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QTL

Editorial on the Research Topic

Statistical Methods, Computing and Resources for Genome-Wide Association Studies

Thanks to the recent advances in genotyping technologies, genome-wide association studies
(GWAS) have been an established approach to identifying genetic variants that influence certain
characteristics of economic or scientific interest in plants, animals and humans. Applications of
GWAS cover a wide range of areas in genetics and have enhanced our understanding of the
genetic mechanisms in diseases, physiological or behavioral traits and have generated promises in
agriculture, medicine and wildlife conservation. Despite great success, GWAS remains challenged
by statistical modeling and computing. This collection of twelve articles presents a variety of
interesting scientific problems and novel approaches in GWAS.

Nested association mapping (NAM) is a technique for dissecting the genetic architecture of
complex traits in crops. It is designed for NAM-specific populations by taking the advantages of
linkage analysis and association mapping while avoiding their disadvantages. Bu et al. developed a
multi-locus association mapping model for the analysis of data from multiple families in the NAM
population. A notable feature of their method lies in its ability to deal with genetic heterogeneity
due to subpopulations, and therefore their approach improves statistical power for quantitative
trait locus (QTL) detection and accuracy of QTL effect estimation. In real data analyses, they found
that their method identified most QTLs that were detected by linkage analyses of single-family
datasets and was also able to disclose some new QTLs with small effects. Three of the 12 articles
in this collection are concerned with multi-trait analysis. Multi-trait analysis has been of interest
in GWAS due to its potential gain in statistical power and its ability for formal hypothesis testing
of biological importance such as pleiotropy vs. linkage. As a common practice, multiple traits are
analyzed separately and markers are scanned one at a time. Deng et al. argued that the former does
not take advantage of correlations between traits and thus can be a limitation on statistical power,
and the latter ignores complex interactions between genomic variants. Therefore, they proposed
a genome-wide gene-based multi-trait method to overcome these limitations. Technically, they
adopted kernel-based testing to evaluate the joint effect of multiple variants in a gene and
proposed an omnibus test strategy to integrate the test results. They demonstrated that their
method achieved excellent power with reasonable control of type I error rates. Lin et al. discussed
the interpretation of the results from multi-trait analyses. They introduced a bioinformatic tool,
MetaPha, which implements a meta-analysis approach by constructing multivariate analysis from
univariate GWAS results and then decomposing multivariate associations into multiple ones that
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facilitate interpretation. They validated their method using lipid
data from the Global Lipids Genetics Consortium and found
that only three to five central traits of the twenty-one traits they
studied were needed at the majority of the loci of their interest.
Fernandes et al. focused on a biologically interesting question,
linkage vs. pleiotropy, which can be tested by either multivariate
or univariate approaches. Using simulation studies, they found
that neither of these two approaches alone delivered a satisfactory
result, and thus suggest that multivariate and univariate GWAS
should be complementary rather than competing. For those
interested in mapping imprinted QTLs, Zheng et al. proposed a
special type of immortalized F2 population and correspondingly
two methods for mapping imprinted QTL and demonstrated the
merits of their proposed population and methods in mapping
precision. If your research is related to Barley, you may be
interested in Li et al. who studied a few traits in Qingke Barley.
Other interests include heritability estimation (Xu et al. and
Frouin et al.), disease studies using machine learning techniques
(Fan et al. and Li et al.), andMendelian randomization (Xu et al.).

Lastly, we would like to introduce Zhu et al. who reviewed
statistical methods for identifying trait-relevant tissues and cell
types. Genome-wide association studies (GWAS) have reported
numerous quantitative trait loci (QTL). However, few reported
QTL have been validated while the ultimate goal of GWAS is
to help understand the biological mechanisms of the trait-QTL
association. Some researchers have developed statistical methods
to integrate genomic information with functional annotations,
gene expression data, and gene network information into GWAS,

and aim to identify relevant tissue and cell types. Zhu et al.
extensively reviewed ten of these methods.

To conclude, this volume highlights new insights and
fascinating perspectives in statistical methods, computing, and
resources for GWAS. We hope the collection will stimulate more
developments in this important topic as biotechnology continues
to evolve.
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MetaPhat: Detecting and
Decomposing Multivariate
Associations From Univariate
Genome-Wide Association Statistics
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Background: Multivariate testing tools that integrate multiple genome-wide association
studies (GWAS) have become important as the number of phenotypes gathered from
study cohorts and biobanks has increased. While these tools have been shown to boost
statistical power considerably over univariate tests, an important remaining challenge is
to interpret which traits are driving the multivariate association and which traits are just
passengers with minor contributions to the genotype-phenotypes association statistic.

Results: We introduce MetaPhat, a novel bioinformatics tool to conduct GWAS of
multiple correlated traits using univariate GWAS results and to decompose multivariate
associations into sets of central traits based on intuitive trace plots that visualize
Bayesian Information Criterion (BIC) and P-value statistics of multivariate association
models. We validate MetaPhat with Global Lipids Genetics Consortium GWAS results,
and we apply MetaPhat to univariate GWAS results for 21 heritable and correlated
polyunsaturated lipid species from 2,045 Finnish samples, detecting seven independent
loci associated with a cluster of lipid species. In most cases, we are able to decompose
these multivariate associations to only three to five central traits out of all 21 traits
included in the analyses. We release MetaPhat as an open source tool written in
Python with built-in support for multi-processing, quality control, clumping and intuitive
visualizations using the R software.

Conclusion: MetaPhat efficiently decomposes associations between multivariate
phenotypes and genetic variants into smaller sets of central traits and improves
the interpretation and specificity of genome-phenome associations. MetaPhat is
freely available under the MIT license at: https://sourceforge.net/projects/meta-pheno-
association-tracer.

Keywords: multivariate analysis, genotype phenotype correlation studies, feature selection, Bayesian information
criteria, visualilzation, canonical correlation, multivariate GWAS, pheno- and genotypes
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INTRODUCTION

Genome-wide association studies (GWAS) of common diseases
and complex traits in large population cohorts have linked
thousands of genetic variants to individual phenotypes. In
emerging biobank studies as well as in some disease specific
collections have focused on, for example, Type 2 diabetes
(T2D) (Mahajan et al., 2018) or coronary artery disease (CAD)
(Ripatti et al., 2016), multiple related quantitative traits are
simultaneously available for genetic association studies. The
statistical power in these discovery efforts can be boosted
considerably by multivariate tests, which have become more
practical through recent implementations that require only
univariate summary statistics, such as MultiPhen (O’Reilly et al.,
2012), TATES (van der Sluis et al., 2013), CONFIT (Gai and
Eskin, 2018), MTAG (Turley et al., 2018), MTAR (Guo and Wu,
2019), and metaCCA (Cichonska et al., 2016). The merits of many
of these methods are further discussed by Chung et al. (2019).
Concretely, canonical correlation analysis (CCA) (Hotelling,
1936) is the direct extension of the correlation coefficient to
identify linear associations between two sets of variables, and
it has been successfully applied also to GWAS (Inouye et al.,
2012). Moreover, metaCCA extended CCA to work directly from
GWAS summary statistics (effect size estimates and standard
errors) of related traits and studies. However, a remaining
challenge is to interpret which traits are driving the multivariate
association and which traits are just passengers contributing
little to the association statistic. A successful identification of
a subset of central traits for each associated variant can lead
to new biological insights in studies of disease progression
and heterogeneity. To address this important task, we have
introduced MetaPhat (Meta-Phenotype Association Tracer), a
novel method to efficiently and systematically:

1. identify and annotate significant variants via multivariate
GWAS from univariate summary statistics using
metaCCA;

2. perform decomposition by systematically tracing the traits
of highest and lowest statistical importance to identify
subsets of central traits at each associated variant;

3. plot the traces of trait decompositions and cluster the
variants based on the ranking of the importance of traits.

MATERIALS AND METHODS

Workflow
MetaPhat requires as input a set of related GWAS summary
statistics from correlated traits. The program implements
efficient multi-trait genome-wide association testing,
identification of significant associations, and systematic tracing
of trait subsets to identify the central traits that consist of a
statistically optimal set of traits together with a set of driver
traits. A workflow is shown in Figure 1. In steps one to three,
genome-wide significant variants [P < 5e-8, the established
genome-wide threshold in the field (Sherry et al., 2001; Pe’er
et al., 2008)] were identified and were clumped into independent

groups that are subsequently represented by the lead variant of
each group (i.e., the variant with the smallest P-value). By default,
two lead variants were defined as independent if their distance
is higher than 1 million base pairs. At step four, we carried out
the decompositions of multivariate association by starting from
model with all K traits and removing one trait at a time until only
one trait remains. We proceeded via two different strategies that
we named the highest trace and the lowest trace. More specifically,
starting from the model with all K traits, we tested all unique
combinations of (K-1) traits to find the subset with the highest
CCA statistic (lowest P-value) that we assigned to the highest
trace and the subset with the lowest CCA statistic (highest
P-value) that we assigned to the lowest trace. We continued both
traces iteratively until only a single trait remained by always
choosing the subset with the highest CCA statistic on the highest
trace and the subset with the lowest CCA statistic on the lowest
trace. Intuitively, at each step, the trait dropped on the highest
trace was the trait that was best replaceable by the other traits
in the model with respect to the genetic association considered.
Analogously, at each step, the trait dropped on the lowest trace
was the trait that was most irreplaceable by the other traits in
the model with respect to the genetic association considered.
Altogether, we evaluated K2 subsets out of all possible 2K subsets
while building these two traces. Base pair distances, GWAS
P-value thresholds, and other program parameters could be
updated using command-line arguments.

We used the two traces to identify central traits that
are primarily responsible for the association with the variant
as explained next.

Evaluating Models
We used two quantities to evaluate models: CCA P-values and
Bayesian Information Criterion (BIC; Schwarz, 1978). P-values
allowed us to compare each association to the established
“genome-wide significance threshold” of 5e-8 (Pe’er et al.,
2008). By using the lowest trace, we could identify those traits
without which the multivariate P-value is no longer genome-
wide significant by simply collecting the traits that have been
removed from the full model when the P-value on the lowest
trace is first time above 5e-8. We call these traits the driver traits
since they drive the association in the sense that without them the
association does not anymore reach genome-wide significance
and hence would not have been reported as a discovery in a
GWAS. This definition of driver traits is based on a fixed P-value
threshold, which is an established practice in the field, but does
not claim any statistical optimality properties in terms of model
comparison. Hence, to more rigorously compare models with
different dimensionalities, we used BIC, which approximates the
negative marginal likelihood of the model and thus penalizes
for the model dimension (Schwarz, 1978). A lower BIC value
suggests a statistically better description of the data. A subset of
traits with minimum BIC would thus be the model of choice.
We defined the optimal subset as the subset with the lowest
BIC among all subsets on the highest trace and all subsets on
the inverted lowest trace. The inverted lowest trace aggregates
the traits that have been dropped on the lowest trace, and, in
particular, includes the set of the driver traits as one of its subsets.
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FIGURE 1 | MetaPhat workflow 1. GWAS results for K traits are accepted as input. 2. After quality control and filtering, a multivariate GWAS is performed on the full
model with all K traits using metaCCA via efficient multi-processing and chunking to reduce computation time. 3. Lead SNPs are detected and sorted based on the
leading canonical correlation/P-value and then clumped based on a user-specified window size. Custom variants can be added. 4. Decomposition of chosen
variants is performed through highest and lowest traces to find an optimal subset with a minimum BIC and driver traits based on the established P-value threshold.
5. MetaPhat results include trace plots for P-values and BIC, univariate association statistics plots for all lead SNPs, cluster maps (shown in Figure 2), and a
summary table listing central traits (union of drivers and optimal subset).

Subsequently, we defined the central traits as the union of traits
from the drivers and optimal BIC subset. MetaPhat traces and
terms are summarized in Table 1.

Computing P-Values and BIC From
GWAS Summary Statistics
metaCCA outputs the first canonical correlation r1 between the
genetic variant x and the set of k traits y1,. . .,yk and computes
the corresponding P-value (Clarke et al., 2011; Cichonska et al.,
2016). In this case, the first canonical correlation r1 equals to
the maximum correlation between the variant and any linear
combination of the traits and hence is equal to the square root
of the variance explained R2 from the linear regression of x on
y1,. . .,yk. In general, the expression for BIC is

BIC = log (n) k− 2 l̂og lk

where n is the sample size, k is the number of parameters (here
traits), and l̂og lk is the maximized log-likelihood. Next, we have
shown how to use metaCCA output r1 to derive BIC from the
maximized likelihood of the linear model written as a function of
R2 = r1

2.
Consider a linear model between a (mean-centered) variant x

and (mean-centered) traits y = (y1,. . .,yk)T .

x = yTβ+ ε = y1β1 + · · · + ykβk + ε, ε ∼ N
(
0, σ2) ,

where we do not include the intercept parameter as its maximum
likelihood estimate (MLE) is zero after mean-centering. The log-
likelihood function is

loglk(β, σ2) = −
n
2

log (2π)−
n
2

log
(
σ2)
−

(
x− yTβ

)T (x− yTβ
)

2σ2 ,

and MLEs are

∧

β =
(
yTy

)−1
yTxand

∧

σ2
=

1
n

((
x− yT

∧

β

)T (
x− yT

∧

β

))
.

Thus, the log-likelihood at maximum is

l̂og lk= log lk(β̂, σ̂2) = −
n
2

log (2π) −
n
2

log (σ̂2)

−
(x − yT β̂)T(x− yT β̂)

σ̂2
−

n
2

log (2π)−
n
2

log (σ̂2)−
n
2

R2
= xTx−

(x− yT β̂)T(x− yT β̂)

xTx
= 1−

σ̂2

σ̂2
0

,

that is, σ̂2

σ̂2
0

= 1− R2 where σ̂2
0 = var(x).
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TABLE 1 | MetaPhat terminology.

Highest trace Starting from the full model of K traits, we tested all unique combinations of (K-1) traits to find the subset with the highest CCA statistic
(lowest P-value), and we iterated until K = 2. The goal was to drop most replaceable traits first.

Lowest trace Starting from the full model of K traits, we tested all unique combinations of (K-1) traits to find the subset with the lowest CCA statistic
(highest P-value), and we iterated until K = 2. The goal was to drop most irreplaceable traits first.

Inverted trace Aggregates the traits that have been dropped on the lowest trace. The goal was to include the driver sets into the search space for the
optimal set.

Drivers/driver traits The traits that have been dropped on the lowest trace at the step where the multivariate P-value was for the first time no longer
genome-wide significant. Interpretation: traits that make the multivariate association statistically significant.

Optimal set The subset of traits that has the lowest BIC among subsets across all three traces. Interpretation: the set that is a statistically optimal
description of the multivariate association.

Central traits Union of drivers and optimal set. Interpretation: includes the important traits of the multivariate association.

Hence, the logarithm of the likelihood ratio between the MLE
and the null model can be written as

log LR = l̂og lk− log lk(0, σ̂2
0) = −

n
2

log
σ̂2

σ̂2
0

=

1 −
n
2

log(1− R2).

Hence, we have that, for an additive constant

c = −2loglk
(

0,
∧

σ2
0

)
,

BIC = k log (n)− 2
(̂loglk) = k log (n)+ n log

(
1− R2)

+ c,

which is possible to compute directly from the metaCCA output
for models with at least two traits up to an additive constant c.
Since c does not depend on the model dimension, we can ignore
it in the BIC calculation, when we are only interested in the
differences in BIC between models.

Finally, for a single-trait model, R2 can be computed directly
from the univariate GWAS summary statistics as

R2
=

1
(1+ n/z2)

where z =
GWAS effect

standard error
,

which can be plugged in the BIC formula above to yield BIC for
the single-trait model.

Implementation and Output
MetaPhat is written in Python (compatible for 2.7 and 3+)
and requires R (3.4+) for plotting. The command-line based
program has been tested on multiple operating systems and
cloud images. Library requirements and command options are
further described in Supplementary Table S1, and test data are
accessible from the project page: https://sourceforge.net/projects/
meta-pheno-association-tracer.

MetaPhat outputs tabular text files and several plots.
A summary result file contains, for each chosen variant, the
driver traits and the optimal subset with their P-value and BIC
statistics. For each variant, trace plots using P-values and BIC
are generated, showing the highest trace, the lowest trace and
the inverted lowest trace. In addition, the univariate P-values
and directions of effects for each trait are also plotted. The
estimated phenotype correlation matrix, clustered heatmaps
of trait importance for the chosen variants and a similarity

between variants using trait rankings on the lowest trace
are produced. Optionally, intermediate statistics during the
decomposition can be plotted to get a more detailed view of the
decomposition process.

Materials
Our lipidomics data set consisted of the univariate GWAS results
of 21 correlated lipid species with polyunsaturated fatty acids that
were reported to exhibit high heritability (Tabassum et al., 2019)
and showed high correlation (Supplementary Figure S2). These
results originated from 2,045 Finnish subjects with imputed
genotypes available at∼8.5 million SNPs. The arbitrarily assigned
lipid species identifiers along with their class names and fatty
acid chemical properties are listed in Table 2A. To further
validate MetaPhat, we processed summary statistics from four
basic lipids [high-density lipoprotein (HDL) cholesterol, low-
density lipoprotein (LDL) cholesterol, triglycerides (TG), and
total cholesterol (TC)] conducted by the Global Lipids Genetics
Consortium (GLGC) (Willer et al., 2013; Zhu et al., 2018), and
these are listed in Table 2B. With the GLGC data set our aim was
to compare MetaPhat results with univariate results reported by
GLGC for all variants reported to be significantly associated with
two or more traits by GLGC.

RESULTS

Using the lipidomics data sets with GWAS summary statistics
from the 21 polyunsaturated lipids, MetaPhat found seven
independent lead variants after clumping the 415 variants
exceeding the standard GWAS P-value threshold of 5e-8 within a
window of 1 Mb. Table 3 lists these variants along with their gene
annotation, multivariate P-value, and central traits. MetaPhat
has strongly reduced the multivariate association for all seven
variants into smaller and more specific groups of central traits.

We considered in more detail rs7412, which is a missense
variant in the APOE gene and is known for its effect on LDL,
as reported, for example, in the GLGC analysis (Willer et al.,
2013). With the lipidomics data, this variant would not have been
identified from any of the 21 univariate GWAS as the smallest
univariate P-value was 1.1e-4 (trait PCO23, Supplementary
Figure S3.6). On contrary, the multivariate GWAS by MetaPhat
clearly highlighted this variant associated with the multivariate
lipidomics (P = 4.2e-13) and further determined that the
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TABLE 2 | Lipid traits used in MetaPhat analysis.

(A) PLASMA LIPIDOMICS

Identifier Lipid class Lipid species QC’d variants HDL corr. LDL corr. TG corr.

CE14 Cholesteryl ester CE(20 : 4;0) 8,711,715 0.032 0.464 0.251

CE15 Cholesteryl ester CE(20 : 5;0) 8,711,715 0.067 0.396 0.188

CE17 Cholesteryl ester CE(22 : 6;0) 8,711,665 0.107 0.394 0.107

LPC8 Lysophospatidylcholines LPC(20 : 4;0) 8,710,151 0.011 − 0.124 − 0.083

LPC9 Lysophospatidylcholines LPC(22 : 6;0) 8,694,250 0.114 − 0.015 − 0.118

LPE5 Lysophosphatidylethanolamine LPE(20 : 4;0) 8,710,162 0.077 − 0.077 0.073

LPE6 Lysophosphatidylethanolamine LPE(22 : 6;0) 8,711,037 0.235 0.005 0.041

PC17 Phosphatidylcholine PC(16 : 0;0− 20 : 4;0) 8,711,715 0.120 0.115 0.361

PC18 Phosphatidylcholine PC(16 : 0;0− 20 : 5;0) 8,711,533 0.126 0.196 0.248

PC29 Phosphatidylcholine PC(17 : 0;0− 20 : 4;0) 8,704,982 0.113 0.138 0.250

PC36 Phosphatidylcholine PC(18 : 0;0− 20 : 4;0) 8,711,715 0.033 0.190 0.336

PC37 Phosphatidylcholine PC(18 : 0;0− 20 : 5;0) 8,751,062 0.061 0.242 0.243

PC46 Phosphatidylcholine PC(18 : 1;0− 20 : 4;0) 8,711,715 0.240 0.105 0.214

PC21 Phosphatidylcholine PC(16 : 0;0− 22 : 6;0) 8,711,715 0.154 0.204 0.219

PCO7 Phosphatidylcholine-ether PC−O(16 : 0;0− 20 : 4;0) 8,711,715 0.081 0.194 0.076

PCO23 Phosphatidylcholine-ether PC−O(18 : 0;0− 20 : 4;0) 8,711,560 0.187 0.115 − 0.154

PCO29 Phosphatidylcholine-ether PC−O(18 : 1;0− 20 : 4;0) 8,710,292 0.198 0.115 − 0.086

PE7 Phosphatidylethanolamine PE(18 : 0;0− 20 : 4;0) 8,707,361 − 0.027 0.028 0.585

PEO3 Phosphatidylethanolamine-ether PE −O(16 : 1;0− 20 : 4;0) 8,706,846 0.083 0.198 0.154

PEO11 Phosphatidylethanolamine-ether PE −O(18 : 2;0− 20 : 4;0) 8,693,147 0.148 0.238 0.099

PI9 Phosphatidylinositol PI(18 : 0;0− 20 : 4;0) 8,711,715 − 0.026 0.231 0.460

(A) Polyunsaturated lipid species with acyl chains- C20:4 (14 lipids), C20:5 (3 lipids), and C22:6 (4 lipids) measured for 2,045 individuals (Tabassum et al., 2019). After
quality control (QC), a total of 8,576,290 variants were available for all 21 traits. Correlations to basic lipids HDL, LDL, and TG are also shown. (B) Four basic lipids from
GLGC (Willer et al., 2013). After quality control, a total of 2,267,285 variants were available for all four traits.

(B) GLGC LIPIDS

Identifier Lipid class QC’d variants Sample size

HDL High-density lipoprotein cholesterol 2,343,025 95,129

LDL Low-density lipoprotein cholesterol 2,271,091 90,421

TC Total cholesterol 2,341,292 95,537

TG Triglycerides 2,286,633 91,598

association was driven by CE14 and PCO23 (P-value after
excluding these driver traits is 1.8e-06). The BIC-optimal subset
for this variant extended the drivers by one additional trait
and included CE14, PC36, and PCO23, which form the central
traits. The trace plots for rs7412 are shown in Figure 2A (P-
values for defining driver traits) and Figure 2B (BIC for defining
optimal subset).

Variants rs66505542 near BUD13 and rs261290 near
ALDH1A2 both have only one driver trait (PI9 for BUD13 and
PE7 for ALDH1A2) and three or five central traits (Table 3).
Earlier, the APOA1 variant rs964184 within 100 kb of rs66505542
has been reported to be associated with TG (lead trait, P = 7.0e-
224), TC, HDL, and LDL in GLGC data and rs66505542 itself
with several cell phenotypes (platelet count, red cell distribution
width, sum of eosinophil and basophil counts) in the GWAS
catalog, while rs261290 has been reported to be associated with
HDL (lead trait, P = 1.0e-188), TC, and TG in GLGC data
(mapped to LIPC gene) and with HDL in the GWAS catalog.

A very different picture emerges for rs174567 near FADS1/2
since its 18 central traits show its wide effects across the
lipidomics traits studied here. Previously reported FADS1/2
associations are with all lipid traits (TG lead trait, P = 7.0e-38)
in GLGC data and with metabolite measurements and gallstones
in the GWAS catalog.

Trait importance map that clusters each variant based on the
lowest trace is shown in Figure 2C and the similarity of the
variants as measured by rank correlation of the traits on the
lowest trace is shown in Figure 2D. The trace plots for the other
six variants than rs7412 are shown in Supplementary Figure S1.

Validation and Global Lipids Genetics
Consortium
We processed the Global Lipids Genetics Consortium (GLGC)
GWAS study for four plasma lipids (HDL, LDL, TC, and
TG, as listed in Table 2B). These correlated traits along with
large sample sizes and available summary files are suitable for
MetaPhat GWAS and decomposition. We focused on the 13
variants reported by GLGC to have associations with three or
more lipid traits (Supplementary Tables S2 and S3 from Willer
et al., 2013). In Table 4, we validated that at 12 out of the
13 variants the same associations are confirmed by MetaPhat’s
central traits. The only discordance was at rs6831256 (DOK7)
where we found TC and TG as central traits compared to
previously reported univariate associations with TC, TG, and
LDL. As TC and LDL are highly correlated, it is understandable
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TABLE 3 | MetaPhat results of the 7 lead variants from the multivariate analyses of the lipidomics data.

Variant/Gene Samples
missing

P-value
all traits

Driver trait(s) P-value without
drivers

BIC optimal
subset

P-value BIC
optimal
subset

Central traits

*rs174567/FADS2 1.3% 2.40e–145 PC36, CE14, PC17, LPC8,
PEO11, PEO3, LPE5,
PC21, PC46, PC29, CE15,
PC37, PC18, PCO7,
PCO29, PCO23, PI9, PE7

1.95e–05 CE15, LPC8, PC17,
PC21, PC36, PC46,
PE7, PEO11, PI9

2.10e–146 PC36, CE14,
PC17, LPC8,
PEO11, PEO3,
LPE5, PC21,
PC46, PC29,
CE15, PC37,
PC18, PCO7,
PCO29, PCO23,
PI9, PE7

*rs66505542/BUD13 0.1% 1.55e–08 PI9 3.39e–04 PI9, LPC9, PC36 3.27e–12 PI9, LPC9, PC36

rs146327691/SLCO1A2_
UTR

1.2% 4.27e–08 LPE5 1.91e–06 LPE5, LPC9, LPE6,
PE7

5.60e–11 LPE5, LPC9, LPE6,
PE7

rs188167837/ENSG00
000200733_UTR_13KB

1.0% 2.95e–08 PC17 7.59e–05 PC17, CE14, CE17,
PC21

4.64e–09 PC17, CE14,
CE17, PC21

*rs261290/ALDH1A2 0.6% 2.51e–40 PE7 2.04e–07 PE7, CE15, PC17,
PCO29, PI9

1.37e–46 PE7, CE15, PC17,
PCO29, PI9

*rs7412/APOE 0% 4.17e–13 CE14, PCO23 1.82e–06 CE14, PCO23, PC36 5.79e–18 CE14, PCO23,
PC36

rs8736/MBOAT7 23.6% 9.12e–50 PI9 5.89e–02 PI9, LPE6, PC36, PE7 1.25e–81 PI9, LPE6, PC17

The lipid trait class names and acyl chain properties are listed in Table 2A. *Variant region reported as significant for basic lipids by GLGC (Willer et al., 2013).

that the smaller dimension of the set TC, TG, may in some
analyses be preferred over the set that also includes LDL. In
Supplementary Table S2, we further report high concordance
between our central traits and GLGC variants found associated
with two or more standard lipids.

Performance
For computing the test statistic, MetaPhat uses metaCCA
that, for a single SNP, has previously been shown to reliably
estimate the results of standard CCA applied to individual level
data (canoncorr function in Matlab) (Cichonska et al., 2016).
Additionally, we also empirically validated MetaPhat multivariate
findings with GLGC results.

MetaPhat considerably cuts down the computational demands
of comprehensive subset testing. With K traits, there are 2K-
1 non-empty subsets that have quickly become infeasible to
systematically assess, while MetaPhat only considers about K2

models. For example, in our example with K = 21 traits, the gain
in performance is about 4,700-fold compared to the complete
subset testing. To further increase performance and usability,
we have implemented flexibility for multi-thread processing
to enable high performance and memory efficiency. On a
moderate Google cloud image (16 vCPUs, 8 GB), the complete
MetaPhat workflow for our lipidomics analysis, containing 21
lipids and 8.5 million SNPs, was completed in less than 2.5 h
(143 min). Using 10 processors and 9 gigabytes of memory,
the GLGC job with the four basic lipids and 2.4 million
imputed SNPs completed in 24 min. MetaPhat also allows
decomposition and plotting of custom SNPs. For example, the
custom analysis of the 13 GLGC variants associated with three
or more traits, shown in Table 4, was run again on existing
GLGC MetaPhat results, and decomposition and plotting took

only 2 min. We note that the run time could be longer on
shared servers but also substantially shorter using more powerful
dedicated cloud images.

DISCUSSION

It is expected that a particular genetic variant may affect
only a subset of related biomarkers that are risk factors of
complex disorders, such as T2D or coronary heart disease.
We implemented MetaPhat to systematically decompose and
visualize statistically significant multivariate genome-phenome
associations into a smaller group of central traits, based only
on univariate GWAS summary statistics. We are not aware
of comparable software to MetaPhat that would automatically
carry out multivariate GWAS and identify central traits for
the associations from summary statistics. ASSET (Bhattacharjee
et al., 2012) aims to find the best trait subsets within a pool
of multiple studies and has been applied particularly for case-
control studies. MTAG (Turley et al., 2018) can be applied to
GWAS results of multiple related traits and overlapping samples,
but its aim is to improve the accuracy of the univariate effect
sizes by using the information from correlated traits rather than
decomposing the multivariate association to individual traits.

In our results from an analysis of 21 lipidomics traits, we
demonstrated that the APOE association (rs7412) benefited from
multivariate testing (driven by CE14 and PCO23 traits), as
the univariate P-value was insignificant (P > 1e-4) across all
21 GWAS traits (shown in Supplementary Figure S3.6), but
multivariate P-value was low (P < 5e-13). This variant is known
to have a strong effect on LDL, and Table 2 shows that CE14
has the highest correlation with LDL (0.464). The other two
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FIGURE 2 | MetaPhat results using multivariate lipidomics data. (A) Trace plot of rs7412 identifies CE14 and PCO23 as the driver traits. (B) CE14, PC36, and
PCO23 form the optimal subset as defined by minimum BIC (highest negative BIC). (C) Trait importance map of each SNP is the rank on the lowest trace where the
rankings are transformed to the range of 0 and 1 values, with darker blue shades representing the most important traits of the multivariate association. (D) SNP
similarity based on the rank correlation on the lowest trace.

central traits of this variant, PCO23 and PC36, did not have any
correlation to basic lipids larger than 0.20 in absolute magnitude.

Table 3 lists the multivariate results including which four
of these seven variants were previously reported by GLGC as
associated with at least one of the four basic lipids. The other
three variants also have some nearby variants that have been
reported in the GWAS catalog (Buniello et al., 2019). First, rs8736
in MBOAT7 has been previously reported to be associated with

human blood metabolites (Shin et al., 2014) as well as alcohol
related cirrhosis of the liver (Buch et al., 2015). Second, variants
in the region of rs146327691, near the SLCO1A2 gene, have been
previously reported for response to serum metabolites (Krumsiek
et al., 2012) and, interestingly, also for response to statins (Ho
et al., 2006; Carr et al., 2019). Lastly, variants in the region
of rs188167837 have been previously identified to be associated
with nasopharyngeal carcinoma (Su et al., 2013). Additionally,
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TABLE 4 | MetaPhat detection of driver and optimal lipid sets for 13 variants reported to be associated with at least three lipids by GLGC (12).

Gene Variant Chr:Pos GLGC associated
lipids

GLGC lead
P-value

MetaPhat all
traits P-value

MetaPhat
driver(s)

Without driver
(s) P-value

BIC optimal
set

Central traits

HDL lead

PIGV-NR0B2 rs12748152 chr1:27138393 HDL LDL TG 1e–15 2.8e–23 HDL LDL TG 3.0e–06 HDL LDL HDL LDL TG

PPP1R3B rs9987289 chr8:9183358 HDL LDL TC 2e–41 1.6e–76 HDL TC LDL 1.0e–04 HDL LDL HDL LDL TC

LIPC
(ALDH1A2)

rs1532085 chr15:58683366 HDL TC TG 1e–188 0 HDL TC TG 6.4e–01 HDL TC TG HDL TC TG

CETP rs3764261 chr16:56993324 ALL 1e–769 0 ALL NA HDL LDL TG ALL

LDL lead

MIR148A rs4722551 7:25991826 LDL TG TC 4e–14 2.5e–24 TG LDL TC 2.0e–02 LDL TG LDL TG TC

APOE rs4420638 19:45422946 ALL 2e–178 6.3e–210 ALL NA LDL HDL TC ALL

TC lead

TIMD4 rs6882076 5:156390297 TC LDL TG 5e–41 1.3e–49 TG TC LDL 6.9e–01 TC TG TC LDL TG

CILP2 rs10401969 19:19407718 TC TG LDL 4e–77 1.3e–138 TG TC LDL 1.0e–01 TC TG TC TG LDL

TG lead

LRPAP1
(DOK7)

rs6831256 4:3473139 TG TC LDL 2e–12 6.3e–16 TG TC 1.0e–07 TG TC TG TC

ANGPTL3 rs2131925 1:63025942 TG LDL TC 3e–74 7.8e–157 TG LDL TC 9.5e–05 TG TC HDL ALL

TRIB1 rs2954029 8:126490972 ALL 1e–107 1.6e–148 ALL NA TG TC LDL ALL

FADS123 rs174546 11:61569830 ALL 7e–38 1.3e–104 ALL NA ALL ALL

APOA1 rs964184 11:116648917 ALL 7e–224 7.9e–264 ALL NA TG TC ALL

We confirmed that the vast majority of the MetaPhat central traits are either the same or a subset of the reported GLGC associated lipids (11/13 for driver traits, 12/13
for BIC).

MetaPhat decomposed most variants to substantially smaller
sets of central traits than the full set of 21 traits, which can
provide new biological insight regarding the variants identified.
On the other hand, the essential role of FADS2 gene region
in regulating unsaturation in fatty acids was clearly reflected
in MetaPhat results, as we observed as many as 18 central
traits at the lead variant. Provided that the exact mechanistic
roles of polyunsaturated lipids toward heart disease (Teslovich
et al., 2010; Malovini et al., 2016; Pizzini et al., 2017) are under
active investigation, our findings warrant further evaluation. We
further confirmed good concordance (60/67, Supplementary
Table S2) with MetaPhat central traits with respect to the earlier
reported GLGC associations with two or more standard lipids,
and excellent concordance (12/13) with the associations with
three or more standard lipids.

MetaPhat optimal subsets are derived from the minimum BIC
score representing the model that best describes the data when
we account for both the model fit and the model dimension.
Qualitatively BIC statistic is similar to the widely-used AIC
(Akaike, 1973) statistic, but BIC quantitatively differs from
AIC by favoring smaller dimensions, which also improves the
interpretation of the optimal models. As intuitively expected,
and as seen in Table 3, the driver traits tend to be members
of the optimal set although they do not always agree, since the
driver traits are defined by a GWAS-specific criterion of P-value
threshold 5e-8, which does not need to coincide with the optimal
subset chosen by a more statistically justified BIC criterion.

Our software implements flexible parameters for custom
multi-thread chunking to enable high performance, genome-
wide, multi-trait meta-analysis while integrating metaCCA for
multivariate testing followed by systematic decomposition of
traits. Thus, a limitation of MetaPhat is that it relies on metaCCA,
but other multivariate GWAS algorithms could also be used
provided that these methods can work with univariate GWAS
results as inputs and produce suitable metrics that can be
used to derive the model comparison statistics. With regard to
false positives, we used the standard GWAS cutoff (P = 5e-
8), as carried out only a single multivariate GWAS to pick
the lead variants. This cutoff can be adjusted according to
the preferences of the users. MetaPhat also optionally allows
the running of metaCCA+ (Cichonska et al., 2016) shown to
protect against false positives via shrinkage that adds robustness
to the analysis.

Finally, we remind the reader that MetaPhat decompositions
are sequential, dropping one trait at a time, and hence are not
guaranteed to produce the globally optimal subset. Additionally,
for highly correlated traits, such as LDL and total cholesterol, the
choice of which one is dropped first may not be completely robust
to small changes in data.

The ability of MetaPhat to identify and visualize central
traits will also be valuable in supporting efforts and pipelines
(Fatumo et al., 2019) comparing results between univariate
and multivariate associations as well as in studies that aim to
increase specificity of multi-trait associations. We also expect
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that the multi-phenotype clustering results of MetaPhat can assist
researchers investigating disease subtypes.
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Genome-wide association studies focusing on a single phenotype have been broadly
conducted to identify genetic variants associated with a complex disease. The
commonly applied single variant analysis is limited by failing to consider the complex
interactions between variants, which motivated the development of association analyses
focusing on genes or gene sets. Moreover, when multiple correlated phenotypes are
available, methods based on a multi-trait analysis can improve the association power.
However, most currently available multi-trait analyses are single variant-based analyses;
thus have limited power when disease variants function as a group in a gene or a gene
set. In this work, we propose a genome-wide gene-based multi-trait analysis method
by considering genes as testing units. For a given phenotype, we adopt a rapid and
powerful kernel-based testing method which can evaluate the joint effect of multiple
variants within a gene. The joint effect, either linear or nonlinear, is captured through
kernel functions. Given a series of candidate kernel functions, we propose an omnibus
test strategy to integrate the test results based on different candidate kernels. A p-
value combination method is then applied to integrate dependent p-values to assess
the association between a gene and multiple correlated phenotypes. Simulation studies
show a reasonable type I error control and an excellent power of the proposed method
compared to its counterparts. We further show the utility of the method by applying
it to two data sets: the Human Liver Cohort and the Alzheimer Disease Neuroimaging
Initiative data set, and novel genes are identified. Our method has broad applications in
other fields in which the interest is to evaluate the joint effect (linear or nonlinear) of a set
of variants.

Keywords: gene-based association, kernel function, multi-trait, nonlinear effect, p-value combination

INTRODUCTION

Methods on genome-wide association studies (GWAS) are mostly focused on single variant (e.g.,
single nucleotide polymorphism, SNP) analysis with a single phenotype, the so-called single-variant
single-trait analysis. Increasing evidence shows that pleiotropy, the effect of one gene on multiple
phenotypes (often correlated), plays a pivotal role in many complex traits (Stearns, 2010; Schifano
et al., 2013). For example, cognitive ability is often assessed in many domains such as memory,
intelligence, language, and visual–spatial function (Yang and Wang, 2012). Instead of analyzing one
trait at a time, we can take the correlated structure of multiple phenotypes into account and analyze
them in a multi-trait analysis. As a complementary approach, such type of analysis can not only
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gain association power by aggregating multiple weak signals (He
et al., 2013; Schifano et al., 2013; Wang, 2014) but also lead
to better understanding of disease etiology by detecting genetic
variants with pleiotropic effects (Amos and Laing, 1993; Jiang and
Zeng, 1995; Schifano et al., 2013).

For a multi-trait analysis, one commonly applied method
is the one-way multivariate analysis of variance (MANOVA)
(Bilodeau, 2013). Unfortunately, most multi-trait data do not
satisfy the multivariate normal assumption for MANOVA, hence
greatly limiting its applicability. Other methods are developed
based on the idea of dimension reduction. For example, a
multivariate response can be summarized into a univariate
score using principal component (PC) analysis, based on which
traditional univariate association methods can be applied (e.g.,
Zhang et al., 2012). As the first PC contains the most information
about multiple phenotypes, this can change the test between
a SNP and multiple phenotypes into a univariate test of
association between a SNP and the first PC. The downside for
this analysis is the lack of interpretability. Methods focusing on
summary statistics have gained much popularity recently since
the individual-level data are typically unavailable (e.g., Kim et al.,
2015; Turley et al., 2018). However, such methods are largely
undermined if the published GWAS summary statistics have
limited accuracy. In addition, the marginal SNP effect is usually
quite small in many complex diseases, and many identified
SNPs have limited biological interpretation, for example, SNPs
identified in non-coding regions.

These limitations motivated the development of gene- or
pathway-based association analysis aimed at improving the
statistical power and gaining novel insight into disease etiology
(Wang et al., 2007; Cui et al., 2008; Liu et al., 2010). Firstly,
the gene- or pathway-based analysis can largely alleviate the
multiple testing burden by more than 10 or 100 folds. Secondly,
due to allelic heterogeneity, most diseases are associated with
a set of SNPs at different loci, making it hard to replicate the
results based on a single-SNP analysis (Neale and Sham, 2004).
In this case, a gene- or pathway-based analysis may provide
additional insight to reveal the functional mechanism of complex
diseases (Wang et al., 2010). Unlike the heterogeneity of a single
locus, the biological function of genes is more consistent across
populations, which enhances the likelihood of replication (Neale
and Sham, 2004; Wang et al., 2010).

Most reports in the literature on multi-trait analysis are
focused on a single-variant analysis, which shares the same
limitation as described for the single-trait GWAS. Although
methods for gene-based analysis focusing on a single trait have
been developed, multi-trait analysis focusing on genes or gene
sets is largely under-developed. There is a pressing need to
develop a gene-based method for a multi-trait analysis.

In a gene-based single-trait analysis, the kernel-based testing
(KBT) method is gaining much popularity recently due to its
power and flexibility in capturing potential nonlinear effects
(Kwee et al., 2008; Mukhopadhyay et al., 2010; Wu et al., 2010;
Li and Cui, 2012; Lin et al., 2013; Marceau et al., 2015; Wei
and Lu, 2017). The power of the KBT methods depends on
the choice of kernel functions which measure the similarity
between individuals across multiple genetic variants in a gene.

When the underlying true disease function is unknown, this
limits the applicability of the KBT methods since the choice
of the kernel function needs to be determined. Given a series
of candidate kernel functions under the KBT framework, a
common method is to choose the kernel function leading to
the smallest p-value. This idea, however, could inflate the type
1 error rate due to the greedy process of kernel selection. We
recently proposed a nonparametric KBT testing procedure which
relaxes the distributional assumption required in most KBT
methods (He et al., 2019). The asymptotic distribution of the test
statistics approximately follows a normal distribution when the
number of SNP variants in a gene set, p, is large. In fact, the
normal approximation works well under a large p setting. Given
a series of candidate kernel functions, we provided an analytical
procedure to evaluate the p-value of the maximum statistics.

Based on empirical studies, the approximation method
could be underperformed when p is relatively small. In this
work, we borrowed the same idea but relaxed the large p
assumption required for the normal approximation and proposed
an omnibus testing procedure when multiple candidate kernels
are available. Obtaining a p-value needs almost negligible
computation and can be extremely fast. When extending the
method to a multi-trait analysis, we adopted a Fisher p-value
combination (FPC) method with correlated dependent variables,
as proposed by Yang et al. (2016). The FPC provides an alternative
approach for multi-trait analysis by integrating the single-trait
analysis results. The proposed Omnibus Multi-trait Gene-based
Association (OMGA) analysis can capture linear or nonlinear
effects without kernel selection and is computationally efficient.

We conduct extensive simulation studies to evaluate the type
I error control and power and further compare it with its
counterparts. We demonstrate the performance of our proposed
method through two real data applications of the Human Liver
Cohort (HLC) study and the Alzheimer Disease Neuroimaging
Initiative (ADNI) study. The results tell which genes are specific
to a single phenotype or contributed to a common genetic
construction of multiple phenotypes. Our OMGA method
enriches the literature of genome-wide gene-based multi-trait
association analysis and has broad applications in other fields
where the interest is to evaluate the joint effect (linear or
nonlinear) of a set of variants.

STATISTICAL METHODS

Gene-Based Association Test Based on
a Single Trait
The Model
To model the association between a gene and a quantitative trait,
we consider the following semiparametric model (He et al., 2019),

Yi = µ+ αTWi + h(xi)+ εi, i = 1, 2, .... ..., n, (1)

where Yi is the response variable for the i-th individual,
n is the sample size, α is the effect corresponding to
Wi = (Wi1, Wi2, . . . . . . WiH)T , a vector of H-dimensional
covariates containing variables such as age and gender,
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xi =
(
xi1, . . . . . . xip

)T is a vector of a p-dimensional SNP set in a
given gene where p can be large, h(·) is an unknown function that
captures the joint effect of multiple variants in a given SNP set,
and εi is the random error with mean 0 and variance σ2. Here, we
relax the error distribution assumption for the error term which
does not have to follow a normal distribution.

Following model (1), assessing the effect of multiple variants in
a given SNP set (e.g., a gene) is equivalent to test the hypotheses
H0: h(·) = 0, while adjusting for the effects of covariates. Wu
et al. (2011) proposed a kernel-based test by considering the
joint effect of multiple SNPs in a given set and showed great
power compared to a multiple-regression approach. In Wu et al.
(2011), the function h(·) is modeled as a random effect and
h (·) ∼ N

(
0, τ2K

)
where τ2 is the variance and K is a kernel

matrix which measures the similarity between individuals across
multiple SNP variants. However, the normality assumption on
h(·) limits its power when this assumption is violated. To relax
this assumption, He et al. (2019) proposed a U-statistic defined as:

Tn =
1

n (n− 1)

∑
i6=j

K
(
Xi, Xj

) (
Yi − Ŷi

) (
Yj − Ŷj

)
/σ̂2,

where Ŷ and σ̂2 are sample estimates under the null model
Yi = µ+ αTWi + εi; K

(
Xi, Xj

)
=

Kθ(Xi,Xj)
√

E{Kθ(Xi,Xi)}E{Kθ(Xj,Xj)}
is the normalized kernel for kernel Kθ

(
Xi, Xj

)
. In practice,

the choice of kernel function for Kθ

(
Xi, Xj

)
depends

on the underlying relationship between SNPs and the
disease response. For example, a linear kernel is applied
if the relationship between multiple SNP variants and the
disease response is linear, and a Gaussian or polynomial
kernel can be applied if a nonlinear relationship between
multiple SNPs and the disease response is assumed.
Several widely used kernel functions include the linear
kernel Kθ

(
Xi, Xj

)
= XT

i Xj/θ, IBS kernel for discrete SNP
genotype data Kθ

(
Xi, Xj

)
=
∑p

k=1
(
2−

∣∣Xik − Xjk
∣∣) /2p, and

Gaussian kernel Kθ

(
Xi, Xj

)
= exp

(
−||Xi − Xj||

2/θ
)
. These

kernels will be our candidate kernels in the simulation and
real data analysis.

Let W̃n×(L+1) = [1n, Wn×L] and A = W̃
(
W̃TW̃

)−1 W̃T .
Then, we have σ̂2

= YT (I − A) Y/ (n− L− 1) and
Ŷ = AY. Following the Eigen-decomposition, K

(
Xi, Xj

)
=∑

∞

m=1 λmφm (Xi) φm
(
Xj
)

where λm is the eigenvalues and φm(·)
is the orthonormal eigenvectors of the kernel K. For any positive
integer k, let Vk =

∑
∞

m=1 λk
m. Then, under the null hypothesis of

no association, the asymptotic distribution of the test statistic Tn
follows a chi-square distribution, i.e.:

n Tn/V1
d
−→

∞∑
m=1

λk,m
(
x2

1,m − 1
)
,

where x2
1,m are independent chi-square distributions with

one degree of freedom. Then, we can apply a Satterthwaite
approximation to the mixture of chi-squares by a scaled chi-
square distribution âχ2

ĝ/V̂1 − 1, where ĝ = V̂1/â, â = σ̂2
Tn

/2V̂1,

and V̂1 = n−1tr (HK) is a consistent estimator of V1 with
H = I − n−1J as a projection matrix. Then, an asymptotic α-level
test rejects the null if

(nTn + V̂1)/â > χ2
ĝ,1−α,

where χ2
(ĝ,1−α)

is the (1 – α)th quantile of a chi-square
distribution with ĝ degrees of freedom. Following He et al. (2019),
σ2

Tn
can be estimated by

1/n2

(
2−

12
n2 +

61̂

n

)
tr(HKHK)

−

(
2
n
+

1̂

n

)
tr2(HK)+ 1̂tr(B ◦ B),

where ◦ represents the Hadamard product, 1̂ =

n−1 ∑n
i=1

[
(Y)i−Ȳn

σ̂

]4
− 3, and B = HKH. Then, the p-value of

Tn can be obtained.

An Omnibus Test With Multiple Candidate Kernels
The method described above works for a given kernel function.
There are various kernel functions available to use. For example,
if a linear relationship is assumed, then one can apply a linear
kernel, while a Gaussian kernel can be applied when potential
nonlinear relationship exists. Thus, the power of the proposed
test statistic largely depends on the choice of the kernel function.
If the optimal kernel function that captures the underlying true
relationship cannot be determined, the testing power will suffer.
In practice, the true relationship is generally unknown, so does
the choice of the kernel function.

To overcome the issue of selecting the optional kernel
function, we propose an omnibus test strategy in this
work. Given a set of L candidate kernels denoted by
K1 (·, ·) , K2 (·, ·) , · · · , KL (·, ·) ,, we can apply the proposed
method and get the corresponding p-value denoted by p1,
p2,. . . pL. These L kernel functions can come from a wide range
of choices, such as the linear kernel, the Gaussian kernel, and the
polynomial kernel. Then, we can transform the L p-values by a
Cauchy transformation and combine the transformed p-values
to form a new statistic (Liu et al., 2019),

TO =
1
L

L∑
j=1

tan
{(

0.5− pj
)
π
}
.

If pj comes from the null hypothesis, the transformation
tan

{(
0.5− pi

)
π
}

follows a Cauchy distribution. Then, the
p-value of TO can be approximated by

p-value ≈ 0.5− {arctan (TO)} /π

This Cauchy combination method performs similarly as the
minimum p-value method. In addition, it works well under
different correlation structures. Thus, when the underlying true
relationship is unknown, if the choice of the kernel function
is rich enough, we can always achieve good power regardless
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of the underlying disease gene action mode. More importantly,
this method is computationally fast and robust to different
dependence structures between p-values (Liu and Xie, 2019).

Gene-Based Association Test With
Multiple Traits
When multiple correlated traits are available, it is more powerful
to analyze them together to find the disease–gene association.
One way to do so is to perform a multivariate analysis by treating
multiple traits as a multivariate response. Generally speaking,
it is much easier to conduct a univariate association test than
a multivariate association test. Suppose there are a total of d
quantitative traits. For a given gene, we can get d gene-level
p-values, denoted by p1, p2,. . . pd. Since these d traits are generally
correlated and the p-values are obtained based on the same
gene, these p-values are typically correlated. To obtain a gene-
based p-value for multiple traits, one simple way is to do a
p-value combination. Unfortunately, the aforementioned Cauchy
combination method does not work well in many cases since it
functions like a minimum p-value approach, and this is not the
intention for multi-trait analysis.

When the d p-values are independent, the Fisher combination
method defined as T = −2

∑d
j=1 log

(
pj
)

follows a chi-square
distribution with 2d degrees of freedom (Littell and Folks, 1971).
For correlated traits, this method cannot be directly applied to
find the association between one gene and multiple traits. In fact,
the statistic T is a sum of correlated chi-square statistics which
can be approximated by a scaled chi-square distribution δx2

τ or
a gamma distribution with a scale parameter of 2δ and a shape
parameter of τ/2 under the null hypothesis (Yang et al., 2016). Let
E (T) = µ and Var (T) = σ2. Then, δ and τ can be computed as
δ = σ2/2µ and τ = 2µ2/σ2. Here we adopt the method proposed
by Yang et al. (2016) to combine the d-dependent p-values. The
variance σ2 can be calculated as

σ2
= Var [T] = Var

−2
d∑

j=1

log
(
pj
)

=

d∑
j=1

Var
{
−2 log

(
pj
)}
+

∑
j6=k

cov
(
−2 log

(
pj
)
,−2 log

(
pk
))

= 4d +
∑
j6=k

cov
(
−2 log

(
pj
)
,−2 log

(
pk
))

Let δjk = cov
{
−2 log

(
pj
)
,−2 log

(
pk
)}

. Yang et al. (2016)
proposed a method to estimate δjk based on which we can
estimate σ2 [please refer to Yang et al. (2016) for the technical
details of estimating σ2 and µ]. An R package implementing
the method can be found at https://github.com/jjyang2019/
FisherCombinationStat. Then, based on the estimators of µ and
σ2 for the gamma distribution parameters, the overall testing
p-value of T can be calculated as

p-value = 1− 0
(
µ2/σ2, σ2/µ

)
.

The number of the gene-level test is much smaller than the
number of the SNP-level test. After obtaining the gene-level

p-values, multiple testing adjustment such as FDR can be applied
to claim the significance of a gene.

SIMULATION STUDIES

Simulation Design
To evaluate the statistical power and the type 1 error rate
of the proposed method, we conducted extensive simulation
studies to compare the proposed method (OMGA) with some
existing methods. Specifically, we compared with the method
of multivariate multiple linear regression (RMMLR) proposed
by Basu et al. (2013) and the MANOVA method. RMMLR was
developed based on multivariate regression and transformed
the phenotype and genotype data to achieve a rapid gene-
based genome-wide association test for multiple traits. The R
package that implements the method, termed as RMMLR, is
available at GitHub: https://github.com/SAONLIB/RMMLR. For
the MANOVA analysis, the association between each SNP in a
gene and multi-trait is implemented with the MANOVA function
in R. The minimum p-value in a gene is recorded as the gene-level
p-value.

The genetic data were simulated to mimic the real structure
of a gene through the software EpiSIM (Shang et al., 2013).
The software package of EpiSIM can be downloaded at
https://sourceforge.net/projects/episimsimulator/. We simulated
correlated quantitative phenotypes with the following model:

Yi = 0.02Zi1 + 0.6Zi2 + h (Xi)+ εi, i = 1, . . . . . . , n,

where εi = (εi1, εi2, · · · , εid)
T is a d-dim random error vector

generated from a multivariate normal distribution with mean
0 and covariance 6; Yi = (Yi1, Yi2, · · · , Yid)

T is a d-dim-
dependent trait vector; Zi1 ∼ N (2, 1) and Zi2 ∼ Ber (0.6) are
two independent covariates; Xi =

(
Xi1, Xi2, · · · , Xip

)T is a p-dim
SNP genotype vector in a gene. Under all scenarios, we simulated
genes with different dimensions, i.e., p = 50 and p = 100, and
with different sample sizes, namely, n = 100, 200, and 400. For the
number of traits, we assumed d = 5. The correlation between traits
was assumed to be p = 0.3 and 0.8, with the purpose to evaluate
the impact of correlation on the testing power. In each scenario,
we applied 1,000 simulation replications.

We assessed the type 1 error rates under the null hypothesis
[i.e., h(·) = 0] by the proportion of results that incorrectly
rejected the null hypothesis. To evaluate the power, we set
up four different scenarios for the h(·) function and recorded
the proportion of results that rejected the null hypothesis.
Under scenario A, we assumed that h (x) = 0.2 (x1 − x6)+
cos (x6) exp

(
−x2

6/4
)
, where the 1st and 6th SNP have a main

effect with different directions and the 6th SNP also has a
nonlinear effect on the five response traits. Under scenario B, we
assumed that h (x) = 0.3x2 + 0.6x4 − 0.07x8.

To mimic the situation where a large number of SNPs
influence the traits, we assumed the following model:

h (x) = cM
∑

k∈SM

αkxk + cN
∑

k,k′∈SN

βkk′xkxk′
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where SM consists of a predefined set of 10 SNPs with main
effect, and SN contains a set of 30 SNP pairs with interactions.
Both {αk, k ∈ SM} and {βkk′ ,

(
k, k′

)
∈ SN} were generated from a

uniform distribution with Unif (0, 0.02), and were fixed for all
simulation replicates once generated. Under scenario C, we set
CM = 0.02 and CN = 1.8, which gave a combination of weak main
effect and relatively strong interaction effect. Under scenario D,
we set CM = 3.8, and CN = 0, with a pure main effect model.
The four scenarios with their corresponding mean functions are
summarized here:

Scenario A: h (x) = 0.2 (x1 − x6)+ cos (x6) exp
(
−x2

6/4
)

Nonlinear effect
Scenario B: h (x) = 0.3x2 + 0.6x4 − 0.07x8

Linear effect
Scenario C: h (x) = 0.02

∑
k∈SM

αkxk + 1.8
∑

k,k′∈SN
βkk′xkxk′

Weak main but strong interaction effects
Scenario D: h (x) = 3.8

∑
k∈SM

αkxk
Pure main effects

Simulation Results
Table 1 displays the empirical type 1 error rate of different
methods under different settings, from which we conclude that
the three methods maintained reasonable type 1 error rate control
in most settings.

The power simulation results for the case with p = 0.3 are
shown in Figure 1. Under different scenarios, the power of the
three methods all increases as the sample size increases. Among
the three methods, MANOVA performs the worst in most cases.
Although the power decreases as the SNP dimension increases
for all the three methods, the power decrease is more dramatic
for RMMLR and MANOVA compared to that for OMGA. This
indicates the relative advantage of the proposed method against
the other two when the data dimension is high. The result clearly
shows that the proposed omnibus test outperforms the other two
methods under different scenarios since it can better capture the
potential nonlinear effect of variants within a gene by applying a
nonparametric KBT procedure with different kernel choices.

TABLE 1 | The type 1 error rate of different methods under different settings.

Data
dimension

Sample
size (n)

Correlation (p) OMGA RMMLR MANONA

p = 50 100 0.3 0.059 0.037 0.052

0.8 0.045 0.052 0.041

200 0.3 0.050 0.061 0.038

0.8 0.048 0.049 0.032

400 0.3 0.048 0.064 0.052

0.8 0.051 0.061 0.061

p = 100 100 0.3 0.044 0.052 0.046

0.8 0.049 0.038 0.044

200 0.3 0.061 0.041 0.046

0.8 0.041 0.067 0.043

400 0.3 0.051 0.057 0.035

0.8 0.047 0.050 0.037

Figure 2 shows the empirical testing power of the three
methods with p = 0.8. Compared with the p = 0.3 case, the
power of RMMLR and MANONA decreased, while our proposed
method can still maintain a comparable power as the p = 0.3
case. Note that the MANOVA method implemented here uses
a minimum p-value approach among multiple SNPs to denote a
gene-level p-value. The simulation result echoes the work of Basu
and Pan (2011), in which the minimum p-value method performs
the worst among the three methods that the authors compared in
their simulation study.

In summary, the simulation results clearly demonstrate that
the proposed omnibus test method can maintain a reasonable
type I error control while having better power than the other
two methods under different scenarios. This is because the
proposed omnibus testing method can efficiently capture a
linear or a nonlinear relationship between multiple variants in
a gene and multiple phenotypes. In practice, the underlying
true disease–gene relationship is never known. This makes
our proposed omnibus test method particularly attractive in
real application since it does not put any model assumption.
As long as the choice of kernel functions is rich enough,
the omnibus test can achieve its power advantage against the
other methods which only function well under the desired
model assumption.

REAL DATA ANALYSIS

Case One: The Human Liver Cohort Data
Analysis
To demonstrate the power and the applicability of our approach,
we applied the proposed method OMGA together with RMMLR
and MANONA to a HLC study data set, which can be
downloaded from https://www.synapse.org/#!Synapse:syn4499.
The HLC study aims to explore the genetic architecture of gene
expressions in human liver. There are a total nine phenotypes of
P450 enzymes (CYP1A2, 2B6, 2C8, 2A6, 2C9, 2D6, 2C19, 2E1,
and 3A4) from unrelated liver samples of Caucasian individuals.
The samples were removed if their genotype and phenotype
information were missed, and the final data included in our study
contained 170 individuals. DNAs were genotyped by the Illumina
650Y SNP and Affymetrix 500K SNP genotyping arrays. SNPs
with a minor allele frequency (MAF) less than 5% were removed.
The total number of SNPs that remained was 312,082, which were
further mapped into 11,579 genes using tools from the NCBI
website ftp://ftp.ncbi.nih.gov/snp/.

The cytochrome P450s compose a superfamily of
monooxygenases which are critical for anabolic and catabolic
metabolism in almost all living organisms (Nelson et al.,
1996; Aguiar et al., 2005; Plant, 2007). With its importance
in physiology and drug metabolism in human, the regulatory
mechanisms and genetic variations of P450 enzyme have been
extensively studied. As there is a relatively close relationship
among the CYP family enzymes, a joint analysis of multiple
P450 enzyme traits and gene association can potentially lead
to the identification of novel genes. Based on a hierarchical
clustering analysis, we focused on six enzyme activity traits,

Frontiers in Genetics | www.frontiersin.org 5 May 2020 | Volume 11 | Article 43720

https://www.synapse.org/#!Synapse:syn4499
ftp://ftp.ncbi.nih.gov/snp/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00437 May 15, 2020 Time: 17:0 # 6

Deng et al. Gene-Based Multi-Trait Analysis

FIGURE 1 | The testing power of different methods under the four scenarios with p = 0.3.

FIGURE 2 | The testing power of different methods under the four scenarios with p = 0.8.
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namely, CYP1A2, CYP3A4T, CYP2C8, CYP2B6, CYP2C9, and
CYP2A6, as the response variables since they show a moderate
correlation (see Supplementary Figure S1). We included age
and gender as covariates in the analysis and log-transformed the
six response variables.

For each individual trait, we first conducted a marginal gene-
based single-trait analysis with the omnibus KBT. Then, we
integrated the p-values for the six traits and applied the p-value
combination method to get a gene-based multi-trait p-value. In
the multi-trait analysis, we also applied the RMMLR and the
MANONA methods. The Q–Q plot of the single-trait analysis
is shown in Supplementary Figure S2 and no p-value inflation
was observed. Figure 3 shows the Q–Q plot of the multi-
trait analysis.

If we use the genome-wide gene-level Bonferroni correction,
the threshold to claim a significant gene level significance
is 4.3 × 10−6. This leads to no significant genes in our
analysis. Here, we only listed a few top genes with p-value
less than 6 × 10−5 as suggestive significance. In the single-
trait analysis, the top genes for each trait are HAUS8 and
IRS12 for CYP1A2, TRAPPC10 for CYP3A4T, TARID and
FUNDC2 for CYP2C9, and PAPLN for CYP2A6. No genes
pass the suggested threshold for trait CYP2B6 and CYP2C8
(see Supplementary Table S1 for a detailed list of associated
genes for each trait and the corresponding p-values). For the
multi-trait analysis, we listed in Table 2 the results of the top
genes along with the results by RMMLR and MANOVA. Among
the four genes, TARID, TRAPPC10, and HAUS8 were also in
the list of single-trait analysis. Gene ATAD3C is not shown
in the top list of the single-trait analysis. This may be due
to the low power of the single-trait analysis. If we ignore the
correlation information among the six enzyme traits and only
focus on a single-trait analysis, we may miss some discoveries.

TABLE 2 | List of top genes and the p-values with different methods in the Human
Liver Cohort study.

Gene
name

Number of single
nucleotide

polymorphisms

Chr OMGA RMMLR MANONA

TARID 80 6 1.11E−05 0.1227 0.1048

TRAPPC10 58 21 1.29E−05 0.0072 0.1003

HAUS8 42 19 4.22E−05 0.0425 0.1022

ATAD3C 150 1 5.53E−05 0.0789 0.0926

For the top four genes by OMGA, the p-values by RMMLR and
MANOVA are all quite large. This could be due to the potential
complex functional relationship between the genes and the traits.
RMMLR and MANOVA were not designed to capture those
complex relationships.

Empirical evidence supports some of the identified genes. For
example, gene ATAD3C has been reported in literature to be
associated with aldosterone metabolism and P450 enzyme (Chu
et al., 2017). Gene TARID participates in liver cell metabolism
(Yuan et al., 2016). Gene TRAPPC10 is associated with the toxic
effect of octylphenol on the expression of genes in the liver
(Li et al., 2014).

Case Two: The Alzheimer Disease
Neuroimaging Initiative Data Analysis
We also applied the developed OMGA method to the ADNI
data set which can be accessed at http://adni.loni.usc.edu/. From
the ADNI1 and ADNI2 studies, we selected 490 samples with
complete genetic and phenotypic information. We deleted SNPs
with MAF < 0.05 or those that could not pass the Hardy–
Weinberg equilibrium test. This ended up with 620,901 SNPs.

FIGURE 3 | The Q–Q plot of the observed –log10 (p-value) versus the expected –log10 (p-value) for the six enzyme traits based on the multi-trait analysis.
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We included SNPs within 20 kb upstream and downstream of
each gene and mapped them to 22,890 genes according to human
genome version GRCh38.

Alzheimer’s disease (AD) is a central nervous system
degenerative disease with insidious onset and chronic progress
and has affected over 5.5 million Americans, especially among
the elderly over the age of 65 years. ADNI provides pre-
calculated volumes of five cortical regions including entorhinal,
hippocampus, ventricles, midtemp, and fusiform. Brain atrophy
is a typical clinical symptom among AD patients (Ferrarini
et al., 2006). Studies have pointed out that the volumes in the
different cortical regions show different rates of decline and
are functionally related to AD. For example, the hippocampus
region helps humans to deal with memory sounds, long-
term learning, and taste and is a sensitive early indicator
of AD (Mu and Gage, 2011). The loss in the entorhinal
region is highly correlated with the severity of AD and the
loss is obvious even in mild AD patients (Juottonen et al.,
1998). Similarly, the volumes in the regions fusiform and
midtemp also slightly decrease in AD patients (Thambisetty
et al., 2011). This motivates us to take the volumes of the
five cortical regions as a multi-trait response and to identify
which genes are associated with the volume variation in the
different brain regions.

We first conducted the marginal single-trait analysis with
the proposed gene-based omnibus kernel testing approach. We
log-transformed the volumes of the five cortical regions and
took the age, education level, gender, and APOE4 alleles as the
covariates. The Q–Q plot of the gene-based single-trait analysis is
shown in Supplementary Figure S3. No sign of p-value inflation
was observed. Also, there is no strong indication of significant
signals either. Then, we carried out the multi-trait analysis which
can more accurately reflect the brain atrophy in AD patients.

We also applied MANOVA and RMMLR methods for multi-
trait analysis. The Q–Q plot of the multi-trait analysis results by
OMGA is shown in Figure 4. There is no significant indication of
p-value inflation.

Again no significant genes were identified based on the
genome-wide gene-level Bonferroni threshold. Here, we listed
the top 12 genes based on a suggestive threshold of 5 × 10−5

in Table 3. From the single-trait analysis, we found eight, 10,
10, five, and six genes associated with the regions entorhinal,
ventricles, hippocampus, fusiform, and midtemp, respectively
(see Supplementary Table S2 for a detailed list of the genes).
Two genes (SNORA30 and TLR4) that were not in the single-
trait analysis list but showed up in the multi-trait analysis list
are highlighted in bold font in Table 3. Compared to RMMLR
and MANOVA analyses, the p-values by OMGA are uniformly
smaller, indicating the power of OMGA by taking both linear and
nonlinear effect into consideration.

For the 12 genes associated with multi-trait of brain atrophy
in AD patients, some of them have been reported in the
literature. For example, gene RBM45, known as the RNA-
binding motif protein 45 or developmentally regulated RNA-
binding protein-1 (Drbp1), has been shown to be associated
with the degenerative neurological changes in AD patients (Eck
et al., 2018). Gene UPK1B has been shown to be cooperated
with CD9 and CD81 and is directly involved in the pathological
process of AD (De Strooper and Wakabayashi, 2011; Orre
et al., 2014; Wężyk and Żekanowski, 2017). Mutation in gene
TLR4 reduces microglial activation, increases Aβ deposits, and
exacerbates cognitive deficits in a mouse model of AD (Song
et al., 2011). A study showed that polymorphisms in gene
TLR4 and CD14 were closely related to AD (Balistreri et al.,
2008). Others reported the increasing expressions of TLR2 and
TLR4 on the peripheral blood mononuclear cells of AD patients

FIGURE 4 | The Q–Q plots of the observed –log10 (p-value) versus the expected –log10 (p-value) for the five cortical regions based on the multi-trait analysis.
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TABLE 3 | List of top genes and the p-values with different methods in the
Alzheimer Disease Neuroimaging Initiative study.

Gene name Number of single
nucleotide

polymorphisms

Chr OMGA RMMLR MANONA

TMEM26-AS1 731 10 3.45E−06 0.0004 0.2572

TPRG1-AS2 320 3 6.60E−06 0.0238 0.4595

ST3GAL4 2,457 11 8.37E−06 0.1373 0.0165

LMNTD1 89 12 9.64E−06 0.6580 0.1698

OR4F5 2,234 1 1.03E−05 0.1887 0.1364

MIR6723 170 14 1.83E−05 0.5421 0.2648

RBM45 468 2 2.25E−05 0.0017 0.0077

ADAMTS7P1 1,444 15 2.29E−05 0.0003 0.3606

SNORA30 200 16 2.30E−05 0.0213 0.0093

TLR4 153 9 3.45E−05 0.0015 0.1364

C5orf46 663 5 3.69E−05 0.1254 0.0232

UPK1B 772 3 4.10E−05 0.1855 0.0036

(Zhang et al., 2012). These empirical evidences support the results
of the analysis.

DISCUSSION

Increasing evidence has shown that, for correlated phenotypes,
multi-trait analysis can significantly increase the power of
association analysis (e.g., He et al., 2013; Schifano et al., 2013;
Wang, 2014). Given that genes are functional units in most
living organisms, we proposed a rapid and powerful gene-
based multi-trait analysis method. Our method is developed
under the KBT framework without specific error distribution
assumptions. It possesses a few advantages over existing methods.
First, the method achieves fast calculation speed and decreases
the computational burden for high-dimensional data. A testing
p-value can be quickly computed with the asymptotic results,
making the method computationally attractive. Second, it can
capture a potential nonlinear effect within genes by using a
nonparametric KBT procedure. By incorporating different kernel
functions, potential linear or nonlinear genetic effects can be
captured and tested. When a given series of candidate kernel
functions is available, the omnibus testing procedure is robust
against misspecification of kernel functions. Moreover, it is built
upon the Cauchy transformation and is computationally fast
(Liu and Xie, 2019). Thus, the proposed method enjoys both
theoretical rigor and computational efficiency and can be widely
used in gene-based analysis.

We conducted extensive simulation studies to evaluate the
type I error control and the power of the proposed method. The
results show that the proposed OMGA method can maintain a
reasonable type 1 error rate and achieve great power compared
to other popular methods such as MANOVA and RMMLR.
Furthermore, the omnibus testing procedure incorporating
different kernels performs as well as if the underlying true genetic
function is correctly specified. Thus, the method is safe to apply
in real applications regardless of the underlying disease function,
making the method practically attractive.

For multi-trait analysis, there are two different frameworks
proposed. One is to jointly model multiple traits as a multivariate
response and further assess their association with SNP variants.
This framework can directly take correlation information into
consideration. Methods for such type of multi-trait analysis
include the RMMLR and the MANOVA methods as discussed
in this work and many others (e.g., Maity et al., 2012]. Another
framework is to conduct a single-trait disease–gene association
test and then combine p-values to assess the joint association.
The method developed by Yang et al. (2016) falls into this
category. Nevertheless, methods to combining p-values have to
take the correlation information into consideration. Otherwise,
the results can be biased. Ideally, the first framework should
be preferable since it models multiple traits simultaneously in
one joint model. On the other hand, the second framework
has its advantages. For example, it can be computationally less
expensive and ease theoretical evaluations. Especially with the
proposed method in this work, the second framework can be
a better choice since the asymptotic evaluation of the joint
association statistics can be theoretically challenging or may not
even be feasible.

Our method can be easily applied to a genome-wide pathway-
based multi-trait analysis. It is known that genes usually do
not work alone. For example, cellular pathways and complex
molecular networks are often more directly involved in the
progression and the susceptibility of diseases. Thus, a pathway-
based analysis can shed light on the mechanics of complex
diseases. On the other hand, the current study only focused
on quantitative multivariate phenotypes. It can be extended to
qualitative response variables or a combination of qualitative and
quantitative phenotypes. However, the extension is non-trivial
and will be studied in our future investigation. The R code that
implements the method can be found in GitHub at https://github.
com/yamin-19/OMGA.
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For datasets of gastric cancer collected by TCGA (The Cancer Genome Atlas) and GEO
(Gene Expression Omnibus) repositories, we applied a bioinformatics approach to obtain
expression data for the ISLR (immunoglobulin superfamily containing leucine-rich repeat)
gene, which is highly expressed in gastric cancer tissues and closely associated with
clinical prognosis. Although we did not observe an overall association of ISLR mutation,
high expression or copy number variation with survival, hypomethylation of four
methylated sites (assessed by the probes cg05195566, cg17258195, cg09664357,
and cg07297039) of ISLR was negatively correlated with high expression levels of
ISLR and was associated with poor clinical prognosis. In addition, we detected a
correlation between ISLR expression and the infiltration levels of several immune cells,
especially CD8+ T cells, macrophages and dendritic cells. We also identified a series of
genes that were positively and negatively correlated with ISLR expression based on the
TCGA-STAD, GSE13861, and GSE29272 datasets. Principal component analysis and
random forest analysis were employed to further screen for six hub genes, including
ISLR, COL1A2, CDH11, SPARC, COL3A1, and COL1A1, which exhibited a good
ability to differentiate between tumor and normal samples. GO (Gene Ontology) and
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and gene set enrichment
analysis data also suggested a potential relationship between ISLR gene expression and
epithelial-mesenchymal transition (EMT). ISLR expression was negatively correlated with
sensitivity to PX-12 and NSC632839. Taken together, these results show that the ISLR
gene is involved in gastric carcinogenesis, and the underlying molecular mechanisms
may include DNA methylation, EMT, and immune cell infiltration.

Keywords: ISLR, expression, methylation, immune cell infiltration, gastric cancer

INTRODUCTION

The Cancer Genome Atlas (TCGA), a publicly funded project, archives multiple types
of genomic data from various types of cancer, including gene expression, mutation,
copy number variation (CNV), genome methylation, and clinical data (Cancer Genome
Atlas Research Network, 2014; Tomczak et al., 2015; Wang et al., 2016). In addition,
GEO (Gene Expression Omnibus) molecular datasets also offer many clinical cancer-
related gene expression data (Barrett et al., 2013; Clough and Barrett, 2016). The
complicated pathogenesis of gastric cancer involves multiple clinical prognosis-associated
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oncogenes. Previously, based on the datasets of gastric cancer
within TCGA and GEO, we identified the ISLR (immunoglobulin
superfamily containing leucine-rich repeat) gene by means of
principal component analysis (PCA) and random forest analysis
(data not shown), which showed a high expression level in gastric
cancer tissues and was closely linked to clinical prognosis. The
present study attempted to investigate the possible oncogenic
roles of the ISLR gene in the pathogenesis and prognosis
of gastric cancer.

The human ISLR gene is situated on human chromosome
15q23-q24 (Nagasawa et al., 1997). The human ISLR protein,
a member of the Ig superfamily, contains a leucine-rich
repeat (LRR) with conserved flanking sequences and a C2-
type immunoglobulin (Ig)-like domain (Nagasawa et al., 1997).
The ISLR protein has been reported to be involved in some
biological events, such as cell replicative senescence of human
dermal fibroblasts (Yoon et al., 2004), embryo development
(Homma et al., 2009), and Gaucher disease (Lugowska et al.,
2019). However, no study has mainly investigated the potential
functional relationship between the ISLR gene and cancer
events thus far.

In the current study, we elucidated the underlying molecular
mechanisms of the ISLR gene in gastric carcinogenesis from the
perspectives of genetic mutation, copy number variation, DNA
methylation, immune cell infiltration, expression correlation,
pathway enrichment and drug sensitivity for the first time.

MATERIALS AND METHODS

Expression Analysis
We first investigated the expression level of the ISLR gene
between gastric cancer and negative controls samples within
the TCGA-STAD (The Cancer Genome Atlas stomach
adenocarcinoma) cohort and the GTEx (Genotype Tissue
Expression) database using the online tool GEPIA21 (Tang
et al., 2019). A log2 (FC) (fold change) cutoff = 1, a P-value
cutoff = 0.01, and a jitter size = 4 were set. Log2 [TPM
(transcripts per million) + 1] values were used for log-scale.
Gene expression data were visualized by the “boxplot” function
of the R language (for the cancer and control samples) or
the “vioplot” R package [for the pathological stage (stages I,
II, III, and IV)]. Then, we obtained the expression dataset of
“Chen et al. (2003),” which contains a total of 11 diffuse gastric
adenocarcinoma and 24 normal control samples, by means of
Oncomine2. The log2 (median-centered intensity) data were
visualized by GraphPad Prism software, version 5.01 (San Diego).

Furthermore, we utilized the “GEOquery” R package to obtain
the available expression and group datasets in GSE13861 and
GSE29272. The difference in expression of the ISLR gene between
gastric cancer cases and normal controls was analyzed by the
t.test function of the compare_means () and visualized by the
ggviolin () function of the “ggpubr” R package. We then used
the wilcox.test function of the compare_means () with the setting

1http://gepia2.cancer-pku.cn/#analysis
2https://www.oncomine.org/resource/main.html

of “paired = TRUE” to analyze the difference in expression
between the gastric tumor tissues and adjacent normal tissues
and displayed the results using the ggdotchart () function of
the “ggpubr” R package. R language software [R-3.6.1, 64-
bit]3 was used.

Survival Curve Analysis
We conducted OS (overall survival) and DFS (disease-free
survival) analyses of gastric cancer cases in the TCGA-STAD
cohort according to the expression status of the ISLR gene
through GEPIA2. A group cutoff of “quartile” was set, and
the Kaplan–Meier curve was plotted. We also pooled the
gastric cancer cases in the GSE14210, GSE15459, GSE22377,
GSE29272, GSE51105, and GSE62254 datasets for the OS, FP
(first progression), and PPS (post progression survival) analyses
using the Kaplan–Meier plotter tool (Szasz et al., 2016). The
automatically selected best cutoff was used. We considered
clinical factors including sex (female or male), pathologic stage
(stages 1∼4, T2∼4, N0∼3, M0∼1), HER2 status (negative or
positive), Lauren classification (intestinal, diffuse, or mixed),
differentiation (poor, moderate, or well), and treatment (surgery
alone, 5-Fu-based adjuvant or other adjuvant). Furthermore,
we employed the Coxph (Cox proportional hazard) model
to determine the correlation between ISLR expression and
the clinical prognosis of gastric cancer cases in TCGA-STAD
through the web-based tool TIMER (Tumor Immune Estimation
Resource) (Li et al., 2016, 2017). Clinical factors, including
age, sex, race, stage, and tumor purity, were included in
the Coxph model.

Genetic Alteration Analysis
The alteration frequency of the ISLR gene in several studies of
gastric cancer, including the TCGA pub (2014), PanCan 2018
(Ellrott et al., 2018; Gao et al., 2018; Hoadley et al., 2018;
Liu J. et al., 2018; Sanchez-Vega et al., 2018; Taylor et al.,
2018; Bhandari et al., 2019), TCGA cohort, Pfizer and UHK
(Wang et al., 2014), UHK (Wang et al., 2011), and U Tokyo
(Kakiuchi et al., 2014) studies, was analyzed via the cBioPortal
database4. We provided data of genomic alteration type, mutation
site profile, OS and D/PFS (disease/progression-free survival)
analyses. In addition, we generated a MEXPRESS plot (Koch
et al., 2015, 2019) to analyze the CNV types of the ISLR
gene. The correlation between CNV and the expression level of
ISLR was also analyzed by Pearson’s test. The overall survival
analysis according to the CNV status of the ISLR gene (masked
CNV ≥ or < −0.019) was performed through UCSC Xena5. The
log-rank test was performed.

DNA Methylation Analysis
We analyzed the methylation status of ISLR DNA in
the gastric cases in the TCGA-STAD cohort through
MEXPRESS (Koch et al., 2015, 2019). Pearson’s test was
used to determine the correlation between methylation

3https://www.r-project.org/
4https://www.cbioportal.org/
5https://xenabrowser.net/
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FIGURE 1 | Expression analysis of the ISLR gene between gastric cancer and negative control samples. (A) Expression level of ISLR between gastric cancer tissues
in the TCGA-STAD cohort (n = 408) and control tissues (n = 211). Normal tissues in both the TCGA and GTEx databases were included as negative controls.
*P < 0.05. (B) The expression level of ISLR among different pathologic stages (stage I, II, III, and IV) was also analyzed through GEPIA2. We also compared the
expression level of ISLR between diffuse gastric adenocarcinoma cases and normal controls from the studies of “Chen et al. (2003)” through the Oncomine database
(C). The differences in ISLR gene expression between gastric cancer cases and normal controls in GSE13861 (D) and GSE29272 (E) were analyzed as well. Violin
plots were used for GSE13861. Adjacent normal tissues were used for GSE29272, and the data were visualized by a dot plot.

and the expression level of the ISLR gene. We determined
correlation coefficients (R) and Benjamini–Hochberg-adjusted
P-values regarding different methylation probes, such as
cg05195566, cg15480336, cg02077702, and cg16926502. The
waterfall plot of the methylation level of the ISLR gene and
Kaplan–Meir plots of the relationship between ISLR DNA
hypermethylation/hypomethylation and cancer survival were
generated with the MethSurv tool (Modhukur et al., 2018).

Immune Cell Infiltration Analysis
We used GEPIA2 to perform pairwise gene correlation
analysis between ISLR expression and the signatures of the
following immune cells: macrophages, TAMs (tumor-associated
macrophages), dendritic cells, monocytes, NK (natural killer)
cells; mast cells, neutrophils, eosinophils, basophils, B cells, Th1
cells, Th2 cells, Th17 cells, CD8+ T cells, Tfh (follicular helper
T) cells, resting Treg cells, effector Treg cells, and exhausted
T cells. Then, based on a TIMER2 approach, we calculated
immune infiltration estimations for TCGA-STAD samples with

the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC algorithms. A heatmap with
the purity-adjusted Spearman’s rho value was obtained by the
“pheatmap” R package. Specific scatter plots were provided. In
addition, the correlation between ISLR SNVs and the level of
infiltrating immune cells, including dendritic cells, neutrophils,
CD8+ T cells, CD4+ T cells, B cells, and macrophages, was also
investigated by the TIMER tool.

ISLR-Correlated Gene Cluster Analysis
We utilized the “TCGAbiolinks” R package to download the
gene expression and clinical information data of TCGA-STAD
cohorts from the TCGA database. Log2 [FPKM (Fragments
per Kilobase Million) + 1] values were used for log-scale. The
25/75% quartile cutoff of ISLR expression in three datasets,
including TCGA-STAD, GSE13861, and GSE29272, was used
to define high and low groups of ISLR expression. We then
analyzed the ISLR-correlated genes through the “limma” R
package. The positively or negatively correlated significant genes
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FIGURE 2 | Survival curve analysis of the ISLR gene for gastric cancer cases. (A) Overall survival (OS) and disease-free survival (DFS) analyses according to the
expression level of the ISLR gene were performed using gastric cancer cases in the TCGA-STAD cohort. (B) Based on the data of gastric cancer cases in
GSE14210, GSE15459, GSE22377, GSE29272, GSE51105, and GSE62254, we also performed OS, first progression (FP), and post progression survival (PPS)
analyses through Kaplan–Meier plotter.

were visualized by the “ggplot2” R package. The “VennDiagram”
R package was used to identify the common genes among
TCGA-STAD, GSE13861, and GSE29272. Furthermore, the
“clusterProfiler” and “pathview” R packages were used for the
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes
and Genomes) enrichment analyses. The data were visualized by
the functions cnetplot () and dotplot (). The GOCircle and chord
plots using extracellular matrix-associated terms were visualized
by the “GOplot” R package.

In addition, we performed ISLR-correlated GSEA (gene set
enrichment analysis) and pathway activation/inhibition analyses
through a LinkedOmics approach (Vasaikar et al., 2018). The
following cutoffs were used: simulations = 500, minimum
number of genes = 3, and rank criteria = FDR (false discovery
rate). The pathway activity module presents the difference in
ISLR expression between pathway activity groups (activation
and inhibition) defined by pathway scores. The pathway activity
module presents the difference in gene expression between
pathway activity groups (activation and inhibition) defined
by pathway scores.

Principal Component Analysis
Based on the above common differentially expressed genes, we
used the prcomp () function for principal component analysis
(PCA) to classify the normal and tumor sections in the TCGA-
STAD, GSE13861, and GSE29272 datasets. A scree plot was
obtained by the plot () function, and a three-dimensional map
[principal component 1 (PC1), PC2, and PC3] was drawn using
the “scatterplot3d” package.

After using the “VennDiagram” R package, common hub
genes among TCGA-STAD, GSE13861, and GSE29272 were
identified. Then, the cor () function and “corrplot” R package
were used for the Spearman correlation analysis of these hub
genes. The scatter plots were then obtained by the “ggpubr” R
package. The “factoextra” R package was utilized to show the
principal component weight and to generate two-dimensional
contribution maps of common hub genes.

Random Forest Analysis
Based on the above hub genes, we used the “randomForest”
package (ntree = 500) to perform random forest modeling. The
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TABLE 1 | Correlation of ISLR expression and the overall survival of gastric cancer patients in the GEO cohort (Kaplan–Meier plotter).

Factor Group Sample size HR 95% CI logRank_P

Gender Female 244 2.4 1.57–3.68 3.2E-05

Male 567 2.02 1.58–2.59 1.2E-08

Stage Stage 1 69 2.7 0.9–8.07 0.065

Stage 2 145 2.04 1.11–3.74 0.019

Stage 3 319 2.72 1.84–4.03 1.9E-07

Stage 4 152 1.82 1.22–2.71 0.0029

Stage T T2 253 1.7 1.12–2.6 0.013

T3 208 1.93 1.33–2.95 6.0E-04

T4 39 2.66 1.06–6.68 0.032

Stage N N0 76 2.95 1.13–7.69 0.021

N1 232 2.74 1.78–4.21 1.8E-06

N2 129 3.15 1.88–5.27 4.9E-06

N3 76 2.08 1.18–3.67 0.0097

N1 + 2 + 3 437 2.22 1.69–2.90 2.9E-09

Stage M M0 459 2.67 1.44–4.96 0.0012

M1 58 2.12 1.59–2.82 1.6E-07

HER2 Negative 641 2.09 1.61–2.72 1.3E-08

Positive 425 1.74 1.26–2.39 0.00058

Lauren classification Intestinal 336 2.85 2.00–4.08 1.7E-09

Diffuse 248 1.94 1.36–2.77 0.00018

Mixed 33 3.31 1.17–9.42 0.018

Differentiation Poor 166 1.31 0.86–2.01 0.21

Moderate 67 1.75 0.92–3.34 0.086

Well 32 5.97 2.25–15.85 6.1E-05

Treatment Surgery alone 393 1.59 1.19–2.13 0.0017

5-Fu based adjuvant 158 0.63 0.44–0.91 0.013

Other adjuvant 80 3.13 1.30–7.52 0.0072

HR, hazard ratio; CI, confidence interval; HER2, Erb-B2 Receptor Tyrosine Kinase 2. Bold values mean P < 0.05.

MDSplot () function was used to obtain a multidimensional
scale. The mean decrease accuracy and mean decrease
Gini values were calculated by the ggdotchart () function
in the “ggpubr” package. Using the “pROC” package,
the receiver operating characteristic (ROC) curve was
plotted, and the area under the ROC curve (AUC)
value was calculated.

TABLE 2 | Correlation of ISLR expression and the clinical prognosis of gastric
cancer patients in the TCGA-STAD cohort (Cox proportional hazard model).

Factor HR 95% CI_up 95% CI_down Cox_P

ISLR 1.161 1.026 1.314 0.018

Purity 0.638 0.304 1.338 0.234

Age 1.032 1.011 1.052 0.002

Gender (male) 1.133 0.754 1.702 0.549

Race (Black) 1.619 0.657 3.992 0.295

Race (White) 1.109 0.681 1.806 0.679

Clinical stage2 1.471 0.679 3.188 0.328

Clinical stage3 2.428 1.190 4.954 0.015

Clinical stage4 3.813 1.422 10.223 0.008

HR, hazard ratio; CI, confidence interval. Bold values mean P < 0.05.

Drug Sensitivity Analysis
The correlation between ISLR and sensitivity to small molecules
and/or drugs was investigated using the GSCALite tool (Liu C. J.
et al., 2018). Drug sensitivity and gene expression profiling data
of cancer cell lines in the Cancer Therapeutics Response Portal
(CTRP) were integrated for investigation (Rees et al., 2016; Liu C.
J. et al., 2018). The correlation of ISLR gene expression with the
small molecule/drug sensitivity (half-inhibitory concentration,
IC50) was determined through a Spearman correlation analysis.

RESULTS

Expression Analysis Data
First, the difference in ISLR gene expression between gastric
cancer tissues and negative control tissues was measured. A total
of 408 gastric cancer tissue samples in the TCGA-STAD cohort
were included, and the adjacent tissues within TCGA-STAD
and normal tissues in the GTEx database were included as
negative controls (n = 211). As shown in Figure 1A, there was
high expression of ISLR in the gastric cancer tumor samples
(∗P < 0.05) compared with the controls. We further analyzed the
difference in ISLR gene expression among different pathological
stages of gastric cancer cases in the TCGA-STAD cohort and
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FIGURE 3 | Mutation and CNV analyses of the ISLR gene. (A) The alteration frequency of the ISLR gene for the cases in several studies as analyzed through
cBioPortal. (B) The mutation site profile of the ISLR gene is shown. (C) OS and D/PFS analyses according to the mutation status of the ISLR gene were performed.
(D) Correlation between copy number variation and expression of ISLR. (E) OS analysis according to the CNV status of the ISLR gene was performed.

identified a positive correlation (Figure 1B, P = 2.1E-06). Then,
based on the dataset reported by Chen et al. (2003), we observed
that the expression level of the ISLR gene in 11 diffuse gastric
adenocarcinoma cases was higher than that in 24 normal controls
(Figure 1C, P = 1.8E-05). A similar expression difference between
tumor and normal samples was detected in the GSE13861 dataset
(Figure 1D, P = 2.4E-06). Moreover, we observed an obvious high
expression level of ISLR in 164 gastric tumor tissues compared
with 164 adjacent normal tissues within the GSE29272 dataset
(Figure 1E, P< 2.2E-16). Collectively, these results indicated that
the expression level of the ISLR gene in gastric cancer cases was
higher than that in negative controls, which suggests the potential
role of the ISLR gene in the etiology of gastric cancer.

Survival Curve Analysis Data
Next, we explored the correlation between ISLR expression
patterns and clinical prognosis for gastric cancer cases in the
TCGA-STAD cohort. As shown in Figure 2A, we observed

lower rates of overall survival (P = 0.036) and disease-free
survival (P = 0.016) in the high ISLR expression group than
in the low ISLR expression group. We also pooled a total of
six GSEA datasets for the clinical prognosis analyses. As shown
in Figure 2B, there were lower overall survival (P = 3.1E-12),
first progression (P = 6.2E-06), and post progression survival
(P = 1.1E-16) rates in the ISLR high expression group than
in the low expression group. Additionally, we fully considered
the effect of different clinical factors (e.g., sex, pathologic stage,
HER2 status, Lauren classification, differentiation and treatment)
during the above analyses. Survival curve analyses were carried
out when grouping the samples by the different clinical factors.
As shown in Table 1, there was a relationship between high
ISLR expression and poor overall survival (hazard ratio, HR > 1,
P < 0.05) in most subgroups but not in the subgroups with
poor (P = 0.21) or moderate (P = 0.086) differentiation, or stage
1 disease (P = 0.065). Surprisingly, for the 158 gastric cancer
cases treated with 5-Fu-based adjuvant therapy, a high level of
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FIGURE 4 | Waterfall plot and analysis of potential methylation probes targeting the ISLR gene. A waterfall plot of the methylation level of the ISLR gene is provided.
The correlations between ISLR methylation or expression level and survival rate were also analyzed. NA, not available.

ISLR expression was linked to a better clinical prognosis than a
low level of ISLR expression (Table 1, HR = 0.63, P = 0.013),
indicating a possible connection of ISLR expression with drug
sensitivity. We observed similar results in the correlation analysis
of ISLR expression and first progression and post-progression
survival (Supplementary Tables S1, S2). Moreover, we included
the factors of tumor purity, age, sex, race, clinical stage, and ISLR
expression in a Cox proportional hazard model and obtained
a statistical correlation between high ISLR expression and poor
clinical prognosis (Table 2, P = 0.018). These findings offer
evidence regarding the relationship between ISLR expression
and clinical outcomes. This led us to perform a more in-depth
molecular mechanism study.

Genetic Alteration Analysis Data
We attempted to study the potential mechanism of the ISLR
gene in the pathogenesis of gastric cancer in terms of gene
mutation and copy number variation. As shown in Figure 3A,
we detected the mutation frequency in six groups of gastric
cancer cases through the cBioPortal database. There was a low
mutation rate (∼2%) of ISLR in the cases in the TCGA-STAD,
TCGA pub (2014), and PanCan 2018 (Ellrott et al., 2018; Gao
et al., 2018; Hoadley et al., 2018; Liu J. et al., 2018; Sanchez-
Vega et al., 2018; Taylor et al., 2018; Bhandari et al., 2019)
cohorts and no mutation in gastric cancer cases in the Pfizer

and UHK (Wang et al., 2014), UHK (Wang et al., 2011), and U
Tokyo (Kakiuchi et al., 2014) cohorts. The type and location of
specific mutations, with the most frequent missense mutation
being R87C/H (n = 6), are shown in Figure 3B. Additionally,
we did not observe a statistically significant correlation between
ISLR gene mutation and the OS rate (Figure 3C, P = 0.978) or the
D/PFS rate (Figure 3C, P = 0.087).

Next, we investigated the CNV status of the ISLR gene.
As shown in Figure 3D, the ISLR gene mainly exhibited two
kinds of CNVs, namely, single copy deletion and low-level
amplification. However, there was no statistically significant
association between ISLR CNV and gene expression (Figure 3D,
R = 0.064) or the overall survival rate of gastric cancer cases
(Figure 3E, P = 0.123). These results suggested that ISLR
gene mutation and copy number variation may not affect
gastric tumorigenesis.

DNA Methylation Analysis Data
Next, we aimed to investigate whether the ISLR gene was closely
linked to ISLR DNA methylation. Based on methylation data
from TCGA-STAD, we observed that the methylation values from
four methylation probes, cg05195566, cg17258195, cg09664357,
and cg07297039, were negatively correlated with the expression
level of the ISLR gene (Figure 4, P < 0.05). Supplementary
Figure S1 presents the specific information of methylation
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FIGURE 5 | Correlation between ISLR expression and markers of immune cells as analyzed through GEPIA2. (A) M1 macrophages; (B) M2 macrophages;
(C) TAMs; (D) dendritic cells; (E) monocytes; (F) NK cells; (G) mast cells; (H) neutrophils; (I) eosinophils; (J) basophils.

probe sites and the correlation results of ISLR gene expression
with methylation level. Additionally, some methylation probes
showed a correlation between ISLR hypomethylation and poor
overall survival in gastric cancer (Figure 4 and Supplementary
Figure S2, cg05195566, P = 9.5E-06; cg17258195, P = 0.0034;
cg09664357, P = 0.0054; cg07297039, P = 0.036).

Immune Cell Infiltration Analysis Data
Herein, we sought to explore possible molecular mechanisms
through immune cell infiltration during the etiology of gastric
cancer. First, through GEPIA2, we analyzed the association
between ISLR gene expression and immune cell infiltration status.
As shown in Figure 5, we observed a positive correlation between
ISLR expression and the marker genes of M1 macrophages
(R = 0.48, P = 1.0E-37), M2 macrophages (R = 0.58, P = 1.2E-56),
TAMs (R = 0.65, P = 4.6E-76), dendritic cells (R = 0.53, P = 6.6E-
46), monocytes (R = 0.54, P = 3.6E-49), NK cells (R = 0.64,
P = 5.6E-72), mast cells (R = 0.25, P = 3.3E-10), neutrophils
(R = 0.55, P = 3.3E-49), and eosinophils (R = 0.42, P = 2.6E-
27) but not between ISLR expression and basophils (R = 0.041,
P = 0.3). We observed similar results for the different types of T
and B cells, such as Tfh cells (R = 0.56, P = 2.7E-52) (R = 0.6,
P = 4.0E-61), and exhausted T cells (Supplementary Figure S3).

Then, we utilized the TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, and EPIC algorithms
for further immune infiltration estimations. As shown
in Figure 6, we observed a relatively obvious correlation
between ISLR expression and the immune infiltration levels
of CD8+ T cells, monocytes, macrophages (especially the M2
type), activated mast cells and dendritic cells when adjusted
by tumor purity.

Additionally, we detected the correlation between ISLR CNV
and the overall infiltration level of immune cells (Supplementary
Figure S4). The copy deletion type of ISLR CNV was correlated
with the infiltration level of dendritic cells, neutrophils, CD8+
T cells, CD4+ T cells, B cells, and macrophages (all P < 0.05),
while the low-level amplification CNV was only associated with
the infiltration level of dendritic cells (P < 0.001), neutrophils
(P < 0.01), and CD8+ T cells (P < 0.001).

Cluster Analysis Data
Based on the “limma” R package, we obtained genes positively
or negatively correlated with ISLR among three datasets:
TCGA-STAD, GSE13861, and GSE29272 (Figure 7A). Then,
we performed intersection analysis and identified 134 common
positively correlated genes and 8 common negatively correlated
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FIGURE 6 | Correlation between ISLR expression and the infiltration level of immune cells. The TIMER, CIBERSORT, CIBERSORT.ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC algorithms were applied for the immune infiltration estimations of CD8+ T cells, CD4+ T cells, Treg cells, and Tfh cells (A);
Monocytes and macrophages (M1, M2 type) (B); mast cells and eosinophils (C); and dendritic cells and NK cells (D). A heatmap with the purity-adjusted Spearman’s
rho value and specific scatter plots are provided as examples. “NA” means a lack of an association between ISLR expression and the infiltration level of immune cells.

genes (Figure 7B). Then, we performed GO enrichment
analyses. We observed extracellular matrix-associated terms,
such as extracellular structure organization and extracellular
matrix structural constituents, in the GO_biological_process
(Figure 7C), GO_cellular_component (Supplementary
Figure S5A), and GO_molecular_function (Supplementary
Figure S5B) categories. Then, we displayed the extracellular
matrix-associated terms in GOCircle (Figure 7D) and chord
(Figure 7E) plots.

KEGG analysis data identified the ECM-receptor
interaction (Supplementary Figure S6). GSEA data
also showed the extracellular matrix (ECM)-associated
gene sets, including extracellular structure organization,
extracellular matrix structural constituents, ECM-receptor
interaction, miRNA targets in ECM and membrane receptors
(Supplementary Figure S7). Based on the GSCALite
pathway score analysis, we further observed activation

of the epithelial-mesenchymal transition (EMT) pathway
(Supplementary Figure S8).

PCA and Random Forest Analysis Data
To further identify ISLR-correlated hub genes for the
differentiation of tumor from normal samples, we performed
PCA. As shown in Figures 8A–C, we used PC1, PC2 and PC3
to distinguish normal from tumor samples in the three datasets:
TCGA-STAD, GSE13861, and GSE29272. Then, we conducted an
intersection analysis and identified six hub genes, ISLR, COL1A2
(collagen type I alpha 2 chain), CDH11 (cadherin 11), SPARC
(secreted protein acidic and cysteine-rich), COL3A1 (collagen
type III alpha 1 chain), and COL1A1 (collagen type I alpha 1
chain) (Figure 8D). There were strong positive correlations of
expression among these genes, and all correlation coefficients
were greater than 0.8 (Figure 8E). Figure 8F presents the
correlation between ISLR and COL1A2 gene expression in the
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FIGURE 7 | Cluster analysis of significant ISLR-correlated genes. (A) After expression difference analyses between the ISLR-high and -low expression groups were
performed with the “limma” R package on the TCGA-STAD, GSE13861, and GSE29272 datasets, volcano plots were constructed. POS, genes positively correlated
with ISLR; NEG, genes negatively correlated with ISLR; NO, genes not correlated with ISLR. (B) The “VennDiagram” R package was used for the common genes
positively (POS) and negatively (NEG) correlated with ISLR. (C) The “clusterProfiler” R package was used for the GO_biological_process enrichment analysis. The
GOCircle (D) and chord plots (E) using extracellular matrix-associated terms were visualized by the “GOplot” R package.

three datasets (R = 0.91, P < 2.2E-16). Figures 8G–I further
shows the contribution of these hub genes to PC1 and PC2.

Subsequently, we carried out a random forest analysis based
on these six hub genes. The multidimensional scale plot in
Figure 9A suggests the effective differentiation of normal from

tumor samples in the TCGA-STAD cohort. Figure 9B shows the
mean decrease accuracy and mean decrease Gini data. The AUC
value of 0.869 indicated high classification accuracy (Figure 9C).
Similar results were observed in the GSE16831 (Figures 9D–F)
and GSE29272 (Figures 9G–I) datasets.
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FIGURE 8 | Principal component analysis. Based on the common_POS_genes and common_NEG_genes, the prcomp () function was used for PCA to classify the
normal and tumor sections in TCGA-STAD (A), GSE13861 (B), and GSE29272 (C). A scree plot and a three-dimensional map (PC1, PC2, and PC3) are provided.
(D) The “VennDiagram” R package was used for the common_PCA_hub_genes. (E) The cor () function and “corrplot” R package were used for the Spearman
correlation analysis of these hub genes. Correlation coefficients are shown. (F) The scatter plot for the correlation between ISLR and COL1A2 gene expression is
provided. (G–I) The “factoextra” R package was utilized to show the principal component weight and two-dimensional contribution maps of common hub genes.

Drug Sensitivity Analysis Data
Finally, based on the CTRP database, we conducted a small
molecule/drug sensitivity (IC50) evaluation and further detected
that the expression of the ISLR gene was negatively related to
sensitivity to PX-12 and NSC632839 (Supplementary Figure S9).

DISCUSSION

Based on the available datasets of gastric cancer cases collected
by TCGA and GEO, for the first time, we found a statistical
correlation between high expression of the ISLR gene and
poor overall survival, disease-free survival, first progression,
and post-progression survival. There were significant differences
in ISLR expression among different pathological stages (stages
1–4). When gastric cancer samples were divided by clinical
information, a positive correlation between ISLR expression and
gastric cancer prognosis existed in most subgroups, such as
subgroups based on different Lauren classifications (intestinal
or diffuse). Notably, we only observed a correlation between

ISLR gene expression and OS in the well-differentiated subgroup
but not in the poorly or moderately differentiated subgroup. In
addition, we detected a positive effect of ISLR expression on
survival in the pathological stage 3 subgroup but not the stage
1, 2, or 4 subgroups. These results implied that the prognostic
ability of high ISLR gene expression may increase with tumor
differentiation or pathological grade.

Upon integrated analysis, we observed that high expression of
the ISLR gene showed a correlation with low sensitivity to PX-
12 (an irreversible inhibitor of thioredoxin-1) (Metcalfe et al.,
2016) and NSC632839 (a non-selective isopeptidase inhibitor)
(Nicholson et al., 2008), indicating that high ISLR gene expression
may be associated with chemoresistance in gastric cancer.
Unexpectedly, during the survival analysis of gastric cancer
patients treated with a 5-Fu-based adjuvant, high expression
of the ISLR gene was linked to a better prognosis than low
expression of the ISLR gene. It is possible that 5-Fu treatment
interferes with the expression of the ISLR gene in patients,
which leads to changes in survival outcomes. Additionally,
although we did not detect a correlation between ISLR gene
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FIGURE 9 | Random forest analysis. Based on the above hub genes, the “randomForest” package (ntree = 500) was utilized for the random forest modeling
analysis. The MDSplot () function was used to obtain a multidimensional scale (A,D,G). The data of mean decrease accuracy and mean decrease Gini were
visualized by the ggdotchart () function in the “ggpubr” package (B,E,H). The receiver operating characteristic (ROC) curve was plotted by the “pROC” package, and
the area under the ROC curve (AUC) value was calculated (C,F,I).

expression and 5-Fu drug sensitivity through our preliminary
assessment, more clinical gastric cancer samples specifically
under the treatment of 5-Fu and comprehensive analysis are
needed to validate the relationship between ISLR expression and
5-Fu chemotherapy resistance.

DNA methylation status is closely associated with the
carcinogenesis or drug resistance of gastric cancer (Tahara
and Arisawa, 2015; Choi et al., 2017). Although we failed to
detect a correlation between ISLR gene mutations or CNVs and
the clinical prognosis of gastric cancer, the hypomethylation
status of several sites within ISLR (cg05195566, cg17258195,
cg09664357, and cg0729703) was linked to high expression
of ISLR and clinically poor survival outcomes. We noted
that the cg05195566 and cg17258195 sites are situated in
the promoter region, while cg09664357 and cg0729703 are
outside the promoter region. It is worthwhile to further
investigate how methylation of different sites within ISLR
affects the expression level and survival outcomes of gastric
cancer patients.

Considering the structure of the ISLR protein as a member of
the Ig superfamily (Nagasawa et al., 1997) and the functional links
between immune infiltration and gastric cancer (Kim et al., 2016;

Liu et al., 2016; Pan et al., 2019; Xu et al., 2019), we first
investigated the correlation between ISLR gene expression and
macrophage, neutrophil, dendritic cell, B cell, T cell and
other immune cell infiltration levels based on gene expression
correlations and the TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms.
The results were adjusted for tumor purity. We observed a
positive correlation between ISLR gene expression and several
immune cells, especially CD8+ T cells, macrophages and
dendritic cells. We also detected a correlation between ISLR
CNV and immune infiltration. These results indicated that the
tumor microenvironment may be key in the complex molecular
mechanism by which the ISLR gene affects carcinogenesis
of gastric cancer.

The extracellular matrix (ECM) and epithelial-mesenchymal
transition (EMT) have been reported to be associated with the
invasion and migration of gastric cancer (Lukaszewicz-Zajac
et al., 2011; Peng et al., 2014; Huang et al., 2015). After pooling
the ISLR expression-associated genes, we detected significantly
enriched ECM-related pathways, including miRNA targets in the
ECM and membrane receptors. Our PCA and random forest
analysis further identified six extracellular matrix-associated hub
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genes, which were able to distinguish between gastric cancer
and normal control samples. We also found that ISLR gene
expression was associated with the activation of the EMT
pathway. Considering the connection between miRNAs and EMT
in gastric cancer (Bure et al., 2019), we performed GSCALite
mRNA-miRNA regulation network analysis to identify several
potential ISLR-binding miRNAs, including hsa-miR16-5p, hsa-
miR-3116, hsa-mir-934, hsa-miR98-5p, and hsa-miR-339-5p
(data not shown). It is meaningful to evaluate the relationship
between ISLR expression and EMT from the perspective of
miRNA and to investigate the mechanism underlying the
progression of gastric cancer. In addition, the chief aim of our
research was only to examine the potential mechanism by which
the ISLR gene participates in gastric carcinogenesis. It should
be noted that ISLR does not show specificity for gastric cancer
tissue (data not shown), and its role in other cancers cannot
be ruled out. Most likely, ISLR works as an effective prognostic
marker during gastric carcinogenesis because it forms functional
protein-protein and protein-nucleic acid complexes.

CONCLUSION

After our bioinformatics and biostatistics analyses of gastric
cancer cases within the TCGA and GEO cohorts, high ISLR
expression was identified as a potential prognostic biomarker
for gastric cancer. DNA hypomethylation of ISLR is linked to
high expression of the ISLR gene and overall clinical prognosis.
ISLR expression was also correlated with the infiltration of
several immune cells (e.g., CD8+ T cells, macrophages and
dendritic cells), EMT pathway activity and sensitivity to PX-
12 and NSC632839. Our findings are of great significance for
conducting ISLR-based cell or animal experimental validation.
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FIGURE S1 | Correlation between methylation status and expression of ISLR in
gastric cases in the TCGA-STAD cohort. Detailed information on the methylation
probe is provided. Pearson correlation coefficients (R) and
Benjamini–Hochberg-adjusted P-values (∗P < 0.05, ∗∗∗P < 0.001) for the
comparison are shown as well.

FIGURE S2 | Correlation between the methylation status of ISLR DNA and the
survival rate of gastric patients in the TCGA-STAD cohort. A total of eleven
methylation probes, including cg15480336 (A), cg03778780 (B), cg02077702
(C), cg20536146 (D), cg11335960 (E), cg24779381 (F), cg05195566 (G),
cg177258195 (H), cg09664357 (I), cg07297039 (J), and cg16926502
(K), were used.

FIGURE S3 | Correlation between ISLR and markers of T or B cells as analyzed
through GEPIA2. (A) B cells; (B) Th1 cells; (C) Th2 cells; (D) Th17 cells; (E) CD8+

T cells; (F) Tfh cells; (G) resting Treg cells; (H) effector Treg cells; (I) exhausted
T cells.

FIGURE S4 | Correlation between ISLR CNV and the infiltration level of immune
cells as analyzed through TIMER. (A) dendritic cells; (B) neutrophils; (C) CD8+ T
cells; (D) CD4+ T cells; (E) B cells; (F) macrophages. (∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001).

FIGURE S5 | GO_biological_process and GO_molecular_function enrichment
analysis. The “clusterProfiler” R package was used for the GO_biological_process
(A) and GO_molecular_function (B) enrichment analyses.

FIGURE S6 | KEGG enrichment analysis. The “pathview” R package was used for
the KEGG enrichment analysis.

FIGURE S7 | GSEA. A LinkedOmics approach was utilized for the ISLR-correlated
GSEA profiles. Four extracellular matrix (ECM)-associated gene sets, including
genes involved in extracellular structural organization (A), extracellular matrix
structural constituents (B), ECM-receptor interactions (C), and miRNA targets in
the ECM and membrane receptors (D), were identified.

FIGURE S8 | Correlation between ISLR expression and pathway activation
or inhibition.

FIGURE S9 | Correlation between ISLR expression and small molecule/drug
sensitivity (IC50).

TABLE S1 | Correlation of ISLR expression and the first progression status of
gastric cancer patients in the GEO cohort (Kaplan–Meier plotter).

TABLE S2 | Correlation of ISLR expression and the PPS of gastric cancer patients
in the GEO cohort (Kaplan–Meier plotter).
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Overall and abdominal obesity were significantly associated with insulin resistance and
type 2 diabetes mellitus (T2DM) risk in observational studies, though these associations
cannot avoid the bias induced by confounding effects and reverse causation. This
study aimed to test whether these associations are causal, and it compared the
causal effects of overall and abdominal obesity on T2DM risk and glycemic traits by
using a two-sample Mendelian randomization (MR) design. Based on summary-level
statistics from genome-wide association studies, the instrumental variables for body
mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI)
were extracted, and the horizontal pleiotropy was analyzed using MR–Egger regression
and the MR–pleiotropy residual sum and outlier (PRESSO) method. Thereafter, by using
the conventional MR method, the inverse-variance weighted method was applied to
assess the causal effect of BMI, WHR, and WHRadjBMI on T2DM risk, Homeostatic
model assessment of insulin resistance (HOMA-IR), fasting insulin, fasting glucose, and
Hemoglobin A1c (HbA1c). A series of sensitivity analyses, including the multivariable MR
(diastolic blood pressure, systolic blood pressure, high-density lipoprotein cholesterol,
and low-density lipoprotein cholesterol as covariates), MR–Egger regression, weighted
median, MR–PRESSO, and leave-one-out method, were conducted to test the
robustness of the results from the conventional MR. Despite the existence of horizontal
pleiotropy, consistent results were found in the conventional MR results and sensitivity
analyses, except for the association between BMI and fasting glucose, and WHRadjBMI
and fasting glucose. Each one standard deviation higher BMI was associated with an
increased T2DM risk [odds ratio (OR): 2.741; 95% confidence interval (CI): 2.421–3.104],
higher HbA1c [1.054; 1.04–1.068], fasting insulin [1.202; 1.173–1.231], and HOMA-IR
[1.221; 1.187–1.255], similar to findings for causal effect of WHRadjBMI on T2DM risk
[1.993; 1.704–2.33], HbA1c [1.061; 1.042–1.08], fasting insulin [1.102; 1.068–1.136],
and HOMA-IR [1.127; 1.088–1.167]. Both BMI (P = 0.546) and WHRadjBMI (P = 0.443)
were unassociated with fasting glucose in the multivariable MR analysis. In conclusion,
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overall and abdominal obesity have causal effects on T2DM risk and insulin resistance
but no causal effect on fasting glucose. Individuals can substantially reduce their insulin
resistance and T2DM risk through reduction of body fat mass and modification of body
fat distribution.

Keywords: type 2 diabetes mellitus, insulin resistance, abdominal obesity, body fat mass, body fat mass
distribution, Mendelian randomization

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic metabolic
disease characterized by hyperglycemia secondary to insulin
resistance and pancreatic β-cell failure (Alejandro et al., 2015).
The findings of human epidemiologic studies indicate that
the global prevalence of T2DM is increasing rapidly, and this
increase parallels the increase in the prevalence of obesity
(Sampath Kumar et al., 2019). The body mass index (BMI)
is routinely used to quantify the overall obesity although
body fat distribution of individuals can vary substantially.
The waist-to-hip ratio (WHR) and WHR adjusted for BMI
(WHRadjBMI) are frequently used surrogate measures of
abdominal obesity. Many observational epidemiologic studies,
including case–control and cohort studies, have demonstrated
that higher WHR and BMI are two important risk factors
for developing T2DM (Vazquez et al., 2007; Lv et al., 2017).
Moreover, cohort and cross-sectional studies (Wang et al., 2018;
Benites-Zapata et al., 2019) demonstrated that BMI and WHR
were associated with glycemic traits, including fasting insulin,
Hemoglobin A1c (HbA1c), and insulin resistance [measured by
Homeostatic model assessment of insulin resistance (HOMA-
IR)]. Longitudinal and cross-sectional studies have found an
association between increased risk of T2DM and higher genetic
predisposition to both BMI and WHRadjBMI in European and
East Asian populations (Robiou-du-Pont et al., 2013; Zhu et al.,
2014; Huang et al., 2015).

However, these observational studies cannot avoid the bias
induced by the confounding effect and reverse causation and,
therefore, are incapable of confirming whether these associations
are causal (Smith and Ebrahim, 2003). Mendelian randomization
(MR) is an approach that is used to unbiasedly test or
estimate the causal relationship between an exposure and an
associated outcome by using data on inherited genetic variants
that influence exposure status in the presence of unmeasured
confounding (Didelez and Sheehan, 2007; Lawlor et al., 2008). In
the past few years, MR has been extensively used in epidemiology
and other related areas of population science (Smit et al., 2019;
Wainberg et al., 2019; Yang et al., 2019).

Previous MR analyses have demonstrated that per 1 standard
deviation (SD) higher WHRadjBMI and BMI were causally
associated with T2DM risk in European populations (Dale
et al., 2017; Emdin et al., 2017). Wang et al. (2018) conducted
an MR to further investigate the causal effect of both BMI
and WHR on glycemic traits, and they found that BMI
had a causal relevance for insulin secretion, whereas neither
WHR and BMI was causally associated with HOMA-IR in
a conventional MR in a Chinese Han population. However,

there is a dearth of MR studies for testing and comparing
the causal effect of both overall and abdominal obesity on
glycemic in the European population. Epidemiologic studies
have found differences in T2DM epidemiologic characteristics
between the Asian and European population wherein, in
comparison with South Asians, Europeans have a lower T2DM
risk, typically develop T2DM 5–10 years later, and have
a slower disease progression (Gujral et al., 2013; Admiraal
et al., 2014; Gupta and Misra, 2016; Meeks et al., 2016;
Banerjee and Shah, 2018). Moreover, Europeans developed many
metabolic abnormalities, including hyperglycemia and elevated
triacylglycerol and low high-density lipoprotein cholesterol
(HDL-C), at a higher BMI and age (Raji et al., 2001;
Razak et al., 2007). Therefore, the estimation and comparison
of the causal effects of overall and abdominal obesity on
glycemic traits could provide insights into the obesity-related
mechanism of T2DM.

In this study, a two-sample Mendelian randomization
(TSMR) with a large sample size was conducted to determine
whether a genetic predisposition to increased BMI, WHR, and
WHRadjBMI was causally associated with T2DM and glycemic
traits, including HOMA-IR, fasting insulin, fasting glucose, and
HbA1c. The causal effects were further compared to identify
differences in the effect of overall and abdominal obesity on
T2DM development and glycemic traits.

MATERIALS AND METHODS

Data Source
This study aimed to explore the causal effect of WHR, BMI,
and WHRadjBMI on the risk of T2DM and glycemic traits
(HOMA-IR, fasting insulin, fasting glucose, and HbA1c) in
an European population, and used diastolic blood pressure
(DBP), systolic blood pressure (SBP), HDL-C, and low-density
lipoprotein cholesterol (LDL-C) as the covariates. The genome-
wide association study summary statistics datasets used in this
study were obtained from Zenodo1 for WHR (Censin et al.,
2019), BMI (Censin et al., 2019), and WHRadjBMI (Censin et al.,
2019); the Program in Complex Trait Genomics2 for T2DM
(Xue et al., 2018); MAGIC Consortium3 for HOMA-IR (Dupuis
et al., 2010), fasting glucose (Manning et al., 2012), fasting insulin
(Manning et al., 2012), and HbA1c (Wheeler et al., 2017); the

1https://zenodo.org
2https://cnsgenomics.com
3http://www.magicinvestigators.org/
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MRBase platform4 for HDL-C (Kettunen et al., 2016) and LDL-
C (Kettunen et al., 2016); and the MRC-IEU Consortium5 for
SBP and DBP. Detailed information of the summary statistics
datasets are displayed in Table 1. We obtained the β-coefficients
and standard errors for the per allele association of each single-
nucleotide polymorphism (SNP) as well as all exposures and
outcomes from these data sources.

Selection of Genetic Instrumental
Variables
In the TSMR analysis conducted in this study, the genetic
variants for exposures (BMI, WHR, and WHRadjBMI) were
used as instrumental variables (IVs) and were obtained by two
steps. Firstly, SNPs that are strongly associated with exposures
(P < 5.0 × 10−8) were extracted. Secondly, we pruned these
extracted SNPs by linkage disequilibrium (LD; r2 = 0.001,
clumping distance = 10,000 kb) to ensure that each IV was
independent of the others. To test the strength of the IVs,
the F-statistics were calculated as previously described (Xu and
Hao, 2017). F-statistics >10 are considered adequately strong to
mitigate against any bias of the causal IV estimate.

Heterogeneity and Horizontal Pleiotropic
Analysis
In MR, heterogeneity in the causal estimate may indicate that
a variant has an effect on the outcome outside of its effect on
the exposure (known as horizontal pleiotropy), and this can
cause severe bias (Davey Smith and Hemani, 2014). Mendelian
randomization–Egger (MR–Egger) regression was undertaken to
assess the horizontal pleiotropy of the IVs, where a regression
intercept that significantly differed from zero (P< 0.05) indicated
the presence of horizontal pleiotropy exists or that the InSIDE
(INstrument Strength Independent of Direct Effect) assumption
was violated (Bowden et al., 2015). Heterogeneity between IVs
in the conventional MR, with the inverse-variance weighted
(IVW) method, was estimated by Cochran’s Q statistic. The MR
pleiotropy residual sum and outlier (MR–PRESSO) method can
be used to test horizontal pleiotropic outliers and can obtain
the corrected causal effect after removal of these outliers in
MR (Verbanck et al., 2018). In the present study, both MR–
Egger regression and MR–PRESSO tests were conducted using
the TwoSampleMR and MRPRESSO R package in R (version
3.6.1), respectively.

Mendelian Randomization
Mendelian randomization can test and estimate the causal effect
of an exposure on an outcome by using genetic variants as the
IVs (Zheng et al., 2017). Firstly, Wald ratios were calculated for
each IV by dividing the per-allele log-odds ratio (or beta) of that
variant in the outcome data by the log-odds ratio (or beta) of
the same variant in the exposure data. Then, the random-effects
IVW method was applied to estimate the association between
exposures and outcomes. In IVW, the Wald ratio for each SNP

4http://www.mrbase.org
5http://www.bristol.ac.uk/integrative-epidemiology/

was weighted by its inverse variance, and the effect estimates were
meta-analyzed using random effects.

Sensitivity Analysis
Sensitivity analysis was used to test the disproportionate effects
of variants and the pleiotropy in the MR analysis (Mokry et al.,
2016). A series of sensitivity analyses were conducted to test the
robustness of the conventional MR results.

Multivariable IVW, which included the DBP, SBP, HDL-C,
and LDL-C as covariates, was carried out in accordance with the
method proposed by Rees et al. (2017) that was used to account
for possible horizontal pleiotropy arising from the association of
the instrument with these variables.

The MR–Egger regression and weighted median method are
two pleiotropy-robust MR methods that are used to estimate
consistent causal effects against unknown directional pleiotropy
under the InSIDE assumptions (Bowden et al., 2015). In the MR–
Egger regression method, the regression line fitted to the data
is not constrained to pass through the origin, and the intercept
represents the horizontal pleiotropic effect that may bias the
IVW estimate, whereas the slope represents pleiotropy-corrected
causal estimates. The weighted median method has considerable
robustness to individual genetics with strongly outlying causal
estimates and could provide a consistent causal estimate when
the valid IVs exceed 50%.

The MR–PRESSO method was used to identify potential
outliers in the conventional MR testing, and provided a
robust estimate with outlier correction. Moreover, testing of
significant distortion in the IVW causal estimate before and
after MR–PRESSO correction, was undertaken and served as a
sensitivity analysis.

The leave-one-out sensitivity analysis was conducted to
ascertain whether the association was being disproportionately
influenced by a single SNP. In this analysis, the random-effects
IVW was repeated by leaving out each SNP in turn, and the
overall analysis including all SNPs was used for the comparison.
The variation of the results from before and after the removal of
each SNP reflects the sensitivity of this SNP.

RESULTS

Genetic IVs
A total of 546, 356, and 330 IVs were identified for BMI,
WHR, and WHRadjBMI, respectively. Some IVs were absent
in the outcome data; however, the F statistics for BMI-IVs
(86.250–89.078), WHR-IVs (67.502–67.991), and WHRadjBMI-
IVs (90.758–96.860) that were used for MR were more than 10,
which indicated that the weak instrument bias was negligible.
Detailed information of IVs used in this study are shown in
Supplementary Table S1.

Horizontal Pleiotropy and Heterogeneity
Analysis
The MR–Egger regression intercepts obtained in this study
(Table 2) showed that horizontal pleiotropy (P = 0.029) was
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TABLE 1 | Summary statistics of data source.

Traits Consortium Data sources No. of participants No. of Variants Population Units in TSMR

WHR ZENODO Censin; PloS Genet; 2019 697,734 27,381,301 European SD

BMI ZENODO Censin; PloS Genet; 2019 806,834 27,376,273 European SD

WHRadjBMI ZENODO Censin; PloS Genet; 2019 694,649 27,375,636 European SD

HDL-C MRBase Kettunen; Nat Commun; 2016 21,555 11,865,530 European SD

LDL-C MRBase Kettunen; Nat Commun; 2016 21,559 11,871,461 European SD

SBP MRC-IEU Ben Elsworth; 2018 436,419 9,851,867 European SD

DBP MRC-IEU Ben Elsworth; 2018 436,424 9,851,867 European SD

Fasting glucose MAGIC Manning, Nat Genet; 2012 58,074 2,628,880 European mmol/L

Fasting insulin MAGIC Manning, Nat Genet; 2012 51,750 2,627,849 European log pmol/L

HOMA-IR MAGIC Dupuis; Nat Genet; 2010 37,037 2,458,074 European log HOMA

HbA1c MAGIC Wheeler, PloS Med; 2017 123,655 2,586,698 European %

T2DM Program in Complex Trait
Genomics

Xue; Nat Commun; 2018 62,892/596,424 5,053,015 European log odds

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, Type 2 diabetes; TSMR, two-sample Mendelian randomization; SD,
standard deviation; HOMA-IR, Homeostasis model assessment of insulin resistance; HbA1c, Hemoglobin A1c.

only found in the MR with WHRadjBMI as exposure and fasting
insulin as the outcome. Heterogeneity (Table 2) was observed
between IVs; therefore, the random-effect IVW method was
used in the subsequent stages of the research analysis. The MR–
PRESSO test showed that horizontal pleiotropy was found in
all IVW analyses in this study, and the horizontal pleiotropic
outliers were identified and removed (Supplementary Table S2).
After the removal of these outliers, the F-statistics of BMI-IVs
(85.704–89.033), WHR-IVs (62.240–67.991), and WHRadjBMI-
IVs (84.668–96.860) continued to remain well powered to
estimate the causal effect of the exposure on the outcome.

Causal Effect of WHR, BMI, and
WHRadjBMI on T2DM and Glycemic
Traits
Table 3 and Figure 1 show the causal effect estimates of WHR,
BMI, and WHRadjBMI on T2DM and glycemic traits. The TSMR
analysis by the IVW method showed a significant causal effect,
wherein each SD of genetically higher BMI was associated with
an increased T2DM risk [OR: 2.741; 95% confidence interval
(CI): 2.421–3.104], higher fasting glucose [1.073; 1.048–1.099],
higher fasting insulin [1.202; 1.173–1.231], higher HOMA-IR
[1.221; 1.187–1.255], and higher HbA1c [1.054; 1.04–1.068]. Each
SD of genetically higher WHR was associated with increased
T2DM risk [3.12; 2.653–3.668], higher fasting glucose [1.087;
1.054–1.12], higher fasting insulin [1.193; 1.153–1.234], higher
HOMA-IR [1.203; 1.155–1.252], and higher HbA1c [1.075;
1.056–1.095]. Each SD of genetically higher WHRadjBMI was
associated with increased T2DM risk [1.993; 1.704–2.33], higher
fasting glucose [1.039; 1.012–1.067], higher fasting insulin [1.102;
1.068–1.136], higher HOMA-IR [1.127; 1.088–1.167], and higher
HbA1c [1.061; 1.042–1.08].

Sensitivity Analysis
In the leave-one-out sensitivity analysis, no single SNP strongly
or reversely drove the overall effect of exposure on outcome in

the IVW (Supplementary Figure S1). Consistent results were
observed in the IVW after the MR–PRESSO correction, MR–
Egger regression, and the weighted median method, with the
exception of the causal estimates of WHR on HbA1c (P = 0.058)
and fasting glucose (P = 0.098) in the MR–Egger regression. The
MR–Egger regression could obtain pleiotropy-corrected causal
estimates, although this method had less statistical power than an
equivalent IVW method, and the CIs were wider and included
the null value (Bowden, 2017; Weng et al., 2018). Because the
intercept of the MR–Egger regression indicates that there was no
horizontal pleiotropy in the MR–Egger regression between WHR
and both HbA1c (P = 0.695) and fasting glucose (P = 0.935),
the causal estimate was more convincing in the IVW. In the
multivariable IVW (DBP, SBP, HDL-C, and LDL-C as covariates),
BMI (P = 0.546) and WHRadjBMI (P = 0.443) were not causally
associated with fasting glucose, whereas other multivariable IVW
results persisted with that in the univariable IVW.

Taken together, the causal effect estimates of BMI and
WHRadjBMI on fasting glucose in conventional MR might be
biased by the horizontal pleiotropy of SBP, DBP, HDL-C, and
LDL-C, while no significant bias was found in other causal
effect estimates despite the existence of horizontal pleiotropy
and heterogeneity.

DISCUSSION

Numerous observational studies indicated that obesity was
strongly associated with T2DM risk and glycemic traits (Lv
et al., 2017), however, a causal effect cannot be ascertained from
these studies due to residual confounding or reverse causality.
This present study utilized a TSMR design that was applied
to the summary-level data from a large-scale genome-wide
association study to address the potential causal role of overall
obesity (measured by BMI) and abdominal obesity (measure by
WHRadjBMI) on the risk of T2DM and glycemic traits. The
well-powered conventional MR (random-effect IVW method)
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TABLE 2 | Heterogeneity and horizontal pleiotropy analysis.

Exposure Outcome Heterogeneity Horizontal pleiotropy

MR–PRESSO test MR–Egger regression

Q Q df P Global Test RSSobs Global Test P intercepts (95% CI) P

BMI

T2DM 2867.057 445 <0.001 2885.029 <0.001 −0.001 (0.994,1.005) 0.837

HOMA-IR 510.260 446 0.019 512.445 0.023 0 (0.998,1.001) 0.430

HbA1c 654.863 445 <0.001 658.515 <0.001 0 (0.999,1) 0.714

Fasting insulin 624.170 448 <0.001 626.889 <0.001 0 (0.999,1.001) 0.842

Fasting glucose 619.187 448 <0.001 622.082 <0.001 0 (0.999,1.001) 0.838

WHR

T2DM 1718.377 275 <0.001 1739.466 <0.001 0.008 (1,1.017) 0.055

HOMA-IR 368.360 277 <0.001 371.364 <0.001 0 (0.998,1.002) 0.729

HbA1c 413.286 279 <0.001 416.611 <0.001 0 (0.999,1.001) 0.695

Fasting insulin 431.511 280 <0.001 435.262 <0.001 0 (0.998,1.002) 0.853

Fasting glucose 358.324 280 0.001 361.045 0.001 0 (0.998,1.002) 0.935

WHRadjBMI

T2DM 1590.053 236 <0.001 1609.124 <0.001 0.003 (0.995,1.011) 0.455

HOMA-IR 290.496 237 0.010 293.251 0.011 −0.001 (0.997,1.001) 0.175

HbA1c 383.587 238 <0.001 387.452 <0.001 0 (0.999,1) 0.355

Fasting insulin 362.009 239 <0.001 365.491 <0.001 −0.002 (0.997,1) 0.029

Fasting glucose 276.448 239 0.048 278.957 0.047 −0.001 (0.998,1.001) 0.319

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, Type 2 diabetes; SD, standard deviation; HOMA-IR, Homeostasis
model assessment of insulin resistance; HbA1c, Hemoglobin A1c; Q, Cochran’s Q test estimate; df, Cochran’s Q test degrees of freedom; MR–egger, Mendelian
randomization–Egger regression; MR–PRESSO, Mendelian randomization pleiotropy residual sum and outlier method; OR, odds ratio; CI, confidence interval.

confirmed that genetic predisposition to higher BMI, WHR, and
WHRadjBMI are causally associated with higher fasting glucose,
fasting insulin, HOMA-IR, HbA1c, and increased risk of T2DM
in the European population.

However, heterogeneity and horizontal pleiotropy was found
in the conventional MR analysis, a series of sensitivity analyses
that included the multivariable MR (DBP, SBP, HDL-C, and
LDL-C as covariates), MR–Egger regression, weighted median
method, MR–PRESSO method, and leave-one-out analysis to test
the robustness of the conventional MR results. The causal effect
of BMI and WHRadjBMI on T2DM risk, HbA1c, fasting insulin,
and HOMA-IR in the conventional MR were consistent with that
in all the sensitivity analyses, which suggested that the causal
estimate was robust and unbiased.

Each SD of genetically higher BMI [2.741; 2.421–3.104] and
WHRadjBMI [1.993; 1.704–2.33] was associated with increased
T2DM risk. Human epidemiologic studies have considered
obesity to be a major risk factor of T2DM, and the substantial
increase in the incidence of obesity contributes to the current
T2DM epidemic (Sampath Kumar et al., 2019). Using the MR
method in the European descendants, Emdin et al. confirmed
that a 1 SD genetic increase in WHRadjBMI was associated
with a higher risk of T2DM [1.77; 1.57–2.00] (Emdin et al.,
2017), and Dale et al. revealed that each SD higher BMI
was associated with increased T2DM risk [1.98; 1.41–2.78]
(Dale et al., 2017). The results of this study are in agreement
with those of previous observational studies (Lv et al., 2017;

Sampath Kumar et al., 2019) and MR studies (Dale et al.,
2017; Emdin et al., 2017) which suggested that both overall
and abdominal obesity play a causal role on T2DM risk in the
European population. In addition, our MR studies suggested
that the causal effect of overall obesity on T2DM risk was
greater than that of abdominal obesity. Moreover, both BMI
[1.054; 1.04–1.068] and WHRadjBMI [1.061; 1.042–1.08] were
found to have a causal effect on HbA1c, which suggested that
overall and abdominal obesity have a similar but small causal
effect on the HbA1c.

Insulin resistance refers to a decreased physiological response
of peripheral tissues to insulin action, which implies an impaired
effect of insulin in lowering the blood glucose (Gelaye et al.,
2010). This serves as the key mechanism and a major global
driver of the T2DM condition (Roglic, 2016; Czech, 2017).
The accumulation of body fat and abdominal body fat are
risk factors for increased insulin resistance (Kohrt et al., 1993;
Gobato et al., 2014), and high BMI and WHR were found to
be positively correlated with insulin resistance in observational
epidemiological studies (Gobato et al., 2014; Benites-Zapata
et al., 2019; Lin et al., 2019). Wang et al. reported that higher
BMI was causally correlated with increased Stumvoll first- and
second-phase insulin secretion and HOMA-IR, whereas no
causal relationship between WHR and HOMA-IR was found
in a conventional MR study in the Chinese Han population
(Wang et al., 2018). In Europeans, a previous MR study found
that higher WHRadjBMI was causally associated with higher
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TABLE 3 | Mendelian randomization results.

BMI WHR WHRadjBMI

Outcome Method nSNP OR (95% CI) P nSNP OR (95% CI) P nSNP OR (95% CI) P

T2DM

IVW 446 2.741 (2.421, 3.104) 6.12E-57 276 3.12 (2.653, 3.668) 3.87E-43 237 1.993 (1.704, 2.33) 5.59E-18

MR–PRESSO (Outlier-corrected) 433 3.064 (2.871, 3.271) 9.15E-123 254 3.543 (3.164, 3.968) 2.67E-60 211 2.117 (1.908, 2.35) 3.06E-32

Multivariable MR 842 3.338 (2.625, 4.246) 1.47E-20 672 2.887 (2.54, 3.281) 3.66E-50 633 2.105 (1.755, 2.524) 8.57E-15

Weighted median 446 2.835 (2.576, 3.12) 6.18E-101 276 2.769 (2.43, 3.156) 1.02E-52 237 1.983 (1.764, 2.229) 1.74E-30

MR–Egger 446 2.829 (2.042, 3.918) 9.28E-10 276 1.894 (1.109, 3.234) 0.020 237 1.699 (1.087, 2.656) 0.0201

HOMA-IR

IVW 447 1.221 (1.187, 1.255) 6.69E-44 278 1.203 (1.155, 1.252) 4.03E-19 238 1.127 (1.088, 1.167) 3.69E-11

MR–PRESSO (Outlier-corrected) 446 1.223 (1.19, 1.258) 5.15E-38 278 NA NA 238 NA NA

Multivariable MR 723 1.294 (1.187, 1.411) 1.29E-08 554 1.192 (1.148, 1.237) 1.28E-18 529 1.197 (1.134, 1.262) 1.61E-10

Weighted median 447 1.214 (1.161, 1.27) 2.79E-17 278 1.18 (1.114, 1.251) 2.25E-08 238 1.128 (1.07, 1.188) 6.90E-06

MR–Egger 447 1.255 (1.165, 1.352) 4.41E-09 278 1.175 (1.024, 1.348) 0.022 238 1.199 (1.089, 1.32) 2.72E-3

HbA1c

IVW 446 1.054 (1.04, 1.068) 4.99E-14 280 1.075 (1.056, 1.095) 1.13E-14 239 1.061 (1.042, 1.08) 3.85E-11

MR–PRESSO (Outlier-corrected) 441 1.05 (1.036, 1.064) 9.67E-13 278 1.075 (1.056, 1.094) 4.41E-14 235 1.054 (1.037, 1.072) 1.61E-09

Multivariable MR 735 1.076 (1.031, 1.123) 8.11E-3 569 1.074 (1.055, 1.093) 5.04E-14 543 1.065 (1.038, 1.094) 3.79E-06

Weighted median 446 1.06 (1.04, 1.081) 3.83E-09 280 1.07 (1.044, 1.096) 4.60E-08 239 1.059 (1.034, 1.085) 2.08E-06

MR–Egger 446 1.06 (1.024, 1.099) 0.001 280 1.062 (0.998, 1.131) 0.058 239 1.084 (1.033, 1.137) 0.001

Fasting
insulin

IVW 449 1.202 (1.173, 1.231) 4.73E-50 281 1.193 (1.153, 1.234) 2.28E-24 240 1.102 (1.068, 1.136) 6.37E-10

MR–PRESSO (Outlier-corrected) 446 1.198 (1.17, 1.226) 4.55E-42 280 1.201 (1.162, 1.241) 3.45E-23 237 1.108 (1.077, 1.141) 2.80E-11

Multivariable MR 742 1.298 (1.204, 1.4) 6.62E-11 574 1.184 (1.147, 1.223) 5.81E-23 548 1.179 (1.125, 1.235) 2.18E-11

Weighted median 449 1.213 (1.168, 1.26) 1.54E-23 281 1.187 (1.136, 1.24) 1.41E-14 240 1.129 (1.083, 1.177) 1.03E-08

MR–Egger 449 1.209 (1.134, 1.289) 1.06E-08 281 1.18 (1.052, 1.324) 0.005 240 1.2 (1.105, 1.304) 2.29E-05

Fasting
glucose

IVW 449 1.073 (1.048, 1.099) 4.53E-09 281 1.087 (1.054, 1.12) 8.78E-08 240 1.039 (1.012, 1.067) 0.004

MR–PRESSO (Outlier-corrected) 446 1.083 (1.059, 1.107) 7.61E-12 278 1.098 (1.067, 1.13) 7.19E-10 239 1.044 (1.017, 1.072) 0.001

Multivariable MR 742 1.025 (0.947, 1.109) 0.546 574 1.067 (1.034, 1.102) 8.18E-05 548 1.019 (0.971, 1.069) 0.443

Weighted median 449 1.077 (1.041, 1.114) 1.88E-05 281 1.092 (1.048, 1.138) 2.60E-05 240 1.058 (1.017, 1.101) 0.005

MR–Egger 449 1.067 (1.002, 1.136) 0.043 281 1.091 (0.984, 1.209) 0.098 240 1.075 (1.001, 1.155) 0.049

WHR, waist-to-hip ratio; BMI, body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic
blood pressure; DBP, diastolic blood pressure; T2DM, type 2 diabetes; SD, standard deviation; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, hemoglobin A1c; nSNP, numbers of the SNPs
(instrumental variable) used in Mendelian randomization; IVW, inverse-variance weighted; MR–egger, Mendelian randomization–Egger regression; MR–PRESSO, Mendelian randomization pleiotropy residual sum and
outlier method; OR, odds ratio; CI, confidence interval.
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FIGURE 1 | Scatterplot and causal effect of body mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI (WHRadjBMI) on type 2 diabetes mellitus
(T2DM) and glycemic traits including HOMA-IR, fasting insulin, fasting glucose and glycate hemoglobin (HbA1c). (A) Causal effect of WHRadjBMI on T2DM,
(B) Causal effect of WHRadjBMI on HOMA-IR, (C) Causal effect of WHRadjBMI on fasting glucose, (D) Causal effect of WHRadjBMI on fasting insulin, (E) Causal
effect of WHRadjBMI on HbA1c, (F) Causal effect of WHR on T2DM, (G) Causal effect of WHR on HOMA-IR, (H) Causal effect of WHR on fasting glucose, (I) Causal
effect of WHR on fasting insulin, (J) Causal effect of WHR on HbA1c, (K) Causal effect of BMI on T2DM, (L) Causal effect of BMI on HOMA-IR, (M) Causal effect of
BMI on fasting glucose, (N) Causal effect of BMI on fasting insulin, and (O) Causal effect of BMI on HbA1c. The x-axis presents the single nucleotide polymorphism
(SNP) effect on exposure, and the y-axis presents the SNP effect on outcome. The light blue, dark blue and green regression line represents the inverse-variance
weighted (IVW), Mendelian randomization (MR)–Egger, and weighted median estimate, respectively.

fasting insulin levels (Emdin et al., 2017). The present MR
study provides a similar conclusion with regard to the European
population, each SD of genetically higher WHRadjBMI [1.102;
1.068–1.136] and BMI [1.202; 1.173–1.231] was found to play
a positive causal effect on higher fasting insulin. Furthermore,
each SD of genetically higher BMI [1.221; 1.187–1.255] and
WHRadjBMI [1.127; 1.088–1.167] was causally associated with
the HOMA-IR. These results suggested that higher overall
and abdominal obesity serve as causal risk factors of fasting
insulin and insulin resistance in the European population. The
findings of the present study are supported by experimental
studies as well. Obesity could stimulate the formation of lipid
metabolites, hormones, and cytokines, which involves changes
in the insulin signaling pathway and the accelerated progression
of insulin resistance (Patel and Abate, 2013; Balsan et al.,
2015). Moreover, the causal effect of overall obesity on fasting
insulin and insulin resistance is slightly greater than that
of abdominal obesity. Thus, we highlighted that both mass
and distribution of body fat play a causal role on insulin
resistance and T2DM risk. This indicates that the development
of therapies to modify the mass and distribution of body fat
to reduce overall and abdominal obesity might contribute to

the prevention and alleviation of T2DM and insulin resistance-
related diseases.

Furthermore, although higher BMI and WHRadjBMI was
found to be causally associated with higher fasting glucose
in our conventional MR in the European population, no
statistical significance was found between BMI and fasting
glucose (P = 0.546) or with WHRadjBMI and fasting glucose
(P = 0.443) in the multivariable MR (DBP, SBP, HDL-C, and LDL-
C as covariates). The casual estimates of BMI and WHRadjBMI
on fasting glucose in conventional MR might be biased by the
horizontal pleiotropy of DBP, SBP, HDL-C, and LDL-C. These
negative results warrant further investigation.

Through a comparison of the causal estimates of BMI and
WHRadjBMI on glycemic traits (fasting glucose, fasting insulin,
HOMA-IR, and HbA1c), this study further emphasizes that
overall and abdominal obesity might increase the T2DM risk
mainly via elevation of insulin resistance.

In conclusion, overall and abdominal obesity have a causal
effect on the T2DM risk and insulin resistance, and overall obesity
may have stronger effects, whereas they may have no causal effect
on the fasting glucose. These results suggest that individuals
can substantially reduce their insulin resistance and T2DM risk
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through reduction of body fat mass and modification of body
fat distribution.
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Barley (Hordeum vulgare L.) is one of the most important cereal crops worldwide. In the

Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called “qingke” in Chinese or

“nas” in Tibetan, is produced mainly in Tibet. The complexity of the environment in the

Qinghai-Tibet Plateau has provided unique opportunities for research on the breeding

and adaptability of qingke barley. However, the genetic architecture of many important

agronomic traits for qingke barley remains elusive. Heading date (HD), plant height (PH),

and spike length (SL) are three prominent agronomic traits in barley. Here, we used

genome-wide association (GWAS) mapping and GWAS with eigenvector decomposition

(EigenGWAS) to detect quantitative trait loci (QTL) and selective signatures for HD, PH,

and SL in a collection of 308 qingke barley accessions. The accessions were genotyped

using a newly-developed, proprietary genotyping-by-sequencing (tGBS) technology, that

yielded 14,970 high quality single nucleotide polymorphisms (SNPs). We found that the

number of SNPs was higher in the varieties than in the landraces, which suggested that

Tibetan varieties and varieties in the Tibetan area may have originated from different

landraces in different areas. We have identified 62 QTLs associated with three important

traits, and the observed phenotypic variation is well-explained by the identified QTLs.

We mapped 114 known genes that include, but are not limited to, vernalization, and

photoperiod genes. We found that 83.87% of the identified QTLs are located in the

non-coding regulatory regions of annotated barley genes. Forty-eight of the QTLs are first

reported here, 28 QTLs have pleotropic effects, and three QTL are located in the regions

of the well-characterized genes HvVRN1, HvVRN3, and PpD-H2. EigenGWAS analysis

revealed that multiple heading-date-related loci bear signatures of selection. Our results

confirm that the barley panel used in this study is highly diverse, and showed a great

promise for identifying the genetic basis of adaptive traits. This study should increase our

understanding of complex traits in qingke barley, and should facilitate genome-assisted

breeding for qingke barley improvement.
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50

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00638
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00638&domain=pdf&date_stamp=2020-07-03
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lihuihui@caas.cn
mailto:h.li@cgiar.org
mailto:dwdunzhu@126.com
https://doi.org/10.3389/fgene.2020.00638
https://www.frontiersin.org/articles/10.3389/fgene.2020.00638/full
http://loop.frontiersin.org/people/890753/overview
http://loop.frontiersin.org/people/917864/overview
http://loop.frontiersin.org/people/619129/overview
http://loop.frontiersin.org/people/327837/overview


Li et al. GWAS and EigenGWAS for Qingke Barley Population

INTRODUCTION

Barley (Hordeum vulgare L.) was domesticated in Israel and
Jordan in the southern part of the Fertile Crescent approximately
10,000 years ago (Badr et al., 2000). With an average world
production of 120 Mt annually (Ullrich, 2010), barley ranks
fourth among the most important cereal crops in the world
(http://faostat.fao.org). Barley is mainly used for food, fodder,
alcoholic beverage ingredient, and is generally considered to
be a healthful food (Blake et al., 2010; Collins et al., 2010). In
Qinghai-Tibet Plateau, six-rowed hulless (or naked) barley, called
“qingke” in Chinese or “nas” in Tibetan, is mainly produced in
Tibet, and Qinghai, Sichuan, and Yunnan provinces of China. In
the Qinghai-Tibet plateau, Tibetans use qingke barley to make
wine and for consumption (Tashi et al., 2013). As the main
food of Tibetans, qingke barley has been grown on the Qinghai-
Tibet Plateau for at least 3,500 years, most probably following
its introduction via northern Pakistan, India and Nepal (Zeng
et al., 2018). Tibetans have a rich spiritual and cultural connection
to qingke barley on the Qinghai-Tibet Plateau due to its wide
range of medicinal and nutritional uses. Therefore, analysis of the
genetic diversity present in cultivated varieties of qingke barley is
especially important.

The adaptation to diverse, high elevation environments makes
qingke barley a unique resource for genetic study and barley
breeding (Zeng et al., 2015). At present, the genetic architecture
of grain starch quality (Li et al., 2014) and drought stress
tolerance (Zeng et al., 2016) has been studied in qingke barley,
and salt and aluminum tolerance have been studied in Tibetan
wild barley (Qiu et al., 2011; Wu et al., 2011; Cai et al., 2013).
In other studies, diverse barley lines from different regions,
including the US (Zhou and Steffenson, 2013; Genievskaya
et al., 2018), Europe (Xu et al., 2018), and India (Visioni
et al., 2018), were used to identify the genetic architecture of
complex traits (heading time, number of kernels per spike,
grain yield) and disease resistance (durable spot, stripe rust)
in barley. Although some studies used worldwide collections
of barley germplasm, few have included barley varieties from
Tibet (Pasam et al., 2012; Gyawali et al., 2017). Over the past
decade, studies in barley (Cuesta-Marcos et al., 2008), wheat
(Kiseleva et al., 2016), and rice (Yan et al., 2011) have shown
that variations in heading date (HD), plant height (PH), and
spike length (SL) contribute to environmental adaptation in
cereal crops and also influence grain yield. In earlier studies, bi-
parental mapping populations were used to reliably detect QTL
for HD, PH, and spike morphological traits (Lin et al., 1998;
Sameri et al., 2006; Zhang et al., 2009). With the emergence of
more cost-effective, high-throughput genotyping technologies,
single nucleotide polymorphisms (SNPs) related to HD have
been identified by genome-wide association studies (GWAS)
(Pasam et al., 2012; Visioni et al., 2013; Genievskaya et al.,
2018), PH (Alqudah et al., 2016; Almerekova et al., 2019),
leaf area (Alqudah et al., 2018), spike architecture (Comadran
et al., 2011) and grain yield (Ingvordsen et al., 2015; Xu
et al., 2018) in barley. However, the genetic study of complex
agronomic traits in qingke barley is limited (Zhang et al.,
2019).

For HD, important genes have been successfully isolated
and characterized in barley. Exposure to low temperatures is
known as vernalization, which is related to annual differences
in seed production and flowering. This process protects the
flowering meristem, which is sensitive to the cold, during
winter (Yan et al., 2003; Trevaskis et al., 2006). Three genes
control the vernalization parameters and growth conditions
of barley: HvVRN1, HvVRN2, and HvVRN3. These are found
on the respective chromosome arms 5HL, 4HL, and 7HS, all
of which have been isolated (Laurie et al., 1995; Yan et al.,
2003, 2004, 2006). A MADS-box transcription factor (TF) is
encoded by HvVRN1, which shares homology with APETALA1,
CAULIFLOWER, and FRUITFULL. These are transcription
factors that promote flowering in the apical meristem of
Arabidopsis (Trevaskis et al., 2003; Yan et al., 2003; Trevaskis,
2010). A transcription factor with a zinc finger-CCT domain
is encoded by HvVRN2. While Arabidopsis has no homologous
gene, its function is similar to FLOWERING LOCUS C (FLC),
which inhibits flowering (Yan et al., 2004). FLOWERING LOCUS
T (FT) in Arabidopsis is similar to HvVRN3 in that it induces
the expression of HvVRN1 during periods of long daylight,
promoting flowering (Yan et al., 2006; Distelfeld et al., 2009).
In barley and wheat, HvVRN3 integrates the photoperiod
and vernalization pathways (Distelfeld et al., 2009). Another
important pathway is that of the photoperiod, which regulates the
date of flowering and heading and uses plant response daylight
and optical cues from light receptors. It has been shown that
Ppd-H1 is the ortholog of the wheat Ppd-D1 gene, a member of
the pseudoresponse regulator (PRR) gene family via homology-
based cloning (Beales et al., 2007). The major determinants of
the long-day response in barley are the Photoperiod-H1 (Ppd-
H1) and Photoperiod-H2 (Ppd-H2) genes on chromosomes 2H
and 1H, respectively (Abdullaev et al., 2017). The results of the
study of Turner et al. (2005) suggest that Ppd-H1 might affect
flowering by altering the expression of photoperiod pathway
genes that are under circadian control. The dominant allele of
Ppd-H1 regulates response to increased photoperiod length and
premature earing during long days. The recessive allele ppd-
H1 induces delays in heading during long days, while Ppd-H2,
a dominant allele, quickens heading during short days. The
recessive allele impedes it.

For PH, semi-dwarf genes include uzu1, ari-e, and sdw1 genes
are widely used in modern barley improvement (Kuczynska
et al., 2013; Dockter and Hansson, 2015). The ari-e gene has
served in European cultivars and been located on chromosome
5HL (Froster, 2001). The uzu gene, the primary dwarfing gene
of East Asian barley strains, is located on chromosome 3HL
(Zhang, 2000; Chono et al., 2003). Dwarfism regulated by uzu
is induced by the mutation of one nucleotide interchange in the
HvBRI1 gene, which involves brassinolide in the response (Chono
et al., 2003). The chromosome 3HL is also the site of the sdw1
gene, which is an important dwarfing gene in Europe, North
America, South America, and Australia breeding programs (Jia
et al., 2009; Xu et al., 2017). The dwarfism controlled by sdw1
caused by a deletion mutation in the gibberellin 20-oxidase gene
(HvGA20ox2) (Xu et al., 2017). Previous studies have shown that
the QTLs controlling PH and SL are distributed on multiple
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TABLE 1 | Analysis of variance (ANOVA) of three traits across three locations.

Trait Source DFe Sum of square Mean square F-Value Pr > F

HD_LSa Genotype 307 22587.70 73.58 9.44 0.00

Replicate 2 5627.66 2813.83 361.03 0.00

PH_NMb Genotype 307 142700.59 464.82 8.32 0.00

Replicate 2 27.28 13.64 0.24 0.78

SL_NCc Genotype 256 1016.82 3.97 5.04 0.00

Replicate 2 6.21 3.11 3.95 0.02

SL_NMd Genotype 307 1010.40 3.29 3.45 0.00

Replicate 2 5.26 2.63 2.76 0.06

aHD_LS, heading date in Lhasa.
bPH_NM, plant height in Namling.
cSL_NC, spike length in Nyingchi.
dSL_NM, spike length in Namling.
eDF, degree of freedom.

chromosomes (Gyenis et al., 2007; Pasam et al., 2012; Fakheri
et al., 2018), and that QTLs for PH and SL are identified on
different chromosomes in different environments and treatments
(Gyenis et al., 2007; Fakheri et al., 2018). In a wild x cultivated
barley cross, Gyenis et al. (2007) identified QTLs for PH on
chromosomes 1H, 2H, 3H, and 7H, and for SL on chromosomes
1H, 2H, 3H, and 6H. Another study identified QTLs for PH on
chromosomes 2H, 3H, 4H, 5H, 6H, and 7H in a spring barley
collection (Pasam et al., 2012). A recent study suggests that QTLs
for PH are distributed on chromosomes 5H and 7H and for SL on
chromosomes 1H, 2H, 5H, and 6H in Western European barley
cultivars exposed to drought (Fakheri et al., 2018).

As the growth range of barley increased, it adapted to a
wide spectrum of agricultural conditions. Studying selection
signals in the barley genome is important to help us understand
how this genome reacted to the various agricultural conditions
experienced during domestication (Russell et al., 2016). Zeng
et al. (2015) resequenced the genomes of 10 Tibetan wild barley
accessions to uncover patterns of adaptation to the stressful
environment of the Tibetan plateau. Further resequencing of 177
Tibetan barley genomes was performed to better understand the
selection markers for the adaptation of local highland barley
in the exome capture target range of the genome using the
fixation index (FST) approach (Zeng et al., 2018). Eight regions as
possible selective regions were identified, including the location
near the Naked caryopsis (nud) on chromosome 7H. Recently,
EigenGWAS, which combines the statistical framework of
GWAS with eigenvector decomposition, is a novel approach for
identifying regions of the genome under selection in any genetic
data where the underlying population structure is unknown.
EigenGWAS has been applied to studies in evolution, ecology,
breeding, and human genetics (https://github.com/gc5k/GEAR/
wiki/EigenGWAS).

In the present study, we collected old local qingke barley
landraces in Tibet, modern qingke barley varieties, and
representative qingke barley varieties from regions surrounding
the Tibetan region. The genetic diversity was compared between
the landraces and the two variety groups, and the trends in
the changes in genetic structure from the landraces to the

breeding varieties was considered. In this study, therefore, our
objectives were to use the 14,970 high quality SNPs discovered
using genotyping-by-sequencing (tGBS) in 308 qingke barley
accessions to (1) understand the genetic diversity in the landraces
and the modern varieties and the changes in population structure
that occurred going from the landraces to the breeding varieties,
(2) identify genetic loci associated with HD, PH, and SL by
GWAS, and (3) identify loci that underwent selection for
environmental adaptation using EigenGWAS. The findings of
this study could facilitate a better understanding of the genetic
mechanisms underlying the establishment of adaptive traits and
genome-assisted selection in qingke barley breeding.

MATERIALS AND METHODS

Plant Materials
A total of 308 qingke barley accessions were used in this
study; 206 qingke landraces, 72 qingke varieties, and 30 varieties
(including 18, 5, 1, and 6 varieties from Qinghai, Gansu,
Yunnan, and Sichuan provinces of China, respectively). All the
308 accessions were planted in Tibet at three locations; Lhasa
(N29◦36′, E91◦06′) in April 2018, Namling (N29◦18′, E88◦46′)
on May 2017, and Nyingchi (N29◦39′, E94◦21′) in October 2017
with three replicates each. We used a randomized design to
construct the field experiment. At each location, 30 seeds of each
accession were planted in a plot with two rows of 150 cm long
and 30 cm between rows. HD was measured as the number of
days when the head first emerged from the flag leaf sheath on
the main shoot in a plot (Zadoks scale, Z = 50; Hemming et al.,
2009). The PH was measured as the above-ground plant height
without the awns. The SL was measured as the length from the
base of main spike to the tip of main spike (excluding awns). All
traits were measured as the average of five random plants.

Phenotypic Data Analysis
The Pearson’s correlation coefficients between the traits and the
broad sense heritability (H2) of target traits were calculated
by AOV functionality in QTL IciMapping v.4.1 (Meng et al.,
2015). In the analysis of variance of the three traits, variance
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FIGURE 1 | The phenotypic distribution and heritability in broad sense for heading date in Lhasa (HD_LS) (A), plant height in Namling (PH_NM) (B), spike length in

Nyingchi (SL_NC) (C), and spike length in Namling (SL_NM) (D).

components were estimated from a linear model; phenotype was
partitioned into overall mean, genotypic effect, replication effect
(i.e., location), and random error effect, all of which were treated
as fixed effects. The H2 on plot level was estimated from the
following equation:

H2 =
σ
2
G

σ
2
G + σ

2
ε

,

where σ
2
G is the genetic variance and σ

2
ε
is the variance of the

error. Although 308 accessions were planted at three locations,
HD, PH, and SL were not all measured in three locations.
Only SL has high-quality data in two locations (Nyingchi
and Namling) in Tibet, abbreviated as SL_NC and SL_NM,
respectively. For HD ad PH, phenotype from one location
was used, HD in Lhasa (abbreviated as HD_LS) and PH
in Namling (abbreviated as PH_NM), since from other two
locations either the H2 were lower than 30%, or only one
measurement was available for each plant. Considering data with
low heritability was not reliable to conduct GWAS, and data
with no replication could not be used to estimate the H2 and
evaluate the data quality, we discarded the low-quality data. For
clarity, HD_LS, PH_NM, SL_NC, and SL_NM were used in the
following-up analysis.

SNP Genotyping and Genotypic Data
Analyses
The 308 accessions were genotyped using a newly developed
genotyping-by-sequencing technology (tGBS) that eases the
process of sorting high-quality GBS sequencing libraries and
results in more accurate SNP calling (Ott et al., 2017; Li et al.,
2019). Sequence reads were aligned to the Hordeum vulgare
Hv IBSC PGSB v2 reference genome (Mascher et al., 2017)
after de-barcoding and trimming. SNP calling was conducted
using only those reads that aligned to a single location in the

reference genome. In total, 46,034 polymorphic sites for each
accession were discovered, and the data was filtered as follows:
missing values ≤0.4, heterozygosity rate (Het. Rate) ≤0.2, and
minor allele frequency (MAF) ≥0.05 (Supplementary Table 1).
After filtering, 14,970 high-quality SNPs were retained in the
follow-up analysis. To assess population diversity, genome-wide
pairwise linkage disequilibrium (LD) was calculated between
SNP pairs to investigate the potential of the array to capture
all significant regions associated with the observed phenotypes
using the software package TASSEL v5.2 (Bradbury et al.,
2007). LD was estimated by using the squared allele-frequency
correlation (r2; Weir and Cockerham, 1996) for pairs of loci,
since r2 is affected not only by recombination frequencies at
the two sites, but also by the differences in allele frequencies
between sites. Decay of LD was evaluated, as was the distance
between sites in base pairs (bp) with non-linear regression as
implemented in the R package (Remington et al., 2001). To
avoid multiple significances within individual LD blocks, the
support interval was determined when the decay distance of
LD reached r2 = 0.5. Nucleotide diversity (π) across the
barley genome was calculated with TASSEL v5.2. The population
structure of the 308 accessions was evaluated using principle
component analysis (PCA) and a phylogenetic tree. Pairwise
distances were estimated between genotyped individuals using an
unbiased model of substitution frequencies. Distance estimates
were then used to construct a phylogenetic tree using the
Neighbor-Joining-like algorithm described by Saitou and Nei
(1987) and implemented in the NJS module of the APE R
package (Paradis et al., 2004). Unlike conventional neighbor-
joining methods, the NJS algorithm is tolerant of missing data,
enabling its use with GBS data. Relative branch lengths are
proportional to the amount of divergence observed between
individuals. The effective sample size was calculated according
to the method in Powell et al. (2010) as implemented in the
software GEAR.
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FIGURE 2 | The distribution of minor allele frequency (MAF) (A), linkage disequilibrium (LD) decay (B), and nucleotide diversity (π) (C) across the barley genome in all

308 highland barley accessions, 206 landraces, and 102 varieties; the population structure of 308 barley accessions evaluated by principle component analysis (PCA)

(D) and phylogenetic tree (E) base on 14970 high-quality SNPs.

GWAS Analysis
A GWAS for the three agronomic traits was conducted with a
general linear model (GLM) and a mixed linear model (MLM)
as implemented in TASSEL v5.2 software (Bradbury et al., 2007).
For both models, the first principal component of the PCA

was fitted as the cofactor to exclude the effect of population
structure. In MLM, a variance–covariance kinship matrix, as
covariates to estimate the association between phenotypes and
genotypes (Zhang et al., 2010), was also considered. To declare
QTL from the GWAS results, the phenotypic observation of SL
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FIGURE 3 | The circular plots for heading date in Lhasa (HD_LS) (A), plant height in Namling (PH_NM) (B), spike length in Nyingchi (SL_NC) (C), and spike length in

Namling (SL_NM) (D). From the outer circle to the inner circle, a is for the barley genome; b is for the SNP density; c is for the manhattan plot from generalized linear

model (GLM); d is for the manhattan plot from mixed linear model (MLM); e is for the manhattan plot from EigenGWAS under the tenth eigenvector (EV10); f is for the

manhattan plot from EigenGWAS under the seventh eigenvector (EV7); g is for the manhattan plot from EigenGWAS under the fifth eigenvector (EV5); h is for the

manhattan plot from EigenGWAS under the third eigenvector (EV3); and i is for the manhattan plot from EigenGWAS under the second eigenvector (EV2). The SNP

positions associated with the trait of interest were marked in black font; of which with pleotropic effects were highlighted in red font; and detected by EigenGWAS

were highlighted in yellow background.

was reshuffled 1,000 times to analyze the null distribution. We
calculated the 95th quantile of the 1,000 most significant p-values
over 1,000 permutations to be 5.18 after log10 transformation.
The Bonferroni correction, –log10(1/14,970) = 4.18, was also
calculated. To balance the false positives and false negatives, a
–log10(P) threshold of 4.00 was used for the GLM and 3.00 was

used for the MLM. To determine whether the uncovered genetic
architecture was appropriate, the identified QTL was used to
predict the performance of the corresponding trait. The most
significant SNP in each QTL region was fitted in the linear model
with the original trait performance as the dependent variable.
The adjusted coefficient of determination (R2) from the linear
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model was then calculated. The performance of QTL in different
locations were estimated by a = 1

e

∑e
i= 1 ai and aei = ai − a,

where a was the averaged effect of QTL across locations, ai was
the additive effect of QTL for each location, e is the number of
locations, and aei was the additive by environment effect of QTL
in each location (Li et al., 2015).

Analysis of Gene Annotation and
Enrichment
We used SnpEff to conduct functional annotations and effect
predictions of the target SNPs (Cingolani et al., 2012). The
Barley Hv_IBSC_PGSB_v2 reference genome gene annotation
was downloaded as a gff3 file from the Ensembl plants database
(http://plants.ensembl.org/index.html). Gene annotation
information was acquired by BARLEX: The Barley Genome
Explorer (https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::;
Colmsee et al., 2015). A Singular Enrichment Analysis (SEA)
tool was used to perform a functional enrichment analysis of the
annotated genes (Tian et al., 2017).

EigenGWAS Analysis
EigenGWAS is a regression approach based on principal
component analysis (Chen et al., 2016; Li et al., 2019). It is
similar to GWAS; however, the phenotype is replaced with an
eigenvector (EV) to capture genetic variation in the studied
population. In this study, EigenGWAS, implemented in the
software GEAR (https://github.com/gc5k/GEAR), was used to
separate loci under selection by treating top 10 eigenvectors
(i.e., EV1-EV10) as phenotypes. We adjusted the p-value using
a genomic control factor, denoted as PGC, to exclude the effect of
the genetic drift (Devlin and Roeder, 1999), and used the PGC to
identify loci under selection. We reshuffled the first eigenvector
1,000 times to identify the significance cutoff for the relevant loci,
which helped us analyze the null distribution. We calculated the
95th quantile of the 1,000 most significant p-values over 1,000
permutations to be 5.75 after log10 transformation. Considering
the Bonferroni correction 4.18 as mentioned above, a –log10(P)
threshold of 4.00 was applied for EigenGWAS analyses in all
10 eigenvectors.

RESULTS

Phenotypic Variation and Correlation
Analysis
To determine whether the observed traits exhibit wide variation,
are highly heritable, and/or display a normal distribution, the
recorded phenotypic data was analyzed using ANOVA (Table 1
and Supplementary Table 2) and boxplots (Figure 1). Fifty-one
plants had nomeasurement for SL_NC, so the degrees of freedom
in this case was only 256 (Table 1). All the variance components
were significant (P < 0.05) across trials, with the exception of
the replicates in PH_NM and SL_NM (Table 1). Wide variations
ranging from 46 to 93 days in HD_LS, from 35 to 117 cm
in PH_NM, from 1 to 9.2 cm in SL_NC, and from 1.5 to
9.5 cm in SL_NM were observed in the collection of 308 qingke
barley accessions (Figure 1). The SL distribution showed that the

SL_NMmean was higher than it was for SL_NC (Figures 1C,D),
and the correlation between SL_NM and SL_NC was 0.21 (P <

0.01; Supplementary Figure 1). The reason for this may be due
to the big environmental difference between Namling (4,000m
above sea level) and Nyingchi (2,995m above sea level) and
the overcast and rainy weather in Nyingchi at flowering time,
which was not conducive to pollination and thus decreased the
effective seed-setting rate of the barley spikes. The broad-sense
heritabilities for the three observed traits ranged from 44.97 to
73.99% (Figure 1). The highest correlation was between PH_NM
and SL_NM (i.e., 0.48 with P < 0.01; Supplementary Figure 1),
and there was a negative correlation between SL_NC andHD_LS.
These observations are consistent with the general experience
regarding the relationships between PH and SL (Wang et al.,
2010), and between SL_NC and HD_LS (Wang et al., 2010;
Al-Tabbal and Al-Fraihat, 2012).

Genetic Diversity and Population Structure
in the 308 Qingke Barley Accessions
The MAF distributions of all 14,970 SNPs in the whole dataset
and in the landrace and variety subpopulations are shown in
Figure 2A. Because the 14,970 SNPs were filtered to remove
those with MAF <0.05 in the 308 accessions, the minimum
MAF here is 0.05, and the average MAF is 0.183. The MAF
ranged from 0 to 0.5 in both subpopulations. SNPs with MAF
<0.05 were considered to be rare SNPs. In this sense, more
rare SNPs were observed in the landrace subpopulation (2,150)
than in the variety subpopulation (1,841). The numbers of SNPs
with MAFs ranging from 0.05 to 0.1 were 5,086 and 2,545
in the landrace and variety subpopulations, respectively. This
suggests that more low MAF SNPs are present in the landrace
subpopulation than in the variety subpopulation. Non-linear
models of LD decay for the 206 landraces and 102 varieties are
shown in Figure 2B. In general, LD in both datasets showed an
intermediate rate of decline. The predicted value of r2 declined
to 0.5 within 1Mb, which is considered to be the length of the
support interval. As expected, LD decayed faster in the landrace
subpopulation than in the variety subpopulation. The predicted
value of r2 declined to 0.2 within 23Mb for the landraces
and within 49Mb for the varieties. It remained >0.1 for over
80Mb in the varieties. Due to the different allele distribution
of the SNPs in the two subpopulations, nucleotide diversity (π)
in the variety subpopulation was higher than in the landrace
subpopulation, particularly on chromosomes 2H, 4H, 5H, and
7H (Figure 2C).

To determine whether the population structure could
be discerned from the whole-genome genotyping data,
PCA (Figure 2D) and a phylogenetic analysis (Figure 2E)
were conducted for the 308 accessions. Based on the PCA
plot, the two subpopulations, landraces and varieties,
could not be clearly separated. This is likely due to a large
proportion of the varieties being derived from qingke barley
landraces. However, from the phylogenetic tree, it cannot
be ruled out that the 15 varieties from Gansu and Qinghai
provinces were not derived from the Tibetan landraces
(Figure 2E).
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TABLE 2 | QTL identified by GWAS using generalized linear model (GLM) and mixed linear model (MLM) and EigenGWAS.

Chr. Pos. (bp) GLM MLM Fst –log10(PGC)
a Annotation References

–log10(P) Trait –log10(P) Trait

1H 18,660,555 7.81 SL_NC upstream_gene_variant Mikołajczak et al., 2017; Hu

et al., 2018

1H 38,183,233 12.52 HD_LS intergenic_region

1H 91,078,604 5.36 PH_NM, SL_NC,

HD_LS

3.66 SL_NM, PH_NM intergenic_region

1H 300,727,664 6.41 HD_LS 4.68 HD_LS intergenic_region

1H 416,927,192 7.08 HD_LS, PH_NM 3.47 PH_NM intergenic_region Genievskaya et al., 2018;

Hill et al., 2019

1H 463,244,825 5.18 SL_NM 4.67 SL_NM, PH_NM intergenic_region

1H 494,917,059 8.18 HD_LS upstream_gene_variant

1H 511,733,587 8.23 HD_LS, PH_NM intergenic_region Alqudah et al., 2014;

Almerekova et al., 2019

2H 238,920,322 8.39 HD_LS intergenic_region

2H 272,235,316 5.16 PH_NM 0.34 6.06 (EV3) intergenic_region

2H 394,175,662 4.23 SL_NC 0.30 7.34 (EV3),

5.61 (EV10)

intergenic_region

2H 437,044,821 6.30 PH_NM, HD_LS 3.37 PH_NM 0.13 4.97 (EV3) intergenic_region

2H 532,601,090 10.55 HD_LS intergenic_region Pasam et al., 2012; Pauli

et al., 2014

2H 593,522,597 4.74 SL_NC, SL_NM 3.61 SL_NM downstream_gene_variant Wang et al., 2016

2H 688,905,964 4.70 PH_NM, SL_NC 3.21 SL_NC intergenic_region

2H 724,170,299 5.47 PH_NM, SL_NM 3.08 SL_NM, PH_NM upstream_gene_variant Comadran et al., 2011;

Pasam et al., 2012; Hu

et al., 2018

2H 766,144,076 6.92 HD_LS, SL_NC,

PH_NM

4.82 HD_LS intron_variant Genievskaya et al., 2018

3H 8,758,006 7.46 HD_LS intergenic_region

3H 21,353,708 5.49 PH_NM, SL_NM 3.04 SL_NM intergenic_region

3H 44,697,894 4.23 SL_NC 3.90 SL_NC intergenic_region

3H 62,823,357 4.17 PH_NM intergenic_region

3H 138,693,892 8.62 HD_LS 3.14 PH_NM 0.10 6.17 (EV10) intergenic_region

3H 152,576,024 11.42 HD_LS intergenic_region

3H 217,549,848 7.23 PH_NM 3.99 PH_NM intergenic_region

3H 230,310,274 6.67 HD_LS, PH_NM 0.57 4.48 (EV5) intergenic_region

3H 276,495,313 6.28 HD_LS, PH_NM 0.72 4.47 (EV5) intergenic_region

3H 304,221,016 7.79 PH_NM 3.39 PH_NM, SL_NC 0.71 5.25 (EV5) intergenic_region

3H 382,059,872 10.31 HD_LS 3.36 PH_NM intergenic_region

3H 517,465,249 11.80 HD_LS 0.46 4.33 (EV7) intergenic_region

3H 552,063,733 10.20 HD_LS intergenic_region

3H 600,043,459 5.30 PH_NM, HD_LS 0.08 6.73 (EV10) intergenic_region Tondelli et al., 2013

3H 667,097,849 10.02 HD_LS, SL_NC intergenic_region

3H 692,966,791 8.20 PH_NM 3.78 PH_NM 0.18 6.56 (EV2) intergenic_region

4H 12,475,673 4.41 SL_NM, PH_NM 3.10 SL_NM, PH_NM upstream_gene_variant Pauli et al., 2014

4H 181,636,206 4.43 PH_NM 3.05 SL_NM intergenic_region

4H 309,093,312 7.06 HD_LS intergenic_region

4H 402,478,131 5.10 PH_NM 3.41 PH_NM intergenic_region

4H 491,561,122 6.24 PH_NM 3.37 PH_NM intergenic_region Tondelli et al., 2013

4H 555,153,079 5.60 PH_NM intergenic_region

4H 618,782,170 16.60 HD_LS 0.09 6.17 (EV10) intergenic_region Pauli et al., 2014;

Almerekova et al., 2019

4H 645,737,383 4.84 SL_NC intergenic_region

(Continued)
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TABLE 2 | Continued

Chr. Pos. (bp) GLM MLM Fst –log10(PGC)
a Annotation References

–log10(P) Trait –log10(P) Trait

5H 24,897,375 8.10 PH_NM 3.16 PH_NM 0.17 4.44 (EV2) downstream_gene_variant

5H 48,435,494 9.26 HD_LS 0.47 4.91 (EV7) intergenic_region

5H 155,932,101 7.00 HD_LS 4.92 HD_LS intergenic_region

5H 277,966,252 6.31 HD_LS, PH_NM intergenic_region

5H 371,224,788 8.44 HD_LS intergenic_region

5H 466,110,087 5.15 PH_NM intergenic_region

5H 504,691,186 4.05 PH_NM, HD_LS intergenic_region

5H 567,920,543 4.13 SL_NM 3.41 SL_NM intergenic_region

5H 632,544,415 7.62 HD_LS 3.28 SL_NM downstream_gene_variant

6H 140,382,352 7.72 PH_NM, HD_LS intergenic_region

6H 208,132,063 4.43 HD_LS 0.27 4.82 (EV2),

5.21 (EV7)

intergenic_region Genievskaya et al., 2018

6H 252,998,134 4.19 HD_LS 0.21 4.02 (EV2) intergenic_region

6H 294,302,172 4.97 PH_NM 4.07 PH_NM 0.33 4.88 (EV2),

4.09 (EV7)

intergenic_region

6H 341,881,535 5.68 HD_LS 4.89 HD_LS, SL_NM intergenic_region

6H 380,644,346 6.30 HD_LS, PH_NM intergenic_region

7H 4,664,447 5.28 SL_NC upstream_gene_variant

7H 28,173,688 10.17 SL_NC, HD_LS intergenic_region

7H 223,596,641 4.86 PH_NM intergenic_region Pham et al., 2019

7H 378,019,002 4.09 SL_NM 4.17 HD_LS, SL_NM intergenic_region

7H 605,456,401 4.38 HD_LS 5.10 HD_LS, SL_NC upstream_gene_variant

7H 623,572,285 5.96 PH_NM 3.29 PH_NM intergenic_region Hu et al., 2018; Almerekova

et al., 2019; Pham et al.,

2019

aCorrected p-value of EigenGWAS. Blank means the QTL was not identified by the corresponding method.

GWAS and EigenGWAS
In the GWAS, a total of 62 QTLs distributed across the barley
genome that control three agronomic traits were identified
either by GLM or by MLM (Figure 3 and Table 2). To
evaluate if the first PC as cofactor was appropriate, no
PC and PC number with 2–5 were also used to conduct
GWAS (Supplementary Figures 2–11). Results showed that the
parameter estimation would be inflated if no PC as cofactor in
GWAS model. The parameter estimations from PC number 1–5
were fairly the same. Of the 62 QTLs, the largest number of QTLs,
16, was distributed on chromosome 3H, and the lowest number
(6) was distributed on chromosomes 6H and 7H. There were
29 QTLs (46.7%) that were detected by both GLM and MLM;
16 QTLs were declared as selection loci by EigenGWAS under
five eigenvectors (i.e., EV2, EV3, EV5, EV7, and EV10); six QTLs
were reported by other studies, and six QTLs were consistently
identified by GLM, MLM, and EigenGWAS (Table 2). In total,
28 QTLs had pleotropic effects (red text in Figures 3, 4A).
One QTL with pleotropic effects located at 91,078,604 bp on
chromosome 1H was associated with all three traits in four
trials. A QTL at 766,144,076 bp on chromosome 2H was related
to the three traits HD_LS, PH_NM, and SL_NC, and was also
associated with PH, days to seed maturation (SMT), peduncle
length (PL), and HD, as reported by Genievskaya et al. (2018).

Of 28 pleotropic-effect QTLs, six were detected by EigenGWAS
as well, and these are shown in red text highlighted in yellow
in Figures 3A–C and Table 2. These are the QTLs located at
437,044,821 bp on chromosome 2H by EV3, 138,693,892 bp on
chromosome 3H by EV10, 230,310,274 bp on chromosome 3H by
EV5, 276,495,313 bp on chromosome 3H by EV5, 304,221,016 bp
on chromosome 3H by EV5, and 600,043,459 bp on chromosome
3H by EV10 (Figure 3 and Table 2). Two QTLs at 91,078,604 bp
on chromosome 1H and at 593,522,597 bp on chromosome 2H
associated with SLwere both detected in two locations (Figures 3,
4A and Table 2).

In general, 36, 33, 12, and 11 QTLs were associated with
HD_LS, PH_NM, SL_NC, and SL_NM, respectively (Figure 4B
and Table 2), and are positively correlated with the broad
sense heritabilities (Figure 1). In our study, we were able
to investigate pleiotropy of QTLs on multiple traits. We
observed that there were 16 QTLs for HD_LS and PH_NM
in common. However, the correlation between HD_LS and
PH_NM was not significant (Supplementary Figure 1), which
may due to the repulsion linkage phase of the 16 QTLs
(Supplementary Table 4). In contrast, six PH_NM QTLs were
also significant for SL_NM, and the correlation between these
two traits was 0.48, which was highly significant. The reason
for this may be that the six QTLs are in coupling linkage
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FIGURE 4 | Venn plot of QTL distribution for HD_LS, PH_NM, SL_NC, and SL_NM (A), the distribution of QTL number for heading date in Lhasa (HD_LS), plant

height in Namling (PH_NM), spike length in Nyingchi (SL_NC), and spike length in Namling (SL_NM) (B); and gene annotation (C) and ontology (D) for the 62 QTL

identified by GWAS.

phase (Supplementary Table 4). To evaluate the performance
of QTL associated with SL in different locations, genotype by
environment effects were estimated (Supplementary Figure 12

and Supplementary Table 5). The most significant genotype-by-
environment QTLs identified by both GLM and MLM were
at 593,522,597 bp on chromosome 2H and 21,353,708 bp on
chromosome 3H, since their additive effects were both significant
in Nyingchi, but not in Namling. In addition, there were
three genotype-by-environment QTLs identified by GLM on
chromosomes 1H, 2H, and 7H, respectively.

Candidate Gene Annotation and
Enrichment
The annotation conducted on the 62 significant QTLs identified
by GWAS (Table 2) showed that 52 (83.87%) of QTL regions
are intergenic, and that 10 (16.13%) are genic (Figure 4C).
This is consistent with the Hordeum vulgare Hv IBSC PGSB
v2 reference genome, where 19.2% of the barley genome is
genic (Mascher et al., 2017) and a high ratio of loci (78.00%)
related to phenotypic variation are identified in intergenic
regions (Mei et al., 2017). Of the QTL, 9.68% and 4.84% were
located in the upstream and downstream gene regions, and
1.61% of the QTL were in the intron regions (Figure 4C). In
total, 114 known genes were mapped as significant QTLs in
the GWAS, and most of them were assigned to the “molecular

function” and “biological process” categories in gene ontology
(GO) analysis (Figure 4D). One QTL, located at 605,456,401 bp
on chromosome 7H, controls HD_LS and SL_NC, and is 2.1 Kb
upstream of HORVU7Hr1G100540, a known gene that encodes
an SBP (S-ribonuclease binding protein) family protein. A QTL
at 24,897,375 on chromosome 5H significantly associated with
PH_NM was found to be located 799 bp downstream of the gene
HORVU5Hr1G009980 that encodes a tetratricopeptide repeat
(TPR)-like superfamily protein. For SL_NM and SL_NC, a
stable QTL at 593,522,597 bp on chromosome 2H is located
554 bp downstream of HORVU2Hr1G081800, which encodes a
WPP domain interacting protein 2 (Supplementary Table 3).
In addition, screening of the associated mapping population
identified variations in HD, and we found a significant SNP (5H:
599,361,872) near the vernalization gene HvVRN1, a significant
SNP (7H: 38,508,938) near the vernalization gene HvVRN3,
and a significant SNP (1H: 514,145,049) near the photoperiod
gene PpD-H2.

Phenotype Prediction
To determine the accuracy of the QTL effect estimation, we
used the significant QTL additive effect estimates to predict
the phenotypic observations for the three traits, and were able
to accurately predict HD_LS (R2 = 69.20%), PH_NM (R2 =

64.07%), and SL_NC (R2 = 42.37%) (Figure 5). For SL_NM, the
prediction was low, due in part to the low heritability of SL in
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FIGURE 5 | The prediction of the observed phenotype by the QTL identified by GWAS for the traits of heading date in Lhasa (HD_LS) (A), plant height in Namling

(PH_NM) (B), spike length in Nyingchi (SL_NC) (C), and spike length in Namling (SL_NM) (D).

NM (Figure 1). Looking at the broad sense heritabilities for the
three traits (Figure 1) suggests that the QTL results presented
in this study are reliable, and provide further evidence that a
large proportion of the phenotypic variation can be explained by
additive variance in this association panel.

DISCUSSION

To the best of our knowledge, few genetic studies have
investigated the complex agronomic traits in Tibetan qingke
barley (Zhang et al., 2019). Previous reports have included only
a limited number of qingke barley accessions to identify potential
signals of adaptation and domestication. For example, 95 wild
barley accessions from Tibet and 28 six-rowed hulless barley
varieties from Tibet and Xinjiang were used to show that the
Tibetan Plateau and the surrounding areas are primary centers
of barley cultivation (Dai et al., 2012); six wild-barley genotypes
collected from the Tibetan Plateau were used in an RNA-seq
analysis to reveal multiple origins of barley domestication (Dai
et al., 2014); 10 Tibetan wild barley accessions were re-sequenced
to uncover patterns of adaptation (Zeng et al., 2015); and 177
Tibetan barley accessions were re-sequenced to identify signals
of selection in the genome (Zeng et al., 2018). In contrast, 308
qingke accessions from the Qinghai-Tibet Plateau, including 278
qinke barley accessions and 30 qingke varieties collected from five
other Chinese provinces, were used for this study. The effective
sample size is 272 in total, which is comprised of 182.63 in the
landrace subpopulation and 89.37 in the variety subpopulation.

Our results demonstrate that this panel has a large effective
population size with high levels of intra-species genetic flow,
making it a suitable candidate for the characterization of genetic
structure and adaptation, and was appropriate for the genetic
study of complex traits by GWAS.

Previous studies have shown that QTLs identified on all
seven chromosomes are significantly associated with HD, except
for photoperiod and vernalization loci (Pasam et al., 2012).
QTLs located on chromosomes 1H, 2H, and 5H have been
identified that are significantly associated with PH in a worldwide
spring barley investigation (Alqudah et al., 2016). Another
recent study shows that QTLs on chromosomes 5H and 7H
have been identified to be significantly associated with PH, and
QTLs on chromosomes 1H, 2H, 5H, and 6H were shown to
be significantly associated with SL in spring barley exposed
to drought (Fakheri et al., 2018). In our study, SNPs that are
significantly associated with HD and PH were identified on
almost all barley chromosomes, and the SNPs mainly identified
on chromosomes 1H, 2H, 3H, 4H, and 7H had significant effects
on SL. To validate the effect estimation of each QTL, QTL
effect estimations were used to predict the observed phenotypic
performance. The highest prediction accuracy was 69.2% for
HD, and the lowest prediction accuracy was 23.55% for SL in
Namling. In the present study, heritability for all traits ranged
from 44.97 and 73.99%. For these traits, both the number of
detected QTL, prediction accuracy, and broad-sense heritability
showed the same trend in which higher heritability corresponded
to high prediction accuracy and more detected QTLs.
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In order to figure out the specific QTLs for qingke barley,
QTLs reported in the reference and identified in this study
were aligned to the barley Hordeum vulgare Hv IBSC PGSB
v2 reference genome, and their physical positions of markers
were queried in BARLEX database (https://apex.ipk-gatersleben.
de/apex/f?p=284:48:::NO:RP:P48_MARKER_CHOICE:4). As a
result, 48 of 62 identified QTLs were first reported in this
study (Table 2 and Supplementary Figure 13). For HD, 36
QTLs were identified, 7 of which were reported; for PH,
33 QTLs were identified, 9 of which were reported; and
for SL, 22 QTLs were identified, 5 of which were reported.
The possible reason for the high number of novel QTLs
(viewed as qingke barley specific QTLs) identified in this
study may be because (1) the genetics of qingke barley is
lack of analysis; and (2) some reported QTLs based on SSR
markers could not find the their physical positions, and some
reported QTLs developed by in-house SNP chips could not
match the chip version in the database. These qingke barley
specific QTLs could be utilized for marker-assisted selection in
qingke barley breeding programs focusing on adaption and high
grain yield.

Among the five common vernalization and photoperiod loci
(i.e., HvVRN1, HvVRN2, HvVRN3, Ppd-H1, and Ppd-H2), the
SNPs near HvVRN1, HvVRN3, and PpD-H2 were significant
in this study. It suggests that HvVRN1, HvVRN3, and Ppd-H2
play an important role in the qingke barley population, and
should be prioritized when attempting to improve HD and
plant growth in qingke barley cultivars in the qingke barley-
growing regions of the Qinghai-Tibet Plateau. Previous studies
have shown that QTLs for PH and SL are located on different
chromosomes depending on the different environments and
treatments (Gyenis et al., 2007; Fakheri et al., 2018). In the present
study, we observed QTLs related to PH on all chromosomes,
while QTLs associated with SL were detected on all chromosomes
in Namling but on 1H, 2H, 3H, 4H, and 7H in Nyingchi. Due
to the differences in locations of QTLs identified in different
environments, the expression of genes controlling HD, PH,
and SL are probably related to the environment and variety-
specific adaptability. To validate this hypothesis, the study of
selection signals in the qingke barley genome were conducted
to help us understand how qingke barley how qingke barley
responds to various historical environmental factors (Russell
et al., 2016). Eight regions were identified as candidate selective
regions, and these are distributed on all chromosomes except
for chromosome 4H (Zeng et al., 2018). We used the first
10 eigenvectors for EigenGWAS and identified several selected
loci in the qingke barley genome. We further compared the
selected loci with the located QTLs, and found that some of
these loci were located in the regions (1Mb) of these QTLs
(Table 1). Previous studies have shown that genes for HD and
PH always influence barley maturity and adaptation (Barua et al.,
1993; Laurie et al., 1994). In the present study, the results of
EigenGWAS analysis indicated that the QTLs associated withHD
and PH also bear signatures of genetic selection in this qingke
barley population.

CONCLUSION

In this study, we identified several genetic loci associated with
SL, PH, and HD in qingke barley from the Qinghai-Tibet
Plateau using 14,970 SNPs in a tGBS genotyping assay. We
found that more rare SNPs (2,150) were found in the landrace
subpopulation than in the variety subpopulation. That is to say,
the number of SNPs was higher in the varieties than in the
landraces, indicating that the varieties grown in Tibet and the
varieties from around the Tibetan area may be derived from
the different landraces grown in the different regions. A GWAS
identified 62 QTLs that are associated with HD, PH, and SL,
and 114 known genes were mapped which include, but are not
limited to, genes involved in vernalization and photoperiod.
Of the 62 QTLs, 48 are first reported here as qingke specific
QTLs, 52 (83.87%) were found to be in intergenic regions, 28
had pleotropic effects, and three QTL were in the regions of
the well-characterized genes HvVRN1, HvVRN3, and PpD-H2.
In addition, by comparing signatures of selection identified by
EigenGWAS and novel QTLs, we found that six QTLs related
to HD and PH in qingke barley cultivars from the Qinghai-
Tibet Plateau were also under selection. The findings presented
here could help increase our understanding of the genetic
mechanisms underlying the establishment of adaptive traits,
and also enable marker-assisted selection for important traits in
qingke barley breeding.
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Accumulating evidence shows that circular RNAs (circRNAs) have significant roles
in human health and in the occurrence and development of diseases. Biological
researchers have identified disease-related circRNAs that could be considered as
potential biomarkers for clinical diagnosis, prognosis, and treatment. However,
identification of circRNA–disease associations using traditional biological experiments
is still expensive and time-consuming. In this study, we propose a novel method
named MSFCNN for the task of circRNA–disease association prediction, involving two-
layer convolutional neural networks on a feature matrix that fuses multiple similarity
kernels and interaction features among circRNAs, miRNAs, and diseases. First, four
circRNA similarity kernels and seven disease similarity kernels are constructed based
on the biological or topological properties of circRNAs and diseases. Subsequently,
the similarity kernel fusion method is used to integrate the similarity kernels into one
circRNA similarity kernel and one disease similarity kernel, respectively. Then, a feature
matrix for each circRNA–disease pair is constructed by integrating the fused circRNA
similarity kernel and fused disease similarity kernel with interactions and features
among circRNAs, miRNAs, and diseases. The features of circRNA–miRNA and disease–
miRNA interactions are selected using principal component analysis. Finally, taking the
constructed feature matrix as an input, we used two-layer convolutional neural networks
to predict circRNA–disease association labels and mine potential novel associations.
Five-fold cross validation shows that our proposed model outperforms conventional
machine learning methods, including support vector machine, random forest, and
multilayer perception approaches. Furthermore, case studies of predicted circRNAs for
specific diseases and the top predicted circRNA–disease associations are analyzed.
The results show that the MSFCNN model could be an effective tool for mining potential
circRNA–disease associations.

Keywords: circRNA-disease associations, circRNA-miRNA interaction, similarity kernel fusion, feature matrix,
convolutional neural network
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INTRODUCTION

Circular RNAs (circRNAs) are a type of endogenous non-
coding RNA with continuous covalently closed loop structures,
which are produced by back-splicing or lariat events in genes
(Barrett et al., 2015). Recently, with the development of
high-throughput sequencing techniques and other technologies,
a large number of circRNAs have been found in various
organisms, including protists, plants, and metazoans (Danan
et al., 2012; Memczak et al., 2013; Tang et al., 2018). The
main functions of circRNAs include sequestration of microRNAs
(miRNAs) and proteins (Salmena et al., 2011), regulation of
transcription and splicing (Zhang et al., 2013; Conn et al.,
2017), and even translation to produce polypeptides (Yang
et al., 2017; Sun and Li, 2019). Accumulating evidence
implicates mutation or alteration in expression of circRNAs
in the initiation and progression of numerous diseases. For
example, Chioccarelli et al. (2019) identified the differentially
expressed circRNAs in human spermatozoa, and found that
circRNAs are related to spermatozoa quality. By comparing the
expression profiles of circRNAs in disease-specific tissues or
cell lines with those in normal samples, significantly increased
or decreased circRNAs can be identified. In addition, the
intrinsic characteristics of circRNAs indicate they are stable
both inside cells and in extracellular plasma (Bahn et al., 2015;
Li et al., 2015; Memczak et al., 2015). Therefore, disease-
associated circRNAs are considered to be promising novel
biomarkers for diseases.

Recently, several studies have analyzed the roles of circRNAs
in varies samples, and further explore their diversity, expression
patterns, co-expression network, and so on. circAtlas integrates
the most comprehensive circRNAs, their expression, and
functional profiles in vertebrates (Wu et al., 2020). MiOncoCirc
is a cancer-focused circRNA resource to be generated from an
extensive array of tumor tissues (Vo et al., 2019). Ji et al. (2019)
identifies full-length transcripts and evolutionarily conserved
circRNAs, and infers circRNA functions on a global scale. Ruan
et al. (2019) characterizes circRNAs expression profiles, and
explores the potential mechanism of circRNA biogenesis as well
as its therapeutic implications. exoRBase integrates and visualize
the RNA expression profiles both normal individuals and patients
with different diseases (Li et al., 2018). These studies will trigger
functional implication for human diseases and benefit biomedical
research community.

The de-regulated circRNAs in diseases can be identified
for validation using low-throughput biological methods such
as quantitative real-time PCR, northern blotting, and so
on. However, these traditional experiments are costly and
time-consuming. Therefore, computational approaches are
important for exploring potential disease-causing circRNAs
and understanding the associated mechanisms of pathogenicity.
Several models have been proposed to forecast circRNA–
disease associations; most of these approaches are based on
the assumption that circRNAs with similar functions are likely
to be associated with the same or similar diseases. Lei et al.
(2018) developed a path-weighted model to predict circRNA–
disease associations based on circRNA semantic similarity and

disease functional similarity (Lei et al., 2018). KATZHCDA
was used to calculate the number of walks between nodes
and walk lengths for circRNA–disease associations, based on
a priori knowledge of the circRNA expression similarity and
disease phenotype similarity (Fan et al., 2018b). DWNN-RLS
predicted circRNA–disease associations using regularized least
squares of the Kronecker product kernel (Yan et al., 2018). Xiao
et al. (2019) proposed a weighted dual-manifold regularized
low-rank approximation model for disease-related circRNA
prediction, called MRLDC (Xiao et al., 2019). Another model,
iCircDA-MF, incorporated circRNA–gene, gene–disease, and
circRNA–disease associations, together with disease semantic
information, and used non-negative matrix factorization to
predict circRNA–disease associations (Wei and Liu, 2019). Zhao
et al. (2019) integrated the bipartite network projection algorithm
and KATZ measure algorithm to explore novel circRNA–disease
associations (Zhao et al., 2019). Deng et al. (2019) combined
circRNAs, proteins, and diseases to predict circRNA–disease
associations using the KATZ algorithm (Deng et al., 2019). Ge
et al. (2019) developed the LLCDC model for prediction of
human disease-associated circRNAs using locality-constrained
linear coding and a label propagation algorithm (Ge et al.,
2019). CD-LNLP calculated circRNA similarity and disease
similarity using linear neighborhood similarity based on known
associations, and then used the label propagation algorithm to
mine circRNA–disease associations (Zhang et al., 2019). Wang
Y. et al. (2019) used a graph-based recommendation algorithm,
PersonalRank, to predict disease-related circRNAs based on
circRNA expression profiles and functional similarities (Wang
Y. et al., 2019). Lei and Fang (2019) used a gradient boosting
decision tree with multiple biological data fusion for circRNA–
disease prediction (Lei and Fang, 2019). Ding et al. (2020)
developed the RWLR model based on the random walk and
the logistic regression to predict circRNA-disease associations.
iCDA-CGR quantified the sequence nonlinear relationship of
circRNA by chaos game representation technology based on
the biological sequence position information (Zheng et al.,
2020). Lei and Bian (2020) integrated the random walk with
restart and k-nearest neighbors to predict the associations
between circRNAs and diseases. Although these computational
models have achieved encouraging results, they represent
the tip of the iceberg with respect to predicting circRNA–
disease associations.

Several circRNAs can bind with the corresponding miRNAs
and participate in multiple biological processes synchronously
(Qu et al., 2018). Based on this theory, Fang and Lei (2019)
used an improved random walk algorithm to predict circRNA–
miRNA associations, named KRWRMC (Fang and Lei, 2019). As
miRNAs have been implicated in various diseases, we consider
that miRNA information should be included in the identification
of circRNA–disease associations. However, there have been few
studies of circRNA–miRNA interactions, and deep interaction
patterns are rarely considered in prediction of circRNA–disease
associations. In this work, we take circRNA–miRNA interactions
and miRNA–disease associations into account, and capture the
complex miRNA-based interaction features of circRNAs and
diseases, respectively.
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In recent years, deep learning architectures have attracted
increasing attention in various fields, including image analysis
(Yang and Xu, 2020), speech recognition (Graves et al., 2013),
and bioinformatics (Min et al., 2017), etc. The convolutional
neural network (CNN) is a well-known feed-forward artificial
neural network inspired by biological processes that simulates
the cognition function of human neural systems (LeCun et al.,
2015). CNN architectures have the ability to automatically
learn the meaning of combinations of features from the
input data and simplify the process of manual feature
selection (Liu et al., 2017). Recent applications of CNN-
based methods indicate their effectiveness in computational
biology (Liu et al., 2018), including in circRNA research.
Wang and Wang (2019) developed the DeepCirCode model
to discover the sequence code of back-splicing for circRNA
formation, and sequence motifs were also extracted. The
CSCRSites model was proposed to predict cancer-specific
protein binding sites on circRNAs based on CNNs. The
features learned by the CSCRSites model are converted to
sequence motifs, some of which are involved in human diseases
(Wang Z. et al., 2019). Inspired by the superior prediction
performance of this approach, we used CNN architecture to
detect combinations of features and predict potential circRNA–
disease associations.

In this study, we present a novel computational model to
predict potential associations between circRNAs and diseases,
named MSFCNN. The main attributes of the MSFCNN
model are as follows. (1) Four circRNA similarity kernels
and seven disease similarity kernels are constructed using
multiple biological and topological information, such as
circRNA expression profiles, circRNA sequence information,
disease-miRNA interactions, etc. (2) Whereas some existing
methods simply use linear weighting to integrate the similarity
kernels into one kernel, we considered that this may lead to
information loss and noise. Hence, we used the similarity
kernel fusion (SKF) method to fuse four circRNA similarity
kernels and seven disease similarity kernels, thereby retaining
the original information of each similarity kernel. A weight
matrix is used to reduce the noise in the fused similarity
kernel. (3) A feature matrix is constructed based on the
fused circRNA similarity kernel, fused disease similarity
kernel, and interactions and features among circRNAs,
miRNAs, and diseases. Multiple biological premises are
used to construct the feature matrix. On the one hand, two
circRNAs (or diseases) are more similar could capture the
relationships between the circRNA (or disease) similarities and
circRNA–disease associations. On the other hand, circRNA–
miRNA and miRNA–disease associations are also integrated,
and the interaction features are captured using principal
component analysis. (4) A two-layer CNN architecture is
used to process the feature matrix and predict potential
circRNA–disease associations. Five-fold cross-validation
(CV) is used to assess the prediction performance of the
MSFCNN model. The results indicate that the MSFCNN model
outperforms several conventional machine learning classifiers.
Furthermore, case studies of breast cancer, colorectal cancer,
hepatocellular carcinoma, and acute myeloid leukemia indicate

that MSFCNN could be an effective tool to infer potential
circRNA–disease associations.

MATERIALS AND METHODS

A flow chart illustrating MSFCNN, our novel approach to predict
potential circRNA–disease associations is shown in Figure 1.
First, four circRNA similarity kernels and seven disease similarity
kernels are computed based on their biological and topological
properties. Then, these kernel similarities are combined into one
circRNA similarity kernel and one disease similarity kernel by
applying a similarity kernel fusion strategy. Subsequently, the
feature matrix can be constructed based on the fused similarity
kernels, and interactions and features among circRNAs, miRNAs,
and diseases. Finally, we use a CNN to process the feature matrix
and predict final scores for prediction of potential circRNA–
disease associations.

Construction of the CircRNA–Disease,
CircRNA–miRNA, and Disease–miRNA
Networks
In this study, circRNA–disease associations, circRNA–miRNA
associations, and disease–miRNA associations were used to
predict circRNA–disease associations. Known circRNA–disease
associations were downloaded from the CircR2Disease database
(Fan et al., 2018a), which contained 739 entries including
725 experimentally validated circRNA–disease associations from
four species. Only human circRNA–disease associations were
used in this work. Interactions that did not correspond to
circRNAs IDs in the circBase database and disease names were
not recorded in the disease ontology database were removed
(Glazar et al., 2014; Schriml et al., 2019). Thus, we retained
325 circRNAs, 53 diseases, and 371 circRNA–disease associations
as the positive dataset. The circRNA–miRNA interactions were
obtained from the CircBank database (Liu et al., 2019), and
interactions overlapping with disease-related circRNAs were
extracted. Thus, 24745 interactions between 322 circRNAs
and 2545 miRNAs were obtained. In addition, the disease–
miRNA associations that matched circRNA-related diseases were
selected from the human microRNA disease database (Huang
et al., 2019), and 4970 associations between 37 diseases and
873 miRNAs were obtained. Finally, all of these associations
contained three types of nodes including 325 circRNAs, 53
diseases, and 3175 miRNAs.

Based on the circRNA–disease associations, an adjacency
matrix A(i,j) was constructed to represent associations between
nc circRNAs and nd diseases; A(i,j) was assigned a value of 1
if circRNA c(i) was found to be related to disease d(j), and
0 otherwise. Similarly, a circRNA–miRNA matrix Y(i, j) was
constructed to represent the associations between nc circRNAs
and nm miRNAs, and the associations between nd diseases and
nm miRNAs were represented by matrix O(i, j). Y(i, j) was set to 1
when there was an association between circRNA c(i) and miRNA
m(j), and 0 otherwise. If disease d(i) interacted with miRNA m(j),
O(i, j) was set to 1, otherwise it was set to 0.
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FIGURE 1 | Flow chart of the MSFCNN approach. Step 1: Four circRNA similarity kernels and seven disease similarity kernels are measured, respectively. Step 2:
The similarity kernels for circRNAs (or diseases) is fused with SKF method. Step 3: The feature matrix for each circRNA–disease pair is constructed by integrating the
fused similarity kernels, interactions and features among circRNAs, miRNAs, and diseases. Step 4: a CNN architecture is used to train MSFCNN approach and
predict latent circRNA–disease associations.

Representation of CircRNA Similarity
Kernels
CircRNA Sequence Similarity
The 325 circRNA sequences were obtained from the circBase
database (Glazar et al., 2014), and the sequence similarity of each
circRNA–circRNA pair was calculated using a modification of the
Needleman–Wunsch algorithm with the Emboss-stretcher tool
(Rice et al., 2000). Therefore, the circRNA sequence similarity

score SC_Seq(ci, cj) could be obtained by setting the parameters
as follows: Matrix = EDNAFULL, Gap open = 16, Gap extend = 4.

CircRNA Regulatory Similarity
Based on the assumption that circRNAs associated with the same
miRNAs tend to have similar biological regulatory functions, we
used the miRNA–circRNA interactions to measure the circRNA
regulatory similarity (Huang et al., 2018). Given the two sets of
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miRNAs, Mi and Mj, that had relationships with circRNAs ci
and cj, respectively, the circRNA regulatory similarity kernel was
calculated as follows:

SC_RG(ci, cj) =
card(Mi

⋂
Mj)√

card(Mi) ·
√

card(Mj)
(1)

CircRNA Expression Similarity
The circRNA expression profiles were derived from the
exoRBase database (Li et al., 2018). Each circRNA record
had 90 dimensions, representing the expression levels of a
single type of circRNA. By extracting the common circRNAs
between the CircR2Disease and exoRBase databases, circRNA
expression profiles were obtained for calculation of the circRNA
similarity kernel. We used the Pearson correlation coefficient
to measure circRNA expression similarity, and let SC_EP(ci, cj)
represent the expression similarity score between circRNAs ci
and ci. The expression similarity kernel of the circRNAs was
computed as follows:

SC_EP(ci, cj) =

∑N
i=1(xi− x̄)(yi− ȳ)√∑N

i=1(xi− x̄)2 ∑N
i=1(yi− ȳ)2

(2)

where N represents the number of properties of the expression
profiles, and xi and yi denote the expression values in different
tissues. In general, a pair of circRNAs with a higher correlation
score are considered to be more similarly expressed.

GIP Kernel Similarity for CircRNAs
The Gaussian interaction profile (GIP) kernel similarity was
used to measure the similarity between circRNAs, based on
the assumption that similar circRNAs are more likely exhibit a
similar interaction or non-interaction pattern with miRNAs (Van
Laarhoven et al., 2011). GIP kernel similarity for circRNAs was
measured based on circRNA–miRNA interactions and defined as:

SC_GIP(ci, cj) = exp(−γc ‖ c(i)− c(j) ‖2)

γc =
1

1
nc

nc∑
i=1

‖ c(i) ‖2
(3)

where the circRNA interaction profiles are represented by c(i), a
binary vector that encodes the interaction between circRNA i and
all miRNAs, i.e., the i-th row of the circRNA–miRNA interaction
matrix Y. The parameter γc controls the kernel bandwidth, and
nc is the number of circRNAs.

Representation of Disease Similarity
Kernels
Disease Symptom Similarity
According to the co-occurrence of disease and symptom terms
recorded in the PubMed bibliography, Zhou et al. (2014)
considered that diseases are connected if they have a positive
symptom similarity (Zhou et al., 2014). Thus, the disease
similarity could be measured and a symptom-based human
disease network was constructed. Here, the symptom-based
disease similarity SD_Sym was obtained from the symptom
profiles of diseases.

Disease Semantic Similarity
According to Medical Subject Headings descriptions, diseases
can be described by a hierarchical directed acyclic graph (DAG).
Here, disease semantic similarity is calculated using the method
of Wang et al. (2007). DAGd = (d, Td, Ed) represents the DAG
of a disease, in which Td denotes node d and its ancestor nodes,
and Ed denotes the direct edges from a parent node to child nodes
within Td. Therefore, the semantic contribution of parent node t
to d is defined as follows:

Dd(t) =
{

1, if t = d
max{1 ∗ Dd(d′)|d′ ∈ children of t, if t 6= d

(4)

where M represents the semantic contribution decay factor (M
is set as 0.5). The semantic value of disease d can be calculated
as follows:

DV(d) =
∑
t∈Td

Dd(t) (5)

If two diseases share a larger part of DAGs, they tend to
have higher similarity. The similarity score between di and dj
is defined as:

SD_Dss(di, dj) =

∑
t∈Tdi

⋂
Tdj

(Ddi(t)+ Ddj(t))

DV(di)+ DV(dj)
(6)

GIP Kernel Similarity for Diseases
Similar to the calculation of GIP kernel similarity for circRNAs,
the disease GIP kernel similarity was measured based on disease–
miRNA interaction profiles. It is defined as:

SD_GIP(d(i), d(j)) = exp(−γd ‖ d(i)− d(j) ‖2)

γd =
1

1
nd

nd∑
i=1

‖ d(i) ‖2
(7)

where the disease interaction profiles are represented by d(i),
a binary vector that encodes the interaction between disease i
and each miRNA, i.e., the i-th row of association matrix O. The
parameter γd is also used to control the kernel bandwidth, and nd
is the number of diseases.

Other Disease Similarities
Besides disease symptom similarity, disease sematic similarity,
and GIP kernel similarity, disease similarities can also
be measured using the Lin (1998), PSB (Mathur and
Dinakarpandian, 2012), Resnik (1995), and SemFunSim (Cheng
et al., 2014) methods based on the DincRNA database (Cheng
et al., 2018). Four disease similarity kernels were constructed
using these methods and denoted SD_Lin, SD_PSB, SD_Resnik,
and SD_SemFunSim, respectively.

Similarity Kernel Fusion
Next, we used the similarity kernel fusion method to integrate
four circRNA similarity kernels and seven disease similarity
kernels (Jiang et al., 2018). Let Sc,m (m = 1,2,. . .4) represent the
four circRNA similarity kernels and Sd,n (n = 1,2,. . .7) the seven
disease similarity kernels, respectively.
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First, each original similarity kernel for circRNAs was
normalized using Eq. (8):

NSc,m(ci, cj) =
Sc,m(ci, cj)∑

ck∈C Sc,m(ck, cj)
(8)

where NSc,m denotes a normalized similarity kernel for circRNAs
that satisfies

∑
ck∈C NSc,m(ck, cj) = 1.

Then, a sparse kernel for each circRNA similarity kernel was
constructed using Eq. (9):

Fc,m(ci, cj) =


Sc,m(ci, cj)∑

ck∈Ni
Sc,m(ci, ck)

cj ∈ Ni

0 cj /∈ Ni

(9)

where Fc,m is a sparse kernel satisfying
∑

cj∈C Fc,m(ck, cj) = 1,
and Ni is a set of ci’s neighbors including ci itself.

The four circRNA similarity kernels were computed
using Eq. (10):

SCt+1
c,m = α

(
Fc,m ×

∑
r 6=1 SCt

c,r

2
× FT

c,m

)

+ (1− α)

(∑
r 6=1 SC0

c,r

2

)
α ∈ (0, 1) (10)

where SCt+1
c,m is the status matrix of m-th circRNA similarity

kernel after t+1 iterations, andSC0
c,r denotes the initial status of

SCc,r .
After t+1 steps, the overall kernel for circRNAs was calculated

using Eq. (11):

Sc =
1
4

4∑
m=1

SCt+1
c,m (11)
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FIGURE 2 | Establishment of the feature matrix of circRNA c1 and disease d2. Based on three premises, c1-d2 feature matrix is constructed by combing fused
similarities and associations among circRNAs, diseases and miRNAs.
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Furthermore, a weight matrix wc was used to eliminate the
noise in matrix Sc, and the fused circRNA similarity kernel was
computed using Eq. (12):

S∗c = wc ◦ Sc (12)

wc(ci, cj) =


1 if ci ∈ Nj and cj ∈ Ni
0 if ci /∈ Nj and cj /∈ Ni
0.5 otherwise

(13)

Similarly, the seven disease similarity kernels were fused to form
one disease similarity kernel, denoted byS∗d .

Construction of the Feature Matrix
The feature matrix for each circRNA–disease pair was
constructed by incorporating the fused circRNA similarity, fused
disease similarity, circRNA–miRNA interactions, circRNA–
disease associations, and disease–miRNA associations (Figure 2).

FIGURE 3 | Graphical illustration of the MSFCNN architecture. The feature matrix of circRNA c1 and disease d2 is input to the convolution neural network model to
learn global deep representation between c1 and d2.
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In the construction process of the feature matrix, three biological
premises were used. Here, we take the construction of the
c1-d2 feature matrix as an example. Based on the premise that
the circRNAs should be more similar that have interaction
with circRNA similarities and circRNA–disease associations,
the first part of the feature matrix consists of the similarity
between c1 and all circRNAs, and the associations of d2 with
all circRNAs. If circRNA c1 and c2 or other circRNAs have
similar functions, and at the same time d2 has been shown to
be associated with these circRNAs, c1 has a large probability
associated with d2. The dimension of the first part of the
feature matrix is 2 × nc. Similarly, based on the premise
that diseases should be more similar that have interaction
with disease similarities and circRNA–disease associations,
we integrate the associations between circRNA c1 and all
diseases, as well as the similarities between disease d2 and all
diseases. The second part of the feature matrix has dimension
2 × nd. In addition, circRNA–miRNA and miRNA–disease is
integrated to capture the relation features. When c1 and d2 have
interactions with common miRNAs, they are more likely to be
associated with each other. The interactions between c1 and
various miRNAs, as well as the associations between d2 and
miRNAs, are integrated to construct a matrix with dimension
2 × nm. However, the matrix is very sparse, so we perform
principal component analysis (PCA) to obtain miRNA-based
features for the c1-d2 pair with dimension 2 × np (np is set as
50). Finally, we concatenate these three matrices to form the
feature matrix of circRNA c1 and disease d2 with dimension
2× (nc+nd+np).

Identification of CircRNA–Disease
Associations Based on CNN
The MSFCNN architecture consists of an input layer, two
convolutions, and an activation layer, polling layer, fully
connected layer, and softmax layer (Figure 3). The feature matrix
X of node pairs is used as an input to the CNN architecture to
learn the representations of node-pair circRNAs and diseases.
The MSFCNN can be summarized as:

Out = f Softmaxf Fully_connectedf GlobalMaxPoolf Conv2D_ReLU f Conv2D_ReLU (X) (14)

where X is the feature matrix that is fed to the two-dimensional
convolution (Conv2D) layer. In the first convolutional layer,
if the number of filters is nconv1, the width of the kernel is
nw, and its length is set as nl. The convolution filters are
indicated as Wconv1∈Rnconv1 × nw × nl, and the feature maps are
Zconv1∈Rnconv1 × (2−nw+1) × (nc+nd+np−nl+1). The convolution
process can be described as follows:

Xk,i,j = X(i : i+ nw, j : j+ nl) Xk,i,j ∈ Rnw×nl (15)

Zconv1,k(i, j) = g(Wconv1(k, :, :) ∗ Xconv1,i,j + bconv1(k))
k ∈ [1, nconv1], i ∈ [1, 2], j ∈ [1, nc + nd + np − nl + 1]

, (16)

where X(i,j) is the element of matrix X in the i-th row and j-th
column, and Xk,i,j represents the region in the filter where the
k-th filter slides to the position X(i,j). g is a rectified linear units
(relu) function (Nair and Hinton, 2010), bconv1 is the bias vector, ∗
represents the convolution operation, and Zconv1,k(i,j) represents

the convolution result of the k-th filter sliding to the j-th column
of the i-th row.

Similarly, the second Conv2D layer is also used to learn
the higher-level features. To compress data and reduce over-
fitting, the polling layer is used to obtain robust features.
Here, the max-pooling operation is employed for each feature
map (Collobert et al., 2011). Then, the outputs of the pooling
layer are concatenated together from all kernels into one
feature vector and input into the fully connected layer. The
nonlinear softmax activation function is used to perform the
task of classification.

To avoid over-fitting, a dropout layer is implemented before
the output, in which the output of every neuron is set to
zero with a probability of 0.5. The dropped-out neurons are
not included in the forward pass or the back-propagation
(Hinton et al., 2012).

Prediction of Novel CircRNA–Disease
Associations
Next, we used all the positive and negative circRNA–disease
association samples to train the MSFCNN architecture. Then,
MSFCNN was used to score the unlabeled associations between
circRNAs and diseases. Owing to the different negative samples
used to train the model in each iteration of the five-fold cross
validation (five-fold CV), we scored the candidate associations 10
times. Finally, we calculated the average scores for the candidate
associations, and the candidate circRNAs related to specific
diseases were analyzed using case studies.

RESULTS

Performance Evaluation
The performance of MSFCNN and other conventional machine
learning-based methods for predicting circRNA–disease
associations was evaluated using five-fold CV. If the circRNA
c(i) was found to be related to disease d(j), the node pair ci-dj
was considered as a positive example. Hence, the validated
circRNA–disease associations were regarded as the positive
set. However, because of the unavailability of a dataset for
negative samples, we randomly selected a negative set from
unobserved associations that was the same size as the positive
set. All the positive samples were divided into five subsets of
equal size, and each subset was tested once. For each CV, we
took four positive subsets and the same number of negative
subsets from five subsets to train the models; the remaining
one positive subset and one negative subset were used for
testing to evaluate the prediction performance. To lessen
the bias resulting from sample division, we performed 10
repetitions of five-fold CV and obtained the average values of
five experiments.

Receiver operating characteristic (ROC) curves were plotted to
show the prediction performance by calculating the true positive
rate and false positive rate. The area under the curve (AUC)
was calculated to evaluate the overall performance. In addition,
five metrics, precision (Pre), sensitivity (Sen), accuracy (Acc), F1-
score, and Matthews’s correlation coefficient (MCC) were used
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to evaluate the capability of the MSFCNN model. The detailed
calculation of these metrics was as follows:

Pre =
TP

TP + FP
(17)

Sen =
TP

TP + FN
(18)

Acc =
TP + TN

TP + TN + FP + FN
(19)

F1− score =
2× Sen× Pre

Sen+ Pre
(20)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN) ∗ (TP + FP) ∗ (TN + FN) ∗ (TN + FP)

(21)

where TP and TN represent the number of true positives and true
negatives, respectively, and FP and FN represent the number of
positives and negatives, respectively, that were wrongly predicted.

Parameter Setting
Convergence and parameter selection are important factors
in the SKF method, that is, the number of iterations and
two parameters, α and the size of neighbors. Following a
previous study (Jiang et al., 2018), we set these two parameters
to 0.1 and 36, respectively. As the number of iterations is
important for the convergence of the SKF method, we also
analyzed whether the number of iterations was sufficient for
convergence in the four circRNA similarity kernels and seven
disease similarity kernels. The relative error of the process
of iteration was denoted ECt and EDt for circRNA similarity
fusion and disease similarity fusion, respectively. The number
of iterations ranged from 1 to 25 with steps of 1, and ECt
and EDt were computed after every iteration. The convergence
processes of the four circRNA similarity kernels and seven disease
similarity kernels are shown in Figure 4. The results indicate that
the convergence process was fast, and the ECt and EDt values
reached 10−10 after 10 iterations. Therefore, we set the number

of iterations to 10 for both circRNA similarity fusion and disease
similarity fusion.

ECt =
‖ SCt+1

c,m − SCt
c,m ‖

‖ SCt
c,m ‖

(22)

EDt =
‖ SDt+1

d,n − SDt
d,n ‖

‖ SDt
d,n ‖

(23)

In the convolution operation of the MSFCNN model, the number
of filters was set to 8. The kernel size was set to 2 × 32 in the
first convolutional layer and 1 × 16 in the second convolutional
layer. We implemented the MSFCNN model using the Keras 2.2.4
library in Python 3.7.3.

Evaluation of Prediction Performance
To assess the performance of the MSFCNN model for prediction
of circRNA–disease associations, we used five-fold CV with 10
experiments (see Table 1 and Figure 5 for details). MSFCNN
achieved average precision, sensitivity, F1-score, Acc, MCC, and
AUC values of 0.9030, 0.9464, 0.9240, 0.9220, 0.8452, and 0.9525,
with standard deviations of 0.0360, 0.0256, 0.0292, 0.0305, 0.0605,
and 0.0202, respectively. Furthermore, the ROC curves for the
MSFCNN model were at the upper left of the picture. These
results indicate that our proposed model performs well in
prediction of circRNA–disease associations.

Comparison With Average Kernel Fusion
Strategy
In the MSFCNN model, the SKF method is used to fuse the
four circRNA similarity kernels and seven disease similarity
kernels into one circRNA similarity kernel and one disease
similarity kernel, respectively. We compared the performance
of the SKF method when integrating several similarity kernels
with that of an average kernel fusion strategy. The average
fusion strategy calculated the average similarity scores for four
circRNA similarity matrix or seven disease similarity matrices,
respectively. Five-fold CV was performed 10 times for predicting

FIGURE 4 | Relative errors of the SKF method with various numbers of iteration for the four circRNA similarity matrices and seven disease similarity matrices.
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TABLE 1 | Evaluation metrics for performance of the MSFCNN approach.

Times Pre Sen F1-score Acc MCC

1 0.9573 0.9677 0.9625 0.9623 0.9246

2 0.8488 0.9380 0.8912 0.8854 0.7752

3 0.9251 0.9326 0.9289 0.9286 0.8572

4 0.8660 0.9057 0.8854 0.8827 0.7663

5 0.9203 0.9650 0.9421 0.9407 0.8824

6 0.9010 0.9568 0.9281 0.9259 0.8534

7 0.9258 0.9757 0.9501 0.9488 0.8989

8 0.8641 0.9084 0.8857 0.8827 0.7665

9 0.8835 0.9407 0.9112 0.9084 0.8184

10 0.9377 0.9730 0.9550 0.9542 0.9090

Average 0.9030+/
−0.0360

0.9464+/
−0.0256

0.9240+/
−0.0292

0.9220+/
−0.0305

0.8452+/
−0.0605

FIGURE 5 | ROC curves of MSFCNN model for the task of circRNA–disease
association prediction.

circRNA–disease associations. The average kernel fusion-based
MSFCNN model had an average AUC of 0.8628 (Figure 6); by
comparison, the SKF-based MSFCNN model had an AUC of
0.9525 (an improvement of 0.0897). Other evaluation metrics
also indicated that the SKF method performs better than the
average kernel fusion strategy in MSFCNN (Table 2). Hence,
the SKF method is an effective fusion strategy for prediction of
circRNA–disease associations.

Comparison With Conventional Machine
Learning Approaches
To demonstrate the reliability and robustness of the MSFCNN
method, we made comparisons with state-of-the-art machine
learning approaches: support vector machine (SVM), random
forest (RF), and multilayer perception (MLP). For each of these
machine learning approach, the feature matrix fed into the model
was consistent with that used for MSFCNN to ensure the fairness
of the experiments. As shown in Figure 7, the average AUC
of the MSFCNN model in the five-fold CV was 0.9179 higher
than those of the SVM, RF, and MLP methods. In addition,
MSFCNN achieved higher precision, sensitivity, F1-score, Acc,
and MCC values than the other machine learning approaches

FIGURE 6 | ROC curves of the MSFCNN model with average kernel fusion
strategy.

TABLE 2 | Evaluation metrics for performance of the MSFCNN model with
average kernel fusion strategy.

Times Pre Sen F1-score Acc MCC

1 0.8448 0.8948 0.8691 0.8653 0.7317

2 0.7889 0.8464 0.8166 0.8100 0.6216

3 0.7834 0.7116 0.7458 0.7574 0.5170

4 0.8832 0.8760 0.8796 0.8801 0.7601

5 0.8342 0.8410 0.8376 0.8369 0.6738

6 0.7186 0.7709 0.7438 0.7345 0.4702

7 0.7171 0.7925 0.7529 0.7398 0.4825

8 0.7649 0.7278 0.7459 0.7520 0.5046

9 0.7778 0.8679 0.8204 0.8100 0.6242

10 0.7357 0.7951 0.7642 0.7547 0.5111

Average 0.7848+/
−0.0553

0.8123+/
−0.0629

0.7976+/
−0.0534

0.7941+/
−0.0537

0.5897+/
−0.1070

FIGURE 7 | ROC curves of the MSFCNN model and other machine learning
methods.

(Table 3). Therefore, the proposed method is more suitable than
these conventional approaches for the task of circRNA–disease
association prediction.
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TABLE 3 | Evaluation metrics for performance of the MSFCNN and other
tmachine learning methods.

Methods Pre Sen F1-score Acc MCC

MSFCNN 0.8468 0.8491 0.8479 0.8477 0.6954

SVM 0.6166 0.6415 0.6288 0.6213 0.2428

RF 0.6851 0.5337 0.6000 0.6442 0.2957

MLP 0.6455 0.6577 0.6515 0.6482 0.2965

TABLE 4 | Candidate circRNAs predicted by the MSFCNN model
for four diseases.

Diseases circRNAs Rank Evidence

Acute myeloid leukemia hsa_circ_0000677 3 Circ2Traits

hsa_circ_0000175 6 Circ2Traits

Breast cancer hsa_circ_0000677 8 Circ2Traits

hsa_circ_0000175 11 Circ2Traits

hsa_circ_0001417 25 Circ2Traits

Colorectal cancer hsa_circ_0001417 16 Circ2Traits

hsa_circ_0000175 19 Circ2Traits

hsa_circ_0001283 40 Circ2Traits

hsa_circ_0000615 56 Circ2Traits

Hepatocellular hsa_circ_0000677 10 Circ2Traits

hsa_circ_0001417 24 Circ2Traits

hsa_circ_0001283 48 Circ2Traits

FIGURE 8 | Top 20 predicted circRNA–disease associations.

Case Study
To further demonstrate the ability of the MSFCNN model
to discover potential circRNA–disease associations, we scored
unlabeled associations between circRNAs and diseases using
the trained model. Average scores were obtained from 10
applications of the MSFCNN model, and candidate circRNA–
disease associations were identified based on their ranked
scores. Case studies were performed for breast cancer, colorectal
cancer, hepatocellular carcinoma, and acute myeloid leukemia.
Some of the predicted specific disease-related circRNAs were
found in the Circ2Traits database (Ghosal et al., 2013),
which collects circRNAs and miRNAs related to diseases
and traits (Table 4). In addition, we plotted the top 20
predicted circRNA–disease associations; the results show that

these circRNAs may be related to the same diseases, and
the diseases may also be associated with the same circRNAs
(Figure 8). Hence, these results show that the MSFCNN model
could be an effective tool for the prediction of circRNA–
disease associations.

CONCLUSION

Prioritizing potential disease-related circRNAs based on various
types of prior information is beneficial to understanding
disease mechanisms, diagnosis, and treatment. In this study,
we developed a novel computational method named MSFCNN
to predict potential circRNA–disease associations, using a two-
layer two-dimensional CNN and integrating multiple biological
data. First, one of the crucial technical points for predicting
circRNA–disease associations is the similarity calculation for
circRNA–circRNA and disease–disease pairs. Therefore, we
calculated four circRNA similarity kernels and seven disease
similarity kernels based on multiple biological and topological
information. In addition, similarity kernel fusion was used
to integrate various similarity kernels into one circRNA
similarity kernel and one disease similarity kernel. Based
on these fused similarity kernels and interactions/features
among circRNAs, miRNA, and diseases, a feature matrix
was constructed for each circRNA–disease pair. Finally, a
two-layer CNN architecture was used to predict circRNA–
disease associations. The MSFCNN approach showed good
performance based on the five-fold CV, outperforming the
SVM, RF, and MLP classifiers. Furthermore, case studies
of breast cancer, colorectal cancer, hepatocellular carcinoma,
and acute myeloid leukemia demonstrated that the MSFCNN
framework could be an effective tool for successfully inferring
potential circRNA–disease associations and providing a basis for
biological validation.

The good performance of MSFCNN method mainly conclude
following aspects. Firstly, multiple similarity kernels for circRNAs
and diseases are effectively introduced to measure the biological
and topological features of circRNAs and diseases. Secondly,
the relationships of circRNA–miRNA and disease–miRNA
are also used to construct the feature matrix for each
circRNA–disease pair. Furthermore, the application of CNN
architecture guarantees the effectiveness of learning the meaning
of combinations of features from the feature matrix. Hence,
MSFCNN method is an effective biomedical resource to predict
the circRNA–disease associations.

Despite its promising prediction performance, the MSFCNN
approach has some limitations. First, incomplete and noisy
circRNA–disease associations were used as positive samples, and
negative samples are randomly selected, limiting the prediction
performance. This could be improved as more associations are
discovered. Furthermore, more reliable biological information
should be considered, such as circRNA coding potential and
circRNA functional information, as well as disease phenotypes
and functional information, etc. In addition, optional similarity
measurements would be integrated based on comparing the
prediction results of different similarity measures. Therefore,
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more data sources should be collected, and a more effective model
needs to be developed to address the above limitations.
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Genome-Wide Association Studies (GWAS) explain only a small fraction of heritability for

most complex human phenotypes. Genomic heritability estimates the variance explained

by the SNPs on the whole genome using mixed models and accounts for the many

small contributions of SNPs in the explanation of a phenotype. This paper approaches

heritability from a machine learning perspective, and examines the close link between

mixed models and ridge regression. Our contribution is two-fold. First, we propose

estimating genomic heritability using a predictive approach via ridge regression and

Generalized Cross Validation (GCV). We show that this is consistent with classical mixed

model based estimation. Second, we derive simple formulae that express prediction

accuracy as a function of the ratio n
p , where n is the population size and p the total number

of SNPs. These formulae clearly show that a high heritability does not imply an accurate

prediction when p > n. Both the estimation of heritability via GCV and the prediction

accuracy formulae are validated using simulated data and real data from UK Biobank.

Keywords: heritability, prediction accuracy, ridge regression, mixed model, generalized cross validation, best

linear unbiased predictor

1. INTRODUCTION

The old nature vs. nurture debate is about whether a complex human trait is determined by a
person’s genes or by the environment. It is a longstanding philosophical question that has been
reinvestigated in the light of statistical genetics (Feldman and Lewontin, 1975). The concept of
heritability was introduced by Fisher (1918) and Wright (1920, 1921) in the context of pedigree
data. It has proved highly useful in animal (Meuwissen et al., 2001) and plant genetics (Xu, 2003) for
selection purposes because of its association with accurate prediction of a trait from genetic data.
In the last decades, Genome-Wide Association Studies (GWAS) have become highly popular for
identifying variants associated with complex human traits (Hirschhorn and Daly, 2005). They have
recently been used for heritability estimations (Yang et al., 2010). A shortcut is often made between
the heritability of a trait and the prediction of this trait. However, heritable complex human traits
are often caused by a large number of genetic variants that individually make small contributions
to the trait variation, which is often referred to as polygeny. In this context, the relation between
heritability and prediction accuracy may not hold (de Vlaming and Groenen, 2015).
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The goal of this paper is to establish a clear relation between
prediction accuracy and heritability, especially when the number
of genetic markers is much higher than the population size,
which is typically the case in GWAS. Based on the linear
model, statistical analyses of SNP data address very different and
sometimes unrelated questions. The most commonly performed
analyses tend to be association studies, where multiple hypothesis
testing makes it possible to test the link between any SNP
and a phenotype of interest. In genomic selection, markers
are selected to predict a phenotype with a view to selecting
an individual in a breeding population. Association studies
and genomic selection may identify different sets of markers,
since even weak associations might be of interest for prediction
purposes, while not all strongly associatedmarkers are necessarily
useful, because of redundancy through linkage disequilibrium.
Genomic heritability allows quantifying the amount of genomic
information relative to a given phenotype via mixed model
parameter estimation. The prediction of the phenotype using all
genomic information via the mixed model is a closely related but
different problem.

We approach the problem of heritability estimation from a
machine learning perspective. This is not a classical approach in
genetics, where inferential statistics is the usual preferred tool.
In this context, heritability is considered as a parameter to be
inferred from a small sample of the population. The machine
learning approach places the emphasis on prediction accuracy.
It makes a clear distinction between performance on training
samples and performance on testing samples, whereas inferential
statistics focuses on parameter estimation on a single dataset.

1.1. Classical Approach via Mixed Models
Heritability is defined as the proportion of phenotypic variance
due to genetic factors. A quantitative definition of heritability
requires a statistical model. The model commonly adopted is a
simple three-term model without gene-environment interaction
(Henderson, 1975):

y = g+ f+ e,

where y ∈ Rn is a quantitative phenotype vector describing n
individuals, f ∈ Rn is a non-genetic covariate term, g ∈ Rn is
a genetic term and e ∈ Rn an environmental residual term. The
term gwill depend on the diploid genotypematrixM ∈ Mn,p (R)

of the p causal variants.
There are two definitions of heritability in common use:

first, there is H2, heritability in the broad sense, measuring
the overall contribution of the genome; and second, there is
h2 , heritability in the narrow sense (also known as additive
heritability), defined as the proportion of phenotypic variance
explained by the additive effects of variants.

The quantification of narrow-sense heritability goes back to
family studies by Fisher (1918), who introduced the above model
with the additional hypothesis that g is the sum of independent
genetic terms, and with e assumed to be normal. This heritability
in the narrow sense is a function of the correlation between the
phenotypes of relatives.

Although Fisher’s original model makes use of pedigrees for
parameter estimation, some geneticists have proposed using the
same model with genetic data from unrelated individuals (Yang
et al., 2011a).

1.1.1. Polygenic Model
In this paper, we focus on the version of the additive polygenic
model with a Gaussian noise where g = Zu, f = Xβ , with
Z ∈ Mn,p (R) a standardized (by columns) version ofM, u ∈ Rp

a vector of genetic effects, X ∈ Mn,r (R) a matrix of covariates,
β ∈ Rr a vector of covariate effects, µ an intercept and e ∼

N
(
0n, σ

2In
)
a vector of environmental effects.

The model thus becomes

y = µ1n + Zu+ Xβ + e, (1)

where 1n ∈ Rn a vector of ones.

1.1.2. Estimation of Heritability From GWAS Results
To estimate heritability in a GWAS context, a first intuitive
approach would be to estimate u with a least squares regression
to solve problem (1). Unfortunately, this is complicated in
practice for three reasons: the causal variants are not usually
available among genotyped variants; genotyped variants are in
linkage disequilibrium (LD); and the least squares estimate is only
defined when n > p, which is not often the case in a GWAS (Yang
et al., 2010).

One technique for obtaining a solvable problem is to
use the classical GWAS approach to determine a subset of
variants significantly associated with the phenotype. The additive
heritability can then be estimated by summing their effects
estimated by simple linear regressions. In practice this estimation
tends to greatly underestimate h2 (Manolio et al., 2009). It only
takes into account variants that have passed the significance
threshold after correction for multiple comparisons (strong
effects) and does not capture the variants that are weakly
associated with the phenotype (weak effects).

1.1.3. Estimating Heritability via the Variance of the

Effects
Yang et al. (2010) suggest that most of the missing heritability
comes from variants with small effects. In order to be able to
estimate the information carried by weak effects they assume a
linear mixed model where the vector of random genetic effects
follows a normal homoscedastic distribution u ∼ N

(
0p, τ Ip

)
.

They propose estimating the variance components τ and σ
2,

and defining genomic heritability as h2G =
pτ

pτ+σ
2 . An example

of an algorithm for estimating variance components is the
Average Information—Restricted Maximum Likelihood (AI-
REML) algorithm, implemented in software such as Genome-
wide Complex Trait Analysis (GCTA) (Yang et al., 2011a) or
gaston (Perdry and Dandine-Roulland, 2018). More recent
methods that are much faster than REML have also been
proposed, such as the modified Haseman-Elston regression
(Chen, 2014) or methods based on summary statistics such as
the LD-score regression (Bulik-Sullivan et al., 2015) or the MQS
(MinQue for Summary statistics) approach (Zhou, 2017).
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1.2. A Statistical Learning Approach via
Ridge Regression
The linear model is used in statistical genetics for exploring
and summarizing the relation between a phenotype and one or
more genetic variants, and it is also used in predictive medicine
and genomic selection for prediction purposes. When used
for prediction, the criterion for assessing performance is the
prediction accuracy.

Although least squares linear regression is the baselinemethod
for quantitative phenotype prediction, it has some limitations. As
mentioned earlier, the estimator is not defined when the number
of descriptive variables p is greater than the number of individuals
n. Even when n > p, the estimator may be highly variable when
the descriptive variables are correlated, which is clearly the case
in genetics.

Ridge regression is a penalized version of least squares that
can overcome these limitations (Hoerl and Kennard, 1970).
Ridge regression is strongly related to the mixed model and
is prediction-oriented.

1.2.1. Ridge Regression
The ridge criterion builds on the least squares criterion, adding
an extra penalization term. The penalization term is proportional
to the ℓ2 norm of the parameter vector. The proportionality
coefficient λ is also called the penalization parameter. The penalty
tends to shrink the coefficients of the least squares estimator, but
never cancels them out. The degree of shrinkage is controlled by
λ: the higher the value of λ, the greater the shrinkage:

ûR = argmin
u

∥
∥y− Zu

∥
∥2
2
+ λ ‖u‖22 , (2)

=
(
ZTZ+ λIp

)−1
ZTy, (3)

= ZT
(
ZZT + λIn

)−1
y. (4)

Ridge regression can be seen as a Bayesian Maximum a Posteriori
estimation of the linear regression parameters considering a
Gaussian prior with hyperparameter λ.

The estimator depends on a λ that needs to be chosen. In a
machine learning framework, a classical procedure is to choose
the λ that minimizes the squared loss over new observations.

The practical effect of the penalty term is to add a constant to
the diagonal of the covariance matrix, which makes the matrix
non-singular, even in the case where p > n. When the descriptive
variables are highly correlated, this improves the conditioning of
the ZTZmatrix, while reducing the variance of the estimator.

The existence theorem states that there always exists a value
of λ > 0 such that the Mean Square Error (MSE) of the ridge
regression estimator (variance plus the squared bias) is smaller
than the MSE of the Maximum Likelihood estimator (Hoerl and
Kennard, 1970). This is because there is always an advantageous
bias-variance compromise that reduces the variance without
greatly increasing the bias.

Ridge regression also allows us to simultaneously estimate all
the additive effects of the genetic variants without discarding
any, which reflects the idea that all the variants make a
small contribution.

1.2.2. Link Between Mixed Model and Ridge

Regression
This paper builds on the parallel between BLUPs (Best Linear
Unbiased Predictions) derived from the mixed model and ridge
regression (Meuwissen et al., 2001). The use of ridge regression
in quantitative genetics has already been discussed (De los
Campos et al., 2013; de Vlaming and Groenen, 2015) We look
at a machine-learning oriented paradigm for estimating the
ridge penalty parameter, which provides us with a direct link
to heritability. There is an equivalence between maximizing
the posterior p

(
u|y

)
and minimizing a ridge criterion (Bishop,

2006) under the assumptions that u ∼ N
(
0p, τ Ip

)
and

e ∼ N
(
0n, σ

2In
)
(see section 6 in Supplementary Material

for details). The optimal penalty hyperparameter of the ridge
criterion λ can be used to estimate the heritability. It is
indeed defined as the ratio of the variance parameters of the
mixed model:

argmax
u

p
(
u|y

)
= argmin

u

∥
∥y− Zu

∥
∥2
2
+ λ ‖u‖22 with λ =

σ
2

τ

.

(5)
The relation between λ and h2G (de Vlaming and Groenen, 2015)
is thus:

h2G =
p

p+ λ

; λ = p
1− h2G
h2G

. (6)

Consequently, the BLUP has a similar formulation to the ridge
estimator. Indeed, as shown in the section 6.2 of the article by
Robinson et al. (1991), its general definition is:

ûBLUP = Ê(u|y) = ŴZT6̂
−1

(y− Xβ̂), (7)

where u ∼ N
(
0p,W

)
, e ∼ N (0n,E) and 6 = ZWZT + E.

When we further assume β = 0r , W = τ Ip and E = σ
2In,

it becomes:

ûBLUP = τZT(τZZT + σ
2In)

−1y = ZT(ZZT +
σ
2

τ

In)
−1y, (8)

which is exactly the ridge estimator.

1.2.3. Over-Fitting
Interestingly, ridge regression and the mixed model can be
seen as two similar ways to deal with the classical over-fitting
issue in machine learning, which is where a learner becomes
overspecialized in the dataset used for the estimation of its
parameters and is unable to generalize (Bishop, 2006). When
n > p, estimating the parameters of a fixed-effect linear model via
maximum likelihood estimation may lead to over-fitting, when
too many variables are considered. A classical way of reducing
over-fitting is regularization, and in order to set the value of
the regularization parameter there are two commonly adopted
approaches: first, the Bayesian approach, and second, the use of
additional data.

Mixed Model parameter estimation via maximum likelihood
can be seen as a type of self-regularizing approach (see Equation
5). Estimating the variance components of the mixed model may
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be interpreted as a kind of empirical Bayes approach, where
the ratio of the variances is the regularization parameter that
is usually estimated using a single dataset. In contrast to this,
in order to properly estimate the ridge regression regularization
hyperparameter that gives the best prediction, two datasets
are required. If a single dataset were to be used, this would
result in an insufficiently regularized (i.e., excessively complex)
model offering too high prediction performances on the present
dataset but unable to predict new samples well. This over-fitting
phenomenon is particularly evident when dimensionality is high.

The fact that the complexity of the ridge model is controlled
by its hyperparameter can be intuitively understood when
considering extreme situations. When λ tends to infinity, the
estimated effect vector (i.e., ûR) tends to the null vector.
Conversely, when λ tends to zero, the model approaches
maximum complexity. One solution for choosing the right
complexity is therefore to use both a training set to estimate the
effect vector for different values of the hyperparameter and a
validation set to choose the hyperparameter value with the best
prediction capacity on this independent sample. An alternative
solution, when data is sparse, is to use a cross-validation approach
to mimic a two-set situation. Finally, it should be noted that the
estimation of prediction performance on a validation dataset is
still overoptimistic, and consequently a third dataset, known as a
test set, is required to assess the real performance of the model.

1.2.4. Prediction Accuracy in Genetics
In genomic selection and in genomic medicine, several authors
have been interested in predicting complex traits that show a
relatively high heritability using mixed model BLUPs (Speed and
Balding, 2014). The literature defined the prediction accuracy
as the correlation between the trait and its prediction, which
is unusual in machine learning where the expected loss is
often preferred. Several approximations of this correlation have
been proposed in the literature (Brard and Ricard, 2015),
either in a low-dimensional context (where the number of
variants is lower than the number of individuals) or in a high-
dimensional context.

Daetwyler et al. (2008) derived equations for predicting the
accuracy of a genome-wide approach based on simple least-
squares regressions for continuous and dichotomous traits. They
consider one univariate linear regression per variant (with a fixed
effect) and combine them afterwards, which is equivalent to a
Polygenic Risk Score (PRS) (Pharoah et al., 2002; Purcell et al.,
2009). Goddard (2009) extended this prediction to Genomic
BLUP (GBLUP), which used the concept of an effective number
of loci. Rabier et al. (2016) proposed an alternative correlation
formula conditionally on a given training set. Their formula
refines the formula proposed by Daetwyler et al. (2008). Elsen
(2017) used a Taylor development to derive the same formula in
small dimension.

Using intensive simulation studies, de Vlaming and Groenen
(2015) showed a strong link between PRS and ridge regression in
terms of prediction accuracy, when the population size is limited.
However, with ridge regression, predictive accuracy improves
substantially as the sample size increases.

It is important to note a difference in the prediction
accuracy of GBLUP when dealing with human populations as

opposed to breeding populations (De los Campos et al., 2013).
De los Campos et al. (2013) show that the squared correlation
between GBLUP and the phenotype reaches the trait heritability,
asymptotically when considering unrelated human subjects.
Dandine-Roulland and Perdry (2015) also proposed a theoretical
formula of the performance of BLUPs for prediction in the
context of human genetics, which is proportional to the number
of individuals, to the squared heritability and to the variance of
the off-diagonal terms of the Genetic Relatedness Matrix.

Zhao and Zhu (2019) studied cross trait prediction in high
dimension. They derive generic formulae for in and out-of
sample squared correlation. They link the marginal estimator to
the ridge estimator and to GBLUP. Their results are very generic
and generalize formulae proposed by Daetwyler et al. (2008).

1.2.5. Outline of the Paper
While some authors have proposed making use of the
equivalence between ridge regression and the mixed model for
setting the hyperparameter of ridge regression according to the
heritability estimated by the mixed model, we propose on the
contrary to estimate the optimal ridge hyperparameter using a
predictive approach via Generalized Cross Validation. We derive
approximations of the squared correlation and of the expected
loss, both in high and low dimensions.

Using synthetic data and real data from UK Biobank, we show
that our results are consistent with classical mixed model based
estimation and that our approximations are valid.

Finally, with reference to the ridge regression estimation of
heritability, we discuss how heritability is linked to prediction
accuracy in highly polygenic contexts.

2. MATERIALS AND METHODS

2.1. Generalized Cross Validation for
Speeding Up Heritability Estimation via
Ridge Regression
2.1.1. Generalized Cross Validation
A classical strategy for choosing the ridge regression
hyperparameter uses a grid search and k -fold cross validation.
Each grid value of the hyperparameter is evaluated by the
cross validated error. This approach is time-consuming in high
dimension, since each grid value requires k estimations. In
the machine learning context, we propose using Generalized
Cross Validation (GCV) to speed up the estimation of the
hyperparameter λ and thus to estimate the additive heritability
h2G using the link described in Equation (6).

The GCV error in Equation (9) (Golub et al., 1978) is an
approximation of the Leave-One-Out error (LOO) (see section
2 in Supplementary Material). Unlike the classical LOO, GCV
does not require n ridge regression estimations (where n is the
number of observations) at each grid value, but involves a single
run. It thus provides a much faster and convenient alternative for
choosing the hyperparameter. We have

errGCV =

∥
∥y− ŷ (λ)

∥
∥2
2

[
1
n tr (In −Hλ)

]2 , (9)
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where ŷ (λ) = ZûR (λ) = Hλy is the prediction of the
training set phenotypes using the same training set for the
estimation of ûR and where Hλ is defined as (see section 1 in
Supplementary Material for details):

Hλ = Z
(
ZTZ+ λIp

)−1
ZT

= ZZT
(
ZZT + λIn

)−1
.

A Singular Value Decomposition (SVD) of the Hλ can be used
advantageously to speed up GCV computation (see section 3 in
Supplementary Material).

2.1.2. Empirical Centering Can Lead to Issues in the

Choice of Penalization Parameter in a

High-Dimensional Setting
In high dimensional settings (p > n), the use of GCV after
empirical centering of the data can lead to a strong bias in the
choice of λ and thus in heritability estimation. Let us illustrate the
problemwith a simple simulation.We simulate a phenotype from
synthetic genotype data with a known heritability of h2 = 0.25,
n = 1, 000 individuals, p = 10, 000 variants and 100% causal
variants. The simulation follows the additive polygenic model
without intercept or covariates, as described in section 2.3. Before
applying GCV, genotypes are standardized in the most naive
way: the genotype matrix M is empirically centered and scaled
column-wise, resulting in the matrix Z. Since we want to mimic
an analysis on real data, let us assume that there is a potential
intercept in our model (in practice the empirical mean of our
simulated phenotype is likely to be non-null):

y = µ1n + Zu+ e. (10)

GCV expects all the variables to be penalized, but penalizing the
intercept is not relevant. We therefore consider a natural two-
step procedure: first the model’s intercept is estimated via the
empirical mean of the phenotype µ̂ = 1

n

∑
i yi, and, second, GCV

is applied on the empirically centered phenotype y = y− µ̂1n.
Figure 1 shows the GCV error (dotted line). Heritability is

strongly overestimated. The GCV error appears to tend toward
its minimum as λ approaches 0 (i.e., when h2 tends to 1).

This is a direct consequence of the empirical standardization
of M and of the phenotype. By centering the columns of M
with the empirical means of those columns, a dependency is
introduced, and each line of the resulting standardized genotype
matrix Z becomes a linear combination of all the others. The
same phenomenon of dependency can be observed with the
phenotype when using empirical standardization. Given the
nature of the LOO in general (where each individual is considered
successively as a validation set), this kind of standardization
introduces a link between the validation set and the training set
at each step: the “validation set individual” can be written as a
linear combination of the individuals in the training set. In high
dimension, this dependency leads to errLOO −−→

λ→0
0 (see section

4 in Supplementary Material), due to over-fitting occurring in
the training set.

FIGURE 1 | Example of biased estimation by GCV if p > n. We computed the

GCV error curve with n = 1, 000 individuals, p = 10, 000 causal variants and

simulated heritability h2sim = 0.25. We used a grid of λ corresponding to the

grid of heritability {0.01, 0.02, ..., 0.99} using the link described in Equation (6)

and computed the GCV error for those λ after empirical standardization of the

data (dotted line). The λ that minimizes the GCV error corresponds to the

heritability estimation. Here the GCV error tends to its minimum as h2 tends to

1, and heritability is thus largely over-estimated. The plain line corresponds to

the GCV error obtained after correction of this bias by the projection approach

(see section 2.1.3), which provides a satisfactory estimation of h2. The three

vertical lines correspond respectively to the simulated heritability (red line), the

heritability estimated using uncorrected GCV (green line) and the heritability

estimated using corrected GCV (blue line).

From a GCV perspective, a related consequence of the
empirical centering of the genotype data is that the matrix ZZT

has at least one null eigenvalue and an associated constant
eigenvector in a high dimensional setting (see section 4 in
Supplementary Material). This has a direct impact on GCV:
using the singular value decomposition of the empirically
standardized matrix Z = UDVT with U ∈ On (R), V ∈ Op (R)

two orthogonal squared matrices spanning, respectively, the lines
and columns spaces of Z while D ∈ Mn,p (R) is a rectangular
matrix with singular values {d1, ..., dn} on the diagonal. In a high

dimensional context: errGCV (y,Z, λ)
d2n=0
−−−→
λ→0

(1n
Ty)2. Performing

the “naive” empirical centering of the phenotype results in

errGCV (y− µ̂1n,Z, λ)
d2n=0
−−−→
λ→0

(1n
Ty− 1n

T
µ̂1n)

2 = 0.

The very same problem is observed for a more general model
with covariates (see section 4 in Supplementary Material).

Frontiers in Genetics | www.frontiersin.org 5 November 2020 | Volume 11 | Article 58159482

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Frouin et al. High Heritability Versus Accurate Prediction

2.1.3. A First Solution Using Projection
A better solution for dealing with the intercept [and a matrix of
covariatesX ∈ Mn,r (R)] in ridge regression is to use a projection
matrix as a contrast and to work on the orthogonal of the space
spanned by the intercept (and the covariates).

Contrast matrices are a commonly used approach in the
field of mixed models for REstricted Maximum Likelihood
computations (REML) (Patterson and Thompson, 1971). REML
provides maximum likelihood estimation once fixed effects are
taken into account. Contrast matrices are used to “remove” fixed
effects from the likelihood formula. If we are only interested in
the estimation of the component of variance, we do not even
need to make this contrast matrix explicit: any semi-orthogonal
matrix C ∈ Mn−r−1,n (R) such that CCT = In−r−1 and
C × (µ1n + Xβ) = 0n−r−1 provides a solution (see section
6 in Supplementary Material for details). In a ridge regression
context, an explicit expression of û is needed for choosing the
optimal complexity. An explicit form forC is therefore necessary.

In the presence of covariates, a QR decomposition can
be used to obtain an explicit form for C (see section 5 in
Supplementary Material for details). In the special case of an
intercept without covariates, there is a convenient choice of
C. Since the eigenvector of ZZT associated with the final null
eigenvalue is constant, C = [U1, ...,Un−1]

T ∈ Mn−1,n (R)

is a contrast matrix adapted for our problem. Additionally, by
considering CZ instead of Z, we have CZ = D−nV

T →

CZZTCT = D−nD
T
−n with D−n the matrix D deprived of row n.

This choice of contrast matrix thus simplifies the GCV formula
and allows extremely fast computation.

2.1.4. A Second Solution Using 2 Data Sets
Dependency between individuals can be a problem when we use
the same data for the standardization (including the estimation
of potential covariate effects) and for the estimation of the
genetic effects. This can be overcome by partitioning our data.
Splitting our data into a standardization set and a training set,
we will first use the standardization set to estimate the mean
and the standard deviation of each variant, the intercept, and the
potential covariate effects. Those estimators will then be used to
standardize the training set on which GCV can then be applied.

This method has two main drawbacks. The first is that the
estimation of the non-penalized effects is done independently of
the estimation of the genetic effects, even though in practice we
do not expect covariates to be highly correlated with variants. The
other drawback is that it reduces the number of individuals for
the heritability estimation (which is very sensitive to the number
of individuals). This approach therefore requires a larger sample
than when using projection.

2.2. Prediction vs. Heritability in the
Context of Small Additive Effects
Ridge regression helps to highlight the link between heritability
and prediction accuracy. What is the relation between the
two concepts? Is prediction accuracy an increasing function
of heritability?

In a machine learning setting, we have training and testing
sets. The classical bias-variance trade-off formulation considers

the expectation of the loss over both the training set and the
test individual phenotype. It breaks down the prediction error
into three terms commonly called variance, bias, and irreducible
error. In this paper we do consider the genotypes of the training
set as fixed and the genotype of a test individual as random, and
somewhat abusively continue to employ the terms variance, bias,
and irreducible error:

Eytr ,yte ,zte

[
(yte − ŷte)

2
]
= Ezte

[
Eytr ,yte|zte

[
(yte − ŷte)

2
]]

= Ezte

[
var(yte|zte)+ var(ŷte|zte)

]
+

Ezte

[(
Eytr |zte

[
ŷte

]
− Eyte|zte [yte]

)2
]
.

where the index tr refers to the training set, while te refers to the
test set.

Assuming a training set genotype matrix Z ∈ Mn,p(R)
(without index tr to lighten notations) whose columns have zero

mean and unit variances, we denote Kλ =
(
ZTZ+ λIp

)−1
ZT .

Assuming the independence of the variants Ezte [zte] = 0p and
var(zte) = Ip, irreducible error, variance, and bias become:

Ezte

[
var(yte|zte)

]
= σ

2

Ezte

[
var(ŷte|zte)

]
= σ

2tr
(
KλK

T
λ

)

Ezte

[(
Eytr |zte

[
ŷte

]
− Eyte|zte [yte]

)2
]
= uT

(
KλZ− Ip

)2
u.

where u is the vector of the ridge parameters.
Since individuals are assumed to be unrelated, the covariance

matrix of the individuals is diagonal. The covariance matrix
of the variants is also diagonal, since variants are assumed
independent. Assuming scaled data, ZZT and ZTZ are the
empirical estimations of covariance matrices of respectively the
individuals and the variants (up to a p or n scaling factor). Two
separate situations can be distinguished according to the n/p
ratio. In the high-dimensional case where p > n, the matrix
ZZT estimates well the individuals’ covariance matrix up to a
factor p. Where n > p, on the other hand, ZTZ estimates well
the covariance matrix of variants up to a factor n. Eventually,
ZZT ≃ pIn when n < p and ZTZ ≃ nIp when n > p.

Assuming further that

• ∀i ∈ J1, nK var(yi) = 1, we then have σ
2 = 1− h2,

• heritability is equally distributed among normalized variants

i.e., ∀j ∈ J1, pK var(uj) = h2

p (which is indeed the mixed

model hypothesis),

• uTu ≃ p× h2

p and (Zu)T(Zu) ≃ nh2,

the expected prediction error can be stated more
simply, according to the n

p ratio (see section 8 in

Supplementary Material for details):

Eytr ,yte ,zte

[
(yte − ŷte)

2
]
≃






1− n
p (h

2)2, if p ≥ n

(1− h2)
1+ n

p h
2

1+h2( np−1)
, otherwise.

(11)
When considering the theoretical quadratic error with respect
to the log ratio of the number of individuals over the number
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FIGURE 2 | Theoretical Quadratic Error with respect to the log ratio of the

number of individuals over the number of variants in the training set. Each

curve corresponds to a given heritability (in the narrow sense). Note that the

total variance is assumed to be 1.

of variants in the training set (Figure 2), as expected we have a
decreasing function. This means that the larger the number of
individuals in the training sample, the smaller the error. We also
observe that the higher the heritability, the smaller the error. Both
of these things are intuitive, and as a consequence the error tends
toward the irreducible error when n becomes much larger than
p. What is more surprising is that the prediction error is close to
the maximum, whatever the heritability, when n is much smaller
than p. Paradoxically, even with the highest possible heritability,
if the number of variants is too large in relation to the number
of individuals, no prediction is possible. This can be explained
by the fact that the penalization plays a very important role in
that case and thus strongly increases the bias, while reducing the
variance. The squared bias and the variance with respect to the
log ratio of the number of individuals over the number of variants
in the training set are shown in Supplementary Figures 3, 4.
The irreducible error is only a function of heritability and is not
affected by the dimension of the training set.

Similarly, the prediction error can be computed on the
training set instead of on the test set. Using the same assumptions
as before, the expected prediction error on the training set can be
approximated by:

Eytr

[
1

n
(ytr − ŷtr)

T(ytr − ŷtr)

]

≃

{
(1− h2)2 if p > n,

1−2 n
n+λ

( p
n (1− h2)+ h2

)
+

(
n

n+λ

)2( p
n (1−h2)+h2

)
otherwise.

A graph similar to Figure 2 for this expected error can be found
in Supplementary Figure 5. Interestingly, when p > n, the error
on the training set does not depend on the n/p ratio. When
n becomes greater than p, it increases and tends toward the
irreducible error 1 − h2 when n ≫ p. As shown in Figure 2, the
error on the test set is always higher than the irreducible error
and thus higher than the error on the training set, which is a sign
of over-fitting. However, the difference between the error on the
test set and the error on the training set is a decreasing function
of the n/p ratio, which is linear when p > n and tends toward
zero when n ≫ p.

Another popular way of looking at the predictive accuracy is
to consider the squared correlation between yte and ŷte (Goddard,
2009; Daetwyler et al., 2010):

corr2(yte, ŷte) =
cov2(yte, ŷte)

var
[
yte

]
var

[
ŷte

] .

Although correlation and prediction error both provide
information about the prediction accuracy, correlation may
have an interpretation that is intuitive, but it does not take the
scale of the prediction into account. From a predictive point of
view, this is clearly a disadvantage. Considering yte, zte, and ytr
to be random, and using the same assumptions that were made
in relation to prediction error, the three terms of the squared
correlation become:

cov2(yte, ŷte) = (uTKλZtru)
2,

var
[
ŷte

]
= tr(KT

λ
Kλ × σ

2In)+ (Ztru)
TKT

λ
Kλ(Ztru),

var
[
yte

]
= 1.

Like in the case of prediction error, replacing ZZT orZTZ by their
expectations, the squared correlation simplifies to:

corr2(yte, ŷte) ≃

{ n
p (h

2)2 if n < p,
(h2)2

p
n (1−h2)+h2

otherwise.
(12)

When considering this theoretical squared correlation with
respect to the log ratio of the number of individuals over the
number of variants in the training set (Figure 3), we have,
as expected, an increasing function. Similarly, the higher the
heritability, the higher the squared correlation. We also observe
that when n ≫ p, the squared correlation tends toward the
simulated heritability. Conversely, when p≫ n, it is close to zero
whatever the heritability.

2.3. Simulations and Real Data
Since narrow-sense heritability is a quantity that relates to a
model, we will first illustrate our contributions via simulations
where the true model is known. We perform two different types
of simulation: fully synthetic simulations where both genotypes
and phenotypes are drawn from statistical distributions, and
semi-synthetic simulations where UK Biobank genotypes are
used to simulate phenotypes. We also illustrate our contributions
using height and body mass index (BMI) from the UK
Biobank dataset.
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FIGURE 3 | Theoretical squared correlation between phenotype and its

prediction with respect to the log ratio of the number of individuals over the

number of variants in the training set. Each curve corresponds to a given

heritability (in the narrow sense).

We first assess the performance of GCV for heritability
estimation and then look at the accuracy of the prediction when
the ratio of the number of individuals to the number of variants
varies in the training set.

2.3.1. UK Biobank Dataset
The present analyses were conducted under UK Biobank data
application number 45,408. The UK Biobank dataset consists
of ≃ 784 K autosomal SNPs describing ≃ 488 K individuals.
We applied relatively stringent quality control and minor allele
frequency filters to the dataset (callrate for individuals and
variants > 0.99; p-values of Hardy-Weinberg equilibrium test >

1e-7; Minor Allele Frequency > 0.01), leading to 473,054 and
417,106 remaining individuals and SNPs, respectively.

Two phenotypes were considered in our analyses: height
(standing) and BMI. In order to have a homogeneous population
for the analysis of these real phenotypes, we retained only
those individuals who had reported their ethnicity as white
British and whose Principal Component Analysis (PCA) results
obtained by UK Biobank were consistent with their self-declared
ethnicity. In addition, each time we subsampled individuals we
removed related individuals [one individual in all pairs with
a Genetic Relatedness Matrix (GRM) coefficient >0.025 was
removed], as in Yang et al. (2011b) in order to avoid confusion
between shared genetic factors and shared environmental factors.
Several covariates were also considered in the analysis of these
phenotypes: the sex, the year of birth, the recruitment center,

TABLE 1 | Table of the parameters sets of the simulations.

Parameters Levels

n/p Simulation: 1,000/10,000; 5,000/10,0000; 10,000/500,000

Data-based: 1,000/10,000; 5,000/10,0000; 10,000/417,106

fc 0.1; 0.5; 1

h2sim {0.1, ..., 0.9}

n/p: the ratio of the dimensions of the genotype matrix. fc: proportion of causal variants.
h2sim: simulated heritability.

the genotyping array, and the first 10 principal components
computed by UK Biobank.

2.3.2. Synthetic Genotype Data
The synthetic genotype matrices are simulated as in Golan et al.
(2014) and de Vlaming and Groenen (2015). This corresponds to
a scenario with independent loci or perfect linkage equilibrium.
To simulate synthetic genotypes for p variants, we first set a
vector of variant frequencies f ∈ Rp, with these frequencies
independently following a uniform distribution U ([0.05, 0.5]).
Individual genotypes are then drawn from binomial distributions
with proportions f , to form the genotype matrix M. A matrix of
standardized genotypes Z∗ can be obtained by standardizing M

with the true variant frequencies f .

2.3.3. Simulations to Assess Heritability Estimation

Using GCV
We consider both synthetic and real genetic data, and simulate
associated phenotypes.

In the two simulation scenarios we investigate the influence
on heritability estimation of the following three parameters: the
shape of the genotypematrix in the training set (the ratio between
n the number of individuals and p the number of variants), the
fraction of variants with causal effects fc, and the true heritability
h2sim. The tested levels of these quantities are shown in Table 1.

For each simulation scenario and for a given a set of
parameters (n, p, fc, h

2
sim), the simulation of the phenotype

starts with a matrix of standardized genotypes (either a synthetic
genotype matrix Z∗ standardized with the true allele frequencies,
as described in section 2.3.2, or a matrix of empirically
standardized genotypes Z obtained from UK Biobank data).
To create the vector of genotype effects u, p × fc causal
SNPs are randomly sampled and their effects are sampled
from a multivariate normal distribution with zero mean and a

covariance matrix τ Ip×fc (where τ =
h2sim
p×fc

), while the remaining

p×
(
1− fc

)
effects are set to 0. The vector of environmental effects

e is sampled from a multivariate normal distribution with zero
mean and a covariance matrix σ

2In, where σ
2 = 1 − h2sim. The

phenotypes are then generated as y = Z∗u + e and y = Zu + e,
for the fully synthetic scenario and the semi-synthetic scenario,
respectively. A standardization set of 1,000 individuals (that will
be used for the GCV approach based on two datasets) is also
generated for each scenario in the same way.

Applying GCV to large-scale matrices can be extremely time-
consuming, since it requires the computation of the GRM
associated with Z∗ or Z and the eigen decomposition of
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the GRM. For this reason we employed the same strategy
as de Vlaming and Groenen (2015) in order to speed up both
simulations and analyses by making it possible to test more than
one combination of simulation parameters. We simulated an
(nmax = 10, 000 × pmax = 500, 000) genotype matrix for the
training set in the fully synthetic scenario and used this simulated
matrix for all the 9 × 3 × 3 = 81 (h2sim × fc × n/p) parameter
combinations. Similarly, we sampled nmax = 10, 000 individuals
from the UK Biobank dataset to obtain an (nmax = 10, 000 ×

pmax = 417, 106) genotypematrix for the training set in the semi-
synthetic scenario. Smaller matrices were then created from a
subset of these two large matrices (note that for subsets of the real
genotypematrix we took variants in the original order to keep the
linkage disequilibrium structure). Consequently, computation of
the GRM and its eigen decomposition needed to be performed
only once for each n/p ratio considered. The fully synthetic and
the semi-synthetic scenarios were each replicated 30 times.

2.3.4. Simulations to Assess Prediction Accuracy
We performed fully synthetic simulations for different ratios n

p

in order to study the behavior of the mean prediction error and
the correlation between the phenotype and its prediction. We
considered a training set of size n = 1, 000, and a test set of
size nte = 5, 000. The maximum number of variants was set
to pmax = 50, 000 and the heritability to h2 = 0.6. We first
simulated a global allelic frequency vector f ∼ Upmax (0.05, 0.5)

and a global vector of genetic effects u ∼ N

(

pmax ,
h2

pmax
Ipmax

)
.

For each subset of variants of size p < pmax, we selected
a vector of genetic effects composed of the p first components

of u multiplied by a
√

pmax

p factor assuring a total variance of 1

and var(up) = h2

p Ip: u
p = (u1, ..., up) ×

√
pmax

p . The genotype

matrix Mte was then simulated and its normalized version Z∗
te

computed as described in section 2.3.2. The normalization used
the first p components of f . The noise vector ete ∼ N (0nte , (1 −
h2)Inte ) and a vector of phenotypes yte = Z∗

teu
p + ete were

eventually simulated.
We generated 300 training sets by simulating the normalized

genotype matrix, noise, and phenotype using the same process
as for the test set. Here, the training set index is denoted as k.
A prediction ŷte,k for the test set was made with each training

set using the ridge estimator of up obtained with λ = p 1−h2

h2
,

and the following empirical quantities were estimated: errp =

1
300

∑
k

1
nte

∥
∥
∥yte,k − ĝp

∥
∥
∥
2

2
, bias2p = 1

nte

∑
i∈J1,nteK

([
Zteu

p − ĝp

]

i

)2

and varp =
1
300

∑
k

1
nte

∥
∥
∥ŷte,k − ĝp

∥
∥
∥
2

2
, where ĝp =

(
1
300

∑
k∈J1,300K

[
ŷte,k

]

i

)

i∈J1,nteK
. The squared correlation between ŷte,k and yte,k

was also estimated.
We considered the following numbers of variants:

p ∈ {50, 000; 25, 000; 16, 667; 12, 500; 10, 000; 5, 000; 3, 333;

2, 500; 2, 000; 1, 667; 1, 429; 1, 250; 1, 111; 1, 000; 500;

136; 79; 56; 43; 35; 29; 25; 22; 20}.

TABLE 2 | Size (number of individuals) of training, standardization, and test sets

for assessing predictive power on real data.

Set Size

Training {1, 000;2, 000;5, 000;10, 000; 20, 000}

Standardization 1,000

Test 1,000

TABLE 3 | Number of repetitions for the evaluation of the predictive power on real

data.

Size of the training set 1,000 2,000 5,000 10,000 20,000

Number of repetitions 100 70 50 20 10

2.4. Prediction of Height and BMI Using UK
Biobank Data
To experiment on UK Biobank for assessing the prediction
accuracy, for each phenotype we considered three sets of
data: a training set for the purpose of learning genetic
effects, a standardization set for learning non-penalized effects
(covariates and intercept), and a test set for assessing predictive
power. Pre-treatment filters (as described in section 2.3.1)
were systematically applied on the training set. We computed
the estimation of genetic effects using the projection-based
approach to take into account non-penalized effects, where
the penalty parameter was obtained by GCV with the same
projection approach:

ûR = ZT
trC

T
tr

(
CtrZtrZ

T
trC

T
tr + λ̂GCVIn−r

)−1
Ctrytr .

We then estimated non-penalized effects (here X contains
the intercept):

β̂ =
(
XT
stdXstd

)−1
XT
std

(
ystd

)
. (13)

Finally, we applied these estimations on the test set:

ĝte = ZteûR,

f̂te = Xteβ̂ ,

ỹte = yte − f̂te,

in order to compute theMean Square Error = 1
nte

(ỹte− ĝte)
T(ỹte−

ĝte) between the phenotype residuals ỹte after removal of non-
penalized effects and ĝte.

This procedure was performed for different ratios n
p using

different sized subsets of individuals for the training set, while
keeping all the variants that passed pre-treatment filters (see
Table 2).

For each number n of individuals considered in the training
set, the sampling of these individuals was repeated several times,
as seen in Table 3, in order to account for the variance of the
estimated genetic effects due to sampling.
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3. RESULTS

3.1. Generalized Cross Validation for
Heritability Estimation
3.1.1. Simulation Results
For the two simulation scenarios we look at the difference
between the estimation of h2g by GCV and the simulated

heritability h2sim in different configurations of study size n/p, h2sim
and the fraction of causal variants fc. Similarly, we look at the
difference between the estimation by the classical mixed model
approach and the simulated heritability. In our simulations fc
was seen to have no influence, and so only the influence of the
remaining parameters is shown in Figure 4 and fc is fixed at 10%.
For full results, see Supplementary Figures 1, 2.

For the fully-simulated scenario, the two GCV approaches
give very similar results and appear to provide an unbiased
estimator of h2. They compare very well with the estimation of
heritability by ridge regression with a 10-fold CV. Moreover, the
variance of the GCV estimators does not appear higher than the
variance of 10-fold CV.

In the case of the semi-synthetic simulations, here too both
GCV approaches and the 10-fold CV provide a satisfactory
heritability estimation. Our choice of using GCV in place of
a classical CV approach for estimating heritability by ridge
regression is therefore validated.

For both simulation scenarios we also note that the classical
mixed model approach (using the AI-REML method in the
gaston R package) gives heritability estimations that are very
similar to those obtained using the GCV approaches. The value
of simulated heritability does not appear to have a strong effect
on the quality of the heritability estimation. On the other hand,
the ratio n/p seems to have a real impact on estimation variance,
with lower ratios leading to lower variances, which initially
might appear surprising. One possible explanation for this is
that in our simulations n increases as the ratio n/p decreases.
Visscher and Goddard (2015) showed that the variance of the
heritability is a decreasing function of n, which could explain the
observed behavior.

3.1.2. Illustration on UK Biobank
We now compare heritability estimations between the two
GCV approaches and the classical mixed model approach for
height and BMI, on a training set of 10,000 randomly sampled
individuals (the training set being of the same size as for the
simulated data). All three approaches take account of covariates
and the intercept. The AI-REML approach also uses a projection
matrix to deal with covariates. For the GCV approach based
on two datasets, a standardization set of 1,000 individuals is
also sampled, and for comparison purposes we have chosen to
apply this two-set strategy to the classical mixed model approach
as well.

Since the true heritability is of course unknown with real
data, the sampling of the training and standardization sets is
repeated 10 times in order to account for heritability estimation
variability. Note that the SNP quality control and MAF filters
were repeated at each training set sampling and applied to the
standardization set.

Figure 5 shows that for each phenotype the two GCV
approaches and the classical mixed model approach (AI-REML)
give similar estimations. There is relatively little estimation
variability, and any variability observed seems depend more
on the individuals sampled for the training set than on the
approach used.

3.2. Prediction vs. Heritability in the
Context of Small Additive Effects
3.2.1. Prediction From Synthetic Data
As expected, the mean of the test set error follows closely the
theoretical curve when the log n

p varies (Figure 6). When n >

p, the mean of the test set is close to the minimum possible
error, which means that the ridge regression provides a reliable
prediction on average.

Interestingly, if the mean error behaves as expected by our
approximation, the standard deviation of the error may be very
large. Figures 6A,B show the same mean error with different
error bars. Figure 6A plots the error bars corresponding to the
training set variation: the mean test set error is computed for
each training set and the error bars show one standard deviation
across the 300 training sets. Figure 6B plots the error bars
corresponding to the variation of the errors across the test set.

The error bars in Figure 6B are much larger than those in
Figure 6A, which shows that the variation in the prediction error
is mostly due to the test individual whose phenotype we wish
to predict, and depends little on the training set. This may be
explained by the fact that the environmental residual term can
be very large for some individuals. For these individuals the
phenotype will be predicted with a very large error even when
n≫ p, that is to say when the genetic term is correctly estimated,
irrespective of the training set.

The squared correlation between the phenotype and its
prediction, as a function of log n

p , is also in line with our

approximation (Figure 7). As expected, when n ≫ p, the
squared correlation tends toward the simulated heritability. We
compared our approximation with the approximation obtained
by Daetwyler et al. (2008) and observed that although Daetwyler’s
approximation is very similar to ours when p≫n, our simulation
results make Daetwyler’s approximation appear under-optimistic
when n ≫ p. Finally, we also compared our approximation with
that obtained by Rabier et al. (2016), which is the same as ours
when n > p. However, when p > n, Rabier’s approximation
appears over-optimistic.

3.2.2. Prediction From UK Biobank Data
Let us consider the proposed theoretical approximation of the
predictive power of ridge regression with respect to the n/p ratio
applied to the UK Biobank data, for height and BMI residuals
(after removal of covariate effects and intercept).

The two phenotypes differ considerably as regards heritability:
we estimate by the projection-based GCV approach that 73.33%
of height is “heritable” whereas only 33.91% of BMI is (on average
over the 10 training samples of 20,000 individuals).

These estimated values are close to those currently found
in the literature (Ge et al., 2017). It is important to note that
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FIGURE 4 | Distribution of (h2est − h2sim) for different parameter combinations with 30 replications. (A) Corresponds to data simulated under the “fully synthetic”

procedure, while (B) corresponds to the “semi-synthetic simulation” procedure. Each sub-panel corresponds to a different value of n/p. In both scenarios 10% of the

variants have causal effects (i.e., fc = 0.1). For each panel, the horizontal axis corresponds to the simulated heritability h2sim ∈ {0.1, ..., 0.9} and the vertical axis

corresponds to (h2est − h2sim). Heritability estimations are done with the random effects model using AI-REML and with ridge regression using three approaches for the

choice of λ: GCV with a projection correction, GCV with a two-dataset correction and a 10-fold cross-validation (CV 10f).
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FIGURE 5 | Heritability estimation of BMI and height using AI-REML and GCV, with the projection-based approach and with the two-set approach. We sub-sampled

the original UK Biobank dataset 10 times for replication. The cross corresponds to the mean and the error bar to the mean ± one standard deviation.

the heritability estimation is strongly dependent on the filters.
Variations of up to 20% were observed in the estimations when
the filtering procedure setup was slightly modified.

A major difference between UK Biobank data and our
simulations designed to check the proposed approximation lies
in the strong linkage disequilibrium present in the human
genome. Several papers have proposed using the effective number
of independent markers to make adjustments in the multiple
testing framework (Li et al., 2012), and we likewise propose
adjusting our prediction model by taking into account an
effective number of SNPs (pe). We estimate the effective n

pe
ratio for each training set and for each considered n value
using the observed mean square errors, the estimated heritability,
and the theoretical relation in the case of independent variants
Eytr ,yte ,zte

[
(yte − ŷte)

2
]

= 1 − n
p (h

2)2 when p > n. We

then use a simple linear regression to find the coefficient
between these estimated n

pe
ratios and the corresponding real

n
p ratios.

Table 4 shows different but close effective numbers of SNPs
for the two phenotypes.

We also consider normalizing the test set errors using the
mean square error of phenotype residuals (after removing non-
penalized effects). Using this error normalization and adjusting
the theoretical curve for an effective number of SNPs, we observe

a close fit between the estimated errors on the test set and their
theoretical values (Figure 8).

4. DISCUSSION

In this work we investigated an alternative computation of
genomic heritability based on ridge regression. We proposed a
fast, reliable way to estimate the optimal penalization parameter
of the ridge via Generalized Cross Validation adapted for high
dimension. The genomic heritability estimated from the GCV
gives results comparable to mixed model AIREML estimates. It
clearly demonstrates that a predictive criterion allows a reliable
choice of the penalization parameter and associated heritability,
even when the prediction accuracy of ridge regression is low.
Moreover, even though our approach does not formally consider
Linkage Disequilibrium, simulations showed that it still provides
reliable genomic heritability estimates in presence of realistic
Linkage Disequilibrium.

We also provided theoretical approximations of the ridge
regression prediction accuracy, in terms of both error and
correlation between the phenotype and its prediction on new
samples. These approximations perform well on synthetic data,
in both high and low dimensions. They rely on the assumption
that individuals and markers are independent in approximating
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FIGURE 6 | Mean Squared Error of the prediction on the test set with respect

to log( np ), using simulated data with h2 = 0.6. The curves correspond to the

theoretical link for h2 = 0.6. The black points correspond to the mean

expectation for each value of log( np ) over 300 repetitions. The error bars in

(A,B) correspond respectively to one standard deviation of the test set error

obtained using two different aggregation strategies. On the left (A), we

consider an aggregation strategy where each of the 300 training sets results in

a mean test set error, whereas on the right (B) each individual in the test set

results in an error averaged over all training sets.

the empirical covariance matrices. Our approximation of the
prediction accuracy in terms of correlation proposes a good
compromise between existing approximations. In particular, it

FIGURE 7 | Mean squared correlation between the phenotype and its

prediction on the test set with respect to log( np ), using simulated data with

h2 = 0.6. The salmon points correspond to the evaluation of the squared

correlation and the black points correspond to the mean expectation for each

value of log( np ) over 300 repetitions. Red dots correspond to training set

replications. The red plain curve corresponds to Daetwyler’s approximation for

h2 = 0.6, while the blue dashed curve corresponds to Rabier’s approximation

and the green dotted curve corresponds to ours.

TABLE 4 | Effective number of SNPs.

Phenotype p/pe

Height 5.01

BMI 3.48

exhibits similar performances to Daetwyler et al. (2008) when
p > n and to Rabier et al. (2016) when p < n.

Our theoretical approximation of the prediction error is also
consistent with the error observed on real genetic data when
p > n, after adjusting for the effective number of independent
markers. Unfortunately, due to computational issues, we were
unable to perform the analysis in the n ≃ p case with real
data. However, we observed that the prediction accuracy already
reaches almost 15% of the heritability of height when n/p ≃ 5%,
while De los Campos et al. (2013) suggested that its asymptotic
upper bound is of the order of 20% of the heritability because
of incomplete LD between causal loci and genotyped markers.
Interestingly, ridge regression is not affected by correlated
predictors, and consequently it is not affected by high LD between
markers. When LD is high, this has the effect of reducing the
degrees of freedom of the model (Dijkstra, 2014), which results in
an improved prediction accuracy in comparison with a problem
having the same number of independent predictors and the
same heritability.
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FIGURE 8 | Normalized Mean Squared Error on the test set for the prediction

of Height (A) and BMI (B) with respect to the log ratio of the number of

individuals over the number of markers in the training set. Salmon dots

correspond to training set replications, black dot to the mean of replications for

different ratio and we show one standard deviation (over the training sets) of

the mean test set error. The theoretical curves are fitted using the estimated

heritability and an effective number of markers.

Although our approximations and simulation results tend to
show that the prediction accuracy can reach the heritability value
when n≫ p, as already suggested by previous works (Daetwyler
et al., 2008; de Vlaming and Groenen, 2015; Rabier et al., 2016),
the large standard deviation of the prediction error that we
observed between simulated individuals suggests that disease

risk prediction from genetic data alone is not accurate at the
individual level, even for a relatively high heritability value in the
context of a small additive effect hypothesis.

In direct continuity of this work, it would be interesting to
investigate the behavior of prediction accuracy on real human
data where n ≃ p. This would enable us to determine whether
our approximations still hold in that case, and even in the case
where n > p (where we approximate the empirical covariance
matrix of the markers to be diagonal). It would show whether it
is possible for the prediction accuracy to exceed the upper bound
proposed by De los Campos et al. (2013). A further prospect
would be to consider a nonlinear model extension via kernel
ridge regression, which may improve the prediction (Morota and
Gianola, 2014).
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Genomic imprinting is an epigenetic phenomenon, which plays important roles in the
growth and development of animals and plants. Immortalized F2 (imF2) populations
generated by random cross between recombinant inbred (RI) or doubled haploid
(DH) lines have been proved to have significant advantages for mapping imprinted
quantitative trait loci (iQTLs), and statistical methods for this purpose have been
proposed. In this paper, we propose a special type of imF2 population (R-imF2) for
iQTL mapping, which is developed by random reciprocal cross between RI/DH lines.
We also propose two modified iQTL mapping methods: two-step point mapping (PM-2)
and two-step composite point mapping (CPM-2). Simulation studies indicated that: (i)
R-imF2 cannot improve the results of iQTL mapping, but the experimental design can
probably reduce the workload of population construction; (ii) PM-2 can increase the
precision of estimating the position and effects of a single iQTL; and (iii) CPM-2 can
precisely map not only iQTLs, but also non-imprinted QTLs. The modified experimental
design and statistical methods will facilitate and promote the study of iQTL mapping.

Keywords: genomic imprinting, imprinted quantitative trait loci, point mapping, composite point mapping,
immortalized F2 population

INTRODUCTION

Genomic imprinting is a phenomenon found in animal and plant, in which two alleles of a gene
show unequal expression depending on their parental origins. Genes involved in such phenomenon
are called imprinted genes. Many imprinted genes have been found in animal and human (Nolan
et al., 2001; Morison et al., 2005; Long and Cai, 2007; Babak et al., 2008; Hagan et al., 2009; Girardot
et al., 2013; Pembrey et al., 2014; Hur et al., 2016; Jiang et al., 2017; Mackay and Temple, 2017). In
plant, the first imprinted gene, which is involved in the coloration of maize kernel endosperm, was
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discovered as early as about half centuries ago (Kermicle, 1970).
Compared with those in animal, however, the imprinted genes
identified in plant so far are still very limited, of which most are
found fromArabidopsis, rice and maize (Danilevskaya et al., 2003;
Haun et al., 2007; Luo et al., 2009; Bauer and Fischer, 2011; Raissig
et al., 2011; Zhang et al., 2011; Ikeda, 2012; Pei et al., 2019).

It has been found that many quantitative traits are affected by
genomic imprinting (Spencer, 2002; Croteau and Croteau, 2004;
Sandovici et al., 2005; Santure and Spencer, 2011; Wang et al.,
2012). The quantitative trait loci (QTLs) showing imprinting
effect are called imprinted QTL (iQTL). A number of different
experimental designs and corresponding statistical methods have
been proposed for mapping iQTLs (Knott et al., 1998; de Koning
et al., 2000; Pratt et al., 2000; Strauch et al., 2000; Hanson et al.,
2001; Haghighi and Hodge, 2002; Shete and Amos, 2002; Shete
et al., 2003; Knapp and Strauch, 2004; Mantey et al., 2005; Cui
et al., 2006, 2007, 2008, Cui, 2007; Liu et al., 2007; Li et al.,
2008, 2012a; Hager et al., 2008; Yang et al., 2010; Zhou et al.,
2012; Karami et al., 2019). F2 (outbred or inbred) and BC1
populations are usually used for iQTL mapping (Haley et al.,
1994; de Koning et al., 2000; Cui et al., 2006; Li et al., 2012a),
but they have obvious shortcomings, such as relatively low power
in iQTL detection, low accuracy in estimating the positions
and effects of iQTLs, inability of permanent preservation of
the population, and unrepeatability. Besides, determination of
the parental origins of alleles is also difficult or problematic
under the F2 and BC1 designs (Wu et al., 2002; Cui et al.,
2006; Wolf et al., 2008; Lawson et al., 2013). In addition, the
imprinting effect cannot be separated from the maternal effect in
the BC1 design.

Wen and Wu (2014) proposed statistical methods for iQTL
mapping using an immortalized F2 (abbreviated as imF2)
population generated from random crosses between recombinant
inbred (RI) lines or doubled haploid (DH) lines. Compared with
the previous designs, the imF2 design has significant advantages
for iQTL mapping. First, the parental origins of marker alleles
in each imF2 line can be exactly known from the cross. Second,
analysis based on imF2 lines can reduce environmental error so
as to increase the statistical power of iQTL mapping. Third, a
very large imF2 population can be produced without increasing
the cost of molecular marker assay. However, there are also
shortcomings in the experimental design and mapping methods
proposed by Wen and Wu (2014). In the experimental design,
the work of constructing an imF2 population is laborious. In the
statistical methods, iQTL mapping is performed only by testing
the imprinting effect without making use of the information
of additive effect and dominance effect. This may reduce the
precision of iQTL mapping.

In this paper, to overcome the above shortcomings, we
propose a modified imF2 design and modified statistical methods
for iQTL mapping based on the work of Wen and Wu (2014).
We demonstrate by simulation studies that the modified methods
can map both iQTLs and non-imprinted QTLs (niQTLs)
simultaneously as well as improve the accuracies of estimation
of the positions and effects of iQTLs. In addition, the modified
design can potentially reduce the workload in the construction of
the imF2 population.

THEORY

Modification of Experimental Design
Suppose there is a DH or RI population derived from a cross
between two pure lines, P1 and P2. The experimental design
proposed by Wen and Wu (2014) for iQTL mapping is to develop
an imF2 population by randomly crossing DH or RI lines, namely,
Line i × Line j (i, j = 1, 2, 3, . . .; i 6= j). Consider a QTL
with two alleles, Q1 and Q2. The two alleles can form four
genotypes: Q1Q1, Q1Q2, Q2Q1, and Q2Q2, with one allele (say,
Q1) from the male gamete and the other (Q2) from the female
gamete in each genotype. Let a, d and i be the additive effect,
dominance effect and imprinting effect of the QTL, respectively.
Thus, in an imF2 population, the single-QTL model would be
(Wen and Wu, 2014):

yj = µ+ axj + dzj + itj + εj (1)

where yj is the trait value of the jth combination (or hybrid line); µ
is the population mean; xj, zj and tj are dummy variables taking
values depending on the QTL genotype in the jth combination
(Table 1); and εj is residual error following a normal distribution
N(0, σ 2).

In the above design, the cross in each combination is
“unidirectional,” namely, one line is used as female parent and
the other as male parent. However, there can be an alternative
genetic mating design, in which reciprocal crosses are performed
for every combination, namely, Line i × Line j (positive cross,
PC) and Line j × Line i (negative cross, NC; i, j = 1, 2, 3, . . .;
i< j). This modified experimental design generates a special imF2
population. We call it reciprocal-cross imF2 (R-imF2) population.
For distinction, we shall call the usual imF2 population as
unidirectional-cross imF2 (U-imF2) population. Genetically, Eq.
(1) is still applicable to R-imF2. Therefore, the iQTL mapping
methods for U-imF2 are also applicable to R-imF2.

Modification of Point Mapping Method
Suppose the parental DH or RI population has been genotyped
and therefore a genetic map has been constructed. Thus, the
genotypes of imF2 lines can be deduced from the parental DH
or RI lines and the genetic map can be used for iQTL mapping.
Suppose the genetic map is of ultrahigh density so that the
markers can well represent the whole genome. Thus, iQTLs can
be mapped by testing every marker throughout the genome. We
call this approach point mapping (PM; Wen and Wu, 2014).

Suppose the size (total number of hybrid lines) of the imF2
population is 2n (for R-imF2 population, there are n PC and n
NC hybrid lines, respectively). Let RSS0, RSS1 and RSS2 be the

TABLE 1 | Values of dummy variables indicating the QTL genotype in Eq. (1).

QTL genotype (♀/♂) xj zj tj

Q1/Q1 1 0 0

Q1/Q2 0 1 1

Q2/Q1 0 1 −1

Q2/Q2 −1 0 0
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minimum residual sum of squares calculated based on Eq. (1)
under the hypotheses H0: a = d = i = 0, H1: i = 0 but not a = d = 0,
and H2: not a = d = i = 0, respectively. Thus, two approximate
log-likelihood ratio tests can be performed as below:

LOD1 = n
[
log10 (RSS1)− log10 (RSS2)

]
(2)

and
LOD2 = n

[
log10 (RSS0)− log10 (RSS2)

]
(3)

The PM method proposed by Wen and Wu (2014) maps iQTLs
by checking the imprinting effect of every marker in the genome
using Eq. (2). The LOD1 significance threshold is estimated
by permutation tests (Churchill and Doerge, 1994). A genomic
region covered by a LOD1 peak exceeding the threshold is
thought to harbor an iQTL and the highest point of the peak is the
most probable position of the iQTL. Obviously, this is a one-step
method (denoted as PM-1), in which an iQTL is mapped based
on its imprinting effect only.

The modified PM method proposed here is a two-step method
(denoted as PM-2). The first step is QTL mapping, namely,
to map QTLs (including imprinted and non-imprinted) by
testing every marker in the genome using Eq. (3). Similarly, the
LOD2 significance threshold used in this step can be estimated
by permutation tests. The second step is iQTL identification,
namely, to identify iQTLs among the mapped QTLs by checking
the imprinting effect of each QTL using Eq. (2). A QTL is taken
as an iQTL if its imprinting effect is significant. Otherwise, it is
taken as a usual niQTL. The LOD1 significance threshold used in
the second step can also be estimated by permutation tests, but
the tests are performed only on the mapped QTLs rather than on
every marker in the genome.

Modification of Composite Point
Mapping Method
The PM method can be extended to composite point mapping
(CPM) by adding some markers as cofactors into Eq. (1), namely
(Wen and Wu, 2014):

yj = µ+ axj + dzj + itj +
m1∑
k1=1

a∗k1
x∗k1j
+

m2∑
k2=1

d∗k2
z∗k2j
+

m3∑
k3=1

i∗k3
t∗k3j
+ εj (4)

where m1, m2, and m3, a∗k1
, d∗k2

, and i∗k3
, and x∗k1j

, z∗k2j
, and t∗k3j

are the numbers, effects and corresponding dummy variables of
additive, dominance and imprinting cofactors, respectively; other
symbols are the same as those in Eq. (1). Cofactors can be selected
by stepwise regression. Note that the three effects of a marker are
orthogonal or independent to each other, among which only the
significant ones are selected by the stepwise regression. Therefore,
the markers selected as cofactors based on different effects can
be different (Zeng, 1994). The CPM method proposed by Wen
and Wu (2014) is a one-step method, corresponding to PM-
1. Similarly, there can be an alternative two-step CPM method
(CPM-2). CPM-1 and CPM-2 have a similar procedure to that
of PM-1 and PM-2, respectively. The only difference of CPM

from PM is that the RSS0, RSS1 and RSS2 in Eqs. (2 and 3) are
calculated based on Eq. (4) rather than on Eq. (1) under the
corresponding hypotheses (H0, H1, and H2).

Simulation Studies
To examine the feasibility and efficiency of the modified imF2
design (R-imF2) and the modified statistical methods (PM-
2 and CPM-2) for iQTL mapping in comparison with the
previous design (U-imF2) and methods (PM-1 and CPM-1),
two simulation studies were conducted. The first study was to
compare the performances of R-imF2 and U-imF2, and of PM-1
and PM-2 in the mapping of a single iQTL; the second study was
to compare the performances of CPM-1 and CPM-2 as well as
PM-1 and PM-2 in the mapping of multiple iQTLs. The programs
for PM and CPM were written in Visual Basic 6.01.

Simulation Study I
In this simulation study, we assumed that an iQTL was located at
the middle of a chromosome, which was 100 cM in length and had
one marker every cM. The iQTL segregated in a DH population of
100 lines, from which a U-imF2 or R-imF2 population comprising
800 hybrid lines was generated. The imprinting effect of the
iQTL explained 2% of the phenotypic variance in the U-imF2
or R-imF2 population. Six different types of iQTL in terms of
the effects (a, d, and i) were investigated, including the full-
effect type, in which all sorts of effect exist, and five partial-effect
types, in which either additive effect or dominance effect, or
both do not exist (Table 2; Cheverud et al., 2008). The simulated
data were analyzed with PM-1 and PM-2, respectively. Each
case was simulated for 500 times. LOD thresholds for PM-1 and
PM-2 at the overall significance level of 0.05 were estimated by
simulation under the null hypothesis with 5,000 replicates. The
results (Table 2) showed:

(i) When other conditions (iQTL type and mapping method)
were fixed, the results (means and standard deviations
of estimates and statistical powers) obtained under the
two designs were all very similar, suggesting that the two
designs are basically equivalent for iQTL mapping.

(ii) Except in the case of type DIB, which had no additive
and dominance effects, the power of QTL detection in
PM-2 (step 1) was always higher than the power of iQTL
detection in PM-1, and the difference was especially large
in the cases of type FULL, PEP and PEM. However, the
power of iQTL detection in PM-2 (step 2) was always
lower than that in PM-1, and the difference was especially
large in the case of type DIB.

(iii) The mean estimates of iQTL position obtained by PM-1
and PM-2 were very close to the real value in all the cases,
suggesting that a single iQTL can be unbiasedly mapped
by both methods. However, the standard deviation of
iQTL position obtained by PM-2 was always significantly
smaller than that obtained by PM-1 except in the case of
type DIB. Even for type DIB, the former was still a little

1The software package of our methods is available by contacting us through email.
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TABLE 2 | Simulation results of point mapping of a single iQTL.

Typea Design Method Pos. (cM)b a d i Power (%)c

FULL U-imF2 PM-1 49.65 ± 9.01 1.80 ± 0.60 1.60 ± 0.86 2.22 ± 0.52 92.2

(0.05) PM-2 49.91 ± 2.86 2.04 ± 0.51 2.10 ± 0.74 2.15 ± 0.41 86.6 (99.6)

R-imF2 PM-1 50.27 ± 7.71 1.80 ± 0.57 1.66 ± 0.81 2.15 ± 0.48 92.8

PM-2 49.96 ± 3.25 1.99 ± 0.51 2.00 ± 0.76 2.11 ± 0.40 88.2 (99.8)

Real value 50 2 2 2

DIPOD U-imF2 PM-1 49.98 ± 7.32 −0.03 ± 0.53 1.57 ± 0.79 2.21 ± 0.41 90.8

(0.03) PM-2 49.90 ± 3.49 −0.03 ± 0.57 2.01 ± 0.71 2.17 ± 0.42 82.6 (95.0)

R-imF2 PM-1 49.88 ± 7.03 0.01 ± 0.53 1.70 ± 0.81 2.16 ± 0.43 91.8

PM-2 49.76 ± 4.40 −0.01 ± 0.56 2.09 ± 0.76 2.14 ± 0.40 85.8 (92.2)

Real value 50 0 2 2

DIPUD U-imF2 PM-1 49.86 ± 6.42 −0.04 ± 0.51 1.68 ± 0.81 −2.21 ± 0.50 89.8

(0.03) PM-2 49.58 ± 3.79 −0.04 ± 0.56 2.04 ± 0.75 −2.21 ± 0.43 82.4 (92.8)

R-imF2 PM-1 50.02 ± 7.10 0.03 ± 0.48 1.66 ± 0.82 −2.19 ± 0.43 91.6

PM-2 50.44 ± 5.15 0.04 ± 0.53 1.99 ± 0.79 −2.17 ± 0.40 87.4 (93.0)

Real value 50 0 2 −2

PEP U-imF2 PM-1 50.43 ± 9.80 1.77 ± 0.57 −0.02 ± 0.72 2.22 ± 0.46 91.6

(0.04) PM-2 50.02 ± 4.46 2.03 ± 0.53 −0.01 ± 0.81 2.17 ± 0.43 86.4 (99.0)

R-imF2 PM-1 50.57 ± 7.43 1.83 ± 0.58 0.01 ± 0.72 2.21 ± 0.41 92.4

PM-2 50.01 ± 4.43 2.02 ± 0.54 0.02 ± 0.82 2.16 ± 0.43 88.8 (97.8)

Real value 50 2 0 2

PEM U-imF2 PM-1 49.69 ± 8.61 1.79 ± 0.54 −0.06 ± 0.74 −2.23 ± 0.40 90.2

(0.04) PM-2 49.90 ± 5.17 2.00 ± 0.53 −0.05 ± 0.82 −2.16 ± 0.43 87.8 (99.2)

R-imF2 PM-1 49.69 ± 7.45 1.79 ± 0.56 −0.03 ± 0.71 −2.18 ± 0.44 91.2

PM-2 49.94 ± 4.76 2.02 ± 0.54 −0.03 ± 0.81 −2.13 ± 0.42 89.0 (98.6)

Real value 50 2 0 −2

DIB U-imF2 PM-1 50.07 ± 7.87 0.01 ± 0.50 0.07 ± 0.70 2.23 ± 0.45 89.0

(0.02) PM-2 50.05 ± 7.32 0.01 ± 0.59 0.05 ± 0.87 2.33 ± 0.38 71.0 (76.4)

R-imF2 PM-1 49.61 ± 8.22 −0.02 ± 0.51 0.02 ± 0.70 2.17 ± 0.45 89.2

PM-2 49.70 ± 7.42 −0.02 ± 0.59 0.00 ± 0.91 2.27 ± 0.43 69.6 (71.0)

Real value 50 0 0 2

aFULL, full-effect type (a = d = i); DIPOD, dominance imprinting, polar, over dominance (a = 0∩ d = i); DIPUD, dominance imprinting, polar, under dominance (a =
0∩ d = −i); PEP, parental expression, paternal (a = i∩ d = 0); PEM, parental expression, maternal (a = −i∩ d = 0); DIB, dominance imprinting, bipolar (a = 0∩ d = 0).
The data in parenthesis are the total proportion of phenotypic variance explained by the iQTL (the proportion of phenotypic variance explained by the imprinting effect of
the iQTL is 0.02 in each type). bThe estimates of position and effects are shown as “mean ± standard deviation.” cThe powers were estimated based on 500 times of
simulation. The data in parenthesis are the power of QTL detection in PM-2 (step 1). The LOD thresholds for PM-1, step 1 of PM-2, and step 2 of PM-2 were 1.97, 3.25,
and 1.79 in U-imF2 and 1.97, 3.36, and 1.80 in R-imF2, respectively.

smaller than the latter. This suggests that PM-2 is more
precise than PM-1 for iQTL mapping in general.

(iv) The estimation results of imprinting effect obtained by
PM-1 and PM-2 were similar in all the cases. Noticeably,
the means were always a little larger than the real value,
suggesting that both methods may slightly overestimate
the imprinting effect. For the additive and dominance
effects, the means obtained by PM-2 were very close to
the real values, suggesting that the estimation is unbiased;
but the means obtained by PM-1 were always obviously
smaller than the real values, suggesting that PM-1 may
underestimate the additive and dominance effects. These
results suggest that PM-2 is better than PM-1 for
estimating the additive and dominance effects of iQTL.

Simulation Study II
In this simulation study, we assumed that a species had three pairs
of chromosomes, each of which was 150 cM in length and had

one marker every cM. There were seven QTLs in the genome,
including three iQTLs on chromosome 1, one iQTLs and one
niQTL on chromosome 2, and two iQTLs on chromosome 3
(Table 3). An R-imF2 population comprising 800 hybrid lines
was generated from a DH population of 100 lines. Each QTL
accounted for ∼7% of the phenotypic variance in the R-imF2
population. The simulated data were analyzed with PM-1, PM-
2, CPM-1, and CPM-2, respectively. Cofactors for CPM-1 and
CPM-2 were selected by stepwise regression at the significance
level of 0.05. LOD thresholds at the overall significance level of
0.05 were estimated by permutation test with 1,000 replicates.
The results (Figure 1 and Table 3) showed:

(i) All of the iQTLs were precisely mapped by both CPM-1
and CPM-2, and the estimates of iQTL positions obtained
by the two methods were almost completely the same
(with only a slight difference at Q1-3). PM-1 and PM-
2 also precisely mapped some of the iQTLs. These two
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TABLE 3 | Simulation results of mapping multiple iQTLs using PM-1, PM-2, CPM-1, and CPM-2.

Chr. QTLa Type Method Pos. (cM)b ab db ib

1 Q1-1 PEP PM-1 17 1.23 0.28 0.93

(7.06, 3.53) PM-2 17 1.23 0.28 0.93

CPM-1 17 0.76 0.13 0.90

CPM-2 17 0.76 0.13 0.90

Real value 17 0.84 0 0.84

Q1-2 DIPUD PM-1 (62) (0.24) (1.07) (−0.85)

(7.06, 4.70) PM-2 (62) (0.24) (1.07) (−0.85)

CPM-1 62 −0.09 086 −1.01

CPM-2 62 −0.09 0.86 −1.01

Real value 62 0 0.97 −0.97

Q1-3 PEM PM-1 102 0.86 0.08 −1.29

(7.06, 3.53) PM-2 102 0.86 0.08 −1.29

CPM-1 102 0.77 0.02 −0.89

CPM-2 103 0.79 0.03 −0.86

Real value 103 0.84 0 −0.84

2 Q2-1 Non-imprinted PM−1 ns ns ns ns

(7.06, 0) PM-2 25 1.42 1.30 0.37

CPM-1 ns ns ns ns

CPM-2 25 1.03 1.17 0.03

Real value 25 0.97 0.97 0

Q2-2 DIPOD PM-1 70 0.38 0.90 0.96

(7.06, 4.70) PM-2 70 0.38 0.90 0.96

CPM-1 70 −0.01 0.89 0.94

CPM-2 70 −0.01 0.89 0.94

Real value 70 0 0.97 0.97

3 Q3-1 DIB PM-1 45 0.46 0.30 1.56

(6.96, 6.96) PM-2 (45) (0.46) (0.30) (1.56)

CPM-1 45 −0.08 0.08 1.29

CPM-2 45 −0.08 0.08 1.29

Real value 45 0 0 1.18

Q3-2 FULL PM-1 90 1.15 0.97 1.48

(7.03, 2.81) PM-2 90 1.15 0.97 1.48

CPM-1 90 0.83 0.79 0.81

CPM-2 90 0.83 0.79 0.81

Real value 90 0.75 0.75 0.75

aThe data in parenthesis are the percentages of phenotypic variance explained by the QTL and its imprinting effect, respectively. bThe estimates in parenthesis were
obtained based on unremarkable or unclear LOD peaks. ns, not significant. The LOD thresholds for PM-1, step 1 of PM-2, step 2 of PM-2, CPM-1, step 1 of CPM-2,
and step 2 of CPM-2 were 2.42, 3.82, 2.37, 2.85, 4.15, and 2.79, respectively.

methods obtained exactly the same estimates of iQTL
positions. However, the LOD peaks of PM-1 and PM-2
were broad. In addition, there were many small peaks,
which may make it difficult to identify the peaks of true
iQTLs (such as the peaks of Q1-2 in PM-1 and PM-2,
and the peak of Q3-1 in PM-2) and result in ghost or
false iQTLs (such as the peak on the left of Q2-1 and that
between Q2-1 and Q2-2 in PM-1, and the peaks between
Q1-1 and Q1-2, between Q2-1 and Q2-2, and between
Q3-1 and Q3-1 in PM-2).

(ii) Corresponding to the estimation of iQTL positions, the
estimates of iQTL effects were also completely the same
between PM-1 and PM-2 and almost completely the same
between CPM-1 and CPM-2, respectively. In most of the
cases, the estimates of effects obtained by CPM-1 and

CPM-2 were closer to the real values than those obtained
by PM-1 and PM-2.

(iii) The LOD peaks of PM-2 were always higher than those
of PM-1. This is consistent with the results of simulation
study I. For the same reason, the LOD peaks of CPM-2
were higher than those of CPM-1 except for the DIB-type
iQTL (Q3-1). In addition, as expected, the niQTL (Q2-1)
was mapped only by PM-2 and CPM-2, respectively.

DISCUSSION

The advantages of iQTL mapping based on imF2 populations
have been demonstrated before (Wen and Wu, 2014). R-imF2 is a
special type of imF2 population. Although the simulation study
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FIGURE 1 | Results of QTL scanning by PM methods (upper) and CPM methods (lower) in an assumed genome consisting of three chromosomes. The horizontal
lines indicate LOD thresholds at the overall significance level of 0.05. The filled and blank triangles indicate the positions of iQTL and niQTL, respectively.

results suggest that R-imF2 does not apparently improve the
result of iQTL mapping in comparison with U-imF2 (Table 2),
it is expected to be advantageous for experimental operation.
For each cross combination, only one hybrid line is produced
in U-imF2, while two hybrid lines are produced in R-imF2.
Therefore, R-imF2 only needs half of the number of combinations
used in U-imF2. This makes the cross work more convenient and
may, to some extent, alleviate the workload of developing the
imF2 population.

According to the simulation study results, PM-2 can estimate
the position and the additive and dominance effects of an iQTL
more precisely than PM-1 (Table 2). This is understandable. PM-
1 estimates the position of an iQTL based on its imprinting effect
only, while PM-2 estimates the position of an iQTL based on not
only its imprinting effect, but also its additive and dominance
effects. Obviously, the latter would have a higher statistical power
as long as the additive and dominance effects exist (Table 2). This
would surely increase the estimation precision of iQTL position
and therefore increase the estimation precision of iQTL effects.

Although PM-2 can noticeably improve the estimation of
iQTL position and effects, the power of detecting iQTL in PM-
2 is always lower than that in PM-1 (Table 2). This means that
there is a cost of losing power for gaining precision in PM-2.
The reason may be that an iQTL detected by PM-1 is at the
position, where the imprinting effect has the highest significance,
while the iQTL position estimated by PM-2 may not be at
the point, where the imprinting effect is the most significant.
Nevertheless, the power difference of iQTL detection between
PM-1 and PM-2 is not large except in the case of type DIB
(Table 2). Therefore, the improvement of estimation precision
achieved by PM-2 is cost worthy.

Although the PM methods behave well in the mapping of
a single iQTL, they are not ideal for multiple iQTL mapping

(Figure 1). In practice, therefore, it is more appropriate to
use the CPM methods. PM-2 demonstrates the merit of
two-step analysis. CPM-2 also exhibits the merit of higher
LOD score in the identification of QTL position (Figure 1).
However, the LOD peaks obtained by CPM-1 and CPM-2
usually have the same width for the same iQTL (Figure 1). This
suggests that the two methods have similar resolution in iQTL
mapping. Therefore, the higher LOD score of CPM-2 might
have little help for increasing the precision of iQTL mapping,
probably due to the role of cofactors. Nevertheless, CPM-2
still has an advantage over CPM-1, namely, it can map both
iQTLs and niQTLs.

Considering that the basic principle and conclusions of iQTL
mapping may not change with the density of markers (Wen
and Wu, 2014), we did not consider in this paper the situation
of iQTL mapping based on conventional low-density maps.
The methods described above can be directly applied to the
conventional map as long as the values of the dummy variables
at the position to be tested in Eqs. (1 and 4) are replaced with
the expected values calculated according to the flanking markers
(Wen and Wu, 2014).

Power is the most frequently used index for evaluating
the efficiency of a QTL mapping method, which can
reflect the probability of type II error. Besides, false
discovery rate (FDR) may be also an important index
for the evaluation because it can reflect the probability
of type I error (Li et al., 2012b). A good QTL mapping
method should have higher power but lower FDR.
Similar to the power, the FDR in QTL mapping can
also be estimated by computer simulation (Li et al.,
2012b). In the simulation study I of this study, one
QTL was set at the center of a chromosome of 50 cM
in length in each case. Since the QTL really existed,
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a single QTL detected on the chromosome could be always
regarded as true, although the estimated QTL position
was very imprecise (far from the real position) sometimes.
Certainly, if there were two or more QTLs detected on
the chromosome simultaneously, the additional QTL should
be false. However, such situations did not occur in the
simulations. Therefore, the FDR was always zero in our
simulation study. In other words, the conditions assumed
in our simulation study avoided the occurrence of false
discovery. This was beneficial to the comparative study
based on the power.

In this study, we only consider the iQTL mapping
based on one-environment experiment. However, the
genetic model can be easily extended to adapt the data
of multi-environment experiment, from which the QTL-
by-environment interaction can be analyzed using suitable
statistical methods such as the mixed linear model approach,
which has been used for mapping QTLs with the digenic
epistasis and QTL-by-environment interaction as well as
additive and dominance effects based on imF2 population
(Gao and Zhu, 2007).
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How Well Can Multivariate and
Univariate GWAS Distinguish
Between True and Spurious
Pleiotropy?
Samuel B. Fernandes*, Kevin S. Zhang, Tiffany M. Jamann and Alexander E. Lipka*

Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon

called pleiotropy, is facilitated by the increased availability of high-throughput genotypic

and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of

multivariate and univariate genome-wide association study (GWAS) models to distinguish

between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs

to be evaluated. Therefore, we used publicly available maize and soybean genotypic

data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait

nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees

of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that

multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic

QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS

whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results

suggest that multivariate and univariate GWAS should both be used to infer whether or

not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we

recommend that future studies use a combination of multivariate and univariate GWAS

models, as both models could be useful for identifying and narrowing down candidate

loci with potential pleiotropic effects for downstream biological experiments.

Keywords: Simulation, multi-trait, Unified Mixed-Model, QTN, maize, soybean, LD

1. INTRODUCTION

The number of traits available from state-of-the-art phenotyping techniques typically exceeds the
number of genes in many species’ genomes. For instance, the human genome contains over 20, 000
genes (Wagner and Zhang, 2011), but the Human Metabolome Database (Wishart et al., 2007)
alone has collected more than 114, 000 metabolite traits. A direct consequence is that many genes
likely control more than one of these traits, a phenomenon known as pleiotropy (Visscher and
Yang, 2016). The identification and characterization of this phenomenon has been the subject of
extensive research in the 100+ years following the first attributed use of the term “pleiotropy” in
Platt (1910) Stearns (2010). Examples of important genes with pleiotropic effects in plant science
include Lg1 and its contribution to inflorescence and leaf traits in maize (Foster et al., 2004; Lewis
et al., 2014) and multiple disease resistance attributed to GH3-2 in rice (Fu et al., 2011) and Lr67 in
wheat (Moore et al., 2015).With the recent acquisition of high-throughput phenotype and genotype
data, it is now possible to directly identify pleiotropic causal mutations (Wagner and Zhang, 2011).
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The abundance of such high-throughput data in conjunction
with a plethora of tools available for quantifying genotype-to-
phenotype associations (Marchini et al., 2007; Purcell et al.,
2007; Lipka et al., 2012; Zhou and Stephens, 2014) is providing
increasing evidence for pleiotropic genes involved in evolution
(Smith, 2016; Auge et al., 2019), disease resistance (Wisser et al.,
2011; Lopez-Zuniga et al., 2019; Qiu et al., 2020), yield (Ward
et al., 2019), and many other traits (Jiang et al., 2019; Rice et al.,
2020). These analyses have also led to opposing views for (Boyle
et al., 2017) and against (Wray et al., 2018) the ubiquitousness
of pleiotropy in complex trait variation, particularly in the form
of the omnigenic model. This model assumes that the same set of
small-effect regulatory genes explain the vast majority of complex
disease resistance traits expressed in a disease-relevant cell (Boyle
et al., 2017).

One of the most commonly used approaches for quantifying
genotype-to-phenotype relationships is the genome-wide
association study (GWAS), which has been used to investigate
pleiotropy (Wisser et al., 2011; Schaid et al., 2016; Rice et al.,
2020). However, a significant drawback of a GWAS is that
most of the markers available in typical high-throughput
genotypic data are not causal. Instead, they are in imperfect
linkage disequilibrium (LD) with the causal mutations of a
given trait. This LD obfuscates the ability to distinguish a single
pleiotropic causal mutation underlying multiple traits from
multiple non-pleiotropic causal mutations in LD with each other
(Gianola et al., 2015). Furthermore, it would only be possible
to differentiate between a set of multiple non-pleiotropic causal
mutations and one pleiotropic causal mutation if the former
were in imperfect LD (Kemper et al., 2018). The scenario of
tightly-linked non-pleiotropic causal mutations being mistaken
for one pleiotropic causal mutation is known as spurious
pleiotropy (Solovieff et al., 2013; van Rheenen et al., 2019). In
addition to hindering the characterization of biological processes
underlying trait variability, the presence of spurious pleiotropy in
GWAS results could have serious negative downstream breeding
ramifications (Chen and Lübberstedt, 2010). For instance, if
two separate causal mutations in LD with antagonistic effects
each control one of two correlated traits, breeders could allocate
resources toward increasing population size to find individuals
with recombination between these causal mutations (Schulthess
et al., 2017). However, if a set of GWAS results are misinterpreted
as suggesting that one pleiotropic causal mutation is present (i.e.,
the scenario of spurious pleiotropy is realized), then such efforts
to increase the population size may never be undertaken.

Many studies use the term cross-phenotype to refer to
markers with strong statistical associations with multiple traits
(Tyler et al., 2016). Several univariate and multivariate GWAS
approaches have been implemented to detect cross-phenotype
associations (Zhou and Stephens, 2014; Cichonska et al., 2016;
Joo et al., 2016), with multi-trait models shown to be optimum
under many circumstances (Yang and Wang, 2012; Porter and
O’Reilly, 2017; Melo et al., 2019; Pitchers et al., 2019; Rice et al.,
2020). Although there is great value in detecting cross-phenotype
associations, there is still a critical need to distinguish whether
the underlying causal mutation(s) are pleiotropic or are non-
pleiotropic but in strong LD. We hypothesized that one of the

major reasons underlying the difficulty in distinguishing between
these two scenarios is that the most widely-used univariate and
multivariate GWAS models are insufficient for making such
a distinction. Therefore, we used publicly available maize and
soybean genotypic data to simulate pairs of correlated traits that
were either (i) controlled by non-pleiotropic quantitative trait
nucleotides (QTNs) on separate chromosomes, (ii) controlled
by non-pleiotropic QTNs in various degrees of LD with each
other, or (iii) controlled by a single pleiotropic QTN. We then
assessed the ability of state-of-the-art univariate and multivariate
GWAS models to identify these QTNs. We predicted that as the
amount of LD between the non-pleiotropic QTNs increased, the
multivariate GWAS results would more closely resemble those
from traits controlled by a single pleiotropic QTN.

2. MATERIALS AND METHODS

2.1. Maize and Soybean Data
In this study, we used publicly available molecular marker
data from two crop species, specifically maize (Zea mays L.)
and soybean (Glycine max L.). These two species were selected
because of their contrasting rates of LD decay; while soybean
tends to have long-range LD (Hyten et al., 2007; Zhang
et al., 2015), more rapid LD decay is typically observed in
maize (Gore et al., 2009; Romay et al., 2013). The maize data
were comprised of 2, 815 accessions from the North Central
Regional Plant Introduction Station (NCRPIS) panel (Romay
et al., 2013), while the soybean data consisted of a random
sample of 2, 815 accessions in maturity groups III and IV
from SoyBase (Song et al., 2015). To investigate the impact of
sample size on the results, for each data set, we considered
the full set of S1 = 2, 815 accessions, a subsample of S2 =

1, 000 accessions, and a subsample of S3 = 500 individuals.
The accessions of S3 were randomly sampled from S2, whereas
the accessions of S2 were randomly sampled from S1, i.e.,
S3 ⊂ S2 ⊂ S1. All subsamples were obtained using the
(vcftools --max-indv) command in vcftools (Danecek et al., 2011).
Details on how to access the datasets are provided in the
Supplementary Material.

The maize data included 681, 257 single-nucleotide
polymorphisms (SNPs) obtained through genotyping-by-
sequencing (Romay et al., 2013), available at http://cbsusrv04.
tc.cornell.edu/users/panzea/download.aspx?filegroupid=6. The
soybean data were downloaded from SoyBase (Song et al.,
2015) at http://soybase.org/snps/download.php, and consisted
of 42, 291 SNPs obtained with the SoySNP50K (Song et al.,
2013). The same filters were applied to both datasets using
vcftools. These filters included removing all SNPs with more
than 5% missing data. Additionally, Plink was used to conduct
LD pruning, where the LD parameter was set to r2 = 0.9
(--indep-pairwise 100 10 0.9) (Purcell et al., 2007). Thus, only
markers that were in an LD of r2 ≥ 0.9 were filtered out. Only
SNPs from chromosomal DNA that passed the minor allele
count threshold of 5 in S3 were included in this simulation study.
Consequently, the final data sets used for simulation were 44, 930
SNPs for maize, and 18, 364 for soybean.
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FIGURE 1 | Flow chart with the methods used to simulate, conduct a

genome-wide association study (GWAS), and detect quantitative trait

nucleotides (QTNs) in multiple traits.

2.2. Trait Simulation
The flow chart presented in Figure 1 summarizes the main
aspects of the simulation study we conducted. In brief, we
simulated pairs of traits controlled by either pleiotropic or non-
pleiotropic QTNs. Each pair of traits was simulated with the
simplePHENOTYPES (Fernandes and Lipka, 2020) package in
the R software (R Core Team, 2020). We were specifically
interested in comparing and contrasting the behavior of single
peak-associated SNPs from GWAS, similar in magnitude to
those reported in Rice et al. (2020), over multiple simulation
replicates. Thus, all individual traits were controlled by exactly
one additive QTN selected from either the maize or soybean

marker data. For each pair of replicate traits, a maximum
of two QTNs were selected. To investigate the impact of LD
between two non-pleiotropic QTNs on the GWAS results, we
sampled QTNs in three different scenarios. First, the QTNs
were sampled from different chromosomes (called “Independent
QTNs” in Figure 1). Such a configuration of QTNs was achieved
by simulating trait pairs independently in simplePHENOTYPES.
For a given set of input parameter values (Table 1), this process
was repeated until 100 replicate trait pairs, with each trait in a pair
controlled by a QTN on a different chromosome, were obtained.
Next, we simulated trait pairs where the maximum amount of
LD between the two linked non-pleiotropic QTNs controlling
each trait was specified (called “QTNs in linkage” in Figure 1).
We simulated this configuration in simplePHENOTYPES by
specifying architecture = “LD,” and indicated the amount of
maximum desired LD between pairs of selected SNPs through
the ld input parameter. We controlled this amount of LD both
directly (i.e., the LD between the two QTNs) and indirectly (the
LD between each QTN and amarker located in between). Finally,
we simulated pairs of correlated traits that were controlled
by a single pleiotropic QTN (called “Pleiotropy” in Figure 1).
This configuration was specified in simplePHENOTYPES by
architecture = “pleiotropic.”

Table 1 provides a summary of the input parameters
considered in the simulation study. Briefly, three configurations
of narrow-sense heritability (h2) were simulated: two with the
same h2 for both traits and one with a different h2 for each
trait. The latter configuration is a common situation in breeding
programs, where a trait of interest with small heritability is
correlated to a trait of less interest but with a higher h2

(Fernandes et al., 2018). Because a single QTN controlled each
trait, and the non-genetic variance was a function of the inputted
heritability, the additive effect size of every QTN in this study
was set to the same value, namely 0.10. To evaluate the impact
of rare vs. common variants on the results, we also considered
the minor allele frequencies (MAFs) of the selected markers
as an input parameter (see Table 2 for details). Altogether, we
simulated 216 scenarios, where each scenario consisted of a
unique combination of input parameters. Each scenario was
replicated 100 times using the option vary_QTN = TRUE in
simplePHENOTYPES, meaning that a different pair of QTNs
were selected for each replicate.

We used simplePHENOTYPES’ option “remove_QTN =

TRUE” to simulate the frequently occurring scenario of the causal
mutations not being included in the marker sets. Thus, for each
of the 100 replicate trait pairs evaluated at a given scenario,
the marker data were saved without the SNPs used as QTNs.
Accordingly, for all traits, we conducted GWAS on all markers
except the one selected to be the QTN.

2.3. Genome-Wide Association Studies
Multivariate and univariate GWAS was conducted on all
simulated traits. For each replicate trait pair, we used the
multivariate version of the unified mixed linear model (MLM)
(Yu et al., 2006) implemented in GEMMA (Zhou and Stephens,
2014) to conduct the multivariate GWAS. In this analysis, a given
replicate trait pair was included in this model as the multivariate
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TABLE 1 | Description of the input parameter values considered to simulate each pair of traits in the simulation study.

h2d

QTN selectiona Type of LDb MAFc Trait 1 Trait 2 Sample size Species

QTNs independently selected Direct 0.05 0.30 0.30 500 Maize

LD controlled at < 0.01 Indirect 0.40 0.30 0.80 1,000 Soybean

LD controlled at < 0.98 0.80 0.80 2,815

One pleiotropic QTN

Each combination of input parameter values resulted in 216 simulation scenarios.
aQTN, quantitative trait nucleotide.
bLD, linkage disequilibirum (r2 ).
cMAF, minor allele frequency.
dh2, narrow-sense heritability.

TABLE 2 | Description of how minor allele frequency (MAF) was controlled in the

simulation study.

QTNa configuration MAF control

QTNs independently selected Both QTNs selected based on MAF

LDb between QTNs directly controlled QTN for first trait selected based on MAF

LD between QTNs indirectly controlled Common marker located between

QTNs selected based on MAF

One pleiotropic QTN Pleiotropic QTN selected based on MAF

aQTN, quantitative trait nucleotide.
bLD, linkage disequilibirum.

response variable. The multivariate MLM was fitted in GEMMA
using the commands (“gemma --bfile bed_file -lmm 2 -miss 0.001
-maf 0.001 -r2 0.999999 -n 1 2 -k kinship.txt -o output”), with the
kinshipmatrix (VanRaden, 2008) calculated with the AGHmatrix
R package (Amadeu et al., 2016). Similarly, for each of the two
simulated traits contributing to a replicate trait pair, an analogous
univariate unified MLM was fitted in the GEMMA software
using all of the same commands except for -n 1. No fixed-effect
covariates accounting for subpopulation structure were included
in any GWAS model because (i) subpopulation structure did not
explicitly contribute to the variability of the simulated traits, and
(ii) all QTNs were randomly sampled irrespective of the degree
to which their alleles segregated by subpopulations.

2.4. QTN Detection Rate for Univariate and
Multivariate GWAS
For each simulation scenario, we compared the proportion of
100 replicate trait pairs in which the multivariate MLM identified
a signal in the vicinity of the QTN(s) and the proportion in
which the univariate MLM identified a signal in the vicinity of
the QTN controlling the tested trait. We applied the Benjamini
andHochberg (1995) procedure to control the genome-wide false
discovery rates (FDR) at 10%, and 5% for eachmodel ran on each
replicate trait pair. A SNP-trait association passing this threshold
was deemed to be in the vicinity of a given QTN if it was within
10 kb (in maize) or 1Mb (in soybean) of the QTN. These physical
window sizes roughly correspond to a pairwise LD decay of r2 =
0.10 in both species (Supplementary Figures 1, 2). To compare

the influence of window sizes on the results, we also considered
window sizes of 1 kb in maize and 10 kb in soybean; these results
are presented in Supplementary Figures 20–29, 40–49.

For a given replicate trait pair, the multivariate MLM (which
tested H0: No association between the tested SNP and any trait
in the multivariate model) was said to have identified a QTN
if at least one SNP with an FDR-adjusted P-value <0.10 (or
0.05 when the FDR was controlled at 5%) was located within
the surrounding physical window. Similarly, for a given trait in
a replicate trait pair, the univariate MLM (which tested H0: No
association between the tested SNP and the trait in the univariate
model) was said to have correctly identified the QTN underlying
that trait if at least one SNP with an FDR-adjusted P-value <0.10
(or 0.05) was located within the physical window of that QTN.
Thus, across the 100 replicate trait pairs simulated at each setting,
we recorded the following percentages:

1. The percentage of replicate trait pairs where a given GWAS
model identified the QTN underlying the first trait.

2. The percentage of replicate trait pairs where a given GWAS
model identified the QTN underlying the second trait.

3. The percentage of replicate trait pairs where a given GWAS
model identified both QTNs underlying both traits.

4. The percentage of replicate trait pairs where a given
GWAS model identified at least one statistically significantly
associated marker outside of both windows for both traits.

When these percentages 1–3 were calculated for the multivariate
GWAS under the “Independent QTNs” and “QTNs in linkage”
scenario, they were referred to as the spurious pleiotropy
detection rate. Otherwise, these proportions were called QTN
detection rates. For both multivariate and univariate GWAS, the
percentages calculated in 4 were called the error rate. Finally, as a
measure of regional LD, i.e., LD in the region surrounding the
selected QTN, we calculated the LD (r2) between the selected
QTN and the 20 SNPs upstream and the 20 SNPs downstream.

3. RESULTS

In general, the results were similar across sample sizes and
heritabilities. Unless noted otherwise, we highlight below the
findings at the relatively moderate sample size of 1, 000
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individuals, heritability of trait pairs set to h2 = (0.30, 0.80),
10% FDR and window size of 10 kb for maize and 1 Mb
for soybean. We chose to present these particular heritabilities
because of the aforementioned interest in correlated traits with
contrasting heritabilities among breeders (Fernandes et al., 2018).
For completeness, results for the remaining sample sizes and
heritabilities are included in the Supplementary Material.

3.1. Observed MAFs Were Similar to
User-Inputted Values, but Observed LD
Was Lower
The various user-inputted parameters in simplePHENOYPTES
enabled control of the MAFs of QTNs, as well as the LD between
non-pleiotropic QTNs, to a certain extent. For QTNs where we
specified the MAFs as an input parameter (indicated by a darker
color in Figure 2; Supplementary Figures 6–9), the observed
MAF distributions were similar to the user-inputted values.
For QTNs where the MAFs were not directly controlled as an
input parameter (indicated by a lighter color in Figure 2), most
observed MAFs tended to be lower in maize than in soybean.

As expected, the observed LD between non-pleiotropic QTN
pairs tended to be higher in soybean than in maize, although
outlying instances of similar levels of high LD were observed
in maize (Figure 2; Supplementary Figures 6–9). Surprisingly,
the distribution of LD between non-pleiotropic QTN under the
independent QTNs scenario yielded outlying LD values greater
than what was observed under the direct control of LD at r2 =

0.01. Because each pair of independent QTNs were simulated
on separate chromosomes, we attribute these outlying values to
interchromosomal LD. Thus, these simulated traits yielded pairs
of non-pleiotropic QTNs with contrasting levels of LD between
each other, enabling a thorough evaluation of the performance of
univariate and multivariate GWAS models.

3.2. QTN and Spurious Pleiotropy
Detection Rates Varied Across Sample
Sizes, Heritabilities and QTN MAFs
The QTN and spurious pleiotropy detection rates
generally increased as the sample size increased
(Supplementary Figures 10–12, 20–22, 30–32, 40–42).
Similarly, these rates increased monotonically as the heritabilities
increased (Figure 3, Supplementary Figures 10–12, 20–22,
30–32, 40–42). The overall high QTN and spurious pleiotropy
detection rates in soybean precluded the discernment of any
notable trends in the GWAS approaches’ performance across the
observed MAFs (Supplementary Figures 10–12, 20–22, 30–32,
40–42). However, in maize, we noted that for most settings,
higher QTN and spurious pleiotropy detection rates tended to be
observed for QTNs where the MAFs were specified to be around
0.40 instead of 0.05 (Figure 4). In general, all the conclusions
were similar when varying the FDR and window size. The
largest difference in this regard was noted in soybean, specifically
in that a considerably higher QTN and spurious pleiotropy
detection rate was noted whenever the multiple testing was
adjusted at 10% FDR and the window size was 1 Mb (Figure 5;
Supplementary Figures 16–19).

3.3. Observed Multivariate GWAS
Performance for Non-pleiotropic QTNs in
Linkage and a Single Pleiotropic QTN
The multivariate GWAS results are presented in their entirety
in Figure 5 and Supplementary Figures 16–19, 26–29, 36–
39, 46–49). In general, high spurious pleiotropy detection
rates were observed under the “QTNs in Linkage” scenario.
Specifically, for QTNs that were in high LD, we observed that the
multivariate GWAS spurious pleiotropy detection rate of both
QTNs (depicted as the light green bar in Figure 5) tended to be
similar to or greater than the multivariate GWAS detection rate
of the pleiotropic QTNs (yellow bar in Figure 5). Interestingly,
we also noted a trend in the ability of multivariate GWAS to
identify each individual non-pleiotropic QTN in LD (depicted
as the purple and blue-green bars in Figure 5). That is, with the
exception of indirect LD of 0.01, we observed that all individual
multivariate GWAS spurious pleiotropy detection rates were
higher than the corresponding multivariate GWAS detection
rates on the pleiotropy scenario. The pattern of error rate,
i.e., significant markers detected outside the predefined window
size, was similar to the QTN and spurious pleiotropy detection
rate (Supplementary Figures 50–89). The only notably different
result when considering the error rate was observed in the
independent QTNs scenario, where it resulted in a reduced error
rate compared to the other genetic architectures.

3.4. Univariate GWAS Displayed Distinct
Detection Patterns for Non-pleiotropic
QTNs in High LD and Single Pleiotropic
QTNs
Univariate GWAS tended to yield distinct patterns of QTN
detection under both (i) high LD between non-pleiotropic QTNs
and (ii) pleiotropy (depicted as the two rightmost columns
of Figure 5; Supplementary Figures 16–19, 26–29, 36–39, 46–
49). Specifically, the simultaneous detection rate of the QTNs
for both traits (depicted as the green bars in Figure 5) tended
to be relatively similar to the individual QTN detection rates
for each trait (depicted as the purple and blue-green bars
Figure 5). For the remaining scenarios where non-pleiotropic
QTN were simulated (presented in the four leftmost columns
of Figure 5), we contrastingly observed that the simultaneous
detection rate of each pair of non-pleiotropic QTNs tended to
be less similar to the individual QTN detection rates. These
results suggest that univariate GWAS could be extremely useful
for distinguishing between a single pleiotropic QTN and two or
more non-pleiotropic QTNs in linkage. In the scenarios of high
LD, the SNPs selected to be QTNs were located in regions of
slightly higher LD (Supplementary Figures 3–5). Consequently,
the univariate QTN detection rate was slightly higher in the
instances where QTNs in LD were simulated. In most cases, the
error rate was similar across different settings.

4. DISCUSSION

The full potential of GWAS to contribute to the identification
of pleiotropy will not be realized until its ability to distinguish
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FIGURE 2 | Observed minor allele frequencies (MAF) for quantitative trait nucleotides (QTN) controlling trait 1 (QTNT1) and trait 2 (QTNT2), and the observed linkage

disequilibrium (LD) between them, measured as r2, for the sample size of 1, 000 and narrow-sense heritability of 0.3 and 0.8, for traits 1 and 2, respectively. Darker

colors indicate QTNs that had MAF directly controlled by an input parameter of the simulation, whereas lighter colors indicate QTNs where MAF was not controlled.

The simulated genetic architecture is listed in the horizontal and vertical titles.

between a single pleiotropic causal mutation and multiple non-
pleiotropic causal mutations in LD is scrutinized in real genomic
data. Therefore, we used publicly available maize and soybean
marker data to conduct a simulation study that quantified the
QTN and spurious pleiotropy detection rates of both pleiotropic
and non-pleiotropic QTNs for two widely-used statistical models
in plant GWAS. We specifically used the univariate and
multivariate MLM and controlled for multiple testing at 10%
FDR. Our results showed that even at surprisingly small LD
between non-pleiotropic QTNs, the multivariate GWAS model
tended to yield high spurious pleiotropy detection rates. Because
of the high spurious pleiotropy detection rates we inferred that
multivariate GWAS was unable to distinguish between a single
pleiotropic QTN and two non-pleiotropic QTNs in LD. We
also observed that for pleiotropic QTNs, the univariate GWAS
model’s simultaneous QTN detection rates for both traits were
similar to the QTN detection rates for the individual traits; such
a degree of similarity was observed only at non-pleiotropic QTNs

pairs in the highest amount of pairwise LD that we specified in
our simulation parameters. Collectively, these results suggest that
the univariate GWAS model might be useful in conjunction with
multivariate GWAS model for distinguishing between true and
spurious pleiotropy.

4.1. High Spurious Pleiotropy Detection
Rates From Multivariate GWAS Were
Observed Under LD
The potential of multivariate GWAS models has been
demonstrated in many studies (Galesloot et al., 2014;
Zhou and Stephens, 2014; Pitchers et al., 2019; Rice et al.,
2020). Our results agree with this previous work, as the
observed ability of multivariate GWAS to identify QTNs
was generally high for all scenarios particularly in soybean.
The fact that the multivariate GWAS was able to detect
non-pleiotropic QTNs is not surprising because the null
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FIGURE 3 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS, relative to the

QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). These values were

obtained for maize with a sample size of 1, 000. The X-axis displays the narrow-sense heritability for Trait 1 (bottom value) and Trait 2 (top value). (A) Inputted minor

allele frequency (MAF) of 0.05; (B) MAF of 0.4.

hypothesis for most multivariate tests of association, including
those used for the multivariate MLM, is H0 : No association
between the tested SNP and any trait (Schaid et al., 2016;
Salinas et al., 2018). Thus, the multivariate MLM’s detection
of non-pleiotropic QTN, and more specifically spurious
pleiotropy under the “QTNs in linkage” scenario, should
not be regarded as false positives because these events
technically occur in the alternative hypothesis. Nevertheless,
the outcome of spurious pleiotropy underscores an intrinsic
lack of resolution to distinguish between pleiotropic and
non-pleiotropic QTNs.

The observed performance of multivariate GWAS at the
various levels of LD between non-pleiotropic QTNs on the
same chromosome was insightful. Although a previous study
showed that multivariate GWAS could not distinguish between
a single pleiotropic QTN and multiple non-pleiotropic QTNs
in LD (Chebib and Guillaume, 2019), we expected that at
low levels of LD between non-pleiotropic QTNs, the spurious
pleiotropy detection rates would be similar to QTN detection
rates under the scenario where non-pleiotropic QTNs were
simulated on separate chromosomes. Furthermore, we predicted
that as the amount of LD between the non-pleiotropic QTNs
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FIGURE 4 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) in scenarios for which minor allele frequency (MAF) was directly

controlled by a simulation input parameter. These values were obtained by multivariate (Multi) and univariate (Uni) GWAS, relative to the QTN controlling trait 1 (T1),

and trait 2 (T2), or in the pleiotropic scenario, relative to the pleiotropic QTN (MT). This figure shows results for maize with a sample size of 1, 000, and a narrow-sense

heritability of 0.3 and 0.8, for Trait 1 and Trait 2, respectively.

increased, the spurious pleiotropy detection rate of multivariate
GWAS would become similar to the observed multivariate
GWAS detection rate of a single pleiotropic QTN. Instead, we
observed that even at LD levels of r2 < 0.01 between non-
pleiotropic QTNs, the multivariate GWAS model yielded high
spurious pleiotropy detection rates, a trend that was analogous
to the QTN detection rates observed for traits controlled by one
pleiotropic QTN. Interestingly, for the most stringent control of
LD between non-pleiotropic QTNs on the same chromosome
(i.e., r2 < 0.01), the maximum amount of observed LD was
less than some outlying values of interchromosomal LD between
non-pleiotropic QTNs simulated on separate chromosomes
(Figure 2). These results were contrary to our prior expectations,
and we consequently made two main conclusions. First, we
confirmed that multivariate GWAS is a potentially useful tool
for identifying causal mutations. Second, multivariate GWAS,
particularly the multivariate unified MLM, alone is insufficient
for distinguishing between multiple QTNs in LD and a single
pleiotropic QTN, irrespective of the amount of LD between
the QTNs.

4.2. Univariate GWAS Is Potentially Useful
for Identifying Pleiotropy
One of the most useful findings from this study was the subtle
differences in univariate GWAS QTN detection rates for both
non-pleiotropic QTNs in high LD and pleiotropic QTNs. We
hypothesize that if incorporated into standard GWAS analyses,
these subtle differences could play a crucial role in inferring
whether or not a certain set of GWAS results suggest pleiotropy.

Although there is a critical need for future studies to investigate
the most appropriate use of univariate GWAS in such a role,
our results suggest two steps for using univariate GWAS for
this purpose. First, a univariate GWAS could be conducted
on each trait separately. Second, an a posteriori analysis could
then be used to determine how frequently each univariate
GWAS detects a signal. If a signal is consistently detected across
several univariate analyses of individual traits, this could provide
evidence that a pleiotropic causal mutation is underlying the
signals detected from GWAS.

4.3. Considerations for Further Studies on
the Ability of GWAS to Identify Loci
Controlling Multiple Traits
Our findings build upon other studies (e.g., Chebib and
Guillaume, 2019), indicating that caution should be used when
interpreting multivariate GWAS results. Moreover, it highlights
the usefulness of univariate GWAS in making conclusions
regarding trait genetic architecture. However, some potential
weaknesses of our study should be considered when designing
future research. In particular, the inconsistent amount of local
LD levels surrounding QTNs selected from different genetic
architectures is a potential source of bias. We opted to consider
a fixed window size when detecting the QTNs; this favors
a comparison across different sample sizes, but because the
LD will vary, so will the chance of detecting a QTN in that
specific window.

In particular, when we simulated traits with QTNs in high LD
“QTNs in Linkage” scenario, we observed that they were typically
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FIGURE 5 | Quantitative trait nucleotide (QTN) and spurious pleiotropy detection rate (Y-axis) achieved by multivariate (Multi) and univariate (Uni) GWAS (X-axis),

relative to the QTN controlling trait 1 (T1), trait 2 (T2), and both QTN simultaneously (T1&T2) or, in the pleiotropic scenario, relative to the pleiotropic QTN (MT). The

simulated genetic architecture is listed in the horizontal and vertical titles. These values were obtained with a sample size of 1, 000, and a narrow-sense heritability of

0.3 and 0.8, for traits 1 and 2, respectively. MAF, minor allele frequencies.

selected from genomic regions that contained at least one pair of
SNPs in high LD. Thus, the local LD in these regions tended to
be biased upwards. For the remaining simulation scenarios, the
amount of local LD was not biased upwards, as can be seen in
Supplementary Figures 3–5. We infer that these differences in
local LD might have influenced the observed QTN and spurious
pleiotropy detection rates in this study. A potential solution for
this issue would be to simulate pleiotropy and linked QTNs based
on marker data with SNPs evenly spaced.

One final suggestion for future research is to investigate the
impact of (i) the residual correlation between traits and (ii) the
sign of QTN effect sizes on the performance of univariate and
multivariate GWAS. As described in Jiang and Zeng (1995), the
power of multivariate approaches should be less than those of
the univariate ones whenever the direction of residual correlation
(i.e., whether the sign of the residual correlation is positive or
negative) is the same as those of the product of QTN effect
sizes, regardless of whether these QTNs are in linkage or are
pleiotropic. Thus, it is critical to determine if the overall patterns
of QTN and spurious pleiotropy detection observed in this
study are similar under genetic architectures where multivariate
GWAS is theoretically expected to yield lower power than
univariate GWAS.

5. CONCLUSION

The main conclusion from this study is that the use of
either univariate or multivariate GWAS alone is insufficient
for rigorously dissecting the genetic architecture of multiple
traits. Association studies should instead use both univariate
and multivariate models, as we demonstrated that both of these
models are useful. Although our results suggest that multivariate
GWAS cannot distinguish between a single pleiotropic QTN
and multiple non-pleiotropic QTNs in LD, we confirmed that
multivariate models are potentially useful for analyzing traits that
are controlled by causal mutations that are either pleiotropic
or in LD with each other. Once the genomic regions most
likely to contain relevant causal mutations are identified through
multivariate GWAS, univariate analyses could then be applied,
potentially through the a posteriori analysis proposed in the
Discussion, to shed light on whether or not the underlying
causal mutations are pleiotropic. Such use of univariate and
multivariate analyses in a concerted manner could maximize
the amount of information ascertained from the GWAS of
multiple traits, and potentially provide biological researchers
with a smaller list of candidate loci that are likely to contribute
to their variability.
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Nested association mapping (NAM) has been an invaluable approach for plant
genetics community and can dissect the genetic architecture of complex traits. As
the most popular NAM analysis strategy, joint multifamily mapping can combine all
information from diverse genetic backgrounds and increase population size. However, it
is influenced by the genetic heterogeneity of quantitative trait locus (QTL) across various
subpopulations. Multi-locus association mapping has been proven to be powerful in
many cases of QTL mapping and genome-wide association studies. Therefore, we
developed a multi-locus association model of multiple families in the NAM population,
which could discriminate the effects of QTLs in all subpopulations. A series of
simulations with a real maize NAM genomic data were implemented. The results
demonstrated that the new method improves the statistical power in QTL detection
and the accuracy in QTL effect estimation. The new approach, along with single-family
linkage mapping, was used to identify QTLs for three flowering time traits in the maize
NAM population. As a result, most QTLs detected in single family linkage mapping were
identified by the new method. In addition, the new method also mapped some new
QTLs with small effects, although their functions need to be identified in the future.

Keywords: nested association mapping (NAM), multi-locus association model, joint-family, subpopulation, maize

INTRODUCTION

Association mapping of large genetically diverse population has advantages over quantitative trait
locus (QTL) mapping of biparental segregation population, such as the ability to access multiple
gene alleles and higher mapping resolution (Zhang et al., 2005; Korte and Farlow, 2013). This
is because the former carries more recombination breakpoints in history. However, the genetic
structure of genome-wide association study (GWAS) population leads to high false positive rates
(FPRs; Yu and Buckler, 2006). Moreover, low allele frequencies confer low statistical power
(Rafalski, 2010). To address these issues, multiparental population or next-generation mapping
populations, such as nested association mapping (NAM) and multiparent advanced generation
intercross (MAGIC), were proposed (Cavanagh et al., 2008; Yu et al., 2008; Morrell et al.,
2012). It was proved to have sufficient power and resolution to detect genomic associations for
plant complex traits.
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The NAM population was a special kind of multiparental
panel, which was first proposed in maize (Yu et al., 2008). They
crossed 25 representative lines with homozygous B73 line to
generate 25 populations that consisted of 5,000 recombinant
inbred lines (RILs; McMullen et al., 2009) and demonstrated
that the NAM population method was powerful in dissecting
the genetic architecture of complex traits, including flowering
time, leaf architecture, stalk strength, and plant height (Buckler
et al., 2009; Tian et al., 2011; Peiffer et al., 2013, 2014; Li et al.,
2016). This initial success prompted the development of the
NAM population in other crops, such as rice, wheat, barley,
soybean, and sorghum (Maurer et al., 2015; Schmutzer et al.,
2015; Bajgain et al., 2016; Bouchet et al., 2017; Fragoso et al.,
2017; Song et al., 2017). Taking a wide view of all NAM methods
applied in previous studies, they were prone to joint linkage
across all subpopulations over single population mapping, as
single population analysis has far less power and accuracy than
joint mapping, although it will not position QTL inaccurately
(Buckler et al., 2009). However, these approaches did not take into
account the potential difference of QTL effects across families.

Genetic heterogeneity from different parents is likely to
contribute to potential diversity of genetic architecture across
subpopulations. Buckler et al. (2009) investigated the difference
of allelic effects across different founder lines and demonstrated
that the difference of QTL effects across subpopulations is
related to latitudinal variation. Given that this diversity exists,
the above methods, considering all QTL with same effects
across all subpopulations, are not appropriate. To address this
issue, we conducted a series of composite interval mapping
(CIM; Zeng, 1994) for each RIL population in the maize NAM
population. The results showed that QTLs detected in different
subpopulations did not share either the same position or effect
(Supplementary Table 1). For instance, different RIL populations
might detect different QTLs; even if QTLs were detected across
more than one population, these QTLs could rarely share the
same effect. Figure 1 shows an example of overlapped QTL.
Within a distance of 10 cM, there were three QTLs identified
in various subpopulations and having quite different effects.
Because their peaks were very close, these QTLs were treated
as an overlapped QTL. The results confirmed our suspicion. In
association mapping in multiparental population, therefore, it is
necessary to discriminate QTL effects in various subpopulations.

In this study, we proposed a speculation that QTL shared
across multiple subpopulations of NAM has different effects
in genetic mapping model. It was a specialty for the NAM
design and also other similar multiple populations from multiple
parents. A multi-locus association model was introduced to
dissect the genetic basis of complex traits. In this kind of
statistical model, variables involved are extremely colossal when
single-nucleotide polymorphism (SNP) makers are numerous.
Thus, we suggested a new matrix transform approach to
address the problem of super-high dimensions. A series
of Monte Carlo simulation experiments based on NAM
marker data were performed to demonstrate the performance
of this new method. Additionally, the validated approach
was applied in genetic analysis for three flowering time
traits in maize.

MATERIALS AND METHODS

NAM Population
We used the maize NAM population data (Buckler et al., 2009)
from the Panzea website.1 The NAM population consists of 4,699
RILs derived from the crosses between 25 diverse lines and
the common parent B73. All the RILs from each cross were
considered as a subpopulation. A total of 1,106 SNP markers were
genotyped for each RIL, covering a genetic map of 1,400 cM and
one marker every 1.3 cM on average. The best linear unbiased
predictions (BLUPs) of three flowering time traits, including days
to anthesis (DA, male flowering), days to silking (DS, female
flowering), and anthesis-silking interval (ASI), were used as the
phenotypic data in following analysis.

Genetic Model
Suppose that a general NAM design is as follows: k selected
founder lines are crossed to a common parent, followed by selfing
to generate k segregation F2 populations, and each F2 population
are used to generate a half-sib subpopulation composed of n RILs
by selfing for multiple generations. The phenotypic value of a
quantitative trait may be described by the following model:

Y = λµ+

q∑
i=1

k∑
j=1

Xijβij + ε (1)

where Y = (y1, y2, · · · ykn)′; µ is a 25 × 1 matrix of covariant
components; each element represents one subpopulation
phenotype mean; λ is the kn× 25 indicator matrix relating
to each subpopulation; q is the number of QTL associated
with interested trait; k is the number of sub-populations; and
ε is the vector of residual error with a N(0, σ2) distribution.
βij represents the additive effect of the ith QTL in the jth
subpopulation. Namely, we gave k effects for one QTL across
the k subpopulations. Xijis a kn× 1incidence vector of the ith
QTL in the jth subpopulation. In this incidence vector, the n
elements corresponding to the jth subpopulation are coded
(−1, 1), representing the genotype of SNP (AA and aa), and the
other (k− 1)n elements are assigned 0, suggesting the absence
of this QTL effect in other subpopulations. In multi-locus
model, all available SNPs are considered as candidate QTL
to be incorporated in the genetic model. Thus, the numerous
variables in the model from huge number of SNPs and many
subpopulations make a big burden for computing.

In order to relieve the computing burden, the dimensions
of incidence matrix need to be reduced. Thus, we proposed
a strategy to achieve dimension reduction and also make sure
that the incidence matrix still involves different subpopulation
information. In this method, k column original incidence vectors,
corresponding to one QTL in all subpopulations, are emerged
into one column vector. Here is the process: as for an SNP, we first
calculate the main effect of each genotype in all subpopulations,
respectively, ωij = ȳij − ȳ, where i = 1, · · · , k, j = 1, 2 respects
AA and aa. Thus, a vector ω, consisted of 2k indicators, is

1http://www.panzea.org
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FIGURE 1 | (A) An overlapped quantitative trait locus (QTL) identified in subpopulations 5, 13, and 23 and (B) its effects.

obtained and then sorted. Next, we recode the genotypes across
all subpopulations according to their effects’ order and obtain a
transformed incidence vector Zi for a given QTL (SNP) (Lü et al.,
2011). In addition, Zi could be also transformed according to
segmented ω. The genetic model is transformed as:

Y = λµ+

q∑
i=1

Ziγi + ε (2)

where Zi is a kn× 1 incidence vector of the ith QTL in
all subpopulations, and γi is the corresponding effect of the
ith putative QTL.

Multi-Locus Association Analysis
To select, estimate, and validate loci associated with interested
trait, we proposed a multi-locus association of two-stage
processes. Based on the genetic model (2), genome SNPs scanning
needs to further select, estimate, and validate SNPs associated
with given trait. We proposed the following two-stage selection
process to screen. In the first stage, shrinkage estimate algorithm

was used to estimate the additive effect of SNPs, and all SNPs
with ti = |γ̂j

/
σ̂j| > 10−4 are picked up. Considering stability,

effectiveness, and computing time, we adopted the empirical
Bayes (E-Bayes) method (Xu, 2010). Compared with other
shrinkage estimation (Zhang and Xu, 2005; Yi and Banerjee, 2009;
Feng et al., 2013), E-Bayes provides a more robust shrinkage
that the large effect subjects are shrunk to virtually no shrinkage
while small effects to zero, so that nonsignificant SNP is estimated
toward zero. Simulation studies showed that the E-Bayes is
predominant compared with other shrinkage estimation methods
in terms of small mean squares error (Xu, 2010). For the technical
details of the method, refer to the original study by Xu (2010). The
method is briefly described here.

The parameters β and σ2 are always included in the model; the
uniform prior is assigned to the two parameters: P(β) ∝ 1 and
P(σ2) ∝ 1 (Zhang and Xu, 2005). We adopt the normal prior for
each of the genetic effects (γk) in model (2): P(γk) ∝ N(0, σ2

k).
The scaled inverse χ2 prior distribution is further assigned

to σ2
k: P(σ2

k) = Inv−χ2(σ2
k|τ,ω) ∝

(
σ2
k
)− τ+2

2 exp
(
−ω

/
2σ2

k
)

(Xu, 2010). Clearly, Y in model (2) follows a multivariate
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normal distribution with mean µ = Xβ and variance–covariance
V =

∑
k ZkZ

T
k σ2

k + Iσ2. Let θ =
(
β, γ, σ2). Therefore, the main

steps for parameter estimation are described as below.

Step (0): Let ξ = (τ,ω) = (0, 0), β̂ =
(
XTX

)−1 XTY ,

σ̂2
=

(
Y − Xβ̂

)T (
Y − Xβ̂

)
/n, and γk and σ2

k were initialized

(k = 1, 2, · · · , 2m2);

Steps (1): Using E (γk) = σ2
kZ

T
k V
−1 (y− Xβ

)
and

var (γk) = Iσ2
k − σ2

kZ
T
k V
−1Zkσ2

k, E
(
γTk γk

)
was estimated by

E
(
γTk
)
E (γk)+ tr[var (γk)]. This is the E-step;

Step (2): update β, σ2 and σ2
k: σ2

k =[
E
(
γTk γk

)
+ ω

] /
(τ+ 2+ 1),β =

(
XTV−1X

)−1 XTV−1y,

and σ2
=
(
y− Xβ

)T [y− Xβ−
∑m

k=1 ZkE (γk)
]/

n. This is the
M-step;

Step (3): Repeat the E-step and the M-step until
convergence is reached.

After the reduction in dimension in the first stage, maximum
likelihood method could be used to reanalyze the reduced model
and perform the likelihood ratio test (LRT) in the second stage.
LRT was aimed to decide the inclusion and retention of a SNP in
the model based on LR score:

LRj = −2 ln[L(θ−j)
/
L(θ)]

where θ is the parameter vector in the reduced genetic model; θ−j
is the parameter vector in θ excluding the currently tested genetic
effect γ̂ . L(θ) and L(θ−j) are the maximum likelihood function for
θ and θ−j, respectively. If LRjexceeds one given threshold, then
it indicates that this SNP could significantly improve model fit.
For simplicity, we suggested an alternative statistical parameter
LOD = LRj

/
4.61 and 3.0 as the critical value in our association

mapping process.

Monte Carlo Simulation Design
For ease of computation, only few subpopulation data from
the maize NAM population including 100 SNP markers from
chromosome 1 were used to perform the simulation experiments.
The length of chromosome segment was 153.4 cM. We
investigated four simulation scenarios, and each simulation had
10 assumed QTLs locating at the given chromosome segment
evenly. All the QTL were overlapped with the markers and
listed in Supplementary Table 2.

In the first scenario, the effect of QTL heritability on the
new method was assessed in five populations with 964 RILs.
We assumed 10 QTLs in each of three simulations. The size (or
heritability, h2

i ) of each QTL, the proportion of total phenotypic
variance explained by the QTL, was all set to 0.03 in the first
simulation, 0.05 in the second simulation, and 0.08 in the third
simulation. We supposed that each of 10 QTLs had different
fixed effects αi (i = 1, 2, . . ., 5) among the five populations,
and

∑
i αi = 0. The breeding value of each RIL i from population

k was calculated asaki =
∑

j Xjαkij (j = 1, 2, . . ., 10), and the

phenotypic value yki = aki + eki,ekiwas a residual effect sampled
from a normal distribution with mean 0 and variance σ2

e = 1.
The additive genetic variance of the ith QTL,σ2

ai, was calculated
from σ2

ai = h2
i σ

2
e
/
(1−

∑
h2
i ). Then, the QTL effects within a

given populations were calculated by relating σ2
ai to the allelic

frequencies and effects.
In the second scenario, we evaluated the effect of sample

size on the new method by setting the sample size as 400 (four
subpopulations each with 100 RILs), 600 (six subpopulations each
with 100 RILs), and 800 (eight subpopulations each with 100
RILs). Each QTL size was set as 0.07. Other parameters were the
same as those in the first scenario.

In the third scenario, we explored the feasibility of a new
method on random-effect QTLs. Ten assumed QTLs have the
same positions with those in the former two scenarios. The first
five QTLs shared a fixed effect (1.5) across all subpopulations. For
the jth of the latter five QTLs, five effects αij(i = 1, 2, . . ., 5) were
randomly sampled from multivariate normal distribution with
mean 1.5 and variance–covariance structure

6 =


1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1

 .ρ

was the correlation of QTL effects between two nearest
populations and set with two levels (ρ = 0.2 and ρ = 0.8).
The proportion of nongenetic variance σ2

ek to total additive
genetic variance σ2

ak in population k was related to a
magnitude of heritability for a trait. In this scenario, the total
heritability was set to 0.6.

RESULTS

Mapping QTLs for DA, DS, and ASI in
Single Maize NAM Subpopulation via the
CIM Method
We performed CIM mapping, implemented by Windows QTL
Cartographer V2.5,2 for DA, DS, and ASI in each NAM
subpopulation. For DA in maize, approximately five to six
QTLs were detected in each subpopulation. A total of 137
QTLs were identified, with a LOD threshold of 3. Among
the 137 QTLs, 10 QTLs clusters (defined with more than
five QTLs within a 30 cM interval) were dispersed across
10 chromosomes (Supplementary Table 1 and Supplementary
Figure 1). We found 28 overlapped loci (where more than
two QTLs from various subpopulations totally or partially
overlapped), whereas no same QTL was found across all
25 subpopulations. For most of those overlapped loci, one
QTL contributed different effects in different subpopulations.
Figure 1 gave an example of an overlapped QTL. Three
subpopulations (5, 13, and 23) detected one QTL in a

2https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm
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small 177–189 cM interval on chromosome 1 (Figure 1A),
where their effects in the three subpopulations are -0.57,
0.40, and 0.60, respectively (Figure 1B). Yet, there were
few overlapped QTLs with similar effects across various
subpopulations (Supplementary Table 1). In addition, we
found a relatively large proportion of total phenotypic variance
explained by all the QTLs, such as 66.4% for DA, 74.6% for DS,
and 94.4% for ASI.

Simulation Results
Effect of QTL Size on Mapping QTL
In the first simulation experiment, the effect of QTL size on
mapping QTL in the maize NAM population was evaluated. QTL
size was set as 3, 5, and 8%. Ten assumed QTLs were uniformly
distributed across the genome in the three cases. Each sample
was analyzed by the new method, and the results are shown in
Figure 2 and Supplementary Table 2.1. The average power for
10 assumed QTLs in each case was 59.2, 81, and 91.1% for the
QTL sizes of 3, 5, and 8%, respectively, indicating the increase in
average power of all the 10 assumed QTLs with the increase of
QTL size (Figure 2A). The FPR was less in both 5 and 8% cases
than in 3% case (Figure 2B). The bias of QTL position estimate
was relatively low, and it had a negative correlation with QTL
size (Figure 2C). Besides, Figure 2D shows a relatively small bias
(−0.068 to 0.040) between estimated and assumed effects for each
QTL in three simulation cases.

Effect of Sample Size on Mapping QTL
In the second simulation, we investigated the effect of sample
size on mapping QTL. The sample sizes were set as 400, 600,
and 800 (k subpopulations each with 100 RILs), all the QTL sizes
were set as 0.07, and other parameters were the same as those
in the first simulation. The results are shown in Figure 3 and
Supplementary Table 2.2. The results indicated the increase in
statistical power in QTL detection and accuracy in QTL position
estimation with the increase in sample size. FPR still stays on a
low level (<2.1%). The effect estimates in this simulation showed
more bias than those in the first simulation. This is possibly
caused by smaller sample (400, 600, and 800) than those in the
first simulation (964).

Random Effect Simulation
We also conducted a simulation experiment to investigate how
fixed or random effect of QTL would influence our association
mapping. A fixed effect was assigned to the first five QTLs,
and there were no differences for these QTLs across various
subpopulations, while random effects were assigned to the last
five QTLs, and there were various values of ρ across various
subpopulations. As a result, no significant difference between
fixed and random effects in fixed ρ value was observed (Figure 4
and Supplementary Table 2.3), although their powers were more
than 80%. Meanwhile, no significant difference among various
ρ values in the same setup (fixed or random) of QTL effect was
observed. FPR and the bias of QTL position and effect stayed a
quite low level.

Mapping QTLs for DA, DS, and ASI in
Joint Maize NAM Subpopulations
The new method was used to identify QTLs for three flowering
time traits in the joint maize NAM subpopulations. As a result,
77, 79, and 75 QTLs were identified, and these QTLs accounted
for 90.11, 89.44, and 82.50% of the total phenotypic variances
for the above three traits, respectively. Most QTLs detected by
the CIM method in the single-maize NAM subpopulation were
also identified by the new method in the joint maize NAM
subpopulations. As for DA, the new results covered 127 of
137 QTLs from the CIM method (Supplementary Figure 1),
including all the seven extremely large QTLs (r2 > 15%, light
blue), 24 of 25 large QTLs (10% < r2 < 15%, deep green), 56
of 59 relative large QTLs (5% < r2 < 10%, deep blue), and 40 of
46 small QTLs (2%< r2 < 5%, pink) (Supplementary Figure 1).
As for DS, 132 of 138 QTLs from the CIM method were covered
by our new method, including all the five extremely large QTLs,
21 of 23 large QTLs, 71 of 75 relative large QTLs, and all the 35
small QTLs. As for ASI, 81 of 89 QTLs from the CIM method
were found by the new method, including 21 of 22 large QTLs, 55
of 62 relative large QTLs, and all the 5 small QTLs. Clearly, the
above results validated our new method.

As compared with the CIM results, we detected 25 additional
QTLs for DA, 29 for DS, and 32 for ASI (Supplementary
Table 3). The genetic variances of all additional QTLs were
quite small. Most QTL for DA and DS accounted for < 1%
phenotypic variance by a single QTL, although 8 of 32 QTLs for
ASI accounted for more than 1% by a single QTL, and 5 QTLs
accounted for more than 3% by a single QTL. This indicated that
our new method had a high power for detecting minor alleles.

To validate these additional QTLs, we mined candidate
genes around the above additional QTLs via phytozome v9.1.3

All the additional QTLs were found to be very close to
their candidate genes, and these candidate genes were listed
in Supplementary Table 3. For example, 19 of 25 candidate
genes for DA, as well as 21 of 29 candidate genes for DS,
were found to be within the distance of 1 kb from their
associated SNPs. Among candidate genes for ASI, 23 of 31
genes were within 1 kb, and only two genes were found
to be within >5 kb. The close distance indicated a strong
linkage between associated SNPs and their candidate genes.
Some evidence for candidate genes were described as below
(Supplementary Table 3). GRMZM2G154896, near the SNP
PZA00368.1 associated with DA, is a pollen tube developmental
gene; GRMZM2G177151, near the SNP associated with DS, is
C2H2-type zinc finger protein gene, which may play an important
role in spike development; and GRMZM2G061900, near the
SNP PZA00276.18 associated with ASI, is Ras protein gene
that affects cell growth, differentiation, cytoskeleton, protein
transport, and secretion.

DISCUSSION

Compared with QTL mapping in biparental segregation
population, multiparental population could provide high power

3http://www.phytozome.net/
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FIGURE 2 | Effect of quantitative trait locus (QTL) heritability on the new method. (A) Power of QTL detection, (B) false positive rate, (C) average of absolute bias
between estimated and true positions, and (D) average of absolute bias between estimated and true effects.

and resolution for association mapping in the genetic dissection
of complex traits. This is because the association mapping
population has more historical recombination events and high
linkage disequilibrium (LD), which can increase allelic diversity
and mapping resolution. However, conventional association
mapping is always confounded by population structure between
diverse lines (Flint-Garcia et al., 2005; Yu et al., 2006). The NAM
design promised to address these weaknesses and utilize the
advantages of linkage and association mapping (Yu et al., 2008).
Therefore, it is necessary to propose an optimal approach in the
genetic analysis of complex traits in the NAM population.

In this study, we found that genetic heterogeneity was a
common factor in the NAM population, which would confound
the results of association mapping. Thus, we proposed a multi-
locus association model for mapping QTL of complex trait
in the NAM population. This model could discriminate the
QTL effects across various subpopulations, which addressed
the problem of genetic heterogeneity across subpopulations.

Because of “p� n” in the new model, we proposed a matrix
transform approach to shrink the information of independence
indicator variables. A multi-locus mapping method, involving
with E-Bayes (Xu and Jia, 2007: Xu, 2010) and LRT, were
proposed in this study.

In genetic analysis of the NAM population, jointing all families
as mapping population is more common than using a single
family, such as joint linkage mapping (JLM; Buckler et al., 2009;
Tian et al., 2011), JICIM (Li et al., 2011), NAM (Xavier et al.,
2015), and GWAS with mixed linear model (Chen et al., 2019).
Because it had higher mean prediction ability and performed
better at more stringent significance threshold. However, Li
et al. (2011) observed that joint multifamily analysis has less
power and worse resolution than single family for rare QTL,
which is identified in only one or few subpopulations. Ogut
et al. (2015) showed that most robust QTLs were restricted to
one family and were often not detected at high frequency by
joint family analysis. In this study, we found that most rare

Frontiers in Genetics | www.frontiersin.org 6 January 2021 | Volume 11 | Article 590012117

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-590012 January 12, 2021 Time: 16:28 # 7

Bu et al. A Multi-Locus Association Model for NAM

FIGURE 3 | Effect of sample size on the new method. (A) Power of quantitative trait locus (QTL) detection, (B) false positive rate, (C) average of absolute bias
between estimated and true positions, and (D) average of absolute bias between estimated and true effects.

QTLs with large effect can be detected by our new method. For
three flowering time traits, we can detect more than 90% of
QTLs from the CIM method in the single NAM subpopulation.
Besides, the new method can identify more small-effect QTLs
than the CIM method.

In order to compare single family analysis (SF) with our
new method, we conducted a series of simulations (more details
about the simulation and results, see Supporting Information
S4). In the simulation, 10 QTLs with five types of effects were
assumed across five subpopulations. Stepwise regression was
used for SF analysis, described by Buckler et al. (2009). The
results showed that SF stepwise regression was powerful for
large-effect QTLs rather than small-effect QTLs in the single-
family NAM subpopulation. Because there are much less lines

in the single-family NAM subpopulation than in the joint
multifamily NAM subpopulations, enough precision for QTL
detection cannot provided. However, our new method with
multiple families had good power, not only for large- and
small-effect QTLs but also for common and rare QTLs. On
the one hand, joint multiple families increased population size
(usually more than 20 times according to the NAM design)
(Li et al., 2011). On the other hand, the new NAM model
could discriminate QTL effects across various subpopulations,
which controlled false positive signals from sample variance in
nonrelated families. In addition, multi-locus GWAS methods
are more powerful and robust in the detection of small-effect
QTNs (Wang et al., 2016; Su et al., 2018; Wen et al., 2018;
Zhang et al., 2019).
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FIGURE 4 | Effect of quantitative trait locus (QTL) type on the new method. (A) Power of QTL detection, (B) false positive rate, (C) average of absolute bias between
estimated and true positions, and (D) average of absolute bias between estimated and true effects.

Some GWAS software packages are available in the NAM
population, such as Trait Analysis by Association, Evolution,
and Linkage (TASSEL; Chen et al., 2019) and Jawamix5 (Long
et al., 2013). With TASSEL, MLM method can capture the
population structure and genetic relatedness of all the lines
in the NAM population by Q and K matrices. Jawamix5 also
provides a fast GWAS tool in structured populations using the
mixed model, as well as stepwise regression in NAM design
(Long et al., 2013). These GWAS software packages are very
powerful in normal GWAS. However, they were not designed
for the NAM population and did not involve the genetic
heterogeneity. We have proved that genetic heterogeneity from
parents contributed to the diverse effects of a QTL in different
families (Supplementary Table 1 and Figure 1). Therefore,
the proper mapping methods are important, especially for
the NAM population.

Joint linkage mapping (Buckler et al., 2009) and JICIM
(Li et al., 2011) used the stepwise linear regression and
linkage mapping to select marker effects nested within families
and estimate QTL effects. It might lead to missing some
large-effect QTLs identified only in one subpopulation (Ogut
et al., 2015). In the NAM software (Xavier et al., 2015),
a mixed linear model framework with EMMA algorithm
(Kang et al., 2008) was used to map associated SNPs in
multiparent population, such as the MAGIC population.
Recently, this software was also used to detect QTLs in the
NAM population (Sunil et al., 2020). In the genetic model
of NAM software, the dimension will inflate to k+ 1 times
(k families in NAM design), although marker effects can
be estimated.

Our new method was designed for association
mapping in the NAM population. Based on Monte Carlo
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simulation experiments and real data analysis, some minor
QTLs can be identified by the new method, indicating high
QTL signal to noise ratio in the NAM mapping population.
The new method gave a dimension reduction via matrix
transformation, which can maintain the family information in
the genetic model and reduce computational burden. Actually,
this approach could be applied in genome-wide association
studies (Lü et al., 2011). In this study, the new method
was validated in the NAM mapping population. However,
it is also suitable for MAGIC population, which is a large
RIL population derived from multiple parents (Cavanagh
et al., 2008). Thus, the new method is useful in genetic
mating design.
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Genome-wide association studies (GWASs) have identified and replicated many genetic

variants that are associated with diseases and disease-related complex traits. However,

the biological mechanisms underlying these identified associations remain largely elusive.

Exploring the biological mechanisms underlying these associations requires identifying

trait-relevant tissues and cell types, as genetic variants likely influence complex traits in

a tissue- and cell type-specific manner. Recently, several statistical methods have been

developed to integrate genomic data with GWASs for identifying trait-relevant tissues and

cell types. These methods often rely on different genomic information and use different

statistical models for trait-tissue relevance inference. Here, we present a comprehensive

technical review to summarize ten existing methods for trait-tissue relevance inference.

These methods make use of different genomic information that include functional

annotation information, expression quantitative trait loci information, genetically regulated

gene expression information, as well as gene co-expression network information. These

methods also use different statistical models that range from linear mixed models to

covariance network models. We hope that this review can serve as a useful reference

both for methodologists who develop methods and for applied analysts who apply these

methods for identifying trait relevant tissues and cell types.

Keywords: trait-tissue relevance, epigenetic information, transcriptomic information, genetically regulated gene

expression, gene co-expression network, eQTL information

INTRODUCTION

Over the last one and half decades, genome-wide association studies (GWASs) have successfully
identified and replicated many trait-relevant genetic variants in terms of single nucleotide
polymorphisms (SNPs). However, most of these identified genetic variants reside outside protein-
coding regions, making it challenging to understand the biological mechanism underlying these
identified associations (Welter et al., 2014). Characterizing the biological mechanism underlying
SNP associations is further complicated by the fact that the genetic effects of SNPs on complex
traits are likely acted through a tissue-specific fashion. For example, many psychiatric disorders,
such as bipolar disorder and schizophrenia, are consequences of dysfunctions of various genes,
pathways, and regulatory elements in neuronal and glia cells, resulting from brain-specific genetic
effects of polymorphisms (Lang et al., 2007; Uhlhaas and Singer, 2010; Fornito et al., 2015;
Grunze, 2015; Xiao et al., 2017). Therefore, characterizing the function of variants in various brain
tissues can help elucidate etiology of psychiatric disorders. However, for most complex traits, their
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trait-relevant tissues and cell types are often unknown or
uncertain. As a result, identifying trait-relevant tissues and
cell types and characterizing the functions of genetic variants
within the relevant tissues and cell types hold the key for
better understanding of disease etiology and the genetic basis of
phenotypic variation (Trynka et al., 2013, 2015; Kichaev et al.,
2014; Pickrell, 2014; Farh et al., 2015; Finucane et al., 2015; Li and
Kellis, 2016).

Many genomic studies have been carried out in parallel to
GWASs to characterize the genetic and epigenetic landscape of
the human genome. These genomic studies often collect samples
from multiple different tissues or cell types and characterize
genomic information in a tissue- or cell type-specific fashion.
For example, the ENCODE (The ENCODE Project Consortium,
2012) and Roadmap (Kundaje et al., 2015) collect various
epigenetic annotation measurements in the form of open
chromatin accessibility, DNase I hypersensitive sites (DHSs), and
histone modifications (e.g., H3K27me3 and H3K36me3) on 16
cell lines and 111 tissues. The epigenetic information measured
from these projects allows for a functional characterization of
the human genome. As another example, the GTEx project
collects gene expression and genotype measurements from
54 human tissues on nearly 1,000 individuals using whole-
genome sequencing, whole-exome sequencing, and bulk RNA
sequencing (RNA-seq) (GTEx Consortium, 2015). By paring
gene expression information with genotype information, GTEx
allows for the study of tissue-specific gene expression and its
genetic basis in the form of expression quantitative trait loci
(eQTLs) mapping. Similarly, the CommonMind project collects
gene expression, open chromatin accessibility and genotype
information in the dorsolateral prefrontal cortex from up to
452 patients with schizophrenia and bipolar disorder as well as
healthy controls (Fromer et al., 2016). Characterizing the cortex-
specific transcriptomic and epigenetic profile in CommonMind
can facilitate the investigation of the molecular mechanism
underlying neuropsychiatric diseases. In addition, various single
cell RNA-seq (scRNA-seq) studies are being performed to collect
cell type-specific gene expression measurements on tens of
thousands of cells from various tissues and organs (Bacher and
Kendziorski, 2016). Such cell type-specific expression profiles
can be used to understand how specific cell types may underlie
complex traits (Watanabe et al., 2019). Finally, existing bulk
and single cell gene expression studies also facilitate the
characterization of gene co-expression pattern in a tissue- or
cell type-specific fashion (GTEx Consortium, 2015; Bacher and
Kendziorski, 2016; Shang et al., 2020b). Tissue- or cell type-
specific gene co-expression provides invaluable information on
the tissue or cell type basis of disease etiology (Shang et al.,
2020b). Overall, various genomic studies have provided tissue- or
cell type-specific information for inferring trait-relevant tissues
and cell types.

With the increasing availability of different tissue- and cell
type-specific genomic datasets, many statistical methods have
been recently developed to integrate these genomic data with
GWASs for identifying trait-relevant tissues and cell types. These
various integrative methods differ in terms of the underlying
statistical model and the particular genomic information they

make use of. For example, the sLDSC (stratified LD score
regression) converts tissue-specific epigenetic measurements
into tissue-specific SNP functional annotations and estimates
to what extent different tissue-specific functional annotations
explain trait heritability (Finucane et al., 2015). The inferred
SNP heritability due to tissue-specific annotation is treated as
a quantitative measurement for trait-tissue relevance. sLDSC
is a special case of MQS (minimal norm quadratic unbiased
estimation for summary statistics) and effectively relies on
a method of moments (MoM) to estimate SNP heritability
based on linear mixed models (Zhou, 2017). While sLDSC and
MQS were initially proposed to examine one SNP annotation
at a time in the presence of multiple epigenetic annotations,
SMART (scalable multiple annotation integration for trait-
relevant tissue identification) (Hao et al., 2018) extends these
methods to simultaneously incorporate multiple tissue-specific
binary and/or continuous functional annotations to facilitate
consistent trait-tissue inference (Liang and Zeger, 1986; Chen
et al., 2004). SMART uses the generalized estimating equation
(GEE) algorithm on the same linear mixed model to achieve such
inference goal. Different from using epigenetic measurements,
the LDSC-SEG (sLDSC applied to specifically expressed genes)
uses tissue-specific transcriptomic annotations, allowing for
the inference of trait-tissue relevance with transcriptomic data
(Finucane et al., 2018). Similarly, RolyPoly (a regression-based
polygenic model) relies on a similar linear mixed model as
used in sLDSC/MQS/SMART and creates cell type-specific
annotations based on scRNA-seq data (Calderon et al., 2017). In
contrast, while using the tissue-specific bulk RNA-seq expression
information, the deTS method (method of decoding tissue
specificity) directly examines whether the tissue-specifically
expressed genes tend to be trait-associated genes using standard
enrichment analysis such as the Fisher’s exact test to serve
as evidence of trait-tissue relevance (Pei et al., 2019). Some
methods can make use of the expression quantitative trait loci
(eQTLs) information in detecting trait-relevant tissues and cell
types. For example, NTCS (normalized tissue causality score)
uses eQTLs to assess the genetic causality behind GWASs
(Ongen et al., 2017) and eQTLEnrich tests whether eQTLs
from a given tissue and/or cell type are significantly enriched
for trait associations (Gamazon et al., 2018). Alternatively,
other methods measure the trait-tissue relevance by evaluating
the proportion of phenotypic variance explained by genetically
regulated expression levels (GReX) in different tissues. For
example, IGREX (impact of genetically regulated expression)
(Cai et al., 2020) and RhoGE (Mancuso et al., 2017) obtain
the predicted GReX in tissues and use the association evidence
of tissue-specific GReX with the trait for inferring trait-
relevant tissues. Finally, CoCoNet (composite likelihood-based
covariance regression network model) (Shang et al., 2020b)
integrates GWAS data with tissue- or cell type-specific gene
co-expression patterns obtained from bulk or single cell gene
expression studies based on a network model. In particular,
CoCoNet expresses gene-level effect sizes for the given GWAS
trait as a function of the tissue-/cell type-specific adjacency
matrix and infers how a tissue is relevant to the given trait by
examining how effective the tissue-specific gene co-expression
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network is for predicting gene-level association pattern with
the trait.

Despite the abundance of integrative methods developed for
trait-tissue relevance inference, however, a comprehensive review
is currently lacking for summarizing the technical details and
benefits of each of the abovemethods. Previous reviews on tissue-
trait relevance inference often focus on a limited number of
methods that use only functional annotations (Cano-Gamez and
Trynka, 2020). To fill this critical knowledge gap, we provide a
systemic review on ten different integrative methods for trait-
tissue relevance inference. These methods are organized into four
main categories based on the tissue- or cell type-specific genomic
information they reply on. For each method in turn, we describe
the input genomic data types, the detailed statistical model and
computational algorithm, the output for evaluating trait-tissue
relevance, and the main results obtained in the original study. A
summary of these methods is provided in Table 1 and Figure 1,
with a brief schematic illustration of each type of methods
provided in Figure 2. We hope that this review can serve as a
useful reference for practitioners who are interested in identifying
the causal tissues/cell types of GWAS traits and understanding
the SNP association with complex traits in a tissue-specific
fashion, as well as formethodologists who develop computational
methods for quantifying trait-tissue relevance.

METHODS BASED ON TISSUE-SPECIFIC

SNP FUNCTIONAL ANNOTATIONS

Here, we describe the first category of methods for trait-tissue
relevance inference. The first category of methods makes use of
SNP functional annotations. Exemplary methods include sLDSC
(Finucane et al., 2015) and SMART (Hao et al., 2018) that make
use of epigenetic annotations; and LDSC-SEG (Finucane et al.,
2018), deTS (Pei et al., 2019), and RolyPoly (Calderon et al., 2017)
that make use of transcriptomic annotations. The key idea behind
these methods is to estimate the contribution of tissue-/cell type-
specific functional annotations to SNP heritability for the GWAS
trait of interest.

Methods That Use Epigenetic Annotations
In parallel to trait mapping efforts, large-scale functional genomic
studies have yielded a rich source of epigenetic annotations
(The ENCODE Project Consortium, 2012; Akbarian et al., 2015;
Kundaje et al., 2015; Stunnenberg et al., 2016). Various discrete
and continuous epigenetic annotations are being developed to
describe and characterize the biological function of genetic
variants (Kellis et al., 2014; Carithers and Moore, 2015; Dixon
et al., 2015). For example, we can now classify genetic variants
based on their biochemical function as measured by histone
modification, DNase I hypersensitive sites (DHSs), metabolomic
QTL evidence, and/or a combination of all these measurements
in the form of chromatin states (Pique-Regi et al., 2011; Ernst and
Kellis, 2012; McVicker et al., 2013). Often times, these epigenetic
annotations are tissue specific and/or cell type specific, allowing
characterizing SNP functions in a tissue- or cell type-specific
fashion. Paring such tissue-specific SNP epigenetic annotations

with SNP association evidence with the GWAS trait allows us
to infer trait-tissue relevance. Here, we introduce two methods,
sLDSC and SMART, that make use of epigenetic information
for trait-tissue relevance inference. In the present review, we
simply refer to each tissue-specific epigenetic annotation (e.g.,
H3K4me1, H3K4me3, and H3K9ac) as a functional category.

sLDSC
The sLDSC (Finucane et al., 2015) estimates how a tissue-/cell
type-specific functional annotation contributes to the SNP
heritability of the GWAS trait as evidence for trait-tissue
relevance inference. Specifically, for each examined tissue
in turn, sLDSC first partitions SNPs into C different non-
overlapping functional categories based on tissue-specific
epigenetic annotations. We use Hc (c = 1, . . . ,C) to denote
the set of SNPs that belong to the c-th category. For example,
C could be three, with H1 = H3K4me1 that consists of SNPs
that are inside or nearby H3K4me1 peaks in the examined
tissue, H2 = H3K4me3 that consists of SNPs that are inside or
nearby H3K4me3 peaks, andH3 =H3K9ac that consists of SNPs
that are inside or nearby H3K9ac peaks. We denote χ

2
j as the

marginal chi-square statistics for the j-th SNP association with
the trait. sLDSC considers the following model on the marginal
chi-square statistic:

E
[
χ
2
j

]
= 1+ N

C∑

c=1

τcℓ
(
j, c
)
, (1)

where ℓ

(
j, c
)
=
∑

j′∈Hc
r2jj′ is the LD score of the j-th SNP with

respect to category c, with r2
jj
′ being the R-squared value between

j-th SNP and j
′
-th SNP that is in the set Hc; and τc represents

the per-SNP heritability of categoryHc. The total SNP heritability
explained by the examined functional annotationHc is defined as
h2g (c) = pcτc with pc being the number of SNPs in category c. By

replacing E
[
χ
2
j

]
with the observed GWAS marginal association

statistic χ
2
j and solve Equation (1), sLDSC can obtain the

estimate of τc, τ̂c, and subsequently ĥ2g (c). With the standard

error of ĥ2g (c) estimated using a jackknife procedure (Quenouille,

1956), sLDSC can further compute a z-score ĥ2g (c) /se
(
ĥ2g (c)

)

and a subsequent p-value as a measurement of the tissue/cell type
relevance to the GWAS trait based on the functional annotation
c. In the original paper, the sLDSC method is applied to analyze
17 complex diseases and traits using one functional annotation
at a time. By analyzing cell type-specific functional annotations,
sLDSC identified many cell type relevance to traits. Examples
include the relevance of central nervous system cell types to
body mass index, age at menarche, year of education, and
smoking status.

SMART
sLDSC examines one functional annotation at a time. However,
analyzing one epigenetic annotation at a time fails to incorporate
the rich information contained in various other annotations
that likely characterize other functionality of variants (Lu et al.,
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TABLE 1 | A summary of statistical methods for trait-tissue relevance inference.

Genomic

information

Method GWAS inputs Measurements Strengths Limitations References

Epigenetic

annotations

sLDSC SNP-based

Summary statistics

p-values It extends the commonly

used LDSC approach by

partitioning SNPs into

different functional

categories and determining

the contribution of each

category to trait heritability;

can test one annotation

while controlling for other

annotations in the model.

Examines one annotation at

a time; relies on the

standard linear mixed model

that assumes a polygenic

genetic architecture; uses

method of moments for

model fitting.

Finucane

et al., 2015

SMART Either

individual-level

phenotype and

genotype data or

summary statistics

Posterior

probabilities

It handles multiple binary

and/or continuous

annotations simultaneously;

uses the computationally

efficient GEE method to

estimate and make

inference on annotation

coefficients.

Relies on the standard linear

mixed model that assumes

a polygenic genetic

architecture.

Hao et al.,

2018

Transcriptomic

annotations

LDSC-SEG SNP-based

summary statistics

p-values Same as the sLDSC model;

effectively creates a gene

level annotation by

annotating SNPs in genes

that are specifically

expressed in a tissue to one

and annotating the

remaining SNPs to zero.

Model performance highly

depends on the gene

expression data, which is

used to determine tissue

specificity of gene

expression and

subsequently tissue specific

SNP annotations; sensitive

to gene expression

correlation across cell and

tissue types.

Finucane

et al., 2018

RolyPoly SNP-based

summary statistics

p-values Similar to the sLDSC model;

integrates scRNA-seq data

with GWAS; jointly analyzes

gene expression from

multiple tissues or cell types;

prioritizes trait-relevant cell

types and genes.

Model performance highly

depends on the gene

expression data used;

sensitive to gene expression

correlation across cell and

tissue types.

Calderon

et al., 2017

deTS A list of

trait-associated

genes

p-values Applicable when only a list

of GWAS significant genes

are available.

Model performance highly

depends on the gene

expression data; there is not

a commonly accepted

threshold for defining

trait-associated genes, and

different thresholds may

result in different sets of

genes and thus different

enrichment results.

Pei et al.,

2019

eQTL

information

NTCS A list of

trait-associated

and null SNPs

Ranking of

tissues based

on adjusted

fold-

enrichment

Rank genes in terms of their

contribution to trait-tissue

relevance.

No publicly available tools;

model implementation is

redundant and difficult to

replicate.

Ongen et al.,

2017

eQTLEnrich GWAS summary

statistics

p-values Both tissue-shared and

tissue-specific regulatory

effects of eQTLs are

analyzed.

The adjusted

fold-enrichment used for

ranking tissues in

eQTLEnrich is correlated

with GWAS sample size.

Gamazon

et al., 2018

Genetically

regulated

expression

(GReX)

IGREX Either

individual-level

phenotype and

genotype data or

summary statistics

p-values Measures the phenotypic

variance explained by

GReX; can analyze both

GWAS individual-level and

summary data.

Uses REML for inference,

which can be time

consuming.

Cai et al.,

2020

(Continued)
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TABLE 1 | Continued

Genomic

information

Method GWAS inputs Measurements Strengths Limitations References

RhoGE SNP-based

summary statistics

p-values Measures the phenotypic

variance explained by

GReX.

Uses a two-stage regression

for inference, which may fail

to account for estimation

uncertainty in the first stage.

Mancuso

et al., 2017

Gene

co-expression

network

CoCoNet Either

individual-level

phenotype and

genotype data or

summary statistics

Ranking of

tissues based

on

log-likelihood

Incorporates tissue-specific

gene co-expression

networks constructed from

either bulk or single cell

RNA sequencing (RNAseq)

studies with GWAS data; is

scalable to tens of

thousands of genes.

Currently only focuses on

ranking tissues for a given

disease.

Shang et al.,

2020b

These methods make use of different genomic information (1st column), GWAS inputs (3rd column), and different measurements (4th column) for trait-tissue relevance inference,

strengths (5th column), and limitations (6th column) of each method.

2016, 2017; He et al., 2017). For example, some annotations are
designed to evaluate the function of a variant in determining the
protein structure, while some other annotations are designed to
quantify its ability to regulate gene expression. Even categories
that belong to the same epigenetic annotation may characterize
substantially different functions of a variant. For example,
H3K4me1 is used to annotate enhancers while H3K4me3 is
used to annotate promoters. Therefore, it is desirable to make
use of multiple epigenetic annotations to obtain consistent and
robust trait-tissue relevance inference results. A key step that
facilitates the incorporation of multiple epigenetic annotations
is the discovery that the data generating model underlying
sLDSC is a standard linear mixed model and that sLDSC
fits the linear mixed model using the method of moments
(MoM) (Zhou, 2017). Indeed, sLDSC is practically a special
case of MQS, which provides a unified framework for variance
component estimation in linear mixed models (Zhou, 2017).
Building upon the same linear mixed model that sLDSC and
MQS use, SMART (Hao et al., 2018) was developed to incorporate
multiple tissue-/cell type-specific epigenetic annotations for trait
tissue/cell type inference. In particular, SMART allows for the
incorporation of multiple tissue-specific binary and continuous
epigenetic annotations. For example, a tissue-specific binary
histone annotation can be an indicator that indicates whether the
SNP resides inside the peak regions of the histone mark, while a
tissue-specific continuous histone annotation can be an average
of counts in the histone peak region. Importantly, because of its
reliance on a data generative linear mixed model, SMART can be
applied to handle either individual-level GWAS data or summary
statistics. For individual-level GWAS data, SMART models the
phenotype as

y = G̃γ + εy, (2)

where y is a vector of phenotypes for N GWAS samples; G̃ is an
N × p genotype matrix measured from the same N samples and
p genome-wide SNPs; γ is a p-vector of effect sizes; and εy ∼

N
(
0N , σ

2
y IN

)
is theN-vector error term, where 0N represents an

N-vector of zeros and IN represents an N-dimensional identity
matrix. The phenotype y and each column of the genotype
matrix G̃ are standardized to have zero mean and unit standard
deviation, allowing us to ignore the intercept in Equation (2).
SMART assumes that all SNPs are characterized by a set of
s functional annotations. For the j-th SNP, we use a (s+ 1)-

vector Fj =
(
1, Fj1, . . . , Fjs

)T
to denote its annotation values

across s functional epigenetic annotations, where the first value
1 corresponds to the intercept. Here, each of Fj1, . . . , Fjs can
either be a binary value or a continuous value. With the SNP
annotations, SMART assumes that the SNP effect size γj follows
a normal distribution with zero mean and SNP-specific variance
that is a function of the annotation vector,

γj ∼ N

(

0,
σ
2
j

p

)

, σ 2
j = Fjα

∗, (3)

where α∗ =

(
α0

α

)

is a (s+ 1)-vector of coefficients that include

an intercept α0 and a s-vector of annotation coefficients α. To
evaluate the joint contribution of multiple annotations to genetic
effect sizes, SMART performs parameter inference using the
generalized estimation equation (GEE) (Liang and Zeger, 1986).
Use of GEE not only enables scalable computation, but also allows
for the use of GWAS summary statistics based on the samemodel
characterized by Equations (2) and (3). By applying GEE, SMART
obtains point estimates α̂ and their covariance matrix Var

(
α̂
)
,

which allow for the computation of the multivariate Wald

statistic, α̂
TVar

(
α̂
)−1

α̂. The Wald statistic is further modeled
as a mixture of two non-central chi-squared distributions for
classifying tissues into trait-relevant and trait-irrelevant groups.
An expectation-maximum (EM) algorithm is then applied to the
chi-squared mixture to infer the posterior probability of a tissue
being a trait-relevant tissue.

In the original paper, SMART analyzed 43 traits from
29 GWAS studies and obtained many trait-relevant tissues
and cell types. For example, SMART identified the central
nervous system (CNS) tissues to be the most trait-relevant for
psychiatric disorders (e.g., schizophonia, Alzheimer’s disease)
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FIGURE 1 | A decision tree on which method to use for identifying trait-relevant tissues/cell types based on the availability of data types.

and neurological related traits (e.g., years of education, childhood
BMI). These results are consistent with existing literature. For
example, searching the trait-tissue pair schizophrenia-CNS on
PubMed yielded 17,720 hits while searching for the trait-tissue
pair Alzheimer-CNS yielded 34,395 hits, supporting their clear
relevance. As another example, SMART identified the bone and
connective tissues to be related to height and femur neck bone
mineral density, and the blood/immune tissues to be related to
immune diseases (e.g., Rheumatoid Arthritis, type 1 diabetes).
These results are also in line with literature: PubMed search

for height-BoneConnective yielded 13,644 hits and search for
RA-BloodImmune yielded 6,868 hits, supporting their relevance.

Methods That Use Transcriptomic

Annotations
Besides epigenomic studies, many gene expression studies have
been carried out to characterize the transcriptomic landscape of
various tissues and cell types (The ENCODE Project Consortium,
2012; GTEx Consortium, 2015; Kundaje et al., 2015). These
tissue- and cell type-specific gene expression information can be
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FIGURE 2 | The schematic illustration of methods in the five different categories. (A) The general schema of methods that make use of epigenetic annotation

information; sLDSC is shown as the detailed example. (B) The general schema of methods that use tissue-specific transcriptomic annotation information; these

(Continued)
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FIGURE 2 | methods first define specifically expressed genes (SEGs) based on differential expression analysis, then construct genomic annotations from the SEGs,

and finally use sLDSC to perform trait-tissue relevance inference. (C) The schema of methods that test for enrichment of trait associations among eQTLs in each

tissue. (D) The general schema of methods that obtain the estimated genetically regulated expression (GReX) and use the proportion of phenotypic variance explained

by GReX (PVEGReX ) to measure the trait-tissue relevance. (E) The schema of methods that make use of tissue-specific gene co-expression networks; CoCoNet is

shown as the detailed example.

invaluable for inferring trait-tissue relevance (Hu et al., 2011;
Slowikowski et al., 2014; Pers et al., 2015; Gormley et al., 2016).
In this section, we introduce three methods that make use of gene
expression data in the form of transcriptomic annotations. These
methods include LDSC-SEG (Finucane et al., 2018) and deTS
(Pei et al., 2019) that make use of bulk RNA-seq expression data,
and RolyPoly (Calderon et al., 2017) that makes use of single-cell
RNA-seq expression data.

LDSC-SEG
LDSC-SEG consists of two separate steps. The first step of LDSC-
SEG is a differential expression analysis on the gene expression
data to identify a set of genes that are specifically expressed
in certain tissues. These tissue specific genes are referred
to either as specifically/differentially expressed genes (SEGs)
or tissue-specific genes (TSGs). In the differential expression
analysis, LDSC-SEG examines one gene at a time. For the
given gene, LDSC-SEG contrasts the gene expression level of
samples collected in a focal tissue (e.g., brain-cortex) with those
of samples collected in all other tissues that are not in the
same tissue category as the focal tissue (i.e., non-brain tissues).
Because tissues within each tissue category tend to share similarly
expressed genes, excluding the tissues in the same tissue category
in the differential expression analysis step becomes the key
to ensure robust detection of SEGs. Indeed, such differential
expression analysis allows for the inclusion of as many genes
as possible that are highly expressed in the focal tissues but not
in tissues from other tissue categories. The SEG evidence for
a gene is typically characterized by a t-statistic, with a higher
value indicating that the gene is more specifically/differentially
expressed in the focal tissue. With the differential expression
analysis results, LDSC-SEG ranks all genes in a descending
order based on their t-statistics. LDSC-SEG then defines SEGs
as the top 10 percentage of all genes. The identification of SEGs
allows LDSC-SEG to create a binary SNP annotation in a tissue
specific fashion. In particular, for each tissue at a time, LDSC-
SEG annotates the SNP to be one if the SNP resides within 100 kb
of the transcription start site of any SEG and annotates it to
be zero otherwise. With the tissue-specific binary annotation,
LDSC-SEG then performs the second step of applying the
sLDSC method described in the previous section to estimate
the proportion of SNP heritability explained by each tissue-
specific binary SNP annotation. The resulting test statistic from
sLDSC is then served as a relevance evidence between the tissue
and trait.

In real data applications, LDSC-SEG analyzed GWAS
summary statistics for 48 diseases and traits and found
significant tissue-/cell type-specific enrichments for 34 traits.
Several of these findings recapitulate known biology. For

example, immunological traits exhibit immune tissue-type
enrichments; psychiatric traits exhibit strong brain-related tissue
enrichments; and type II diabetes exhibits enrichments in
the pancreas. LDSC-SEG also validated several recent genetic
analyses results, including robust brain-specific enrichments for
smoking status, years of education, body mass index, and age
at menarche.

deTS
deTS also consists of two-steps. The first step of deTS also
consists of a differential expression analysis as in the first
step of LDSC-SEG. The only minor difference there is the
definition of SEGs: while LDSC-SEG defines top 10% as SEGs,
deTS defines top 5% as SEGs. However, the second step of
deTS relies on an enrichment analysis rather than sLDSC.
Specifically, deTS implements Fisher’s exact approach to test
whether the SEGs are enriched in the focal tissue or not. The
Fisher’s exact test builds upon a two-by-two contingency table,
where the two rows represent the number of SEGs vs. the
number of non-SEGs in the tissue, while the two columns
represent the number of trait-associated genes vs. the number
of non-trait-associated genes. Here, the trait-associated gene
is defined based on a gene-level p-value threshold of 5 ×

10−3, where the p-value is calculated from a gene-based test
(Lamparter et al., 2016). In the original study, deTS is applied
to analyze GWAS summary statistics for 26 traits. deTS found
that artery tissues were primarily associated with anthropometric
trait, liver was primarily associated with metabolic traits,
blood and spleen were primarily associated with immune-
related traits, and brain tissues were primarily associated with
neurodegenerative/neuropsychiatric diseases.

RolyPoly
RolyPoly (Calderon et al., 2017) is specifically developed
for single cell expression studies. It consists of the same
two steps as LDSC-SEG. In the first step, RolyPoly uses a
slightly different approach than LDSC-SEG to define the SEGs.
Specifically, for each tissue, RolyPoly ranks all genes in a
descending order based on the normalized expression values
and define the top 20% of genes as SEGs. Afterwards, RolyPoly
creates a binary SNP annotation based on whether a SNP
resides within a 10 kb window nearby the transcription start
site of any SEGs. In the second step, RolyPoly applies the
same linear mixed model as used in sLDSC for inference
(Finucane et al., 2015). In real data analysis, RolyPoly identified
significant relevance of oligodendrocytes and fetal replicating
cells with schizophrenia.
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METHODS BASED ON EXPRESSION

QUANTITATIVE TRAIT LOCI INFORMATION

In recent years, expression mapping studies have succeeded
in identifying many cis-acting genetic variants known as cis-
eQTLs that are associated with gene expression levels (Schadt
et al., 2003; Morley et al., 2004; Lappalainen et al., 2013;
Battle et al., 2014). The identified eQTLs can help elucidate the
molecular mechanisms underlying human disease associations
and facilitate the identification of biological pathways underlying
disease etiology. For example, it has been shown that the GWAS
variants frequently colocalize and likely share functional effects
with eQTLs (Nica et al., 2010; Nicolae et al., 2010; Grundberg
et al., 2012; Shang et al., 2020a). Thus, at least some of these
variants influence traits through regulatory effects. In addition,
the identified eQTLs in multiple tissues and/or cell types can help
interpret the GWAS results through linking non-coding genomic
regions to gene functions and identifying causal tissues/cell types
behind the genetic associations (Nica and Dermitzakis, 2008;
Montgomery and Dermitzakis, 2011; Grundberg et al., 2012). In
this section, we will introduce two methods, NTCS (Ongen et al.,
2017) and eQTLEnrich (Gamazon et al., 2018), that make use of
tissue- and cell type-specific eQTL information to infer the trait-
relevant tissues and cell types that are behind genetic causality.

NTCS
For a given tissue, NTCS makes use of a list of significant eQTLs
that are not in linkage disequilibrium (LD) with each other along
with their colocalized GWAS variants. These eQTLs are obtained
from a conditional eQTL mapping analysis, performed through,
for example, FastQTL (Welter et al., 2014). The identified eQTLs
are overlapped with common variants downloaded from the
NHGRI-EBI GWAS catalog (Storey and Tibshirani, 2003) to
obtain a list of eQTLs that have GWAS significance (P <

5e−8). These eQTLs are denoted as real GWAS variants, GWAS
variants, or GWAS-associated variants.

The NTCS method first uses the Regulatory Trait
Concordance (RTC) (Nica et al., 2010) approach to detect
colocalized variants between the GWAS study and the eQTL
study while properly accounting for LD. The resulted RTC score
is then converted to a probability value that measures the sharing
between a GWAS variant and an eQTL in a tissue, or between
two eQTLs in a pair of tissues based on Bayes’ theorem:

P
(
shared

∣
∣RTC = rtc

)

=
P
(
RTC = rtc

∣
∣shared

)
· π1

P
(
RTC = rtc

∣
∣shared

)
· π1 + P

(
RTC = rtc

∣
∣not shared

)
· π0

, (4)

where P
(
shared

)
= π1 is a π1 statistics and π0 = 1 − π1.

When calculating the probability of sharing between the GWAS
variants and eQTLs in a given tissue, the π1 statistics is calculated
from eQTL p-values in the tissue and GWAS variants. When
calculating the probability of sharing between two eQTLs in
a pair of tissues, the π1 statistics is calculated from eQTL p-
values in the two tissues. Both P

(
RTC = rtc

∣
∣not shared

)
and

P
(
RTC = rtc

∣
∣shared

)
are estimated through simulations, where

the RTC scores are simulated under both the null and alternative
hypotheses. Specifically, for each coldspot that has colocalized
GWAS and eQTL variants (eQTLreal), under the null hypothesis
(H0) where GWAS and eQTL are tagging two different variants,
two hidden causal variants (GWAScausal and eQTLcausal) are
randomly selected. Under the alternative hypothesis (H1) where
GWAS and eQTL are tagging the same variant, one hidden causal
variant (eQTLcausal) is randomly selected. In both hypotheses,
the GWAS and eQTL variants are randomly selected from the
variants that are in linkage disequilibrium with the hidden causal
variants with r2 ≥ 0.5. Afterwards, gene expression is simulated
based on the eQTLreal effect size. The RTC analyses are then
performed under H0 and H1, each for 200 times. For each
coldspot, the total 400 simulated RTC scores under H0 and H1

are merged and sorted to obtain a point probability. Finally,
for each GWAS trait in each given tissue and each eQTL that
colocalizes with a GWAS variant, NTSC defines a normalized
GWAS variant-eQTL probability as the probability of the GWAS
variant and eQTL tagging the same functional effect divided by
the sum of the tissue-sharing probabilities for the eQTL in that
tissue. Intuitively, tissue-specific eQTLs would more likely be a
GWAS variant than tissue non-specific eQTLs that are shared
across tissues. Therefore, for each GWAS trait in each given
tissue, NTCS defines a normalized tissue causality score (NTCS)
and a null NTCS as follows:

NTCS =
1

p2
×

p1∑

j=1

P
(
SNPj − eQTLj shared|rtc

)

P
(
eQTLj shared|rtc

) , (5)

Null NTCS =
p1

p0p2
×

p0∑

j=1

P
(
null SNPj − eQTLj shared|rtc

)

P
(
eQTLj shared|rtc

) , (6)

where p1 is the number of GWAS-associated variants for the
trait; p2 is the total number of eQTLs in a given tissue; p0 is
the number of GWAS-null variants; P

(
SNPj − eQTLj shared|rtc

)

is the probability that a GWAS variant (i.e., SNPj) and eQTLj
tagging the same functional effect; and P

(
eQTLj shared|rtc

)
is

defined in Equation (4). An enrichment metric is further defined
as NTCS

null−NTCS
. The tissues with an enrichment metric greater

than one are likely the causal tissues for the diseases/traits. To
create a p-value for testing trait-relevance of each tissue, NTCS
first selects a null GWAS variant to match each of the GWAS
variant, based on minor allele frequency and distance to the
closest transcription start site. Afterwards, NTCS repeats the
above enrichment metric calculation using the set of null GWAS
variants, examines one tissue at a time, compares the tissuemetric
for the disease-associated variants to the metric observed under
the null for that tissue, and calculates a corresponding p-value
based on a Mann-Whitney test that compares the distribution
containing each of the j-th elements in Equation (5) and (6) for
the real GWAS and under the null. In the NTCS paper, NTCS
method discovers that liver is the tissue most likely to be causal in
most of the GWAS traits. Brain tissues are the top tissues relating
to traits like schizophrenia, height, and age of onset of puberty.
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eQTLEnrich
eQTLEnrich is a rank- and permutation-based method that aims
to test for enrichment of trait associations among eQTLs in each
tissue. For a given GWAS trait, for each of the tissues with eQTLs,
eQTLEnrich first finds the most significant cis-eQTL per eGene,
and then extracts the GWAS variant association p-values for each
set of eQTLs. Afterwards eQTLEnrich tests for the enrichment of
the distribution of GWAS p-values for each set of eQTLs in the
corresponding tissue. The distribution of the GWAS p-values for
each set of eQTLs is tested for enrichment of highly ranked trait
associations compared to an empirical null distribution sampled
from non-significant variant-gene expression associations.

Specifically, eQTLEnrich first computes the fold-enrichment
for each GWAS-tissue pair. The fold-enrichment is defined as
the fraction of eQTLs with GWAS variant p < 0.05 compared
to expectation. Similarly, eQTLEnrich also computes fold-
enrichment values for randomly sampled sets of non-significant
variant-gene expression associations of equal size to the eQTL
set, matching the distance of eQTL to TSS of the target gene,
MAF, and number of proxy variants (at r2 ≥0.5), to account for
LD. Then eQTLEnrich computes an enrichment p-value as the
fraction of permutations with similar or higher fold-enrichment
than the observed value. Finally, eQTLEnrich computes an
adjusted fold-enrichment by dividing the fold-enrichment for a
specific GWAS-tissue pair by the fold-enrichment of all non-
significant variant-gene expression associations with GWAS P <

0.05 for the tissue-trait pair. The eQTLEnrich method is applied
to analyze 18 complex diseases and traits on 44 GTEx tissues
and identifies many trait-relevant tissues. Examples include the
relevance of left heart ventricle and adipose visceral omentum
to type I diabetes, ovary and artery coronary to coronary artery
disease, and hippocampus to Alzheimer’s disease.

METHODS BASED ON TISSUE-SPECIFIC

GENETICALLY REGULATED EXPRESSION

LEVELS

Here, we describe the third category of methods for trait-
tissue relevance inference. The third category of methods use
information from genetically regulated expression levels (GReX)
that are constructed in a tissue specific fashion. GReX measures
the part of gene expression levels that can be predicted by
(cis-)SNPs (Gamazon et al., 2015). In a given tissue, GReX is
constructed for each gene by fitting a prediction model that
relates the gene expression level to the cis-SNPs. Common
prediction models for GReX construction include elastic net
(Zou and Hastie, 2005), BSLMM (Zhou et al., 2013), and DPR
(Zeng and Zhou, 2017). Constructed GReX is often tested with
the GWAS trait for association evidence through transcriptome-
wide association studies (TWAS) (Gamazon et al., 2015; Gusev
et al., 2016). Indeed, GReX of many genes have been identified
to be associated with diseases and disease-related complex traits.
In this section, we will introduce two methods, IGREX (Cai
et al., 2020) and RhoGE (Mancuso et al., 2017), that rely on
GReX to infer trait-tissue relevance. Both methods effectively are

built upon the same model but rely on different algorithms for
model inference.

Specifically, both methods consider two separate models, one
for the gene expression study and the other for the GWAS. In
the gene expression study, both methods examine one tissue and
one gene at a time. For them-th gene in the tissue, both methods
consider the following linear model for modeling the relationship
between gene expression and genotypes of cis-SNPs,

zm = Gmwm + εz , (7)

where zm is an n-vector of expression values measured from a
focal tissue, with n being number of available samples in this
tissue; Gm is an n × p genotype matrix for the same n samples
and p cis-SNPs for the given gene; wm is a p-vector of SNP
effect sizes on the gene expression; and εz ∼ N(0n, σ

2
z In) is the

residual error term. The gene expression zm and each column
of genotype matrix G are standardized, allowing us to ignore
the intercept term in Equation (7). The genetic effects on gene
expression is assumed to follow a normal distribution a priori,
with wm ∼ N(0p, σ

2
wIp).

In the GWAS data, both methods consider the following
regression model that relates the phenotype to genotype:

y = G̃rγ +

M∑

m=1

βmG̃mwm + εy, (8)

where y and εy are defined as in Equation (2); G̃m is the N × p
genotype matrix for p cis-SNPs in the given gene; wm is the same
SNP effects on gene expression as defined in Equation (7); the

scalar βm ∼ N
(
0, σ 2

β

)
represents the genetic effect of GReX

(i.e., G̃mwm) on y and can be interpreted as the causal effect
of GReX on y (Yuan et al., 2019; Zhu and Zhou, 2020); and

γ ∼ N
(
0, σ 2

γ
Iq

)
is the q-length vector of alternative genetic

effects; note that G̃γ is not the same genotype matrix as G̃m, and

the q SNPs in G̃γ are those who show direct horizontal effects on
y, such as the trans-eQTLs and SNPs associated with alternative
splicing events (Matlin et al., 2005).

Above, the proportion of phenotypic variance explained by
GReX is calculated as

PVEGReX =
Var

(∑
m βmG̃mwm

)

Var(y)
. (9)

IGREX
IGREX (Cai et al., 2020) relies on a two-stage method to
perform inference for the model defined in Equations (7) and (8).
Specifically, IGREX first estimates the posterior distribution of
genetic effects on expression based on Equation (7) and obtains
the posterior distribution wm|zm,Gm ∼ N

(
µm,6m

)
for each

gene m. Afterwards, IGREX treats the posterior distribution
wm|zm,Gm from Equation (7) as the prior distribution for
Equation (8), and obtain the estimates of σ

2
β
, σ

2
γ
and σ

2
y using
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either the method of moments (MoM) or REML. Finally, the
estimate of PVEGReX is obtained by

P̂VEGReX =
tr
(∑

m σ̂
2
β
G̃m

(
µmµT

m+6m
)
G̃T
m

)

tr
(∑

m σ̂
2
β
G̃m(µmµT

m+6m)G̃T
m+σ̂

2
γ
G̃rG̃T

r +σ̂
2
y IN

) . (10)

In the above two-step estimation procedure, IGREX relies on
the posterior distribution wm|zm,Gm to account for estimation
uncertainty associated with wm in Equation (8). Given the point
estimate P̂VEGReX and its standard error estimated by block
jackknife (Quenouille, 1956), IGREX tests the tissue-specific
null hypothesis that H0 : PVEGReX = 0 by using a simple
z-test. While IGREX is presented based on individual level
data, IGREX is also applicable for GWAS summary statistics
using the same model defined above. In the original study,
IGREX used the GTEx project as expression mapping study
and GWAS data in both individual-level and summary statistics.
IGREX identified several trait-relevant tissue types. For example,
significant GReX components were observed in liver for both
high-density lipoprotein and low-density lipoprotein, in brain-
amygdala for bipolar disorder, in brain-spinal cord (cervical c-1)
for coronary artery disease, and in spleen for height.

RhoGE
RhoGE (Mancuso et al., 2017) fits a similar model as defined
in Equations (7) and (8) as IGREX, but with three differences.
First, RhoGE uses only the posterior mean estimate µm obtained
from Equation (7) and subsequently ignores the uncertainty in
the estimation ofwm. Second, RhoGE is based on LDSC, and thus
estimates the variance components σ

2
β
effectively using MoM.

Third, RhoGE does not account for the horizontal pleiotropic
effects G̃rγ . Technically, RhoGE modifies the LDSC estimation
procedure to use gene level summary statistics. Specifically, the
gene-level statistic χ

2
m is computed as ŵT

mφmφT
mŵm/ŵT

mVmŵm,
where ŵm is obtained from the genomic best linear unbiased
prediction (GBLUP) (de los Campos et al., 2013); φm are the
p-vector of SNP-based Wald statistics from the GWAS study;
and Vm is an p × p LD matrix calculated from a reference
panel. Afterwards, RhoGE follows the same inference procedure
as in LDSC to estimate PVEGReX and tests whether PVEGReX is
statistically significant from zero. The resulting test statistic is
served as evidence for trait-tissue relevance inference. RhoGE
analyzed GWAS summary statistics for 30 complex traits and
found 108 significant trait-tissue pairs across 17 traits and 33
tissues, including BMI-brain, schizophrenia-brain, and high-
density lipoprotein-heart.

METHODS BASED ON TISSUE-SPECIFIC

GENE CO-EXPRESSION NETWORK

In this section, we introduce the fourth category of methods,
which currently consists of only CoCoNet (Shang et al., 2020b),
for trait-tissue relevance inference. CoCoNet performs trait-
tissue relevance inference using tissue- or cell type-specific
gene co-expression network information obtained from bulk or
single cell gene expression studies. Gene co-expression networks
characterize how genes are connected with each other and are

coregulated together. Gene co-expression networks have been
shown to be informative for predicting gene-level association
effect sizes on diseases in GWASs and are often tissue and
cell type specific (Chen et al., 2011; Hou et al., 2014; Jia
and Zhao, 2014; Hao et al., 2018). Genes with high network
connectivity have also been shown to be enriched for heritability
of GWAS traits (Kim et al., 2019). Therefore, it is important to
take advantage of tissue-specific gene connection information
in tissue-specific gene co-expression networks to facilitate the
inference of disease tissue relevance.

CoCoNet
CoCoNet (Shang et al., 2020b) first obtains anM-vector of gene-
level effect sizes with the trait of interest from theGWAS, denoted
as θ = (θ1, · · · , θM)

T . In the gene expression study, CoCoNet
examines one tissue at a time and for the given tissue constructs
anM byM gene-gene adjacency matrix A = (amm

′ ) to represent
the gene co-expression network there. The mm′-th element of
the adjacency matrix amm′ is 1 if gene m is connected to gene
m′ in the network and 0 otherwise. amm is set to be 0 for any
1 ≤ m ≤ M to ensure the absence of self-loops (Urry and Sollich,
2013). CoCoNet then relies on a covariance regression network
model (Lan et al., 2018) to model the relationship between A

and θ

θ ∼ N (1Mµ,6 (A)) , (11)

where µ is the intercept and 6 (A) is the covariance of θ as a
function of the adjacency matrix A. The covariance 6 (A) is in a

general form6 (A) =
∑L

l=0 σ
2
l
Al, whereAl =

(
a
(l)
mm′

)
is the l-th

power of A, and L is the maximum number of paths considered

for linking between any two genes. For any integer l, a
(l)
mm′ is the

number of l-paths linking from gene m to gene m′ in the co-
expression network, where an l-path is any path of length l. For

example, when l = 2, a
(2)
mm′ =

∑M
h=1 amhahm′ , where amhahm′ is

1 only when there is a link connecting the three genesm−h−m′

and 0 otherwise. For l ≥ 1, CoCoNet sets a
(l)
mm = 0. When l = 0,

CoCoNet sets A0 = I. In the real data application, CoCoNet
suggests choosing L based on Bayesian Information Criterion
(BIC) according to real data analysis.

Because of the computation burden associated with the model
in Equation (11), CoCoNet relies on composite likelihood for
approximate inference. In particular, the composite likelihood
only needs to make an assumption that each pair (θm, θm′ )
follows a bivariate normal distribution, instead of making a
strong assumption that the m-vector of θ jointly follows a
multivariate Gaussian distribution. Specifically, for each pair of
genes m and m′, CoCoNet considers the composite likelihood
P(θm, θm′ |µ, σ 2

0 , σ
2
1 ) as

(
θm

θm′

)

∼ BN

((
µ

µ

)

,
∑L

l=0 σ
2
l

(
a
(l)
mm a

(l)
mm′

a
(l)
mm′ a

(l)
m′m′

))

, (12)
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where BN represents bivariate normal distribution. CoCoNet
finally constructs the log composite likelihood as

loglik (θ) =

M∑

m=1

M∑

m
′
>m

log P
(
θm, θm′

∣
∣
µ, σ 2

0 , · · · , σ
2
L

)
. (13)

CoCoNet fits the above composite likelihood through a
standard maximum likelihood inference procedure. Afterwards,
CoCoNet calculates the maximum composite likelihood for
each tissue and eventually ranks tissues by the corresponding
log likelihoods. In the original study, the comparative results
between CoCoNet and LDSC-SEG/RolyPoly in the original
study suggest that tissue-specific gene co-expression network
provides valuable trait-tissue relevance information, perhaps
more so than the information provided by marginal tissue-
specific gene expression pattern used in LDSC-SEG/RolyPoly.
CoCoNet analyzed eight different disease GWASs that include
four neurological disorders and four autoimmune disorders on
38 tissues obtained from GTEx, CoCoNet found that the top
relevant tissues identified for neurological disorders are generally
brain tissues, which are disease causing tissues. CoCoNet also
found the top relevant tissues for autoimmune disorders to
be intestinal tissues, which are disease-target tissues. In trait-
cell type relevance identification, CoCoNet found GABAergic
interneurons, oligodendrocyte precursor cells, astrocytes, and
microglia are the top relevant cell types in Alzheimer’s disease.
CoCoNet also found both pyramidal neurons and various glia
cells are selected as top relevant cell types in bipolar disorder.

DISCUSSION

We have presented a systematic review on existing statistical
methods for trait-tissue relevance inference. Our review comes
from a technical perspective and summarizes the input data
types, detailed statistical model and inference algorithm, criteria
for evaluating tissue/cell type relevance of a trait, as well as the
main findings from these existing methods. Identifying trait-
relevant tissues using these methods not only facilitates the
understanding of disease etiology but also enables more powerful
association analysis in future GWASs (Hao et al., 2018). For
example, tissue-specific SNP annotations and their contributing
weights to SNP heritability in the trait-relevant tissue can be used
to construct more powerful SNP set tests in GWASs (Hao et al.,
2018). In addition, the inferred trait-relevant tissues and/or cell
types facilities the interpretation of TWAS analysis and improves
the analysis power (Gamazon et al., 2015; Gusev et al., 2016).

Thus far, existing methods have primarily relied on ad hoc
procedures to validate the inferred trait-tissue relevance results.
For example, one would examine top trait-relevant tissues one
by one and look for corresponding evidence in the literature to
support such results. Manually cross checking with literature,
however, requires domain knowledge and may yield biased
results. Manual literature checking is also time consuming and
the outcome results are not easy to quantify. To overcome the
shortcomings of manual literature checking, Hao et al. (2018)

provided a convenient approach to quantitatively validate trait-
tissue relevance identified from real data applications in an
unbiased fashion. Specifically, Hao et al. (2018) performs cross
checking with previous literature quantitatively via PubMed
search. The intuition behind Hao’s approach is that, if a
tissue is truly relevant to a given trait, then the number of
previous biomedical researches would have been carried out
on the tissue for the trait. Consequently, the relevance of a
tissue to a trait can be measured by the number of previous
publications on the trait-tissue pair. Therefore, for each trait-
tissue pair, Hao et al. (2018) used the names of trait and
tissue as input and counted the number of publications that
contain the input values either in the abstract or in the title.
For example, for the schizophrenia-CNS trait-tissue pair, they
conducted the search by using “schizophrenia [Title/Abstract]
AND (CNS [Title/Abstract] OR brain [Title/Abstract] OR central
nervous system [Title/Abstract] OR neuron [Title/Abstract] OR
glia [Title/Abstract]).” By counting the number of previous
publications on the trait-tissue pair, Hao et al. (2018) provides
a somewhat ground truth for quantifying and comparing the
inferred trait-tissue relevance results. For example, PubMed
yielded 17,720 hits for the pair of schizophrenia-CNS, which
covers 63.8% of all schizophrenia-tissue search results from the
previous literatures, supporting the relevance between CNS and
schizophrenia. By performing PubMed search, Hao et al. (2018)
shows that certain histone modification marks often provide
more information than others. A follow up study using similar
PubMed search approach also shows that histone modifications
are more informative in inferring trait-tissue relevance than
using either the marginal expression information or gene co-
expression network information extracted from gene expression
studies (Shang et al., 2020b).

Existing methods are primarily developed to take advantage
of one particular genomic information for trait-tissue relevance
inference. As we summarized in the review, some methods make
use of histone modification marks (for example, sLDSC and
SMART) while some other methods make use of gene expression
data (for example, LDSC-SEG and RolyPoly). However, different
genomic information may contain complementary information
for trait-tissue relevance inference. Indeed, Finucane et al. (2018)
found that one function annotation may be more preferable
than another. The same study thus proposed ways to combine
two annotations together either by creating a joint synthetic
annotation or by combining p-values from analyses of the
two annotations separately. A follow up method, SMART,
formally models multiple genomic annotations jointly with a
multivariate statistical model to improve the accuracy of trait-
tissue relevance inference (Hao et al., 2018). SMART found
that substantial accuracy gain can be achieved by combining
multiple genomic annotations than using one annotation at a
time. Besides methodology development to directly incorporate
multiple annotations for trait-tissue relevance inference, methods
have also been developed to combine multiple annotations into a
single, more interpretable and more informative annotation. For
example, GenoSkyline creates synthetic annotation based on a
variety of epigenetic annotations (Lu et al., 2016). An updated
version of GenoSkyline, GenoSkyline-Plus, can now incorporate
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both RNA-seq data and DNA methylation data in addition
to epigenetic annotations to produce functional epigenetic
annotations across 127 tissues and cell types (Lu et al., 2017).
A similar method, FUMA, is a recently developed web-based
platform that can annotate GWAS significant SNPs for functional
consequences on genes, CADD scores, and chromatin states in
127 tissues and cell types (Watanabe et al., 2017). Similarly, in
gene expression studies, while existing approaches use either
the list of tissue-specifically expressed genes, tissue-specific gene
expression levels, or tissue-specific gene co-expression pattern,
combining the use of all the information together may have
added benefits. Therefore, developing statistical methods to
incorporate multiple genomic data types as well as multiple
aspects of the same data type will likely yield more accurate
tissue-trait relevance in the future. Beyond the scope of our
review on trait-tissue relevance, we would add a word for GWAS.
GWAS has been developed and used for nearly two decades and
reported over 200,000 trait-SNP associations (GWAS catalog as
of Dec 15, 2020). However, sample size is always a controversial
issue. Current GWAS is toward larger and larger sample sizes in
order to discover novel SNPs, however, the “overly-identified”
SNPs are often lack of meaningful biological explanations. In
contrast, small sample size typically cannot detect any signals.
The first issue is now relatively well-studied, for example fine-
mapping, gene-based test, etc. We think that the second issue

is worth more investigations in the field of GWAS. In addition,
factors that determine the phenotype/disease are complex and
various, further questions include when and how, i.e., what,
when, and how a factor/factors determines a phenotype/disease.
We believe that all of the theoretical, computational and
experimental work are very meaningful to explore the “truth” of
how genome affects “us” and makes “us” different.
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The estimation of heritability has been an important question in statistical genetics.

Due to the clear mathematical properties, the modified Haseman–Elston regression has

been found a bridge that connects and develops various parallel heritability estimation

methods. With the increasing sample size, estimating heritability for biobank-scale

data poses a challenge for statistical computation, in particular that the calculation of

the genetic relationship matrix is a huge challenge in statistical computation. Using

the Haseman–Elston framework, in this study we explicitly analyzed the mathematical

structure of the key term tr(KTK), the trace of high-order term of the genetic relationship

matrix, a component involved in the estimation procedure. In this study, we proposed

two estimators, which can estimate tr(KTK) with greatly reduced sampling variance

compared to the existing method under the same computational complexity. We applied

this method to 81 traits in UK Biobank data and compared the chromosome-wise

partition heritability with the whole-genome heritability, also as an approach for

testing polygenicity.

Keywords: polygenicity, UK Biobank, subsampling estimator, effective number of markers,

Haseman-Elston regression

INTRODUCTION

Given the increasing sample size and sequencing capability, high-throughput genetic data is
presented as the standard input that challenges statistical computation. For example, in the
estimation of heritability for complex traits using all markers concurrently, both (i) constructing
the genetic relationship matrix [GRM, denoted as K and the mathematical expression can be seen
in section Materials and Methods, with its computational cost O(MN2)] and (ii) the estimation
of heritability using linear mixed model [O(N3)] are computationally expensive (Yang et al.,
2010). In order to alleviate computational burden, various solutions have been proposed. Modified
Haseman–Elston regression (HE) can be used to estimate heritability with reduced computational
cost in the estimation step [O(N2)], but the construction of GRM is still needed (Chen, 2014). Using
summary statistics, such as those estimated from the genome-wide association study (GWAS),
rather than individual-level data, can provide a theoretical equivalence estimate of the heritability
under the assumption that the source of summary statistics and the linkage disequilibrium (LD)
reference are homogeneous (Bulik-Sullivan et al., 2015), if not always the case.

Even under the HE framework, given the availability of biobank-scale data, such as UK Biobank
(UKB) data (Bycroft et al., 2018), the computational cost for GRM poses a challenge for heritability
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estimation mentioned procedure above. In order to reduce the
computational cost of GRM, recently a randomized estimation
of heritability has been introduced by Wu and Sankararaman
(2018), called randomized Haseman–Elston regression (RHE), a
promising method that can be used for both single-trait and bi-
trait analyses (Sankararaman, 2019). This method is built on a
hybrid framework which can be applied to biobank-scale data,
and a key innovation involved is a quick evaluation for tr(KTK),
the trace of the multiplication of GRM with its transpose.
Direct computation of tr(KTK) can be time-consuming, at the
time cost of O(N2M), but in RHE the numerical evaluation of
tr(KTK) can be realized via a randomization method expressed
in quadric form. However, we found that the sampling variance
of RHE in the original report is incorrect because of their wrong
derivation (refer to Appendix A3 in Wu and Sankararaman’s
original report). In this study, we further investigate the statistical
property of RHE, in particular the term about tr(KTK), and its
relevant extensions.

This report was written for three purposes. First, we found
that the provided randomization estimate for tr(KTK) is
correct but with its sampling variance, which is proportional to
tr(KTKKTK), not properly treated in Wu and Sankararaman’s
original report. We derived and numerically validated the
sampling variance of tr(KTK). Second, recently a hybrid routine
that can use either individual-level data and summary statistics
has also been found (Zhou, 2017; Wu and Sankararaman,
2018), in which subsampling technique is used to evaluate
tr(KTK); however, its sampling variance was not available. We
provided a similar method as subsampling but with availability
of its analytical sampling variance. Third, we partitioned the
heritability based on the effective number of markers and applied
them in the partitioning of heritability for some complex traits
in UKB.

MATERIALS AND METHODS

Genetic Relationship Matrix
For a homogenous unrelated sample, its genotypic matrix can be
written as X, a matrix of N rows—individuals, andM columns—
coding the count of the reference allele for a biallelic locus. After

standardization for each genotype x̃kl =
xkl−2pl√
2plql

, in which 2pl is

the allele frequency and
√
2plql the square root of the variance, we

can define GRM as K = 1
M X̃X̃T . Given K , we can easily derive

some characters of K . Denote Ko as the off-diagonal elements,
and it is easy to see that E (Ko) = −1

N−1 , because the summation
of the diagonal is N − 1. var (Ko) is the sampling variance of the
all off-diagonal elements.

Of note, var (Ko) relates to the concept, so-called effective

number of markers, denoted as Me thereafter. As noticed, Me

is defined as the reciprocal of var (Ko). Me = 1
var(Ko)

=

M2

M+
∑M

l1 6=l2
E
(
ρl1 l2

)2 , in which E(ρl1l2 ) is the expected Pearson’s

correlation between the lth1 and lth2 loci. Alternatively, Me =
1

E
(
ρ l1 l2

)2 . It is known that for a population, the averaged linkage

disequilibrium across the genome is nearly a constant given the

markers; in other words,Me is a constant genetic parameter. The
definition of Me in this report allows researchers to calculate
Me based on a reference population of the same origin to the
population in question. Similarly, Me.c represents the averaged
LD for any pair of markers on the cth chromosomes.

As the causal variants are hardly observed directly, their
relationship with markers are surrogated by relationship between
markers, as reflected inMe. AsMe is a critical parameter in many
genetic applications, a conceptional parameter is its involvement
in genetic prediction (Dudbridge and Wray, 2013), or power
calculation for the estimation of heritability (Visscher et al.,
2014). In the estimation for variance components, as shown
below,Me is a key parameter.

Haseman–Elston Regression Framework
for the Estimation of Heritability
Haseman–Elston regression (HE) has been initially proposed
for the linkage analysis (Haseman and Elston, 1972). With its
original kernel relatedness between sib pairs via linkage replaced
by linkage disequilibrium for unrelated samples, the modified
HE can be used for the estimation of heritability (Chen, 2014).
Due to its clear mathematical property, HE has been found
a bridge to connect and develop various parallel methods for
the estimation of heritability, such as LD score regression that
estimates heritability and uses summary statistics from GWAS
(Bulik-Sullivan et al., 2015; Zhou, 2017).

However, LD score regression is based on various assumptions
that may or may not be met in practice. LD score regression uses
SNPs in a sliding window instead of all genome-wide SNPs to
calculate LD scores, which will lose efficiency if heterogeneity
exists between the reference population and the population
that generates the GWAS summary statistics. If we directly use
individual-level data, the time cost will be unaffordable, such
as for the restricted maximum likelihood estimation method
(REML); in contrast, a method of moment (MoM) can provide
equivalent estimation for the heritability for complex traits.

We assume that

y = X̃β + e; β∼ N

(

0,
h2

M
I

)

; e∼ N
(
0, σ 2

e I
)

in which y is the standardized phenotype for a trait of interest,
X̃ is the standardized genotypic matrix of N individuals and
M the biallelic markers, β is the additive effect associated with
each marker, e is the residual, h2 is the SNP heritability, and
σ
2
e is the residual variance. It is easy to know that var

(
y
)

=

E
(
yyT

)
−E

(
y
)
E

(
yT

)
= h2

M X̃X̃T+σ
2
e I=h2K+σ

2
e I.

Estimation for Heritability via Modified
Randomized Haseman–Elston Regression
Consequently, we extend the work by Wu and Sankararaman
(2018); the moment estimator is to minimize

Q = tr

{[
yyT −

(
h2K+σ

2
e I

)]2
}

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 612045138

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xu et al. Estimate Variance Component by Subsampling

By taking the differentiation in terms of h2 and σ
2
e , we have

{
∂Q

∂h2
= tr

{
h2KTK + σ

2
e K − yyTK

}
= 0

∂Q

∂σ
2
e
= tr

{
h2K+σ

2
e I − yyTI

}
= 0

After algebra, we have the normal equations below:

[
tr

(
KTK

)
tr (K)

tr (K) N

] [
ĥ2

σ̂
2
e

]

=

[
yTKy

yTIy

]

(1)

The estimator for ĥ2 can be written as

ĥ2 =
yT (K − I) y

tr
(
KTK

)
− N

(2)

However, different computational strategies deal with the
computational expensive part for both the numerator and the
denominator. In particular, for the numerator, yTKy can be

decomposed as yTX̃X̃Ty/M, and yTX̃, equal to
(
X̃Ty

)T
. Each

element X̃T
j y of X̃Ty is just the regression coefficient between

the jth marker and y that can be computed via simple linear
regression, or multivariate linear regression if covariates are
included. It is easy to recognize that yTX̃X̃Ty/M follows χ

2
1

after scaling by the sample size N, and a possible non-central
parameter related to the heritability of the trait. Alternatively, we

derive the mathematical expectation E
(
yTKy

)
= NE

(
χ
2
1|h2

)
=

N(1 + Nh2r2), in which r2 is the averaged LD score between a
marker to a causal variants in LD.

The denominator involves the trace of KTK , a high-order
function for GRM. Alternatively, according to the property of the
trace of a matrix, it can be calculated that tr(KTK) =

∑N
i,j K

2
i,j,

a summation of the square of each element in K . From the
first glance, it seems inevitable to compute K , the computational
cost of which is O(N2M), a substantial cost given a large
sample size, such as for UKB of about 500,000 samples (Bycroft
et al., 2018). In order to have a proper estimate for tr(KTK)
but reduce computation cost, three methods are proposed for
estimating tr(KTK).

Estimating tr(KTK)
We present three methods in estimating tr(KTK). Sampling
method I has been proposed by Wu and Sankararaman, but
we provide its correct sampling variance, which was incorrectly
given in their original report (Wu and Sankararaman, 2018).
Sampling method II derives the expectation of tr(KTK) and
estimates it in a reference population with the similar genetic
origin of the population of question. Samplingmethod III slightly
modifies method II if the reference population is big and yields
smaller sampling variance of tr(KTK) than that of method II.

Sampling Method I: The Randomized
Estimator With Corrected Analytical
Sampling Variance
Using randomized estimation, an unbiased estimator LB is
employed to estimate tr(KTK) in RHE (Wu and Sankararaman,

2018). The rational for a randomized estimate is as below:

LB =
1

B

1

M2

B∑

b

tr(zTb XX
TXXTzb) = tr(KTK)

In each iteration, a vector z, of length N, is generated from the
standard normal distribution. As long as z has been generated
B time and B is large enough, it is guaranteed to approach
tr(KTK). As zT

b
XXT can be calculated easily, the computational

cost isO(NMB). Then, LB can be plugged into a normal equation
(Equation 2).

In Wu and Sankararaman’s original report, the sampling
variance of LB was given as var (LB) = 2tr

(
KTK

)
/B, which was

incorrect, and the correct one should have been

var (LB) ≡ Var

(
1

B

∑
B
b=1z

T
b K

TKzb

)

=
1

B2

∑
B
b=1Var

(
zTb K

TKzb

)

=
1

B2

∑
B
b=12tr

(
KTKKTK

)
=

2tr
(
K4

)

B
(3)

The derivation of the penultimate step uses the quadratic
variance calculation formula. The sampling variance of LB is
proportional to tr(KTKKTK), the computational cost of which
is likely to be infeasible for biobank-scale data. However, its
practical sampling variance can be estimated from B iterations

above var (LB) =
∑B

j=1

(
LBj − LB

)2
/B.

Sampling Method II: Estimating tr(KTK) by
Subsampling
In an alternative route, we bypass the direct computation of
tr(KTK). It is shown that tr

(
KTK

)
= N2

/Me + N for unrelated
samples (see Supplementary Notes). N is the sample size, a
known parameter; we only need to estimateMe. As noted above,
Me can be estimated by subsampling a proportion of the study
population (Figure 1) or by a reference population of the same
origin with the population of study (Zhou, 2017). Thus, we can
estimateMe using a small proportion of the sample, as long as we
can estimate M̂e; we can easily get the estimator of tr

(
KTK

)
. We

define a new LS estimator: LS ≡ N2
/M̂e + N. It is an unbiased

estimate (see Supplementary Notes). Suppose the sample size
of subsample is s, there are s2/2 off-diagonal elements and it
takes O(s2M/2) time to calculate M̂e. The sampling variance of

LS is, using the Delta method,
(
L
′

s

)2
var

(
M̂e

)
= N4

M4
e
σ
2
M̂e

, in

which L
′

S = − N2

M2
e
the first derivative of LS and σ

2
M̂e

the sampling

variance for M̂e. σ
2
M̂e

is not directly known but can be directly

estimated in the third method proposed below.

Sampling Method III: Estimating tr(KTK) via
Shotgun Randomization
However, σ

2
M̂e

in method II is not analytical probably because

each individual will be involved s times in the estimation
of variance. With slightly modification, we developed a new

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 612045139

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xu et al. Estimate Variance Component by Subsampling

FIGURE 1 | Schematic diagram of the sampling methods for the two

estimators. The large square represents the entire genetic relationship matrix

(GRM) with sample size N = 14, and each small an element in GRM, and the

yellow the diagonal element of the matrix. (A) Schematic diagram of sampling

methods for the LS estimator. The red squares in the lower triangular of GRM

represent the pairs of samples for LS. This figure shows that when B = 2 (the

parameter for the LB estimator given by Wu and Sankararaman, 2018), we set

subsample size s =
√
2BN ≈ 7 for LS to guarantee the same computational

cost. (B) Schematic diagram of sampling methods for the LT estimator.

Equally total number (n = BN = 28) of GRM elements in the lower triangular in

red represents the pair of the samples for LT . The elements are drawn as if

they are randomly, as shot by a gun, to reduce correlation between individuals.

estimator LT (lower triangle shotgun sampling estimator) to
estimate tr(KTK) in RHE. The difference in sampling schemes
between methods II and III can be visualized as Figure 1. Given
the whole GRM, method II samples a square matrix of size
s × s after rearrangement and calculates half elements, whereas
method III randomly samples n = s2/2 elements in the whole
GRMwithout replacement so as to reduce overlapping of samples
(Figure 1). This sampling idea is similar to the shotgun method
in the first-generation DNA sequencing technology, so we call the
method III shotgun sampling estimator.

Given a random subset of n elements A ⊆ {1, 2, · · · , N(N −

1)/2}, we define

LT ≡ N +
N2

n

∑
n
i=1Ko

2
Ai

It can be proved that LT is an unbiased estimator of tr(KTK) with
its sampling variance N4var(Ko

2)/n, which can be estimated by
N4var(Ko

2
Ai
)/n (see Supplementary Notes). Therefore, we can

get the unbiased estimate of tr(KTK) and its sampling variance
at the same time in one step. It does not need to calculate all the
elements in Ko but the corresponding pairs of the individuals,
and to calculate the mean of the product of all their genetic
values. Therefore, each item in the summation can be computed
inO(M), and the total running time isO(nM).

The Estimation of Variance Components
and Its Sampling Variance
If we replace tr

(
KTK

)
with its subsampling estimators, we can

get the synthesized estimator for heritability

ĥ2 =
NE

(
χ
2
1|h2

)
− N

N2
/M̂e

= M̂eh
2r2

where E

(
χ
2
1|h2

)
is the mean of χ

2
1 for each SNP with or

without the adjustment of covariates. Using the Delta method,

we show in Supplementary Notes that the variance of ĥ2 can be
formulated as

σh2 ≈
2Me

N2
+Me

2
σ
2
Ko

2

n
(h2)

2

and each item in the above formula is estimable, then we can get
the variance estimator of the variance component

σ̂h2 =
2M̂e

N2
+ M̂2

e

σ
2
KoAi

2

n
(ĥ2)

2
(4)

Except for ĥ2, all other parts involved are independent to
the phenotype, so given a specific sample of question, the
estimator has a linear relationship with the square of the
estimated heritability.

Genetic Partitioning of Heritability
Yang et al. (2010) estimated the chromosome-wise partitioned
heritability and found that the heritability of complex trait,
such as human height is proportional to the length of the
chromosome, that is, proportional to the number of causal
variants. Some researchers gave more weight to large effects to
explain heritability and to study polygenicity (O’Connor et al.,
2019; Yang and Zhou, 2020). In this report, we instead calculated
heritability based on M̂e and compared the chromosome-wise
partition heritability with the whole-genome heritability

ĥ2C =

22∑

c=1

NE

(
χ
2
1|h2

)
− N

N2
/M̂e.c

=

22∑

c=1

M̂e.ch
2
c r

2
c (5)

in which M̂e.c is the effective of markers for the cth chromosome
and r2c is the averaged squared correlation between a casual
variant and a marker on the cth chromosome. Under the
assumption of polygenicity, ĥ2C = h2

M̂e

∑22
c=1 r

2
c , and the ratio

between h2

h2C
= r2∑22

c=1 r
2
C

. As both r2 and
∑22

c=1 r
2
c are unknown,

we use 1
Me

and 1∑C
c=1 Me.c

as the surrogates for r2 and
∑22

c= 1 r
2
c .

By breaking the GRM of the whole genome K in Equation
(1) into the GRMs for 22 autosomes, we can also estimate
the chromosome heritability jointly in one model. This method
has to inverse a 23 × 23 matrix. Under the assumption
that the genotype of each chromosome contains the same N
individuals, the inversed matrix is completely upon N and
Me.c, so a computation cost linear to 23, without bothering
the conventional matrix inversion procedure, a computation
cost of 233, can be written down analytically. In particular,
the cth diagonal element of the inverse matrix is Me.c/N

2, and
the last column/row is −Me.c/N

2. For more details, please see
Supplementary Notes.
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Heritability for the Weighted Genetic
Relationship Matrix
Given the definition of the weighted GRM

Kw=

∑M
l=1 (xil − 2pl)(xjl − 2pl)

∑M
l=1 2plql

we can get an estimator of the weighted heritability as well
as its variance estimator based on weighted GRM through a
similar derivation

ĥ2w =

N

∑M
l=1 2plqlχ

2
1|h2,l

∑M
l=1 2plql

− N

N2
/M̂ew

, σ̂h2w
=

2M̂ew

N2
+ M̂2

ew

σ
2
KoAi

2

n
(ĥ2w)

2

where M̂ew is the estimation ofMe forKw, and χ
2
1|h2 ,l

is the square

of the z-score for the lth SNP with or without the adjustment of
covariates. The weighted chromosome-wise partition heritability
can be expressed as

ĥ2Cw =

22∑

c=1

N

∑Mc
l=1

2plqlχ
2
1|h2,l

∑Mc
l=1

2plql
− N

N2
/M̂ew.c

where M̂ew.c is the estimation of weighted Me for the
cth chromosome and Mc is the number of SNP of the
cth chromosome.

Connection to Other Estimators
The BOLT-LMM method (Loh et al., 2015) might be the most
widely used method in the field of heritability estimation for
large-scale data. Theoretically, the computational complexity of
BOLT-LMM is O(PMN1.5), where P is the number of iterations
for convergence. In the LT estimator, the subsample size n ≪

N1.5, so our calculation time is less than BOLT-LMM in theory.
In terms of actual calculation, the LB estimator used less
calculation time to get an accuracy similar to BOLT-LMM (Wu
and Sankararaman, 2018); the variance of our estimators is
about an order of magnitude smaller than LB under the same
calculation time. Thus, our method is better than BOLT-LMM in
calculation accuracy and time. In terms of memory, the memory
complexity of BOLT-LMM isO(NM/4), while thememory of our
subsampling estimators is proportional to M and the subsample
size s in the LS estimator, which generally does not exceed 10% of
the total sample size.

Given the availability of the estimators and their sampling
variances, it is able to evaluate the statistical power of the
estimators and estimate the sample size for the given type I
and type II error rates. Under the null hypothesis h2 = 0, the
sampling variance for the additive variance component can be

reduced to σ̂h2 ≈ 2M̂e

N2 , which are equivalent to that of REML
(Visscher et al., 2014). It is consequently known that the statistical
power of the presented method will be equivalent to REML. In
contrast, the original Haseman–Elston regression has doubled

sampling variances where σ̂h2 ≈ 4M̂e

N2 (Chen, 2014), because the

original HE regression only uses the off/upper-diagonal of the
matrix, as presented in the numerator above. The connection to
LD score regression is obviously too; here, the whole Me can be
seen as a genome LD score, rather than being partitioned into
genomic bins.

RESULTS

Simulation Results for the Evaluation of
tr(KTK)
In the simulation and in the real data, we compared themean and
variance of the three estimators LB, LS, and LT , and the results
are as presented in Figure 2. We took n = BN and s =

√
2BN to

make sure the three estimators are under the equal computational
cost ofO(NMB) (see Figure 1 for an example). In the simulation,
we set the genotype in two ways: (1) The minor allele frequency
(MAF) of each SNP was randomly generated from a uniform
distribution between 0.03 and 0.5, and two levels of LD (linkage

disequilibrium, in terms of Lewontin’s D
′
, the normalized LD

parameter) strength were set as 0–0.2 (weak LD) and 0.6–0.8
(strong LD) with the SNP numberM = 2,000, 5,000 and sample
sizeN = 500, 1,000, and 2,000, respectively. (2) The real genotype
data consisted of 12,980 adjacent markers on chromosome 22 of
2,000 randomly sampled unrelated white British individuals in
UKB. B was set from 5 to 50 and repeated 100 times for each to
assess the mean and variance of the three estimators.

Across different parameter settings (sample sizes, number
of loci, MAF, and LD), it yielded a similar pattern for the
evaluated results of tr(KTK). We chose M = N = 2,000
and strong LD for detailed presentation, and the rest were
shown in Supplementary Figures 1, 2). Figure 2 shows that all
the three estimators were unbiased. The variance of each of these
estimators, as expected, was inversely proportional to B. The
real sampling variance of LB was several times larger than the
analytical incorrect result given inWu and Sankararaman’s study
(refer to Appendix A3 in their original report) but was consistent
with 2tr

(
KTKKTK

)
/B, just the corrected one as derived in this

study (Equation 3). The sampling variance of LT was about an
order of magnitude smaller than that of LB. The simulation
results in the real data shown in Supplementary Figure 3 were
consistent with Figure 2.

Real Data Analysis for tr(KTK)
We compared the performance of the three estimators LB, LS,
and LT in UKB. After quality control, 525,460 autosome SNPs
with MAF> 0.01 for 278,788 unrelated British white individuals,
whose pairwise genetic relationship coefficient <0.0125, were
included for analysis. We set B = 5, 10, 20, 40, 60, 80, and
100, and calculated each of the three estimators 100 times to get
the mean and the variance for each B. We compared the means
of the three estimators with the expected value of tr

(
KTK

)
=

N2
/M̂e+N, where M̂e was estimated from subsamples; given with

M̂e ≈ 87,351, tr
(
KTK

)
was expected to be 1,168,573 for each of

the three estimators.
The calculation was performed on an Intel(R) Xeon(R)

Bronze 3104 CPU @ 1.70-GHz server cluster, and about
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FIGURE 2 | The means and the sampling variances of three estimators in simulation. The genotype data were constituted by 2,000 individuals and 2,000 markers

with strong LD (from 0.6 to 0.8 in Lewontin’s measure D
′
). B is the parameter related to the iteration for LB. For each B, the number of samples of the LS and LT

estimators was adjusted to ensure that the three estimators have the same computational cost. (A) The boxplots of means and (B) the variance of 100 random

experiments of three estimators for each B. In (A), we combined 10 cases with B = 5–14 into the first group, and so on, and the last five cases with B = 46–50 were

combined into the fifth group. The red boxes represent the means of LB, green the means of LS, and blue the means of LT , respectively. The black horizontal line

represents the real value of tr
(
KTK

)
. In (B), the solid red line represents the true sampling variance of the LB estimator derived in this study, and in contrast the

long-dash red line the sampling variance of the LB estimator incorrectly given by Wu and Sankararaman (2018). The solid blue line represents the theoretical sampling

variance of LT . The solid green line is not given because we cannot get the theoretical sampling variance of LS yet.

30 threads were allocated for each calculation. The actual
calculation time of the three estimators were basically the same
(see Supplementary Table 1) and conformed to the theoretical
calculation complexity O(NMB). The variances of the three
estimators LB, LS, and LT for tr(KTK) are listed in Table 1.
In particular, between the randomized estimator and the
subsampling estimators, there was a huge difference between
their variances. Under the real data, the sampling variance of
LB was large, while the sampling variances of the other two
estimators were smaller and the variance of LT was about half
that of LS. The variances of each of the three estimators decreased
with the increasing B, consistent with the simulation.

Chromosome-Wise Partitioning for
Heritability
Equation (2) presents how heritability is estimated using all 22
autosomes, and Equation (5) offers an alternative method by
summation of chromosome-wise estimation for heritability. For
ease of comparison, we only estimated heritability for 81 traits
as demonstrated by Ge et al. (2017). We used the first two
principal components as the covariates to control the possible
population stratification; other covariates were adjusted upon the
traits. The chromosome-wise partition heritability was calculated
by the summation of the heritability estimated for Me.c for each

chromosome (Table 2), and the whole-genome heritability was
calculated from the GRM of the whole genome.

The estimated heritability of some selected UKB traits is listed
in Table 3 (see Supplementary Table 2 for all the 81 traits).
The heritability of all traits was basically very similar to Ge
et al.’s result and within the error range. Several physiological
traits, such as height and weight had high heritability, while
social traits that were more affected by social factors, such as
the duration of certain activities, showed lower heritability. This
result was consistent with the mainstream conclusion. The left
part of Equation (4) for variance estimators of the whole-genome

heritability ( 2M̂e

N2 ) contributed a large part of the total variance
(about 0.0017 in 0.002 for N = 270,000). Although the variances
of the L̂B, L̂S, and L̂T were several times different, they influenced
little on the variance of estimated heritability.

In the comparison of the two kinds of heritability for each
trait, all the chromosome-wise partition heritability was higher
than the whole-genome heritability except for the trait of the age
diabetes diagnosed (the explanation of this exception is given
below). For a certain polygenic trait, the heritability attributed
to each chromosome was proportional to M̂e.c according to the
heritability estimation formula (Equation 5). Since the LD score
between chromosomes could be considered as 0, this causes
the M̂e of the whole genome to be diluted by a large number
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TABLE 1 | The sampling variance of the three estimators.

Estimator B = 5 B = 10 B = 20 B = 40 B = 60 B = 80 B = 100

LB 13,918,476 6,970,471 3,501,313 1,689,667 1,214,649 875,951 781,079

LS 4,185,873 982,406 501,486 267,914 138,344 142,868 186,764

LT 1,587,955 787,997 389,442 217,566 130,818 8,6461 81,037

B represents the iterations taken by LB. We took sample size s =
√
2BN for LS and n = BN for LT in each step to guarantee the three estimators having the equal computational cost

of O(NMB), where N is the total sample size.

TABLE 2 | M̂e.c and M̂ew.c of each autosome.

Autosome Number of

markers

M̂e.c M̂ew.c

1 41,805 10,333.95 5,531.40

2 42,087 10,131.61 5,410.58

3 35,488 8,377.99 4,557.51

4 33,248 8,168.11 4,567.46

5 31,855 7,772.11 4,200.29

6 36,643 1,217.21 522.52

7 28,868 6,996.85 3,882.00

8 27,244 5,878.64 2,941.71

9 23,120 6,172.40 3,423.64

10 26,242 5,978.38 3,607.96

11 26,119 4,978.77 2,835.29

12 25,041 6,204.85 3,385.99

13 18,065 4,988.62 2,802.15

14 17,040 4,492.59 2,458.88

15 16,555 3,911.11 2,174.81

16 18,570 4,448.96 2,461.84

17 17,140 3,868.71 2,040.32

18 15,837 4,561.48 2,549.61

19 13,998 3,151.14 1,816.42

20 13,997 3,800.48 2,080.39

21 7,949 2,223.92 1,231.52

22 8,549 2,114.08 1,240.90

M̂e.c is the estimation of the effective of markers (Me ) for the c
th autosome, and M̂ew.c is

the estimation of weighted Me for the c
th autosome.

of blank LD, so the overall M̂e was smaller than the average
M̂e.c of each chromosome. In order to eliminate the influence
of blank LD to see the contribution of effects of causal variants
to heritability, Figure 3 shows the relationship of these two
estimations of the heritability for the 81 traits. The slope of the
solid gray line in the figure represents the ratio of the whole-
genome M̂e to

∑c
i=1 M̂e.c, a ratio of 0.729. This figure was to

capture traits that do not meet the assumptions of polygenic
assumption—or fitness of the model. If a trait were purely
polygenic, the point representing this trait would be expected
just along the solid gray line. However, the points were mostly
distributed above the line, indicating that the effect size of
causal variants was not evenly distributed on the chromosomes.
In particular, the trait of the age diabetes was diagnosed, the
Manhattan plot of which showed many statistically significant

SNPs concentrated on the major histocompatibility complex
(MHC) region on chromosome 6. They all belong to MHC,
which is related to many human traits. Obviously, these loci
breached the polygenic assumption underlying. After deleting
these loci, we reestimated the two kinds of heritability, and all
the traits were basically close to the solid gray line and were
closer compared with Figure 3 (see Supplementary Figure 4).
This shows that the model assumptions were basically valid,
and the estimated value of heritability had a certain degree
of reliability.

Alternatively, the chromosome-wise partitioning heritability
could be estimated jointly by fitting 22 autosomes altogether.
It was basically the same as those calculated singly but slightly
lower than the latter. It was because when calculating the
heritability of chromosomes jointly, we set N for the whole
genome in Equation (5), but smallerN were taken in the equation
for estimating the heritability of each chromosome singly, as
fewer individuals met the quality control standards for a single
chromosome. We mentioned in Method that the fast estimation
of joint heritability should meet the precondition that N of each
chromosome are equal. The heritability estimated by the two
methods will be strictly equal if this precondition holds (see
Supplementary Notes). For traits with large sample sizes, this
precondition could be met well, and the heritability estimated by
the two methods was almost the same.

We also estimated the weighted chromosome-wise partition
heritability and the weighted whole-genome heritability for these
traits (see Supplementary Figure 5). In general, the weighted
estimation of heritability was similar to that without weight.

DISCUSSION

In this study, we corrected the erroneous variance of the LB
estimator and proposed another two unbiased estimators of
tr(KTK), which was the most time-consuming term in RHE (Wu
and Sankararaman, 2018). Instead of plotting the running time
and accuracy of different methods like most articles, we used a
different experimental design to make a special comparison with
the LB estimator. We borrowed the sampling size parameter B
in LB and adjusted the sample size of our estimators so that
the theoretical calculation time of the three estimators was the
same under different sample size parameter B. Under the same
time complexity, our results showed better stability with smaller
variances. In other words, under the same accuracy requirements,
our method could greatly reduce the computation cost.
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TABLE 3 | Estimation of heritability for some traits in UK Biobank.

Field ID Field name N ĥ2
Chr

ĥ2
Gen

ĥ2se

3786 Age asthma diagnosed 31,535 0.271 0.265 0.013

2754 Age at first live birth 100,951 0.281 0.217 0.004

2976 Age diabetes diagnosed 12,628 0.231 0.618 0.033

2139 Age first had sexual intercourse 255,880 0.064 0.051 0.002

21001 Body mass index (BMI) 277,223 0.360 0.282 0.002

4079 Diastolic blood pressure, automated

reading

259,815 0.199 0.161 0.002

894 Duration of moderate activity 231,311 0.045 0.034 0.002

914 Duration of vigorous activity 166,696 0.032 0.025 0.003

874 Duration of walks 267,826 0.055 0.040 0.002

20150 Forced expiratory volume in 1-s (FEV1),

best measure

207,848 0.257 0.207 0.002

20151 Forced vital capacity (FVC), best measure 207,848 0.314 0.252 0.002

2149 Lifetime number of sexual partners 253,460 0.011 0.008 0.002

20127 Neuroticism score 226,198 0.160 0.133 0.002

20161 Pack years of smoking 81,555 0.275 0.201 0.005

102 Pulse rate, automated reading 259,815 0.217 0.170 0.002

21021 Pulse wave arterial stiffness index 92,137 0.045 0.033 0.005

1299 Salad/raw vegetable intake 278,142 0.079 0.057 0.002

20015 Sitting height 277,231 0.528 0.444 0.002

1160 Sleep duration 278,142 0.089 0.070 0.002

50 Standing height 277,508 0.895 0.729 0.002

4080 Systolic blood pressure, automated

reading

259,812 0.194 0.155 0.002

48 Waist circumference 277,649 0.278 0.219 0.002

1528 Water intake 278,142 0.098 0.075 0.002

21002 Weight 277,325 0.372 0.299 0.002

23102 Whole body water mass 273,248 0.468 0.386 0.002

N is the sample size, ĥ2
Chr

is the chromosome-wise partition heritability calculated by adding the heritability of each chromosome, ĥ2
Gen

is the whole-genome heritability calculated from

the GRM of the whole genome, and ĥ2se is the standard error of the whole-genome heritability.

We noted that Wu and Sankararaman further reduced the
calculation time in matrix multiplication by introducing the
mailman algorithm (Liberty and Zucker, 2009), which could also
be used in our calculation by writing our estimators in the form
of multiplication of genetic matrix and a random vector with
multinoulli distribution. From these perspectives, our estimators
were superior substitutions of the LB estimator in Haseman–
Elston regression.

We also gave the sampling variance of the subsampling
estimator, which could be calculated by one sampling without
additional calculation. As a result, the variance estimator of the
heritability could be easily derived. Although the variance of
the LB estimator 2tr

(
KTKKTK

)
/B could also be derived by the

subsampling method (beyond the scope of this study), its time
complexity greatly exceeded the calculation of tr

(
KTK

)
as far as

we know.
The variance of LS was always slightly larger than that of

LT . This was because LT randomly extracted nearly uncorrelated
elements in the lower triangular matrix Ko, while LS extracted
all elements in a triangle of Ko (after reordering the individuals).
Although their sampling variance was approximately equal to the

population variance var(Ko), the sampling variance of LT was
relatively smaller because it uses less related individuals.

One possible drawback of the LT estimator relies on a much
larger reference population than that of LS. When the reference
sample size is small, it is obvious that LT becomes LS. Therefore,
the LT estimator can make full use of large sample size, such
as that of UKB. Although the difference between the variances
of these two estimators is small, and the difference in the final
heritability estimation is even slight, we still provide a novel and
simple subsampling idea, which can be used in many situations
involving large samples.

In the early analysis of heritability, both GRM and Haseman–
Elston regression were applied to related individuals under
the context of linkage analysis using sibling data. Under
linkage, relatedness is actually related to the concept of identity
by descent (IBD). However, with the increasing amount of
data, the significance and application range of GRM and HE
have been expanded. The unrelated individuals we emphasize
here are mainly to distinguish from the linkage analysis of
pedigree data. There is no problem in the estimation of
heritability with related individuals, as demonstrated below. The
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FIGURE 3 | The relationship of the chromosome-wise partition heritability and the whole-genome heritability. (A) Each dot represents a trait in the UKB dataset listed

in Supplementary Table 2. The horizontal axis represents their chromosome-wise partition heritability, and the vertical line at each point is their error bar; the vertical

axis represents their whole-genome heritability. The red color represents the chromosome-wise partition heritability calculated jointly, and the green color represents

the chromosome-wise partition heritability calculated singly. The long-dash line crosses the origin has a slope of 1. The slop of the solid line is 0.729, the ratio of
M̂e∑22

c=1 m̂e.c
. (B) The Manhattan plot for the trait age diabetes diagnosed, and the threshold is for genome-wise threshold for α = 0.05 after Bonferroni correction.

expression tr
(
KTK

)
= N2

/Me + N still holds true for related
samples (see Supplementary Notes), which was confirmed in
simulation (Supplementary Table 3). We have expanded the
sample to all UKB British Whites, which included extra 131,850
individuals, totaling sample size N = 410,638, of various possible
relatedness with the 278,788 unrelated samples and reestimated
the heritability. The results are listed in Supplementary Table 4.
In general, the heritability increased compared to the previous
results of the unrelated set, but negligible. It shows that our
estimators are basically applicable among a more realistic
population even containing partially related individuals but leave
some concerns in theoretical soundness.

Using modified Haseman–Elston regression to estimate
heritability is becoming more and more popular in summary
statistics. We further explored an important connection between
Haseman–Elston regression and Me, the effective number of
independent SNPs, which is also a critical concept in quantitative
genetics. We found thatMe plays a pivotal role in the estimation
of variance components and heritability. As long as we get
the estimation of Me, we can easily get the estimation of its
corresponding variance components.

Although we used only individual-level data to estimate
heritability in this report, the nature of Me allows researchers
to estimate heritability based on a reference population of
the same origin to the population in meta-analysis. However,
the existence of family structure will make Me shrink (see
Supplementary Table 3; the expansion of trace means the
shrinkage of Me), and different family structures make it shrink

differently, leading to inaccurate meta-analysis. Therefore, we
do not recommend using our method in samples with various
related individuals, but it raises a very interesting question for the
estimation theory using mega-scale family trees (Kaplanis et al.,
2018; Shor et al., 2019).

Due to the statistical property of Me, we can easily extend
Me to the dominant model and use the same method to obtain
both additive and dominant heritability, as long as their codes
for the count of the reference allele are orthogonal, as discussed
(Vitezica et al., 2017; Álvarez-Castro and Crujeiras, 2019). We
can also extend Me to estimate a genetic correlation for a pair
of traits, in which tr

(
KTK

)
= N1N2/M̂e + No, where No is the

overlap sample size between a pair of cohorts, which haveN1 and
N2 individuals, respectively.

URLs: The related source code, https://github.com/
GuoanQi1996/LT-Estimator.
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