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Despite increased knowledge, and more sophisticated experimental and modeling approaches, 
fundamental questions remain about how electricity can interact with ongoing brain function 
in information processing or as a medical intervention. Specifically, what biophysical and 
network mechanisms allow for weak electric fields to strongly influence neuronal activity 
and function? How can strong and weak fields induce meaningful changes in CNS function? 
How do abnormal endogenous electric fields contribute to pathophysiology? Topics included 
in the review range from the role of field effects in cortical oscillations, transcranial electrical 
stimulation, deep brain stimulation, modeling of field effects, and the role of field effects in 
neurological diseases such as epilepsy, hemifacial spasm, trigeminal neuralgia, and multiple 
sclerosis. 
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INTRODUCTION
Despite a long-standing recognition that bioelectric phenomena
underpin brain function, fundamental questions remain about
how extracellular current flow may influence neural activity and
computation. The source of extracellular current flow may be
exogenous, electrical exposure or stimulation, or the source may
be endogenous, for currents produced by the brain itself. The for-
mer has recently gained increased urgency with the evolution of
transcranial electrical therapy for a broad range of neurological
and psychiatric disorders. The latter remains one of the longest
standing open questions in neuroscience—is the electrical cur-
rent flow that is a ubiquitous aspect of brain function (manifest
for example in oscillations, EEG) an epiphenomenon or a key
functional signal in the brain.

Field effects that are produced by transmembrane currents are
called ephaptic. An ephapse “Gr: touching across” was originally
coined to describe how two axons placed close together in mineral
oil, which has a higher resistance than saline, transmit an action
potential at what can be considered an artificial synapse (Katz and
Schmitt, 1940; Arvanitaki, 1942). This finding led Sir John Eccles
to propose the Golgi cell theory of inhibition in which he spec-
ulated that ephapses could mediate inhibitory neurotransmission
(Brooks and Eccles, 1947). Eccles corrected this theory and was
awarded a Nobel Prize for his subsequent work demonstrat-
ing that inhibitory neurotransmission is mediated by chemical
synapses. However, in accord with Eccles original theory, ephaptic
transmission has been found to mediate inhibitory neurotrans-
mission at the Mauthner cell axon hillock (Weiss et al., 2008),
and the Pinceau of the cerebellar Purkinje cell (Korn and Axelrad,
1980; Blot and Barbour, 2014). Research during the twenty-first
century has demonstrated that field effects in the mammalian
brain may be much more ubiquitous. Field effects generated by
endogenous activity may influence network oscillations and com-
putation throughout the cerebral cortex (Radman et al., 2007).
Both physiologic (e.g., oscillations; Parra and Bikson, 2004) and
pathologic (e.g., epilepsy; Haas and Jefferys, 1984) activity may
be influenced by field effects. Because field effects are both gen-
erated by coherent population activity and influence networks
in a coherent fashion, they may influence brain function as no
neurotransmitter can.

Furthermore, weak direct and alternating current stimula-
tion of the human cerebral cortex at low-intensity strengths
have been found to influence network dynamics and behavior.

The exploration of transcranial Direct Current Stimulation
(tDCS) and transcranial Alternative Current Stimulation (tACS)
over the past decade for both treatment and to enhance cognitive
performance and learning in healthy individuals, has galvanized
questions about how the brain responds to low-intensity stimula-
tion. Indeed, the intensity of electric generated in these modalities
can approximate the intensity of electricity generated by the bran
itself (Datta et al., 2009).

Thus the science of field-effects and low-intensity electrother-
apy overlap. The articles included in this e-book highlight some of
the latest developments in understanding both endogenous field
effects in the central nervous system, as well as the mechanisms
and clinical applications of transcranial stimulation of the cortex.
We hope that these articles are helpful for students, researchers,
and clinicians who hope to better understand and utilize this
often overlooked form of neurotransmission.
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The transcranial application of weak currents to the human brain has enjoyed a decade of
widespread use, providing a simple and powerful tool for non-invasively altering human
brain function. However, our understanding of current delivery and its impact upon neural
circuitry leaves much to be desired. We argue that the credibility of conclusions drawn
with transcranial direct current stimulation (tDCS) is contingent upon realistic explanations
of how tDCS works, and that our present understanding of tDCS limits the technique’s
use to localize function in the human brain. We outline two central issues where progress
is required: the localization of currents, and predicting their functional consequence. We
encourage experimenters to eschew simplistic explanations of mechanisms of transcranial
current stimulation. We suggest the use of individualized current modeling, together with
computational neurostimulation to inform mechanistic frameworks in which to interpret the
physiological impact of tDCS. We hope that through mechanistically richer descriptions of
current flow and action, insight into the biological processes by which transcranial currents
influence behavior can be gained, leading to more effective stimulation protocols and
empowering conclusions drawn with tDCS.

Keywords: neuromodulation, modeling, computational neurostimulation, validation, neuroenhancement

Since the demonstration that transcranial direct current stimu-
lation (tDCS) can modulate the size of motor evoked potentials
(MEPs) elicited over human primary motor cortex (Nitsche and
Paulus, 2000), tDCS has become a popular approach for non-
invasive neurostimulation of the human brain. The success of
the technique, as gauged by the breadth of publications, is strik-
ing, being employed over numerous brain areas, in variety of
behavioral tasks, and in the treatment of a wide range of diseases
(Brasil-Neto, 2012; Brunoni et al., 2012). It appears, however, that
the growth in reported applications for tDCS has outstripped the
growth in our understanding of the mechanistic underpinnings of
direct current (DC) stimulation, both in terms of current delivery
and the subsequent effect of electrical fields upon the cortex.

This imbalance has been exacerbated by the impressive and a
priori surprising trend for tDCS, particularly when the anode is
placed over the cortical region of interest, to facilitate behavioral
performance (but see Iuculano and Kadosh, 2013). We believe that
a deeper and more critical querying of (a) where currents actually
flow when one applies transcranial DC stimulation and (b) the
effects upon cellular and network activity, will help focus efforts
to capitalize upon the remarkable achievements of the field to
date. We here briefly summarize recent work on these issues, and
highlight some of the key conclusions and remaining questions
that are pertinent to current and future users of tDCS.

WHICH NEURAL STRUCTURES ARE TARGETED BY DC
STIMULATION?
The arrangement of anode and cathode used by Nitsche and Paulus
(2000) that led to a potentiation and suppression of MEP’s is

pictured in Figure 1A. This “classic montage” consists of a pair of
sponges, one of which is placed over the motor cortex contralateral
to the limb in which MEPs are measured, with the other positioned
over the forehead of the opposite hemisphere. It is appropriate to
recall here that in any montage using DC, an anode and a cathode
will be present; which electrode is deemed the“reference” is merely
a matter of convention and depends only upon the predicted effect
of stimulation upon the measured behavior. It is also relevant to
point out that in their original paper and subsequent work, Nitsche
and co-workers do not attribute the observed change in MEP size
to the stimulation of any one cortical area per se. Moreover, this
group is careful to distinguish between montage-specific effects
(e.g., the passage of current in various patterns across the brain)
and focality (limited current flow to one region) (Nitsche et al.,
2007). This discretion is not consistently observed in subsequent
studies but is vindicated by neuroimaging data that implies that
the classic montage influences numerous cortical areas (Lang et al.,
2005; Zheng et al., 2011), and that standard DC stimulation pro-
tocols influence the excitability of numerous muscles (Roche et al.,
2009).

One can be fairly confident, therefore, that conventional tDCS
stimulation protocols, with two large electrodes placed across the
head, induce widespread currents of varying intensity and there-
fore widespread changes in cortical activity, a conclusion further
supported by numerous modeling approaches (Datta et al., 2009;
Bikson et al., 2012; Ruffini et al., 2012) There is an important dis-
tinction between putting one electrode “over” a brain region, and
targeting that brain region with focal current delivery – and indeed
the peak brain currents in a bipolar array may be at some point
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FIGURE 1 | Examining current distributions in the cortex. (A) The
classic montage used by Nitsche and Paulus (2000) to modulate MEP
size. (B) Finite element modeling of current distribution with the classic
montage illustrates the broad swathes of cortex affected. (C) Voltage
drops across membranes considered as resistors explain the mixture of

hyperpolarization and depolarization seen in. (D) Superficially depolarizing
currents produce hyperpolarization in dendrites and depolarization in the
cell soma. (E) The direction of current flow varies considerably within
the stimulated area. All figures bar (C) reprinted with permission from
Rahman et al. (2013).

between the two electrodes. This interim conclusion suggests that
we are rarely in a position to make conclusive inferences about
the function of a specific stimulated area based upon an observed
behavioral effect alone; the impact upon networks of activity is
simply too broad for topologically specific statements, though it
may be reasonable to suggest behavioral effects are consistent with
modulation of at least one region of interest. We note that there is a
subtle distinction between this phenomenon and network effects
elicited by transcranial magnetic stimulation (TMS), where the
initial intervention is relatively focal, but then is likely to propa-
gate poly-synaptically to interconnected regions (Bestmann and
Feredoes, 2013). By contrast, with conventional tDCS montages
the primary effects are likely to occur in a non-spatially specific
way (Nitsche, 2011).

The use of mathematical, finite element models for predicting
current flow offers a principled way to estimate current distribu-
tions, optimize current delivery to target areas, and to circumscribe
conclusions about the brain basis of observed effects (Figure 1B;
Dmochowski et al., 2011; Bikson et al., 2012; Miranda et al., 2013).
The use of individual head models is becoming increasingly fea-
sible with improvements in the automatization of the process,
reducing the time and expertise necessary and rendering such
modeling accessible to more users of tDCS (Huang et al., 2012;
Windhoff et al., 2013). Although direct physiological validation of
such models is limited (Datta et al., 2013; Edwards et al., 2013), at
the very least this approach highlights several important issues for

the delivery of transcranial current. Furthermore, the key conclu-
sions we discuss below will not change – they are dictated by the
laws of physics – though specific details of these models are likely
to yield subtly different results.

Firstly, the amount and distribution of current reaching dif-
ferent brain regions varies wildly as a function of individual
physiology and anatomy (Datta et al., 2012) contributing sub-
stantial variance to our datasets. A recent study (Edwards et al.,
2013), for example, showed that models of current flow based
upon individual magnetic resonance imaging (MRI) scans accu-
rately predicted the amount of current necessary to evoke a muscle
twitch with strong transcranial electrical stimulation, and success-
fully explained the twofold variation in evoked response when
using fixed stimulus parameters. Factors such as skull thickness,
distribution of cerebrospinal fluid, and subcutaneous fat (Truong
et al., 2013) have a radical effect upon current flow, and add to the
uncertainty about the destination and strength of transcranially
delivered DC current.

Secondly, experimenters looking to increase excitability will
typically place the anode over the region of interest, analogous
to the positioning of the anode over M1 in the classic MEP-
modulating montage. One might suppose that this equates to
delivering uniform inward positive current to the cortex beneath
the electrode. However, this is emphatically not the case. The
topography of the cortical surface places a large role in deter-
mining current flow, with dramatic reversals in polarity between
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adjacent gyri and sulci (Rahman et al., 2013). It is thus simplistic to
describe the entire area under the electrode as being “depolarized,”
or “excited” by the application of anodal currents. Furthermore,
slice studies have recently demonstrated that the cellular effect of a
depolarizing current applied to the cortical surface depends upon
the depth of the observed compartment (Chan et al., 1988; Bikson
et al., 2004). Simply by considering the cell membrane as a resistor
in a classic cable model (Figure 1C), it follows that when super-
ficial compartments are hyperpolarized then deep compartments
in the same cell will be depolarized – and vice versa. Each neuron
will inevitably have both depolarized and hyperpolarized compart-
ments during tDCS. In a pyramidal cortical neuron aligned with
an inward (relative to the cortical surface) directed electric field,
this equates to hyperpolarization of the dendritic tree and depo-
larization of the soma (Figure 1D; Rahman et al., 2013). Expected
variations in both electric field direction and relative cell mor-
phologies will produce variations in polarization profiles (Radman
et al., 2009). Apart from revealing that any simplistic distinction
between “anodal” and “cathodal” stimulation provides incomplete
mechanistic grounding of behavioral and clinical DC applications,
this raises another question; how does direction of current flow
affect cellular responses?

Current flow is vectorial, in the sense that we can estimate both
the current intensity and its direction at a given point. It is widely
acknowledged that increasing total applied current density at the
electrodes results in an increase in the intensity of the electrical
field generated in the brain and that this affects the physiological
response to tDCS (Nitsche et al., 2007). Conversely, far less dis-
cussion has focused upon the importance of current orientation
(Dmochowski et al., 2012), which in each brain region is typically
defined as radial (into the cortex) or tangential (parallel to the
cortex). The induction of an electric field in the longitudinal axis
is not electrophysiologically equivalent to one that traverses the
cell (Radman et al., 2009; Rahman et al., 2013). Whilst a radially
aligned inward current will cause somatic depolarization, trans-
verse currents have pathway specific effects upon cellular activity
potentially linked to polarization of afferent axons (Rahman et al.,
2013). Surprisingly, given the prevalent view that we are injecting
current “into” the cortex, tDCS currents are primarily tangential;
they flow parallel to the cortex (Rahman et al., 2013). It is interest-
ing to note that the cellular populations that are aligned parallel
to the cortical surface, such as intracortical and interhemispheric
connections, will therefore be more optimally excited with stan-
dard tDCS montages than the radially aligned cortical columns
within the stimulated area.

Additionally complicating is the fact that the direction of cur-
rent flow will be dramatically influenced by the pattern of sulci
and gyri in the stimulated area; an electrode configuration that
induces primarily radial currents in a gyrus might induce exclu-
sively tangential ones in an adjacent sulcus (Figure 1E; Miranda
et al., 2013; Rahman et al., 2013). Idiosyncratic different in cor-
tex anatomy across subjects may thus produce distinct patterns of
current flow and hence neuromodulation.

Taken together, this suggests that the effect of a polarizing cur-
rent will differ substantially between sulci and gyri, at different
depths of cortex, and between differently aligned cellular popu-
lations. It is not yet clear what the significance of this variability

is in terms of the design of tDCS montages; we are not aware of
any systematic exploration of this issue in humans. It might be
instructive, for instance, to examine the effect of current direction
upon MEP modulation, a possibility afforded by inverse-modeling
that allows us to optimize montages based upon current delivery
in a particular direction (Bikson et al., 2012).

EXPLAINING THE EFFECTS OF tDCS UPON BEHAVIOR
The preceding section highlights the difficulties in delivering tran-
scranial currents in a precise and principled manner, and the
dangers of assuming homogeneity in induced currents and the
simplistic predictions such assumptions spawn. However, this
raises an even more fundamental question: even if we were able
to deliver currents exactly as desired, it is not clear a priori
how these would lead to the diverse and impressive behavioral
effects reported in the literature. Similarly, given the com-
plexity of current flow and limitations of achievable patterns,
what is a “best” achievable current flow pattern for any given
objective?

Consider the analogy of the brain as a computer, one that
falls short in terms of describing the complexity and plasticity
of neural networks. If one strapped a 9V battery to the pro-
cessor of a laptop and improved the computer’s processing, the
result would be somewhat surprising. There is no reason to
believe that computers, or brains, lack electricity, which should
make it very startling when injecting current improves function.
It is worth, therefore, reassessing the basic hypotheses about
neural processing that underlie current explanations of tDCS’s
action.

Much of the current wisdom on the action of tDCS can be
traced back to generalizations from the effects of DC on motor
cortex. Given that we know that microstimulation of the primate
motor cortex can produce MEPs (Fritsch and Hitzig, 1870), that
magnetic stimulation of neurons in this area can also evoke MEPs
(Hess et al., 1987), and that subthreshold stimulation of neurons
in motor cortices can modulate the threshold for eliciting MEPs
(Kujirai et al., 1993) it is reasonable to interpret the effects of tDCS
in this area as alterations of membrane potential. Lasting effects of
stimulation are consistent with the induction of long-term poten-
tiation (LTP) between stimulated neurons, an effect that has been
documented in animal models of tDCS (Márquez-Ruiz et al., 2012;
Ranieri et al., 2012). It is thus parsimonious to suppose that an
anodal current over M1 leads to increases in excitability and sub-
sequently enhanced plasticity, whereas cathodal current over M1
decreases excitability and subsequent synaptic depression. This
effect is plausibly attributable to depolarization of somatic mem-
brane potential by anodal currents and hyperpolarization of soma
by cathodal currents, as observed in slice studies (Chan et al., 1988;
Bikson et al., 2004). A simple relationship between cellular activ-
ity and the magnitude of the evoked response renders such an
explanation coherent.

It should be stressed, however, that this is an inference, based
upon what is already known about the process of MEP produc-
tion [and noting that there remains uncertainty about the neural
sources controlling even this modest behavior (Di Lazzaro et al.,
2008)]. Whether this can readily be generalized to other processes
and other cortical areas remains unknown.
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The critical point is that there is no theoretical or mechanis-
tic explanation for why depolarizing cells would improve complex
behaviors such as perceptual decision-making, mathematical abil-
ity, or motor learning. The injection of current into these processes
constitutes the addition of random electrical activity that indis-
criminately targets large swathes of neurons and has nothing to do
with the ongoing activity pattern underlying the performance of
the task at hand.

Furthermore, since subthreshold depolarization of a cell is
likely to provoke plasticity of active synapses onto that cell, DC
is likely to facilitate non-Hebbian plasticity (Hebb, 1949). If we
accept that LTP constitutes a means for memory storage (Lisman
et al., 2003), then if DC stimulation indeed produces depolar-
ization, it will lead to the formation of irrelevant, interfering,
memories. We believe that there are extensive and finely tuned
mechanisms for controlling the induction and consolidation of
cellular plasticity (Redondo and Morris, 2011). At risk of laboring
the point, there is no a priori reason known to us to believe that
merely depolarizing cells should make these processes more effi-
cient, suggesting that we should challenge the simple assumption
that this is what anodal tDCS does.

COMPUTATIONAL NEUROSTIMULATION
Where does this leave us? Our understanding of tDCS at the cellu-
lar level is growing, but there remains an explanatory gap between
the abstract effects of stimulation upon cells in animals/slices
and the large and impressive behavioral effects documented in
humans. We believe that for meaningful progress to be made we
must attempt description at the appropriate level, that of neural
circuits.

We provide a few selected examples that highlight the poten-
tial for mechanistically cogent accounts of tDCS function: first,
the formulation of physiological hypotheses concerning plausi-
ble mechanisms whereby tDCS might influence cortical function
to enhance processing, and, second, the use of computational
modeling to describe the network consequences of stimulation
(“computational neurostimulation”).

Stochastic resonance describes a phenomenon whereby the
introduction of small amounts of noise into a non-linear sys-
tem produces increases in performance when dealing with small
amounts of signal (McDonnell and Ward, 2011). Schwarzkopf
et al. (2011) demonstrated that the administration of low-
intensity TMS toV5/MT improved discrimination in a dot-motion
paradigm, an effect that was reversed at high intensities of TMS.
This was interpreted as evidence that stochastic resonance plays a
role in the facilitatory effects of TMS. Stochastic resonance would
provide an equally compelling explanation of tDCS action; the
injection of weak currents essentially constitutes the addition of
neural noise. A priori, stochastic resonance seems a more prob-
able outcome of tDCS than of TMS; the concerted, modulatory
nature of transcranial currents make them more likely to mod-
ify existing processes than the large, abrupt disruption of normal
function produced by TMS. Interestingly, a stochastic resonance
account would also suggest that overstimulation might lead to
a decrement in performance. Central to this suggestion is that
there is a wealth of data about the underpinnings of stochas-
tic resonance at a cellular and population level (McDonnell and

Ward, 2011). Combined with individual variability in the efficacy
of stimulation (Edwards et al., 2013), this might explain some
of the inconsistency observed in responses to stimulation; the
addition of too little or too much noise as a result of variable cur-
rent delivery could produce negligible or detrimental effects upon
behavior. We believe that such theoretically plausible accounts,
grounded in knowledge of information processing in neural sys-
tems, may offer a productive way to enhance our understanding of
tDCS action and how it should be applied in different behavioral
settings.

Such efforts might be complemented by attempting to formal-
ize the impact of stimulation upon brain networks via modeling of
neural activity. Since it is a priori not clear why the concerted hypo-
or hyperpolarization of thousands of neurons should improve the
processing capacity of such populations, these models allow for
exploring this issue in detail. We briefly mention two of many
approaches. An elegant example for pulsed (TMS) stimulation
is provided by Esser et al. (2005), who use a detailed model of
thousands of neurons within a cortico-thalamic network including
motor cortex, to investigate the precise impact of TMS on cortical
circuits. By introducing perturbations analogous to those evoked
by TMS, they were able to reproduce key features of MEPs gener-
ated by TMS administration. This approach relies on information
about the effect of stimulation upon the cellular population mod-
eled, which can then be simulated and outputs compared with
empirical data.

The opposite approach, inferring the cellular perturbation from
the network response, is made possible by biophysically informed
network models such as dynamic causal modeling (DCM;
Friston et al., 2003). A striking example of how DCMs can be
used to infer the underlying changes in cellular physiology comes
from Moran et al. (2011). These authors administered L-DOPA
to subjects performing a working memory task, and recorded
magnetoencephalography (MEG) responses. DCMs of the MEG
response to drug administration recapitulated the changes in
NMDA and AMPA receptor conductances known to underlie
the action of dopamine in the frontal cortex (Goldman-Rakic,
1996). There is no reason why a similar approach should not be
taken with tDCS, offering a rich toolkit with which to exam-
ine the neurophysiological changes underlying the immediate
and delayed effects of tDCS upon behavior. Building upon
combined neurostimulation and neuroimaging approaches that
allow for identifying interactions between stimulation-induced
behavioral change and neural activity (Siebner et al., 2009;
Bestmann and Feredoes, 2013), this would involve the applica-
tion of tDCS during recording of brain activity with magneto-
and electroencephalography (M/EEG) or functional MRI (fMRI),
and modeling of the resultant perturbation to infer the neurophys-
iological changes underlying the observed changes in gross brain
activity and behavior.

SUMMARY
We believe that it is imperative that our understanding of the
delivery and functional impact of transcranial current continues
to grow. Improving current delivery by taking into account indi-
vidual anatomical variation and the complex dynamics of polarity
and orientation is likely to help optimizing established therapeutic
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protocols. Similarly, improving and demonstrating the focal-
ity of tDCS through the use of high definition electrode arrays
(HD-tDCS) (Kuo et al., 2013) might potentially make tDCS a far
more valuable tool for systems neuroscientists looking to eluci-
date the function of specific structures. At present, experimenters
should be circumspect in making claims that changes in behav-
ior during or after tDCS are caused by an excitability change in

the cortical area underlying one of the electrodes. The credibil-
ity of conclusions drawn with tDCS is contingent upon realistic
explanations of how tDCS works. To this end, we promote the
use of computational neurostimulation to refresh the theoretical
frameworks in which to explain the impact of tDCS, in the hope
of providing tDCS with a scientific credence which will also assist
its use as an exploratory and therapeutic tool.
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Transcranial Direct Current Stimulation (tDCS) is investigated for a broad range of neu-
ropsychiatric indications, various rehabilitation applications, and to modulate cognitive
performance in diverse tasks. Specificity of tDCS refers broadly to the ability of tDCS to
produce precise, as opposed to diffuse, changes in brain function. Practically, specificity of
tDCS implies application-specific customization of protocols to maximize desired outcomes
and minimize undesired effects. Especially given the simplicity of tDCS and the complexity
of brain function, understanding the mechanisms leading to specificity is fundamental to
the rational advancement of tDCS. We define the origins of specificity based on anatomical
and functional factors. Anatomical specificity derives from guiding current to targeted brain
structures. Functional specificity may derive from either activity-selectivity, where active
neuronal networks are preferentially modulated by tDCS, or input-selectivity, where bias is
applied to different synaptic inputs. Rational advancement of tDCS may require leveraging
all forms of specificity.

Keywords: transcranial direct current stimulation, anatomical brain connectivity, neuromodulation, transcranial

magnetic stimulation, stimulation protocol

THE NEED FOR tDCS SPECIFICITY
As tDCS is a simple and general technique, applied to a wide
range of clinical and cognitive neuroscience applications (Brunoni
et al., 2012), a pivotal question to the rational advancement of
tDCS is how is specificity achieved? More generally, why does
low-intensity direct current produce (desirable) cognitive changes
on highly complex tasks recruiting multiple neural pathways or
treat multifarious neuropsychiatric disorders (Turkeltaub et al.,
2012; Medina et al., 2013; Zimerman et al., 2013)? A question
compounded when considering that the DC waveform is does
not carry apparent information and that the induced electric field
in the brain is low [<1 V/m; (Datta et al., 2009; Ruffini et al.,
2012)] producing minimal cell membrane polarization [<1 mV;
(Radman et al., 2009)]? Practically, how can stimulation protocols
be optimized to promote specificity with the goal of increasing
efficacy while reducing undesired side effects? Since these issues
are central for the rational advancement of tDCS, here we define
both anatomical and functional origins of specificity (Cano et al.,
2013). Although task specific effects of tDCS have been shown
(Saucedo Marquez et al., 2013; Tang and Hammond, 2013) the
mechanistic substrate remains poorly explained.

ANATOMICAL tDCS SPECIFICITY AND THE “SLIDING-SCALE”
MODEL
Anatomical specificity refers to the preferential neuromodulation
of targeted brain regions by delivering stimulation current to the
targeted area. The number, location, and size of anatomical targets
are application specific. For example, the targeted brain region
may be a specific cortical area implicated in a task or pathol-
ogy. Anatomical specificity is achieved only through the control of
tDCS electrode dose (defined as electrode montage and current)

to guide current to specific brain regions (Peterchev et al., 2011).
However, applied without consideration for functional specificity,
anatomical specificity is technically and conceptually limited.

Both computational models of current flow in the brain and
imaging studies indicate that conventional tDCS methodology
using two large sponge pads (5 cm × 5 cm) positioned on the
head disperse current through much of the cortex (Datta et al.,
2009; Faria et al., 2011; Antal et al., 2012; Neuling et al., 2012) and
even deep brain structures (Dasilva et al., 2012). It is important
to distinguish between carefully designed studies that demon-
strate dose-specific (e.g., electrode position) outcomes (Fiori et al.,
2013; Hauser et al., 2013; Penolazzi et al., 2013), from implications
that current flow is limited to one brain target. These studies also
typically leverage other forms of functional targeting.

Technology for High-Definition tDCS using arrays of elec-
trodes allows categorical increases in anatomical targeting by
increasing the focality of current flow (Datta et al., 2009; Dmo-
chowski et al., 2011), but even so, any brain region is evidently
involved in multiple tasks. Which presents the inherent concep-
tual challenge when relying exclusively on anatomical specificity:
how can passing DC current through a multi-tasking complex
brain region produce specific functional changes?

In the absence of further sophistication, the goals of tDCS
are often described as increasing excitability (near the anode)
or decreasing excitability (near the cathode) of the target brain
region, with brain function and disease thus reduced to a “sliding-
scale” of excitability to be adjusted by stimulation (c.f., Rahman
et al., 2013). For example, under the sliding-scale concept “anodal
tDCS” can enhance the performance of a cognitive task by
exciting an implicated brain region. Similarly anodal tDCS is
intended to increase left-prefrontal cortex activity in depression
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and enhance rehabilitation around lesions after stroke. Follow-
ing early evaluation of Transcranial/transcortical polarization in
humans and animal models (Bindman et al., 1962; Redfearn et al.,
1964; Elbert et al., 1981), influential neurophysiological stud-
ies of tDCS (Nitsche and Paulus, 2000) established modulation
of experimental evoked potentials [e.g., motor evoked potential
responses to transcranial magnetic stimulation (TMS)]. There
is significant extrapolation from these experimental findings to
behavior and cognition [TMS evoked responses may provide
poor evidence for effects on behavior; (Ridding and Rothwell,
2007)]. Moreover, even the direction of this basic modulation
of experimentally evoked potentials is highly sensitive to both
tDCS dose [intensity (Matsunaga et al., 2004; Dieckhofer et al.,
2006; Batsikadze et al., 2013); direction (Chan and Nicholson,
1986; Bikson et al., 2004; Rahman et al., 2013)] and depen-
dent on brain state (Fröhlich and McCormick, 2010; Reato et al.,
2010). Animal studies showing anodal/cathodal DCS producing
somatic depolarization/hyperpolarizing (Radman et al., 2009) and
increase/decrease in firing rate (Purpura and McMurtry, 1965;
Reato et al., 2010), are cited to support a sliding-scale concept,
however, global changes in firing rate across a brain region implies
a non-specific effect (Reato et al., 2013). In summary, it is rea-
sonable to conclude from neurophysiologic studies that tDCS
can produce dose-specific changes in brain functions (Nitsche
and Paulus, 2000) that can, with careful extrapolation, serve as
a basis for behavioral interventions (Kuo et al., 2013). However,
relying only on anatomical specificity by guiding current to spe-
cific brain regions (and so the “sliding-scale” rationale) remains
limited by the complex and divergent functions of any brain
region.

Further sophistication in anatomical targeting follows from
considering tangential as well as radial inward/outward currents
(Dmochowski et al., 2012) as discussed in a separate article in
this special issue. Indeed, the assumption of inward (“excitatory”)
and outward (“inhibitory”) current under the anode and cathode,
respectively, may be a further over-simplification. Electrophys-
iological studies in animal models of DC stimulation suggest
differential processing of afferent information (Rahman et al.,
2013) and that polarity-specific effects invert due to neuronal
morphology (Bikson et al., 2004; Kabakov et al., 2012).

ACTIVITY-SELECTIVITY AND TASK-SPECIFIC MODULATION
Activity-selectivity refers to tDCS preferentially modulating a neu-
ronal network that is already activated, while not modulating
separate neuronal network that are inactive. The active neuronal
network may be activated for a host of reasons described. The
active and inactive networks can in fact overlap in space (e.g., in
the same cortical column) such that activity-selectivity does not
require physical separation in contrast to anatomical specificity –
therefore, we refer to activity-selectivity as a form of functional
specificity. The active network may represent a subset of neu-
rons and/or a subset of connections (synapses). Because tDCS
produces low-intensity electric fields in the brain, “sub-threshold”
neuromodulation may reflect changes in ongoing processes (Reato
et al., 2010) in contrast to supra-threshold driven firing by TMS.
Activity-selectivity thus assumes there is some feature of the active
network that makes it preferentially sensitive to modulation by

tDCS compared to other inactive networks. We consider two neu-
rophysiological substrates for this preferred sensitivity: ongoing
activity-selectivity and input-selectivity.

Activity-selectivity is based on the assumption that tDCS will
preferentially modulate specific forms of ongoing activity. For
example, at a cellular level, direct current stimulation (DCS) may
enhance plasticity in a given synaptic pathway while stimulated at
a preferential frequency (0.1 Hz in Fritsch et al., 2010) or consoli-
date a specific pattern of activity presented during DCS (Morrell,
1961). DCS may preferentially modulate the level of potentiation
in the activated pathway (Ranieri et al., 2012). DCS may facili-
tate long-term potentiation through membrane polarization and
removal of Mg+ block (Stagg and Nitsche, 2011) but only those
pathways activated during DCS (by a task or experimental stimu-
lation) would benefit from this facilitation. DCS may be too weak
and/or unspecific in isolation to enhance synaptic efficacy, but
may boost ongoing (e.g., Hebbian) plasticity activated by task per-
formance (i.e., modulation of input specific plasticity along an
activated synaptic pathway while sparing quiescent synapses). In
humans, transcranial electrical stimulation may also preferentially
modulate networks with heightened oscillatory activity (Reato
et al., 2010) or preferentially change the progression of an active
network during memory consolidation or synaptic downscaling
(Reato et al., 2013).

At a behavioral level, specific brain activity is often targeted by
training in conjunction with tDCS with the goal that this select
activity be sensitized to tDCS neuromodulation (and so implicitly
other brain functions not active in training may be less so). For
example use-dependent modulation and learning of motor skills
is modulated by tDCS (Reis and Fritsch, 2011; Madhavan and
Shah, 2012). Clinically, tDCS is often applied to enhance the effi-
cacy of rehabilitation or cognitive training (Edwards et al., 2009;
Kuo and Nitsche, 2012; Gomez et al., 2013; Leśniak et al., 2013;
Ochi et al., 2013), which may further confer functional specificity
through activity-selectivity. Clinically when tDCS is applied to
subjects at rest, we can speculate that any functional-specificity
results from increased sensitivity of pathological network activity
to tDCS (e.g., dysfunctional pain or mood regulating networks).
It has been speculated that altered network function associated
with brain injury (stroke) may alter the susceptibility to tDCS
(Olma et al., 2013). Generally, any interaction between brain activ-
ity and the efficacy of tDCS modulation (Kim and Ko, 2013; Pirulli
et al., 2013) suggests “tDCS can be highly focal when guided by a
behavioral task” (Lapenta et al., 2013).

Although the mechanisms may vary, in any case, functional
specificity through activity-selectivity presumes the enhanced
activity of the network makes it preferentially sensitive to mod-
ulation by tDCS. Thus activity-selectivity necessitates an ongoing
network process becoming preferentially tuned to influence by
DCS compared to the myriad of other ongoing (background)
brain functions.

INPUT-SELECTIVITY AND BIAS
A third form of specificity we define here is input-selectivity, which
assumes a neuronal network that is predisposed to serve at least two
functions or operate in at least two states such that tDCS can switch
the network from one function/state to another: for example

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 688 | 14

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00688” — 2013/10/17 — 21:52 — page 3 — #3

Bikson and Rahman Origins of specificity during tDCS

attentional bias in the prefrontal cortex (Eldar et al., 2013). tDCS
would change the state of the system toward a different input bias
and thus enhance information processing of a specific stream of
information. Input-selectivity may activate endogenous “gating”
systems (e.g., gate theory of pain) or bi-stable neuronal states –
where a non-specific DC signal is able to“switch”a system between
complex functions or modes. In contrast to a sliding-scale hypoth-
esis for a stimulated brain region or activity-selectivity affecting
a specific ongoing process, input-selectivity implies a regional
process is enhanced at the cost of another process – not that
input-selectivity results in a zero-sum effect in regards to lasting
cognition or behavior outcomes. However, input-selectivity does
emphasize the “cost” of acute stimulation. Input-selectivity is also
considered a form of functional-specificity since it does not require
gross anatomical targeting of current flow. Input-selectivity thus
differs conceptually from functional-selectivity (as defined above)
in that it does not presuppose co-activation (e.g., by training), and
moreover implies that one process may be enhanced at the cost of
enhancing another.

Many animal studies that have investigated the modulation of
information processing, for example through synaptic efficacy
[as opposed to simply membrane polarization and excitability
(Chan and Nicholson, 1986; Radman et al., 2007)], have observed
that DCS will differentially modulate incoming inputs. We ini-
tially showed in hippocampal slice that DCS enhances some and
inhibits other afferent inputs (Bikson et al., 2004), a finding veri-
fied (Kabakov et al., 2012) and extended to the cortex (Rahman
et al., 2013). The cellular origins of bias in favor of selective
inputs are twofold. First, although anodal and cathodal tDCS
are mistakenly referred to as depolarizing and hyperpolarizing,
it is more accurate to describe tDCS as redistributing polarization
across the cellular axis, for example one dendritic branch versus
another (Fritsch et al., 2010; Rahman et al., 2013). This change
in “weights” across the dendrite may provide a cellular substrate
to influence the input bias of a network. Second, polarization
of afferent axons itself appears to exert pathway specific mod-
ulation (Arlotti et al., 2012; Kabakov et al., 2012; Rahman et al.,
2013).

Clinically, the concept of input-selectivity can be extended to
(selective) attention and working-memory, as well as disease states
such as ADHD (Levy, 2004), anxiety, and schizophrenia (Grace,
2000); which are indeed already indications explored for tDCS
(Kang et al., 2009; Faber et al., 2012; Demirtas-Tatlidede et al.,

2013; Shiozawa et al., 2013). The prefrontal cortex, an anatom-
ical target for several indications including depression (Loo et al.,
2012), is indeed implicated in executive function and differenti-
ating among (conflicting) inputs. The concept of bias-selection
is consistent with stimulation inhibiting some functions while
enhancing others within any given region (Iuculano and Kadosh,
2013; Tang and Hammond, 2013) as well as modulation of relative
value judgments (Vanderhasselt et al., 2013; Votinov et al., 2013),
which can be considered as a form of weighting inputs so specific
outcomes can be biased.

Future studies on the actions of input-selectivity using tDCS
can explore applications of multimodal imaging technologies,
including magnetic resonance spectroscopy (MRS), functional
magnetic resonance imaging (fMRI), magneto-encephalogram
(MEG), and electro-encephalogram (EEG), to further establish the
different functional brain-states of a cortical region activated dur-
ing tDCS (Soekadar et al., 2013). The topic of multimodal imaging
in tDCS is discussed further in another article in this special issue
of Frontiers in Human Neuroscience (Hunter et al., 2013).

OUTLOOK FOR tDCS
Anatomical specificity and functional specificity, through either
ongoing activity-selectivity or input-selectivity, are not exclusive
and may potentially be leveraged together in the development of
rational tDCS protocols. In general, we propose that understand-
ing the basis for tDCS selectivity is essential. Although we have
focused our discussion to tDCS, the approaches described here
would apply to other brain stimulation techniques including DBS,
VNS, TMS, tRNS, and tACS (discussed further in another article
in this special issue, Reato et al., 2013) as well as ultrasound and
light based approaches. But the diversity of applications already
investigated for tDCS, including increasing dosage (e.g., weeks of
sessions), broader populations (e.g., children), suggests a need to
address the basis of specificity to be especially acute. Both time-
dependent and homeostatic effects (Penolazzi et al., 2013; Peters
et al., 2013) increase the subtlety in tDCS protocol design that may
require understanding origins of specificity.
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EEG rhythms reflect the synchronized activity of underlying biological neuronal network
oscillations, and certain predominant frequencies are typically linked to certain behavioral
states. For instance, slow wave activity characterized by sleep slow oscillation (SO)
emerges normally during slow-wave sleep (SWS). In this mini-review we will first give
a background leading up to the present day association between specific oscillations
and their functional relevance for learning and memory consolidation. Following, some
principles on oscillatory activity are summarized and finally results of studies employing
slowly oscillating transcranial electric stimulation are given. We underscore that oscillatory
transcranial electric stimulation presents a tool to study principles of cortical network
function.

Keywords: tACS, tDCS, sleep, memory, learning, brain rhythms

The concept that oscillatory brain electric activity—as
measured in the EEG or as local field potentials—is more
than just an epiphenomenon and can directly impact biological
neuronal network activity has existed for some time (Buser and
Rougeul-Buser, 1995; Jefferys, 1995; Vigmond et al., 1997). An
upsurge of interest in modulating oscillatory activity by applying
oscillatory weak electric currents results on the one hand from
the recent accumulation of studies on the functional efficiency of
applied oscillatory weak electric fields and currents in modulating
EEG, local field potentials and neuronal firing rates (reviewed in
Weiss and Faber, 2010; Herrmann et al., 2013). On the other hand,
the interest in neuronal oscillations and their behavioral relevance
has become of increasing interest in the last decade, resulting
mainly from studies indicating that precise timing of neuronal
activity within oscillatory neuronal networks is essential for
information coding and that network oscillations can be a mode
of communication between distinct neuronal groups and across
brain structures (e.g., Buzsáki and Draguhn, 2004; Fujisawa and
Buzsáki, 2011; Hyman et al., 2011; Maris et al., 2011). The study
on effects of (transcranially) applied weak oscillatory electric
currents is therefore of at least three-fold importance: firstly, as a
non-invasive tool for modulating endogenous bioelectric activity,
and thus with therapeutic potential; secondly, for investigating
the dependence of behavior on brain oscillatory activity; and
thirdly, as a tool to study principles of cortical network function.

This mini-review focuses on effects of oscillatory transcranial
electric stimulation in particular for learning and for the
consolidation of hippocampus-dependent memory. First, an
introduction leading up to present concepts and questions
on hippocampus-dependent memory consolidation is given.

Then we discuss correlates of brain electric activity, cellular
and network dynamics. In the second part, features of neuronal
and network activity are pointed out which we find relevant to
consider when attempting to employ oscillatory stimulation as a
tool to study cortical network function.

An association between the hippocampus and memory was
established from findings on memory performance in relation
to temporal lobe lesions in monkeys (Brown and Schäfer, 1888),
hippocampal atrophy (Bechterew, 1900), reports on memory
flash backs with hippocampal stimulation (Penfield, 1974),
and from reports in the mid-twentieth century differentiating
anterograde and retrograde amnesia following well-defined
hippocampal lesions as in the case of H.M., the probably most
well-known amnestic patient in the history of neuroscientific
memory research (Scoville and Milner, 1957). Concepts for
neurophysiological memory trace formation, two stage models
of memory stage formation, emerged, within which information
is transferred to the long term memory store, the neocortex, via
hippocampo-cortico connections during the hippocampal sharp
wave ripple (SWR) events of slow wave sleep (SWS; Marr, 1970,
1971; Buzsáki, 1989). Later developments of the two stage model
aimed to integrate the mechanism of long term potentiation
(LTP) in the normal brain (Buzsáki, 1989). It suggested that
neuronal firing patterns during hippocampal sharp waves must
be the most favorable conditions for enhancement of synaptic
plasticity, as SWRs produce powerful synchronization within the
pathways connecting the hippocampus to the neocortex (Chrobak
and Buzsáki, 1996). The model furthermore incorporated the
relevance of behavior and state-dependent changes for defining
neuronal patterns (Buzsáki et al., 1987; Buzsáki, 1989).
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This concept in which hippocampal theta activity during
exploratory behavior in rats supported memory trace formation
led to renewed interest in hippocampal place cells (O’Keefe
and Dostrovsky, 1971; O’Keefe and Recce, 1993). Subsequent
discovery of spatially selective firing of hippocampal place cells
in regard to tasks involving spatial memory was the impetus
for many investigations on post-experience hippocampal
spatiotemporal activity patterns, i.e., reactivation, mostly during
SWS (Pavlides and Winson, 1989; Wilson and McNaughton,
1994; Skaggs and McNaughton, 1996; Nadasdy et al., 1999;
Hirase et al., 2001; Lee and Wilson, 2002), but also during
rapid eye-movement (REM) sleep (Louie and Wilson, 2001); for
comprehensive reviews see, Buhry et al. (2011) and Sadowski
et al. (2011). Experience-dependent reactivation in sleep was also
shown in humans (Rasch et al., 2007; Oudiette and Paller, 2013).

A hallmark of SWS is the endogenous cortical slow oscillations
(SO), which coordinates not only thalamo-cortical sleep spindle
activity, but also hippocampal SWRs (Timofeev and Steriade,
1996; Isomura et al., 2006; Mölle et al., 2006), slow field poten-
tials with superimposed fast ripple oscillations closely associated
with memory consolidation (Fogel and Smith, 2011; Girardeau
and Zugaro, 2011). The sleep SO with its coordinating function
plays a crucial role in sleep-dependent memory consolidation,
specifically for cortico-hippocampal communication (Marshall
and Born, 2007). A schematic depiction of these supposed mech-
anisms is given in Figure 1.

Outstanding experimental support at the level of cell-pairs
for the relevance of SWRs for hippocampo-to-neocortical infor-
mation transfer was given by Wierzynski et al. (2009). During

SWRs of SWS, but not during REM sleep, cell pairs showed strong
correlations with firing of CA1 hippocampal cells preceding that
of prefrontal cell. A functional synaptic connection between hip-
pocampus and prefrontal cortex (PFC) has also been indicated
by prefrontal phase locking to hippocampal units during hip-
pocampal theta oscillations while performing a task (Siapas and
Wilson, 1998; Hyman et al., 2005). Together these studies indicate
nicely that the same neuromorphological structures and pathways
are differentially activated dependent on global brain state, i.e.,
sleep or active task performance. Most importantly, temporally
coordinated hippocampal and PFC activity has been most fre-
quently characterized in association with population level activity
(Siapas and Wilson, 1998; Sirota et al., 2003; Isomura et al.,
2006; Mölle et al., 2006; Peyrache et al., 2011). Aside from being
technically more easily obtained than paired single cell record-
ings, population activity can contain different and vastly more
complex information than obtained from single cell recordings
(Kopell et al., 2010; Wallace et al., 2011). Coherent firing pat-
terns and enhanced synchronization of rodents’ hippocampal and
prefrontal activity has been associated with enhanced memory
performance (Benchenane et al., 2010; Fell and Axmacher, 2011;
Kim et al., 2011). For instance, Hyman et al. (2010) showed
entrainment of medial PFC to the hippocampal theta rhythm
correlated with successful performance in a working memory
task. Based on these findings it has been suggested that oscillations
regulate communication between the hippocampus and medial
PFC (Benchenane et al., 2011; Colgin, 2013). However the rules
underlying this oscillatory communication, in fact even the rules
regarding the relationship of single cells to network activity as well

FIGURE 1 | Sleep-associated brain oscillations relevant for memory

consolidation and supposed effects of SO-tDCS (slow oscillatory

transcranial direct current stimulation). (A) Temporal relation of SO,
sleep spindles and hippocampal SWRs. Sleep spindles and hippocampal
SWRs occur preferentially within the Up-state of the SO (Isomura et al.,
2006; Mölle et al., 2009). SWRs are temporally coupled to spindles, with
individual SWRs nesting into the troughs of spindles (Siapas and Wilson,
1998; Wierzynski et al., 2009; Clemens et al., 2011). Pre-sleep learning
enhances activity of and coherence between these oscillations (Mölle
et al., 2009), and it is assumed that the interplay of these oscillations

subserve the communication between hippocampus and neocortex
(Sirota et al., 2003) and therefore the transfer of hippocampus-dependent
memory traces from the hippocampal short-term-store to the neocortical
long-term store (for review see Marshall and Born, 2007). (B) SO-tDCS is
assumed to enhance endogenous SO activity, and thus improve the
consolidation of memory. It was shown that SO-tDCS enhances
post-stimulation power of EEG SO and spindle activity as well as memory
consolidation in a hippocampus-dependent task (Marshall et al., 2006). A
simultaneous enhancement of these rhythms and SWRs during SO-tDCS
yet needs to be shown.
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as the interplay between intrinsic properties of the neuron and
its inputs, are matters of ongoing research (Akam and Kullmann,
2012).

In the following we point out some essential principles of
brain rhythms which indicate how studies employing transcranial
weak oscillatory currents can contribute to understanding cortical
network function.

Single neurons involved in oscillatory activity do not neces-
sarily fire once per cycle, nor even with the frequency of the
network oscillation, but properties of neurons matter with regard
to determining collective network synchrony (Jacobs et al., 2007;
Csercsa et al., 2010; Wang, 2010). One intrinsic neuronal property
relevant for cellular responsiveness and therefore ultimately influ-
encing resultant network activity is preferred resonant frequency.
At the single cell level, neuronal resonance typically requires a
combination of active and passive properties of a neuron, i.e.,
passive membrane properties functioning as a low pass filter and
voltage-gated active channels which give rise to high pass filtering
(Hutcheon and Yarom, 2000; Wang, 2010; Yoshida et al., 2011).
Pyramidal neurons in the neocortex can have two resonances
which occur at different membrane potential levels (Hutcheon
and Yarom, 2000) and neurons of different brain regions have
been shown to phase-lock to oscillations at multiple frequencies
(Jacobs et al., 2007). Supra- and subthreshold noise, in part aris-
ing from neuromodulatory activity, can furthermore significantly
affect the interplay between intrinsic properties of the neuron, its
inputs and oscillations at network level (Hutcheon and Yarom,
2000; Richardson et al., 2003; Jacobson et al., 2005; Giocomo and
Hasselmo, 2007; Wang, 2010; Heys and Hasselmo, 2012).

At the network level, the application of weak oscillatory cur-
rents is most effective at the resonance frequency of the network,
characterized by the presence of an Arnold’s tongue (i.e., pre-
ferred enhancement occurs at this resonance frequency at weak
amplitude of the applied current; Ali et al., 2013). Transcranial
weak oscillatory currents most commonly induce enhanced EEG
activity at the frequency of the applied current. This has been
shown and modeled for currents applied at gamma (Strüber et al.,
2013), mu/beta (Pogosyan et al., 2009), alpha (Zaehle et al., 2010;
Neuling et al., 2012; Merlet et al., 2013), theta (Marshall et al.,
2011) and SO’s, the latter in human subjects (Marshall et al.,
2006) as well as in animal and in slice experiments (Fröhlich
and McCormick, 2010; Ozen et al., 2010). We will focus the
below discussion on SO-tDCS, which refers to any stimulation of
the same frequency as the endogenous sleep SO (ca. 0.75 Hz in
humans), and has a direct current (DC) bias. Another term used
so far is transcranial slow oscillation stimulation (tSOS). Precise
stimulation parameters (amplitude, duration, shape of the peri-
odic signal and on-/off-set of the oscillatory train) may however
vary between experiments. Which effects most of these variables
have are yet unclear (see e.g., Groppa et al., 2010, who compared
effects of similarly parameterized constant and SO-tDCS).

The mechanisms and prerequisites responsible for resonant
EEG activity induced by transcranial weak oscillatory stimulation
are still in need of further research. While it is in line with the-
oretical concepts described above and in Figure 1 that SO-tDCS
over the dorso-lateral PFC during SWS in humans enhanced EEG
power both in the SO and spindle frequency ranges (Marshall

et al., 2006), effects of SO-tDCS during waking are more diffi-
cult to reconcile. In waking SO-tDCS enhanced SO’s locally as
well as widespread theta activity (4–8 Hz), but not centro-parietal
beta activity (Kirov et al., 2009). Was this theta enhancement,
also shown to enhance learning, i.e., of functional relevance, only
observed because theta was a predominant brain rhythm at this
time? Or could EEG theta arise from interactions with specific
properties of cellular resonance and/or recurrent network activ-
ity? Associations between slow wave and theta band activity exist
at many levels, for instance theta nesting in delta activity (Laktos
et al., 2005; Carracedo et al., 2013) and parallel modulations in
ontogenetic development (Campbell and Feinberg, 2009). Fur-
thermore, similar mechanisms, namely balanced recurrent exci-
tatory and inhibitory activity, have been suggested to underlie the
persistent activity during the SO UP state and working mem-
ory, the latter being characterized by theta oscillatory activity
(McCormick et al., 2003; Reato et al., 2010). However, informa-
tion on brain state-dependent network dynamics of the interac-
tion between rhythms is still scarce.

The variability in results we and others have observed employ-
ing SO-tDCS (e.g., Eggert et al., 2013, who were unable to repli-
cate the results of Marshall et al., 2006, in elderly subjects; Göder
et al., 2013, who reported less forgetfulness in schizophrenic
patients after stimulation) may in part be inherent to the system.
For instance, two studies on SO-tDCS during sleep in healthy
individuals showed different results regarding faster rhythms. SO-
tDCS during an afternoon nap did not modify spindle power,
but did enhance wide-band beta activity as compared to sham
(Antonenko et al., 2013). The nap-study differed however in
behavioral and temporal parameters from the former, e.g., there
was no pre-sleep learning and sleep occurred during a different
time of day. Thus not only did experience-dependent features of
the neuronal networks differ, but also circadian factors and sleep
propensity (such as neuromodulators; Vittoz and Berridge, 2006;
Morris et al., 2012; Schmitt et al., 2012). Considering transcranial
weak oscillatory stimulation affects subthreshold activity (cp.
Reato et al., 2013a, this issue), it is well conceivable that any
of the above factors affected single cell and cortical network
properties. By virtue of its primary effect on cortical networks we
hypothesize that SO-tDCS modifies the efficiency of hippcampo-
to-neocortical activity.

Finally, up until now only rather short term effects have been
considered, yet memory can improve across days with repeated
learning. Constant tDCS has been shown to modify plasticity
related products (Fritsch et al., 2010; Stagg and Nitsche, 2011).
Long term modifications in oscillatory neuronal activity have
to our knowledge only been reported up to 30 min in a state-
dependent manner for alpha-activity following transcranial alter-
nating current stimulation (tACS) at individual alpha frequency
following stimulation (Neuling et al., 2013), and a putative role
of spike-time dependent plasticity for after-effects of alpha-tACS
were tested so far in simulations only (Zaehle et al., 2010). At the
network level, responsiveness to acute SO-tDCS in rats appears
to be affected after about 1 week of daily stimulation subsequent
to learning on a spatial task (Binder et al., 2012). Although we
can as yet not ascertain that learning or plastic changes in the
cortical network occurred throughout the above experiment, the
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long-term implications of the study are that network “learning”
can be induced and the dynamics and mechanisms of this process
could in future be measured in detail.

Findings that the most consistent effect of SO-tDCS during
SWS is on the endogenous sleep slow oscillatory rhythm implies
that this oscillation of neocortical origin was primarily impacted
by SO-tDCS, and causally affected memory consolidation and
learning. But, selective activation and deactivation of other brain
structures within the circuit, in combination with other methods,
e.g., optogenetics, is furthermore required to highlight the specific
function of the neocortical network for memory consolidation.
Furthermore, the differential results of transcranial weak oscil-
latory stimulation due to brain state point out the necessity, as

technical capabilities develop, to consider this state-dependency
in research approaches investigating local networks and neuronal
properties, e.g., by mimicking different brain states in slice prepa-
rations. Finally, development and extension of computational
network models can help guide systematic studies on transcranial
weak oscillatory stimulation investigating coupled rhythms (e.g.,
Reato et al., 2013b).
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Transcranial alternating current stimulation (tACS) seems likely to open a new era of
the field of noninvasive electrical stimulation of the human brain by directly interfering
with cortical rhythms. It is expected to synchronize (by one single resonance frequency)
or desynchronize (e.g., by the application of several frequencies) cortical oscillations. If
applied long enough it may cause neuroplastic effects. In the theta range it may improve
cognition when applied in phase. Alpha rhythms could improve motor performance,
whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies
has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere
with attention. Stimulation in the “ripple” range induces intensity dependent inhibition
or excitation in the motor cortex (M1) most likely by entrainment of neuronal networks,
whereas stimulation in the low kHz range induces excitation by neuronal membrane
interference. TACS in the 200 kHz range may have a potential in oncology.

Keywords: tACS, oscillations, human brain, motor, visual

INTRODUCTION
Transcranial alternating current stimulation (tACS)—the exter-
nal application of oscillating electrical currents—is able to influ-
ence cortical excitability and activity (Antal et al., 2008; Chaieb
et al., 2011; Moliadze et al., 2012; Wach et al., 2013). With excep-
tions (Marshall et al., 2006; Neuling et al., 2012) tACS is applied in
most studies without a DC offset. It’s simple form uses sinusoidal
stimulation; however, any other waveform appears possible, such
as rectangular current shapes. Ten Hz tACS was modeled in a
realistic head model and was suggested to generate larger and
more focused fields than DC stimulation (Manoli et al., 2012);
with applied frequencies of 100 up to 1000 Hz a decrease of the
size of this electrical field was assumed. This claim was, however,
only based on differences in skin resistance at low frequencies
which renders the statement quite doubtful (Paulus and Opitz,
2013). The major parameters that can shape the direction and
the duration of the tACS-induced effects are the frequency, the
intensity and the phase of the stimulation. The effect of duration
of tACS on motor evoked potential (MEP) has not been system-
atically investigated yet. Increasing the duration of transcranial
direct current stimulation (tDCS) results in a prolongation of
the induced aftereffects (Nitsche and Paulus, 2000) up to about
13 min whereas doubling the 13 stimulation to 26 min inverses
MEP aftereffects into inhibition (Batsikadze et al., 2013) It is
unclear if this can be translated to tACS, too.

ACS EFFECTS IN THE NORMAL BRAIN
FREQUENCY OF THE STIMULATION
tACS may be applied in a wide frequency range. At present data
are available between close to DC up to 5 kHz for plasticity stud-
ies (Chaieb et al., 2011) and 200 kHz for tumor therapy (Kirson
et al., 2007) using a single frequency. However, any combination
of frequencies is possible: one special form of tACS is transcranial
random noise stimulation (tRNS), which so far has been studied

with a frequency spectrum between 0.1 Hz and 640 Hz with a
“white noise” characteristic (Terney et al., 2008).

tACS applied at conventional EEG frequencies (0.1–80 Hz)
and in the so called “ripple” range (140 Hz, see below) (Moliadze
et al., 2010) may be able to interact with ongoing rhythms in
the cortex. A very low frequency (0.75 Hz) stimulation com-
bined with DC offset during non-rapid-eye-movement sleep
in healthy humans enhances the retention of hippocampus-
dependent declarative memories when tested the next morning
(Marshall et al., 2006). The DC offset used in this study leaves
open the possibility of a DC effect (Bergmann et al., 2009).

Effects of tACS applied in the EEG range might differ depend-
ing on the outread parameters. A trend toward MEP inhibition
following 10 Hz AC stimulation over the primary motor cortex
(M1) was observed (Antal et al., 2008), while 10 Hz stimulation
improved visuomotor implicit learning, using a serial reaction
time task. In the MEP measurement shorter stimulation duration
(5 min) was applied whereas tACS in the implicit learning study
lasted about twice as long. Nevertheless, a dissociation between
MEP excitability changes and implicit learning under tACS has
already been described (Moliadze et al., 2010). 140 Hz stimulation
induces the largest MEP increase, whereas only 250 Hz improved
implicit motor learning.

In another study, whereas 20 Hz tACS over the M1 increased
corticospinal excitability (Feurra et al., 2011) as measured by
MEP size, it slowed down voluntary movements using a visuo-
motor task (Pogosyan et al., 2009) but in parallel it increased
beta coherence between scalp-recorded activity and electromyo-
graphic activity (EMG) of the first dorsal interosseus muscle.
Opposing effects at beta and gamma frequencies depending on
phase of a of motor task exist (Joundi et al., 2012): using a visually
driven go—no-go task stimulation at 20 Hz afforded a significant
but modest slowing of force production in the go task, how-
ever, stimulation in no-go trials, where the triggered motor task
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involved inhibition, led to a major reduction in force generation.
In contrast, 70 Hz tACS was ineffective during errors of commis-
sion following no-go cues, but increased performance during go
trials.

TACS up to 80 Hz elicits phosphenes in a frequency- and inten-
sity dependent way (Turi et al., 2013). When applied over the
occipital cortex, the perception of phosphenes was peaking at
about 15 Hz in brightness with a lower peak in darkness (Kanai
et al., 2008). Although electrodes were placed over Oz and Cz, this
effect was probably induced by far field stimulation at the retina
(Schutter and Hortensius, 2010). TACS can probably only influ-
ence visual cortical functions at a subthreshold level as shown
by modification of transcranial magnetic stimulation (TMS)-
induced phosphene-thresholds (Kanai et al., 2010). Furthermore,
contrast-discrimination thresholds were decreased only during
60 Hz tACS, but not during 40 and 80 Hz stimulations (Laczo
et al., 2012).

TACS applied over the PO9 and PO10 EEG electrode posi-
tions at the individual alpha frequency range (8–12 Hz) induced
an entrainment of the applied oscillatory activity (Zaehle et al.,
2010). However, it was recently documented that the after-effects
of tACS applied at the individual alpha frequency may depend
on the individual endogenous power: tACS was effective only
under conditions of low endogenous alpha frequency power
(Neuling et al., 2013). Furthermore, when stimulation frequency
was fixed at 6 and 10 Hz, tACS impaired performance in the visual
detection task (Brignani et al., 2013).

tACS applied outside the conventional EEG frequency range,
e.g., with frequencies of 140 Hz and in the low kHz range
(1–5 kHz) increases excitability in a similar way than anodal
tDCS, when 1 mA intensity is used (Moliadze et al., 2010; Chaieb
et al., 2011). Stimulation at 80 Hz remains without an effect, while
250 Hz clearly had a delayed onset and shorter lasting response,
compared to the MEP increase observed during and after 140 Hz
tACS.

The tRNS paradigm was developed with a potential to desyn-
chronize normal and pathological cortical rhythms (Terney et al.,
2008). The rationale behind this method is a possible entrain-
ment with cortical oscillations of different frequencies at the same
time. This may apply for intra-areal with higher oscillation fre-
quencies or for inter-areal oscillations with lower frequencies.
Input noise plays a role in sensitizing neuronal systems through a
mechanism known as stochastic resonance (Wiesenfeld and Moss,
1995). Alternatively, impaired signal detection might be improved
by input noise in order to sensitise sensory processing (Moss et al.,
2004). An excitability increase lasting up to 90 min, observed both
for MEP measures and behavioral tasks, was induced after 10 min
of tRNS. Unexpectedly higher frequencies (100–640 Hz) and not
frequencies less than 100 Hz were responsible for this excitability
increase.

The efficacy of the stimulation seems to be dependent on the
type of the task and on the power of intrinsic oscillations at base-
line (Neuling et al., 2013) and the involvement of the different
memory systems in a given cognitive task: when tRNS was applied
over the dorsolateral prefontal cortex (DLPFC) subjects made
more mistakes in a probabilistic classification task (Ambrus et al.,
2011), whereas when using the n-back task no significant change

in performance was found (Mulquiney et al., 2011). When tRNS
was applied of the visual cortex improved neuroplasticity in a per-
ceptual learning paradigm (Fertonani et al., 2011). Nevertheless,
the neuronal mechanisms underlying the effect of tRNS might
be different from those of tACS, using a single stimulation
frequency.

INTENSITY OF THE STIMULATION
The effect of tACS appears to be intensity dependent. A trend in
a first study (Antal et al., 2008) using a low intensity of 0.4 mA
over the M1 toward MEP inhibition following 10 Hz AC stim-
ulation was confirmed later with higher frequencies (Moliadze
et al., 2012). Other tACS frequencies between 5 and 40 Hz failed
to induce any measurable aftereffects at this (too) low intensity.

Interestingly, both tACS at 140 Hz and tRNS show an
intensity-dependent aftereffect: whereas 0.2 mA intensity has
no effect an intensity of 0.4 mA leads to inhibition, 0.6 and
0.8 mA do not provide a significant effect (Moliadze et al.,
2012). With 1 mA an increase of the MEP amplitudes can be
seen. This suggests that inhibitory circuits can be excited pref-
erentially with lower intensities, an effect which has also been
documented for TMS (Berger et al., 2011). Nevertheless, the rea-
son for this observed reversal in the direction of MEP effects
induced by higher frequency stimulation at different intensi-
ties has not been clarified yet. It is likely that 140 Hz and
tRNS at the lower intensity only facilitate intracortical inhibitory
networks of corticospinal motoneurons, thus resulting in net
inhibition of MEP amplitudes (Pashut et al., 2011). It also can-
not be excluded that stimulation applied at 0.4 mA may inhibit
intracortical facilitatory effects on corticospinal motoneurons.
When recording in a pyramidal neuron located in layer 5 of
the rat cortex the composite response to an electrical stimu-
lation of various layers (2–3, 4, or 6), in terms of excitation–
inhibition balance, resulted in conductance changes consisting
of 20% excitation and 80% inhibition, independent from the
stimulated layer. Moreover, it was shown that excitatory cir-
cuits are strongly controlled by inhibitory circuits (Maffei et al.,
2004) by feedback and feed-forward connections (Bannister,
2005).

PHASE OF THE STIMULATION
Brain oscillations are characterized in addition to frequency and
power by their phase. Modeling studies propose that in active
neuronal networks weak electrical fields can induce small but
coherent changes in the firing rate and timing of neuronal popula-
tions that can be magnified by dynamic network activity (Radman
et al., 2007; Reato et al., 2010) When stimulating the left frontal
and parietal cortex by 6 Hz tACS in phase, cognitive perfor-
mance in a delayed letter discrimination task was improved, when
stimulating out of phase it was delayed (Polania et al., 2012).
In a recent study stimulating the temporal cortex using 10 Hz
with DC-offset it was found that manipulation of the phase
resulted in different auditory detection thresholds, which sup-
ports the notion that perception can be periodically modulated
by oscillatory processes (Neuling et al., 2012). Nevertheless, the
DC offset used in this study leaves open the possibility of a DC
effect.
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MECHANISMS OF ACTION
tACS applied in the EEG range is believed to mainly entrain
with or synchronize neuronal networks, thus inducing changes in
ongoing oscillatory brain activity. Indeed, spike synchrony of con-
verging input has been shown to enhance the information transfer
and speed up processing (e.g., Butts et al., 2007). Nevertheless,
stimulation applied in the kHz range probably does not interfere
with oscillatory activity, but targets the membrane excitability of
neurons more selectively. It could be that the temporary modifica-
tion of the synapse once exposed to a rapidly alternating electrical
field, alters the associated biochemical mechanisms, such as accu-
mulation of calcium in the presynaptic nerve terminals leading to
short-term synaptic plasticity effects (Citri and Malenka, 2008).

The mechanisms of tRNS so far are unclear, if e.g., repeated
opening of Na+ channels or a higher sensitivity of neuronal
networks to electrical field modulation than the single neuron
threshold (Francis et al., 2003).

APPLICATIONS IN DISEASE
tACS would have a particular indication in disorders in which
abnormal oscillatory patterns may play a role, such as Parkinson’s
disease or schizophrenia (Gonzalez-Burgos and Lewis, 2008;
Burns et al., 2011) by attenuating or resetting anomalous oscil-
lations. Indeed, Parkinsonian resting tremor could be bisected
by tACS of the M1 at specified phase alignments (Brittain et al.,
2013).

Using 200 kHz frequency a pilot clinical trial was carried out
treating human patients suffering from recurrent gliobastoma
(Kirson et al., 2007). By transcranial application of continuous
high frequency stimulation inhibits the growth of this treatment-
resistant tumor, with little or no side effects, pursuing the concept
that dividing tumor cells can be destroyed during mitosis.

Applying the current transorbitally at the individual
phosphene thresholds ACS is effective in the therapy following
optic nerve injury in human (Gall et al., 2010; Sabel et al., 2011).

COMPARISON TO rTMS?
Both rTMS and tACS could provide the basis to interact with
or induce local, probably also remote oscillatory activity. While
rTMS involves delivering a brief, repetitive, high-intensity mag-
netic pulses to the head through a coil that induces electrical
currents in a focal area underneath this area, with regard to tACS,
oscillatory current is delivered with a battery-driven stimulator
by means of a large electrode located on the area of interest and a
reference electrode that is placed over a neutral area. tACS has
some advantages compared to rTMS: (1) it is clearly cheaper
due to the small and compact equipment; (2) it can be more
easily combined with online cognitive projects; (3) it produces
no acoustic noise and muscle twitching of cranial muscles and
it causes much less or no perceptual skin sensations (Ambrus
et al., 2010; Turi et al., 2013) and is hereby more suitable for
double-blind, sham-controlled studies. Nevertheless, there are
disadvantages, including shunting of the electric currents through
the scalp and the skin irritations that sometimes can be observed
under electrodes.

FUTURE DIRECTIONS
tACS is only in its beginnings. A seemly indefinitely number of
stimulation paradigms will have to be condensed to those with
highest physiological relevance. As a prerequisite, this requires
a clearer picture of the neuronal mechanisms involved in tACS-
induced entrainment. Knowledge of their dynamics over time
would enable to formulate optimized protocols for future tACS
studies.
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Transcranial current stimulation (TCS) is a promising method of non-invasive
brain stimulation to modulate cortical network dynamics. Preliminary studies have
demonstrated the ability of TCS to enhance cognition and reduce symptoms in both
neurological and psychiatric illnesses. Despite the encouraging results of these studies,
the mechanisms by which TCS and endogenous network dynamics interact remain
poorly understood. Here, we propose that the development of the next generation
of TCS paradigms with increased efficacy requires such mechanistic understanding of
how weak electric fields (EFs) imposed by TCS interact with the nonlinear dynamics
of large-scale cortical networks. We highlight key recent advances in the study of the
interaction dynamics between TCS and cortical network activity. In particular, we illustrate
an interdisciplinary approach that bridges neurobiology and electrical engineering. We
discuss the use of (1) hybrid biological-electronic experimental approaches to disentangle
feedback interactions; (2) large-scale computer simulations for the study of weak global
perturbations imposed by TCS; and (3) optogenetic manipulations informed by dynamic
systems theory to probe network dynamics. Together, we here provide the foundation
for the use of rational design for the development of the next generation of TCS
neurotherapeutics.

Keywords: transcranial current stimulation, electric field, brain stimulation, rational design, optogenetics,

feedback control, resonance, cortical oscillation

INTRODUCTION
Modulating cortical network dynamics with transcranial current
stimulation (TCS) has shown promise as a treatment of neuro-
logical and psychiatric illnesses (Brunoni et al., 2012; Demirtas-
Tatlidede et al., 2013; Floel, 2013) and as an enhancer of cognition
in healthy subjects (Hamilton et al., 2011; Kuo and Nitsche,
2012; McKinley et al., 2012). TCS creates a small (subthreshold)
change in the membrane voltage of cortical neurons (Jefferys,
1995). The effect of a weak electric field on the membrane voltage
depends on the cell morphology, such that large pyramidal cells
with extended dendritic trunks are substantially more susceptible
to TCS than inhibitory interneurons with more symmetric cell
morphologies (Tranchina and Nicholson, 1986; Radman et al.,
2009). Importantly, the resulting depolarization induced by TCS
is likely limited to about 2 mV, and therefore is insufficient to
cause action potential firing in absence of depolarization caused
by endogenous network activity. Therefore, any study of TCS
will need to include considerations of the ongoing activity dur-
ing stimulation. In particular, several recent studies have shown
that periodic stimulation with alternating current (to mimic
transcranial alternating current stimulation (tACS)) enhances

endogenous or pharmacologically induced oscillatory activity in
slice preparations of cortical tissue. These studies have provided
fundamental insights into how TCS interacts with endogenous
activity. Here we highlight several recent conceptual and method-
ological advances that build on this earlier work and together
provide the foundation for the rational design of new TCS
paradigms.

PROBING ENDOGENOUS ELECTRIC FIELDS (EFS) WITH A
HYBRID SYSTEM
We propose that understanding the effects of externally applied
electric fields (EFs) requires mechanistic insight into the func-
tional role of endogenous EFs that have been historically dis-
counted as an epiphenomenon of cortical oscillations. Despite a
number of studies (Francis et al., 2003; Deans et al., 2007; Radman
et al., 2007) that have demonstrated the effect of weak EFs on
rodent hippocampal networks in vitro (feed-forward stimulation
with artificial waveforms such as sine-waves), a direct demonstra-
tion of a causal role of endogenous EFs in shaping cortical network
dynamics has lacked. In particular, the open questions are: (1)
if naturalistic EF waveforms have similar effects on network
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FIGURE 1 | Hybrid biological-electrical system. (A) Control diagrams for
both feed-forward and feedback application of EF stimulation. (B) Left:
Schematic of the system where EF is applied based on the ongoing
neuronal activity. Right: Example multiunit trace of typical endogenous
activity (top) and the simulated EF applied for both positive and negative
feedback. (C) Multiunit activity and applied EF for both control (top, black)
and positive feedback (bottom, red). Reprinted with permission (Frohlich
and McCormick, 2010).

dynamics; (2) if the interaction dynamics differ between feed-
forward and feedback application of EFs (Figure 1A); and (3)
if neocortical areas, which typically exhibit lower cell densities,
are equally sensitive to weak EFs. A recent study (Frohlich and
McCormick, 2010) that leveraged the presence of spontaneous
rhythmic activity in neocortical slices of ferrets addressed these
questions. Indeed, EF waveforms that were previously recorded
in vivo caused a pronounced enhancement of the spontaneous
rhythmic activity in slices of visual cortex. Furthermore, the use of
a hybrid biological-electronic system (Figure 1B) demonstrated
that modulation of the endogenous electric field by real-time
feedback stimulation altered the structure of spontaneous cortical
oscillations in neocortex. Both positive and negative feedback
stimulation were evaluated. In the case of positive feedback
(Figure 1C), a depolarizing, activity-dependent EF computed in
real-time from the multiunit activity was applied. This stimula-
tion resulted in increased rhythmic structure of the spontaneous
slow oscillation (measured by rhythmicity of UP states). However,
when negative feedback was applied, the times between UP states
exhibited greater variability resulting in decreased rhythmic struc-

ture. The positive feedback stimulation was designed to mimic the
hypothesized interaction between endogenous EF and network
activity in vivo. The enhancement and suppression of oscillatory
structure with positive and negative feedback, respectively, there-
fore supports the conclusion that the endogenous EF causally
modulates cortical network dynamics. These results not only
propose endogenous EFs as a fundamental mechanism by which
cortical synchronization is enhanced but also demonstrate the
pronounced susceptibility of active cortical networks to weak EFs
as provided by TCS.

Furthermore, the application of feedback EF waveforms also
has potential as a novel class of brain stimulation therapeutics
for the treatment of disorders of the central nervous system.
Pioneering work on animal epilepsy models demonstrated the
efficacy of such a non-pharmacological approach (Nakagawa
and Durand, 1991; Schiff et al., 1994; Jerger and Schiff, 1995).
These feasibility studies used similar hybrid systems where neural
activity was recorded and a feedback stimulation signal computed
and applied to a slice preparation. Seizure events are character-
ized by large amounts of highly synchronized network activity
and may be modeled in tissue slices by elevation of extracel-
lular concentration of potassium in the artificial cerebrospinal
fluid (Frohlich et al., 2008). Seizure events are characterized
by hyper-activity and thus hyperpolarizing neurons could be
sufficient to reduce seizures by hyperactivity (Gluckman et al.,
1996). However, the complex dynamics of neuronal networks
caused hyperpolarizing DC stimulation to have only short-term
effects in seizure suppression. In contrast, a hybrid system that
applied EF stimulation based on the ongoing network dynam-
ics (negative feedback) was able to suppress seizure-like events
for up to 16 min (Gluckman et al., 2001). Translation to in
vivo models has provided further support for the efficacy of
such stimulation paradigms (Berenyi et al., 2012). This result
highlights both the therapeutic possibilities of hybrid stimula-
tion systems and the benefits of rational design of stimulation
paradigms.

OPTIMIZING STIMULATION WITH LARGE-SCALE COMPUTER
SIMULATIONS
Computer simulations are an important tool to investigate the
interactions between endogenous oscillations and TCS. These
simulations enable the study of network dynamics with single-
cell resolution at the scale of millions of neurons by leveraging
advances in parallel scientific computing and introduction of
efficient models which retain the network-level accuracy of prior,
computationally more expensive models (Izhikevich, 2004). In
such simulations, the interaction between endogenous oscilla-
tions and TCS may be studied by applying a simulated EF to
the model network (Reato et al., 2010, 2013; Ali et al., 2013).
For example, one recent study from our group (Ali et al., 2013)
contrasted the effects of both tACS and tDCS on an endoge-
nously oscillating model network. The application of tACS at a
stimulation frequency matched to the frequency of the endoge-
nous oscillation enhanced the endogenous oscillation to a greater
extent than tDCS. Importantly, networks exhibited the greatest
enhancement when stimulated near the frequency of the endoge-
nous oscillation (3 Hz), a sign of resonance dynamics (Figure 2A).
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FIGURE 2 | Studying resonance dynamics with large-scale

computational models and optogenetics. (A) Top: Network response to
varying stimulation amplitude (increasing bottom to top) and frequency (left
to right). Color indicates power of network activity at the stimulation
frequency. At low stimulation amplitudes, the network was most entrained
by stimulation at the endogenous frequency (∼3 Hz). Increased stimulation
amplitude expanded the stimulation frequencies that entrained the
network. Reprinted with permission (Ali et al., 2013). Bottom: Change in
oscillatory structure for increasing tACS frequency. Red areas represent
relative enhancement of oscillatory structure with maxima at the
endogenous oscillation frequency and harmonics of the endogenous
oscillation. Blue areas represent relative suppression with minima between
harmonics of the endogenous oscillation. (B) Top: Experimental set-up
(Schmidt et al., 2013). Optogenetic stimulation (blue) is applied to layer V
pyramidal cells (green) from above to entrain the network at the desired
frequency. EF (field arrows, red) is then applied through AgCl wires to
model the effect of TCS. Neural data may then be recorded, for example
with a multielectrode array pictured here (black). Bottom: Example multiunit
trace (black) displaying strong entrainment to the optogenetic stimulation
(cyan). Reprinted with permission (Schmidt et al., 2013).

In contrast, network activity was reduced when stimulation at
a frequency (4.5 Hz) between the endogenous frequency and
its first harmonic was applied. Therefore a key component of
rational design of tACS is measuring the ongoing oscillations and
matching the stimulation frequency accordingly.

The balance of excitatory and inhibitory synaptic activity is
another important characteristic of neuronal networks that can
be studied at the network level in simulations only. Inhibitory
interneurons are less susceptible to changes in EF due to their
small size compared to pyramidal neurons. However, inhibitory
activity may be increased to balance increased excitatory activity
caused by stimulation (Reato et al., 2010). Modulation of
inhibitory activity by tACS was described in a computational
model of a network that intrinsically oscillated at 25 Hz. The
net firing rate of neurons did not change with low frequency
tACS applied, however the temporal patterning was changed.
Inhibitory activity increased at a greater rate than excitatory
activity, which had a balancing effect on the firing rate. This study
demonstrated a means by which tACS can modulate inhibitory
activity, through indirect action on excitatory/inhibitory
balance rather than by a direct modulation of membrane
potential. Therefore, tACS modulation of excitatory/inhibitory
balance may have applications in the treatment of autism
and schizophrenia where the underlying cortical circuits
exhibit abnormal excitatory/inhibitory balance (Rubenstein and
Merzenich, 2003; Kehrer et al., 2008; Yizhar et al., 2011).

COMBINING OPTOGENETICS AND DYNAMIC SYSTEMS
THEORY
Optogenetics is typically used to activate specific neural pathways,
which allows examination of the underlying circuitry involved in
different behaviors (Miesenbock and Kevrekidis, 2005; Gradinaru
et al., 2007; Fenno et al., 2011). Yet, optogenetic stimulation can
also be a valuable tool for entraining network activity in a wide
range of frequencies. For example, slow-wave oscillations have
been entrained using optogenetic stimulation of layer five (LV)
pyramidal cells in vivo (Beltramo et al., 2013). The depolarizing
action of optogenetic stimulation was sufficient to evoke UP
states across the network in both LV and LII/III. Faster rhythms
have also been entrained using optogenetic stimulation of fast-
spiking inhibitory interneurons (Cardin et al., 2009). Indeed,
in vivo optogenetic stimulation of varying frequencies caused
the greatest effect on the rhythmic structure of the local field
potential (LFP) when the stimulation frequency was between 40
and 50 Hz (Carlen et al., 2012). Isolated in vitro networks of
cultured neurons may also be entrained with optogenetic stim-
ulation (Pina-Crespo et al., 2012). In vivo cortical networks are
nonlinear systems that exhibit ongoing rhythmic activity. Due to
this nonlinearity, the response to TCS will likely be different based
on the current state of activity. We here propose that interaction
dynamics of TCS and endogenous activity can be studied with
optogenetic stimulation to induce in vivo-like activity patterns.
For example, a slow oscillation can be entrained using optogenetic
stimulation in vitro and EF can be applied while the resulting
modulation of activity by TCS is measured using whole-cell patch
clamp, multiunit, or LFP recordings (Figure 2B; Schmidt et al.,
2013).
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TRANSLATING FUNDAMENTAL CONCEPTS INTO
BRAIN STIMULATION THERAPEUTICS
The above discussed approaches enable fundamental insights
into how active cortical networks respond to stimulation. In
particular, the application of modern neuroscience tools provides
the unique opportunity to understand how non-invasive brain
stimulation with EFs can modulate cortical oscillations that are
impaired in a broad range of disorders of the central nervous
system, such as schizophrenia (Uhlhaas and Singer, 2012) and
epilepsy (Bazhenov et al., 2008). However, it is important to
recognize that several major obstacles remain before successful
translation of these novel basics findings to the clinical realm.
First, the proposed approaches have not yet been broadly applied
to cortical oscillations of different frequencies and underlying
generators. For example, modulation of alpha oscillations with
TCS has been successfully demonstrated in humans (Zaehle et al.,
2010; Neuling et al., 2013), but the underlying mechanism is
likely different from the enhancement of slow cortical oscillations
discussed here. Specifically, alpha oscillations likely emerge from
the dynamic interaction of the thalamus and cortex, whereas
slow cortical oscillations are considered to be mostly of cortical
origin (Timofeev et al., 2000) (yet see Blethyn et al., 2006). To
what extent there will be convergence on one fundamental mech-
anism that applies to rhythmic activity patterns with different
generators remains unknown. Second, computational simulations
and in vitro animal experiments do not consider the complexity
of delivering EFs to the brain through multiple layers of tissue
and bone. Furthermore, targeting of specific cortical locations
is difficult in gyrencephalic brains due to the different neuronal
orientation across gyri and sulci. Since the effect of EFs on the
membrane voltage depends on the relative orientation of the
field to the somato-dendritic axis of neurons (Tranchina and
Nicholson, 1986), the evaluation of TCS in an intact animal model
with a gyrencephalic brain is a further important step towards the
development of novel therapeutic TCS paradigms in humans.

CONCLUSION
Rational design of TCS requires an understanding of the inter-
action between endogenous EF and network activity and the
interaction between network activity and stimulation EFs. Hybrid
systems have both established the role of endogenous EFs and
resulted in successful control of network activity. Recent studies
with large-scale computer models have begun to mechanistically
elucidate the interaction dynamics between endogenous network
activity and EF stimulation. We further propose in vivo and in
vitro studies that leverage optogenetic stimulation to first entrain
network activity which allows the targeted study of these interac-
tion dynamics. Together, these interdisciplinary approaches will
provide a foundation for the rational design of TCS.
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Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from
a variety of different network mechanisms, which give rise to a wide-ranging spectrum
of oscillation frequencies. In the last few years an increasing number of clinical research
studies have explored transcranial alternating current stimulation (tACS) with weak current
as a tool for affecting brain function. The premise of these interventions is that tACS
will interact with ongoing brain oscillations. However, the exact mechanisms by which
weak currents could affect neuronal oscillations at different frequency bands are not well
known and this, in turn, limits the rational optimization of human experiments. Here we
review the available in vitro and in vivo animal studies that attempt to provide mechanistic
explanations. The findings can be summarized into a few generic principles, such as
periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and
shifts in the balance of excitation and inhibition. These effects result from weak but
simultaneous polarization of a large number of neurons. Whether this can lead to an
entrainment or a modulation of brain oscillations, or whether AC currents have no effect
at all, depends entirely on the specific dynamic that gives rise to the different brain
rhythms, as discussed here for slow wave oscillations (∼1 Hz) and gamma oscillations
(∼30 Hz). We conclude with suggestions for further experiments to investigate the role
of AC stimulation for other physiologically relevant brain rhythms.

Keywords: transcranial alternating current stimulation (tACS), oscillations, animal models, slow wave, gamma,

electroencephalogram (EEG), entrainment, transcranial direct current stimulation (tDCS)

OSCILLATIONS IN THE BRAIN AND tACS
Oscillations are ubiquitous in the human brain, ranging from
ultra-slow (0.05 Hz) to ultra-fast oscillations (500 Hz) (Ward,
2003; Buzsaki and Draguhn, 2004). These oscillations occur in
the brain during different behavioral states and their power
(amplitude) is commonly modulated during cognitive/behavioral
tasks (Buzsaki and Wang, 2012). Many oscillatory rhythms are
usually simultaneously present and can modulate each other
(e.g., fast-oscillations vary in amplitude with the phase of the
slower rhythm, and this has been hypothesized to be relevant
i.e., during sensory selection) (Schroeder and Lakatos, 2009).
Abnormal brain rhythms have also been shown to correlate with
pathological conditions, like Parkinson’s disease, Alzheimer’s and
epileptic seizures (Brown et al., 2001; Worrell et al., 2004; Montez
et al., 2009). Therefore, a number of research studies are based on
the assumption that modulating brain rhythms has the potential
to affect cognitive performance and may be used to treat neuro-
logical disorders. This is particularly true for interventions using
transcranial alternating current stimulation (tACS), which target
specific brain oscillations (Antal et al., 2008; Pogosyan et al., 2009;
Moliadze et al., 2012; Brignani et al., 2013; Santarnecchi et al.,
2013; Struber et al., 2013). This short review intends to: (1) elu-

cidate the known mechanisms of AC stimulation from recent in
vitro and in vivo animal findings, (2) suggest the key mechanisms
that determine the effects of AC stimulation and (3) propose
future animal studies that may guide further development of tACS
clinical protocols. We focus exclusively on electrophysiological
animal data that provide direct experimental evidence for the
cellular and network mechanisms of AC stimulation effects, and
review computational models of this data, where available. For
a review on the effects of tACS in human studies please refer to
(Antal and Paulus, 2013; Herrmann et al., 2013; Marshall and
Binder, 2013).

DC vs. AC STIMULATION
Transcranial electrical stimulation in humans has been predomi-
nantly applied using constant electric currents (often called direct
current (DC)) to transiently modulate cognitive and behavioral
function (Nitsche and Paulus, 2000; Nitsche et al., 2005; Stagg and
Nitsche, 2011). The changes in neural excitability leading to the
modulation of brain function have been extensively studied under
controlled situations using animal models of DC stimulation,
both in vivo and in vitro (Bindman et al., 1964; Purpura and
Mcmurtry, 1965; Chan et al., 1988; Bikson et al., 2004; Rahman
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et al., 2013). During subthreshold DC stimulation, the current
flowing in the brain modulates the cellular excitability of resting
neurons by changing the membrane voltage (transmembrane
polarization). The induced polarization of the soma is at most
0.2 mV for each 1 V/m of applied field (Bikson et al., 2004;
Radman et al., 2009). Given that conventional protocols (1 mA
stimulation intensity) produce electric fields of 1 V/m max-
imum (Datta et al., 2009), the expected maximum polariza-
tion is only 0.2 mV at pyramidal somas. This resulting somatic
polarization, albeit small, can affect firing rate for a large num-
ber of neurons (Fröhlich and McCormick, 2010; Reato et al.,
2010).

Recently, an increasing number of human studies have
employed time-varying current stimulation to influence cortical
excitability (Marshall et al., 2006; Antal et al., 2008; Kirov
et al., 2009; Kar and Krekelberg, 2012; Moliadze et al., 2012;
Brignani et al., 2013). tACS refers to electrical stimulation
where current is not constant (DC) but alternates between the
anode and the cathode (switching polarity) with a sinusoidal
waveform. Clinically, tACS may be applied using a wide range
of stimulation frequencies and intensities, including with a DC
offset (Marshall et al., 2006). While it has been shown that
tACS can modulate cortical excitability, electroencephalogram
(EEG) oscillations, and cognitive processes (for review see
Antal and Paulus, 2013; Herrmann et al., 2013; Marshall
and Binder, 2013), there is also evidence for a failure to
produce such effects under some circumstances (Brignani
et al., 2013). The predominant hypothesis of tACS action
is that alternating fields can increase or decrease power of
oscillatory rhythms in the brain in a frequency-dependent
manner by synchronizing or desynchronizing neuronal
networks—this generic hypothesis, applied across brain
regions and frequencies, warrants analysis for mechanistic
feasibility.

tACS SINUSOIDALLY MODULATES THE NEURONAL
MEMBRANE POTENTIAL
At the cellular level sinusoidal AC electric fields applied extra-
cellularly, when directed across pyramidal neurons (along the
somatodendritic axis), will sinusoidally alter the transmembrane
potential (Chan and Nicholson, 1986). Neurons polarize propor-
tionally with field intensity during AC (Deans et al., 2007) and
DC stimulation (Bikson et al., 2004; Fröhlich and McCormick,
2010) with no obvious lower threshold. Small polarization of the
membrane can then lead to modulation of firing rate for active
neurons (Chan and Nicholson, 1986; Ozen et al., 2010; Reato
et al., 2010). However, as first reported in Deans et al. (2007)
the cell susceptibility to polarization (mV of polarization per
V/m applied electric field) of hippocampal pyramidal neurons
(in CA3 is approximately inversely proportional to the applied
field frequency (DC: 0.18 mV per V/m, 50 Hz AC: 0.07 mV per
V/m) indicating a decrease in membrane response to increasing
stimulation frequency. The efficacy of AC field frequency derives
from the passive properties of biological membranes (that acts
like a low-pass filter with a time constant of 5–20 ms, Figure 1A).
While the effects of AC fields on single neurons are then expected
to be smaller than the effects of DC fields, there are a few

studies indicating that networks of neurons can exhibit a higher
sensitivity to AC fields.

AC STIMULATION CAN ENTRAIN NEURONAL OSCILLATIONS
Kainic acid in rat hippocampal slices can induce high-
beta/gamma oscillations (15 Hz–100 Hz) in the CA3 region.
Deans et al. (2007) showed that the frequency and power of
these gamma oscillations were modulated by the application
of AC fields (< 8 V/m, at 20 or 50 Hz). More specifically, the
authors showed that AC fields shift the original peak frequency
of the oscillations to the stimulation frequency or a subharmonic
(f/2, f/3...) of the stimulation. Fields as low as 0.25 V/m (peak
amplitude) were able to modulate the oscillations in 20% of
slices, while 0.5 V/m modulated gamma rhythms in 50% of
slices (the effects were amplitude-dependent). These results
provide evidence of an important effect of AC stimulation,
specifically, entrainment of gamma oscillations to the applied
field (Figure 1B). Note that while the frequency of the oscillatory
rhythm spanned across two different physiological bands (high
beta/gamma), the mechanisms that generate oscillations are
probably the same. Previous studies (for a review see Bartos et al.,
2007) suggest that kainic acid induce gamma-like oscillations
(not beta).

Other experiments have shown that gamma oscillations in
cell cultures can be driven electrically if frequency is carefully
adjusted (Fujisawa et al., 2004). Perfusion of brain slices with
high potassium solution can induce bursting firing that can also
be entrained with very weak pulsed stimulation (0.3 V/m peak
amplitude, Francis et al., 2003). Low-intensity pulsed stimulation
can also modulate spike and wave seizures (Berenyi et al., 2012).

Entrainment of ongoing neuronal activity to AC stimulation at
frequencies mimicking the frequency of cortical slow oscillations
(0.8–1.7 Hz) was demonstrated across multiple cortical areas
by Ozen et al. (2010) in anesthetized rats. Ozen et al. (2010)
reported that membrane potential and unit activity were mod-
ulated by AC stimulation in cortical and hippocampal areas (20%
and 16% of units were entrained in cortex and hippocampus,
respectively). Postmortem calibration suggested that 1 V/m in
the extracellular space was sufficient to phase-lock units. Intra-
cellular recordings indicated that the intensities that effectively
phase-locked induced 2–3 mV polarization. Increasing stimu-
lation intensity recruited an increasingly larger population of
spiking neurons without an evident threshold for this effect,
consistent with previous in vitro work. Importantly, the modu-
lation with applied AC fields was more effective when the brain
endogenously exhibited slow-wave oscillations suggesting a form
of resonance.

NEURONAL NETWORKS CAN AMPLIFY THE EFFECTS OF AC
STIMULATION
Additional support for the hypothesis that active networks could
be more sensitive than single cell to electric fields was presented
for slow-wave oscillations in ferret cortical slices (Fröhlich and
McCormick, 2010). When perfused with in vivo-like artificial
cerebro-spinal fluid (ACSF) ferret slices exhibit such slow-wave
oscillations. During DC stimulation in the range of 0.5–4.0 V/m,
this study reported a higher frequency of these slow oscillations
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FIGURE 1 | Effects of AC stimulation on single and network of neurons.

(A)Schematicof theeffectsofAC stimulationon resting neurons.Sinusoidal
electrical stimulation (AC, red lines) sinusoidallymodulates the membrane
voltage (black lines). Themembranepolarization increases with increasing

stimulationamplitude (A,2A,3A)butdecreaseswith increasingstimulation
frequency (F,2F,4F). (B)Examplesof possibleeffectsofweakAC stimulationon
oscillations.AC stimulationcanentrain theoscillationsbyshifting their phase
(left) ormodulate itspowerat thestimulation frequency (right).
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FIGURE 1 | (Continued) (C) Schematics of the effects of AC stimulation on
network of neurons. While the effects of electrical stimulation on single
neurons are small (left), synaptically connected neurons can provide
feedback that amplifies the effects of stimulation (center). However, active
neurons create network oscillations, usually set by the level of activity of
excitatory and inhibitory neurons (triangle and circles, respectively). In this
case, the effects of stimulation cannot a priori always be determined
(right). (D) Summary of the known effects of weak AC stimulation on
gamma oscillations. AC fields can entrain spiking activity at very low
intensities (green), while low-frequency stimulation modulates the power
of gamma oscillations (yellow). Gamma oscillations can be entrained
(dashed lines) by using frequencies close to the endogenous one or double
that frequency (increase in frequency, red, or decrease in frequency, blue).
Frequencies close to the stimulation frequency but higher intensity induce
pacing at half of the stimulation frequency (cyan). Color gradients indicate
size of the effects. Frequencies that do not match the endogenous
frequency, for example, can still affect the oscillations if the stimulation
amplitude is increased. The figure is adapted from Reato et al. (2010).
(E) Schematics of the in vitro and in vivo animal studies applying AC
(sinusoidal) stimulation on oscillatory rhythms. The main frequency of the
endogenous oscillations of interest (vertical axis) and the stimulation
frequencies applied in the different studies (horizontal axis) demonstrate
the limited range of neural rhythms that have been described in the animal
literature. Colors indicate frequency bands. Also note the log-scale axes.

and determined that this effect was due to a reduced duration of
the DOWN state (see below). AC stimulation entrained slow wave
oscillations in an amplitude and frequency-dependent manner.
In particular, AC fields with frequency matched to the endoge-
nous oscillation led to more periodic up states at a rate that
matched the stimulus frequency. By combining these experimen-
tal findings with a computational model of slow-wave oscilla-
tions, Fröhlich and McCormick (2010) showed that these effects
could be explained by the weak polarization of the membrane
acting simultaneously on many synaptically connected neurons
(Figure 1C). Recently, the same group has shown frequency-
specific entrainment of multi-unity activity also in vivo (Ali et al.,
2013).

In a previous study, we analyzed the effects of weak electrical
stimulation on carbachol-induced gamma oscillations in the CA3
region of rat hippocampal slices (Reato et al., 2010). The fre-
quency of the stimulation was varied from constant DC to 40 Hz
AC stimulation with effects observed at field-intensities as low as
0.2 V/m. DC stimulation modulated the power of the oscillations,
with soma-depolarizing fields increasing the power and soma-
hyperpolarizing field decreasing it. The effects of AC stimulation
varied qualitatively for different frequencies. Low-frequency AC
stimulation (2–7 Hz) strongly modulated the gamma power at the
stimulation frequency (Figure 1B). Interestingly, at stimulation
frequency close to the endogenous rhythm, we saw an increase of
power at half of the stimulation frequency (sub-harmonic). More-
over, very low-amplitude stimulation (0.2 V/m) entrained firing
activity only when the frequency of the endogenous rhythm was
matched by the stimulation (resonance). Despite the complexity
of the experimental results, we were able to fully account for all
the measured effects with a computational model (Figure 1D).
The model suggested that the effects derived from modulation of
firing rate, spike timing and the balance between excitation and
inhibition. Recurrent feedback between excitatory and inhibitory

neurons leads to a compensatory increase of inhibition whenever
excitation is increased, e.g., by field-induced depolarization. Such
balanced networks are often invoked to explain normal physio-
logical rhythms (Shu et al., 2003; Haider et al., 2006; Atallah and
Scanziani, 2009). Although inhibitory neurons are less sensitive
to extracellular electrical stimulation because of their symmetric
geometry (Radman et al., 2009), it is also evident that since
inhibitory neurons are in general more depolarized, they are
likely more sensitive to small voltage fluctuations than excitatory
neurons. Thus, even assuming no direct polarization of inhibitory
neurons, networks in the brain are always active, and modulation
of excitatory neurons may affect (indirectly) inhibitory neurons
leading to non-trivial effects (Moliadze et al., 2012; Krause et al.,
2013). Importantly, our study showed that the effects of AC
stimulation cannot be reduced to a simple increase or decrease
in power or frequency of the network oscillations (Reato et al.,
2010).

THE EFFECTS OF AC STIMULATION DEPENDS ON BRAIN
ACTIVITY
The combined results from the previous studies suggest some
general principles regulating the effects of AC stimulation on
network of neurons. AC stimulation of inactive neurons induces
a simple sinusoidal modulation of neuronal membrane voltage
that exhibits low-pass filtering properties. In the context of tACS,
this would lead to the conclusion that high frequency stimula-
tion (hundreds of hertz) may be ineffective in modulating brain
activity (almost zero induced polarization, Figure 1A). However,
the studies discussed above showed that network activity and the
coherent stimulation of many neurons can amplify the effects of
otherwise very small membrane polarizations. AC fields can mod-
ulate rate and timing of spiking neurons (Chan and Nicholson,
1986; Fröhlich and McCormick, 2010; Reato et al., 2010) and
thus modulate recurrent interaction between neurons. Neurons
whose activity is modulated by electrical stimulation will in turn
modulate the activity of other neurons, generating a feedback
loop that can amplify the effects of stimulation on single neurons
(Figure 1C). When neurons are in an excitable state, oscillatory
rhythms can emerge. Such networks are often characterized by
a tight dynamical balance between excitation and inhibition that
determines the firing rate and timing of excitatory and inhibitory
neurons. When altering firing rate or timing in some neurons the
network can “react” to compensate or magnify the effects in a
non-trivial way.

For instance, as one might expect, AC fields can entrain
network oscillations when stimulating with the frequency of
the networks’ own rhythm. This was observed for a variety of
preparations (Francis et al., 2003; Fujisawa et al., 2004; Deans
et al., 2007; Fröhlich and McCormick, 2010; Reato et al., 2010).
Yet, in some circumstances the network is paced at half of the
stimulation frequency instead. When the stimulation frequency
is much lower than the network rhythm some oscillations remain
unaffected (slow waves) while others are strongly modulated in
power (gamma, Figure 1B). Even a form of stochastic resonance
was observed in high-potassium slice preparation with a combi-
nation of AC and random noise stimulation (Gluckman et al.,
1996).
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These results suggest that the effects of AC stimulation are not
always readily predicted and are certainly not a simple modulation
on a one-dimensional scale of oscillation power (Figure 1D) as
often assumed.

A key factor to consider when trying to understand and
anticipate the effects of AC stimulation are the exact mechanisms
underlying different endogenous rhythms. For example, slow-
wave oscillations (0.5–4 Hz), typical oscillatory activity during
sleep (Sejnowski and Destexhe, 2000; Huber et al., 2004), repre-
sent a succession of active states of neurons (UP state), character-
ized by high spiking activity and strong synaptic interaction with
inactive states (DOWN states) with almost no firing (Steriade
et al., 1993). The high level of activity of the UP state depletes
the cellular resources and the self-sustained excitatory activity col-
lapses (think of a group of children playing past their bed-time)
thus transitioning to the DOWN state. This transition follows
its internal dynamic and cannot be readily modulated. On the
other hand, the transition from DOWN to UP state can be driven
by even a single spike. Essentially the cellular resources have
recovered during the quiescent phase and the network is ready
to start up again. A small “kick” can get the avalanche of activity
up again (the first kid waking up will get the group going again).
Naturally, this DOWN-UP transition could be easily driven by
any well-timed external stimulus. The results of Fröhlich and
McCormick (2010) indeed suggest that neurons can be quickly
driven with small polarization to the UP state. AC stimulation can
then more easily entrain oscillations when the stimulus frequency
matches the endogenous frequency by shortening the DOWN
states (Reato et al., 2013).

In contrast, gamma oscillations are generated by the interplay
of excitatory and inhibitory neurons, where excitatory neurons
provide the excitation necessary for inhibitory neurons to
set the timing of the network (like a clock, Fisahn et al.,
1998; Bartos et al., 2007). The generation of half-harmonics
when stimulating with the endogenous frequency results from
increased temporal alignment of firing of excitatory neurons;
this increased synchrony causes a stronger excitatory volley
to inhibitory neurons which are thus more strongly activated
forcing the network to suppress the next “beat”—thus the
network “skips a beat” resulting in half as many cycles, i.e., half
harmonic (Reato et al., 2010). The strong modulation of gamma
oscillations with slow AC stimulation is a result of an overshoot
of the dynamic balance between excitation and inhibition, akin
to periodically hitting the break in a standing car with automatic
drive.

In summary, the effects of stimulation cannot be established a
priori without understanding the specific mechanisms underlying
neuronal network dynamic.

FUTURE DIRECTIONS
tACS is currently being explored as a tool to modulate brain
rhythms in a number of human experiments. We have reviewed
here the few in vitro and in vivo studies of mechanisms underlying
the effects of tACS. These studies have shown that active networks
are very sensitive to electrical stimulation and in particular to
AC stimulation. The effects are mediated by a small polarization
of the neuronal membrane potential that lead to changes in

spike rate and timing, which are then magnified by the network
dynamic.

However, the effects of stimulation depend strongly on the
specific network dynamics and in this sense there are still wide
gaps in our understanding of AC stimulation. Specifically, alpha
(8–12 Hz), beta (13–30 Hz) and theta (4–7 Hz) oscillations as
well as spindle activity and sharp wave ripples are all impor-
tant physiological oscillatory rhythms that have been extensively
linked to cognitive phenomena such as attention, motor control,
memory retrieval and memory consolidation. Yet, there is no
electrophysiological data from cellular or network level studies on
the effects of weak electric stimulation on any of these rhythms
(Figure 1E). Several tACS studies involved stimulation using
alpha/beta frequencies (Kanai et al., 2008; Pogosyan et al., 2009;
Zaehle et al., 2010; Feurra et al., 2011; Neuling et al., 2012) or
combining different stimulation frequencies, including theta (4–7
Hz) and beta (13–30 Hz) over the primary motor cortex (Schutter
and Hortensius, 2011). The hope is to facilitate endogenous oscil-
lations at these frequencies, but the lack of experimental evidence
for this makes the study of the cellular and network effects
of stimulation on these rhythms particularly important.There
are in vitro preparations that generate beta rhythms (Shimono
et al., 2000) and thalamo-cortical spindles (Von Krosigk et al.,
1993; Tancredi et al., 2000), while to our knowledge, there are
currently no in vitro models of alpha oscillations. Theta oscil-
lations (Cappaert et al., 2009; Goutagny et al., 2009) and rip-
ples (Behrens et al., 2005; Nimmrich et al., 2005) can also be
pharmacologically induced. Rodent brain slice preparations are
obviously a poor model for human brain rhythms; nevertheless
they have proven to be a useful tool to study the cellular substrate
of tACS particularly because stimulation may be applied in a
controlled setting and specific interactions between networks of
oscillating neurons can be systematically probed. We also note
that transcranial stimulation in humans is thought to generate
weaker fields (< 1 V/m) than what is used in slices models (= 1
V/m), combined with cortical folding which leads to uncontrolled
field orientations, it is hard to predict the outcome of any one
human experiment based on slice experiments alone. Animal in
vivo experiments offer a more physiological environment to test
stimulation effects. However, presently they offer limited control
over the direction and intensity of current flow; a technical
limitation that can be addressed through quantitative models of
current flow in animals (Datta et al., 2009; Marquez-Ruiz et al.,
2012).

The results shown here suggest that tACS may go beyond
frequency coupling of the stimulation and endogenous activity
(for instance alpha-modulated alpha) and could perhaps be used
for cross frequency coupling. For example, recent studies have
demonstrated that low-frequency oscillations can modulate the
amplitude of higher frequency oscillations (like theta-modulated
gamma) and that the effects are functionally and behaviorally rel-
evant, including for working and spatial memory. However, to our
knowledge, stimulation of brain rhythms with lower frequencies
to modulate the amplitude of higher frequency oscillations has
not been explored yet in human brain stimulation. In Reato et al.
(2010) we demonstrated that gamma oscillations were strongly
modulated by lower-frequency stimulation (including theta fre-
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quencies), raising the possibility that such modulation may also
be possible in humans. Practically, cross frequency coupling of
stimulation and endogenous activity has the additional technical
benefit that tACS would not produce stimulation artifacts at the
frequency of interest (Neuling et al., 2012).

The in vivo and in vitro studies reviewed here provide evidence
for the acute effects of stimulation on gamma and slow-wave
oscillations. Yet, it is important to note that none of the animal
studies reviewed above report lasting effects, i.e., as soon as the
AC fields are turned off, the observed effects seemingly disappear.
Admittedly, these studies did not apply long-duration stimulation
(minutes) and thus long-term effects were not expected or noted.
Clearly, long-term effects at the cellular level must mediate the
long-term effects observed in human studies, thus, there is an
urgent need to clarify the underlying mechanisms. Additionally,
stimulation dosage including duration, intensity (Moliadze et al.,
2012; Neuling et al., 2013), frequency (Zaehle et al., 2010; Struber
et al., 2013), and electrode montage may interact synergistically
to influence the post-stimulation effects. For DC stimulation,
several studies have shown long-lasting synaptic effects after stim-
ulation in vitro and in vivo (Bindman et al., 1962; Gartside,
1968a,b; Fritsch et al., 2010; Ranieri et al., 2012). Specifically,

Brain-derived neurotrophic factor (BDNF; Fritsch et al., 2010),
adenosine (Marquez-Ruiz et al., 2012), N-methyl-D-aspartate
receptor (NMDA-receptors; Liebetanz et al., 2002), regulation
of gene expression (Ranieri et al., 2012), and protein synthesis
(Gartside, 1968b) have all been implicated in synaptic changes
induced by weak DC stimulation. However, it’s unclear how DC-
induced long-term plasticity relates to AC stimulation. Bawin
et al. (1984) have shown that AC stimulation can induce lasting
effects on evoked responses (Bawin et al., 1984), but these results
could not be readily reproduced (Deans et al., 2007). The in
vitro preparations we cited in this review may be a good tool
to test the effects of long-duration AC stimulation on neuronal
networks. Understanding the acute and long-lasting effects of
tACS at the cellular and network level along with physiological
insights from human experiments may help to rationally design
clinical stimulation protocols that aim to augment cognitive and
behavioral function.
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Transcranial direct current stimulation (tDCS) is a promising tool for cognitive
enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical
domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in
modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements.
We suggest that part of the mechanism of action of tDCS can be explained by non-invasive
modulations of the E/I balance.

Keywords: transcranial direct current stimulation (tDCS), excitation, inhibition, GABA, glutamate, cognition

INTRODUCTION
Cognitive enhancement is a popular topic in the neuroscience
community. Non-invasive neuromodulation methods, such as
transcranial direct current stimulation (tDCS) can either increase
(e.g., anodal) or decrease (e.g., cathodal) cortical excitability
(Nitsche and Paulus, 2001; Nitsche et al., 2003) and thereby
modulate cortical activity levels.

At a cellular level, the applied external electric field modifies
the transmembrane potential differences by forcing the displace-
ment of intracellular ions which cancel the generated intracellular
field and thereby modify the spike firing probability (Bikson et al.,
2004; Ruffini et al., 2013). With sufficient tDCS duration, synap-
tically driven aftereffects are induced (Bindman et al., 1964). The
final effects of tDCS depend on the individual neural morphology
(Radman et al., 2009), the orientation of somato-dendritic axes,
and the neural pathways with respect to the electric field (Bikson
et al., 2004; Kabakov et al., 2012).

tDCS has positive effects in a variety of clinical conditions
such as Parkinson’s disease, tinnitus, chronic pain, stroke, and
even childhood psychosis (e.g., Fregni et al., 2006; Song et al.,
2012; David et al., 2013; Khedr et al., 2013; Moreno-Duarte et al.,
2013), but also in healthy individuals (Jacobson et al., 2012;
Kuo and Nitsche, 2012; Cohen Kadosh, 2013). It is therefore
considered a promising neurorehabilitation tool. Moreover, tDCS
has recently been suggested as a possible tool to improve learning
disabilities in children (Krause and Cohen Kadosh, 2013; Vicario
and Nitsche, 2013). A crucial question remains to be answered:
how exactly does tDCS modify such diverse conditions in both
the typical and atypical brain?

NEUROTRANSMITTERS AND tDCS
Magnetic resonance spectroscopy (MRS) studies have shown
that anodal tDCS reduces local concentrations of the inhibitory

neurotransmitter gamma-aminobutyric acid (GABA), whereas
cathodal tDCS reduces excitatory glutamate levels (Stagg et al.,
2009; Clark et al., 2011).

Others have suggested that local GABA reductions co-occur
with learning and performance improvements (Floyer-Lea
et al., 2006) and that the magnitude of regional GABAergic
changes during anodal tDCS reflects the degree of learning
(Stagg et al., 2011). Namely, the further GABA is decreased,
the larger the observed learning effect. Such disinhibition may
lead to the unmasking of hidden excitatory connections (Jacobs
and Donoghue, 1991) and thereby allow for the induction of
activity-dependent long-term potentiation (LTP). LTP in turn
is capable of inducing cortical reorganization, most likely by
increasing local synaptic effectiveness (Hess and Donoghue,
1994), which in turn might alter deficient network processing.

In addition, data coming from animal experiments have
demonstrated the implication of N-methyl-D-aspartate (NMDA)
receptors and brain-derived neurotrophic factor (BDNF) in
the synaptic potentiation of the motor cortex after anodal
tDCS (Fritsch et al., 2010). Moreover, local administration
of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-
dipropylxanthine (DCPCX) in the somatosensory cortex of alert
rabbits prevented long-term depression induced by cathodal
tDCS (Marquez-Ruiz et al., 2012). These data suggest that beyond
GABA and glutamate, other neurochemicals may be involved in
the mechanisms underlying long-term tDCS effects.

EXCITATION/INHIBITION (E/I) BALANCE
Homeostatic control of cortical excitability and induction of
plasticity are crucial for allowing efficient information transfer
in the brain, (Turrigiano and Nelson, 2000). This means that
while plastic changes occur, the network must still maintain
a certain amount of stability in order to produce meaningful
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output. The dysregulation of cortical excitability may thus lead
to symptoms seen in various central nervous system disorders
(Eichler and Meier, 2008), depending on the area(s) in which the
imbalance occurs. For instance, regional abnormalities in GABA
concentrations have been found in neuropsychiatric disorders,
such as schizophrenia (Goto et al., 2009; Yoon et al., 2010; Yizhar
et al., 2011; Rowland et al., 2013), autism (Kubas et al., 2012; Rojas
et al., 2013), insomnia (Morgan et al., 2012), and panic disorder
(Long et al., 2013).

However, GABA concentrations alone may not fully explain
different kinds of cognitive deficits. For instance, if glutamatergic
excitation is increased as well, we would not expect to observe
performance abnormalities. Most studies so far have only looked
at glutamate and GABA in isolation (e.g., Goto et al., 2009; Yoon
et al., 2010; Kubas et al., 2012; Rojas et al., 2013).

We suggest that the regional cortical excitation/inhibition (E/I)
balance, measured by ratios of glutamate/GABA, may provide
more meaningful interpretations of individual cognitive perfor-
mance and deficits than glutamate or GABA alone. GABA and
glutamate contribute in a complementary fashion to high-level
prefrontal cognitive performance in healthy adults (Jocham et al.,
2012). Furthermore, individuals with autism or schizophrenia
show higher E/I ratios compared to healthy controls (Rubenstein
and Merzenich, 2003), and this has been suggested to be related
to behavioral and cognitive deficits (Yizhar et al., 2011). Similarly,
regional increases in glutamate (Carrey et al., 2007; Arcos-Burgos
et al., 2012) and reduced levels of GABA (Edden et al., 2012) have

been found in several different brain areas of individuals with
Attention-deficit hyperactivity disorder (ADHD). These findings
lend support to the view that E/I balance plays a major role in
normal cognition, as well as the symptomatic patterns of a variety
of clinical conditions.

Using cathodal tDCS to artificially decrease E/I in ADHD for
example could be beneficial. Cathodal stimulation may restore
the elevated E/I balance towards a more typical level in targeted
regions, which require greater baseline inhibition, in order to
reduce irrelevant output. For instance, in healthy adults, applying
cathodal stimulation to prefrontal regions has been shown to
lead to improved attentional processing. This likely enhances
prefrontal filtering of irrelevant information (Weiss and Lavidor,
2012).

The direction of the E/I imbalance may determine the behav-
ioral outcome depending on the particular brain area and appears
to be different in different clinical populations. Therefore, a
fundamental understanding of individual differences in E/I ratio
would allow for optimization of the choice of tDCS parameters
for each individual in terms of polarity, intensity, duration, etc.
(Figure 1).

DISCUSSION
This simple, but elegant model explains individual differences
in cognitive performance and cognitive deficits, as well as
the polarity-specific effects of tDCS on cognition, and can be
extended to non-cognitive domains, as well (e.g., pain: Harris and

FIGURE 1 | The relationship between excitation/inhibition (E/I) balance

and efficiency of a given cortical region. (A) According to the current
hypothesis, E/I balance within a brain area can be viewed as an inverted-U
shape in which the optimal performance is achieved when excitation and
inhibition interact efficiently, allowing for both plasticity and stability. The
degree of baseline E/I might, however, differ per brain region and individual.
If the optimal balance is achieved, homeostatic control of activity-dependent
plasticity and synaptic efficiency are possible and can lead to meaningful
behavioral output. Deviations from the ideal balance are associated with
atypical behavior and the severity of the deficit may vary with the degree of
imbalance. tDCS can be used to target and restore the individual
abnormalities in E/I imbalance in different neurological conditions. Only a

moderate level of activation, i.e., balanced E/I levels, can reach the optimal
level of processing efficiency and allow for homeostatic plasticity. High levels
of GABA can lead to cortical over-inhibition that will reduce network output,
whereas hyperactive glutamatergic activity can lead to excessive output and
eventually to excitotoxicity and cell death (Faden et al., 1989; Belousov,
2012). (B) An example of the distribution of E/I balance in the healthy
population: the finding that most anodal tDCS studies report behavioral
improvements suggests that the distribution may be skewed with the
majority showing non-optimal E/I ratio. However, for some individuals with
increased E/I ratios, anodal tDCS will shift the non-pathological imbalance
even further towards over-activation and therefore reduce behavioral
outcomes.
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Clauw, 2012). Nevertheless, the effects of tDCS on neural network
dynamics, more specifically at neurotransmitters concentrations,
are largely unknown.

At a microscopic level, glutamate is released by pyramidal
cell synapses and thalamic synaptic inputs, whereas GABA is
mainly released by a variety of interneurons (Nicoll et al., 1990;
McCormick, 1992). Animal experiments using brain slices suggest
that pyramidal cells in layer V are the most sensitive to the effects
of weak electric fields applied over the skull surface (Radman
et al., 2009). Thus, anodal and cathodal tDCS are expected to
increase or decrease, respectively, the membrane potential of
pyramidal cells and thereby alter the glutamatergic tone in the
cortex.

Nevertheless, glutamate levels not only depend on pyramidal
cells but also on input from thalamic projections. It has been
recently shown in both humans (Polania et al., 2012) and alert
rabbits (Marquez-Ruiz et al., 2012) that tDCS also modifies
thalamocortical synapses by means of glutamate release from
sensory afferents. As pyramidal cells project to different types
of interneurons, it is expected that the modulation of glutamate
levels correlates with GABA release. However, a recent com-
putational modeling study based on in-vivo experimental data
proposed that tDCS may induce opposing effects on different
types of interneurons (Molaee-Ardekani et al., 2013), suggesting
a more complex scenario. Finally, in order to fully understand
the mechanism underlying E/I balance, other factors, such as
levels of BDNF or cortical adenosine and cortical oscillations

must also be taken into consideration. For example, it has been
shown in brain slices that weak direct current (DC) stimulation
may modulate slow-wave (Frohlich and McCormick, 2010) and
gamma oscillations (Reato et al., 2010) related with E/I balance
in the cortex (Shu et al., 2003; Haider et al., 2006; Atallah and
Scanziani, 2009).

According to the current evidence, tDCS is likely to reinstate
an optimal E/I balance that allows for optimal homeostatic plas-
ticity in learning and cognition, if applied adequately to each indi-
vidual’s predispositions. If this consistently proves to be the case,
a variety of cortex-based clinical conditions including atypical
brain development may be successfully treated using tDCS. So far,
there is little research investigating the relationship between E/I
balance and cognition. The assessment of this balance in differ-
ent clinical, neurological and neuro-developmental disorders will
help refine tDCS strategies for treatment in the future. Whether
electrical stimulation can also modulate E/I balance in the case of
transcranial random noise stimulation (tRNS) and transcranial
alternating current stimulation (tACS) is currently unknown and
requires further exploration.
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INTRODUCTION
The human brain operates through
an intricate balance of excitatory and
inhibitory processes. Transcranial direct
current stimulation (tDCS) is a non-
invasive technique that is generally
assumed to work by increasing the level
of brain activity near the anode (posi-
tive polarity), while decreasing it near the
cathode (negative polarity). However, this
is based in part on untested assumptions:
the exact (cellular and synaptic) inhibitory
or excitatory processes that are targeted
preferentially using either polarity is still
an open area of research. Furthermore,
the relationship between electrode polar-
ity and membrane excitability is highly
contingent upon stimulation parameters
(e.g., montage, intensity, cognitive task,
etc.). Although neuroimaging has been
utilized to verify these general effects in the
brain, further development is needed to
advance our understanding of the mech-
anisms by which tDCS produces changes
across different levels of the nervous sys-
tem. To date, tDCS has produced reliable
changes in neurometabolite concentration
using magnetic resonance spectroscopy
(MRS; Rango et al., 2008; Stagg et al., 2009;
Clark et al., 2011); whole-brain functional
connectivity using functional magnetic
resonance imaging (fMRI; Baudewig
et al., 2001; Kwon et al., 2008; Polanía
et al., 2011a, 2012; Peña-Gómez et al.,

2012; Sehm et al., 2012, 2013; Park et al.,
2013; see Turi et al., 2012 for review);
and neural oscillations and event-related
potentials using electroencephalography
(EEG; Keeser et al., 2011; Polanía et al.,
2011b; Jacobson et al., 2012) or magneto-
cenphalography (MEG; Venkatakrishnan
et al., 2011). While each of these imag-
ing techniques provides information at
specific levels within the brain’s neural
architecture, from the micro-scales (e.g.,
neuro-metabolites) to the macro-scales
(e.g., population-level neural synchro-
nization), no study has combined more
than one imaging modality with tDCS in
order to track neuroplastic changes across
these different scales.

In this Opinion Article, we briefly
summarize the progress made on track-
ing tDCS-induced neuroplastic changes
using single imaging modalities (specif-
ically MRS, fMRI, and EEG). We then
demonstrate the need for multimodal
imaging, with the goal of establishing
a more comprehensive examination of
both local and global neuroplastic changes
due to tDCS. Such a design would
enable measurements of brain chem-
istry and large-scale functional connec-
tivity within the same subject and tDCS
session, thus capturing interactions of
these measures that may account for
significant variability in cognition and
behavior.

NEUROCHEMICAL MARKERS OF
NEURAL PLASTICITY
Given that anodal tDCS leads to lasting
changes in behaviors related to learning
and memory (Brasil-Neto, 2012; Clark
et al., 2012). It is hypothesized that its
effects may interact with long-term synap-
tic potentiation (LTP) through changes
in specific neurotransmitter levels. Proton
magnetic resonance spectroscopy (1H-
MRS) allows for accurate quantification of
certain neurotransmitters within a local-
ized region of the brain. To date, there
have been few published MRS-tDCS stud-
ies where data were acquired immedi-
ately before and after tDCS. For instance,
Rango et al. (2008) demonstrated that
anodal stimulation over right M1 resulted
in increased myoinositol concentration
beneath the stimulating electrode. Given
that myoinositol is linked to membrane
phospholipid metabolism and is asso-
ciated with the LTP second messenger
system (Rango et al., 2008), this sup-
ports the hypothesis that tDCS oper-
ates in part via an LTP-like mechanism.
Along these lines, the NMDA antagonist
dextromethorphane has been shown to
prevent lasting effects of tDCS on motor-
evoked potentials (MEPs), suggesting that
the mechanisms affected by tDCS may be
dependent on the NMDA glutamate recep-
tor subtype (Liebetanz et al., 2002; Nitsche
et al., 2003).
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Further research using 1H-MRS
has demonstrated an increase in Glx
(combined glutamate and glutamine) and
NAA (N acetyl aspartate) under the anodal
electrode (located near P4), compared to
the opposite hemisphere (Clark et al.,
2011), further supporting the hypothesis
of increased metabolism and increased
glutamatergic activity interacting with LTP
mechanisms. Stagg et al. (2009) found that
GABAergic and glutamatergic activity was
increased after anodal stimulation (over
left M1) and was reduced after cathodal
stimulation. Moreover, changes in GABA
concentration were inversely related to the
amount of motor learning. Furthermore,
Fritsch et al. (2010) found that genetic
polymorphisms in the gene that codes for
brain-derived neurotropic factor (BDNF)
mediate the neuroplastic effects of direct
current stimulation: Val66Val polymor-
phism of the BDNF gene was found to be
beneficial to motor skill learning through
training in humans, while Met66Met
knockin mice showed decreased effects
of local felid stimulation in M1 slices in
mice.

While results differ to some degree
under various stimulation and MRS
parameters, 1H-MRS has proven to be a
useful tool for the assessment of the neuro-
chemical changes due to tDCS. Together,
the observed effects of stimulation are
consistent with the modulation of LTP
and/or LTD mechanisms, with changes in
myoinositol, Glx, GABA, NAA, and BDNF
consistent with LTP-type processes.

TDCS-INDUCED CHANGES IN BRAIN
DYNAMICS: LARGE-SCALE
FUNCTIONAL CONNECTIVITY
Functional connectivity is a statistical
measure of the relationship between
multiple brain regions. This measure
provides information about whole-brain
information integration, and can pre-
dict individual variability in cognitive
performance in both healthy controls
and patients (Friston, 1994; Bullmore
and Sporns, 2009). TDCS may modify
the threshold for LTP and LTD within
and across structurally connected brain
regions that comprise a functional net-
work (Venkatakrishnan and Sandrini,
2012). Indeed, previous studies have
shown that tDCS produces alterations
across widespread distributed brain

networks that extend far from the area
of stimulation (Lang et al., 2005; Roche
et al., 2011; Polanía et al., 2012).

Co-variation of resting-state fluctua-
tions in blood oxygen level-dependent
(BOLD) fMRI have been interpreted as
measures of the intrinsic functional con-
nectivity within the brain (Raichle et al.,
2001; Fox et al., 2005). A recent investi-
gation of the dynamic interactions within
and across intrinsic resting-state networks
before and after the application of anodal
tDCS over the dorsal lateral prefrontal cor-
tex (DLPFC; cathode over contralateral
supraorbital area) revealed a redistribution
of activity across resting-state networks
(Peña-Gómez et al., 2012). Active tDCS
resulted in site-specific increases in syn-
chronous activity between lateral frontal
and parietal areas and asynchronous activ-
ity between brain regions comprising the
default-mode network (i.e., medial pre-
frontal and medial posterior areas; Peña-
Gómez et al., 2012). In related work, a
graph theory analysis of resting-state fMRI
data found that anodal stimulation over
left M1 combined with cathodal stimu-
lation over the contralateral frontopolar
cortex resulted in a global decrease in the
long-distance topological functional cou-
pling of the left M1 with the rest of
the brain (Polanía et al., 2011a). It was
hypothesized that the local increase of
spontaneous activity due to anodal stim-
ulation over M1 may have decreased the
neuronal signal-to-noise ratio and con-
sequently decreased the synchronization
with other brain regions.

Other fMRI studies have investigated
network connectivity changes induced by
tDCS (e.g., Polanía et al., 2012; Sehm et al.,
2012, 2013; Park et al., 2013), with all of
them suggesting that tDCS over important
network hubs (including DLPFC and M1)
both increases local spontaneous activ-
ity and modulates functional connectiv-
ity across brain regions. Thus, network-
level changes associated with tDCS may
allow for the characterization of neuro-
plastic changes at the level of whole-brain
functional connectivity.

CORTICAL OSCILLATIONS AND
EVENT-RELATED POTENTIALS
EEG has provided information about
changes in neural oscillations associated
with tDCS. For instance, Keeser et al.

(2011) found that anodal stimulation over
left DLPFC with the cathode over right
frontopolar cortex decreased delta power
and marginally increased beta power.
Likewise, Jacobson et al. (2012) demon-
strated a selective reduction in theta-band
power following anodal stimulation over
the right inferior frontal gyrus (cathodal
stimulation over left orbitofrontal cortex)
compared to sham.

Together, these findings are consis-
tent with the hypothesis that anodal
stimulation leads to a shift from lower
to higher oscillatory frequencies (Keeser
et al., 2011). Indeed, it is possible that
tDCS differentially modulates cortical
oscillatory frequencies, and may poten-
tially influence mental states and behav-
ioral performance. However, it is impor-
tant to note that there is limited mech-
anistic evidence (from both animal and
human studies) that can explain the effects
of direct current stimulation on the shift
from higher to lower frequency oscilla-
tions in humans. Nonetheless, Fröhlich
and McCormick (2010) showed that weak
constant and sine-wave electric fields
enhance and entrain slow oscillations,
which was hypothesized to represent
dynamic feedback mechanisms that mod-
ulate and guide network-wide synchro-
nization at different frequency bands. To
this end, electric fields may have functional
implications on the interplay between
different cortical areas, local processing
and oscillations at specific frequencies.
Additionally, using a computational net-
work model, (Reato et al., 2010) showed
that incremental polarization by weak cur-
rents lead to a small increase in firing rate,
with excitatory spike times broadly dis-
tributed across the theta cycle, resembling
in vivo recordings of theta-modulated
gamma activity. Altogether, EEG measures
provide precise information on the timing
of brain activity, allowing for a temporally-
accurate account of tDCS alterations of
brain dynamics, which may elucidate the
mechanisms by which tDCS operates.

COMBINING MARKERS OF THE
MECHANISMS AFFECTED BY tDCS
When taken together, the neuroimaging
methods reviewed so far provide a com-
plex spatiotemporal description of the
functional effects of tDCS and depict
changes in brain function resulting from

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 495 | 46

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hunter et al. tDCS and multimodal imaging

stimulation. However, stimulation proto-
cols (e.g., duration, intensity, cognitive
paradigm, electrode size and montage)
vary across studies and therefore introduce
another layer of complexity when trying to
compare and interpret results from mul-
tiple studies. These parameters can have
complex effects on experimental results—
for instance, increasing stimulation inten-
sity can have non-linear effects on motor
evoked-potential amplitudes (Batsikadze
et al., 2013). Additionally, differences in
individual subject characteristics (e.g., sex,
handedness, age, etc), and other factors
may lead to discrepancies between studies.
It is proposed that these imaging meth-
ods must be combined in a more coor-
dinated way in order to better identify
and characterize markers of neuroplas-
ticity induced by tDCS. For instance, a
combined MRS-fMRI-EEG study using
the same participants and tDCS proto-
col could utilize measures of specific neu-
rometabolites (e.g., Glx, GABA, BDNF
and myoinositol) to be compared with
network-level functional connectivity with
fMRI and changes in frequency bands
(e.g., delta, theta and gamma) with EEG.
While still imperfect, and constrained by
the limits of each method, a combination
of neuroimaging methods could still pro-
vide a deeper understanding of the mech-
anisms by which tDCS influences brain
function and behavior.

A recently published study
demonstrated the feasibility of combined
EEG-fMRI with transcranial magnetic
stimulation (Peters et al., 2013), which
suggests that such a protocol could be
implemented with a tDCS unit and
an added MRS sequence. Furthermore,
multi-site collaborations, meta-analyses
and replication studies can be fostered
with standardized stimulation protocols
(e.g., size of electrode sponges, duration
and intensity of stimulation) and image
acquisitions.

In summary, it has been shown that
tDCS is well-poised as a novel interven-
tion to alter learning and memory (Clark
et al., 2012), attention (Coffman et al.,
2012), and a variety of other cognitive
functions in healthy and clinical popula-
tions (see Kuo et al., 2013 and Floel, 2013
for reviews). Understanding the mecha-
nisms by which these changes occur could
help to increase its effectiveness and help

us to understand the neural architec-
ture and dynamics of the human brain.
For instance, increasing both the gluta-
matergic transmission and functional con-
nectivity that is otherwise impaired in
schizophrenia (Friston, 1998; Szulc et al.,
2013) could lead to effective therapies
that combine both pharmacology and
stimulation (Brunelin et al., 2012) pro-
tocols. Thus, the importance of investi-
gating potential interactions across these
levels of analyses could inform future
hypotheses for the most optimal cortical
targets and specific methods of brain stim-
ulation for neurological and psychiatric
disorders. With continued multimodal
imaging work akin to that conducted by
Peters et al. (2013), we can further our
understanding of the neuroplastic effects
of tDCS that will ultimately translate to
clinical applications, resulting in more
effective and well-controlled therapeutic
interventions.
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Studies suggest that endogenous field effects may play a role in neuronal oscillations and
communication. Non-invasive transcranial electrical stimulation with low-intensity currents
can also have direct effects on the underlying cortex as well as distant network effects.
While Parkinson’s disease (PD) is amenable to invasive neuromodulation in the basal
ganglia by deep brain stimulation (DBS), techniques of non-invasive neuromodulation
like transcranial direct current stimulation (tDCS) and transcranial alternating current
stimulation (tACS) are being investigated as possible therapies. tDCS and tACS have the
potential to influence the abnormal cortical-subcortical network activity that occurs in PD
through sub-threshold changes in cortical excitability or through entrainment or disruption
of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of
the disease involving abnormal oscillatory activity, as well as the enhancement of potential
cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in
neurorehabilitation. However, little is currently known about how cortical stimulation will
affect subcortical structures, the size of any effect, and the factors of stimulation that will
influence these effects.

Keywords: Parkinson’s disease, transcranial direct current stimulation, transcranial alternating current stimula-

tion, transcranial electrical stimulation, field effects

INTRODUCTION
Are transcranial direct current stimulation (tDCS) and transcra-
nial alternating current stimulation (tACS) potential treatment
modalities for Parkinson’s disease (PD)?

While the foremost treatment for PD continues to be
dopaminergic medications, invasive neuromodulation through
deep brain stimulation (DBS) has become a mainstay of therapy
in selected patients (Okun, 2012). As in a variety of other
neurological disorders (Rothwell, 2012; Schulz et al., 2013),
techniques of non-invasive neuromodulation are also being
investigated as possible treatment options for PD (Cantello,
2002; Fregni et al., 2005; Edwards et al., 2008; Wu et al.,
2008; Lefaucheur, 2009). However, PD is relatively unique
amongst these diseases in that the targeted network involves
cortical-subcortical activity rather than just cortical activity. This
mini-review discusses the use of non-invasive applied electrical
fields in PD and considers their potential to influence cortical
oscillations and modulate dysfunctional cortical-subcortical
networks through the application of weak exogenous fields.

A RATIONALE FOR TRANSCRANIAL ELECTRICAL
STIMULATION IN THE TREATMENT OF PARKINSON’S
DISEASE
Although classically considered a disease of the basal ganglia,
functional imaging and EEG studies have shown altered cortical
activity in the supplementary motor area (SMA), dorsolateral

prefrontal cortex (DLPFC), and primary motor cortex (M1) in
patients with PD (Priori and Lefaucheur, 2007). Moreover, syn-
chronization of oscillatory activity in the motor cortices at specific
frequencies is believed to be important in normal motor control
(Joundi et al., 2012), and excessive oscillatory activity and abnor-
mal synchronization in the beta band may play a role in the mani-
festation of PD symptoms (Eusebio and Brown, 2009; Shimamoto
et al., 2013). Though the relationship between beta oscillations
and PD remains poorly understood, it is rooted in the observa-
tions of enhanced beta frequency oscillations in the basal ganglia
in PD that are correlated with clinical symptoms and improve-
ment from dopaminergic medications, as well as a worsening of
motor symptoms that can be seen by inducing beta oscillations in
subthalamic nucleus (STN) using DBS (Stein and Bar-Gad, 2013).
Recent studies have suggested that this activity might be cortical
in origin, with hyperactivity of the STN occurring secondary to
abnormal motor cortical activity transmitted via the hyperdirect
pathway (Litvak et al., 2011; Crowell et al., 2012). Further, the
clinical efficacy of STN DBS in PD may involve antidromic
effects upon the motor cortex (Gradinaru et al., 2009), and high
frequency DBS has been shown to decrease beta frequency power
in the cortical origin of the hyperdirect pathway that is coherent
with beta frequency activity in the STN (Whitmer et al., 2012).

Techniques of non-invasive neuromodulation such as
tDCS and tACS have the potential to influence the abnormal
cortical-subcortical network activity that occurs in PD (Figure 1).
tDCS is believed to exert its primary influence on the CNS
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FIGURE 1 | Schematic of the pathways of the basal

ganglia-thalamocortical network that non-invasive transcranial

electrical stimulation could potentially influence. Unfilled arrows are
excitatory connections. Filled arrows are inhibitory connections. D1 = D1
dopaminergic receptors; D2 = D2 dopaminergic receptors; GABA =
γ -Aminobutyric acid (GABA)-ergic; Glu = glutaminergic; Gpe = external
segment of the globus pallidus; Gpi = internal segment of the globus
pallidus; SNc = substantia nigra pars compacta; SNr = substantia nigra pars
reticulata; STN = subthalamic nucleus; Thal = thalamus. Modified with
permission from Hess et al. (2013).

through extracellular field effects upon membrane potentials
(Paulus, 2011) in both a site and polarity specific manner
(Zaghi et al., 2010). In general, anodal stimulation increases
cortical excitability, while cathodal stimulation decreases it
(Nitsche and Paulus, 2000, 2001). Longer-acting effects are
likely mediated by separate polarity-specific effects on synaptic
plasticity (Liebetanz et al., 2002; Fritsch et al., 2010; Stagg
and Nitsche, 2011). In addition to modulating local cortical
excitability, neuroimaging studies have demonstrated the ability
of tDCS to influence regional cerebral blood flow (rCBF) and
resting-state functional connectivity in distant but anatomically
and/or functionally connected areas (Lang et al., 2005; Zaghi
et al., 2010; Keeser et al., 2011). Thus tDCS could potentially
ameliorate PD symptomatology through the induction of sub-
threshold changes in excitability in key cortical nodes of the basal
ganglia-thalamocortical pathway or produce long-term effects on
synaptic plasticity. The putative mechanism of action of tACS is
less clear, but may include entrainment or disruption of ongoing
rhythmic cortical activity (Zaghi et al., 2010). This could make
tACS an ideal modality to interfere with the abnormal oscillatory
activity that occurs in the basal ganglia-thalamocortical network
in PD (Brittain et al., 2013).

tDCS IN PARKINSON’S DISEASE
The study of the therapeutic potential of tDCS in PD is still
largely preliminary, yet with some promising findings (Rothwell,
2012). In animal models, cathodal tDCS increased extracellular
dopamine levels as measured by striatal microdialysis in healthy
rats (Tanaka et al., 2013), and anodal tDCS of M1 improved motor
function in the 6-hydroxydopamine rat model of PD (Li et al.,
2011). In patients with PD, a single session of sham-controlled

anodal tDCS of M1 yielded improvements in motor function that
were different from sham stimulation (Fregni et al., 2006). One
randomized, double-blind, sham-controlled trial examined the
effects of tDCS in PD (Benninger et al., 2010). Subjects underwent
eight sessions of tDCS (n = 13) or sham stimulation (n = 12)
while on medication, with stimulation in the tDCS group alter-
nating between the premotor/motor area and prefrontal cortex
stimulation. tDCS decreased walking time (the primary outcome)
compared to sham one day after stimulation, but only when
tested off medications and after exclusion of an outlier in the
sham group. Though motor Unified Parkinson’s Disease Rating
Scale (UPDRS) and reaction time changes did not differ between
groups, upper extremity bradykinesia was significantly improved
at all evaluations periods up to three months after stimulation.
In addition to motor symptoms, a wide variety of non-motor
symptoms occur in PD that are not responsive to levodopa
therapy and could potentially be treated with tDCS (Wu et al.,
2008). Left DLPFC anodal stimulation has been shown to improve
working memory in PD patients (Boggio et al., 2006), and anodal
DLPFC tDCS improved phonemic fluency and enhanced fMRI
measures of functional connectivity in verbal fluency related
networks (Pereira et al., 2013).

tACS IN PARKINSON’S DISEASE
As in tDCS, the literature related to PD using tACS is sparse,
though intriguing. tACS at varying frequencies was shown to
modulate the rate of force development and peak force in hand-
grip response to a go/no-go task (Joundi et al., 2012), and tACS
administered in the beta band (20 Hz) to M1 slowed voluntary
movement speed in healthy subjects (Pogosyan et al., 2009). While
in one study (Shill et al., 2011) tACS over the forehead and mas-
toids did not significantly influence off medication UPDRS scores
in early PD patients, a recent study achieved a reduction in tremor
amplitude of up to 53% using tACS over the contralateral M1 in
patients with tremor-dominant PD (Brittain et al., 2013). In this
study, tACS at tremor frequency, double tremor frequency, and
sham (30 seconds of stimulation) was applied in random order
to 12 patients over the transcranial magnetic simulation (TMS)-
demonstrated motor hot spot for the muscles most involved with
tremor. Stimulation was first allowed to drift in and out of phase
with tremor to determine the most effective phase relationship
in reducing tremor. In a subset of five patients, stimulation at
tremor frequency was given for 30 seconds, during which tremor
frequency and the phase relationship between tremor and stim-
ulation was monitored and adjusted in real time. Resting tremor
amplitude was reduced by an average of 42%. Further, stimulation
did not interfere with performance on pegboard tasks, suggesting
that normal motor activity would likely not be affected.

CONCLUSIONS
The application of non-invasive applied electric fields provides a
potential window through which the dysfunctional subcortical-
cortical networks in PD can be accessed and influenced. However,
it remains largely speculative how cortical stimulation will affect
subcortical structures, what the effect size will be, and the factors
of stimulation that will influence these effects. Given the progres-
sive neurodegenerative nature of the disease and the increasing
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recognition of the full range of symptoms associated with it,
the utility of these techniques may be more as adjuncts to other
therapies (Chen, 2010). This being said, the ease of use and low
cost of transcranial electrical stimulation makes its development
for possible clinical uses appealing (Brunoni et al., 2013). In
addition to modulating basal ganglia-thalamocortical network
activity, tDCS and tACs may also be useful in promoting cortical
compensation for basal ganglia network dysfunction (Fregni et al.,
2006) and amplifying cortical plasticity during physical therapy
and neurorehabilitation (Chen, 2010; Block and Celnik, 2012).
tDCS has also already shown promise in the treatment of non-
motor cognitive symptoms in PD, for which current therapies are
quite limited when compared to therapies for motor symptoms
(Boggio et al., 2006; Wu et al., 2008; Pereira et al., 2013).

A better understanding of the mechanisms by which non-
invasive electrical stimulation affect neural networks would
likely streamline the discovery of any potential therapeutic
applications in PD. Yet as we have seen with DBS in PD, our
mechanistic understanding can sometimes lag behind successful
therapeutic implementation. Further studies will help to clarify
factors such as the optimal montages, sites, and intervals of
stimulation (Paulus, 2011), as well as potential interactions
with levodopa and other pharmacologic agents (Chaieb et al.,
2012).
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Transcranial direct current stimulation (tDCS) is emerging as a promising technique for
neuromodulation in a variety of clinical conditions. Recent neuroimaging studies suggest
that modifying the activity of brain circuits involved in eating behavior could provide
therapeutic benefits in obesity. One session of tDCS over the dorsolateral prefrontal
cortex can induce an acute decrease in food craving, according to three small clinical
trials, but the extension of these findings into the field of obesity remains unexplored.
Importantly, there has been little/no interaction of our current understanding of tDCS
and its mechanisms with obesity-related research. How can we start closing this gap
and rationally guide the translation of tDCS into the field of obesity? In this mini-review
I summarize some of the challenges and questions ahead, related to basic science and
technical aspects, and suggest future directions.
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Obesity is an unmet global medical need. Modification of lifestyle
behaviors, i.e., limiting food intake and increasing physical activ-
ity, remains the cornerstone treatment in the vast majority of
cases, but it is often ineffective (Fabricatore and Wadden, 2006).
There is need for innovative approaches to facilitate behavioral
changes leading to a successful weight loss.

Recent data from obesity neuroimaging studies point to an
imbalance in prefrontal and limbic brain circuits that support
cognition- and reward-related aspects of eating behavior (Carnell
et al., 2012; Brooks et al., 2013; Vainik et al., 2013). Manipulating
brain activity could help rebalance these circuits and translate
into beneficial behavioral changes. Three small proof-of-concept
studies have reported an acute decrease in food craving following
one session of transcranial direct current stimulation (tDCS)
aimed at enhancing the activity of the dorsolateral prefrontal
cortex (Fregni et al., 2008; Goldman et al., 2011; Montenegro
et al., 2012). The gap between the effects reported in these studies
and the efficacy standards expected for clinical trials related to
weight management (FDA, 2007) seems large at this time. How
can we start closing the gap and rationally guide the translation of
tDCS into the field of obesity?

Obesity is a heterogeneous condition that can result from a
variety of behavioral and non-behavioral phenotypes, ranging
from purely metabolic causes to extreme cases of compulsive
overeating. In this scenario, tailored interventions may be more
appropriate than a one-size-fits-all approach. However, we do not
know yet what subtypes of obesity could benefit from tDCS. A
reasonable starting point for exploratory trials can be the use
of tDCS to facilitate changes in eating behavior, and a focus on

obesity cases that share certain characteristics, e.g., high levels of
eating disinhibition or binge eating.

Where in the brain should tDCS be applied in obesity? Can-
didate targets include brain regions supporting eating behavior
at three key levels of integration: homeostasis, reward and cog-
nition. The first challenge is that, except for cognition, these
regions are subcortical, e.g., hypothalamus, insula and nucleus
accumbens. It is unclear whether conventional or high-definition
tDCS approaches can provide adequate reliability, sensitivity and
specificity for such deep targets, which can be better reached
via deep brain stimulation (DBS; Halpern et al., 2011). tDCS
seems to be more suited for cortical targets, specifically lateral
and dorsomedial sectors of the prefrontal cortex that contribute to
cognitive control. Neuroimaging studies have shown that success-
ful long-term weight loss maintainers have a pattern of increased
activation in the lateral prefrontal cortex during satiation or in
response to food cues (DelParigi et al., 2007; McCaffery et al.,
2009). This activation is stronger than in control (non-obese)
subjects, suggesting that lateral prefrontal hyperactivity may be a
compensatory mechanism to overcome obesity in these individu-
als. Future studies should examine in detail the specific prefrontal-
related processes that may underlie success in these subjects and,
based on this information, design tDCS interventions to induce
similar brain patterns in refractory obese subjects. This will likely
require multiple sessions and high-intensity stimulation schemes,
as long as safety is not compromised.

A mechanistic approach to the use of tDCS in obesity
requires both a brain and a cognitive target, if the intention is
to enhance cognitive regulation of food intake. An emerging
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cognitive target in obesity is inhibitory control, a core component
of executive functions that supports self-regulatory processes
and goal-oriented eating behavior (Appelhans, 2009; Houben,
2011; Yokum et al., 2012; Vainik et al., 2013). Prior studies have
mapped inhibitory control capacity (indexed by performance
in response inhibition tasks) to a basic set of brain regions that
include inferior frontal gyrus, pre-supplementary motor area,
and subthalamic nucleus (Chambers et al., 2009). tDCS is well
suited to reach this target according to preliminary computational
models (Truong et al., 2013) and experimental data (Juan and
Muggleton, 2012). Given that tDCS enhances synaptic plasticity
processes related to learning (Stagg and Nitsche, 2011), the
combination of tDCS with computerized training of inhibitory
control is a good strategy. This can narrow down tDCS-induced
plasticity effects to the cognitive process and brain circuit being
targeted. A recent study supports the feasibility and efficacy of
pairing tDCS with inhibitory control training (Ditye et al., 2012)
and two preliminary clinical trials are underway in obesity based
on this approach (Clinical trials.gov website; study numbers:
NCT01632280, NCT01793766).

Most of what has been learned to date about tDCS as a
technique can be extended into obesity, but there are largely
unexplored factors that could modify the impact of tDCS on the
brain, particularly in obese subjects. First, the potential influence
of metabolic/physiological state: being in a weight-reduced or
weight-stable state as well as prandial status (fasting/fed) are
associated with different underlying brain activity (Tataranni
et al., 1999; Rosenbaum et al., 2008). This source of variabil-
ity may change the predicted effect of tDCS on obesity-related
brain networks, as initial brain activation state has an impor-
tant role in determining the behavioral outcome of brain stim-
ulation (state-dependency; Silvanto et al., 2008). Additionally,
weight-loss diets may influence tDCS-induced plasticity mecha-
nisms. Intake of high-fat, low-carbohydrate, ketogenic diets (e.g.,
Atkins) enhances GABA-A-receptor-mediated intracortical inhi-
bition (Cantello et al., 2007)—an outcome that might alter the
dynamics of tDCS after-effects (Nitsche et al., 2004).

There are still significant gaps of knowledge in obesity patho-
physiology that make decisions on tDCS study design difficult at
this point. One of them is regarding the best time to apply tDCS to

maximize benefits: prior, during, or after weight loss. Is it better to
strengthen brain circuits in preparation for a subsequent weight
loss challenge or, rather, guide brain remodeling as weight loss
takes place and/or transitions into a weight maintenance phase?
To be able to answer these questions there is need for fundamental
research examining the time course of neurocognitive changes
throughout weight loss. The contribution of brain regions will
likely vary over time.

Aside from behavioral effects, there may be additional advan-
tages for the use of tDCS in obesity via metabolism. Anodal
tDCS applied over the motor cortex promotes brain energy con-
sumption and causes systemic glucose uptake (Binkofski et al.,
2011). The origin of these changes is uncertain; they could occur
through a depletion of energy in the brain, the activation of
hypothalamic energy sensing mechanisms, and/or via effects on
the neurohormonal stress systems. More research is needed, but
these findings are encouraging, because glucose intolerance and
diabetes are common complications of obesity.

Last, from a more technical angle, it is necessary to define opti-
mal tDCS parameters in obesity. Prior studies with tDCS in food
craving have used empirically determined protocols (typically pad
size: 35 cm2, intensity: 2 mA, duration: 20 minutes, montage:
bilateral dorsolateral prefrontal cortex). Moving forward there is
need for computational models to make a rational selection of
parameters and guide future refinements of tDCS protocols. As
an example, we have recently examined the impact of head fat
variability on current density distribution (Truong et al., 2012,
2013).

In conclusion, the translation of tDCS into the field of obesity
is still at a very early stage, with many challenges and open ques-
tion ahead. There is need for foundational studies that generate an
adequate knowledge base and principles to guide the development
of this emerging field.
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Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique
that induces changes in excitability, and activation of brain neurons and neuronal circuits.
It has been observed that beyond regional effects under the electrodes, tDCS also alters
activity of remote interconnected cortical and subcortical areas. This makes the tDCS
stimulation technique potentially promising for modulation of pain syndromes. Indeed,
utilizing specific montages, tDCS resulted in analgesic effects in experimental settings,
as well as in post-operative acute pain and chronic pain syndromes. The promising
evidence of tDCS-induced analgesic effects raises the challenging and complex question
of potential physiologic mechanisms that underlie/mediate the accomplished pain relief.
Here we present hypotheses on how the specific montages and targets for stimulation
may affect the pain processing network.
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Transcranial direct current stimulation (tDCS) is a non-
invasive neuromodulation technique (Nitsche and Paulus,
2000) that delivers electrical current of relatively low intensity
(1 or 2 miliamperes over an area of about 20 to 35 cm2)
painlessly through the skull to selected areas of the brain,
and induce changes in excitability and activation of brain
neurons and neuronal circuits. An important, and perhaps
primary, mechanism of tDCS is a subthreshold modulation of
neuronal resting membrane potential. Stimulation of several-
minute duration results in a polarity-dependent induction of
glutamatergic calcium-dependent neuroplasticity, which shares
some aspects with long-term potentiation, and depression
(Nitsche et al., 2003, 2008). The effects of tDCS on cortical
excitability are polarity-dependent. Anodal tDCS enhances, while
cathodal tDCS diminishes excitability, within certain parameters
of stimulation duration and strength (Nitsche and Paulus, 2000,
2001; Nitsche et al., 2003). Too long, or strong stimulation,
however, may have an opposite effect, resulting in diminished
excitability after the anodal stimulation and enhanced excitability
after the cathodal tDCS (Batsikadze et al., 2013; Monte-Silva
et al., 2013). In addition, recent evidence suggests that tDCS
interacts with various cerebral neurotransmitter systems, and
is mediated by dopamine, acetylcholine, serotonin or GABA
(Nitsche et al., 2004a,b,c, 2006, 2009; Kuo et al., 2007; Terney
et al., 2008). Moreover, tDCS has been shown to facilitate changes
in brain-derived neurotrophic factor (BDNF; Fritsch et al., 2010)
that is a distinct marker of neuronal plasticity and notably has
been associated with pain processing (Stefani et al., 2012).

The effects and outcome of tDCS depend on the area of
the brain that is stimulated (e.g., Nitsche et al., 2007). Beyond
regional effects under the electrodes, activity alterations of inter-
connected remote cortical and subcortical areas have also been
described (Polania et al., 2011; DaSilva et al., 2012). This makes
the tDCS stimulation technique potentially promising for modu-
lation of pain syndromes, which include pathological alterations
of activity, and excitability of a multitude of interconnected areas.
Different interwoven cortico-subcortical pain-related networks,
so-called Pain Matrix, cover sensory-discriminative, affective, and
vegetative aspects of pain processing. The main components
of the sensory-discriminative pain processing network are the
spinothalamic tract, the lateral thalamus, somatosensory areas,
and the posterior insula (Moisset and Bouhassira, 2007). The
affective component of pain has been related to anterior insular,
and cingulate cortices, as well as prefrontal areas. Vegetative,
and neuroendocrine effects of pain perception are closely linked
to various subcortical regions, such as amygdala, hypothalamus
ventral tegmental area and others (Hsieh et al., 1995; Zaghi et al.,
2009). Neuroplastic alterations of connectivity between these
areas might contribute to chronification of pain.

Several specific tDCS montages have been probed, which
resulted in analgesic effects: (a) excitability-enhancing (anodal)
tDCS delivered over the primary motor cortex (e.g., Fregni et al.,
2006a,b; Fenton et al., 2008; Kuhnl et al., 2008; Knotkova et al.,
2013), typically with the anode positioned over M1 contralateral
to the affected side and cathode over the ipsilateral supraorbital
region in case of unilateral pain; or the anode over M1 of the
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dominant hemisphere and the cathode over the supraorbital
region contralateral to the anode in case of bilateral pain; (b)
excitability-diminishing (cathodal) tDCS over the somatosensory
cortex (Antal et al., 2008; Knotkova et al., 2009) [the cathode
over S1, the anode over the contralateral supraorbital region,
with the same consideration of pain localization as described
above]; (c) anodal tDCS over the left dorsolateral prefrontal
cortex (DLPFC; Riberto et al., 2011; Valle et al., 2009) [the
anode over DLPFC corresponding with the F3 electrode position
of the 10–20 international EEG system, the cathode over the
contralateral supraorbital region]; (d) combined anodal left
DLPFC and cathodal tDCS of contralateral somatosensory cortex
[the cathode over the gut representation area of the right S1]
(Borckardt et al., 2011).

In the available studies, the assessment of analgesic effects
elicited with these montages in subjects with bilateral pain has not
systematically compared the pain intensity separately at each side,
and thus it is unclear if the effect of the stimulation was unilateral
or bilateral. However, as noted by Antal et al. (2010), there is
evidence that tDCS of M1 induces widespread changes in cortical
activity and can induce changes in activity of the contralateral
hemisphere.

Analgesic effects have been explored in experimental settings
(experimentally induced pain in healthy subjects), as well as in
post-operative acute pain and chronic pain syndromes in clinical
settings. The analgesic effects have been shown to be cumulative,
and therefore a majority of clinical trials of tDCS encompassed
the stimulation on several (usually 5, rarely 10) consecutive days.
For example, anodal M1 tDCS over five consecutive days resulted
in a significant decrease of pain intensity after spinal cord injury
(Fregni et al., 2006a), and similar results were observed in chronic
neuropathic pain due to multiple sclerosis (Mori et al., 2010),
chronic pelvic pain (Fenton et al., 2009) and pain of various
origin (Antal et al., 2010; Knotkova et al., 2013). Stimulation
over the prefrontal cortex resulted in significant pain relief
after 10 but not 5 sessions (Valle et al., 2009). Meta-analysis of
analgesic effects in the existing studies is thoroughly discussed
in a Cochrane systematic review by O’Connell et al. (2011).
Overall, a significant heterogeneity among studies was noted,
and a sub-group evaluation of tDCS applied to the motor cortex
suggested superiority of active stimulation over sham (SMD
−0.59, 95% CI −1.10 to −0.08).

The evidence of tDCS-induced analgesic effects raises the chal-
lenging and complex question of potential physiologic mecha-
nisms that underlie/mediate the accomplished pain relief. Here
we develop hypotheses on how the specific montages and targets
for stimulation may affect the pain processing network.

MODULATION OF THE SENSORY-DISCRIMINATIVE PAIN
PROCESSING
CHANGES IN THALAMIC ACTIVITY
Thalamic activity is crucial for processing and filtering of noci-
ceptive signals on the pathways ascending to the cortical part of
the pain matrix, and the thalamus also receives direct input from
descending cortico-thalamic pathways originating in the primary
motor cortex. Notably, anodal tDCS over M1 has been shown to

increase functional coupling between ipsilateral M1 and thalamus
(Polania et al., 2011) and therefore it is likely that the analgesic
effects observed after the facilitatory motor cortex stimulation are
at least partially attributable to modulation of thalamic activity.
Indeed, changes in regional cerebral blood flow following epidural
motor cortex stimulation (Peyron et al., 1995; Garcia-Larrea et al.,
1999; Garcia-Larrea and Peyron, 2007) indicated that stimulation
of the motor cortex may trigger rapid and phasic activation in
the lateral thalamus (which receives direct input from the motor
area), followed by parallel or secondary activation of medial tha-
lamic regions, and the anterior cingulate gyrus, the insula and the
upper brain stem. (Garcia-Larrea et al., 1999). Interestingly, the
blood flow change in the lateral thalamus has not significantly cor-
related with patient’s perceived pain relief and although impor-
tant as a trigger of further events, the activation of the lateral
thalamus is not a sufficient condition for clinical pain-relieving
effects (Garcia-Larrea et al., 1999). However, neuronal inactiva-
tion in response to motor cortex stimulation was detected in tha-
lamic sensory neurons, specifically in ventral posterolateral nuclei
and centromedian-parafascicular thalamic complex, and the inac-
tivating effect was particularly observed for neurons responsive
to nociceptive peripheral stimulation (Pagano et al., 2012). It can
be speculated that the inhibition of the sensory thalamic nuclei
and the activation of the lateral (motoric) thalamic area after
the motor cortex stimulation may be functionally related, the
lateral thalamus receiving the input from the motor cortex and
inhibiting the thalamic sensory neurons that are involved in the
transmission of nociceptive signals from the periphery.

MOTOR-CORTEX-DRIVEN INHIBITION OF THE SOMATOSENSORY
CORTEX
As there is a direct connection between the primary motor cortex
and primary somatosensory cortex via cortico-cortical pathways
in the human brain, it is possible that stimulation of the motor
cortex directly inhibits the activity in the somatosensory cortex.
By these means, recent work by Chiou et al. (2012) on ani-
mal models demonstrated that motor cortex stimulation blocked
the transmission of somatosensory information to the primary
somatosensory cortex. In the experiment, epidural motor cortex
stimulation, but not stimulation outside of the motor cortex, lead
to suppression of the ipsilateral somatosensory evoked potentials.
However, these findings have to be interpreted with caution as the
stimulation was delivered at suprathreshold level, and therefore
the effects cannot be directly extrapolated to the subthreshold
tDCS stimulation. Interestingly, a study of the somatosensory
cortex in rats (Choi and Callaway, 2011) has shown the existence
of inhibitory neurons in the somatosensory cortex that receive
direct monosynaptic input not only from distant areas such as
thalamus, but also from the ipsilateral motor cortex.

DIRECT INHIBITION OF THE SOMATOSENSORY CORTEX
Cathodal tDCS is thought to have a direct excitability-reducing
effect on the S1 area. Since hyperexcitability within S1 in chronic
pain syndromes, such as facial neuropathic pain or carpal tunnel
syndrome has been clearly documented in recent neuroimaging
studies, tDCS-generated reduction of this pathological excitability
alteration should be beneficial. Moreover, thickening of neuronal

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 628 | 57

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Knotkova et al. Mechanisms of tDCS analgesic effects

layers in the somatosensory cortex has been observed in chronic
migraineurs (DaSilva et al., 2007), which might be a hint for
structural neuroplastic alterations of the respective area due to its
pain-related hyperactivity of this area. It has been suggested that
repeated/long-term down-regulation of nociceptive activity in S1,
which could be also induced by tDCS, may result in normalization
of this maladaptive change.

MODULATION OF THE EMOTIONAL/AFFECTIVE COMPONENT
OF PAIN
ACTIVATION OF THE PREFRONTAL CORTEX
Stimulation of the prefrontal cortex has been associated with a
modulation of a large neuronal network related to the limbic
system, including the cingulate gyrus and parahippocampal areas
(Mottaghy et al., 2000; Catafu et al., 2001). The dopaminergic and
serotoninergic circuits of the frontal and prefrontal cortex and
related subcortical areas mediate attentional control, impulsivity,
working memory, decision-making, as well as mood regulation
and emotional processing. Notably, activation of the brain struc-
tures associated with emotional appraisal of pain in condition of
the epidural motor cortex stimulation correlated with subjectively
reported pain relief (Peyron et al., 1995; Garcia-Larrea et al., 1999)
and it is thought that neuromodulation modifying emotional
appraisal of pain and pain experience is directly related to clinical
analgesic effects of the neuromodulatory interventions (Garcia-
Larrea et al., 1999). Indeed, tDCS stimulation of the prefrontal
dorsolateral cortex increased pain thresholds in healthy subjects
(Boggio et al., 2008) and relieved chronic pain (Valle et al., 2009).

OPIOID RELEASE
Interestingly, a recent work by DosSantos et al. (2012) has shown
that a single session of anodal tDCS over the motor cortex
results in reduction of mu opioid receptor binding of an exoge-
nous receptor ligand in the pain matrix, suggesting that the
analgesic effect of M1-tDCS may possibly be due to a direct
increase of endogenous opioid release (DosSantos et al., 2012).
The authors suggest that the decreased binding of the exogenous
ligand was possibly due to receptor occupancy by enhanced
release of endogenous opioids. The reduction was detected in
numerous cortical and subcortical structures of the pain matrix,
such as nucleus accumbens, anterior cingulate cortex, insula and
thalamus, and was accompanied by an increased threshold for
experimentally induced cold pain. Although opioid analgesic
effects are known to relate to both the emotional- as well as

sensory dimension of pain, no significant changes in clinical pain
levels were elicited after a single tDCS session, suggesting that
the immediate opiodergic effects of a single tDCS application are
subclinical, and repeated application might be necessary to get
clinically meaningful results.

CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH
The findings suggest that multiple physiologic mechanisms
mediate the analgesic effects of tDCS, involving changes in
both the perceptual processing of pain and the emotional
component of pain experience. However, the mechanisms and
their translation into predicable clinical outcomes are far from
being fully understood. Future studies are needed to expand
understanding of tDCS-induced analgesic mechanisms and
to address the presented hypotheses of tDCS effects on the
pain-processing network. Extrapolating from studies of the
epidural motor cortex stimulation, changes of the thalamic
activation after tDCS may be determined via the regional
cerebral blood flow evaluation in the thalamus and related
regions after a single- and multiple tDCS stimulation of the
motor cortex, including explorations of the association between
the thalamic activation changes and pain relief. Future studies
addressing the hypothesis of the tDCS-generated analgesic effects
due to motor-cortex-driven inhibition of the somatosensory
cortex may utilize evaluations of the somatosensory potentials,
exploring suppression of the somatosensory evoked potentials
after the anodal tDCS stimulation of the ipsilateral motor cortex.
Moreover, studies of tDCS combined with functional imaging
(fMRI) with regard to the inhibitory (cathodal) stimulation of
the somatosensory cortex as well as the anodal tDCS in both
the experimentally induced- and spontaneous chronic pain may
provide further insight into the tDCS effects on the pain matrix.
Beyond the exploration of regional effects, functional imaging
data might also be helpful to explore stimulation-dependent
alterations of the pain-related cerebral network, via functional
connectivity analysis. The latter approach will be also relevant to
explore specific effects of different stimulation paradigms on the
above-mentioned discernable components of the pain matrix.

Further, future studies are needed to systematically elucidate
the impact of the stimulation parameters on the analgesic out-
comes, including aspects related to stimulation intensity, strength,
repetition rate and timing, as well as electrode positions and stim-
ulation polarity, because a critical aspect of the future impact of
tDCS in pain management is the optimization of the stimulation
protocols with regard to specific patient populations.
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Often assumed to be epiphenomena of a cell’s activity, extracellular currents and resulting
potential changes are increasingly recognized to influence the function of other cells in the
vicinity. Experimental evidence shows that even small electric fields can modulate spike
timing in neurons. Moreover, when neurons are brought close together experimentally
or in pathological conditions, activity in one neuron can excite its neighbors. Inhibitory
ephaptic mechanisms, however, may depend on more specialized coupling among cells.
Recent studies in the Drosophila olfactory system have shown that excitation of a
sensory neuron can inhibit its neighbor, and it was speculated that this interaction was
ephaptic. Here we give an overview of ephaptic interactions that effect changes in spike
timing, excitation or inhibition in diverse systems with potential relevance to human
neuroscience. We examine the mechanism of the inhibitory interaction in the Drosophila
system and that of the well-studied ephaptic inhibition of the Mauthner cell in more
detail. We note that both current towards and current away from the local extracellular
environment of a neuron can inhibit it, but the mechanism depends on the specific
architecture of each system.

Keywords: olfaction, inhibition, ephaptic, sensillum, sensory neurons, Drosophila

While chemical and electrical synapses are anatomically
identifiable specialized contacts that mediate interactions
among cells, electric fields and currents produced by cells in
their local environment may also influence the activity of their
neighbors (Jefferys, 1995; Anastassiou et al., 2011). The extent
to which these ephaptic interactions contribute to information
processing in the human nervous system is not yet clear. Our
understanding of ephaptic mechanisms has been especially
informed by investigating the communication among cells in
several very tractable systems, including the Mauthner cells in fish
(Furukawa and Furshpan, 1963; reviewed in Zottoli and Faber,
2000; Korn and Faber, 2005; Weiss and Faber, 2010). Recently, Su
et al. (2012) showed that inhibitory interactions among grouped
olfactory sensory neurons in the fruit fly Drosophila melanogaster
modulate their responses to odors, suggesting that processing
of olfactory information may already begin among neurons
within the sensory organs. Blocking synaptic transmission by
several experimental means did not remove the inhibition, which
together with other considerations led the authors to hypothesize
that an ephaptic mechanism underlies the interaction. Here
we present a brief overview of ephaptic interactions in diverse
systems and then focus on inhibitory ephaptic mechanisms in the
Mauthner cell system and in the Drosophila olfactory system.

The transmembrane potential (Vm) of a cell is the difference
between the electrical potential inside the cell (V i) and the poten-
tial externally (Ve), which are both measured against the same
(distant) reference point, such that Vm = V i−V e. The resting
Vm in many neurons is approximately −70 mV. While Ve is often
assumed to be constant and assigned a value of 0 V by convention,
current flow to or from the local extracellular environment near

the cell can change local V e and thereby Vm. The direction of
electric current is defined arbitrarily as if only positive charges
are moving, so in the case of movement of anions the current
is opposite in direction to the actual anionic flow. Current flow
to the local extracellular environment may hyperpolarize the
membrane by making Ve more positive, while current flow away
may reduce the absolute potential difference between V i and V e.
Current flow is the result of an electric field, which is defined as
the force per unit positive charge acting on a charged particle and
is expressed in newtons per coulomb or volts per meter (N/C =
V/m). A field can act to drive current in the extracellular space
and also across the membrane and intracellularly.

Even very small fields can change the timing of spikes gener-
ated by neurons, as was shown in rat cortical pyramidal neurons
where changes under 0.2 mV in Ve induced by an external
oscillating field could entrain spikes (Anastassiou et al., 2011).
Small electric fields, when concurrent to other suprathreshold
input, also had significant effects in rat hippocampal neurons on
spike timing and these could be magnified by dynamic network
activity (Radman et al., 2007; Reato et al., 2010). It is becoming
increasingly clear that, in addition to the firing rate of an individ-
ual neuron, its precise spike timing in an ensemble of neurons in
a circuit has an important role in relaying information (De Zeeuw
et al., 2011). Moreover, the degree of phase-locking of hippocam-
pal neurons to the theta-oscillation was shown to be predictive
for the strength of human memory formation (Rutishauser et al.,
2010), indicating a role for spike timing in information storage.
The ability of electric fields to affect spike timing suggests ephaptic
interactions may indeed contribute to information processing in
the brain in combination with other intercellular mechanisms.
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Ephaptic effects on spike timing may also play a role in the
pathological transition from synchronous discharge into epileptic
seizure in several brain areas (Jefferys, 1995; Vigmond et al., 1997;
McCormick and Contreras, 2001).

In addition to modulating the timing of spikes, stronger fields
can bring neurons to threshold, especially under experimental
or pathological conditions. Indeed, early studies showed that
action potentials could be transmitted between two experimen-
tally apposed squid giant axon fibers (Arvanitaki, 1942; Ramón,
and Moore, 1978) and it was Arvanitaki (1942) who first called
the zone of contact or close vicinity, where the cells can influ-
ence each other’s activity, an ephapse. Clinically, the sudden
sharp pains experienced by patients with trigeminal neuralgia
may in part be caused by ephaptic neurotransmission between
apposed denuded axonal membranes of nociceptors near the
trigeminal ganglion (Oaklander, 2008). Similarly, the involuntary
contractions of facial muscles in hemi-facial spasm have been
attributed to ephapsis among fibers in the facial nerve when it is
chronically but often subclinically injured by pressure of a blood
vessel, although mechanisms such as ectopic generation of muscle
discharges may also contribute (Valls-Solé, 2013). Computational
approaches suggest that close apposition, as occurs among the
tightly packed fascicles of unmyelinated axons of olfactory recep-
tor neurons, also allows an action potential in one fiber to elicit
action potentials in its neighbors under normal physiological con-
ditions through ephaptic coupling (Bokil et al., 2001), so even in
the absence of gap junctions between them (Blinder et al., 2003).

In contrast to excitatory coupling, ephaptic inhibition among
cells may require specialized anatomical, molecular and electrical
features. In the retina, for example, connexin hemichannels may
be involved in an ephaptic negative feedback mechanism whereby
voltage changes in horizontal cells result in sign-inverted changes
in the cone cells (Klaassen et al., 2012). In the cerebellum Purk-
inje cells receive inhibitory input from basket cells whose axons
establish chemical synapses on the Purkinje soma but also ramify
around the axon initial segment of Purkinje cells forming a highly
organized structure, the pinceau. Electrophysiological investiga-
tion showed that a field effect inhibition is exerted on the axon ini-
tial segment (Korn and Axelrad, 1980). Indeed there are few direct
chemical synapses from basket cell axons on the Purkinje cells
within the pinceau (see e.g., Somogyi and Hámori, 1976), and
several GABAergic signaling components show only low expres-
sion in it (Iwakura et al., 2012). The pinceau may therefore medi-
ate ephaptic modulation by basket cells of Purkinje activity in a
similar way as the well-studied axon cap that holds the terminals
of interneurons around the initial segment of the Mauthner cell.

The Mauthner (or “M−”) cells are a pair of neurons in the
hindbrain of teleosts and amphibians that integrate auditory,
visual and tactile sensory inputs to generate an escape reflex
of the animal, the C-start (Zottoli and Faber, 2000; Korn and
Faber, 2005). The descending axon of a Mauthner cell crosses
over to the contralateral side. Sensory inputs collected on two
main dendritic branches bring the Mauthner cell to threshold
and an action potential, initiated at or near the axon hillock on
a proximal unmyelinated axonal segment, propagates along the
axon to contract the musculature on the contralateral side of
the body (Figure 1A). Fast inhibitory feedback and feed forward

through interneurons limits activation of the Mauthner cell to a
single spike and stops simultaneous excitation of the other Mau-
thner cell, which together results in the characteristic C-shaped
whipping movement of the body that displaces the animal away
from the triggering stimuli. The fast inhibition arrives at the same
time as the Mauthner cell receives excitatory input, suggesting that
the inhibition contributes to setting the threshold of the startle
response (Weiss et al., 2008). An ephaptic mechanism underlies
the fast inhibition (Furukawa and Furshpan, 1963). The axons of
specific interneurons terminate near the axon hillock of the Mau-
thner cell in a highly organized structure, the axon cap. The axon
terminals are unmyelinated and, on excitation of the interneu-
rons, inward currents at the last node of Ranvier cause current
to flow out from the axon terminals into the local environment
of the Mauthner cell. High electrical resistance in the axon cap
causes the current flow into it to locally increase Ve around part of
the Mauthner cell. While leakage across the Mauthner membrane
also causes a slight increase in V i, simultaneous measurements
of V e and V i have shown that the increase in V e is much larger
suggesting that the potential increase is indeed due to current
from an extrinsic source. In the Mauthner system, a current from
the axon terminals of interneurons to the environment around
part of the Mauthner cell thereby results in a local extrinsic
hyperpolarizing potential (EHP) that inhibits the cell’s activity.
Reciprocal ephaptic inhibition also occurs. An action potential
in the Mauthner cell leads to a passive hyperpolarizing potential
(PHP) in the interneurons innervating the axon cap, which has
been used experimentally to identify them, because the action
current leaves the Mauthner cell at its soma and dendrites and its
extracellular return path brings part of the current to the excitable
region of these PHP interneurons (Faber and Korn, 1989); the
momentary inhibition produced by the PHP is thought to be
essential for subsequently synchronizing these interneurons for
feedback inhibition.

In Drosophila, olfactory receptor neurons in the antennae
group into units called sensilla (Shanbhag et al., 1999, 2000). The
response to odorants can be excitatory, inhibitory or a sequential
combination of excitation and inhibition. Recently it was found
that the sustained action potential response of one neuron is
inhibited by a transient excitation of a neighbor within the sensil-
lum and, based on experiments which suggested the interaction
was non-synaptic, an ephaptic mechanism was proposed (Su
et al., 2012). The neurons in a sensillum have different odor
specificities (De Bruyne et al., 2001). Neurons express one, or
sometimes more than one (Goldman et al., 2005), odor recep-
tor. Each receptor confers specificity to a narrow or a broader
range of different food- and other environmental odors (Dobritsa
et al., 2003; Hallem and Carlson, 2006; Benton et al., 2009; Ai
et al., 2010; Stensmyr et al., 2012) or to fly odors that may act
as pheromones (Van der Goes van Naters and Carlson, 2007).
Sensilla are externally visible as hairs or pegs with many pores
(Figure 1B) through which the odor molecules from the air
can enter. The hair lumen forms a compartment that holds the
dendrites of the olfactory receptor neurons. As is the case in
other cells that are embedded in epithelia, the neurons contact
a different milieu apically than basally. The dendritic processes
of the olfactory neurons sharing a sensillum are bathed together
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FIGURE 1 | Schematic of currents that mediate ephaptic inhibition in the

Mauthner cell and in Drosophila olfactory receptor neurons. (A) A pair of
Mauthner cells (in brown) project axons to the contralateral side of the body
(redrawn and adapted from Korn and Faber, 2005; Weiss et al., 2008). Only
the part of the circuit that mediates fast excitation and fast ephaptic inhibition
from hair cell input is shown. Excitation of VIII nerves (in green) by hair cell
input excites both the ipsilateral Mauthner cell and inhibitory interneurons (in
red) through mixed electrical and chemical synapses. The fast inhibition by the
interneurons acts on both Mauthner cells. Axons of these neurons terminate
in the axon cap, a structure of high resistivity (enlarged inset, grey circle).
Current influx at the heminode flows out at the unmyelinated axon terminal
within the axon cap, thereby increasing the extracellular potential V e and
hyperpolarizing the zone of the Mauthner cell where impulse initiation occurs.
(B) A Drosophila sensillum with two neurons. The sensillum hair has pores

through which odor molecules enter. The hair lumen forms a compartment
holding the dendrites of the two neurons. At left, neuron 1 shows a sustained
response to odor and neuron 2 is silent. An odorant causes channels to open
in neuron 1 and each open channel carries a current Ic, which sum to the
dendritic current Id (block arrow) that depolarizes the soma region. At right,
neuron 1 is inhibited by the transient excitation of neuron 2. Opening of many
channels in neuron 2 draws current from the extracellular dendritic space,
which reduces V e also for neuron 1. The per-channel current Ic decreases, so
that Id in neuron 1 also decreases and the soma becomes less depolarized.
Illustrative values of potentials are given for V i and V e. The return source
current (dashed arrows) follows a complex path, and also involves auxiliary
cells (not shown). For both (A) and (B): currents from sources are shown as
dashed arrows; currents to sinks are shown as solid arrows; sources and
sinks are defined as in Buzsáki et al. (2012).

in lymph that is high in [K+] and low in [Na+] (in moth
sensilla: Kaissling and Thorson, 1980), reminiscent of the apical
environment of hair cells in the inner ear, while their somata
are surrounded by fluid resembling other extracellular fluids that
are low in [K+] and high in [Na+]. The external potential V e

around the dendrites is approximately 30–35 mV higher than
the V e of the soma. This external potential around the dendrites
decreases during an odor stimulus, because channel opening
allows current to flow from the lymph compartment into the
dendrites. The current from the lymph into the dendrite is then
conducted proximally and depolarizes the soma’s membrane to
generate action potentials. In this model, the rate at which the
neuron generates action potentials is determined by the size of
the current coming from the dendritic compartment into the
soma region. The size of the inward dendritic current depends on
the number of open channels, which is determined by the odor
stimulus, and the amount of current per channel, which is affected
by V e. A transient decrease in Ve caused by an odor stimulus for
a neighboring neuron will reduce the current through each open

channel and also the dendritic current into the soma region. This
decrease in the depolarizing current will then slow the generation
of action potentials by the neuron. A straightforward test for this
mechanism could be achieved by connecting two sensilla with a
wire. In this configuration we would predict that the sustained
response of a neuron in one sensillum could be inhibited by
excitation of a neuron in the connected sensillum. Inhibition
in this configuration would show that the interaction can be
explained by current flow through the extracellular space.

In comparing one aspect of the Mauthner cell system and the
Drosophila sensillum, we note that ephaptic inhibition of a neuron
can occur both by current flow to and by current flow from its
local environment. In the Mauthner cell system, current towards
the axon hillock increases local Ve and thereby hyperpolarizes
the excitable part of the membrane. In the Drosophila sensillum,
by contrast, inhibition is caused by current flow out from the
dendritic environment of a neuron showing a sustained response.
While current flow from the local environment causes a decrease
in V e and thereby a depolarization of the dendritic membrane,
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this local change in membrane potential does not affect the
neuron’s firing rate directly because the dendrite is presumably
non-excitable. Rather, the drop in Ve causes a decrease in the
per-channel current and thereby reduces the dendritic current
into the soma region. This results in an inhibition of the neuron’s
action potential activity. The time course of inhibition appears to
mirror the kinetics of excitation of its neighbor (data in Su et al.,
2012). In both systems, the ephaptic interaction is dependent
on compartmentalization of the extracellular space so that local
current can significantly change Ve.

The function of the inhibition of a sustained response of
one neuron in a Drosophila sensillum by transient activation of
another neuron may be to increase salience of the odor transient
(Su et al., 2012). Compartmentalization of groups of sensory
cells, as occurs in the Drosophila olfactory sensillum, is found
in a number of other systems including the mammalian taste
bud. While the focus of much research has been on stimulus-

response characteristics of individual sensory cells, it is not yet
understood how the cells in a group modulate each other’s output.
The inhibitory interaction found in Drosophila suggests initial
processing of information starts at the periphery, and that ephap-
tic interactions may play an important role.

It is becoming increasingly clear that ephaptic interactions
make an essential contribution to information processing in the
nervous system. The rapid kinetics by which cell function can
be modulated through electric fields suggest ephaptic interactions
may act especially in a short time domain to complement slower
intercellular communication through chemical synapses. Eluci-
dating the mechanisms that operate in small circuits, such as the
Mauthner cell system and the Drosophila olfactory sensillum, will
be essential to understand processing in more complex networks.
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In the vertebrate retina, cones project to the horizontal cells (HCs) and bipolar cells
(BCs). The communication between cones and HCs uses both chemical and ephaptic
mechanisms. Cones release glutamate in a Ca2+-dependent manner, while HCs feed
back to cones via an ephaptic mechanism. Hyperpolarization of HCs leads to an increased
current through connexin hemichannels located on the tips of HC dendrites invaginating
the cone synaptic terminals. Due to the high resistance of the extracellular synaptic space,
this current makes the synaptic cleft slightly negative. The result is that the Ca2+-channels
in the cone presynaptic membrane experience a slightly depolarized membrane potential
and therefore more glutamate is released. This ephaptic mechanism forms a very fast and
noise free negative feedback pathway. These characteristics are crucial, since the retina
has to perform well in demanding conditions such as low light levels. In this mini-review
we will discuss the critical components of such an ephaptic mechanism. Furthermore,
we will address the question whether such communication appears in other systems as
well and indicate some fundamental features to look for when attempting to identify an
ephaptic mechanism.

Keywords: ephaptic communication, vertebrate retina, cones, horizontal cells, inhibition

Neuronal activity leads to both intracellular and extracellular
potential changes. In this way the synchronized activity of mul-
tiple neurons may generate local field potentials (LFPs). LFPs are
discussed extensively in the other contributions to the special
issue. Here we will discuss a special form of neuronal commu-
nication that operates by modulating the extracellular potential:
ephaptic communication.

Ephaptic communication differs from LFPs in that it is highly
localized and requires a specialized structure, an ephapse. The
term ephapse is derived from the Greek verb ephaptein which
means to closely touch. An ephapse is a specialized structure that
generates a high extracellular resistance, such that current flowing
through the extracellular space produces a potential difference.
This potential difference modifies the activity of voltage gated
channels localized within the ephapse, leading to, for instance,
changes in spike threshold or modulation of synaptic transmis-
sion. In principle, any synaptic structure should generate an
ephaptic interaction. However, in most synapses the extracellular
resistance of the synaptic cleft is not large enough to generate a
significant effect (Figure 1A).

The retina’s first synapse is a good example of a synapse
where significant ephaptic interactions occur (Figure 1B). Cone
photoreceptors project to horizontal cells (HCs) and bipolar cells
(BCs) via Ca2+-dependent glutamate release. Light stimulation
hyperpolarizes cones, which leads to a reduction of glutamate
release. Since HCs receive input from many cones and are
strongly coupled electrically, they collect and average signals
over a larger area. This information is fed back to the cones
negatively, generating the center-surround organization of BCs.

This inhibitory pathway from HCs to cones is mediated via an
ephaptic mechanism.

Two key features of this synapse are crucial for the ephap-
tic interaction to occur. First, a high extracellular resistance is
needed, which is generated by a highly specialized synaptic struc-
ture (Figure 1C). The dendrites of HCs and BCs invaginate the
cone photoreceptor terminal thus creating a restricted synaptic
space with a relatively high resistance (Figure 1D, white resistor).
Secondly, connexin hemichannels are key players in this ephapse
(Figure 1D, blue resistor; Kamermans et al., 2001; Klaassen et al.,
2011). Connexins are proteins that can form electrical synapses
or gap junctions. However, at the tips of the HC dendrites they
form hemichannels, which are non-specific channels that are
open at physiological membrane potentials. A constant inward
current flows through these connexin hemichannels. This current
passes through the synaptic space, which has a finite resistance
(Figure 1D, white resistor), inducing a voltage drop and making
the synaptic cleft slightly negative. L-type Ca2+-channels located
in the presynaptic membrane of the cones (Figure 1D, red cir-
cle) sense this negativity as a slight depolarization of the cone
membrane potential. In a voltage clamp experiment, this will
become visible as a shift of the activation potential of the Ca2+-
current towards more negative potentials. Note that this is an
apparent shift, evoked by the change in extracellular potential.
Light stimulation hyperpolarizes photoreceptors, leading to a
decrease in glutamate release, which hyperpolarizes HCs. This
hyperpolarization causes the inward current through connexin
hemichannels to increase, making the synaptic cleft even more
negative. Consequently, the activation potential of the Ca2+-
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FIGURE 1 | (A) Ephaptic interactions will occur in every synapse. The
strength of the ephaptic interaction will depend on the organization of the
synapse. It will only become significant if the extracellular resistance is high
enough. Left: synapse without significant ephaptic interaction. Middle and
right: synapse with potentially significant ephaptic interactions. (B) Schematic
drawing of the vertebrate outer retina. The photoreceptors are the light
sensitive neurons in the retina (top layer). They are contacted by horizontal
cells (HCs) (yellow) and bipolar cells (BCs) (black). The dendrites of both the
HCs and the BCs invaginate the photoreceptor synaptic terminal. (C) Electron
micrograph of a cone synaptic terminal. In this zebrafish HCs express Green
Fluorescent Protein (GFP), which is visible as a black label in this image. Note
that every ribbon is flanked by HC dendrites. R: synaptic ribbons. (Taken from:
Klaassen et al., 2012) (D) Schematic drawing of the cone/HC synapse. In the
dark, glutamate release is high and thus the glutamate receptors are
activated (green resistors). A constant inward current flows through the

connexin hemichannels (blue resistor) and because the resistance of the
synaptic cleft is relatively high (white resistors), the synaptic space is slightly
negative compared to the extrasynaptic space. When the retina receives a full
field light stimulus, cones and consequently HCs hyperpolarize. This causes
an increased inward current through the connexin hemichannels, resulting in
an increased negativity of the synaptic cleft. The voltage sensitive
Ca-channels on the cone (ICa, red circle) detect this as a slight depolarization
of the membrane potential, effectively shifting the Ca-current activation
potential towards more negative potentials (see Panel E). The influx of
calcium increases and consequently the glutamate release. The current
entering the HCs via the connexin hemichannels leaves the HCs via the
potassium channel on the HC somata (orange resistor). (E) Feedback from
HCs to cones modulates the Ca-current of cones. Ca-current of a cone in
control condition (blue) and when HCs are hyperpolarized and feedback is
active (yellow). (Modified from: Verweij et al., 1996).
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current shifts even further, thereby increasing glutamate release
(Figure 1E, yellow dots).

The ephaptic feedback mechanism has a number of very
specific properties. Due to its electrical nature, feedback from
HCs to cones is very fast and has no synaptic delay (Vroman et
al., submitted). Conventional synaptic transmission depends on
vesicular neurotransmitter release. The signal transmitted is noisy
because each vesicle release-event causes a discrete postsynaptic
potential change. Since ephaptic transmission does not depend on
vesicles, it will hardly add noise to the input signal. These features
are very well suited for the role of HCs in retinal signal processing.
The HC/cone ephapse utilizes ephaptic transmission to generate
the surround of BCs, which is the first step in reducing redundant
visual information. This redundancy reduction only works if the
feedback signal is fast. If this were not the case, the surround
of BCs would lag the center response for moving stimuli, thus
compromising the efficiency of redundancy reduction. The low
noise characteristics of the ephaptic feedback mechanism are
especially important at low light levels, when the photoreceptor
responses barely exceed the noise level (Field et al., 2005; Ala-
Laurila et al., 2011). Adding synaptic noise to the signal would
strongly reduce the information content transmitted to BCs.

Are the key features, as we described for the HC/cone ephapse,
general requirements for ephaptic communication? A high
extracellular resistance is essential but can be achieved in many
ways. For instance, it can be achieved by increasing the size of a
synapse or by the presence of an invaginating synaptic structure
(Figure 1A). However, the extracellular resistance can also be
increased by the expression of extracellular matrix molecules such
as proteoglycans (Bogdanik et al., 2008; Klaassen et al., 2012). A
fundamental property of ephaptic transmission is that it depends
on current flow, not on specific channel types. Current will flow
through any open channel into the cell, the so-called current
sink. While the current sink in the HC/cone ephapse is formed
by connexin hemichannels, in other ephapses different channel
types may play this role. In our example, L-type Ca2+-channels
convert the extracellular potential change into a cellular response,
but in principle any voltage sensitive channel can play this role.
Byzov and co-workers (Byzov et al., 1977; Byzov and Shura-Bura,
1986) were the first to propose an ephaptic interaction between
HCs and cones. They suggested that postsynaptic glutamate
receptors functioned as current sink. We have shown that, under
certain conditions, glutamate receptors can indeed contribute as
well (Fahrenfort et al., 2005). In addition, we have shown that
pannexin 1 channels also contribute to the ephaptic interaction
(Prochnow et al., 2009; Klaassen et al., 2011; Vroman et al.,
submitted), showing that the ephaptic feedback is mediated
by a number of channel types. This large diversity of possible
molecular compositions of an ephaptic mechanism might be one
of the reasons why so few other ephaptic mechanisms have been
described.

Is there evidence for ephaptic interactions in other synapses?
For example, the mossy fibers in the hippocampus form large
synapses with CA3 pyramidal cell dendrites. These synapses
potentially have a high enough resistance to form an ephapse.
This ephaptic interaction would depend on the current flowing
through glutamate receptors. Activation of presynaptic Ca2+-

channels leads to glutamate release, which opens glutamate-gated
channels in the postsynaptic membrane. The current through
these channels makes the potential in the synaptic cleft slightly
negative, leading to a depolarization of the presynaptic membrane
and a further increase of glutamate release. This positive feedback
loop enhances the output of the mossy fiber (Berretta et al., 2000;
Kasyanov et al., 2000; Savtchenko, 2007). Interestingly, pannexin
1 channels have also been shown to function postsynaptically
from pyramidal neurons (Thompson et al., 2008). Based on
morphological arguments, an ephaptic mechanism has also been
proposed for synaptic transmission between type I hair cells in the
cochlea and the afferent calyx fiber (Hamilton, 1968; Gulley and
Bagger-Sjoback, 1979; Yamashita and Ohmori, 1990; Goldberg,
1996). This synapse is also invaginating and thus creates the high
resistance necessary for a functional ephapse. Recently, Su et al.
(2012) presented evidence for an ephaptic interaction between
insect olfactory receptor neurons, located within a sensillium
with a high extracellular resistance. They showed that activation
of one receptor neuron inhibited the neighboring neuron within
the same sensillium, while evidence for synaptic transmission was
missing.

An example of ephaptic communication outside the brain
can be found in the heart. Action potential propagation between
cardiac myocytes, necessary for heart muscle contraction, appears
to be dependent on both gap junctional coupling and an ephaptic
interaction (Sperelakis, 2002; Lin and Keener, 2013; Rhett et al.,
2013). The ephaptic interaction is possible in the area surround-
ing the gap-junctions, because the space between membranes is
narrow and the gap junctions increase the extracellular resistance.
Moreover, both connexin hemichannels and sodium channels are
present in the membrane to function as current sink. Interest-
ingly, in this system sodium channels not only form the current
sink, but also function as the voltage sensitive channels on the
opposing cell.

These examples of ephaptic mechanisms are focused on
modulation of transmission by extracellular potential differences.
However, extracellular potential gradients could have additional
influences on synaptic transmission as well. Sylantyev et al.
(2008) have shown in hippocampal CA1 cells that the cation
influx through postsynaptic alpha-amino-3-hydroxy-5-methyl-
4-isoxazoleproprionic acid (AMPA) receptors upon activation by
presynaptic glutamate release affect the clearance of glutamate
from the synaptic cleft. An increase in AMPA receptor density
causes an increase in cation flux. Since glutamate is negatively
charged and therefore experiences a force opposite to the cation
flux, diffusion from the cleft is faster.

At first instance, it would seem that ephaptic communication
is a rather energy intensive mechanism. A continuously open
channel puts a high metabolic load on the cell. The cell needs
to spend energy to maintain its ionic balance and membrane
potential. On the other hand, conventional synaptic transmission
is not cheap either. Neurotransmitters have to be synthesized
and vesicles have to be generated and filled and require the
presence of docking, fusion and recovery mechanisms. On the
post-synaptic site, receptors have to be expressed and processes
lowering the neurotransmitter content of the synaptic cleft, such
as neurotransmitter re-uptake transporters, need to be in place.
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While an ephaptic system puts a high metabolic load on the cell,
it might very well be that conventional synaptic transmission is
more costly.

In this mini-review we discussed ephaptic communication
within a synapse. We described two main advantages for ephaptic
communication: (1) it is very fast and has no synaptic delay, and
(2) it has very low noise levels. In principle, such communication
will occur in any synapse, but its influence will only become

significant if the synapse has certain properties. The elements
that are crucial for ephaptic neuronal communication are: (1) an
ephapse with a large resistance to the extrasynaptic space, (2) a
current sink and (3) voltage sensitive channels on the opposing
membrane. Because the identity of the channels involved can be
very variable, looking for convoluted or tight synaptic cleft may
be a good starting point when searching for an ephapse in other
systems.
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It has been well established in animal models that electrical fields generated during
inter-ictal and ictal discharges are strong enough in intensity to influence action
potential firing threshold and synchronization. We discuss recently published data from
microelectrode array recordings of human neocortical seizures and speculate about the
possible role of field effects in neuronal synchronization. We have identified two distinct
seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal
core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra
exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large
amplitude rhythmic ictal discharges produce large electric fields that correspond with
highly synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller
in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not
observed. These in homine observations are in accord with decades of animal studies
supporting a role of field effects in neuronal synchronization during seizures, yet also
highlight how field effects may be negated in the presence of strong synaptic inhibition in
the penumbra.

Keywords: ephaptic conduction, field effect, seizures, epilepsy, synchrony

An electrical field effect occurs when currents associated with
an extracellular field cross the cell membrane. If the current
is significant the transmembrane potential (Vm = Vintracelullar −
Vextracellular) will differ from the intracellular potential. If the
transmembrane potential surpasses threshold it may initiate fir-
ing, or at reduced transmembrane polarization influence action
potential timing (Radman et al., 2007a; Anastassiou et al., 2011),
synaptic efficacy (Bikson et al., 2004), or other membrane pro-
cesses (Faber and Korn, 1989; Jefferys, 1995; Weiss and Faber,
2010).

Field effects are thought to play a role in seizure initiation and
propagation (Jefferys, 1995; Dudek et al., 1998). In the absence
of synaptic transmission, non-synaptic mechanisms are sufficient
to initiate and propagate seizure like activity in hippocampal
slice models (Jefferys and Haas, 1982; Taylor and Dudek, 1982,
1984; Jiruska et al., 2010). Also, paired extra- and intracellular
recordings of spontaneous paroxysmal events in cat neocortex
in vivo, with synaptic transmission unaffected, have confirmed
that fields associated with ictal discharges depolarize the neu-
ronal membrane and can elicit action potentials (Grenier et al.,
2003a,b).

These discharges are thought to be generated by large paroxys-
mal depolarizing shifts (Goldensohn and Purpura, 1963; Grenier
et al., 2003a,b) mediated by glutamatergic synaptic transmis-
sion, high-voltage calcium spikes, and a persistent voltage-gated

sodium current (Traub et al., 1993). The electric field associated
with these currents ranges between 3–9 mV/mm (Pockberger
et al., 1984; Jefferys, 1995). Early modeling studies found that
the electric fields associated with ictal discharges can synchronize
action potentials on a time scale of 1 ms (Traub et al., 1985).
Moreover, in hippocampal slices neuronal synchrony during
ictal discharges is modulated by changes in osmolality that can
strengthen or weaken field effects (Bikson et al., 2003).

The mechanism by which field effects contribute to neural
synchronization has been a subject of intense study. It is estimated
that DC uniform fields alter the transmembrane potential in
individual neurons at the soma (Radman et al., 2009) by 0.18 mV
per mV/mm field strength (Deans et al., 2007). However, in hip-
pocampal slices bathed in high K+ to elicit epileptiform activity
exogenously pulsed uniform fields as small as 295 µV/mm could
entrain neuronal firing (Francis et al., 2003). An explanation
for the sensitivity of spike timing to weak electric fields may be
that network interactions amplify small field effects experienced
by all neurons across an extended territory (Parra and Bikson,
2004; Reato et al., 2010; Weiss and Faber, 2010) by modifying the
spike timing of a significant portion of the population (Radman
et al., 2007b; Anastassiou et al., 2011) and increasing the syn-
chrony of chemical synaptic transmission in an auto-regenerative
manner. Recordings from cortical neuronal ensembles, in vitro
(Anastassiou et al., 2011), and in vivo (Ozen et al., 2010) confirm
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FIGURE 1 | Ictal discharges are associated with neural synchronization in

the ictal core but not the penumbra. (A) Broadband recording of ictal
discharges from one of the microelectrodes in the array implanted in the ictal
core (above). Corresponding raster plot of multi-unit action potentials
recorded from all the active electrodes (below) illustrating synchronization at
the scale of 10 ms. (B) Propagation of an ictal discharge (right) recorded by

the multi-electrode array (left). Corresponding multi-unit activity reflects
propagation and the lack of synchronization at the scale of 1 ms. (C)

Broadband recording of ictal discharges from one of the microelectrodes in
the array implanted in the penumbra (above). Corresponding raster plot of
multi-unit action potentials illustrate heterogeneity and lack of global
synchrony.

that population level spike coherence to exogenous non-uniform
oscillating fields occurs at strengths ranging from 1–4 mV/mm.

If weak electric fields contribute to neuronal synchronization,
it would be expected that neuronal synchrony would be observed
during the large electric fields generated by ictal discharges in

humans. Despite the importance of neural synchrony in seizures,
there is a dearth of multi-electrode recordings demonstrat-
ing such synchrony over extended cortical territories. Recent
recordings of partial seizures from the human cortex with the
Utah microelectrode array (House et al., 2006) provide indirect
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evidence both for and against a role for field effects in ictal neural
synchronization (Truccolo et al., 2011; Schevon et al., 2012).

Schevon et al., recorded single unit activity during partial
seizures with the microelectrode array implanted within the
seizure onset zone. In three patients, each of the electrodes
detected synchronous unit activity phase locked to the trough
of the ictal discharge. However, in two other patients the
microelectrode array recorded heterogeneous unit activity
(Schevon et al., 2012).

Figure 1A demonstrates marked neural synchrony at the
temporal scale of ∼10 ms during ictal discharges when the
microelectrode array was implanted in the ictal core. To calculate
the electric field strength generated by these ictal discharges
requires multi-contact depth electrode recordings. However,
a rough estimate can be made using prior depth electrode
recordings of ictal discharges induced by penicillin application
in rabbit cortex (Pockberger et al., 1984). Based on these
recordings, the measured ictal discharge amplitude of 1–2 mV
in layer 4/5 corresponds with an electric field with a strength of
approximately 2–6 mV/mm. Based on in vitro (Anastassiou et al.,
2011), and in vivo (Ozen et al., 2010), evidence this field strength
is sufficient to induce population level spike field coherence when
the alternating field is applied for an extended duration. Thus,
the small variability in the timing of action potentials during
ictal discharges suggests that neocortical pyramidal neurons may
interact directly via electrical interactions.

Alternatively, neural synchrony during ictal discharges in
humans may be solely due to the strong uniform synaptic depo-
larization and field effects may not play a role. To prove that field
effects contribute to neuronal synchronization requires paired
intracellular and extracellular recordings from pyramidal neurons
during the ictal discharge (Weiss and Faber, 2010). However,
paired recordings during ictal discharges recorded from cat neo-
cortex in vivo did demonstrate considerable ephaptic depolariza-
tion (Grenier et al., 2003a,b).

Thus, neuronal synchrony during ictal discharges may be
enhanced in the ictal core by field effect interactions that syner-
gistically pace and entrain the rhythmic paroxysmal depolarizing
shifts generated by glutamatergic synaptic transmission (Traub
et al., 1985; Parra and Bikson, 2004). Synchronization at the
temporal scale of ∼1 ms does not appear to be achieved over
extended territories as ictal discharges propagate across the cortex
at speeds of ∼500 mm/s (Trevelyan et al., 2007; Schevon et al.,
2010, 2012), and action potential firing is affected by the lag times
(Figure 1B). This does not rule out the possibility of field effects
playing a role in synchronization however, since neocortical slow
waves which also propagate rapidly across the cortex (Massimini
et al., 2004), can produce fields that enhance and entrain network
activity locally (Fröhlich and McCormick, 2010).

Figure 1C demonstrates the heterogeneous asynchronous fir-
ing during the ictal discharges recorded by the microelectrode
array in another patient (Schevon et al., 2012). Similar observa-
tions of heterogenous asynchronous firing during human seizures
have been previously reported (Truccolo et al., 2011). The micro-
electrode array was implanted in the ictal penumbra in this case.
It is apparent that the ictal discharges are smaller amplitude than
that recorded from the ictal core in Figure 1A and produce an

estimated electric field across the cortical layers of approximately
1–2.1 mV/mm (Pockberger et al., 1984). This field strength
should be sufficient to influence spike timing (Francis et al., 2003;
Radman et al., 2007a; Anastassiou et al., 2011; Weiss and Faber,
2010), but not necessarily result in strong population level spike
field coherence (Ozen et al., 2010; Anastassiou et al., 2011).

Besides a weaker endogenous field, another potential expla-
nation for the heterogeneous, asynchronous firing, in the face of
the observed ictal discharges in Figure 1C, is that the neurons in
the penumbra have a membrane potential farther from threshold
than in the ictal core. Calcium imaging and patch clamp recording
from cortical slices bathed in zero magnesium suggest that in the
penumbra territory a combination of rhythmic inhibitory post-
synaptic potentials (IPSPs) and excitatory post-synaptic poten-
tials (EPSPs) contribute to the ictal discharges (Trevelyan et al.,
2006; Trevelyan, 2009; Schevon et al., 2012). Assuming that this
is the case in the human ictal penumbra (Figure 1C) the syner-
gistic influence of field effects on neuronal synchronization may
be negated. Additional experimental and modeling studies are
required to support this hypothesis.

The recordings from the ictal core demonstrate profound neu-
ronal synchrony during ictal discharges. While, paired intra- and
extracellular recordings are required to confirm that field effects
help to generate this synchronization, the electrical field strength
is likely sufficient (Ozen et al., 2010; Anastassiou et al., 2011). In
contrast, the recordings from the ictal penumbra highlight how
endogenous or exogenous field effects may be affected by synaptic
inhibition.
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