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Editorial on the Research Topic

Advances in Density Functional Theory and Beyond for Computational Chemistry

The rapid development of modern computational chemistry has led to a growing need to understand
the microscopic mechanisms determining the properties of molecular and solid materials at an
atomic level. The interactions between atoms and electrons are governed by the laws of quantum
mechanics; hence, accurate and efficient computational methods for solving the quantum-
mechanical equations are needed. The Kohn-Sham density functional theory (DFT) Hohenberg
and Kohn (1964), Kohn and Sham (1965) marks a decisive breakthrough in these efforts, and in the
past few decades DFT has made an unparalleled impact on a variety of interesting and challenging
problems in computational chemistry. The real forte of DFT is its favourable price and performance
ratio as compared with electron-correlated wave-function-basedmethods, such as theMøller–Plesset
perturbation theory Binkley and Pople (1975) or coupled cluster theory Čížek (1966). Thus, large-
scale molecular and solid systems can be studied by DFT with sufficient accuracy, thereby expanding
the predictive power inherent in electronic structure theory. As a result, DFT is now by far the most
widely used electronic structure method. Although 50 years have passed since the formulation of the
Kohn-Sham DFT, many open questions remain, including the mathematical issues in solving the
Kohn-Sham equations, the developments of more accurate and efficient density functionals, and
applying the DFT calculations to solve more scientific problems. This research topic focuses on
covering recent advances within the framework of DFT.

Computational chemistry methods have become increasingly important in recent years, as
manifested by their rapidly extending applications in a large number of diverse fields, such as
computations of molecular structures and properties, the design of pharmaceutical drugs and novel
materials, etc. In part as a result of this general trend, the size of the systems which can be
computationally studied has also increased, generating even further needs for large-scale
applications. This is because larger molecular systems show interesting phenomena and have
important implications in modern biochemistry, biotechnology, and nanotechnology. Thus, it is
of great importance to apply and further develop computational methods which provide physically
sound models for large molecules at a reasonable computational cost. A representative approach is
the linear scaling technique Goedecker (1999), which owns a computational cost that scales linearly
O(N) with the size of the system. The linear-scaling DFT is an area of active research in
computational chemistry, with the performances improve steadily over the years, especially on
parallel high-performance machines. Historically, linear-scaling implementations were restricted to
basic ground state energy and electron density calculations, but this has also improved in recent years
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with geometry optimizations and molecular dynamics (MD)
becoming available. Moreover, recent developments of
machine learning algorithms enable the large-scale MD
simulations with ab initio accuracy, and has been applied to a
variety of applications Jia et al. (2020). This research topic aims to
report the state-of-the-art computational methods in several of
the important questions related to the family of linear scaling
methods.

A deep understanding of the excitations in molecules and
solids are of fundamentally importance in many technological
applications. There is already a rich set of theoretical and
simulation methods for excited-state calculations, such as the
GW plus Bethe-Salpeter equation Hedin (1965), time-dependent
density functional theory (TDDFT) Runge and Gross (1984) and
many-body coupled cluster (CC) theory Čížek (1966).
Unfortunately, these post-Hartree-Fock and excited state
methods for electronic excitations are all subject to
computational bottlenecks, which are far more severe than
those affecting the standard calculations of the ground-state
energy, not only because of the system size, but also because
the large number of excited states that need to be considered. A
major difficulty for treating excited complex systems arises from
the different nature of the various competing excited electronic
states. For example, the localized neutral and delocalized charge
transfer excitons, as a result of the relatively large length scale.
Therefore, this research topic also aims to cover developments of
novel electronic structure algorithms and scalable computational
methods for excited states of complex systems.

The past several decades have witnessed tremendous strides in
the capabilities of computational chemistry simulations, driven in
large part by the extensive parallelism offered by powerful
computer clusters and scalable programming methods on high
performance computing (HPC) Hu et al. (2021), Kowalski et al.
(2021). However, such massively parallel simulations increasingly
require more advanced algorithms to achieve satisfactory
performance across the vastly diverse ecosystem of modern
heterogeneous computer systems. The design of efficient
parallel codes proves to be difficult: the diversity of involved
data structures and algorithms, as well as the frequently occurring
inherent sequential control propose enormous challenges to
efficiently use of a large number of processors. This research
topic also focuses on the developments of more effective
computational methods by use of high performance parallel
computing.

This editorial sums up the contents of our Research Topic
“Advances in Density Functional Theory and Beyond for
Computational Chemistry” and a total of nine original
research contributions have been included in this article
collection, involving linear-scaling density functional theory,
multiple scattering theory, ab initio molecular dynamics, deep
potential model, hybrid and double-hybrid functional theory,
second-order Møller–Plesset perturbation theory, coupled cluster
theory and high performance computing.

Linear-scaling DFT Goedecker (1999) is an efficient method to
yield the structural and electronic properties of molecules,
semiconductors, and insulators to avoid the high cubic-scaling
cost in conventional DFT calculations. Luo et al. described an

efficient parallel implementation of linear-scaling density matrix
trace correcting purification algorithm Niklasson (2002) to solve
the Kohn–Sham equations with numerical atomic orbitals in the
HONPAS Qin et al. (2015) package. The authors have performed
large-scale DFT calculations on boron nitrogen nanotubes
containing tens of thousands of atoms, which can scale up to
hundreds of processing cores on modern heterogeneous
supercomputers.

The Korringa–Kohn–Rostoker Green’s function method
Korringa (1947), Kohn and Rostoker (1954), also known as
multiple scattering theory (MST) Lloyd and Smith (1972),
provides equivalent information as solving the Kohn-Sham
equation by employing the single-particle Green’s function
Economou (2006). Cao et al. investigated a reduced scaling
full-potential DFT method based on the multiple scattering
theory code MuST Rusanu et al. (2011). A significant
advantage of the MST method is the reduced scaling in the
calculations of metallic systems. The MST method shows the
potential to simulate more complicated materials on massively
parallel supercomputers and provides a reliable and accessible
way to large-scale first-principle simulations of metals and alloys.

AIMD (ab initio molecular dynamics) has been extensively
employed to explore the dynamical information of electronic
systems. However, it remains extremely challenging to reliably
predict electronic properties of systems with a radical nature
using first-principles DFT calculations due to the presence of the
static correlation. To address this challenge, Li and Chai proposed
TAO-DFT (thermally-assisted-occupation density functional
theory) with AIMD to explore the dynamical properties of
nanosystems with a radical nature at finite temperatures. A
variety properties of n-acenes (n � 2–8) at 300 K are presented
including the instantaneous/average radical nature and infrared
spectra of n-acenes containing n linearly fused benzene rings
(n � 2–8).

Predicting crystal structure has been a challenging problem,
which requires a reliable energy calculation engine and an
efficient global search algorithm. Machine learning based
inter-atomic potential energy surface models such as the deep
potentials Jia et al. (2020) owns the DFT accuracy and the speed
of empirical force fields and can be used as an energy calculator.
Wang et al. employed the deep potential model to predict the
intermetallic compound of the aluminum–magnesium system,
and found six meta-stable phases with negative or nearly zero
formation energy. The authors proposed a relatively robust
structure screening criterion that selects potentially stable
structures from the Deep Potential-based convex hull and
performs DFT refinement. By using this criterion, the
computational cost needed to construct the convex hull with
ab initio accuracy can be dramatically reduced.

Accurate prediction of quasiparticle and excitation energies
has been very challenging for ground-state density functional
methods since the commonly adopted density functional
approximations suffer from the delocalization error. Yang
et al. propsed a new method which presumed a quantitative
correspondence between the quasiparticle energies and the
generalized Kohn–Sham orbital energies. Furthermore, the
authors employed a previously developed global scaling
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correction approach to achieve substantially improved prediction
of molecular quasiparticle and excitation energies.

Interpretation of spectroscopic experiments is challenging
because the results are affected by the interplay of stereo-
electronic, dynamic and environmental effects. The work of
Barone et al. showed that the last-generation hybrid and
double-hybrid functionals Biczysko et al. (2010), which are
described by partially augmented double- and triple-zeta basis
sets, provided unprecedented accuracy for medium-size semi-
rigid molecules under the framework of the second order
vibrational perturbation theory.

The second-order Møller–Plesset perturbation theory (MP2)
Binkley and Pople (1975) is a post-Hartree–Fock approach to
taking the electron correlation effect into account. Despite its
simple form, the MP2 method captures around 90% of the
correlation energy Bartlett and Stanton (1994), but the O(N5)
computational scaling of the original (canonical) MP2 method
has limited the application of the MP2 method in large systems.
Shang and Yang implemented the canonical and Laplace-
transformed algorithms to calculate the MP2 perturbation
theory for the total energy and the band gap of periodic
systems under periodic boundary conditions in HONPAS Qin
et al. (2015) code with numerical atomic orbitals. The MP2
correction energy and band gaps presented in the work are in
excellent agreement with the results of the canonical MP2
formulation. Moreover, the authors studied the binding-energy
curves for the two stacked transpolyacetylene chains and
demonstrated that the new method well describe the
correlation energy and the long-range van derWaals interactions.

The coupled cluster (CC) theory Čížek (1966) has become one
of the most accurate ab initio methods to yield the electronic
structure information. Yang et al. presented a Newton Krylov
method Knoll and Keyes (2004) for solving the coupled cluster
equation. This new method used a Krylov subspace iterative
method, such as the Generalized Minimum Residual (GMRES)
method Saad and Schultz (1986), to compute the Newton
correction to the approximate coupled cluster amplitude.

Numerical results demonstrate the effectiveness and robustness
of the Newton Krylov method not only for standard CCSD
calculations but also for tailed CCSD calculations where the
information for external correction is obtained from a density
matrix renormalization group (DMRG) calculation Schollwöck
(2005).

Williams-Young et al. proposed a three-level parallelism
scheme for the distributed numerical integration of the
exchange-correlation potential in the Gaussian basis set
discretization of the Kohn–Sham equations on large
computing clusters consisting of multiple graphics processing
units (GPU) per compute node. They demonstrated that the
performance and scalability of the implementation of the
purposed method in the NWChemEx Kowalski et al. (2021)
software package by comparing to the existing scalable CPU
exchange-correlation integration in NWChem. The results show
that the speedups are between 10× and 100× as compared to the
analogous CPU implementation in NWChem.

The above article collection demonstrates that the DFT
methods have broad impacts on a variety of subjects in
computational chemistry and related disciplines. In
conjunction with high-performance computation and
machine-learning techniques, the DFT framework undergoes
another round of fast developments. It can be expected that
more accurate DFT approaches with more efficient algorithms
will be available in the near future.
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Čížek, J. (1966). On the Correlation Problem in Atomic and Molecular Systems.
Calculation of Wavefunction Components in Ursell-Type Expansion Using
Quantum-Field Theoretical Methods. J. Chem. Phys. 45, 4256–4266.
doi:10.1063/1.1727484

Economou, E. N. (2006).Green’s Functions in QuantumPhysics, Vol. 7. Springer, Berlin,
Heidelberg: Springer Science & Business Media. doi:10.1007/3-540-28841-4

Goedecker, S. (1999). Linear Scaling Electronic Structure Methods. Rev. Mod. Phys.
71, 1085–1123. doi:10.1103/RevModPhys.71.1085

Hedin, L. (1965). New Method for Calculating the One-Particle Green’s Function
with Application to the Electron-Gas Problem. Phys. Rev. 139, A796–A823.
doi:10.1103/PhysRev.139.A796

Hohenberg, P., and Kohn,W. (1964). Inhomogeneous Electron Gas. Phys. Rev. 136,
B864–B871. doi:10.1103/physrev.136.b864

Hu, W., Qin, X., Jiang, Q., Chen, J., An, H., Jia, W., et al. (2021). High Performance
Computing of DGDFT for Tens of Thousands of Atoms Using Millions of Cores
on Sunway TaihuLight. Sci. Bull. 66, 111–119. doi:10.1016/j.scib.2020.06.025

Jia, W., Wang, H., Chen, M., Lu, D., Lin, L., Car, R., et al. (2020). Pushing the Limit
of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with
Machine Learning. Proc. Int. Conf. High Perform. Comput. Networking, Storage
Anal. 5, 14. doi:10.1021/ct100212p

Knoll, D. A., and Keyes, D. E. (2004). Jacobian-free Newton-Krylov Methods: a
Survey of Approaches and Applications. J. Comput. Phys. 193, 357–397.
doi:10.1016/j.jcp.2003.08.010

Kohn, W., and Rostoker, N. (1954). Solution of the Schrödinger Equation in
Periodic Lattices with an Application to Metallic Lithium. Phys. Rev. 94,
1111–1120. doi:10.1103/PhysRev.94.1111

Kohn, W., and Sham, L. J. (1965). Self-consistent Equations Including Exchange
and Correlation Effects. Phys. Rev. 140, A1133–A1138. doi:10.1103/
physrev.140.a1133

Korringa, J. (1947). On the Calculation of the Energy of a Bloch Wave in a Metal.
Physica 13, 392–400. doi:10.1016/0031-8914(47)90013-X

Kowalski, K., Bair, R., Bauman, N. P., Boschen, J. S., Bylaska, E. J., Daily, J., et al.
(2021). From NWChem to NWChemEx: Evolving with the Computational

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7057623

Hu and Chen Editorial: Advances in Density Functional Theory

6

https://doi.org/10.3389/fchem.2020.584203
https://doi.org/10.3389/fchem.2020.589992
https://doi.org/10.3389/fchem.2020.590184
https://doi.org/10.3389/fchem.2020.581058
https://doi.org/10.1002/9780470125823.ch2
https://doi.org/10.1021/ct100212p
https://doi.org/10.1002/qua.560090204
https://doi.org/10.1063/1.1727484
https://doi.org/10.1007/3-540-28841-4
https://doi.org/10.1103/RevModPhys.71.1085
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1016/j.scib.2020.06.025
https://doi.org/10.1021/ct100212p
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1103/PhysRev.94.1111
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1016/0031-8914(47)90013-X
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chemistry Landscape. Chem. Rev. 121, 4962–4998. doi:10.1021/
acs.chemrev.0c00998

Lloyd, P., and Smith, P. V. (1972). Multiple Scattering Theory in
Condensed Materials. Adv. Phys. 21, 69–142. doi:10.1080/
00018737200101268

Niklasson, A. M. N. (2002). Expansion Algorithm for the Density Matrix. Phys.
Rev. B 66, 155115. doi:10.1103/PhysRevB.66.155115

Qin, X., Shang, H., Xiang, H., Li, Z., and Yang, J. (2015). HONPAS: A Linear
Scaling Open-Source Solution for Large System Simulations. Int. J. Quan.
Chem. 115, 647–655. doi:10.1002/qua.24837

Runge, E., and Gross, E. K. U. (1984). Density-functional Theory for Time-
dependent Systems. Phys. Rev. Lett. 52, 997–1000. doi:10.1103/
PhysRevLett.52.997

Rusanu, A., Stocks, G. M., Wang, Y., and Faulkner, J. S. (2011). Green’s Functions
in Full-Potential Multiple-Scattering Theory. Phys. Rev. B 84, 035102.
doi:10.1103/PhysRevB.84.035102

Saad, Y., and Schultz, M. H. (1986). GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat.
Comput. 7, 856–869. doi:10.1137/0907058

Schollwöck, U. (2005). The Density-Matrix Renormalization Group. Rev. Mod.
Phys. 77, 259–315. doi:10.1103/RevModPhys.77.259

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hu and Chen. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7057624

Hu and Chen Editorial: Advances in Density Functional Theory

7

https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1021/acs.chemrev.0c00998
https://doi.org/10.1080/00018737200101268
https://doi.org/10.1080/00018737200101268
https://doi.org/10.1103/PhysRevB.66.155115
https://doi.org/10.1002/qua.24837
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevB.84.035102
https://doi.org/10.1137/0907058
https://doi.org/10.1103/RevModPhys.77.259
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH
published: 23 October 2020

doi: 10.3389/fchem.2020.584203

Frontiers in Chemistry | www.frontiersin.org 1 October 2020 | Volume 8 | Article 584203

Edited by:

Wei Hu,
Lawrence Berkeley National
Laboratory, United States

Reviewed by:

Igor Ying Zhang,
Fudan University, China

Honghui Shang,
Chinese Academy of Sciences, China

*Correspondence:

Vincenzo Barone
vincenzo.barone@sns.it

Specialty section:

This article was submitted to
Theoretical and Computational

Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 16 July 2020
Accepted: 17 August 2020

Published: 23 October 2020

Citation:

Barone V, Ceselin G, Fusè M and
Tasinato N (2020) Accuracy Meets
Interpretability for Computational

Spectroscopy by Means of Hybrid
and Double-Hybrid Functionals.

Front. Chem. 8:584203.
doi: 10.3389/fchem.2020.584203

Accuracy Meets Interpretability for
Computational Spectroscopy by
Means of Hybrid and Double-Hybrid
Functionals
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Accuracy and interpretability are often seen as the devil and holy grail in computational

spectroscopy and their reconciliation remains a primary research goal. In the last

few decades, density functional theory has revolutionized the situation, paving the

way to reliable yet effective models for medium size molecules, which could also be

profitably used by non-specialists. In this contribution we will compare the results of

some widely used hybrid and double hybrid functionals with the aim of defining the

most suitable recipe for all the spectroscopic parameters of interest in rotational and

vibrational spectroscopy, going beyond the rigid rotor/harmonic oscillator model. We

will show that last-generation hybrid and double hybrid functionals in conjunction with

partially augmented double- and triple-zeta basis sets can offer, in the framework of

second order vibrational perturbation theory, a general, robust, and user-friendly tool

with unprecedented accuracy for medium-size semi-rigid molecules.

Keywords: quantum chemistry, density functional theory, rotational spectroscopy, vibrational spectroscopy,

benchmark, atmospheric molecules, astrochemical molecules

1. INTRODUCTION

Spectroscopic techniques are unique tools to non-invasively probe the properties of complex
molecular systems in a variety of environments and conditions. In fact, the increasing
sophistication of well-established techniques like nuclear magnetic and electron paramagnetic
resonance (NMR and EPR), microwave (MW), infrared (IR), Raman, visible (Vis), ultra-violet
(UV), or fluorescence and the parallel blooming of new ones, e.g., vibrational, electronic, and
magnetic circular dichroism (VCD, ECD, and MCD), Raman optical activity (ROA), circularly
polarized luminescence (CPL), multi-photon and time-resolved methods have a huge impact in
several fields of science and technology (He et al., 2007; Barone, 2012; Berova et al., 2012; Tasinato
et al., 2015; Sugiki et al., 2017; Lane, 2018). In addition to being widely used to infer information
about molecular structure and dynamics in both gas and condensed phases (Sugiki et al., 2017;
Puzzarini and Barone, 2018), spectroscopy allows for the unequivocal identification of chemical
species in hostile environments, e.g., the interstellar space (Baiano et al., 2020), or in samples
of unknown composition (He et al., 2007; Lindon et al., 2017; Lane, 2018) and plays a pivotal
role in the study of photochemical mechanisms in biological systems and in the development
of new technological devices, including photovoltaic cells, optoelectronic devices, eco-sustainable
solutions, UV-resistant materials, dyes, and fluorescent probes (Berova et al., 2012; Drummen,
2012; Lindon et al., 2017; Lane, 2018). Unfortunately, interpretation of experimental data is often
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a difficult task: the observed spectroscopic behavior results
from the subtle interplay of stereo-electronic, dynamic and
environmental effects, whose specific roles are difficult to
disentangle. Furthermore, although conveying additional
information, spectral congestion makes quantitative
interpretation of experimental data even more difficult. To
disentangle these complex signatures and disclose the underlying
molecular properties, detailed molecular simulations are crucial
(Barone, 2012). The last decade has witnessed an increasing
interaction between experiment, theory, and simulation in the
field of molecular spectroscopy and in all related applications.
These have revealed the need of computational tools and
theoretical methods not only to interpret the spectra, but also
to design new experiments that would be impossible or very
expensive to perform in a blind way. The widespread use of
computational techniques in many areas of science and by
an ever increasing number of non-experienced users (e.g.,
experimental chemists) has prompted the development, in
our group, of the Virtual Multifrequency Spectrometer (VMS,
http://dreamslab.sns.it/vms/) (Barone, 2016). VMS features
two interconnected tools: VMS-Draw (Licari et al., 2015) and
VMS-Comp (Barone et al., 2012), the former providing a
user-friendly, graphical user interface to pilot the latter, which
is in charge of computationally intensive tasks. VMS-Comp
includes a wide set of algorithms and calculation options
and it allows the user to predict with remarkable accuracy
many types of spectroscopic data for a vast range of molecular
systems and environments (Zerbetto et al., 2013; Licari et al.,
2017; Presti et al., 2017). Further developments are, however,
needed to deal with new and more sophisticated experimental
techniques (Quack and Merkt, 2011; Lane, 2018). For small
semi-rigid molecules, the accuracy of state-of-the-art quantum
mechanical (QM) methods often rivals that of experimental
techniques, but extension to large flexible systems (not to
mention condensed phases) faces a number of difficulties (even
within the Born-Oppenheimer approximation) ranging from
the very unfavorable scaling of those methods with the number
of active electrons to the proper description of flat potential
energy surfaces (PESs) with stationary points that are ill defined
(Puzzarini et al., 2019a).

A possible route to obtain accurate results, even for relatively
large molecular systems (a few dozens of atoms), is provided
by hybrid QM/QM′ models, which combine accurate quantum-
mechanical (QM) calculations of “primary” properties (e.g.,
molecular structures or harmonic force fields) with cheaper yet
reliable electronic structure approaches (QM′) for “secondary”
properties (e.g., vibrational corrections or anharmonic effects).
At the same time, computation of spectroscopic parameters
often requires purposely tailored basis sets, whose selection
must be based on extensive benchmarks. Finally, the customary
rigid rotor (RR) / harmonic oscillator (HO) approximation is
not sufficient for quantitative work and more advanced models
must be employed. In the last few years, the second-order
vibrational perturbation theory (VPT2) (Mills, 1972; Papoušek
and Aliev, 1982; Aliev and Watson, 1985) has been exploited
with considerable success for semi-rigid molecules of increasing
dimensions. However, the identification of resonances in VPT2

treatments remains a daunting task due to the arbitrariness
of their definition and their indirect influence on the energy
and intensities. This leads to two distinct issues: finding the
true resonances and then correcting them appropriately. The
resonance conditions are strongly related to the quality of the
electronic structure calculation, but they also depend on the
coupling between the potentially resonant states. The most
obvious solution is to combine perturbative and variational
models, with the generalized (G)VPT2 model offering a very
good accuracy-to-cost ratio not only for energies, but also
for transition moments (Bloino et al., 2012). In recent years,
we have implemented analytical second derivatives for double-
hybrid functionals (Biczysko et al., 2010), general equations
for Abelian and non-Abelian symmetry groups (Piccardo et al.,
2015a), and full treatment of intensities for all conventional
(IR, Raman) and chiral (VCD, ROA) vibrational spectroscopies
up to three-quanta excitations (Bloino et al., 2015). These
features compose, together with the particular care devoted
to robustness, ease of use, and computational efficiency, the
mandatory background for systematic evaluations of all the
spectroscopic parameters beyond the rigid-rotor/harmonic-
oscillator level for medium- to large-size semi-rigid molecules.
Next, together with further developments for the treatment of
flexible molecules (Puzzarini et al., 2019b), the selection of the
most effective electronic structure models remains a central issue
of computational spectroscopy. Here, the ongoing developments
of methods rooted in the density functional theory (DFT)
come into play. For microwave and vibrational spectroscopic
applications, global hybrid density functionals (DFs), such as
B3LYP (Lee et al., 1988; Becke, 1993) coupled to a polarized
double-zeta basis set supplemented by a set of sp diffuse
functions (hereafter B3) can deliver the accuracy required for the
interpretation of the vibrational characteristics of medium and
large molecules beyond the harmonic approximation for both
transition frequencies and intensities. An increased accuracy,
at the price of a more demanding computational loading, is
brought by the double-hybrid B2PLYP functional (Grimme,
2006) in conjunction with partially augmented triple-ζ basis sets
(hereafter B2). In fact, it has been shown that B2 calculations
of vibrational frequencies and intensities can reach an average
accuracy often within 10 cm−1 and a few km mol−1, respectively
(Biczysko et al., 2010; Puzzarini et al., 2019a; Boussessi et al.,
2020a), thus performing equally to, or even better than, the
CCSD(T)/cc-pVTZ approach. Concerning the prediction of
rotational spectroscopic parameters, the same B2/B3 approach
has been validated in several studies concerning rotational
constants (Spada et al., 2017a; Li et al., 2018) together with quartic
centrifugal distortion parameters (Tasinato, 2014; Boussessi et al.,
2020a) and, very recently, also for sextic centrifugal distortion
parameters (Pietropolli Charmet et al., 2017; Boussessi et al.,
2020b).
In the present work, hybrid and double-hybrid density
functionals of the “last-generation” are analyzed to check if
they provide improved performances with respect to the B3
and B2 paradigms. This is particularly significant since the
improved performances for thermochemistry, kinetics and non-
covalent interactions could have been obtained at the price of
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FIGURE 1 | Molecules in the benchmark set.

worsening other parameters of particular relevance for rotational
and vibrational spectroscopy of closed- and open-shell species
(Puzzarini et al., 2010). In parallel, the accuracy of different
partially augmented correlation consistent basis sets is analyzed
with the aim of defining the best choice in terms of the cost-
to-accuracy ratio. We will consider, in particular, equilibrium
geometries, ground state rotational constants and quartic
centrifugal distortion constants, harmonic and anharmonic
vibrational wavenumbers and IR intensities. The benchmark
study is carried out on a set of ten molecules of atmospheric and
astrochemical relevance, reported in Figure 1, which includes:
difluoromethane (CH2F2) (Carlotti et al., 1988; Tasinato et al.,
2012b; Piccardo et al., 2015b), chlorofluoromethane (CH2ClF)
(Blanco et al., 1995; Pietropolli Charmet et al., 2013), cis-
1-chloro-2-fluoroethene (cis-ClHC=CHF) (Craig et al., 1970;
Alonso et al., 1993; Gambi et al., 2002; Piccardo et al.,
2015b), 1-chloro-1-fluoroethene (ClFC=CH2) (Leung et al.,
2009; Pietropolli Charmet et al., 2016; Gambi et al., 2019),
chlorotrifluoroethene (F2C=CFCl) (Hillig et al., 1988; Tasinato
et al., 2012a), oxirane (cyc-C2H4O) (Russell and Wesendrup,
2003; Flaud et al., 2012; Medcraft et al., 2012; Lafferty
et al., 2013; Puzzarini et al., 2014a; Piccardo et al., 2015b),
glycolaldehyde (HOCH2CHO) (Carroll et al., 2010; Johnson
et al., 2013; Piccardo et al., 2015b; Boussessi et al., 2020a),
E-ethanimine (CH3CHNH) (Melli et al., 2018), sulfur dioxide
(SO2) (Flaud et al., 1993; Mller and Brnken, 2005; Tasinato
et al., 2010; Boussessi et al., 2020a), and the gauche conformer
of ethyl mercaptan (CH3CH2SH) (Smith et al., 1968; Wolff and
Szydlowski, 1985; Miller et al., 2009; Kolesnikov et al., 2014;
Puzzarini et al., 2014b; Hochlaf et al., 2015).

2. COMPUTATIONAL METHODOLOGY

Quantum chemical calculations at the DFT level were carried
out using some hybrid and double-hybrid density functional
approximations of the last generation, which are considered the
best performing and transferable according to a very recent
benchmark (Peveratti, 2020). Among hybrid functionals, the
PW6B95 meta exchange-correlation functional proposed by
Zhao and Truhlar (2005) and the ωB97 family of long-range
corrected functionals introduced by Chai and Head-Gordon

(Chai and Head-Gordon, 2008a,b), namely ωB97, ωB97X and
ωB97X-D, were considered in conjunction with aug-cc-pVDZ
(Dunning, 1989; Kendall et al., 1992; Woon and Dunning,
1993) and jul-cc-pVDZ (Papajak et al., 2011) double-ζ basis
sets. For the PW6B95 functional, calculations were also carried
out by using the jun-cc-pVDZ basis set (Papajak et al., 2011).
The rev-DSD-PBEP86 double-hybrid density functional, recently
proposed by Martin and coworkers (Santra et al., 2019), was
employed together with the aug-cc-pVTZ and jun-cc-pVTZ
basis sets. Indeed, triple-ζ basis sets in conjunction with the
B2PLYP double-hybrid functional (Grimme, 2006) have been
demonstrated to provide accurate predictions of geometries,
rotational spectroscopic parameters and vibrational properties
(Biczysko et al., 2010; Penocchio et al., 2015; Spada et al.,
2017b; Tasinato et al., 2017; Boussessi et al., 2020a,b). Both
PW6B95 and rev-DSD-PBEP86 were augmented for dispersion
correlation through the Grimme’s DFT-D3 scheme (Grimme
et al., 2010) with Becke-Johnson damping (Grimme et al.,
2011), even if the bare PW6B95 functional can already provide
a satisfactory description of dispersion forces (Tasinato and
Grimme, 2015). Since tight d functions are important for a
quantitative representation of the electronic structure of second-
row elements, partially augmented basis sets, namely aug-/jul-
/jun-cc-pV(n+d)Z, including an additional set of d functions,
were employed for sulfur and chlorine atoms. These basis
sets were downloaded from the Basis Set Exchange library
(Pritchard et al., 2019). At each level of theory, geometries
were first optimized and then harmonic vibrational frequencies
were computed by means of analytical Hessian matrices. While
details for the calculation of analytical second-order derivatives
of double-hybrid density functionals can be found in Biczysko
et al. (2010), here it is only mentioned that their evaluation
requires the full derivatives of the correlation contribution to
the one-particle density matrix, γ x. Its occupied-occupied and
virtual-virtual blocks depend on the products of second-order
perturbation amplitudes and amplitude derivatives, whereas
the occupied-virtual block can be found from the solution of
the so-called derivative Z-vector equations, that involve the
derivatives of the MP2 Lagrangian. The cubic and semi-diagonal
quartic force constants, and the second and third derivatives
of the dipole moment surface were calculated by numerical
differentiation of analytic quadratic force constants and dipole
moment first derivatives, respectively. These quantities were then
employed for the computation of rotational and vibrational
spectroscopic parameters beyond the RR/HO approximation. In
particular, quartic centrifugal distortion constants, vibrational
contributions to rotational constants and vibrational frequencies
were derived in the framework of second-order vibrational
perturbation theory (Mills, 1972; Papoušek and Aliev, 1982;
Barone, 2005; Bloino et al., 2012). In order to tackle the problem
of resonances plaguing the anharmonic vibrational frequencies,
the generalized second-order vibrational perturbation theory
(GVPT2) was adopted, in which the (near-) singular terms are
removed from the perturbative summations of anharmonicity
constants and transition dipole moments (leading to the so called
deperturbed approach, DVPT2) and the energy levels coupled
by the resonances are treated in a second step by a proper
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variational calculation of reduced dimensionality (Mills, 1972;
Martin et al., 1995; Barone, 2005). All DFT calculations were
carried out by using the Gaussian 16 suite of programs (Frisch
et al., 2016), which was also employed for the perturbative
treatment of the anharmonic force field in the framework of
a general VPT2 engine. The latter, in addition to performing
the calculation of anharmonic vibrational energies according to
various flavors of VPT2 (namely, DVPT2, GVPT2 and the so-
called hybrid-degeneracy corrected PT2, HDCPT2), allows the
computation of transition integrals for a number of spectroscopic
techniques (IR, Raman, VCD), from which the corresponding
anharmonic transition intensities can be derived (Bloino et al.,
2012, 2015). In addition, it should be noted that recently the
VPT2 framework has been coupled to a 1-dimensional discrete-
variable-representation (1D-DVR) approach for the treatment
of molecular systems presenting one large-amplitude vibration
(Baiardi et al., 2017), which has been applied to the simulation of
the IR spectrum of the methyl-cyclopropenyl cation (Puzzarini
et al., 2019b). The 1D-DVR method is currently implemented
in the development version of the Gaussian code and it will be
included in the next releases of the software, yet it is not required
for simulating the spectroscopic properties of the molecules
considered in this work, all being semi-rigid systems. Since rev-
DSD-PBEP86 is not among the Gaussian built-in functionals,
it has been defined by setting proper IOP flags on top of the
DSD-PBEP86 functional.

3. RESULTS AND DISCUSSION

The performance of last-generation density functionals (DFs)
for applications in the field of rotational and vibrational
spectroscopy is investigated in relation to (a) equilibrium
geometry, (b) rotational spectroscopic parameters, i.e., ground
state rotational constants and quartic centrifugal distortion
parameters, (c) harmonic vibrational frequencies and IR
intensities, and (d) fundamental anharmonic wavenumbers and
IR integrated absorption cross sections. The computed data are
benchmarked against values determined experimentally and, in
addition, they are also compared to high-level CCSD(T)-based
results taken from the literature. Statistical indicators, such as
mean deviation (MD), mean absolute deviation (MAD) and
mean absolute percentage deviation (MAD%) are used to assess
the accuracy of the different model chemistries. For comparison
purposes, B3LYP/SNSD results as well as those obtained by
the B2PLYP functional in conjunction with cc-pVTZ, aug-cc-
pVTZ and may′-cc-pVTZ [i.e., may-cc-pVTZ (Papajak et al.,
2009) with d functions removed from hydrogen atoms] basis
sets, obtained in a previous work (Boussessi et al., 2020a), are
also reported.

3.1. Equilibrium Geometry
Theoretical equilibrium geometries have been benchmarked
against semi-experimental equilibrium structures that, in view
of their high accuracy, represent optimal reference values to test
the predictive power of new computational approaches. TheMDs
and MADSs obtained for bond lengths and bond angles over the

whole set of molecules are reported in Figures 2A,B, respectively,
while the results obtained for each molecule can be found in
Supplementary Tables 1–20. All the hybrid DFs well describe
the equilibrium geometries, with MADs within 0.01 Å and 0.35◦

for bond lengths and bond angles, respectively. Interestingly,
both the ωB97 family and the PW6B95 functional yield more
accurate equilibrium geometries than the B3LYP/SNSD model,
that during the last years, has been proposed as a good tradeoff
between accuracy and computational cost to predict the structure
and spectroscopic properties of medium- to large-size molecules.
However, it should be noted that for the functionals belonging
to the ωB97 family this improvement can be mainly attributed
to the use of additional polarization functions on second-row
atoms. In fact, for difluoromethane, oxirane, glycolaldehyde
and ethanimine bond lengths obtained from ωB97, ωB97X
and ωB97X-D functionals are in line with B3LYP/SNSD ones.
Significantly more accurate bond lengths are obtained for
molecules containing sulfur and chlorine atoms: in particular, it
should be noted that the description of the C-S bond length of
ethyl-mercaptan improves by one order of magnitude, and for
SO2 the deviation from the semi-experimental equilibrium value
for the S=O bond length decreases from 0.05 Å with the SNSD
basis set to about 0.01 Å employing the ωB97(X-D) functional
in conjunction with the aug-jul-cc-pV(D+d)Z basis sets. Similar
conclusions can be drawn for the S-H and C-Cl bond lengths
thus highlighting the importance of additional d functions for
second-row elements. The improvement brought by PW6B95
over B3LYP is more systematic, indeed, in conjunction with aug-
and jul-cc-pVDZ it attains lower deviations also for molecules
containing only first-row elements. Moving to double-hybrid
functionals, Figures 2A,B, demonstrate the good performance
of B2PLYP and rev-DSD-PBEP86 approximations that, when
coupled to triple-zeta basis sets, deliver an equivalent description
of bond lengths (withMADs around 0.0035 Å), whereas for bond
angles the rev-DSD-PBEP86 functional appears more accurate
than B2PLYP, with excellent MDs and MADs of 0.03 and
0.15◦, respectively.

3.2. Rotational Spectroscopic Parameters
Rotational constants are the leading terms for the prediction
of rotational spectra as they rule the frequencies of the
rotational transitions. While the rotational constants of the
equilibrium configuration are straightforwardly derived from the
equilibrium structure, for applications in the field of rotational
spectroscopy, vibrational effects must be included in order to
obtain the rotational constants of the molecule in a given
(usually the ground) vibrational state. Even though vibrational
corrections usually account only for∼1–3% of the total rotational
constant value, their inclusion is mandatory for quantitative
predictions of rotational spectra and, furthermore, it is necessary
for the comparison with experimentally determined rotational
constants. As well-known, ground state rotational constants,
(B0), are obtained by adding vibrational corrections, 1Bvib to
equilibrium rotational constants (Be):

Bi0 = Bie + 1Bivib = Bie −
1

2

∑

r

αi
r (1)

Frontiers in Chemistry | www.frontiersin.org 4 October 2020 | Volume 8 | Article 58420311

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Barone et al. DFT and Spectroscopy

FIGURE 2 | Mean deviation (MD) and mean absolute deviation (MAD) from

semi-experimental equilibrium structural parameters for (A) bond lengths and

(B) bond angles.

where the summation runs over all the normal modes of
vibration and the vibration-rotation interaction constants, αi

r ,
are evaluated in the framework of VPT2 (Mills, 1972). Their
computation requires to go beyond the RR/HO approximation
as they depend on the semi-diagonal cubic force field, i.e., the
third derivatives of the potential energy. Besides vibrational
effects, also centrifugal distortions need to be accounted for,
especially for predicting high-energy rotational transitions which
are of interest in e.g., astrophysical and atmospheric applications
of rotational and high-resolution IR spectroscopy. Given the
different orders of magnitude that rotational constants and
centrifugal distortion parameters can have, the performance of
the different levels of theory considered in this work can be more
conveniently evaluated by referring to percentage deviations.

3.2.1. Ground State Rotational Constants
Mean percentage deviations and mean absolute percentage
deviations from experimental ground state rotational constants
are reported in Figure 3A and the full list of results can be
found in Supplementary Tables 21–30. At first, it should be
noted that CCSD(T)-based computations, B3LYP/SNSD and
B2PLYP/triple-ζ levels of theory reproduce experimental values
with MAD%s around 0.8, 2.3, and 1%, respectively. However,
the average errors for CCSD(T) computations may be slightly

FIGURE 3 | Mean percentage deviation (MD%) and mean absolute

percentage deviation (MAD%) from experimental (A) ground state rotational

constants and (B) quartic centrifugal distortion constants.

overestimated due to the inaccuracy of the rotational constants
of cis-ClHC=CHF computed by a scaled-CCSD(T) force field, in
particular A0 which displays a deviation of −12% with respect
to the experimental value. Indeed, by discarding this molecule,
the global MD% and MAD% for CCSD(T)-based methods
drop to −0.1 and 0.3%, respectively. The last-generation DFs
examined in the present work provide excellent results in the
prediction of ground state rotational constants: indeed, the ωB97
family shows MD%s and MAD%s around 1% and the PW6B95
functional performs even better, the MAD% being around 0.6%
when coupled to the jun-cc-pVDZ and jul-cc-pVDZ basis sets
and 0.8% in conjunction with the aug-cc-pVTZ basis set. A
similar accuracy is delivered by the rev-DSD-PBEP86 double-
hybrid functional, whose MAD% of 0.7% slightly improves the
performance of the B2PLYP functional.

3.2.2. Centrifugal Distortion Constants
As shown in Figure 3B, quartic centrifugal distortion constants
are reproduced by hybrid DFs with MAD%s around 6–7%
independently of the functional or basis set employed (the full list
of results is reported in Supplementary Tables 31–40). Despite
the similar performance, the last generation DFs considered in
the present work perform slightly worse than the B3LYP/SNSD
model, with the exception of the PW6B95/jul-cc-VDZ level of
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theory, which yields almost the same MAD% as B3LYP (5.5%)
and a lower MD% (−2.0 vs. 3.2%), accompanied however by
larger fluctuations (from −46 to 38% for PW6B95/jul-cc-pVDZ,
in the −29 −19% range for B3LYP/SNSD). The rev-DSD-
PBEP86 functional reproduces the quartic centrifugal distortion
constants determined experimentally with a MD% and a MAD%
around−2.2 and 3.9%, respectively, which are very similar to the
scores of the B2PLYP functional in conjunction with augmented
triple-ζ basis sets (MD% = −1.6% and MAD% = 3.6%). In
passing, it should be noted that removal of diffuse functions
worsens the accuracy of the results by about 1%.
At this point a few remarks concerning the comparison between
experimental and theoretical centrifugal distortion constants are
deserved. First, it has to be noted that computed constants
refer to the equilibrium configuration of the molecule whereas
rotational spectroscopy measurements provide those of the
ground vibrational state. Even if the vibrational dependence of
centrifugal distortion parameters is expected to amount to a few
percent, it is an experimentally measurable quantity. However,
only a few studies have been devoted to the theoretical treatment
of vibrational effects on the centrifugal distortion (Watson, 2005).
Second, attention has to be paid in comparing theory and
experiment because measured centrifugal distortion constants
can be affected by both limited accuracy and shortcomings in
the fitting procedure used for their determination, as already
pointed out by Boussessi et al. (2020a,b) Indeed, during the fitting
procedure, centrifugal distortion constants may absorb the effects
of resonances not fully treated (in particular high-order Coriolis
or anharmonic interactions) that can be difficult to describe
properly within the ro-vibrational Hamiltonian employed for
inverting the measured transitions.

3.3. Harmonic Vibrational Properties
Since experimental harmonic vibrational frequencies are not
available except for a few very simple molecules, DFT predictions
are here benchmarked against CCSD(T) computations
performed either in conjunction with large basis sets or within
composite schemes. This comparison can be justified a posteriori
on the basis of the good agreement between high-level CCSD(T)
computations and experimental anharmonic wavenumbers
and integrated absorption cross sections, which imply an
accurate underlying harmonic force field. In the following
discussion, the gauche conformer of ethyl mercaptan has been
excluded from the data set in view of the huge discrepancies,
up to 113 cm−1, between CCSD(T)-F12 and experimental
fundamental wavenumbers as discussed in (Boussessi et al.,
2020a). MDs and MADs for harmonic vibrational wavenumbers
and IR intensities are shown in Figures 4A,B, respectively,
with the results for individual molecules being listed in the
Supplementary Tables 41–59. As it can be seen from Figure 4A,
concerning harmonic wavenumbers, among the functionals
belonging to the ωB97 family there is a steady improvement
of the performance on moving from ωB97, to ωB97X up to
ωB97X-D which, with a MAD of around 14 cm−1 and a MD very
close to zero, is the only one reaching an accuracy better than the
B3 model (MAD = 16 cm−1). The performance of the PW6B95
functional with different basis sets is similar to that of B3LYP in

conjunction with the SNSD basis set, with MADs between 15
and 17 cm−1 and MDs around 0.7 cm−1. On the other hand, the
rev-DSD-PBEP86 functional represents a slight improvement
over the already notable predictive power of the B2 model, being
able to reproduce CCSD(T)-based reference data with a MAD of
about 5 cm−1 to be compared with about 8 cm−1 at the B2PYLP
level. A different picture is obtained for harmonic IR intensities:
in fact, as shown in Figure 4B, all the hybrid functionals show
comparable accuracy with MADs around 5 km mol−1, the only
exception being PW6B95 in conjunction with the jun-cc-pVDZ
basis set, which provides poorer results. This is probably related
to the lack of diffuse d-functions in the basis set, whose role in
the computation of IR intensities is well-known: the MAD of 9
km mol−1 is indeed very similar to that obtained in Boussessi
et al. (2020a) for the B3LYP functional in conjunction with the
pcs-1 basis set, also lacking diffuse functions. Interestingly, also
for intensities the rev-DSD-PBEP86 functional, with a MAD
of 2.2 km mol−1 performs better than B2PLYP, whose MAD
in conjunction with the aug-cc-pVTZ basis set is around 3 km
mol−1 from reference CCSD(T)-based results. From the above
discussion, it can be concluded that, concerning the calculation
of vibrational frequencies and IR intensities within the double-
harmonic approximation, the ωB97X-D and PW6B95 hybrid
functionals can represent good alternatives to the B3LYP/SNSD
level of theory, and rev-DSD-PBEP86 in conjunction with
triple-ζ basis sets including diffuse functions appears even more
accurate than the already well-performing B2 model.

3.4. Beyond the Double-Harmonic
Approximation: Wave-Numbers and
Absorption Cross Sections
The performance of the DFs of the last generation considered in
this work for anharmonic fundamental frequencies are compared
in Figure 5 (Supplementary Tables 60–69 report the results
for each molecule). It is noted that, although CCSD(T)-based
computations reach a MAD of 8 cm−1, this result can be biased
by the disagreement between experimental transition frequencies
andCCSD(T)-F12/cc-pVTZ-F12 predictions previously reported
for gauche-CH3CH2SH. As to the B3 and B2 models, they
reproduce experimental observations with a MAD of 20 and
12 cm−1, respectively. In comparison, all the model chemistries
based on the ωB97 approximation, showing MADs between
26 and 36 cm−1 cannot compete with the B3LYP functional.
Given the similar results obtained for harmonic properties,
it is evident that the ωB97 DFs have problems with the
computation of higher order derivatives of the potential energy
(i.e., cubic and semi-diagonal quartic force constants). Some of
the anharmonic contributions computed for glycolaldehyde at
the ωB97X-D level are particularly disappointing: the harmonic
frequencies of ν6 and ν8 normal modes are predicted at about
1,445 and 1,305 cm−1, respectively, whereas at the ωB97X-
D/jul-cc-pVDZ anharmonic level they are shifted at 904 and
719 cm−1 (1,012 and 832 cm−1 when using the aug-cc-pVTZ
basis set). Even worse is the case of the ν12 vibration for
which the anharmonic corrections evaluated by using jul-cc-
pVDZ and aug-cc-pVDZ basis sets amount to −1,005 and
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FIGURE 4 | Mean deviation (MD) and mean absolute deviation (MAD) from

reference CCSD(T)-based theoretical values for (A) harmonic vibrational

frequencies, (B) harmonic infrared intensities.

−503 cm−1 thus resulting in a non-physical negative value
of the ν12 fundamental transition frequency. Conversely, the
PW6B95 DF turns out to be competitive with the B3 model,
reaching a comparable MAD of 18 cm−1 when employed in
conjunction with jul- and jun-cc-pVDZ basis sets and of 20 cm−1

together with the aug-cc-pVTZ basis set. Furthermore, recently
Kreienborg and Merten (2019) pointed out that carbon-fluorine
stretching vibrations are often strongly misplaced by common
hybrid functionals with the possible exception of the M06-2X
functional (restricting, however, the simulation to the double-
harmonic approximation). Nevertheless, while this functional
(and its predecessor M05-2X) predicts harmonic frequencies
not far from experimental fundamentals, it becomes unreliable
when anharmonic contributions are taken into the proper
account (Puzzarini et al., 2010; Tasinato, 2014; Tasinato et al.,
2018). Rather, it should be noted that the PW6B95 functional
yields a consistent description of anharmonic C-F stretching
frequencies, with deviations from experiment generally halved
with respect to those of the B3 model. In fact, by focusing
only on the C-F stretchings, the B3LYP/SNSD level of theory
presents a MAD (computed over seven values) of 34 cm−1 and
a maximum deviation of −50 cm−1, while the PW6B95 DF (in
conjunction with all the tested double-ζ basis sets) reproduces
the experimental values with a MAD around 15 cm−1 and

FIGURE 5 | Mean deviation (MD) and mean absolute deviation (MAD) from

experimental fundamental frequencies. MADs for the ωB97 family are out of

range.

a maximum error of about −25 cm−1. The rev-DSD-PBEP86
functional slightly improves over B2PLYP also for anharmonic
fundamental wavenumbers: indeed it reproduces experimental
data with a MD and a MAD around 2 and 8 cm−1, respectively,
in comparison to−1 and 12 cm−1 for the B2PLYP/aug-cc-pVTZ
level of theory.

Some remarks are in order about the accuracy in the
computation of IR integrated absorption cross sections (i.e., IR
band intensities). It should be noted that their experimental
determination is a daunting task prone to both systematic and
random errors, hence a careful control of the experimental
conditions and errors source needs to be performed during
the measurements. Therefore, to assess the accuracy of DFT
calculations, one must rely on precise experimental values, which
are available only for a reduced number of molecules among
those of the benchmark set, namely CH2F2, CH2ClF, ClFC=CH2,
ClFC=CF2, and SO2. Moreover, in view of the poor results
delivered by the ωB97-based functionals for anharmonic wave-
numbers, the attention for IR anharmonic intensities is focused
on PW6B95 and rev-DSD-PBEP86 DFs, whose performances are
shown in Figure 6 together with those of B3 and B2 models
(the full list of results is given in Supplementary Tables 70–74).
In passing it should be stressed that the accuracy reached for
integrated absorption cross sections depends on the reliability
of both the anharmonic potential energy and dipole moment
surfaces. In fact, when overlapping IR bands cannot be resolved at
the experimental level, the integration required for determining
band intensities is performed by considering all the absorptions
within a given spectral interval. Here, the same approach has
been mimicked at the theoretical level, i.e., the intensities of
all the bands predicted in a given (experimental) integration
range have been summed. As it can be seen, as for anharmonic
wavenumbers, PW6B95 in conjunction with the aug-cc-pVDZ or
jul-cc-pVDZ basis sets performs on par with B3LYP/SNSD, the
MDs and MADs being around 9 and 10 km mol−1, respectively.
Furthermore, as already pointed out for harmonic IR intensities,
the lack of diffuse d functions in the jun-cc-pVDZ basis set
results in a worsening of the predictions, thus highlighting
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the necessity of diffuse polarization functions for a reliable
description of the dipole moment surface. Moving to the double-
hybrid DFs, Figure 6 shows that, also for integrated absorption
cross sections, the rev-DSD-PBEP86 functional, with both MD
and MAD around 5 km mol−1, improves over B2PLYP that,
in turn, reproduces experimental measurements with a mean
absolute deviation ranging between 8 and 10 km mol−1 for the
different triple-ζ basis sets.

Finally, anharmonic vibrational properties have been
computed by a hybrid QM/QM′ approach featuring harmonic
frequencies and intensities calculated at the rev-DSD-
PBEP86/jul-cc-pVTZ level and anharmonic effects obtained
from PW6B95/jun-cc-pVDZ computations. The hybrid force
field obtained in this way simulates fundamental wavenumbers
with a MAD of 11 cm−1, thus showing a worsening of only 3
cm−1 in comparison to full rev-DSD-PBEP86 computations,
but still performing similarly to full B2 anharmonic predictions.
This result shows that the PW6B95/jun-cc-pVDZ level of theory
represents a reliable and cost-effective approach to compute
anharmonic corrections when employed in conjunction with
harmonic force fields obtained from the rev-DSD-PBEP86
functional. Conversely, PW6B95 should be used together
with the larger jul-cc-pVDZ basis set when performing full

FIGURE 6 | Mean deviation (MD) and mean absolute deviation (MAD) from

experimental integrated absorption cross sections for selected model

chemistries.

FIGURE 7 | Structures of (A) SO2 · · · (CH3)2S complex, (B) dimethyl sulfide,

and (C) cyc-(CH)C3H2 cation.

anharmonic computations in order to obtain reliable predictions
of band intensities.

3.5. New Model Chemistries at Work
The previous sections have shown that, among the hybrid
DFs of the last generation considered in this work, ωB97X-D
and PW6B95 in conjunction with either aug- or jul-cc-pVDZ
basis sets provide reliable predictions of equilibrium structures,
rotational parameters and harmonic vibrational properties,
sometimes even better than the well-tested B3 model. However,
when anharmonic effects come into play, all the functionals of
the ωB97 family yield unstable, sometimes disappointing, results.
Conversely, the PW6B95 functional performs similarly to the B3
model for both fundamental transition frequencie and integrated
absorption cross sections, provided that an additional set of d

TABLE 1 | Equilibrium structure of the SO2 · · ·S(CH3) 1:1 complexa.

rSEe
b B3LYP-

D3c
PW6B95-

D3d
B2PLYP-

D3e
rev-DSD-

PBEP86-D3f

r(S1-S2) 2.947 2.8672 2.8676 2.9257 2.9288

r(O1-S1) 1.446 1.4966 1.4579 1.4532 1.4499

r(C1-S2) 1.790 1.8244 1.7954 1.8040 1.8029

r(H1-C1) 1.089 1.0941 1.0949 1.0883 1.0911

r(H2-C1) 1.086 1.0915 1.0936 1.0864 1.0895

r(H3-C1) 1.087 1.0922 1.0926 1.0870 1.0901

6 (O1S1S2) 95.0 96.10 95.62 95.20 94.92

6 (C1S2S1) 91.7 91.20 91.88 91.27 91.52

6 (H1C1S2) 110.6 110.08 110.72 110.67 110.60

6 (H2C1S2) 107.3 106.91 107.01 107.14 107.25

6 (H3C1S2) 109.8 109.48 109.98 109.97 109.93

δ(O2S1S2O1) −118.2 −115.92 −117.51 −117.84 −117.86

δ(C1S2S1O1) 9.8 7.70 8.46 8.84 9.10

δ(H1C1C2S1) 27.2 21.71 26.60 26.06 27.91

δ(H2C1S2S1) −91.6 −96.87 −91.94 −92.56 −90.77

δ(H3C1S2S1) 149.5 144.27 149.41 148.63 150.37

aBond lengths in Å, angles in deg. For atom labeling see Figure 7.
bSemi-experimental equilibrium structure from Obenchain et al. (2018).
cEmployed in conjunction with the SNSD basis set.
dEmployed in conjunction with the jul-cc-pV(D+d)Z basis set.
eEmployed in conjunction with the may′-cc-pVTZ basis set. From Obenchain et al. (2018).
fEmployed in conjunction with the jun-cc-pV(T+d)Z basis set.

TABLE 2 | Equilibrium structure of hydrogen disulfidea.

PW6B95-D3/ rev-DSDPBEP86-D3/ SEb

jul-cc-pV(D+d)Z jun-cc-pV(T+d)Z

r(S-S) 2.0596 2.0609 2.0513 (3;7)

r(S-H) 1.3493 1.3422 1.3401 (14;32)

6 (HSS) 98.35 98.24 98.07 (2;3)

δ(HSSH) 90.73 90.63 90.72 (2;5)

aBond lengths in Å, angles in deg.
bSemi-experimental structure from Ye et al. (2020). Values in parentheses are the standard
deviation (first value) and the confidence interval at a 95% confidence level (second value).
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functions is employed on heavy elements, and in the case of
intensities, at least a basis set of the jul-cc-pVDZ quality is used.
Coming to double-hybrid functionals, the predictions of the rev-
DSD-PBEP86 model are better than, or at least similar to, their
B2 counterparts for both structural and rotational-vibrational
spectroscopic properties.
Given these premises, in this section the model chemistries
able of rivaling with the B2 and B3 paradigms are applied to
selected case studies in the field of structural determination and
IR spectroscopy. A convenient case-study for the first subject
is the complex formed by SO2 and dimethyl sulfide, (CH3)2S
(see Figure 7A), whose semi-experimental equilibrium structure
has been recently determined (Obenchain et al., 2018). Then,
the anharmonic IR spectrum of the cyclic-(CH)C3H

+
2 cation

(Figure 7C) has been simulated because of the astrophysical
interest of this molecule pointed out very recently by Westbook
et al. (2020).

The structural parameters of the equilibrium configuration of
the SO2 · · · (CH3)2S 1:1 complex evaluated by different DFs and
basis sets are compared in Table 1 with the semi-experimental
structure obtained by Obenchain et al. (2018). Inspection of
this table reveals that the B3 model reproduces bond lengths,
valence and dihedral angles with average absolute errors of 0.03
Å, 0.6 and 4◦, respectively. The PW6B95-D3/jul-cc-pV(D+d)Z
model chemistry delivers significantly improved results, almost
halving the deviations for bond lengths and valence angles and
showing an absolute average error for dihedral angles around
0.6◦. Concerning the B2PLYP-D3 (employed in conjunction
with the may′-cc-pVTZ basis set) and rev-DSD-PBEP86-D3 (in
conjunction with the jun-cc-pV(T+d) basis set) functionals, it
can be seen that, on average, they perform equally well for both
bond lengths (the mean absolute deviation over all the complex
bond lengths are 0.014 and 0.013 Å, respectively) valence (0.2 vs.

0.1◦) and dihedral (0.8 and 0.7◦) angles. It is also noteworthy
that the hybrid PW6B95-D3 functional reproduces the semi-
experimental structure of the complex with an accuracy that,
in spite of the considerably reduced computational cost, rivals
that of the B2 and rev-DSD-PBEP86 double-hybrids. In order
to understand whether the quite large deviation observed for
the inter-molecular S-S distance is due to an intrinsic inaccuracy
for S-S bonds or to an unbalanced treatment of inter-molecular
interactions, the equilibrium geometry of hydrogen disulfide,
HSSH (Figure 7B), has been computed at the PW6B95-D3/jul-
cc-pV(D+d)Z level and compared with the semi-experimental
structure recently reported by Ye et al. (2020). The obtained
structural parameters, detailed in Table 2, show deviations of 8
and 9 mÅ for the S-S and S-H bond lengths, respectively, and
of 0.3◦ for the HSS angle, while the HSSH dihedral is within
the uncertainty of the semi-experimental value. Since the SS
bond length of HSSH computed at PW6B95-D3 and rev-DSD-
PBEP86-D3 levels is very close, the worse performance of the
former functional for the SS distance in the complex is probably
related to the description of non-covalent interactions.

Moving to the vibrational properties of the cyc-(CH)C3H
+
2

cation, harmonic frequencies are listed in Table 3 while
anharmonic fundamental wavenumbers and IR intensities are
reported in Table 4. In both Tables the results obtained
by Westbrook et al. at the CCSD(T)-F12/aug-cc-pVTZ level
(Westbook et al., 2020) are also reported for comparison
purposes. In that work, the authors focused on the difficulties of
post-Hartree-Fock methods in describing out-of-plane bending
vibrations of molecules with C=C multiple bonds (especially,
but not only, aromatic systems), an issue that should be of
minor concern for DFT. For this reason, it is of some interest
to compare their CCSD(T)-F12 predictions with the present
DFT simulations. For hybrid DFs, the major differences with

TABLE 3 | Harmonic frequencies (in cm−1 ) and intensities (in km mol−1) for cyc-CHC3H
+
2 computed at different levels of theory.

ω Sym. B3/SNSD PW6/julDZ B2/junTZ rDSD/junTZ TZ/augVTZa MP2a

ω I ω I ω I ω I ω I

ω1 a1 3,366 175.49 3,396 182.12 3,387 159.25 3,379 148.18 3370.2 121

ω2 a1 3,310 68.88 3,350 67.03 3,335 70.79 3,333 66.88 3325.9 76

ω3 a1 1,973 52.29 2,000 56.93 1,993 75.71 2,004 98.48 1977.3 186

ω4 a1 1,673 51.24 1,692 48.78 1,695 54.20 1,697 65.58 1681.3 67

ω5 a1 917 2.85 913 3.63 920 4.40 912 6.20 908.2 7

ω6 a1 798 22.40 825 19.42 772 33.55 766 42.04 768.6 63

ω7 a2 758 0.00 747 0.00 749 0.00 735 0.00 713.1 0

ω8 b1 731 65.29 723 63.95 735 65.00 731 64.92 711.5 77

ω9 b1 450 103.33 436 94.32 503 92.13 517 89.33 509.3 12

ω10 b1 361 3.08 323 13.42 382 3.55 376 4.96 355.9 0

ω11 b2 3,245 196.22 3,281 202.93 3,268 210.18 3,265 208.15 3260.5 234

ω12 b2 995 6.38 989 5.47 998 7.00 994 6.38 985.5 8

ω13 b2 944 0.69 933 0.45 937 0.04 935 0.11 920.6 3

ω14 b2 627 28.13 680 32.53 571 25.14 578 26.50 580.4 22

ω15 b2 200 24.47 190 23.01 170 26.96 160 27.56 155.7 46

aTaken from Westbook et al. (2020).
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TABLE 4 | Anharmonic frequencies (in cm−1 ) and intensities (in km mol−1 ) for cyc-CHC3H
+
2 obtained at different levels of theory.

ν Sym. B3/SNSD PW6/julDZ B2/junTZ rDSD/junTZ B2/B3 rDSD/PW6 rDSD/B3 TZ/aVTZa

ν I ν I ν I ν I ν I ν I ν I ν

ν1 a1 3,242 89.15 3,256 213.92 3,261 188.89 3,252 159.06 3,262 188.96 3,243 217.46 3,254 202.75 3237.1

ν2 a1 3,173 47.80 3,204 25.91 3,195 32.81 3,195 43.11 3,194 27.39 3,181 17.69 3,193 27.27 3182.2

ν3 a1 1,948 32.75 1,977 43.62 1,975 58.99 1,984 77.84 1,973 66.32 1,984 43.62 1,987 33.98 1947.8

ν4 a1 1,647 45.54 1,664 41.55 1,666 33.30 1,665 57.64 1,672 41.27 1,671 45.65 1,673 47.57 1641.9

ν5 a1 903 3.50 897 5.08 902 0.81 902 3.55 901 1.92 873 0.31 895 1.50 884.4

ν6 a1 761 22.08 804 25.51 744 6.46 766 14.54 751 22.70 719 5.33 746 14.77 760.2

ν7 a2 743 0.00 738 0.00 736 0.00 723 0.00 735 0.00 723 0.00 720 0 713

ν8 b1 717 67.04 713 66.81 722 68.65 719 68.28 723 67.48 720 67.62 719 67.62 729

ν9 b1 410 65.38 481 96.72 496 90.31 511 87.86 473 100.36 515 92.55 487 95.23 480.8

ν10 b1 315 35.31 303 8.67 380 4.26 372 5.64 343 0.08 388 12.01 336 13.79 154.3

ν11 b2 3,117 192.57 3,146 199.69 3,141 207.44 3,140 205.27 3,141 206.76 3,129 200.04 3,138 193.33 3130.1

ν12 b2 964 5.79 962 7.78 974 8.12 968 7.34 970 8.83 966 8.11 965 9.21 970.1

ν13 b2 909 0.02 903 0.03 901 0.91 921 0.48 896 1.23 907 0.03 908 0.02 894

ν14 b2 594 25.65 653 30.44 531 21.92 539 22.88 525 22.11 530 29.72 532 25.18 547.4

ν15 b2 199 23.79 189 22.13 172 26.35 163 26.95 172 26.33 160 22.46 162 23.91 175.9

aTaken from Westbook et al. (2020).

FIGURE 8 | Anharmonic infrared spectrum of cyc-CHC3H
+
2 simulated by using

different levels of theory (computed spectral transitions have been convoluted

with a Lorentzian function with an half-width at half-maximum of 2 cm−1). B2:

full B2PLYP/jun-cc-pVTZ anharmonic force field; B2/B3: B2PLYP/jun-cc-pVTZ

harmonic force field and B3LYP/SNSD anharmonic effects; rev-DSD: full

rev-DSDPBEP86/jun-cc-pVTZ anharmonic force field; rev-DSD/PW6:

rev-DSDPBEP86/jun-cc-pVTZ harmonic force field and PW6B95/jul-cc-pVDZ

anharmonic effects. Some traces have been displaced fpr clarity.

respect to CCSD(T)-F12/aug-cc-pVTZ harmonic vibrational
frequencies, can be observed, for both B3LYP and PW6B95
functionals, for the ω7, ω9, ω14 and ω15 normal modes which
correspond to the H-C=C-H out-of-plane bending, the ≡C-
H out-of-plane vibration, the in-plane ring deformation and
the in-plane bending vibration of the C-H groups, respectively.
Concerning double-hybrids, the largest difference (+36 cm−1) is
observed for ω7 at B2PLYP/jun-cc-pVTZ level, while the worst
rev-DSDPBEP86/jun-cc-pVTZ result concerns the ω3 C≡C
stretching vibration (+27 cm−1). Moving to the anharmonic

vibrational wavenumbers, a huge anharmonic correction (−202
cm−1) for the ν10 fundamental and an unusual positive
contribution (20 cm−1) for the ν15 vibration were obtained by
Westbook et al. (2020) Conversely, according to the present
calculations, the anharmonic correction for the ν15 vibration
amounts to a few wave-numbers and that of ν10 ranges
from about −45 cm−1 at the B3LYP level to −2 cm−1 at
the B2PLYP/jun-cc-pVTZ level. While a number of Fermi
resonances both of type 1 and 2 have been found, none of
them strongly alters the spectral structure, just shifting the
transitions by about 5 cm−1 from their unperturbed values. The
only exception is the ν6 normal mode, whose excited v6 = 1
level is involved in a resonant triad together with v10 = 2 and
v14 = v15 = 1.

Three different hybrid force fields have been also computed:
in the B2/B3 hybrid force field, B2PLYP/jun-cc-pVTZ harmonic
frequencies have been corrected by B3LYP/SNSD anharmonic
contributions, while in the revDSD/B3 and revDSD/PW6
hybrid QM/QM′ approaches, the harmonic force field at
the rev-DSD-PBEP86/jun-cc-pVTZ level has been coupled to
cubic- and semi-diagonal quartic force constants evaluated
at B3LYP/SNSD and PW6B95/jul-cc-pVDZ levels, respectively.
The results collected in Table 4 show that the hybrid force
fields deliver, with a few exceptions, the same results as
the corresponding force field obtained by full anharmonic
calculations at B2PLYP or rev-DSD-PBEP86 levels. The spectra of
cyc-(CH)C3H

+
2 cation, simulated beyond the double-harmonic

approximation at different levels of theory, which can be
useful to guide experimental measurements on this species
or even astronomical campaigns, are reported in Figure 8.
It is quite apparent that the only major differences among
the different theoretical models are found for the integrated
absorption cross sections, whereas transition frequencies are only
marginally affected.
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4. CONCLUSIONS

In the last decade we have witnessed the increasing accuracy
of methods rooted in the density functional theory due to
ongoing improvements in both methodological and numerical
aspects. However, attention has mainly been focused on
thermochemistry and kinetics, whereas theoretical support
to rotational and vibrational spectroscopy requires accurate
predictions of molecular geometries, harmonic force fields
and leading anharmonic contributions, not to mention dipole
moments and their derivatives. On these grounds, the present
work has analyzed the performance of last-generation hybrid
and double-hybrid functionals in conjunction with partially
augmented correlation consistent basis sets for a benchmark
set of 10 molecules of both atmospheric and astrochemical
relevance. Equilibrium molecular geometries issued from DFT
computations have been benchmarked against accurate semi-
experimental equilibrium structures, while rotational constants,
centrifugal distortion parameters, and vibrational frequencies
have been compared to the experimental data available in
the literature and with high level CCSD(T)-based ab initio
calculations. The following conclusions can be drawn:
(1) The jun-cc-pVDZ basis set performs remarkably well for
hybrid functionals with the possible exception of IR intensities,
which require diffuse d-functions, namely the jul-cc-pVDZ
(or SNSD) basis set. In the case of double-hybrid functionals,
the jun-cc-pVTZ basis set represents a nearly optimum
cost/performance balance, but also the may−-cc-pVTZ basis set
can be safely employed for larger systems. An additional set of
d-functions is always mandatory for second-row atoms.
(2) Among hybrid functionals, B3LYP-D3 (B3) is still very
competitive, although the PW6B95 (PW6) model significantly
improves equilibrium geometries.
(3) Concerning double-hybrid functionals, the rev-DSD-
PBEP86-D3 functional (rDSD) systematically improves the
already reliable results delivered by the B2PLYP (B2) model,
the enhancement being especially significant for non-covalent
complexes.
(4) Composite methods employing geometries and harmonic
contributions evaluated by double-hybrid functionals coupled
to anharmonic corrections, obtained with hybrid functionals,
always lead to accurate results. In this connection the previously
employed B2/B3 model remains very useful, but the new
rDSD/PW6 variant seems capable of delivering even better
results with the same cost.

In summary, even with further pending developments and
validation, thanks to effective implementations in general
electronic structure codes, last-generation hybrid and double-
hybrid functionals provide unprecedented accuracy for all
the parameters ruling rotational and vibrational spectroscopy
with computer requirements well within current standards
and, coupled to generalized second-order vibrational
perturbation theory (GVPT2), can also be used by non-
specialists to complement experimental studies of medium-
and, even, large-size molecules of current fundamental and
technological interest.
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Recently, AIMD (ab initio molecular dynamics) has been extensively employed to

explore the dynamical information of electronic systems. However, it remains extremely

challenging to reliably predict the properties of nanosystems with a radical nature

using conventional electronic structure methods (e.g., Kohn-Sham density functional

theory) due to the presence of static correlation. To address this challenge, we combine

the recently formulated TAO-DFT (thermally-assisted-occupation density functional

theory) with AIMD. The resulting TAO-AIMD method is employed to investigate the

instantaneous/average radical nature and infrared spectra of n-acenes containing

n linearly fused benzene rings (n = 2–8) at 300 K. According to the TAO-AIMD

simulations, on average, the smaller n-acenes (up to n = 5) possess a nonradical

nature, and the larger n-acenes (n = 6–8) possess an increasing radical nature, showing

remarkable similarities to the ground-state counterparts at 0 K. Besides, the infrared

spectra of n-acenes obtained with the TAO-AIMD simulations are in qualitative agreement

with the existing experimental data.

Keywords: TAO-DFT, AIMD, static correlation, radical nature, infrared spectra

1. INTRODUCTION

Molecular dynamics (MD) is a computational method for simulating dynamical processes that
occur in a system consisting of atoms (for example, atoms, molecules, solids, and liquids) (Lifson
and Warshel, 1968; Levitt and Lifson, 1969; Karplus and Petsko, 1990; Kresse and Hafner,
1993; Sprik et al., 1996; Silvestrelli et al., 1997; Putrino and Parrinello, 2002; Tuckerman, 2002;
Chai et al., 2003; Kuo and Mundy, 2004; Jensen, 2007; Marx and Hutter, 2009; Gaigeot, 2010;
Ramírez-Solís et al., 2011; Vitale et al., 2015; Hollingsworth et al., 2018). The motion of the
atomic nuclei in the system is described by the classical Newtonian equations of motion, starting
from pre-specified initial conditions (e.g., initial nuclear positions and velocities) and subject to
boundary conditions suitable for the system studied. By performing MD simulations, one can
calculate both the dynamical and equilibrium thermodynamic properties associated with a system
at non-zero temperatures and can simultaneously monitor the microscopic movements of the
atomic nuclei in the system. However, the specification of the forces acting on the atomic nuclei in
MD simulations remains challenging, yielding two popular types of MDmethods: classical MD and
ab initioMD (AIMD).

In classical MD, the forces that act on the atomic nuclei are calculated using an empirical
potential energy function (i.e., the potential energy of a system is expressed as a function of the
nuclear coordinates) that is defined bymolecular mechanics (Tuckerman, 2002; Jensen, 2007; Marx
and Hutter, 2009). Because of a simple analytical function for the potential energy, classical MD
is computationally very efficient, and it has thus been widely employed for many applications
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(Lifson and Warshel, 1968; Levitt and Lifson, 1969; Karplus and
Petsko, 1990; Hollingsworth et al., 2018). For example, classical
MD can reveal the details of the motion of macromolecules (e.g.,
proteins) (Lifson and Warshel, 1968; Levitt and Lifson, 1969),
which can be very challenging using experimental approaches.
However, in classical MD, empirical potential energy functions
are typically parameterized for some peculiar systems and may
not be transferable to others (Tuckerman, 2002). Furthermore, in
classical MD, electrons are not present explicitly (i.e., their effects
are approximated by empirical potential energy functions), and
the electronic properties (e.g., electron density and radical
nature) of systems therefore cannot be explored.

To overcome the shortcomings of classical MD, one can resort
to AIMD, wherein the forces that act on the atomic nuclei are
calculated on-the-fly according to the potential energy obtained
with an electronic structure method along an AIMD trajectory
(Tuckerman, 2002; Jensen, 2007; Marx and Hutter, 2009).
Clearly, the accuracy of AIMD simulations can be limited due to
the accuracy of the underlying electronic structure method. On
the other hand, for AIMD simulations, it is also essential to adopt
a computationally efficient electronic structure method that can
provide reasonably accurate potential energy for the systems of
interest, since there are typically 104–106 time steps per AIMD
trajectory. Owing to the decent balance between performance
and cost, KS-DFT (i.e., Kohn-Sham density functional theory)
(Kohn and Sham, 1965) is currently the most popular electronic
structure method adopted in AIMD simulations. Over the
past three decades, KS-DFT-based AIMD (KS-AIMD) has been
commonly used to investigate the equilibrium thermodynamic
and dynamical properties associated with electronic systems at
finite temperatures, and has been a powerful AIMD method for
modeling various phenomena (Kresse and Hafner, 1993; Sprik
et al., 1996; Silvestrelli et al., 1997; Putrino and Parrinello, 2002;
Chai et al., 2003; Kuo and Mundy, 2004; Gaigeot, 2010; Ramírez-
Solís et al., 2011; Vitale et al., 2015).

Nevertheless, KS-DFT using traditional exchange-correlation
(XC) energy functionals could yield qualitative failures for the
various properties associated with electronic systems possessing
radical nature due to the lack of static correlation effects (Cohen
et al., 2008, 2012). For example, consider linear n-acene (with
the chemical formula C4n+2H2n+4), which contains n linearly
fused benzene rings (for example, see Figure 1), Ne = 26n + 16
electrons, andN = 6n+6 nuclei. According to the recent findings
(Hachmann et al., 2007; Chai, 2012, 2014, 2017; Rivero et al.,
2013; Wu and Chai, 2015; Fosso-Tande et al., 2016), the larger n-
acenes (n ≥ 6) possess increasing radical nature in their ground

FIGURE 1 | Structure of 8-acene, containing eight linearly fused benzene rings.

states. However, KS-DFT adopting commonly used XC energy
functionals could perform poorly for the larger n-acenes (n ≥ 6)
due to the lack of static correlation effects (Hachmann et al., 2007;
Chai, 2012, 2017). It can therefore be anticipated that KS-AIMD
simulations at finite temperatures may yield unreliable dynamical
information for electronic systems with a radical nature [e.g., the
larger n-acenes (n ≥ 6)].

To study the properties of electronic systems with a radical
nature, one generally resorts to multi-reference (MR) electronic
structure methods (Andersson et al., 1992; Hachmann et al.,
2007; Gidofalvi and Mazziotti, 2008; Pelzer et al., 2011; Gryn’ova
et al., 2015; Fosso-Tande et al., 2016; Battaglia et al., 2017;
Mullinax et al., 2019). Although MR electronic structure
methods can reliably predict the various properties associated
with electronic systems with radical nature, they could be
prohibitively expensive for a single-point energy + nuclear
gradient calculation on large electronic systems, not to mention
the respective AIMD simulations where such calculations should
be performed about 104–106 times per AIMD trajectory. To
explore the dynamical properties of nanosystems with radical
nature using AIMD simulations at finite temperatures, therefore,
it is essential to employ an efficient electronic structure method
that can properly describe the static correlation effects during
the AIMD simulations.

Recently, TAO-DFT (thermally-assisted-occupation density
functional theory) (Chai, 2012) has been formulated for
investigating the ground-state (GS) properties associated with
nanosystems possessing a radical nature at 0 K. Note that
TAO-DFT is a density functional theory adopting fractional
orbital occupation numbers (i.e., generated by the Fermi-Dirac
distribution using a fictitious temperature θ), which is rather
different from KS-DFT. In TAO-DFT, the fictitious temperature
θ is intimately correlated with the effect of the configuration
mixing on the electron density of a GS system (e.g., see sections
2, 3 of Chai, 2012), and it is thus completely unrelated to the
physical temperature (i.e., 0 K) of the GS system. Note that
KS-DFT corresponds to TAO-DFT with θ = 0. However, for
a general GS system at 0 K, the θ value in TAO-DFT can be
nonzero (e.g., see sections 3.5, 4 of Chai, 2012). In TAO-DFT, an
entropy contribution term, which is dependent on the fictitious
temperature θ and orbital occupation numbers, can offer a
proper description for static correlation even when the simplest
LDA (i.e., local density approximation) XC energy functional is
used (Chai, 2012). At the LDA level, even with a properly defined
system-independent θ value (e.g., see section 5 of Chai, 2012),
TAO-DFT, which has similar cost as KS-DFT in computation, has
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been shown to consistently outperform KS-DFT for electronic
systems with a radical nature, while performing similarly to
KS-DFT for electronic systems with a nonradical nature (Chai,
2012).

More complicated semilocal (Chai, 2014), global hybrid (Chai,
2017), and range-separated hybrid (Chai, 2017; Xuan et al.,
2019) XC energy functionals could also be used in TAO-DFT.
Moreover, in order to enhance its accuracy for a wide range of
applications, a method that determines the θ value in TAO-DFT
in a self-consistent manner has recently been developed (Lin
et al., 2017). Very recently, a frequency-domain formulation of
linear-response time-dependent TAO-DFT (Yeh et al., 2020) has
been formulated to explore the properties of electronic excited
states within TAO-DFT.

Owing to its computational efficiency and decent accuracy for
exploring the properties of electronic systems at the nanoscale,
TAO-DFT has recently been adopted to investigate the electronic
properties (Wu and Chai, 2015; Seenithurai and Chai, 2016, 2017,
2018, 2019, 2020; Wu et al., 2016; Yeh and Chai, 2016; Yeh et al.,
2018; Chung and Chai, 2019; Deng and Chai, 2019; Hanson-
Heine and Hirst, 2020; Hanson-Heine et al., 2020; Huang et al.,
2020; Manassir and Pakiari, 2020), hydrogen storage properties
(Seenithurai and Chai, 2016, 2017, 2018), and vibrational
frequencies (Hanson-Heine, 2020) of several electronic systems
at the nanoscale, especially for those possessing a radical nature.

Therefore, in the present work, we propose to combine TAO-
DFT (Chai, 2012) with AIMD, yielding TAO-DFT-based AIMD
(TAO-AIMD). Since analytical nuclear gradients for TAO-DFT
are available (Chai, 2012), TAO-AIMD is as computationally
efficient as KS-AIMD. Accordingly, it is feasible to study
the equilibrium thermodynamic and dynamical properties of
nanosystems with a radical nature using TAO-AIMD simulations
at finite temperatures. To highlight some of the present
capabilities of TAO-AIMD, we perform TAO-AIMD simulations
to explore the instantaneous/average radical nature and infrared
(IR) spectra of n-acenes with n = 2–8 fused benzene rings at
300 K. The rest of this paper is organized as follows. The TAO-
AIMD method is defined in section 2. We then describe the
computational details in section 3, discuss the results in section
4, and give our conclusions in section 5.

2. TAO-AIMD

Consider a system containing Ne electrons (described by
coordinates r1, ..., rNe ) and N nuclei (described by coordinates
R1, ...,RN). Here, we resort to the adiabatic or Born-
Oppenheimer (BO) approximation (Born and Oppenheimer,
1927). Because the electrons are much lighter than the nuclei,
it is assumed that the nuclei move relatively slowly, and hence
the electrons are able to respond to the nuclear motion almost
instantaneously. In other words, the electronic motion and
nuclear motion can be treated separately.

Accordingly, in the first step of the BO approximation,
the kinetic energy of the nuclei is ignored. For fixed nuclear
positions R1, ...,RN , the electronic Hamiltonian is expressed as

(Tuckerman, 2002; Jensen, 2007; Marx and Hutter, 2009)

Ĥelec = −
h̄2

2me

Ne∑

i=1

∇2
i −

e2

4πǫ0

Ne∑

i=1

N∑

A=1

ZA

|ri − RA|

+
e2

4πǫ0

Ne∑

i=1

Ne∑

j>i

1

|ri − rj|
, (1)

where me and −e are the mass and charge, respectively, of an
electron, and ZAe is the charge of nucleus A. On the right-
hand side of Equation (1), the first term is the kinetic energy
of electrons, the second term is the nuclear-electron attraction
energy, and the third term is the electron-electron repulsion
energy. The time-independent electronic Schrödinger equation

Ĥelec9k = Ek9k (2)

is subsequently solved for the electronic energy Ek and electronic
wavefunction 9k. In particular, the lowest eigenvalue E0 is
the GS electronic energy, and the corresponding eigenfunction
90 is the GS electronic wavefunction. By adding the nuclear-
nuclear repulsion energy to the electronic energy, one obtains the
potential energy for the k-th electronic eigenstate of the system

Uk = Ek +
e2

4πǫ0

N∑

A=1

N∑

B>A

ZAZB

|RA − RB|
. (3)

By varying the nuclear positions and solving the corresponding
time-independent electronic Schrödinger equation, Uk can be
expressed as a function of the nuclear positions, also known as the
potential energy surface of the k-th electronic eigenstate. In the
second step of the BO approximation, the kinetic energy of the
nuclei is reintroduced, and in principle, the nuclear dynamics is
described by the time-dependent nuclear Schrödinger equation,
evolving on a potential energy surface, e.g., Uk(R1, ...,RN).

Similar to most AIMD simulations (Tuckerman, 2002; Jensen,
2007; Marx and Hutter, 2009; Gaigeot, 2010; Ramírez-Solís et al.,
2011; Vitale et al., 2015), in this work, we assume that nuclear
quantum effects could be ignored, and nuclear motion occurs
only on the GS potential energy surface (i.e., the potential
energy surface of the electronic GS), U0(R1, ...,RN). Since
the time-independent electronic Schrödinger equation is only
applicable to very small electronic systems, a sufficiently efficient
electronic structure method for the determination of electronic
ground state is typically required for AIMD simulations. As
mentioned previously, KS-AIMD simulations can be unreliable
for electronic systems with a radical nature. On the other
hand, AIMD simulations employing MR electronic structure
methods are very likely to be computationally intractable for
most electronic systems.

To resolve this issue with minimum computational expense,
in the present work, we combine TAO-DFT (Chai, 2012) with
AIMD, yielding the TAO-AIMD method. Specifically, in TAO-
AIMD, the nuclei are treated as classical particles, obeying the
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classical nuclear Hamiltonian

Hnucl(P1(t), ...,PN(t),R1(t), ...,RN(t)) =
N∑

A=1

|PA(t)|2

2MA

+ UTAO-DFT
0 (R1(t), ...,RN(t)), (4)

where MA is the mass of nucleus A, and PA(t) is the momentum
of nucleus A at time t. The left-hand side of Equation (4) gives
the total energy at time t [i.e., E(t)]. On the right-hand side of
Equation (4), the first term is the nuclear kinetic energy at time
t, and the second term is the potential energy of the electronic
GS obtained with TAO-DFT for the nuclear positions at
time t, i.e., R1(t), ...,RN(t):

UTAO-DFT
0 (R1(t), ...,RN(t)) = ETAO-DFT0 (R1(t), ...,RN(t))

+
e2

4πǫ0

N∑

A=1

N∑

B>A

ZAZB

|RA(t)− RB(t)|
,

(5)

where ETAO-DFT0 (R1(t), ...,RN(t)) (e.g., see Equation 27 of Chai,
2012) is the corresponding GS electronic energy obtained with
TAO-DFT. On the basis of Equation (4), the nuclei move based
on Newton’s equations of motion on the GS potential energy
surface generated by TAO-DFT:

ṘA(t) =
PA(t)

MA
(6)

ṖA(t) = −∇AU
TAO-DFT
0 (R1(t), ...,RN(t)), (7)

where ṘA(t) is the velocity of nucleus A at time t, ṖA(t) is the
time derivative of the momentum of nucleus A at time t, and the
right-hand side of Equation (7) gives the force acting on nucleus
A at time t [i.e., FA(t)].

Equations (4)–(7) form the theoretical basis of the
TAO-AIMD method. Given the initial nuclear positions
R1(0), ...,RN(0) and velocities Ṙ1(0), ..., ṘN(0), all the future
nuclear positions R1(t), ...,RN(t) and velocities Ṙ1(t), ..., ṘN(t)
are determined by Equations (5)–(7), generating a TAO-AIMD
trajectory (i.e., TAO-AIMD is deterministic). Note that the
GS potential energy surface and the forces that act on the
nuclei can be computed on-the-fly using TAO-DFT, as needed
along the TAO-AIMD trajectory. According to the definitions
presented here (Marx and Hutter, 2009), TAO-AIMD can
also be regarded as TAO-DFT-based Born-Oppenheimer MD
(BOMD), i.e., TAO-BOMD.

Note that the GS potential energy surface and the forces
that act on the nuclei are computed using TAO-DFT in TAO-
AIMD, while they are computed using KS-DFT in KS-AIMD.
Since TAO-DFT is as computationally efficient as KS-DFT
(e.g., see Chai, 2012 for details), TAO-AIMD is similar to KS-
AIMD in computational expense. On the other hand, AIMD
simulations employing MR electronic structure methods are
very likely to be computationally infeasible for most electronic
systems. Accordingly, TAO-AIMD can be a very promising

method for exploring the equilibrium thermodynamic and
dynamical properties of nanosystems with a radical nature at
finite temperatures. In addition, existing XC energy functionals
defined in KS-DFT could also be employed in TAO-DFT (Chai,
2012, 2014, 2017) and TAO-AIMD. For electronic systems
with a nonradical nature, TAO-DFT performs similarly to KS-
DFT, and TAO-AIMD should therefore perform similarly to
KS-AIMD.

3. COMPUTATIONAL DETAILS

All calculations are performed using TAO-LDA (Chai, 2012),
i.e., TAO-DFT employing the LDA XC and θ-dependent energy
functionals, where the suggested fictitious temperature θ = 7
mhartree is employed (Chai, 2012). Almost all numerical data
are obtained withQ-Chem 4.4 (Shao, 2015), using the 6-31G(d)
basis set and a numerical grid consisting of 75 Euler-Maclaurin
radial grid points and 302 Lebedev angular grid points, wherein
isolated boundary conditions (i.e., well-suited for the study of
atoms and molecules) are employed. The TAO-AIMD-based IR
spectra are computed using the program TRAVIS (Brehm and
Kirchner, 2011; Thomas et al., 2013, 2015; Brehm et al., 2020).

In several recent investigations (Chai, 2012; Wu and Chai,
2015; Fosso-Tande et al., 2016; Yeh and Chai, 2016; Mullinax
et al., 2019), the orbital occupation numbers obtained from TAO-
LDA (with θ = 7 mhartree) have been found to be similar to
the natural orbital occupation numbers obtained from a very
accurate MR electronic structure method that can be applied
to treat relatively large active spaces, leading to a qualitatively
similar tendency for the radical nature associated with various
PAHs (i.e., polycyclic aromatic hydrocarbons).

On the other hand, because of the constraint of symmetry,
the spin-unrestricted and spin-restricted calculations based on an
exact electronic structure method should lead to the same energy
values for the lowest singlet state (i.e., GS) of n-acene (Chai,
2012; Rivero et al., 2013; Gryn’ova et al., 2015). Nevertheless,
KS-DFT employing conventional XC energy functionals fails
to obey this constraint for the larger n-acenes (which are
electronic systems possessing radical nature), leading to the
unphysical symmetry-breaking effects in the corresponding spin-
unrestricted calculations (Cohen et al., 2008, 2012). In our
previous studies (Chai, 2012, 2014; Wu and Chai, 2015), the
spin-unrestricted and spin-restricted GS (i.e., lowest singlet state)
energy values of n-acene (up to n = 100), calculated by TAO-
LDA (with θ = 7 mhartree), have been found to be essentially
the same, leading to essentially no unphysical symmetry-breaking
effects in the corresponding spin-unrestricted calculations. For
computational efficiency, therefore, all TAO-LDA calculations in
this work are spin-restricted calculations unless noted otherwise.

For all TAO-AIMD simulations, a time step of 20 a.u. (≈ 0.484
fs) is adopted for the integration of the equations of motion. For
each TAO-AIMD simulation, the initial geometry of n-acene is
chosen as the GS geometry of n-acene obtained with TAO-LDA,
and the initial nuclear velocities of n-acene are randomly selected
from the Maxwell-Boltzmann (MB) distribution at T = 300 K.
To equilibrate n-acene at T = 300 K, the TAO-AIMD simulation
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is first performed in the canonical (NVT) ensemble with the
aid of the Nosé-Hoover (NH) chain thermostat (Martyna et al.,
1992) (with the NH chain length of three auxiliary variables
and NH timescale of 200 fs in the implementation of Q-Chem)
for about 10.2 ps. To avoid any interference with the dynamics
(Gaigeot and Sprik, 2003), we subsequently remove the NH
chain thermostat and continue the TAO-AIMD simulation in
the microcanonical (NVE) ensemble for a total of 10,500 time
steps (≈ 5.1 ps), at which time the total energy of n-acene is
well converged. After equilibration, we continue the TAO-AIMD
simulation in the NVE ensemble and collect relevant data along
the equilibrated TAO-AIMD trajectory for a total of 42,000 time
steps (≈ 20.3 ps), where the average temperature is 300 ± 1 K.
As the initial nuclear velocities of n-acene for each TAO-AIMD
simulation are randomly selected from the MB distribution at 300
K, the aforementioned processes are repeated to generate a total
of four different equilibrated TAO-AIMD trajectories (≈ 20.3 ps
per trajectory).

Furthermore, to demonstrate the significance of TAO-
AIMD simulations for exploring the dynamical information
of large molecules with radical nature, we also perform
preliminary calculations on 8-acene to examine the possible
symmetry-breaking effects in the spin-unrestricted TAO-
AIMD/KS-AIMD simulations (see Supplementary Section 1

and Supplementary Figures 1–3).

4. RESULTS AND DISCUSSION

4.1. Symmetrized von Neumann Entropy
In TAO-DFT, the radical nature of a GS molecule can be
examined by the symmetrized von Neumann entropy (for
example, see Equation 5 of Chung and Chai, 2019 for
the spin-unrestricted case). For the spin-restricted case, the
symmetrized von Neumann entropy of a GS molecule can be
expressed as

SvN = −

∞∑

i=1

{
fi

2
ln

(
fi

2

)
+

(
1−

fi

2

)
ln

(
1−

fi

2

)}
, (8)

where fi (i.e., a number between 0 and 2) is the occupation
number of the i-th orbital of the GS molecule, obtained with
spin-restricted TAO-DFT. Note that fi is closely related to
the corresponding natural orbital occupation number (Löwdin
and Shull, 1956; Chai, 2012, 2014, 2017). For a GS molecule
possessing a nonradical nature, the occupation numbers
associated with all orbitals are very close to either 0 or 2, yielding
a vanishingly small SvN value. Nonetheless, for a GS molecule
with a significant radical nature, the active orbital occupation
numbers can deviate significantly from 0 and 2 (for example, 0.2–
1.8); hence, the corresponding SvN value can greatly increase as
the number of active orbitals increases and/or the active orbital
occupation numbers are closer to 1 (Rivero et al., 2013; Chai,
2014, 2017;Wu andChai, 2015; Seenithurai and Chai, 2016, 2017,
2018, 2019; Wu et al., 2016; Yeh et al., 2018; Chung and Chai,
2019; Deng and Chai, 2019; Huang et al., 2020).

On the basis of Equation (8), in a spin-restricted TAO-
AIMD simulation, the symmetrized von Neumann entropy

of a molecule at time t along a TAO-AIMD trajectory can
be defined as

SvN(t) = −

∞∑

i=1

{
fi(t)

2
ln

(
fi(t)

2

)
+

(
1−

fi(t)

2

)
ln

(
1−

fi(t)

2

)}
,

(9)
where fi(t) (i.e., a value between 0 and 2) is the occupation
number of the ith orbital of the molecule, obtained with spin-
restricted TAO-DFT for the nuclear positions at time t, i.e.,
R1(t), ...,RN(t), along the TAO-AIMD trajectory. Accordingly,
the time average of SvN(t) along the TAO-AIMD trajectory is
calculated by

SvN =
1

τ

∫ τ

0
SvN(t)dt, (10)

where τ is the total time duration of the TAO-AIMD trajectory.
To investigate the radical nature of n-acene in the TAO-AIMD

simulations, the SvN value of n-acene along each equilibrated
TAO-AIMD trajectory is computed using Equation (10), and the
reported SvN value of n-acene is an average over four different
equilibrated TAO-AIMD trajectories (≈ 20.3 ps per trajectory).
For comparison, we also report the SvN value of GS n-acene
(given by Equation 8), corresponding to the SvN value of n-acene
at 0 K in this work.

As presented in Figure 2, the SvN value of n-acene obtained
with the TAO-AIMD simulations at 300 K is very close to the SvN
value of GS n-acene Chai (2014), increasing monotonically with
increasing n (also see Supplementary Table 1). This suggests that
similar to the GS counterparts at 0 K (Hachmann et al., 2007;
Chai, 2012, 2014, 2017), on average, the smaller n-acenes (up to n
= 5) possess nonradical nature, and the larger n-acenes (n= 6–8)
possess increasing radical nature in AIMD simulations at 300 K.

Along each equilibrated TAO-AIMD trajectory, the
instantaneous SvN(t) value of n-acene fluctuates over time
and can thus be even larger than the SvN value of n-acene
(see Figure 3 for n = 8, and Supplementary Figures 4–9 for
others). Therefore, for the larger n-acenes (n = 6–8), it is
essential to perform AIMD simulations at 300 K with an efficient
electronic structure method that can reliably describe strong
static correlation effects, well-justifying the use of TAO-AIMD
in this work.

4.2. Active Orbital Occupation Numbers
As mentioned previously, in a spin-restricted TAO-AIMD
simulation, fi(t) (i.e., a value between 0 and 2) is the occupation
number of the i-th orbital of a molecule, obtained with spin-
restricted TAO-DFT for the nuclear positions at time t, i.e.,
R1(t), ...,RN(t), along the TAO-AIMD trajectory. Consequently,
the time average of fi(t) along the TAO-AIMD trajectory is
calculated by

fi =
1

τ

∫ τ

0
fi(t)dt, (11)

where τ is the total time duration of the TAO-AIMD trajectory.
To further assess the radical nature of n-acene in the TAO-

AIMD simulations, the fi value of n-acene along each equilibrated
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FIGURE 2 | Symmetrized von Neumann entropy of n-acene, obtained with the TAO-AIMD simulations at 300 K and GS calculation, calculated by TAO-LDA.

TAO-AIMD trajectory is computed using Equation (11), and the
reported fi value of n-acene is an average over four different
equilibrated TAO-AIMD trajectories (≈ 20.3 ps per trajectory).
For comparison, we also present the fi value of GS n-acene, which
corresponds to the fi value of n-acene at 0 K in this work.

For n-acene (containing Ne electrons), we define the HOMO
(i.e., highest occupied molecular orbital) as the (Ne/2)th orbital,
the LUMO (i.e., lowest unoccupied molecular orbital) as the
(Ne/2 + 1)th orbital, and so forth (Chai, 2012, 2017; Wu and
Chai, 2015; Wu et al., 2016; Yeh et al., 2018; Chung and Chai,
2019; Deng and Chai, 2019; Seenithurai and Chai, 2019; Huang
et al., 2020). For brevity, HOMO and LUMO are denoted as H
and L, respectively. In addition, the orbitals with an occupation
number (0.2–1.8) are regarded as the active orbitals.

As presented in Figure 4, the fi value of n-acene obtained with
the TAO-AIMD simulations at 300 K is very close to the fi value of
GS n-acene (Chai, 2012) (also see Supplementary Table 2). This
implies that on average, the radical nature of n-acene obtained
with the TAO-AIMD simulations at 300 K is very similar to that
obtained with the GS calculation at 0 K, showing consistency with
the analysis of symmetrized von Neumann entropy. For smaller
n values (e.g., up to n = 5), the occupation numbers associated
with all orbitals are very close to either 0 or 2. Therefore, the
smaller n-acenes should exhibit nonradical nature. However, as
n increases, the number of active orbitals increases and/or the
active orbital occupation numbers are closer to 1, apparently

showing that the larger n-acenes (n = 6–8) should exhibit
increasing radical character. This clearly indicates that similar to
the GS counterparts at 0 K (Hachmann et al., 2007; Chai, 2012,
2014, 2017), on average, the larger n-acenes (n = 6–8) should
possess increasing radical nature in AIMD simulations at 300 K.

In addition, the instantaneous fi(t) value of n-acene along
each equilibrated TAO-AIMD trajectory fluctuates around an
average, implying that the instantaneous radical nature of n-
acene can be more pronounced than the average radical nature
of n-acene in the TAO-AIMD simulations (see Figure 5 for n =

8, and Supplementary Figures 10–15 for others). According to
our findings, the radical nature of the larger n-acenes (n = 6–8)
can persist in AIMD simulations at 300 K. For such molecules,
KS-AIMD simulations can therefore be unreliable, and AIMD
simulations employing MR electronic structure methods are
very likely to be computationally intractable. Accordingly,
this highlights the significance of TAO-AIMD simulations for
exploring the dynamical information of large molecules with
radical nature.

4.3. IR Spectra
IR spectroscopy, which involves the interaction of IR radiation
with matter, has been extensively used to explore the structure
of materials nondestructively in recent years (Roggo et al., 2007;
Joblin et al., 2011; Beć and Huck, 2019). Recently, the IR spectra
of PAHs (e.g., n-acenes) have attracted much interest since PAHs
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FIGURE 3 | Time evolution of the symmetrized von Neumann entropy of 8-acene, obtained from four different equilibrated TAO-AIMD trajectories (No.1 to No.4) at

300 K, calculated by TAO-LDA. The TAO-AIMD average and GS values are also shown for comparison.

can be responsible for the unidentified infrared emission (UIR)
bands from interstellar media (Allamandola et al., 1985, 1999;
Hudgins and Sandford, 1998a,b; Kim et al., 2001; Joblin et al.,
2011).

On the basis of the Fermi golden rule of time-dependent
perturbation theory (McQuarrie, 1976), the IR spectrum
of a molecule is related to the Fourier transform of the
autocorrelation function (ACF) (e.g., see Equation 15 of Brehm
et al., 2020) of the dipole moment (i.e., the sum of the electronic
and nuclear contributions) Eµ of the molecule (Thomas et al.,
2013, 2015; Dutta and Chowdhury, 2019):

I(ω) ∝ ω2
∫ ∞

−∞

〈
Eµ(0) · Eµ(t)

〉
e−iωtdt, (12)

where I(ω) is the IR intensity, and ω is the vibrational frequency.
Note that a quantum correction factor βh̄ω/(1−e−βh̄ω) (Ramírez
et al., 2004; Joalland et al., 2010; Thomas et al., 2013) has been
taken into account in Equation (12), where β = 1/(kBT) and
kB is the Boltzmann constant. According to the properties of the
Fourier transform (Thomas et al., 2013; Lawson Daku, 2018),
I(ω) can also be expressed as

I(ω) ∝
∫ ∞

−∞

〈
Ėµ(0) · Ėµ(t)

〉
e−iωtdt, (13)

which is directly proportional to the Fourier transform of
the ACF of the time derivative of the dipole moment
Ėµ of the molecule.

Given the Eµ(t) of n-acene along an equilibrated TAO-AIMD
trajectory (obtained withQ-Chem 4.4, Shao, 2015), we compute
the IR spectrum of n-acene using the TRAVIS program package
(Brehm and Kirchner, 2011; Thomas et al., 2013, 2015; Brehm
et al., 2020). To reduce the numerical noise, the IR spectrum
has been smoothed using a window function applied in the time
domain [specifically, each term of the ACF is multiplied by a

Gaussian function exp(− σ t2

2τ 2 ), where σ = 10 (as suggested in
Gaigeot et al., 2005; Gaigeot, 2010; Vitale et al., 2015 for gas phase
simulations) and τ is the total time duration of the equilibrated
TAO-AIMD trajectory (≈ 20.3 ps)]. The reported IR spectrum of
n-acene is an average over four different equilibrated TAO-AIMD
trajectories (with the average temperature being 300± 1 K).

On the other hand, NMA (i.e., normal mode analysis) is
a commonly adopted approach to compute the vibrational
frequencies and intensities of GS (Harris and Bertolucci, 1978;
Wilson et al., 1980; Gaigeot et al., 2007) and excited-state
(ES) (Liu and Liang, 2011a,b) molecules in the harmonic
approximation at 0 K. For comparison purposes, we also
compute the IR spectra of GS n-acenes using NMA. To perform
a GS-NMA, the computation of nuclear second derivatives of
energy (i.e., the nuclear Hessian) at the GS molecular geometry
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FIGURE 4 | Active orbital occupation numbers (HOMO−1, HOMO, LUMO, and LUMO+1) of n-acene, obtained with the TAO-AIMD simulations at 300 K and GS

calculation, calculated by TAO-LDA.

FIGURE 5 | Time evolution of the active orbital occupation numbers (HOMO−1, HOMO, LUMO, and LUMO+1) of 8-acene, obtained from four different equilibrated

TAO-AIMD trajectories (No.1 to No.4) at 300 K, calculated by TAO-LDA. For HOMO/LUMO, the TAO-AIMD average and GS values are also shown for comparison.
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is required. Since analytical nuclear Hessians for TAO-DFT are
not yet available in Q-Chem, numerical nuclear Hessians are
computed using finite differences of analytical nuclear gradients
(with a step size of 0.001 Å, i.e., the default setting of Q-Chem)
for all the GS-NMA performed in this work.

As shown in Figures 6–9 (for comparison purposes, also
see Supplementary Figures 16–19 for the TAO-AIMD results
obtained with different values of σ ), the IR spectra of the
smaller n-acenes (n = 2–5), obtained with the TAO-AIMD
simulations at 300 K and GS-NMA, are in qualitative agreement
with the available experimental IR spectra (Hudgins and
Sandford, 1998a,b; Boersma et al., 2014; Bauschlicher et al.,
2018; NIST mass spectrometry data center, 2020; Mattioda
et al., unpublished). Note that a number of experimental
IR bands (e.g., those in the 1,700–2,600 cm−1 range for 2-
acene and 3-acene and those in the 1,700–2,000 cm−1 range
for 4-acene and 5-acene) are completely missing from the
corresponding IR spectra obtained with the commonly used
GS-NMA approach, indicating that anharmonic effects on the
IR spectra cannot be completely ignored. By contrast, these
IR bands can be obtained with the TAO-AIMD simulations
at 300 K, going beyond the harmonic approximation of
GS-NMA. The overall discrepancies between theoretical and
experimental results for the IR spectra can be attributed to
several factors, such as the purity of samples and environmental
factors (temperature, background noise level, etc.) in the
experiments and the approximate nature of the theoretical
methods adopted.

To our knowledge, there are no experimental IR spectra for
6-acene, 7-acene, and 8-acene. It remains highly challenging to
synthesize and isolate the larger n-acenes (n = 6–8), possibly
due to their radical character (Hachmann et al., 2007; Chai, 2012,
2014, 2017; Rivero et al., 2013; Wu and Chai, 2015; Fosso-Tande
et al., 2016). In Figures 10–12 (for comparison purposes, also
see Supplementary Figures 20–22 for the TAO-AIMD results
obtained with different values of σ ), we thus only compare the
IR spectra of the larger n-acenes (n = 6–8), obtained with the
TAO-AIMD simulations at 300 K and GS-NMA. As shown,
both theoretical results are in reasonably good agreement, except
for the 1,700–2,000 cm−1 range, which may be attributed to
anharmonic effects on the IR spectra [cf., the IR spectra of the
smaller n-acenes (n= 2–5)].

5. CONCLUSIONS

In conclusion, we have proposed TAO-AIMD (i.e., TAO-DFT-
based AIMD) for the study of the equilibrium thermodynamic
and dynamical properties of nanosystems with a radical nature at
finite temperatures. To highlight some of the present capabilities
of TAO-AIMD, we have performed TAO-AIMD simulations
to investigate the instantaneous/average radical nature and IR
spectra of n-acenes (n = 2–8) at 300 K. According to the TAO-
AIMD simulations, on average, the smaller n-acenes (up to n
= 5) possess a nonradical nature, and the larger n-acenes (n
= 6–8) possess increasing radical nature, showing remarkable
similarities to the GS counterparts at 0 K. Besides, the IR

spectra of n-acenes obtained with the TAO-AIMD simulations
are in qualitative agreement with the existing experimental
data.

For GS molecules with radical nature [e.g., the larger n-acenes
(n = 6–8)], on average, the radical nature of the molecules can
persist in AIMD simulations at finite temperatures. For these
molecules, conventional KS-AIMD simulations can therefore
be unreliable, and AIMD simulations employing MR electronic
structure methods are very likely to be computationally
intractable for most molecules. It is thus certainly justified to
perform TAO-AIMD simulations for exploring the dynamical
information of these molecules.

While only TAO-AIMD (or more specifically, TAO-
BOMD) is presented and discussed in this work, it is also
possible to combine TAO-DFT with the popular Car-
Parrinello MD (CPMD) (Car and Parrinello, 1985) method
(i.e., an approximation of the BOMD method) for improved
computational efficiency. In addition, it is worth mentioning
that a brilliant simulation method combining the advantages
of AIMD (for accuracy) and classical MD (for efficiency)
has been developed, i.e., the hybrid QM/MM (quantum
mechanics/molecular mechanics) method (Warshel and Levitt,
1976), where a small portion (e.g., the reactive portion) of
a system is treated with QM and the remaining portion is
treated with MM. The QM/MM method has been widely
used for the study of very large systems where AIMD
simulations are prohibitively expensive (van der Kamp and
Mulholland, 2013). To further improve the efficiency of
TAO-AIMD, the TAO-DFT-based QM/MM method is thus
expected to be useful for the simulations of very large systems
(e.g., biomolecules).

While TAO-AIMD is computationally efficient, it could be
a very promising approach for the study of the equilibrium
thermodynamic and dynamical properties of nanosystems with a
radical or non-radical nature at finite temperatures. Nevertheless,
a few limitations remain due to a number of assumptions
made in TAO-AIMD. For example, the BO approximation
is assumed to be valid, and the motion of the nuclei in a
system is assumed to evolve only on the GS potential energy
surface, wherein non-adiabatic effects are completely ignored.
Besides, it is assumed that nuclear quantum effects can be
neglected: the nuclear motion is assumed to be governed by the
classical equations of motion, rather than the time-dependent
nuclear Schrödinger equation. Moreover, it is assumed that TAO-
DFT employing the approximate XC and θ-dependent energy
functionals (with a system-independent fictitious temperature
θ) can provide the exact GS potential energy surface. In
addition, similar to KS-AIMD, the real electronic temperature
is zero in TAO-AIMD, and it is thus assumed that TAO-
AIMD remains applicable for systems at nonzero electronic
temperatures. For a system at room temperature, TAO-AIMD
should remain applicable (Gaigeot, 2010; Ramírez-Solís et al.,
2011; Vitale et al., 2015). However, for a system at a considerably
high electronic temperature (e.g., warm dense matter), TAO-
AIMD may no longer be applicable (Rüter and Redmer, 2014;
Karasiev et al., 2018; Bonitz et al., 2020), wherein AIMD
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FIGURE 6 | IR spectra of 2-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. Experimental (EXP) data (NIST mass

spectrometry data center, 2020) are included for comparison. The IR spectra are normalized to have a maximum intensity of one and, for clarity, are vertically offset

from each other by the same value. Subfigures show the IR spectra in the 1,000–2,600 cm−1 range.

FIGURE 7 | IR spectra of 3-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. Experimental (EXP) data NIST mass

spectrometry data center (2020) are included for comparison. The IR spectra are normalized to have a maximum intensity of one and, for clarity, are vertically offset

from each other by the same value. Subfigures show the IR spectra in the 1,000–2,600 cm−1 range.
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FIGURE 8 | IR spectra of 4-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. Experimental (EXP) data (Hudgins and

Sandford, 1998a; Boersma et al., 2014; Bauschlicher et al., 2018; Mattioda et al., unpublished) are included for comparison. The IR spectra are normalized to have a

maximum intensity of one and, for clarity, are vertically offset from each other by the same value. Subfigures show the IR spectra in the 850–2,000 cm−1 range.

FIGURE 9 | IR spectra of 5-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. Experimental (EXP) data (Hudgins and

Sandford, 1998b; Boersma et al., 2014; Bauschlicher et al., 2018; Mattioda et al., unpublished) are included for comparison. The IR spectra are normalized to have a

maximum intensity of one and, for clarity, are vertically offset from each other by the same value. Subfigures show the IR spectra in the 850–2,000 cm−1 range.
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FIGURE 10 | IR spectra of 6-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. The IR spectra are normalized to have

a maximum intensity of one and, for clarity, are vertically offset from each other by the same value. Subfigures show the IR spectra in the 1,000–2,000 cm−1 range.

FIGURE 11 | IR spectra of 7-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. The IR spectra are normalized to have

a maximum intensity of one and, for clarity, are vertically offset from each other by the same value. Subfigures show the IR spectra in the 1,000–2,000 cm−1 range.
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FIGURE 12 | IR spectra of 8-acene, obtained with the TAO-AIMD simulations at 300 K and GS-NMA, calculated by TAO-LDA. The IR spectra are normalized to have

a maximum intensity of one and, for clarity, are vertically offset from each other by the same value. Subfigures show the IR spectra in the 1,000–2,000 cm−1 range.

based on the finite-electronic-temperature extension of TAO-
DFT will be needed. To lift these limitations, we plan to
investigate along some of these lines, and results may be
reported elsewhere.
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We present an implementation of the canonical and Laplace-transformed formulation of

the second-order Møller–Plesset perturbation theory under periodic boundary conditions

using numerical atomic orbitals. To validate our approach, we show that our results of

the Laplace-transformed MP2 correlation correction for the total energy and the band

gap are in excellent agreement with the results of the canonical MP2 formulation. We

have calculated the binding energy curve for the stacked trans-polyacetylene at the

Hartree–Fock + MP2 level as a preliminary application.
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1. INTRODUCTION

The second-order Møller–Plesset perturbation theory (MP2) is a post-Hartree–Fock approach to
take the electron correlation effect into account. Although it is very simple in form, it can capture
around 90% of the correlation energy (Bartlett and Stanton, 2007); so the MP2 method is still of
high interest in the quantum chemistry (Schütz et al., 1999; Kobayashi and Nakai, 2006; Bartlett
and Stanton, 2007) and solid-state physics communities (Suhai, 1983, 1992; Sun and Bartlett, 1996;
Pisani et al., 2008; Marsman et al., 2009; Schäfer et al., 2018).

However, the O(N5) calculation scaling of the original (canonical) MP2 method has limited the
application of the MP2 method in large systems. A series of algorithms have been proposed to
speed up the calculations, such as local MP2 method (Saebø and Pulay, 1993; Pisani et al., 2005,
2008; Maschio, 2011), Lapace-transformed MP2 method (Häser and Almlöf, 1992; Häser, 1993;
Ayala and Scuseria, 1999; Ayala et al., 2001; Schäfer et al., 2018), or resolution of the identity (RI)
MP2 method (Katouda and Nagase, 2010; Ren et al., 2012). The local MP2 method proposed
by Pulay (1983) and Saebø and Pulay (1993) has been efficiently implemented (Schütz et al.,
1999) in the MOLPRO code for molecules, then the periodic version of the local MP2 method
has been implemented (Pisani et al., 2005, 2008; Maschio, 2011) in the CRYSCOR code and in
the CP2K code (Usvyat et al., 2018) for extended systems. Since the spatially localized orbitals
or Wannier functions are adopted, the computational scaling of the local MP2 method is O(N).
The Laplace-transformed MP2 method is originally proposed by Häser and Almlöf (1992) and
Häser (1993), and have been implemented for both the molecule (Ayala and Scuseria, 1999) and
extended systems (Ayala et al., 2001) in the GAUSSIAN suite of programs. The localized atomic
orbitals have been employed and the computational scaling is also O(N). The Laplace-transformed
MP2 method has been combined with the resolution of identity (RI) technique to further improve
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the computational efficiency (Izmaylov and Scuseria, 2008).
Further rigorous integral screening scheme (Lambrecht et al.,
2005) has been introduced on top of the Laplace-transformed
MP2 to perform the calculations for a system comprising 1,000
atoms (Doser et al., 2008). Recently, the Laplace-transformed
MP2 method has also been implemented (Schäfer et al., 2018) in
VASP using stochastic orbitals.

So far, most of the implementations of the MP2 are adopting
the Gaussian-type orbital (GTO) as the basis set. However, in the
calculation of the periodic system, too diffused GTO with a long
tail will increase the number of cells in the auxiliary supercell,
and therefore the computational cost will increase. Compared
with GTO, the numerical atomic orbital (NAO) is strictly
localized, which could naturally leads to lower order scaling of
computational time vs. system size. Here in this work, we have
implemented the canonical MP2 and Laplace-transformed MP2
for the extended systems using NAO, and the results obtained
by these two approaches are consistent. Furthermore, we have
investigated theMP2 correlation correction to the band structure
with both the canonical and Laplace-transformed formulation;
our implementation has been validated by comparing the MP2
correlation correction of the total energy and the band gap to the
literature values.

The remainder of this paper is organized as follows. The
fundamental theoretical framework and the implementation
details for the canonical and Laplace transformed MP2 are
presented in section 2. The benchmark calculations are presented
in section 3. In section 4, we summarize our main achievement
and highlight the possible future research direction related to
this work.

2. METHOD

2.1. Numerical Atomic Orbitals
The numerical atomic orbital is defined by a product of a
numerical radial function and a spherical harmonic

χIlmn(r) = ϕIln(r)Ylm(r̂) . (1)

By solving the one-dimension radial Schrödinger equation

(−
1

2

1

r

d2

dr2
r +

l(l+ 1)

2r2
+ V(r)+ Vcut)ϕIln(r) = ǫlϕIln(r) , (2)

we can get the radial part of the numerical atomic orbital ϕIln(r),
where V(r) denotes the electrostatic potential for orbital ϕIln(r),
and Vcut ensures a smooth decay of each radial function, which is
strictly zero outside a confining radius rcut .

In order to perform the Hartree–Fock and MP2 calculation,
the electron repulsion integrals (ERIs) are needed:

(χµχν |χλχσ ) =
∫ ∫

χµ(r)χν(r)χλ(r′)χσ (r′)

|r− r′|
drdr′ (3)

we use NAO2GTO scheme described to calculate them as shown
in the following section.

2.2. The NAO2GTO Scheme to Calculate
ERIs
In the NAO2GTO scheme, we fit the NAO with GTOs, then we
calculate the ERIs analytically; in this way, the strict cutoff of
the atomic orbitals is satisfied with NAO and the construction
of Hartree-Fock exchange (HFX) matrix can scale linearly with
the system sizes (Shang et al., 2011). Since the angular part of
the NAOs is spherical harmonic, while the GTOs are Cartesian
harmonic function, a transformation between the Cartesian
and spherical harmonic functions is performed within the
NAO2GTO scheme.

2.3. Canonical MP2 Formulation
In extended systems, the normalized crystal orbital ψi(k, r) is a
linear combination of Bloch functions φµ(k, r):

ψi(k, r) =
∑

µ

Cµ,i(k)φµ(k, r) (4)

φµ(k, r) =
1

√
N

∑

R

χR
µ (r)e

ik·(R+rµ) (5)

in which N is the number of cells in extended systems, µ is the
index of the atomic orbitals, i refers to the crystal orbital index,
R denotes the cells in the extended systems (auxiliary supercell),
χR
µ (r) = χµ(r−R− rµ) refers to the atomic orbital whose center

is displaced from the cell R by rµ, and Cµ,i(k) are the coefficients
of the crystal orbitals.

TheMP2 correlation correction for the total energy of the unit
cell is

Emp2 = −
1

N

∑

i

∑

j

∑

a

∑

b

1

V4
k

∫
dki

∫
dkj

∫
dka

∫
dkb

(IA|JB)[2(IA|JB)− (IB|JA)]∗

ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫj(kj)
(6)

in which we use labeling i,j for occupied orbitals and a,b for
unoccupied orbitals. I/J refer to the composite index (i,ki)/(j,kj),
Vk is the volume of the Brillouin zone, and ǫi(ki) is the Hartree–
Fock eigenvalue for the eigenstate ψi(ki). It should be noted that
by using the identity (

∑
R exp ik · R = Nδk,0) derived with the

Born–von Karman periodic boundary condition, we can remove
one dimension integration over kj since kj = T(−ki + ka + kb),
where T is the translation operator. The formalism of summation
over 3-fold k points and over 4-fold k points (Equation 6) give the
same results.

Similarly, the MP2 correlation correction (ǫg(kg)(2)) to the
Hartree–Fock eigenstate ψg(kg) can be written as

ǫg(kg)
(2) = ǫg(kg)

MP2 − ǫg(kg)
HF = U(g)+ V(g) (7)

U(g) = −
∑

i,a,b

1

V3
k

∫
dki

∫
dka

∫
dkb

(IA|GB)[2(IA|GB)− (IB|GA)]∗

ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫg (kg )

(8)

V(g) =
∑

i,j,a

1

V3
k

∫
dki

∫
dkj

∫
dka

(IA|JG)[2(IA|JG)− (IG|JA)]∗

ǫa(ka)+ ǫg (kg )− ǫi(ki)− ǫj(kj)
(9)
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When ψg(kg) is the occupied orbital at the valance band
maximum (VBM), we can see U(g) < 0,V(g) > 0 and
|U(g)| < |V(g)|, then the MP2 renormalization of the VBM is
positive and will move the VBM orbital upward. When ψg(kg) is
the unoccupied orbital at the conduction bandminimum (CBM),
we have |U(g)| > |V(g)|, so the MP2 renormaliztion of the CBM
is negative, and will move the CBM downward. In total, the MP2
renormalization of the band gap is negative, and the MP2 band
gap is smaller than the Hartree-Fock band gap.

2.4. Laplace-Transformed MP2 Formulation
The Laplace transform is defined as:

1

x
=

∫ ∞

0
e−xtdt, x > 0 (10)

which can be used to remove the denominator in the canonical
MP2 formulation:

1

ǫa(ka)+ ǫb(kb)− ǫi(ki)− ǫj(kj)
=

∫
e[ǫi(ki)+ǫj(kj)−ǫa(ka)−ǫb(kb)]tdt

(11)

The integration in Equation (10) can either be done by using
a least square fitting method (Häser and Almlöf, 1992; Häser,
1993) or by using a Jacobian transform (Ayala and Scuseria, 1999;
Kobayashi and Nakai, 2006) of the Laplace integration variable
in order to transform the integration range [0,∞) into the finite
range [0, 1]. Here, we use the transform as follows:

∫ ∞

0
e−xtdt =

∫ 1

0
e−xt dt

dr
dr =

∫ 1

0
f (r)dr (12)

in which the Jacobian transform is

t =
r3 − 0.9r4

(1− r)2
+ r2 tan(

πr

2
) (13)

Then the final integration (
∫ 1
0 f (r)dr) in Equation (12) in

evaluated with Romberg quadrature method, which uses
refinements of the extended trapezoidal rule to reduce error in
definite integrals.

In this way, the Emp2 correlation correction energy can be
written as a new integration form:

Emp2 =−

∫
dt

∑

µ0,νRν ,λRλ ,σRσ

T
0RλRνRσ
µ,λ,ν,σ (t)[2(χ0

µχ
Rλ
λ |χRν

ν χRσ
σ )

− (χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ )] (14)

where µ,ν,σ ,λ and the following λ,δ,τ ,κ refer to the indexes of
the atomic orbitals. (χ0

µχ
Rσ
σ |χ

Rν
ν χ

Rλ
λ ) is the electron repulsion

integrals defined as

(χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ ) =

∫ ∫
χ0
µ(r)χ

Rσ
σ (r)χRν

ν (r′)χRλ
λ (r′)

|r− r′|
drdr′ .

(15)

and

T
RµRλRνRσ
µ,λ,ν,σ (t) =

∑

γRγ ,δRδ ,τRτ ,κRκ

X
RµRγ
µγ X

RνRδ
νδ Y

RλRκ
λκ YRσRτ

στ (χ
Rγ
γ χRκ

κ |χ
Rδ
δ χ

Rτ
τ )

(16)

The 4-fold k points are treated independently within X
RγRµ
γµ and

Y
RλRκ
λκ :

X
RγRµ
γµ =

occ∑

i

1

Vk

∫
dkiC

∗
γ i(ki)Cµi(ki)e

(ǫi−ǫf )teiki(Rµ−Rγ ) (17)

Y
RλRκ
λκ =

unocc∑

a

1

Vk

∫
dkaC

∗
λa(ka)Cκa(ka)e

−(ǫa−ǫf )teika(Rκ−Rλ)

(18)
In this way, the 4-fold integration over k-points in Equation (6)
can be reduced to 1-dimensional k-points integral as shown in
Equations (17) and (18). Furthermore, the locality of the atomic

basis function can be adopted for the calculation of T
RµRλRνRσ
µ,λ,ν,σ

and electron repulsion integrals, and the total computational
scaling could be O(N · Nk) if the distant screening between these
ERIs are applied. Here in this work, such distance screening
has not been used, so our implementation results in a O(N2 ·

Nk) scaling. It is worth noting that in order to keep the
exponential value (e(ǫi)t) in Equation (17)/Equation (18) to be
smaller than unity, we have inserted the Fermi energy level into
the exponential factor (e(ǫi−ǫf )t) in order to make the calculation
to be more stable.

Based on Equations (7) and (10), we have the Laplace-
transformed MP2 correlation correction (ǫg(kg)(2)) for
the eigenstate:

ǫg(kg)
(2) =

∫
dt

∑

µ0,νRν ,λRλ ,σRσ

G
0RνRλRσ
µ,λ,ν,σ (t)[2(χ0

µχ
Rλ
λ |χRν

ν χRσ
σ )

− (χ0
µχ

Rσ
σ |χRν

ν χ
Rλ
λ )] (19)

G
RµRλRνRσ
µ,λ,ν,σ (t) =

∑

γRγ ,δRδ ,τRτ ,κRκ

X
RµRγ
µγ Y

RλRκ
λκ (χ

Rγ
γ χRκ

κ |χ
Rδ
δ χ

Rτ
τ )

× (−W
RνRδ
νδ YRσRτ

στ + X
RνRδ
νδ ZRσRτ

στ ) (20)

W
RγRµ
γµ = C∗

γ g(kg)Cµg(kg)e
(ǫg )teikg (Rµ−Rγ ) (21)

Z
RλRκ
λκ = C∗

λg(kg)Cκg(kg)e
−(ǫg )teikg (Rκ−Rλ) (22)

Similarly, in order to keep the exponential value to be smaller
than unity and avoid computational divergence, we inserted the
VBM/CBM value into the exponential factor when calculated the
MP2 reformulation of the VBM/CBM.

The canonical and Laplace-transformed MP2 methods
described above have been implemented in the Order-N
performance HONPAS code (Qin et al., 2014).
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3. RESULTS

In order to validate our implementation, we perform benchmark
calculations for 1-dimensional systems.We use norm-conserving
pseudopotentials generated with the Troullier–Martins scheme
to represent the interaction between core ion and valence
electrons. The single-zeta (SZ), double-zeta (DZ), and double-
zeta polarized (DZP) basis sets are generated using SIESTA. Then
the NAOs are fitted with GTOs to perform the Hartree–Fock
calculation as discussed in Shang et al. (2011).

First, we use a 1-dimensional hydrogen chain as an example
to make the comparison between the results of canonical MP2
and those of Laplace-transformed MP2. The lattice parameter
for the 1-dimensional H chain is set to 2.6 Å, and the H-H
bond length is set to 1.346 Å. The SZ basis set is adopted, so
that there are only two atomic orbitals in the unit cell. The
Brillouin zone is sampled by 1 × 1 × 6 k-points. The unit cell
is a 20 × 20 × 2.6 Å box, and the real-space integration mesh
is set to be 100 Ry. In the Laplace-transformed MP2 method, the
Romberg method is adopted to perform the final integration. The
accuracy of integration results depends on the order of Romberg
integration (n), since the results of the Romberg integration
are obtained in a recursive manner, R(n, j) = R(n, j − 1) +
R(n,j−1)−R(n−1,j−1)

4j−1−1
. As shown in Table 1, when the order of

Romberg integration increases from 3 to 8, the MP2 correlation
correction for the unit cell energy (Emp2) as well as the MP2

correlation correction for the band structure (ǫ(2)VBM, ǫ(2)CBM, ǫ(2)gap)
are converged to the results of canonical MP2. When using
the media precision parameter (n = 5) in Laplace- transformed
MP2, we get a absolute/relative error of 4 × 10−6 eV/0.0007%
for the correlation of the unit cell energy (Emp2), and we get
a absolute/relative error of 3 × 10−5 eV/0.02% for the MP2
correlation correction for the band gap (ǫ(2)gap). Overall, we find an
excellent agreement between the Laplace-transformed MP2 and
the canonical MP2 benchmark results.

We also examine the relative error between the results of
Laplace-transformed MP2 and those of canonical MP2 with
respect to the basis set size (SZ, DZ, DZP), as shown in
Table 2 with ethylene molecule as an example. Again, we find an
excellent agreement between the Laplace-transformed MP2 and
the canonical MP2 benchmark results.

TABLE 1 | The comparison between the results of canonical MP2 and those of

Laplace-transformed MP2.

H2-line Laplace Canonical

n 3 5 8

Emp2 (eV) −0.561442 −0.561190 −0.561194 −0.561194

ǫ
(2)
VBM (eV) 0.16736223 0.150361892 0.15033577 0.15033577

ǫ
(2)
CBM (eV) −0.03044718 −0.01888047 −0.01887073 −0.01887073

ǫ
(2)
gap (eV) −0.19780941 −0.16924236 −0.16920650 −0.16920650

Here, theMP2 correlation correction for the unit cell energy (Emp2) and theMP2 correlation

correction for the band structure (ǫ
(2)
VBM, ǫ

(2)
CBM

, ǫ
(2)
gap) have been examined with the above

two approaches. Here, we use a 1-dimensional hydrogen chain as an example.

Second, we perform the Laplace-transformedMP2 calculation
for the 1D polymer trans-polyacetylene as shown in Table 3. The
order of Romberg integration is set to be n = 5. The SZ basis set
is adopted in our calculation. The Brillouin zone is sampled by 1
× 1 × 30 k-points. The real-space integration mesh is set to be
200 Ry. We compare our calculated MP2 correlation correction
for the total energy per unit cell with the one obtained in Sun and
Bartlett (1996). The G3 geometry parameters as listed in Sun and
Bartlett (1996) are adopted to keep the geometry to be the same
for comparison. We get an absolute/relative error of 0.26 eV/8%
for the correlation correction of the unit cell energy (Emp2). The
difference comes from the usage of the different basis set, since
in Sun and Bartlett (1996), the STO-3G basis set is used, whose
shape is different from the SZ basis that we are using. For a similar
reason, when using the same G6 geometry parameter of trans-
polyacetylene (Sun and Bartlett, 1996), we get an absolute/relative
error of 0.09 eV/7% for the correlation correction of the band
gap (ǫ(2)gap) when compared with Sun’s result.

We then investigate the performance and scaling of
our implementation, and we show timings for the trans-
polyacetylene molecules with variable number of atoms in
Figure 1. We find a linear scaling for the calculation of ERIs and
an O(N2) scaling for the calculation of the Laplace-transformed
MP2. This is not too surprising, since we can see from Equation
(14) that there are two loops over the ERIs for the calculation of
Laplace-transformed MP2, so we get the O(N2) scaling.

Finally, we show the calculated binding-energy curves as
functions of the distance between two trans-polyacetylene chains
with the PBC-MP2 method. Although the MP2 theory gives
overestimation of the dispersion interaction energy (Tkatchenko
et al., 2009), it is still a superior starting point for the dispersion
correction compared to Hartree–Fock and semi-local density
functional theory (DFT). As shown in Figure 2, the MP2 method
results in a binding states. On the contrary, Hartree–Fock
and PBE functional fail to identify any binding between the
two chains. We can see in Figure 2 that the energy profile

TABLE 2 | The relative error between the results of canonical MP2 and those of

Laplace-transformed MP2 with different basis set.

Ethylene (C2H4) SZ (%) DZ (%) DZP (%)

Relative error 0.0007 0.003 0.001

Here, we use ethylene molecule as an example. The order of Romberg integration (n) in

the Laplace transformed MP2 is set to n = 5.

TABLE 3 | The comparison between our results and those from the literature (Sun

and Bartlett, 1996).

Trans-polyacetylene Sun and Bartlett (1996) (eV) Our results (eV)

Emp2 −3.22 −2.96

ǫ
(2)
gap −1.18 −1.09

Here, theMP2 correlation correction for the unit cell energy (Emp2) and theMP2 correlation

correction for the band gap (ǫ
(2)
gap) have been examined.
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FIGURE 1 | The CPU time for the ERI and MP2 calculation using SZ basis set. Here, the trans-polyacetylene molecules are used as the test systems.

FIGURE 2 | Interaction energy as functions of the distance between two

trans-polyacetylene chains as predicted by the Hartree-Fock (blue), PBE (red),

and MP2 (black) method. The unit cell is marked with shaded box.

calculated with Hartree–Fock and PBE functional shows a
repulsive behavior as the two chains are brought closer together.

4. CONCLUSIONS

We have implemented the canonical and Laplace-transformed
algorithms to calculate the MP2 correlation correction for the
total energy and the band gap of periodic systems in HONPAS
code with numerical atomic orbitals. The results obtained by
the canonical MP2 and Laplace-transformed MP2 are consistent
with each other. We have also validated the implementation

by comparing the results with the literature data. We have
studied the binding-energy curves for the two stacked trans-
polyacetylene chains, which shows the MP2 method can well
describe the correlation energy and the long-range van derWaals
interactions. Future work will address the application of the
Laplace-transformed MP2 method to 3-dimensional periodic
systems in the HONPAS code.
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Linear-scaling density functional theory (DFT) is an efficient method to describe the
electronic structures of molecules, semiconductors, and insulators to avoid the high
cubic-scaling cost in conventional DFT calculations. Here, we present a parallel
implementation of linear-scaling density matrix trace correcting (TC) purification algorithm
to solve the Kohn–Sham (KS) equations with the numerical atomic orbitals in the HONPAS
package. Such a linear-scaling density matrix purification algorithm is based on the
Kohn’s nearsightedness principle, resulting in a sparse Hamiltonian matrix with localized
basis sets in the DFT calculations. Therefore, sparse matrix multiplication is the most
time-consuming step in the density matrix purification algorithm for linear-scaling DFT
calculations. We propose to use the MPI_Allgather function for parallel programming
to deal with the sparse matrix multiplication within the compressed sparse row (CSR)
format, which can scale up to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy and efficiency of this
parallel density matrix purification algorithm by performing large-scale DFT calculations
on boron nitrogen nanotubes containing tens of thousands of atoms.

Keywords: linear-scaling density functional theory, density matrix purification algorithm, sparse matrix

multiplication, parallel implementation, tens of thousands of atoms

1. INTRODUCTION

The Kohn–Sham density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,
1965) has been successfully applied to perform first-principles calculations for describing the
electronic structures of both molecules and solids. However, conventional DFT calculations
based on direct diagonalization methods for solving the KS equations have a high cubic-scaling
cost (Goedecker, 1999), which can usually be used to study medium-scale systems containing up to
hundreds of atoms. Therefore, it is difficult to achieve massive parallelism for these conventional
cubic-scaling methods due to complex communication issues. To avoid the bottleneck arising
from the computational cost and memory usage of directly diagonalizing the Hamiltonian
matrix in conventional DFT calculations, linear-scaling methods using local basis functions
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have been proposed (Goedecker, 1999), strongly promoting
the applications of DFT calculations in large-scale systems
containing thousands of atoms.

In general, linear-scaling methods include direct, variational,
and purification methods (Bowler and Miyazaki, 2012). The
direct methods are featured by direct evaluation of density
matrix using various approximations, including divide and
conquer (Yang, 1991; Yang and Lee, 1995) and Fermi operator
expansion (Goedecker and Colombo, 1994; Goedecker and Teter,
1995; Liang et al., 2003). The variational methods minimize
the total energy with respect to the auxiliary density matrix or
Wannier-like orbitals, covering density matrix minimization
method (Daw, 1993; Li et al., 1993; Nunes and Vanderbilt,
1994) and orbital minimization method (OMM) (Galli and
Parrinello, 1992; Mauri and Galli, 1994; Kim et al., 1995;
Ordejón et al., 1995). The third scheme exploits the purification
polynomial and iterative solution, which is known as density
matrix purification method (Palser and Manolopoulos, 1998;
Niklasson, 2002; Niklasson et al., 2003). Nearly all of the
linear-scaling methods are based on the Kohn’s nearsightedness
principle with localized basis sets, such as Gaussian type
orbitals (GTOs) (Frisch et al., 1984) and numerical atomic
orbitals (Shang et al., 2010) (NAOs), resulting in the sparsity
of density matrix with a number of non-zero entries that
increase linearly with the system size, so the linear-scaling
matrix-matrix multiplication can be achieved (VandeVondele
et al., 2012; Kim and Jung, 2016). In particular, the density
matrix purification algorithms without prior knowledge
of the chemical potential, including the trace-preserving
canonical purification scheme of Palser and Manolopoulos
(PM) (Palser and Manolopoulos, 1998; Daniels and Scuseria,
1999), the trace-correcting purification (TC) (Niklasson,
2002), and the trace resetting density matrix purification
(TRS) (Niklasson et al., 2003), have been demonstrated as
accurate and efficient linear-scaling methods to describe
the electronic structures of molecules, semiconductors, and
insulators. However, almost all of the developed linear-scaling
techniques (direct, variational, and purification methods)
assume the presence of a non-zero gap in the electronic
structure, which prevents them from treating metallic systems.
Recently, Suryanarayana (2017) have employed the O(N)
Spectral Quadrature (SQ) method (Suryanarayana, 2013; Pratapa
et al., 2016) to study the locality of electronic interactions in
aluminum (a prototypical metallic system) as a function of
smearing/electronic temperature. They have found exponential
convergence accompanied by a rate that increases sub-linearly
with smearing. It is also worth mentioning that all these linear-
scaling methods based on Kohn’s nearsightedness principle
are limited to the localization of density matrix (Bowler and
Miyazaki, 2012). A recently published innovative version of
PEXSI scheme named iPEXSI (Etter, 2020), which does not
rely on the nearsightedness principle, can scale provably better
than cubically even in the absence of localization of density
matrix. The iPEXSI algorithm utilizes a localization property of
triangular factorization, which could extend the usable range of
linear-scaling method to metallic system without the constraint
of finite electronic temperature.

Nowadays, with the rapid development of modern
heterogeneous supercomputers, the high-performance
computing (HPC) has become a powerful tool for accelerating
the DFT calculations to deal with large-scale systems. Several
highly efficient DFT software based on low-scaling methods
have been developed, such as SIESTA (Soler et al., 2002),
OPENMX (Ozaki and Kino, 2005), CP2K (Kühne et al., 2020),
CONQUEST (Gillan et al., 2007), PROFESS (Ho et al., 2008),
FREEON (Challacombe, 2014), ONETEP (Skylaris et al.,
2005), BigDFT (Genovese et al., 2008; Mohr et al., 2014),
FHI-aims (Blum et al., 2009), ABACUS (Chen et al., 2010, 2011),
HONPAS (Qin et al., 2015), and DGDFT (Lin et al., 2012; Hu
et al., 2015a,b; Banerjee et al., 2016; Zhang et al., 2017), which
are capable to make full advantage of the massive parallelism
available on HPC architectures beneting from the local data
communication of sparse Hamiltonian matrix generated with
local basis sets. In linear-scaling DFT calculations, the kernel for
HPC is to parallel sparse matrix–matrix multiplication. In order
to realize the HPC parallelism, two massively parallel libraries
of BCSR (Borštnik et al., 2014) and NTPOLY (Dawson and
Nakajima, 2018) have been developed, which have shown
a high performance for the density matrix purification
algorithms implemented in the CP2K (Kühne et al., 2020)
and CONQUEST (Gillan et al., 2007) packages.

In this work, we present a parallel implementation of linear-
scaling density matrix second-order trace-correcting purification
(TC2) algorithm (Niklasson, 2002) to solve the KS equations
with the NAOs in the HONPAS package (Qin et al., 2015).
We propose to use the MPI_Allgather function for parallel
programming to deal with such sparse matrix multiplication
within the CSR format, which can be scaled linearly up
to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy
and efficiency of this linear-scaling density matrix purification
method by performing large-scale DFT calculations on boron
nitrogen nanotubes containing thousands of atoms.

2. METHODOLOGY

2.1. Density Functional Theory
We first give a brief review of Kohn–Sham density functional
theory (KS-DFT). The key spirit of KS-DFT is to solve the KS
equations defined as

Ĥψi(r) = (T̂ + V̂ion + V̂H + V̂xc)ψi(r) = εiψi(r) (1)

where Ĥ is the Hamiltonian operator, ψi is the ith molecular
orbital, and ǫi is the corresponding orbital energy. T̂ is the kinetic
operator, V̂ion is the ionic potential operator, and V̂H is the
Hartree potential operator defined as

V̂H(r) =
∫

ρ(r′)

|r− r′|
dr′ (2)

where the electron density is given by

ρ(r) =
Ne∑

i=1

ψ∗
i (r)ψi(r) (3)
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In the approximation of linear combination of atomic orbitals
(LCAO) (Mulliken, 1955), the ψi is expanded on a set of NAOs
{φµ(r)}

Nb
µ=1

ψi(r) =
Nb∑

µ

cµiφµ(r) (4)

where cµi is the expansion coefficient at the µth atomic orbital
and Nb is the number of NAOs. Then, the KS equations can be
rewritten into matrix notations as

HC = SCE (5)

where C is coefficient matrix and E is the corresponding orbital
energy. H and S are the Hamiltonian and overlap matrices over
the NAOs

Hµν =

∫
φ∗µ(r)Ĥφν(r)dr

Sµν =

∫
φ∗µ(r)φν(r)dr

(6)

The default choice in the SIESTA package is to use the direct
diagonalization method though the LAPACK and ScaLAPACK
libraries to solve this eigenvalue problem with a high cubic-
scaling cost. Therefore, the computational cost and memory
usage of such DFT calculations increase rapidly as the system
size, which are only limited to small systems containing hundreds
of atoms. In order to overcome this limitation, several linear-
scaling methods have been implemented in the SIESTA package,
such as the Kim–Mauri–Galli (KMG) orbital minimization
(OMM) method (Galli and Parrinello, 1992; Mauri and Galli,
1994; Kim et al., 1995; Corsetti, 2014) and divide and conquer
method (Cankurtaran et al., 2008). The KMG requires a initial
approximate Wannier functions and a prior knowledge of the
chemical potential. In the HONPAS-SIESTA package (Qin et al.,
2015), we implement the density matrix purification algorithms,
including the trace-preserving canonical purification scheme of
PM (Palser andManolopoulos, 1998; Daniels and Scuseria, 1999),
the trace-correcting purification (TC) (Niklasson, 2002), and the
trace resetting density matrix purification (TRS) (Niklasson et al.,
2003).

2.2. Linear-Scaling Density Matrix
Purification Algorithms
After constructing the Hamiltonian matrix, the density matrix
can be obtained by directly diagonalizing the Hamiltonian
matrix with cubic-scaling cost. In order to avoid the high
cost of explicit diagonalization, we implement three density
matrix purification algorithms, without prior knowledge of the
chemical potential for linear-scaling DFT calculations, including
the trace-preserving canonical purification scheme of PM, the
trace-correcting purification (TC) (Niklasson, 2002), and the
trace resetting density matrix purification (TRS) (Niklasson
et al., 2003), in the HONPAS package (Qin et al., 2015). In
this work, we use the second-order trace-correcting purification
(TC2) (Niklasson, 2002) algorithm with orthogonal basis sets to

illustrate our parallel algorithms. In the coordinate presentation,
the general form of density matrix can be given by

ρ(r, r′) =
Nb∑

i=1

f (εi)ψi(r)ψ
∗
i (r

′) (7)

where f (εi) is the Fermi distribution function of energy level εi at
finite electronic temperature

f (εi) =
1

1+ eβ(εi−µ)
(8)

with the chemical potential µ and the inverse temperature β =

1/kBT. Within the LCAO method, we can transform the density
matrix from coordinate presentation to the basis presentation,
then the density matrix element Pµν becomes:

Pµν =

∫
φ∗µ(r)ρ(r, r

′)φν(r
′)drdr′

=

∫
φ∗µ(r)

Nb∑

i=1

f (εi)ψi(r)ψ
∗
i (r

′)φν(r
′)drdr′

=

Nb∑

i=1

f (εi)
Nb∑

λ

cλi

Nb∑

κ

c∗κi

∫
φ∗µ(r)φλ(r)dr

∫
φ∗κ (r

′)φν(r
′)dr′

=

Nb∑

i=1

f (εi)
Nb∑

λ

cλi

Nb∑

κ

c∗κiSµλSνκ

(9)
If NAOs are orthogonal, the density matrix element Pµν can be
written as

Pµν =

Nb∑

i

f (εi)cµic
∗
νi (10)

Note that εi is relative to the eigenvalue of Ĥψi = εiψi, so Pµν
can be rewritten as

Pµν =

∫
φ∗µ(r)ρ(r, r

′)φν(r
′)drdr′

=

Nb∑

i

∫
φ∗µ(r)f (εi)ψi(r)ψ

∗
i (r

′)φν(r
′)drdr′

=

∫
φ∗µ(r)f (Ĥ)

Nb∑

i

(ψi(r)ψ
∗
i (r

′))φν(r
′)drdr′

=

∫
φ∗µ(r)f (Ĥ)φν(r

′)drdr′

(11)

which implies that P is commutative with H, namely [H, P] = 0.
Another substantial property of the appropriate density matrix is
particle conservation, Tr(P) = Ne/2.

When the electronic temperature is zero, f (εi) = 1 and the
density matrix of insulator can be written as

Pµν =

Ne∑

i

cµic
∗
νi (12)
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FIGURE 1 | The flowchart of density matrix purification TC2 method. There
are four time-consuming parts in the TC2 method, including constructing the
Hamiltonian matrix, initializing the density matrix P from the Hamiltonian matrix
with Cholesky and Lanzos methods, updating the density matrix with parallel
sparse matrix–matrix multiplication, and computing total energy and atomic
forces after SCF iterations.

which must satisfy the so-called idempotency PP = P with an
orthogonal basis.

The solution of eigenvalue problem is under three restricted
conditions of the density matrix mentioned above, which
is known as the purification method. The trace-preserving
canonical purification scheme of PM (Palser and Manolopoulos,
1998), which imposes commutation relation and trace-
preserving condition, works with a predefined occupation and
does not need the input or adjustment of the chemical potential.
Trace-conserving spectral projections are performed during each
iteration, until the density matrix Pn converges to the correct
one that satisfies the idempotency condition. This method
is inefficient at low and high partial occupancies (Palser and
Manolopoulos, 1998; Daniels and Scuseria, 1999). A subsequent
strategy proposed by Niklasson named TC algorithm (Niklasson,
2002). Its second-order form is called the second-order trace-
correcting purification (TC2) method (Niklasson et al., 2003).
The higher order TC2 requires additional matrix multiplications,
which pursues a more rapid reduction of errors and a less step of
purification iterations (Kim and Jung, 2016).

The TC2 purification algorithm is simple, robust, and rapidly
convergent for closed-shell systems, and more efficient in
orthogonal basis sets (Xiang et al., 2005). In this work,H denotes
the Hamiltonian matrix under the presentation of orthogonal
basis sets. Reasonably in the preparatory step, a transformation
H = ZTHAOZ is required, here the matrix Z is obtained by
solving out the inverse square root of overlap matrix S by the
Cholesky factorization (Cholesky, 2005). The idempotency and

Algorithm 1 The pseudocode of TC2 algorithm, where Ne is the
number of electrons, E is the energy-density matrix, εmin(H) and
εmax(H) denote the minimal and maximum eigenvalue of the
Hamiltonian matrix H, respectively.

subroutine TC2 (H, P, Ne)
1: S = LLT

2: Z = L−1

3: H = ZHAOZ
T

4: P0 = (εmaxI −H) / (εmax − εmin)

5: do iter = 1, niter
6: if Tr(Pn) ≤ Ne/2 then

7: Pn+1 = P2n
8: else

9: Pn+1 = 2Pn − P2n
10: δ = (Tr (Pn+1H)− Tr (PnH)) /Tr (PnH)
11: enddo

12: if (Converged) then
13: PAO = ZTPZ
14: E = PAOHAOS

−1 = PAOHAOZ
TZ

15: endif

end subrouine

commutativity are satisfied naturally since the initial guess P0 is
obtained by the Lanczos method (Lanczos, 1950).

During each iteration step, the trace of Pn+1 is corrected by
P2n (Tr(Pn) ≤ Ne/2) or 2Pn − P2n (Tr(Pn) > Ne/2). Then, matrix
elements less than a numerical threshold δfilter (10−4 or 10−6) are
dropped to zero, thus maintaining the sparsity of density matrix.
The pseudocode of the TC2 algorithm is given in Algorithm 1
and its corresponding owchart is shown in Figure 1.

The density matrix purification method in HONPAS is based
on the fact that both the density matrix and Hamiltonian matrix
are sparse with NAOs. Therefore, sparse matrix multiplication
is the most expensive step in the density matrix purification
method. Figure 2 shows the sparsity of the density matrix P
saved as CSR format for the BN nanotubes consisting of 100 and
1,000 atoms (BNNT100 and BNNT1000) with different basis sets
[single-ζ (SZ), double-ζ (DZ), and double-ζ plus polarization
(DZP)] and thresholds (δfilter = 10−4 and 10−6) of non-zero
elements in the density matrix P.

When the selected basis sets are strictly localized, the
coefficient matrix C for BNNT100 and BNNT1000 systems
formed in a similar block diagonal matrix and arbitrary row
of the resultant P is occupied by same number of non-zero
elements since P = CCT . Therefore, the total number of non-
zero elements grows linearly with the system size under tight
binding approximation, which is the substantial precondition of
almost all linear scaling algorithms. If we have an observation
onto the first two columns of Figure 2, matrices show block-
multidiagonal patterns and sparse degree of BNNT 1000 with the
SZ basis set under δfilter = 10−4 is 11.6%, which is obviously less
than that of BNNT100 (87.7%). Variation trend of sparse degree is
consistent with the charactermentioned above from a perspective
of image. Moreover, the cutoff radius rc of the DZP basis set is
higher, so non-zero elements per row distribute more intensively

Frontiers in Chemistry | www.frontiersin.org 4 November 2020 | Volume 8 | Article 58991046

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Luo et al. Linear-Scaling Density Functional Theory in HONPAS

FIGURE 2 | The sparsity of the density matrix P in the compressed sparse row (CSR) format of BN nanotubes (BNNTs) consisting of 100 and 1,000 atoms (BNNT100
and BNNT1000). Percentage under the system name indicates sparse degree of P. The matrix elements exceeding 10−2 are labeled as light blue and those
exceeding 10−1 are marked as red. White area is remained for elements with tiny values or zero. Density matrix becomes less occupied with its elements gathering
close to diagonal when the threshold after multiplication 100× tighter (10−6) than that of higher occupied matrix (10−4). When the basis sets become larger from SZ to
DZP, sparse degree varies and δfilter strongly affects the sparsity pattern.
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but their value is smaller than that of SZ and DZ. Sparse degree of
BNNT1000 also decreases significantly from that of BNNT100 in
the case of DZP basis set, such as 86.6% of BNNT100 and 16.4%
of BNNT1000 at the same threshold, respectively.

On the perspective of threshold as shown in Figure 2, we
observe that, as the system size increases, the influence of δfilter is
more significant, either the patterns or the sparse degree display
an obvious difference under δfilter = 10−4 and 10−6. For example,
the density matrix of BNNT1000 with the DZP basis set is 32.3%
occupied under δfilter = 10−6 and 16.4% occupied under δfilter
= 10−4. On the other hand, δfilter has a slight influence on the
sparsity of BNNT100 compared with BNNT1000, which implies
that the distribution of numerical value of matrix elements is
shifted to higher level than that of BNNT1000. Just as elements
dotted with deep color in BNNT100 are much more intensive
than those of BNNT1000. It should be noted that dropping
matrix elements less than δfilter and using strictly truncated NAOs
both contribute to the sparsity of P.

2.3. Parallel Implementation of Sparse
Matrix Multiplication
The time required to process matrix–matrix multiplications
during each iteration step accounts for a major part of total
time. Note that there are some additional steps such as data
communication and matrix addition. Fortunately, all matrices
we need to deal with are sparse, so that the number of dot
products reduces. The linear scaling cost arises from the fact that
all matrix operations are performed on sparse matrices, which
has a number of non-zero entries that increase linearly with the
system size (VandeVondele et al., 2012).

The sparsity of matrix also causes unexpected drawbacks.
An apparent disadvantage is, the matrix multiplication step
would change the sparsity pattern during the self-consistent field
(SCF) iterations, resulting in a load imbalance between matrix
computation and data commutation among different processing
cores. Since each matrix is distributed on a series of processes
in advance, the instability of sparsity pattern will occur at each
iteration, thus we also need to modify the data distribution after
each iteration or exploit a block-cyclic distribution scheme. Apart
from those, dropping matrix elements with the numerical value
less than a threshold can reduce the number of dot products. But
the computational accuracy of total energy and atomic forces is
sacrificed inevitably under a loose threshold. The parallel version
of TC2 algorithm in HONPAS is based on CSR data format and
message-passing interface (MPI), which is capable of performing
massive parallelism on modern heterogeneous supercomputers.
We employ the SPARSEKIT library to manipulate and deal with
sparse matrices, which provides programs for converting data
structures, filtering out elements, and performing basic linear
algebra operations with sparse matrix (Saad, 1994).

In the parallel TC2 module, there is a single hierarchical
structure of parallelization that consists of single type of data
distribution and communication scheme. The TC2 module
utilizes the MPI parallel programming to deal with data
communications between different MPI processes. In our work,
the MPI processes are organized in 1D row MPI grids. The

FIGURE 3 | Parallel data distribution and communication of sparse matrix
multiplication when Np = 4. The density matrix is partitioned into four row
block local matrices with 1D row BN nanotube (BNNT) grid parallelism (1p, 2p,
3p, and 4p). Each local matrix is stored in the compressed sparse row (CSR)
format. MPI_Allgather is invoked to integrate these four row block local
matrices into a global matrix in the CSR format.

density matrix is distributed by 1D row blocks across MPI
processes, and each process saves Nb/Np rows of global matrix.
Thus, such local and global sparse matrix–matrix multiplication
does not require additional data communication. Individual
process computes its part of the multiplication, processing a
row block of np (n = 1, 2, . . ., Np) at a time. After the local
multiplication has been processed, each processor just gathers a
local subset of global density matrix. We use the MPI_Allgather
function to gather local matrices into global density matrix
in each MPI process, similar to the case of MPI_Gather and
then MPI_Bcast, then performing local sparse matrix–matrix
multiplication at the next iteration step. Figure 3 illustrates the
schematic diagram of MPI communication on CSR data format,
in which we set Np = 4 to simplify the discussion.

3. RESULTS AND DISCUSSION

In this section, we demonstrate the computational accuracy and
efficiency of our parallel TC2 algorithm. We implement this
method in the HONPAS package (Qin et al., 2015), which has
been written in the Fortran programming language with the MPI
for parallelism. We use the norm-conserving Troullier-Martins
pseudopotentials (Troullier and Martins, 1991) to represent
interaction between core and valence electrons. We use the
exchange-correlation functional of local density approximation
of Goedecker-Teter-Hutter (LDA-PZ) (Goedecker et al., 1996)
to describe the electronic structures of these BNNTs with
a grid cutoff of 100 Ry. In our calculations, the NAOs
are generated by default parameters in SIESTA. We utilize
the linear-scaling density matrix TC2 purification algorithm
to calculate the electronic structures of a series of boron
nitride nanotubes (BNNTs), containing 100–18,000 atoms
(labeled by BNNT100-BNNT18000). The details of the input
parameters and atomic structures of BNNTs used in this
work as well as the performance data are shown in the
Supplementary Materials.
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TABLE 1 | Absolute error of total energy 1Etot (eV/atom) and the maximum of root
mean square error of atomic forces 1Fmax (eV/Å) of the TC2 method with varying
thresholds of δfilter = 10−4 and 10−6 for the BNNT100 system with SZ, DZ, and
DZP basis sets.

Basis sets δfilter 1Etot 1Fmax

SZ 10−4 3.36× 10−4 8.48× 10−3

DZ 10−4 2.26× 10−3 9.80× 10−2

DZP 10−4 8.80× 10−3 3.07× 10−1

SZ 10−6 3.70× 10−7 3.64× 10−5

DZ 10−6 4.72× 10−5 1.73× 10−4

DZP 10−6 1.06× 10−5 4.30× 10−4

The reference results are computed by the direct diagonalization method.

3.1. Accuracy
We benchmark the computational accuracy of parallel TC2
method by comparing the results with those obtained from the
diagnonalization method.We consider the effects of both the size
of basis sets (SZ, DZ, and DZP) and different values of thresholds
(δfilter = 10−4 to 10−6) on the computational accuracy of density
matrix TC2 purification algorithm. We define the errors of total
energy and atomic forces, respectively, as

1Etot =| 1ETC2 − EDIAG | /NA

1FI =| FTC2I − FDIAGI |

where NA is the total number of atoms and I is the atom index.
In the HONPAS calculations, the default convergence

accuracy for total energy and atomic forces are 10−4 eV/atom and
0.02 eV/Å, respectively. Table 1 shows that the TC2 purification
calculation for total energy is performed very well when choosing
a tight dropping threshold, and δfilter = 10−6 can yield a total
energy accuracy of 10−5 eV/atom at least. On the other hand,
strictly truncated NAOs can yield the sparsity without loss of
accuracy simultaneously (Shang et al., 2010). We compute the
total energy and atomic forces under different basis sets using
a variable threshold. As shown in Figure 4, the errors of atomic
forces from TC2 and those obtained from direct diagonalization
method are indistinguishable. For all tested systems, the accuracy
of the TC2 method can be obviously improved by tightening
the threshold (10−4 to 10−6). In particular, when the threshold
is set to 10−4, 1Fmax with the most general case of DZP basis
set reaches 10−1 eV/Å, which is already comparable to the
magnitude of atomic force itself. In contrast, 1Fmax = 4.30 ×

10−4 eV/Å under δfilter = 10−6 with the same basis set. The
noticeable error arises from the lack of information in density
matrix when too many elements are neglected after each iteration
step and the information of Hamiltonian matrix just included in
the initial step. However, the relative error of energy per atom
is less than 10−7 when threshold is set to 10−6 in the case of SZ
basis set, which indicates that the computational accuracy of TC2
method is still guaranteed. On the perspective of basis sets, high
accuracy is ensured when we employ rigorously localized basis
sets (SZ). Note that systems with the DZP basis set have relatively
larger errors, since the information of polarization orbital is

FIGURE 4 | Variation of root mean square error of atomic force on each atom
computed with the TC2 and diagonalization methods with different basis sets
(SZ, DZ, and DZP) and thresholds (δfilter = 10−4 and 10−6) for BNNT100.

partly omitted by dropping matrix elements. For instance, when
δfilter is set to 10−4, the energy error for SZ is 3.36× 10−4 but that
for DZP is 8.80×10−3 (still can achieve the converged accuracy).
As we have mentioned in section 2, non-zero elements those
hold relatively small value distribute more intensively in the case
of DZP basis set, and the physical information can be seriously
lacking under relatively large δfilter.

3.2. Efficiency
We demonstrate the computational efficiency and parallel
scalability of linear-scaling TC2 method by checking the
weak and strong scaling performance on BNNT systems with
the SZ basis set and a threshold of δfilter = 10−4. We
illustrate the total time of the main time-consuming parts as
shown in Figure 1: (a) Construction of Hamiltonian matrix,
(b) evaluation of density matrix P from Hamiltonian matrix
by Cholesky factorization following Lanczos method, and (c)
purification with matrix multiplication and addition. It should
be noticed that the data communication via MPI interface also
occupies numerous time resource while performing massive
parallelization over plenty of processing cores. Practical tests
on the computational efficiency and parallel scalability are
performed in the case of BNNT systems with MPI parallelism on
modern heterogeneous supercomputers, including comparison
of TC2 and diagonalization methods with respect to different
system sizes and process counts, as shown in Figures 5, 6,
respectively. There are some additional steps such as computing
total energy and atomic forces, which are all included in the total
wall clock time of outer SCF iterations in the TC2 method.

Since the computational cost of linear-scaling TC2 method
grows linearly with respect to the system size, a noteworthy speed
up is supposed to be observed. We choose all tested systems with
the SZ basis set to illustrate strong and weak scaling behaviors,
since it is more strictly localized, resulting in a relatively small
change of sparsity pattern after each iteration step. The variation
of total time with respect to the system size is plotted in Figure 5.
We can see that the scaling of TC2 is fitted to O(N) due to the
linearly growing sparse degree of P, and the number required
to perform multiplication has the same trend. Linear scaling
behavior is obtained with various systems containing 2,000–9,000
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FIGURE 5 | Weak scaling of wall clock time per SCF iteration with respect to
the number of atoms with the message-passing interface (MPI) parallelism for
BN nanotubes (BNNTs) with 2,000 and 9,000 atoms (BNNT2000 and
BNNT9000) computed with the TC2 and diagonalization methods.

FIGURE 6 | Strong scaling of wall clock time per SCF iteration with respect to
the number of cores with the message-passing interface (MPI) parallelism for
BN nanotubes (BNNTs) with 3,000 and 18,000 atoms (BNNT3000 and
BNNT18000) computed with the TC2 and diagonalization methods.

atoms under serial mode (Np = 1), and it continues to scale
further up to 500 cores at least, which benefits from the efficient
parallel implementation of matrix multiplications based on the
CSR formatted sparse density matrix. A speed-up of 4.7 can be
achieved for 9,000 atoms (500 cores) and could be larger for
more atoms. The fitted scaling for explicit diagonalization is
just O(N1.9) with number of atoms fewer than 5,000 when the
number of processors is relatively large, arising from the load
imbalance that problem size (number of computational tasks)
distributed on each process is not adequate and some cores
remain idle. If the processors keep increasing, low efficiency of
parallelization is going to happen. When the size of system grows
sufficiently or processing cores have a relevant scale, fitted scaling
turns back to O(N3) due to the cubic scaling of conventional

diagonalization step. As a conclusion, linear-scaling TC2 method
outperforms explicit diagonalization in terms of expansibility to
large systems and massive parallel implementation.

Figure 6 compares the parallel scalability of TC2 to
diagonalization methods. As it can be seen, the parallel
scalability of both methods is unsatisfactory, especially with
the smaller system size. This issue arises in the load imbalance
caused by idle processors since computational tasks are
inadequate compared with hundreds of cores. Test for 18,000
atoms with diagonalization is not represented due to a memory
overflow problem (the dimension of matrix is 72,000). Unlike
the diagonalization method, test for TC2 has been performed
since the utilization of CSR data format reduces the memory
requirement. TC2 method demonstrates just scaling up to 600
cores, since the 1D processes layout prevents it from massive
parallelization. The performance of global MPI communications
such as MPI_Allgather is strongly impacted by the physical
distance of remote processing cores, which prompts us to utilize
BCSR storage format and 2D block-cyclic processor layout.

4. CONCLUSION AND OUTLOOK

In summary, we present a parallel implementation of linear-
scaling density matrix trace correcting (TC) purification
algorithm to solve KS equations with numerical atomic orbitals
in the HONPAS package. We use the MPI_Allgather function
for parallel programming to deal with the sparse matrix
multiplication within the CSR format, which can scale up
to hundreds of processing cores on modern heterogeneous
supercomputers. We demonstrate the computational accuracy
and efficiency of this linear-scaling density matrix purification
algorithm by performing large-scale DFT calculations on boron
nitrogen nanotubes containing tens of thousands of atoms.

However, our parallel implementation of TC2 method in
HONPAS is inferior to that of BigDFT (Genovese et al.,
2008; Mohr et al., 2014), ONETEP (Skylaris et al., 2005), and
CONQUEST (Gillan et al., 2007). They exploit more than one
level of organization and data distribution schemes resembling
the BCSR format to handle the groups of atoms, which achieve
high flexibility in load balancing (Bowler et al., 2002) with
high performance on modern heterogeneous supercomputers.
In the future, We plan to implement a massively parallel
algorithm based on the NTPoly library (Dawson and Nakajima,
2018) in HONPAS. The NTPoly library utilizes the 3D
sparse matrix multiplication algorithm, that is, the processors
are organized into a three dimensional, cube-shaped virtual
topology. In this case, density matrix purification algorithms
can scale up to thousands of processing cores on modern
heterogeneous supercomputers.
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Predicting crystal structure has been a challenging problem in physics and materials
science for a long time. A reliable energy calculation engine combined with an efficient
global search algorithm, such as particle swarm optimization algorithm or genetic
algorithm, is needed to conduct crystal structure prediction. In recent years, machine
learning-based interatomic potential energy surface models have been proposed,
potentially allowing us to perform crystal structure prediction for systems with the
accuracy of density functional theory (DFT) and the speed of empirical force fields.
In this paper, we employ a previously developed Deep Potential model to predict the
intermetallic compound of the aluminum–magnesium system, and find six meta-stable
phases with negative or nearly zero formation energy. In particular, Mg12Al8 shows
excellent ductility and Mg5Al27 has a high Young’s modulus. Based on our benchmark
results, we propose a relatively robust structure screening criterion that selects potentially
stable structures from the Deep Potential-based convex hull and performs DFT
refinement. By using this criterion, the computational cost needed to construct the
convex hull with ab initio accuracy can be dramatically reduced.

Keywords: many-body potential energy, deep learning, crystal structure prediction, Al-Mg, alloy

INTRODUCTION

In recent years, crystal structure prediction has played an increasingly important role, not only
for understanding the ground-state structure of matter, but also for designing materials and
drug molecules with desired functionality (Oganov, 2018; He et al., 2019; Zhao et al., 2019; Xie
et al., 2020). Generally speaking, a ground-state crystal structure prediction method involves
three components: a model that generates the interatomic potential energy surface (PES) and
forces, a sampling technique for exploring different conformations in the configuration space,
and a relaxation procedure to find the local minima on the PES (Podryabinkin et al., 2019).
While the relaxation procedure is relatively standard, different sampling techniques have been
championed by different software packages. For instance, the genetic evolutionary algorithm,
the particle swarm algorithm, and the firefly algorithm have been widely used in the USPEX
software (Glass et al., 2006), the CALYPSO package (Wang et al., 2010), and the PyChemia
library (Avendaño-Franco and Romero, 2016), respectively. Due to the high accuracy required by
both sampling and relaxation, density functional theory (DFT) (Kohn and Sham, 1965) is typically
used for generating the PES. Despite its widespread success, DFT has a high computational cost that
typically scales cubically with the system size, which, to some extent, hinders routine applications
to large and complex systems.
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Many empirical PES models for popular solid-state systems
have been proposed (Mendelev et al., 2009; Jelinek et al., 2012;
Dickel et al., 2018) to address the efficiency issue of DFT. Due to
the relatively simple and analytical expressions adopted by these
empirical models, an acceleration of many orders of magnitude
in terms of computational cost can be gained, but presumably
at the price of accuracy and transferability. As such, trail-and-
error processes are typically required for developing suchmodels,
yet challenges have remained for systems involving multiple
elements, complex and exotic phases, or bond breaking and
formation events.

In recent years, a few machine learning (ML) techniques
have been proposed for representing the PES (Behler and
Parrinello, 2007; Bartók et al., 2010; Artrith and Urban, 2016;
Khorshidi and Peterson, 2016; Shapeev, 2016; Han et al., 2018;
Zhang et al., 2018a,b). Unlike typically empirical PES models,
representations coming from ML tasks, such as kernel functions
and neural networks (NNs), have shown great promise to fit high-
dimensional functions. When trained on a suitably generated
dataset of atomic configurations and corresponding potential
energies and forces, a good ML-based PES model can be used
with an accuracy of the reference DFT model, and an efficiency
comparable to that of empirical PES models. Not surprisingly,
ML-based PES models have been employed in recent work for
structure search tasks. For instance, boron has been studied by
several groups: Podryabinkin et al. (2019) adopted the moment
tensor potential (Shapeev, 2016) and the USPEX evolutionary
algorithm; Huang et al. (2018) used the Behler–Parrinello
potential (Behler and Parrinello, 2007) and the stochastic surface
walking global optimization method; Tong et al. (2018) used the
Gaussian Approximation Potential (Bartók et al., 2010) and the
CALYPSO approach.

In this work, we target at using ML-based PES models for
crystal structure prediction of alloys. We adopt the smooth
version of the Deep Potential (DP) model (Zhang et al.,
2018b), which employs NN architectures to parameterize
two networks, the embedding network that defines a list of
symmetry-preserving descriptors, and the fitting network that
maps these descriptors to local energy contributions. The
versatile architecture of DP makes it particularly suitable for
multicomponent systems and those involving bond breaking and
formation, for whichmost methodologies are hard to handle. The
aluminum–magnesium (Al–Mg) binary alloy system is selected
as an example based on the following reasons: First, Al–Mg
binary alloys are important in real-life applications. They are
widely used in automotive, aerospace, and electronic device
industries (Gupta and Ling, 2011) due to their lightweight
nature and excellent mechanical properties. However, only a
limited number of intermetallic compounds of the Al–Mg
binary system have been documented in well-known databases,
such as the American Society for Metals (ASM) Alloy Phase
Diagram Database1, the Inorganic Crystal Structure Database
(ICSD)2, the Open Quantum Materials Database (OQMD)3,

1ASM https://www.asminternational.org/phase-diagrams
2ICSD https://icsd.fiz-karlsruhe.de/search/basic.xhtml
3OQMD http://www.oqmd.org

and the Material Project database (MP)4. Second, our previous
study has established an Al–Mg DP model (Zhang et al.,
2019), which describes well the basic physicochemical properties
and has been carefully tested. As such, this DP model can
be readily used for crystal structure prediction and can be
download online5.

Combining the particle swarm optimization (PSO) method
and the DP model, potential intermetallic compounds of
the Al–Mg system are systematically explored. Compared
with a previous study (Zhuang et al., 2017), which only
explored the Mg-rich phases, our simulation covers a much
wider concentration range. Six new Al–Mg intermetallic
compounds (Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16,
and Mg5Al27) are found to be meta-stable. The mechanical
properties of these new compounds are further investigated.
To facilitate future investigations of more complicated tasks,
special attention is given to the whole simulation protocol
and the selection criterion for further DFT validations. Direct
comparisons with popular empirical PES models and DFT
show the advantage of DP in terms of both accuracy
and efficiency.

COMPUTATIONAL METHODS

We adopt the PSO method, as implemented in the CALYPSO
package (Wang et al., 2010), to search potentially stable and
meta-stable Mg–Al intermetallic structures. PSO is inspired
by the choreography of a bird flock and can be seen as a
distributed behavior algorithm that performs multidimensional
search. In the CALYPSO package, there are three steps for a
global structure prediction task. First, a group of structures called
population is generated randomly with symmetric constraints to
allow a diverse sampling of the PES. The number of structures
employed here is defined by a parameter called population size
(PopSize). Second, a local relaxation of the population is
performed based on a PES engine, which is typically a DFT
model, and here we replace it with a DP model. A procedure
that eliminates similar structures by using the so-called bond
characterization matrix is followed up to enhance the search
efficiency. Third, a certain number of new structures (the best
60% of the population size) are generated by PSO. Within the
PSO scheme, a velocity vector associated with each structure
is updated using the information of the previously proposed
and optimized structure, as well as the globally best structure,
that is, the structure with the lowest enthalpy, at the current
generation. The new structures are generated based on the
current structures and the velocity vectors. The last two steps
continue iteratively until the predefined largest number of
generations (GenNumb) is reached. The parameter GenNumb
is typically selected to be large enough so that the structure
with the lowest energy can sustain for several generations.
Generally speaking, the more atoms (Natom) in a structure,
the larger PopSize and GenNumb are required. We refer to
Yanchao Wang and Ma (2012) for more details of the CALYPSO

4MP https://www.materialsproject.org
5deepmd http://www.deepmd.org
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code. We set the CALYPSO parameters according to the
following criteria:






PopSize = 30, GenNumb = 60; if Natom ≤ 10,

PopSize = 40, GenNumb = 80; if 10 < Natom ≤ 20,

PopSize = 50, GenNumb = 100; if 20 < Natom ≤ 32.
(1)

The DP model (Zhang et al., 2018b) used here employs NN
functions to represent the PES. In short, the total energy of a
system is described as the sum of atomic energies,

E =

N∑

n=1

ǫi, (2)

where ǫi is the ith atomic energy. The atomic energy is
represented as

ǫi = Nω(i)({Rij}j∈N (i)), (3)

where Nω(i) is called a sub-network that computes the atomic
contribution to the total energy, and ω(i), which depends on
the chemical species of atom i, denotes the weights used to
parameterize the sub-network. The neighbors of atom i within
the cut-off radius Rc are denoted by N (i). Rij is the position of
atom j relative to i used to describe the local environment of
atom i. To generate uniformly accurate DP models in a way that
minimizes both human intervention and the computational cost
for data generation and model training, a concurrent learning
strategy called the Deep Potential GENerator (DP-GEN) (Zhang
et al., 2019) has been proposed. In this strategy, an initial dataset
(random Al–Mg alloy structures) labeled by DFT calculations
is used to train an ensemble of DP models, and molecular
dynamics is driven by one of the DP models to sample the
configuration space. An error indicator serves to select a small
fraction out of the new samples as candidates, which are labeled
with ab initio energies and forces and added to the database. Such
iterations are repeated until the configuration space has been
explored sufficiently, and a decent DP model has been obtained
with high accuracy and transferability. The training is performed
using the DeePMD-kit package (Wang et al., 2018) and the
concurrent learning strategy is realized by the DP-GEN software
package (Zhang et al., 2020). In details, the DeepPot-SE model is
used with a cutoff radius of 8.0 Å. The size of the embedding and
fitting NNs are 25× 50× 100 and 240× 240× 240, respectively.
During the training, the learning rate decreases exponentially
with respect to the starting value of 0.0005. The decay rate and
decay step are set to 0.95 and 128,000, respectively. In addition,
the prefactors of loss functions are set to pstarte = 0.02, plimit

e =

2, pstart
f

= 1000, plimit
f

= 1, pstartv = 0.0, plimit
v = 0.0. Both

DeePMD-kit and DP-GEN are publicly available online6. For
more details, we refer the reader to Wang et al. (2018) and Zhang
et al. (2019, 2020).

All DFT calculations are carried out with the Vienna Ab-
Initio Simulation Package (VASP, version 5.4.4) (Kresse and

6See https://github.com/deepmodeling

Furthmüller, 1996). The generalized gradient approximation
within the Perdew–Burke–Ernzerhof (Perdew et al., 1996) (PBE)
functional is used to model the exchange-correlation energy.
The plane wave basis sets with kinetic energy cutoff of 600 eV
are used to expand the valence electron wave functions. For all
structural relaxations, the convergence criterion for the energy
in electronic SCF iterations and the Hellmann–Feynman forces
in ionic step iterations are set to 1.0 × 10−6 eV and 1.0 ×

10−2 eV/Å, respectively. The Brillouin zone is represented by
Monkhorst–Pack (Pack and Monkhorst, 1977) special k-point
mesh with a grid spacing of 0.08 Å−1. The phonon spectra are
obtained based on finite-difference method as implemented in
the Atomic Simulation Environment (ASE) (Bahn and Jacobsen,
2002; Larsen et al., 2017) software, where the forces are calculated
by the python interface of DeePMD-kit. To calculate the phonon
density of states, the q-point mesh is set to 20 × 20 × 20.
The local structure relaxation is carried out by the LAMMPS
package (Plimpton, 1995), and the DP model used here has been
reported and extensively tested in Zhang et al. (2019).

All structure data and convex hulls are analyzed by pymatgen
software (Ong et al., 2013).

RESULTS AND DISCUSSIONS

To demonstrate the validity of CALYPSO+DP scheme,
we perform some preliminary tests for several different
stoichiometric proportions. Here, we take Mg12Al8 as an
example to show the evolution of the energies of all the
structures (Figure 1A), as well as the lowest energy (Figure 1C),
during the CALYPSO structure search process. According to the
energy histogram in Figure 1B, it can be found that there are
about 458 structures, out of a total number of 3,200 structures,
within an energy range <20 meV/atom (compared with the
ground state structure). The evolution of the lowest energy for
all generations shows that the global optimization converged
quickly. It is remarkable to find that one potentially stable
structures can be readily obtained in the first few generations
(labeled by red star in Figure 1A). When refined by DFT,
it shows that this structure is the ground state structure of
the corresponding combination. In the tests of some other
stoichiometric proportions, that is, Mg3Al3, Mg2Al2, Mg1Al1,
and Mg3Al, the corresponding known structures in the materials
project database, that is, mp-1038779, mp-1094987, mp-
1038934, and the L12 phase (Mendelev et al., 2009), are found by
the CALYPSO+DP scheme, which further confirms the validity
of our approach.

Next, we use the DP+CALYPSO scheme to construct the
convex hull of the Al-Mg system systematically. We restrict the
number of atom in the supercell to <32 atoms. In other words,
we consider the systems MgxAly{x + y ≤ 32, x ≥ 1, y ≥ 1, x, y ∈

Z}, which represent 496 combinations, or 323 concentrations, in
total. According to these parameter settings, the total number of
local relaxations is up to 2 × 107. In the following, we consider
three prerequisites that should be satisfied for a stable crystal
structure: (i) thermodynamic stability, which is estimated by the
formation energy and convex hull; (ii) dynamic stability, which
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can be assessed by phonon dispersions; and (iii) mechanical
stability, which is evaluated via elastic constants (Xu et al., 2019).

According to the preliminary tests, we notice that although
the DP model can generate energies and forces that are very
close to the DFT reference model, small intrinsic error still
exists. Therefore, if our goal is to calculate properties with
the accuracy of the DFT-based PES landscape, an additional
refinement step has to be adopted based on structures selected
from a DP+CALYPSO process. Two concepts we pay particular
attention to are the formation energy (Efa) and the energy

FIGURE 1 | Schematic illustration of the DP+CALYPSO process for the
Mg12Al8 system. (A) Evolution of the energies of all structures during the
structure prediction process. The red star indicates the global minimal
structure. (B) Energy histogram. (C) Evolution of the lowest energy during the
structure prediction process.

above convex hull (Eabh). The formation energy (Haastrup et al.,
2018) of an alloy system is the energy required to produce the
system from the most stable crystal structures of the individual
components, which is defined as

Efa =
E(MgxAly)− xE(Mg)− yE(Al)

x+ y
(4)

where E(MgxAly) is the total energy of the material MgxAly, and
E(Mg) and E(Al) are the average energies of the elements Mg
and Al in their stable crystal at 0 K. Eabh measures the energy
for a material to decompose into the set of most stable materials
with the same chemical composition. A positive Eabh indicates
that this material is unstable with respect to such decomposition.
A zero Eabh indicates that this is the most stable material at its
composition. To accurately determine these properties, we use
two criteria for an additional DFT refinement: Efa being less than
20 meV/atom, and Eabh being <20 meV/atom. We use these
two criteria at the same time based on the following reasons.
Our goal is to find potential stable or meta-stable structures.
Due to the error of the DP model, some structures with positive
DP-predicted Efa may turn negative if we refine it by DFT and
vice versa. At the same time, the thermodynamic stability is
also controlled by Eabh. If Eabh is too high, this structure will
decompose into other phases even if this structure has a negative
formation energy. In the tested example, we will show that since
in general DP exhibits a ∼2 meV/atom average error. Compared
with DFT, the criteria used here are fairly robust. In contrast, for
a previously established empirical model, due to its large intrinsic
error, the procedure introduced above is no longer practical, since
the number of DFT refinements is so large that little efficiency can
be gained.

As shown in Figure 2A, we first use the formation energy Efa
to screen the candidate structures, from which the number of
structures is significantly reduced from 2 × 107 to 5,169. Based

FIGURE 2 | (A) The funnel used for screening candidate structures of aluminum–magnesium (Al–Mg), the intermetallic compound via Deep Potential (DP) model. Efa
stands for formation energy and Eabh labels energy above the convex hull. (B) Scatter plot of the formation energy calculated by density functional theory (DFT) and
DP for potentially candidate structures. The inset shows relationship between average energy calculated by DFT and DP. (C) The formation energy as a function of
molar fraction of Al atom for different Mg–Al phases where solid line denotes the convex hull constructed by DFT results. The formation energies calculated by DFT are
marked by blue circle and DP ones are marked by red diamond. All of known structures from materials project are re-optimized and directly used to construct the
convex hull. Pentagon indicates the stable experimental phases and star labels new stable phase.
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on these 5,169 DP-optimized structures, a crude convex hull is
constructed. Then the criterion for Eabh is introduced to remove
the thermodynamically unstable structures, and, finally, 1,495
structures are selected for further DFT refinements. As shown
in the inset of Figure 2B, for all DFT refined structures, the
energies per atom calculated by DP and DFT are in excellent
agreement. The largest and root mean square error (RMSE) of the
total energy per atom are about 17 and 2 meV/atom, respectively.
As for the formation energy in Figure 2B, the largest error and
RMSE are about 15 and 6 meV/atom, respectively. Among them,
the errors of the formation energies of experimentally stable
phases (Zhuang et al., 2017) Mg17Al12 and Mg23Al30 (labeled by
pentagon in Figure 2C) are 15 and 6 meV/atom, which confirms
the validity of our 20 meV/atom selection criteria.

The convex hull based on DFT results is then constructed
and presented in Figure 2C, including two experimentally stable
structures Mg17Al12 and Mg23Al30 labeled by green pentagon.
One new stable structure with a formula of MgAl29 is discovered
and denoted by red star. Based on the DFT-refined convex hull,
we look for new structures that are potentially synthesizable by
experiments. We use the following criteria: Eabh < 20 meV/atom

FIGURE 3 | (A–F) The side view of conventional crystal structures of Mg12Al8,
Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and Mg5Al27 is shown, respectively. The
Mg and Al atoms are indicated by yellow and blue ball.

and Efa < 1 meV/atom, where Eabh and Efa are DFT-calculated
values, and obtain 31 potentially candidates, including 1 stable
structure and 30 meta-stable structures. However, we may note
that most of those newly proposed meta-stable structures locate
at the boundary region of the concentration range. That is to say,
most of these structures have very low concentration of Al or Mg.
Compared with these phases, the phases in the middle region
are of more interesting, from which we propose six new meta-
stable structures, namely Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10,
Mg8Al16, and Mg5Al27. The corresponding side view of the
crystal structures are shown in Figures 3A–F and the geometric
structure parameters are listed in Table 1.

As listed in Table 1, the meta-stable structures can be divided
into two groups according to their lattice types. Mg7Al9,
Mg14Al18, and Mg6Al10 have a tetragonal lattice, whereas
Mg12Al8, Mg8Al16, and Mg5Al27 have a cubic lattice. Moreover,
all structures have nearly zero or negative formation and small
energy above convex hull, which indicates that these structures
may be synthesizable by experiments in future.

Given the encouraging stability metrics above, we proceed
to study the dynamic and mechanical stability of these newly
proposed intermetallic compounds via DP model. As shown in
Figure 4, the phonon structures show no imaginary frequency,
which indicates that all of those intermetallic compounds are
dynamically stable. As for the mechanical aspect, the elastic
stability conditions (Mouhat and Coudert, 2014) for cubic
crystals are given as:

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0, (5)

and those for tetragonal crystals are given as:

C11 > |C12|, 2C
2
13 < C33(C11 + 2C12), C44 > 0, C66 > 0. (6)

According to Table 2, both groups of structures meet the elastic
stability conditions, which indicates that these 6 intermetallic
compounds are mechanically stable. Further, we use the Pugh’s
ratio Bv/Gv to assess the expected average ductility (Pugh, 1954).
According to Pugh, a larger Bv/Gv value implies a better ductility
property. As shown in Table 2, the Pugh’s ratio of both Mg8Al16
and Mg12Al8 are larger than that of hcp Mg (2.08). In particular,
the Pugh’s ratio of Mg12Al8 (2.42) is comparable to that of
Al (2.47), so it may have excellent ductility. Considering its

TABLE 1 | Lattice parameters a(Å), b(Å), c(Å), density ρ (g/cm3), space group
symbol Sm, lattice type, formation energy Efa (meV/atom), and energy above the
convex hull Eabh(meV/atom) of Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16,
and Mg5Al27 calculated by DFT.

Formula Natom a b c ρ Sm Lattice type Efa Eah

Mg12Al8 20 7.38 7.38 7.38 2.10 P4332 Cubic −22.05 3.09

Mg7Al9 16 5.98 5.98 8.44 2.27 P4/mmm Tetragonal −0.82 18.74

Mg14Al18 32 5.98 5.98 16.92 2.27 I4/mmm Tetragonal −0.10 19.45

Mg6Al10 16 5.93 5.93 8.43 2.33 I4/mmm Tetragonal 0.87 17.71

Mg8Al16 24 7.67 7.67 7.67 2.30 Fd-3m Cubic −13.73 1.30

Mg5Al27 32 8.21 8.21 8.21 2.55 Pm-3m Cubic 0.60 7.95
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FIGURE 4 | (A–F) The phonon structures of Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and Mg5Al27 calculated by Deep Potential (DP) model are shown.

TABLE 2 | Elastic constants, bulk modulus Bv (GPa), shear modulus Gv (GPa),
Young’s modulus Ev (GPa), Pugh’s ratio (Bv/Gv ), and Poisson’s ratio ν of Mg12Al8,
Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16 and Mg5Al27 calculated by the DP model.

Formula C11 C12 C13 C33 C44 C66 Bv Gv Bv/Gv EV ν

Mg9a,1 59.57 26.54 21.05 72.94 15.08 16.12 36.53 17.59 2.08 45.48 0.29

Mg12Al8 71.26 35.75 36.50 73.15 21.19 21.38 48.14 19.89 2.42 52.45 0.32

Mg7Al9 94.75 30.55 39.20 84.63 32.91 22.00 53.81 28.08 1.92 71.77 0.28

Mg14Al18 89.19 31.60 40.27 85.57 32.16 23.48 54.57 27.49 1.99 70.60 0.28

Mg6Al10 101.77 36.06 42.59 92.14 31.37 23.23 59.65 29.05 2.05 74.97 0.29

Mg8Al16 97.47 49.80 48.72 95.07 30.68 31.73 65.06 28.35 2.29 74.27 0.31

Mg5Al27 95.40 39.17 39.87 104.71 37.48 40.21 58.91 35.09 1.68 87.84 0.25

Al4a,2 117.64 63.34 58.20 108.46 32.55 40.44 78.15 31.65 2.47 83.66 0.32

The subscript v denotes the Voigt expressions. The same properties of Mg and Al element

are also calculated for comparison (here, the minor inconsistency of elastic constants

comes from inherent error of DP model and computation error).
aAll values are calculated by authors based on DP model.
1Zhuang et al. (2017) give DFT values of C11 = 66 GPa, C12 =25 GPa, C13 = 19 GPa,

C33 = 70 GPa, C44 = 20 GPa, Bv = 37 GPa, Gv = 21 GPa, Bv/Gv = 1.76 GPa, and

EV = 54 GPa.
2Zhang et al. (2019) give DFT values of C11 = 111.2 GPa, C12 = 61.4 GPa, C44 = 36.8

GPa, Bv = 78.0 GPa, and Gv = 32.1 GPa.

lower density (2.10 g/cm3) compared with Al (2.72 g/cm3),
this intermetallic compound may have potential applications in
automotive, aerospace, electronic, and device industries if it can
be synthesized. In addition, the Mg5Al27 has a higher Young’s
modulus among all these structures, which indicates that this
material may be applied to manufacture high strength devices.

Finally, we test the accuracy of a recent version of the
MEAM potential (Jelinek et al., 2012) and see whether it can
be used for a similar task or not. For a direct comparison, we
test it on all DFT-refined structures and report the results in
Figure 5. As shown by the red diamonds and green pentagons
in Figure 5A, MEAM exhibits much larger errors compared with
DP for most of the structures, and there are MEAM predictions
outside the range of the plot (±100 meV/atom) due to large
errors. MEAM results show a large spread on the convex hull
plot constructed by DFT results (Figure 5B). For the tested
structures, the largest error of Efa is 204 meV/atom, and the
RMSE is 44 meV/atom. Moreover, the largest error of per-
atom total energy is 465 meV/atom, and the mean error is
236 meV/atom. As such, if we use MEAM+CALYPSO to do
a screening of the structures, the selection criteria for further
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FIGURE 5 | (A) Scatter plot of the formation energy calculated by density functional theory (DFT) and Deep Potential (DP) for potentially candidate structures. (B) The
formation energy as a function of molar fraction of Al atom for different Mg–Al phases where solid line denotes the convex hull constructed by DFT results. The
formation energies calculated by DFT, DP, and MEAM are marked by blue circle, red diamond, and green pentagon, respectively.

DFT refinement would be Efa and Eabh larger than at least 200
meV/atom. As a rough estimation, according to these criteria,
∼ 1 × 106 structures will need to be refined by DFT, which
is not computationally feasible at all. Above all, we conclude
that although MEAM is very efficient, it cannot be used to
improve the efficiency of constructing a convex hull at the level
of DFT accuracy.

To demonstrate the efficiency of our DP-based procedure,
we use two groups of structures to compare the time
performance. One group is composed of several Mg31Al
structures and the other group consists of MgAl31 structures.
The test results shows that, compared with DFT relaxation,
DP has an average speed-up ratio about 3,700 and 650
for Mg31Al and MgAl31, respectively, which indicates
DP has better time scaling and can be used for larger
systems. All tests are performed on Intel(R) Xeon(R)
Gold 6248 CPU @ 2.50 GHz.

CONCLUSIONS

In this paper, we demonstrate that the DP+CALYPSO scheme
is reliable for crystal structure prediction for binary alloy
system in a wide concentration range. As a concrete example,
we use this scheme to predict potentially stable intermetallic
compounds of the Al–Mg binary system. Six new meta-stable
Al–Mg intermetallic compounds are successfully predicted,
including Mg12Al8, Mg7Al9, Mg14Al18, Mg6Al10, Mg8Al16, and
Mg5Al27. All the meta-stable structures are predicted to have
thermodynamic stability, dynamic stability, and mechanical
stability. In particular, Mg12Al8 shows excellent ductility and
Mg5Al27 has high Young’s modulus. We remark that the
exploration strategy proposed in this work can be combined

with the DP-GEN protocol (Zhang et al., 2019, 2020) to
generate more training data and improve the DP potential.
Moreover, to serve a larger community, DeePMD-kit can
be interfaced with other popular general-purpose crystal
structure prediction software such as CALYPSO, USPEX, and
Pychemia. However, some disadvantages also exits for current
scheme, such as expensive cost for training a model, low
interface efficiency with CALYPSO, and so on, which limits its
application to search complex multicomponent systems with
larger number of atoms. We will leave these problems in our
future work.
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We investigate a reduced scaling full-potential DFT method based on

the multiple scattering theory (MST) code MuST, which is released online

(https://github.com/mstsuite/MuST) very recently. First, we test the accuracy by

calculating structural properties of typical body-centered cubic (BCC) metals (V, Nb,

and Mo). It is shown that the calculated lattice parameters, bulk moduli, and elastic

constants agree with those obtained from the VASP, WIEN2k, EMTO, and Elk codes.

Second, we test the locally self-consistent multiple scattering (LSMS) mode, which

achieves reduced scaling by neglecting the multiple scattering processes beyond a

cut-off radius. In the case of Nb, the accuracy of 0.5mRy/atom can be achieved with

a cut-off radius of 20 Bohr, even when small deformations are imposed on the lattice.

Despite that the calculation of valence states based on MST exhibits linear scaling, the

whole computational procedure has an overall scaling of about O(N1.6), due to the fact

that the updating of Coulomb potential scales almost as O(N2). Nevertheless, it can

be still expected that MuST would provide a reliable and accessible way to large-scale

first-principles simulations of metals and alloys.

Keywords: first principles, Korringa–Kohn–Rostoker (KKR), multiple scattering theory (MST), full potential, elastic

constants

1. INTRODUCTION

Kohn–Sham density functional theory (KS-DFT) (Kohn and Sham, 1965) transforms the
many-body problem to a non-interacting system and has been widely used in modern
first-principles calculations. Although many computational schemes are developed to solve
the Kohn–Sham equation (Kohn and Sham, 1965) for the ground-state properties, the
Korringa–Kohn–Rostoker Green’s function (KKR-GF) method (Korringa, 1947; Kohn and
Rostoker, 1954), also known as multiple scattering theory (MST), provides equivalent information
by the single-particle GF (Economou, 2006). In the MST approach, the system is divided into
non-overlapping atomic regions as a set of scatterers. To solve the single-site scattering problem,
one numerically determines the angular momentum and energy-dependent solutions of the radial
Schrödinger equation for a given potential. The coherent matching of the single-site solutions can
be achieved if and only if the incoming wave of an atomic site is identical to the superposition
of the outgoing waves from all other scatterers. This viewpoint not only gives access to the
Kohn–Sham eigenstates but also to the single-electron GF of the system, which leads to the modern
KKR-GF method.
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The survey (Aarons et al., 2016) suggests that KKR-GF or
MST method remains important for large-scale metallic systems.
The favorable scaling in MST is attributed to the fact that the
electron density, which is the fundamental quantity in DFT, can
be obtained from the site-diagonal blocks of the scattering path
matrix. And the site-diagonal block of the scattering path matrix
for a particular atom can be solved with sufficient accuracy by
considering only the electronic multiple scattering processes in a
finite-sized region centered at this atom. This region is referred to
as the local interaction zone (LIZ), which is originally introduced
in the locally self-consistent multiple-scattering method (LSMS)
(Wang et al., 1995). Base on the central idea of the LSMSmethod,
the locally self-consistent GF (LSGF) approach (Abrikosov et al.,
1996, 1997) can choose judiciously the effective medium to
decrease the LIZ size. In particular, the linear scaling has been
achieved in LSMS with muffin-tin approximation and in LSGF
with tight-binding linear muffin-tin orbital (TB-LMTO) basis. It
should be mentioned that besides the MST-based methods, other
approaches to reduced scaling DFT methods for metallic systems
have also been developed in recent years Pratapa et al. (2016),
Suryanarayana et al. (2018), Aarons and Skylaris (2018), Mohr
et al. (2018).

There is a trend toward the full-potential (FP) MST in which
no shape approximation is assumed for the potential. Many
questions in materials science, for example, on complex defects,
interfaces, dislocations, as well as nanostructures, come to a
great demand for the reduced scaling FP method. KKRnano,
a massively parallel DFT package based on MST, has been
developed and optimized for thousands of atoms without a
compromise on the FP accuracy (Thiess et al., 2012). And this
package has been applied to study the role of the vacancy clusters
in metal-insulator transitions (Zhang et al., 2012).

However, most MST simulation packages are in-house, which
impedes the application of MST as a powerful tool for large
scale or disordered systems. Recently, the MuST package, an ab
initio calculation software package based on FP MST (Rusanu
et al., 2011), is open to public and is free to download online
(https://github.com/mstsuite) under a BSD 3-clause license.
We focus on the MST part in the MuST package, which
not only provides features for calculating physical properties
of materials but also serves as a platform for implementing
and testing the numerical algorithms. At present, the MuST
package is capable of performing the following calculations:
(1) muffin-tin approximation, (2) FP method, (3) coherent
potential approximation (CPA), and (4) LSMS method. And the
fully relativistic MST by solving the Dirac equation has been
implemented in MuST Liu et al. (2016, 2018). For such a newly
released package, it is prerequisite to perform systematic tests
both on the accuracy and efficiency.

A reliable FP method can be used to exactly capture the
small energy difference for the lattice distortion or deformation.
According to the elastic theory, we deform the crystalline cell to
the distorted lattice structures and then calculate their energies.
The small energy change with the lattice deformation can be
used to calculate the elastic constants (Vitos, 2007). Asato et al.
(1999) investigated total energy calculations for metals and
semiconductors based on the FP MST method. But few work
pay attention to validate the elastic properties based on MST,

which is fundamental for applying MST to study the structural
properties of materials. Considering the anomalies behavior of
deformations in body-centered cubic (BCC) V andNb (Nagasako
et al., 2010; Dezerald et al., 2016), we employ the different ab
initio methods including the FP MST method in MuST package
to calculate the elastic constants of V, Nb, and Mo. By comparing
with results of available experiments and other popular first-
principles packages, we investigate the accuracy of the FP MST
method in MuST package.

To estimate the parallel scalability, we carried out strong
and weak scaling tests of the FP LSMS method in MuST
package. It is seen that the LSMS method exhibits a good strong
scalability. This is due to the two-level parallelism over atoms
and energy points implemented in MuST package. However,
in the weak scaling test, the overall computational procedure
is not linear scaling, which seems to be inconsistent with the
O(N) scaling of the muffin-tin LSMS proved in previous work
(Wang et al., 1995). By analyzing the implementation scheme,
we attribute it to the difference in updating the Coulomb
potential between the muffin-tin approximation and the FP
method. While the solution of eigenvalue problems is avoided
in the MST method, the calculation of Coulomb potential could
become the performance bottleneck in large-scale first-principles
simulations. For example, PRinceton Orbital-Free Electronic
Structure Software (PROFESS) (Ho et al., 2008; Hung et al., 2010;
Chen et al., 2015) suggested that about 70% of computation
time was spent on fast Fourier transforms (FFTs) to calculate
the kinetic and electron–electron Coulomb interaction terms.
PROFESS features plane-wave basis set and has been optimized
for peta-scale computing (Chen et al., 2016). The calculation
of MST is based on angular momentum expansion and new
algorithms should be developed to optimize the overall scaling
of the FP MST method.

The rest of this paper is arranged as follows. In section 2, we
introduce the MSTmethod and its LSMS variant. In section 3, we
investigate the accuracy by calculating the equation of state (EOS)
and elastic constants of typical BCC metals. In section 4, we test
and analyze the scalability of the FP LSMS method. In section 5,
some concluding remarks are drawn.

2. METHODOLOGY

2.1. MST Method
The term MST method in this manuscript refers to the modern
version of the KKR method, that is, the KKR-GF method.
The central quantity to be computed in the MST method
changes from the Kohn–Sham orbitals in band theory methods
to the one-electron GF, which can be defined as solutions of
the following differential equation (Economou, 2006) (non-
spin polarized cases assumed and atomic units h̄ = 1 and
me = 1/2 used):

{z +∇2 − Veff[ρ](r)}G(r, r
′; z) = δ(r − r

′), (1)

where Veff is the Kohn–Sham effective potential under exchange-
correlation approximations like the local density approximation
(LDA) or the generalized gradient approximation (GGA), ρ(r) is
the electron density, and z ≡ ǫ + ıη is a complex variable. If z is
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real and ǫ belongs to the continuous spectrum of−∇2 +Veff[ρ],
G(r, r′; ǫ) is not well-defined and one may define the retarded GF

G+(r, r′; ǫ) ≡ lim
η→0+

G(r, r′; ǫ + ıη). (2)

In the following, the superscript + will be omitted. Once the GF
is known, the valence electron density can be obtained by (Gonis
and Butler, 2000; Economou, 2006; Faulkner et al., 2018)

ρ(r) = −
2

π
Im

∫ ǫF

ǫB

G(r, r; ǫ)dǫ, (3)

where ǫF is the Fermi energy, the bottom energy ǫB is chosen
between the highest core-state energy and the valence band, and
the factor 2 accounts for the number of electron spins. The energy
integration in Equation (3) can be carried out along a contour in
the complex energy plane so that only few tens of energy points
are needed. Other physical quantities like the density of states
(DOS) can also be obtained from the GF (Gonis and Butler, 2000;
Economou, 2006; Faulkner et al., 2018).

The MST method provides a convenient access to the GF.
In the MST method, atoms in the system are considered as
scattering centers of which the scattering properties are described
by the so-called single-site scattering t-matrix (Gonis and Butler,
2000; Faulkner et al., 2018). The space is divided into non-
overlapping cells �n centered at atomic positions Rn, where n is
the index of atoms in the system. In the vicinity of atomic site n,
it is proved that the GF can be expressed as (Faulkner and Stocks,
1980; Gonis and Butler, 2000; Sébilleau, 2000; Zabloudil et al.,
2006)

G(rn, rn; ǫ) =
∑

LL′

Zn
L(rn; ǫ)τ

nn
LL′ (ǫ)Z

n×
L′ (rn; ǫ)

−
∑

L

Zn
L(rn; ǫ)J

n×
L (rn; ǫ), (4)

where L is the combined index of angular momentum quantum
number l and magnetic quantum number m, rn ≡ r − Rn the
relative coordinate, Zn

L(rn; ǫ) and JnL (rn; ǫ) regular and irregular
solutions of the single-site problem in cell n for momentum
L and energy ǫ, and τnnLL′ (ǫ) site-diagonal matrix elements of
the scattering path operator τnm(ǫ) in the angular momentum
representation. The × symbol in Equation (4) means that we
take the complex conjugate of the spherical harmonics and keep
remaining parts of the function unchanged.

The scattering path operator τnm(ǫ) describes all possible
scattering events of electron states with energy ǫ between atomic
sites n and m. In the angular momentum representation, the
corresponding scattering path matrix is given by (Gonis and
Butler, 2000; Zabloudil et al., 2006)

τnm = tnδnm + tnGnm
0 (1− δnm)t

m + tn
∑

k6=n

Gnk
0 tkGkm

0 (1− δkm)t
m

+ tn
∑

k6=n

Gnk
0 tk

∑

j6=k

G
kj
0 t

jG
jm
0 (1− δjm)t

m + . . .

= tnδnm + tn
∑

k6=n

Gnk
0 τ km,

(5)

where the underline symbol indicates matrices with respect to
the angular momentum index L, tn(ǫ) is the single site scattering
t-matrix associated with site n, and Gnm

0 (ǫ) is the free-electron
propagator matrix in the angular momentum representation,
also known as KKR structure constant matrix, that describes the
propagation of a free electron with energy ǫ from site n to site
m. Note that we have omitted the dependence on energy ǫ in
Equation (5) for a compact expression.

In the case of a finite system with N atoms, it is seen from the
second equation in Equation (5) that the scattering path matrix
can be computed directly by a matrix inversion:

τnm(ǫ) =





[t1(ǫ)]−1 −G12
0 (ǫ) −G13

0 (ǫ) · · · −G1N
0 (ǫ)

−G21
0 (ǫ) [t2(ǫ)]−1 −G23

0 (ǫ) · · · −G2N
0 (ǫ)

−G31
0 (ǫ) −G32

0 (ǫ) [t3(ǫ)]−1 · · · −G3N
0 (ǫ)

...
...

...
. . .

...
−GN1

0 (ǫ) −GN2
0 (ǫ) −GN3

0 (ǫ) · · · [tN(ǫ)]−1





−1

nm

,

(6)
where the subscript nm on the right hand side indicates the
block at the nth row and mth column of the big matrix after
the inversion has been taken. In the case of periodic systems,
the equation in Equation (5) for the scattering path matrix can
be solved by the lattice Fourier transform, leading to (we assume
that there is only one atom in the unit cell):

τnm(ǫ) =
1

�BZ

∫

�BZ

[
t(ǫ)−1 − G0(k, ǫ)

]−1
eık·(Rn−Rm)dk, (7)

where �BZ is the first Brillouin zone and G0(k, ǫ) is the lattice
Fourier transform of G

0
(ǫ) (the double underline indicates

matrices with respect to the angular momentum index and the
atomic site index) (Gonis and Butler, 2000; Zabloudil et al., 2006).

2.2. LSMS Method
As described above, the MST method makes unnecessary the
calculation of the Kohn–Sham orbitals, and consequently
the time-consuming procedure for diagonalization and
orthogonalization in the conventional KS-DFT calculations
can be entirely avoided. The only global operation required by
computing the GF is to obtain the scattering path matrix by an
inversion of the matrix in Equation (6). Since the size of the
matrix is proportional to the number of atoms in the unit cell,
the MST method still suffers from cubic scaling limitation.

To reduce the scaling of the procedure, we can calculate the
nth site-diagonal block of the scattering path matrix τnn by
neglecting the multiple scattering processes that involve atoms
beyond some cut-off radius RLIZ from atomic site n. This is
based on the observation that the scattering processes involving
far away atoms have little influence on the electronic scattering
behavior in the vicinity of atomic site n, which is the essence
of the LSMS method. The region within distance RLIZ from the
central atom is called the LIZ. If there are M atoms in the LIZ,
the solution of the multiple scattering problem scales asO(NM3),
where N is the total number of atoms. Consequently, the LSMS
method is expected to exhibit the linear scaling in N with a
prefactor determined byM and the number of basis functions.
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2.3. Coherent Potential Approximation
Due to the convenient access to the GF, the MST method plays a
prominent role in first-principles alloy theory, in which a novel
candidate is the CPA (Soven, 1967; Taylor, 1967; Gyorffy, 1972;
Ruban and Abrikosov, 2008). The CPA is designed to obtain an
ordered effective medium to describe properties of the multi-
component random alloy. The scattering path operator of the
CPA effective medium, denoted by τCPA, is determined by the
following self-consistency condition (two-component alloy as
the example):

τCPA = CAτA + CBτB, (8)

where τA(B) is the scattering path operator of the auxiliary
system constructed by replacing the central site in the ordered
effective medium system by the alloy component A(B). Within
the single-site approximation, it can be proved that the GF of the
CPA effective medium system is equal to the targeted ensemble
averaged GF (Faulkner, 1982; Ebert et al., 2011). The CPA
condition in Equation (8) needs to be reformulated into a proper
expression to be suited for numerical applications (Faulkner,
1982; Turek et al., 1997).

3. TEST ON ACCURACY

In this section, we investigate the accuracy of the FPMSTmethod
implemented in the MuST package by comparing equilibrium
bulk properties and elastic constants with those calculated by the
WIEN2k, EMTO, and VASP codes.

3.1. Calculation Details
In order for a meaningful comparison, we used the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional
(Perdew et al., 1996) in all our calculations, and carried out
convergence tests to determine the numerical parameters for
each code. The relativistic effect of the core electrons was treated
via the default scheme in each package. In the following, we
enumerate the detailed settings of numerical parameters.

3.1.1. MuST

The uniform grid for the computation of the Coulomb potential
was chosen as 64× 64× 64. The Monkhorst–Pack k-point mesh
was set to be 21×21×21 in all the KKR tests. The break condition
for the electronic SCF (self-consistent field) iterations was that
differences in the total energy and the potential are smaller than
5 × 10−8 Ry and 10−7 Ry, respectively. The maximum angular
momentum used in the expansion of the wave functions and
the GFs was set to lmax = 4. The number of radial grid points
from the atomic center to the muffin-tin radius was chosen to
be 2001, which is sufficiently accurate for solving the single-site
scattering problem.

3.1.2. WIEN2k

The WIEN2k package (Blaha et al., 2020) implements an FP
linearized augmented plane-wave (LAPW) method. No shape
approximations have been made on the potential and charge
density inside themuffin-tin spheres and in the interstitial region.
In our calculations, the muffin-tin sphere radius was fixed as

2.50 Bohr, the cutoff parameter RMT ·Kmax was chosen to be 8.00,
and the plane-wave expansion cutoff Gmax was set as 14.00 Ry.
And a 15× 15× 15 Monkhorst–Pack k-point mesh was used for
the Brillouin zone sampling. The chosen RMT · Kmax and k-mesh
ensure that errors in the total energies of the deformed structures
are converged to 10−4 Ry in elastic constant calculations.

3.1.3. EMTO

The EMTO package implements the so-called exact muffin-
tin orbitals method, in which different from former muffin-tin
methods, the single-electron states are calculated exactly for the
optimized overlapping muffin-tin (OOMT) potential. We refer
the readers to Vitos et al. (2001), Vitos (2001), and Vitos (2007)
for the detailed theory and applications of the EMTO method.
In our calculations, the EMTO basis set including s, p, d, and f
orbitals was used in combination with soft-core approximation.
For the integration over energy in the complex plane, we used
24 points along a semicircular contour. The Brillouin zone was
sampled by a 21 × 21 × 21 Monkhorst–Pack k-point mesh to
make the total energies of the deformed structures converge up
to 3× 10−5 Ry.

3.1.4. VASP

The Vienna ab initio simulation package (VASP) (Kresse and
Furthmüller, 1996a,b; Kresse and Joubert, 1999) describes the
electron-ion interactions by the projector-augmented wave
(PAW) method. In our calculations, the kinetic energy cutoff for
the plane-wave basis set was 400 eV. A 15× 15× 15 Monkhorst–
Pack k-point mesh was used for the Brillouin zone sampling. And
the SCF convergence criterion was set to be 10−7 Ry.

3.2. Equation of State
The lattice parameter a, bulk modulus B, and pressure derivative
of the bulk modulus B′ have been commonly used for accuracy
assessments of DFT codes and (pseudo)potential libraries
(Kucukbenli et al., 2014; Lejaeghere et al., 2014, 2016). These
structural properties can be extracted from the EOS for a solid.
For instance, in a Morse type of EOS, the total energy is fitted by
an exponential function with four parameters (D0, γ , a0, and E0)

E(a) = D0e
−γ ( a

a0
−1)

− 2D0e
−

γ
2 (

a
a0

−1)
+ E0. (9)

Then a0, B0, and B′ can be derived from the Morse function and
used to assess the accuracy of DFT codes under investigation.

To investigate the accuracy of the FP MST method in the
MuST package, we calculated a0, B0, and B′ of three bulk systems
V, Nb and Mo, and compared the results with all-electron
packages including WIEN2k, EMTO, and VASP. In these tests,
we employed the same exchange-correlation functional and
equivalent numerical settings, as introduced in section 3.1.
Figure 1 shows the calculated E(a) curves from these packages,
which have been shifted so that all E(a) points with the lowest
energy are adjusted to zero. The fitted results of a0, B0, and B′ are
given in Table 1. In addition, results from the Elk package, those
obtained by the FP-LMTO method, and experimental values
from the literature are also listed in Table 1 as a reference. The
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FIGURE 1 | (Color online) Equation of states (the total energy per atom vs. lattice parameter) for body-centered cubic (BCC) V (A), Nb (B), and Mo (C). The total

energies have been shifted so that all E(a) points with the lowest energy are adjusted to zero.

TABLE 1 | Equilibrium bulk properties [lattice parameter a (Bohr), bulk modulus B (GPa), and pressure derivative of the bulk modulus B′], the elastic constants

c′ = (c11 − c12)/2, c11, c12, and c44(GPa) for body-centered cubic (BCC) V, Nb, and Mo metals.

Method a B B′ c′ c11 c12 c44

V

MuST 5.685 170.32 3.72 60.42 250.88 130.04 52.46

WIEN2k 5.667 182.10 3.72 59.69 268.91 149.53 19.90

EMTO 5.673 178.73 3.06 79.72 285.03 125.58 51.61

VASP 5.666 183.18 3.22 60.71 264.13 142.71 20.50

Elk (Lejaeghere et al., 2016) 5.663 182.89 3.89 – – – –

FP-LMTO (Landa et al., 2006a) 5.673 182.70 – 67.30 272.43 137.83 37.40

Exp.(Frederikse, 1972; Maschke and Levy, 1983; Young, 1991; Haas et al., 2009) 5.713 (5.715) 155.0 – 54.85 (57) 228.7 119.0 43.20 (46)

Nb

MuST 6.258 178.62 3.22 51.94 247.88 144.00 35.52

WIEN2k 6.258 168.77 3.01 47.87 232.60 136.85 14.88

EMTO 6.278 177.44 2.86 74.07 276.20 128.06 51.00

VASP 6.254 171.87 3.21 50.02 238.56 138.52 16.62

Elk (Lejaeghere et al., 2016) 6.256 170.92 3.84 – – – –

FP-LMTO (Landa et al., 2006a) 6.270 170.7 – 63.9 225.9 128.1 25.5

Exp.(Frederikse, 1972; Ashkenazi et al., 1978; Young, 1991; Haas et al., 2009) 6.237 (6.225) 169 – 52.89 (60) 246.5 134.5 28.73 (31)

Mo

MuST 5.968 253.65 3.22 169.52 479.67 140.64 131.59

WIEN2k 5.973 263.47 3.99 147.45 460.07 165.17 103.15

EMTO 5.991 254.21 4.89 169.80 480.61 141.01 131.02

VASP 5.978 263.08 3.15 148.57 461.18 164.03 102.56

Elk (Lejaeghere et al., 2016) 5.973 259.07 4.22 – – – –

FP-LMTO (Söderlind et al., 2000) 5.970 255 – 139 440 162 139

Exp.(Dickinson and Armstrong, 1967; Frederikse, 1972; Young, 1991; Haas et al.,

2009)

5.947 (5.936) 261 – 152.95 463.7 (473.0) 157.8 (156.2) 109.2 (110.9)

Exp. stands for experimental results. The experimental values in parenthesis are the experimental lattice constants corrected for the zero-point anharmonic expansion (ZPAE) and

experimental elastic constants corrected at 0 K. The MuST, WIEN2k, EMTO, VASP, Elk, and FP-LMTO are different ab initio methods.

differences with respect to the results from Elk are illustrated in
Figure 2.

We see from Table 1 and Figure 2 that except for the bulk
modulus of V, differences in the calculated a and B results are
less than 0.5% and 5%, respectively, which could be considered
as small discrepancies between different codes (Holzwarth et al.,

1997; Kresse and Joubert, 1999; Lejaeghere et al., 2016). The
lattice parameter a of BCC V metal obtained by MuST is slightly
larger than that of other ab initio methods, but the difference
of a is only 0.39%, with respect to the Elk’s result. For BCC Nb
and Mo, both MuST lattice parameters are very close to those
results from Elk. The relative error is 0.03% for Nb and 0.08%
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FIGURE 2 | (Color online) Relative errors in lattice parameter (A), bulk modulus (B), and its derivation (C) (1a, B, 1B′) for body-centered cubic (BCC) V, Nb, and Mo,

where the Elk results are taken as reference values.

for Nb, respectively. Generally speaking, the PBE predicted lattice
parameter is overestimated, that is, theoretical lattice parameter
is usually larger than experimental values, whereas for V, all
present ab initio lattice parameters listed in Table 1 are smaller
than the experimental value at 0 K. But for Nb and Mo, the ab
initio lattice parameters are slightly larger, with respect to their
experimental values. The bulkmodulus B represents the stress v.s.
the volume expansion or compression. And its derivative B′ can
be used to describe the anharmonic effect in the vibrating lattice.
Comparing the calculated bulk moduli and their derivatives, we
find that for BCC V metal the MuST B is slightly smaller, within
6.9%, than the Elk bulk modulus, while EMTO, WIEN2k, and
VASP results agree well with each other. This is consistent with
the fact that the MuST lattice constant is slightly larger, within
0.4%, than the Elk result, whereas the relative discrepancy is
within 0.2% among the results of other codes.

Finally, it is necessary to mention that the energy-lattice curve
of a solid is sensitive to the treatment of semi-core states. For
example, Nb has core (1s, 2s, 2p, 3s, 3p, 3d), semi-core (4s,
4p), and valence (4d, 5s) states. Due to the limitation in the
current implementation of MuST, only the 4d5s electrons of Nb
are considered as valence electrons, and the semi-core states are
treated as core states. The same treatment is imposed for the
semi-core states of V (3s, 3p) and those of Mo (4s, 4p). In MST
as well as in other all-electron methods including LAPW and
EMTO, both the core and the valence states participate in the
self-consistent iteration. The difference is that the core states are
calculated using the spherical part of the crystal potential in the
atomic sphere Singh and Nordström (2006). The wave function
for each core state is confined and normalized within the sphere
radius. In the case that semi-core states are treated as core states,
since their charges are no longer well confined inside the atomic

sphere, the so-called confinement error appears and a proper
setting of the bounding sphere radius becomes important Asato
et al. (1999). Different fromMuST, in theWIEN2k calculations, a
recommended separation energy of -6.0 Ry automatically defines
the core- and band-states. Accordingly, both the semi-core and
valence states of V, Nb, and Mo metals are treated as band states
and solved using the full potential of the crystal. In the PAW
method of the VASP package, the frozen-core approximation
is used, so the core electrons will not participate in the self-
consistent calculations. And the PAW atomic datasets including
semi-core states for V, Nb, and Mo are provided by the VASP
POTCAR library to be utilized for accurate calculations. The
main point is that: the differences in the treatment of the semi-
core states may cause noteworthy discrepancies in the calculated
results, and we suggest that the semi-core states are allowed to be
treated as band states in the future version of MuST.

3.3. Elastic Constants
In a cubic lattice there are three independent elastic constants,
c11, c12, and c44, of which c11 and c12 are connected to the bulk
modulus B = (c11 + 2c12)/3 and the tetragonal shear modulus
c′ = (c11 − c12)/2. The two shear elastic parameters c′ and c44
were computed according to the standard methodology (Vitos,
2007). For example, we used the following volume conserving
orthorhombic and monoclinic deformations:




1+ δo 0 0

0 1− δo 0
0 0 1

1−δ2o



 and




1 δm 0
δm 1 0
0 0 1

1−δ2m



 ,

which lead to the energy change △E(δo) = 2V ′
cδ

2
o + O(δ4o) and

△E(δm) = 2V ′
c44δ

2
m + O(δ4m). Both energies were computed
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FIGURE 3 | (Color online) The deformation configurations [body center

orthorhombic (BCO) for the calculation of c′ and face center orthogonal (FCO)

for the calculations of c44] for body center cubic (BCC) crystal.

for six distortions, δ = 0.00, 0.01, ..., 0.05. The body center
orthorhombic (BCO) for c′ and faced center orthorhombic
(FCO) for c44 are shown in Figure 3.

Results of elastic constants from different ab initio methods
and experiments are listed in Table 1. Their differences with
respect to experiments are shown in Figure 4. Due to the
calculations of c11 and c12 via the combination of c′ and bulk
modulus, the accuracy of c′ plays a key role in the quality of
c11 and c12 results. From Figure 4, we can see that for the c′ of
V, the MuST result agrees well with the results from WIEN2k
and VASP. Due to the small bulk modulus, our MuST calculated
c11 and c12 are slightly different from those of WIEN2k and
VASP. For c11 and c12 of Nb, results from MuST, WIEN2k, and
VASP are all close to experiments at room temperature, whereas
the difference of c′ between calculations and experiments at 0
K is up to 13.4% for MuST, 20.2% for WIEN2k, and 16.6% for
VASP. For Mo, the discrepancy of c′ with the experimental value
is up to 11.0% for MuST and EMTO, but it is only 2.9%/3.6%
for VASP/WIEN2k. This results in the large difference for c11
and c12 between MuST/EMTO and WIEN2k/VASP calculations.
Although EMTO and FP-LMTO can be regarded as similar
muffin-tin type methods, their calculated elastic constants are
very different. The main reason is that the available FP-LMTO
results were calculated based on the LDA (Söderlind et al., 2000).

From Table 1, we can find for V and Nb that c44 results
of MuST and EMTO are close to experimental values, while
those from WIEN2k and VASP much smaller. We note that
the early work on elastic constants c44 is 17.1 GPa for V and
10.3 GPa for Nb (Koči et al., 2008; Nagasako et al., 2010).
There is an anomalous dispersion of transverse acoustic phonons
propagating along the <100> direction in V and Nb. Softening
of acoustic phonons induces small values of the shear constant.
The soft acoustic phonons and small shear constants are related
to the nesting properties of the Fermi surface, which produce a
van Hove singularity in the electronic DOS near the Fermi level

(Landa et al., 2006b; Nagasako et al., 2010). Due to the presence of
van Hove singularity, an extremely fine mesh for Brillouin zone
integration suggested in Nagasako et al. (2010) was expected to
determine the exact c44. However, in practice, the convergence
of c44 with respect to the k-point density may be very slow
(Nagasako et al., 2010). Instead of using an extremely dense k-
mesh, the smearingmethods can be used to handle the singularity
in DOS. It is reported in Nagasako et al. (2010) that the smearing
method has a clear impact on the c44 results. We note that
smearing is performed in WIEN2k and VASP calculations, but
in the MuST and EMTO codes no smearing methods are used.
This might be the reason on the discrepancy between theoretical
results. For Mo, the MuST calculated c44 is 18.7% larger than the
experimental value at 0 K, but the c44 from WIEN2k and VASP
are in good agreement with experiments. The ultimate reason of
differences in the elastic constant between ab initio calculations
and experiments is still far from resolved. We noted that there
exist variations between experiment results, for example, for Mo
the experimental value of c44 is about 110.9 GPa at 0 K reported
in Dickinson and Armstrong (1967), while another experiment is
about 125 GPa at 0 K (Featherston and Neighbours, 1963). So it
may be necessary to estimate the accuracy of experiments at low
temperatures and the improved extrapolation method may also
be desirable.

4. TEST ON SCALABILITY

In this section, we investigate the strong and weak scalabilities of
the FP LSMS method implemented in MuST package.

4.1. Convergence on LIZ Size
In practice, the first question on the LSMS method may be the
proper choice of the LIZ size for an atomic site. We can calculate
the total energy of the bulk system using the LSMS method with
increasing LIZ sizes and compare the results with those obtained
by the standard MST method. The convergence tests on the LIZ
radius have been performed for face-centered cubic (FCC) Cu
and BCC Mo in Faulkner et al. (2018). For FCC Cu, the LSMS
energy agrees with the reference MST result to better than 0.5
mRy when 6 neighboring shells are included in the LIZ. This
corresponds to a cluster of 87 atomic sites with a LIZ radius
of 11.7 Bohr. For BCC Mo, on the other hand, a larger LIZ
is required in order to achieve better than 0.5 mRy accuracy.
We test the convergence of the LIZ radius for BCC Nb and
its deformed structures. As shown in Figure 5, the LSMS total
energies converge to the MST results when the LIZ radius is
larger than 20 Bohr. Indeed, we have achieved the accuracy of
0.5 mRy by including 14 neighboring shells into the LIZ, which
corresponds to about 330 atoms. This is due to the fact that the
Fermi energy falls in the d bands so that the DOS near the Fermi
energy is significant.

We would like to mention that in the MuST code, the LIZ is
embedded in the vacuumwith free-electronGF. The LIZ sizemay
be effectively decreased by choosing the effective medium instead
(Zeller et al., 1995; Abrikosov et al., 1997), which could provide
clues for improving the performance of the LSMS method in a
future release.
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FIGURE 4 | (Color online) Differences in the calculated c′ (A), c11 (B), c12 (C), and c44 (D) from ab initio methods for body-centered cubic (BCC) V, Nb, and Mo with

respect to experimental values at room temperature.

FIGURE 5 | (Color online) Energy as a function of the local interaction zone (LIZ) radius for (A) body-centered cubic (BCC), (B) body center orthorhombic (BCO), and

(C) faced center orthorhombic (FCO) structures, where the “KKR” stands for the results from the standard multiple scattering theory (MST) method.

4.2. Strong Scalability
The complexity of the FP MST method can be estimated by the
weak scaling test. A good strong scalability is a prerequisite to
an effective weak scaling test. Under the premise of good strong
scalability, the computational overhead can be revealed by the
execution time since the communication overhead contributes
a small percentage. We constructed a BCC supercell consisting
of 1024 niobium (Nb) atoms. The LIZ of each atomic site
contains 89 atoms. As illustrated in Table 2, the LSMS method
exhibits a good strong scalability. This is due to the two-level
parallelism over atoms and energy points implemented in MuST
package. The 1024 atoms are distributed over from 128 to 1024
MPI (message passing interface) processes. When the number of
MPI processes exceeds the number of atoms, a second level of
parallelization over energy points is performed.

The intrinsic parallelism comes from the fact that the
computation of the GF for each atom and each energy point
along the complex contour is essentially independent. Each
MPI process exchanges t-matrix with the others treating the
neighboring atoms in the LIZ region. There are no global

TABLE 2 | Strong scalability test of the full-potential multiple scattering theory

(MST).

#MPI 128 256 512 1024 2048

Execution time (s) per SCF iteration 17581 8804 4855 2456 1255

Parallel efficiency (%) 100.0 99.8 90.5 89.5 87.6

operations involved in the process of calculating the GF other
than few global sum operations such as the summation of the net
charge in each atomic cell for the determination of the electron
chemical potential. Consequently, theMSTmethod can be highly
parallelized, as shown in Figure 6.

4.3. Weak Scalability
In the weak scaling test, the system size and the number of MPI
processes are increased concurrently when one atom per MPI
process is kept unchanged. In the pure atom parallelization, we
observe a significant growth in the execution time with increasing
atoms, as shown in Table 3. Consequently, the overall complexity
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FIGURE 6 | (Color online) A schematic illustration of highly parallelized multiple

scattering theory (MST) method.

TABLE 3 | Weak scalability test of the full-potential locally self-consistent multiple

scattering (LSMS) method where tscf stands for the execution time on one SCF

iteration, tval the execution time on calculating the valence states based on

multiple scattering theory (MST), tpot the execution time on updating the effective

potential, txc the execution time on updating the exchange-correlation potential,

and t∗ to be defined in Section 4.4 is the execution time for an interpolation step in

updating the Coulomb potential.

#atoms tscf (s) tval (s) tpot (s) t∗ (s) txc (s)

64 391.45 249.28 141.86 120.84 19.94

128 517.29 252.65 263.03 241.74 19.79

256 818.45 253.18 562.11 539.58 20.46

512 1374.58 255.09 1115.19 1092.71 19.97

1024 2479.77 255.05 2216.79 2182.25 19.98

of the FP MST method is not O(N). The execution time of one
SCF iteration can be divided into two parts. One part is for the
solution of the valence state by KKR-GF method. The other is
used to update the effective potential. They are denoted by tval
and tpot in Table 3. It can be observed that tval remains almost
the same while tpot grows with increasing system size. So the
linear scaling is achieved in solving the GF function, which is
consistent with the tests in Thiess et al. (2012). As the system
size becomes large, the computational overhead on updating the
effective potential becomes gradually dominant, which deserves
further analysis.

4.4. Scaling Analysis for Updating Potential
As shown in Table 3, the execution time on updating the
exchange-correlation potential, denoted by txc, remains almost
the same as system size increases. Therefore, we concentrate on
the Coulomb potential. In the FPmethod, the total charge density

is divided into the following two parts:

ρ(r) = ρ̃(r)+ ρ̂(r), (10)

where ρ̃ is chosen as a smoothly varying density and ρ̂

is the sphere-bounding non-overlapping charge density. The
associated Coulomb potential with ρ̂ can be formulated as like

V̂Coul(r) = 2
∫

R3

ρ̂(r′)+ ρ0

|r′ − r|
dr′ − 2

∑

j

Zj∣∣r − Rj

∣∣ , (11)

which can be calculated by the multi-pole expansion technique
together with the periodic boundary condition and the constraint

∫

R3
ρ̂(r)dr + ρ0

∫

R3
dr =

∑

j

Zj. (12)

The procedure is somewhat analogous to the calculation of the
Coulomb potential in muffin-tin approximation. The difference
is that the non-spherical potential in FP method has multi-pole
expansion while the spherical one in muffin-tin approximation
has only zero-order moment. Actually, both the two schemes
have linear scaling.

The charge density ρ̃ can be regarded as a pseudo electron
density varying smoothly. The associated Coulomb potential can
be determined by solving the Poisson equation:

−∇2Ṽ(r) = 4πρ̃(r). (13)

And fast Fourier transform (FFT) is used for solving Equation
(13). In the MST method, both the electron density and one-
electron potential are discretized on the spherical mesh around
each atom. Therefore, an interpolation from the uniform FFT
mesh to the spherical mesh is required. More specifically, the
radial part ṼL is calculated from ρ̃ on the uniform FFT grids. The
computational scheme can be formulated as the integral form:

ṼL(rj) =
2

π
(−ı)l

∫

R3
ρ̃(r′)FL(rj, r

′
j)dr

′, (14)

where FL(rj, r′j) is defined as follows:

FL(rj, r
′
j) ≡

∫

R−3\{0}

1

|G|2
jl(|G|rj)Y

∗
L (Ĝ)e

ıG·r′jdG, (15)

where jl is the spherical Bessel function and YL is the spherical
harmonic. In Equations (14) and (15), rj stands for the radial
grid point, r′ and G represent the real-space FFT grid and the
corresponding reciprocal grid, respectively, and r′j = |r′ − Rj|.

Since FL(rj, r′j) is independent of the electron density, it can
be setup once before the SCF iteration. However, the summation
in Equation (14) scales as Nrad · N · NFFT, where Nrad is the
number of radial grids and set to be 2001 in the test. And NFFT

is proportional to the number of atoms N, which yields O(N2)
scaling in performing the interpolation like Equation (14). We
locate the code segment to perform (14) and denote its execution
time by t∗ in Table 3. As shown in Figure 7, the calculations
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FIGURE 7 | (Color online) The log–log diagram of CPU time vs. system size

where the CPU time is the product of the execution time by the number of MPI

processes.

of valence states scale as O(N), while the interpolation from
FFT uniform grid to the atom-centered radial grid exhibits an
O(N2) scaling, which results in an overall scaling of O(N1.6).
Therefore, a more efficient algorithm to update the Coulomb
potential in angular momentum expansion is critical to achieve
a linear scaling FP MST method.

5. CONCLUSION

We have investigated the accuracy and scalability of the FP MST
method implemented in MuST package. The MST predicted
lattice parameter for V, Nb, and Mo are consistent with the other
calculations and the available experiments. The MST predicted
bulk moduli, pressure derivative of the bulk modulus, and the
c′ elastic constant are acceptable, expect for a relatively larger
difference in the bulk modulus of V. While for c44, there exists
large difference between theoretical and experimental results, the

possible reasons have been discussed in details. It is suggested that
a proper treatment of the semi-core states should be considered
in the future version of the MuST package.

A significant advantage of the MST method is the reduced
scaling in the calculations of metallic systems. Although the
linear scaling has been reported previously under the muffin-tin
approximation, tests in this work imply that the overall scaling of
the FP method is not O(N). It is suggested that the updating of
the Coulomb potential in angular momentum expansion should
be further improved. Nevertheless, a favorable scaling asO(N1.6)
can be achieved in the full-potential MST method, compared to
theO(N2) toO(N3) scaling of frequently-usedmethods. Another
advantages in MuST is the treatment of chemical and magnetic
disorders based on the CPA.

In summary, the FP MST method shows the potential
to simulate more complicated materials on massively parallel
supercomputers. And MuST provides a reliable and accessible
way to large-scale first-principle simulations of metals and alloys.
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Molecular quasiparticle and excitation energies determine essentially the spectral

characteristics measured in various spectroscopic experiments. Accurate prediction

of these energies has been rather challenging for ground-state density functional

methods, because the commonly adopted density function approximations suffer

from delocalization error. In this work, by presuming a quantitative correspondence

between the quasiparticle energies and the generalized Kohn–Sham orbital energies,

and employing a previously developed global scaling correction approach, we achieve

substantially improved prediction of molecular quasiparticle and excitation energies. In

addition, we also extend our previous study on temporary anions in resonant states,

which are associated with negative molecular electron affinities. The proposed approach

does not require any explicit self-consistent field calculation on the excited-state species,

and is thus highly efficient and convenient for practical purposes.

Keywords: density functional theory, delocalization error, scaling correction approach, quasiparticle energies,

electronic excitation energies, electron affinity

1. INTRODUCTION

Density function theory (DFT) (Hohenberg and Kohn, 1964) has made great success in practical
calculations for ground-state electronic properties because of its outstanding balance between
accuracy and computational cost. In the Kohn–Sham (KS) scheme of DFT (Hohenberg and Kohn,
1964; Kohn and Sham, 1965), the effective single-particle equations can be written as (by omitting
the spin indices and adopting the atomic units)

[
−
1

2
∇2 + vH(r)+ vext(r)+ vxc(r)

]
φm(r) = εm φm(r). (1)

Here, vext(r) is the external potential, vH(r) is the Hartree potential, vxc(r) is the local
exchange-correlation (XC) potential, and {φm(r)} and {εm} are the KS/generalized KS (GKS)
orbitals and their eigenvalues, respectively. In the GKS scheme, vxc(r) is replaced by a non-local
potential, vxc(r, r′). The KS equations can be solved self-consistently to produce the ground-state
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energy and charge density. However, it is challenging to
apply conventional ground-state density functional methods
to calculate excited-state-related properties, such as the
quasiparticle (QP) energies and the electronic excitation
energies, which will be introduced as follows.

When an electronic system is perturbed by incoming photons
or electrons, in order to preserve a single-particle picture, the
concept of QP is often adopted. In a direct photoemission
experiment, an electron on a molecule absorbs the energy of
a photon and gets excited away from the molecule. Such a
process leaves a quasihole in the molecule whose energy level is
renormalized by the presence of the other electrons. Similarly, in
an inverse photoemission experiment, an electron attaches to a
molecule by emitting a photon, which leads to the formation of
a quasielectron whose energy level is influenced by the existing
electrons in the molecule (Onida et al., 2002).

The actual QP energies and wavefunctions can be obtained by
solving the QP equations as follows (Hedin, 1965; Aulbur et al.,
2000),

[
−
1

2
∇2 + vH(r)+ vext(r)

]
ψm(r)

+

∫
6(r, r′;ωm)ψm(r

′)dr′ = ωm ψm(r). (2)

Here, {ψm(r)} and {ωm} are the QP wavefunctions and energies,
respectively, and 6 is a non-local and energy-dependent self-
energy operator, with the imaginary part of its eigenvalues giving
the lifetime of the QPs. To enable practical calculations, an
approximate scheme for 6 is to be employed. The most widely
used scheme is the GW approximation (Hedin, 1965; Hybertsen
and Louie, 1986; Aulbur et al., 2000; Dvorak et al., 2014).
Therefore, regarding the calculation of QP energies, many-body
perturbation theory within the GW approximation has become a
popular method at present (Hedin, 1965; Hybertsen and Louie,
1986; Louie and Hybertsen, 1987; Aulbur et al., 2000; Onida
et al., 2002; Dvorak et al., 2014). However, the somewhat large
computational cost makes it difficult to apply the GW method to
complex systems. Thus, a highly efficient and accurate method
for the prediction of QP energies is sought for.

It is tempting to relate the KS/GKS orbital energies to QP
energies, because the KS and GKS schemes are in conformity
with an effective single-electron description. However, with
conventional density functional approximations (DFAs), such as
the local density approximation (LDA) (Slater, 1951; Vosko et al.,
1980), generalized gradient approximations (GGAs), and hybrid
functionals, the calculated KS/GKS orbital energies usually
deviate severely from the QP energies. Such deviations have also
led to significant underestimation of band gaps, which is largely
due to the delocalization error associated with the DFAs (Cohen
et al., 2008a). In the exact DFT, the ground-state energy of a
systemwith a fractional number of electrons, E0(N+n) (subscript
0 denotes the ground state corresponding to the fixed vext),
should satisfy the Perdew–Parr–Levy–Balduz (PPLB) condition
(Perdew et al., 1982, 2007; Yang et al., 2000): E0(N + n) = (1 −
n)E0(N)+ nE0(N + 1), where 0 < n < 1 is a fractional number.

The PPLB condition infers that ( ∂E0
∂N )− = −I and ( ∂E0

∂N )+ =

−A, where I ≡ E0(N − 1)− E0(N) and A ≡ E0(N)− E0(N + 1)
are the vertical ionization potential (IP) and electron affinity
(EA) of the N-electron system, respectively. It has been proved
(Cohen et al., 2008a; Yang et al., 2012) that if the XC energy is
an explicit and differentiable functional of the electron density or
the KS reduced density matrix, we have ( ∂E0

∂N )− = εHOMO and

( ∂E0
∂N )+ = εLUMO, where εHOMO and εLUMO are the energies of

the highest occupied molecular orbital (HOMO) and the lowest
unoccupiedmolecular orbital (LUMO), respectively. Therefore, if
the PPLB condition can be satisfied, we should have I = −εHOMO

and A = −εLUMO.
Within the framework of ground-state DFT, a rigorous

mapping between the other remaining KS/GKS orbital energies
apart from the HOMO and LUMO and the QP energies has
not been established. However, in practice the Koopmans-like
relations have been proposed and adopted by many authors
(Hill et al., 2000; Coropceanu et al., 2002; Vargas et al., 2005;
Bartlett, 2009; Gritsenko and Baerends, 2009; Tsuneda et al., 2010;
Dauth et al., 2011; Körzdörfer et al., 2012; Baerends et al., 2013;
Bartlett and Ranasinghe, 2017; Puschnig et al., 2017; Ranasinghe
et al., 2017; Thierbach et al., 2017). These relations have the
form of εi ≈ −Ivi = −[Ei(N − 1) − E0(N)] and εa ≈

−Av
a = −[E0(N) − Ea(N + 1)]. Here, the index i (a) denotes

the occupied (virtual) KS/GKS orbital of the N-electron system
from (to) which an electron is deprived (added), with Ivi (Av

a)
being the corresponding vertical IP (EA). It is easily recognized
that these vertical IPs and EAs coincide with the energies of
quasiholes and quasielectrons, i.e., ωi = −Ivi and ωa = −Av

a,
respectively. Computationally, approximating QP energies by
KS/GKS orbital energies has the advantage of requiring only a
single self-consistent field (SCF) calculation for the ground state
of the interested molecule.

The excited-state properties of molecular systems can be
probed by photon absorption experiments (Onida et al., 2002).
However, theoretical characterization of the excited states is
rather challenging because the excited electron and the resulting
hole cannot be treated separately. Numerous methods have been
developed for the calculation of excitation energies. Coupled
cluster (CC) (Schreiber et al., 2008; Silva-Junior et al., 2008;
Winter et al., 2013; Wang et al., 2014; Dreuw and Wormit, 2015;
Jacquemin et al., 2015) and multi-reference methods (Andersson
et al., 1990; Potts et al., 2001; Slavicek and Martinez, 2010; Hoyer
et al., 2016) are able to describe electronic excited states with
a high accuracy. However, the expensive computational cost
makes the application of these methods to large systems rather
difficult. As a straightforward extension of the GW approach
(Hedin, 1965; Hybertsen and Louie, 1986; Onida et al., 2002),
the Bethe–Salpeter equation (BSE) (Rohlfing and Louie, 2000;
Onida et al., 2002; Jacquemin et al., 2017) provides another
method for the calculation of excited states, which is however
also quite expensive. The time-dependent DFT (TDDFT) (Runge
and Gross, 1984; Casida, 1995) is in principle an exact extension
of the ground-state DFT, and it has been widely employed
to study neutral excitations. Despite its success, TDDFT faces
several challenges, such as double excitation character, multi-
reference problems, and high-spin excited states (Ipatov et al.,
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2009; Laurent and Jacquemin, 2013; Santoro and Jacquemin,
2016).

Recently, a simple method has been proposed, which attempts
to acquire excitation energies by using only the KS/GKS orbital
energies of the molecular cations calculated by ground-state DFT
(Haiduke and Bartlett, 2018; Mei et al., 2019). Such a method is
referred to as the QE-DFT (QP energies from DFT), which has
been employed to describe excited-state potential energy surfaces
and conical intersections (Mei and Yang, 2019). Following the
idea of QE-DFT, molecular excitation energies have also been
expressed by KS/GKS orbital energies obtained with long-range
corrected functionals (Hirao et al., 2020). Details about QE-DFT
are to be presented in section 2.1.

In addition to neutral molecules, in this work we also consider
the resonance states of temporary anions. A temporary anion has
an energy higher than that of the neutral species, and thus its EA
has a negative value. This means the anion is unstable and lasts
only a short time. Although temporary anions cannot be studied
by traditional spectroscopic techniques, they can be observed
via resonances (sharp variations) in the cross-sections of various
electron scattering processes (Jordan and Burrow, 1987). In
the gas phase, the resonances can be identified by the electron
transmission spectroscopy (Sanche and Schulz, 1972; Schulz,
1973; Jordan and Burrow, 1987). Since these resonances belong
to the continuous part of the spectrum, they cannot be addressed
by conventional electronic structure methods for bound states. A
number of theoretical methods have been proposed to tackle the
problem of temporary anions. For instance, it has been proposed
that the attractive components of electron-molecule interaction
are combined with a long-range repulsive potential to produce
a barrier, behind which the excess electron can be temporarily
trapped (Jordan et al., 2014). Moreover, the negative EAs have
been studied by the GW method (Hedin, 1965; Hybertsen and
Louie, 1986; Govoni and Galli, 2018), the electron-propagator
methods (Longo et al., 1995; Ortiz, 2013; Dolgounitcheva et al.,
2016), and the equation-of-motion coupled cluster (EOM-CC)
approach (Stanton and Bartlett, 1993; Nooijen and Bartlett, 1995;
Dutta et al., 2014; Jagau et al., 2017; Skomorowski et al., 2018; Ma
et al., 2020), again with considerable computational cost.

In order to describe the unbound resonance states within
the DFT approach, Tozer and De Proft (2005) have proposed
an approximate approach to evaluate the EA based on the
KS frontier orbital energies (Kohn and Sham, 1965) and the
accurate IP. Zhang et al. (2018) have used directly the negative
of GKS eigenvalue of the neutral ground-state molecule as an
approximation of EA corresponding to the resonance state of
the anion. The good accuracy was made possible because of the
use of the global scaling correction (GSC) (Zheng et al., 2011),
which will be introduced later. At the same time, another method
has been developed to evaluate the negative EA from the GKS
eigenvalue of the neutral ground states (Carmona-Espíndola
et al., 2020). Different from GSC, this method is designed to
impose the derivative discontinuity of the exact XC potential.
Our work (Zhang et al., 2018) proceeded the work of Mei et al.
(2019) and that of Haiduke and Bartlett (Haiduke and Bartlett,
2018) in the direct use of GKS eigenvalues of the N-electron
ground state to approximate the excited state energy of the

corresponding (N + 1)-electron system, with the excited state of
the (N + 1)-electron system being a unbound resonance state.

For achieving an accurate prediction of QP energies with
ground-state density functional methods, it is crucial to reduce
the delocalization error associated with the adopted DFA.
Enormous efforts have been made, which have led to the
development of the GSC (Zheng et al., 2011) and local scaling
correction (LSC) (Li et al., 2015) approaches, which alleviate
substantially the delocalization error of various DFAs for systems
involving global and local fractional electron distributions,
respectively. This is done by imposing explicitly the PPLB
condition on the form of DFA. Recently, a localized orbital
scaling correction (LOSC) (Li et al., 2017; Su et al., 2020) has
been constructed to join the merits of GSC and LSC. The LOSC
approach is capable of correcting the energy, energy derivative,
and electron density of any finite system in a self-consistent and
size-consistent manner. In particular, the LOSC approach has
been applied in conjunction with the QE-DFT to predict QP and
excitation energies of molecules (Mei et al., 2019).

In this work, we revisit the non-empirical GSC approach
(Zheng et al., 2011, 2013, 2015; Zhang et al., 2015) and explore
the possibility of using it to achieve an accurate prediction of
QP and excitation energies. With a perturbative treatment of
the orbital relaxation induced by the addition (removal) of an
infinitesimal amount of electron to (from) a molecule, the GSC
approach has been demonstrated to improve systematically the
prediction of KS frontier orbital energies and band gaps of
molecules (Zhang et al., 2015). Based on the idea of QE-DFT,
we will extend the scope of GSC from the frontier orbitals to the
other KS/GKS orbitals.

The remainder of this paper is organized as follows. In
section 2, we present the QE-DFT method to calculate the
QP and excitation energies within the framework of ground-
state DFT, as well as the GSC approach to achieve the accurate
KS/GKS orbital energies. In section 3, numerical results of
the QP energies, electronic excitation energies, and resonance
energies are presented and discussed. Finally, we summarize this
work in section 4.

2. METHODOLOGY

2.1. QE-DFT Method for the Calculation of
QP, Excitation, and Resonance Energies
In the QE-DFT method, the following Koopmans-like relations
are adopted, which use the energies of occupied and virtual
KS/GKS orbitals to approximate the quasihole and quasielectron
energies, respectively.

εa(N) ≈ ωa(N) = Ea(N + 1)− E0(N),

εi(N) ≈ ωi(N) = E0(N)− Ei(N − 1). (3)

Here, {εi(N)} and {εa(N)} are the occupied and virtual orbital
energies of theN-electron system, respectively. Ea(N+1) denotes
the energy of the (N + 1)-electron system formed by adding
an excess electron to the ath virtual orbital of the N-electron
system at its ground state. Note that the subscript a refers to the
N-electron system, and the value of such an orbital index may
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vary in the (N + 1)-electron system because of the relaxation
and re-ordering of the orbitals upon the perturbation induced by
electron addition. A similar argument applies to the ith occupied
orbital of the N-electron system.

From Equation (3), it is obvious that the excitation energy
of an electron from the HOMO to a virtual orbital of the N-
electron system, which corresponds to the ath orbital of the
(N − 1)-electron system, can be calculated as follows (Haiduke
and Bartlett, 2018; Mei et al., 2019):

1Ea(N) ≡ Ea(N)− E0(N)

= [Ea(N)− E0(N − 1)]− [E0(N)− E0(N − 1)]

= ωa(N − 1)− ωLUMO(N − 1)

≈ εa(N − 1)− εLUMO(N − 1). (4)

Here, in the second equality of Equation (4), we have chosen to
use the (N−1)-electron system as a reference system. This means
the electronic excitation from the HOMO to a virtual orbital
can be regarded as consisting of two steps: first an electron is
removed from theHOMOof theN-electron system, giving rise to
an (N−1)-electron system in its ground state, and then an excess
electron is put to the ath virtual orbital of the (N − 1)-electron
system, which is energetically higher than the frontier orbitals,
resulting in an excitedN-electron system. Accordingly, E0(N−1)
is the ground-state energy of the (N − 1)-electron system, and
Ea(N) denotes the energy of the N-electron system that is finally
obtained. Thus, Equation (4) can describe the excitation of an
electron from the HOMO to any virtual KS/GKS orbital (LUMO
and above), as long as the orbital finds its counterpart in the
(N − 1)-electron system.

Specifically, if we presume the (N − 1)-electron reference
system contains onemore spin-α electrons than spin-β electrons,
the first triplet-state excitation energy of the N-electron system is
calculated by

1ET1(N) ≡ ET1(N)−E0(N) ≈ εα,LUMO(N−1)−εβ ,LUMO(N−1).
(5)

Higher triplet-state excitation energies can be
calculated similarly.

We now consider the first singlet excited state formed by
adding a spin-β electron to the ath virtual orbital of the ground-
state (N − 1)-electron system. It is well-known that the accurate
calculation of open-shell singlet states is quite challenging for
the density functional methods within the KS/GKS scheme. This
is because the electronic wavefunction naturally involves more
than one Slater determinant, and such a multireference character
is hardly captured by the presently used DFAs due to their
intrinsic static correlation error (Cohen et al., 2008b). Moreover,
an open-shell singlet wavefunction in the form of a single Slater
determinant of KS/GKS orbitals is not an eigenstate of the total
spin operator. In practice, people have attempted to circumvent
the problem of static correlation error by explicitly using more
than one Slater determinant. For instance, the singlet-state energy
of an N-electron system has been written as (Ess et al., 2011)

ES(N) = EM(N)+ χ[EM(N)− ET(N)]. (6)

Here, EM(N) represents the energy of a single-Slater-determinant
wavefunction with the excited spin-β electron occupying the
virtual orbital. The second term on the right-hand side is a
correction to the singlet-state energy, which accounts for the spin
contamination of the single-Slater-determinant wavefunction,
with χ being a parameter. The singlet-state excitation energy of
the N-electron is thus obtained as

1ES(N) ≡ ES(N)− E0(N)

= [EM(N)− E0(N)]+ χ[EM(N)− ET(N)]

≈ [εβ ,LUMO+a(N − 1)− εβ ,LUMO(N − 1)]

+ χ[εβ ,LUMO+a(N − 1)− εα,LUMO+a(N − 1)]. (7)

To improve the accuracy of 1ES, a spin purification procedure
has been proposed (Ziegler et al., 1977), which amounts to χ =

1 in Equation (6). Specifically, the first singlet-state excitation
energy is calculated by

1ES1(N) ≡ ES1(N)− E0(N) ≈ 2εβ ,LUMO+1(N − 1)

−εα,LUMO(N − 1)− εβ ,LUMO(N − 1). (8)

Obviously, with the QE-DFT method, the calculation of
excitation energies requires the SCF calculations to be performed
explicitly only for the ground-state (N − 1)-electron system.

Regarding temporary anions, we only consider the scenario
that the LUMO of the neutral molecule is already an unbound
orbital, which corresponds to a negative EA. Consequently,
addition of an excess electron to the LUMO gives rise to
a resonant state. Traditionally, the molecular EA is obtained
by performing SCF calculations separately for the neutral and
anionic systems and taking the energy difference between them.
This is referred to the 1SCF method. However, in practice it is
extremely difficult to carry out an SCF calculation for the anionic
species if it is in a resonant state.

Since the LUMO is a frontier orbital, the PPLB condition holds
exactly, and thus the negative EA can be obtained directly from
the positive LUMO energy via the following equality:

A = −εLUMO(N). (9)

By using Equation (9), the SCF calculation on the temporary
anion that is potentially problematic is no longer needed.

2.2. GSC Approach for the Accurate
Prediction of KS/GKS Orbital Energies
From section 2.1, the prediction of QP and excitation energies
is transformed to the accurate calculation of KS/GKS orbital
energies. To this end, we employ a non-empirical GSC approach
developed in our previous works Zheng et al. (2013), Zhang et al.
(2015) to reduce the delocalization error of some frequently used
DFAs. It has been demonstrated that the GSC approach greatly
improves the accuracy of the frontier KS/GKS orbitals. In the
following, we shall go beyond the frontier orbitals and extend the
application of GSC to all the KS/GKS orbitals.

In the KS or GKS scheme, the total electronic energy in the
ground state is E0(N) = Ts + Vext + J + Exc. With the KS/GKS
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orbitals fixed as the electron number is varied, the KS kinetic
energy Ts and external potential energy Vext are linear in ρ(r),
while the electron Coulomb energy J is quadratic, and Exc is
usually non-linear in ρ(r). The GSC approach establishes a linear
energy function that satisfies the PPLB condition,

Ẽ0(N + n) ≡ (1− n)E0(N)+ nE0(N + 1), (10)

by linearizing both J and Exc with respect to the fractional
electron number n. The difference between Ẽ0 and E0 is just the
GSC for the energy:

1EGSC0 = Ẽ0(N + n)− E0(N + n). (11)

Here,1EGSC0 can express explicitly by the electron density ρ(r) =∑
m nm[φm(r)]2 and some other quantities, where φm(r) and nm

are the mth KS/GKS orbital and electron occupation number,
respectively. For simplicity, the spin indices are omitted.

The addition of the n fractional electron to the LUMOpresents
a perturbation to the N-electron system, and the change in
electron density in response to such a perturbation is

δρ(r) = ρN+n(r)− ρN(r) = nf (r)+ n2γ (r)+ · · · , (12)

where f (r) ≡ limn→0
∂ρ(r)
∂n |vext and γ (r) ≡ limn→0

1
2
∂2ρ(r)
∂n2

|vext
are the first- and second-order Fukui functions (Parr and Yang,
1984; Yang et al., 1984; Yang and Parr, 1985), respectively.
Accordingly, the relaxation of KS/GKS orbitals upon the addition
of n fractional electron can be expanded in a perturbative series
as δφm(r) = φN+n

m (r) − φNm(r) = nδφ
(1)
m (r) + n2δφ

(2)
m (r) + · · · ,

with δφ(k)m (r) being the kth-order orbital relaxation. Thus, the
Fukui functions can be expressed explicitly in terms of orbital
relaxation. For instance, the first-order Fukui function is

f (r) = |φf (r)|
2 + 2

∑

m

nmδφ
(1)
m (r)φm(r). (13)

Here, the subscript f denotes the frontier orbital, with f =

LUMO (f = HOMO) in the case of electron addition (removal).
The explicit forms of orbital relaxation up to the third order
have been derived and provided in Zhang et al. (2015), with
all the perturbation Hamiltonian matrices determined by a self-
consistent process. Ultimately, all orders of orbital relaxation and
Fukui quantities are expressed in terms of {φm(r)} and {εm} of the
N-electron system. The scaling correction to the frontier orbital
energy is then evaluated by the Janak’s theorem (Janak, 1978) in a
post-SCF manner,

1εGSCf =
∂1EGSC0

∂n
= 1ε

(1)
f

+1ε
(2)
f

+ · · · , (14)

where 1ε
(k)
f

is the kth-order correction to the frontier

orbital energy.
An accurate prediction of molecular IP and EA has been

achieved by employing the GSC approach (Zheng et al., 2013,
2015; Zhang et al., 2015, 2018) via

I = −εGSC−DFA
HOMO = −(εDFAHOMO +1εGSCHOMO), (15)

A = −εGSC−DFA
LUMO = −(εDFALUMO +1εGSCLUMO). (16)

In practical calculations, the perturbative series needs to be
truncated at a certain order. It is worth pointing out that the
accuracy of the GSC does not necessarily increase with further
inclusion of higher order orbital relaxation. This is because the
present form of GSC only treats the exchange energy Ex, while the
correlation energy Ec is presumed to be much smaller and hence
its correction is omitted. However, the correction to Ec may have
a comparable magnitude to the high-order corrections to Ex. For
instance, regarding the prediction of EA, while the inclusion of
first-order orbital relaxation is found optimal for the LDA and
GGA (such as BLYP, Becke, 1988; Lee et al., 1988), the inclusion
of orbital relaxation up to second-order is most favorable for the
hybrid functional B3LYP (Lee et al., 1988; Becke, 1993).

To extend the GSC approach beyond the frontier KS/GKS
orbitals, we presume that the PPLB condition could be
generalized to the following energy linearity relation:

Ẽa(N + n) ≡ (1− n)E0(N)+ nEa(N + 1). (17)

The GSC to the energy of the (N + n)-electron system is

1EGSCa = Ẽa(N + n)− Ea(N + n), (18)

where Ea(N + n) is the energy of the (N + n)-electron system
in an excited state, since the n fractional electron is now added
to the ath virtual orbital of the N-electron system. Similarly, the
changes of electron density and KS/GKS orbitals in response to
the perturbation caused by the electron addition process, as well
as their contributions to 1EGSCa , are calculated by using the self-
consistent perturbation theory presented in Zhang et al. (2015).
This finally gives rise to the GSC to the KS/GKS orbital energies:

1εGSCa =
∂1EGSCa

∂n
= 1ε(1)a +1ε(2)a + · · · . (19)

Likewise, for the scenario that n fractional electron is deprived
from the ith occupied orbital of the N-electron system, we have

1εGSCi =
∂1EGSCi

∂n
= 1ε

(1)
i +1ε

(2)
i + · · · . (20)

With the QE-DFT method, we can now use the scaling corrected
KS/GKS orbital energies to approximate the QP energies and the
related vertical IPs and EAs as follows:

ωi = −Ivi ≈ εGSC−DFA
i = εDFAi +1εGSCi ,

ωa = −Av
a ≈ εGSC−DFA

a = εDFAa +1εGSCa . (21)

3. RESULTS AND DISCUSSIONS

3.1. QP Energies
3.1.1. Quasihole Energies of Molecules
Because of the lack of highly accurate experimental or theoretical
data for the molecular quasielectron energies (except for those
associated with the LUMOs), in this work we only compare
the calculated quasihole energies that are associated with the
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FIGURE 1 | The mean absolute errors (MAEs) (in units of eV) between the occupied Kohn–Sham (KS)/generalized KS (GKS) orbital energies {εi} calculated by various

density functional approximations (DFAs) and the experimentally measured quasihole energies {ωi}. The experimental data are extracted from Chong et al. (2002) and

Schmidt (1977). The basis set adopted in the density functional calculations is aug-cc-pVTZ (Kendall et al., 1992; Woon and Dunning Jr, 1993).

FIGURE 2 | A comparison between 56 Kohn–Sham (KS)/generalized KS

(GKS) orbital energies {−εi} calculated by B3LYP and GSC-B3LYP and the

corresponding vertical ionization potentials (IPs) {Ivi } measured experimentally

for 12 molecules (see the main text). The green solid line indicates exact

equality.

occupied KS/GKS orbitals to the reference data available in
the literature.

We first look into 56 quasihole energies of 12 molecules
by calculating the scaling corrected orbital energies, and
make comparison with experimentally measured vertical IPs.
The examined molecules are cyanogen, CO, acetylene, water,

ethylene, ammonia, acetonitrile, fluoromethane, benzene,
naphthalene, furan, O2, and formic acid, which exhibit
diversified geometric and electronic features. Among these
molecules, the geometries of benzene and naphthalene are
extracted from Mei et al. (2019), while the structures of the other
molecules are optimized with the B3LYP/6-311+g** method by
using the Gaussian09 package (Frisch et al., 2009).

The GSC approach presented in section 2.2 is employed to
correct the orbital energies calculated by various mainstream
DFAs, including the LDA, the GGAs (BLYP and PBE, Perdew
et al., 1996), and the hybrid functional B3LYP. For these DFAs,
the orbital relaxation up to the second order is considered
for calculating the scaling corrections of the occupied orbital
energies. The GSC approach is implemented in an in-house built
quantum chemistry software package QM4D (Hu et al., 2020).

Figure 1 compares the averaged deviations of the calculated
{εDFAi } and {εGSC−DFA

i } from the quasihole energies {ωi}

extracted from the experimentally measured vertical IPs. It is
shown clearly that the mean absolute errors (MAEs) associated
with the original DFAs are as large as several eVs, while by
applying the GSC approach, the MAEs are substantially reduced
to less than 0.5 eV. Take the B3LYP functional as an example. It
yields an MAE of 3.05 eV, which is the smallest among all the
uncorrected DFAs, and the MAE is greatly reduced to 0.28 eV by
using the GSC-B3LYP. If instead the orbital relaxation is treated
up to the first and third order, the MAE becomes 0.74 eV and
0.43 eV, respectively. The dependence on the order of orbital
relaxation is consistent with the trend observed in our previous
work (Zhang et al., 2015).

In a previous study by Chong et al. (2002), 10 out of
12 molecules examined in Figure 1 (without benzene and
naphthalene) have been investigated by calculating their KS/GKS
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A B

FIGURE 3 | A comparison between the experimental and simulated photoemission spectra (PES) of (A) a maleic anhydride and (B) a benzoquinone. The experimental

PES are extracted from Brundle et al. (1972), Knight et al. (2016), with the rightmost quasielectron peak added manually. The quasielectron peak is centered at the

experimental EA of the molecule, and is broadened artificially by a Gaussian function with the width of λ = 0.2 eV. The simulated PES by using the QE-DFT is

explained in the main text, and the results of the self-consistent GW (scGW) and non-self-consistent G0W0 methods are extracted from Knight et al. (2016).

orbital energies by using an approximate XC potential obtained
with the statistical averaging of (model) orbital potentials
(SAOP). For these 10 molecules, the MAE reported in Chong
et al. (2002) is 0.38 eV, while the GSC-B3LYP yields a somewhat
smaller MAE of 0.28 eV, albeit the different molecular geometries
and basis sets adopted.

The comparison between the individual orbital energies {−εi}
calculated by B3LYP and GSC-B3LYP and the experimentally
measured vertical IPs {Ivi } is depicted in Figure 2. It is apparent
that the uncorrected orbital energies deviate systematically and
significantly from the experimental QP energies, while such
deviations are largely alleviated by applying the GSC approach.

3.1.2. Photoemission Spectra
The QP energies can also be extracted from the peak positions
of experimentally measured photoemission spectra (PES). We
employ the QE-DFT to study the PES of 14 molecules. The same
molecular geometries and basis set (cc-pVTZ, Dunning, 1989;
Woon andDunning Jr, 1993) as those adopted inMei et al. (2019)
are used here. The PES are simulated by setting the energy of each
KS/GKS orbital as the center of a QP peak, and assuming all QP
peaks have the same amplitude and are broadened by the same
Gaussian function e−(ε−εi)2/2λ2 with λ = 0.2 eV.

Figure 3 depicts the experimentally measured and
theoretically simulated PES of a maleic anhydride and a
benzoquinone, while those of the other 12 molecules are
presented in Supplementary Material. Clearly, both the PBE

and B3LYP yield considerable errors in the peak positions of the
simulated PES. More specifically, they tend to predict much too
high quasihole energies and too low quasielectron energies. This
is because the uncorrected DFAs (PBE and B3LYP) suffer from
delocalization error, as they violate the rigorous PPLB condition
and the extended energy linearity relation.

The use of GSC improves significantly the simulated PES.
For GSC-PBE, the orbital relaxation is considered up to the
first and second order for the virtual and occupied KS/GKS
orbitals, respectively; while for GSC-B3LYP, the orbital relaxation
is included up to second order for all the KS/GKS orbitals. From
the comparison shown in Figure 3, it is evident that the GSC-
DFAs achieve at least the same level of accuracy as the results of
GW method (Knight et al., 2016). Moreover, the computational
cost of the QE-DFT method by using a GSC-DFA is supposedly
much cheaper than that of the GW method, because the former
requires only a single SCF calculation at the DFT level.

3.2. Energies of Low-Lying Excited States
We now turn to the energies of low-lying excited states of
molecules. By employing the QE-DFT method, we carry out
calculations on 48 low excitation energies of the 16 molecules
investigated previously in Mei et al. (2019). The cationic
species of all these molecules indeed contain one more spin-
α electrons than spin-β electrons, and hence their triplet and
singlet excitation energies are computed by using equations
5 and 7, respectively. Since the calculations involve only the
virtual KS/GKS orbitals of the cations, the orbital relaxation is
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FIGURE 4 | The mean absolute errors (MAEs) of the energies of different types of excitations calculated by using the QE-DFT method with various density functional

approximations (DFAs) and the basis set 6-311++G(3df, 3pd). For comparison purpose, the MAEs of the TDDFT-B3LYP results extracted from Mei et al. (2019) are

also displayed. Excitation energies calculated by high-level wavefunction methods are used as the reference data (Schreiber et al., 2008). T1 and S1 (T2 and S2) refer

to the triplet and singlet HOMO to LUMO (LUMO+1) excitations, respectively. The numbers in the parentheses record the numbers of energy data belonging to the

different types of excitations.

considered up to the second order for GSC-B3LYP and up to the
first order for other GSC-DFAs, respectively.

Figure 4 compares the MAEs of different types of excitation
energies calculated by various DFAs, and the detailed results can
be found in the Supplementary Material.

Intriguingly, for the lowest (HOMO-to-LUMO) triplet
excitations, the uncorrected DFAs yield reasonably accurate
excitation energies, and the application of the GSC approach
does not lead to any improvement. In particular, B3LYP yields an
MAE as small as 0.17 eV for the T1 excitations. Such an appealing
accuracy is likely due to the cancellation of delocalization error.
Equation (5) involves the difference between a pair of virtual
orbital energies. Thus, when two virtual orbitals are close in
energy, their associated delocalization errors are expected to
cancel out (Mei et al., 2019). Consequently, the GSC approach
does not help. Such an error cancellation mechanism becomes
less favorable for higher excitations. For instance, as displayed
in Figure 4, the uncorrected DFAs tend to yield a larger MAE
for the T2 excitations, and applying the GSC indeed leads to
improved accuracy. The latter is because the scaling correction
to each individual QP energy starts to take effect.

For the S1 excitations, the GSC-DFAs yield MAEs that are
somewhat larger than the original DFAs. This is because a second
type of systematic error of the DFAs, the static correlation error,
becomes prominent and significantly affects the calculated1ES1.

Taking the LDA functional as an example. If the first singlet
excited state is described by a single Slater determinant, i.e., by
setting χ = 0 in Equation (6) and (7), the MAEs of 1ES1
are 1.44 eV and 1.33 eV for the original LDA and GSC-LDA,
respectively. In contrast, after adopting the spin purification
procedure (by setting χ = 1), the MAEs reduce to 0.73 eV
and 0.92 eV for the original LDA and GSC-LDA, respectively.
Therefore, the spin purification procedure indeed diminishes the
MAE of1ES1 by circumventing the problem of static correlation
error. However, the somewhat larger MAE of the GSC-LDA
seems to indicate that the spin purification formula is not
entirely compatible with the present GSC scheme. For higher
singlet excitations, the static correlation error becomes much
less significant, as signified by the much smaller second term
on the right-hand side of Equation (6). Consequently, the MAE
of 1ES2 experiences a rather minor change by invoking the
spin purification. For instance, the MAE increases slightly from
0.68 eV to 0.70 eV with the original LDA, while it reduces slightly
from 0.57 eV to 0.53 eV with the GSC-LDA.

Among all the DFAs examined, the GSC-B3LYP functional
achieves an optimal performance for all the low-lying excitations
studied. The overall accuracy of GSC-B3LYP is comparable to
the TDDFT-B3LYP. This affirms that it is entirely possible and
practical to access excited-state properties ofmolecules within the
framework of ground-state DFT.
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TABLE 1 | Calculated and experimental ionization potentials (IPs) and T1

excitation energies of various transition metal atoms and compounds.

Final state Exp. CCSD(T) B3LYP GSC-B3LYP

IP

Cu d10 7.73 7.69 5.35 7.90

Ag d10 7.58 7.52 5.30 7.80

Au d10 9.23 9.13 6.61 9.28

MAEa 0.07 2.43 0.14

T1

Cu d10p1 3.81 3.87 4.92 3.94

Ag d10p1 3.84 3.74 4.80 3.87

Au d10p1 4.95 5.01 6.06 5.00

CuF 36+ 1.81 1.81 2.73 2.05

CuCl 36+ 2.35 2.43 3.24 2.35

CuBr 36+ 2.54 2.56 3.19 2.35

AgF 136+ 3.09 3.27 3.26 2.54

AgCl 136+ N/A 3.50 3.66 2.97

AgBr 136+ N/A 3.37 3.43 2.83

AuF 136+ N/A 2.08 2.17 1.80

AuCl 136+ N/A 2.53 2.61 2.14

AuBr 136+ N/A 2.60 2.52 2.09

MAEa 0.07 0.83 0.17

MAEb 0.50 0.31

The experimental excitation energies and the CCSD(T) calculation results are extracted
from Guichemerre et al. (2002). The experimental geometries (Guichemerre et al., 2002)
and the def2-TZVPD basis set (Schäfer et al., 1994; Rappoport and Furche, 2010) are
used for all the calculations.
aThe MAE is between the calculated values and the experimental data.
bThe MAE is between the DFT and the CCSD(T) results.

We further extend our test to cover three transition metal
atomsM (M = Cu, Ag, Au) and nine transition metal compounds
MX (X = F, Cl, Br). The calculated results are presented
in Table 1 along with the CCSD(T) results and the available
experimental data. The small MAEs between the calculated
results and experimental data further affirm the applicability of
the GSC approach.

3.3. Resonance Energies of Temporary
Anions
For a temporary anion in a resonant state, the corresponding
neutral molecule has a negative EA, for which the conventional
1SCF method often yields problematic results. This is because
the choice of an appropriate basis set is difficult for the SCF
calculation of a temporary anion. On the one hand, the energy of
a temporary anion is rather sensitive to the inclusion of diffuse
basis functions (Guerra, 1990). On the other hand, the diffuse
basis functions may artificially delocalize the excess electron
(Cohen et al., 2008c, 2012), and thus result in incorrect electron
density distribution.

Alternatively, using the scaling corrected LUMO energy
to determine the energy of the temporary anion has made
impressive progress. It has been demonstrated that the GSC-
PBE functional predicts highly accurate negative EAs by using
Equation (16) (Zhang et al., 2018). For a set of 38 molecules
proposed in Tozer and De Proft (2005), the resulting MAE is
as small as 0.18 eV with the aug-cc-pVTZ basis set. Recently,

a similar accuracy has been reached by the explicit inclusion
of derivative discontinuity in the GGA exchange potential
(Carmona-Espíndola et al., 2020). In this section, we extend
our calculation to 26 new molecules that are beyond the
above mentioned works, and hence expand the test set to a
total of 64 molecules. The molecular geometries are optimized
at the B3LYP/6-311+G** level with the Gaussian09 suite of
programs (Frisch et al., 2009). For the GSC approach, the
relaxation of KS/GKS orbitals is considered up to second-
order for GSC-B3LYP, and to first-order for other GSC-
DFAs, respectively.

Table 2 lists the experimental and calculated EAs of the newly
added 26 molecules. The experimental data are extracted from
Jordan and Burrow (1978), Chiu et al. (1979), andNg et al. (1983),
while the theoretical data take either the values of −εLUMO

(or −εa if it is the ath virtual orbital that is related to the
resonant state) or the energy difference between the neutral and
anionic species (the1SCF method). More details are given in the
Supplementary Material.

Figure 5 visualizes the MAEs of the calculated EAs of
the extended set of 64 molecules. Obviously, the application
of the GSC approach greatly improves the accuracy of the
virtual orbital energies (particularly the εLUMO). The MAE is
reduced from several eVs with the original DFAs to less than
0.5 eV with the GSC-DFAs. Moreover, the MAE is further
reduced by adopting a more diffuse basis set. This is because
a more complete basis set is more favorable for a perturbative
treatment of scaling correction and orbital relaxation. The
lowest MAE reached for the whole extended set is 0.14 eV with
the GSC-LDA.

As already been pointed out in Zhang et al. (2018), the use
of a very diffuse basis set (such as aug-cc-pVTZ) may give rise
to highly delocalized virtual KS/GKS orbitals with energies
close to the molecular chemical potential. These orbitals are
actually not relevant to the resonant state of the temporary
anion of our interest, and should be left out of theoretical
analysis. Therefore, we need to choose carefully the virtual
orbital, which is genuinely pertinent to the formation of the
temporary anion. For instance, in the case of a cis-butene
molecule, the few lowest virtual orbitals calculated at the
B3LYP/cc-pVTZ and B3LYP/aug-cc-pVTZ levels are depicted
in Figure 6. Apparently, with the B3LYP/aug-cc-pVTZ method,
the three lowest virtual orbitals (from LUMO to LUMO+2)
are rather diffuse. Occupation on any of these orbitals by an
excess electron will lead to an unbound state. Therefore, these
orbitals are not relevant to the formation of the temporary anion.
By scrutinizing the spatial distribution of the virtual KS/GKS
orbitals, it is recognized that φLUMO+3(r) would give rise to
the resonant state of the temporary anion, as it exhibits a same
shape as φLUMO(r) obtained with the cc-pVTZ basis set. In such
a case, instead of using Equation (16), the EA is predicted by
A = −εGSC−B3LYP

LUMO+3 = −(εB3LYPLUMO+3 + 1εGSCLUMO+3). Similarly,
with the B3LYP/aug-cc-pVTZ method there are some other
molecules for which a virtual orbital other than the LUMO
should be chosen. The virtual orbital pertinent to the temporary
anion is φLUMO+1(r) for 9 molecules (aniline, propene,
CO2, guanine, 1,4-cyclohexadiene, cis-1,2-difluoroethylene,
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TABLE 2 | Experimental and calculated electron affinities (EAs) of 26 new molecules that are not included in Tozer and De Proft (2005) and Zhang et al. (2018).

Molecule Exp. LDA BLYP B3LYP PBE GSC- LDA GSC- BLYP GSC- B3LYP GSC- PBE 1SCF- PBE 1SCF- B3LYP

Monofluoroethylene −1.91 1.25 0.95 0.31 1.03 −1.97 −2.18 −2.06 −2.15 −0.47 −0.52

trans-1,2-difluoroethylene −1.84 1.32 1.01 0.39 1.07 −1.95 −2.18 −2.09 −2.16 −0.50 −0.58

cis-1,2-difluoroethylenea −2.18 1.14 0.82 0.19 0.89 −2.18 −2.42 −2.34 −2.40 −0.36 −0.40

1,1-Difluoroethylenea −2.39 1.09 0.79 0.17 0.84 −2.15 −2.32 −2.09 −2.33 −0.42 −0.47

Trifluoroethylenea −2.45 1.06 0.74 0.11 0.77 −2.30 −2.53 −2.38 −2.53 −0.41 −0.45

Tetrafluoroethyleneb −3.00 0.82 0.47 0.21 0.49 −2.71 −3.04 −3.07 −3.03 −0.89 −0.91

Nitrogen −2.20 2.18 1.88 0.98 1.92 −2.20 −2.41 −2.40 −2.41 N/A −1.83

Formaldehyde −0.86 2.91 2.57 1.75 2.66 −0.92 −1.18 −1.14 −1.14 N/A −0.46

Butadiene −0.62 2.12 1.76 1.18 1.90 −0.61 −0.93 −0.85 −0.82 N/A −0.73

Biphenyl −0.30 2.04 1.63 1.13 1.80 0.01 −0.40 −0.39 −0.24 N/A −0.37

Trichloromethane −0.35 2.47 2.22 1.55 2.31 −0.24 −0.44 −0.46 −0.38 −0.15 −0.26

Dichlorofluoromethane −0.96 1.99 1.74 1.08 1.81 −0.90 −1.06 −1.00 −1.04 −0.36 −0.44

Dichlorodifluoromethane −0.98 2.37 2.11 1.43 2.17 −0.61 −0.80 −0.79 −0.77 −0.42 −0.48

Dichloromethane −1.23 1.74 1.52 0.90 1.59 −1.02 −1.08 −0.89 −1.09 −0.31 −0.38

Benzene −1.15 1.44 1.06 0.50 1.21 −1.18 −1.52 −1.48 −1.40 −0.36 −0.42

CO −1.80 2.24 1.94 1.12 2.00 −1.89 −2.07 −1.96 −2.08 −1.05 −1.11

Cyanogen −0.58 3.87 3.48 2.84 3.61 −0.48 0.12 0.23 0.23 0.21 0.29

Propyned −2.95 0.13 0.02 −0.40 0.01 −2.29 −1.83 −1.23 −2.13 −0.40 −0.47

Butadiyne −1.00 2.09 1.73 1.16 1.87 −0.77 −1.07 −0.96 −0.97 −0.25 −0.36

Tetramethylethylenee −2.27 0.42 0.20 −0.31 0.28 −1.81 −1.79 −1.48 −1.86 −0.34 −0.41

Acetylenec −2.60 0.57 0.32 −0.28 0.39 −2.51 −2.58 −2.36 −2.61 −0.46 −0.53

Acrylonitrile −0.21 3.00 2.62 2.01 2.76 −0.01 −0.35 −0.27 −0.24 0.02 −0.16

1,4-Cyclohexadienea −1.75 1.05 0.67 0.34 0.81 −1.45 −1.80 −1.89 −1.68 −0.34 −0.56

Toluene −1.11 1.39 1.01 0.46 1.16 −1.11 −1.45 −1.43 −1.33 −0.34 −0.42

Ethylbenzene −1.17 1.37 0.99 0.47 1.14 −1.07 −1.43 −0.90 −1.31 −0.28 −0.37

Isopropylbenzene −1.08 1.39 0.99 0.44 1.16 −1.01 −1.38 −1.41 −1.25 −0.26 −0.34

MAE 3.17 2.85 2.23 2.95 0.17 0.25 0.30 0.21 1.22 1.01

The calculated EAs are obtained by using the 1SCF method, or take the values of the uncorrected −εDFALUMO or scaling corrected −εGSC−DFALUMO . All energies are in units of eV. The
aug-cc-pVTZ basis set is adopted for all the calculated data listed in this table.
aThe −εLUMO+1 calculated with the GSC-B3LYP is taken as the EA of this molecule.
bThe −εLUMO+1 calculated with the GSC-B3LYP, GSC-BLYP, and GSC-PBE are taken as the EA of this molecule.
cThe −εLUMO+2 calculated with the GSC-B3LYP is taken as the EA of this molecule.
dThe −εLUMO+2 calculated with the GSC-B3LYP and −εLUMO+1 calculated with other DFAs are taken as the EA of this molecule.
eThe −εLUMO+3 calculated with the GSC-B3LYP and −εLUMO+1 calculated with other DFAs are taken as the EA of this molecule.

1,1-difluoroethylene, trifluoroethylene and tetrafluoroethylene),
φLUMO+2(r) for 3 molecules (trimethylethylene, propyne
and acetylene), φLUMO+3(r) for 3 molecules (pyrrole, trans-
butene, and tetramethylethylene), and φLUMO+4(r) for one
molecule (cyclohexene).

As shown in Figure 5, unlike the QE-DFT method,
increasing the size of basis set does not improve the accuracy
of the 1SCF method. This is because through the SCF
calculation of the molecular anion by using a diffuse basis
set, the excess electron is more inclined to reside on the
delocalized orbital, which has a lower energy. Consequently,
it is difficult to have the excess electron correctly occupying
the virtual orbital that is pertinent to the resonant state
of temporary anion. In contrast, the QE-DFT method
in conjunction with the GSC approach does not require
an SCF calculation for the anionic species, and is clearly
more favorable for the prediction of resonance energies of
temporary anions.

4. CONCLUSION

To summarize, we have calculated the QP, excitation, and
resonance energies of molecules by employing the QE-DFT
method. A non-empirical GSC approach is used to reduce the
delocalization error associated with the DFAs by imposing an
energy linearity condition for systems with a fractional number
of electrons. The accuracy of the results obtained in this work
with the GSC-DFAs is overall similar to that achieved in Mei
et al. (2019) by the LOSC method (Li et al., 2017). For instance,
the GSC-B3LYP yields an MAE of 0.36 eV and a mean sign error
(MSE) of−0.16 eV for the 48 excitation energies of 16 molecules
(see section 3.2). These errors are slightly smaller than the MAE
of 0.49 eV and the MSE of −0.19 eV resulted by the LOSC-
B3LYP method (Mei et al., 2019). The marginal superiority in
the performance of the GSC is because of the explicit treatment
of the relaxation of KS/GKS orbitals upon electron addition or
removal. Relaxation of KS/GKS orbitals and electron density
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FIGURE 5 | The mean absolute errors (MAEs) of the EAs for an extended set of 64 molecules calculated by employing the QE-DFT method with various density

functional approximations (DFAs) and by using the 1SCF method. Note that when the more diffuse aug-cc-pVTZ basis set is adopted, the energy of a certain virtual

Kohn–Sham (KS)/generalized KS (GKS) orbital should be taken as the predicted EA; see Table 2 for details. If the orbital relaxation is considered up to the first order

for the GSC-B3LYP, the MAEs become 0.21 and 0.28 eV with the cc-pVTZ and aug-cc-pVTZ basis sets, respectively.

FIGURE 6 | Contour plots of the lowest virtual Kohn–Sham (KS)/generalized KS (GKS) orbitals of the neutral cis-butene molecule calculated at the B3LYP/cc-pVTZ

and B3LYP/aug-cc-pVTZ levels. The isosurfaces of ±0.022 a.u. are shaded in yellow and green, respectively).
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could also be included in the LOSC calculations (Su et al., 2020),
which will further improve the accuracy of predictedQP energies.
Moreover, as the size of the molecule increases to a certain
extent, the energies at integer electron numbers may become less
accurate. For such systems, the correction offered by the GSC
approach may be inadequate, and the LOSC method with size-
consistent corrections (Su et al., 2020; Yang et al., 2020) to DFA
should be used.

For the various DFAs considered in this paper, the GSC-
B3LYP yields the overall best performance. Our calculation
results achieve at least the same level of accuracy as some
more expensive methods, such as the GW method for QP
energies, the TDDFT method for excitation energies, and the
EOM-CC method for resonance energies. This thus affirms
that it is entirely possible and practical to study excited-state
properties within the framework of ground-state DFT. Despite
the promising results, the prediction of singlet excitation energies
still has plenty of room for improvement. This is because
another source of error associated with the DFAs, the static
correlation error, comes into play, which may be corrected
by imposing a constancy condition on systems with fractional
spins (Cohen et al., 2008b). Further work is needed along
this direction.
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We describe using the Newton Krylov method to solve the coupled cluster equation.

The method uses a Krylov iterative method to compute the Newton correction to

the approximate coupled cluster amplitude. The multiplication of the Jacobian with

a vector, which is required in each step of a Krylov iterative method such as the

GeneralizedMinimumResidual (GMRES) method, is carried out through a finite difference

approximation, and requires an additional residual evaluation. The overall cost of the

method is determined by the sum of the inner Krylov and outer Newton iterations.

We discuss the termination criterion used for the inner iteration and show how to

apply pre-conditioners to accelerate convergence. We will also examine the use of

regularization technique to improve the stability of convergence and compare the method

with the widely used direct inversion of iterative subspace (DIIS) methods through

numerical examples.

Keywords: couple cluster approximation, Newton-Krylov method, DIIS, precondition, nonlinear solver

1. INTRODUCTION

The coupled cluster (CC) theory, introduced to quantum chemistry by Čížek (1966), Paldus and
Li (1999), and Bartlett and Musiał (2007), over the past few decades has established itself as one of
the most accurate ab initio method for electronic structure calculations. The systematic inclusion
of higher-rank excitations in the cluster operator allows one to establish a hierarchy of more
and more accurate approximations converging toward the full configuration interaction (FCI)
limit (Gauss, 1998). These standard approximations also provide a number of unique features
such as size-extensivity of the resulting energies, orbital invariance of theory under separate
rotations of occupied and virtual orbitals, the possibility of approximating higher excitations by
products of lower-rank clusters, which are especially important in proper description of chemical
transformations associated with bond forming and bond breaking processes. The CC theory is
based on an exponential ansatz acting on the reference wave function, typically Slater determinant
obtained fromHartree–Fock (HF), density functional theory, or other independent particle models,
which is assumed to provide a reasonable zeroth order description of the correlated ground-state
wave function. The CC wave function is determined by the so-called cluster amplitudes obtained
by solving nonlinear energy-independent CC equations.

The exponential ansatz ensures the size-extensivity of the CC method, but in contrast to
configuration interaction methods, the CC method is not variational (unless all excitations are
included). In practice, to make CC approximation numerically feasible, the cluster operator is
defined by low-rank excitations. For example, one of the most widely used coupled cluster single
and double (CCSD) model includes single and double excitations (Purvis and Bartlett, 1982).
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The single-reference CCSD method and non-iterative technique
for the inclusion of collective triple excitations [the so-called
CCSD(T) approach; Raghavachari et al., 1989] is currently
considered as a “gold standard” of high-accuracy computational
chemistry. It is available in many program packages and
employed widely in a wide variety of chemical applications. The
numerical cost scales polynomially with the system size, where
the numerical scaling of CCSD is proportional toO(N6), whereas
for (T) correction is proportional to O(N7) (N represents
symbolically system size).

For the treatment of the static correlation effects, the
multireference CC approach has been introduced, which
generalizes the CC exponential parameterization of the wave
function (Lyakh et al., 2012). Out of many formulations
of MRCC theories, the class of methods relevant to this
work is externally corrected CC, which extracts information
about the most important higher excitations or active space
single and double excitations from an “external” calculation
performed by a different method such as complete active space
self-consistent field (CASSCF) or multireference configuration
interaction (MRCI) (Li and Paldus, 1997; Li, 2001; Kinoshita
et al., 2005). In this work, we employed the tailored CCSD
(TCCSD) method, where the information for external correction
is obtained from a density matrix renormalization group
(DMRG) calculation. The TCC approach has been successfully
applied (Kinoshita et al., 2005; Lyakh et al., 2011) and
generally performs well, although a large active space and
CASSCF orbitals might be required for good accuracy.
TCC also features the desirable property of being rigorously
size extensive.

The CCSD equations correspond to the polynomial set of
equations of fourth order, whose solving for large number of
cluster amplitudes (often exceeding 1010) in the presence of
strong correlation effects may pose a significant challenge and
may adversely affect the time to solution associated with solving
CC equations, even when efficient implementation of the CCSD
method is available. Therefore, the design of fast converging
CC solvers is inextricably linked to the effort of enabling CC
methods at exa-scale. Currently, CC equations are typically
solved via an inexact Newton (IN) method combined with
an acceleration scheme called the direct inversion of iterative
space (DIIS) (Pulay, 1980), which is also used in many other
quantum chemical algorithms to accelerate the convergence, for
example in the self-consistent field (SCF) iterations for solving
the HF equations. Several other algorithms such as reduced
linear equation (Purvis and Bartlett, 1981), quasilinearization of
nonlinear terms techniques (Piecuch and Adamowicz, 1994), and
multimodel Newton-type algorithms (Kjønstad et al., 2020) have
been tested especially in the context of solving CC equations
involving high-rank clusters.

In this paper, we describe using the Newton–Krylov (NK)
method for solving the projected CC equation. The NKmethod is
a widely used method for solving large-scale nonlinear equations
in many fields (Knoll and Keyes, 2004). Its use in quantum
chemistry appears to be new. We will describe the basic steps of
the method in the context of CCSD in section 3. We compare
the method with DIIS in section 4 and discuss the possibility

of combining the two methods together. In section 5, we
demonstrate the performance of the NK method and compare
it with DIIS.

2. COUPLED CLUSTER EQUATIONS

In this section, we briefly discuss the algebraic form of the CC
equations for cluster amplitudes. In general, a correlated wave
function |9〉 can be written as,

|9〉 = �|8〉 , (1)

where |8〉 is the reference wave function (typically the HF Slater
determinant) and � is the wave operator. In the CC method, the
wave operator is assumed in an exponential form

� = eT , (2)

where T is the cluster operator defined by excitations producing
excited Slater determinant when acting on the reference function.
This property of the cluster operator T assures the so-called
intermediate normalization of the CC wave function, i.e.,

〈9|8〉 = 1 , (3)

assuming that orthonormal molecular basis set was used to
discretize many-body problem of interest. The cluster operator
T is a sum of its many-body components

T = T1 + T2 + ... , (4)

where Tn is the linear combination of excitation operators, which
corresponds to n-tuple excitations. Thus, for single- and double-
excitations one can write

T1 =
∑

i,j

tai a
†
aai (5)

T2 =
∑

i<j;a<b

tabij a
†
aa

†
b
ajai , (6)

. . . (7)

The coefficients tab..ij.. are the cluster amplitudes, which will be
determined by solving CC equations. We use the standard
notation, i.e., indices i, j denote occupied, a, b virtual, and p, q
general molecular spin orbitals. a†

p and aq are fermionic
creation or annihilation operators which satisfy set of
anticommutation relations

{a†
p, aq} = a†

paq + aqa
†
p = δpq (8)

{a†
p, a

†
q} = {ap, aq} = 0 . (9)

In the context of deriving algebraic form of CC equations,
particle-hole formalism is invoked (Shavitt and Bartlett, 2009).

Inserting the CC ansatz into the Schrödinger equation and
pre-multiplying from the left by e−T yields

e−THeT8 = E8 . (10)
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To employ various diagrammatic techniques to derive CC
equations, it is useful to introduce the normal product form of
the electronic Hamiltonian (HN) defined as

HN = H−〈8|H|8〉 =
∑

pq

FpqN{p
†q}+

1

4

∑

pqrs

〈pq||rs〉N{p†q†sr} ,

(11)
Using the Baker–Campbell–Hausdorff formula, we get

e−THNe
T = HN + [HN ,T]+

1

2
[[HN ,T],T]+

+
1

3!
[[[HN ,T],T],T]+

1

4!
[[[[HN ,T],T],T],T]

≡ (HNe
T)C , (12)

where subscript “C” corresponds to a connected part of a
given operator expression. Since electronic Hamiltonians are
defined by one- and two-body interactions, the above expansion
terminates after quadruple commutator (11). For the derivation
of the correlation energy expression and amplitude equations,
we project the e−THNe

T |8〉 term to the bra vectors 〈8|, 〈8a
i |,

〈8ab
ij |, etc.:

1Ecorr = 〈8|HNe
T |8〉C , (13)

〈8ab...
ij... |HNe

T |8〉C = 0 (14)

where 〈8a
i |, 〈8

ab
ij |, ... represent singly, doubly, etc., excited Slater

determinants with respect to the reference function.
The general TCC wave function employs the following split-

amplitude ansatz

�TCC = eT
ext+Tact

, (15)

where Tact represents the active amplitudes obtained from the
active space calculation. These amplitudes are kept constant
when solving the amplitude equations, only Text are iterated. The
Tact amplitudes are computed from the CI coefficients, extracted
from the matrix product states wave function optimized during
the DMRG calculation. We will use t to denote, collectively, the
CCSD amplitudes in Equations (5) and (6) that are contained
in Text. These amplitudes satisfy a nonlinear equation that can
be derived from Equation (14). In the rest of the paper, we will
simply write this equation as,

r(t) = 0. (16)

3. ALGORITHMS FOR SOLVING THE CCSD
EQUATION

In this section, we begin with a short description of a general
scheme for solving the CCSD nonlinear equation using an
inexact Newton’s method. We review a commonly used diagonal
approximation to the Jacobian, and then describe the NKmethod
for solving the CCSD equation.

3.1. Inexact Newton’s Method
Even though Equation (16) is only a second-order nonlinear
equation, it is not easy to solve due to the large number of
variables contained in t. One should remember that in the state-
of-the-art CCSD calculations, the total number of sought cluster
amplitudes exceeds 1010. An iterative procedure is generally
required to solve the equation numerically. The best known
algorithm for solving a general system of nonlinear equations is
the Newton’s method. In the k+1st iteration of such amethod, the
approximation to the solution of Equation (16) is updated as

t(k+1) = t(k) −
[
J(k)

]−1
r(t(k)), (17)

where t(k) is the approximate solution obtained from the kth
iteration, and J(k) is the Jacobian of r(t) evaluated at t(k).

Because it is not practical to write down the Jacobian of r(t)
or its inverse analytically, we cannot use the Newton’s method
directly to solve the CC equation. Instead, an IN algorithm of
the form

t(k+1) = t(k) −
[
Ĵ(k)

]−1
r(t(k)) (18)

where Ĵ(k) is an approximate Jacobian matrix evaluated at t(k), is
often used. In Equations (17) and (18), we view t and r(t) as a
column vector with all amplitudes in (5) and (6) enumerated in
some specific order, and the contracted tensor amplitudes in r(t)
enumerated in the same order.

In CCSD calculation, a common practice is to choose Ĵ
as a diagonal matrix with HF orbital energy difference as the
diagonal elements. This is justified because J is known to be
diagonal dominant in many cases, and the diagonal matrix of
HF orbital energy differences contributes most to the diagonal
of J. Replacing J with Ĵ typically works well when the system
is near equilibrium. In this case, the computational cost of the
IN method is dominated by the tensor contraction cost for
evaluating r(t(k)) for each k, which has the complexity of O(N6)
where N is the number of atomic basis used to discretize HF
molecular orbitals.

For systems that do not satisfy this property, the diagonal
approximation may not be sufficient. As a result, many IN
iterations may be required to reach convergence, which is defined
by the norm of r(t) being less than a prescribed tolerance level τ .
This will lead to extremely long wall clock time.

3.2. Newton–Krylov Method
Even though J is not explicitly available, it is possible to
approximate the product of J(t) with any tensor w that has the
same dimension as t. This can be done through a finite difference
calculation of the form

J(t)w ≈
r(t + δw)− r(t)

δ
, (19)

where δ is a small constant.
The possibility to approximate J(t)w by one extra function

evaluation allows us to solve the Newton correction equation

J(t(k))1 = −r(t(k)), (20)
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by a Krylov subspace-based iterative method such as the GMRES
algorithm (Saad and Schultz, 1986) even when J(t) is not
explicitly available. The solution 1 is used to update the
approximate amplitude via

t(k+1) = t(k) +1. (21)

This approach is often referred to as the NK method.
In Algorithm 1, we give a description of the simplest Newton-

GMRES algorithm for solving the coupled clustered equation.
We treat the CC amplitude t and tensors (r, w) of the same
dimension as vectors, and denote the inner product of t and r
simply as 〈t, r〉. We treat a set of tensors as a matrix, and use
V(:, j), i.e., the jth column of V , to denote the jth tensor in such a
set. The vector e1 used in this algorithm denotes a unit vector of
length jg + 1 with 1 in the first entry and 0 elsewhere.

Input: Initial guess t(0) to the solution of the coupled
cluster equation; convergence tolerance tol;
Maximum number of GMRES iterations
allowed (jg);

Output: More accurate approximation t to solution of
the coupled cluster equation that satisfies
‖r(t)‖ ≤ tol;

1: k = 0;
2: while ‖r(t(k))‖ > tol do
3: β = ‖r(t(k))‖;
4: V(:, 1)← r(t(k))/β ;
5: for j = 1, 2,...jg do
6: w← r[t(k) + δV(:, j)];
7: w← (w− r(t(k)))/δ;
8: H(:, 1 : j)← 〈V(:, 1 : j),w〉;
9: w← w− V(:, 1 : j)H(1 : j, j);
10: H(j+ 1, j) = ‖w‖;
11: V(:, j+ 1) = w/H(j+ 1, j);
12: end for

Solve the projected linear least squares problem
13: mins ‖Hs− e1β‖
14: t(k+1) = t(k) − V(:, 1 : jg)s;
15: k← k+ 1;
16: Evaluate r(t(k));
17: end while

Algorithm 1: A Newton–Krylov method for solving the
coupled cluster equation.

The outer k loop of Algorithm 1 performs the Newton update
(21) in line 14, using 1 = Vs as the the approximate solution to
the Newton correction equation, where V is an n × jg matrix,
where n is the total number of CCSD amplitudes, and jg is
the number of inner GMRES iterations. The inner j iteration
of Algorithm 1 solves the Newton correction Equation (20)
using the GMRES method. The GMRES method performs a

Gram–Schmidt process to produce an orthonormal basis of the
Krylvo subspace

K(J, r0) ≡ {r0, Jr0, J
2r0, ..., J

jgr0},

where J is the Jacobian evaluated at a particular approximation
to the CCSD amplitudes t, and r0 is the function value of r
in Equation (16) defined at such a t. This orthonormal basis is
stored in columns of theV matrix. In exact arithmetic, thismatrix
satisfies the equation

JV = ṼH, (22)

where V contains the leading jg columns of Ṽ , which are
orthonormal, i.e., VTV = I, and H is a (jg + 1) × jg upper
Hessenberg matrix. The approximation to the solution of (20)
is represented as 1 = Vs for some vector s of length jg. This
vector can be solved from the least squares problem defined by
the Galerkin projection

min
s
‖ṼT(JVs− r0)‖ (23)

It follows from Equation (22), ṼTṼ = I, and the fact that the
first column of V is r0/‖r0‖, solving Equation (23) is equivalent
to solving

min
s
‖Hs− βe1‖, (24)

where β = ‖r0‖. This is the least squares problem solved on line
13 of the algorithm. The solution is used in line 14 to update the
CCSD amplitude.

3.3. Precondition
An iterative procedure for computing the solution to the Newton
correction Equation (20) can be accelerated by using a pre-
conditioner P. Instead solving (20), we solve

P−1J(k)1 = −P−1r(t(k)), (25)

with the hope that P−1J(k) has a reduced conditioner number.
The reduced condition number can lead to faster convergence.

It is well-known that the Jacobian associated with the
projected coupled cluster equation can be partitioned as

J(t(k)) = D+ E(t(k)), (26)

where D is a diagonal matrix consisting of the difference between
virtual and occupied HF orbital energies, and E is a complicated
term that depends on the fluctuation potential (Helgaker et al.,
2014). When the HF amplitude is relatively large, the first term
is dominant. Hence the diagonal matrix can be used as a pre-
conditioner for the iterative solver of Equation (20).

Applying such a pre-conditioner only requires adding an
extra step before the while loop in Algorithm to compute the
preconditioned right-hand side in Equation (25) and modifying
line 7 of the algorithm to apply P−1 to theW tensor.

When D is ill conditioned due to the presence of near
degenerate HF orbital energy levels, it may be necessary to
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introduce a shift σ and use D − σ I as the preconditioner. This
regularization technique is similar to the level-shifting technique
often used in HF SCF calculation (Saunders and Hillier, 1973).

When J is not dominated by D, i.e., when contribution from
the HF amplitude is less significant, it is desirable to construct
alternative pre-conditioners to accelerate the convergence of the
NK method.

3.4. Stopping Criterion
It is well-known that fast convergence of the IN algorithm can
be achieved even when the Newton correction Equation (20) is
not solved to full accuracy (Eisenstat and Walker, 1994). This
is especially true in earlier IN iterations in which the residual
norm ‖r(t)‖ is still relatively large. A general strategy proposed in
Eisenstat andWalker (1994) is to solve the correction equation to
satisfy the following condition:

‖J(t(k))1+ r(t(k))‖ ≤ ηk‖r(t
(k))‖, (27)

for some small constant 0 < ηk < 1. A sophisticated scheme
was proposed in Eisenstat and Walker (1994) to ensure the so-
called “global convergence.” However, such a scheme requires
backtracking and additional residual function evaluations and
is thus likely to increase the overall cost of the NK method.
In this work, we use a simple strategy and set ηk to 10−1 with
the left-hand side of Equation (27) estimated by the projected
residual norm evaluated at the least squares solution to Equation
(24). As the residual norm ‖r(t(k))‖ decreases in the outer
iteration, the absolute error in the approximate solution to
the correction equation also decreases when Equation (27) is
satisfied. Note that there is a trade-off between the number of
inner GMRES iterations required to solve the Newton correction
equation and the number of NK outer iterations. Setting ηk
to a small number may result in too many GMRES iterations
performed at each NK iteration and thus increase the overall
cost the algorithm. In our implementation, we set a limit on the
maximum number of GMRES iterations allowed in each Newton
iteration. Our computational experiments show that it is usually
sufficient to limit the maximum number of GMRES iterations to
5. Furthermore, ηk can also be chosen in a dynamic way with ηk
being relatively large for small k and relatively small for large k.

4. COMPARISON WITH DIIS

The DIIS method (Pulay, 1980) is a commonly used technique to
accelerate the convergence of iterative method for solving the CC
equation. At the kth iteration, we form a new approximation as

t̃(k+1) =

k∑

j=k−ℓ

ωk−j

[
t(j) +1(j)

]
, (28)

for some constant ℓ < k, where ωj’s are chosen to be the solution
to the following constrained minimization problem

min∑
j ωj=1
‖
∑

j

ωj1
(k−j)‖. (29)

The k+ 1st amplitude approximation is then computed from

t(k+1) = t̃(k+1) − 1̃(k+1), (30)

where 1̃(k+1) is the approximate solution to the Newton
correction Equation (20) or (25).

Note that in some formulations of the DIIS algorithm, the
1(k−j) term in the objective of Equation (29) are simply replaced
by r(t(k−j)). Since 1̃(k−j) is often computed as D−1r(t(k−j)),
where D is the diagonal component in Equation (26), these two
formulations are equivalent up to a scaling matrix D.

In some implementations of the DIIS acceleration method,
one performs a fixed number of IN iteration with D in
Equation (26) as the approximate Jacobianmatrix before the DIIS
procedure is used to update t(k+1) according to Equation (30). In
other implementations, DIIS is performed in each IN iteration.

The convergence of the DIIS method and its connection
with the Broyden’s method (Dennis and Schabel, 1996) has
been analyzed in Rohwedder and Schneider (2011) and
Walker and Ni (2011). The connection between DIIS and
Krylov subspace method is made in Harrison (2004) and
Ettenhuber and Jrgensen (2015).

One of the practical issues one needs to consider when
implementing the DIIS method is the solution of the constrained
minimization problem (29). A commonly used approach in
existing quantum chemistry software is to write down the linear
equation representing the first-order necessary condition of
Equation (29) and solve the equation using a Cholesky or LU
factorization based method. This approach is not numerically
stable, especially when the set of {1(k−j)} becomes nearly linearly
dependent. A more stable way to solve Equation (29) is to
turn it into a unconstrained least squares problem and obtain
the optimal solution via a rank-reveal QR factorization of the
matrix consisting of 1(k−j) as its columns. However, applying
rank-reveal QR to {1(k−j)} is rather costly. In comparison,
performing a rank-reveal QR factorization for solving the
projected least squares problem (24) in the NK method is
relatively straightforward, and does not introduce significant
overhead. To improve numerical stability and computational
efficiency, it may be necessary to keep only a subset of {1(k−j)}’s
for a small number of j’s.

In terms of memory usage, NK is slightly more efficient.
In addition to storing the current approximation to the CC
amplitudes and the residual, NK also stores orthonormal basis
tensors of the Krylov subspace used to obtain approximate
solution to the Newton’s correction equation. The DIIS method
typically needs to store a set of {1(k−j)}’s as well as the
corresponding set of previous amplitude approximations.

Although one can view the DIIS method as a way to solve
theNewton correction Equation (20) (Rohwedder and Schneider,
2011), it is also possible to combine DIIS acceleration with the
NK procedure. In such a hybrid scheme, we simply use GMRES
to compute 1̃(k+1) correction in Equation (30) after t̃(k+1) is
obtained from a DIIS update.
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FIGURE 1 | A comparison of different CCSD solvers for the H2O molecule.

5. RESULTS AND DISCUSSION

In this section, we present a few numerical examples to
demonstrate the effectiveness of the NK method and compare
with the inexact Newton method accelerated by DIIS. All
algorithms compared below were implemented using the
NWChem software (Valiev et al., 2010) version 6.6.

5.1. H2O Molecule
In the first example, we show how the NK algorithm behaves
when it is applied to a simple water molecule in equilibrium. We
use the cc-pvtz basis set to discretize the problem. We compare
the NK algorithm with the IN method in which the Jacobian is
approximated the diagonal matrix D in Equation (26), and the
IN method accelerated by the DIIS procedure (labeled as DIIS).
When DIIS is used to accelerate convergence, it is applied every
5 IN iterations. We set the convergence tolerance to 10−7, i.e.,
we terminate the IN, DIIS, and NK iterations when the Euclidean
norm of the residual r(t) falls below 10−7.

In Figure 1, we plot the change of residual norm of each
method with respect to the cumulative number of CCSD
residual function evaluations (tensor contractions). Note that
in the IN and DIIS runs, the number of function evaluations
is equivalent to the number of IN iterations. However, in
the NK run, the number of function evaluations is the total
number of inner GMRES iterations and the number of outer
NK iterations.

We observe that for this relatively easy problem, the
IN method converges without DIIS acceleration. It takes
19 iterations (and 19 function evaluations) to reach
convergence. The use of DIIS acceleration reduces the
total number function evaluations to 16. This is also the
number of function evaluations used in the NK method.
By combining NK and DIIS, we reduce the number of
functions by 1.

FIGURE 2 | A comparison of different CCSD solvers for the Cr2 molecule.

5.2. Cr2
In this section, we show how NK performs on a Cr2 molecular.
The interatomic distance between two Cr atoms is set to 1.7
angstrom, which is near equilibrium. We use the cc-pvdz basis
set to discretized the problem.

This is a relatively difficult problem. As we can see from
Figure 2, without DIIS acceleration, the IN iteration diverges
quickly. Even when the DIIS acceleration is activated, which is
applied every 5 IN iterations, the change of residual norm has
a zig-zag pattern with the residual norm decreasing only after
a DIIS step. It takes a total of 61 residual evaluations before
convergence is reached. Both NK and the hybrid NK and DIIS
converge rapidly. We used a maximum of 5 GMRES iterations in
each NK iteration. The residual norm decreases monotonically in
both runs. There is very little difference between the two.

As we indicated earlier, there is a tradeoff between performing
more GMRES iterations in the inner loop of the NK method
and the number of NK iterations. In Figure 3, we compare the
total number of NK iterations and the total number of function
evaluations for several NK runs in which different numbers of
GMRES iterations were performed in each outer NK iteration.

We can see from Figure 3 that performing 3 GMRES
iterations per NK iteration is not enough to achieve rapid
convergence. On the other hand, taking too many GMRES
iterations does not help either, especially in the first few NK
iterations when the residual norm is still relatively large. For this
problem, setting the maximum number of GMRES iterations per
NK iteration to 5 appears to yield best performance.

In Figure 4, we also show the change of the relative GMRES
residual norm defined as ‖Hs−βe1‖/β , whereH, s, e1, and β are
as defined in Equation (24), with respect to the GMRES iteration
number during the first and the 10th NK iterations when the
number of GMRES iterations is fixed at 10. We observe that the
GMRES iteration converge slowly in the first NK iteration when
the CCSD amplitudes are relatively far from the solution. As the
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FIGURE 3 | A comparison of three Newton–Krylov (NK) runs that use 3, 5 and

10 Generalized Minimum Residual (GMRES) iterations per NK iteration.

FIGURE 4 | The change of relative GMRES residual norm in the first and 10th

NK iterations.

amplitudes become closer to the solution, the GMRES iteration
converges faster.

5.3. Trans-dimer Ti2O4
The next example we use for testing the NK method
is a titanium oxide system. Its geometry is shown in
Figure 5. We use the aug-cc-pvtz basis set to discretize
the problem.

This is a difficult problem. Figure 6 shows that DIIS fails to
converge. In fact, the residual norm quickly increases. This is
mainly caused by the fact that the D matrix used in the IN
method is extremely ill-conditioned. To overcome this difficulty,
we regularize the NK calculation by subtracting a constant shift
σ from the diagonal of D. The same level-shifting is used in
the IN accelerated by DIIS. Figure 6 shows that DIIS converges
when σ is chosen to be 0.1. However, the convergence is rather

FIGURE 5 | The atomic configuration of the trans-dimer Ti2O4 system.

FIGURE 6 | A comparison of different CCSD solvers for the trans-dimer

Ti2O4 molecule.

slow with this choice of level shift. By setting σ to 0.5, we can
achieve much faster convergence. The shift can also be applied
to in NK when D − σ I is used as a preconditioner in the
GMRES iteration. For this problem, the NK (combined with
DIIS) converges with 41 residual function evaluations, which is
fewer than the 47 function evaluations required in DIIS. Similar
convergence is observed for NK without DIIS (which we do not
plot here) also.

5.4. oxo-Mn (salen)
We now compare the performance of NK and DIIS for
an oxo-Mn (salen) molecule shown in Figure 7. In practical
applications, this system catalyzes enantioselective epoxidation
of unfunctional olefines and represents an important substance
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FIGURE 7 | The atomic configuration of the oxo-Mn (salen) molecule.

FIGURE 8 | A comparison of direct inversion of iterative subspace (DIIS) and

NK combined with DIIS (NKDIIS) convergence for the oxo-Mn (salen) molecule.

in industry. Due to the quasi-degeneracy of the lowest states,
this system is a considerable challenge even for multireference
methods and has been intensively studied recently (Irie et al.,
1990; Zhang et al., 1990; Antalík et al., 2019).

We have performed TCCSD calculations in CAS(28,22)
space, where external amplitudes were obtained from
DMRG calculation.

Figure 8 shows the convergence history of the IN iteration
accelerated by DIIS, NK, and NK combined with DIIS
(NKDIIS). For this example, the IN iteration appears to
converge very fast. Both the NK and NKDIIS are slightly
slower, but converges in 10 NK iterations.This example
shows that for systems with multireference features, it is
important to use an appropriate model that can treat the

multireference character of the molecule effectively. With
such a model, the CCSD nonlinear equation can become
easier to solve. Although NK may not offer too much
advantage in this case, it is still an effective solver for such
as model.

5.5. The G2/97 Dataset
In addition to testing the NK algorithm on the above
representative molecules, we performed a more extensive testing
of the algorithm on a much wider range of molecules randomly
selected from the G2/97 dataset (Curtiss et al., 1997). Among
130 systems we tested, NK performs better on 123 of them.
On average, NK uses 12% fewer function evaluations when
compared with DIIS. In the best case, NK uses 33% fewer
function evaluations. In the worst case, NK uses 40% more
function evaluations.

6. CONCLUSION

We presented a NK method for solving CC amplitude equations.
In such a method, the Newton correction equation is solved
by a Krylov subspace iterative method such as the GMRES
method. Preconditioners can be applied in the iterative
solver to accelerate convergence. We discussed the trade-
off between performing more inner (GMRES) iteration and
outer Newton iteration, and suggested an adaptive stopping
criterion for the inner iteration. We compared the NK
method with the widely used DIIS method and showed how
the two methods can be combined. We presented several
numerical examples to demonstrate the effectiveness and
robustness of the NK method not only for standard CCSD
calculations but also for tailed CCSD calculations where
the information for external correction is obtained from a
DMRG calculation. Although the results we presented in
this paper are on developments made in an older version
NWChem software, the NK has been implemented in the next
generation of NWChem software (NWChemEx) (Richard
et al., 2019) designed for exa-scale high-performance
computing platforms.
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The predominance of Kohn–Sham density functional theory (KS-DFT) for the theoretical

treatment of large experimentally relevant systems in molecular chemistry and materials

science relies primarily on the existence of efficient software implementations which

are capable of leveraging the latest advances in modern high-performance computing

(HPC). With recent trends in HPC leading toward increasing reliance on heterogeneous

accelerator-based architectures such as graphics processing units (GPU), existing

code bases must embrace these architectural advances to maintain the high levels

of performance that have come to be expected for these methods. In this work, we

purpose a three-level parallelism scheme for the distributed numerical integration of

the exchange-correlation (XC) potential in the Gaussian basis set discretization of the

Kohn–Sham equations on large computing clusters consisting of multiple GPUs per

compute node. In addition, we purpose and demonstrate the efficacy of the use of

batched kernels, including batched level-3 BLAS operations, in achieving high levels

of performance on the GPU. We demonstrate the performance and scalability of the

implementation of the purposed method in the NWChemEx software package by

comparing to the existing scalable CPU XC integration in NWChem.

Keywords: density functional theory, graphics processing unit, high-performance computing, parallel computing,

quantum chemistry

1. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) (Hohenberg and Kohn, 1964; Kohn and Sham,
1965) is unequivocally the computational workhorse of theoretical chemistry and materials
science. With the excellent balance of its computational cost to its ability to accurately predict
physical phenomena, KS-DFT is nearly without equal in the routine theoretical treatment of
large, experimentally relevant systems (Ratcliff et al., 2017; Wu et al., 2019). A primary factor
contributing to the popularity of KS-DFTmethods is the existence of highly optimized and scalable
software implementations capable of leveraging the latest advances in modern high-performance
computing (HPC). The existence of such software enables the treatment of increasingly larger
and more complicated systems as computing resources become large enough to accommodate
them. Historically, these optimizations have amounted to considering the underlying details of
homogeneous computing platforms such as shared and distributed memory multi-core central
processing unit (CPU) architectures to exploit memory hierarchies, distributed node topology
and interconnection, and computing features such as single-instruction multiple data (SIMD)
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instructions, fused multiply-add (FMA), etc. (Belling et al., 1999;
Brown et al., 2008; Lasinski et al., 2008; de Jong et al., 2010;
Bylaska et al., 2017; Jacquelin et al., 2017; Nguyen et al., 2017;
Petrone et al., 2018) However, as we approach the exascale
computing era, the emergence of more heterogeneous computing
architectures renders non-trivial the direct application of existing
algorithms and code bases to target these complex architectures.
As such, for KS-DFT to remain relevant in the age of exascale and
post-exascale computing, methods developers must be prepared
to embrace these emerging architectures to maintain the high
standard of computational performance which has come to
be expected.

In recent years, the trajectory of HPC has lead to an increasing
reliance on the use accelerators, such as graphics processing
units (GPU), to perform the majority of the floating point
operations (FLOPs) on new and emerging computing resources
(Kindratenko et al., 2009; Parnell et al., 2019). For a detailed
treatise on the details and challenges presented by these and
other emerging architectures and their use in conjunction
with electronic structure calculations, we refer to the work of
Gordon et al. (2020). In this work, we limit our discussion
to the optimization of KS-DFT methods on NVIDIA GPUs
(in particular the NVIDIA Tesla V100) using the Compute
Unified Device Architecture (CUDA) programming platform
(Cook, 2012).

Recently, there has been significant research effort afforded
to porting electronic structure software to the GPU (Gordon
et al., 2020). In the case of large-scale calculations, much
work has gone into the development of massively parallel GPU
implementations of methods based on plane wave (Maintz et al.,
2011; Wang et al., 2011; Jia et al., 2019), real space (Andrade
and Aspuru-Guzik, 2013; Hakala et al., 2013), finite element
(Das et al., 2019; Motamarri et al., 2020), and various other
discretizations (Genovese et al., 2009; van Schoot and Visscher,
2016; Yoshikawa et al., 2019; Huhn et al., 2020) of the Kohn–
Sham equations. In this work, we consider the Gaussian basis set
discretization of the Kohn–Sham equations (Pople et al., 1992),
which poses a number of challenges for GPU implementations.
The majority of these challenges revolve around the computation
of molecular integrals over Gaussian basis functions. Of the
required integrals, the electron repulsion integrals (ERIs) and the
exchange-correlation (XC) potential are among the most costly
and the most challenging to port to GPU architectures. Over
the years, there has been a considerable amount of research
devoted to porting implementations of Gaussian basis set KS-
DFT to the GPU (Yasuda, 2008; Brown et al., 2010; Titov
et al., 2013; Luehr et al., 2016; Kussmann and Ochsenfeld,
2017; Manathunga et al., 2020; Peters et al., 2020); however,
the vast majority of this work has been centered around the
evaluation and digestion of the ERIs in the construction of the
Fock matrix (Ufimtsev and Martinez, 2008, 2009a,b; Asadchev
et al., 2010; Miao and Merz, 2013; Kalinowski et al., 2017;
Kussmann and Ochsenfeld, 2017; Laqua et al., 2020). On the
other hand, the XC potential has received much less treatment
in the literature in this regard (Yasuda, 2008; Luehr et al., 2016;
Manathunga et al., 2020). This disparity is understandable due
to the fact that for large systems, the ERI-related contributions

to the Fock matrix are computationally dominant and the
most challenging to parallelize. However, with recent advances
in semi-numerical techniques for exact exchange, which have
shown great promise in early GPU implementations (Laqua
et al., 2020), ERI-dominated calculations are quickly becoming
computationally competitive with the evaluation of the XC
potential by current methods. Further, current accounts of GPU
implementations of the XC integration have been limited to the
devices which are accessible within a particular compute node.
To the best of the authors’ knowledge, there does not exist a GPU
accelerated distributed memory evaluation of the XC potential
using Gaussian basis sets as of this report. Thus, in this work,
we propose a three-level parallelism scheme for the scalable
distributed evaluation of the Gaussian basis XC potential on large
clusters of GPUs.

In general, there are a number of important features of GPU
architectures one must consider in the development of high-
performance software:

• GPU architectures exhibit orders of magnitude more
computational threads than CPU architectures, allowing
for the expression of massive concurrency within a single
GPU device.
• The memory space which is directly accessible to GPU devices

is much lower in capacity in comparison with their CPU
counterparts (O(16–32 GB) on the GPU in comparison to
upwards of O(1 TB) on the CPU).
• Memory access within device memory exhibits a much higher

bandwidth than CPU memory (O(900 GB/s) on the GPU in
comparison to O(20–50 GB/s) on the CPU).
• Data transfers between host and device memory spaces are

low bandwidth [O(80 GB/s) with advanced technologies such
as NVLink, O(35 GB/s) over PCIe], thus data transfers often
pose a non-trivial overhead in GPU applications which require
movement of large volumes of data.

A consequence of these features is that, despite the large number
of threads that are available to the GPU to perform computation,
data locality must be carefully tuned to exploit the low capacity
device memory as to allow for the expression of concurrency
but also to avoid high cost and inherently serial data transfers
between host and device. As such, those algorithms which are
able to express massive concurrency on local data without being
interrupted by synchronization points such as data transfers
and memory allocations are typically the best suited for GPU
application. A key aspect of the method proposed in this report is
the optimization of data movement within the XC integration as
to express massive concurrency using data that resides in device
memory without transfers between host and device.

Scientific applications often rely on the existence of highly
tuned linear algebra libraries (such as vendor implementations
of BLAS and LAPACK) to achieve high levels of performance
on contemporary and emerging architectures (Dongarra et al.,
1998). Over the years, many areas of matrix computation have
achieved significant performance improvements through the use
of GPU accelerators (Fatahalian et al., 2004; Kurzak et al., 2012;
Herault et al., 2019). However, unless the matrix computations
needed by a particular application are large enough as to fully
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exploit the resources of the device, it is unlikely that single
matrix operation such as matrix–matrix multiplication will be
able to achieve high computational occupancy on the device.
An important achievement in high-performance numerical
linear algebra has been the advent of highly tuned batched
implementations of commonly encountered matrix operations,
such as matrix–matrix multiplication, triangular factorization,
etc. (Haidar et al., 2015; Abdelfattah et al., 2016a). Such batched
implementations are provided in both vendor tuned (such as
cuBLAS and cuSOLVER provided by NVIDIA) and open source
(such as MAGMA, Nath et al., 2010; Tomov et al., 2010;
Abdelfattah et al., 2016b) GPU accelerated linear algebra libraries.
In these batched implementations, efficiency is achieved by
dramatically increasing the throughput of the matrix operations
via concurrent execution within a single device. Thus, if an
application requires the manipulation of many small matrices
in a manner that allows for concurrent execution (such as KS-
DFT), large performance improvements can be made by utilizing
these batched implementations (see e.g., Das et al., 2019). GPU-
accelerated BLAS has previously been used in the context of XC
computations (Yasuda, 2008). In this work, we examine the use of
batched BLAS to further accelerate these operations to improve
overall time-to-solution.

This work will be organized as follows. Sections 2.1 and 2.2
will briefly review the pertinent theory and high-level algorithmic
constructs related to the XC integration. Section 2.3 will then
describe the proposed method for the scalable, three-level
parallelism scheme for the distributed XC integration on clusters
of GPUs. Section 3 will demonstrate the performance and
scalability of the purposed method in comparison to an existing
high-performance CPU implementation using a wide range of
molecules, basis sets, and quadrature sizes. Finally, section 4
will conclude this work and offer insight into the impact of the
purposed method and briefly discuss future research directions.

2. METHODS

2.1. Kohn–Sham Density Functional Theory
In KS-DFT, the total electronic energy within a particular
density functional approximation (DFA) takes the form
(Parr and Yang, 1994)

E
tot = Ts + Vne + J − cxK+ E

xc, (1)

where Ts and Vne are the (non-interacting) kinetic and electron-
nuclear attraction energies, and J and K are the classical
Coulomb and exact exchange energies, respectively. cx ∈ R is
a parameter that scales the contribution of exact-exchange to the
electronic energy. cx = 0 is used for “pure” DFAs, whereas DFAs
that use cx 6= 0 are referred to as “hybrid” DFAs (Becke, 1993).
Without loss of generality in the following, we will take cx = 0,
though we note that the algorithms presented in the following
sections may also be extended to hybrid methods without
modification. Exc is the exchange-correlation (XC) energy which
is taken to be a functional of the electron density ρ :R

3 → R.
In this work, we restrict our discussion to spin-restricted DFAs
within the generalized gradient approximation (GGA) (Perdew,

1986; Perdew and Yue, 1986), i.e. Exc is approximated to only
depend on ρ and its gradient ∇ρ :R

3 → R
3. We note for

completeness that the information presented in this and the
following sections may be extended to both spin-unrestricted
and spin-generalized KS-DFT methods as well as more advanced
DFAs (such as the meta-GGA) with the addition of only a few
intermediates (Egidi et al., 2017; Petrone et al., 2018). As ∇ρ

is a vector valued quantity, and thus dependent on reference
frame quantities such as molecular orientation, it is canonical to
express Exc as

E
xc =

∫

R3
ε({U(r)})ρ(r)d3r, (2)

where ε is an energy density that depends on a set of so-called
“U” -variables, {U(r)}, which are independent of reference frame.
Within the GGA, the canonical choice for these variables are
{U(r)} = {ρ(r), γ (r)} with γ (r) = ‖∇ρ(r)‖.

By expanding the density in a finite set of basis
functions, S = {φµ(r)}

Nb
µ=1,

ρ(r) =
∑

µν

Pµνφµ(r)φν(r), (3)

where P is the density matrix, the Kohn–Sham Fock matrix takes
the form (Parr and Yang, 1994)

F = h+ J+ Vxc. (4)

h is the basis representation of the density-independent core
Hamiltonian (e.g., the sum of kinetic energy and external
potential operators), and J is the basis representation of the
classical Coulomb operator. Note that we have dropped the exact
exchange term in Equation (1) as we have taken cx = 0.Vxc is the
XC potential that may be expressed as (Yasuda, 2008; Burow and
Sierka, 2011; Petrone et al., 2018)

Vxc
µν =

∫

R3
φµ(r)Zν(r)+ Zµ(r)φν(r)d

3r, (5)

where

Zµ(r) =
1

2

∂ε({U(r)})

∂ρ
φµ(r)+ 2

∂ε({U(r)})

∂γ
∇ρ(r) · ∇φµ(r). (6)

Note that the partial derivatives of ε are to be evaluated with the
U-variables calculated at argument of Zµ.

Equations (4) to (6) are general to any (real-valued) basis
set expansion. In this work, we consider atomically centered
contracted Gaussian basis functions of the form

φµ(r) = (x−Rx)
l(y−Ry)

m(z−Rz)
n

n
µ
ξ∑

ξ=1

d
µ
ξ exp

(
−α

µ
ξ (r− Rµ)

2
)
,

(7)
where Rµ = {Rx,Ry,Rz}, n

µ
ξ is the contraction depth, dµ

ξ is a
contraction coefficient, and L = l + m + n is the total angular
momentum. Each term in the sum is referred to as a primitive
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Gaussian function. Contracted basis functions with the same L,
{d

µ
ξ }, {α

µ
ξ }, and Rµ will be referred to as a basis shell. Functions

of the form Equation (7) are referred to as Cartesian Gaussian
functions, and each Cartesian shell with angular momentum L
consists of L(L + 1) functions. For L > 1, there is often a
linear dependency among the functions within each Cartesian
shell, which may be addressed by transforming these shells
to a set of spherical Gaussian functions (Schlegel and Frisch,
1995). Each spherical Gaussian shell consists of 2L + 1 linearly
independent functions. Not all Gaussian basis sets that consist of
functions with L > 1 require this transformation to be linearly
independent, and we will note when such a transformation has
taken place.

2.2. Numerical Integration of Molecular
Integrands
Even for the simplest forms of ε, neither Equation (2) nor
Equation (5) admits analytic expressions, thus these integrations
must be performed numerically. For molecular integrands, i.e.,
integrands with non-trivial behavior in the vicinity of atomic
nuclei in polyatomic systems, a particularly attractive approach
is to perform the numerical integration as a sum over weighted
atomic integrands (Becke, 1988). For a molecular integrand
f :R3 → R, we may decompose its integral over R3 as

∫

R3
f (r) d3r =

NA∑

A=1

IA[f ], IA[f ] =
∫

R3
pA(r)f (r) db

3r, (8)

where NA is the number of atoms, and pA :R
3 → R is an

atomic partition function that obeys
∑

A pA(r) = 1, ∀r ∈ R
3.

Each atomic integrand IA[f ] may then be approximated by a
quadrature rule

IA[f ] ≈
∑

i∈QA

wA
i f (r

A
i ), wA

i = pA(rAi )w
q
i (9)

where QA = {(wA
i , r

A
i )}

NA
g

i=1 is a set of quadrature points indexed
by i centered around the A-th nucleus with atomically scaled
quadrature weights wA

i . {w
q
i } is the set of unmodified weights

associated with the base quadrature around a particular nucleus.
For convenience in the following, we define the total quadrature

Q =
⋃

A

QA = {(wi, ri)}
Ng

i=1,

where Ng =
∑

A NA
g is the total number of grid points needed to

perform the numerical integration over the molecular integrand.
Note that wi is assumed to have the proper atomic scaling
per Equation (9).

There are many possible choices for both the atomic
partitioning scheme (Becke, 1988; Stratmann et al., 1996; Laqua
et al., 2018; Aprà et al., 2020) and base quadratures around each
atomic center (Becke, 1988; Murray et al., 1993; Treutler and
Ahlrichs, 1995; Mura and Knowles, 1996; Gill and Chien, 2003;
Aprà et al., 2020). In this work, we will use the following:

• For the atomic partition function, we will use the scheme
proposed by of Stratmann, Scuseria, and Frisch (SSF)
(Stratmann et al., 1996).
• For the base atomic quadrature, we will use a spherical product

grid consisting of the Mura-Knowles (MK) quadrature (Mura
andKnowles, 1996) for the radial integration and the Lebedev–
Laikov quadrature (Lebedev, 1976) for the angular integration.

These schemes are chosen in part for the simplicity and
robustness, as well as their standard use in industry KS-DFT
software. Further, while it is standard practice to perform angular
grid pruning to reduce the number of grid points in these
product quadratures (Gill et al., 1993; Chien andGill, 2006; Laqua
et al., 2018), we perform no such procedure here. We note that
the methodological details presented in this work are largely
independent of such choices.

It is well-known that a naive application of Equations (8)
and (9) to evaluate Vxc and Exc is very inefficient (Stratmann
et al., 1996). This is due to the fact that while Gaussian functions
of the form Equation (7) do not admit compact support, their
exponential character yields numerically negligible contributions
when evaluated far from their center. As such, Gaussians of this
form may be approximated to have compact support on a sphere
centered at their Rµ with cutoff radius (Burow and Sierka, 2011)

rcutµ = max
ξ

√√√√ 1

α
µ
ξ

(
lnα

µ
ξ

2
− ln η

)
, (10)

where η is a tolerance for which |φµ| < η for all points
outside of the sphere. In this work, we have chosen η = 10−10.
Remark that the cutoff radius only depends on the exponential
coefficients, and thus may be calculated at the level of basis shell
rather than individual functions for L > 0. Given this cutoff
criteria, one may form a list of basis shells that are non-negligible
for each quadrature point. Rather than check each individual
quadrature points against rcut for each basis shell’s cutoff radius,
it is canonical to group quadrature points that are spatially close
into batches and perform the coarse-grained screening for non-
negligible basis shells at the batch level rather than the quadrature
points themselves. This procedure is known as micro-batching
(Stratmann et al., 1996) and is one of the primary mechanisms
by which linear scaling (with respect to system size) is achieved
in the evaluation of the XC potential. Given quadrature micro-
batches with a sufficiently small spatial extent, basis screening
via Equation (10) produces an approximately constant number
of basis functions per quadrature batch, thus leading to an
overall scaling that depends only on the number of quadrature
points. There are several ways to obtain the quadrature batches
(Stratmann et al., 1996; Burow and Sierka, 2011; Manathunga
et al., 2020). In this work, we recursively subdivide the domain
spanned by the quadrature points into cuboids until the number
of quadrature points within each cuboid is below a certain
threshold. In this work, we have chosen this threshold to be 512
quadrature points. In practice, this partitioning scheme produces
batches similar to the octree method of Manathunga et al. (2020).
However, rather than bisecting every domain into octants,
cuboids that contain an atomic center are partitioned into 27
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FIGURE 1 | 2-D cross-section of the grid batching scheme used in this work.

The large black dot represents an atomic center and the small red dots

represent quadrature points for spherical integration. Thick solid lines

represent the initial cuboid partition, and dashed lines represent the next

partition level. Atomic centered cuboids are partitioned into 27 cubical

domains while off-center cuboids are partitioned into octants.

cuboids as shown in Figure 1. Our experiments show that this
procedure produces fewer batches with the same non-negligible
shell list, which in turn improves the performance of the load
balancing scheme discussed later in this section. However, much
like the choice of atomic quadrature and partition functions, the
choice of batching scheme does not affect the methodological
details presented in this work just as long as the batches produced
are able to produce sufficiently short lists of non-negligible basis
shells. For a total quadrature Q, we denote the set of quadrature
batches produced by this procedure as B = {Bj} such that

Q =
⋃

Bj∈B

Bj, s.t. Bj ∩ Bk = ∅, for j 6= k. (11)

In the case where the batches are defined by non-overlapping
cuboids surrounding an atomic center, basis shell screening may
be accomplished by calculating the point of closest approach
between the cuboid defining the batch and the spheres defined
by center Rµ and radius rcutµ (Arvo, 2013). A description of this
procedure is given in Algorithm 1. For Bj ∈ B, we define the
list of non-negligible basis functions for Bj as Sj, the number of

non-negligible basis functions as N
j

b
= |Sj|, and the number of

quadrature points in the batch as N
j
g = |Bj|.

Another advantage of quadrature batching is the ability to
cast the evaluation of Vxc and Exc in terms of efficient level-1
BLAS operations such as dot products (DOT) and level-3 BLAS
operations such as matrix–matrix multiplication (GEMM) and
symmetric rank-2K updates (SYR2K). For a particular batch Bj,
we may define a batch collocation matrix (8j) and a local density
matrix (Pj) as

8
j
µi =

{
φµ(ri), for i ∈ Bj and µ ∈ Sj

0, otherwise.
(12a)

Algorithm 1: Basis shell screening via cuboid–sphere
intersection.

Input : Sphere center Rµ = {Rx,Ry,Rz}, sphere radius
rcutµ , minimum (maximum) vertex defining the
cuboid V = {Vx,Vy,Vz} (W = {Wx,Wy,Wz}).

Output: True if the cuboid and sphere spatially intersect,
False otherwise.

d←
(
rcutµ

)2

for p ∈ {x, y, z} do
if Rp < Vp then d← d − (Rp − Vp)2

else if Rp > Wp then d← d − (Rp −Wo)2

end

return (d < 0)

P
j
µν =

{
Pµν , for µ, ν ∈ Sj

0, otherwise.
(12b)

In the following, we will refer to the extent to which 8
j and Pj

are numerically zero due to basis function screening as their local
sparsity. This yields the following expressions for the density and
its gradient evaluated on the quadrature points within Bj,

ρ
j
i =

∑

µ∈Sj

8
j
µiX

j
µi, (DOT) (13)

∇ρ
j
i = 2

∑

µ∈Sj

∇8
j
µiX

j
µi, (DOT) (14)

Xj = Pj8j. (GEMM) (15)

It should be understood from the context that the free
index i is restricted to quadrature points in Bj. Given these
expressions, we may now express the XC-related quantities as
(Petrone et al., 2018)

E
xc =

∑

Bj∈B

∑

i∈Bj

ε
j
iρ

j
i , (DOT) (16)

Vxc
µν =

∑

Bj∈B

V
j
µν , (17)

Vj = Zj
8

j,T +8
jZj,T , (SYR2K) (18)

with

ε
j
i = wiε({U(ri)}),

∂ε
j
i

∂ρ
= wi

∂ε({U(ri)})

∂ρ

∂ε
j
i

∂γ
= wi

∂ε({U(ri)})

∂γ
, (19)

Z
j
µi =

1

2

∂ε
j
i

∂ρ
8

j
µi + 2

∂ε
j
i

∂γ

(
∇ρ

j
i · ∇8

j
µi

)
. (20)

For brevity in the following, we define for i ∈ Bj

ρ
j =

{
ρ
j
i

}
, ∇ρ

j =

{
∇ρ

j
i

}
, ε

j =

{
ε
j
i

}
,
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FIGURE 2 | Batch matrix compression scheme for operator basis

representations relative to non-negligible function indices. Colored tiles

represent matrix elements that are to be included in the compressed matrix,

and white tiles represent matrix elements that are to be neglected. Note that

these do not necessarily correspond to zeros/non-zeros in the original matrix.

ε
j
ρ =

{
∂ε

j
i

∂ρ

}
, ε

j
γ =

{
∂ε

j
i

∂γ

}
. (21)

As written, the GEMM and SYR2K given in Equations (15)
and (18) are block sparse level-3 BLAS operations, i.e. BLAS
operations involving matrices which contain many blocks which
are numerically zero. To avoid performing unnecessary FLOPs
in the evaluation of these intermediates, it is possible to store
the batch local matrices in Equations (12b), (15), and (18) in
a compressed format which stores the blocks corresponding to
non-negligible basis shells contiguously and explicitly removes
the zeros from related computation (Stratmann et al., 1996).
A pictorial representation of this matrix compression for the
density matrix is given in Figure 2. We note for completeness
that the forms of Equations (15) and (18) do not change under
this compression, but the sizes of the free indices (as well as
the contracted index in the case of Equation 15) are reduced.
To avoid a full decompression of the batched Vj intermediates,
Equation (17) may be implemented by simply incrementing
the blocks of the full dimensional Vxc by the corresponding
blocks of Vj for each j. Note that compression of 8

j, Xj, and
Zj need not be explicit in that they may be evaluated directly in
compressed form.

2.3. Distributed Parallel Implementation on
Clusters of GPU Accelerators
In this section, we propose a three-level parallelism scheme
for the distributed evaluation of Vxc and Exc. A schematic
representation of this procedure is given in Algorithm 2. For
simplicity in the following discussion, we will assume MPI
message passing for distributed computation. Parallelism will be
expressed at the following levels:

1. Concurrent evaluation of the quadrature batches between
independent computing ranks;

2. Concurrent evaluation of the quadrature batches assigned to a
particular computing rank;

3. Concurrency within the evaluation of a particular quadrature
batch to evaluate terms such as the atomically scaled

quadrature weights, batch collocation and local density
matrices, the level-3 BLAS operations of Equations (15)
and (18), etc.

In the context of the batching scheme discussed in
section 2.2, ensuring proper local sparsity in the batch
local Pj and 8

j typically generates a large number of
relatively small batches that must be evaluated. As the
work required to evaluate a single Bj is typically small,
distributing its evaluation would be inefficient. Given
that P and Vxc can be replicated in the memory spaces
accessible to each the compute rank, the evaluation of each
quadrature batch requires no communication. Thus, the
fully distributed numerical integration of the XC quantities
may be performed with only a single distributed reduction
(MPI_Reduce or MPI_Allreduce) following completely
independent local computation. We note for posterity
that this replication need not constitute a unique copy
of these matrices for each compute rank, only that these
matrices are accessible from each rank, e.g. in the case of
partitioned global address space (PGAS) distributed memory
models such as the one provided by the GlobalArrays
library, it would be sufficient to keep a single copy of
these matrices within the memory accessible to a single compute
node. However, in this work, we do not explore the use of PGAS
memory models, thus the replication will be performed at the
rank level.

2.3.1. Distributed Load Balance in the XC Integration
Despite this embarrassingly parallel integration procedure, care
must be taken to ensure load balance among the independent
ranks as the variance in the computational work required
between different batches is often quite large due to differences
in local sparsity and batch sizes. The simplest choice to
distribute this work would be to distribute the batches at the
atomic quadrature level, i.e. each rank receives the quadrature
batches generated from a particular atomic quadrature. However,
this scheme can lead to load imbalance as the local sparsity
of the atoms far from the center of mass can often be
much larger than those that are surrounded by other atoms.
In this work, we choose to distribute the work at the
individual batch level by approximating the FLOPs incurred by
each batch,

Wj = N
j
g

(
N2
A + 9N

j

b
+ 2(N

j

b
)2 + 3

)
+ (N

j

b
)2. (22)

Each term in Equation (22) accounts for a rough estimate of
the number of operations (FLOPs or otherwise) required for
specific algorithmic kernels in the digestion of Bj for the XC
integration. The first four terms accounts for (1) the atomic
weight partitioning, (2) Equations 13, 14, and 20 and the
collocation matrix (and its gradient), (3) the level-3 BLAS
operations in Equations 15 and 18, and (4) Equations 16 and
19. The final term in Equation (22) accounts for the packing
of Equation (12b) and the increment of Equation (17). Note
that Wj does not represent the true number of FLOPs required
to evaluate intermediates associated with Bj, e.g., we do not
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Algorithm 2: Parallelism scheme for the evaluation of the XC potential and XC energy.

Input : Density matrix P, basis functions S and atomic centersA = {RA}.

Output: XC potential Vxc, XC energy Exc.

2.1 Blocal ← Form balanced local batches according to Algorithm 3. (host)

2.2 Perform device allocation. (host/device)

2.3 Send constant data (e.g., P, S , andA) to the device. (host/device)

2.4 Vlocal ← 0; Elocal ← 0. (device)

do

2.5 Bdevice ← Determine subset of Blocal to
saturate device memory (host)

2.6 Blocal ← Blocal \ Bdevice (host)

2.7 Pack Bdevice contiguously on host and send to device. (host/device)

2.8 Update Vlocal and Elocal by Bdevice according to Algorithm 4. (device)

while Blocal 6= ∅;

2.9 Retrieve Vlocal and Elocal from device (host/device)

2.10 (All) reduce Exc ← Elocal (host)

2.11 (All) reduce Vxc ← Vlocal (host)

return (Vxc, Exc)

consider FLOP estimates for evaluation of the exponential in
Equation (7), nor screening in the evaluation of the atomic weight
scaling, etc. However, Wj has empirically sufficed to produce
balanced distributed computation for all problems considered. A
schematic for the load balance scheme used in this work is given
in Algorithm 3. There are two important remarks that should
be understood from Algorithm 3. The first is that it requires no
communication between independent ranks, i.e., the load balance
is replicated on each processor. The second is that once the set
of local batches Blocal has been determined for each processor,
batches with the same Sj are merged into a single batch (Line
3.11). The rationale behind this step is to avoid polluting the
device memory with redundant copies of Pj and Vj.

While Algorithm 3 could be implemented on the GPU,
as has been discussed in the context of batch generation
in related work (Manathunga et al., 2020), we do not
explore such implementations in this work. To improve
the performance of the CPU implementation of Algorithm 3,
the loop around the atomic quadrature batches may be
parallelized using shared memory parallelism schemes
such as OpenMP. Further, as has been suggested by others
(Yasuda, 2008), the cost of grid generation may be amortized
in calculations involving many Fock matrix formations
with the same nuclear geometry by forming it once for
the formation of the first Fock matrix and reusing it
for subsequent formations. As will be demonstrated in
section 3, Algorithm 3 only becomes a computational
bottleneck in the strong scaling limit for medium-to-large
molecular systems.

2.3.2. Local XC Integration on the GPU
Up to this point, the discussed work distribution scheme has been
largely independent of whether or not the evaluation of local
quadrature batches is to be performed on the host or the device.
In this work, we only consider the case where a single MPI rank
is driving a single device (one-to-one), i.e. we do not consider
device affinities of multiple MPI ranks driving a single device
(many-to-one) nor a single MPI rank driving multiple devices
(one-to-many). The method proposed could be extended to one-
to-many device affinities through an additional invocation of
Algorithm 3 to produce balanced quadrature batches which are to
be executed on a particular device. However, in the strong scaling
limit, it would be unlikely that this affinity would be resource
efficient due to a decrease in work assigned to any particular
compute rank.

2.3.2.1. Architecture of NVIDIA Tesla V100
The GPU targeted in this work is the NVIDIA Tesla V100-
SXM2 using the CUDA programming environment. However,
the methodological developments described in this work may
be extended to any GPU device given a software stack which
provides batched BLAS functionality. The V100 is equipped
with 16 GB high-bandwidth global memory and 80 streaming
multiprocessors (SM). Within the CUDA model, independent
tasks are launched in the form of kernels and concurrency on the
device is expressed in a four-level parallelism scheme:

• At the lowest level is the GPU thread that executes instructions
issued by the SM.
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Algorithm 3: Quadrature batch load balance for distributed
XC integration.

Input : Basis functions S and atomic centersA = {RA}.

Output: Local quadrature batches Blocal.

3.1 myRank← Current MPI rank.

3.2 Compute {rcutµ } via Equation (10) for φµ ∈ S .

3.3 W ← Allocate an array of size of the number MPI ranks.

3.4 W ← 0; Blocal ← ∅

for RA ∈ A do

3.5 QA ← Form spherical quadrature around RA.

3.6 BA ← Generate batches fromQA.

for Bj ∈ BA do

3.7 Sj ← Select from S the non-negligible basis functions
via Algorithm 1 with the cuboid enclosing Bj and the
spheres defined by {Rµ} and {rcutµ }.

3.8 Wj ← Compute work estimate for Bj via
Equation (22).

3.9 I← Find rank with minimum workload fromW .

3.10 WI ←WI +Wj.

if I = myRank then Blocal ← Blocal ∪ {Bj}.
end

end

3.11 Blocal ←Merge Bj ∈ Blocal with the same Sj.

return Blocal

• In contrast to CPU architectures, where all threads may
execute more or less independently, the overhead of
instruction issuance is mitigated on GPU devices in part by
issuing a single instruction to multiple threads which execute
in lock step. This is known as single-instruction multiple
thread (SIMT) concurrency, and the collection of threads
which execute in this manner is known as awarp in the CUDA
vernacular. On the V100, a warp consists of 32 threads.
• Warps are then collected into groups called thread blocks,

which may share data and be mutually synchronized. Thread
blocks are typically comprised of 256–1024 threads which
execute independently at the warp level.
• Thread blocks are further grouped into process grids which are

specified at the time that the kernel is launched. A kernel has
completed once all the thread blocks in its specified process
grid have finished executing.

For a kernel launched with a particular process grid, thread
blocks are scheduled and executed concurrently among the
different SMs. Ordering of kernel execution on CUDA devices
is achieved by a software construct known as a stream: kernels
launched on the same stream are guaranteed to be executed in

the order with which they were specified. For kernels which
are designed not to achieve full occupancy within the SM,
it is possible to overlap independent kernel invocations on
separate streams. In this work, however, the kernels developed
are designed to achieve high occupancy within each SM, thus the
potential for overlap of independent kernels is minimal. Another
consideration one must account for within the SIMT execution
model is the concept of warp divergence, i.e. kernels that execute
different instructions within a particular warp. Due to the SIMT
execution model, instructions must be executed at the warp level,
thus if branch logic causes the warp to diverge into N unique
instructions, the execution time of this kernel will be roughly
the sum of the execution times for the individual instructions,
thus reducing the parallel efficiency of the particular kernel. Such
divergence can lead to significant performance degradation. As
such, one must carefully design GPU kernels such that unique
instructions that are desired to execute concurrently are executed
along (or near) warp boundaries to avoid such degradation.

2.3.2.2. Data Locality
The algorithm presented in this work aims to maximize
the potential for concurrency in the evaluation of the local
quadrature batches by minimizing synchronization points, such
as data transfers and memory allocations, which hinder the
ability to express concurrency. As the computational work
required to evaluate any particular quadrature batch is small,
concurrency is achieved by batching the evaluation of the
quadrature batches on the GPU. This approach has been inspired
by GPU accelerated batched BLAS operations, which achieve
high throughput by batching the evaluation of small matrix
operations into a single kernel launch (Haidar et al., 2015;
Abdelfattah et al., 2016a). Given that the data associated with
a particular Bj must reside in device memory for it to be
processed (quadrature points and weights, Sj, 8

j, Pj, Zj, etc.),
the approach taken in this work is to saturate the device memory
with as many quadrature batches as possible as to allow for their
concurrent evaluation. Note that this approach does not change
the amount of data that must be transferred between host and
device throughout the XC integration, but it does reduce the
frequency and improve the performance of these data transfers
by saturating the bandwidth between host and device while
allowing for the expression of more concurrency on the device
between data transfers. In the case when all of the quadrature
batches are unable to simultaneously occupy the device memory,
subsets of the local quadrature batches which saturate device
memory are chosen to be executed concurrently until all batches
have been processed. A depiction of this procedure is given
in Lines 2.5 to 2.8. The performance of these data transfers
may be further improved in Line 2.7 by packing the batch
data contiguously into page-locked memory (as is produced
by cudaMallocHost in the CUDA SDK) on the host. In
addition, rather than perform numerous memory allocations
and deallocations between processing subsets of local quadrature
batches, the cost of device memory allocation may be amortized
by preallocating a large fraction of available device memory at
the beginning of the XC integration and manually managing
memory allocation throughout the calculation (Line 2.2). Note
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that a vast majority of the data associated with a particular Bj

need not be referenced on the host nor transferred between host
and device. In essence, the only batch-specific data that need be
transferred between host and device for a particular Bj are its
quadrature points and weights, the information pertaining to the
atomic center which generated that batch (for the evaluation of
the atomic partition function), and the information describing
Sj. All other data may be allocated and manipulated directly on
the device.

In addition to batch-specific data that must reside in device
memory, there are a number of other quantities that are unrelated
to a particular batch that are useful to store in device memory
to avoid host-device transfers and to exploit the high-bandwidth
memory, which is common on contemporary devices. These
quantities include P, S , and things such as the atomic positions,
inter-nuclear distances, etc. For example, in cases where P can
reside in memory, the packing of batch local Pj may be made
very efficient by limiting data transfers to be internal to the
device memory (i.e. device memory copies). In addition, it is also
advantageous to store local contributions to Vxc and Exc on the
device as to avoid communication of intermediate data between
the evaluation of batch subsets on the device. We note that even
for the largest problem considered in this work [1,231 atoms,
Nb = O(10,000)], both Vxc and P may reside simultaneously
in device memory while leaving enough additional memory
for batch-specific data as to allow for enough concurrency to
be resource efficient on the device. For hypothetical problems
for which this is not possible, the packing of Pj and the
increment of Vj can be performed on the host at the cost of
significant performance degradation. We do not explore such
implementations here.

2.3.2.3. Batch Execution of Quadrature Batches on the GPU
Given a set of quadrature batches that saturate device memory,
Algorithm 4 depicts a general outline of the concurrency
pattern for their simultaneous evaluation on a single device.
Algorithm 4 exhibits a number of important features that
warrant brief discussion. The first is the utilization of batched
level-3 BLAS primitives for the concurrent evaluation of
Equations (15) and (18) for all batches that reside in device
memory (Algorithm 4). An important remark related to this
batched BLAS invocation is that the batch local matrices are
often not of uniform dimension for all batches in device memory.
As such, they may not be implemented by uniform batched
BLAS implementations, such as those provided by cuBLAS.
In this work, we have used the variable-dimension batched
(or “vbatched”) GEMM (VB-GEMM) and SYR2K (VB-SYR2K)
implementations from the MAGMA (Nath et al., 2010; Tomov
et al., 2010; Abdelfattah et al., 2016b) library to perform these
batched evaluations. Another important feature of Algorithm 4 is
that, while the order of operations within the various parallel for
loops are indicative of the order with which the various tasks are
executed at a high level, each of these tasks represent individual
kernels for which concurrency between the separate Bj’s occurs at
the thread block level. That is to say that each kernel invocation
performs the parallel for loop as a batched invocation for each
task individually. As has been discussed in similar work (Laqua

Algorithm 4: Concurrent evaluation of quadrature batches
on a GPU device.

Input : Quadrature batches B, density matrix P, XC
potential Vxc, and XC energy Exc all in device
memory.

Output: Vxc and Exc updated by quadrature contributions
from B

parallel for Bj ∈ B do

4.1 Update quadrature weights by atomic partition function.

4.2 Pj ← Compress batch local density matrix from P.

4.3 (8j,∇8
j)← Evaluate compressed batch local

collocation matrix and its gradient given Sj.

end

4.4 {Xj} ← Concurrent evaluation of Equation (15) for all 8j

and Pj via VB-GEMM.

parallel for Bj ∈ B do

4.5 (ρj,∇ρ
j)← Evaluate ρ and ∇ρ via Equations (13)

and (14).

4.6 (εj, ε
j
ρ , ε

j
γ )← Evaluate XC functional and its derivatives

according to Equation (19).

4.7 Update Exc according to Equation (16).

4.8 Zj ← Equation (20).

end

4.9 {Vj} ← Concurrent evaluation of Equation (18) for all 8j

and Zj via VB-SYR2K.

parallel for Bj ∈ B do

4.10 Update Vxc by Vj via Equation (17).

end

et al., 2020), these operations could also be scheduled on different
streams to achieve concurrency in batch execution. We do not
explore such implementations in this work. Finally, much like
the batched BLAS invocations, which are designed to express
concurrency both within a matrix operation and between matrix
operations themselves, each kernel invocation for the XC-specific
tasks in Algorithm 4 is designed to express concurrency within
each task as well. Each batch-local task is designed to occupy a
subset of the process grid while evaluation of each batch local
task is performed independently on separate subsets within the
same kernel launch. In practice, this may implemented using
multi-dimensional kernel launches within the CUDA framework.

While GPU-accelerated BLAS functionality may be provided
by optimized third-party libraries, as of this work there does
not exist standard GPU implementations of the remainder of
the operations required for the XC integration. As such, they
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must be implemented and optimized by hand. The details of
such implementations are outside the scope of this work as they
are largely dependent on the data structures used in a particular
software. However, there are a few important details related
to the algorithmic choices used in this work, which warrant
brief discussion. In the context of the evaluation of 8

j on the
device, we adopt a simple strategy that assigns the evaluation of
a single contracted basis shell at a particular point to a single
thread, i.e., we do no express concurrency in the evaluation of
the exponential factors of the primitive Gaussians. Care is taken
in the implementation presented in this work to minimize the
chance of warp divergence by assigning evaluations of the same
basis shell at various quadrature points to the same warp (i.e., to
minimize the frequency of divergence in the sum of Equation 7
with functions of differing nµ

ξ ). We will demonstrate the efficacy
of this simple strategy in section 3.

A major difference in the work presented here relative
to existing methods for GPU XC integration (Yasuda, 2008;
Manathunga et al., 2020) is the strategy for the evaluation of ǫ

j

and its functional derivatives on the device. On the CPU, there
are several standard libraries, such as Libxc (Lehtola et al.,
2018) and XCFun (Ekström, 2020), which implement a vast
number of XC functionals that are commonly used in KS-DFT
calculations. Some work (Manathunga et al., 2020) has been
dedicated to porting all or portions of these libraries to the GPU,
including an initial implementation of porting Libxc to CUDA
in the development version of the library itself. However, there
does not exist a mature, high-performance GPU interface for
these libraries at this time. To ensure the highest performance
possible, the approach taken in this work has been to develop an
open-source library, ExchCXX (Williams-Young, 2020), which
provides the necessary functionality. ExchCXX is a modern
C++ library that implements a commonly used subset of XC
functionals for evaluation on the host or device though a simple,
common API. We note that the numerical expressions for the
XC functionals implemented in ExchCXX have been taken
directly from Libxc and have been demonstrated to produce
numerically indistinguishable results.

We note for posterity that, in previous work (Yasuda, 2008),
the use of single precision and mixed precision arithmetic
has been shown to further improve the performance of
GPU-accelerated XC integration. However, as the performance
gap between single and double precision arithmetic on GPU
hardware has been closing in recent years (Cook, 2012),
all calculations performed in this work use strictly double-
precision arithmetic.

3. RESULTS

In essence, the method proposed and implemented in this
work (Algorithm 2) is composed of three computationally
dominant phases:

1. A load balancing phase which is replicated on all MPI
ranks (Algorithm 3);

2. A local integration phase which is executed on the
device (Algorithm 4);

TABLE 1 | Molecule sizes and basis dimensions.

Molecule NA Nb/6-31G(d) Nb/cc-pVDZ

Taxol 110 1,013 1,099

Valinomycin 168 1,350 1,542

Olestra 453 3,181 3,840

Ubiquitin 1,231 10,292 11,577

TABLE 2 | Atomic quadrature sizes.

Grid Nang Nrad NA
g

FG 302 75 22,650

UFG 590 99 58,410

SFG 974 175 170,450

3. A reduction phase that combines the locally computed
XC quantities in distributed memory to produce the final
integration results.

In this section, we examine various performance characteristics
of these phases as implemented in the open-source NWChemEx
software package (Kowalski et al., 2020). In addition, we compare
the performance and scaling of this implementation to that of
an analogous scalable CPU implementation in the open-source
NWChem software package (Aprà et al., 2020). We have chosen
to examine the performance of the purposed method as applied
to 4 molecules: Taxol, Valinomycin, Olestra, and Ubiquitin; and
2 basis sets: 6-31G(d) (Ditchfield et al., 1971; Hehre et al., 1972;
Hariharan and Pople, 1973; Francl et al., 1982; Gordon et al.,
1982) and cc-pVDZ (Dunning, 1989;Woon and Dunning, 1993),
to provide a performance characterization for systems with a
wide range of size, spacial extent, and basis dimension. The
geometries and references for this structures are included in
the Supplementary Material. All calculations were performed
using the PBE GGA XC functional (Perdew et al., 1996).
Calculations involving the 6-31G(d) basis set were performed
using Cartesian Gaussian functions, while those involving cc-
pVDZ were performed using spherical Gaussian functions. A
list of data relevant to the performance of calculations involving
these systems can be found in Table 1. In addition, we have
examined the use of 3 commonly encountered atomic quadrature
sizes: the fine (FG), ultra-fine (UFG), and super-fine (SFG) grids,
as described in Table 2.

All calculations have been performed on the Summit
supercomputer at the Oak Ridge Leadership Computing Facility
(OLCF). Each Summit node consists of 2 IBM POWER9 CPUs
(2x21 @ 3.8 GHz) and 6 NVIDIA Tesla V100 GPUs. Further,
the Summit supercomputer leverages an NVLINK host-device
interconnect that drastically improves the bandwidth of data
transfers in this work. To enable a fair comparison between
NWChem and NWChemEx, each Summit node has been
subdivided into 6 equally sized “resource sets” consisting of 7
CPU cores and 1 GPU. For calculations involving NWChemEx,
concurrency in the CPU execution will be performed in shared
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memory to adhere to the one-to-one CPU-to-GPU affinity
previously discussed, i.e., 1 MPI rank with 7 shared memory
threads driving a single GPU. Note that CPU parallelism
is only utilized in the generation of the local quadrature
batches as discussed in section 2.3.1, and the launching of
kernels to execute Algorithm 4 on the GPU is performed
in serial.

Calculations involving NWChem were performed using a
locally modified copy of release version 7.0.0. Code modifications
were limited to ensuring that the radial scaling factors of the
MK radial quadrature produced identical atomic quadratures
to those in NWChemEx. Further, NWChem DFT calculations
were performed with grid pruning disabled and using the SSF
atomic partitioning scheme. Note that while the quadratures are
identical between the two codes, NWChem exhibits a number of
algorithmic differences with those presented in this work. These
include additional density and weight screening techniques
within each quadrature batch. However, these steps only improve
the observed performance in NWChem, thus they do not
detract from the performance comparisons made in this work.
To ensure that we are comparing with consistent, replicatable
performance in NWChem, all calculations have been performed
using converged density matrices. Each resource set will consist
of 7 MPI ranks for calculations involving NWChem as, with the
exception of the atomic weight scaling, its implementation of
the XC integration does not exploit shared memory parallelism.
Further, we note that the use of the GlobalArrays library
(Nieplocha et al., 2006; Krishnan et al., 2012) in NWChem
yields that one MPI rank per physical node will be used as a
progress rank for remote memory access rather than performing
computation related to the XC integration.

Both NWChem and NWChemEx were compiled using the
GNU 8.1.0 compiler suite (gcc, g++, gfortran) to compile
host code using high levels of compiler optimization (-O3
-mcpu=native -mtune=native -ffast-math). The
device code in NWChemEx was compiled using the NVIDIA
CUDA compiler (nvcc) as provided in the CUDA SDK
(version 10.1.105). Analogous optimization flags (-O3
--use-fast-math) as well as architecture specific flags
to generate optimized binaries for CUDA compute capability
7.0 (-gencode sm_70,compute_70) were used in the
compilation of device code. NWChem was linked to the serial
version of the IBM Engineering Scientific Software Library (ESSL
version 6.1.0) for POWER9 optimized BLAS functionality. GPU
accelerated batched BLAS was provided by the MAGMA library
(version 2.5.1) while non-batched BLAS for operations such
as dot products was provided by the cuBLAS library from the
NVIDIA CUDA SDK.

3.1. Integration Performance on GPU
Devices
First, we examine the performance characteristics of Algorithm 2
on a single Summit node. This treatment allows us to examine
the effects of molecule size, basis dimension, and quadrature
size on overall GPU performance separately from scaling in
a distributed setting. Strong scaling of the purposed method

as well as its comparison to NWChem will be presented in
the following subsection. An overall component analysis of the
timings on a single Summit node is given in Table 3. The wall
times presented in Table 3 are aggregated over the entire XC
integration, i.e. for the local integration, the times presented are
representative of the sum of all invocations that saturate device
memory (Nsat). Further, we note that these times also include
the contiguous host packing and host-device transfer of batch
data (i.e., all operations contained in the loop over quadrature
batches in Algorithm 2). In addition, the times presented for
load balancing include all operations in Algorithm 3, i.e. batch
generation and the course-grained screening of basis shells at the
batch level. As these calculations were performed within a single
Summit node, the reduction phase is not explicitly considered in
Table 3, but its contributions are included in the times labeled
“Other.” As expected, although Algorithm 3 is executed on the
host in this work, the dominant computational phase for these
calculations was the local integration. Further, we note that the
overall cost of Algorithm 3 for a particular molecule/grid pair is
largely independent of basis size but scales linearly with respect
to grid size for a particular molecule/basis pair. The result of
this is that the relative cost of load balancing is reduced as basis
size increases. However, while this cost is not dominant at low
processor counts, it will be demonstrated to be dominant in the
strong scaling limit in the following subsection.

In this work, we focused on two algorithmic motifs that are
important for the XC integration on the GPU:

1. Optimizing data locality to minimize the overhead of
low-bandwidth data transfers between host and device
and to maximize the potential to express concurrency
without synchronization, and

2. Batching together the evaluation of small tasks on the device
through the use of kernels that express concurrency both
within a quadrature batch and between batches to improve
throughput on the device.

To demonstrate the efficacy of these motifs, we examine the
relative costs of the various compute and memory intensive
operations incurred by the various kernels during the local
integration on the device. Due to the fact that GPU computation
is generally asynchronous with respect to host computation, care
must be taken in accruing accurate performance data relating to
individual kernels as to not impede computational progress on
the device. For this purpose, we have utilized theNVIDIA profiler
nvprof to obtain kernel level performance metrics. A summary
of the overall time spent on various operations involving the GPU
for the UFG basis and 6-31G(d) basis set is provided in Figure 3.

There are a number of important features exemplified in the
results presented in Figure 3. The first is that saturating the
device memory to ensure data locality all but removes the cost of
host-to-device (H2D) and device-to-host (D2H) data transfers,
yielding < 1% of the overall computational cost combined for
all problems considered. For the smaller test cases (Taxol and
Valinomycin), the GPU implementation is dominated by the
evaluation of ρ / ∇ρ and device-to-device (D2D) memory
transfers. For the larger test cases (Olestra and Ubiquitin), the
integration is dominated by the evaluation of the SSF atomic
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TABLE 3 | Aggregate wall times for computationally intensive operations of XC integration for the various problems considered.

Molecule Basis Grid Nsat Load balance (%) Local integration (%) Other (%) Total

Taxol 6-31G(d) FG 1 0.073 (17.49) 0.310 (73.99) 0.036 (8.52) 0.419

UFG 2 0.145 (15.50) 0.746 (79.59) 0.046 (4.91) 0.937

SFG 3 0.252 (15.76) 1.30 (80.84) 0.055 (3.41) 1.60

cc-pVDZ FG 1 0.075 (14.62) 0.399 (77.59) 0.040 (7.79) 0.514

UFG 2 0.153 (13.70) 0.918 (82.12) 0.047 (4.18) 1.12

SFG 3 0.268 (13.26) 1.68 (83.24) 0.071 (3.50) 2.02

Valinomycin 6-31G(d) FG 1 0.128 (14.74) 0.685 (79.14) 0.053 (6.12) 0.865

UFG 3 0.259 (15.79) 1.33 (80.95) 0.054 (3.26) 1.64

SFG 5 0.446 (14.98) 2.45 (82.21) 0.084 (2.81) 2.98

cc-pVDZ FG 2 0.136 (12.17) 0.916 (82.27) 0.062 (5.55) 1.11

UFG 3 0.274 (11.99) 1.96 (85.74) 0.052 (2.27) 2.29

SFG 6 0.474 (11.09) 3.70 (86.61) 0.098 (2.30) 4.27

Olestra 6-31G(d) FG 2 0.433 (23.60) 1.20 (65.45) 0.201 (10.95) 1.84

UFG 5 0.872 (23.48) 2.65 (71.39) 0.191 (5.13) 3.72

SFG 9 1.49 (21.79) 5.14 (75.13) 0.211 (3.08) 6.84

cc-pVDZ FG 3 0.481 (19.87) 1.68 (69.48) 0.258 (10.66) 2.42

UFG 6 0.953 (19.59) 3.63 (74.57) 0.284 (5.83) 4.87

SFG 11 1.63 (18.54) 6.92 (78.53) 0.259 (2.94) 8.82

Ubiquitin 6-31G(d) FG 22 3.12 (10.94) 22.5 (78.90) 2.89 (10.15) 28.5

UFG 45 6.01 (10.84) 47.5 (85.70) 1.92 (3.46) 55.4

SFG 84 10.2 (9.94) 90.2 (87.82) 2.30 (2.24) 103

cc-pVDZ FG 30 3.44 (7.83) 38.2 (86.96) 2.29 (5.21) 43.9

UFG 61 6.64 (7.50) 79.6 (89.80) 2.40 (2.71) 88.6

SFG 111 11.2 (7.04) 145 (90.90) 3.30 (2.07) 160

All times are given in seconds and Nsat is the number of times the device memory was saturated in Algorithm 2 to complete the integration.

FIGURE 3 | Wall time percentages for various operations in the XC integration involving the graphics processing units (GPU), which includes host-to-device (H2D),

device-to-host (D2H), and device-to-device (D2D) transfers.
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partition weights and D2Dmemory transfers. We note for clarity
that the D2D transfers are intra-GPU device memory copies, not
inter-GPU communication. The times for the evaluation of the
XC functional on the device are not explicitly shown in Figure 3

as they are negligibly small. They are however included in the
“Other” timing accumulations.

A somewhat unexpected result is the dominant cost posed
by intra-GPU D2D transfers for all problems considered.

FIGURE 4 | Achieved memory throughput for dominant device-to-device

(D2D) data transfers in the XC integration compared to the peak DDR4

bandwidth in host memory.

FIGURE 5 | Achieved SM efficiency for batched kernels in the XC integration.

The D2D timings including the packing of Equation (12b),
the incrementing of Equation (17), and various other small
D2D transfers such as those involving storage of the basis
functions. This result is unexpected due to the high-bandwidth
of memory transfers within device memory. To further examine
the details of this unexpected dominant cost, Figure 4 shows
the achieved memory read and write throughputs for the intra-
GPU data transfers incurred by the batch kernels that implement
Equations (12b) and (17). These achieved throughputs are
compared to the peak bandwidth of DDR4 (CPU) memory:
50 GB/s. For these kernels, we are able to achieve a memory
throughput of O(100 GB/s) for data writes and between 50
and 70 GB/s for data reads, with the throughput for data
reads decreasing with increasing system size. This decrease in
data read throughout with system size is likely due to memory
bank conflicts arising from multiple GPU threads accessing the
same memory address simultaneously. Although these kernels
are not able to achieve memory throughput reflective of peak
device memory bandwidth (900 GB/s) due to their access of
non-coalesced, non-contiguous memory, they far exceed the
throughput that would be achievable in CPU memory. Further,
as the memory footprint of these packed matrices are among the
largest in the purposed method, exploiting intra-GPU memory
transfers avoids additional H2D and D2H transfers which would
pose non-trivial costs due to their low bandwidth.

To demonstrate the efficacy of the batched kernels proposed
in this work, Figures 5, 6 illustrate the capability of these kernels
to efficiently exploit the resources of the device. These figures
present the efficiency of the batched kernels in two regimes. The
SM efficiency (Figure 5) illustrates the efficiency of the kernels at
the SM level by calculating the percentage of time each SM has at
least one active warp executing instructions. The warp execution
efficiency (Figure 6) illustrates their efficiency at the warp level by
calculating the percentage of active threads within each warp in
the issuance of any particular instruction in the kernel execution.
Deviations from 100% in the SM efficiency indicate that the SM is
sitting idle due to some sort of contention, e.g. warp divergence,
while deviations in the warp execution efficiency indicate that
some warps have diverged such that the SM is only able to execute
instructions to some subset of the threads within these diverged
warps, reducing overall parallel efficiency. These performance
measurements were obtained by the nvprof profiler metrics
sm_efficiency and warp_execution_efficiency,
respectively. As we can see, both the MAGMA provided batched
BLAS and the hand optimized XC integration kernels developed
for this work are able to achieve high SM efficiency, i.e. the
SM is occupied and issuing instructions a high percentage of
the time. With the exception of the SSF weights kernel, each
of the batched kernels also exhibits an excellent warp execution
efficiency (>90%), whichmeans that there are not typically a large
number of warp divergences in the execution of these kernels.
The relatively low (60–70%) warp execution efficiency of the
SSF kernels is due to the screening of weight partitions by the
SSF scheme, i.e. adjacent quadrature points often follow different
branch logic in the screening procedure. Note that the high SM
and warp execution efficiencies for the kernel responsible for the
batched evaluation of 8

j by the simple method proposed in this
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FIGURE 6 | Achieved warp execution efficiency for batched kernels in the XC

integration.

work, combined with its relatively low cost percentage (>20%) for
all problems considered, indicate that further optimization of this
kernel bymore advanced techniques would likely not yield a large
impact on overall wall time.

3.2. Strong Scaling
The primary goal of this work has been to provide a scalable
implementation of the XC integration. As such, we examine the
strong scaling the proposed method in comparison with the
CPU implementation in NWChem. Strong scaling results for the
CPU and GPU XC integrations using the 6-31G(d) basis and
UFG quadrature are given in Figure 7. The wall times presented
in Figure 7 only include those operations that are required to
perform the XC integration; wall times for the allocation of device
memory in the NWChemEx results have been removed. For the
smallest problems (Taxol and Valinomycin), both NWChem and
NWChemEx exhibit near linear strong scaling out to 4 Summit
nodes (168 MPI ranks in the case of NWChem, and 24 GPUs
in the case of NWChemEx). For largest problems (Olestra and
Ubiquitin), linear strong scaling is exhibited up to 8 Summit
notes (48 GPUs) in the case of NWChemEx and 16 nodes (336
MPI ranks) in the case of NWChem. The relative speedups of
NWChemEx over NWChem for the considered systems in the
6-31G(d) basis set are given in Figure 8. For all but the largest
problem (Ubiquitin), speedups over 10x are observed over the
CPU implementation at all resource set counts. For the smallest
problems with the smallest grid size (FG), speedups of ∼100x
are observed when run on a small number of resource sets.
The degradation in speedup as a function in quadrature size
is due to the aforementioned differences in weight and density
screening techniques between NWChem and NWChemEx. The
magnitude of these speedups decrease as the amount of resources

increase. This is especially the case for ubiquitin, where a speedup
of ∼10x is observed at a single Summit node, but this speed
up falls to nearly 2.5x in the strong scaling limit. To better
understand the stagnation of strong scaling in this case, it is
necessary to examine the scaling of the individual components
of the XC integration.

Figure 9 shows the timings for various components of
the GPU XC integration for considered systems. Rather than
examine the scaling for each of the considered systems, we choose
to profile the largest of the small sized problems (Valinomycin),
and the largest problem (Ubiquitin) as representative test cases.
As can be seen in Figure 9, the local integration scales linearly for
all processor counts considered. As the local integration scales
linearly, stagnation is not due to a lack of sufficient work to
occupy the GPU, but rather due to the increasing cost of the MPI
reduction and the constant cost of replicating Algorithm 3 on all
resource sets. This scaling behavior could be further improved
by porting Algorithm 3 to the GPU, however, in the case of
large processor counts, the reduction becomes competitive with
Algorithm 3, thus it would be unlikely to demonstrate any
qualitatively different scaling behavior in this regime.

4. CONCLUSION

In this work, we have proposed and implemented a three-level,
GPU-based parallelism scheme for the distributed numerical
integration of the XC potential and energy required for the
evaluation of the Fock matrix in the Gaussian basis discretization
of KS-DFT. In addition to the development of a simple load
balancing scheme, the method proposed in this work for the
evaluation of local integration quantities emphasizes the use of
batched kernel invocations to achieve high throughput in the
evaluation of localized quadrature batches on the GPU. This
approach was motivated by the recent advent of GPU-accelerated
batched BLAS kernels, which have seen wide adoption in many
GPU applications. We have demonstrated that the proposed
load balancing scheme produces linear strong scaling in the
local integration of XC quantities for the problems considered.
Further we have validated the efficacy of the use of batched
kernels, including the use of batched GEMM and SYR2K, by
demonstrating the ability of these kernels to achieve excellent
efficiency on the NVIDIA Tesla V100 for a wide range of
molecular systems, basis sets, and quadrature sizes.

The largest deficiency in the current work is the restricted
implementation of the GPU-related techniques to NVIDIAGPUs
and the CUDA SDK. As of this work, emerging architectures
are increasingly relying upon other GPU vendors (AMD,
Intel, etc.), which would render direct application of the
current implementation impossible. However, the principles of
batched kernel evaluation may be extended to many if not all
GPU devices. Thus, as has been explored in the context of
related implementations of seminumerical exchange calculations
(Laqua et al., 2020), future work will focus on the portable
implementation of the scalable GPU method presented in
this work.
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FIGURE 7 | Strong scaling comparisons for the CPU (NWChem) and GPU (NWChemEx) implementations of the XC integration. Timings for both NWChem and

NWChemEx include all steps in the XC integration (batch generation, weight scaling, local integration, and reduction).

FIGURE 8 | Achieved speedups of the GPU (NWChemEx) implementation over the CPU (NWChem) implementation of the XC integration for the 6-31G(d) basis set.

FIGURE 9 | Strong scaling of individual components of the XC integration for valinomycin (A) and ubiquitin (B) in comparison to total execution time. Error bars

represent min/max times and solid markers represent average wall time over all resource sets.
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We have implemented the proposed method in the open-
source NWChemEx software package and have demonstrated
speedups between 10x and 100x over the analogous CPU
implementation in NWChem. However, in the strong scaling
limit, the proposed replicated load balance scheme and
distributed reduction of XC integrands become computationally
dominant, which causes early stagnation relative to the linearly
scaling local integration on the GPU. As has been demonstrated
in related work (Manathunga et al., 2020), porting the batch
generation and screening procedure to the GPU would help
mitigate the strong scaling stagnation, though the asymptotic
bottleneck of the distributed reduction would still remain. With
the one-to-one CPU-to-GPU affinity discussed in this work,
the computational cost of the MPI reduction could be reduced
through the use of remote memory access (RMA) to exploit
shared memory spaces and void explicit data communication. As
the local integration scales linearly out to very large processor and
GPU counts, further improvements in these non-GPU aspects of
the XC integration would drastically improve the strong scaling
of the proposed methods. Such improvements will be explored in
future work.
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