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TAU OLIGOMERS

Neurofibrillary tangles (NFTs) composed of 
intracellular aggregates of tau protein are a 
key neuropathological feature of Alzheimer’s 
Disease (AD) and other neurodegenerative 
diseases, collectively termed tauopathies. 
The abundance of NFTs has been reported 
to correlate positively with the severity of 
cognitive impairment in AD. However, 
accumulating evidences derived from studies 
of experimental models have identified that 
NFTs themselves may not be neurotoxic. 
Now, many of tau researchers are seeking a 
“toxic” form of tau protein. Moreover, it was 
suggested that a “toxic” tau was capable to 
seed aggregation of native tau protein and to 
propagate in a prion-like manner. However, 
the exact neurotoxic tau species remain 
unclear. Because mature tangles seem to be 
non-toxic component, “tau oligomers” as the 
candidate of “toxic” tau have been investigated 

for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” 
because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), 
multimer (more than dimer), granular (definition by EM or AFM) and maybe small 
filamentous aggregates] has been used by each researchers definition. From a biochemical point 
of view, tau protein has several unique characteristics such as natively unfolded conformation, 
thermo-stability, acid-stability, and capability of post-translational modifications. Although 
tau protein research has been continued for a long time, we are still missing the mechanisms of 
NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to 
abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments 
[e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro 
studies confirmed tau self-assembly by several inducing factors. Researchers are still debating 
whether tau oligomerization is primary event rather than tau phosphorylation in the tau 
pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated 
for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know 
an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and 
methodology for the identification of “tau oligomers”.

Schematic illustrating the central role of tau 
oligomers in tauopathies. 
Image taken from: Gerson J.E. and Kayed R. 
(2013) Formation and propagation of tau 
oligomeric seeds. Front. Neurol. 4, 93.
doi: 10.3389/fneur.2013.00093. 
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Neurofibrillary tangles, composed of intracellular aggregates of
tau protein, are a key neuropathological feature of Alzheimer’s
disease and other neurodegenerative diseases, collectively termed
tauopathies. Tau research has become one of the central players
in the investigation of neurodegenerative diseases. Tau protein
has several unique characteristics such as natively unfolded con-
formation, thermo-stability, acid-stability, and capability of post-
translational modifications. We still do not know whether tau itself
is toxic. With certain triggers, tau may transit into toxic forms.
Researchers are now looking for “tau oligomers” as toxic com-
ponents. Because “tau oligomers” contain variable species of tau
protein [e.g., dimer (disulfide bond-dependent or -independent),
multimer (more than dimer), granular (defined as EM or
AFM) and perhaps small filamentous aggregates] (Figure 1),
it is important to have a consensus regarding the definition,

FIGURE 1 | Schematic illustration of the central role of tau oligomers in tauopathies. Figure taken from Gerson and Kayed (1).

terminology, and methodology for the identification of “tau
oligomers” (1–6).

Recently, “prion-like” toxicity and propagation mechanisms
underlying the progression of disease have been proposed. With
this concept, tau may have the ability to translocate between neu-
rons and amplify toxic components (7). Although we do not know
the exact forms of toxic tau oligomers, accumulating evidence has
shown the probability of tau oligomer propagation (6).

Tau is an intracellular microtubule-associated protein. The
mechanism of tau transmission from cell to cell is still unknown.
Research focusing on extracellular tau will open potential new
avenues for discovering the mechanism of tau propagation (8).

Abnormally hyperphosphorylated tau is a key feature of human
tauopathies. Although we are not sure whether phosphorylation
rather than oligomerization of tau is an initial molecular event in
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tau pathogenesis, investigating the regulatory mechanisms of tau
phosphorylation will be essential (9–11).

Here, we provide an overview of the current understandings of
“tau oligomers” (1–12). Efforts toward the identification of neuro-
toxic tau species will ultimately lead to the translational research
for developing novel therapeutic strategies for tauopathies.
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Aggregation of highly phosphorylated tau into aggregated forms such as filaments and
neurofibrillary tangles is one of the defining pathological hallmarks of Alzheimer’s dis-
ease and other tauopathies. Hence therapeutic strategies have focused on inhibition of
tau phosphorylation or disruption of aggregation. However, animal models imply that tau-
mediated dysfunction and toxicity do not require aggregation but instead are caused by
soluble hyper-phosphorylated tau. Over the years, our findings from a Drosophila model
of tauopathy have reinforced this. We have shown that highly phosphorylated wild-type
human tau causes behavioral deficits resulting from synaptic dysfunction, axonal transport
disruption, and cytoskeletal destabilization in vivo.These deficits are evident in the absence
of neuronal death or filament/tangle formation. Unsurprisingly, both pharmacological and
genetic inhibition of GSK-3β rescue these tau phenotypes. However, GSK-3β inhibition also
unexpectedly increases tau protein levels, and produces insoluble granular tau oligomers.
As well as underlining the growing consensus that tau toxicity is mediated by a highly
phosphorylated soluble tau species, our findings further show that not all insoluble tau
aggregates are toxic. Some tau aggregates, in particular tau oligomers, are non-toxic, and
may even be protective against tau toxicity in vivo.This has serious implications for emerg-
ing therapeutic strategies to dissolve tau aggregates, which might be ineffective or even
counter-productive. In light of this, it is imperative to identify the key toxic tau species
and to understand how it mediates dysfunction and degeneration so that the effective
disease-modifying therapies can be developed.

Keywords: Alzheimer’s disease, dimer, oligomer, filament, neurofibrillary tangle, insoluble tau

INTRODUCTION
TAU PROTEIN IN ALZHEIMER’S DISEASE AND OTHER TAUOPATHIES
Deposits of insoluble tau within neurons are defining pathologi-
cal hallmarks in the group of neurodegenerative diseases known
as tauopathies. Tauopathies include Alzheimer’s disease (AD),
Fronto-temporal Dementia with Parkinsonism on chromosome-
17 (FTDP-17), Pick’s disease, Corticobasal Degeneration (CBD),
Progressive Supranuclear Palsy (PSP), and others (1). In all of these
conditions, tau becomes both abnormally hyper-phosphorylated
and deposited in insoluble aggregates [reviewed in Ref. (1, 2)].
These diseases differ in their clinical features, differentially-
affected neuronal populations, and the distinct forms taken by the
insoluble tau. Indeed, even within one disease state, the insoluble
tau may be found in many distinct morphological forms; some en
route to the final form of that disease’s tau deposits, and others
possibly on a different pathway.

In this review we will focus primarily on the forms of insoluble
tau observed in AD, since they have been more widely studied.
We will describe the different species of insoluble tau that have
been identified; briefly review the factors that might promote tau
aggregation; and then assess the evidence for and against the tox-
icity of each type of tau aggregate. Inevitably, this cannot be a
comprehensive account of the extensive literature on this subject
in the interests of space. Therefore we have selected papers which
we believe represent the balance of evidence for and against toxi-
city, with apologies to those whose work we have not included. In

this context we will use the term toxicity rather broadly, meaning
either neuronal death, or neuronal dysfunction without death.

PHYSIOLOGICAL AND PATHOLOGICAL SPECIES OF TAU
This section briefly describes the major forms that tau has been
shown to take in AD. These different species are treated in approx-
imate order of size, from smallest to largest (Table 1). However,
there is no intention to imply that each one goes on to form the
next in a clear pathway.

MONOMER
Monomers of tau are highly soluble proteins of 55–74 kDa in
size [depending upon splice variant and phosphorylation sta-
tus – (3)]. There are six splice variants which contain either three
or four microtubule-binding repeats, as well as either zero, one,
or two N-terminal domains. These isoforms are usually denoted
tau0N3R, tau1N3R, tau2N3R, tau0N4R, tau1N4R, and tau2N4R. They
usually acquire a predominantly random coil structure under
normal physiological conditions (4). Partially folded forms of
tau monomers have also been described which are distinct from
native tau monomers, and have a reduced level of random coil-
ing but an increased level of β-sheet structure (5). Interestingly,
such molecules are immediately positive for Thioflavin (which
binds β-sheet). Compact monomers have also been characterized
displaying intra-molecular disulfide bonds (6). Only the three iso-
forms of four-repeat tau can form these compact monomers, since
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Table 1 | Summary of the major forms of tau identified.

Species of tau Abnormally

phosphorylated?

Toxic?

Monomer Sometimes Probably only when aberrantly

phosphorylated

Dimer/trimer Sometimes Some types shown to be

sufficient for toxicity

Small soluble

oligomer

Sometimes Some types shown to be

sufficient for toxicity

Granular Tau oligomer Sometimes Not always

Filament Yes Might comprise of toxic tau,

yet filaments themselves are

probably neither necessary

nor sufficient for toxicity

Neurofibrillary tangle Yes Might comprise of toxic tau,

yet tangles themselves are

probably neither necessary

nor sufficient for toxicity

Ghost tangle Yes Unlikely

the second cysteine required for an intra-molecular interaction is
in the extra repeat domain.

DIMER/TRIMER
Dimers are composed of two tau monomers in anti-parallel ori-
entation linked by disulfide bonds. Tau dimers can be observed
by electron microscopy (EM) as rod-like particles 22–25 nm long,
which is similar in appearance to the monomers (7). Dimers can
form from any isoforms of tau. Within that, however, two dis-
tinctly different forms of dimers have been described (8). One
is cysteine-dependent and reducible; while in contrast the other
is cysteine-independent, non-reducible, and has inter-molecular
disulfide bridging at the microtubule-binding domain. Both forms
have been identified in vitro, and in tau transgenic (JNPL3) mice
(8). Preparing small oligomers from recombinant tau in vitro,
dimers have been reported with apparent sizes of 180 kDa (9)
and 130 kDa (10), as well as trimers with an apparent size of
120 kDa (11). In human tau transgenic mice, soluble tau species
of 140 kDa have been described (8, 12). Small soluble tau species
of approximately dimer and trimer size, and probably including
tau fragments, have also been isolated from synapses in AD brains
(13). It is unclear whether these variously reported dimers and
trimers are indeed different tau species or whether they represent
subtle variations of the same structure.

SMALL SOLUBLE OLIGOMER
Small soluble oligomers of tau of very many different sizes have
been described in vitro and in vivo. Often, however (perhaps
because of differences in post-translational modifications leading
to different apparent sizes on PAGE), it can be difficult to deter-
mine if small oligomers described by different groups represent
the same species or not. In one study, the soluble dimers described

above were shown in vitro to develop into small soluble oligomers
containing six to eight tau molecules (approximately 300–500 kDa
in size) (8). JNPL3 mice, which over-express human tau with the
P301L mutation (tau0N4R-P301L) and harbor neurofibrillary tan-
gles (NFTs), additionally have small tau oligomers which run at a
wide range of sizes by PAGE [Sahara et al. (8)].

INSOLUBLE GRANULAR TAU OLIGOMER
Granular tau oligomers (GTOs) are electron-dense granular or
globular aggregates of tau. They have been isolated from AD
brains, mostly at early and moderate Braak stages (14). GTOs are
composed of an average of 40 densely packed tau monomers. This
corresponds to a size of 1800 kDa, or 20–50 nm in diameter when
observed by EM or by atomic force microscopy (AFM) (15). It is
important to note that, on the scale of insoluble protein aggre-
gates generally, this is extremely small. Standard protocols for the
sedimentation of insoluble proteins, such as 100,000× g spin for
30–60 min [e.g., Ref. (16)], would fail to sediment GTOs which
would remain in suspension in the “soluble” fraction, despite
their demonstrable insolubility in SDS (15). Instead, sedimenta-
tion of GTOs requires a 200,000× g spin for 2 h (15). The same
authors developed a rigorous fractionation/purification protocol
for GTOs. They further characterized the GTOs as being positive
for MC1 and for Thioflavin, despite clearly being not filamentous
in any way. They conclude that GTOs have β-sheet structure, and
suggest that they may be composed of the partially folded form of
tau monomer (15).

FILAMENT
It is well known that tau is capable of polymerization into filamen-
tous forms. In AD, the predominant filaments are Paired Helical
Filaments (PHF) and Straight Filaments (SF). In other tauopathies
such as FTDP-17, however, there is variability in the morphology
of tau filaments depending upon the tau mutations and/or tau
isoforms involved. Here, filaments may take on other shapes such
as twisted ribbon-like and rope-like filaments (17). A straight fil-
ament strand is 10 nm wide, and thus PHFs display alternating
widths of 10 and 20 nm, with a half-periodicity of 80 nm (18, 19).
Tau filaments exhibit β-sheet structure (20) which forms through
the MT-binding repeat region (7, 21). Tau filaments from human
AD brain have been shown to contain all six tau isoforms (22),
although in vitro they can also be formed from single isoforms.
They can be considered an amyloid (23, 24).

PRETANGLE
The pretangle is a slightly confusing concept that historically may
have referred to a variety of species of tau, or even the status
of a neuron. Generally speaking, a pretangle neuron is one that
is positive for abnormal tau epitopes (misfolded and/or hyper-
phosphorylated), in some insoluble format large enough to be
visible by light microscopy, yet free from mature fibrils or tangles
by morphology. Bancher et al. (25) helpfully classified tangles into
four stages (0–3). In this system1, stage 0 tangles (later referred to

1For reference, stage 1 in this system is filamentous silver-stained tangles composed
primarily of PHF; stage 2 is a classic neurofibrillary tangle and stage 3 is a ghost
tangle (See “Neurofibrillary Tangle” and “Ghost Tangle”).
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by others as pretangles) are identified by cytoplasmic non-fibrillar
(granular or diffuse) tau immunoreactivity, visible at the light
microscope level. When viewed by EM, the labeled material was
found to consist of PHFs, SFs, and smaller granular electron-dense
material. Where pretangles were observed as granular via light
microscopy, this probably represents non-filamentous clumps of
PHFs, SFs, and the ultrastructural granules. Other researchers have
described immunoreactivity for certain abnormal AD-associated
tau epitopes in neurons containing no fibrils, and have deemed the
neurons so labeled to be at a pretangle stage [for example Alz50
(26), the 12E8 epitope S262/S356 (27,28),and T231 (27,29)]. Con-
fusingly, there are a number of conflicting reports in the literature
as to whether “pretangles” are silver-staining, thioflavin-positive,
and whether or not they contain β-sheet structure. It seems prob-
able that these discrepancies arise from (a) a heterogeneity of what
is meant by “pretangle” and (b) a sensitivity issue in regard to the
assays for β-sheet. Pretangles should surely be positive for mark-
ers of β-sheet, since even the earliest partially-folded monomer
(5) and certainly tau filaments (30) demonstrably contain β-sheet
structure.

OTHER LARGE NON-FIBRILLAR TAU AGGREGATES
There are other forms and morphologies of pathological insoluble
tau found in human brains which are large enough to be seen with
the light microscope, and may be filamentous, yet are non-fibrillar
in structure. Such aggregates include Hirano bodies, Pick bodies,
and argyrophilic grains.

Hirano bodies have been described in AD, Pick’s disease and
other tauopathy brains (31, 32). Hirano bodies are large intraneu-
ronal paracrystalline structures of 5–10 µm in width by 10–30 µm
in length, composed of 7 nm filament arrays (32). They contain
tau, other microtubule-associated proteins, actin, cofilin, other
actin-binding proteins, and a fragment of APP.

Pick bodies are the characteristic morphology assumed by tau
filaments in Pick’s disease, in which they accumulate in limbic
and cortical neurons. They are large structures that vary in size
in different neuronal types, but are approximately the size of the
nucleus. Pick bodies are formed of disorganized bundles of fila-
ments which comprise only the three 3-repeat isoforms of tau, in
contrast to the PHFs and SFs formed in AD which are made of all
six isoforms [reviewed in Ref. (33)].

Argyrophilic grains are found in Argyrophilic Grain disease,
where they accumulate in both neuronal processes and oligo-
dendrocytes (34). Argyrophilic grains are structures that may be
spherical, oval, comma-shaped, or spindle-shaped. As the name
suggests, they are readily detectable by conventional silver-staining
and light microscopy. The grains are much smaller than Hirano
bodies, Pick bodies, and NFTs at approximately 4–9 µm in size.
Argyrophilic grains are comprised of four-repeat tau in 9–18 nm
SF and bundles of 25 nm smooth tubules. They never contain
PHFs and ribbon-like filaments (34–36).

NEUROFIBRILLARY TANGLE
Neurofibrillary tangles are the classic tangles first described by
Alzheimer in 1907. Classified by Bancher et al. (25) as stage 2 tan-
gles and often described as “flame-shaped,” they are large bundles
of fibers consisting of both PHFs and SFs which may fill the entire

neuronal cytoplasm. The fibers are silver-staining. Brief mention
should be made here also of neuropil threads, which are bundles
of SFs and PHFs occupying dendrites and largely displacing the
cytoskeleton (37).

GHOST TANGLE
Ghost tangles are the structures that remain when the neuron
within which the tangle formed has degenerated. They comprise
large extracellular bundles of loosely arranged tau filaments. Com-
pared to NFTs, ghost tangles stain more weakly for tau and more
strongly for ubiquitin (25). It is thought that ghost tangles have
undergone substantial proteolysis, and that thus the filaments are
comprised predominantly of tau fragments, again in contrast to
NFTs (38).

THE SEQUENCE OF EVENTS IN TAU AGGREGATION
There is some evidence to suggest that larger tau aggregates like
PHFs and NFTs evolve from the successive aggregation of smaller
tau species like monomers and soluble oligomers (Figure 1). One
missing link appears to be whether small oligomers can form
directly into GTOs in a linear pathway, or whether they represent
two different pathways from monomers to PHFs and NFTs.

MONOMER → DIMER
There is evidence from the kinetics of tau polymerization that,
once the partially folded conformation of the monomer has
formed (however that may be triggered), then the process from
monomers to dimers (and thence to oligomers) is energetically
favorable and proceeds spontaneously (5). For monomers to be
able to form dimers requires the PHF6 hexapeptide in the third
microtubule-binding repeat domain (8, 39). However, the com-
pact form of the tau monomer does not participate in this form
of aggregation (40).

FIGURE 1 | A putative sequence of events in tau aggregation into
neurofibrillary tangles (NFTs).
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DIMER → SMALL SOLUBLE OLIGOMER
The tau dimer, in particular the cysteine-independent, non-
reducible form (8), is thought to be an important intermediate
which is involved in controlling the rate of formation of larger
intermediates and fibrillization (6, 7, 41). In addition, more than
one group has demonstrated that in vitro generated tau dimers
aggregate to form larger tau oligomers (8, 9).

SMALL SOLUBLE OLIGOMER → GTO
We are not aware of any direct evidence that small oligomers
proceed to form GTOs. There is, however, evidence that tau
monomers in vitro can form GTOs (15), as well as that
both monomers and GTOs can form PHFs. However, whether
the sequence always proceeds from monomer→ dimer→ small
oligomer→GTO→ filament, or whether GTOs and other types
of tau oligomers can be on different pathways, is not clear. In gen-
eral, it is believed that when tau forms larger structures such as
filaments of differing morphology, the interactions between tau
molecules remain the same, and subunit packing follows the same
plan (40). On these grounds it is plausible that GTOs might be
part of the same pathway.

GTO → PHF
Increasing the concentration of GTOs in vitro causes them to
form filaments, whereas the constituent soluble tau does not.
On the basis of this, it is suggested that GTOs are precursors of
PHFs (15).

MONOMER/DIMER → PHF (POSSIBLY VIA THE OTHER INTERMEDIATES)
There is a wide variety of evidence showing that monomers can
polymerizes into PHF, but that does not address whether this is
via the oligomeric intermediates or not. Such evidence includes
the early in vitro demonstrations that tau at high concentrations
will self-assemble into PHFs (42–44), and evidence that dimers
are normally rate-limiting intermediates in this process in vitro
(4, 6). There followed from these studies a large body of work
delineating important details such as which motifs within tau are
required for fibrillization, in which monomeric tau clearly formed
into PHFs (39, 45–47). However, as in the early studies, whether
oligomers were formed on the way was not necessarily assessed
directly.

The mechanism for PHF formation requires two hexapeptide
motifs in the microtubule-binding region of tau. These are PHF6
[(306)VQIVYK(311)] and PHF6∗ [(275)VQIINK(281)]. Forma-
tion of PHFs involves these two motifs changing conformation
from random coil to β-sheet structure (24, 39). It should be
noted that mutant tau containing no cysteines is still able to form
PHFs in vitro, even though much more slowly than WT tau (40).
This means that cysteine-dependent (covalent) dimers are not a
requisite stage between monomer and PHF.

PHF → NFT
It is well established that NFTs in vivo are composed of PHFs and
SFs (25). Furthermore, there is also direct in vitro evidence that
filaments will spontaneously clump together into NFTs (48). Thus
it is highly likely that NFTs are formed by the accumulation of tau
filaments.

WHAT PROMOTES TAU AGGREGATION?
Little is known about what first triggers the initiation of tau aggre-
gation. It is known that normal monomers do not spontaneously
seed aggregation, and that some sort of trigger is needed (30, 49).
However, numerous factors have been identified that can promote
or increase tau aggregation, at least in vitro [reviewed in Ref. (50)].

Enzymatic cleavage of the tau monomer is one such factor.
Truncation of the tau protein at Glu391 (51, 52), truncation by
caspases at Asp421 (53), cleavage by thrombin (54), removal of the
C terminus of the protein (55, 56), or deamination at asparagine
or glutamine residues (57) have all been shown to promote tau
aggregation [Reviewed in Ref. (58)].

Local concentration of tau can be key. Tau at high concentra-
tions in vitro forms PHFs (42–44). Moreover, the transition of tau
from random coil to β-sheet is also known to be concentration
dependent (39), further supporting the idea that excessive local
accumulation of tau may promote its aggregation (especially if
other pro-aggregating factors – such as those discussed below – are
also in the near vicinity).

Controversially, tau phosphorylation has been postulated to
both stimulate and repress its subsequent aggregation into fila-
ments. Circumstantial evidence for stimulation includes the sem-
inal fact that filamentous tau is highly hyper-phosphorylated (59)
at many sites. More direct but in vitro evidence shows that tau
phosphorylated at AD sites polymerizes more readily into tan-
gles of PHF/SF; dephosphorylation abolishes tau’s self-assembly;
and hyperphosphorylation of recombinant tau by brain kinases
induces its self-assembly into tangles of PHF/SF (60, 61). In a
cellular model, it has been shown that all three kinases GSK-3β,
MEKK, and JNK3 are required for tau aggregation (62). Phospho-
rylation of tau specifically at Thr231, Ser396, Ser422, and Ser404
promotes self-aggregation of tau into filaments (55, 63, 64). In vivo,
overexpression of the kinases GSK-3β or Cdk5 can promote tau
aggregation (65, 66). On the other hand, in vitro studies have
shown that tau phosphorylation is not necessary to drive tau into
PHFs (41, 67). On the contrary, phosphorylation of KXGS motifs
in the repeat region inhibits tau aggregation in vitro (54, 68).
Furthermore, more recently emerging data showing that tau aggre-
gates made up of recombinant non-phosphorylated tau can “seed”
further tau aggregation in cells (discussed below) also supports the
idea that phosphorylation is not required to promote aggregation
(69, 70). However, it is not yet known whether phosphorylated tau
would seed and promote aggregation at a different rate.

Some of the missense and deletion mutations found in tau in
cases of fronto-temporal dementia (FTDP-17), when expressed in
models, display enhanced aggregation compared to normal tau.
In vitro PHF formation is faster for recombinant tau harboring
one of various such mutations. Human tau with each one of the
point mutations G272V, N279K, V337M, or R406W shows signif-
icantly faster in vitro PHF formation than WT full-length human
tau, while the ∆K280 and P301L mutants form PHFs at dramat-
ically greater speeds (46). This phenomenon has been confirmed
in vivo: mice expressing mutant human tauP301L develop pathol-
ogy more readily than those expressing WT human tau, both on
0N4R and 2N4R tau backgrounds (71–73).

Many polyanionic cofactors of all kinds can promote PHF
assembly. These include glycosaminoglycans (GAGs) such as
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heparin and neuroparin (40, 74, 75); sulphoglycosaminoglycans
(sGAGs) like keratins or chondroitin sulfates (76), RNA (41);
polyglutamic acid (30, 41, 74); fatty acids such as arachadonic
acid (77, 78) and alkyl sulfate detergents (79).

Other factors which may promote tau aggregation include tis-
sue transglutaminase (80), Congo red (81), ferritin (82), H2O2 in
the presence of iron (Fenton’s reaction) (83), and quinones (84).

Despite this wealth of data over many years regarding factors
that promote aggregation, questions still remain about what initi-
ates tau aggregation in vivo in health and disease. However, once
tau aggregation has been initiated, it is believed to promote fur-
ther“prion”-like“seeding”and propagation of tau aggregation and
pathology (85). This was first demonstrated in vivo where stereo-
taxic injections of brain homogenate containing tau aggregates led
to induction and propagation of tau aggregation in tau transgenic
mice (85). Supportive data also emerged from studies in cell cul-
ture showing that incubation of tau-expressing cells with fibrils
of recombinant tau leads to induction of tau aggregation in the
recipient cells (69, 70).

ARE NEUROFIBRILLARY TANGLES TOXIC?
NFTs: EVIDENCE FOR TOXICITY
The evidence that associates NFTs with neuronal dysfunction
and neurodegeneration is largely correlative in nature. Studies of
human post-mortem brains initially implicated NFTs in toxic-
ity by showing a strong spatial and temporal correlation between
NFTs and severity of dementia, and between NFTs and neurode-
generation or neuronal death (86–92). Some tau transgenic mouse
models display neuron loss in the same timeframe and/or location
as NFT formation. For example, expression of tauP301L under the
thy1.2 promoter causes neuronal apoptosis at the same age as fil-
aments and NFTs (93); while tauP301L under the prion promoter
causes NFTs in spinal cord, brainstem, and pretangles in cortex,
at the same time as loss of motor neurons (71). Furthermore, in
tau mouse models, there is a correlation between reduction of
NFT and improvement in cognition (94). The limitation of these
correlative studies between reduced NFTs and reduced impair-
ments is that, in many cases, other smaller tau species may be
reduced also. This leaves open the question of whether it is the
reduction of the NFTs or the smaller species which has been
beneficial.

More direct evidence in favor of NFT toxicity comes from
mice conditionally expressing human tau fragments harboring
pro-aggregation or anti-aggregation mutations (95, 96). Pro-
aggregation mice develop PHFs, “pretangles,” and NFTs early;
followed by synaptic and neuronal loss. In constrast, mice express-
ing the same tau molecule but with the anti-aggregation mutation
never develop aggregates or neuronal pathology. This was verified
in a C. elegans model of tauopathy which went further to show that
treatment with anti-aggregation inhibitors protected against tau-
mediated toxicity (97). This suggests that tau aggregation in the
form of PHFs or larger has been the cause of cell death. Moreover,
when expression of human tau is suppressed, mice are rescued
from toxicity in terms of both cell death and cognition. This rep-
resents very strong evidence in favor or PHFs and/or NFTs as the
toxic species. These conclusions were difficult to reconcile with a
body of evidence detailed below proving that PHFs and NFTs are

neither necessary nor sufficient for toxicity. However, the authors
subsequently showed that in the animals expressing pro-aggregant
tau, toxicity might in fact be mediated by a species of tau smaller
than PHFs and NFTs (98, 99).

NFTs: EVIDENCE AGAINST TOXICITY
There is now strong evidence from a number of models that NFTs
are not required for tau-induced neuronal dysfunction and toxi-
city. In most Drosophila models of tauopathy, neuronal NFTs are
usually not formed at all, despite clear neurodegeneration, and
functional phenotypes (100–104). In some mouse models where
NFTs do form, cognitive/behavioral impairments and cell death
can be demonstrated earlier in the time course of the disease prior
to NFT formation (105). In a different mouse model [PrP44: the
shortest human tau isoform (tau0N3R) under the prion promoter]
the formation of tau filaments coincides in the time course of the
disease with phenotypes such as neurodegeneration and motor
deficits, while NFTs form later (106, 107).

There is also compelling evidence that NFTs are not suffi-
cient for toxicity, from mice that conditionally express human tau
(tau0N4R-P301L). These mice display age-dependent development
of NFTs, neuronal loss, and progressive motor deficits. When tau
expression is switched off after the onset of memory impairments
and NFT formation, memory improves and cell loss is stabilized,
yet NFTs remain (108, 109). Furthermore, when tau is turned off
at a timepoint when there are pretangles but no NFTs yet, the
pretangles stay stable. This indicates that they also are insuffi-
cient for toxicity. This is corroborated in a different study using
the same mice, in which a successful treatment reduced motor
deficits despite failing to reduce NFTs (110). Furthermore, tangle-
bearing neurons in this model were shown to be just as active
in a functional hippocampal circuit as non-tangle bearing neu-
rons (as evidenced by expression of the immediate early gene Arc
in response to environmental cues) (111). Further investigations
of the mouse conditionally expressing pro- and anti-aggregant
form of tau, mentioned in the preceding section, also supports
this view. The pro-aggregation mice develop learning and mem-
ory deficits from which they recover after tau expression is turned
off (98). However, it transpires that after an extended period of
tau suppression, NFTs still remain, as in the tau0N4R-P301L mice.
This implies that it is a smaller species of tau (soluble or insoluble)
which has decreased in correlation with behavioral improvement
in these studies (98).

In the light of such evidence, it has been suggested that forma-
tion of NFTs is a protective response that ultimately fails (58). This
review describes a scenario in which caspases, having become acti-
vated because the cell contains toxic tau and is thus under stress,
cleave the tau making it more fibrillogenic. Cleavage is unlikely to
be the only trigger, since the initial steps of aggregation can involve
primarily full-length tau isoforms (5, 112). Either way, the idea is
that once tau aggregates seed, they can sequester toxic tau and thus
delay cell death. However, the trade-off is that axonal transport is
compromised and cellular protein degradation pathways become
clogged, and thus the neuron gradually becomes dysfunctional
(58). This is supported by evidence that NFT-bearing neurons
appear to survive for decades (113) and maintain markers of nor-
mal gene expression (111), and may be in fact be longer lived than
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those neurons without NFTs in the AD brain that would have died
at earlier time-points and hence were not evident at post-mortem.

In conclusion, despite NFTs being a vital historical clue to the
involvement of tau in neurodegenerative disease, a wide variety
of strong evidence now exists that NFTs themselves are nei-
ther necessary nor sufficient to cause tau-induced toxicity and
dysfunction.

ARE TAU FILAMENTS TOXIC?
Some of the evidence regarding NFTs is also applicable as indirect
evidence about tau filament toxicity. That is, some of the evi-
dence in favor of large aggregates being toxic could really apply to
either NFTs or PHFs/SFs or both. Further, the evidence that NFTs
are not toxic naturally casts suspicion onto smaller pathological
species such as filaments. However, direct evidence for PHFs as the
primary toxic species, rather than something smaller, is sparse.

FILAMENTS: EVIDENCE FOR TOXICITY
As with the evidence in favor of NFT toxicity described above,
much of the evidence that implicates filaments as a toxic species of
tau is correlative in nature. For example, in some mouse models
of tauopathy, filaments coincide in the time course of the disease
with phenotypes such as neurodegeneration and motor deficits
(106), while NFTs form later (107). Similar results were seen in
one Drosophila model of tauopathy in which tau filament forma-
tion was reported (114). Furthermore, mutations in tau which are
responsible for FTDP-17 also promote faster tau filament forma-
tion (46), thus circumstantially implicating tau filaments in the
disease process.

An immunotherapy study targeting tau in a mouse model pro-
vided some more direct evidence in favor of PHF toxicity. In this
study, immunization of JNPL3 mice (with a short phosphorylated
tau fragment) served to reduce tau aggregation (into PHFs or
larger aggregates) and the associated behavioral phenotypes, but
failed to reduce smaller species of tau. This suggests that that PHFs
or larger tau aggregates are the toxic species in this model (115).
In another study, tau filaments but not monomers (at physiolog-
ical concentrations) were shown to selectively impair anterograde
transport in isolated squid axoplasm (116, 117).

FILAMENTS: EVIDENCE AGAINST TOXICITY
As with the NFT situation, some animal models have impairment
but no filaments, or at least not until later in the disease pro-
gression. For example, Drosophila (100–104) and C. elegans (118)
expressing human tau display behavioral phenotypes indicative of
neuronal dysfunction and toxicity without forming tau filaments
or larger aggregates. Even in mice, in the transgenic tau model
expressing the longest human tau isoform (tau2N4R), brains con-
tain some form of insoluble tau but nothing as big as PHFs (or
NFTs), while the animals display a motor impairment (119). Such
evidence indicates that filaments are not necessary for tau-induced
toxicity.

There is also evidence that filaments are not sufficient for toxi-
city, since they continue to form in the conditional tau mice men-
tioned earlier, in which transgenic tau expression has been turned
off and deficits thereby rescued (108). In another mouse model,
Andorfer et al. showed that, while there was widespread neurode-
generation, the PHF-containing neurons appeared “healthy” in

terms of nuclear morphology, suggesting that the polymerized
protein was probably neuroprotective (105). In an in vivo lam-
prey model (120), administration of a benzothiazole derivative
drug (purported to break up tau filaments) successfully improved
tau-induced phenotype, but apparently did so without actually
breaking up the tau filaments. This provides further evidence that
filaments are not sufficient for toxicity. In vitro, polymerization
of hyper-phosphorylated tau into PHFs abolishes its toxic activity
to sequester other MAPs (121). Unlike the soluble form of hyper-
phosphorylated tau, the filamentous form of tau does not bind
MAPs and does not disrupt microtubules in vitro (121).

In an inducible cell line, the repeat domain of wild-type tau was
non-toxic, whereas a similar construct harboring a point mutation
that induced aggregate formation (eventually PHFs) caused cell
death (54). Crucially, however, increased cell death was observed
before PHF formation in the aggregate-prone mutant, demon-
strating that PHFs were not necessary for toxicity, and that in fact
a smaller form of aggregate was the toxic species.

While the in vivo evidence is not quite as extensive as for NFTs,
one can also conclude that tau filaments are neither necessary
nor sufficient for tau-induced toxicity, and that something smaller
than filaments is the most toxic form of tau.

SPECIES OF TAU FOUND IN FILAMENTS
When the insoluble protein fraction from brains of AD patients or
animal models, containing any tau filaments or larger tau aggre-
gates, is solublized using urea or formic acid, the tau species which
were building blocks of these large insoluble aggregates can be
identified. These species include monomers of 55, 60, 64, and
68 kDa in size (67), and a 170-kDa species. The 64 and 170 kDa
species in particular have been implicated in toxicity. The 64-kDa
species represents a hyper-phosphorylated monomer. It is found in
brains of the tau0N4R-P301L transgenic mouse (122), and increases
with age in the insoluble fraction at the expense of the 55-kDa
monomer (which is found in both soluble and insoluble fractions).

In the same study that showed NFTs were not necessary for
toxicity [because they did not decrease in successfully treated
tau mice – (110)], the successfully treated mice displayed a sig-
nificant reduction in 64 kDa tau from the high-speed insoluble
fraction. Confusingly, subsequent commentators have described
this species as “soluble aggregated tau” [e.g., Ref. (123)]. However,
this 64 kDa species is always a component of an aggregate that
sediments at 150,000× g, which is therefore bigger than a GTO.
Another study in a conditional mouse model found that three dis-
tinct tau species correlated with neuronal dysfunction (12). Two
of these species were in a sarkosyl-insoluble fraction (from which
NFTs had been previously cleared) which must represent GTOs
or filaments: a 64-kDa hyper-phosphorylated monomer and a
170-kDa hyper-phosphorylated oligomer. The third species was
a 140-kDa oligomer from the soluble fraction. All of these species
arose early in the disease progression, and increased with increas-
ing learning and memory deficits. Conversely, all three decreased
upon suppression of transgenic tau expression and recovery from
neuronal dysfunction. These results clearly implicate one or more
of the three species in toxicity; however, it is not clear whether
the culprit is the soluble or insoluble components or both. The
same 64 kDa species has also been described in a sarkosyl-insoluble
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fraction from transgenic tau0N4R-301L mice that represents SFs and
NFTs (71, 108). It is not toxic in this circumstance because it con-
tinues to increase after tau expression has been turned off and
animals are recovering (108).

In summary, these two species of tau, a hyper-phosphorylated
64 kDa monomer and a 170-kDa oligomer, have frequently been
demonstrated as components of an insoluble filament fraction.
There is some evidence, although not conclusive, that these species
may be associated with toxicity.

ARE (INSOLUBLE) GRANULAR TAU OLIGOMERS TOXIC?
Part of the difficulty in acquiring evidence about GTOs from the
existing literature is that, as mentioned earlier, in standard insol-
uble protein fractionation protocols any GTOs in the sample will
be lost. Even though fully insoluble, they are too small to sedi-
ment with a standard “high-speed insoluble” fraction (15). They
remain in suspension in the “soluble” fraction; and yet as they are
around 1800 kDa in size and not readily reducible without 8 M
urea, they will not enter a standard PAGE resolving gel and be
detected (Cowan, unpublished observation). Therefore when one
reads, for example, studies in tau mouse models showing small
oligomers and PHFs and drawing conclusions about toxicity, one
cannot usually conclude anything about the presence or absence,
toxicity or otherwise, of GTOs.

GTOs: EVIDENCE FOR TOXICITY
In the years following the identification of GTOs, when evidence
was beginning to accumulate that PHFs and NFTs might not
be toxic, some evidence remained that some insoluble form of
tau must be toxic. There was speculation in reviews that insol-
uble oligomers of tau, perhaps GTOs, might be the most toxic
species. However, there is no direct evidence for this. Clues that
GTOs might be associated with toxicity come from studies show-
ing that numbers of GTOs increase with progression of AD, that
fewer GTOs are observed at Braak stage 0 than at stage 1, and
that their peak precedes that of NFTs (14). GTOs are gener-
ally believed to consist of toxic phosphorylated species of tau
because phosphorylated tau levels are high in the AD brain at
the time-points when GTOs are abundant. Such clues have led to
the suggestion that reducing GTOs may prove to be a promising
therapeutic strategy; however, the authors of these publications
acknowledge that the effect of GTOs on neuronal vulnerability is
unknown.

There is also evidence that an insoluble oligomer(s) of some
sort is probably the culprit, without clear evidence that it is GTOs.
For example, in the study mentioned as evidence against PHF tox-
icity in an inducible cell line (54), the soluble tau construct was
not toxic, whereas the aggregate-prone mutant tau species caused
cell death prior to PHF formation. This therefore represents evi-
dence against both soluble tau toxicity and PHF toxicity, but rather
implicates some intermediate species. Similarly, in another study,
very small insoluble tau oligomers (of up to a few hundred kDa)
were isolated from synaptosomes derived from AD brains and were
associated with impaired ubiquitin proteasome function (124). If
any GTOs had been present in this preparation, they might not
have been observed with the protocols used. Clearly small insolu-
ble tau oligomers exist and are associated with toxicity but whether

they can be classified as GTOs or indeed their precursors is not
clear.

GTOs: EVIDENCE AGAINST TOXICITY
We have recently observed, in a Drosophila model of tauopathy,
the formation of GTOs which are non-toxic (125) When flies
express human tau0N3R in neurons they exhibit a clear behav-
ioral phenotype, but no insoluble tau. However, upon pharma-
cological or genetic manipulations which inhibit GSK-3β, the
phenotype is rescued and GTOs are produced. We demonstrate
that these GTOs produced in flies are the same size as those iso-
lated from human brain and comprise of non-phosphorylated
full-length tau monomers. Like us, another group has also
demonstrated the formation of large insoluble tau oligomers in
Drosophila, in conditions associated with rescue of tau-mediated
toxicity (126). They showed that rescue of human tau0N4R or
tau0N4R-R406W induced neurodegeneration and behavioral deficits
by co-expression of Nicotinamide mononucleotide adenylyltrans-
ferase (NMNAT) also led to increased formation of insoluble tau
oligomers. However whether these insoluble tau oligomers were
the same as the GTOs that we described in our model is not clear.
Nonetheless, both our studies collectively imply that tau aggre-
gation can correlate with rescue from tau-induced phenotype.
However, whether this is because of sequestration of smaller toxic
tau species, or the presence of non-phosphorylated tau in the con-
ditions in which the GTOs form, or something else about their
structure is not clear.

Overall, the pathological significance of GTOs has yet to be fully
understood. It is possible that different GTOs form in different cir-
cumstances and the phosphorylated status of their constituent tau
proteins and/or the extent of β-sheet structure may play a role in
determining their toxicity.

ARE SOLUBLE (MONOMERIC OR OLIGOMERIC) TAU SPECIES
TOXIC?
As has already been alluded to, there are numerous species of
tau that are soluble, and it seems probable that they possess
very different properties. Just considering monomers, there is
clearly a multiplicity of species: the three major conformations
described (regular, compact, and partially folded); the six splice
variants; and of course the array of phosphorylation combina-
tions, both demonstrated and possible, which have been barely
touched upon here. Then there are at least two conformations of
dimer (cysteine-dependent and independent), as well as trimers,
and small oligomers of various sizes and phosphorylation states,
as described earlier. We would speculate that there are probably
many variations of soluble oligomeric tau species occurring in
nature in the brain that have not yet been specifically described.
Further, some of the evidence regarding the toxicity or other-
wise of soluble tau cannot (or did not) differentiate between these
species.

SOLUBLE TAU: EVIDENCE FOR TOXICITY
There are many examples of studies conducted in vivo and in vitro
showing that soluble tau is sufficient to cause dysfunction and
toxicity. To give a few examples, pseudophosphorylated tau causes
cell death when virally expressed in hippocampal slices, with-
out becoming SDS-insoluble (127). Soluble tau monomer applied
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extracellularly to cells in culture causes intracellular calcium
increase and cell death (128, 129). Additionally, some tauopathy
models in Drosophila (100–102, 130) exhibit significant neuronal
dysfunction and degeneration and yet contain no insoluble tau
providing strong evidence that soluble tau is sufficient to cause
dysfunction and toxicity. Similar evidence exists in mouse mod-
els: for example, mice expressing WT tau2N4R under the CamK-II
promoter (131) as well as those expressing mutant tauN279K (132)
both display learning defects but no NFTs or insoluble tau and no
cell death. However, these mouse studies are subject to the caveat
discussed in Section “Are (Insoluble) Granular Tau Oligomers
(GTOs) Toxic?” that if there were any GTOs present they would
not have been detected by the protocols used. Therefore, strictly
speaking, we feel that the conclusion from such studies is: either
soluble tau or small insoluble tau oligomers are sufficient for
toxicity.

Further evidence supporting soluble tau toxicity comes from
many studies showing rescue of tau-mediated phenotypes after
suppression of tau expression which leads to reductions in solu-
ble tau but persistence of tangle pathology (58, 108, 111, 133).
In one such study, transgenic tauP301L mice were treated with
methylene blue at a dose sufficient to rescue their memory deficit,
and reduce total and soluble tau without affecting insoluble tau
aggregates (134). This study went one step further in showing
that the reduction of soluble tau is required for the rescue of
phenotype.

Whether the toxic soluble species of tau is monomeric or
oligomeric (or both) in these studies is not always clear. There
is a convincing body of evidence showing that certain specific
dimers, trimers, and other very small soluble oligomers are suf-
ficient to cause toxicity both in vitro and in vivo. Patterson et al.
(135) show that the 180-kDa dimers that they produced in vitro
can suppress fast axonal transport in a squid axoplasm model.
The 120-kDa trimers produced by Lasagna-Reeves et al. have been
shown to be toxic in vitro (11) and in vivo (136). These trimers
cause significantly more cell death than tau monomers or filaments
when applied to SH-SY5Y cells in culture (11). Intra-hippocampal
injections of trimers cause significant loss of synapses and neurons
resulting in memory deficits, whereas injections of tau monomers
or fibrils do not (136). Overall, these findings show that dimers
and trimers of tau can be toxic.

Tau species of this size range have also been demonstrated
in vivo, indicating that they are physiologically relevant. Both the
Kayed and the Binder laboratories have used the oligomers that
they made in vitro to raise oligomer-specific anti-tau antibod-
ies, TOC-1 (9) and T22 (137), which they demonstrate recog-
nize tau in situ in the post-mortem AD brain. Both oligomer-
specific antibodies react with “pretangles” in early Braak stages,
and co-localized with some disease-associated phospho-tau epi-
topes.

Small soluble oligomers also arise in many transgenic tau ani-
mal models in a context that implicates them in toxicity. For
example, transgenic Drosophila expressing either human tau0N4R

or tau0N4R-S406W in brain display soluble tau oligomers of 150–
250 kDa in size (114, 126) and in both studies oligomer formation
was associated with degeneration. Berger et al. (12) and Sahara
et al. (8) independently identified small soluble tau oligomers

of approximately 140 kDa (believed to be dimers) in brain
homogenates of tau0N4R-P301L transgenic mice. The oligomers
detected by Berger et al. (12) (in the inducible tau0N4R-P301L

mice) appeared at very early stages of disease when memory
deficits were evident in the absence of tangle formation or neu-
ronal loss. Either this 140 kDa soluble species and/or the two
small insoluble species of tau discussed in Section “Species of
Tau Found in Filaments” are implicated in causing toxicity in this
model.

Like the oligomers identified by the Binder and Kayed labora-
tories described above, the 140-kDa oligomers identified by Berger
et al. (12) in tau transgenic mice are also detectable in the brains
of AD and FTDP-17 patients. It is not clear whether all of these
oligomers are one and the same tau multimer or whether they rep-
resent tau oligomers at different stages of maturation during the
disease process. In addition, it has not been determined whether
aggregation into larger oligomers alters the toxicity of the small
tau oligomers.

SOLUBLE TAU: EVIDENCE AGAINST TOXICITY
Evidently, not all soluble phosphorylated tau can be toxic. Soluble
tau of many species is obviously found physiologically in healthy
individuals. One specific example of a soluble species known to be
non-toxic is the compact monomer with intra-molecular disulfide
bonds, which appears to be a species that is relatively protective
and, notably, does not go on to form larger aggregates (40).

In the tau immunization study mentioned earlier as evidence
in favor of PHF toxicity (115), it was found that immunization
causes reduced aggregation of tau into PHFs or larger aggregates,
and was associated with a reduced behavioral phenotype. How-
ever, this also causes an increase of PHF-1 immunoreactivity in
the “high-speed soluble” fraction, which in this case would repre-
sent any species of GTO size or smaller. This suggests not only that
PHFs might be toxic, but also that the soluble species present were
not sufficient for toxicity (115).

The inducible pro-aggregation and anti-aggregation mutants
of the tau repeat regions created by the Mandelkow laboratory
argue against toxicity of soluble tau. In both the cell lines [the study
mentioned as evidence against PHF toxicity: (54)], and in the mice
(95, 98), the common theme was that the anti-aggregation mutant,
which would always be a soluble form of tau, was never toxic. The
mouse lines provide some additional correlative evidence against
toxicity of any form of tau smaller than PHFs, in that the levels of
“soluble” tau were constant between the pro-aggregation mouse,
which experienced neurotoxicity, and the anti-aggregation mouse,
which did not.

Clearly, physiological tau is soluble and non-toxic. However,
under pathological conditions tau may undergo changes that
render it toxic, even though it may remain soluble.

DISTINGUISHING BETWEEN SMALL (SOLUBLE) TAU OLIGOMERS AND
TAU MONOMERS
In the above paragraphs, a general trend is that the evidence for sol-
uble tau toxicity centers on some reasonably well-defined dimers
and trimers which are demonstrably sufficient for toxicity; whereas
the evidence against either has not distinguished between the myr-
iad species, or has only said that one particular type of soluble tau
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is not toxic. In that sense, the evidence against is not conclusive.
While the specific data cited in favor of dimer and trimer toxicity
is compelling, we still know very little about the properties (or
indeed existence) of all the other soluble forms.

CONCLUSION
In conclusion, there is a body of evidence demonstrating that small
soluble tau oligomers are the most toxic form of tau. Filamentous
and fibrillar tau is neither necessary nor sufficient for tau-induced
toxicity, and may very well represent a neuroprotective strategy.
Such ideas are not new, and a number of reviews over the past few
years have drawn the same conclusions (138–140). Nevertheless,
this conclusion is still not broadly accepted. Even if it were to be
accepted, many questions remain. We still have little idea which of
the multiplicity of soluble tau species is the culprit or culprits: is
it monomers, dimers or trimers or all three, and in which confor-
mation(s) and phosphorylation state(s)? Also, we have incomplete
information about the sequence of events on the pathway(s) of tau
aggregation (Figure 2). Especially, where do GTOs fit in? Are they
made gradually from increasing sizes of smaller oligomers? Or do
they have a different conformation that makes them so compact
and insoluble? Can they really go on to form PHFs in vivo? Such
questions are important for informing the strategies to be imple-
mented when developing treatments for AD and tauopathies. We
do not yet know which species of tau would represent the best tar-
get for tau-based therapies. If a certain specific set of small soluble
tau oligomers are toxic, while insoluble GTOs and larger insoluble
tau species are not, then perhaps strategies aimed at breaking up
large insoluble tau aggregates might prove ineffective. Especially if
it transpires that GTOs are not only non-toxic but on an alterna-
tive pathway to PHFs, then perhaps encouraging GTO formation
might even turn out to be a valid approach. Alternatively, it might
not be size and solubility alone of the tau species that are the

FIGURE 2 | Cartoon of remaining questions.

key toxicity-determining factors: levels of β-sheet structure and
phosphorylation at certain sites may also be influential.

There is a precedent from other proteinopathies for a small sol-
uble species being the most toxic, while the smallest insoluble form
is relatively protective. This has been demonstrated for huntingtin
protein in Hungtington’s disease (141, 142), alpha-synuclein in
Parkinson’s disease (143), and amyloid beta in AD (144): however,
evidence for this phenomenon in the case of tau aggregation is
only beginning to emerge now.
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In Alzheimer disease (AD) and other tauopathies, microtubule-associated protein tau
becomes hyperphosphorylated, undergoes conformational changes, aggregates, eventu-
ally becoming neurofibrillary tangles (NFTs). As accumulating evidence suggests that NFTs
themselves may not be toxic, attention is now turning toward the role of intermediate tau
oligomers in AD pathophysiology. Sarkosyl extraction is a standard protocol for investigat-
ing insoluble tau aggregates in brains.There is a growing consensus that sarkosyl-insoluble
tau correlates with the pathological features of tauopathy.While sarkosyl-insoluble tau from
tauopathy brains has been well characterized as a pool of filamentous tau, other dimers,
multimers, and granules of tau are much less well understood. There are protocols for
identifying these tau oligomers. In this mini review, we discuss the characteristics of tau
oligomers isolated via different methods and materials.

Keywords: tau, oligomers, dimer, sarkosyl-insoluble, antibody

INTRODUCTION
Tau is a phospho-protein that belongs to the family of microtubule
(MT)-associated proteins. The primary function of tau protein is
to modulate MT dynamics for maintaining neuronal processes
and regulating axonal transport. During pathogenesis, tau protein
abnormally aggregates into intracellular, filamentous inclusions,
or neurofibrillary tangles (NFTs) in the brains of individuals
with neurodegenerative disorders. These are termed tauopathies
[reviewed in Ref. (1)].

In human tauopathies, intracellular aggregates of abnormally
hyperphosphorylated tau protein and neuronal cell loss typically
coincide within the same brain regions (2). Several transgenic
mouse models that overexpress human tau protein have demon-
strated how tau pathology and neuronal loss progresses [mouse
models are reviewed in Ref. (3)]. However, recent data suggest that
tau is involved in neuronal dysfunction before NFTs are formed
(4, 5). In vitro tau polymerization studies indicated that NFT for-
mation consists of several steps: dimerization, multimerization,
oligomerization, and protofibril formation (6–11).

About two decades ago, tau aggregation intermediates (also
referred to as AD P-tau) were isolated from the buffer-soluble
fraction derived from brains of AD patients (12). More than
10 years later, attention has focused on oligomeric tau species
in human (13) and transgenic mouse (14) brains in order to
identify the exact neurotoxic components of tau protein. How-
ever, the potential role of tau oligomers is poorly understood
because they exist in various states (e.g., dimers, multimers, and
granules). Here, we review various protocols used to isolate tau
oligomers and propose a general outline for the identification of
tau oligomers.

SOLUBLE PRE-FIBRILLAR TAU IN HUMAN AD BRAINS
Greenberg and Davies first reported to isolate sarkosyl-insoluble
tau from paired helical filament (PHF)-enriched fraction from

human AD brain homogenates (15). Cortical gray matter was
homogenized in buffer containing 10 mM Tris-HCl (pH 7.4),
1 mM EGTA, 0.8 M NaCl, and 10% sucrose, and then centrifuged
at 27,200 × g. PHF-associated tau was enriched from the super-
natant by taking advantage of their insolubility in the presence
of a detergent, sarkosyl. PHF-associated tau migrated at around
57–68 kDa on one-dimensional PAGE gels. This enriched super-
natant was more acidic on two-dimensional PAGE gels compared
to extracts from normal brains. Although this PHF-associated tau
was not extracted from highly insoluble fraction containing NFTs,
the sarkosyl-insoluble tau displayed the same structural and anti-
genic properties as PHFs isolated from NFTs (16–18) and was
distinguishable from normal, soluble tau proteins.

Kopke et al. isolated non-PHF hyperphosphorylated tau from
AD brains (12). In their protocol, cortical gray matter was homog-
enized in buffer containing 20 mM Tris-HCl (pH 8.0), 0.32 M
sucrose, 10 mM β-mercaptoethanol, 5 mM EGTA, 1 mM EDTA,
5 mM MgSO4, and proteinase inhibitors. The homogenate was
then subjected to differential centrifugation, and the fraction
resulting from centrifugation between 27,000 and 200,000 × g was
collected. This fraction was further extracted with 8 M urea to
separate out the PHF-enriched pool. The supernatant contained
abnormally phosphorylated non-PHF tau. These tau species were
named AD P-tau and had a molecular weight of 67–70 kDa. They
were three to fourfold more phosphorylated than tau extracted
from control brains and could be detected by Tau1 antibody
after alkaline phosphatase treatment. These highly phosphory-
lated AD P-tau proteins lost their normal MT assembly-promoting
activity, which could be recovered upon dephosphorylation with
alkaline phosphatase (19). Moreover, AD P-tau could sequester
normal tau into filamentous tau aggregates, resulting in MT
de-polymerization (20).

These studies suggest that a pool of intermediate patholog-
ical tau species exists and that this pool can be recovered in
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buffer-soluble fractions. The physiological activity and function
of these tau species is reduced compared to normal tau species due
to hyperphosphorylation. Since the intracellular mobility dynam-
ics of these intermediate tau species is much greater than that of
condensed tau aggregates in NFTs, it is possible that intermediate
tau species induce neuronal death and/or synaptic dysfunction.
Therefore, the isolation and characterization of these tau species
is paramount for understanding the pathogenesis of AD and for
searching therapeutic methods.

TAU OLIGOMERS IN MOUSE MODELS OF TAUOPATHY
The first tau transgenic mouse model of frontotemporal dementia
with Parkinsonism linked to tau on chromosome 17 (FTDP-17-
Tau) was the JNPL3 line, which overexpresses P301L mutant
4R0N tau (21). The biochemical characterization of insolu-
ble tau in these mice was done by a modified Greenberg and
Davies method (21, 22). In this protocol, mouse brains were
homogenized in buffer containing 25 mM Tris-HCl (pH 7.4),
150 mM NaCl, 1 mM EDTA, 1 mM EGTA, phosphatase inhibitors,
and protease inhibitors. A pellet collected from 150,000 × g
centrifugation was re-homogenized in high-salt/sucrose buffer
[10 mM Tris-HCl (pH 7.4), 0.8 M NaCl, 10% sucrose, 1 mM
EGTA, 1 mM PMSF] and centrifuged again at 150, 000 × g.
The resulting supernatant was incubated with 1% sarkosyl,
and then centrifuged at 150, 000 × g. The pellet was re-
suspended in TBS as the sarkosyl-insoluble fraction. A 64-kDa
tau predominantly existed in the sarkosyl-insoluble fraction;
this tau was phosphorylated at multiple sites. Most notably,
the amount of 64 kDa tau increased in an age-dependent man-
ner, correlating well with the pathogenesis in JNPL3 mouse
brain.

Noble et al. proposed a slightly different protocol for tissue
homogenization using RIPA buffer without SDS (23). This mod-
ification allows for the study of both cytosolic and membrane-
associated proteins involved in AD pathogenesis, such as amyloid
precursor protein (APP), in the same extracts (24).

Another broadly used tauopathy mouse model is rTg4510
mice, which express repressible P301L mutant 4R0N tau and
develop progressive age-related NFTs, neuronal loss, and behav-
ioral impairment (5). Using a protocol similar to the one for JNPL3
mice with an additional 13,000 × g centrifugation as the first step,
Berger et al. identified 140 and 170 kDa multimeric tau species in
rTg4510 mouse brains (14). The 140 kDa tau was recovered in the
supernatant fraction resulting from 150,000 × g centrifugation,
while the 170 kDa tau was mostly in the sarkosyl-insoluble frac-
tion. Both multimers were not affected by the presence or absence
of reducing agent, indicating that the multimers are disulfide-
bond independent. Importantly, the accumulation of 140 kDa tau
coincided with the behavioral impairments of rTg4510 mice (14).
Although this finding has had a huge impact on our understand-
ing the neurotoxic mechanisms of tau oligomers, it is still unclear
whether 140 and 170 kDa tau multimers can induce neuronal
dysfunction. This is because these multimers comprise such a
small proportion of the total tau pool (roughly < 0.1% of total
tau, as estimated by Western blot signal). It should be noted that
tau multimers with apparent molecular weights of ∼140 and

∼170 kDa are in fact tau dimers of ∼120 and ∼130 kDa, based
on Bis-Tris or Tris-acetate SDS-PAGE migration (11, 25). This was
further supported by mass spectrometry analysis of cross-linked
tau dimers (26).

Most recently, we demonstrated that TBS-extractable 64 kDa
tau species represents better the species involved in the pro-
gression of brain atrophy than does the sarkosyl-insoluble tau
species (25). These 64 kDa tau species can be recovered in the
supernatant following centrifugation of brain homogenates at
27,000 × g and further separation from normal tau by 150,000 × g
centrifugation. TBS-extractable 64 kDa tau and normal tau are
similar in thermo-stability but differ in other properties. Under
non-reducing gel electrophoresis conditions, nearly all 64 kDa
tau species are detected as dimers (∼130 kDa, according to size
of molecular markers), whereas most normal tau proteins are
detected as monomers. Immuno-electron microscopy revealed
that the TBS-extractable 64 kDa tau enriched fraction contains
tau-positive granules and filaments (25). This morphological
finding was supported by MC1 immunoreactivity and Ab39
insensitivity (25). The MC1 antibody recognizes an early path-
ogenic conformation of tau (27), while the Ab39 antibody only
detects mature tangles (28, 29). Overall, the characteristics of
TBS-extractable 64 kDa tau are similar to AD P-tau from human
brains.

IN VITRO TAU OLIGOMERIZATION
With tau assembly modeled in vitro, unphosphorylated recombi-
nant tau can be polymerized by inducers such as heparin, heparan
sulfate, polyunsaturated fatty acids, RNA, or quinones (30–34).
Using the heparin-induced tau self-assembly method, we pro-
duced and isolated granular-shaped tau oligomers from soluble
tau and filamentous tau by sucrose density gradient ultracentrifu-
gation (10). These granular tau oligomers were morphologically
defined by atomic force microscopy (AFM) to be 15–25 nm gran-
ules, and their molecular mass corresponded to about 40 tau
molecules (10). Once formed, granular tau can continue to form
filaments without any inducers in a concentration-dependent
manner (10).

More recently, Lasagna-Reeves et al. proposed a method to
prepare tau oligomers by using amyloid seeds (35). In their
protocol, tau oligomerization can be induced in a relatively
short period (1 h incubation at room temperature) after adding
Aβ42 oligomers. After a total of three rounds of seeding pro-
cedures, Aβ42 seeds could be diluted to below the detection
limit (35). Examination of these tau oligomers by transmission
electron microscopy or AFM revealed a spherical morphology
(35). This unique method of producing tau oligomers is a rea-
sonable representative model supporting the amyloid hypoth-
esis (36, 37), in which Aβ oligomers trigger NFT formation.
Interestingly, tau oligomers, but not tau monomers or tau fib-
rils, can cause memory impairment in wild-type mice (13)
and can decrease long-term potentiation in hippocampal brain
slices (38).

The production of granular tau oligomers must be initi-
ated by dimerization of tau monomers. Heparin-induced tau
polymerization allows us to detect initial dimers because of the
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relatively slower kinetics compared to arachidonic acid-induced
tau polymerization (6, 39). It begins by increasing the formation
of cysteine-dependent dimers, which occur prior to the detec-
tion of thioflavin T (ThT) binding (11). The kinetics of tau
polymerization is dependent on oxidative/reducing state. Higher-
order oligomers and aggregates assemble more rapidly in the
absence of the reducing agent dithiothreitol (DTT) (11). However,
cysless-tau (4R tau with both C291A and C322A mutations) forms
dimers, which eventually aggregate into fibrils after 24 h incuba-
tion with heparin, suggesting that tau aggregation occurs without
disulfide-bond formation (11).

Two distinct tau dimers (i.e., cysteine-dependent and cysteine-
independent dimers) have been identified in tauopathy mouse
models, including JNPL3 mice (11) and rTg4510 mice (14, 25).
These dimers have also been shown in cell cultures (11, 40).
Dimer formation is an essential step for their further assembly
into higher-order oligomers. Although these dimers themselves
may not exist in a steady state, it is important to detect the initial
step of tau dimerization.

GENERATION OF TAU OLIGOMER-SPECIFIC ANTIBODIES
A monoclonal antibody that selectively recognizes tau dimers
and higher-order oligomers has been generated by Binder’s
group (26). This antibody, named tau oligomeric com-
plex 1 (TOC1), was made against benzophenone-4-maleimide

cross-linked recombinant tau dimers (26). Immunogold label-
ing and dot-blot analysis of aggregated recombinant tau revealed
that TOC1 selectively labels tau dimers or oligomers but not fil-
aments (26). Based on their preliminary mapping of the TOC1
epitope, the proline-rich region (Gly155-Gln244) and the C-
terminal portion (Leu376-Ser421) were identified as potential
binding segments for forming cross-linked tau dimer (26). Since
these two regions are on the opposite sides of the MT-binding
domains, Patterson et al. advanced the idea of the formation of an
antiparallel dimer (26).

TOC1 immunoreactivity is selectively detectable in the early
stage of AD pathogenesis; however, TOC1 antibody fails to
label mature tangles in AD brains (26). In rTg4510 mice,
TOC1 immunoreactivity was observed in the TBS-extractable
64 kDa tau enriched fraction and linked to early pathological
changes (Sahara, in preparation). Notably, the immunohisto-
chemical staining pattern of TOC1 antibody was clearly dif-
ferent from those of MC1 and Ab39 antibodies (Figure 1).
Since NFTs themselves might be protective [reviewed in Ref.
(41)], other harmful tau species such as tau oligomers are
currently of particular interest. If TOC1 antibody selectively
interacts with tau dimers and higher-order oligomers but not
tau filaments, and if those species cause neurotoxicity, this
antibody can be a useful tool to track the pathway of tau
neurotoxicity.

FIGURE 1 | Light microscopic images of immunostained brain sections
from a non-transgenic mouse, a rTg4510 mouse, and human with AD.
Formalin-fixed paraffin sections were stained with TOC1 (1:2500), MC1
(1:1000), and Ab39 (1:250) antibodies by the Dako Universal Autostainer
(Dako, Carpinteria, CA, USA). The sections were then counterstained with

hematoxylin. TOC1 diffusely stained cytoplasmic regions of neurons (top
panels, rTg4510 and AD brains), while MC1 and Ab39 densely stained these
neurons (middle and bottom panels, respectively). This difference in staining
pattern is due to the specific binding of TOC1 antibody to premature tau
aggregates. Scale Bar, 100 µm.
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Table 1 | Summary of brain-derived tau oligomer preparation methods.

Product Reference Material origin Detect method Oligomer properties

AD P-tau Kopke et al. (12), Alonso

et al. (20), Alonso et al.

(44)

AD patients WB, EM AD P-tau is isolated from the 27 K–200 K × g fraction,

soluble in urea, hyperphosphorylated, no ubiquitin

immunoreactivity, self-assembly into filaments,

sequesters N-tau

140 and 170 kDa

tau

Berger et al. (14) rTg4510 mice

JNPL3 mice

WB, SEC Disulfide-bond independent, correlates with memory

loss, 140 kDa tau is not hyperphosphorylated, 170 kDa

tau is hyperphosphorylated, and has strong

immunoreactivity with AT8

TBS-extractable

64 kDa tau

Sahara et al. (25) rTg4510 mice WB, IHC, EM TBS-extractable 64 kDa tau is isolated from 27 K to

150 K × g fraction, thermo-stable, hyperphosphorylated,

mostly disulfide-bond-dependent, correlates with brain

atrophy, contains tau-positive granules/short filaments

T22-positive tau Lasagna-Reeves et al.

(38), Lasagna-Reeves et

al. (42)

AD patients WB, IHC, SEC,

AFM

Hyperphosphorylated, not ubiquitinated at pretangle

stage, contains oligomers with 4–8 nm diameters,

propagate abnormal tau conformation of endogenous

murine tau

WB, Western blot; EM, electronic microscopy; IHC, immunohistochemistry; SEC, size-exclusion chromatography; AFM, atomic force microscopy.

Another tau oligomer-specific antibody, T22, was generated
by Kayed’s group (42) against antigenic tau prepared from Aβ

seeding of tau oligomers (35). The specificity of this anti-
body was confirmed by ELISA and dot blotting. It detects
only tau oligomers but not tau monomers or PHF fibrils pre-
pared by the heparin-induced tau polymerization method (42).
Immunohistochemically, this antibody selectively stains pretan-
gles, neuritic plaques, and neuropil threads but not ghost tan-
gles in AD brain sections (42). Western blotting showed that
T22 antibody recognizes higher-molecular-weight tau species
(e.g., dimers, trimers, and tetramers) but not monomers (42).
It should be noted that the SDS-PAGE samples were not dena-
tured by boiling before running on gels and that T22 immunore-
activity was diminished by denaturing agents such as 8 M
urea (42).

These novel tau oligomer-specific antibodies provide a new
method to diagnose the early pathological changes that occur
in tauopathy. It would be extremely useful to develop methods
employing cerebrospinal fluid biomarkers combined with total
tau, phosphorylated tau, tau oligomers, and other biomarker mea-
surements to differentially diagnose dementias, such as AD, fron-
totemporal lobar degeneration, progressive supranuclear palsy,
corticobasal degeneration, dementia with Lewy bodies, vascular
dementia, and prion disease.

CONCLUSION
Abnormal tau aggregation is considered to be a critical patho-
logical feature of tauopathy. However, the initial molecular event
of tau pathogenesis is yet unclear. The hyperphosphorylation of
tau is strongly suggested to be directly correlated with the sever-
ity of AD pathology (43). Iqbal and colleagues demonstrated
that hyperphosphorylated tau extracted from AD brain reduces

MT stabilization, sequesters normal tau from MT, and aggregates
themselves in the absence of inducer molecules (20, 44). Many
studies attempting to identify tau oligomers have demonstrated
the existence of hyperphosphorylated tau oligomers in human
and transgenic mouse brains (e.g., AD P-tau, 140 and 170 kDa
tau multimers, TBS-extractable 64 kDa tau, and T22 antibody-
positive tau oligomers) (Table 1). Thus, hyperphosphorylation of
tau could be the initial event of NFT formation. However, the
amount of 140 kDa tau multimer (normal tau dimer) correlates
well with behavioral deficits (14), suggesting that hyperphospho-
rylated tau oligomers may not be essential for neurotoxicity. If
antibodies can be generated to recognize non-phosphorylated
and hyperphosphorylated tau dimers independently, we will be
able to better identify toxic tau species and optimize potential
oligomerization inhibitors as possible novel therapies. Standard-
ized isolation methods of tau oligomers are in need to improve
consistency between researchers.

In summary, accumulating evidence from biochemistry,
immunology, and molecular imaging reveal the existence of tau
oligomers as mainly buffer-soluble, non-filamentous, granular-
shaped conformers. The neurotoxicity of these oligomers has been
confirmed in both in vitro and in vivo experiments (4, 5, 14, 42, 45).
The next step of tau oligomer research should investigate whether
tau dimers and/or non-granular oligomers exist and functionally
correspond to neuronal dysfunction.
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Tau misfolding and aggregation leads to the formation of neurofibrillary tangles (NFTs),
which have long been considered one of the main pathological hallmarks for numerous
neurodegenerative diseases known as tauopathies, including Alzheimer’s Disease (AD)
and Parkinson’s Disease (PD). However, recent studies completed both in vitro and in vivo
suggest that intermediate forms of tau, known as tau oligomers, between the monomeric
form and NFTs are the true toxic species in disease and the best targets for anti-tau thera-
pies. However, the exact mechanism by which the spread of pathology occurs is unknown.
Evidence suggests that tau oligomers may act as templates for the misfolding of native
tau, thereby seeding the spread of the toxic forms of the protein. Recently, researchers
have reported the ability of tau oligomers to enter and exit cells, propagating from disease-
affected regions to unaffected areas. While the mechanism by which the spreading of
misfolded tau occurs has yet to be elucidated, there are a few different models which
have been proposed, including cell membrane stress and pore-formation, endocytosis and
exocytosis, and non-traditional secretion of protein not enclosed by a membrane. Coming
to an understanding of how toxic tau species seed and spread through the brain will be
crucial to finding effective treatments for neurodegenerative tauopathies.

Keywords: tauopathies, tau oligomers, oligomeric seeding, propagation of tau pathology, Alzheimer’s

TAU OLIGOMERS ARE THE TOXIC TAU SPECIES IN
NEURODEGENERATIVE TAUOPATHIES
The formation of tau aggregates and neurofibrillary tangles (NFTs)
is one of the main pathological hallmarks of numerous diseases
termed tauopathies, including the two most common neurodegen-
erative diseases, Alzheimer’s Disease (AD) and Parkinson’s Disease
(PD) (1, 2). However, it is evident that cell death occurs initially
prior to NFT formation in AD (3–6) suggesting that NFTs are
not the pathogenic species responsible for the spread of the dis-
ease. Recent evidence points to the presence of multimeric tau
species which are intermediates between tau monomers and NFT –
known as tau oligomers – as the toxic species inducing synap-
tic dysfunction and cell death in neurodegenerative tauopathies
(7–12).

Numerous researchers have investigated tau pathology using
animal models, yielding a better understanding of the toxicity of
different tau structures. A study in aged mice expressing native
human tau (htau mice) found that while NFT formation occurred
as animals aged, there was no correlation between the presence
of tau filaments and cell death (13). Additionally, a study exam-
ining the P301S mouse model, which expresses mutant human
tau, found that hippocampal synaptic dysfunction occurred prior
to NFT formation (14). Studies using the rTg4510 mouse model,
which conditionally expresses P301L mutant tau, found that cell
death occurred prior to NFT formation and that cell loss and
behavioral impairments could be suppressed by inhibiting tau
expression without removing NFTs or preventing their contin-
ued accumulation (7, 15). In accordance with this finding, it has
been shown that NFTs are protective in the same mouse model

(16), and only pro-aggregate human tau mice (TauRD) show
behavioral deficits (17). Another study in the same mouse model
characterized tau oligomers biochemically that appeared early and
correlated with cognitive deficits (8, 12). Similar results have also
been seen in Drosophila AD models, where expression of mutant
tau causes neurodegeneration, synaptic dysfunction, and axonal
transport deficiencies in the absence of NFTs (18, 19). Usage of the
protein nicotinamide mononucleotide (NAD) adenylyl transferase
(NMNAT) was shown to decrease behavioral and morphological
deficiencies in a frontotemporal dementia Drosophila model by
decreasing levels of tau oligomers (20).

Biochemical analysis of human AD brain tissue has also
yielded results suggesting that tau oligomers may initiate toxic-
ity, rather than NFTs. When compared to control brains, levels
of tau oligomers were found to be significantly increased in AD
brains early in the disease, prior to when NFTs appear and clin-
ical symptoms are evident (9, 21–23). In addition to correlative
evidence for the importance of tau oligomers to toxicity, treat-
ment with tau oligomers has also been shown to cause adverse
effects in animals. Isolated tau oligomers, but not monomers
or NFTs, induced memory impairments, synaptic dysfunction,
and mitochondrial dysfunction when given intracerebrally to
wild-type mice (24). Therefore, it is possible that NFTs are
actually neuroprotective, sequestering toxic forms of tau into
large aggregates with less flexibility and surface area to inter-
act with cells. All of these studies form the framework for the
model of the progression of neurodegenerative tauopathies begin-
ning with the seeding and propagation of toxic tau oligomers
(Figure 1).
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Gerson and Kayed Propagation of oligomeric soluble tau aggregates

FIGURE 1 | Schematic illustrating the central role of tau oligomers in
tauopathies. Tau intermediate soluble aggregates (tau oligomers) are
the toxic tau entities and initiators of tau pathology and propagation in
tauopathies, rather than monomeric tau or hyperphosphorylated NFTs

(p-NFTs). Sonication of fibrillar tau generates toxic tau oligomers. Thus,
tau oligomers represent the ideal target for anti-tau therapeutic
approaches. AFM images are of brain-derived tau oligomers and NFT
(72, 138).

TAU OLIGOMERS ARE SEEDS FOR THE PROPAGATION OF
PATHOLOGICAL TAU
Recently, researchers have begun to make comparisons between the
spread of neurodegenerative disease and prion disease, as studies
suggest that misfolded protein templating, known as seeding, may
underlie the progression of disease (25). Understanding how tau
seeds pathological forms of the protein which propagate to differ-
ent brain regions is critical to devising a solution to stop the spread
of disease. There are two main models for the formation and
seeding of pathological tau, oligomer-nucleated conformational
induction – based upon the mechanism of action of prion pro-
tein, Sup35 (26) and amyloid β (Aβ) (27) – and template-assisted
growth. Template-assisted growth proposes that tau fibrils act as
template molecules for unfolded monomers. When monomers
come in contact with filaments, they are integrated into the fila-
ment in organized, parallel stacked β sheets, optimizing hydrogen
bonding for stabilization (28). It has been difficult, however, to
find spontaneous tau aggregation which occurs experimentally.
When fibrils are cleaved, leaving only three microtubule bind-
ing repeats, the fragments aggregate spontaneously in vitro (29).
However, on its own, tau will not polymerize in vitro without

the addition of certain reagents, post-translational modifications,
such as phosphorylation, or induction of mutations.

In order for aggregation to occur, tau must be released from
microtubules to reach a high concentration of free cytosolic tau,
conformational changes must occur to allow for aggregation, pos-
sibly by increasing β sheet content, and dimerization must occur
(30, 31). The addition of polyanions, such as heparin or RNA can
induce fibrillization of tau (32), causing a conformational change
from random coil structure to β sheet structure (33). Free fatty
acids, such as arachidonic acid can also increase aggregation (34,
35) due to the presence of an alkyl chain, which induces micel-
lization, and a negatively charged head group on the fatty acid to
create a negatively charged surface on the micelle. In the presence
of tau, the critical concentration for micelle formation is greatly
decreased, allowing anionic micelles to attract tau to the negatively
charged surface and thereby compensate for positive charges in tau
and enable tau aggregation (36,37). Phosphorylation may also play
a role in fibrillization. Paired helical filaments (PHF) and straight
filaments (SF), which make up the NFTs found in the brains of
patients with AD, are comprised of hyperphosphorylated tau (38,
39). Phosphorylated tau has a higher tendency toward aggregation
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than unphosphorylated tau and kinases involved in the phospho-
rylation of these sites in tau have been shown to be altered in
AD (40). Hyperphosphorylated tau has been shown to aggregate
in vitro, possibly due to the addition of negative charge which
would increase aggregation, similarly to the addition of polyan-
ions and free fatty acids. Furthermore, this process can be inhibited
by dephosphorylation (41, 42). Phosphorylation may also induce
aggregation by reducing the interaction of tau with microtubules
and allowing it to interact instead with unphosphorylated tau
and form aggregates (43–45). Mutations, such as those that lead
to frontotemporal lobar degeneration (FTLD), can increase tau
aggregation through different mechanisms. Many mutations lead
to a decrease in microtubule assembly kinetics, which could lead
to more free cytosolic tau and increase aggregation (46–49). Some
mutations lead to a decrease in the dissociation constants (K d)
for dimer and filament formation, while others increase the rate
of nucleation without affecting K d (30). Mutations that cause
increased formation of β-sheets lead to heightened aggregation
due to an increase in hydrophobic interactions, deviating from
the highly hydrophilic native tau protein (50, 51). Fibrillar tau can
thereby be recognized by dyes which interact with β-sheets, such as
Congo Red and thioflavin S (52). However, at high concentrations,
these dyes can induce fibrillization due to an attraction between
positive charges formed in the core of PHFs and negative charges
of the anionic dyes (53–55).

In amyloid proteins in which seeding has been well-established,
such as prion proteins and Aβ, oligomers have been shown to
be the most potent seeds (56, 57), working by way of oligomer-
nucleated conformational induction (26, 27). Due to the increased
interest in the toxicity of tau oligomers, evidence has emerged
in support of the oligomer-nucleated conformational induction
model as more studies have begun to explore the importance of tau
oligomers in the initialization of tauopathies. Oligomer-nucleated
conformational induction entails oligomers or conformational
changes irreversibly stabilizing the highest energy protein states,
known as the nucleus, allowing stable monomers to aggregate
into oligomeric structures. Oligomers are driven to further elon-
gation to form lower energy, stable filaments (58). As opposed to
template-assisted growth, monomers are not incorporated directly
into fibrils, but are instead entirely aggregated into oligomers prior
to filament formation (59). Tau dimerization increases the ten-
dency to aggregate and can be induced by oxidation (60), which
suggests that tau oligomerization may be an important step in
the fibrillization pathway. The appearance of oligomeric species
of other amyloid proteins has been observed on the path to fibril
formation (61–63).

While the addition of reagents and mutations used to induce
fibrillization has been integral to understanding how tau aggrega-
tion occurs, it does not explain how fibril formation may occur
spontaneously in sporadic disease. The mechanism by which tau
aggregation occurs physiologically has not yet been elucidated,
however there have been some advances in the understanding of
how certain steps in the process may occur. Release of tau from
microtubules may occur following post-translational modifica-
tions, such as phosphorylation (43, 44). Localization to anionic
surfaces, alternative splicing, and post-translational modifications
stabilizing aggregated conformations may all act as enhancers to

increase speed of nucleation (64). Under physiological conditions,
nucleating cofactors can induce tau aggregation in a similar fash-
ion to agents used in vitro. There is evidence that polyanionic
species, such as tubulin, RNA, and α-synuclein can increase the
tendency of tau to aggregate (65–67) The formation of disulfide
bridges is critical for the initial creation of dimers from monomers,
as well as intermolecular crosslinking of the microtubule bind-
ing domain independent of cysteine to continue oligomerization
of three-repeat tau (68). Prior to monomer aggregation into
oligomers, the free energy of solvation decreases, causing a shift
in preference for peptide-solvent interactions toward peptide–
peptide interactions, as water is evacuated due to poor interaction
with the peptide backbone and sidechains. Water release increases
entropy of the solvent, thereby balancing the loss in conforma-
tional entropy caused by aggregation. The interaction of side
chains with the backbone in the form of hydrogen bonding leads
to the creation of β-sheet structure and aggregate stabilization.
While oligomers form a similar structure to fibrils, they are not
as ordered, which likely increases their toxicity (69). Proteolytic
processing by endogenous proteases has also been shown to create
self-aggregating fragments, which nucleate and co-aggregate with
full-length protein effectively enough for a small amount of frag-
ment to seed PHFs (70). Direct interactions between misfolded
tau and native protein may be the underlying mechanism of seed-
ing as experiments have shown tau protein–protein interactions
occur when tau aggregates enter cells containing native tau (71).

Tau oligomers – identified with the tau oligomer-specific anti-
body, T22, which does not recognize monomers or fibrils (59) –
which have been seeded with oligomers derived from brain tissue
have been shown to be highly toxic (23, 72). When tested with Bis-
ANS, which recognizes exposed hydrophobic patches, oligomers
had higher affinity for Bis-ANS than PHFs, which may under-
lie toxicity. The toxic effects of tau oligomers formed by seeding
recombinant tau with oligomeric seeds, however, can be prevented
when pre-treated with T22 (23, 72).

Some tauopathies, such as progressive supranuclear palsy
(PSP), only have one pathogenic species involved in disease pro-
gression (1). However, most tauopathies contain other amyloid
proteins in addition to tau, such as Aβ in AD and α-synuclein in
PD. In such diseases, cross-seeding of heterologous protein species
is an additional mechanism which is important for tau seeding (59,
67, 73–77).

TAU OLIGOMERS PROPAGATE FROM AFFECTED BRAIN
REGIONS TO UNAFFECTED REGIONS
Aβ has been shown to propagate from affected brain areas to
unaffected areas in mice over-expressing Aβ precursor protein
that have been injected with Aβ isolated from the brains of AD
patients and AD transgenic mice (78, 79), suggesting that perhaps
tau could spread in a similar fashion. A few years later, a similar
mechanism was demonstrated for the propagation of tau. When
tau extracted from P301S mice was injected into the brains of
mice over-expressing wild-type human tau (ALZ17 mice), which
do not form tau aggregates, tau pathology was observed to have
spread from the injection site to neighboring brain regions (80).
Additionally, in transgenic mice which differentially express patho-
logical tau in the entorhinal cortex, where tau pathology is first
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observed in AD, human tau has been shown to spread to both
neighboring and synaptically connected neurons which do not
express human tau mRNA. Translocated human tau was able to
seed mouse tau misfolding (81, 82). However, these studies did not
specifically investigate which tau species specifically induced seed-
ing and propagation of tau pathology and the usage of transgenic
mouse models is not analogous to sporadic forms of AD. When
wild-type mice were injected with both tau oligomers and PHFs
isolated from AD brains, tau oligomers induced the spread of tau
pathology from the injection site to neighboring brain regions and
impaired memory, as measured by object recognition. Conversely,
mice injected with PHFs only exhibited tau pathology near the
injection site and did not exhibit any memory impairments on
the behavioral task, suggesting that tau oligomers, but not fibrillar
tau, is capable of seeding and propagating pathology (72). Fur-
thermore, similar results have been found using primary neurons.
Neurons were exposed to low molecular weight aggregates – rec-
ognized by the tau oligomer-specific antibody, T22, and examined
via electron microscopy for oligomeric characteristics – as well as
to fibrils formed in vitro, filaments formed in vivo, and monomers.
Low molecular weight aggregates and short fibrils exhibited uptake
into the cell, but monomers and filaments were not internalized
(83). Other studies have shown tau aggregate uptake using cell cul-
ture, but did not specifically identify the type of aggregates being
internalized. Neural stem cells treated with tau monomers and
aggregates formed using the tau microtubule binding repeat region
induced to fibrillize with arachidonic acid, exhibited significantly
more tau aggregate uptake than monomer uptake. Additionally,
aggregates, but not monomers, induced seeding of endogenous
tau misfolding (84).

On the other hand, Guo and Lee hypothesized that seeding of
pathological tau in cultured cells would be able to occur more
quickly by seeding with pre-formed tau fibrils, thereby omitting
the step where monomer must be converted to oligomer prior to
fibril formation. Fibrillization of recombinant tau was induced
with the addition of heparin and was verified using thioflavin T.
Fibril-treated cells exhibited seeding and propagation of aggre-
gates via endocytosis. However, following fibril confirmation with
thioflavin T and prior to cell treatment, fibrils used in this study
were sonicated (85). Previous research investigating Aβ seeding
found that sonication increased seeding ability by fragmenting fib-
rils into smaller, soluble species (57) and sonicated prions have also
been shown to have more potent seeding potentials than unsoni-
cated fibrils (56). Since it has been shown that both prion and Aβ

oligomers, rather than fibrils, are the seeds for pathological protein
templating (26, 27), it is likely that sonication partially converts
insoluble fibrils into soluble oligomeric forms. Sonication of tau
fibrils has also been shown to cause shearing of filaments, partic-
ularly those in PHF form (86). Therefore, it is likely that sonicated
tau fibrils used to treat cells in the previous study (85) also con-
tained tau in oligomeric form, which may explain why seeding and
propagation was successful.

Recently, Wu et al. studied propagation of tau in primary neu-
rons using microfluidic chambers which allow somatodendritic
compartments to be isolated from axonal compartments, enabling
not only the analysis of tau uptake from the extracellular space into
the cell, but also propagation within the neuron. They found that

low molecular weight tau aggregates specifically recognized by tau
oligomer-specific antibody, T22, propagate between isolated neu-
ronal compartments both anterogradely and retrogradely (83).
Importantly, tau is primarily found in the axons of healthy neu-
rons (87), though tau may also be found in the dendrite where
it colocalizes with the src kinase, fyn (88, 89). In AD, however,
misfolded and hyperphosphorylated tau accumulates in the axon,
dendrites, and the cell body (90), suggesting that intracellular
transport may also be important for the spread of disease. In
lamprey neurons expressing low levels of tau, tau was primar-
ily localized to the axon and proximal dendrites, both regions
consistent with tau functioning as a microtubule-associated pro-
tein. However, in neurons expressing high levels of tau, tau was
found in distal dendrites and near the soma membrane, both
areas lacking microtubules. High-expressing tau cells showed more
degeneration and secretion of tau. Moreover, as tau can modu-
late activity of microtubule-associated motor proteins involved
in dendritic transport, tau localized to the dendrite may have
implications for its propagation (91). Phosphorylated tau local-
ized at the synapse in AD brain samples appears to correlate with
ubiquitin-proteasome system (UPS) dysfunction, suggesting that
tau oligomer accumulation at the synapse impairs the UPS, which
is a crucial player in the breakdown of tau. Accumulation of tau at
the synapse may also suggest a mechanism for trans-synaptic tau
propagation (92).

Phosphorylation clearly plays a role in the toxicity and local-
ization of tau, however, its exact role in neurodegenerative disease
is unknown and appears to be quite complicated. While hyper-
phosphorylated tau has been shown to have toxic results in the
cell, increasing aggregation and abnormal tau localization (40, 90),
dephosphorylated tau can also have harmful effects. Phosphory-
lated tau released into the medium of cultured neuroblastoma cells
through muscarinic receptor activation that is dephosphorylated
by tissue-non-specific alkaline phosphatase (TNAP) led to exci-
totoxicity, increasing calcium levels in nearby cells. Additionally,
levels of TNAP are heightened in AD brains compared to control
brains (93). Another study of primary cortical neurons also found
that extracellular tau is largely dephosphorylated (94). Conversely,
one study found that phosphorylation of tau increased its secretion
from HeLa cells (95). Inflammation and activation of microglia has
been shown to increase tau phosphorylation as well as aggregation,
but is complicated by the fact that the opposite effect is seen in Aβ

(96–99). The localization of tau in the cytosol, cell membrane,
and the nucleus also appears to be important for tau toxicity, and
is mediated by phosphorylation. Oxidative stress and heat shock
induce the dephosphorylation of cytosolic tau and its transport
into the nucleus. Once relocated to the nucleus, tau appears to
protect neuronal DNA from damage under cell stress (100), which
may be important in AD where DNA damage has been shown
to occur (101). One possibility is that abnormal phosphorylation
of tau in AD may prevent tau from being dephosphorylated and
translocated to the nucleus to protect against DNA damage. The
localization of tau to the cell membrane may also depend upon its
dephosphorylation, as tau with lower levels of phosphorylation in
its proline region was shown to be associated with the cell mem-
brane, while phosphorylated tau was found in the cytoplasm (102,
103). However, interaction with membrane bound proteins, such
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as aforementioned fyn may stabilize association of phosphorylated
tau with the membrane.

MECHANISM OF TAU PROPAGATION
The entry of prion proteins, Aβ, and other amyloid proteins into
the cell via different mechanisms has been well-established (104–
107). One hypothesis for amyloid oligomer toxicity and entrance
into cells is through protein interaction with the cell membrane.
One model suggests that oligomers embed themselves into the cell
membrane and form pores. However, it appears as though the for-
mation of pore-like annular protofibrils occurs through a separate
pathway from fibril formation (108). An alternative model sug-
gests that oligomers interact with lipid rafts in the bilayer, causing
membrane thinning and increased membrane permeabilization,
which may play a role in oligomer toxicity, allowing non-specific
ion entrance, as well as leakage of cellular compartments. Several
types of amyloid oligomers have been shown to increase mem-
brane permeability, including Aβ, α-synuclein, and prion protein
(107, 109–111). Tau has been reported to interact with the lipid
rafts in the cell membrane and undergo conformational changes
leading to membrane stress (112–115). Additionally,permeabiliza-
tion of the membrane could mediate internalization of oligomers
into the cell.

There has also been evidence for endocytosis as a route of amy-
loid entry into the cell. Propagation of α-synuclein, prion protein,
Sup35, and Aβ has been shown to be associated with the endo-
somal pathway (116–118). One study found that tau aggregates
colocalize with dextran in neural stem cells, implying that entry
into the cell occurs via macropinocytosis. However, the aggregate
type was not specifically tested (84). Aggregates identified specif-
ically as tau oligomers colocalized with fluid-phase endocytosis
marker, dextran, as well as with early endosomal marker, Rab5,
and late endosomal/lysosomal marker, Lamp1. When endocyto-
sis was inhibited with dynamin inhibitor, Dynasore, tau uptake
was blocked, while inhibition of clathrin-mediated endocytosis
with Pitstop2B did not impact internalization (83). These studies
together suggest a mechanism for tau propagation in which tau
is internalized via pinocytosis and enters the endosomal pathway.
Tau can move through the endosomal pathway to the lysosome
where toxic species may be degraded or recycled back to the
cell membrane, where they may be released to be internalized
by adjacent neurons. More research is needed to determine how
membrane-enclosed tau oligomers are released inside of the cell,
though it appears likely that the majority are degraded in the lyso-
some, while those that avoid degradation may cause the endosomal
membrane to burst and be released in the cytoplasm, where they
can seed aggregation of healthy tau (83). While clathrin-mediated
endocytosis did not appear to be involved in tau propagation,
endocytosis inhibitors are often found to be non-specific (119),
and therefore, the possibility of other types of endocytosis in tau
spread bears more study.

Receptor-mediated endocytosis could be another route of entry
into the cell as amyloids have been reported to bind to cell sur-
face receptors. Internalization of α-synuclein has been shown to
be dependent upon receptor-mediated endocytosis, potentially
through caveolin-mediated endocytosis (117). Additionally, Aβ

binds to NMDA, α7 nicotinic acetylcholine, and APOE receptors,

inducing receptor endocytosis (120–124). Aβ oligomers also bind
cellular prion protein, PrPc, which is complexed with the Src tyro-
sine kinase, Fyn. This interaction has been shown to increase
tau dysfunction and prevents native tau from binding to fyn
(125). Under normal conditions, tau binds to fyn in oligoden-
drocytes (126) and in neurons, activating the Ras/MAPK pathway
(103). Mutations to the microtubule binding region in tau lead
to decreases in oligodendrocyte process number and length and
disease-related missense mutations increase tau association with
Fyn (127). Results indicate that the interaction between tau and
fyn may be important for neurodegeneration, both through a loss
in native tau interaction and through a gain in toxic tau function.
Interaction with PrPc complexed to fyn could also mediate tau
entry into the cell as the PrPc complex is associated with and endo-
cytosed with caveolin (128). Tau may also enter the cell through a
direct interaction with fyn. Lee et al. used a lamprey ABC tauopa-
thy model in which tau is expressed in specifically identified ABC
neurons to investigate the spread of tau. They report that tau phos-
phorylated at Y18, the site most commonly phosphorylated by
fyn kinase, is associated with vesicular organelles. Additionally,
when tau is overexpressed and localizes to the dendrite, dendritic
vesicle accumulation is observed. Phosphorylated tau is colocal-
ized with vesicles which bear resemblance to endosomes, as well
as to fyn. Fyn has also been shown to colocalize with exosomes,
suggesting a possible mechanism for fyn-tau transport in which
fyn-associated tau is endocytosed, transported from early endo-
somes to late endosomal compartments, and then transported out
of the cell via exosomes (91).

While one mechanism for tau oligomer release is through
oligomer toxicity leading to cell death, causing the cell to lyse
and release its contents (129), studies show that this likely does
not account for the majority of tau release. In primary neurons
treated with tau oligomers, extracellular tau only increases once
levels as high as 40% cell death are reached, which does not corre-
spond to physiological levels of cell death during the initial spread
of neurodegenerative disease (130). Additionally, treatment with
tau oligomers in primary neurons does not lead to significant levels
of apoptosis (83). There has however been some evidence for non-
apoptotic membrane blebbing as a possible secondary mechanism
for tau release (91, 131).

Exocytosis has been implicated as a mechanism of amyloid
spread as prion proteins and α-synuclein have been shown to
be associated with exosomes in cell culture (132, 133). How-
ever, investigations of a similar mechanism for tau release have
been unclear. Simón et al. found that when tau was overexpressed
in kidney-derived cell lines, tau was secreted contained within
membrane vesicles (129, 134). While tau secreted by neuroblas-
toma cells and tau in human CSF was found to be associated
with exosomes in one study (135), another reported that tau was
not detected in isolated exosomes from neuroblastoma cells (130).
However, these studies used cell models where tau was overex-
pressed. In an attempt to approach more similar conditions to
those seen physiologically, researchers cultured primary corti-
cal neurons containing endogenous tau and found that tau was
released by a mechanism unrelated to cell death and was regu-
lated by AMPA receptor activation. Inhibition of synaptic vesicle
release decreased extracellular tau, while tau was not found to be

www.frontiersin.org July 2013 | Volume 4 | Article 93 | 29

http://www.frontiersin.org
http://www.frontiersin.org/Neurodegeneration/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gerson and Kayed Propagation of oligomeric soluble tau aggregates

associated with exosomes, indicating that release of tau through
traditional synaptic exocytosis following AMPA receptor activa-
tion may be one mechanism of tau release (94). Another study
found that cells constitutively release tau which is not contained
within a membrane under conditions inhibiting cell death (136).
Therefore, more research is warranted to investigate the condi-
tions under which tau is associated with exosomes and the specific
tau conformations found in exosomes. Tunneling nanotubes –
long, temporary channels that allow for long-distance transport
between cells – have recently been discovered as a transport mech-
anism for prion protein (137). While they have not yet been studied
directly in the context of tau, similarities between the spread of
prions and tau suggest that tunneling nanotubes may be another
potential mode of tau propagation meriting study.

CONCLUSION
Determining how neurodegenerative tauopathies initiate and
propagate toxic species will be crucial to finding a treatment for
these diseases. Recent evidence suggests that tau oligomers, not
NFTs, are the toxic tau species mediating the initiation, seeding,
and propagation of neurodegenerative tauopathies and are the
best target for anti-tau therapeutics. The mechanism by which tau
seeding occurs remains to be elucidated, but oligomer-nucleated
conformational induction, whereby native tau monomers are

entirely converted to oligomers prior to aggregation into fibrils,
appears to be a likely model. Tau oligomers can effectively enter
cells, be transported intracellularly, and be released from cells
to affect others. However, the mechanism by which propagation
occurs is unclear. Tau likely enters the cell in one of two main
ways, stressing the cell membrane or entering via endocytosis.
Entrance through interaction with the membrane may occur
through formation of pores or by interacting with lipid rafts
causing membrane stress. Both macropinocytosis and receptor-
mediated endocytosis have been implicated as possible mecha-
nisms for tau entry. Tau secretion is likely not due simply to cell
death, but may occur within exosomes, through synaptic vesicle
release, or a non-traditional secretion pathway in which tau is
not enclosed in a membrane. The elucidation of the mechanisms
addressed will lead to a better understanding of neurodegenerative
disease and may reveal new targets for treatment.
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A cumulative number of approaches have been carried out to elucidate the pathogenesis of
Alzheimer’s disease (AD). Tangles formation has been identified as a major event involved
in the neurodegenerative process, due to the conversion of either soluble peptides or
oligomers into insoluble filaments. Most of recent studies share in common the observa-
tion that formation of tau oligomers and the subsequent pathological filaments arrays is a
critical step in AD etiopathogenesis. Oligomeric tau species appear to be toxic for neuronal
cells, and therefore appear as an appropriate target for the design of molecules that may
control morphological and functional alterations leading to cognitive impairment.Thus, cur-
rent therapeutic strategies are aimed at three major types of molecules: (1) inhibitors of
protein kinases and phosphatases that modify tau and that may control neuronal degener-
ation, (2) methylene blue, and (3) natural phytocomplexes and polyphenolics compounds
able to either inhibit the formation of tau filaments or disaggregate them. Only a few
polyphenolic molecules have emerged to prevent tau aggregation. In this context, fulvic
acid (FA), a humic substance, has potential protective activity cognitive impairment. In fact,
formation of paired helical filaments in vitro, is inhibited by FA affecting the length of fibrils
and their morphology.

Keywords: tau oligomers, PHFs, Alzheimer’s disease, tauopathies, diagnosis and treatment

INTRODUCTION
Tau protein, a member of the microtubule-associated protein
(MAPs) family, plays a fundamental role in the assembly and sta-
bilization of microtubules, as well as on axonal transport and
neurite outgrowth (1–3). In this context, tau protein plays an
important role in the maintenance of neuronal polarity and in
the stabilization of the morphology of differentiated neurons.
In developing neurons, tau activity is crucial for the morpho-
genesis of the growth cones and, it has been suggested to play
a key role in promoting axonal growth (4). Tau is encoded
by a single gene located on chromosome 17 (17q21), possess-
ing 16 exons in its primary transcript. Six different isoforms
are expressed by post transcriptional modifications (alternative
splicing) from the primary transcript. Mature protein length
is about 352 up to 441 amino acid residues, and a molecu-
lar weights of 45–65 kDa depending on the tau isoforms (5, 6).
The C-terminal region has a domain containing the microtubule-
binding repeats, which is critical for microtubule assembly (2),
whereas the affinity of tau for microtubules is finely regulated
by an orchestrated set of phosphorylations. The motif KXGS
is one of several different motifs located within these repeats
susceptible to be phosphorylated (7). In turn, tau is character-
ized as an hydrophilic cationic protein, unfolded under native
conditions, and with a low ordered secondary structure (8). In
addition to roles in stabilization of microtubules, tau plays a

major role in bridging the different cytoskeletal structures. Thus,
besides microtubules, tau interacts with actin and intermediate
filaments (2, 9).

Tau is located primarily in neurons, however, traces of this
protein have been found in certain non-neuronal cells. Under
pathological conditions, tau can be also expressed in glial cells
(10). It is also possible to find tau or it’s mRNA in several peripheral
tissues such as heart, liver, lung, skeletal muscle, among others (11–
13). Interestingly, tau variants have been also observed in human
platelets (3, 14, 15).

Tau phosphorylation plays an important role in regulating
its binding to microtubules and thereby regulating their stabil-
ity within neuronal cells. However, under pathological situations,
tau protein is abnormally phosphorylated or dephosphorylated in
specific residues, perhaps due to the activities of various protein
kinases and phosphatases (such as GSK-3β and Cdk-5, and PP1A
and PP2, respectively) (16, 17). This change in the phosphoryla-
tion state of tau can lead to irreversible changes in the dynamics
of microtubules, cellular dysfunction, ultimately triggering cell
death of the neuron (6, 18). Moreover, tau protein may have other
post-translational modifications, including: (i) glycosylations, (ii)
ubiquitinations, (iii) truncations, and (iv) nitrations (6).

Hyperphosphorylated tau protein is the main component of
abnormal protein aggregates found in the neurons of patients
with neurodegenerative brain disorders known as tauopathies.
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Those neurodegenerative diseases have in common the pres-
ence of intraneuronal aggregates of tau. These aggregates are
known as Neurofibrillary Tangles (NFTs) and are made up of
paired helical filaments (PHFs) and straight filaments mainly com-
posed of hyperphosphorylated tau. The formation of PHFs from
tau molecules may follow different steps and could involve tau
phosphorylations, followed by limited proteolysis and conforma-
tional changes in tau protein (19), and finally its polymerization
into aberrant polymers in neuronal cells. These neuronal dis-
orders include: Pick’s disease, corticobasal degeneration (CBD),
progressive supranuclear palsy (PSP), frontotemporal dementia
with Parkinsonism linked to chromosome 17 (DFTP-17) and
Alzheimer’s disease (AD). AD is considered the most prevalent
tauopathy worldwide (20). In AD, abnormal phosphorylations
occur and specifically tag certain amino acids of tau protein:
Ser202, Thr205, Ser235, and Ser404 (21). These post-translational
modifications are catalyzed by two main protein kinases: the Cdk-
5/p35 system and GSK-3β (6). In this paper, we focus on how tau
oligomers became the focus for the search for new drugs, and also
potential targets for accurate diagnosis of AD.

ARE TAU OLIGOMERS RESPONSIBLE FOR NEURONAL
DEGENERATION? TECHNICAL APPROACHES
Insoluble aggregates of the MAP tau characterize a number of
tauopathies. Although there is much evidence linking tau to neu-
rodegeneration, the precise mechanism of tau-mediated neuro-
toxicity remains to be elucidated. In fact, tau oligomers appear to
be the toxic form of tau in neurodegenerative disease. In agree-
ment with this hypothesis, the presence of immunoreactive tau
protein in neurons of AD brain tissue, previous to tangle forma-
tion, has been shown. Binder and coworkers have produced the
novel monoclonal antibody TOC1 that recognizes non-fibrillary
tau. This antibody is selective in terms of specifically labeling tau
dimers and oligomers, but does not label tau filaments. Time-
course analysis and antibody labeling indicates that oligomers
appear as an early event in AD pathogenesis. Aggregated tau,
but not monomeric tau, inhibited anterograde fast axonal trans-
port. This inhibition requires a small stretch containing amino
acids from the N-terminal region on tau, a phosphatase-activation
domain. The molecular chaperone heat-shock protein 70 (Hsp
70) clearly affects tau oligomers formation and stability, as inves-
tigated in the squid axoplasm. Hsp 70 preferentially bound to
tau oligomers over filaments and prevented anterograde axonal
transport inhibition observed with a mixture of both forms of
aggregated tau (22).

Tau aggregates comprise abnormally hyperphosphorylated and
misfolded tau. Research has traditionally focused on understand-
ing how hyperphosphorylated and aggregated tau mediates dys-
function and toxicity in tauopathies. Recent findings in Drosophila
and rodent models of tauopathy suggest that large insoluble
aggregates such as tau filaments and tangles may not be the key
toxic species in these diseases (23). Thus, some investigators have
shifted their focus to study pre-filament tau species such as tau
oligomers and hyperphosphorylated tau monomers. Interestingly,
tau oligomers can exist in a variety of states including hyper-
phosphorylated and unphosphorylated forms, which can be both

soluble and insoluble. It remains to be determined which of these
oligomeric states of tau are causally involved in neurodegener-
ation and which molecule signal the beginning of the forma-
tion of inert/protective filaments. It will be important to better
understand this aspect so that tau-based therapeutic interventions
can target the really toxic tau species.

Another interesting study showed that oligomers of recombi-
nant full-length human tau protein are neurotoxic in vivo after
subcortical stereotaxic injection into mice. Data showed that tau
oligomers impaired memory consolidation, whereas tau fibrils
and monomers did not. In this context it was assumed that tau
oligomers can affects synaptic transmission. Thus, synaptic dys-
function seems to result from the action of tau oligomers, poten-
tially reducing the activity of the synaptic vesicle-associated pro-
teins synaptophysin (24). Some studies identify tau oligomers as
an acutely toxic tau species in vivo, and suggest that tau oligomers
induce neurodegeneration by affecting mitochondrial and synap-
tic function, both of which are early hallmarks in AD and other
tauopathies (25). These results open new avenues for neuropro-
tective intervention strategies for tauopathies by targeting tau
oligomers.

OLIGOMERS AND THEIR USEFULNESS FOR MONITORING AD
As mentioned above, tau oligomers are one of the neuropatho-
logical hallmarks of AD and other tauopathies. Regarding NFT
accumulation in AD, there is evidence showing that progressive
neuronal loss and cognitive impairment correlates with the accu-
mulation of soluble species of tau in NFTs in AD mouse models
(26). This etiopathological feature has become the target for poten-
tial treatments for AD, diagnosis and monitoring evolution of the
disease. On this last point, some diagnostic biomarkers for AD
based on tau have been developed: (1) biomarkers in cerebrospinal
fluid (CSF) and (2) biomarkers in platelet tau (3). Since in the CSF
significant exchange of substances with a varied neural environ-
ment appears to occur, tau variants are released to the fluid. In this
context, one of the most reliable biomarkers reported was based
on the ratio between normal tau and hyperphosphorylated tau (P-
tau) in the CSF (27). This evaluation about tau and P-tau allows
a better correlation with the later stages of synaptic dysfunction
and early neurodegeneration (27, 28). Furthermore, the second
biomarker is based on the detection of tau in blood platelets (15,
29). Alterations in platelets from AD patients, including modifi-
cations in platelets β-amyloid Precursor Protein (APP) have been
described previously (30) and APP evaluations have been pos-
tulated as a potential biomarker for AD (31). Considering that
information we focused our efforts in analyses of platelets tau pro-
tein. The innovative method was developed in our laboratory and
is based upon the difference between the ratio of molecular species
of high molecular weight tau (multimeric) versus low molecu-
lar weight (monomeric). In western blot experiments performed
with platelet protein extracts obtained from peripheral blood from
healthy subjects and patients with AD, it was observed that the lat-
ter had tau immunoreactive bands migrating at molecular weights
much higher than expected by electrophoresis under denaturing
and reducing conditions (SDS-PAGE) (15). These high molecular
weight forms of tau (tau HMW) could be attributed to oligomeric
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forms of the protein, which are increased in AD patients as com-
pared to healthy elderly subjects (Figure 1). Therefore, platelets
tau has been postulated as a biomarker for AD (29). Different tau
species with variable stages of aggregation are visualized in the
electrophoretic patterns. Subsequent studies by Farias et al. (15),
have shown that there is a close correlation between the degree of
platelet tau modification and level of cognitive impairment, which
was measured using neuropsychological tests in patients with AD
[for more detailed information about these biomarkers see Ref.
(3)]. Moreover, correlations between HMWtau/LMWtau ratio and
brain neuroimaging have been observed. This ratio, controlled for
age and education, significantly correlated with a clusters of 717
voxels in the right parahippocampal cortex with peak at Talairach
coordinates 16, −10, −23 (unpublished observations).

TAU AS A THERAPEUTIC TARGET FOR ANTI-ALZHEIMER
DRUGS
Since tau has been recognized as an important actor in neu-
rodegenerative diseases, many molecules that act on tau pathol-
ogy have been investigated as potential vectors for therapeutic
approaches for AD, but also for other tauopathies such as PSP or
CBD. One of the molecules that have attracted much attention
is the phenothiazine methylthioninium chloride, better known
as methylene blue (MB). MB has a very interesting property
as an aggregation inhibitor for proteins that adopt beta sheet
conformation (32).

Rember™ is the trade name of MB, and a Phase II study ran-
domizing 321 mild to moderate AD patients with placebo or three
different doses of Rember™ was presented in 2008 at the Inter-
national Conference on AD in Chicago. Treatment effects of four
points were described on ADAS-Cog on the treatment group as
compared to placebo subjects, and also conservation on the cere-
bral blood flow and brain glucose used in SPECT and FDG-PET
scans (33). However, as today, the lack of peer reviewed publi-
cations on this compound affect the reliability of the results. In
animal models, the effects of MB on cognition appears not to be
related to a reduction on NFTs but to a decrease in soluble tau
levels (34) (Figure 2).

Other groups have focused their efforts on investigating tau
kinases inhibitors (16) or tau phosphatase activators (17), as an
indirect manner to halt tau hyperphosphorylation, recognized as
leading to pathological aggregation of the protein. However, diffi-
culties in finding specific inhibitors/activators with adequate safety
profiles have impacted in the lack of new drugs in this area (32,
35). A possible way to decrease adverse effects of tau kinase inhi-
bition might be the use of relatively broad specificity, low power
compounds (36).

Davunetide is an eight aminoacids peptide that can be adminis-
tered intranasally or intravenously and has been described as a tau
hyperphosphorylation inhibitor as well as an inhibitor of caspase
3 activation (37). Davunetide has been successfully evaluated in
a series of in vitro and in vivo models (38) for neurodegenerative
diseases that include AD, PSP, and schizophrenia (38, 39).

An example of “non-traditional” approaches to tau aggregation
regulation includes chaperones modulation. Hsp 70 chaperones
assist protein-folding processes and are found up-regulated in sev-
eral tumors, but also in neurodegenerative diseases such as Pick’s

FIGURE 1 | Representative immunoblots of platelet tau with tau-5
antibody. High molecular weight tau bands (about 80 kDa) can be
appreciated, with greater immunoreactivity in patients with Alzheimer’s
disease (AD) compared with control subjects (C). Subsequent
densitometric analysis allows obtaining the relationship between HMWtau
versus LMWtau.

disease,AD,and other tauopathies. Deregulation in Hsp 70 chaper-
ones appears to be implicated in the processes of tau aggregation,
so compounds that bind Hsp 70 chaperones are under investi-
gation as possible treatment compounds for neurodegenerative
diseases, since there is evidence that Hsp 70 inhibition leads to
tau ubiquitination and clearance through ubiquitin-proteasome
system (40).

There are some natural compounds that are able to inhibit
tau aggregation and possibly, make an impact in neurodegener-
ative diseases. Shilajit is a natural phytocomplex that has been
found in the Himalayan Mountains between India and Nepal and
also in the Tibet and Afghanistan and has been used in ayurvedic
medicine for centuries as a rejuvenating compound. Our labora-
tory has worked with the Andean Compound (or Andean shilajit ),
a natural compound that can be found in Andean Mountains.
Andean shilajit is generated by a long-term degradation of cer-
tain plants by microorganisms, mostly fungi and is rich in Fulvic
Acid (FA) and humic substances among others (Figure 2). This
natural endemic phytocomplex, resulting from fossilized plants
degradation through the years, was discovered in 2008 in the
North of Chile and was named Andean Compound (41). In vitro
assays and cell culture data show that Andean Compound and
FA strongly interferes with tau aggregation, and interestingly an
increase in neurites outgrowth has been observed in neural cell
cultures exposed to this natural compound (42). In addition, a
placebo-controlled pilot clinical study suggests that consumption
of a nutraceutical formulation of Andean Compound plus B com-
plex vitamins may produce stabilization of cognitive function in
AD patients at a 24-weeks as determined with Global deterioration
scale (GDS) and Neuropsychiatric inventory (NPI) measurements
(42) (Figure 2). On the other hand the same shilajit – based
compound has a very good safety profile when tested on healthy
population (unpublished data).
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FIGURE 2 | Schematic representation on the changes in tau
leading to pathological conditions, formation of neurofibrillary
tangles, and some molecules that exert their actions on

polymeric forms of pathological tau and that appear to prevent
polymers formation and possible disassembly of these
filaments.

CONCLUDING REMARKS
Currently, we do not know the exact cause of synaptic dys-
function and neurodegeneration in AD, however, in recent years
it has become increasingly clear the importance of tau protein
and its post-translational modifications in the pathophysiological
processes of AD and other tauopathies.

In this context, determination of different forms of tau protein
in brain, CSF (43) and also in blood (44) and peripheral cells (15)
has been postulated as a powerful tool for detection and moni-
toring of the disease in different stages and there is clear evidence
of a profile of tau and other biomarkers modifications during AD
progression (45, 46). The presence of tau modifications in periph-
eral cells also points to the inference that AD may be a systemic

disease not only confined to nervous tissue. But currently we do
not have any information on the functional impact – if any – of
oligomeric tau forms in peripheral cells. The latest criteria of AD
consider tau-based biomarkers as reliable indicators of neuronal
injury processes (47), but as of today there is not a widely available
marker of tau modification for clinical use. Hopefully in the near
future we will refine techniques for non-invasive assessment of
tau. Thereon, are extremely interesting attempts to generate PET
markers for tau deposition in brain (48, 49) and we already have
promising data regarding measurement of different forms of tau
in blood cells (15, 29).

On the other hand, in the absence of positive clinical results
in studies with beta amyloid targeted therapies, the need to
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evaluate therapies that can act on post-translational changes of
tau protein has become evident. Particular interest has been
paid to therapies that may modulate levels of phosphorylation
and oligomerization of tau, whether by direct action on tau or
by acting on other related proteins like kinases or heat-shock
proteins.

Unfortunately we still need information from large multicen-
ter studies about the usefulness of tau-focused therapies, however,

this is a promising field that has attracted the efforts of multiple
investigators, so we expect that new and exciting discoveries are
right around the corner.
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TAU is a microtubule-associated protein that under pathological conditions such as
Alzheimer’s disease (AD) forms insoluble, filamentous aggregates. When 20 years after
TAU’s discovery the first TAU transgenic mouse models were established, one declared
goal that was achieved was the modeling of authentic TAU aggregate formation in the
form of neurofibrillary tangles. However, as we review here, it has become increasingly
clear thatTAU causes damage much before these filamentous aggregates develop. In fact,
because TAU is a scaffolding protein, increased levels and an altered subcellular localiza-
tion (due to an increased insolubility and impaired clearance) result in the interaction of
TAU with cellular proteins with which it would otherwise either not interact or do so to a
lesser degree, thereby impairing their physiological functions. We specifically discuss the
non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU
impairs mitochondrial functions. A major emphasis is on what we have learned from the
four availableTAU knock-out models in mice, and the knock-out of theTAU/MAP2 homolog
PTL-1 in worms. It has been proposed that in human pathological conditions such as AD,
a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU’s
toxicity and restore neuronal functions. However, what is toxic in one context may not be
in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to
abrogate TAU toxicity.

Keywords: Alzheimer’s disease, C. elegans, frontotemporal dementia, knock-out, PP2A, PTL-1,TAU, transgenic

INTRODUCTION
TAU belongs to the family of microtubule-associated proteins
(MAPs) (Dehmelt and Halpain, 2005). MAPs act in concert
with heterodimers of α- and β-tubulin to assemble microtubules.
They were named according to the three major size classes of
polypeptides: MAP1 (>250 kDa), MAP2 (∼200 kDa), and TAU
(50–70 kDa) (Dehmelt and Halpain, 2005; Halpain and Dehmelt,
2006). MAP2 and TAU are expressed together in most neurons,
where they localize to separate subcellular compartments. MAP2
is largely found in dendrites, whereas TAU is concentrated in axons
(Matus, 1990). TAU has also been found in astrocytes and oligo-
dendrocytes, although, under physiological conditions, its levels
are relatively low (Tashiro et al., 1997). In concert with actin and
intermediate filaments, microtubules establish and maintain the
overall internal architecture of the cytoplasm and thereby com-
prise a major determinant of overall cell shape (Allen et al.,
1985; Vale et al., 1985; Nangaku et al., 1994; Trinczek et al.,
1999). Besides interacting with cytoskeletal proteins, MAPs also
interact with proteins that have a range of cellular functions, sug-
gesting that TAU is a scaffolding protein (Brandt and Leschik,
2004). Scaffolding proteins are defined as being able to bind at
least two signaling proteins, and localizing signaling molecules
and transduction pathways to defined cellular locations – for
instance the cell body, dendrites or the axon, and to regulate
signaling (Shaw and Filbert, 2009). We discuss here that TAU
has these properties and that the toxicity of TAU is, at least

in parts, because this scaffolding function is either altered or
lost.

When TAU was discovered in 1975 (Weingarten et al., 1975), the
subsequent years focused mainly on its tissue distribution and role
in microtubule assembly and stabilization. The focus shifted radi-
cally when TAU was identified in Alzheimer’s disease (AD) brains
in a highly phosphorylated form as the filamentous core of the
neurofibrillary tangles (NFTs) (Grundke-Iqbal et al., 1986; Goed-
ert et al., 1988). Histopathologically, AD is also characterized by
β-amyloid (Aβ)-containing plaques, reduced synaptic density, and
neuronal loss in selected brain areas. Interestingly, although NFTs
were initially correlated with dementia (Arriagada et al., 1992), it
was also found that firstly, CA1 hippocampal neurons can survive
with NFTs for about 20 years, and secondly that NFTs may not
be obligatory for the death of CA1 hippocampal neurons in AD
(Morsch et al., 1999). This does not, however, preclude that NFT-
carrying neurons are functionally impaired. For a discussion of the
role of NFTs in neurodegeneration, see e.g., Castillo-Carranza et al.
(2013). In addition to AD, neurofibrillary lesions are also abundant
in other neurodegenerative diseases such as Pick’s disease, progres-
sive supranuclear palsy (PSP), corticobasal degeneration (CBD),
argyrophilic grain disease (AGD), and frontotemporal dementia
with Parkinsonism linked to chromosome 17 (FTDP-17), where
they occur in the absence of overt Aβ deposition. When we, for the
first time, expressed human TAU in transgenic mice, we were able
to reproduce key aspects of the human TAU pathology (Götz et al.,
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1995). Specifically, overexpression of human TAU resulted in the
accumulation of hyperphosphorylated forms of TAU not only in
the axonal compartment, but also in the somatodendritic domain.
NFT formation, however, was not achieved by this approach. It
was the identification of pathogenic mutations in familial cases
of frontotemporal lobar degeneration (FTLD) in the MAPT gene
encoding TAU (Clark et al., 1998; Hutton et al., 1998; Poorkaj et al.,
1998) that enabled us and others to express FTLD mutant forms of
TAU in mice. Thus, we not only reproduced NFT formation, but in
addition placed TAU downstream of Aβ in a patho-cascade – a cen-
tral concept in the field (Götz et al., 2001a,b). Despite this, TAU
is not simply an innocent bystander in Aβ toxicity, as discussed
below. In fact, the dendritic localization of the “axonal” protein
TAU not only has a role in physiological postsynaptic scaffold-
ing, but it is also crucial for mediating Aβ’s toxicity (Ittner et al.,
2010). This and complementary studies in cell culture have put
forth the argument that reducing or completely abolishing TAU
expression might be beneficial in combating neurodegeneration in
AD (Rapoport et al., 2002; Roberson et al., 2007; Ittner and Götz,
2011; Morris et al., 2011b).

In the following, we discuss what we have learned about TAU’s
toxicity in models that over-express TAU and as a consequence,
develop TAU aggregates and NFTs. As this article is part of a series
that investigates TAU toxicity from various angles, we will restrict
our discussion to selected aspects and will specifically discuss
TAU’s role in non-axonal compartments, how it affects mito-
chondrial functions and what we have learned from invertebrate
models. We draw the conclusion that TAU is a scaffolding protein
and that its mislocalization disrupts cellular processes because it
traps proteins with which it would otherwise not interact (or do so
to a lesser degree) and thereby prevents them from executing their
physiological functions. This does not rule out that the aggregates
themselves are toxic, although the current experimental models
do not allow for a dissociation of the effects elicited by the aggre-
gates from those elicited by soluble TAU species. In the second
part we discuss what we have learned from TAU knock-out mod-
els in mice and what the knockout of the worm homolog of TAU,
PTL-1, has contributed to an understanding of TAU function. In
the final paragraph, we attempt to integrate findings in both TAU
over-expressing and knock-out models.

WHAT CAUSES TOXICITY WHEN THERE IS TOO MUCH TAU?
In an attempt to model TAU pathology in mice, the first TAU
transgenic mouse model was established 20 years after TAU’s dis-
covery by over-expressing the longest of the six major human
TAU isoforms, hTau40 (Götz et al., 1995) (For comparison, in the
adult mouse brain, there are only three TAU isoforms expressed.).
These htau40 transgenic mice reproduce aspects of the human
pathology, such as somatodendritic localization and hyperphos-
phorylation of TAU. Subsequently, stronger promoters were used
to drive expression, resulting in more pronounced phenotypes
(Ishihara et al., 1999; Spittaels et al., 1999; Probst et al., 2000).
Despite the formation of TAU aggregates and an age-dependent
decrease in TAU solubility, NFTs did not form until a very old
age in these mice (Ishihara et al., 2001). However, signs of Waller-
ian degeneration including axonal breakdown and segmentation
of myelin into ellipsoids were observed. Furthermore, neurogenic

muscle atrophy, with groups of small angular muscle fibers, was
present in the hind leg musculature of the transgenic mice (Probst
et al., 2000). Another characteristic was the presence of large num-
bers of axonal spheroids in brainstem and spinal cord (Ishihara
et al., 1999; Spittaels et al., 1999; Probst et al., 2000). Similar
swellings have also been described in transgenic mice with Aβ

plaque formation, and in the human AD brain (Stokin et al., 2005).
Following the identification of pathogenic mutations in MAPT

in FTDP-17, TAU filament formation was achieved in neurons and
glia, both by constitutive and doxycycline-regulated expression of
mutant human forms of TAU (Götz and Götz, 2009). The first
published mouse strain with pronounced NFT formation, JNPL3,
expressed P301L mutant human TAU under the control of the
murine PrP promoter. This resulted in abnormal TAU filament
formation in neurons as well as astrocytes and oligodendrocytes,
with NFTs being present in brain and spinal cord (Lewis et al.,
2000). Neuronal loss was found in the spinal cord, as evidenced by
a twofold reduction in the numbers of motor neurons. Further-
more, the mice developed severe motor disturbances by 10 months
of age. We established a second model with NFT formation, pR5
mice, by expressing the same P301L mutation, but using a different
human TAU isoform and the neuron-specific mThy1.2 promoter
for transgene expression (Götz et al., 2001a). While a motor phe-
notype was absent, reference memory was impaired and the mice
displayed an increased exploratory behavior (Pennanen et al.,
2006). Furthermore, owing to a pronounced expression of the
transgene in the amygdala, the mice showed an accelerated extinc-
tion in the conditioned taste aversion paradigm (Pennanen et al.,
2004). When experimental diabetes was induced in pR5 mice, this
caused an earlier-onset and increased formation of NFTs, indicat-
ing that diabetes can accelerate the onset and increase the severity
of disease in individuals with a predisposition to develop a tauopa-
thy (Ke et al., 2009). To determine whether NFTs are integral
components of the neurotoxic cascade in AD or whether they
represent a protective neuronal response, transgenic mice were
generated which allowed for the regulation of P301L TAU expres-
sion by adding doxycycline to the drinking water (Santacruz et al.,
2005). Because the system resulted in a 15-fold over-expression,
this caused a progressive formation of NFTs, a remarkable neu-
ronal loss (70% in the CA1 region), gross atrophy of the brain,
and behavioral impairment. Turning the system “off” caused a
reduction of TAU levels to 2.5-fold over-expression. Nonetheless,
this was sufficient to cause a recovery of memory functions and
stabilization of neuron numbers, while NFTs continued to accu-
mulate. These data imply that NFTs per se are not sufficient to
cause cognitive decline or neuronal death (Santacruz et al., 2005).

While the pR5 mice display memory impairment as a major
clinical feature of AD, another feature, Parkinsonism, that char-
acterizes a significant subset of FTLD cases, has been modeled
in K369I mutant TAU transgenic K3 mice. We established this
strain based on the identification of the K369I mutation of TAU
in a single patient with Pick’s disease (Neumann et al., 2001),
and reproduced the distinct characteristics of Pick’s pathology in
mice (Ittner et al., 2008). Memory functions were impaired as
shown in the novel object recognition test. Owing to a unique
expression pattern of the transgene that extends to the Substantia
Nigra pars compacta (SNpc), the K3 mice also model early onset

Frontiers in Neurology | Neurodegeneration June 2013 | Volume 4 | Article 72 | 42

http://www.frontiersin.org/Neurodegeneration
http://www.frontiersin.org/Neurodegeneration/archive


Götz et al. The scaffolding protein TAU

Parkinsonism, i.e., resting tremor, bradykinesia, postural instabil-
ity, and gait anomalies. They show an increased cataleptic response
to haloperidol and an early, but not late, response to l-DOPA,
indicating that the dopaminergic system is impaired. We found a
selectively impaired axonal transport of distinct cargos including
mitochondria and tyrosine hydroxylase (TH)-containing vesicles.
An important finding is that at the molecular level, this transport
impairment is the result of the accumulation of hyperphospho-
rylated TAU in the cell body, where it traps the adapter protein
and a component of the kinesin motor machinery, JIP1, thereby
preventing this molecule from executing its physiological func-
tion in the axon (Ittner et al., 2008). A pathological interaction
between TAU and JIP1 was further revealed in AD and not con-
trol brain (Ittner et al., 2009). It seems therefore that for TAU
to be able to exert toxicity, the subcellular compartments it is
aberrantly targeted to are crucial, as this determines with which
proteins it pathologically interacts and which cellular functions it
impairs. In this process, phosphorylation of TAU has a critical role
as reviewed by us recently (Götz et al., 2010). That phosphory-
lation of TAU is critical in toxicity is also evident from studies
in protein phosphatase 2A (PP2A) dominant negative mutant
strains. More specifically, to address the role of the TAU phos-
phatase PP2A in mice with a pre-existing TAU pathology, we
crossed the PP2A dominant negative mutant strain Dom5 with
pR5 mice that express P301L mutant TAU and found that this
exacerbated the TAU pathology of pR5 mice significantly. The
double-transgenic mice showed sevenfold increased numbers of
hippocampal neurons that specifically phosphorylated the patho-
logical Ser422 epitope of TAU (Deters et al., 2009). The mice
showed eightfold increased numbers of NFTs compared with pR5
mice, in agreement with our previous finding that NFT forma-
tion is correlated with and preceded by phosphorylation of TAU
at the Ser422 epitope (Götz et al., 2001b). We further used the
Dom5 mice to show that a small compound, sodium selenate,
improves TAU-dependent impairment and neurodegeneration in
a PP2A-dependent manner (van Eersel et al., 2010). Together this
demonstrates that phosphorylated forms of TAU have a critical
role in TAU toxicity.

The tauopathies PSP and CBD are characterized by substan-
tial glial TAU pathology. Aspects of this pathology have been
reproduced by expressing G272V mutant TAU under the con-
trol of the PrP promoter that resulted in high transgene expres-
sion in a subset of both neurons and oligodendrocytes. Electron
microscopy established that TAU filament formation was asso-
ciated with hyperphosphorylation of TAU. Thioflavin S-positive
fibrillary inclusions were identified in oligodendrocytes and motor
neurons (Götz et al., 2001c), the clinical phenotype of these mice
however was subtle. In contrast, when human wild-type TAU was
overexpressed in neurons and glial cells under the control of the
mouse Tα1 α-tubulin promoter, a glial pathology was obtained
that closely resembled the astrocytic plaques of CBD and the coiled
bodies of both CBD and PSP (Higuchi et al., 2002). A significant
age-related neuronal loss was only found at 18 months of age,
whereas oligodendrocytes were lost already at 6 months. The same
team employed the 2′,3′-cyclic nucleotide 3′-phosphodiesterase
promoter to express human P301L TAU exclusively in oligo-
dendrocytes (Higuchi et al., 2005). Interestingly, the structural

disruption of myelin and axons preceded the emergence of TAU
inclusions in oligodendrocytes; also, impaired axonal transport
was found to precede the motor deficits in these mice (Higuchi
et al., 2005). Together, these studies highlight a role for glial TAU
in disease.

While most studies on TAU use the mouse as a model organism,
several wild-type and mutant human TAU transgenic models have
been established in the nematode C. elegans (Kraemer et al., 2003;
Miyasaka et al., 2005; Brandt et al., 2009; Fatouros et al., 2012).
Some of these models have been reviewed in detail (Ewald and Li,
2010) and are not discussed here.

In the following, we will discuss two important aspects of
TAU toxicity, one is the impairment of mitochondrial functions,
and the second the role TAU has in the dendrite. Mitochondrial
dysfunction has long been associated with the pathophysiology
of AD (Blass and Gibson, 1991). The morphology of a cellu-
lar mitochondrial network is maintained by reciprocal rounds
of fission and fusion, a process termed mitochondrial dynamics.
Elevated fusion produces elongated, interconnected mitochon-
dria, while enhanced fission results in mitochondrial fragmen-
tation. Mitochondrial dynamics cannot be discussed in isolation,
as fission (biogenesis), fusion, bioenergetics, motility/transport,
and turnover by mitophagy are highly inter-dependent processes
(Chen and Chan, 2009). How TAU impairs the fission and fusion
of mitochondria, has been reviewed by us recently (Duboff et al.,
2013), following the finding of a role of TAU in altering mito-
chondrial dynamics. Specifically we had found that in human TAU
transgenic mice and flies, F-actin is increased, which disrupts the
physical association of mitochondria and the fission protein DRP1,
leading to mitochondrial elongation (Duboff et al., 2012). The
resulting neurotoxicity can be rescued either by reducing mito-
chondrial fusion, or by enhancing fission, or by reversing actin
stabilization.

Earlier, we had analyzed P301L TAU transgenic pR5 mice by
MALDI TOF/TOF mass-spectrometric analysis, which revealed
a deregulation of mainly metabolism-related proteins including
mitochondrial respiratory chain complex components such as
the complex V component ATP synthase D chain, antioxidant
enzymes, and synaptic proteins (David et al., 2005). A subsequent
functional analysis demonstrated a mitochondrial dysfunction in
pR5 mice together with a reduced NADH-ubiquinone oxidore-
ductase activity and, with age, impaired mitochondrial respiration
and ATP synthesis. Mitochondrial dysfunction was associated with
higher levels of reactive oxygen species (ROS) in aged transgenic
mice and an up-regulation of antioxidant enzymes. When complex
V levels were analyzed in human FTDP-17 patient brains carrying
the P301L TAU mutation, a significant decrease in complex V levels
was found in all P301L human brain samples compared with con-
trols, underscoring the validity of the proteomics findings in mice
for the human disease (David et al., 2005). A serial analysis of gene
expression (SAGE) of the same mouse strain looking specifically
at the amygdala also revealed deregulated mitochondrial genes (Ke
et al., 2012a).

Mitochondrial functions are also impaired by Aβ and as there
are many findings that support the notion of a cross-talk of Aβ and
TAU in affecting mitochondrial functions (Eckert et al., 2010),
it was reasonable to cross pR5 mice with Aβ plaque-forming
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APPswPS2N141I double-transgenic APP152 mice to generate triple-
transgenic (tripleAD) mice that combine both pathologies in one
model (Grueninger et al., 2010). Quantitative isobaric-tag label-
ing (iTRAQ) followed by mass spectrometry revealed a massive
deregulation of 24 proteins, of which one third were mitochondr-
ial proteins mainly related to complexes I and IV of the oxidative
phosphorylation system (OXPHOS). When mitochondrial func-
tions were addressed, this revealed that deregulation of complex
I is TAU-dependent, whereas deregulation of complex IV is Aβ-
dependent, both at the protein and activity level (Rhein et al.,
2009). In addition, synergistic effects of Aβ and TAU were evident
in the tripleAD mice establishing a molecular link between Aβ and
TAU protein in AD pathology in vivo (Rhein et al., 2009). In the
P301L TAU transgenic pR5 mice, a transcriptomic analysis further
revealed an up-regulation of glyoxalase I that detoxifies dicarbonyl
compounds and thereby reduces the formation of advanced gly-
cation end (AGE) products (Chen et al., 2004). Co-staining with a
phospho-TAU antibody suggested glyoxalase I up-regulation as an
early defense mechanism to combat elevated levels of aggregated
TAU. To understand which processes are disrupted by Aβ in the
presence of TAU aggregates, we applied comparative proteomics
to Aβ-treated P301L TAU-expressing neuroblastoma cells and the
amygdala of P301L TAU transgenic pR5 mice that had been stereo-
taxically injected with Aβ preparations. We found that a significant
fraction of proteins that were altered in both systems belonged
to the same functional categories, i.e., proteins involved in the
stress-response associated with protein folding (David et al., 2006).
Among the deregulated proteins was valosin containing protein
(VCP), an essential component of the ER-associated degradation
(ERAD) process, whereas members of the peroxiredoxin family
were down-regulated. Together this indicates that TAU and Aβ

exert both separate and synergistic toxic effects that are mediated
by mitochondria and the stress-related unfolded protein response.

The amyloid cascade hypothesis in a patho-cascade places Aβ

upstream of TAU (Hardy, 2006). This concept has been proven
in P301L mutant TAU transgenic mice that develop an increased
number of NFTs, either by crossing them with Aβ plaque-forming
transgenic mice (Lewis et al., 2001), or by stereotaxically inject-
ing Aβ into their brains (Götz et al., 2001b). That Aβ toxicity is
dependent on TAU has first been shown in vitro because primary
neuronal cultures derived from TAU knock-out mice were resis-
tant to the toxic effects of Aβ (Rapoport et al., 2002). This finding
was subsequently reproduced in vivo, by crossing Aβ plaque-
forming mice that are characterized by premature mortality, high
susceptibility to experimentally induced excitotoxic seizures and
memory deficits, onto a TAU knock-out background (Roberson
et al., 2007). Mechanistically, this protection appeared to be con-
ferred by a reduced susceptibility to excitotoxicity when TAU was
either absent or when its levels were reduced (Roberson et al.,
2007). Excitotoxicity is the over-activation of NMDA receptors
(NMDARs) that results in neuronal damage and death because of
increased calcium influx and nitric oxide (NO) activation (Palop
and Mucke, 2009). By using another APP plaque-forming mouse
strain and a different TAU knock-out strain, we were able to repro-
duce the TAU-dependent protection from Aβ-induced premature
mortality and memory deficits, and determined that this pro-
tection is conferred by a reduced susceptibility to excitotoxicity

(Ittner et al., 2010). Likewise, overexpression of a truncated form
of TAU (∆Tau) that lacks the microtubule-binding region MBR
also rescued the phenotype of the Aβ plaque-forming mice (Ittner
et al., 2010). In a more recent model, tau pathology was shown to
develop independent of Aβ (Winton et al., 2011). This was shown
by finding no differences in TAU lesion formation when crossing
3xTg-AD mice that co-express mutant forms of APP, presenilin
and TAU and hence develop a plaque and TAU pathology, with a
mouse strain that lacks the enzyme BACE1 required for Aβ gener-
ation. However, it has to be considered that the TAU pathology in
the 3xTg-AD mice develops very late and is modest compared with
that of other widely used TAU transgenic mouse models (Oddo
et al., 2003a,b).

What is the mechanistic explanation for this protection con-
ferred by reduction of TAU? We next showed that TAU is also
present in the dendrite (although in low quantities compared with
the axon), where it is critically involved in postsynaptic NMDAR
downstream signaling by localizing the SRC kinase FYN to the den-
drite. FYN phosphorylates the NMDAR that then recruits the post-
synaptic scaffolding protein PSD-95 to form a complex. Because
levels of postsynaptic FYN are massively reduced in TAU-deficient
or ∆Tau-expressing mice, this results in uncoupling of NMDARs
from excitotoxic signaling and abrogation of Aβ-mediated toxic-
ity (Ittner et al., 2010; Ittner and Götz, 2011). A subsequent study
found that Aβ causes a range of deleterious effects on TAU includ-
ing its localization to dendrites (Zempel et al., 2010). Aβ, Fyn, and
TAU therefore seem to orchestrate neuronal damage (Haass and
Mandelkow, 2010; Ittner et al., 2010; Roberson et al., 2011). An
essential role for FYN in this process is supported by the fact that
the pathology of Aβ plaque-forming mice is enhanced when FYN
is overexpressed and ameliorated when FYN is absent (Chin et al.,
2004, 2005).

TAU interacts with FYN at least in two ways. Firstly, although
TAU is mainly phosphorylated on serine and threonine residues, it
also contains three tyrosine residues. Tyr18 is phosphorylated by
FYN, and the phosphorylated motif interacts with FYN via FYN’s
SH2 domain. Secondly, TAU contains seven PXXP motifs located
in the amino-terminus (all of which are retained in the ∆Tau
construct). Of these, the seventh proline-rich RTPPKSP motif has
been shown to be crucial for the interaction with the SH3 domain
of FYN and other SRC non-receptor tyrosine kinases (Lee et al.,
1998; Bhaskar et al., 2010; Ittner et al., 2010). Interestingly, this
motif is also critical in the interaction of TAU with the phosphatase
PP2A that exists as a heterotrimeric holoenzyme complex. It has
been shown recently that the PP2A regulatory subunit Bα binds
to and dephosphorylates TAU, and thereby regulates microtubule
stability (Sontag et al., 2012). When FYN is bound to the (seventh)
proline-rich RTPPKSP motif that is conserved in both TAU and
MAP2, this inhibits the interaction of PP2A/Bα with either TAU
or MAP2. The corresponding synthetic RTPPKSP peptide, but
not the phosphorylated RpTPPKSP version, competes with TAU
and MAP2 for binding to PP2A/Bα. This finding is remarkable
because the down-regulation of PP2A/Bα and the deregulation of
FYN/TAU interactions have been linked to enhanced TAU phos-
phorylation in AD (Sontag et al., 2012). MAP2 is mainly a dendritic
protein as mentioned above. Why MAP2 cannot compensate for
the absence of TAU in TAU knock-out mice and target FYN to the
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dendritic spine is not understood, especially as both MAP2 and
TAU have been shown to efficiently bind to FYN.

WHAT ARE THE EFFECTS OF REDUCED TAU LEVELS?
As reviewed in detail recently, a series of TAU knock-out mouse
strains have been generated to gain insight into the physiological
functions of TAU, and while initially reported to be overtly nor-
mal, behavioral changes and motor deficits were identified at least
for some of these strains (Ke et al., 2012b).

Work in primary neuronal cultures laid the foundation: when
TAU was down-regulated using antisense oligonucleotides, this
caused a reduced neuronal outgrowth (Caceres and Kosik, 1990).
However, the first TAU knock-out mice established by Harada
et al. (1994) a few years later were surprisingly normal, with no
evidence of either an altered axonal elongation or any macro-
scopic change. In a compensatory mechanism for the absence of
TAU, MAP1A was up-regulated, and the axon caliber was altered
to what is typically found in dendrites. Primary neuronal cul-
tures established from these TAU knock-out mice did not display
a reduced neuronal outgrowth phenotype, contrasting with ear-
lier observations of neurons in which TAU levels had been reduced
using antisense approaches (Harada et al., 1994; Takei et al., 2000).
Nonetheless, the absence of TAU is not without consequences as
the hypoplasticity of the commissural tract and the disorganiza-
tion of the neuronal layering found in MAP1B knock-out mice
(Takei et al., 1997) is exacerbated by cross-breeding these mice
with TAU knock-out mice (Takei et al., 2000).

In 2001, two additional TAU knock-out lines became avail-
able. The first was established by Dawson et al. (2001), who used
the same strategy as Harada and colleagues by replacing the first
coding exon of TAU with a neomycin selection cassette, thereby
abrogating TAU expression. The second“knock-in”strain was gen-
erated by Tucker et al. (2001), who inserted a GFP cassette in frame,
resulting in a fusion protein that contained the first 31 amino acids
of TAU. None of these two strains revealed any obvious impair-
ment [at the time, the Tucker strain was only used as a “tool” to
study neurotrophins; we have, however, since used this strain for
behavioral studies (Ittner et al., 2010)]. Interestingly, in the Daw-
son strain, MAP1A levels were increased twofold at birth, while
they were reduced back to normal levels as the mice became older
suggesting that MAP1A may compensate for the loss of TAU dur-
ing early brain development, but not in the mature brain (Dawson
et al., 2001). In keeping with the very first in vitro studies (Caceres
and Kosik, 1990), primary neurons obtained from this knock-out
strain showed a slowed maturation with reduced neurite length
throughout all developmental stages and a reduced axon length
of stage 3 (onset of polarity) neurons (Dawson et al., 2001). A
fourth TAU knockout was established in 2007, again by inserting
a selection cassette into exon 1, but the cassette was flanked by
FRT (flippase recognition target) recombination motifs to allow
for subsequent manipulation of the targeted MAPT gene (Fujio
et al., 2007). Not surprisingly, the mice looked quite normal, and
MAP1A levels were found to be increased as previously reported
in two of the three knock-out strains. Taken together, TAU is not
essential in mice, although small differences were found between
the four strains with regards to compensatory mechanisms and
when analyzed ex vivo.

How do TAU knock-out mice fare in behavioral and motor
studies? All four strains presented with no overt phenotype up to
8 months of age (Harada et al., 1994; Dawson et al., 2001; Fujio
et al., 2007; Roberson et al., 2007; Ittner et al., 2010; Lei et al.,
2012). At 10–12 months, the Dawson mice performed like wild-
type in the radial arm and the Morris water maze (Dawson et al.,
2010). Subtle motor deficits were detected at 3–3.5 months when
the knock-out mice showed an increased latency to cross a beam
and also made more slipped steps, but otherwise showed normal
motor functions (Morris et al., 2011a). However, at 12 months
of age, the Harada mice displayed signs of muscle weakness in
the wire-hanging test, reduced balance in the rod-walking test,
hyperactivity in a novel environment and impaired contextual fear
conditioning (Ikegami et al., 2000). Interestingly, muscle weakness
was also evident in heterozygous knock-out mice. Spatial learning,
however, of this TAU knock-out strain was normal, when assessed
in the eight-arm radial and the Morris water maze (Ikegami et al.,
2000). The most pronounced phenotype was recently reported in
the Dawson strain kept on a C57BL/6/SV129 background, with
Parkinsonism evident at 12 months of age due to a massive loss
of dopaminergic neurons in the SNpc, associated with motor
impairments such as a reduced performance on the Rotarod and
decreased locomotion in the open field (Lei et al., 2012). Because
these findings contradict the earlier studies, Morris et al. (2013)
performed a detailed behavioral and motor analysis of the Daw-
son strain that was kept on a C57BL/6 background. They found
in their mice that the chronic lack of TAU did not impair learning
and memory functions in the Morris water maze and the novel
object recognition test, neither at 11–17 nor at 21–22 months of
age (Morris et al., 2013). Interestingly, at 12–15 months the knock-
out mice weighed more (with 21–22 month-old mice showing a
trend) (Morris et al., 2013), while K369I TAU over-expressing mice
weigh less (Ittner et al., 2008). The knockout did not alter rearing
or activity in the open field, however, both aging and TAU ablation
reduced the latency to fall off the Rotarod and this was corre-
lated with body weight. At 12–15 months, TAU knock-out mice
took longer to descend from the pole than heterozygous knock-
out or wild-type mice, whereas for the older age group latencies
did not differ. Together this suggests that complete TAU ablation
causes subtle motor deficits that are related to an increased body
weight. Finally, the newer study did find up to 16% reductions in
dopamine levels but this was not sufficient to cause Parkinsonism
nor did the administration of l-DOPA improve the performance
of the mice in the pole test (Morris et al., 2013). In contrast to
the work by Lei et al. (2012), no iron accumulation was found
in brain areas such as the hippocampus, striatum or SN. A rea-
son for these discrepancies may be the difference in the genetic
background (C57BL/6/SV129 versus C57BL/6) as this has been
reported to affect brain metal levels in both transgenic and normal
mice (Maynard et al., 2006).

It is apparent that differences in genetic background and design
of the targeting construct have an impact on the phenotype of
transgenic animals. Another confounding factor for the study of
TAU is the presence of other MAPs, which appear to share sev-
eral biological roles (Dehmelt and Halpain, 2005; Sontag et al.,
2012). Potential compensatory functions attributable to closely
related MAPs can be excluded in the nematode C. elegans, where
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protein with TAU-like repeats (PTL-1) is the sole homolog of
TAU/MAP2/MAP4 in the worm (McDermott et al., 1996; Gor-
don et al., 2008), meaning that shared physiological functions of
the different family members can be addressed.

PTL-1 contains a high level of sequence homology to
TAU/MAP2/MAP4 within the microtubule-binding repeat (MBR)
domain in the carboxy-terminus. Analysis of a ptl-1 transcriptional
reporter line demonstrates that PTL-1 has a neuronal expression
pattern in adult worms, and in addition PTL-1 has been shown
to regulate microtubule assembly in vitro (Goedert et al., 1996;
McDermott et al., 1996). PTL-1 has been implicated in the reg-
ulation of microtubule-based motility in several neurons (Tien
et al., 2011) and in the response to gentle touch (Gordon et al.,
2008). Aging-related damage in C. elegans neurons is evident
by neurons displaying abnormal structures such as branching
or blebbing from the cell body or axon (Figure 1), and these
changes progressively accumulate as the worms age (Pan et al.,
2011; Tank et al., 2011; Toth et al., 2012). Using two ptl-1 mutant
strains, one a null knockout (Gordon et al., 2008) and the other
putatively generating a protein product containing only the N-
terminal region [i.e., similar to our ∆Tau truncation construct
(Ittner et al., 2010)], it was observed that ptl-1 mutant strains
showed an increased incidence of abnormal structures compared
with wild-type animals (Chew et al., 2013). This suggests that
the neurons of ptl-1 mutant animals develop signs of aging at a
faster rate than in wild-type animals. In addition, ptl-1 mutant ani-
mals are also short-lived compared with wild-type controls (Chew
et al., 2013). These phenotypes of accelerated neuronal aging and
shortened organismal lifespan were rescued by re-expressing PTL-
1 in a ptl-1 null mutant. Interestingly, increasing the number
of gene copies of ptl-1 by incorporating the ptl-1 transgene in

a wild-type background was observed to mirror both the neu-
ronal and lifespan phenotypes observed in the ptl-1 mutant strains,
indicating that gene dosage of PTL-1 is vital. This demonstrates
a key role of PTL-1 in maintaining neuronal health with age
and in regulating whole organism lifespan (Chew et al., 2013).
These findings in C. elegans show that levels of PTL-1 need to
be tightly regulated, suggesting that therapeutic strategies involv-
ing the reduction of TAU levels should not lead to a complete
reduction of TAU.

CONCLUDING REMARKS
What causes sporadic forms of AD is not known, but it is tempting
to speculate that Aβ and TAU act through a combination of exci-
totoxicity, inhibition of axonal transport and aberrant localization
as well as combined effects on mitochondria. It is at the synapse
where Aβ induces damage and impairs memory-related electro-
physiological properties (Masliah, 1995; Arendt, 2009; Wu et al.,
2010). Under basal conditions, mild activation of the NMDAR
results in physiological ROS production, while under neurodegen-
erative conditions, triggered by Aβ, over-activation of NMDARs
causes excessive calcium influx and generates NO (Nakamura and
Lipton, 2011). These changes in calcium can affect mitochondria
(Stanika et al., 2012). Furthermore, axonal transport of cargoes
including mitochondria is impaired when TAU detaches from the
microtubules and localizes to the somatodendritic domain (Ishi-
hara et al., 1999; Ittner et al., 2008). It has been proposed that
in disease conditions such as AD, rare species of toxic TAU exist
that need to be removed in order to restore neuronal functions.
Other possibilities include a role for non-coding RNAs including
mi-RNAs and truncated forms of TAU in toxicity, as discussed
elsewhere (Schonrock et al., 2010; Hebert et al., 2012; Zilka et al.,

FIGURE 1 | Neuronal aging in C. elegans is demonstrated by the
accumulation of abnormal neuronal structures. Reporter lines expressing
GFP in particular neuronal subsets are used to track these phenotypes as
animals age. In touch receptor neurons (top), branching from the cell body or
axon, as well as beading along the axon, can be observed. In GABAergic

motor neurons (bottom), branching from commissures extending dorsally can
be visualized. These phenotypes usually accumulate in late adulthood in
wild-type animals, but in ptl-1 mutant strains these structures can be seen
starting in early to mid-adulthood. Arrows indicate branching, asterisks
indicate beading. Scale bar = 50 µ. Ventral is down.
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2012). As discussed here, simply reducing TAU levels may be ther-
apeutically beneficial. Work in TAU knock-out mice and PTL-1
knock-out worms suggests that especially in an aging brain, one
would not aim for a full ablation of TAU expression. This is also
because the TAU/FYN interaction is required for oligodendrocyte
functions including myelination. Expression of the N-terminal
domain of TAU (a construct similar to ∆Tau) alone causes abnor-
mal sorting of FYN, poor myelination and seizures (Klein et al.,
2002). However, if one were to succeed in reducing TAU lev-
els by any form of therapeutic intervention, in practical terms
it is unlikely that this reduction will be complete. For a posi-
tive therapeutic outcome, it might even be sufficient to reduce
TAU expression after a pathology has developed as suggested by
studies in mice with inducible TAU expression, including those
that express shorter variants of TAU (Van der Jeugd et al., 2012;
Hochgrafe et al., 2013).

From a therapeutic point of view, besides manipulating TAU
levels, its localization and the interaction with other proteins,
a range of alternative strategies can be pursued. One is restor-
ing neuronal functions by transplanting stem cells to provide
neurotropic support (Yamasaki et al., 2007). As far as TAU is
concerned, evidence is accumulating that its phosphorylation is
critical for TAU to be toxic, and that reducing TAU phosphory-
lation is a promising strategy (Gong and Iqbal, 2008). What is
not entirely clear is whether this requires distinct phosphorylation
events or whether a generally elevated level of phosphorylation is

sufficient. The latter possibility is suggested by work in Drosophila
(Steinhilb et al., 2007). In principal, one would either like to
inhibit TAU kinases such as GSK3 (Engel et al., 2006), or acti-
vate TAU phosphatases such as PP2A (Delobel et al., 2002), or
both. In fact, the PP2A activator sodium selenate that dramat-
ically reduced TAU pathology in several mouse models (van
Eersel et al., 2010) is currently evaluated in a phase IIa clinical
trial in mild to moderate AD (https://www.anzctr.org.au/Trial/
Registration/TrialReview.aspx?id=83952).

Other suitable therapeutic strategies are the restoration of mito-
chondrial function, blocking the interaction of TAU with FYN
or JIP1, or disrupting the excitotoxic complex of NMDAR and
PSD-95. Other strategies are the activation of chaperones (Ward
et al., 2012) and the use of aggregation blockers (Akoury et al.,
2013). While it is clear that Aβ plays a key role in the pathogen-
esis of AD, it is becoming even clearer that there is a future of
therapeutics for AD beyond amyloid (Lane et al., 2012; Yoshiyama
et al., 2012). Whether in practical terms it will be necessary for
the efficacy of emerging therapeutic strategies to exactly deter-
mine which TAU species is the most toxic form, remains to be
determined.
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When the microtubule (MT)-associated protein tau is not bound to axonal MTs, it becomes
hyperphosphorylated and vulnerable to proteolytic cleavage and other changes typically
seen in the hallmark tau deposits (neurofibrillary tangles) of tau-associated neurode-
generative diseases (tauopathies). Neurofibrillary tangle formation is preceded by tau
oligomerization and accompanied by covalent crosslinking and cytotoxicity, making tan-
gle cytopathogenesis a natural central focus of studies directed at understanding the role
of tau in neurodegenerative disease. Recent studies suggest that the formation of tau
oligomers may be more closely related to tau neurotoxicity than the presence of the tan-
gles themselves. It has also become increasingly clear that tau pathobiology involves a
wide variety of other cellular abnormalities including a disruption of autophagy, vesicle
trafficking mechanisms, axoplasmic transport, neuronal polarity, and even the secretion of
tau, which is normally a cytosolic protein, to the extracellular space. In this review, we
discuss tau misprocessing, toxicity and secretion in the context of normal tau functions
in developing and mature neurons. We also compare tau cytopathology to that of other
aggregation-prone proteins involved in neurodegeneration (alpha synuclein, prion protein,
and APP). Finally, we consider potential mechanisms of intra- and interneuronal tau lesion
spreading, an area of particular recent interest.

Keywords: tau oligomerization, tau toxicity, tau secretion, interneuronal lesion spread, exosome

OVERVIEW
Cytotoxicity associated with the accumulation of abnormal pro-
tein aggregates has emerged as a central common mechanism
underlying human neurodegenerative disease. Neurons are unique
among differentiated cell types in that they do not re-enter the cell
cycle and thus cannot use mitosis as a method for clearing abnor-
mally aggregated proteins. As a result, they are inherently vulner-
able to disruption of protein turnover mechanisms such as the
ubiquitin/proteasome pathway and autophagy, especially in aged
individuals. The abnormal turnover of aggregation-prone proteins
such as alpha synuclein (SNCA), prion protein (PrP), amyloid
beta (Ab) peptide, and tau are thus key factors in most (95%)
of the neurodegenerative diseases that affect humans. Protein
aggregation is typically accompanied and potentiated by abnor-
mal phosphorylation, ubiquitination, covalent crosslinking, and
the abnormal activation of autolytic proteases (1–6). A common
feature of such proteins is an “intrinsically disordered” structure
(4), in which the normal conformation can be readily changed into

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; CJD
Creutzfeldt–Jacob disease; CNS, central nervous system; CSF, cerebrospinal fluid;
ECF, extracellular fluid; ER, endoplasmic reticulum; FAD, familial AD; GA, Golgi
apparatus; GO, gene ontology; HD, Huntington’s disease; HSPG, heparan sulfate
proteoglycan; LOAD, late onset AD; MAP, microtubule associated protein; MT,
microtubule; MTBR, microtubule binding repeat domain; NDD, neurodegener-
ative disease; NFT, neurofibrillary tangle; NT, neuropil thread; PD, Parkinson’s
disease; PrP, prion protein; PrPSc, misfolded, pathogenic prion protein; SNCA, alpha
synuclein; TGN, trans-Golgi network.

a beta-sheet rich structure with high aggregation propensity (6).
Moreover, conditions in which SNCA (Parkinson’s disease, Lewy
Body Dementia), tau (Corticobasal Degeneration, Pick’s disease,
Frontotemporal Dementia), and PrP [Creutzfeldt–Jakob disease
(CJD), Gerstmann–Straussler–Scheinker disease] form abnormal
aggregates typically show overlapping neuropathology, suggesting
that synergistic interactions may occur between these proteins in
each of these conditions (7). The aggregation of the microtubule
(MT)-associated protein tau, which is heat stable and normally
exhibits a random coil conformation in aqueous solution, plays
a central role in the neurodegeneration seen in Alzheimer’s dis-
ease and non-Alzheimer’s tauopathies that form the core of the
paired helical filament (PHF) (8, 9). PHFs and related filamen-
tous aggregates such as straight and ribbon-like filaments (10)
in turn make up the hallmark tau lesions [neurodegenerative
diseases (NFTs), Pick bodies, etc.] seen in Alzheimer’s disease
and other tauopathies. However it is likely that at least some
of the characteristic features that distinguish tauopathies from
other neurodegenerative syndromes have roots in specific normal
cellular functions of tau.

MT AND NON-MT ASSOCIATED FUNCTIONS OF TAU
Tau is expressed from a single gene on chromosome 17 and is
alternatively spliced to yield six different isoforms in the adult cen-
tral nervous system (CNS). Each of these contains a C-terminal
microtubule binding domain (MTBR) consisting of three or four
tandem repeat motifs. The best understood “normal” function of
tau in mature neurons involves its binding to and stabilizing axonal
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Gendreau and Hall Tangles, toxicity, and tau secretion

MTs via the MTBR. Tau belongs to a family of microtubule associ-
ated proteins (MAPs) that includes other neuronal proteins such as
MAP1A, MAP1B, and MAP2, and also non-neuronally expressed
members (MAP4). Each of these proteins contains a conserved
region in and around the MTBR that suggests a common origin
via gene duplication. The poor conservation of areas outside of
the MTBR in both mammalian tau family molecules and in tau-
like proteins in various vertebrate and invertebrate species suggests
that they may play species-specific functions.

The regulation of tau-MT binding has been heavily studied
and is now well established. Tau-MT binding associated with MT
stabilization is mediated by the phosphorylation of serine and
threonine residues at sites immediately adjacent to and within
the MTBR by a wide variety of kinases [Ref. (11) for a good
review]. Phosphorylation of the regions flanking the MTBR pro-
duce a stoichiometrically graded reduction in the affinity of tau for
MTs, whereas phosphorylation at specific sites within the MTBR
(Ser262 and Ser356) abolish virtually all tau-MT interactions (12).
Subtleties of tau-MT binding appear to be particularly depen-
dent on the phosphorylation pattern of proline-associated serine
and threonine resides on the N-terminal side of the MTBR by
proline-directed kinases (e.g., CDK5, MAP kinase 1, GSK3b).

It has become clear that tau has functions in addition to axonal
MT stabilization in both mature and developing neurons that
involve alternative binding partners for the MTBR (e.g., actin- and
actin-associated proteins, heparin sulfate proteoglycan) and/or
other parts of the tau molecule, such as the amino terminal projec-
tion domain (13). These functions include the integration of cellu-
lar cytoskeletal functions with interneuronal signaling pathways.
Important developmental functions of tau include various aspects
of axonogenesis, such as the establishment of axonal identity (i.e.,
neuronal polarization) (14) and the subsequent outgrowth (15)
and myelination of developing axons. Each of these developmen-
tal functions involves MTBR interactions with the subcortical actin
network and plasma membrane (16, 17), via either the MTBR itself
[actin – Ref. (18)] or via the N-terminal projection domain, which
interacts with Src family non-receptor tyrosine kinases such as fyn
(13, 19, 20).

DISEASE-ASSOCIATED TAU MODIFICATIONS ARE CORRELATED WITH
THEIR DISSOCIATION FROM MTs
Tau hyperphosphorylation
A key alteration that is associated with NFT formation is the
phosphorylation of multiple serine and threonine residues in
and around the MTBR that normally regulate tau binding to
MTs (hyperphosphorylation). Hyperphosphorylation reversibly
decreases the affinity of tau for MTs (21, 22) and is consistently
seen in PHFs isolated from AD and non-AD tauopathy brains
even at early stages in the development of disease (23–27). Hyper-
phosphorylated tau defined as containing 10 or more moles of
phosphate per tau molecule (28) isolated from AD brains has been
shown to be capable of self-assembly in vitro (29), suggesting that
tau hyperphosphorylation may directly induce aggregate forma-
tion as well as altering the normal functions of tau. Tau muta-
tions associated with frontotemporal dementia with Parkinsonism
linked to chromosome 17 (FTDP-17) increase the rate and amount
of tau phosphorylation and decrease the number of phosphate

groups required for aggregation (11, 28). Although clearly asso-
ciated with PHF formation, hyperphosphorylation may not be a
prerequisite for tau aggregation, since tau constructs containing
only the MTBRs are able to form filaments in the unphospho-
rylated state (29, 30). However, dephosphorylation prevents the
self-assembly of full-length isoforms, suggesting that the N- and
extreme C-terminal regions of tau inhibit this (31, 32). Curi-
ously, phosphorylation of tau at certain residues (Ser262 and Ser
214) that decrease tau-MT affinity act to prevent formation of
PHFs (33). This, together with multiple reports of phosphoryla-
tion state-contingent kinase specificity for individual sites in the
flanking domains, suggests that regulation of both tau:tubulin and
tau:tau affinity by phosphorylation is highly subtle and remains
incompletely understood.

Tau truncation
The evolution of tangle-intrinsic tau from full-length isoforms to
MTBR-only fragments (34) suggests that proteolysis at both the
C and N termini of tau may play a significant role in NFT for-
mation. This is directly supported by a number of studies of tau
filament formation. Temporal analysis of filament formation in
AD brains shows that tau misfolding [recognized by the Alz50
antibody (35)] precedes initial truncation at D421, with subse-
quent truncation at E391 appearing at later stages of the disease
(34). Truncated C-terminal tau fragments can act as nucleation
seeds in vitro, sequestering full-length tau in both mutant and
wild-type forms (11). Such nucleation may be related to con-
formation specific tau:tau interactions that have recently been
proposed to mediate the intercellular propagation of neurofibril-
lary lesions (36, 37). Truncation of tau at E391 has been identified
within the core of PHFs (38) and at D421 in the brains of AD
patients (39). The presence of the C terminal has an inhibitory
effect on polymerization of full-length tau (31) and C-terminal
truncation accelerates tau filament formation in vitro (40–42). A
study using cells expressing the MTBR of tau containing an FTDP-
17 mutation demonstrated that proteolysis of the N and C regions
flanking the MTBR produced aggregation-prone fragments capa-
ble of seeding further aggregation, while blocking N-terminal
truncation of this fragment prevented C-terminal proteolysis, sug-
gesting that this region (near K257) may act to shield downstream
residues (11). It should be noted that although C-terminal trun-
cation is sufficient to cause tau aggregation in cellular models,
additional mechanisms might drive filament formation in dis-
eased neurons. Tangle-bearing neurons in a transgenic mouse
model contained little D421-cleaved tau (43), suggesting that mul-
tiple pathways to aggregate formation are likely active in neurons
affected by tauopathy. This is consistent with the presence of mul-
tiple types of lesions in the various forms of non-AD tauopathy
and in AD brain, where neuropil threads (NTs) occur with or
perhaps even before the onset of NFT formation (44) and with
the characteristic differences in neurofilament content and tau
conformation seen in NTs (45) and Pick bodies (10, 46) versus
NFTs.

Other variables affecting tau aggregation
In addition to phosphorylation and truncation, there are a num-
ber of factors that appear to modulate tau aggregate formation,
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some of which are associated with tauopathy cytopathogenesis.
Foremost among these are the intronic and exonic point and dele-
tion mutations in and around the MTBR that cause familial non-
AD tauopathies [reviewed in Ref. (47)]. The restriction of such
mutations to the MTBR and their ability to drive the neurofibril-
lary pathogenesis of presenile tauopathies constitutes some of the
strongest evidence for the importance of tau aggregation in human
disease. Polyanions such as heparan sulfate proteoglycan (HSPG)
are abnormally distributed in pre-tangle and tangle-bearing neu-
rons and can catalyze the formation of straight filaments and PHFs
in vitro (48, 49) regardless of the phosphorylation state of tau (30,
50, 51). Specific isoforms of tau also differ in their ability to form
filaments in vitro. Different ratios of three and four repeat (3R and
4R) tau isoforms are characteristic of tau aggregates found in spe-
cific tauopathies (26, 52) and the presence of intronic mutations
interfering with the splicing of exon 10 in patients with FTDP-17
(30, 53) confirms that the resulting change in the ratio of 3R:4R
tau is sufficient to drive tau filamentation and neurodegenera-
tion (54). Three and four repeat isoforms differ in characteristics
that may affect their participation in NFT formation, including
the ability to form disulfide bridges (55) and their relative affinity
for MTs and fyn kinase (56). The presence of 3R tau may reduce
the tendency of 4R tau to form filaments (57), possibly by inter-
fering with disulfide bond formation. Finally, the larger cellular
and genetic context is likely to have a significant bearing on the
tendency of tau to aggregate into NFTs. Early cellular changes
involving lysosomal and autophagy pathway abnormalities may
either result from or modulate tau aggregate formation (58, 59).
Genetic factors such as the H1 haplotype, which affects the overall
expression levels of tau and the splicing of exon 10 and possibly
exons 2 and 3 (60), and the presence of ApoE4 allele have been
reported to be associated with high disease incidence (61). Addi-
tional genetic factors that affect tau aggregation and thus disease
propensity include interactions with elements on chromosome 21
that affect tau splicing and the function of non-APP proteins such
as DYRK1A (53, 62) as well as APP itself (63). Overall, tau inter-
actions with non-MT elements via its MTBR and in particular,
tau:tau interactions associated with aggregation and their involve-
ment in tau-mediated neurodegeneration have been a subject of
intensive investigation. However, while a great deal is now known
about both the mechanisms of tau aggregation and the circum-
stances of tau modifications associated with aggregate formation,
it remains unclear exactly how each of these elements contributes
to tau cytopathogenesis. This uncertainty has been exacerbated by
the identification of tau toxicity mechanisms that are not associ-
ated with the MTBR but which may also play important roles in
neurodegeneration.

REACTIVATION OF DEVELOPMENTAL TAU FUNCTIONS IN
NEURODEGENERATION
While tau aggregation is clearly a central factor in tauopathy patho-
genesis, the role tau plays in the development of axonal identity
and other aspects of axonogenesis has increasingly been linked to
neurodegenerative disease mechanisms. These include the appear-
ance of cell cycle markers (64) and ectopically sprouting axonlike
processes (NTs) emerging from the dendrites (45, 65–67) during
the development of neurofibrillary lesions in neurodegenerative

tauopathies. Dendritic NTs in particular suggest that tau func-
tions in the development of axonal identity may play a role in
the early stages of AD where they may reflect damage to mecha-
nisms that maintain the terminally differentiated neuronal state
(68, 69). The “fetal” (3R0N) tau isoform is the shortest three
repeat tau isoform with the lowest binding affinity for MTs (30),
possibly reflecting the far greater importance of tau N-terminal
interactions and functions during development relative to the role
tau plays in the mature CNS. A key tau interactor during devel-
opment is the non-receptor tyrosine kinase fyn, which plays a
critical role in axonal outgrowth and myelination (15, 70). Inter-
actions between the tau N terminus and signaling molecules such
as fyn typically occur in the actin-rich cortical cytoskeleton largely
in the absence of MTs and are necessary for functions such as
growth cone motility (16). Fyn, like tau, localizes to NFTs (20,
71) and is essential to the development and possibly the propa-
gation of Abeta-mediated toxicity in mouse models of AD (72).
Fyn-mediated interactions with tau play a role in the localiza-
tion of a small amount of tau to the plasma membrane (73),
particularly at dendritic loci (74) where it is involved in synaptic
functions associated with learning and memory (75–77). Abnor-
mal interactions of tau with fyn kinase increasingly appear to play
a critical role in membrane-associate tau dysfunction especially
via the generation of synaptotoxic species of Abeta from APP.
This occurs in the context of fyn-mediated phosphorylation of
APP in early endosomes (78) and in turn exacerbates both tau
localization to rafts and tau phosphorylation by fyn (79). Such
correlations suggest that tau mislocalization to dendrites and the
generation of abnormal amounts of Abeta may interact synergis-
tically to produce both cytotoxicity and abnormal developmental
events such as NT growth and cell cycle re-entry (80) in AD
neuropathogenesis.

INTERNEURONAL ASPECTS OF TAUOPATHY
Tau interactions with lipid raft proteins such as fyn and (possi-
bly) APP may be centrally important in two recently emerging
interneuronal aspects of tau pathobiology: (a) tau secretion and
interneuronal transfer via unconventional mechanisms and (b)
tau:tau interactions involved in templated misfolding and “prion-
like” lesion spreading mechanisms. Membrane localization favors
tau oligomerization, which increasingly appears to be a key event
in at least some forms of tau toxicity. Membrane-associated tau
functions mediated by its N terminus appear to be linked to the
diversion of tau from the cytosol to membrane-bound vesicles,
in particular those associated with the trans-Golgi network and
the autophagosome-lysosome pathway (81). As a consequence,
it is likely that both cellular and molecular aspects of interneu-
ronal lesion spreading have their roots in membrane-associated
tau misprocessing mechanisms.

Selective neuronal vulnerability to tau toxicity
Ever since it became apparent in the mid-1980s that Alzheimer’s
disease is a common neurodegenerative condition of the elderly
as opposed to a relatively rare familial syndrome, it has been
clear that the number and distribution of NFTs is strongly cor-
related with progressive cognitive loss (82, 83). There are two
possible mechanisms that might account for disease-associated
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stereotyped patterns of lesion development with increasing disease
severity. One possibility is that loci that are affected early in the
disease sequence are more vulnerable to the mechanisms underly-
ing tau-induced degeneration at the cellular level. A hierarchy of
vulnerability to tau toxicity might then result in a stereotyped
sequence of lesion development over time. One characteristic
shared by brain regions that develop early tau lesions in AD is
synaptic plasticity; highly plastic cortical pyramidal neurons such
as those of the hippocampus are inherently vulnerable to excito-
toxic insults by virtue of their glutamatergic pharmacology and the
prevalence of LTP-associated plasticity mechanisms (84). Selec-
tive vulnerability may also be acquired via injury, as with the
greatly increased risk posed by antecedent head trauma (85–87). It
seems increasingly likely that both intrinsic and extrinsic selective
vulnerability factors interact with lesion spreading mechanisms
associated with synaptic connectivity patterns (discussed at length
below) to produce the variety of clinical syndromes associated with
neurofibrillary degeneration.

Interneuronal movement of misprocessed tau
For many years, the interconnectedness of affected regions and
the highly stereotyped, disease-specific pattern of neurofibrillary
lesion spread within the brain in AD and non-AD tauopathies
has suggested that the actual interneuronal transfer of a toxic
factor must be involved in the progression of neurodegenerative
tauopathies (88–91). The actual movement of toxic tau species
between neurons is now thought by many to be the primary mech-
anism mediating the progressive appearance of tau pathology and
clinical dysfunction in tauopathy, including those associated with
repeated head injury (87). In particular, the templated misfolding
mechanism that mediates the infectivity of prion diseases such
as CJD is increasingly invoked as a model for the interneuronal
transfer of tau-mediated toxicity (36, 92–97), especially in murine
transgenic models of tauopathy (98–100). Evidence that differ-
ent abnormal conformations of PrP may in fact define different
prion-mediated diseases (101, 102) raises the possibility that very
different clinical presentations and neuronal vulnerabilities could
be attributable to molecular level differences in a single protein.
However, the study of tau as a “tauon” [a term for a tau species that
spreads toxicity via templated misfolding coined by Novak et al.
(93)] has been conducted largely in the absence of a cellular context
for the actual transfer of tau between neurons, making it difficult
to connect the molecular mechanisms involved in protein tem-
plating to specific cellular events and mechanisms associated with
tau cytopathology. In particular, while the secretion (103–105) and
uptake (92) of tau itself in cellular models has been demonstrated
and linked to the elevated tau levels in early AD (106), it is unclear
how secretion is related to the spreading of neurofibrillary lesions
and whether that occurs via an oligomer-associated mechanism,
such as templated misfolding or ionophore formation (107, 108),
or via some mechanism that does not require the tau MTBR at
all (109–112). The subtle but important questions that remain
about the relationships between the development of NFTs, toxic
oligomer formation, templated misfolding, N-terminal tau toxic-
ity, and the actual cellular mechanisms responsible for secretion
and uptake of misprocessed tau species will be explored at greater
length below.

CURRENT FOCI OF TAUOPATHY RESEARCH
THE BIOGENESIS OF NEUROFIBRILLARY TANGLES
The development of NFTs, the characteristic tau lesions that
develop in cortical pyramidal neurons during the course of AD, has
been relatively well characterized but is still incompletely under-
stood. NFT development begins with the abnormal phosphoryla-
tion of tau at multiple sites in and around the MTBR, accompanied
by abnormal somatodendritic tau accumulation resulting in the
appearance of pre-fibrillary phosphorylated punctate deposits in
the cell body and dendrites of affected neurons (24, 113). These
eventually form condensed fibrillar deposits near the nucleus and
near dendritic branch points, displacing normal cytoskeletal ele-
ments such as MTs (113, 114). Over time, these fill most of the cell
and take on a characteristic flame-shaped appearance. Eventually,
the neuron containing the NFT dies and the NFT remains as a
“tombstone” lesion or “ghost” tangle.

While all tau isomers and cleavage fragments that contain
the MTBR appear to be capable of forming filaments, their
precise morphology may vary considerably; they can appear as
straight, ribbon-like, or any of a variety of PHF-like structures,
all of which are reproducible under in vitro conditions (10, 46,
115). Moreover, the wide variety of tau modifications that affect
aggregation suggest that considerable subtlety exists in the mech-
anisms responsible for tau assembly. Such factors include the
presence of tauopathy-inducing point mutations (116, 117) the
presence/absence of the C-terminal (31) or N-terminal (10, 32)
domains, and variations in the experimental conditions used
(118). The fact that the range of filaments and aggregate types seen
with human tauopathies can be reproduced in sporadic tauopathy
syndromes without benefit of tau mutations indicate that addi-
tional relevant variables to tau aggregate form come from cellular
factors, such as the inclusion of NFs (Pick bodies) or internal
membrane elements (granulovacuolar degeneration) or even the
shape of the host cell. Understanding how molecular and cellular
factors interact to produce a specific type of aggregate can thus be
seen as an index of our overall grasp of tauopathy pathogenesis.

Direct formation of NFTs from cytosolic tau
A key unresolved issue in NFT formation is the cellular context
in which NFTs form during the course of neurodegenerative dis-
ease. In particular, it is unclear whether NFTs form as a result of
cytosolic or even MT-templated interactions between tau species
or whether NFT formation requires additional cellular elements,
such as membrane-bound vesicles, to occur. The most straightfor-
ward hypothesis of NFT generation and growth is direct assembly
from free tau monomers and/or oligomers in the cytosol. The abil-
ity of tau filaments to form in vitro by MT-templated mechanisms
(119), and the ability of tauopathy mutations to actively disrupt
MT networks (116) as well as favor filament formation (117, 120)
are all consistent with the idea that tau aggregate formation, even-
tually leading to NFTs, begins immediately upon dissociation from
MTs or even by conformational changes that occur in MT-bound
tau. For instance, tau oligomerization has been observed to occur
on the surface of MTs (119), which might then generate cytosolic
tau oligomers capable of directly seeding NFT growth. This seems
to account directly for the granular pre-fibrillary deposits that con-
stitute the earliest visible stage of NFT formation (121, 122) and
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is consistent with in vitro experiments demonstrating that tau fil-
ament assembly resulting in NFT formation is potentiated by tau
interactions with fatty acids and/or polyanionic molecules such as
heparin sulfate proteoglycans and RNA (30, 50, 123, 124). More-
over, electron and atomic force microscopy studies have revealed
numerous intermediates in tau fibril formation, including abnor-
mally folded monomers capable of aggregation (125) and granular
tau aggregates that may be formed from these monomers (121,
122). All of these observations are consistent with the direct for-
mation of NFTs from cytosolic tau oligomers and this mechanism
is therefore widely assumed to account for the biogenesis of most,
if not all, NFTs.

Does vesicle-associated tau contribute to NFT formation?
Studies of tau biology raise the possibility of an alternative (or
perhaps additional) mechanism to direct oligomerization in the
cytosol. The catalysis of tau oligomerization by fatty acids is as
consistent with a membrane-mediated assembly mechanism as it
would be with a cytosol-only mechanism. More direct support
for membrane-mediated NFT formation includes electron micro-
scopic observations of membrane-associated PHFs in AD brain
(126) and the experimental generation of tau filaments in vitro on
the surfaces of anionic micelles (127). This occurs via tau interme-
diates containing β structures whose conformations are dependent
on the presence of the anion and which are capable of seeding
tau fibril formation. Tau that is not associated with MTs interacts
with actin (18) and/or actin-associated proteins (128, 129) caus-
ing misprocessed tau to accumulate under the plasma membrane
and in membrane-bound vesicles in cellular tauopathy models (19,
81, 105, 130, 131). This could plausibly result in tau endocytosis
leading to vesicle-associated tau being returned to the perinu-
clear region via the retromer pathway, followed by NFT formation
via membrane-templated oligomerization (125, 127). The Golgi
apparatus and the autophagy-lysosome pathway are additional
possible sources of tau-bearing vesicles that could contribute to
NFTs. Abnormalities in Golgi structure have been identified both
in association with tau overexpression (132) and with NFTs in AD
brain (133). A recent study of PHF tau uptake in neuronal cultures
suggested that endocytosed tau aggregates eventually form perin-
uclear aggresome-like deposits, which also suggests involvement
of trans-Golgi “retromer” pathways in NFT formation (134). Sim-
ilarly, the disruption of proteasome/macroautophagy (autophagy)
mediated tau turnover is a prominent early element in pre-fibrillar
changes in AD cytopathology (59), as evidenced by the polyubiq-
uitination of tau in NFTs (135). Experimental disruption of lyso-
somal function via chloroquine administration induced lysosomal
accumulation of tau aggregates (136), suggesting that disease-
associated changes might contribute to NFT formation in AD via
a similar mechanism. Similar patterns of somatodendritic tau dis-
tribution and associated signs of toxicity are seen in cortical pyra-
midal neurons with pre-fibrillar tau deposits or nascent NFTs (24,
113, 114, 137). These patterns suggest a role for vesicle-associated
tau in both local tau cytotoxicity and in the generation of NFTs
(81, 138). Examples are shown in Figure 2. In both cases, tau accu-
mulates first in distal, membrane-rich dendritic structures (113,
139) and then at branch points and along dendritic shafts, where
it is correlated with local MT loss, causing varicosities to appear

in dendrites (113, 131). In the lamprey model, which is the only
in situ tauopathy model from which high resolution localization
information is available, these are associated with the accumu-
lation of tau-bearing vesicles (and membrane-bound organelles
such as mitochondria) at either end of the varicosity, suggesting
that they are due to the failure of bidirectional MT mediated trans-
port (Figure 1B). The accumulation of tau-containing vesicles at
dendritic branch points is likely due to the shift in MT polarity
patterns (140) typically found there, which induces the accumu-
lation of vesicular organelles such as mitochondria. This vesicular
build-up may be either the cause or consequence of MT-mediated
transport failure (141–143).

TAU TOXICITY MECHANISMS – ARE NFTs TOXIC?
The widely observed correlation between NFT distribution and
neurodegeneration in nearly all tauopathies including AD (82,
83, 113, 114) has led to the widespread assumption that NFTs
are an integral feature of tau neurotoxicity. Although toxic tau
aggregates are notoriously difficult to generate in cell culture from
wild-type tau isoforms (144), studies with hyperaggregating tau
mutants have demonstrated that cleavage products are toxic when
expressed in culture, with aggregate formation and apoptotic cell
death occurring within 24–48 h of tau expression (145, 146). That
said, it is becoming increasingly evident that NFTs may not be the
agent driving neurotoxicity in whole animal tauopathy models. In
Drosophila, expression of both mutant and wild-type human tau
leads to AD-like pathology (late onset neurodegeneration, selec-
tive toxicity of cholinergic neurons) in the absence of NFTs (147).
In addition, the long time courses (up to 20 years) proposed for
NFT formation based on imaging data from AD brain (148–150)
are not consistent with direct causality between NFTs and tau tox-
icity. While NFT growth is largely irreversible in inducible mouse
tauopathy models, more dynamic aspects of tau toxicity are clearly
reversible (151–154), suggesting that the mature NFT itself is much
less toxic than the events associated with building it. Dendritic
and axonal changes associated with tau accumulation and NFT
formation in both transgenic mice (155) and AD brains (114, 156)
appear to be correlated with abnormal mitochondrial distribu-
tion, which in turn recruits low ATP and Ca++mediated toxicity
mechanisms (144). Ca++ mediated tau toxicity is also suggested
by the effects of specific tauopathy mutations on Ca++ channel
properties (55) and high resolution correlations between localized
secretion, MT loss, and accumulations of vesicular tau (81, 131) as
illustrated in Figure 1. These findings and others have complicated
our understanding of the relationship between NFT distribution
and abundance and the actual toxicity mechanisms driving human
neurodegenerative disease. Recent studies have also tended to dis-
sociate degenerative cellular changes from NFT formation. It has
even been suggested that large tau aggregates such as NFTs may
serve a neuroprotective role (157, 158), preventing hyperphospho-
rylated tau from sequestering normal, MT-bound tau. Studies in
other tauopathy models have also called into question the role
played by hyperphosphorylation in the chain of events leading to
degeneration; recent fly model studies (159) have suggested that
hyperphosphorylation can be neuroprotective by blocking other
aspects of tau toxicity, such as apoptotic changes associated with
cell cycle re-entry (80, 160).
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FIGURE 1 | Accumulation of vesicular tau in ABC dendrites and at
dendritic branch points causes local transport failure, MT loss, and
localized secretion from dendrites. High resolution confocal imaging of
somatodendritic tau accumulation in the lamprey tauopathy model suggests a
cellular mechanism to account for the relationship between localized tau
toxicity, somatodendritic MT loss, and the pattern of NFT evolution in
pyramidal neurons as described by Braak et al. (113), Braak and Braak (137),
and Blazquez-Llorca et al. (139). (A) Cell body (left) and dendritic branch point
(center) of a lamprey ABC expressing full-length 4R0N human tau bearing the
P301L tauopathy mutation before the onset of tau-induced degeneration. Tau
is triple labeled: MT associated (Tau5, green channel), MT dissociated (9G3,
blue channel), and total tau (GFP epitope tag red channel). Tau phosphorylated
at Y18 (pY18 tau or 9G3 positive MT dissociated tau) is accumulating at the
base of large dendrites and at branch points, a pattern typical of
MT-transported vesicles (asterisks). The rightmost panel shows pY18 tau
accumulating at either end of dendritic varicosities (arrows). (B) Left panels
show pY18 distribution in non-degenerating (Stage 1) and degenerating
(Stage 2) ABC dendrites. Distally transported tau is distributed throughout
distal (but not proximal) dendrites in non-degenerating cells, but becomes
localized to dendrite branch points and varicosities with the onset of
degeneration [arrows – see Refs (81, 165)]. Center and right: Dendritic
beading is caused by the localized failure of MT mediated transport, resulting

in the accumulation of pY18 (fyn phosphorylated) tau associated with vesicles
and membrane-bound organelles. The accumulation of mitochondria (COX2
label) is particularly well marked. With the onset of dendritic degeneration,
total and pY18+ tau accumulates at each end and eventually in the center of
dendritic varicosities in what appear to be MT-transported vesicles. The
localized secretion occurring in the vicinity of such deposits suggests that
tau-bearing vesicles first destabilize the MTs responsible for their transport,
accumulate in the resulting varicosities and are then secreted. While the
mechanism responsible for this has not been demonstrated directly, the
concomitant loss of MTs and localized secretion suggests a Ca++ flux
mediated mechanism. (C) A model for vesicle-associated tau in NFT
formation and cytodegeneration. Failure of tau to become axonally localized
and bind axonal MTs results in actin association and endocytosis (1).
Tau-bearing vesicles are transported both distally and proximally on dendritic
MTs, accumulating at dendritic branch points (where MT polarity patterns
favor localized cargo accumulation Aronov 01) and near synaptic terminals (2),
where it may become locally toxic possibly via interacting with Abeta in
synapse-associated endosomes, resulting in structural failure of dendrites
(top right) and uptake by afferents resulting in retrograde trans-synaptic
movement. Synaptic activity may also result in the centripetal transport of
tau-bearing vesicles to the Golgi apparatus (3) where it may modulate NFT
formation. Scale bars: (A): 20 µ, (B) 100 µ (left), 5 µ (right).

Oligomer-associated toxicity mechanisms
Tau oligomers have been the most widely proposed candidate
for the toxic intermediate species in NFT biogenesis responsible
for the correlation between neurofibrillary lesions and neurode-
generation in AD and non AD tauopathies (83). The toxicity of
oligomeric tau is suggested by numerous correlative studies (161)
and in particular with respect to the dynamic effects of tau aggre-
gation; for instance, the concentration of tau multimers (162) but
not large aggregates or monomers (95) in the brains of tauopathy
mice are correlated with memory and cognitive deficits.

Oligomer-mediated membrane permeability changes. The
structural similarity between amyloid proteins associated with
neurodegeneration supports the existence of a common toxic-
ity mechanism based on common properties of such proteins

such as their propensity for oligomerization and close associa-
tion with membrane. The toxicity of amyloid oligomers unrelated
to neurodegenerative diseases suggests that a specific, shared con-
formation may be responsible, with toxicity being mediated by
mitochondrial dysfunction associated with an increase in reactive
oxygen species (141, 163). Oligomers of several different amyloids
cause an increase in ion conductance across lipid bilayers (164)
raising the possibility that they might alter or the permeability of
the plasma membrane, resulting in increased internal [Ca++] and
associated toxic changes. Both Ab and SNCA can form oligomeric
structures that increase ion permeability of synthetic vesicular
membranes and which may allow them to create pores within
cell membranes (107). Leakage of cellular contents across the
plasma membrane in SH-SY5Y cells was observed after the exter-
nal application of tau oligomers (108), suggesting a similar toxicity
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Gendreau and Hall Tangles, toxicity, and tau secretion

mechanism for tau. These results collectively suggest that tau
oligomers may mediate any of several toxicity mechanisms associ-
ated with Ca++ dysregulation or abnormal generation of reactive

oxygen species. Such changes are typically seen with excitotoxi-
city and mitochondrial dysfunction, both of which appear to be
important elements of AD-associated neurotoxicity (141). Studies

FIGURE 2 |The context of exosomal tau secretion and transneuronal
neurodegeneration. (A) Connectivity diagrams summarizing proteomic
analysis of the exosomal proteome associated with tau overexpression
from neuroblastoma cell cultures (106) using the String online dataset
(104). GO term analysis shows that exosomal tau secretion involves factors
with known links to tau misprocessing (APP, oligomerization, Wnt pathway)
and also suggests the involvement of mechanisms with less established
and no apparent links to tau, AD, and exosomes. Of the ∼660 proteins
identified, 50 were both present on the AlzGene list
(http://www.alzgene.org/) of 616 AD related proteins and had clear links
(0.4 confidence or more (104)) to tau and/or exosomal markers (CD9 and
CD81 were not present in our set, but were part of the probe query) – see
ExoCarta (239) via the String 9.05 connectivity algorithm. Note the strong
linkage to tau (MAPT – shown as a black circle for reference). (B) Another
group (right diagram) consisted of internally connected proteins that did not
have clear functional links to tau on String (confidence <0.4 or not
detected). These nonetheless had significant signals for AD, PD, and HD
that were tightly linked to mitochondrial markers, suggesting the
association of abnormal autophagy with tau secretion, and with synaptic
plasticity (LTP, LDP). All terms shown reflect significant enrichment
(p < 0.001) by the String algorithm. (C) Connectivity diagram from
GeneMANIA (http://www.genemania.org) showing physical interactions
between proteins isolated from exosomes using the same set as shown in
(A). In order to identify proteins typically localized to exosomes, we scored
each protein for the number of times it appeared in the nearly 70 different

mammalian exosomal datasets at ExoCarta. Links between tau and highly
exosome associate proteins (dark green icons), mildly exosome associated
(light green icons), and aggregation-prone proteins such as SNCA and APP
(Abeta) are shown as well to illustrate the plausibility of tau diversion to
exosomes in the context of these co-purified proteins. (D) Expression of
4R0N tau in lamprey ABCs produces dendritic localization of tau (red
channel), dendritic degeneration, and localized focal secretion (left box,
orange label) as shown in a confocal micrograph after 10 days of expression
(81). Immunolabel for LC3/MAP1b (green channel) shows cytoskeletal
localization in non-transfected giant axons (seen in cross section – ax), and
in circumferential axons (arrow axon). One of the latter has taken up
secreted tau shown at higher magnification (right) and is exhibiting toxicity
in the form of varicosities (arrows) similar to those shown in ABC dendrites
(dendrite, center). Highly co-localized tau (blue channel) shows cleaved,
autophagosome-associated LC3II associated with tau (arrows) in a pattern
similar to that seen for dendritic mitochondria in Figure 1B. Scale bar: 50 µ

(left), 10 µ (right). (E) Consensus sets of 1575 downregulated and 1383
upregulated proteins in both LOAD (238) and early onset FAD (237).
(F) Schematic outlining a hypothesis of AD cytopathogenesis that accounts
for tau associated exosomal secretion and downregulation of synaptic and
axonal proteins in AD (red) in the context of current knowledge. Likely
triggers for tau secretion and trans-synaptic lesion spreading (blue) may
occur either directly from the axon due to loss of axonal MT integrity and
secretion regulation, or indirectly from dendrites as the results of toxicity
caused by somatodendritic tau accumulation.
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in cellular tauopathy models showing a correlation between local-
ized cytotoxicity, tau membrane association, and localized MT loss
(81, 130, 165) are consistent with this (see examples in Figure 2), as
is the presence at the plasma membrane of polyanionic molecules
known to catalyze tau oligomer/filament formation such as HSPGs
(30, 166) and RNA (123).

Oligomers as prions. The “prionlike” toxicity and propagation
mechanisms recently proposed for tau may be considered as a
special category of oligomer-mediated toxicity, if one makes the
assumption that a prionlike misfolded tau conformation would be
toxic and would propagate in a manner similar to that of the PrP
itself. However, despite the considerable amount of research effort
devoted to understanding the relationship between propagation
and toxicity mechanisms of the PrP, this relationship remains quite
unclear. Mutant forms of PrP that do not create large amounts of
misfolded, pathogenic prion protein (PrPSc) with high beta-sheet
content in plaques have still been shown to generate CJD-like syn-
dromes in mice (167). Moreover, interference with the normal GPI
linkage that anchors PrP to the membrane can affect the ability of
the mutant form to propagate interneuronally and generate a clin-
ical syndrome but without affecting local cytotoxicity (168). Tau
misprocessing appears to have a number of parallels to PrP toxicity
in this regard; like PrP, tau oligomerization, and post-translational
modifications that favor tau oligomer formation (e.g., hyperphos-
phorylation, truncation) are closely associated with toxicity. In
the case of tau, it remains unclear whether higher-level oligomers
and/or polymers propagate interneuronally in human tauopathies.
Recent studies using murine tauopathy models have suggested that
they are capable of this (98, 99, 169).

Disruption of protein turnover pathways. The dysfunction of
proteasomal, autophagosomal, and lysosomal pathways with pro-
tein aggregate formation in tauopathy is a candidate for mediating
tau toxicity as well as NFT formation, and may play an important
role in the development of other tau containing cellular lesions,
such as granulovacuolar degeneration [Ref. (170), reviewed in Ref.
(171)] in which tau accumulations appear to be membrane associ-
ated. The polyubiquitinated state of NFT-tau suggests involvement
of the ubiquitin-proteasome pathway (135). Additionally, the co-
localization of tau aggregates with high concentrations of acid
hydrolases in granulovascular degeneration (GVD) bodies in the
hippocampal neurons of AD patients suggests that they may be
the result of incomplete autophagy (172, 173). Lysosomal activa-
tion is also observed in cultured cells transfected with mutant tau
and in mice expressing mutant tau transgenes (174). Inhibition
of lysosomal proteases by tau misprocessing causes the accumula-
tion of amphisome-resembling vacuoles in cultured neurons that
are morphologically similar to those seen in AD brains. Inhibition
of vesicular transport by tau, especially N-terminal tau fragments
(175) may also prevent the fusion of autophagosomes and lyso-
somes (176), causing the retention of tau-bearing autosomes in
axons and dendrites, where their accumulation may result in
localized degeneration and even tau secretion [Figure 2, also see
Ref. (81)]. One way that dysfunction of the autophagy-lysosomal
machinery caused by tau aggregates may induce toxicity is enhanc-
ing tau oligomerization by the generation of hyperaggregating

tau cleavage fragments due to the incomplete activity of lyso-
somal proteases. Cathepsin L has been shown to generate
aggregation-prone fragments mutant but not wild-type tau via
association with Lamp2A and Hsc70 on the cytosolic face of the
lysosomal membrane (177). Tau-induced disruption of autophagy
may also recruit synergistic effects related to the production of
Abeta from APP, since PS1 is also necessary for autophagosome-
lysosome fusion and lysosomal proteolysis (178). It should also be
noted that the vesicle trafficking pathways associated with aggre-
some formation may also become abnormally involved in tauopa-
thy as demonstrated by a recent study in which tau aggregates were
endocytosed and then localized to perinuclear deposits (134).

Non-oligomer-mediated tau toxicity mechanisms
Receptor-mediated toxicity. An alternative to oligomer/aggregate
associated mechanisms of tau toxicity to explain the selective vul-
nerability of neurons and spread of NFTs through synaptically
connected regions in Alzheimer’s disease is toxicity in response to
tau binding to extracellular receptors, especially those for synap-
tic transmitters such as glutamate and acetylcholine. Tau is toxic
to neurons in culture when applied extracellularly (179), appar-
ently via the generation of Ca++ fluxes via the activation of M1
and M3 muscarinic acetylcholine receptors (180), which bind tau
with a greater affinity than acetylcholine. This is consistent with
the preferential distribution of muscarinic acetylcholine recep-
tors on entorhinal and hippocampal pyramidal neurons, and
accounts for their vulnerability in early stages of Alzheimer’s dis-
ease (181). Interestingly, the dephosphorylation of secreted tau
by tissue-non-specific alkaline phosphatase could potentiate its
high-affinity binding to muscarinic receptors of nearby neurons
(182), thus accounting for the “clustering” lesion spread patterns
characteristically seen in tauopathies (90, 91, 183).

The generation of Ca++ fluxes via receptor-mediated toxic-
ity need not directly involve aggregate or oligomer formation as
a variety of MTBR− tau species appear to form multiple toxic
fragments via Ca++mediated activation of calpains and caspases
in neuroblastoma cultures (109, 184) in at least some cases by
NMDA receptor activation (109). A well studied fragment gener-
ated by calpain activity is a 17-kDa N-terminal fragment consisting
of tau residues 45–230; this is toxic when applied to aged primary
hippocampus cells and when expressed in the brains of transgenic
Drosophila and in ABCs in the lamprey tauopathy model (142, 185,
186). The 17-kDa fragment is elevated in cortical neurons of AD
and tauopathy patients that exhibit increased calpain activity (112)
and is unusual among toxic tau species in its ability to produce neu-
ritic pathology in neuroblastoma lines (185). However, it remains
unclear if the 17-kDa fragment produced by calpain cleavage is a
cause of neuronal death in tauopathy (187). Another N-terminal
tau fragment with a molar mass of 20–22 kDa was found enriched
specifically in the synaptosomes of AD brains in comparison to
control brains (184). When overexpressed in primary rat neurons,
an N-terminal tau fragment containing residues 26–44 impaired
mitochondrial function and caused neuronal death (188). Down-
regulation of calpains in a tauopathy model of Drosophila was
associated with decreased neurodegeneration (186). Both the tau
N-terminal domain and fyn-tau interactions are associated with
the mechanism of Ab toxicity that is mediated by the presence of
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tau (63, 74, 111), as are many fragments generated by similarly
activated caspases (189, 190).

Can “prionic” and receptor-mediated N-terminal tau toxicity
coexist? The ability of tau to mediate Ab toxicity in the absence
of the MTBR (111, 190) and the potential for NFTs to act as neuro-
protective agents (157, 158, 191) raise questions about how large a
role tau aggregate toxicity plays as a direct agent of neurodegenera-
tion, at least in AD (112, 192). The links between toxic N-terminal
tau fragments and excitotoxicity are consistent with the known
vulnerability of cortical neurons with glutamatergic inputs and
high levels of synaptic plasticity to AD (84) and the strong asso-
ciation between Ab mediated toxicity in early stage disease with
synaptic dysfunction (193), suggesting that oligomer toxicity is not
necessarily required for neurodegenerative disease pathogenesis.
We recently pointed out that receptor-mediated toxicity mech-
anisms could account for neurofibrillary lesion propagation via
Ca++mediated activation of calpains and caspases, which could
(at least in theory) generate both NFTs and secretable toxic frag-
ments in downstream neurons, which could then repeat the cycle.
Ironically, such a mechanism would technically fulfill the require-
ments of the original Prion Hypothesis, which makes no mention
of templated misfolding (194). It thus seems safe to say that coex-
istence is not only possible but necessary given what we know
(and don’t know) about how tau toxicity actually operates in
neurodegenerative disease.

TAU SECRETION
Cellular mechanisms of tau secretion
Tau secretion by neurons via multiple biologically distinct path-
ways has been demonstrated both in culture and in situ (105, 106,
195), despite its lack of a signal peptide and of lipidation or GPI
anchor sites that would permit its secretion via the conventional
ER/Golgi route. Tau resembles other aggregation-prone proteins
with key roles in neurodegenerative disease (i.e., SNCA, PrP, and
Ab) in that it is secreted at least in part via the exosome path-
way (106, 196–198); however the full range of secretion routes
and their significance to tauopathy pathogenesis remain unclear.
Human tau phosphorylated at Thr181 (epitope AT270) is secreted
in exosomes in culture and is also found in exosomes in the cere-
brospinal fluid (CSF) of early stage AD patients (106). The early
appearance of exosomal CSF tau in AD argues strongly in favor
of CSF-tau biogenesis by active secretion rather than passive post-
mortem release, since it occurs at a stage (Braak Stage 3) when
neurofibrillary degeneration is restricted to a small proportion of
the brain (199). The N terminal of tau, which interacts with the
plasma membrane and membrane-associated proteins, is required
for secretion in culture and in an in situ lamprey model (195),
where tau secretion occurred in two distinct patterns depending
on the presence of the MTBR,a pattern consistent with the CSF-tau
species observed in AD (200). In the lamprey model, N-terminal
tau species lacking the MTBR become distributed in a diffuse,
gradient-like pattern with secretion occurring from the soma,
while full-length tau was secreted from the dendrites in discrete
foci (195), where it set up much steeper tissue gradients, suggesting
a role for interactions between the tau MTBR and extracellular
matrix elements in the distribution of extracellular tau that could

have relevance to interneuronal tau toxicity patterns and lesion
spreading mechanisms (81). Interestingly, the secreted tau in the
lamprey model is largely dephosphorylated, which is consistent
with the phosphatase activity described by Diaz-Hernandez and
co-workers (182), although no overt toxicity to non-expressing
cells was observed. Secreted tau cleaved at the C terminal has been
observed in cell culture (105), and in transgenic mouse models
expressing human tau as well (201, 202). One of these studies sug-
gested that cleavage at D421 as well as phosphorylation increased
the rate of tau secretion (203), which is consistent with the low
level oligomerization observed in exosomal tau purified from CSF
samples (106).

The method(s) by which tau undergoes secretion remain elu-
sive, although most evidence supports an unconventional secre-
tion pathway resulting in the release of tau in membrane-bound
vesicles (81, 106, 195, 203), where it is favored by the absence of the
MTBR and/or the E2/E3 inserts in the secreted tau species (195).
The failure of 4R2N tau to localize to and be secreted via exosomes
is consistent with this as well (134), as are recent demonstrations
that minute amounts of full-length, non-vesicle-associated tau can
be released by induced forebrain iPS cells in culture (204). Such
findings are consistent with a specific, non-universal release mech-
anism for tau that is associated with exosomes, as is the failure of
an earlier study to detect exosomal tau secretion from healthy
cortical neurons (205). Vesicle-free tau secretion has also been
reported from neuroblastomas (106, 204) and may also occur in
the lamprey tau secretion model (195). It thus remains possible
that the presence of non-vesicular tau in the extracellular space in
any model is due to post-secretion release of tau from exosomes or
other microvesicles (105, 106, 195, 201, 202). Conversely, it could
be that the presence of tau in exosomes may be due to the passive
adherence of extracellular tau to exosomes that have already been
released. This seems unlikely, given: (a) the restriction to E2− tau
seen for exosomal tau and (b) the degree of interconnectivity of
exosomal proteins associated with E2− overexpression via both
functionally (Figure 2C) and via observed physical interactions
(Figure 2C). Overexpression of tau in culture causes cells to secrete
exosomes containing tau that has been phosphorylated at several
proline-directed sites (106), possibly as a protective response to
high concentrations of membrane-associated tau (206). Overall,
it appears that tau may be secreted via multiple mechanisms from
neurons in tauopathy, including microvesicle shedding, exosomal
secretion via endocytosis and fusion with multivesicular bodies,
and exophagy, a pathway involving the diversion of autophago-
somes to exosomes (69, 81, 134, 207). Uptake mechanisms into
trans-synaptic and adjacent cells have been characterized in even
less detail that have tau secretion pathways. In the lamprey sys-
tem, uptake has largely mirrored the“focal” and“diffuse” secretion
mechanisms, with specificities for MTBR+ and tauopathy muta-
tions and MTBR−, E2− tau respectively. A recent study of PHF
tau uptake found evidence for perinuclear localization of tau in
aggresome-like bodies (134), which is consistent with the scheme
suggested in Figure 1. While the uptake of tau aggregates has
been addressed by a number of recent studies directed at “prion-
like” interneuronal transmission mechanisms via oligomeric tau
species, the general mechanisms that might mediate tau uptake
have not yet been characterized in detail in cell culture.
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Interneuronal propagation of tau lesions and prions
Injection of brain extract from mutant human tau P301S trans-
genic mice into the brains of mice expressing wild-type human
tau caused aggregation of wild-type tau in anatomically connected
regions of the brain at a distance from the inoculation site (169).
Sequential progression of tau aggregation (but not the transfer of
individual tau molecules) between synaptically connected regions
of the brain was later confirmed in mouse models in which human
tau expression was spatially limited to synaptically connected areas
of known vulnerability to neurofibrillary degeneration such as
the entorhinal (98) and cingulate cortices (99). Further studies
using antibodies specific to oligomerized tau have demonstrated
that pre-fibrillar tau in AD brain is in fact oligomeric (208) and
that tau oligomers derived from the brains of AD patients can
recruit endogenous tau to oligomers both in vitro (97) and in vivo
(96) and that intracerebral injection of oligomeric but not fibrillar
wild-type tau caused aggregate formation from endogenous tau in
synaptically connected but distant areas (96). Interestingly, regions
receiving propagated tau in this study do not exhibit signs of tau
toxicity, unlike SNCA, which did mediate toxicity as well as protein
propagation via oligomer inoculation (100), a finding that illus-
trates the current ambiguous status of the“tauon”both as a toxicity
agent and as a lesion spreading mechanism. In cell culture models,
intercellular movement of misprocessed tau between cells and the
apparent transfer of conformational alterations to endogenous tau
has been more directly demonstrated. Endocytic tau uptake (veri-
fied using dextran co-localization) followed by fibril formation was
observed in the proximity of labeled aggregates, suggesting recruit-
ment of endogenous tau (92). Double immunolabeling (36) and
fluorescence resonance energy transfer (37) has confirmed associ-
ation of internalized tau with newly formed aggregates composed
of endogenous tau. The uptake and axonal transport (retrograde
and anterograde) of exogenous full-length tau aggregates has since
been reported in differentiated primary neurons grown in Camp-
enot chambers (209). Uptake was described as occurring via a
process resembling bulk endocytosis, with the internalized tau
associated with general lysosomal and endosomal markers (209).
Common features of both cellular and mouse model observations
of prionlike tau transfer include a specificity for oligomeric tau
species and a requirement for the tau MTBR. The successful use
of the 4R2N tau isoform for oligomer propagation (36) and the
uptake of MTBR-only tau species (92) are obviously very different
from the N-terminal specific E2− favored pattern observed for
tau secretion in the lamprey model and in NB2A and M1C neu-
roblastoma cells (195). It should be noted that these differences
reflect the tightly focused nature of the question being posed in
the “prion” studies, i.e., whether oligomeric tau could be shown to
propagate its oligomeric conformation between cells by recruiting
endogenous tau in the recipient cell in the manner now established
for misfolded PrP. This is very likely relevant to the one point of
agreement between these approaches – that tauopathy mutations
favor trans-synaptic tau transfer – since this type of movement
may well be associated with oligomerization.

Recent investigations into interneuronal aspects of tauopathy
pathogenesis have suffered from a bifurcated focus on either:
(1) “prionlike” mechanisms of lesion spreading in terms of tem-
plated misfolding mechanisms derived from our understanding

of prion diseases at either the whole animal or molecular level or
(2) the morphological changes associated with tau secretion in cell
autonomous models. These disparate approaches have (inevitably)
been limited by: (a) their strict focus on molecular mechanism at
the expense of cellular context and (b) exclusion of biochemi-
cal methodology in favor of spatial co-localization (respectively).
These differences have dictated the choice of experimental models
suited to the experimental approach taken (e.g., transgenic mice or
lampreys), but have resulted in largely non-overlapping datasets
devoid of a common context with which to consider them. This
problem is exacerbated by a notable peculiarity of tau biology –
its sensitivity to the terminally differentiated neuronal state. The
inability of experimenters to induce tau-specific toxicity responses
in cell lines (144) is likely due to the greater dependence of tau
toxicity on axonal and synaptic functions relative to other “dis-
ease” proteins that are readily toxic in culture (210). While this
has until now been a formidable obstruction to finding a broad-
based approach to the characterization of mechanisms underlying
tau toxicity and lesion spreading, it offers important hints for the
direction of future studies on the topic – i.e., to focus on synaptic
functions and developmental axon identity and guidance mech-
anisms to identify tauopathy-specific mechanisms, and to focus
on aggregation-mediated mechanisms for identifying common
themes of neurodegenerative disease pathogenesis.

IS SYNAPTIC DYSFUNCTION THE POINT AT WHICH TAU
OLIGOMERIZATION, AUTOPHAGY DISRUPTION, TAU SECRETION, AND
TAU TOXICITY MEET?
While the means by which tau becomes membrane associated and
then diverted into unconventional secretion pathways is not yet
clear, the interaction between tau and fyn kinase and the effects
of that interaction on synaptic function is emerging as a key
feature that might provide clarity. Fyn is rapidly localized to mem-
brane raft domains by virtue of its double lipidation anchor sites
(211). Fyn is capable of inducing exocytosis and/or endocytosis of
membrane localized proteins (212, 213) and binds tau strongly
via its proline rich region (19). Interactions between tau, fyn,
and actin potentiate fyn-driven endocytosis of lipid raft markers
flotillin-1 and flotillin-2 (129, 214). As shown in Figure 1, the Y18
residue of tau, a fyn substrate, is phosphorylated in distal dendritic
vesicle accumulations localized to sites of focal tau secretion via
microvesicles that contain both pY18 tau and endogenous fyn (81).
This offers direct support for a mechanism by which fyn-activated
endocytosis of raft domains containing tau results in localized tau
secretion via unconventional pathways, one of which is exosomes.
The phosphorylation of membrane and vesicle-associated tau by
tauopathy-associated kinases (e.g., GSK3b, MARK kinases, and
fyn) and their association with the exosome pathway is consistent
with both receptor-mediated and oligomer-associated spreading
and toxicity mechanisms, especially in the context of synaptic
dysfunction.

Mislocalized tau and synaptotoxicity at glutamatergic synapses
Toxicity resulting from overexpression or extracellular application
of N-terminal tau fragments in primary neurons appears to be
caused at least in part by NMDA receptor-mediated Ca++ dysreg-
ulation (109), suggesting a potential link between Ca++mediated
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transmitter release, tau secretion and plasticity-associated exci-
totoxicity and the dendritic accumulation of misprocessed tau
at postsynaptic densities. A central role in this interaction may
be mediated by fyn, particularly at highly plastic, glutamatergic
synapses. NMDA receptor activity at glutamatergic synapses may
mediate the tau-induced dendritic degeneration seen in lamprey
ABCs, where fyn associates with and phosphorylates dendritically
localized tau, resulting in both localized MT loss and tau secre-
tion (81). Fyn-mediated activation of NMDA receptors normally
appears to prevent excitotoxicity at glutamatergic synapses that
exhibit LTP and LTD (77), but this mechanism may be vulnerable
to disruption by abnormal perisynaptic tau accumulations (74,
215) and may account for the increased resistance to Ab-induced
excitotoxicity observed in tau-reduced mice (216). Both the P301S
(217) and P301L tauopathy mutations (75) in mice cause changes
in hippocampal synaptic transmission and plasticity well before
the onset of neuronal loss. This is consistent with the dependence
of Ab toxicity on tau at synapses that exhibit plasticity (218) and
suggests a modulatory role for both tau and Ab in synaptic plastic-
ity that could increase sensitivity to excitotoxicity with the onset
of neurodegenerative disease (216), accounting for the selective
vulnerability of the hippocampus in AD. Similarly, mislocalized
tau may also disrupt the AMPA receptor recycling associated with
NMDA receptor activation via an increase in fyn-tau association
and as a resulting increase in the rate of internalization of AMPA
receptors on dendritic spines (77).

Chemical induction of LTD under conditions that prevent
autophagosome/lysosome fusion causes LC3II-positive puncta to
build up in dendritic spines, suggesting a link between AMPA
recycling and autophagy (219). This could provide another point
of access for misprocessed tau to toxicity and secretion mecha-
nisms in AD, since inhibition of lysosomal acidification and/or
the increased generation of Ab associated with PSEN1 mutations
associated with AD can increase Wnt signaling (220) as well as
induce the collection of tau aggregates in lysosomes (221). Tau
overexpression in both cell culture (136) and in situ tauopathy
models (81) causes this as well, leading to the recruitment of both
GSK3b, MARK and fyn kinases, which are all key mediators of
Wnt pathway activity and tauopathy-associated tau kinases (222).
This is consistent with the aberrant Wnt activity seen in AD (223)
and the tau-dependent nature of Ab-induced toxicity via LTP
in hippocampal synapses (218). Moreover, inhibition of GSK3b
decreases the number of GR1 AMPA receptor subunits on the
cell surface and increases their intracellular concentration (224).
This pathway requires endocytosis of GSK3b into multivesicu-
lar bodies (225, 226). This provides potential links between the
NMDA/fyn-mediated endocytosis of AMPA receptors seen with
LTD (227–229) and the recruitment of tau into unconventional
secretion pathways.

A unifying hypothesis
The tau accumulation at or near synapses that accompanies its
mislocalization to dendrites and phosphorylation by GSK3b in
tauopathy could easily potentiate the sequestration of both GSK3b
and tau to late endosomes. This could result in increased sensi-
tivity to LTP associated excitotoxicity (216) and the diversion of
GSK3b (and tau) to exosomes, resulting in exosome-mediated tau

secretion [(106) – also see Figure 2]. This mechanism is consistent
with the increased exosome release (230) and tau secretion (231)
seen with glutamate-induced AMPA and NMDA receptor activ-
ity and the decreased presence of postsynaptic AMPA receptors
in the dendritic spines of P301 tauopathy mice (232). It is also
consistent with the disruption of axonogenesis mechanisms in AD
(such as those involving Wnt activity) and tau oligomerization,
which may help recruit endosomal tau into exosomes (106, 233),
as well as the observed distribution to and effects of tau in the
dendrites in various model systems (78, 81, 234–236). Interest-
ingly, we recently found that all of the major players in the above
hypothetical scenario (Wnt markers, GSK3b, tau, fyn, MARK1,
autophagy markers and NMDA, AMPA, and cholinergic recep-
tor subunits) are enriched in exosomes released by neuroblastoma
cells overexpressing full-length exon 2− (4R0N) human tau iso-
form (Figure 2A). Moreover, somatodendritic tau accumulation
in the lamprey model appears to induce retrograde trans-synaptic
localization toxicity accompanied by the cleavage and localization
of LC3II to autophagosomes (Figure 2D). Such observations are
consistent with a hypothesis in which misprocessed tau that has
been dissociated from MTs and mislocalized to dendrites accu-
mulates via fyn-dependent localization at postsynaptic densities
and is then endocytosed and diverted to exosomes. The key ele-
ment in this hypothesis is an endocytosis-associated mechanism
that depends on tau-fyn interaction, induces tau oligomerization
and is potentiated by both the activity of excitotoxicity-prone
synapses and the progressive failure of tau to segregate normally
to the axon in tauopathy pathogenesis, which increases the expo-
sure of dendritic elements to tau, thereby amplifying perisynaptic
tau toxicity [Ref. (69), also see Figure 2F]. The potential impor-
tance of changes in neuronal differentiation state to tau toxicity
was recently underscored by a study of changes in gene regulation
in two separate cohorts of early onset AD patients (237). They
found that downregulated genes were preferentially associated
with synaptic function and axonal identity, whereas upregulated
genes were preferentially involved in the control of the cell cycle
and in gene expression. We compared their results with those of
an earlier study (238), which reported similar findings in LOAD
patients. GO term analysis of a consensus set of down and upreg-
ulated proteins common to these studies (Figure 2E) are highly
consistent with a failure of axonal and synaptic functions in the
context of de-differentiation (possibly driven by cell cycle re-entry)
producing a synergistic amplification of dendritic tau toxicity, a
hypothesis outlined in more detail elsewhere (69). We therefore
propose that tau secretion and toxicity via synapse-associated dis-
ruption of the TGN by mislocalized tau in dendrites may serve as
a unifying idea that links multiple elements of tau pathobiology
and that provides a context for better understanding the role of
oligomerization in tau toxicity and lesion spreading.

CONCLUSION
The increased appreciation of the significance of tau oligomeriza-
tion in mediating tau neurotoxicity over the past decade must be
counted as a major advance in our understanding of neurodegen-
erative disease. Increased understanding of the inherent toxicity
of oligomers and the ability of at least some of them to induce the
oligomerization of monomeric tau species, raises the possibility
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that the prionlike propagation of abnormal tau conformations
may play a role in the spreading of tau lesions in the brain and that
the complex process of oligomer and fibril formation may generate
multiple toxic tau conformations that may have different mecha-
nisms of action. However, it is not known if all oligomers are toxic
and the toxicity mechanism of oligomeric tau remains obscure.
Moreover, we have also learned that N-terminal tau fragments
that are incapable of oligomerization can indeed be toxic and can
mediate Ab-induced toxicity in the absence of the tau MTBR.
Ironically, NFTs themselves do not appear to be toxic in many cir-
cumstances and may even be the result of a neuroprotective cell
response that permits the long-term survival of neurons that bear
them. While significant progress has been made on understand-
ing disease-associated tau oligomerization and NFT biogenesis,
it seems clear that not enough is yet known about the cellular
mechanisms responsible for either tau secretion or tau toxicity
for us to understand the relative significance of conformation

specific or receptor-mediated tau cytopathology in models to
the spreading of neurofibrillary tau lesions and neurodegenera-
tion in human disease. Indeed, it remains possible that both N-
and C-terminal fragments generated by incomplete tau proteol-
ysis might act as synergistic prionlike vectors in a chain-reacting
“Sorcerer’s Apprentice” scenario that could potentially account for
sporadic tauopathy lesion patterns that are poorly explained by an
oligomer mediated mechanism alone. Obviously, the operation
of any mechanism generating multiple toxic N- and C-terminal
tau fragments from a single molecule remains to be elucidated
and cannot be evaluated seriously without far more knowledge of
tau cell biology that we currently possess. Learning how phenom-
ena such as exosomal (and non-exosomal) tau secretion and tau
lesion propagation fit with tau-specific disease features linked to
axonal identity and synaptic plasticity in more detail will mark
a major step toward understanding the roles tau oligomers and
other misprocessed tau species play in human disease.
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 hypothesis”, which has been  postulated as 
the cause of  propagation of misfolded pro-
teins in spongiform encephalopathies.

In fact, several recent studies (Jucker 
and Walker, 2011; Hall and Patuto, 2012; 
Kanouchi et al., 2012) have suggested that 
the basic proteins implied in a variety of 
neurodegenerative diseases [like beta- 
amyloid and tau proteins in Alzheimer’s dis-
ease (AD), α-synuclein in Parkinson Disease 
and dementia with Lewy bodies, polyglu-
tamine proteins in Huntington’s disease 
and spinocerebellar ataxia, and superoxide 
dismutase 1 in amyotrophic lateral sclerosis] 
may share important similarities with the 
mammalian prion protein (PrPC) involved 
in spongiform encephalopathies, such as the 
ability to translocate between neurons and 
further recruit normal proteins to aggregate.

The first suggestion of such possibility 
came from studies that demonstrated that 
a prion-like propagation mechanism of 
systemic amyloidoses occurred in animals 
through fecal transmission (Zhang et al., 
2008). As several similarities exist between 
the pathophysiology of systemic and CNS 
amyloidoses, there has been a growing inter-
est in the experimental evaluation of a pos-
sible protein-to-protein contact-induced 
transmission as the pathophysiological 
explanation for the progression of neuro-
degenerative diseases.

In a recent report Liu et al. (2012) 
described a new experimental protocol for 
the study of AD which involves a transgenic 
mouse that differentially expresses pathologi-
cal human tau protein. In such animal model 
the authors demonstrated propagation of the 
pathological tau protein from the mesial por-
tion of the entorhinal cortex into the CA1 
region of the hippocampus and the dentate 
gyrus granule cells. Such findings strongly 
support a trans-synaptic mechanism of tau 
protein spreading between neurons along 
anatomically connected networks.

A commentary on

Trans-synaptic spread of tau pathology 
in vivo
by Liu, L., Drouet, V., Wu, J. W., Witter, M. 
P., Small, S. A., Clelland, C., Duff, K. (2012). 
PLoS ONE 7:e31302. doi: 10.1371/journal.
pone.0031302

The so-called “prion hypothesis” for 
explaining spongiform encephalopathies 
is classically attributed to Prusiner, who in 
1982 suggested that the scrapie agent was 
a proteinaceous infectious particle which 
would be resistant to known methods of 
nucleic acids inactivation (Prusiner, 1982).

Nevertheless such idea was not com-
pletely novel, once it has been already previ-
ously suggested (Gibbons and Hunter, 1967; 
Levine, 1972) that the scrapie agent might 
be devoid of disease-specific nucleic acid 
and, therefore, would have a different form 
of dissemination than known viral particles.

Earlier in 1968 the mathematician 
Griffith (1968) had proposed three dis-
tinct ways through which proteins might 
induce their own replication without the 
DNA/RNA machinery for nucleotide syn-
thesis. Interestingly one of the explanations 
involved an analogy from the known neces-
sity of the presence of initial atomic nuclei 
for gas condensation. Similarly, according to 
Griffith, in the protein level the “condensa-
tion nuclei” of a pre-existent polymer might 
(at least theoretically) be able to induce 
polymerization of other sub-units.

As protein polymerization with subse-
quent formation of deposit aggregates (such 
as beta-amyloid and neurofibrillary tangles) 
have been implied in the pathogenesis of 
several degenerative processes in the cen-
tral nervous system (CNS), it was logical to 
suppose that the underlying pathogenesis 
of these diseases might have some simi-
larity with the aforementioned “ polymer 

Actually, early experimental studies 
which investigated the mechanisms of 
propagation of AD had already shown that 
the injection of brain extracts from patients 
with AD into the brain of transgenic mice 
promoted the aggregation and deposition 
of β-amyloid in the injected brain (Kane 
et al., 2000).

Regarding the question about how 
would these initial abnormal proteins be 
able to spread the degenerative process to 
distant regions, it has been postulated that 
such cellular proteins could be released 
from neurons via vesicle mediated exocy-
tosis or direct leakage through damaged 
cell membranes. The spatial propagation 
of these misfolded proteins would, there-
fore, explain the sequential symptomatic 
progression observed in the majority of 
the neurodegenerative diseases (Walker 
et al., 2002).

Although in some experiments involv-
ing artificial injection of brain extracts from 
patients with AD into the brains of mice, the 
induction of β-amyloid deposits was ini-
tially most evident within the injected area, 
recent cross-sectional autopsy studies have 
demonstrated that the accumulation of 
misfolded proteins follows a characteristic 
and predictable pattern of spatial progres-
sion in the brain of patients affected by AD 
(Jucker and Walker, 2011; Figure 1). These 
findings confirm the results of earlier stud-
ies which have shown sequential progres-
sion of neurofibrillary degeneration from 
the phylogenetically older mesial temporal 
regions to temporal cortical regions and 
finally to several other neocortical areas 
(Delacourte et al., 1999). Such dissemina-
tion was observed to occur first between 
non-contiguous (but axonally intercon-
nected) regions, suggesting migration 
along already established neuronal path-
ways (Weller et al., 2008). Additionally a 
so-called “perivascular drainage pathway” 
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present major implications for the current 
 understanding of the pathophysiology of 
neurodegeneration. By emphasizing the likely 
relation between inter-cellular transmissibil-
ity and disease progression, such discoveries 
provide a new framework for experimental 
research in neurodegenerative diseases, as it 
promises to open further therapeutic avenues 
directed to inhibiting and eliminating such 
natural propagation processes.
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has also been shown to possibly contribute 
to the observed dissemination (Klinge et al., 
2006).

The experimental studies on such “prion-
like” characteristics of the abnormal proteins 
involved in other neurodegenerative diseases 
is still their very initial phase, and the exact 
mechanism and routes through which such 
spreading might occur is still unknown. One 
important consequence which arises from the 
growing evidence for an infective role of the 
abnormal proteins related to neurodegenera-
tion is an increasing attention to the possible 
role of the cerebrospinal fluid (CSF) circula-
tion in the propagation (or alternatively in 
the clearance) of such abnormal proteins, 
rendering it as a possible valuable target for 
future therapies (Serot et al., 2011).

In summary, in the last decade several 
experimental and post-mortem autopsy 
studies have suggested that the abnormal 
proteins involved in several neurodegenera-
tive diseases might present a “prion-like” 
behavior, in which the protein-to-protein 
contact would induce the further propaga-
tion of such abnormalities.

As already, mentioned such progression 
might also involve the active transport of such 
abnormal proteins to distant regions through 
axonal flow, perivascular spread, and, maybe, 
even through natural CSF circulation path-
ways. Despite the fact that, differently from 
the prionic proteins involved in spongiform 
encephalopathies, the inter-individual trans-
missibility of neurodegenerative diseases 
has never been reported, such new concept 
of disease progression by direct transmis-
sion through protein-to-protein contact 

Figure 1 | The accumulation of misfolded proteins in Alzheimer disease 
follows a very characteristic and predictable pattern. Cross-sectional 
autopsy studies indicate that β-amyloid plaques (A) first appear in the 
neocortex, followed by the allocortex and finally subcortical regions. In the 
brain, neurofibrillary tangles (B) occur first in the locus coeruleus and 

transentorhinal area, and then spread to the amygdala and interconnected 
neocortical brain regions. These relatively stereotyped patterns of expansion 
strongly suggest the involvement of neuronal transport mechanisms in the 
spread of such proteopathic seeds (Re-published with authorization from 
Jucker and Walker, 2011).
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Long time ago, it was described the selective loss of cholinergic neurons during the devel-
opment of Alzheimer disease (AD). Recently, it has been suggested that tau protein may
play a role in that loss of cholinergic neurons through a mechanism involving the interaction
of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons.
This interaction between tau and muscarinic receptors may be a way, although not the only
one, to explain the spreading of tau pathology occurring in AD.

Keywords: tau, muscarinic receptors, cholinergic neurons

INTRODUCTION
Alzheimer disease (AD) is characterized by the presence of two
aberrant structures in the brain of the patients, senile plaques and
neurofibrillary tangles, together with a clear loss of neurons that
results, with the development of the disease, in a decrease in brain
volume. Senile plaques are extracellular deposits of beta amyloid
peptide (Masters et al., 1985) whereas tangles are composed of
intracellular filamentous (paired helical filaments, PHFs) aggre-
gates of tau protein in phosphorylated form (Grundke-Iqbal et al.,
1986). Thus, in AD there are amyloid and tau pathologies. We will
focus on tau pathology, but first we will comment on tau protein.

TAU PROTEIN
Tau protein was first described as a brain microtubule associated
protein (Weingarten et al., 1975). cDNA tau was isolated later on
from a mouse brain library, cloned, and sequenced (Lee et al.,
1988). Studies in human brain samples showed that six different
tau isoforms are expressed in the central nervous system (CNS)
(Goedert et al., 1989, 1992a) whereas in peripheral nervous sys-
tem a characteristic big tau isoform can be found (Goedert et al.,
1992a,b).

The presence or absence of exons 2, 3, and 10 (Himmler, 1989)
determines the presence of CNS tau isoforms. Exon 2 can appear
alone in a tau isoform but exon 3 never appears independently
of exon 2 (Andreadis et al., 1995). On the other hand there are
tau isoforms with or without exon 10. The combination of all of
these features results in the appearance of six tau isoforms. Exons
2 and 3 are located at the N-terminal region whereas exon 10 is
presented close to the C-terminal end.

By comparing tau proteins from different organisms (Nelson
et al., 1996), several variations were found at the N-terminal half
of the protein whereas the C-terminal half of the molecule is well

conserved among the different tau proteins (Nelson et al., 1996;
Leon-Espinosa et al., 2013). The previous structural characteris-
tics indicated for tau proteins could be related to their functions.
These functions may be related to its subcellular localization and
their binding to other proteins. The best tau-binding protein is
tubulin, the main component of microtubules. This binding takes
place through the conserved C-terminal half of tau molecule (Lee
et al., 1988). On the other hand, tau can bind to other proteins
through its N-terminal half. Among those proteins may be those
containing SH3 domains (for a review, see Avila et al., 2004). More
recently, it has been indicated that tau sequence RTPPKSP could
bind to the SH3 domain of protein FYN (Bhaskar et al., 2010;
Ittner et al., 2010). This tau sequence could also be involved in
the interaction of tau with the protein phosphatase PP2A/B alpha
(Sontag et al., 2012).

SUBCELLULAR LOCALIZATION OF TAU PROTEIN
Tau protein is mainly located at the cytoplasm of neurons where it
binds to microtubules. The binding of tau to microtubules results
in the stabilization of the polymers (Drubin and Kirschner, 1986),
suppression of microtubule dynamics, and promotion of the for-
mation of cytoplasmic extensions (Caceres and Kosik, 1990). At
the cytoplasm, tau can bind to other proteins like kinases, phos-
phatases, acetylases, or deacetylases resulting, after those interac-
tions, in a modified protein, which determines the subsequently
binding of tau to other proteins. Other tau-binding protein is
calmodulin, a protein that could be located at the cytoplasm or
at the nucleus. Recently, it was suggested that tau could do a
partial trapping of calmodulin at the cytoplasm decreasing the
presence of calmodulin on nucleus and thus regulating, in this
way, its activity as a co-transcription factor (Barreda and Avila,
2011).
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Tau protein can also be present in the cell nucleus, although
it has not yet been identified a nuclear transport signal on tau
protein. Sometime ago, it was described that tau phosphorylation
could be required for its transport to the nucleus (Greenwood and
Johnson, 1995). Little is known about the function of nuclear tau
but we know that tau binds to DNA (Corces et al., 1980). Tau could
interact with nucleolar organizer regions of acrocentric chromo-
somes in some non-neuronal cells (Thurston et al., 1996). In vitro,
tau prevents DNA replication but not transcription (Li et al., 2005)
and it may behave like a histone-like protein. A role in neuronal
DNA protection has also been proposed (Sultan et al., 2011).

Tau has also been found associated with some membrane
components, like those involved in the formation of dendritic
spines (Ittner et al., 2010) or at the presynaptic density (Moreno
et al., 2011). The region of tau involved in the binding to the
neuronal plasma membrane is the aminoterminal projection
domain (Brandt et al., 1995). This tau region contains a proline
rich sequence and it was described that phosphorylation of this
sequence prevents the association of tau with plasma membrane
(Arrasate et al., 2000). In the proline rich region there is a motif,
PPXXP, that could bind to the SH3 domains present in some mem-
brane associated proteins (Avila et al., 2004) and it may explain, at
least in part, the interaction of tau protein with membrane.

TAU MODIFICATIONS
Two modifications, phosphorylation and aggregation, can regu-
late the interaction of tau with cytoplasmic, nuclear, or membrane
components and it may result toxic for a cell. The largest CNS
human tau isoform (Goedert et al., 1989) contains 79 potential
serine/threonine sites that could be phosphorylated. Only few of
those sites could be modified in normal conditions but in patholo-
gies, like AD, this number could grow significantly (Hanger et al.,
2009). Tau hyperphosphorylation could be toxic for a neuron
as indicated by using cell culture and animal models (Brandt
et al., 2005; Yoshiyama et al., 2007; Gomez de Barreda et al.,
2010).

On the other hand, hyperphosphorylated tau can induce tau
aggregation (Trojanowski and Lee, 1994; Alonso et al., 2001; Sato
et al., 2002; Perez et al., 2003). The consequences of tau aggrega-
tion are a topic that remains in the field. It is discussed whether
the presence of large tau aggregates could be toxic or beneficial for
neurons (Bretteville and Planel, 2008). It has been shown that the
number of extracellular tau aggregates (extracellular ghost tan-
gles) is inversely proportional to the number of surviving neurons
in the brain of AD patients. This observation is suggesting that
at least some of the neurons that degenerate in the disease have
previously developed tau aggregates (Bondareff et al., 1989). On
the other hand, it has been proposed that the presence of tau
aggregates could prevent the activation of cell promoting death
molecules like caspase 3 (de Calignon et al., 2010). A possible
explanation for those discrepancies could be found in the sugges-
tion that the size of tau aggregates could be important for their
toxic effect and that may be the small tau oligomers, and not large
aggregates, the toxic agents (Maeda et al., 2007).

Also, overexpression of intracellular tau could be toxic for a cell
(Andorfer et al., 2005). Since the levels of an intracellular protein
are the consequence of its synthesis, degradation, and secretion, it

was tested if an overexpression of intracellular tau could result in
its secretion into microvesicles (Simon et al., 2012).

TAU PATHOLOGY SPREADING IN THE PRESENCE OR
ABSENCE OF NEURON DEATH
Tau pathology usually starts at the entorhinal cortex and hip-
pocampal region (Braak and Braak, 1991) and it may correlate
with the loss of episodic memory occurring in the patients at
the first stages of the disease. From the hippocampal region, tau
pathology spreads to other brain areas and during the progression
of the disease neurodegeneration and neuron death take place
allowing that intracellular tau could be released to the extracel-
lular space. Thus, intracellular and extracellular tau is present in
neurodegenerative disorders like AD. Intracellular tau could be
toxic due to its hyperphosphorylation level (Avila et al., 2004)
or due to its aggregation (Bondareff et al., 1989; Gomez-Isla
et al., 1997). However, it is discussed if larger aggregates like PHF,
could be toxic (Cras et al., 1995; Avila, 2010; de Calignon et al.,
2010).

EXTRACELLULAR TAU AND MUSCARINIC RECEPTORS
About extracellular tau, it has been suggested that once it is at the
extracellular space it could become toxic for the surrounding neu-
rons (Gomez-Ramos et al., 2006). Which is the mechanism for that
toxicity will be commented below. However, an alternative way for
tau pathology spreading, involving tau, has been reported. Thus,
tau transmission from cell to cell could occur by exocytosis and
endocytosis being not necessary neuron death (Clavaguera et al.,
2009; Frost et al., 2009; de Calignon et al., 2012; Liu et al., 2012; Wu
et al., 2012; Iba et al., 2013). On the other hand, to explain that the
transmission could occur only in neurodegenerative disorders and
not in a normal situation it has been proposed that aggregated tau
is the toxic form for that spreading (Clavaguera et al., 2009; Frost
et al., 2009; Iba et al., 2013). It is not clear if the endocytosis could
take place in any cell type or if a specific cell receptor component
is required. In this way, a specific transmission through synaptic
connections has been proposed (de Calignon et al., 2012; Liu et al.,
2012).

In the case of neuron death, intracellular tau is released to
the extracellular space, and this extracellular tau could interact
with surrounding neuronal cells and, as consequence of that, an
increase in intracellular calcium can take place in those neurons
(Gomez-Ramos et al., 2006). This increase in calcium could be due
to calcium-permeable channels, to the activation of cell surface
receptors coupled to calcium-influx or to calcium liberation from
intracellular stores, induced by the activation of metabotropic
receptors like muscarinic receptors (Gomez-Ramos et al., 2006).
The published data have indicated that are, indeed, the muscarinic
receptors, the ones involved in the interaction with extracellular
tau and the responsible factors for raising intracellular calcium
(Gomez-Ramos et al., 2008).

Muscarinic receptors subtypes have been classified in two
groups: M1, M3, and M5, in one group, and M2 and M4 in
the other group (Felder, 1995). The activation of M1 receptor
group could activate phospholipase C, the release of inositol 1,4,5
triphosphate, and the subsequent mobilization of intracellular cal-
cium (Felder, 1995). On the other hand, activation of M2 receptor
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group results in an inhibition of the intracellular levels of cAMP
(Felder, 1995).

By using specific antagonists of either muscarinic receptors it
was found that extracellular tau binds to M1 and M3 receptors and
that it may explain the increase of intracellular calcium found in
neuronal cells upon tau-binding (Gomez-Ramos et al., 2006, 2008,
2009). The region of human tau molecule involved in the bind-
ing to muscarinic receptors was described like that comprising
residues 390–423 of the largest CNS human tau isoform (Gomez-
Ramos et al., 2008). As consequence of that binding, tau protein
could be or not endocytosed in a vesicle as M1 receptor does
(Lameh et al., 1992).

BINDING OF MODIFIED TAU TO MUSCARINIC RECEPTORS
It was indicated that the toxicity of intracellular tau could be
a consequence of its phosphorylation, or its aggregation. Thus,
we have tested the consequences of phosphorylation or aggre-
gation of extracellular tau on its interaction with muscarinic
M1/M3 receptors. It was found that tau phosphorylation pre-
vents the interaction of tau with muscarinic receptors. Also, it was
described that extracellular phosphorylated tau is dephosphory-
lated by tissue-non-specific alkaline phosphatase (TNAP) and that
this phosphatase, promotes the neurotoxic effect of extracellular
tau (Diaz-Hernandez et al., 2010). The level of this phosphatase
is increased in the brain of AD patients (Diaz-Hernandez et al.,
2010).

It should be indicated that the level of both unphosphory-
lated and phosphotau, that could arise from dead neurons, are
increased in the cerebrospinal fluid (CSF) of AD patients (Olsson
et al., 2011).

Different levels of tau aggregation have been analyzed to study
their interaction to muscarinic receptors. Thus, soluble tau con-
taining monomers and small oligomers of tau, as well as puri-
fied larger tau aggregates (PHFs) have been tested. These studies
have demonstrated that soluble tau but not PHFs interacted with
muscarinic receptors (Gomez-Ramos et al., 2006).

CONSEQUENCES OF THE INTERACTION OF TAU WITH
MUSCARINIC RECEPTORS
A consequence of that interaction is an increase in the level of
intracellular calcium as previously described. A secondary effect
of tau upon its binding to neuronal cells is to increase TNAP gene
expression (Diaz-Hernandez et al., 2010). This effect could be the
consequence of activation of DREAM, a transcription factor regu-
lated by calcium (Carrion et al., 1999). However, this transcription
factor probably is not involved in TNAP gene expression (Naranjo
et al., unpublished results) and further analysis should be done to
clarify the connection between calcium increase and TNAP gene
expression.

OTHER CONSEQUENCES OF TAU-BINDING TO MUSCARINIC
RECEPTORS
As previously indicated, upon interaction of tau with muscarinic
M1/M3 receptors an increase in intracellular calcium takes place
and some consequences of an increase in intracellular calcium
could be an increase in secreted compounds. Preliminary experi-
ments suggest an increase in the secretion of vesicles (containing

flotilin) upon activation of M1/M3 receptors induced by tau pro-
tein, being that increase prevented by calcium chelators (Simon
et al., unpublished results). Also, it has been described different
affinities of tau and acetylcholine for M1/M3 receptors (Gomez-
Ramos et al., 2009) and differences in the increase of intracellular
calcium induced by ACh or tau protein through M1/M3 mus-
carinic receptors. Thus, for cell expressing M3 receptor, a mini-
mum tau concentration of 50 pM was needed to find an increase
in intracellular calcium while 5 nM ACh was required to have a
similar effect (Gomez-Ramos et al., 2009). It was also found that
a continuous increase in calcium level due to the presence of tau
may result in cell death (Gomez-Ramos et al., 2009). Thus, it can
be proposed that extracellular tau may promote cell death and
it will result in the release of intracellular tau to the extracellu-
lar space and this new extracellular tau could again interact with
other cells and, in this way, propagate neuron degeneration. This
manner to propagate tau pathology may occur in AD or in other
related pathologies (tauopathies). Little is known about how an
increase of calcium mediated by the interaction of tau with mus-
carinic receptors could result in cell death. M1 and M3 receptors
are coupled with Gq/G11 proteins leading to activation of phos-
pholipase C and an increase in the level of intracellular calcium.
This calcium increase could activate some protein kinases, and
these kinases could modify tau protein doing the protein toxic.
In any case, further studies focused in the consequences of tau
phosphorylation on neuron degeneration should be done.

TAU PATHOLOGY PROGRESSION IN ALZHEIMER DISEASE
Tau pathology spreading could involve (Gomez-Ramos et al.,
2006), or not (Frost et al., 2009), neuronal death. It has been
described that neuronal death and the presence of extracellular
tau could be linked in some cases (Gomez-Ramos et al., 2006). In
this way, an inverse correlation can be found between the num-
ber of extracellular tangles and the number of living neurons in
the hippocampus (Bondareff et al., 1989). Also, extracellular tau is
present in CSF of AD patients, suggesting neuronal death. As pre-
viously indicated, extracellular tau can have two different origins;
one raised by exocytosis without cell death being this tau present,
at least in part, in membrane vesicles and the other one, from
neuronal death present in a naked form. The presence of both
tau populations has been found in the CSF of AD patients. Tau
present in vesicle particles was mainly found at the first stages of
the disease whereas the amount of uncoated tau, in CSF, increases
with the development of the disease (Saman et al., 2012).

We suggest that tau pathology spreading in cell culture, or
in vivo, has a first step in which, probably, small tau oligomers
specifically interact with neuron specific receptors. These recep-
tors could be the M1/M3 muscarinic receptors although we cannot
exclude other possibilities as an unspecific endocytosis pathway
for tau internalization (Wu et al., 2012). Once tau is bound to
the cell receptor, it could be endocytosed in a vesicle, a mecha-
nism that occurs with ligands of M1/M3 receptors (Lameh et al.,
1992), or simply, tau could promote the increase of intracellu-
lar calcium level and the appearance of second messengers or
toxic compounds that will result in neuron death without being
internalized. In the first case, the endocyted tau may interact
with some cellular components, including tau itself, and it could
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be secreted uncoated or in a membrane vesicle (Lameh et al.,
1992; Saman et al., 2012; Simon et al., 2012). These secreted vesi-
cles could interact with other cells and be endocytosed in an
unspecific way. In an alternative way, during the secretion, vesi-
cles and cell membrane can be fused and uncoated tau protein
(in aggregated or unaggregated form) could be released to the
extracellular space where it can be toxic, upon interaction with
muscarinic cell receptor. On the other hand, in other works have
been reported that extracellular tau can induce intracellular tau

aggregation and afterward the spreading of aggregated tau may
occur in a prion-like manner (Clavaguera et al., 2009; Iba et al.,
2013).

In summary, there are, at the present, different alternatives to
explain tau pathology spreading in tauopathies like AD, a disease
that long time ago was associated with severe loss of cholinergic
markers in the brain (Davies and Maloney, 1976), and that such
loss may be due to the toxic interaction of tau with muscarinic
receptors.
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One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal
accumulation of tau.The tau that forms these accumulations is altered both posttranslation-
ally and conformationally, and there is now significant evidence that soluble forms of these
modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles.
However there is still noteworthy debate concerning which specific pathological forms of
tau are the contributors to neuronal dysfunction and death in AD. Given that increases in
aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing
interest in understanding the degradative pathways that remove tau from the cell, and the
selectivity of these different pathways for various forms of tau. Indeed, one can speculate
that deficits in a pathway that selectively removes certain pathological forms of tau could
play a pivotal role in AD. In this review we will discuss the different proteolytic and degrada-
tive machineries that may be involved in removing tau from the cell. How deficits in these
different degradative pathways may contribute to abnormal accumulation of tau in AD will
also be considered. In addition, the issue of the selective targeting of specific tau species
to a given degradative pathway for clearance from the cell will be addressed.

Keywords: tau, proteasome, autophagy, proteolysis, degradation

INTRODUCTION
Insoluble, fibrillar intraneuronal accumulations of pathological
forms of the tau protein called neurofibrillary tangles (NFTs) are
important and defining hallmarks of the Alzheimer disease (AD)
brain. Indeed, the progression of AD can be neuropathologically
staged based on the location and extent of tau pathology (1).
The predominant post-translational modification of tau in the
NFTs is phosphorylation; however numerous modifications have
been noted including truncation, acetylation, nitration, and sev-
eral others (2–4). Historically the NFTs were considered to be
the toxic entities, however over the past decade a new concep-
tual framework has developed in which pathologically modified
monomeric and/or soluble oligomeric forms of tau are consid-
ered to be the harmful species (5, 6). Nevertheless, determining
exactly which forms of tau compromise neuronal function is still
an area of significant investigation. Even though the modifica-
tions of tau that are the primary contributors to toxicity have
not been conclusively determined, it is clear that tau plays an
essential role in the pathogenesis of AD. Given that in animal
models of AD reducing tau levels attenuates neuronal dysfunc-
tion (7, 8), and in humans the extent of tau pathology correlates
with cognitive decline (9), there is a growing interest in defining
the degradative pathways that remove tau from the cell. Also of
importance is understanding the role of non-degradative cleavage
in influencing the eventual clearance of tau. Numerous proteases
have been shown to proteolyze tau including aminopeptidases
(10–12), thrombin (13–15), human high temperature require-
ment serine protease A1 (HTRA1) (16), calpain (17–20), and
caspases (21–24). Overall, however, most of these enzymes do not

appear to be principally responsible for tau clearance. Instead,
they are able to generate modified tau species which may then
contribute to developing tau pathology, enhanced tau clearance,
or both. The bulk of clearance of both physiological and patho-
logical forms of tau is instead mediated by the proteasomal and
autophagic degradative systems (25). The contribution of each
of these pathways in the turnover of tau, and which forms of
tau – including various proteolytic forms – are degraded by
each pathway, is an area of significant interest. Our understand-
ing of this issue to date will be reviewed below, and the role
of tau proteolysis on subsequent degradation will be discussed.
Delineating how these pathways may be compromised in AD
and how this contributes to tau pathology is of great impor-
tance and could have significance for informing new therapeutic
approaches.

TAU PROTEOLYSIS
Tau is a cytosolic, dynamically regulated protein. In differenti-
ated PC12 cells, a pulse-chase experiment showed that ∼90%
of the tau was degraded in 18 h (26). Normal, monomeric tau
is likely a proteasomal substrate. However, there is evidence
that tau is also a substrate for a wide range of proteases as
indicated above. This is significant as tau proteolysis could be
beneficial in disease by helping to enhance removal of abnor-
mal tau from the cell. Alternately, it could be detrimental by
generating toxic fragments. Below we will discuss the differ-
ent proteases that have been shown to act on tau, at least
in vitro, and the possible involvement of these proteolytic events
in AD.
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AMINOPEPTIDASES
Aminopeptidases are a group of enzymes that cleave from the
N-terminal end of a protein. The family includes alanyl, arginyl,
and glutamyl peptidases. Puromycin sensitive aminopeptidase
(PSA) is an alanyl peptidase that is responsible for ∼90% of the
aminopeptidase activity in the brain (10). PSA was identified as
a potential player in tau pathology through a microarray analy-
sis of gene expression in disease-vulnerable vs. disease-resistant
brain regions in JNPL3 mice that overexpress a mutant form
of tau (P301L) found in the disease frontotemporal dementia
and parkinsonism linked to chromosome 17 (FTDP-17). These
mice develop neurodegeneration in the cortex while the cerebel-
lum is relatively spared [although in the original description of
these animals pathology was found in the deep cerebellar nuclei
(27)]. Interestingly, PSA was found to be elevated in the cere-
bellum of these TAUP301L mice (10). The levels of PSA are also
higher in human cerebellum compared to cortex in both controls
and FTD cases. A slight elevation in PSA was also observed in
FTD cortices compared to controls. In addition, a non-functional
PSA mutant exacerbated tau pathology in a Drosophila model of
tauopathy, while overexpressing PSA ameliorated the tau pheno-
type and diminished tau levels (10). Overexpressing PSA had a
similar effect in the TAUP301L mice, reducing the pathologic phe-
notype (delaying paralysis, increasing motor neuron density in the
spinal cord, decreasing gliosis) and decreasing tau levels (12). PSA
was able to cleave recombinant tau in vitro, as well as tau from con-
trol human brain (11). However, the data presented in this study
suggest that PSA is cleaving tau from both the C- and N-terminal
ends, which is not expected from an aminopeptidase. Addition-
ally, other studies failed to demonstrate tau cleavage by PSA (28,
29). One explanation for these discrepancies may be the limita-
tions of in vitro assays and experimental techniques. For example,
the FTDP-17 mutant tau used in many studies, while relevant for
human tauopathy, is not found in AD. Additionally, this form of
tau may be processed differently than tau without this mutation.
For example, it has been shown that the isomerase Pin1, which
has been implicated in AD (30), had opposite effects on P301L
and wild-type tau degradation (31). An alternative explanation
for the effects of PSA may be that PSA is indirectly regulating tau
degradation. PSA has been shown to be involved in the induction
of autophagy and specifically the formation of autophagosomes,
in a model of overexpressed mutant huntingtin (32). Thus, the
in vivo effects of PSA on promoting tau clearance may relate to its
ability to modulate the key clearance pathway for abnormal and
aggregated proteins (to be described in more detail below).

THROMBIN
Thrombin is a serine protease that is a well characterized com-
ponent of the coagulation cascade. It is typically produced and
secreted by endothelial cells, including those in the brain in
response to hemodynamic injury. Thrombin may be inappropri-
ately expressed in AD brain. A recent study showed that thrombin
is elevated in microvessels isolated from AD brain compared to
microvessels from control brain (33). Additionally, thrombin was
present in the CSF of AD patients but not in that of controls (33).
This is important, as thrombin can act as a neurotoxin by acti-
vating intracellular signaling cascades causing neurite retraction

and stimulating apoptosis (34–36). Thrombin may also be influ-
encing tau pathology, as treatment of immortalized hippocampal
neuronal cells (HT22 cells) with thrombin resulted in the forma-
tion of thioflavin-S positive tau aggregates within 24 h, followed
by an increase in cell death at 72 h (37). It is unclear how this
exogenously applied thrombin may be altering tau within the cells.
There are also data to suggest that thrombin may act intracellularly
to mediate tau pathology. Thrombin is expressed within neurons
and astrocytes in both normal and AD brain (38). In AD brain
the staining pattern for thrombin and prothrombin was charac-
teristic of the pattern of NFTs, although these structures were not
colabeled with antibodies for tau (38). Evidence supporting a role
for thrombin in tau proteolysis came initially from an in vitro
study showing that thrombin degraded recombinant full-length
tau from the N-terminus yielding a 25-kDa fragment, while pre-
serving the microtubule binding repeat domain (13). A later study,
however, showed that in N2a neuroblastoma cells expressing a con-
struct of only the tau repeat domain, thrombin cleavage could still
occur, indicating additional cleavage sites (15). Similar results were
observed in an in vitro assay (15).

The products of thrombin proteolysis are potentially patho-
genic. Thrombin cleavage of the repeat domain construct yielded
fragments that rapidly aggregated, which closely correlated with
toxicity in cell culture (15). These fragments can also induce the
aggregation of full-length tau (39). A final point of interest relates
to potential upstream modifications of tau. Endogenous tau is
phosphorylated, and in AD, tau phosphorylation becomes dysreg-
ulated. This may interfere with subsequent processes including
cleavage and degradation. For example, tau that is in the cis-
conformation at T231 appears resistant to degradation, as cis-tau
is found in dystrophic neurites while trans-tau is not. Additionally
cis-tau partitions to the insoluble fraction (30). Phosphorylation at
T231 prevents the isomerase Pin1 from converting cis-tau to trans-
tau (30). Interestingly, phosphorylation of tau also appears to dis-
rupt some thrombin cleavage sites, changing the pattern of cleav-
age without impeding the thrombin-mediated proteolysis (14, 28).
It has yet to be determined whether there is a difference in toxi-
city potential between fragments generated from phosphorylated
vs. unphosphorylated tau. Nonetheless, thrombin is a potential
candidate for contributing to tau proteolysis and pathology.

HUMAN HIGH TEMPERATURE REQUIREMENT SERINE PROTEASE A1
Another serine protease recently implicated in tau processing is
HTRA1. This is a ubiquitously expressed, ATP-independent intra-
cellular protease. Expression is detectable in many tissues, includ-
ing the nervous system, although expression is low (40). Nonethe-
less, this enzyme was initially implicated in AD because it may
play a role in amyloid processing (41). Tubulin was later identified
as a substrate for HTRA1, suggesting HTRA1 may be involved in
mediating microtubule function (42, 43). A more recent study
showed that HTRA1 can cleave recombinant tau in vitro into
multiple fragments of varying sizes, and furthermore can degrade
insoluble and fibrillarized tau (16). This ability to degrade aggre-
gates is particularly intriguing, especially in light of the fact that
HTRA1 has potential chaperone activity due to its C-terminal PDZ
domains and has a preference for misfolded substrates (44). While
more work needs to be done on the role this enzyme plays in
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tau proteolysis, these findings further indicate the complexity and
likely involvement of multiple players in this process.

CALPAINS
Calpains are calcium-activated cytosolic cysteine proteases. Two
isoforms differentiated and named by their sensitivities to calcium
(i.e., µ-calpain and m-calpain, also called calpain-1 and calpain-2)
are abundant in the central nervous system, and respond to micro-
molar and millimolar concentrations of calcium, respectively (45).
Calpain has been implicated in a number of neurodegenerative
diseases [for a review, see (46)]. The active form of calpain-2 is
found in 50–75% of NFTs in tauopathies including AD, but not
in protein aggregates found in other diseases (47). This is con-
sistent with another study that found equivalent calpain levels
between control and AD cases, but the activity level of the enzyme
isolated from AD brain tissue was increased (48). Excitotoxicity
leading to elevated intracellular calcium is a common feature of
neurodegenerative diseases, and is implicated in AD (49, 50). This
process may lead to enhanced activation of calpains (51). This in
turn could influence a number of pathologic processes, includ-
ing tau proteolysis. Indeed, tau has a number of putative calpain
cleavage sites, and incubation of recombinant tau with calpain gen-
erates specific fragments, including one that is ∼35 kDa and one
that is ∼17 kDa (19, 20). Increasing intracellular calcium levels in
PC12 cells leads to calpain-induced cleavage of tau (18). This may
reflect a potential effect of excitotoxicity in AD. Inducing apoptosis
in cerebellar granule cells yields calpain-mediated tau fragments,
including a dominant ∼17 kDa fragment (17). Also, treating pri-
mary hippocampal neurons with pre-aggregated amyloid β (Aβ)
led to the generation of tau fragments of ∼35,∼24, and ∼17 kDa,
which was blocked by addition of a calpain inhibitor (52, 53). Tau
fragments of the same size were also found in AD brain tissue (19).

The pathological role of this calpain-cleaved tau is unclear.
While some studies demonstrate toxicity resulting from calpain
proteolysis of tau, other studies do not support this conclusion.
On the one hand, expressing a 17-kDa fragment of tau based
on calpain cleavage site mapping in hippocampal neurons led to
neurite retraction and the appearance of varicosities after 48 h
(52). Additionally, suppressing calpain activity in a fly model
of tauopathy prevented neurodegeneration, as did expressing a
calpain-resistant form of tau (54). In contrast, another study used
mass spectroscopy and sequencing to identify the “17 kDa” tau
cleavage product and found it did not correspond to the recom-
binant fragment utilized in the above studies (19). Expression of
a recombinant form of the mass spectroscopy-identified fragment
in hippocampal neurons was not toxic (19). Further studies are
needed to clarify the contribution of calpain-mediated proteolysis
of tau to AD pathology.

CASPASES
There is significant evidence that tau is a caspase substrate and
that caspase-mediated tau cleavage may play a role in AD pathol-
ogy. Early in vitro studies demonstrated that tau is cleaved in the
C-terminus by several caspases including caspase-3 and caspase-
6 (21–23). Caspase-6 was also shown to cleave the N-terminus
of tau in vitro (24). Caspase-3, which is a key effector in the
apoptotic cascade, cleaves tau predominantly at the C-terminal

D421 site generating a fragment often referred to as tauC3 (22, 23).
There may be reciprocity with the apoptosis pathway as activating
caspase-3 by inducing apoptosis in cortical neuronal culture led to
tau cleavage (22), and selectively expressing tauC3 led to apoptosis
in NT2 and COS cells (21). This might represent a feed-forward
loop of neurotoxicity. Furthermore, expressing a cleavage resistant
form of tau (D421E) protects cells from apoptotic cell death (22).
Another potential mechanism of inducing caspase-3 cleavage of
tau is the presence of Aβ peptides. TauC3 is formed in primary
cortical neurons after treatment with Aβ (23).

Caspase cleavage of tau may play a role in stimulating the tau
aggregation seen in AD. Indeed, in vitro polymerization assays
demonstrate that caspase-cleaved tau has a greater propensity to
aggregate compared to full-length tau (23, 55). Intriguingly, cas-
pase activation was shown to immediately and consistently precede
the formation of tangles (56). This group used in vivo multiphoton
imaging in Tg4510 TAUP301L mice to simultaneously image acti-
vated caspases and Thioflavin-S positive tau tangles. There was
a strong correlation between active caspases and the presence of
tangles within viable neurons. In the few cells found that were
caspase-positive and tangle-negative, 88% had tangles within 24 h
(56). This seems to further support a role for caspase cleavage in
the evolution of tau pathology.

In order for caspase to cleave tau in the AD brain, it needs to be
present in its active form. The active forms of both caspase-3 and
caspase-6 are elevated in AD-specific brain regions (temporal and
frontal lobes) compared to unaffected regions (cerebellum) and
control brains (57, 58). Furthermore, active caspase co-localizes to
NFTs (58), and caspase-cleaved tau is found in AD-affected brain
regions, particularly in neurons displaying tangle pathology (59,
60). This includes tau cleaved by caspase-6 in the C-terminus (58–
60) as well as in the N-terminus (24). TauC3 is present in AD
brain – in neurons and co-localized with NFTs – and inversely
correlates with cognitive function (55, 60, 61).

The activation of caspases and the subsequent cleavage of tau
is likely to occur independent of apoptotic cell death (56). The
processes that may result in the activation of caspases in an apop-
tosis independent manner have not been clearly delineated; how-
ever several possibilities have been suggested. First, inflammation,
which is a common feature of AD, may contribute to tau pathol-
ogy by activating caspases. Treating cells with the prostaglandin
cyclopentenone byproduct PGJ2 increased caspase activity and
increased cleaved tau (62). Thrombin signaling can also activate
caspases (36). Proteasomal impairment appears to be upstream of
caspase activation, as inhibiting the proteasome with epoxomicin
(EPX) led to activation of caspase-3 in primary neurons (63) and
in a neuroblastoma cell line expressing wild-type tau (64). In
both studies caspase activation correlated with the appearance and
increase over time of caspase-cleaved tau species, which appeared
to subsequently form aggregates in the neurons (63). While the
mechanism is unclear, a possibility is that accumulating proteins
might be a factor in initiating caspase activation.

PROTEOLYSIS vs. DEGRADATION
As discussed above, a number of enzymes have been shown to
act on tau, under potentially pathological, as well as physiologi-
cal conditions. Many of these enzymes cleave tau at discrete sites,
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generating specific fragments. Some of these fragments, such as
those generated by thrombin, calpain, and caspase, are potentially
toxic to the cell if they accumulate due to inefficient clearance
mechanisms. Figure 1 illustrates the potential contribution of
these different proteases to the processing of tau. These proteolyti-
cally generated tau fragments can show an increased propensity for
self-association, prior to the formation of overt aggregates. Thus,
in the context of enhanced proteolysis (for example by caspases)
there may be increased low-order oligomers formed by cleaved tau
species. These oligomers may be unable to be cleared as effectively
by the cell and contribute to neuronal dysfunction. Therefore coor-
dination between proteolytic processing of tau and clearance by
degradative pathways is essential for maintaining the appropriate
levels of tau in a functional state. Below we will discuss the main
degradative pathways of the cell-the proteasome and autophagy-
which likely clear full-length tau as well as proteolytically generated
tau fragments.

THE PROTEASOME
The proteasome is a multimeric barrel-shaped structure that is
a key complex for clearing soluble cytosolic proteins. The 26S
proteasome has a regulatory cap (19S, or alternatively the 11S reg-
ulatory particle) on either end of its catalytic core (20S), which
contains the proteolytic activities and degrades substrates tagged
with poly-ubiquitin chains as the targeting sequence. The regula-
tory cap in conjunction with chaperone proteins unfolds the pro-
tein substrate and removes the ubiquitin tag in an ATP-dependent
process prior to feeding the protein into the catalytic core, where
it is systematically degraded by the enzymatic properties of the
proteasome. The 20S proteasome, which is the catalytic core with-
out its regulatory caps, is also able to degrade natively unfolded
substrates directly through an ATP- and ubiquitin-independent
process. As shown in Figure 2, tau is an ideal proteasomal sub-
strate for either form of the proteasome because it is a relatively
small, unfolded, short-lived cytosolic protein (64–67).

The accumulation of proteins in AD patients’ brains generated
interest in the role of proteasomal function. There is evidence sug-
gesting that proteasomal activity, but not protein level, is decreased
in AD-sensitive brain regions specifically compared to unaffected
regions (68, 69). Additionally, tau appears to be physically asso-
ciated with the proteasome in brain tissue from AD cases. When
tau was immunoprecipitated it pulled down both the 26S and
20S proteasomes, while immunoprecipitating for the 20S catalytic
core pulled down tau (69). This suggests tau is being targeted to
the proteasome, but may also indicate impaired ability to complete
degradation; hence it is remaining associated with the proteasome.
Further, there was an inverse correlation between proteasomal
activity and high molecular weight forms of tau (69). This may
suggest that abnormal proteins themselves may interfere with pro-
teasomal degradative processes. Indeed, in vitro aggregated paired
helical filament tau could inhibit proteasome activity (69).

EVIDENCE THAT TAU IS DEGRADED BY THE PROTEASOME
A number of studies have used various in vitro techniques to
analyze proteasomal degradation of tau. These include cell cul-
ture and cell free studies. Not surprisingly, if recombinant tau
is incubated with isolated 20S proteasomal complexes, degrada-
tion occurs (65). In this system proteolysis is bidirectional. Also,
if tau is first ubiquitylated in an in vitro reaction and then incu-
bated with isolated 26S proteasomes supplemented with MgCl2
and ATP, degradation proceeds (66). These data indicate tau can
be a substrate for both forms of the proteasome. Similar data has
been obtained from studies using various cell culture systems as
well as animal tissue and primary cultures with a variety of protea-
somal inhibitors. When HEK cells are co-transfected with tau and
ubiquitin, tau accumulates in the insoluble fraction. Its accumu-
lation in the insoluble fraction is enhanced by proteasomal inhi-
bition (using ALLN or MG-132) suggesting that tau is degraded
by the proteasome (66). In SH-SY5Y neuroblastoma cells, treat-
ment with lactacystin, a selective inhibitor of the 20S catalytic

FIGURE 1 | Proteolytic processing of tau. Under pathological and
physiological conditions, tau undergoes cleavage at many distinct
proteolytic sites by a myriad of proteases. The action of these
proteases can lead to both protection and/or exacerbation of pathology.
For example, cleavage of tau by caspase (Casp) 3, caspase-6, calpain

(Calp), and thrombin (Thrm) leads to the production of toxic fragments
of tau that exacerbate pathology. On the other hand, cleavage of tau by
PSA, Htra1, and – in some circumstances – caspase-3, may facilitate its
degradation, which may protect neurons from AD-related neuronal
death.
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FIGURE 2 | Physiological degradation of tau. Tau is degraded by both the
proteasome and autophagy systems. Targeting of tau to either system may be
determined by the extent and nature of post-translational modifications, the
folding state, the level of aggregation, and its interaction with chaperone
proteins or ubiquitin ligases. Monomeric tau is natively unfolded making it a

likely target for the 20S proteasome. Monomeric tau also interacts with the
E3 ligase, CHIP, which can lead to its ubiquitylation and degradation via the
26S proteasome or autophagy. Certain cleavage products and phosphorylated
forms of tau, as well as, monoubiquitylated tau and tau aggregates are
selectively degraded by autophagy.

core, maintained levels of transfected wild-type full-length tau
(4R0N) after cycloheximide treatment halted protein synthesis
(65). Similarly, overexpressing the FTDP-17 mutant P301L tau in
SH-SY5Y cells and then treating with lactacystin led to significantly
increased tau levels (70). Lactacystin also caused accumulation of
endogenous tau in the HT22 murine neuronal cell line (71). In
immortalized mouse cortical neuronal cells inducibly expressing
full-length wild-type tau, EPX slowed the degradation of full-
length tau (72). In M1C neuroblastoma cells that inducibly express
wild-type full-length tau (4R0N),EPX,and MG-132 induced accu-
mulation of full-length tau but there was a concomitant loss of
C-terminus immunoreactivity (64). This was attributed to cas-
pase cleavage, as activated caspase-3 was detected, and a caspase
inhibitor preserved C-terminal immunoreactivity (64). Addition-
ally, incubation of rat brain extract (containing endogenous tau
and proteasomal enzymes) with the proteasome activators Mg2+

and ATP resulted in lower total tau levels with an increase in
smaller forms, compared to extract not supplemented with Mg2+

and ATP (73). The loss of tau was blocked by lactacystin giv-
ing further evidence that the proteasome was degrading tau (73).
The story is more complex, however, as proteasomal inhibition
under physiological conditions does not consistently lead to tau
accumulation. For example, treatment of primary neurons with
an Hsp90 inhibitor to interrupt the proper chaperoning of tau
leads to decreased levels of tau. Adding MG-132 to block the pro-
teasome prevented the Hsp90 inhibitor-induced reduction in total
tau. MG-132 alone had no effect on tau levels (67). This might sug-
gest that under normal circumstances, if proteasomal impairment

occurs, tau levels are maintained by autophagic degradation. But
when the system is pushed to promote proteasomal degradation
over autophagy – such as by inhibiting Hsp90 – then the homeo-
static maintenance of tau levels is disrupted and tau degradation
does not occur when the proteasome is inhibited.

AUTOPHAGY
Autophagy is the process of “self-eating.” Under starvation con-
ditions, bulk autophagy can be induced to catabolize cellular
substrates to generate energy. However it is now evident that
autophagy is an ongoing clearance mechanism for larger, longer-
lived proteins and aggregates, as well as organelles such as mito-
chondria and peroxisomes (74) and pathogenic bacteria (75–77).
There are three forms of autophagy: microautophagy, macroau-
tophagy, and chaperone-mediated autophagy. The most common
and well understood is macroautophagy, hereafter referred to sim-
ply as autophagy. For a more complete review of autophagy, see
(78). Briefly, a double membrane autophagophore is initiated and
subsequently expanded to engulf a region of cytoplasm containing
the substrate/substrates to be degraded, such as tau (see Figure 2).
Once fully formed into an enclosed vesicle called an autophago-
some, it is trafficked to a lysosome where it undergoes fusion
to become an autophagic vacuole (AV). The lysosomal enzymes
degrade the inner membrane of the autophagosome as well as the
delivered contents. The enzymes responsible for degrading pro-
tein substrates of autophagy are the cathepsins. Once the contents
are fully degraded the lysosome is regenerated via acidification
through vacuolar ATPases. There are 15 core autophagy related
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genes (Atgs) that are involved in the process of autophagy. Many
of these have E1, E2, or E3 ligase activity to catalyze the reactions
necessary for the initiation and expansion of the autophago-
somal membrane. Critical early steps in the formation of the
autophagopore require a complex of Atg proteins that conjugate
phosphatidylethanolamine onto Atg8 family members (includ-
ing LC3), a process that is critical for allowing expansion of the
autophagosomal membrane. Conjugated LC3, called LC3-II, is the
canonical marker of autophagosomes. Atg7 is a critical E1 ligase
for several of the reactions necessary for autophagy (74).

EVIDENCE THAT AUTOPHAGY IS IMPAIRED IN AD
There is significant support for the possibility of defective
autophagy in AD. Electron microscopic analysis of brain tissue
from confirmed AD cases revealed that AVs accumulated in dys-
trophic neurites and correlated with the presence of filamentous
tau (79). However, this correlation was not quantified (79). Similar
results were observed in mouse models of AD. For example, in a
presenilin 1 (PS1)/Amyloid Precursor Protein (APP) double trans-
genic mouse, AVs were prevalent in dystrophic neurites at as early
as 4.5 months without a similar accumulation of other structures
such as lysosomes (80, 81). In these transgenic mice LC3-positive
bodies were particularly apparent in neurites surrounding amy-
loid plaques, and immunoblotting of hippocampi from 6 month
old transgenic PS1/APP mice revealed increased levels of LC3-
II compared to wild-type mice (81). It is well established that
mutations in PS1 result in familial AD, and until recently it was
thought that this was only due to alterations in APP processing.
However PS1 has a number of non-secretase functions, including
acting as the chaperone for the vacuolar-ATPase used to acidify
the lysosomal lumen (82, 83). Mutations in PS1 were shown to
impair the acidification of lysosomes, which is necessary for acti-
vating the proteolytic enzymes in this compartment. Improper
acidification and impaired proteolysis of substrates would com-
promise the autophagy system and result in the accumulation
of AVs as described above. However, another mouse model, the
TgCRND8 mouse, which expresses mutant APP only, also has
increased staining for LC3-II, as well as an increase in cathepsin
D-positive lysosomes (84). This demonstrates that in the absence
of mutant PS1, AD-associated impairment in autophagy occurs
and thus is due to other factors. Treatment of ex vivo hippocampal
slice cultures with lysosomal disruptors causes the formation of
enlarged, dystrophic neurites filled with AVs and lysosomes, simi-
lar to what is seen in mouse AD models and human AD tissue (85,
86). It has also been suggested that specific cathepsins may become
extralysosomal in certain diseases, including AD (87, 88). Together
these observations implicate a possible failure of autophagy as part
of AD pathogenesis.

EVIDENCE TAU CAN BE DEGRADED BY AUTOPHAGY
As indicated above, a functioning lysosomal compartment is
critical for the completion of autophagy. Given the possibility
of a defect at this level of autophagy, numerous studies have
directly assessed the effects of impairing lysosomal function on
tau turnover, including specifically targeting the cathepsins. In an
early study the direct cleavage of tau by cathepsin D was inves-
tigated in an in vitro assay using tau partially purified from rat

brain in combination with cathepsin D from human liver. Incu-
bation of tau with cathepsin D at pH 4.0 resulted in a decrease in
full-length tau and a concomitant increase in cleaved fragments
of varying sizes (89). Similarly, adding exogenous cathepsin D to
homogenates of rat cortex at a neutral pH also generated tau frag-
ments. Intriguingly, if a cysteine protease inhibitor was added to
the assay, tau cleavage stopped at the 29-kDa fragment, suggesting
that cathepsin D (an aspartyl protease) could cleave tau to a 29-kDa
fragment after which other proteases may act to further degrade
the protein. This also suggests if cathepsin D was able to escape
from the lysosome, for example in the context of an AD-related
stressor, it could still function in the neutral environment of the
cytosol. However, the activity of cathepsin D at the more neutral
pH may be more impeded than appears, as a previous study found
cathepsin D’s proteolytic activity was significantly reduced above
pH 6.0 (90). Treating hippocampal slices with chloroquine (CQ),
which raises the pH of lysosomes to impair enzymatic function,
was associated with increased levels of full-length tau (89, 91).
This was in conjunction with an accumulation of intracellular
PHF1 immunopositive tau (91). In M1C neuroblastoma cells that
inducibly express full-length wild-type tau (4R0N), treatment with
CQ also significantly slowed down tau degradation, and caused
its accumulation (92). Treatment of hippocampal slices with the
cathepsin modulator ZPAD (which stimulates cathepsin D very
strongly) appears to increase the proteolysis of full-length tau
resulting in the production of smaller fragments, including a phos-
phorylated 29 kDa fragment (86, 89). This partial degradation of
tau was inhibited by inclusion of a selective cathepsin D inhibitor
(86). Cathepsin D seems particularly important for degrading tau,
as its expression was neuroprotective in a Drosophila tauopathy
model. Levels of cathepsin D are elevated in flies expressing mutant
human tau. If cathepsin D is genetically ablated, these tau flies
exhibit enhanced neurotoxicity and a shorter lifespan (93).

Modulating autophagy through other approaches also indi-
cates that tau can be degraded through this pathway. Overex-
pressing only the repeat domain of tau containing an FTDP-17
mutation in neuroblastoma cells leads to tau aggregation as well
as the appearance of smaller proteolytic fragments. Using the
autophagy inhibitor 3-methyladenine (3-MA) to block the for-
mation of autophagosomes led to an increase in both soluble
and insoluble tau (94). Directly activating autophagy through a
variety of mechanisms leads consistently to enhanced tau clear-
ance – either pathological forms or total tau. In a hippocampal
slice preparation methylene blue was used to induce autophagy,
which resulted in a decrease in phosphorylated tau and insoluble
tau, specifically (95). In a cell line expressing the repeat domain
of tau containing the FTDP-17∆K280 mutant, treatment with the
disaccharide trehalose, an mTor-independent autophagy activator,
significantly reduced aggregated tau as measured by Thioflavin-S
staining, as well as total tau levels both soluble and insoluble as
detected by western blotting (96). Stimulating autophagy either
through serum withdrawal or rapamycin treatment in SH-SY5Y
cells overexpressing P301L tau that had been induced to aggregate
led to substantial reduction in aggregates that was prevented by
3-MA (70). In a mouse model expressing the FTDP-17 mutant
P301S, promoting autophagy with trehalose treatment beginning
at weaning significantly reduced insoluble tau, as well as tau
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phosphorylated at T212/S214 (AT100) (97). However, no other
phosphorylation sites were assessed. This effect was correlated
with improved neuronal survival in cortical layers I–III (97). Stim-
ulating autophagy via genetic manipulation of the mTor pathway
decreased total and phosphorylated tau in the same mouse model
(98). Conversely, inhibiting autophagy (also via mTor) lead to
increased total and AT8-positive phosphorylated tau (98). Mice in
which the critical autophagy gene Atg7 is knocked out in forebrain
neurons develop age-dependent neurodegeneration with accu-
mulation of phosphorylated tau within intracellular inclusions
(99). These inclusions specifically contained tau phosphorylated
at AT8, AT100, and TG3 epitopes, but not PHF1. Significantly,
if tau was also knocked out in these autophagy-deficient mice,
neurodegeneration was reduced (99).

Interestingly, other evidence for the role of autophagy in clear-
ing tau was the result of attempting to elucidate the role of the
proteasome in tau degradation. Treating rat primary neurons
with the proteasomal inhibitor MG-132 actually led to a reduc-
tion in total tau. This effect was likely due to a compensatory
upregulation of autophagy, as evidenced by increased LC3-II pro-
tein and an increased number of autophagosomes in treated cells
(96). This will be discussed in more detail below, as it has impor-
tant ramifications for the intersection of these two degradative
pathways.

INTERPLAY BETWEEN AUTOPHAGY AND THE PROTEASOME
There is compelling evidence for significant and extensive inter-
play between the autophagy and proteasomal systems. This has
intriguing implications for disease processes and specifically tau
degradation in AD. First, while each system preferentially degrades
specific substrates, there are many substrates that can be degraded
by both systems, tau being a prime example (25). For instance,
a particular substrate may be degraded by the proteasome under
normal conditions, but if that system is impaired and/or there is
an excess of that substrate it may be degraded in a compensatory
manner by autophagy. Another possibility is that particular forms
of a substrate may be shuttled to one pathway or another. In the
case of tau, as a monomer it is natively unfolded and hence a likely
proteasomal substrate, as discussed above. However, any of the
numerous modifications tau undergoes during AD pathogenesis
may render it less able to do so, for example, by inducing con-
formational changes to a more ordered structure as suggested by
several conformation-specific antibodies that label tau in AD brain
(Alz-50, MC-1, etc.). Additionally, oligomerized or aggregated tau
may not be a preferred proteasomal target. It has been suggested
that this change in state is part of the signal for tau to be degraded
by autophagy. This is supported by evidence that full-length tau,
which has a lower propensity for aggregating, is cleared by the pro-
teasome while caspase-cleaved tau, which is more aggregate prone,
goes through autophagy (72). Also, aggregated tau can be cleared
by inducing autophagy (70, 96).

Ubiquitin is implicated in targeting substrates to both path-
ways. Historically, poly-ubiquitin chains generated through lysine
48 (K48) linkages were viewed as the prototypical proteasomal
targeting sequence, while K63 chains appeared more specific for
autophagy. However, the experimental evidence indicates a more
complex picture. For example, if HEK cells are transfected with

tau and ubiquitin, tau is readily ubiquitylated and degraded by
the proteasome (66). However, if a ubiquitin construct contain-
ing a site mutation at K63 is transfected in, no ubiquitylation of
tau occurs. Other mutated forms of ubiquitin, including ubiquitin
unable to form linkages at K48, still resulted in tau ubiquitylation.
This indicates that in this experimental overexpression paradigm,
K63 linkages are the primary ubiquitin linkage for tau, and they
target tau to the proteasome rather than to autophagy (66). How-
ever, another study, also using HEK cells and ubiquitin K48 and
K63 mutants, demonstrated that in the presence of the E3 ligase
CHIP, tau could be ubiquitylated by both K48 and K63 linkages
(100). The likelihood that in vivo tau can be ubiquitylated in mul-
tiple ways is supported by studies showing tau isolated from NFTs
in human brain has several forms of ubiquitin linkages as well
as mono-ubiquitylation (101, 102). These data suggest that the
physical structure of the ubiquitin chain is unlikely to be a suffi-
cient signal for selectively targeting tau to either the proteasome
or autophagy. An alternate mechanism for specifically targeting
substrates is the involvement of chaperone proteins. The chaper-
ones involved in proteasomal targeting are not well characterized,
although it is known that ubiquitin-tagged substrates are trafficked
to the organelle. Currently identified chaperones include p62 and
Hsp70 (66, 100). Slightly more is known about autophagy adap-
tors, and there is significant overlap, as both p62 and Hsp70 are
adaptors for this pathway as well (103, 104). This further compli-
cates the understanding of how a substrate is selectively targeted
to one path or the other. For example, a ubiquitylated substrate
can be bound by p62 and either delivered to the proteasome (66)
or engulfed by an autophagosome via p62 binding to LC3 (105).
These findings suggest the involvement of a currently unidentified
chaperones and/or targeting signals, or undetermined additional
factors.

Other characteristics of the substrate are likely to also play a
role in successfully targeting the protein either to the proteasome
or to autophagy. In the case of tau, two modifications seem to
be critical for this process: phosphorylation and truncation. For
example, in the study where rat brain extract was incubated with
Mg2+ and ATP, there was an overall decrease in tau due to protea-
somal activity; however tau phosphorylated at the PHF1 and Tau-1
epitopes seemed to be preferentially degraded as they were non-
detectable within 3 h (73). The preferential degradation of specific
phospho-forms of tau by a particular pathway has been reported in
other studies as well. In CHO cells overexpressing P301L mutant
tau, treatment with the Hsp90 inhibitor geldanamycin led to a
more pronounced proteasome-mediated reduction in tau phos-
phorylated at proline-directed S/T sites compared to total tau (67).
However, the levels of tau phosphorylated at KXGS sites within the
repeat domain were not reduced by geldanamycin treatment. In
agreement with those findings, inhibiting autophagy in primary
rat cortical neurons with 3-MA resulted in the selective accumu-
lation of tau phosphorylated at the KXGS motif S262 (recognized
by the 12E8 antibody) (106). Additionally, in a hippocampal slice
preparation, induction of autophagy by treatment with methyl-
ene blue led to a decrease in phosphorylated tau and insoluble
tau without an effect on total tau (95). Activating autophagy with
trehalose in rat cortical neurons demonstrated certain phospho-
epitopes (AT8, PHF1, and 12E8) were reduced more significantly
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than total tau – up to 80% compared to the 20% reduction in total
tau (96). Finally, caspase-3 cleaved tau has a shorter half-life than
full-length tau and is preferentially degraded by autophagy (72).
Additional modified forms of tau have yet to be fully examined for
their preferred route of degradation.

As specific substrates are targeted to one degradative path-
way or the other, the function of each system can also directly
impact the functioning of the other. It is well documented that
blocking the proteasome with small molecule inhibitors causes
an increase in autophagic flux (107). This can be seen both as
increased autophagosome formation and maturation as well as
enhanced degradation of autophagy substrates (96). However the
converse is not true; autophagy impairment does not elevate pro-
teasomal function and, in fact, rather strikingly inhibits it. There
are several possible mechanisms for this inhibition. The accumu-
lation of large aggregated substrates might impair the proteasome,
as seen for PHF tau (69). Also, reduced recycling of p62 by impair-
ing autophagy (causing its accumulation) will impair proteasomal
processing, potentially by p62 competing with other chaperones
for proteasomal targets and impeding their delivery (107). The
degradation of tau is thus a complex process mediated by multi-
ple factors. While much is known about how tau can be cleared,
additional studies are needed to clarify what actually happens in

both the normal brain and in the context of AD. This information
will yield critical insights into potential therapeutics.

ROLE OF OLIGOMERS IN AFFECTING TAU DEGRADATION
DECISIONS
Given the data indicating tau can be processed by both autophagy
and the proteasome, and furthermore that the signaling mecha-
nisms directing substrates to either path are shared, it is unclear
how decisions regarding which way tau is degraded are made. One
possibility could be tau’s physical state of oligomerization. Solu-
ble, monomeric tau is an ideal proteasomal substrate. Indeed, it
has been clearly demonstrated that tau can be degraded by the
proteasome (65–67, 73). It thus can be suggested that under phys-
iologic circumstances much of tau is degraded in this manner,
with select modified forms being cleared by autophagy. However,
within the context of the AD milieu, additional tau modifica-
tions and degradative impairments may cause the balance to shift
away from proteasomal degradation toward autophagy. For exam-
ple, as discussed above, certain modified forms of tau, such as
caspase-cleaved tau, have a stronger tendency to aggregate. As tau
begins to assemble into oligomers, it may become increasingly
undesirable as a proteasomal substrate. These low-order, soluble
oligomers may be preferentially degraded by autophagy. However,

FIGURE 3 | Alzheimer disease-related disruption of tau degradation.
Impairment of protein degradation is a known component of both familial
and sporadic AD. Familial AD-related mutations of PS1 are linked to
impairment of lysosomal acidification and/or fusion to the autophagosome,
while sporadic factors leading to similar impairments have not yet been
elucidated. Impairment of the lysosome/autophagosome leads to
accumulation of dysfunctional autophagic vacuoles (AVs), cytosolic p62,
and aggregates of tau. Dysfunction of autophagy further inhibits the
proteasome, possibly via accumulation of p62, which can be a chaperone

for both systems. P62 is usually recycled via autophagy and accumulates
in the cytosol when autophagy is impaired. Hypothetically, this allows p62
to compete with other proteasome chaperones thus inhibiting
proteasomal degradation. Further, accumulation of aggregated proteins
has also been shown to inhibit the proteasome. Taken together, this could
lead to accumulation of soluble tau, and thus more proteolytic processing
and further aggregate. Hence, a vicious cycle of degradative pathway
impairment and tau accumulation/aggregation may contribute to the
neurodegenerative processes in AD.
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as previously discussed, autophagy is likely impaired in AD. The
tendency for certain phospho-epitopes to show preferential clear-
ance by certain pathways may also relate to their propensity for
aggregation. As tau oligomers increase in size, density, and mod-
ifications during the development of filaments and tangles, not
only will they be unable to undergo proteasomal degradation,
they may directly impair proteasomal function (69). This pro-
teasomal impairment could have multiple effects. For example,
autophagy may initially be activated as a compensatory response.
Caspase-3 and possibly other proteases may also be activated as
well. However, this may result in an accumulation of potentially
toxic cleaved forms of tau. Additionally, given the significant evi-
dence that autophagy is impaired in AD, possibly at the level of the
lysosomes, proteasomally mediated activation may serve to further
obstruct the autophagy system (see Figure 3).

CONCLUSION
It is clear that tau plays a significant role in AD pathology, although
the mechanisms involved have not been clearly delineated. Tau
is a normal neuronal protein that modulates microtubule-based
functions, and becomes increasingly hyperphosphorylated, trun-
cated, and otherwise modified in AD. These modifications not
only impair tau’s normal function, but also appear to promote its
oligomerization. These oligomers eventually accumulate to form
the NFTs which are pathognomonic for AD. While the NFTs may
be harmful to the cell in some ways, it is now believed that the prin-
cipal toxicity results from pre-aggregated, soluble tau oligomers.
Thus, understanding how these tau species can be cleared may
allow for the development of effective therapeutic approaches. It
is clear from the data that certain species of tau are preferentially
degraded by the proteasome and others by autophagy. There is evi-
dence that both of these degradative systems are likely impaired
at some level in AD. Additionally, there is a complex interplay
between the proteolytic and degradative pathways that suggests
a cycle of pathology may develop in AD whereby alterations in

tau processing, including by cytosolic proteases, pushes more
tau toward the autophagy system. Decreased autophagic func-
tion would result in accumulation of these autophagy-cleared tau
species. The combination of impaired autophagy and accumulat-
ing substrates has the potential to lead to proteasomal inhibition,
in addition to other factors (such as Aβ) that may impair the
proteasome in AD (108). This then further promotes cytosolic
accumulation of tau leading to its aggregation. Additionally, mod-
ifications including caspase-3 cleavage and hyperphosphorylation
promote aggregation even of full-length tau, reducing the pool of
functional tau.

Understanding how tau is cleared may enable us to identify
potential mechanisms for enhancing clearance of pathological
forms of tau. Ameliorating the deficit in autophagy is a likely tar-
get for this process, and initial results of stimulating autophagy
show promise for clearing tau. Indeed, several studies aimed at
stimulating autophagy have demonstrated efficacy in reducing
phosphorylated and aggregated tau in both in vitro and in vivo
models (95–98). These studies are an important initial step toward
elucidating the exact role of tau degradation in modulating neu-
rodegeneration in AD. Further studies that better gauge the con-
tribution of each degradative pathway will be necessary. Due to the
complexity of the cellular environment, in vitro studies that can
tightly control for variables including tau modifications and pro-
teolytic pathway function will likely be instrumental. Ultimately,
a more complete understanding of the differential contribution
of various proteolytic and degradative pathways will provide criti-
cal opportunities for therapeutically addressing the tau pathology
associated with neurodegeneration in AD.
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Fibrillar deposits of highly phosphorylated tau are a key pathological feature of several neu-
rodegenerative tauopathies including Alzheimer’s disease (AD) and some frontotemporal
dementias. Increasing evidence suggests that the presence of these end-stage neurofib-
rillary lesions do not cause neuronal loss, but rather that alterations to soluble tau proteins
induce neurodegeneration. In particular, aberrant tau phosphorylation is acknowledged to
be a key disease process, influencing tau structure, distribution, and function in neurons.
Although typically described as a cytosolic protein that associates with microtubules and
regulates axonal transport, several additional functions of tau have recently been demon-
strated, including roles in DNA stabilization, and synaptic function. Most recently, studies
examining the trans-synaptic spread of tau pathology in disease models have suggested
a potential role for extracellular tau in cell signaling pathways intrinsic to neurodegen-
eration. Here we review the evidence showing that tau phosphorylation plays a key
role in neurodegenerative tauopathies. We also comment on the tractability of altering
phosphorylation-dependent tau functions for therapeutic intervention in AD and related
disorders.

Keywords: tau, phosphorylation, oligomers, Alzheimer’s disease, function, extracellular

INTRODUCTION
Characteristic accumulations of highly phosphorylated tau pro-
tein aggregates are found in several neurodegenerative tauopathies
including Alzheimer’s disease (AD), progressive supranuclear
palsy (PSP), corticobasal degeneration (CBD), and some forms
of frontotemporal lobar dementia (FTLD-tau). It was assumed
that these pathological tau aggregates are the toxic form of tau.
However, recent studies indicate that soluble and highly phos-
phorylated tau species are more closely associated with synaptic
dysfunction and cell loss (1–4).

Tau is normally a highly soluble protein found predominantly
in neurons. A total of six different isoforms of tau are expressed in
the adult human CNS via alternative splicing of the MAPT gene,
which comprises 16 exons and is found on chromosome 17q21.3.
Regulated inclusion of exons 2 and 3 gives rise to tau isoforms with
0, 1, or 2 N-terminal inserts, whereas exclusion or inclusion of exon
10 leads to expression of tau isoforms with three (3R) or four (4R)
microtubule-binding repeats (Figure 1A). In normal human brain
the ratio of 4R–3R tau is approximately one, whereas in many
tauopathies, this ratio is altered; PSP, corticobasal degeneration
(CBD), and argyrophilic grain disease all exhibit over-expression
of 4R tau isoforms, whereas Pick’s disease is mainly characterized
by tau inclusions rich in 3R tau isoforms (5–9).

Tau is a phosphorylated protein, containing 85 potential ser-
ine (S), threonine (T), and tyrosine (Y) phosphorylation sites.
Many of the phosphorylated residues on tau are found in the
proline-rich domain of tau, flanking the microtubule-binding
domain (Figure 1B). Both the phosphorylation status and isoform

expression of tau are developmentally regulated and both are
important factors for cytoskeletal plasticity during embryogenesis
and early development. In early developmental stages a single tau
isoform, 0N3R, is expressed and tau phosphorylation is elevated
relative to adult brain. In contrast, all six tau isoforms are present in
normal mature human brain, and at this stage tau phosphorylation
is relatively reduced (8, 10).

Despite the significant heterogeneity that exists between and
within the various tauopathies, the deposited tau in pathological
lesions is invariably highly phosphorylated. Mass spectrometric
analysis, combined with Edman sequencing and specific antibody
reactivity, shows that approximately ten phosphorylation sites can
be detected on soluble tau purified from normal brain (10). In
contrast, when insoluble aggregated tau is extracted from tauopa-
thy brain, at least 16 phosphorylated residues have been found
in PSP (11–13), and approximately 45 different serine, threonine,
and tyrosine phosphorylation sites, representing more than 50%
of all phosphorylatable residues, have been found in AD brain (10,
14–17).

A large number of different kinases and phosphatases have
been shown to regulate tau phosphorylation, and an imbalance
in tau kinase and phosphatase activity is believed to result in tau
hyperphosphorylation in disease. Tau kinases include:

• The proline-directed kinases glycogen synthase kinase-3
(GSK-3) (18–22), cyclin-dependent kinase 5 (cdk5) (23–25),and
5′ adenosine monophosphate-activated protein kinase (AMPK)
(26, 27).
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FIGURE 1 |The human tau gene and six protein isoforms. (A) The six
isoforms of human CNS tau. Exons 2 and 3 (E2 and E3) encode two
different inserts of 28 amino acids near the N-terminus of tau. Absence of
E2 and E3 gives rise to 0N tau isoforms, whereas inclusion of E2 produces
1N and inclusion of both E2 and E3 results in 2N tau isoforms. M1–M4
represent the four imperfect-repeat microtubule-binding domains, M2
being encoded by exon 10. Lack of M2 results in the formation of 3R tau

and M2 inclusion results in 4R tau isoforms. The proline-rich domain in the
center of the tau polypeptide is indicated. Alternative-splicing produces tau
isoforms of 352–441 amino acids, as indicated. (B) Positioning of
phosphorylation sites on tau from Alzheimer brain. Approximately 45
phosphorylation sites have been identified, these are found predominantly
in the proline-rich domain and the regions flanking the microtubule-binding
domain.

• Non-proline-directed kinases, such as casein kinase 1 (CK1)
(10), microtubule affinity-regulating kinases (MARKs) (28–30),
cyclic AMP-dependent protein kinase A (PKA) (31, 32), and
dual specificity tyrosine-phosphorylation-regulated kinase 1A
(DYRK-1A) (33, 34).

• Tyrosine kinases including Fyn (35, 36), Abl (37, 38), and
Syk (39).

In addition, several phosphatases dephosphorylate tau, includ-
ing protein phosphatase-1, -2A, and -5 (PP1, PP2A, and PP5)
(reviewed by (40).

Importantly, many of these enzymes have been implicated in
pathways affected by amyloid-beta (Aβ) in models of AD (27, 41–
43). It remains to be established if the overall phosphorylation
state of tau or phosphorylation at specific residues is important
in disease pathogenesis, as suggested by studies in flies (44). How-
ever, there is evidence that phosphorylation of individual residues
on tau can significantly impact its function, and this is discussed
below.

THE RELATIONSHIP BETWEEN PHOSPHORYLATION AND TAU
STRUCTURE
In addition to abnormal phosphorylation, tau protein in neurode-
generative disease brain can be modified in a number of ways,
including N- and C-terminal proteolytic cleavage, altered confor-
mation, nitration, glycosylation, acetylation, glycation, ubiquityla-
tion, O-GlcNAcylation, aggregation, and filament formation (45,
46). Much research has focused on elucidating the relationship
between phosphorylation and the changes in tau structure that
are common in neurodegenerative disease brain. Evidence from
this research suggests that phosphorylation occurs either prior to,
or at the same time as, these other post-translational modifications

and before aggregation occurs. It remains to be seen whether this
temporal precendence indicates a causative relationship.

PROTEOLYTIC TAU CLEAVAGE
Tau is subject to proteolytic cleavage by caspase-3 at aspartate
(D) residue 421 (47), and N-terminal cleavage by calpain-1 (48)
and caspase-6 (49). The tau fragments that are generated have
been detected in affected regions of human tauopathy brain (47,
50). Caspase-cleaved tau fragments show an increased propensity
to aggregate, and these may form a seeding nidus that promotes
the aggregation and fibrillization of full-length tau species (51).
In contrast, cleavage of tau by calpain may partially inhibit tau
aggregation (50). The temporal relationship between tau cleavage
and phosphorylation is unclear, with data showing that phospho-
rylation of different tau residues precedes (52), follows (47), and
inhibits (53) the proteolytic cleavage of tau by caspase-3. However,
substantial evidence shows that caspase-3-cleaved tau species are
particularly prone to phosphorylation in both primary neuronal
cells (54) and human tauopathy brain (47), and that phosphory-
lated and caspase-3-cleaved tau species readily form aggregates in
cells (55). These results therefore suggest that phosphorylation and
caspase-mediated cleavage of tau are important events during the
development of the characteristic tau aggregates that accumulate
in AD and other tauopathies.

ALTERED TAU CONFORMATION
Tau is a natively unfolded protein that adopts abnormal conforma-
tions in tauopathy brain. For example, tau cleavage by caspase-3
at D421 occurs early in disease development, following an alter-
ation in tau conformation detected by the Alz50 antibody, and
prior to the formation of the conformational Tau-66 epitope (tau
residues 155–244 and 305–331) which is detected in late-stage
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AD (56). Altered tau conformation is suggested to be a major
determinant in inducing tauopathy development in vivo (57), and
abnormal tau conformers are detected in mouse models of tauopa-
thy where elevated tau phosphorylation is apparent, but prior
to the appearance of substantial tau aggregation (22, 58). Thus,
caspase-3-induced tau cleavage appears to occur relatively early
during the development of tauopathies, contemporaneous with
increased phosphorylation and altered conformation of tau.

THE DEVELOPMENT OF TAU OLIGOMERS
A number of soluble and insoluble tau oligomers have been
detected in AD and FTLD brain (2). Tau oligomers display altered
conformation (59), are formed during the early stages of tau
aggregation (59), and are closely associated with neurodegen-
erative phenotypes (2, 60). For example, transgenic mice that
conditionally express a proline to leucine mutation at residue
301 (P301L) in human tau (1) exhibit high molecular weight
tau oligomers, prior to the presence of neurofibrillary tangles
(NFTs), that correlate with the development of cognitive deficits
(2). Similarly, in a Drosophila model of tauopathy, the suppres-
sion of tau-induced neurodegeneration is associated with clear-
ance of ubiquitinated and phosphorylated low molecular weight
(<250 kDa) tau oligomers, concomitant with increases in ubiq-
uitinated tau monomers and high molecular weight (>250 kDa)
tau oligomers (61). It should be noted that protection from tau-
associated toxicity in this latter study was also accompanied by
reduced phosphorylation of soluble monomeric tau. Phospho-
rylation of tau by GSK-3 promotes the formation of insoluble
oligomeric tau species that can constitute both full-length and
truncated tau species (62, 63). The majority of insoluble tau in
AD brain is intact (13). However, cleaved tau species are promi-
nent in insoluble tau preparations from PSP, CBD, and FTLD-tau
brain (13). The increased propensity of caspase-cleaved tau to
aggregation (47), and the close association of tau fragments with
cell death (64), suggests that although present as a relatively small
pool of total tau, cleaved tau may also play an important role in
disease. The presence of phosphorylated oligomeric tau species in
cortical synapses extracted from AD brain (65) supports a role for
highly phosphorylated tau multimers in tau-associated neuronal
dysfunction.

THE FORMATION OF INSOLUBLE TAU AGGREGATES
In cell-free systems, soluble tau is a hydrophilic, unstructured,
and dynamic protein (66). However, highly ordered aggregated
tau filaments constitute the characteristic neurofibrillary lesions
observed in tauopathy brain, including NFTs in AD and FTLD-tau,
astrocytic plaques in CBD and tufted astrocytes in PSP (67).

There is substantial evidence that tau phosphorylation pre-
cedes its aggregation. Highly phosphorylated mouse and human
tau undergoes self-assembly in vitro (68, 69), and dephosphory-
lation of soluble tau from AD brain inhibits its polymerization
and restores the ability of tau to stabilize microtubules (70).
Transgenic mice in which tau kinase activity is increased dis-
play increased tau phosphorylation prior to the presence of tau
aggregates (24, 25, 58, 71). Furthermore, treating tau transgenic
mice with kinase inhibitors results in reduced tau phosphoryla-
tion and also a reduced tau aggregate load (22, 72, 73). It should

be noted, however, that reduction of tau aggregate load in tau
transgenic mice following lithium treatment could result from
enhanced autophagy in addition to reduced GSK-3-mediated tau
phosphorylation (74). The relationship between tau phosphory-
lation and aggregation is clearly complex since phosphorylation
of tau at specific sites, that are known to result in tau detachment
from microtubules, can prevent tau aggregation (75). In addition,
disruption to tau phosphatase activity in transgenic mice leads
to the development of early disease-like tau abnormalities (76,
77). In particular, tau phosphorylation at the AT100 epitope is
apparent in mice with reduced PP2A activity (77), which show
cdk5-mediated enhanced activation of GSK3. Phosphorylation at
the AT100 site has previously been shown to precede NFT for-
mation (78), thus these findings may also suggest that changes in
tau phosphorylation precede its aggregation. However, NFT for-
mation was lacking in mice with reduced PP2A activity, an event
attributed to increased clearance of abnormal tau conformers (77).

It is possible that the formation of a small pool of cleaved
tau may be critically important in mediating the formation of
pathological tau aggregates. Caspase-cleaved tau is prone to phos-
phorylation at specific epitopes (47, 54) and forms aggregation
seeds that sequester full-length tau (51). Indeed, in vivo imag-
ing of tau transgenic mice has demonstrated that truncated tau
induces the misfolding of soluble tau and leads to the accumula-
tion of hyperphosphorylated tau in tangles (79). Whether or not
filamentous tau aggregates are toxic, protective, or inert remains
an issue of intense debate (for review, see 80). However, small
aggregated tau species have attracted interest recently because of
their reported involvement in the propagation/transmission of tau
pathology, and this topic is discussed in more detail below.

THE INFLUENCE OF PHOSPHORYLATION ON TAU
LOCALIZATION AND FUNCTION
Tau is ubiquitously expressed during early embryonic develop-
ment, but becomes localized predominantly in axons of mature
neurons. The mechanisms underlying the axonal sorting of tau
are not fully understood, but might involve selective trafficking
of tau mRNA or protein into axons (81, 82), a retrograde trans-
port barrier in the axon initial segment in mice (83), upregulation
of tau mRNA translation in axons (84) or selective degradation
of tau in dendrites (85). Tau is also found in association with
neuronal membranes, in the nucleus, dendrites and synapses,
and extracellularly. The localization of tau is altered in disease
states. In particular, the redistribution of hyperphosphorylated
tau to the somatodendritic compartment is considered a hallmark
pathological marker during early tauopathy development (86, 87).
The functional consequences of tau phosphorylation-mediated
changes in the cellular localization of tau are discussed below.

CYTOPLASMIC TAU: CYTOSKELETAL INTEGRITY AND AXONAL
TRANSPORT
A large proportion of tau is found in the cytosolic com-
partment, where it interacts with microtubules through its C-
terminal microtubule-binding domain (Figure 1, residues 244–
368). The binding of tau with microtubules is regulated by
tau phosphorylation status, with in vitro phosphorylation of
recombinant tau at S262 and S356, orthologous residues in
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adjacent microtubule-binding repeats, reducing tau interactions
with microtubules and rendering tau less susceptible to aggre-
gation (75). Phosphorylation of tau at residues outside of the
microtubule-binding domain of tau, including S214 and T231,
have also been shown to reduce its interaction with microtubules
(75, 88). These findings suggest that phosphorylation at different
tau sites may have opposing effects on the ability of tau to aggregate
Furthermore, interaction of the peptidyl-prolyl isomerase Pin1
with phosphorylated T231 mediates the interaction of PP2A with
the trans configuration of phosphorylated tau, and results in a
conformational change that restores the ability of tau to bind to
microtubules (89–91). Regardless of the particular sites involved,
increased tau phosphorylation that causes tau to detach from
microtubules leads to the disassembly of microtubules and dis-
ruption to the structure of the neuronal cytoskeleton. In addition,
the accumulation of unbound hyperphosphorylated tau in the
cytoplasm could cause further microtubule disassembly by seques-
tering normal tau and other microtubule-associated proteins (92).
When tau is in a filamentous state, its interaction with normal
(soluble) tau and its inhibition of microtubule stabilization is dis-
rupted (93). Preventing microtubule instability in tauopathies has
become an important target for drug development (94, 95).

Alterations in tau phosphorylation also affect its anterograde
axonal transport. In general, reducing tau phosphorylation at
S/T residues decreases, whereas mimicking tau phosphorylation
increases, the rate of axonal tau transport in fly, rodent, and human
neurons (21, 96–98). The influence of tau phosphorylation on
its transport appears to be associated with differential binding of
S/T phosphorylated tau to the molecular motor protein kinesin-1
(97, 98) and differential degradation rates of phospho-tau species
through the lysosomal autophagy system (98).

The interaction of tau with microtubules is critically involved
in the regulation of microtubule-dependent axonal transport (99),
therefore tau phosphorylation also plays a key role in regulating
the transport of other important cargoes. Increasing tau phos-
phorylation at N-terminal Y residues relieves the inhibition of
anterograde axonal transport observed in the presence of highly
phosphorylated tau aggregates in squid axons (100). However, tau
is not usually highly phosphorylated in squid axons and there-
fore it is unclear whether this provides a good model to examine
mammalian tau functions. In mice over-expressing FTLD-tau
mutations, there is impaired anterograde axonal transport of
vesicles containing the dopamine-synthesizing enzyme tyrosine
hydroxylase, which precede the loss of dopaminergic neurons
in the substantia nigra (101). The transport deficits reported in
this mouse model were shown to be mediated by interactions
between phosphorylated tau and JNK-interacting protein 1 (JIP-
1) (102). Since JIP-1 regulates the binding of cargo to kinesin, these
results further support the idea that increasing tau phosphoryla-
tion disrupts axonal transport. Alternatively, reduced degradation
or clearance of aggregated or mutant forms of tau might con-
tribute to a “clogging” of microtubules and consequent disruption
in axonal transport (103).

Disruption to axonal transport is predicted to be an early
event in several neurodegenerative diseases (104) and recent evi-
dence suggests that dysregulated axonal transport may contribute
to tau-induced degeneration. Genetic suppression of Miro, an

adapter protein essential for mitochondrial axonal transport, exac-
erbates the neurodegenerative phenotype in Drosophila expressing
human tau, through a mechanism dependent upon phosphoryla-
tion of tau at S262 by PAR-1, the Drosophila homolog of MARK
kinase (105). Similarly, deletion of kinesin light chain-1 results in
accumulation of hyperphosphorylated tau and the appearance of
axonal spheroids in mice (106), in line with numerous reports that
have characterized the binding of tau to kinesin (21, 96–98).

Finally, alterations in mitochondrial transport and function
are intrinsically linked with several neurodegenerative diseases
(107). Over-expression of tau in vivo results in alterations to
mitochondrial distribution that are associated with soluble, rather
than fibrillar, tau species (108). In addition, tau phosphorylation
alters the axonal transport and distribution of mitochondria in
cultured neuronal cells (109, 110), an effect recently attributed
to tau phosphorylation-dependent changes in inter-microtubule
spacing (110). Furthermore, highly phosphorylated tau has been
shown to interact with the mitochondrial fission protein, Drp1
(111), and DuBoff et al. (112) demonstrated that this relation-
ship is important for neurodegeneration. They show that actin
is over-stablised in Drosophila that express human tau, and that
this impairs the actin-based translocation of Drp1 and mitochon-
dria, which reduces their interaction and leads to accumulation
of Drp1 on F-actin, mitochondrial elongation, and downstream
neurotoxicity (112). Thus tau phosphorylation is closely linked to
alterations in the localization and/or function of mitochondria.
It is therefore likely that phosphorylated tau influences synaptic
dysfunction in tauopathies by contributing to the depletion of
functional mitochondria from synapses (113).

MEMBRANE-ASSOCIATED TAU: A CELL SIGNALING ROLE FOR TAU?
Tau interacts with several neuronal membranes, including the
endoplasmic reticulum (114), the Golgi network (114), and the
plasma membrane (115, 116). An increasing body of evidence
shows that the association of tau with plasma membranes is
regulated by phosphorylation (116–118). Plasma membrane-
associated tau is dephosphorylated at several sites known to be
aberrantly phosphorylated in AD brain (116, 117, 119, 120).
Indeed, phosphorylation of tau at N-terminal, but not C-terminal,
residues prevents its membrane localization in tau-transfected
cells, demonstrating that the phosphorylation state of tau directly
impacts its positioning at membranes (116).

Tau has also been detected within cell-surface lipid-rich
microdomains of the plasma membrane (35, 41, 121), and the
amount of tau associated with these lipid rafts is regulated by
tau phosphorylation at N-terminal tyrosine residues (121). Tau
interactions with the non-receptor tyrosine kinase Fyn are critical
for the interaction of tau with lipid rafts (35, 41, 121) and neu-
ronal plasma membranes (116). Tau can interact with Fyn via its
SH2 and SH3 domains (121, 122). Phosphorylation of tau at Y18
is important for tau interactions with Fyn-SH2 (121), whereas
phosphorylation of S/T residues on tau negatively influences its
interaction with Fyn-SH3 (122). Accumulating evidence there-
fore suggests that targeting of tau to the plasma membrane may
be regulated by the interaction of the tau N-terminal projection
domain with the SH3 or SH2 domains of tyrosine kinases such
as Fyn (118). Furthermore, these data suggest that by binding to
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several important signaling molecules in a manner that is regu-
lated by phosphorylation, tau has the potential for a broad role in
cell signaling (122).

DENDRITIC TAU AND SYNAPTIC TOXICITY
A number of recent cell and animal studies have shown an impor-
tant role for tau in dendrites leading to the suggestion that tau-
mediated synaptic dysfunction may be one of the earliest events
in the pathogenesis of tauopathies. Several studies have indicated
that the presence of tau aggregates is detrimental to synaptic health
(123, 124), however, soluble tau species are associated with synapse
loss in mouse models of tauopathy (125) and phosphorylated tau
oligomers have also been detected in synapses in postmortem AD
brain (126).

A small amount of tau exisits in dendrites under normal
conditions, where it acts to target Fyn post-synaptically, regu-
lating N -methyl-d-aspartate (NMDA) receptor subunit 2 phos-
phorylation and interactions between NMDA receptors and the
post-synaptic density protein PSD-95 (3). Disease insults, such
as increased concentrations of Aβ in AD, lead to the detach-
ment of highly phosphorylated tau from microtubules and its
accumulation in intact dendritic spines (3). This in turn causes
local elevations in Ca2+ and disruption of synaptic function
through impaired trafficking and/or synaptic anchoring of glu-
tamate receptors (3, 127, 128). In a related study, the redistri-
bution of hyperphosphorylated tau into dendritic spines led to
reductions in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor subtypes that caused impairments in basal
synaptic transmission and long term potentiation (129). Thus,
there is increasing evidence that tau-mediated synaptic dysfunc-
tion might be one of the earliest events in the pathogenesis of
tauopathies (reviewed by 130). Therefore, correction of aber-
rant tau phosphorylation may be therapeutically beneficial during
very early stages of disease progression when synaptic deficits
first develop. In this respect, it is worth noting that inhibi-
tion of GSK3 has previously been shown to attenuate deficits in
LTP (131).

NUCLEAR TAU – A ROLE IN DNA PROTECTION
It was first suggested that tau might have novel functions medi-
ated by interactions with DNA or RNA following observations
that tau is present in the nuclei of human neuroblastoma cells
(132). Full-length tau was identified in neuronal nuclei, where
it colocalizes with the chromosome scaffold, nuclear and nucle-
olar organization centers and can exist as SDS-insoluble species
(132, 133). Further studies revealed that the microtubule-binding
domain of tau can bind RNA (134),and single and double stranded
DNA (135, 136). The interaction of tau with RNA enhances tau
polymerization; the RNA acting as a nucleation center for tau
aggregation (134), whereas interaction of tau with DNA results in
conformational changes in DNA (133) and suppression of DNA
amplification in vitro (136). Insights into the nuclear function
of tau were recently revealed with the observation that tau pro-
tects DNA from heat damage and oxidative stress (137). Nuclear
tau appears to be largely dephosphorylated (137), suggesting that
increased tau phosphorylation in diseased states could interfere
with protective functions of non-phosphorylated tau in neuronal
nuclei.

EXTRACELLULAR TAU AND THE PROPAGATION OF TAU PATHOLOGY
Tau is present in brain insterstitial fluid in the absence of any
neurodegeneration (138). Recent evidence suggests that this extra-
cellular tau is likely to have important functional consequences
for neuronal health and for the spread of tau pathology across the
brain during disease progression.

To allow investigation of tau pathology spread in vivo, trans-
genic mice have been created with neuropsin-promoter targeted
expression of tau in layer II neurons of the entorhinal cortex. These
mice demonstrate an age-dependent spread of phosphorylated
and aggregated abnormal tau confomers from the site of transgene
expression to neighboring neurons and anatomically connected
brain regions (139, 140). There are several mechanisms that could
account for this observed spread of tau pathology. Firstly, degen-
erating neurons with high levels of transgene expression might
release pathological forms of tau that subsequently propagate in
a “prion-like” fashion through their uptake by neighboring neu-
rons. In support of this process, Frost et al. (141) demonstrated
that extracellular tau aggregates, but not tau monomers, are taken
up by cultured human embryonic kidney (HEK293) cells and neu-
ronal stem cells, leading to fibrillization of full-length intracellular
tau. Similarly, small oligomers of tau, similar to those found in
human tauopathy brain, can be taken up by cultured neuronal
cells via bulk endocytosis (142). It is possible that this process also
underlies the postulated prion-like transmission of tau pathol-
ogy to distal brain regions observed when pathological forms of
human tau are injected into mice expressing wild-type human tau
(143, 144). Secondly, tau pathology in the neuropsin-promoter
regulated tau transgenic mice appears to spread to anatomically
connected pathways in the absence of any notable cell loss (139,
140), suggesting that tau is released from intact neurons and then
taken up by connected cells. This process is supported in part by
recent findings showing endogenous tau release from cultured
neurons in the absence of cell death (145, 146). Interestingly,
the release of endogenous full-length tau from rat primary neu-
rons was shown to be a dynamic and physiological process that is
calcium-dependent and stimulated by AMPA receptor activation
and neuronal activity (146), suggesting that tau release may play
a role in signaling between neurons. Indeed, exogenously applied
tau can interact with muscarinic receptors on the surface of cul-
tured neuronal cells, promoting increases in intracellular calcium
that alter cell signaling pathways (147). It is also possible that tau
propagation may be mediated via glial cells, since cytosolic tau
accumulations are observed in neurons surrounded by activated
microglia (148) and astrocytes promote tau phosphorylation in
neighboring neurons (54).

The relationship between tau secretion and tau phosphoryla-
tion state is not yet established. However, extracellular tau released
from primary neurons, neuroblastoma cells and non-neuronal
cells is dephosphorylated at several epitopes known to be highly
phosphorylated in AD brain (145, 146, 149) and this has been pro-
posed to result from the action of extracellular tissue non-specific
alkaline phosphatase (149). How this relates to the phosphoryla-
tion state of intracellular tau is not clear, although the secretion of
C-terminally cleaved tau from non-neuronal cells can be enhanced
by the increased phosphorylation or cleavage of intracellular tau
(150). These studies indicate that changes in tau phosphorylation
can modulate its release from neurons, and therefore is also likely
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FIGURE 2 |The impact of phosphorylation on tau functions in different
cell locations. The figure shows the functions of tau in different cellular
compartments that are influenced by tau phosphorylation, and that likely
contribute to the development or progression of neurodegenerative
tauopathies.

to influence the effects of extracellular tau on neuronal health and
the spread of tau pathology in diseased brain.

TAU PHOSPHORYLATION AS A THERAPEUTIC TARGET
As summarized above, tau phosphorylation plays a key role in reg-
ulating tau function at different neuronal locations, including the
involvement of cytosolic tau in stabilizing the neuronal cytoskele-
ton and influencing axonal transport; the role of membrane tau
and extracellular tau in cell signaling and neurofibrillary pathology
spread through diseased brains; the relationship between nuclear
tau and protection from DNA damage; and dendritic functions of
tau that are involved in synaptotoxicity (Figure 2). These data sug-
gest that inhibition of tau phosphorylation could have widespread
disease-modifying effects in tauopathies. Therapeutic strategies
aimed at targeting tau phosphorylation have been widely reviewed
elsewhere (e.g., 8, 9, 67, 151), therefore we will comment only
briefly here.

Although several kinases and phosphatases regulate tau phos-
phorylation, only GSK-3 inhibitors have entered clinical trials for
the treatment of AD or rarer tauopathies such as PSP. Based on
promising data from animal models (21, 22, 152), the relatively
non-specific GSK-3 inhibitor, lithium, was tested in small-scale
clinical trials for mild to moderate AD. Whilst lithium did not
cause significant adverse effects in an open label study of a year

(153), neither did it have any beneficial effects in a short-term
trial (154). However, a small trial of lithium in patients with mild
cognitive impairment reduced phosphorylated tau in CSF and
reported better performance of treated patients in cognitive and
attention tasks (155), suggesting that administration of lithium
during the early stages of disease could have some therapeutic
benefit in defined patient populations.

Tideglusib (NP-12) is a non-ATP competitive inhibitor of GSK3
that has entered clinical trials. Tideglusib has disease-modifying
effects when administered to transgenic mice that develop both
tau and amyloid pathology (156). Pilot trials for tideglusib in AD
and PSP showed good tolerance of tideglusib (157) and phase II
studies are underway.

Kinase inhibitors have entered clinical use for conditions unre-
lated to neurodegeneration (158). However, kinases make for com-
plex therapeutic targets, and probably because of incomplete drug
specificity, off-target effects are problematical. An alternative strat-
egy may be to modulate the activity of proteins that directly affect
the activity of tau kinases. One interesting target in this respect is
lemur tyrosine kinase-2 (LMTK2). LMTK2 phosphorylates PP1C
on T320, thereby inhibiting PP1C activity (159–161). PP1 regu-
lates phosphorylation of GSK3β at the inhibitory phosphorylation
site S9 (162, 163), and therefore, via its effect on PP1C, LMTK2
regulates GSK-3β phosphorylation at S9, and ultimately GSK-3
activity (160, 161). Therefore, an alternative strategy for inhibiting
GSK-3 activity may be to increase LMTK2 expression or activity.
Small molecule allosteric agonists for a variety of kinases have now
been described, and the development of kinase agonists has been
identified as key area for the development of new therapies (164).

Finally, biomarkers are increasingly used to follow the progres-
sion of AD, and in some cases to support early diagnosis of the
disease (165). However, to accelerate the clinical translation of
therapeutics that modify tau phosphorylation, it is essential that
sensitive and specific biomarkers are available to allow the mea-
surement of drug–target interactions, and the impact of treatment
on downstream pathophysiology. The development of such target
validation biomarkers will allow a faster selection of candidate
treatments, and appropriate dose ranges. This should accelerate
the clinical development of tau phosphorylation inhibitors that
are likely to have wide-ranging benefit for the treatment of AD
and related tauopathies.
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The nature of “toxic” tau in Alzheimer’s disease (AD) has been unclear. During pathogen-
esis, the importance of tau oligomerization vs. tau phosphorylation is controversial and
the investigation of both remains critical toward defining the “toxicity” of tau. The phos-
phorylation of tau on serines and/or threonines occurs early in the disease course and
altering phosphorylation has been shown to disrupt neuropathogenesis. We have recently
reported that in PC12-derived cells, tau had a role in signal transduction processes activated
by NGF. By depleting tau, NGF-induced MAPK activation was attenuated and by restoring
tau, MAPK activation was restored. Furthermore, the phosphorylation of tau on Thr231
was required for tau to potentiate MAPK activation. Here we report the effects of addi-
tional disease-related tau phosphorylation sites and tau isoform on the ability of tau to
potentiate MAPK activation. Our findings, which tested three other sites of phosphoryla-
tion, showed that phosphorylation at these other sites mainly lessened MAPK activation;
none potentiated MAPK activation. In comparing 0N3R tau to the other five brain tau iso-
forms, most showed a trend toward less MAPK activation, with only 2N4R tau showing
significantly less activation. Since MAPK activation has been reported in AD brain and is
characteristic of cell proliferation mechanisms, tau phosphorylation that promotes MAPK
activation could promote cell cycle activation mechanisms. In neurons, the activation of
the cell cycle leads to cell death, suggesting that abnormally phosphorylated tau can be
a toxic species. The relationship between tau oligomerization and its ability to potentiate
MAPK activation needs to be determined.

Keywords: tau, MAPK activation, phosphorylation, signal transduction, NGF

INTRODUCTION
The existence of tau pathology occurs in many age-related neu-
rodegenerative diseases that are now termed“tauopathies.”Among
these diseases, Alzheimer’s disease (AD) is the most prevalent and
it has been suggested that the presence of tau is critical for dis-
ease progression (1, 2). Neurodegenerative diseases caused by both
missense and intronic mutations in the tau gene have indicated
the ability of tau to cause disease [reviewed by Ref. (3–5)]. How-
ever, the mechanism by which tau leads to neurodegeneration is
unknown. For instance, whether there is a loss of function or a gain
of toxic function remains controversial. In considering the role of
different tau species during neurodegeneration, hyperphosphory-
lated tau, and tau filaments have long been investigated. Evidence
suggesting that neurofibrillary tangles were not a toxic species
came from data indicating that tau-induced behavioral deficits
could be improved without changing the tangle burden (6). In
fact, neuronal loss did not correlate with neurofibrillary pathology
(7). Also, in Drosophila and C. elegans, tau-induced neurodegen-
eration occurred in the absence of neurofibrillary tangles (8, 9).
Most recently, the investigation of tau oligomers has suggested that
they may have an early role in neurodegeneration. Tau oligomers
correlate with cellular abnormalities (10–12) and neurodegenera-
tive disease (13–16). However, the molecular mechanism by which
tau oligomers cause toxicity has not been clearly demonstrated. In
addition, in these studies, the tau oligomers were composed of
phosphorylated tau, making it difficult to isolate the effects of
oligomerization from those of phosphorylation.

Tau phosphorylation is required for its neurotoxic effects (17,
18) and as tau is hyperphosphorylated early in the disease process,
it is not surprising that tau oligomers would be formed from phos-
phorylated tau. Therefore, in determining if tau oligomers have
specific function, one could also first determine the function of
abnormally phosphorylated tau, then ask if that tau was in the
form of oligomers. Recently, we found that tau has the ability to
potentiate NGF-induced MAPK activation and that phosphoryla-
tion on Thr231 was critical for the activity (19). Since this activity
was seen within 3 h after NGF addition, our data identified a new
role for tau in signal transduction processes that take place during
neuronal differentiation. At the same time, as Thr231 is phospho-
rylated early during neurodegeneration (20), it raised the question
of whether this new tau activity had a role in neurodegeneration.
To further probe the relationship between tau phosphorylation
and its ability to potentiate MAPK activation, here we investigate
the effects of additional phosphorylated sites, focusing on sites rel-
evant to AD. We also investigate the effects of alternative splicing
on the ability of tau to affect MAPK activation.

MATERIALS AND METHODS
CELL CULTURE
PC6-3 cells (21) were cultured on collagen (BD Biosciences) coated
dishes using RMPI 1640 medium with 10% horse serum and 5%
fetal bovine serum. D5 cells, a stable PC6-3 cell line with stable
over-expression of the 0N3R isoform of human tau, and rTau4
cells, a PC6-3 cell line with stable expression of hairpin RNAi
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targeting endogenous rat tau, were previously described (19).
Media for stable cell lines was supplemented with 200 µg/ml G418.

MAPK REPORTER ASSAYS
MAPK activation was measured by a luciferase reporter assay as
described by Leugers and Lee (19). The ability of tau mutants
to influence NGF-induced MAPK activation was studied by co-
transfecting tau plasmids with the MAPK reporter plasmids. Tau
plasmids used were pRc/CMV-0N3R, pRc/CMV-0N3R-S214D,
pRc/CMV-0N3R-S404D, pRc/CMV-0N3R-S396D/S404D, pRc/
CMV-0N3R-S202D, pRc/CMV-0N3R-S199D/S202D, pRc/CMV-
0N4R, pRc/CMV-0N4R-S202D, pRc/CMV-0N4R-S199D/S202D,
pRc/CMV-1N3R, pRc/CMV-2N3R, pRc/CMV-1N4R, and pRc/
CMV-2N4R. (0N3R, 0N4R, etc., denote tau isoforms where
0N3R contains 352 residues with no amino terminal inserts and
three microtubule binding repeats; 2N4R contains 441 residues
with two amino terminal inserts and four microtubule binding
repeats, etc.). Mutant tau plasmids with phospho-mimicking S
to D mutations were constructed using site-directed mutagenesis
(Stratagene, Inc.); sequences were confirmed by DNA sequencing.

TAU DETECTION IN CELL LINES
D5 cells were grown with or without NGF for 30 min and then har-
vested in RIPA buffer with protease and phosphatase inhibitors
(19). After rocking at 4° for 20 min, lysates were centrifuged
20 min. Supernatants were added to an equal volume of 2×
Laemmli sample buffer and boiled 5 min. Cell lysate samples
were subject to SDS-PAGE and transferred to PVDF membranes.
Membranes were probed with anti-phospho-Ser214-tau (Invit-
rogen, Inc.), PHF1 (22), AT8 (23), Tau5 (24), Tau12 (25), or
anti-GAPDH (Chemicon, Inc.). Signal was visualized using ECL
(Western Lightning Plus-ECL, Perkin Elmer, Inc.).

RESULTS AND DISCUSSION
To examine MAPK activation, PC6-3 cells, a PC12-derived cell
line (21), were treated with NGF. To probe tau function, we
used the rTau4 cell line, a PC6-3-derived cell line that expressed
a hairpin shRNA that selectively down-regulated the expres-
sion of endogenous rat tau without affecting the expression of
human tau mediated by transfection (19). In tau-depleted rTau4,
NGF-induced MAPK activation was attenuated and the addi-
tion of wild-type human tau (0N3R) was able to significantly
restore MAPK activity after growth factor treatment (19). More-
over, a phospho-mimicking mutation at Thr231 brought further
increases to MAPK activation while a Thr to ala mutation at
Thr231 showed a dominant negative effect on MAPK activation
(19). This led us to conclude that tau phosphorylation at Thr231
was required for the effect of tau on MAPK signaling. Based on
these findings, and the fact that tau can undergo phosphorylation
at a number of sites during early brain development (26) or during
neurodegeneration (27), we further investigated the effects of tau
phosphorylation on MAPK activation.

To select tau phosphorylation sites to test, we sought sites that
were modified in both AD and in the PC6-3 cells. We chose to
examine Ser214, Ser396/Ser404, and Ser199/Ser202, all of which
are known to be phosphorylated in AD. While tau phosphorylation
in NGF-treated PC12 cells has been examined, NGF treatments

greater than 24 h were often used and we were interested in ear-
lier time points as our focus was on signal transduction rather
than neurite outgrowth. To assess the phosphorylation of both
endogenous rat tau and exogenously expressed human tau (0N3R),
we utilized the previously described PC6-3-derived cell line D5,
that stably expresses human tau (19). In both undifferentiated
cells and cells stimulated with NGF, we observed phosphoryla-
tion at Ser199/Ser202, detected by AT8, as well as phosphorylation
at Ser396/Ser404, detected by PHF1 (Figure 1). NGF treatment
was performed for 30 min and no further changes in the level of
phosphorylation at these sites were observed for up to 3 h (data
not shown). The phosphorylation at Ser396/Ser404 was found to
occur in both rat tau and human tau species and the addition
of growth factor appeared to slightly increase the level of phos-
phorylation. Phosphorylation at Ser199/Ser202 was also observed
in both rat and human tau and did not appear to change upon
NGF addition. In contrast, phosphorylation at Ser214 appeared
increased after NGF induction (Figure 1). Our previous data had
shown that phosphorylation at Thr231 also increased after NGF
induction (19). These data indicate that these tau sites are being
phosphorylated in PC6-3 cells.

To examine MAPK activation, we tested a panel of phospho-
mimetic mutations at these tau phosphorylation sites. In advance
of measuring MAPK activation, protein produced by each plasmid
was visualized by western blotting in order to confirm that equiv-
alent amounts of each protein was being expressed in each exper-
iment (Figure 2A). In this way, differences in MAPK activation
would be attributed to protein identity rather than protein quan-
tity. In each experiment, WT tau was expressed in the tau-depleted
rTau4 cells as control. When expressing 0N3R human tau with
a phospho-mimicking mutation at Ser214 (S214D, Figure 2B),
we observed a significant attenuation of MAPK activation rela-
tive to WT tau. Next, we tested phosphorylation at Ser404 using
S404D and observed a trend of reduction in MAPK signaling
(Figure 2C), indicating that phosphorylation at this site might
also impair the ability of tau to enhance MAPK signaling. As
phosphorylation at Ser404 often occurred in conjunction with
phosphorylation at Ser396 (22, 26, 27), we also tested a double

FIGURE 1 | Phosphorylated tau is expressed in PC6-3 cells. Serum
starved D5 cells were stimulated with 50 ng/ml NGF for 30 min. Cells were
harvested as described in Section “Materials and Methods.” Following
SDS-PAGE, immunoblotting was performed with antibodies as indicated,
total tau being probed by Tau5 and human tau by Tau12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels are shown as
a loading control. Arrowhead indicates human tau; the less abundant rat tau
was visualized with Tau5.
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FIGURE 2 |Tau phosphorylation modulates the effect of tau on
NGF-induced MAPK signaling. rTau4 was transfected with MAPK
reporter system plasmids and tau plasmid indicated. Thirty-six hours after
transfection, NGF was added 3 h prior to cell harvest. (A) To assure equal
tau expression in transfections to be assayed in (B–F), lysates from rTau4
cells transfected under identical conditions were probed with Tau13.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels are shown
as a loading control. (B–F) Fold-MAPK reporter increase was calculated
as previously described (19). (*p < 0.05; **p < 0.005; ***p < 0.001).
Data shown are mean+SE from three independent experiments; for
each experiment, transfections were performed in triplicate for each
condition.

mutant, S396D/S404D, and found MAPK signaling significantly
impaired relative to both control WT tau and S404D mutant
(Figure 2C). In addition, the phospho-mimicking substitution at
Ser202 was tested and we observed a trend of decreasing MAPK
activation (Figure 2D). The double mutant S199D/S202D was
also tested and we found a similar trend (Figure 2D). Together,
these findings identified several tau phosphorylation sites where
phosphorylation appeared to decrease the ability of 0N3R tau
to potentiate MAPK activation. Moreover, these findings indi-
cated that the ability of phospho-Thr231-tau to increase MAPK
activation was unique (Table 1).

Tau mutations that affect the alternative splicing of tau mRNA
can result in increased levels of 4R tau and cause neurodegenera-
tive disease [reviewed in Ref. (28, 29)]. To determine if the isoform
identity could alter the ability of tau to affect MAPK signaling, we
tested different isoforms of tau for their ability to rescue MAPK
activation in rTau4. In comparing the abilities of the wild-type
0N3R and 0N4R tau to restore MAPK signaling, while significant
differences were not demonstrated, there was a trend showing that
0N4R tau had reduced activity (Figure 2F). In addition, in both
3R and 4R isoforms, we observed a trend of decreased MAPK
activation as the N-terminal inserts were added (Figure 2F). A
significant difference between the largest and smallest isoforms of
tau (2N4R vs. 0N3R tau) was observed (Figure 2F). These obser-
vations demonstrated that the effects of tau on MAPK signaling
may be modulated by alternative splicing.

Lastly, we compared the effects of the phospho-mimicking
substitutions on 0N3R and 0N4R tau. Comparing the effects
of S202D on 0N3R and 0N4R, we found that the mutation
inhibited MAPK signaling to a larger extent in 0N4R, where
a significant decrease occurred (compare Figures 2D,E). How-
ever, when the effects of the double mutant S199D/S202D were
compared between 0N3R and 0N4R, we found that while 0N3R

Table 1 | Phospho-mimicking mutations in 0N3R tau, tested for their

ability to potentiate MAPK activation.

Ability to potentiate

MAPK activation

Phospho-Ser214 (S214D)

−
→

Phospho-Ser202 (S202D) ↓

Phospho-Ser199/Ser202 (S199D/S202D) ↓

Phospho-Ser404 (S404D) ↓

Phospho-Ser396/Ser404 (S396D/S404D)

−
→

Phospho-Thr231 (T231D)

←
−

(Bolded larger arrows indicate a statistically significant difference relative to

non-phosphorylated tau; non-bolded smaller arrows indicate a trending result.)

S199D/S202D resembled 0N3R S202D in its ability to decrease
MAPK signaling (Figure 2D), 0N4R S199D/S202D appeared to
rescue MAPK signaling, yielding levels similar to wild-type 0N4R
tau (Figure 2E). These findings suggest that in 0N4R, while the
phosphorylation of tau at Ser202 decreased the ability of tau
to potentiate MAPK activation, additional phosphorylation at
Ser199 neutralized the effect, returning MAPK activation lev-
els to WT tau levels. These data indicated that the effect of
phosphorylation on NGF-induced signaling depended on the tau
isoform used.

Our data shows that phosphorylation differentially affected the
function of 3R and 4R tau isoforms. This result resembles pre-
vious data reported for the interaction between tau and the SH3
domain of Fyn, where we found that phosphorylation differen-
tially affected the equilibrium binding constant of 0N3R and 0N4R
tau for the SH3 domain of Fyn (30). For the Fyn SH3 interaction,
phosphorylation at Ser199/Ser202 or at Ser396/Ser404 increased
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the binding of 0N4R to the Fyn SH3 domain whereas phospho-
rylation at Ser199/Ser202 decreased the binding of 0N3R to the
Fyn SH3 (phosphorylation at Ser396/Ser404 did not affect the
binding of 0N3R to Fyn SH3). While the details of the effects
of phosphorylation are not similar, both the SH3 binding data
and the MAPK activation data demonstrate that phosphoryla-
tion differentially affected the function of 0N3R and 0N4R tau
isoforms. Such findings might help explain why disease could
be caused by overexpressing 4R tau relative to 3R tau. In our
data, we noted that phosphorylation at Ser199/Ser202 on 4R
tau resembled WT tau in its ability to potentiate MAPK signal-
ing whereas the similar modification on 3R tau reduced MAPK
activation.

During development, tau phosphorylation changes, with phos-
phorylation at Ser199, Ser202, Ser214, and Ser404 first increasing,
then decreasing while phosphorylation at Thr231 and Ser396
remained unchanged (31). The expression of 4R tau was also
up-regulated during development as 0N3R tau was the only tau
isoform expressed in fetal brain while the remaining isoforms were
expressed in an adult specific manner (32). In our experimental
system where NGF was added to initiate neuronal differentiation,
phosphorylation could either potentiate or attenuate MAPK acti-
vation [Figure 2, Ref. (19)]. Phosphorylation at two sites (Ser214
and Ser396/Ser404) significantly down-regulated activation while
that at one site (Thr231) up-regulated activation. Therefore, the
exact effects of phosphorylation would depend on the quan-
tity of specific phosphorylated tau forms present. This, in turn,
would depend on the rate of phosphorylation and dephospho-
rylation of tau at specific sites. However, the spatial localization
of the various phosphorylated species may also be important.
Since we measure MAPK activation in a transfected cell, it is
possible that the spatial localization of the tau expressed by trans-
fection may not duplicate that of the endogenous tau. If the
ability of tau, expressed by transfection, to affect MAPK activa-
tion was dependent on a spatial localization not duplicated by
endogenous tau, caution needs to be exercised in the interpreta-
tion of our results. Nevertheless, a critical role for tau in MAPK
activation was confirmed by our experiments where ERK1/2 acti-
vation was examined without the transfection of MAPK reporter
plasmids (19).

Our tests have investigated the ability of disease-related tau
phosphorylation to affect the ability of tau to upregulate MAPK
signaling. Among the sites we have investigated, Thr231 was the
site whose phosphorylation occurred earliest during neurode-
generation (33, 34). Phosphorylation at Ser262/Ser356 occurred
next, with Ser214 close behind; phosphorylation at Ser199/Ser202
and Ser396/Ser404 accumulated latest during neurodegeneration
(33). Therefore, as tau phosphorylation changed during disease
progression, tau function would similarly change. Our data sug-
gested that phospho-Thr231-tau would potentiate MAPK acti-
vation and since phospho-Thr231 occurred early during the
neurodegenerative process (20), one could speculate that MAPK
activation would also occur. Data reporting the presence of acti-
vated ERK1/2 in pretangle neurons and in Braak stage I–III
brains (35) supports the hypothesis that phospho-Thr231-tau
may potentiate MAPK activation early in the neurodegenerative

process. Then, as tau phosphorylation changed during the neu-
rodegenerative process, the capacity for tau to potentiate MAPK
activation would also change. Phosphorylation at Ser262/Ser356
would not affect MAPK activation (19) whereas phosphoryla-
tion at Ser214 and Ser396/Ser404 would lead to a decrease in
the ability of tau to upregulate MAPK activation (Figure 2).
In tauopathies where the level of 4R tau was increased, the
isoform change alone might decrease MAPK activation. How-
ever, one could also speculate that the phosphorylation of 4R
tau, for instance at Ser199/Ser202, could lead to an increase in
MAPK activation, relative to that conducted by similarly phos-
phorylated 3R tau forms. To further investigate the relationship
between tau phosphorylation and MAPK activation during neu-
rodegeneration, tauopathy mouse models and/or human post-
mortem brain tissue would be probed for phospho-Thr231-tau
and activated MAPK. Using immunocytochemistry, if activated
MAPK only appeared in the same neurons that were positive for
phospho-Thr231 tau, this would suggest that phosphorylation of
tau at Thr231 was related to MAPK activation. One would also
look for a correlation between activated MAPK and phospho-
Ser199/Ser202 in 4R tau isoforms, in addition to a correlation
between phospho-Ser214-tau (or phospho-Ser396/Ser404) and a
reduction in activated MAPK.

The activation of MAPK can occur in signal transduction path-
ways where cell proliferation is upregulated [reviewed by Ref.
(36, 37)]. Therefore, increasing the activation of MAPK could
cause an increase in cell cycle activation. In Drosophila, the abil-
ity of tau to cause neurodegeneration was shown to involve cell
cycle components (17). Our data supports the hypothesis that tau
can potentiate cell cycle mechanisms. In a post-mitotic neuron,
the activation of cell division would lead to neurodegeneration
[reviewed by Ref. (38)].

It is not known whether tau participates in signal transduc-
tion in adult neurons. Gene expression in the tau-depleted mouse
was compared to that of WT mouse, using microarray analysis
of 8-week-old mice (39). In the tau-depleted mouse, the genes
with the highest increase in expression were FosB and c-fos [see
Supplemental Data in Ref. (39)]. Since MAPK activation drives
fos activation, our data leads us to speculate that the tau-depleted
mouse had increased fos expression as a compensatory measure.
Since the comparison had used an 8-week-old mouse, it is pos-
sible that tau was also necessary for signal transduction in the
adult.

While it is clear that phosphorylated tau can form oligomers,
we have not determined if the tau that upregulates MAPK acti-
vation is a monomer, dimer, trimer, or oligomer. Moreover, the
mechanism by which tau affects NGF signaling is under inves-
tigation. The ability of proteins to form dimers during signal
transduction processes is not unusual and in some cases, dimer
formation is linked to phosphorylation. It would be important
to determine if tau dimerization or oligomerization occurred
in the same manner as disease-related phosphorylation, where
dimerization or oligomerization would occur normally during
development, then become down-regulated in the adult. If tau
oligomers are found during normal development, the toxicity of
tau oligomers during neurodegeneration may be related to specific
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tau oligomer functions that were inappropriate or abnormal for
adult neurons.
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In normal adult brain the microtubule associated protein (MAP) tau contains 2–3 phos-
phates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic
protein. The normal brain tau interacts with tubulin and promotes its assembly into micro-
tubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold
hyperphosphorylated.The abnormally hyperphosphorylated tau binds to normal tau instead
of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers
can be sedimented at 200,000×g whereas the normal tau under these conditions remains
in the supernatant.The abnormally hyperphosphorylated tau is capable of sequestering not
only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule
network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau
oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro
dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyper-
phosphorylation of the PP2A-AD P-tau with more than one combination of tau protein
kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau
readily self-assembles into paired helical filaments. Missense tau mutations found in fron-
totemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by
promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of
tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick
disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation
of tau.

Keywords: microtubule associated protein tau, abnormal hyperphosphorylation of tau, O-GlcNAcylation of tau,
protein phosphatase 2A, alternate splicing of tau, Alzheimer neurofibrillary degeneration, Alzheimer disease,
tauopathies

In Alzheimer disease (AD) the oligomer states of Aβ and tau
pathologies are believed to cause the neurodegeneration. Oligomer
is an intermediate stage between monomer and a large polymer. It
consists of a relatively small and identifiable number of monomers,
which is usually 3–10 in the case of most proteins. Unlike a poly-
mer, if one of the monomers is removed from an oligomer, its
chemical properties are altered. Protein oligomers may be formed
by the polymerization of a number of monomers or the depoly-
merization of a large protein polymer. Protein polymerization is
employed by the cell to perform several useful functions, such
as neurofilaments and actin filaments serve as cytoskeleton of a
neuron and maintain the cell shape. Microtubules that are poly-
mers of tubulin facilitate axoplasmic flow, a vital function of a
neuron. Some protein polymerization reactions are very efficient
and almost all the protein in the cell is seen as polymers, as is
the case with neurofilaments. In contrast, microtubule assembly
and disassembly are extremely dynamic to meet the axoplasmic
transport needs of a neuron. The oligomers of neurofilaments
and microtubules are apparently very short-lived and are, to date,
of no known deleterious consequence.

In AD, Aβ and, in the case of tau also in tauopathies, the
protein polymerization is apparently employed as a detoxifying
process to get rid of the toxic protein oligomers, which seem to
stay in the diseased brain and have been isolated and studied.

Tau oligomerization is increasingly being suspected as a prion-
like phenomenon. This article, which is an update of our previous
article on this subject (1), discusses the tau oligomers seen in AD
brain and how they differ from Aβ and PrP oligomers.

In human brain tau is alternatively spliced into six isoforms
and the ratio of the 3-repeat: 4-repeat protein is altered in differ-
ent tauopathies. The alternative splicing of human tau pre-mRNA
results in six molecular isoforms of the protein (2). These six tau
isoforms differ in containing three (3R) or four (4R) microtubule
binding repeats (R) of 31–32 amino acids in the carboxy-terminal
half and one (1N) or two (2N) amino-terminal inserts (N) of 29
amino acids each; the extra repeat in 4R tau is the second repeat
(R2) of 4R taus. This alternative splicing of tau pre-mRNA results
in the expression of three 3R taus (0N3R, 1N3R, 2N3R) and three
4R taus (0N4R, 1N4R, 2N4R). The 2N4R tau is the largest size
human brain tau with a total of 441 amino acids (tau441) in length.
The smallest size tau isoform, which lacks both the two amino-
terminal inserts and the extra microtubule binding repeat (0N3R;
tau352) is the only isoform that is expressed in fetal human brain.
Tau has little secondary structure; it is mostly random coil with β

structure in the second and third microtubule binding repeats.
In a normal mature neuron almost all tau is bound to micro-

tubules; tubulin is present in over 10-fold excess of tau. The
concentration of tau in a neuron is ∼2 µM (3, 4) and it binds
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to microtubules at a kd (dissociation constant) of ∼100 nM (5).
Overexpression of tau causes microtubule bundling in cultured
cells. However,neither in AD nor in any tauopathy has microtubule
bundling been reported.

Neurofibrillary degeneration not only is seen in AD and Down
syndrome (DS) but also in a family of related neurodegener-
ative diseases called tauopathies. These include frontotemporal
dementia with Parkinsonism linked to chromosome 17 (FTDP-17)
caused by tau mutations, Pick disease, corticobasal degeneration,
dementia pugilistica, and progressive supranuclear palsy. In every
one of these tauopathies the neurofibrillary pathology is made up
of abnormally hyperphosphorylated tau and these pathological
changes in the neocortex are associated with dementia; in a large
number of supranuclear palsy cases the tau pathology in the brain
stem is associated with motor dysfunction.

OLIGOMERIZATION OF TAU AND HOW IT DIFFERS FROM
THAT OF Aβ AND PrP
In 1986 we discovered that not only Alzheimer neurofibrillary
tangles were made up from abnormally hyperphosphorylated tau
protein (6) but also the altered tau was present in AD brain
cytosol and was responsible for the inhibition of microtubule
assembly (7). In subsequent studies we showed that the cytosolic
AD abnormally hyperphosphorylated tau (AD P-tau) sequestered
some of the normal tau and sedimented at 200,000× g, whereas
most of the non-hyperphosphorylated tau from the same AD
brains remained in the 200,000× g supernatant (8, 9). The AD
P-tau showed up as globular particles by negative stained electron
microscopy (Figure 1). The sedimentable AD P-tau is increasingly
being referred to as the oligomeric tau or granular tau (10). In situ
demonstration of oligomeric tau seen immunohistochemically as
amorphous aggregates in the neuronal cytoplasm was described
at “stage 0” tangles for the first time by Bancher et al. (11). Bio-
chemical analysis of AD P-tau sedimented from AD brain showed
that it co-sedimented some of the non-hyperphosphorylated tau,
suggesting that the AD P-tau oligomers are hetero-oligomers of
hyperphosphorylated and non-hyperphosphorylated tau (8). Fur-
thermore, normal tau was found to co-aggregate with and promote
the aggregation of AD P-tau into filaments (12). As much as 40%

FIGURE 1 | Electron micrograph showing tau oligomers from an
Alzheimer disease brain negatively stained with phosphotungstic acid.

of abnormally hyperphosphorylated tau in AD brain is seen as AD
P-tau (8).

Unlike normal tau which binds to tubulin and promotes its
assembly into microtubules, the AD P-tau, instead of interacting
with tubulin, binds to normal tau as well as MAP1 and MAP2,
and causes depolymerization of microtubules (9, 12, 13). In vitro
hyperphosphorylation of tau revealed that the oligomeric tau was
an intermediate stage between monomeric and filamentous state
because at 4–6 mol phosphate/mole protein it became oligomeric
and microtubule-assembly inhibitory whereas further hyperphos-
phorylation made it polymerize into filaments. Neither the in vitro
formed hyperphosphorylated tau filaments nor PHF isolated from
AD brains had any detectable effect on tau-promoted assembly of
microtubules (14–16). While normal tau promoted GTP bind-
ing to tubulin and its assembly into microtubules, the AD P-tau
inhibited this activity. AD-PHF had no effect on GTP binding
but on in vitro dephosphorylation it promoted GTP binding to
tubulin (17). On dephosphorylation with protein phosphatase
2A (PP2A) the AD P-tau oligomers are converted into normal-
like non-sedimentable protein that, like normal tau, promotes
microtubule assembly (9, 12, 18). PP2A was also found to dis-
sociate Alzheimer neurofibrillary tangles, releasing protein which
behaved like normal tau in promoting microtubule assembly (19).
Thus, the AD P-tau oligomerization is unique because it is solely
induced by abnormal hyperphosphorylation and is reversible on
dephosphorylation of the protein (20).

In the AD field the interest in oligomers started with the initial
report of Lambert et al. (21) who showed that diffusible, non-
fibrillar ligands from Aβ1–42 were potent central nervous system
toxins. Though Aβ oligomers are toxic, in contrast to tau oligomer-
ization, they are formed by the strong hydrophobic nature of this
peptide and this process is not initiated or promoted by phos-
phorylation. Similarly, the PrP oligomers are formed at acidic pH
and on removal of denaturants such as sodium dodecyl sulfate
or salt from the protein solution (22, 23). Unlike AD P-tau and
Aβ1–42 oligomers, the PrP filaments are the infective state and
their depolymerization into oligomers results in the loss of the
infectivity (24). Most recently PrP cellular has been reported to
promote the Aβ oligomerization (25).

ROLE OF O-GLcNAcylation IN TAU OLIGOMERIZATION AND
NEURODEGENERATION
In addition to phosphorylation, tau is also modified by O-
GlcNAcylation, a dynamic protein posttranslational modifica-
tion, by which O-linked β-N -acetylglucosamine (O-GlcNAc) is
transferred enzymatically from a UDP-GlcNAc donor to the
hydroxyl group of serine or threonine residues of proteins. In
contrast to glycosylation of secreted and membrane proteins,
which occurs in the endoplasmic reticulum and Golgi appara-
tus, O-GlcNAcylation modifies nucleocytoplasmic proteins and
is more like protein phosphorylation (26). O-GlcNAcylation and
phosphorylation sometimes occur at identical or proximal sites
of a protein and thus are reciprocal to each other. The crosstalk
between O-GlcNAcylation and phosphorylation has been impli-
cated to be essential for the control of vital cellular processes
and for understanding the mechanisms of certain diseases (27,
28). O-GlcNAcylation also serves as a sensor of intracellular
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glucose metabolism (29), because the UDP-GlcNAc donor for
O-GlcNAcylation is formed from glucose metabolism via the
hexosamine biosynthetic pathway.

Tau is highly modified by O-GlcNAc, on average, with four O-
GlcNAc groups per tau molecule at more than 12 serine/threonine
residues (30, 31). Five O-GlcNAcylation sites (Thr123, Ser208,
Ser238, Ser400, and one site at Ser409, Ser412, or Ser413) have
been mapped to date (32–34). We previously demonstrated that
inhibition of O-GlcNAcylation leads to hyperphosphorylation of
tau in cultured cells and in rat brain slices (31). Experimental
reduction of brain glucose metabolism leads to decreased O-
GlcNAcylation and increased phosphorylation of tau in vivo (27,
35), and inhibition of protein O-GlcNAcylation induces hyper-
phosphorylation of tau in rat brain (27). Furthermore, we dis-
covered that the global O-GlcNAcylation of proteins, especially
of tau, is decreased, which likely results from impaired brain
glucose metabolism, and that the decrease in O-GlcNAcylation
correlates to hyperphosphorylation of tau in AD brain (27).
Furthermore, hyperphosphorylated tau purified from AD brains
contains approximately five times less O-GlcNAc than normal tau
(27). Therefore, we postulate that tau pathology and neurodegen-
eration can be caused by impaired brain glucose metabolism via
the down-regulation of tau O-GlcNAcylation in AD (27).

O-GlcNAcylation may also inhibit tau oligomerization directly.
The fourth microtubule binding repeat of tau self-aggregates at a
slower rate in vitro when it is modified by O-GlcNAc at Ser356
than the unmodified counterpart, as determined by turbidity, pre-
cipitation assay, and electron microscopy (36). A recent study
showed that O-GlcNAcylation inhibits tau aggregation in rodents
(37). O-GlcNAcylation also modulates proteotoxicity in C. elegans
models of human neurodegenerative diseases (38, 39). Therefore,
decreased O-GlcNAcylation may promote tau-mediated neurode-
generation through promoting tau oligomerization directly and
also indirectly by inducing its abnormal hyperphosphorylation.

ABNORMAL HYPERPHOSPHORYLATION OF TAU CAUSES
NEURODEGENERATION AND COGNITIVE IMPAIRMENT
Protein phosphatase 2A accounts for ∼70% of the total tau
phosphatase activity in the brain (40). A cause of the abnor-
mal hyperphosphorylation of tau in AD and adults with DS
is a decrease in the brain PP2A activity (41–43). PP2A activ-
ity is negatively regulated by two inhibitor proteins, I1

PP2A and
I2

PP2A in a substrate-specific manner (44, 45). Both I1
PP2A and

I2
PP2A inhibit PP2A activity toward AD hyperphosphorylated tau

(46) and these inhibitors are predominantly localized in the hip-
pocampus and the cerebellum (47). I1

PP2A, which is also known
as PHAP-1, is a 239 amino acid long cytoplasmic protein (48).
I2

PP2A, also known as SETα, PHAP-II, and TAF1β, is primarily a
nuclear protein of 277 amino acids in length with an apparent
molecular weight of 39 kDa on SDS-PAGE (45, 49, 50). mRNA
and protein expression levels of both I1

PP2A and I2
PP2A are selec-

tively increased in the affected areas of AD brain. I2
PP2A, which

is a 39 kDa and a primarily nuclear protein, is selectively cleaved
at N175 into an amino-terminal (I2NTF) and a carboxy-terminal
(I2CTF) fragment and translocated from the neuronal nucleus to
the cytoplasm in AD brain (51). Both I2NTF and I2CTF interact
with the PP2A catalytic subunit PP2Ac and inhibit its activity
toward hyperphosphorylated tau (52). Transduction of the brains

of newborn rats with adeno associated virus serotype 1 vector car-
rying human I2CTF (53) or I2NTF and I2CTF transgenes was found
to induce AD-like abnormal hyperphosphorylation and aggrega-
tion of tau, a loss of neuronal plasticity, and cognitive impairment
in these animals at 5–12 months post-infection (54); however, no
neurofibrillary tangles or Aβ plaques were detected in the brains
of AAV1-I2NTF-CTF rats up until 13 months. These findings sug-
gest a deleterious role of the abnormally hyperphosphorylated
oligomeric tau.

The inhibitory activity of the non-fibrillized abnormally hyper-
phosphorylated tau has been confirmed in yeast, drosophila, and
in mouse models that express human brain tau. The expression
of the longest human brain tau (2N4R tau) in yeast produces
pathological phosphoepitopes, assumes a pathological conforma-
tion, and forms aggregates. These processes are modulated by
yeast kinases Mds1 and Pho85, orthologs of GSK-3β and cdk5
(55, 56). In yeast the aggregation of tau increases with increas-
ing hyperphosphorylation and the mobility in SDS-PAGE retards.
The hyperphosphorylated tau isolated from the stably transfected
yeast is able to assemble into filaments, and nucleate the assem-
bly of the normal non-phosphorylated tau. These yeast studies,
like those carried out previously using AD P-tau, suggest that the
hyperphosphorylated tau works as a nucleation factor that initiates
and promotes the aggregation of tau (12, 15).

In wild-type human tau- and mutated human tau-transgenic
Drosophila, the accumulation of the abnormally phosphorylated
tau in the absence of its fibrillization into neurofibrillary tan-
gles leads to neurodegeneration (57). In a P301L tau inducible
transgenic mouse model, cognitive improvement was observed
when expression of human tau, which became abnormally hyper-
phosphorylated, was suppressed although neurofibrillary tangles
continued to form, suggesting that the accumulation of the cytoso-
lic abnormally hyperphosphorylated tau, and not its aggregation,
was apparently involved in behavioral impairment in these animals
(58). Reduction of soluble Aβ and soluble abnormally hyperphos-
phorylated tau, but not soluble Aβ alone, was found to ameliorate
cognitive decline in 3xTg mice that express both plaque and tangle
pathologies (59). Furthermore, in vitro dephosphorylation of neu-
rofibrillary tangles disaggregates filaments and, as a result, the tau
released behaves like normal protein in promoting microtubule
assembly (19).

Hyperphosphorylation of tau, though not to the same level as
in AD, is not only associated with the disease as in tauopathies,
but is also employed by the neuron to down regulate its activ-
ity transiently and reversibly where required. For instance, during
development the level of tubulin in the brain is at its highest, i.e.,
almost 33% of total cytosolic protein, which is almost 1.5-fold the
critical concentration of 4 mg/ml tubulin required for its poly-
merization into microtubules (60). Probably to avoid microtubule
bundling, the fetal tau is transiently hyperphosphorylated during
development. However, the level of hyperphosphorylation of tau
in fetal brain is far less than that seen in AD brain. Similarly, anes-
thesia and hypothermia induced by hibernation in animals induces
transient hyperphosphorylation of tau (61–64). The molecular
mechanism of the transient hyperphosphorylation of tau observed
during development is, at present, not understood. However, dur-
ing hypothermia the activity of PP2A is transiently and reversibly
reduced and is believed to cause the hyperphosphorylation of
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tau (62, 63). In AD and DS the decrease in brain PP2A activity
apparently involves different molecular mechanisms, and occurs
in a non-transient and irreversible manner (41–43). It is the non-
reversible nature of the abnormal hyperphosphorylation of tau
in AD, DS, and related tauopathies which results in an involun-
tary slowing down of neuronal activity and a consequent chronic
progressive neurodegeneration and its clinical phenotype, the
dementia.

There is approximately as much tau in the somatodendritic
compartment as in the axon (65). In the somatodendritic com-
partment tau is associated with rough endoplasmic reticulum
and Golgi apparatus (7, 8, 66, 67). The abnormal hyperphos-
phorylation of tau and its accumulation in the somatodendritic
compartment in AD might have been responsible for the mor-
phological alterations of the RER and the Golgi apparatus and
the abnormal N-glycosylation of tau in AD (68–71). In AD brain
abnormally hyperphosphorylated tau, in addition to forming neu-
rofibrillary tangles, is associated with granulovacuolar changes (6,
72–74). Overexpression of tau, which results in its hyperphospho-
rylation, has been found to induce fragmentation of Golgi both in
neuronal cultures and in neurons in JNPL3 P301L tau-transgenic
mice (66). In P301S tau-transgenic mice, which show abnormal
hyperphosphorylation of tau, a selective decrease in mitochon-
dria and RER has been observed (75). The chronic accumulation
of the hyperphosphorylated tau as a misfolded protein in the ER
could cause neurodegeneration due to protracted ER stress (76).
Hyperphosphorylation of tau might also be involved in neurode-
generation through alterations of RER and Golgi and a consequent
reduction in RER and mitochondria.

In addition to abnormal hyperphosphorylation, truncation of
tau has been found in neurofibrillary tangles in AD and in mutated
tau overexpression transgenic mouse models [e.g., (77–82)]. Of all
the proteases that can cleave tau, the role of caspases has been stud-
ied the most (83, 84). Caspase 3 and caspase 6 cleave tau at D421
and D13, respectively, and treatment with Aβ can induce the D421
cleavage in cultured neurons (78, 80, 81). Truncation of tau, along
with its hyperphosphorylation, promotes its aggregation into fib-
rils (85, 86). Although only a small fraction of tau is truncated in
AD, the truncated protein can apparently recruit the full-length
protein to co-aggregate with it in both tau-transgenic rat and
mouse models (87, 88). To date, the bulk of the evidence suggests
the soluble hyperphosphorylated tau is neurotoxic and upstream
of truncation and aggregation of this protein into neurofibrillary
tangles [e.g., (89, 90)].

ROLE OF MUTATIONS AND ALTERNATIVE SPLICING OF TAU
IN NEURODEGENERATION
In FTDP-17 several mutations in tau co-segregate with the disease
(91–93). Four of these missense mutations, G272V, P301L,V337M,
and R406W, which have been most studied to date, all make tau a
preferable substrate for abnormal hyperphosphorylation in vitro
(94). Some of the tauopathies are associated with altered alternate
splicing of tau. In normal human brain the 3-repeat and 4-repeat
taus are expressed in 1:1 ratio.

In some of the FTDP-17 mutations, i.e., tauK257T (95), tauG272V

(96), tau∆K280 (97), tauE10+19, and tauE10+29 (98), and in Pick dis-
ease most of the tau is 3R isoforms due to the exclusion of axon 10

which codes for the second microtubule binding repeat (R2). In
contrast, in other FTDP-17 mutations, cortical basal degeneration
and progressive supranuclear palsy, most of the tau is 4R (99, 100).

How the imbalance of 3R tau/4R tau leads to neurofibrillary
degeneration and dementia is currently not understood. The 4R
taus bind microtubules more readily than 3R taus. Thus, a change
in 3R:4R ratio of 1:1 in tauopathies results in free tau that is
unbound to microtubules and free tau becomes a favorable sub-
strate for abnormal hyperphosphorylation (101). In DS brain an
increase in 3R:4R ratio combined with an extra copy of Dyrk1A,
which can hyperphosphorylate tau, results in tau pathology dur-
ing the fourth decade of life which is almost two decades earlier
than the average age of onset of AD (102, 103).

Hyperphosphorylation by brain protein kinases induces the
self-assembly of all six human brain tau isoforms into tangles
of PHF/SF under physiological conditions of protein concentra-
tion, ionic strength, pH, temperature, reducing conditions, and the
absence of any cofactor (9). The hyperphosphorylation of tau is
catalyzed by one or more combinations of the proline-directed
protein kinases (PDPKs) and non-PDPKs. Phosphorylation of
tau by non-PDPKs generally primes taus for hyperphosphory-
lation by PDPKs (20, 104–106). Tau isoforms in vitro might be
phosphorylated differentially. 2N4R tau is a more favorable sub-
strate for phosphorylation by rat brain protein kinases and is
phosphorylated faster and to a higher extent than 2N3R tau at
Thr181, Ser199, Ser202, Thr205, Thr212, Ser214, Thr217, Thr231,
Ser235, Ser262, Ser396, Ser404, and Ser422 (94). The differen-
tial phosphorylation of 3R and 4R taus involves a combination
of non-PDPKs and PDPKs because, GSK-3β alone phospho-
rylates tau isoforms similarly (107). Pseudophosphorylation of
seven GSK-3β phosphorylation sites S199, S202, T205, T231,
S235, S396, and S404, affects the aggregation of tau isoforms
differently; the pseudophosphorylation at these seven sites was
found to enhance arachidonic acid-induced polymerization of
0N4R tau while greatly inhibiting the aggregation of the 3R iso-
forms (108). Thus, phosphorylation generated by the same set
of kinases could be sufficient to increase the propensity of some
isoforms to aggregate while reducing the aggregation of others,
resulting in the differential isoform inclusion in pathological tau
aggregates (108).

Aggregation of tau isoforms is affected by the type of inducer
for aggregation used. Arachidonic acid induces 4R tau to polymer-
ize to a greater extent than 3R tau (107). 0N tau requires higher
concentration of arachidonic acid to get maximal polymerization.
The concentration of arachidonic acid for reaching a maximal
polymerization of 1N tau and 2N tau were reported to be sim-
ilar, suggesting addition of exon 3 containing isoforms does not
further reduce inducer concentrations needed for maximal poly-
merization (107). Similar results were obtained for the heparin
induction of tau isoform polymerization (107). The 2N4R tau
required less heparin inducer for maximal polymerization than
1N4R and 0N4R taus. Aggregation of six tau isoforms by thi-
azine red inducer was also reported in a tau isoform-dependent
manner. Tau exons 2 and 10 were found to promote aggrega-
tion, whereas exon 3 depressed it with its efficacy dependent on
the presence or absence of a fourth microtubule binding repeat
(109).
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FIGURE 2 | Abnormal hyperphosphorylation of tau promotes its
oligomerization and self-assembly into paired helical filaments, forming
neurofibrillary tangles. A protein phosphorylation/dephosphorylation
imbalance apparently caused by a decrease in protein phosphatase 2A (PP2A)
activity leads to abnormal hyperphosphorylation of tau in AD brain. The
abnormally hyperphosphorylated tau binds to normal tau (and not to tubulin)

and this sequestration leads to the disruption of microtubules and the
formation of oligomers which can be sedimented at 200,000×g; the tau
oligomers show up as granular structures by negative stain electron
microscopy. The abnormally hyperphosphorylated tau isolated from AD brain
cytosol readily self-assembles into paired helical filaments in vitro under
polymerizing conditions.

Alzheimer disease P-tau sequesters normal tau, MAP1, and
MAP2 and disassembles microtubules and that the dephospho-
rylation of AD P-tau eliminates this toxic property (9, 13). Tau
isoforms bind to AD P-tau deferentially. The binding of AD P-
tau to 4R tau tends to be greater than to the corresponding
3R tau and its binding to normal human recombinant tau was
found to be 2N4R > 1N4R > 0N4R and 1N4R > 1N3R > 0N3R
(110). AD P-tau interacts preferentially with the tau isoforms that
have the amino-terminal inserts and four microtubule binding
domain repeats and that hyperphosphorylation of tau appears to
be sufficient to acquire AD P-tau characteristics. Thus, lack of
amino-terminal inserts and extra microtubule binding domain

repeat in fetal human brain might be protective from Alzheimer’s
neurofibrillary degeneration.

CONCLUSION
In conclusion, in AD and related tauopathies the abnormal hyper-
phosphorylation of tau promotes its oligomerization (Figure 2).
The tau oligomers sequester normal tau as well as MAP1 and
MAP2 and can be separated from normal tau by sedimenta-
tion at 200,000× g. The abnormal hyperphosphorylation of tau
seen in AD is different from the normal and from the transient
hyperphosphorylation of this protein that occurs during develop-
ment, anesthesia, or hypothermia. The oligomeric cytosolic AD
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P-tau probably causes neurodegeneration by sequestering normal
MAPs and disrupting the microtubule network. Tau mutations
found in frontotemporal dementia may cause neurodegeneration
through promoting abnormal hyperphosphorylation of tau. AD
P-tau self-assembles into PHF/SF, forming neurofibrillary tangles.
Tau truncation found in AD brain promotes its self-assembly into
PHF/SF. Unlike AD P-tau, the tangles neither show any detectable
activity to sequester normal MAPs nor inhibit microtubule assem-
bly. Inhibition of abnormal hyperphosphorylation of tau offers
a promising therapeutic target for AD and related tauopathies.
Animal models that recapitulate various disease mechanisms seen
in AD and related tauopathies are no less valuable for preclin-
ical studies for drug development than transgenic mouse and

rat models in which one or more mutated human proteins are
overexpressed to produce Aβ plaques and/or tau neurofibrillary
tangles.
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