-
linear methods were found, such as, Poincaré plot (in 18 papers),
symbolic dynamics (in 12 papers), phase rectified signal average
(in 10 papers), Lyapunov exponents (in 6 papers), and recurrence
plot analysis (in 6 papers). However, due to the reduced number
of uses, they were not described in detail. For this review, we
decided to describe only the measures most applied to fHR.

3.1. Entropy
According to Shannon (40), the information within a signal
can be quantified with absolute precision as the amount of
unexpected data in the message (defined as entropy). Entropy, a
probabilistic complexity measure used to quantify a time series’s
irregularity, has been widely used in physiological signal analysis.
The number of papers that applied each entropy measure per
year is shown in Figure 2. The entropy measures that were
applied to at least 15 articles were: Shannon entropy (SE),
approximate entropy (ApEn), sample entropy (SampEn), and
multiscale entropy (MSE).

From all 270 papers included in this review, 149 (55.2%)
papers applied entropy: 16 (5.9%) show results with Shannon
entropy (SE), 82 (30.4%) used SampEn, 101 (37.4%) used ApEn,
and 30 (11.1%) used MSE (see Figure 1). Figure 3 shows the
number of papers that applied measures of the entropy by year.
ApEn is the most applied measure. However, in recent years the
employment of SampEn and ApEn is similar.

In the literature, we found other entropy measures that
appeared in less than 15 articles, such as, permutation entropy
(41–45), Rnyi entropy (46–48), Kullback-Leibler entropy (41,
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FIGURE 1 | PRISMA flow diagram and non-linear methods most applied in fHR. DFA, detrended fluctuation analysis; FD, fractal dimension; HE, Hurst exponent.

FIGURE 2 | The number of papers, covered by the systematic review, that applied each method. The blue circle represents entropy, the green square represents

compression, the black triangle represents fractal analysis, and the red star represents wavelet.

42, 49, 50), Kolmogorov-Sinai entropy (30), cross-sample
entropy (51, 52), tone-entropy (53), bubble entropy (47), and
compression entropy (46).

3.1.1. Shannon Entropy (SE)
In 1948, Shannon (40) proposed the concept of entropy (Shannon
entropy - SE) to measure how the information within a signal
can be quantified with absolute precision as the amount of
unexpected data contained in the message. The Shannon entropy
is obtained by:

SE = −

∑

i

p(x(i)) · log
(

p(x(i))
)

(1)

where p(x(i)) represents the probability of the point x(i), of a time
series X = (x1, x2, ..., xN).

Though SE was introduced back in 1948, and many new
entropies appeared to overcome some of the SE limitations, some
authors still applied it in the analysis of fHRV (46, 54).

3.1.2. Approximate Entropy (ApEn)
In 1991, Pincus et al. (55) developed a regularity statistic tool
to quantify the amount of regularity and the unpredictability
of fluctuations over time-series data. The ApEn is based on
the assumption that healthy dynamic stability comes from
specific networks’ specific mechanisms and properties. When a
vulnerable connection arises between systems or within one, it is
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FIGURE 3 | Entropies by year. The colors and symbols represent the different measures of entropy. The blue circle, green square, black triangle, and star red

represented Shannon entropy, approximate entropy, sample entropy, and multiscale entropy, respectively.

the disease mechanism, which is characterized by an increase of
regularity of the series (56).

Considering a time series X = (x1, x2, ..., xN), in order to
calculate the ApEn the new series of a vector of length m
(embedding dimension), Xm(i) = (xi, xi+1, xi+2, . . . , xi+m−1) are
constructed for each i = 1, . . . ,N − m + 1. For each vector
Xm(i), the value Cr

m(i), where r is referred as a tolerance value,
is computed as:

Cr
m(i) =

number of d[Xi,Xj] ≤ r

N −m+ 1
, ∀j (2)

Here, the distance between the vector Xm(i) and its neighbor
Xm(j) is defined as:

d[Xm(i),Xm(j)] = maxk=1,...,m|x(i+ k− 1)− x(j+ k− 1)| (3)

Next, the average of the natural logarithm of Cr
m(i) is computed

for all i:

8
r
m =

1

N −m+ 1

N−m+1
∑

i=1

ln(Cr
m(i)) (4)

Since in practice N is a finite number, the statistical estimate is
computed as:

ApEn(m, r) =

{

8
r
m −8

r
m+1 for m > 0

−8
r
1 for m = 0

In the particular case of the ApEn, the most common value is
m = 2. However, many algorithms were proposed to estimate
the smallest sufficient embedding dimension, m. One of the
most used methods is the “false nearest-neighbors” algorithm
proposed by Kennel et al. (57). Though, the limitation of this
method relies on the subjective definition of false neighbor (58).
To overcome this limitation, Cao (58) proposed a new method.

For estimation of an appropriate time delay various
approaches have been proposed. The most used two are the
autocorrelation function and the average mutual information

function (59). Pincus (60) and Pincus and Goldberger (61)
recommends values between 10 and 25% of the standard
deviation of the data, hence obtaining a scale-invariant
measurement. The approach of choosing a fixed r value was
also used with success (62, 63). However, the values of entropy
in this case are usually highly correlated with the time series
standard deviation. Lu et al. (64) showed that ApEn values
varied significantly even within the defined range of r values
and presented a new method for automatic selection of r that
corresponds to the maximum ApEn value.

3.1.3. Sample Entropy (SampEn)
In 2000, Richman and Moorman (65) proposed the sample
entropy (SampEn), with the same purpose as ApEn, to evaluate
the randomness of biological time series, in particular, the HR
time series. The main limitation of the ApEn is the dependence
on the record length, i.e., the ApEn is lower for short records,
and if one time series is higher than another, it should not
remain higher for all conditions (65). In order to overcome
the limitations, the authors proposed a new family of statistics,
SampEn(m, r), which, with some differences, reducing bias
specially in short data sets:

1. self-matches are not counted;
2. only the first N-vectors of length are considered;
3. the conditional probabilities are not estimated in a template

manner.

To calculate the value of SampEn (65) the parameters m, and r
defined for ApEn are needed. Considering A as the number of
vector pairs of length m + 1 having d[Xm(i),Xm(j)] ≤ r, with
i 6= j and B as the total number of template matches of length m
also with i 6= j, the SampEn is defined by the equation:

SampEn = −ln
A

B
(5)

This probability measure is computed directly as the logarithm of
conditional probability and not from the logarithmic sums ratio,
showing relative consistency in cases where ApEn does not (65).
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3.1.4. Multiscale Entropy (MSE)
ApEn and SampEn have the disadvantage of outputting a
single index concerning the time series’s general behavior, thus
not revealing its underlying dynamics. MSE has been widely
employed in the biomedical signal analysis as it allows measuring
signal properties at different time scales (66, 67).

Considering a time series X = {xi} of N points, it constructs

consecutive coarse-grained time series y
(τ )
j , replacing τ non-

overlapping points by their average. The MSE curve is created
by computing the entropy for each of the scales and plotted vs.
the scale. The information of the different time scales is clustered
in the complexity index defined as the area under the MSE curve.

The estimation of the complexity methodology has to follow
the multiscale application requirements, and SampEn was
proposed using a tolerance r obtained from the original series
and keeping it constant for all scales (67). Other authors were
in favor of choosing an individual tolerance level r for each
scale (68, 69). For example, the quadratic sample entropy permits
a personalized estimation of r for each scale in short data (70).

The physiological interpretation of multiscale complexity is
not always clear once, in a complex dynamic system, all scales
might be affected by regulating influences (71). Low complexity
scales indicate regular patterns with periodicity, but isolated ones
would indicate one single frequency oscillation periodicity that
usually is not present in complex systems. However, it is typical
of the appearance of correlated neighboring scales (41, 67).

3.2. Compression
Dynamic systems theory was firstly linked with information
theory by Kolmogorov (72), in 1958. Years later, “algorithm
information theory” was then independently proposed by
three different authors, Solomonoff (73), Kolmogorov (74) and
Chaitin (75).

Let x be a finite length binary string, U be a universal
computer, l(x) denote the length of the string x and U(p) the
output of the computer U when presented with a program p.
The Kolmogorov (or algorithmic) complexity (KC) of a string x
with respect to a universal computer U , KU (x), is defined as the
shortest description length of x over all descriptions interpreted
by computer U . In different words, KC quantifies how “random”
an individual object is in terms of the number of bits necessary to
describe it. For a random string, the output of KU (x) function
will be the original string’s length as any compression effort
will end in information loss. The more reoccurring patterns, the
less complex the signal is. Although this concept is objective,
its applicability is limited to the fact that it is not computable.
Compressors are a close upper-bounded approximation of the
KU (x) function. For over 30 years, data compression software
has been developed for data storage and transmission efficiency
purposes, and more recently, compression has been utilized in
health research.

The innumerous compressors found in the literature can be
divided into two big groups: lossless or lossy. The former group
is composed of compressors in which, after being decompressed,
all original information is restored. For the lossy group, this is not

guaranteed, particularly for redundant information. The most
applied compressors in health research belong to the first group.

The Lempel–Ziv algorithm was introduced, in 1976, by
Lempel and Ziv (76) based on ’the concept of encoding future
segments of the source output via maximum-length copying
from a buffer containing the recent past output.’ It was the
starting point for different compressors such as the Lempel–Ziv–
Markov chain algorithm, LZ77, LZ78, and gzip. The bzip2 was
developed by Seward (77) and used the block sort algorithm
giving speedy results.

In order to estimate the complexity of a physiological signal
using compression, different approaches have been used, such as
an increase/decrease coding system using a binary (30, 78, 79) or
ternary alphabet (80, 81).

Compression also has been used for research purposes in
a wide variety of fields such as literature (82), music (83),
computer virus and internet (84) traffic, but only in 2004, it
was first applied in HRV time series by Ferrario et al. (85).
Here, compression demonstrated to differentiate healthy
fetuses from unhealthy ones. In fact, the former group
complexity calculated with LZ achieved similar results to
random noise (meaning high complexity), while in the
latter group, its complexity was lower, showing sinusoidal
patterns. The applications of compression in health research
range from event detection [such as epileptic seizure (86),
the onset of ventricular tachycardia or fibrillation (87) and
changes from sleep to waking state in-depth anesthesia (88)],
characterizing neural spike trains (89), fHR biometric
identification (90) or in DNA sequences studies (91). A
distinct approach to applying compression on a time series
uses the normalized compression distance (NCD) measure,
a dissimilarity learning approach first used in fHR by Santos
et al. (37).

From all 270 papers included in this review, 46 (17%) show
results with compression. Its usage throughout recent years can
be seen in Figure 4.

3.3. Fractal Analysis
Fractality indices quantify self-similarity and fractal- or
multifractal-like behaviors. The heart rate fluctuates on different
timescales and is similar to itself, which is a good premise for a
fractal analysis approach (30).

Of all 270 papers included in this review, 28.1% applied fractal
analysis. More specifically, 35 (13.0%) used detrended fluctuation
analysis (DFA), 34 (12.6%) show results with fractal dimension
(FD), 14 (5.2%) used Hurst exponent and 14 (5.2%) multifractal
analysis (see Figure 1). Figure 5 shows the number of papers that
applied measures of fractal analysis by year.

Fractal dimension, Hurst exponent, and DFA are described
in sections 3.3.1–3.3.3, respectively. The multifractal analysis
describes more complex signals than those fully characterized by
a monofractal model but requires many local and theoretically
infinite exponents to characterize their scaling properties
completely. The multifractal detrended fluctuation analysis (MF-
DFA), the most applied multifractal method in the papers
covered by the systematic review, is described in section 3.3.4.
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FIGURE 4 | Papers using compression in fetal heart rate, by year. The red circle represents the Lempel-Ziv compressor and the blue square represents the other

compressors.

FIGURE 5 | Papers using fractal analysis in fetal heart rate, by year. The blue circle represents the fractal dimension measure, the green square represents the

detrended fluctuation analysis, the black triangle represents the Hurst exponent, the red star represents the multifractal analysis.

3.3.1. Fractal Dimension (FD)
A fractal dimension (FD) is a statistical index of how the detail
in a pattern changes with the scale at which it is measured.
The FD appears to provide a measure of how much space an
object occupies between Euclidean dimensions. The higher the
FD value, the more irregular the signal is and, therefore, the more
self-similar the signal will be.

Of the various algorithms available to calculate the FD of
a time series, the four most used are the algorithms proposed
by Katz (92) and Higuchi (93, 94), the correlation dimension,
and the box-counting dimension (95). More details on the FD
calculation algorithms of a time series can found at Henriques
et al. (96).

3.3.2. Hurst Exponent
Hurst exponent (HE) or Hurst coefficient is a dimensionless
estimator used to evaluate the self-similarity and the long-
range correlation properties of time series (97). There are many
algorithms to estimate the HE parameter in the literature. The
oldest is the so-called rescaled range analysis (R/S) popularized
by Mandelbrot and Wallis (98, 99) and it is defined in terms

of the asymptotic behavior of the rescaled range (a statistical
measure of the variability of a time series). Alternative methods
to estimate HE include detrended fluctuation analysis (100, 101),
periodogram regression (102), aggregated variances (103), local
Whittle’s estimator (104), first return method (105), wavelet
analysis (106), both in the time domain and frequency domain.
Furthermore, there is a relation between HE and the FD, given by
FD = E+1−HE, where E is the Euclidean dimension, which for
time series is 1 obtaining their relationship FD = 2 − HE (107).
The HEmay range between 0 and 1 and can indicate:

• 0 < HE < 0.5: time series has long-range anti-correlations;
• HE = 0.5: there is no correlation in the time series;
• 0.5 < HE < 1: there are long-range correlations in the time

series;
• HE = 1: the time series is defined self-similar, i.e., it has a

perfect correlation between increments.

3.3.3. Detrended Fluctuation Analysis (DFA)
Detrended fluctuation analysis (DFA) quantifies intrinsic fractal-
like (short and long-range) correlation properties of dynamic
systems (101). Two advantages of DFA over conventional
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methods (such as the HE method) are that this method allows
the detection of intrinsic self-similarity embedded in a non-
stationary time series and also avoids the detection of apparent
self-similarity (108).

To execute the DFA algorithm the first step is to integrate the
time series (of length N). The next step is to split the integrated
time series into Nn windows of equal length n. Then, a least-
squares line is fitted to the data, in each window of length n. The
y-coordinate of the straight-line segments is given the name of
yn(k). Then, the integrated time series is detrended, yn(k), in each
window. The root mean square fluctuation of this integrated and
detrended series is calculated by the following equation:

F(n) =

√

√

√

√

1

N

N
∑

k=1

[y(k)− yn(k)]2. (6)

This algorithm is repeated for all time scales (box sizes)
to characterize the relationship between F(n), the average
fluctuation, and the box size, n. Normally, F(n) increases with the
size of the window, according to F(n) ∝ nα . The α exponent can
be viewed as an indicator of the “roughness” of the original time
series: the higher the value of α, the smoother the time series:

• if α ≃ 0.5, the time series represents uncorrelated randomness
(white noise);

• if α ≃ 1 (1/f-noise), the time series has long-range correlations
and exhibits scale-invariant properties;

• if α ≃ 1.5, the time series represents a randomwalk (Brownian
motion).

Usually, the DFAmethod involves estimating a short-term fractal
scaling exponent, α1, and a long-term scaling exponent, α2.

3.3.4. Multifractal Detrended Fluctuation Analysis

(MF-DFA)
The multifractal DFA (MF-DFA) calculation (109, 110) is
similar to the DFA since only two additional steps are taking
into consideration. The fitting procedure in the MF-DFA can
be linear, quadratic, cubic, or higher-order polynomials (MF-
DFAm - the mth order of the MF-DFA) (101, 111, 112). By
comparing the results obtained for different MF-DFA orders,
it is possible to estimate the order of the polynomial segment
trends in the time series (109, 112). The procedure must be
repeated for various n time scales, as we are interested in
how this q-dependent fluctuation function depends on the n
time scale for different q values. The other additional step
is a q dependent averaging procedure obtaining a generalized
(multifractal) scaling exponent h(q). For q = 2, the standard DFA
procedure is retrieved.

The main problem with the MF-DFA method is that all the
steps are deeply dependent on the user’s decisions. TheMultiscale
multifractal analysis (MMA) (71, 113) is a generalization of the
MF-DFA method. The method creates a Hurst surface h(q,s),
allowing a broader analysis of the fluctuation properties andmore
stable results. Also, all multifractal methods, including MMA,
require a relatively long time series to analyze.

3.4. Wavelets Analysis
The first appearance of the term wavelet was in an annex to Haar
thesis’ (114). However, it is considered that the wavelet theory
was developed in the late 1980s by Mallat (115), Daubechies
and Bates (116, 117) to meet the needs for adaptive time-
frequency analysis applied to signal processing, mathematics,
physics, and engineering. Wavelets are functions that satisfy
a series of mathematical parameters and are used in the
representation of data or other functions. The term wavelet
comes from the fluctuation around the axis, integrating to
zero (the areas above the axis and below are the same).
Wavelet algorithms process information at different scales (or
resolutions). The decomposition of a function using wavelets
is known as a transformed wavelet, and it has continuous and
discrete variations. Due to the ability to decompose functions
in frequency and time domains, wavelet functions are powerful
tools for signal processing, widely used in data compression,
noise elimination, separation of components in the signal,
identification of singularities, and auto-similarity detection.

Let ψs,u(t), s, u ∈ ℜ, s > 0 be a family of functions
defined as translations and re-scales of a single function ψ(t) ∈

L2(ℜ), L2(ℜ) denotes the space of square-integrable functions on
ℜ (118),

ψs,u(t) =
1
√
s
ψ

(

t − u

s

)

(7)

where s is the scaling parameter and u the position parameter.
The parameter u indicates that the function ψ(t) was translated
on the t axis (translation parameter) by a distance equivalent to
u. The parameter s causes a scale change, increasing (if s > 1)
or decreasing (if s < 1) the wavelet formed by the function.
The wavelet is defined as a mother wavelet ψ(t) [equivalent
to ψ1,0(t)], with a family of scale and time daughter wavelets
ψ

(

t−u
s

)

. Therefore, daughter wavelets constitute a family of
curves with a shape identical to that of the mother wavelet,
displaced in time and scaled in amplitude. In the time domain,
the wavelet transform measures the correlation between the f (t)
signal and the daughter wavelets.

The wavelet ψs,u(t) has the following basic properties:

∫

∞

−∞

ψ(t)dt = 0 and

∫

∞

−∞

|ψ(t)|2dt = 1. (8)

The waveletψs,u(t) has to meet the admissibility condition for the
transformation to be invertible (116).

The term 1
√
s
is a normalization factor that ensures that the

energy of ψs,u(t) is independent of s and u, such that:

∫

∞

−∞

|ψs,u(t)|
2dt =

∫

∞

−∞

|ψ(t)|2dt (9)

The continuous wavelet transform (CWT) of signal f (t) is defined
as:

Wψ f (s, u) =
〈

f (t),ψs,u(t)
〉

=
1
√
s

∫

∞

−∞

f (t)ψ

(

t − u

s

)

dt. (10)
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The CWT coefficientsWψ f (s, u) can be obtained by continuously
varying the scale parameter s and the position parameter u.
For real discrete signals f (n), as is the case for the fHR signal,
Wψ f (s, u) can be calculated according to

Wψ f (s, u) =
1
√
s

N
∑

n=1

f (n)ψ

(

t − u

s

)

. (11)

If s is a continuous variable then Wψ f (s, u) is called the
continuous wavelet transform. However, if s = aj and u =

n ∗u0 ∗ aj where the integers j and n control the wavelet dilation
and translation respectively; a is a specified fixed dilation step
parameter set at a value greater than 1, and u0 is the location
parameter which must be greater than zero then Wψ f (s, u) =

Wψ f (j, u) is called the discrete wavelet transform (119). A useful
property of the wavelet transform is that it can be viewed
as the application of a filter bank (each filter corresponds to
one scale) (120). Some authors, such as, Zhao et al. (121) and
Papadimitriou et al. (122) apply different scale values, but, in
practice, s = 2j and u0 = 1 are the most popular scale in fHR
analysis (123–125).

There are a vast number of different mother wavelets, each
suitable for different applications. In particular, several wavelet
families have been proposed for fHR analysis. From all 270 papers
included in this review, 26.3% applied wavelet analysis. The
Daubechies (36 papers), spline (11 papers), symlets (11 papers),
and coiflet (8 papers) wavelet families were the most applied in
fHR analysis (see Figure 1). The application of wavelet analysis
in fHR has intensified in the last 10 years, Figure 6.

4. RESULTS

There is no doubt of the importance of non-linear measures
in fetal monitoring, as they enrich the signal description
by providing new indicators for classification and diagnostic
purposes. Numerous studies have documented the changes in
fHRV during gestation, and fetal growth is associated with
a drop in fetal heart rate and increased variability. As non-
linear measures started being used, authors started to link their
association with different physiological regulatory systems.

The history of non-linear methods reported to fHR
summarizes 30 years. However, in the last 15 years, there
has been a notable increase in their application to study fHR
dynamics (see Figure 7). The main research objectives covered
by this systematic review were signal processing (60 papers),
hypoxia (56 papers), maturation or gestational age (53 papers),
IUGR (44 papers), and fetal well-being or fetal distress (26) (see
Figure 7 and Table 2). Also, in Figure 7, the evolution of papers’
of the five most cited research objectives is presented per year.

Hypoxia can be caused by prolonged or profound asphyxia, an
oxygen deficiency due to a pathological change in either fetal or
maternal components of the placenta, when there is an exchange
of carbon dioxide and oxygen by the fetus during labor. This
state leads to an accumulation of carbon dioxide leading to fetal
acidemia, resulting in a lower pH in the fetal blood vessels. Early
detection of which babies are at risk of acidemia is crucial, as

it decreases the chance of a post-diagnosis of cerebral palsy,
neonatal encephalopathy, or even death (126). To relate fHR
with umbilical artery pH is, therefore, of extreme importance.
However, the proper definition of fetal acidemia is still not
established as different authors consider different pH cutoffs.
Moreover, some authors also include in the definition the value
of the base excess or base deficit (127). Some authors defined
as “at risk of acidemia” when pH < 7.20 (33, 47, 128–136) or
pH < 7.15 (30, 121, 137–143); others define when pH < 7.1 (43,
126, 144–146) or even when pH < 7.05 (38, 44, 48, 78, 147–165).
Some studies used clinical experts to identify episodes of hypoxia
and asphyxia, such as, (54, 166, 167). Another challenge relate
to this pathology is to collect enough data for a proper acidemia
analysis since prevalence of an acidemic fetus ranges from 0.6
to 3.5% (168, 169). From the 56 papers that aim to analyze of
perinatal hypoxia or asphyxia 40 papers applied entropies, 19
applied compression measures, 23 applied fractal measures, and
23 papers applied wavelets analysis.

The development of non-invasive ultrasound techniques
allowed a better estimation of gestational age and, therefore,
the definition of a crucial fetal outcome: small for gestational
age (SGA), which corresponds to fetuses having a weight lower
than the 10th percentile adjusted to gestational age. Nevertheless,
healthy babies can also be considered SGA, so it is still a challenge
to decide whether the small dimensions are due to physiological
or pathological conditions (170). Related to SGA fetus, one of
the most common pathologies is IUGR. IUGR is a metabolic
dysfunction inhibiting the fetus from achieving its average size.
With a prevalence of 5 − 8% in the general population, it can
complicate 10–15% of all pregnancies (171). IUGR is the second
cause of perinatal mortality, after prematurity (172), and is still
an important challenge for diagnosis and management (173).
From the 44 papers that aim to study IUGR, 32 papers applied
entropies, 15 applied compression measures, 11 fractal and only
2 papers used wavelets.

The effect of an antepartum vs. intrapartum analysis on the
complexity indices and the differences in the signal acquisition
methods are important to correctly evaluate and assess fetus well-
being (174, 175). Throughout pregnancy, the fetus interacts with
its environment, as the mother sets the framework for the state
and development of the fetus (176). In a study where the mother’s
breathing was controlled, Van Leeuwen et al. (176) found that
the presence or absence of interaction between mother and fetus
cardiac activity might be due to maternal respiration. Also, the
fetal cardiac system seems to have the capability to adjust its
activation rate when responding to external stimuli. Spyridou
et al. (177) studied the effect of smoking in fHR and found
differences with several linear and non-linear parameters (such
as, mutual information, MSE, and compression). In particular,
it was shown less complexity for fetus exposed, enhancing its
danger. From the 26 papers that aim to study fetal well-being or
fetal distress 17 papers applied entropies, 4 applied compression
measures, 7 fractal, and only 3 papers used wavelets.

When assessing fHRV, it is essential to control any factor
which might confound its interpretation. Some of the most
studied factors are the baby’s maturation reflected in gestational
age, behavioral state, and maternal condition (178). From the

Frontiers in Medicine | www.frontiersin.org 9 November 2021 | Volume 8 | Article 661226160

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ribeiro et al. Non-linear Methods in fHR Analysis

FIGURE 6 | The wavelet families most used in fHR analysis, by year. The colors and symbols represent the wavelet families. The black circle, blue triangle, purple

diamond plus, green square, and star red represented Daubechies family, spline family, symlet family, coiflet family, and other families, respectively.

FIGURE 7 | The five most cited research objectives of the papers that applied non-linear methods in fHR, by year of publishing. The colors and symbols represent the

different research objectives. The blue circle, cyan square, star red, green triangle, and black diamond plus represent maturation, hypoxia, intrauterine growth

restriction, fetal distress, and signal processing, respectively.

53 papers that aim to study maturation or gestational age
38 papers applied entropies, 7 applied compression measures,
18 fractal and only 3 papers used wavelets. First trimester
observations during pregnancy have shown a low intraindividual
variation of the fHR, compared to variation between different
fetuses (179). Later in pregnancy, Arduini also found this high
intraindividual consistency concerning fetal behavioral states’
characteristics, particularly fHR, in 2 consecutive days (180). In
fact, an association between individual differences in prenatal
heart rate and HRV and postnatal neural development has been
reported (181). Besides these factors, Gonçalves et al. (131)
and Spyridou et al. (182) noted that gender also has an effect
on fHR analysis and should be considered, while Tagliaferri
et al. (183) found differences on both linear and non-linear
indices between different ethnic groups. Gender was also shown
to influence maternal heart rate (MHR) (52). Even when twins
are considered, sex differences were found both by linear and
non-linear indices (184). Fetal presentation at birth has also been
studied (185, 186). Reports are stating that breech fetuses have

worse neurological outcomes compared to cephalic presentation
ones (187, 188). Furthermore, in a study by Choi and Hoh (189),
non-linear dynamic indices were able to differentiate normal
pregnancies from ones with partial placental abruption with high
accuracy, while linear indices were not.

The evaluation of neonatal behavior has shown more
success in predicting neurodevelopment disability than
neurological examination (190). Therefore, the same
approach was adopted for fetal well-being assessment.
These fetal behavioral states were introduced back in 1982
in studies combining the assessment of fetal body and eye
movements (191). They include calm or non-eye movement
sleep state (1F), active or rapid eye movement sleep state (2F),
calm wakefulness state (3F), and active wakefulness state (4F).
The importance of these definitions in understanding fetal
physiology, interpretation of fHR monitoring, and diagnosis
of pathological conditions is described with more detail
elsewhere (192). There are associations between fetal behavioral
states and fHR patterns. 1F is related to a stable baseline
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TABLE 2 | Research objectives and non-linear methods of the papers selected.

Non-linear analysis

Entropy Comp Fractal Wavelet O T

Objectives ApEn SampEn SE MSE O LZ O FD HE DFA O

Healthy

Maturation 19 12 4 13 11 7 1 3 12 4 3 14 53

Activity/behavior 10 5 1 2 3 1 3 1 1 3 14

Gender 10 8 2 2 1 1 1 2 11

Presentation 3 2 1 1 3

RM 1 1

Labor 3 2 1 1 1 1 1 1 3 6

Cesarean 1 1 1 1 1 3 4

Preterm 2 2 1 1 1 1 1 1 3

Twins 1 1 1 1 2

Nuchal cord 1 1

FCTE 1 1

Self-organization 1 1 1

Ethnic origins 1 1

Pathologies

Hypoxia 29 28 7 6 11 14 5 11 6 6 7 23 27 56

IUGR 26 13 2 6 3 15 2 1 7 1 2 16 44

Fetal distress 13 7 2 3 4 3 1 4 3 1 2 3 12 26

SIDS 1 1 1

Intrauterine demise 1 1

PPA 1 1 1 1 1

Anencephalus 1 1 1

Maternal

MP 5 1 1 1 1 2 1 2 9

Hypnosis 1 1 1 1

Steroid treatment 1 1

Uterine contraction 2 2 1 1 4 4

Signals

MFCC 1 3 4 1 1 4 7

BI 1 1 1 1

FCEC 1 1 1

Signal Processing 3 7 1 4 2 2 45 28 60

Signal acquisition 1 1 1

fHR baseline 1 4 4

Others

Expert annotation 3 4 1 1 3 4 2 3 4 6

Patterns 5 3 1 1 1 3 9

Fractal value 1 1 1

Total 101 82 16 30 38 38 8 34 14 15 15 71 112

ApEn, approximate entropy; BI, biometric identification; CD, correlation dimension; Comp, Compressor; DFA, detrended fluctuation analysis; FCEC, fetal cardio-electrohysterographic

coupling; FCTE, fetal cardiac timing events; FD, fractal dimension; HE, Hurst exponent; IUGR, intrauterine growth restriction; LZ, Lempel-ziv; MFCC, maternal-fetal cardiac coupling;

MSE, multiscale entropy; MP, maternal pathologies; O, others; RM, Respiratory movement; PPA, partial placental abruption; SampEn, sample entropy; SE, Shannon entropy; SIDS,

sudden infant death syndrome; T, total.

with absent or sporadic and short-lasting accelerations; 2F is
associated with a stable baseline and frequent accelerations,
and it is the most frequent state. 3F is rare and is usually
very short in time. It also has a stable baseline but with
wide variability and no accelerations. 4F shows repetitive

and long-lasting accelerations with eventual returns to the
baseline (193).

This field’s interest is not only focused on fHR tracings
classification. Features like frequency and amplitude traditionally
characterize physiological signals. However, these parameters do
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not provide us with an insight into the regulatory processes
underlying the signal dynamics, thus requiring a further
extraction of more appropriate features, which has become
a difficult task. These difficulties lie in the lack of a priori
information on which process belongs to each component (i.e.,
fetal, maternal, or environmental) and the lack of knowledge on
how each component behave (194). Much effort has been put
into the signal acquisition and processing models because the
extracted features’ usability highly relies on the preprocessing
steps’ quality, such as artifacts removal, interpolation method,
segmentation, and detrending signal (30).

In 2013, an open challenge was created, the Physionet
Challenge (195), in order to promote the development
of advanced signal processing techniques. Many different
approaches were suggested, such as wavelet de-denoising,
subspace decomposition and reconstruction, adaptive filtering
and averaging, matched filtering, and entropy. Most of them
followed these four steps: signal processing, maternal heartbeat
detection, maternal heartbeat cancelation, fetal heartbeat
detection. More information can be found in Di Maria
et al. (196). These non-linear methodologies have been studied
and applied to retrieve signal with the best quality possible,
dismissing as much noise as possible. The preprocessing is even
more important when adopting low-cost systems for signal
extraction, as is the case of the fetal phonocardiography, which
has a poor signal-to-noise ratio (11). From the 60 papers that aim
to study signal processing 7 papers applied entropies, 1 applied
compression measures, 7 fractal, and 45 papers used wavelets.

Table 2 presents the number of articles that applied each non-
linear method for each research objective. Entropy, compression,
and fractal measures are most used in classification papers,
mainly when applied to analyze the variability of fHR in
hypoxia, IUGR, and fetal distress. However, these measures are
still underused in studies whose research objective is signal
processing. On the other hand, wavelet analysis is most used
when the research objective is signal processing (43 papers) or
hypoxia (25 papers).

5. DISCUSSION

The number of articles probing the use of non-linear measures
to assess the fHR signals analysis has been growing in the past
decade. Non-linear analysis has been successfully applied in the
study of fetal heart rate with several research objectives, such as
fetal maturation or gestational age (197–199), fetal gender (182,
200), labor stages (201, 202), cesarean section (51, 203), preterm
birth (80, 204), impact of nuchal cord on antenatal (205), fHR
baseline (206), behavioral state (207, 208), IUGR (209–213),
hypoxia (128, 137, 214, 215), fetal distress (216–218), maternal
pathologies (219, 220), and signal processing (198, 221–224).
Therefore, it is important that the scientific community is aware
of the non-linear methods used depending on the research
objective. Additionally, they are not yet used in clinical practice
due to some critical concerns that need to be further discussed.

Systems, such as, Omniview SisPorto (225), OxSys (226), NST-
Expert, which later became CAFE (227) already automatically

deal with CTG assessment. All the fHR processing and analysis
in these systems are based on morphological features defined by
FIGO guidelines. In some, the CTG is complemented with the
ST-analysis method. It has been shown that it slightly improves
labor outcomes, but its use is not always possible since it
requires an invasive measurement (228). However, none of these
systems still integrates non-linear indices, so they can and should
be optimized.

When analyzing fHR time series automated, there are
two main aspects to contemplate: the signal properties and
quality and the clinical characteristics that might influence the
measures used. Accordingly, we found that the most studied
research objectives in fHR are signal processing, hypoxia, and
maturation. Furthermore, the results show that entropy is the
most applied measure in fetal heart rate, followed by fractal
analysis, wavelet analysis, and the least applied is compression.
Although the application of entropy methods stands out, we
can see that compression and wavelet analysis methods have
been increasingly used in recent years. Also, highlighting the
fact that entropy is the oldest method, and that is it has been
extensively studied and refined when applied to much different
time series (229). On the other hand, wavelets are widely used
in signal processing (124, 222) dealing with the signal itself,
handling problems such as noise (230) and frequency.

Routinely, the fetal heart rate monitors acquire the beat-
to-beat intervals in milliseconds either from Doppler or
electrocardiographic signals and then convert them to provide a
sequence of instantaneous heart rates in beats per minute (bpm).
However, when data is exported, it is sampled, implying an
interpolation of signals (132). The sampling rate does not seem to
affect many linear parameters, but differences were found when
non-linear indices were considered (175). Caution must be taken
when defining reference values for irregularity indices, such as
entropy, as they depend on the sampling frequency, as shown
in (175), where 2 vs. 4 Hz sampling was compared. It is most
important not to compare computerized systems for heart rate
frequency analysis that use different sampling rates (225, 231).

Several linear methods have been studied as a forecaster of
fetal well-being by measuring the interaction between the fetal
sympathetic and parasympathetic nervous systems and its effects
on fetal cardiovascular activity (232). As the parasympathetic
nervous system is more responsible for variations in short-
term variability (STV), which usually assesses the beat-to-beat
differences, it might be reduced in central nervous system
hypoxia/ acidosis. If hypoxia is sustained and increases in
severity, it leads to the loss of long-term variability (LTV) (233),
resulting in a global decrease of sympathetic and parasympathetic
activity. On the other hand, it has been shown that fetal hypoxia’s
early effects increased short and long-term variability (234).
Notwithstanding, many studies verify the weakness of STV and
LTV indices in identifying fetal pathologies (235). Furthermore,
with fetus maturity throughout pregnancy, an increase in fetal
autonomic nervous system activity and the sympathovagal
balance is expected. Moreover, motor and neurological delay,
as well as damage in specific brain areas with cognitive effects,
also affect the STV (236). The IUGR showed a reduction in both
components of the autonomic nervous system activity, which
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modulates heartbeat intervals receiving inputs from the heart, the
lungs, and the blood vessels (204, 209, 237).

The indices presented in this review are closely related to
fetal heart variability. For instance, in (199) the authors showed
that the complexity indices correlate highly with abnormal
STV. In (143) the authors also report correlations between
the complexity indices ranging from 0.53 to 0.78. Therefore,
many studies found a reduction of complexity in the fHR
signal associated with hypoxia/ acidosis. However, these indices
were not always able to identify fHR from IUGR fetuses (237).
Contrastingly, the fractal indices are measures of long-range
correlations and long-term memory of time series, therefore,
applied mainly in maturation studies.

Furthermore, many of the fetal heart rate analysis methods
rely upon stationarity properties like mean, variance, and
correlation structure. However, it is known that these fHR
properties vary in time through events like uterine contractions.
One way to counter this is to select small temporal windows
where this property holds. Usually, an interval of 10–20 min
is considered the minimum time window to perform the
analysis for tracing classification and clinical decision (231, 238).
In addition, many of the described measures are parametric
measures. The choice of the ideal parameter is far from
established in most cases. This heterogeneity limits the possible
comparison between the results of different studies. In fact, in
various papers, the choice of parameters is neither discussed nor
even fully described.

Factors like fetus maturation, behavioral states, and maternal
conditions are critical for a good assessment of the fetus and
fully understanding their influence in the fHRV is no easy
task. Incorporating such variables in predictive models for fetal
evaluation will elucidate the importance of individual fHRV and
increase its accuracy (178). Maternal psychological conditions
such as stress and anxiety influence fHR and maternal hormones
transferred via placenta or changes in the oxygen and nutrition
supply for the fetus (239, 240). As seen in some results, gender
is also a factor that should be taken into consideration. Even
when twins are considered, sex differences were found both by
linear and non-linear indices (184). Although Park et al. (185)
found no significant differences between fetuses with different
fetal presentation using spectral and complexity measures such
as Lempel-Ziv complexity, ApEn, SampEn, and CD. Gonçalves
et al. (186) found differences not only using linear indices
but also with non-linear and spectral ones. This example of
contrasting results reflects the difficulty and complexity of the
fetal assessment. In this case, and according to the authors,
the discrepancy might have resulted from different inclusion
criteria, conditions for fHR recording, the occurrence ofmaternal
fasting, time interval between acquisition and delivery, and
equipment used. Moreover, an interesting study comparing
uterine contraction influence on fHRV features between acidemic
and non-acidemic fetuses suggested that separating contractions
from rest periods improves fHRV analysis in detecting asphyxia
during labor (151).

Having as a premise that humans are a result of self-
organization and adaptation process and that ontogenetic
development reflects phylogenetic development and indices

of developmental biology may be helpful in fetal maturation
assessment. Many studies addressed here found HRV changes,
such as variability increase and pattern formation (204). These
universal developmental features deliver appropriate measures
of fetal maturation. Therefore, it seems only natural that
these self-organization and adaptation features might better
understand and identify developmental disorders (241). In
fact, attention-deficit hyperactivity disorders in teenage boys
were associated with antenatal maternal anxiety (242), which
might influence fetal humoral development and autonomic
control reproduced in heart rate patterns. This phenomenon,
resulting from adverse influences on the fetus explained by
epigenetic mechanisms, is called “fetal programming.” Therefore,
early identification of fetal developmental disorders is essential
as they may not be wholly compensated for later postnatal
therapies (243). Many different approaches to fHR processing
and analysis have been studied. They range from simple feature
extractionmethods to more sophisticated classification programs
and joining research centers from different countries for joint
projects, as the Digi-Newb project (244). Usage of continuous
non-invasive evaluation, such as the usage of wearables, have
been discussed (27, 245) and will contribute to the patient’s
care improvement since it will improve data gathering, reducing
costs of fetal monitoring. Insurgent approaches are opening new
windows on the continuous monitoring of fetal development.
A single index cannot retrieve all the information from
pathophysiological processes in the fetus’s development, so
approaches considering both linear and non-linear measures,
through multivariate analysis, can improve the assessment of
both fetal and maternal well-being.

In (35, 246), time, spectral and complexity indices were used as
parameters to discriminate fetuses whowere or not in a distressed
state. Ferrario et al. (247) conclude that compression quantifies
the rate of new patterns arising as the signal evolves, whereas
entropy quantifies the recurrence of repetitive patterns. This idea
of complementary of different indices is also supported in other
papers (130, 145, 167, 247). It seems only logical for such a
complex/chaotic system to be evaluated using a multiparameteric
approach through advanced classification techniques capable of
discriminating fetuses in distress in non-linear regions of a
multidimensional space (30). With this approach, Signorini (248)
was able to classify IUGR fetuses with accuracy, sensitivity, and
specificity above 90%.

Mapping from feature space captured from the fHR
signal to the space of decision or diagnosis, many machine
learning, and deep learning techniques has been applied. Some
examples are: support vector machines (38, 150, 152, 249,
250), conventional methods like k-nearest neighbors (250, 251),
a hybrid approach using grammatical evolution (146, 252),
artificial neural networks (134), and random forests (49, 253,
254). Cömert and Kocamaz (166) introduced a novel software
for comprehensive CTG signals analysis, named CTG Open
Access Software (CTG-OAS). This software embeds machine
learning tools, such as preprocessing, feature extraction, feature
selection, and classification. Fergus et al. (51) demonstrated,
using deep learning tools, that machine learning significantly
improves the efficiency of detecting cesarean section and vaginal
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deliveries, compared with the usual visual assessment. In this
paper, impressive results were achieved, with both sensitivity
and specificity over 90%. One problem of comparing these
classification approaches is the apriori definition of the classes.
For example, as said before, the definition of acidemia based
on the umbilical cord artery’s pH varies greatly between studies.
Karvelis et al. (255) proposed a classification approach based
on weighted voting of clinical annotations. These weights are
estimated by using a latent class model with three or four latent
classes. Moreover, as these learning techniques depend on the
signal and the linear and non-linear measures computed, all the
previously referred concernsmust be contemplatedmeticulously.
Therefore, the machine and deep learning techniques are
particularly resourceful when the measures are thoroughly
probed and understood. In this systematic review were found
several other articles with machine learning and deep learning
techniques. However, the description of these techniques is not
the focus of this paper. Future work that analyzes in detail
the machine learning and deep learning techniques that apply
measures based on fHR dynamics should be considered.

The non-linear methods described in this review are entropy
(Shannon, approximate, sample, and multiscale), compression,
fractal analysis (fractal dimension, Hurst exponent, detrended
fluctuation analysis, and multifractal detrended fluctuation
analysis), and wavelet analysis. Other non-linear methods were
found in our review, such as Poincaré plot (217), symbolic
dynamics (256), phase rectified signal average (210, 211,
257, 258), Lyapunov exponents (259), and recurrence plot
analysis (137). In the recent years, Phase Rectified Signal
Averaging and derived parameters have been largely applied in
fHR analysis to face the problem of accelerations and deceleration
which are characteristic of the fHR signal.

Due to the high heterogeneity of study designs, data
acquisition methods, aims of the studies, signal processing
techniques, and measures (and parameters) used, no meta-
analysis was possible to be performed.

This systematic review confirmed the importance of non-
linear fetal monitoring measures to analyze the fetus’ well-being
and pathologies’ prediction. The methods probed successfully
diagnose pathologies, and new techniques are being proposed
and explored to improve that prediction. However, the
contradictory results of some of the findings due to the
characteristic of the signal, or the sensibility of the measures
to some clinical factors, such as fetus sex and gestational age,
revealed that the use of these findings in clinical practice is far
from reality. These results inhibit the reach for a gold standard or
the creation of a decision support system. This review determined
the significance of creating several small meta-analyses that
might focus on a specific research aim. Additionally, a sizeable
multicentric study that can assess the multitude of perspectives
involved in the fHR signal analysis is imperative.

6. CONCLUSIONS

Non-linear measures based on the concepts of chaos, fractality,
and complexity gained space in the analysis of fetal heart rate.

Good results were achieved in signal processing, in the analysis
of fetal well-being, and in diagnosing and predicting pathologies.
This systematic review of the non-linear methods (entropy, data
compression, fractal analysis, and wavelet analysis) applied to
fetal heart rate dynamics includes 270 papers. The application
of non-linear methods in the fHR analysis is around 30 years
old. However, its application has significantly increased in the
last 15 years. This review’s main contributions are a detailed
description of the non-linear methods most applied in the
fHR papers and a discussion of the research objectives. Signal
processing, hypoxia, and maturation lead the research objectives
of papers that use non-linear analysis in fHR. We found
that entropy has been the most used method in classification
analysis. Despite, in signal processing, the most used method is
wavelet analysis. Machine learning and deep learning techniques
should also be analyzed with results in the study of fHR
dynamics using linear and non-linear measures. The multitude
of conditioning involved in the analysis and classification of
the fHR, from the signal characteristics to the effect of some
clinical factors in the measures, limits the use of the non-
linear measures in clinical practice and difficult the creation
of a decision support system. Future studies should focus on
a research question and perform a meta-analysis, probing the
indices’ performance.
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Despite broad application during labor and delivery, there remains considerable debate

about the value of electronic fetal monitoring (EFM). EFM includes the surveillance of fetal

heart rate (FHR) patterns in conjunction with the mother’s uterine contractions, providing

a wealth of data about fetal behavior and the threat of diminished oxygenation and

cerebral perfusion. Adverse outcomes universally associate a fetal injury with the failure

to timely respond to FHR pattern information. Historically, the EFM data, stored digitally,

are available only as rasterized pdf images for contemporary or historical discussion and

examination. In reality, however, they are rarely reviewed systematically or purposefully.

Using a unique archive of EFM collected over 50 years of practice in conjunction with

adverse outcomes, we present a deep learning framework for training and detection of

incipient or past fetal injury. We report 94% accuracy in identifying early, preventable fetal

injury intrapartum. This framework is suited for automating an early warning and decision

support system for maintaining fetal well-being during the stresses of labor. Ultimately,

such a system could enable obstetrical care providers to timely respond during labor

and prevent both urgent intervention and adverse outcomes. When adverse outcomes

cannot be avoided, they can provide guidance to the early neuroprotective treatment of

the newborn.

Keywords: cardiotocography, deep learning-artificial neural network (DL-ANN), fetal brain injury, convolutional

neural network (CNN), prevention

INTRODUCTION

In the United States, there are approximately four million births per year (1). Over 85%
of them are accompanied by electronic fetal monitoring (EFM) in labor with the objective
of safeguarding fetal/neonatal well-being. This surveillance of the FHR pattern (rhythm) in
conjunction with the mother’s uterine contractions provides a wealth of data about fetal
behavior and the threat of diminished oxygenation and cerebral perfusion. Fifty years after
its introduction, however, fetal monitoring continues to inspire debate about its value and
especially its role in the increasing cesarean section rate as well as being a “litogen"—a
stimulus to allegations of medical malpractice (2–10). Reviews of adverse labor outcomes in
numerous countries universally associate adverse fetal outcomes with the failure to timely
respond to the FHR pattern information [(11, 12); Inquiries, personal communication]. Indeed,
various sources affirm that misinterpretation of EFM (or the uncertainty with patterns) has
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contributed to the significantly increased use of cesarean delivery
from 5% in the 1970s to>30% today (13, 14), leading to increased
expenditures, incurring costs in the United States (13, 14) of
over $1 billion per year per 5% of additional cesarean deliveries
(15). Obstetrical liability costs the country ∼$40 billion per
year, of which 70% is accounted for by uncertainty about EFM
interpretation and related brain injury (14, 15).

Earlier and more precise recognition of the precursors of
fetal compromise and the institution of corrective/preventative
initiatives during labor are urgently needed. Only rarely should
urgent delivery be required (16). Additional benefits include
better maternal and child outcomes thanks to the avoidance of
early intervention, lower cesarean delivery rate, and immediate
neonatal monitoring of heart rate pattern, i.e., having the baby
continuously monitored for at least 15min after delivery. Here,
babies seen to be at risk can be evaluated and more aggressively
treated earlier than currently undertaken.

Historically, the EFM data, stored digitally, are available only
as rasterized pdf images for contemporary or historical discussion
and examination (Figure 1). In reality, however, they are rarely
reviewed systematically or purposefully. In the case of a medical–
legal review, it is the paper copy of the tracing, exclusively, that is
likely available and consulted.

We propose a deep learning (DL)-based approach to this
challenge. It is based on a unique archive which collected over
four decades of EFM tracings of babies with known, adverse
outcomes. This archive provides many unique examples of the

FIGURE 1 | Example of FHR (top) and uterine contraction (bottom) during labor, captured simultaneously and stored electronically in a digital format but available only

as a rasterized pdf document.

broad range of healthy, threatened, and injured fetuses along
with their long-term follow-up. Consequently, this archive is
ideal for automating an early warning (preventive guidance)
system for maintaining fetal well-being during the stresses of
labor and delivery that could ultimately enable a health care
provider to timely and conservatively respond during labor
to prevent urgent interventions and adverse outcomes. When
adverse outcomes cannot be avoided, they guide the early
neuroprotective treatment of the newborn. This system utilizes
a unique classification of heart rate and contraction patterns
(details in section Methods), including specific identifiable
indicators (“point A” and “point B”) of the need for attention by
the provider (16–19).

METHODS

Data
For this pilot study, a convenience sample of 36 tracings was
selected. All tracings were derived from singleton pregnancies at
term undergoing a trial of labor with a fetal monitor in place as
previously described (18). Each tracing was considered normal
at the onset of monitoring—an important distinction. The
majority of features were derived from conventional guidelines
(ACOG) including baseline rate, variability, accelerations, and
decelerations. For this study, however, certain operational
definitions of heart rate patterns (Table 1) and uterine
contractions (Table 2) were modified by the subject matter
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TABLE 1 | Definitions of EFM patterns.

Basal heart rate The baseline FHR established at the beginning of

labor with fetus quiescent

Tachycardia Absolute—sustained (>10min) baseline heart rate

above 155 bpm

Relative—sustained (>10min) baseline heart rate

>15 above basal rate

Bradycardia Absolute—sustained (>10min) baseline heart rate

below 110 bpm

Relative—sustained (>10min) baseline heart rate

>15 bpm below the basal rate

Deceleration recovery The response of the fetus to a deceleration

Categories of recovery:

Normal response Prompt return to the previously normal baseline rate

and variability

Adverse response Applies to the recovery of the deceleration but may

persist as a feature of the subsequent baseline heart

rate

Overshoot An acceleration of the FHR immediately following a

deceleration with a duration proportional to the

amplitude of the preceding deceleration. Usually

associated with alterations in baseline rate and

variability

Delayed return A “slow return” to the baseline—likely a sustained

elevation of fetal blood pressure in anticipation of

recovery

Peaked return An abrupt peak at the end of a deceleration

followed by a late deceleration. An ominous

commentary usually leading to fetal death

Decreased/absent variability Persistent diminution in baseline variability <6 bpm

Increased variability Persistent or transient elevation of variability >25

bpm

Sinusoidal pattern Visually apparent, smooth, sine wave-like undulating

pattern in FHR baseline with a cycle frequency of

3–5 per min. Occurs in the absence of a normal

CTG pattern nearby. May be brief or persistent

Checkmark pattern A unique pattern seen in neurologically

compromised/asphyxiated fetuses suggesting

repetitive “checkmarks” () of varying

duration—frequently elicited by a preceding

deceleration

Sawtooth pattern Rapid, high frequency (20+ cpm), low amplitude

(<15 bpm), peaked oscillations in the heart rate that

generally increase in frequency and decrease in

amplitude over time

Conversion A CTG pattern in which there is a dramatic change

in rate, variability, and pattern of deceleration within

1–2 contractions—suggests fetal ischemic injury

expert (Figure 2). These included the basal rate, the use of
relative bradycardia and tachycardia, and the pattern of recovery
of the deceleration.

Identification of EFM Features
Tracing is defined at the outset of monitoring as normal
or abnormal.

A normal tracing is characterized by a stable baseline heart
rate between 110 and 155 bpm, with moderate variability and

TABLE 2 | Definition of excessive uterine activity.

Contraction parameter Average Excessive

Frequency 2–4.5 UC/10min >5/10min (×2)

Intensity 25–75 mmHg Not defined

Duration 60–90 s >90 s

Resting tone 12–20 mmHg >20 mmHg

Interval between peaks 2–4min <120 s

Rest time* 50–75% <50%

Montevideo units Not used

*Rest time—interval when contractions and pushing are absent.

UC, uterine contractions; mmHg, millimeters of mercury.

absent decelerations. An abnormal tracing is characterized by at
least one of the following features:

• baseline heart rate: <100, >155,
arrhythmia, unstable/indeterminate;

• baseline variability: absent, decreased (<6 bpm), increased
(>25 bpm); and

• decelerations: late, variable, undefined.

Thus, for decelerations with normal recovery, no immediate
action is required. They return promptly to the previously normal
baseline variability (5–15 bpm peak to trough and chaotic,
pseudorandom) and heart rate (usually 110–155 bpm and stable);
each fetus has an individually unique baseline (basal rate).
A “normal” deceleration returns to baseline without changing
trajectory, and upon reaching the previous baseline rate remains
there. These features pertain regardless of amplitude, duration,
and timing of the deceleration and signify the comfortable
compensation for the alteration in blood flow represented by
the deceleration.

Point A
Point A denotes the time when the recovery of the deceleration
is no longer “normal” and those additional compensatory
activities are invoked by the fetus to maintain homeostasis.
The detection of Point A signifies that increased attention and
conservative measures are needed in an attempt to restore
homeostasis to the previously normal tracing. These features
include the following:

A. Delayed return to baseline: includes a change in the trajectory
of the recovery such that the return to baseline is delayed
beyond the end of the contraction.

B. Period of increased variability: peak to trough >20 bpm,
frequency 5–10 cycles per min. Duration is also influenced
by the appearance of a subsequent contraction during which
time the pattern disappears—taken over by the deceleration.

C. Overshoot: an acceleration following the upslope of the
return of the deceleration lasting 15 s or more prior to the
return to the baseline.

D. Transient (usually at least 1min) return to a higher baseline
by at least 15 bpm, duration affected by next contraction,
compared to the previously stable baseline.
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E. Transient (at least 1min) return to a lower baseline by at least
10 bpm compared to the previously normal baseline.

F. Excessive uterine activity—irrespective of changes in
FHR pattern.

The detection of Point A alerts the health care provider to
the need for at least conservative intervention in regard to the
maternal condition, the frequency of contractions, or expulsive
efforts during the second stage of labor. Point A is identified
sooner if an excessive uterine activity is present.

Point B
Point B represents the attempt to define significant fetal
compromise or injury, irrespective of the perceived amount of
acidosis (pH) in the fetus. No clinical circumstances are used
in the definition of Point B. Point B was identified by the
subject expert (BSS) via a custom-created digital interface (AWS)
allowing us to feed the annotations directly into the DL model.

These features include the following:

• sustained return to a baseline with diminished/absent baseline
variability, usually accompanied by a rise in the baseline heart
rate; and

• sustained change in baseline rate and variability with
adverse features (Table 1) occurring within 5 to 10min of a
previously normal rate and variability—usually with recurrent
variable decelerations.

DL Pipeline
We present a method for automated extraction of features in
FHR and uterine contractions (UCs), which are outlined in the
above section.

Briefly, the method includes acquiring a set of non-digitized
charts, digitally assigning markers to predetermined features
in the charts, supplying the assigned marker-feature sets to
a supervised model, statistically iterating over the assigned
sets, automatically assessing model performance, and applying
the model to new sets of charts to extract non-assigned
predetermined features.

The method for automated chart processing includes
analyzing time-series sets of non-digitized charts of FHR and/or
concurrent maternal UC to digitally associate markers with fetal
signatures, using the associated groups for supervised training
of an artificial intelligence model, determining accuracy and
precision of the model, and applying the trained model to
automatically process new time-series sets of one or more charts
of FHR and concurrent maternal UC, having one or more
unassociated fetal signatures.

To achieve this goal, we treat scanned EFM recordings as
non-vectorized images, similar to digital photographs, and apply
supervised machine learning to extract and process features to
train an artificial intelligence model. An image is supplied to
a convolution neural network (CNN) model (20). The image
is represented as one or more numeric arrays of pixel values
with varying signal counts associated with the pixel content. The
pixel content is dictated by the amount of red, green, blue, or
other spectral bands that the pixel may receive and is an integer
number in one or more dimensions. The CNN is represented

as a set of algorithmic layers into which the numeric pixel data
are sent. It consists of a series of convolutional layers, non-linear
layers, pooling layers, and fully connected layers. Each such layer
may be considered an individual set of equations, where the
output of one equation becomes the input to another. The CNN
eliminates the need for manual feature extraction, as the features
are acquired through the passing of the pixel data to one or more
other layers, and correlations are extracted and weighted as a
consequence of the layer transitions.

We implement a single-shot detector (SSD) algorithm to
achieve this goal (21). It utilizes a standard CNN network (e.g.,
VGG-16) with an additional set of convolution layers to identify
discrete locations of one or more features in one or more images
(22). The SSD codebase is available here: https://github.com/
zhreshold/mxnet-ssd.

Through a single pass in the CNN, the weighted correlations
meant to describe the relevant features are tested against ground
truth data (validation data), separate from training data. The
goal of this statistically iterative operation is to minimize a
loss function between the predicted correlations and the truth
values through adaptively updating the weights of the predicted
function. The process of adjusting the weights continues until a
minimum statistical loss is obtained.

The output model and weights are then used for inference
against the withheld (unseen) dataset to extract similar
relevant information.

Sample Selection and Processing
Briefly, in this study, we implemented a conventional random
80/20 train/test split. This corresponded to 26.4 h of training on
EMF image information and 6.6 h used for testing (validation).

That is, the EFM images were flipped/translated, and the noise
was added to represent more of the variability observed in the
original pdfs.

The samples used in the analysis were 36 unique medical
case reports in the form of a static pdf. The pdfs were split
and converted into individual PNG images, one PNG per page
in the pdf. As each pdf report consisted of a different number
of unique pages, the number of images per page varied. In
the end, there were 252 image pages across the 36 individual
medical cases. The images were further cropped automatically
to contain just the graphical data component of the page,
removing headers, footers, and extraneous text. This was then
split into 80/20 train/test datasets, resulting in 202 training image
graphs and 50 test image graphs. Of the 50 test images, 25
were held back for separate validation. The images consolidated
in these training and testing datasets were similar in quality
(bold graphs with discernible FHR features). It should be noted
that many additional pdf reports contained a varying degree
of quality based on the photocopied/scanned/faxed nature of
the captured data. This presented a significant challenge to
create a robust training dataset with representative features. With
202/50 train/test data, significant augmentation was required.
The images were flipped in horizontal space, as that preserved
the domain of the information. A vertical flip would manifest
in features unrepresentative of the FHR signatures. A further
augmentation was required to reduce or sharpen the resolution
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TABLE 3 | Cohort characteristics.

Age, years EGA, weeks BMI BWT, g Apgar 1 Apgar 5

Median 26.5 39.8 31.0 3,325 2 6

25th 21.0 39.1 26.7 3,070.0 1.0 4.0

75th 30.3 40.4 35.9 3,601.8 4.0 7.0

Temporal characteristics of labor (h:min)

1st 2nd Labor Point A Point A to Delivery Point B Point B to Delivery

Median 14:24 3:35 23:10 13:38 4:01 10:30 0:43

25th 1:30 2:49 16:33 5:44 1:52 4:20 0:23

75th 13:30 5:20 10:12 20:43 5:18 18:20 1:37

of the images, to better capture the variability of the pdf graphs.
In the end, 808 images were used in training and 200 in testing.
These data are still rather shallow for DL, as the feature space
and EFM signatures possible are vast. In future work, further data
must be included in order to fully represent the feature space of
the variabilities of both the documents and the EFM signatures.
As an SSD algorithm was leveraged to isolate the EFM events,
the images were manually annotated with standard data labeling
practices, and output into the Pascal VOC XML format (http://
host.robots.ox.ac.uk/pascal/VOC/).

RESULTS

The demographics and clinical characteristics are summarized in
Table 3. There were 11 outcomes with a pH <7.00. Table 3 also
denotes the duration and timing of the first and second stages of
pushing, Point A and Point B.

There were numerous points in the dataset that were
abnormal but did not trigger Point A. Isolated but persistent
changes in baseline rate, baseline variability, and excessive uterine
activity are commonplace and do make the tracing abnormal
without evoking Point A. Eventually, Point A was reached in
all instances in this dataset. As such, from a machine learning
perspective, this is a balanced dataset. This is also implied by the
column “Point A to delivery” (Table 3).

As a step toward developing this proactive fetal surveillance
system, we have created an artificial intelligence model using
a basic SSD DL approach to retrospectively identify critical
features in the EFM data (cardiotocography) from the rasterized
pdf directly (Figure 3). This model creates a classification of
the pattern and identifies critical features of the tracing that
indicate critical and timely points of either conservative or
operative intervention, “Point A” and “Point B." Here, in the
initial implementation, we focused on predicting “Point A.”

This novel application of using pdf rasterized plots as an
image detection DL problem facilitates (1) quick and efficient
deployment against a large record of data without chart digitizing
and (2) packaging and deployment as a lightweight or MobileNet
(23) application useful for immediate integration with a mobile
device, post event.

The model achieved an accuracy of 93.6% in identifying
Point A (i.e., detecting accurately the entire test set of features
comprising Point A) against a small dataset with limited
variability in features.

The average intersection over union (IoU) for the 25
validation images was 0.67, indicating a 67% overlap in the area
with the true annotated feature. Annotated features are described
inTable 1. This was averaged over 47 EFMbounding box features
(true features and negative features) in the 25 images. Of the 47
features, the precision and recall were 87 and 82.5%.

DISCUSSION

Our primary goal was the early identification of abnormal
tracings at the outset (considered Point A) and the early detection
of isolated adverse features (abnormal) whose coalescence (Point
A) demands intervention at a time when correction is likely.
We successfully implemented automated identification of Point
A, indicating threatened fetal decompensation of the highest
relevance for real-time clinical implementation of such an
algorithm. The SSD approach we deployed uses baseline data to
identify Point A. In other words, the expert diagnosis of Point A
on which the model was trained takes the baseline into account
and seeks to identify the patterns comprising Point A in relation
to the baseline.

In response to Point A, conservative rehabilitative measures
include the following:

• diminishing the frequency of uterine contractions;
• diminishing/ceasing pushing during the second stage of labor;
• decreasing infusion of oxytocin; and
• assessing the feasibility of safe vaginal delivery.

However, the suggested measures cannot be ranked in relation to
the probability score of Point A that our model provides as their
sequence is primarily responsive to the feature(s) that prompted
the response. If the problem involves excessive uterine activity,
the care provider is directed to diminish uterine activity. If the
response reveals late decelerations, the care provider is directed
to modify the patient’s position, providing supplemental oxygen,
assisting with maternal blood pressure, etc.
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FIGURE 2 | Definition of Point A and Point B. (Top) A representative raw CTG tracing. (Bottom) The annotated CTG tracing deriving Point A and Point B. See

Tables 1, 2 for details.

FIGURE 3 | (Left) “Point A” identified with a 93.6% accuracy using an SSD trained on the pdf chart images. (Right) Numerous occurrences of “Point A” with high

confidence in green. Red indicates the true “Point A” duration.

Based on our observations of ∼5,000 cases with brain
injury as the birth outcome, 20% of normal patients reach
Point A. About 25% of these revert to normal. Point B
is reached in about 0.5% of the population and in about
30–40% of our observations on brain-injured babies with
subsequent handicaps. We leave it to future work to implement
the prediction of Point B, as this will require training on
larger datasets. These points, together with other key signs in
the FHR, can be displayed for the obstetrical care provider
as part of an early alert and decision support system.
Consequently, the visual signature for training the SSD is
extracted similarly to the method utilized by the physician.
The time-series nature of the FHR may be exploited with an
additional application of a long short-term memory (LSTM)
(24) model for consistent identification and tracking as a
function of event duration. However, to date, only the SSD has
been deployed.

It is important to emphasize that the training of the model
was not based on the detection of acidosis or even low Apgar
score, but whether or not conservative intervention based on the
cardiotocographic pattern (Point A) was deemed necessary and
whether criteria were met for the presumptive diagnosis of fetal
neurological injury (Point B) as described previously (17). There
was no attempt to correlate the outcome results with either pH or
Apgar score of the newborn.

It may be seen as a limitation of the study that we did
not seek correlations with fetal acidosis, Apgar scores, need
for resuscitation, or NICU admission for HIE. However, the
objective of our study was to use DL to prevent urgent
intervention (“rescue”) by identifying the point in the previously
normal tracing before fetal acidosis has developed and where
conservative measures can be expected to restore the tracing to
normal. We see no benefit in employing an artificial intelligence
system to detect acidosis and, simultaneously, the need to rescue

Frontiers in Pediatrics | www.frontiersin.org 6 December 2021 | Volume 9 | Article 736834178

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Frasch et al. Deep Learning on Scanned CTGs

the fetus that may have already become injured. The system is
designed to work with fetuses with initially normal tracings as no
real benefit can be calculated from an algorithm that begins with
an abnormal tracing where the options for prevention are limited
and early delivery is likely (25).

Another limitation is that here we deliver a proof of concept
only, using a convenience sample of 36 tracings in singleton
pregnancies only. We leave a validation on the larger dataset and
in multiple pregnancies, preterm deliveries, or IUGR fetuses for
future work.

The approach to presenting and interpreting existing
clinical data and annotating the EFM record during labor
can dramatically reduce the need for urgent deliveries and
significantly improve the outcomes of babies and mothers in
labor and for the neonate in the nursery. Improved outcomes,
less urgency, fewer rescues, and better documentation could be a
game-changer for the care of pregnant women and children and
the defense of allegations of obstetrical malpractice.

In future work, to boost the present performance results,
alternatively or additionally, RCNN, LSTM, RNN, support
vector machine, random forest, instance segmentation, image
classification techniques, and/or other DL algorithms and/or
other machine learning techniques can be applied.

The new EFM data can be supplied to the trained model in a
format different from the format of the original training/testing
images. For example, the EFM data can be supplied in the format
of digitized charts, tabularly represented data, a signal received
from one or more devices, etc. In other words, once the model
has been trained, it can be configured to work on similar features

provided in the same and/or other data formats, including live
data. Such an approach allows the model to identify one or more
features of interest and also the location of those features in the
chart(s). This location can be correlated with a time and/or other
dependent variables within the chart and/or a set of charts.

These features of our approach make it attractive to electronic
medical record and physiological monitoring applications well
beyond EFM.

We have shown the feasibility of a DL approach to scan and
detect the ability of the fetus to handle the trial of labor using
standard FHR and uterine activity chart tracings presented to
artificial intelligence in the form of images, the format in which
the majority of such tracings are still stored and presented to the
experts for the determination of the need for intervention and the
timing of the fetal injury. Our DL approach detects these factors
with over 90% accuracy (compared to expert scoring).
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Objective: The role of cardiotocography (CTG) in fetal risk assessment around the

beginning of term labor is controversial. We used routinely collected clinical data in a

large tertiary hospital to investigate whether infants with “severe compromise” at birth

exhibited fetal heart rate abnormalities in their first-hour CTGs and/or other clinical risks,

recorded as per routine care.

Materials andMethods: Retrospective data from 27,927 parturitions (single UK tertiary

site, 2001–2010) were analyzed. Cases were included if the pregnancy was singleton,

≥36 weeks’ gestation, cephalic presentation, and if they had routine intrapartum CTG

as per clinical care. Cases with congenital abnormalities, planned cesarean section

(CS), or CS for reasons other than “presumed fetal compromise” were excluded.

We analyzed first-hour intrapartum CTG recordings, using intrapartum Oxford System

(OxSys) computer-based algorithms. To reflect the effect of routine clinical care, the data

was stratified into three exclusive groups: infants delivered by CS for “presumed fetal

compromise” within 2 h of starting the CTG (Emergency CS, n= 113); between 2 and 5 h

of starting the CTG (Urgent CS, n = 203); and the rest of deliveries (Others, n = 27,611).

First-hour CTG and clinical characteristics were compared between the groups, sub-

divided to those with and without severe compromise: a composite outcome of stillbirth,

neonatal death, neonatal seizures, encephalopathy, resuscitation followed by ≥48 h in

neonatal intensive care unit. Two-sample t-test, X2 test, and Fisher’s exact test were

used for analysis.

Results: Compared to babies without severe compromise, those with compromise had

significantly higher proportion of cases with baseline fetal heart rate ≥150 bpm; non-

reactive trace; reduced long-term and short-term variability; decelerative capacity; and

no accelerations in the first-hour CTG across all groups. Prolonged decelerations(≥3min)

were also more common. Thick meconium and small for gestational age were

consistently more common in compromised infants across all groups. There was

more often thick meconium, maternal fever ≥38C, sentinel events, and other clinical

risk factors in the Emergency CS and Urgent CS compared to the Others group.
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Conclusion: A proportion of infants born with severe compromise had significantly

different first-hour CTG features and clinical risk factors.

Keywords: cardiotocography, CTG, electronic fetal monitoring, hypoxic-ischaemic encephalopathy, HIE, big data

INTRODUCTION

Intrapartum hypoxic ischaemic injury is a major contributor
to stillbirths, neonatal encephalopathy and mortality, and long-
term neurodevelopmental sequelae worldwide. Its prevention
is an important public health priority (1–3). Over half of
term stillbirths and brain injuries around birth are potentially
avoidable by better obstetric care (3–6). Efforts to improve the
identification of fetuses at-risk of intrapartum compromise
are undermined by the imprecision of currently available
tools including the conventional and non-computerized
cardiotocograph (CTG) (6–8). The CTG is widely used for
assessment of fetal wellbeing and has been the mainstay
of fetal monitoring for over 50 years (9, 10). However,
CTG interpretation is subjective and relies on the use of
guidelines derived from imprecise and static patterns of the
fetal heart rate (FHR). Unsurprisingly, delays in intervention
and avoidable harm may occur, leading to litigation (10–
14). The CTG is also associated with increased operative
delivery and healthcare costs (11–13). Therefore, there is
increasing interest in more objective and reliable methods for
CTG interpretation. This includes computer-based analysis
based on a very large routinely collected dataset of CTG
and maternity data, such as the Oxford System (OxSys) that
is currently under development (15). Moreover, automated
CTG evaluation with OxSys enables the analysis of large
routinely collected sets of CTG traces, providing evidence
for the association of different CTG characteristics, labor
management, and labor outcomes, which was the focus of
this work.

In current practice, the risk of adverse labor outcomes is
based on the assessment of antenatal factors such as abnormal
fetal growth, antepartum hemorrhage, prolonged rupture of
fetal membranes, meconium staining of the amniotic fluid, or
abnormal CTG pattern in the initial assessment of women
around labor onset (16, 17). However, the pathophysiology of
fetal compromise is complex, multifactorial, and dynamic, and
the fetal ability to adapt to oxygen deprivation is significantly
challenged by labor and underlying conditions such as placental
insufficiency, maternal diabetes, and intrauterine infection,
which can weaken the fetal adaptation to oxygen deprivation
(18, 19). Furthermore, the role of the CTG in the initial
assessment of women around the onset of labor is controversial,
because different endpoints are used. Previous randomized
controlled trials (RCTs) investigated whether an “admission
test” predicted neonatal outcome at delivery in the so-called
low-risk pregnancy. The primary outcome varied in these
different RCTs, including cord acidosis at birth, need for
continuous CTG, overall perinatal mortality and morbidity,
and operative delivery rates (17, 20, 21). Nonetheless, the

original “admission test” aimed to identify the fetus with pre-
existing compromise in order to institute obstetric intervention
(22). Parts et al. (20) subsequently investigated this original
aim in a large retrospective observational study of routine
admission CTG in both low- and high-risk pregnancies. The
authors investigated “all women who underwent emergency
cesarean section due to suspected fetal distress” within 1 h
of admission.

Following the objective of the original “admission test”
and the selected endpoints by Parts et al., we consider
that a more appropriate endpoint for studies of the role of
CTG assessment at admission is the early identification of
fetuses who are already compromised or vulnerable (e.g., fetal
growth restriction, infection, and feto-maternal hemorrhage)
and who would benefit from early cesarean delivery in
order to avoid further compromise during labor. Therefore,
this study aims to evaluate the association between severely
compromised infants at birth and early warning signs in
their first-hour CTG (recorded before or in first-stage labor
as per clinical care) and/or clinical risks, stratifying for
those with emergency cesarean section performed shortly
after admission due to presumed fetal compromise. We
used computerized and classic CTG features, using the
OxSys computer-based algorithms, to study this large cohort
of infants.

MATERIALS AND METHODS

This was a retrospective cohort study of infants delivered
at the John Radcliffe Hospital in Oxford, UK, using a
clinical data collection system between January 2001 and
December 2010. The study received ethical approval from the
Newcastle & North Tyneside 1 Research Ethics Committee,
Reference 11/NE0044 (data before 2008), and from the South
Central Ethics Committee, Reference 13/SC/0153 (for data
beyond 2008). Informed consent by the participants was
not required.

Data
During the 10-year study period, there were 32,743 singleton
deliveries (excluding elective cesarean sections) with gestational
age ≥ 36 weeks of cephalic presentation and normally formed
fetuses with intrapartum CTG recorded as per standard care
at the John Radcliffe Hospital, Oxford (Figure 1). The selected
gestational age of 36 completed weeks is in line with the
threshold used in our previous work and in large randomized
controlled trials on intrapartum CTG (23–25). We only included
cases with at least 20min of CTG recordings of acceptable
signal quality for analysis, taken only at maternity admission
or delivery units. The national guidance at the time and still
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FIGURE 1 | Data flowchart.

is intermittent auscultation for the intrapartum surveillance of
low-risk pregnancies, defined as the absence of any antenatal
or intrapartum, fetal, maternal, placental, medical, or obstetric
complications or risk factors. Figure 1 shows the study data
flow chart. We excluded cases where the CTG recording
commenced in the second stage of labor and those with
cesarean delivery for indication other than “presumed fetal
compromise.” A total of 27,927 deliveries were eligible for
inclusion and analysis.

Methods
All data were routinely collected as part of standard clinical
care and analyzed retrospectively. Outcome groups were based

on the mode and timing of cesarean delivery for presumed
fetal compromise (Figure 1). Infants delivered by cesarean
section within 2 h of CTG monitoring (emergency cesarean
delivery, Emergency CS) were compared with their counterparts
delivered by cesarean section between 2 and 5 h (urgent cesarean
delivery, Urgent CS). The remaining births formed the control
group (Others).

Initial assessment was defined as the assessment
of fetal wellbeing and clinical risk factors in women
presenting to the unit with symptoms and signs
of labor.

Sentinel events included placental abruption, uterine rupture,
and cord prolapse. Birth trauma included intracranial laceration
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FIGURE 2 | Clinical characteristics of newborns with and without severe compromise. Emergency CS, emergency caesarean delivery (<2 h after start CTG

monitoring); Urgent CS, urgent caesarean delivery (between 2 to 5 h after start CTG monitoring); RR, risk ratio; OR, odds ratio; *p ≤ 0.01, **p ≤ 0.05.

and hemorrhage due to birth injury; other birth injuries to central
nervous system; birth injury to skeleton; and birth injury to
peripheral nervous system.

Birth weight deviations were calculated with the adjusted
Yudkin’s chart percentiles (26) and reported in terms of small for
gestational age (birth weights below the 3rd percentile) and large
for gestational age (birth weights above the 97th percentile).

Severe compromise was defined as a composite outcome
consisting of clinically relevant short-term perinatal outcomes
collected at hospital level including stillbirth, neonatal death,
seizures, neonatal encephalopathy, and need for intubation or
intensive resuscitation followed by neonatal intensive care unit
(NICU) admission for ≥48 h (15). Reported birth outcomes
include severe compromise, Apgar score <4 at 1min, Apgar
score <7 at 5min, and/or umbilical cord arterial pH <7.0 or
<7.05 (27).

Onset of labor was defined by the attending clinician as per
clinical practice (regular uterine contractions associated with

cervical dilatation ≥3 cm) and documented in the routinely
collected digital maternity notes.

Digital CTG data, sampled at 4Hz as per the standard
output of fetal monitors (typically Philips Avalon) were archived
by a central monitoring system (Huntleigh Healthcare Ltd.,
Cardiff, UK). Computerized CTG features were calculated
with the Oxford System (OxSys1.5) algorithms (15). OxSys
analyses the CTG recordings in 15min windows that move
forward every 5min; CTG characteristics are calculated for each
window after heuristic noise removal algorithms. Pregnancy and
labor data were derived from the Oxford Clinical Maternity
Database, detailing maternal demographics, obstetric history,
labor, delivery outcomes, and infant characteristics.

We considered only the first available 20–60min of the
CTG traces as part of the initial assessment (28), based on the
recommended 20min duration for CTG around labor onset (22)
and additional time for the assessment of fetal behavioral states
if they were absent in the first 20min. Where available, the
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FIGURE 3 | First-hour CTG characteristics of newborns with and without severe compromise. Emergency CS, emergency caesarean delivery (< 2 h after start CTG

monitoring); Urgent CS, urgent caesarean delivery (between 2 to 5 h after start CTG monitoring); DC, decelerative capacity; LTV, long-term variability; RR, risk ratio;

OR, odds ratio. *p ≤ 0.01, **p ≤ 0.05.
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entire first hour of CTG was analyzed and the results reported.
Where not, the longest available CTG segment (≥20min) was
analyzed instead. CTG recordings made after the first hour were
not analyzed in this study.

In addition to standard CTG characteristics such as baseline
rate, variability, decelerations, and accelerations, OxSys1.5
computes the decelerative capacity (DC), analyzing the entire
FHR signal in a moving 15min window to provide an average
measure of downward movements (29). Lower DC values are
measured in a normal trace without decelerations, whereas
increased DC values are measured in deep, steep-sloped, and/or
repetitive decelerations (15). Non-reactive trace is defined as DC
<1 bpm and no accelerations as previously reported (15).

Statistical Methods
Data were analyzed in MATLAB version R2019b (The
MathWorks Inc., Massachusetts, USA). Medians with 25
and 75th percentiles were calculated for continuous and ordinal
variables. Incidence with percentages were calculated for
categorical variables. Univariate analysis of categorical variables
was performed with the X2 test and Fisher’s exact test with
relative risks, odds ratios, and 95% confidence intervals as
appropriate. The Kruskal-Wallis one-way analysis of variance
test was used to compare the medians and interquartile range
(IQR) of continuous variables.

RESULTS

The CTG recording was commenced at different times in relation
to the clinically determined time of the onset of active labor.
As a result, 90% of all traces were within 10 h before and 6.5 h
after labor onset (second stage recordings were excluded). The
median difference between labor onset and CTG start was 7min.
The interquartile range is−135 and 230min, negative values
correspond to CTGs started after labor onset (46% of all), and
positive values to those started before labor onset (56%).

Cesarean delivery for presumed fetal compromise was
performed within 2 h of starting the CTG (Emergency CS) in
0.4% (113/27,927) and between 2 and 5 h (Urgent CS) in 0.7%
(203/27,927) of all deliveries.

Majority of infants with severe compromise at birth were in
Others (n = 155 at rate of 0.6%), with another five and seven
in the Emergency CS and Urgent CS groups respectively (rates
of 4.4 and 3.4%, respectively). Figures 2, 3 show the proportion
of babies with selected characteristics of interest for the three
groups (Emergency CS, Urgent CS, and Others), stratified for
neonatal outcome. Dark colors correspond to the proportion of
severely compromised babies and light colors to those without
severe compromise.

Thick meconium and small for gestational age were more
common in deliveries with severely compromised neonates
across all groups; nulliparous women were more common
in Others with severe compromise vs. Others without severe
compromise (Figure 2). Post-date deliveries, induced labor, and
maternal fever were more common clinical characteristics of
severely compromised babies in the Urgent CS group and Others.

Figure 3 shows the first-hour CTG characteristics of
severely compromised babies compared to those without
severe compromise. Baseline ≥150 bpm, non-reactive trace,
reduced long-term variability (LTV), and fewer accelerations
were more prevalent in severely compromised neonates in all
groups. Baseline FHR ≥150 bpm was more common in severely
compromised babies in the Emergency CS group and Others.
Reduced DC<1 bpmwas significantly more common in severely
compromised newborns with Urgent CS.

Selected details of clinical and CTG characteristics are shown
in Table 1 and the full details in the Supplementary Table 1.

Table 2 details clinical and CTG characteristics specifically for
the neonates with severe compromise at birth (n= 167), and full
details are in the Supplementary Table 2. These represent 4.4%
(5/113) of babies with Emergency CS; 3.4% (7/203) of babies with
Urgent CS; and 0.6% (155/27,611) of Others.

All severely compromised neonates in the Emergency CS
group (n = 5) had thick meconium, meconium aspiration
syndrome, and were admitted to the neonatal intensive care
unit (NICU), and all of these were less common in the severely
compromised infants in the other two groups. Their first-
hour CTG traces were marked by baseline ≥150 and ≥160
bpm; reduced variability (both short-term variability (STV) and
LTV); non-reactive trace; prolonged decelerations; and lack of
accelerations. The first-hour CTGs are shown in Figure 4.

Severely compromised babies in the Urgent CS group (n
= 7) were more often induced post-date labors in first-time
mothers (Table 2) and had depressed Apgar scores and critically
low umbilical cord arterial pH (group median pH was 6.83).
Their first-hour CTG traces were marked by reduced variability
(particularly LTV) and non-reactive trace, and the CTGs are
shown in Figure 5.

Severely compromised neonates in Others (n = 155) were
delivered by spontaneous vaginal delivery in 47.7% (74/155),
instrumental vaginal delivery in 40% (62/155), and by cesarean
section in 12.3% (19/155). Their first-hour CTG traces were
marked by reduced variability (both LTV and STV) and non-
reactive traces. A random selection of eight of these first-hour
CTGs is shown in Figure 6.

DISCUSSION

Main Findings
Analysis of this routinely collected cohort of over 27,000 term
births showed that an important proportion of fetuses with severe
compromise or at risk of severe compromise had significantly
different features of the first-hour CTG and presence of clinical
risk factors such as thick meconium, small for gestational age,
and maternal fever≥38C. We considered three exclusive groups:
infants delivered by CS for “presumed fetal compromise” within
2 h of starting the CTG (Emergency CS); between 2 and 5 h
of starting the CTG (Urgent CS); and the rest of deliveries
(Others). This data stratification allowed us to account for any
effects the emergency or urgent cesarean sections had on labor
outcomes, as well as to obtain estimates for the proportion of
severely compromised infants for whom potential early signs
were present. Severely compromised infants in these groups
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TABLE 1 | Clinical and CTG characteristics of total cohort (n = 29,927).

Emergency cesarean

section, Emergency CS

(n = 113)

Urgent cesarean section,

Urgent CS (n = 203)

All Others (n = 27,611)

n or median % or IQR n or median % or IQR n or median % or IQR p-value

LABOR DETAILS

Labor onset

Established labor at start CTG 103 91.2 135 66.5 13,485 48.8 ≤0.01

Antepartum risk factors

Nulliparity 82 72.6 153 75.4 14,901 54.0 ≤0.01

Post term (≥41 weeks) 51 45.1 84 41.4 7,522 27.2 ≤0.01

Intrapartum risk factors

Maternal fever (≥38.0◦C)
†

12A 12.4A 20B 11.2B 1,482C 5.6C ≤0.01

Thick meconium 32 28.3 65 32.0 2,182 7.9 ≤0.01

Sentinel event 6 5.3 8 3.9 130 0.5 ≤0.01

Delivery mode

Cesarean section 113 100.0 203 100.0 798 2.9 –

Instrumental vaginal – – – – 8,044 29.1 –

Spontaneous vaginal – – – – 18,769 68.0 –

DELIVERY OUTCOME

Objective fetal compromise

Severe compromise‡ 5 4.4 7 3.4 155 0.6 ≤0.01

Resuscitation 4 3.5 9 4.4 199 0.7 ≤0.01

Apgar score < 4 at 1min 9 8.0 24 11.8 591D 2.1D ≤0.01

Apgar score < 7 at 5min 3 2.7 8 3.9 229E 0.8E ≤0.01

Arterial umbilical cord pH 7.23F 7.15–7.28F 7.22 F 7.12–7.27F 7.22G 7.14–7.28G ≤0.01

pH < 7.00 6F 2.8F 9F 4.6F 190G 1.0G ≤0.01

pH < 7.05 9F 8.4F 23F 11.7F 502G 2.5G ≤0.01

Mortality

Stillbirth 0 0.0 0 0.0 0 0.0 –

Neonatal death 1 0.9 0 0.0 16 0.1 ≤0.01

Morbidity

Convulsions 3 2.7 1 0.5 43 0.2 ≤0.01

Meconium aspiration syndrome 9 8.0 7 3.4 78 0.3 ≤0.01

NICU admission 12 10.6 32 15.8 1,133 4.1E ≤0.01

Length of stay (days) 6 2–10 4 2–7 3 1–5 0.109

COMPUTERIZED CTG FEATURES (FIRST HOUR)

Baseline (bpm) 138H 129–148H 139I 130–148I 135J 127–142J ≤0.01

≥150 bpm 25H 22.1H 38I 18.9I 2,299J 8.4J ≤0.01

≥160 bpm 14H 12.5H 11I 5.5I 585J 2.1J ≤0.01

Short-term variability 5.4H 2.9–9.4H 4.6I 3.1–6.9I 6.1J 4.5–7.9J ≤0.01

<3 msec 30H 26.8H 44I 21.9I 1,358J 5.0J ≤0.01

Long-term variability 3.9H 2.5–6.3H 3.7K 2.8–4.9K 4.9L 3.8–6.2L ≤0.01

<3 bpm 40H 35.7H 60K 30.0K 2,961L 10.9L ≤0.01

Non-reactive trace 9H 8.0H 20I 10.0I 624M 2.3M ≤0.01

Any accelerations present 51H 45.5H 96I 47.8I 20,572M 75.5M ≤0.01

Any decelerations present 103I 92.8I 150N 75.8N 16,2431O 61.29O ≤0.01

Any prolonged decelerations

(≥3min)

18H 16.0H 23I 11.4I 1,388M 5.1M ≤0.01

Decelerative capacity (bpm) 3.2H 2.0–4.6H 2.3I 1.6–3.2I 2.5J 1.9–3.3J ≤0.01

<1.0 bpm 3H 2.7H 11I 5.5I 664J 2.5J ≤0.01

n, number; IQR, inter-quartile range (25–75th percentiles); NICU, neonatal intensive care unit; bpm, beats per minute. Super-indices A–O indicate the number of missing data: A, 16;

B, 24; C, 1074; D, 8; E, 11; F, 6; G, 7811; H, 1; I, 2; J, 362; K, 3; L, 388; M, 359; N, 3; O, 752.
†
Maternal fever defined as one-time maximum maternal temperature measurement

of ≥38.0◦C, based on UK maternity guidelines (29). ‡Composite outcome: stillbirth, neonatal death, seizures, neonatal encephalopathy, intubation or resuscitation followed by NICU

admission for ≥ 48 h.
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TABLE 2 | Clinical and CTG characteristics of severely compromised newborns (n = 167).

Emergency cesarean

section, Emergency CS

(n = 5)

Urgent cesarean section,

Urgent CS (n = 7)

All Others (n = 155)

n or median % or IQR n or median % or IQR n or median % or IQR p-value

LABOR DETAILS

Labor onset

Established labor at start CTG 5 100.0 5 71.4 54 34.8 ≤0.01

Antepartum risk factors

Nulliparity 3 60.0 6 85.7 111 71.6 0.601

Post term (≥41 weeks) 1 20.0 5 71.4 47 30.2 0.062

Intrapartum risk factors

Maternal fever (≥38.0◦C)
†

0 0.0 1A 16.7A 13B 8.6B 0.618

Thick meconium 5 100.0 4 57.1 37 23.9 ≤0.01

Sentinel event 0 0.0 0 0.0 1 0.6 0.962

Delivery mode

Cesarean section 5 100.0 7 100.0 19 12.3 –

Instrumental vaginal – – – – 62 40.0 –

Spontaneous vaginal – – – – 74 47.7 –

DELIVERY OUTCOME

Objective fetal compromise

Severe compromise‡ 5 100.0 7 100.0 155 100.0 –

Resuscitation 3 60.0 6 85.7 98 63.2 0.470

Apgar score <4 at 1min 1 20.0 6 85.7 85A 55.2A 0.076

Apgar score <7 at 5min 1 20.0 4 57.1 75 C 49.0C 0.396

Arterial umbilical cord pH 7.14 7.09–7.28 6.83A 6.78–7.01A 7.14D 7.05–7.23D ≤0.01

pH < 7.00 0 0.0 4A 66.7A 26D 19.3D ≤0.01

pH < 7.05 1 20.0 5A 88.3A 33D 24.4D ≤0.01

Mortality

Stillbirth 0 0.0 0 0.0 0 0.0 –

Neonatal death 1 20.0 0 0.0 14 9.0 0.488

Morbidity

Convulsions 3 60.0 1 14.3 43 27.7 0.203

Meconium aspiration syndrome 5 100.0 1 14.3 19 12.3 ≤0.01

NICU admission 5 100.0 6 85.7 131 84.5 0.633

Length of stay (days) 9 8–18 5 4–6 3 3–8 0.168

COMPUTERIZED CTG FEATURES (FIRST HOUR)

Baseline (bpm) 158 145–164 135 127–145 136C 129–144C 0.014

≥150 bpm 3 60.0 1 14.3 21C 13.7C 0.027

≥160 bpm 2 40.0 0 0.0 8C 5.2C ≤0.01

Short-term variability 1.8 1.6–2.7 5.6 3.2–7.0 5.3C 4.1–7.8C ≤0.01

<3 msec 4 80.0 1 14.3 14C 9.2C ≤0.01

Long-term variability 2.1 1.6–2.6 4.4 2.1–5.2 4.6C 3.4–6.1C ≤0.01

<3 bpm 5 100.0 3 42.9 25C 16.3C ≤0.01

Non-reactive trace 2 40.0 2 28.6 9C 5.9C ≤0.01

Any accelerations present 0 0.0 3 42.9 102C 66.7C 0.013

Any decelerations present 5 100.0 5 71.4 80A 52.6A 0.125

Any prolonged decelerations (≥3min) 2 40.0 1 14.3 9 C 5.8C 0.012

Decelerative capacity (bpm) 1.8 1.0–2.4 2.3 1.2–3.8 2.4C 1.7–3.1C 0.301

<1.0 bpm 1 20.0 2 28.6 3C 2.0C ≤0.01

n, number; IQR, inter-quartile range (25–75th percentiles); NICU, neonatal intensive care unit; bpm, beats per minute. Super-indices A–D indicate the number of missing data: A, 1; B,

4; C, 2; D, 20.
†
Maternal fever defined as one-time maximum maternal temperature measurement of ≥38.0◦C, based on UK maternity guidelines (29). ‡Composite outcome: stillbirth,

neonatal death, seizures, neonatal encephalopathy, intubation or resuscitation followed by NICU admission for ≥ 48 h.
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FIGURE 4 | First-hour CTG of severely compromised newborns delivered by cesarean section within 2 h after CTG start (emergency cesarean delivery, Emergency

CS), vertical red line at 20min, paper speed 1 cm/min, vertical scale 20 beats per min/cm.

had higher rates of baseline FHR ≥150 bpm, non-reactive
initial CTG, reduced short-term and long-term variability, less
accelerations, and decelerative capacity amongst fetuses with
severe compromise. Prolonged decelerations (≥3min) were also
more common in the first hour CTG of infants born with
severe compromise. None of the severely compromised infants
in the Urgent CS had a first hour baseline ≥160 bpm and only
a small proportion had STV < 3 msec. In this group, non-
reactive initial trace and DC < 1 bpm were stronger risk factors

in about a third of severely compromised infants. There was
a significantly higher proportion of babies with arterial cord
pH < 7.00 in the severely compromised babies with Urgent
CS (Table 2), with the length of stay in NICU longest for
the severe compromised babies in the Emergency CS group,
suggesting that the components of the “severe compromise”
varied between the groups. Umbilical artery acidemia was absent
in the majority of severely compromised infants in Emegency CS
and Others. The rate of decelerations in the initial CTG was not
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FIGURE 5 | First-hour CTG of severely compromised newborns delivered by cesarean section between 2 and 5 h after start of CTG (urgent cesarean delivery, Urgent

CS), vertical red line at 20min, paper speed 1 cm/min, vertical scale 20 beats per min/cm.

Frontiers in Pediatrics | www.frontiersin.org 10 March 2022 | Volume 10 | Article 784439190

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Lovers et al. Cardiotocography and Risk Factors in Early Labor

FIGURE 6 | First-hour CTG traces of severely compromised newborns of the remaining cohort (Others), random selection of 8 traces, vertical red line at 20min, paper

speed 1 cm/min, vertical scale 20 beats per min/cm.
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associated with severe compromise, but our data was “censored”
by clinical practice.

In addition, we demonstrated that computerized analysis of
the CTG adds value by permitting the analysis of large cohorts to
support clinical guidelines.

Clinical Implications and Interpretation
Our data suggest that clinical guidelines for CTG interpretation
for the initial trace may need to differ from those applied to
the rest of labor. Perhaps there should be less emphasis on
the presence of decelerations per se, unless they are prolonged
(≥3min). Instead, there should be a lower threshold for the
definition of FHR “tachycardia” at this time (i.e., 150 bpm),
an assessment for a non-reactive trace (i.e., lack of cyclicity or
reactivity). Our data also confirm the relevance of and provide
evidence for STV and LTV, as well as clinical risk factors such as
thick meconium, small for gestational age, and others.

These findings suggest that a consistent assessment of the CTG
together with known clinical risk factors around the onset of
labor has the potential to identify early a small but important
proportion of babies at risk of severe compromise. Our data
shows that it is likely that some of the cases were “missed”
in the group of Others and recognized late in the Urgent CS
group. Some of the CTG characteristics important for the first-
hour CTG assessment, such as reduced variability, decelerative
capacity, and the non-reactive trace, are not typically detectable
with intermittent auscultation (20).

The primary outcome of “severe compromise” was broadly
defined to include cases which may not have their origins
in hypoxic-ischaemic insults. Approximately half of small for
gestational age fetuses attributable to placental insufficiency
are missed in the antenatal period, and about 10% of them
sustain severe compromise (30). Other vulnerabilities, including
intrauterine infection, cerebral hemorrhage, and maternal
hyperglycaemia (13, 18, 19, 31), may also alter fetal physiological
adaptations to reduced oxygen during labor (18, 19) in a
manner that is difficult to detect with conventional CTG
(13, 18, 31). Therefore, in principle, clinical factors and fetal
physiology should be considered for accurate interpretation
of CTG in the initial assessment of women in labor. Our
findings confirm the importance of both first-hour CTG and
clinical characteristics.

Our findings are relevant for fetuses for whom cesarean
delivery before or in early labor may avoid the more dramatic
emergency deliveries and the attendant maternal and fetal risks
(30). Furthermore, better risk assessments with CTG in the
initial assessment could enhance individualized care, informed
decision-making, and improve maternal engagement during
labor (17, 32).

Strengths and Limitations
Using computerized methods, we studied a large, detailed,
and complete, high-quality maternity database. Specific markers
of brain development were not collected at the hospital
level and therefore unavailable for our data analysis of
routinely collected cohort data. We included all eligible infants
resulting in nearly equal proportion of babies with CTG

starting before and after the onset of labor, 46 vs. 54%
respectively. Therefore, our findings are relevant to both
periods, pre and early labor, largely around onset of labor
where women are assessed in a maternity unit triage room
or bays. This is particularly important because the definition
of onset of labor and CTG initiation varies and depends,
amongst other things, on the time the woman presents to
the hospital.

Clinical practice has inevitably changed since the timespan
of this dataset and the data for the subsequent 10-year period
(2011–2020) were not fully available yet at the time of analysis,
but their analysis will follow the presented format in this study to
allow comparison.

A limitation of this study was the lack of information for
the cervical dilatation at the time of initial CTG recording
as well as the fact that our routinely collected data relate to
a high-risk obstetric population, as per clinical CTG use in
the UK.

We propose to build on the various univariate analyses
presented in the current study to undertake multivariate analyses
in future studies using larger datasets.

CONCLUSION

This study reports that a small but important proportion
of infants born with severe compromise had significantly
different computerized CTG characteristics around the onset
of labor (detected with OxSys algorithms), typically in the
context of other clinical risk factors. Clinical guidelines for
CTG interpretation, for the initial trace specifically, may
need to be different from those for monitoring throughout
labor, with less focus on the presence of decelerations
per se, unless they are prolonged (≥3min). Instead, there
should be a lower threshold for the definition of FHR
“tachycardia” and assessment for non-reactive trace (lack of
cyclicity or reactivity). We further confirm the relevance
of and provide evidence for STV and LTV, as well as
clinical risk factors including thick meconium and small for
gestational age.
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