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Editorial on the Research Topic

Driver Behavior and Performance in an Age of Increasingly Instrumented Vehicles

Driver behavior and performance have been studied extensively in the last decades. Researchers
have developed theories and models of driver situational awareness, driver decision-making and
errors, information processing, and mental workload. Meanwhile, other scholars have focused on
creating and optimizing in-vehicle technology-based interventions to increase safety. The purpose
of this special issue is to bring together a collection of empirical and theoretical work focusing on
understanding Driver Behavior and Performance in an Age of Increasingly Instrumented Vehicles.
Several themes characterize this special issue:

ADVANCED DRIVER ASSISTANCE SYSTEMS (ADAS)

ADAS offer timely advice and feedback and can even actively take (or yield) control of the vehicle.
This particular theme includes several applications of future ADAS. Ahmed et al. studied the
usefulness of a connected ADAS that presents information from a control center. A group of
professional drivers experienced the connected ADAS in a driving simulator. They indicated that
the messages from the ADAS were most helpful when visibility was poor. In addition, the most
valuable warnings were forward-collision (with other connected vehicles) and rerouting. Such
findings are helpful for designers of ADAS that can receive information from control centers. In
an interesting naturalistic study, Davis et al. discovered different behavioral patterns for elderly
drivers: with Alzheimer disease (group 1), without Alzheimer disease (group 2), and with early
signs of Alzheimer disease (group 3). The early Alzheimer disease group (#3) had fewer speeding
and g-based driving events per driving distance traveled than the other groups. This result indicates
sufficient orientation to self-regulate risk-taking while driving. Taking a broader perspective, this
study provides an example of how ADAS can help detect (and perhaps take preventive measures)
in situations related to driver health, e.g., when transferring from early signs to more advanced
phases of the disease. Therefore, this theme is linked to the next theme in our Research Topic—
the driver state monitoring theme (described below). ADAS technology may also have adverse
outcomes. ADAS may cause deterioration of driving skills, encourage the diversion of attention
from the driving task to other stimuli, and impair risk perception. Cohen-Lazry and Borowsky
studied a novel multi-touch interface for an in-vehicle infotainment system and compared it with
a functionally similar control interface. Participants using the multi-touch interface needed less
time to complete secondary tasks, were quicker at identifying potential hazards, and reported lower
subjective workload.
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DRIVER STATE MONITORING

The second theme that characterizes several studies in this special
issue is driver state monitoring. Current in-vehicle sensors can
detect functional indices such as head position, eyelid, gaze,
respiration rate, heart rate, and skin conductance to infer fatigue,
mental workload, distraction, and risk perception. A significant
portion of the studies in this special issue focused on using
objective physiological indices to estimate mental workload
and stress. For example, even in a simple common task, as
searching for a parking space, Ponnambalam and Donmez found
marginally significant changes in skin conductance and heart
rate, indicating an increased mental workload. In conditional
automation, drivers may engage in secondary tasks that increase
the mental workload and impair driving performance. To
continuously monitor the driver’s mental workload, Meteier
et al. recommend a combination of physiological indices (based
on skin conductance, electrocardiogram, and respiration), the
length of the time window for data processing, and machine
learning models to identify elevated states of mental workload.
Meteier et al. focused on measuring mental workload during
a continuous performance of secondary tasks. But what about
more discrete events without secondary tasks? Sahar et al.
found that even everyday braking events trigger physiological
responses of heart rate and heart rate variability. Moreover,
they tested a novel intuitive, instantaneous, and unintrusive
measure of stress—the steering wheel grip force (i.e., the force
applied on the steering wheel in a non-steering-related task).
They found that the steering wheel grip force correlated with
braking intensity (a performance index), heart rate, and heart
rate variability (stress indices), demonstrating its validity as a
measure of stress. Another exciting research direction within
the driver state monitoring theme is searching for drivers’
hazard perception indicators. One option is to use biomarkers
for hazard anticipations. In their study, Chirles et al. found
that experienced drivers (compared to learners) had greater
electrodermal responses to hazards in a hazard perception test
before the hazard manifested itself.

AGE

Older drivers are known to make adjustments and self-regulation
to accommodate cognitive, sensory, and motor capabilities
changes. Such adjustments involve, for example, reducing long-
distance drives. Here too, ADAS may be helpful. Shichrur et al.
found that older drivers that used ADAS that provide collision
warnings almost doubled their travel distance compared to the
period before using the ADAS. It is possible that older drivers
feel that the technology helps them compensate for reduced
skills. Ironically, older drivers also struggle the most to adapt to
ADAS technology. For example, according to Cooper et al., older
drivers (compared to younger drivers) experienced increased
workload when interacting with in-vehicle information systems:

Older drivers were slower to respond to visual task demands
and required more time to complete tasks such as entering a
navigation destination, texting, calling, and dialing, and tuning
the radio. These results remain consistent across three Human
Machine Interfaces (HMIs) (two visual-motor and one vocal-
based interaction). Although not obvious, human factors still play
an essential role even in a fully autonomous vehicle. Stephenson
et al. looked at the physiological responses of older passengers
in an autonomous vehicle who faced expected and unexpected
stops. After the unexpected stops, skin conductance sensors
indicated increased passenger stress. This result suggests a need
for interventions to reduce stress from unexpected events. Taking
a broader perspective, the use of physiological sensors can serve
to monitor passengers’ stress as well as driver stress.

CONCLUSION

In the coming years, the human factor will continue to have an
essential role in driving. The driver behavior and performance
special issue includes studies examining drivers’ behavior and
state considering a range of autonomous levels. Emerging topics
include novel methods in sensing and inferring driver states,
novel human-machine interfaces, novel ADAS capabilities, and
increasing interest in the elderly population that can benefit the
most from ADAS yet have the greatest difficulty in adopting it.
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In-vehicle information systems (IVIS) refer to a collection of features in vehicles that
allow motorists to complete tasks (often unrelated to driving) while operating the
vehicle. These systems may interfere, to a greater extent, with older drivers’ ability to
attend to the visual and cognitive demands of the driving environment. The current
study sought to examine age-related differences in the visual, cognitive and temporal
demands associated with IVIS interactions. Older and younger drivers completed a set
of common tasks using the IVIS of a representative sample of six different vehicles
while they drove along a low-density residential street. Evaluation measures included
a Detection Response Task (DRT), to assess both cognitive and visual attention, and
subjective measures following each condition using the NASA Task Load Index (TLX).
Two age cohorts were evaluated: younger drivers between 21 and 36 years of age, and
older drivers between 55 and 75 years of age. Participants completed experimental
tasks involving interactions with the IVIS to achieve a specific goal (i.e., using the
touch screen to tune the radio to a station; using voice commands to find a specified
navigation destination, etc.). Performance of tasks varied according to different modes
of interaction available in the vehicles. Older drivers took longer to complete tasks,
were slower to react to stimuli, and reported higher task demand when interacting with
IVIS. Older drivers stand to benefit the most from advancements in-vehicle technology,
but ironically may struggle the most to use them. The results document significant
age-related costs in the potential for distraction from IVIS interactions on the road.

Keywords: driving, reaction time, aging, technology, attention, workload

Abbreviations: AAAFTS, AAA Foundation for Traffic Safety; DRT, Detection Response Task; FHWA, Federal Highway
Administration; HMI, Human-Machine Interface; IRB, Institutional Review Board; ISO, International Organization for
Standardization; IVIS, in-vehicle information system; LCD, Liquid-Crystal Display; LED, Light-Emitting Diode; MVA, Motor
Vehicle Accidents; NHTSA, National Highway Traffic Safety Administration; OEM, Original Equipment Manufacturer; OS,
Operating System; PFC, Prefrontal Cortex; SAE, Society of Automotive Engineers; SuRT, Surrogate Reference Task; TEORT,
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Cooper et al. Cognitive, Visual, and Temporal Demands

INTRODUCTION

Operating a motor vehicle is one of the riskiest activities that
adults engage in on a regular basis. In fact, roadway crashes
are one of the leading causes of unintentional injury and death
(World Health Organization [WHO], 2011; National Safety
Council [NSC], 2017) and a significant percentage of crashes
involve some form of distraction or inattention (e.g., Dingus
et al., 2016). To safely operate a motor vehicle, drivers must
maintain their eyes on the forward roadway and keep their
mind focused on the drive. This becomes increasingly difficult
with the prevalence of in-vehicle electronics. These systems
change the way that drivers manage their attention behind the
wheel, potentially leading to increases in driver distraction—
especially as systems provide more information, functions, and
features to drivers.

There are several components that factor into how distracting
a secondary task is for the driver (e.g., Ranney et al., 2000;
Regan et al., 2011; Strayer et al., 2011). One important factor
is the cognitive demand associated with Scanning, Predicting,
Identifying, Deciding, and Executing Responses (“SPIDER” – for
a review see Strayer and Fisher, 2016). Performing cognitively
demanding secondary tasks has been shown to impair each of
these “SPIDER-related” processes and increase the relative risk
of a crash (Fisher and Strayer, 2014). Another important factor
is the visual demand associated with secondary-task interactions.
Guidelines derived from the “radio tuning task” suggest that
individual eye glances to a device while performing a secondary
task should not exceed 2 s (Perez et al., 2013). Regardless of
the type of secondary task, crash rates have been shown to
systematically increase as the duration of glances away from the
road increases (e.g., Simons-Morton et al., 2015). For example,
when paired with the primary task of driving, texting is risky
because it takes the driver’s eyes off the road for an average of 4.6 s
(e.g., Drews et al., 2009; Olson et al., 2009). In many cases glances
away from the forward roadway involve guiding a motor response
(e.g., touching a location on the center stack screen). A final
factor to consider is the duration of a distracting secondary task.
Shutko and Tijerina (2006) suggest that task duration is critical
because it represents the time in which an unexpected event
might occur. All other things being equal, tasks that takes twice
as long to complete will result in twice the potential risk of
an adverse event.

Driver interactions with current and emerging in-vehicle
information systems (IVIS) are often characterized by lengthy,
complex, visual-manual, and auditory-vocal action sequences.
For example, a driver may initiate a destination entry sequence
with the press of a button on the steering wheel, followed by a
verbal address entry, ending with the use of the touch screen. An
earlier benchmarking effort from the Crash Avoidance Metrics
Partnership (CAMP; Angell et al., 2006) evaluated a variety of
older secondary tasks involving different types of visual, manual
and cognitive interaction. Visual-manual tasks involved tuning
the radio or adjusting fan speed using physical buttons located in
the center console. Auditory-vocal tasks involved listening to an
audiobook or sports broadcasts and answering related questions.
This CAMP analysis found distinct profiles indicating that

driver’s workload was multimodal and characterized by different
combinations of visual, manual and cognitive components.

More recently, Strayer, Cooper, and colleagues reported on
a program of research designed to understand the distraction
potential associated with tasks now commonly available in new
vehicles (Strayer et al., 2013; Strayer et al., 2014; Cooper et al.,
2014; Strayer et al., 2017, 2018). This newer research examined
some of the older task types evaluated with CAMP and also
newer IVIS interactions that were not available in 2006. One
important outcome of this research was a multimodal evaluation
method for assessing the cognitive, visual, and temporal demands
of complex multimodal IVIS interactions (see Strayer et al.,
2017). Indeed, large variation in the distraction potential was
observed with different tasks types (e.g., audio entertainment,
calling and dialing, texting, and destination entry to support
GPS navigation), and modes of interaction (e.g., center stack
touchscreen; voice-commands).

Importantly, the reactions of older adults are often slower than
those of younger adults, a phenomenon referred to as generalized
slowing (e.g., Cerella, 1985; Salthouse, 1996). The age-related
effects are magnified by the complexity of the interactions
(Cerella et al., 1980). In fact, compared to differences in baseline
reaction time (reflecting generalized slowing), the age-related
differences more than doubled when participants used voice-
based commands to select music or dial a phone number (Strayer
et al., 2015). Because the duration of secondary task activities is
greater for older than for younger drivers, age-related differences
are expected to increase as the complexity of the secondary
task increases. New in-vehicle systems and other secondary task
activities may be especially problematic for older drivers (Albert
et al., 2018). Ongoing research seeks to understand age-related
differences in multitasking (Clapp et al., 2011) and the technology
barriers that older drivers encounter (Vaportzis et al., 2017).
However, little is known about the way in which drivers of any age
interact with these complex multimodal In-Vehicle Information
Systems (IVIS). These technologies have the potential to make
driving safe and enjoyable. If they are not carefully implemented;
however, they will decrease attention to the roadway.

Watson et al. (2011) suggested that the U-shaped function
depicting crash rates and age is closely aligned with the
maturation and decline in prefrontal cortical (PFC) regions
of the brain (e.g., an inverted U-shaped function across the
lifespan). The PFC regions are involved in a wide variety of
higher-level cognitive/executive functions that support driving-
related attention (e.g., scanning, predicting, identifying, deciding,
and executing responses). In fact, laboratory studies have found
greater multitasking costs for older adults (e.g., Craik, 1977;
Hartley, 1992; Kramer and Larish, 1996; Hartley and Little, 1999;
McDowd and Shaw, 2000) and Strayer et al. (2015) observed that
older drivers experienced greater levels of cognitive demand with
voice-based IVIS systems.

Current Research
This study examined the cognitive and visual demand of younger
and older drivers as they performed a variety of task types
while driving a vehicle on a section of residential roadway.
Workload measures were compared across two age groups and
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six different vehicles supporting different IVIS. The current
research addressed two questions related to the use of these
IVIS interactions.

Q1: Do the demands of IVIS interactions differ for older and
younger drivers? If so, how?

Prior research has demonstrated that senescence is associated
with declines in physical and cognitive performance that can
impact safe driving. When older drivers interact with IVIS,
they are more likely to experience cognitive, visual, or temporal
interference. Furthermore, some types of IVIS interactions may
present unique demands for older drivers.

Q2: Are some interfaces more difficult for older drivers to use? If
so, why?

Research on IVIS voice interactions has found that older
drivers experience higher cognitive demands when completing
common tasks (e.g., Strayer et al., 2015). It is not clear, however,
whether workload differences exist between older and younger
drivers when completing tasks using controls housed in the
center stack or when using center console controls. The ways in
which older and younger drivers interact with IVIS may change
the level of demand that they experience.

MATERIALS AND METHODS

Participants
125 participants (52 females) were recruited via flyers, social
media posts and local newsprint advertising with approval
from the University of Utah Institutional Review Board (IRB).
Eligible participants were native English speakers, had normal
or corrected-to-normal vision, and held a valid driver’s license.
Participants were also required to have proof of medical
insurance and no accident involvement within the past 2 years.
To ensure participants held a clean driving record, a Motor
Vehicle Record report was obtained by the University of Utah’s
Division of Risk Management.

All participants belonged to one of two age cohorts: younger
drivers between 21 and 36 years of age (M = 24.8 years, St
Dev = 2.97), and older drivers between 55 and 75 years of
age (M = 65.8 years, St Dev = 5.36). Following University
of Utah policy, participants were required to take and pass a
20-min online defensive driving course and certification test.
Compensation was prorated at $20 per hour.

All participants were all healthy adult drivers with no
physical or mental deficits. Younger and older participants
self-reported health was 5.95 (0.85) vs. 6.10 (0.63) on a 7-
point scale, a difference that was not statistically significant,
p > 0.10. Younger and older participants drove an average 9.0
(7.19) vs. 8.8 (6.56) hours per week, a difference that was not
statistically significant, p > 0.7. Younger and older participants
reported an average of 7.38 (1.16) vs.7.38 (0.85) hours of sleep
the night before testing, a difference that was not statistically
significant, p > 0.98. Finally, no participants reported a history
of neurological disorders.

Twenty-four individuals from each age cohort were tested
in six unique vehicles, resulting in 48 participants per vehicle
(i.e., each cell in the 6 × 2 factorial design had 24 participants).

The study design allowed participants to drive all six vehicles,
however this was not always possible. Participants were sample-
matched by age and number of driving sessions in each of
the evaluated vehicles; this was done to ensure that each age
cohort was comprised of similar numbers of naive and repeat
participants for the vehicle. The number of exposures were
matched across vehicles and age cohorts as closely as possible;
however, due to factors such as order of testing and availability
of participants, exact matching was not possible. Thus, a planned
missing data design was used (e.g., Graham et al., 2006; Little and
Rhemtulla, 2013) as only eight individuals drove all six vehicles.
Among the younger age cohort (21–36), 20 participants drove
1 vehicle, 16 drove 2 vehicles, 11 drove 3 vehicles, 7 drove 4
vehicles, 2 drove 5 vehicles, and 4 drove 6 vehicles. Among
the older age cohort (55–75),: 28 participants drove 1 vehicle,
14 drove 2 vehicles, 10 drive 3 vehicles, 3 drove 4 vehicles,
6 drove 5 vehicles, and 4 drove 6 vehicles. Participants were
initially naïve to the specific systems and tasks but were trained
until they felt competent and confident performing each type of
task while driving.

Stimuli and Apparatus
Vehicles
The vehicles that were used for the study are listed below with the
native infotainment system for each shown in parentheses. These
cars were selected for inclusion in the study based on market
diversity, availability, and IVIS functionality. Vehicles were
acquired through Enterprise Rent-A-Car or purchased for testing.

• 2018 Audi A6 Premium (Man and Machine Intersect or
MMI R©)

• 2018 Cadillac CT6 Premium Luxury – Custom Packages
(Custom User Experience or CUE R©)

• 2018 Lincoln Navigator Select L (SYNC 3 R©)
• 2018 Mazda CX-5 Grand Touring (Mazda Connect R©)
• 2018 Nissan Pathfinder SL (NissanConnect R©)
• 2018 Volvo XC90 Momentum – Custom Packages (Sensus

Connect R©)

Equipment
Identical Google Pixel 2 phones on the T-Mobile network
w Bluetooth-paired with each vehicle. An iPad Mini 4
(20.1 cm diagonal LED-backlit Multi-Touch display) was used to
administer a visual-manual reference task (detailed below) and to
survey participants on their self-reported measures of workload.

Each vehicle utilizes a variety of functions that facilitate
interaction with the system such as touch screens, physical
buttons, voice commands, touch/trackpads, and rotary wheels.
Features were grouped into three Modes of Interaction: Voice
Commands, Center Console, and Center Stack. IVIS functions
were grouped into four Task Types: Audio Entertainment, Calling
and Dialing, Text Messaging, and Navigation Entry.

Participants completed tasks involving interactions with the
IVIS to achieve a goal (i.e., using the touch screen to tune the
radio to a station, using voice commands to find a specified
navigation destination, etc.) while driving. Tasks were categorized
into four Task Types and three Modes of Interaction.
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The possible Task Types performed by the participant were:

• Audio Entertainment: Participants tuned the radio to
specific AM and FM frequencies and selected music from a
USB connected iPad mini, using designated categories such
as song titles, music genres, artist names, and album titles.

• Calling and Dialing: A list of 91 contacts with a mobile
and/or work number was created for participant testing.
Participants were instructed to call designated contacts and
the associated number type was specified when applicable.
In vehicles capable of dialing phone numbers, participants
were instructed to dial the phone number 801-555-1234 as
well as their own phone number.

• Text Messaging: Participants were provided with
hypothetical scenarios in which they received text messages
from various contacts and were instructed to interact
with the messages using specified Modes of Interaction.
Vehicles varied in their SMS capabilities. A portion of the
system/Mode of Interaction combinations allowed users to
listen to messages and reply with predetermined responses,
or solely listen to the messages and not respond. Other
vehicles and Modes of Interaction allowed users to respond
to text messages using free dictation.

• Navigation Entry: Participants started and canceled route
guidance to different locations based on a hypothetical
situation they were given that differed slightly according to
the options available in each system.

The Modes of Interaction with each system are described
below. Interaction modalities were selected based on
compatibility with the specific tasks.

• Center Stack: Visual-manual tasks were performed using
the center stack interfaces found in the middle of the
dash to the right of the driver. Center stack systems
generally include a touchscreen to integrate visual/manual
interactions so that drivers can select options and navigate
menus via touch, scroll bars, seek arrows, etc. to complete
tasks using options displayed on the screen. Some vehicles
provide physical buttons near the touch screen for
selection of options.

• Center Console: Vehicles utilizing center console controls
replace or augment a touchscreen interface or manual
center stack controls with an interface usually consisting of
a rotary wheel and manual buttons in the center console to
the right of the driver. The center console controls facilitate
interactions with the center stack display located in the
middle of the dash. The rotary can be spun to scroll through
menus and used like a button to make selections. In some
cases, the rotary wheel interfaces can be maneuvered in
various directions to navigate menus, like a joystick. In
the case of the Audi A6, the center console controls also
incorporated a touch-sensitive pad that could be used to
draw letters and numbers in search functions or select
preset radio stations.

• Auditory Vocal: The voice-based interaction with each
IVIS system is initiated by the press of a physical voice
recognition button on the steering wheel. Microphones

installed in the vehicle process the driver’s verbal
commands and assist them while performing tasks in
the vehicle. Possible voice command options may be
presented audibly or displayed on the vehicle’s center stack
or instrument cluster to assist users in achieving their goal.

The configuration of Task Types and Modes of Interaction
depended on each system’s unique capabilities. All vehicles
supported Voice Commands, however each vehicle differed on
visual/manual interaction (e.g., touchscreen, manual buttons,
center console controls). Furthermore, different systems required
specific syntax or commands to be given in a systematic
order to accomplish tasks in different interaction modes.
Task lists were developed to test the various combinations
of features and functions available in each system. Tasks
were standardized across systems as much as possible, given
the variability in system interactions. The tasks supported
for each vehicle system are noted in Table 1. A complete
list of all task instructions for each vehicle is provided in
Supplementary Appendix A.

Detection Response Task
Participants were trained to respond to both a vibrotactile
stimulus and a remote visual stimulus (cf. International
Organization for Standardization, 2015). A vibrotactile stimulus
was positioned under the participant’s left collarbone, and a
remote LED light was placed along a strip of Velcro on the
dashboard in such a manner that the participants only saw the
reflection of the light as it changed from orange to red in the
windshield directly in the forward line of sight (see Castro et al.,
2016; Cooper et al., 2016). This variant of the standard DRT
was used to maximize sensitivity to both cognitive and visual
attention. Reaction time to the vibrotactile stimulus was used to
assess cognitive workload while hit rate to the forward LED was
used as a measure of competing visual demand.

A microswitch (i.e., small button) was attached to either the
index or middle finger of the left hand and pressed against
the steering wheel by participants when they felt a vibration
or saw the light change colors. Each press of the switch was
counted and recorded but only the first response was used to
determine response time to the stimulus. Response time with
sub-millisecond resolution to the vibrotactile onset or LED light
was recorded using a dedicated microprocessor that passed
results over USB connection to the host computer for storage
and later analysis.

Following International Organization for Standardization
(2015), the vibrotactile device emitted a small vibration stimulus,
like a vibrating cell phone. The remote light stimulus consisted
of a change in color from orange to red. This color changing
LED stimulus differed from the ISO standard (see Castro et al.,
2016). The occurrences of these stimuli cued the participant
to respond as quickly as possible by pressing the microswitch
against the steering wheel. The tactile and light stimuli were
equiprobable and were programed to occur every three to 5 s
(with a rectangular distribution of inter-stimulus intervals within
that range) and lasted for 1 s or until the participant pressed
the microswitch.
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TABLE 1 | Modes of Interaction and tasks types for the 6 different vehicles.

Vehicle Audi Cadillac Lincoln Mazda Nissan Volvo
A6 CT6 Navigator CX-5 Pathfinder XC90

Mode of interaction CS VC CC VC CS VC CC VC CS VC CS VC

Audio entertainment X X X X X X X X X X X X

Calling and dialing X X X X X X X X X* X X X

Navigation X X X X X* X X** X** X*** X X X

Text messaging X X X – X* X** X X X X – X

Mode of Interaction: CS = Center Stack; VC = Voice Commands, CC = Center Console. Cells with checks indicate the availability of tasks for that Vehicle/Mode of
interaction. Asterisks indicate cases where a variation in task instructions was required to accommodate vehicle capabilities or limitations. Empty cells represent tasks that
were not available for that Vehicle/Mode of Interaction (e.g., The Cadillac CT6 did not provide Text Messaging functionality through voice controls). The full task instruction
set for each Vehicle/Mode of Interaction is provided in Supplementary Appendix A.

Procedure
Driving Route
A suburban residential street with a 25-mph speed limit was used
for the on-road driving study. The route was a straight road with
four stop signs and two speed bumps. Participants were required
to follow all traffic laws and adhere to the 25-mph speed limit.
The driving route was approximately two miles long one-way
with an average drive time of 6 min. A researcher was present
in the passenger seat of each vehicle for safety monitoring and
data collection. An image of the driving route can be seen in
Figure 1. The respective start/end points of the driving course
were 40.781944, −111.8820912 and 40.7770036, −111.8438273.

Training
Prior to the start of the study, participants were provided the time
to become accustomed to the vehicle, the route, and the DRT. The
initial familiarization period is as follows:

• DRT training: Participants were instructed on how to
respond to the light and vibration motor using the
microswitch. Researchers monitored participants as they
practiced responding to 10 stimuli to ensure participants
produced response times of less than 500 milliseconds,
indicating a competence and understanding of the
task. After initial training, participants were given the
opportunity to practice responding to the DRT while
driving during the practice drive described below.

• Practice route: Prior to data collection, participants were
instructed to drive the route seen in Figure 1. Researchers
pointed out all obvious and identifiable road hazards. This
practice drive allowed participants to familiarize themselves
with the road as well as the handling of the vehicles.

Participants were trained to interact with and complete tasks
using the assigned Mode of Interaction before each condition
began. Participants were required to complete three task trials
without error, while simultaneously responding to the DRT prior
to starting the driving task for each of the system interactions.

Experimental Blocks
During the experimental blocks, participants were instructed to
complete a set of tasks administered by the researcher using
an assigned Mode of Interaction with the infotainment system.

Driving the vehicle was emphasized as task prioritization and was
expressed to participants in verbal instructions.

Participants were asked to pull over on the side of the road
at the termination of one length of the route. The subsequent
experimental block, equipped with a new assigned Task Type
and Mode of Interaction, began in the opposite direction on the
same route and concluded in the same manner. This was repeated
until all conditions were completed, resulting in alternating travel
directions for each experimental block. The order of Task Types
and conditions administered in each vehicle was counterbalanced
across 24 participants in each Age Cohort.

Tasks were only administered in safe and normal driving
conditions. Disruptions to the natural driving environment
resulted in the researcher instructing the participant to terminate
the current task and only administering a new task when
it was safe to do so. Tasks were not administered as
participants approached intersections or construction zones.
Normal behaviors of other vehicles and pedestrians were within
the scope of the natural driving environment.

Participants were provided with verbal hypothetical situations
or commands as cues from the passenger researcher (e.g., “Jack
Olsen would like you to call him on his cell phone.”). Participants
were trained to wait to start each task until the researcher said
“go.” After the completion of each task, participants were trained
to say, “done.” Tasks were delivered with an approximately 5 s
interval between the participants’ announcement of completion
and the researchers’ administration of the next task. Researchers
denoted each task’s start and end time by pressing designated
keys on the data collection computer, thus indicating the timing
of on-task performance on the driving route. DRT trials were
considered valid for inclusion in the statistical analysis if they
occurred between these start and end times. Participants were
encouraged to complete tasks as efficiently as possible, however
drivers were given as much time as needed to complete each task,
unless the end of the route was reached in which case tasks were
terminated prematurely and later omitted from analysis.

Participants also performed three control tasks while driving
one length of the designated route per task. These tasks provided
a standard set of performance references which included a single-
task baseline, a high cognitive demand reference task (nBack),
and a high visual-demand reference task (SuRT).

• Single-task Baseline: Participants performed a single-task
baseline drive using the vehicle being tested on the
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FIGURE 1 | A map image of the designated driving route, a two-mile-long residential roadway in Salt Lake City, Utah.

designated route, without interacting with the infotainment
system. During the single-task baseline, participants
interacted solely with the DRT stimuli, responding to both
the tactile stimulus and light change as fast as possible and
were asked to remain silent as to minimize distraction.

• Auditory nBack task: The auditory nBack task (Mehler
et al., 2011) presented a pre-recorded, randomized set of
numbers ranging from zero to nine in sequences of 10.
In each sequence, numbers were spoken aloud at a rate
of one digit every 2.25 s. Participants were instructed to
verbally repeat the number that was presented two trials
earlier as they concurrently listened for the next number
in the sequence. Participants were told to respond as
accurately as possible to the nBack stimuli while researchers
monitored performance in real-time. During the nBack
task, participants also responded to the DRT stimuli.

• Surrogate Reference Task (SuRT): A modernized
version of the SuRT task (International Organization
for Standardization, 2012) was presented on an iPad Mini
4 with circles printed in black on a white background.
A target was presented on the display amidst 21–27
distractors. The target was an open circle 1.5 cm in
diameter and the distractors were open circles 1.2 cm
in diameter. Participants’ were instructed to touch the
location of the target. Immediately thereafter, a new
display was presented with a different configuration
of targets and distractors. The location of targets and
distractors was randomized across the trials in the SuRT
task. Participants were instructed to continuously perform
the SuRT task while giving the driving task highest priority
as researchers monitored performance in real-time.
Researchers instructed participants to pause the SuRT
task at intersections and in the event of potential hazards
on the roadway. During the SuRT task, participants also
responded to the DRT stimuli.

After the completion of each condition, participants
completed the NASA-TLX (Hart and Staveland, 1988) to assess
the subjective workload of the system presented on the iPad

Mini 4. Following this assessment, participants were asked
an open-ended question as an opportunity to describe or
detail information not captured by the restrictive NASA-TLX
questions: “Do you have any comments about the task or vehicle
after this last run?”

Dependent Measures
Detection Response Task data were preprocessed following
procedures outlined in International Organization for
Standardization (2015). All response times faster than 100
milliseconds which were considered impossible or inadvertent
responses and were not considered valid. Similarly, reaction
times slower than 2500 milliseconds were eliminated from
our overall calculation for Reaction Time. Non-responses or
responses that were made after 2500 milliseconds from the
stimulus onset were coded as a miss. System interaction was
recorded by the researcher via pressing designated keys on the
DRT host computer, allowing the identification of “on-task”
and “off-task” segments of driving. Incomplete, interrupted,
or otherwise invalid tasks, were marked with a key-flag and
excluded from the analysis. The dependent measures obtained in
the study are listed below:

• DRT – Reaction Time: Defined as the sum of all valid
reaction times to the DRT task divided by the number of
valid reaction times. Reaction time to the DRT was used
to calculate cognitive demand during each experimental
condition. This was used to gauge the approximate mental
workload and allocation of cognitive resources required by
the task for each type of IVIS interaction. Reaction times to
both stimuli were included in analysis.

• DRT – Hit Rate: Defined as the number of valid responses
divided by the total number of valid stimuli presented
during each condition. Hit Rate to the DRT was used to
calculate visual demand, or how much visual attention was
required by the task during each experimental condition. In
order to maximize the sensitivity to divided visual attention
effects (e.g., looking away from the forward roadway),
analyses were only conducted on responses to the remote
LED stimulus.
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Task Completion Time was obtained from the time stamp
on the DRT data file defined as the time researchers said “go”
and participants first initiated an action to the time when
that action was completed, and the participant said, “done.”
Tasks with irregular occurrences and errors in administration
or performance that may have affected Task Completion Time
were marked as abnormal during data collection and were
not included in subsequent analyses. When assessed using
the visual occlusion methodology, the NHTSA guidelines
provide an implicit upper limit of 24 s of total task
time (National Highway Transportation Safety Administration
[NHTSA], 2013). While originally intended for visual/manual
tasks, these guidelines provide a reasonable upper limit for task
durations of any type.

Experimental Design
The experimental design was a 2 (Age Cohort: older or younger
drivers) x 4 (Task Type: Audio Entertainment, Calling and
Dialing, Navigation Entry, and Text Messaging) x 3 (Mode
of Interaction: Auditory/Vocal, Center Stack, Center Console)
factorial with 24 participants evaluated in each cell of the
factorial. However, not all system interactions offered the full
factorial design (i.e., not all Task Types and Modes of Interaction
were available in all vehicles).

Data Analysis
Linear mixed effects analyses were performed using R 3.5.1
(R Core Team, 2018) and lme4 version 1.1-18-1 (Bates et al.,
2015). In the analyses reported below, models containing the
Age Cohort plus one additional factor (i.e., Task Type and Mode
of Interaction) were compared to a model without the effect in
question. All main effects and two-way interactions with Age
Cohort were analyzed and are included below. P-values were
obtained by likelihood ratio tests comparing the full linear mixed
effects model to the partial linear mixed effects model (see Winter,
2013). This linear mixed modeling analysis has the advantage of
analyzing all available data while adjusting fixed effect, random
effect, and likelihood ratio test estimates for missing data. The
full analysis script is available for download here: https://github.
com/utahcdst/Aging-Report-Frontiers.

Pairwise comparisons for each of the analyses are provided
in a tabular format see Tables 2–9. Pairwise comparisons were
extracted through the sequential evaluation of each model in
question using a factor re-referencing approach. Each table
of pairwise comparisons is structured to provide the (1) the
means and standard deviations at each factor level by age, (2)
the pairwise comparisons for the age contrast, which indicates
whether the effect of age was significant at each level of the
factor in question, (3) the pairwise comparisons of the effect in
questions, which indicates whether factor levels differed from
each other, and (4), the pairwise comparisons for the effect of
age at each level of the factor in question. This indicates whether
the age effects at each factor level differed from each other.
This selective set of pairwise comparisons addresses the core
effects of interest.

For each independent variable (Task Completion Time, DRT
Reaction Time, DRT Hit Rate, Subjective Workload), Linear

Mixed Effects Models were built to explore the main effects of
Age Cohort, Task Type, and Mode of Interaction as well as all 2-
way interactions with Age Cohort (e.g., Age Cohort by Task Type
and Age Cohort by Mode of Interaction).

Where appropriate, results were analyzed and modeled with
the inclusion of the baseline tasks (Single-task, SuRT, nBack).
Baseline tasks were not included in the analysis of Task
Completion Time. Results address the question of whether there
were significant age differences in the associations of interactions
with the vehicle technology with the independent variables.

Mean results for each of the main effects are provided in
the units in which they were recorded, along with the standard
error (SE) in parentheses. Due to the number of statistical
comparisons performed, we used a more conservative α = 0.01
and α = 0.001 to denote varying levels of statistical significance.
Effects that reach these levels are flagged with a single ‘∗‘ and
a double ‘∗∗‘ respectively. This more conservative significance
level helps to reduce the likelihood of false positives in the
statistical analysis.

RESULTS

Task Completion Time
Main Effects
Results indicated that Task Completion Time differed by Age
Cohort, χ2(1) = 51.42, p < 0.001 (Younger: M = 23.5, SD = 9.83;
Older: M = 30.2, SD = 15.2) with older drivers taking significantly
longer to complete tasks than younger drivers. Additionally, there
were significant main effects of Task Completion Time for Task
Type, χ2(3) = 785.85, p < 0.001 (Audio Entertainment: M = 21.6,
SD = 9.09; Calling and Dialing: M = 20.0, SD = 5.76; Text
Messaging: M = 30.7, SD = 35.6; Navigation Entry: M = 30.2,
SD = 15.2), and Mode of Interaction, χ2(2) = 119.56, p < 0.001
(Auditory Vocal: M = 29.4, SD = 14.9; Center Console: M = 27.4,
SD = 11.7; Center Stack: M = 22.6, SD = 9.64).

Age Cohort by Task Type
The analysis revealed a significant two-way interaction between
Age Cohort and Task Type, χ2(1, 3) = 12.52, p = 0.006. Age
contrasts indicated that the effects of age reached significance at
all levels of Task Type and that all levels of Task Type differed
from each other. Furthermore, Task Type contrasts by Age
Cohort suggests that older drivers had an especially difficult time
with the Navigation Entry task. Notably, only the median Task
Completion Time for the Audio Entertainment and Calling and
Dialing tasks came in under the 24-s referent for both age groups
(see Strayer et al., 2013).

Age Cohort by Mode of Interaction
The interaction between Mode of Interaction and Age Cohort
was not significant, χ2(1, 2) = 1.09, p = 0.57, suggesting
that the increased Task Completion Time for older drivers
was similar across all three Modes of Interaction. That is,
while Age Cohort and Mode of Interaction both affected Task
Completion Time, the impact of each was not dependent on
the other. Age contrasts indicated that the effect of age reached
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TABLE 2 | Pairwise comparisons for task completion time as a function of task type and age cohort.

Task completion time by task type Audio entertainment Calling and dialing Text messaging Navigation entry

Means and SD Ages 21–36 (n = 24) Mean (SD) 18.0 (5.01) 17.7 (3.64) 27.7 (11.8) 31.4 (8.63)

Ages 55–75 (n = 24) Mean (SD) 25.4 (10.7) 22.4 (6.48) 33.8 (20.4) 40.0 (14.1)

Age cohort contrasts: t-value 7.00** 4.64** 5.53** 8.00**

Task type contrasts: t-value Audio entertainment

Calling and dialing −2.86*

Text messaging 14.53** 17.25**

Navigation entry 23.86** 26.71** 8.20**

Task type contrasts by Audio entertainment

age cohort: t-value Calling and dialing −2.35

Text messaging −1.11 1.12

Navigation entry 1.02 3.36** 2.08

*p < 0.01, **p < 0.001.

TABLE 3 | Pairwise coparisons for task completion time as a function of mode of interaction and age cohort.

Mode of interaction Auditory vocal Center console Center stack

Means and SD Ages 21–36 (n = 24) Mean (SD) 26.2 (11.3) 23.2 (7.85) 19.7 (6.42)

Ages 55–75 (n = 24) Mean (SD) 32.7 (17.2) 31.4 (13.3) 25.7 (11.3)

Age cohort contrasts 6.98** 5.93** 6.01**

Mode of interaction contrasts Auditory vocal

Center console −4.10**

Center stack −11.03** −4.36**

Mode of interaction contrasts by age cohort Auditory vocal

Center console −0.95

Center stack −0.98 −0.98

*p<0.01, **p<0.001.

TABLE 4 | Pairwise comparisons for reaction time as a function of task type and age cohort.

Task type Single Audio
entertainment

Calling and
dialing

Text
messaging

Navigation
entry

nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 526 (110) 778 (154) 762 (150) 763 (158) 773 (157) 760 (174) 703 (147)

Ages 55–75 (n = 24) Mean (SD) 639 (135) 946 (184) 934 (166) 951 (176) 954 (175) 944 (151) 881 (182)

Age cohort contrasts 4.50** 7.98** 7.34** 7.91** 7.70** 7.47** 7.16**

Task type contrasts Single

Audio entertainment 38.56**

Calling and dialing 35.34** −3.94**

Text messaging 35.25** −2.46 1.28

Navigation entry 37.49** −1.27 2.66* 1.25

nBack 31.17** −2.57 0.65 −0.44 −1.53

SuRT 24.33** −10.53** −7.31** −8.14** −9.48** −6.89**

Task type contrasts Single

by age cohort Audio entertainment 4.99**

Calling and dialing 3.99** −1.22

Text messaging 4.90** 0.10 1.26

Navigation entry 4.56** −0.52 0.70 −0.59

nBack 4.31** −0.01 0.99 −0.09 0.42

SuRT 3.85** −0.55 0.45 −0.61 −0.12 −0.46

*p<0.01, **p<0.001.

significance for all levels of Mode of Interaction. Mode of
Interaction contrasts indicated that performance in each Mode
of Interaction differed between performance in the other Modes

of Interaction. Mode of Interaction contrasts by Age Cohort
suggested that the magnitude of the Cohort effect was not
dependent on the specific.
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TABLE 5 | Pairwise comparisons for reaction time as a function of mode of interaction and age cohort.

Mode of interaction Single Auditory vocal Center console Center stack nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 526 (110) 764 (161) 775 (147) 775 (148) 760 (174) 703 (147)

Ages 55–75 (n = 24) Mean (SD) 639 (135) 954 (188) 957 (160) 942 (164) 944 (151) 881 (182)

Age cohort contrasts: 4.49** 8.37** 7.34** 7.35** 7.47** 7.16**

Mode of interaction contrasts Single

Auditory vocal 40.08**

Center console 34.28** 0.89

Center stack 37.84** 0.04 −0.78

nBack 31.09** −0.94 −1.46 −0.91

SuRT 24.27** −9.60** −8.72** −9.08** −6.87**

Mode of interaction contrasts Single

by age cohort Auditory vocal 5.63**

Center console 4.05** −0.88

Center stack 3.98** −1.92 −0.61

nBack 4.30** −0.22 0.49 1.13

SuRT 3.84** −0.80 0.00 0.58 −0.46

*p<0.01, **p<0.001.

TABLE 6 | Pairwise comparisons for hit rate as a function of task type and age cohort.

Task Type Single Audio
entertainment

Calling and
dialing

Text
messaging

Navigation
entry

nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 0.90 (0.11) 0.59 (0.24) 0.66 (0.24) 0.66 (0.21) 0.60 (0.24) 0.76 (0.19) 0.65 (0.18)

Ages 55–75 (n = 24) Mean (SD) 0.80 (0.20) 0.29 (0.24) 0.37 (0.26) 0.35 (0.23) 0.33 (0.23) 0.53 (0.25) 0.44 (0.26)

Age cohort contrasts −3.79** −10.34** −9.78** −10.01** −9.29** −7.26** −6.67**

Task type contrasts Single

Audio entertainment −34.73**

Calling and dialing −28.55** 7.56**

Text messaging −28.47** 6.18** −1.02

Navigation entry −32.37** 2.85* −4.69** −3.45**

nBack −15.12** 17.27** 11.10** 11.58** 14.92**

SuRT −22.17** 9.19** 3.01* 3.76** 6.85** −7.02**

Task type contrasts by Single

age cohort Audio entertainment −8.69**

Calling and dialing −7.92** 0.94

Text messaging −8.22** 0.22 −0.67

Navigation entry −7.24** 1.76 0.83 1.46

nBack −4.55** 3.43** 2.66* 3.13** 1.99

SuRT −3.77** 4.35** 3.58** 4.02** 2.90* 0.79

*p<0.01, **p<0.001.

Age Cohort by Mode of Interaction by Task Type
The three-way interaction between each of these factors was
significant, χ2(1, 3, 2) = 24.8, p < 0.001. This higher order
interaction suggests that the effect of Age was dependent on the
specific Task/Mode combination Figure 2.

DRT Reaction Time
Main Effects
Results indicated that DRT Reaction Time differed by Age
Cohort, χ2(1) = 49.8, p < 0.001 (Young: M = 739, SD = 168;
Older: M = 914, SD = 193), with older drivers taking significantly
longer, on average, to respond to the DRT than younger drivers.
Additionally, there were significant main effects for Task Type,
χ2(6) = 1466, p < 0.001 (Audio Entertainment: M = 870,

SD = 194; Calling and Dialing: M = 848, SD = 180; Text
Messaging: M = 856, SD = 191; Navigation Entry: M = 863,
SD = 189), and Mode of Interaction, χ2(5) = 1450, p < 0.001
(Auditory Vocal: M = 858, SD = 199; Center Console: M = 868,
SD = 179; Center Stack: M = 856, SD = 177).

Age Cohort by Task Type
Analysis of the two-way interaction between Age Cohort and
Task Type indicated that the interaction reached significance,
χ2(1, 6) = 31.6, p < 0.001. Inspection of the data reveals a highly
consistent effect of task engagement and age across each of the
Task Types. Age Cohort contrasts indicated that the effect of
age reached significance at each level of Task Type. Task Type
contrasts suggest that Reaction Time to the Audio Entertainment

Frontiers in Psychology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 115414

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01154 May 29, 2020 Time: 20:16 # 10

Cooper et al. Cognitive, Visual, and Temporal Demands

TABLE 7 | Pairwise comparisons for hit rate as a function of mode of interaction and age cohort.

Mode of interaction Single Auditory vocal Center console Center stack nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 0.90 (0.11) 0.70 (0.22) 0.54 (0.23) 0.56 (0.23) 0.76 (0.19) 0.65 (0.18)

Ages 55–75 (n = 24) Mean (SD) 0.80 (0.20) 0.40 (0.25) 0.21 (0.18) 0.30 (0.22) 0.53 (0.25) 0.44 (0.26)

Age cohort contrasts: −3.85** −10.53** −10.26** −9.42** −7.38** −6.77**

Mode of interaction Single

contrasts Auditory vocal −29.47**

Center console −37.62** −16.84**

Center stack −39.48** −16.84** 3.02*

nBack −16.00** 9.32** 20.72** 20.47**

SuRT −23.46** −0.01 12.92** 11.68** −7.42**

Mode of interaction Single

contrasts by age cohort Auditory Vocal −9.61**

Center console −8.82** −0.99

Center stack −7.80** 1.84 2.25

nBack −4.83** 3.53** 3.71** 2.05

SuRT −4.00** 4.60** 4.61** 3.06* 0.85

*p<0.01, **p<0.001.

task was slightly more delayed than to the Calling and Dialing
task and that Reaction Time between the Calling and Dialing and
Navigation Entry tasks also reached significance. Reaction time
to the Single Task baseline was faster than to all other Task Types.
Reaction time to the SuRT task was also faster than to the other
Task Type (except Single Task), while Reaction Time to the nBack
task did not differ from the Reaction Times to the four IVIS Task
Types. Task Type contrasts by Age Cohort suggest that the effect
of Age Cohort was smallest for the Single Task condition but that
it did not differ between any of the other conditions.

Age Cohort by Mode of Interaction
The interaction between Age Cohort and Mode of Interaction
also reached significance, χ2(1, 2) = 33.05, p > 0.001. Age
Cohort contrasts indicated that the effect of Age Cohort on
Reaction Time reached significance for each level of the Mode
of Interaction. Mode of Interaction contrasts indicated that the
Single Task and SuRT tasks differed from all other Modes of
Interaction but that none of the other Modes of Interaction
differed from each other. Mode of Interaction contrasts by Age
Cohort indicated that the effect of Age Cohort was smallest in the
Single Task baseline and similar in all other conditions.

Age Cohort by Mode of Interaction by Task Type
The three-way interaction between each of these factors was
not significant, χ2(1, 3, 2) = 1.69, p = 0.946. This lack of
interaction is clearly visible in Figure 3 where a main effect
of age is apparent with highly consistent effects of Mode of
Interaction and Task Type.

DRT Hit Rate
Main Effects
Results indicated that Hit Rate differed by Age Cohort,
χ2(1) = 70.2, p < 0.001 (Young: M = 0.67, SD = 0.23;
Older: M = 0.41, SD = 0.28), with younger drivers detecting
and accurately responding to the onset of the forward LED
significantly more often than older drivers. Consistently across

factors, older drivers failed to respond to the light stimulus more
frequently resulting in lower Hit Rates. Additionally, there was
a significant main effect of Task Type, χ2(6) = 1232, p < 0.001
(Audio Entertainment: M = 0.44, SD = 0.28; Calling and Dialing:
M = 0.51, SD = 0.29; Text Messaging: M = 0.50, SD = 0.27;
Navigation Entry: M = 0.47, SD = 0.27), and Mode of Interaction,
χ2(5) = 1577, p < 0.001 (Auditory Vocal: M = 0.55, SD = 0.28;
Center Console: M = 0.38, SD = 0.26; Center Stack: M = 0.43,
SD = 0.26).

Age Cohort by Mode of Interaction
The interaction between Age Cohort and Mode of Interaction
was also significant, χ2(1, 5) = 116, p > 0.01, suggesting that
the effect of age cohort on Hit Rate depended on the Mode of
Interaction. Age contrasts indicated that the effect of Age Cohort
reached significance at all levels of the Mode of Interaction.
Mode contrasts suggest that Hit Rates were highest in the Single
Task condition, followed by the nBack task, then the SuRT and
Auditory Vocal tasks, and lowest in the Center Stack and Center
Console Modes of Interaction. Mode of Interaction contrasts by
Age Cohort suggest that the effect of Age Cohort was similarly
large for each of the Modes of Interaction, somewhat smaller in
the nBack and SuRT tasks, and smallest in the Single Task.

Age Cohort by Mode of Interaction by Task Type
The three-way interaction between each of these factors was not
significant, χ2(1, 3, 2) = 1.33, p = 0.969. This lack of interaction
is visible in Figure 4 where a main effect of age is apparent with
highly consistent effects of Mode of Interaction and Task Type.

Subjective Workload
Main Effects
Results indicated that the composite TLX scores (average of
the 21-point rating across each of the TLX subscales) differed
by Age Cohort, χ2(1) = 8.69, p = 0.003 (Young: M = 7.96,
SD = 4.44; Older: M = 9.23, SD = 4.72), with older drivers
reporting IVIS task interactions to be more difficult than younger
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TABLE 8 | Pairwise comparisons for NASA-TLX subjective responses as a function of task type and age cohort.

Task type Single Audio
entertainment

Calling and
dialing

Text
messaging

Navigation
entry

nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 3.75 (2.65) 8.23 (4.33) 7.04 (4.15) 7.26 (3.88) 8.45 (4.32) 11.4 (3.73) 10.4 (4.25)

Ages 55–75 (n = 24) Mean (SD) 5.08 (3.27) 10.3 (4.79) 8.03 (4.53) 8.68 (4.23) 10.0 (4.54) 12.1 (4.09) 10.1 (4.53)

Age cohort contrasts 2.51 4.29** 2.15 2.85* 3.16* 1.50 −0.11

Task type contrasts Single

Audio entertainment 20.17**

Calling and dialing 12.93** −8.86**

Text messaging 14.24** −6.80** 1.85

Navigation entry 19.88** −0.37 8.50** 6.45**

nBack 26.28** 10.19** 17.42** 15.61** 10.50**

SuRT 20.95** 4.01** 11.25** 9.54** 4.31** −5.37**

Task type contrasts by Single

age cohort Audio entertainment 1.65

Calling and dialing −0.75 −2.93

Text messaging 0.08 −1.87 0.98

Navigation entry 0.38 −1.56 1.37 0.36

nBack −1.10 −2.91 −0.53 −1.32 −1.64

SuRT −2.86* −4.95** −2.56 −3.32 −3.68 −1.75

*p<0.01, **p<0.001.

drivers. Additionally, there were significant main effects for Task
Type, χ2(6) = 789, p < 0.001 (Audio Entertainment: M = 9.27,
SD = 4.68; Calling and Dialing: M = 7.53, SD = 4.37; Text
Messaging: M = 7.96, SD = 4.12; Navigation Entry: M = 9.22,
SD = 4.49), and Mode of Interaction, χ2(5) = 958, p < 0.001
(Auditory Vocal: M = 7.33, SD = 4.17; Center Console: M = 9.70,
SD = 4.27; Center Stack: M = 9.75, SD = 4.60).

Age Cohort by Task Type
Analysis of the two-way interaction between Age Cohort and
Task Type on Subjective Workload indicated that the interaction
was not significant, χ2(1, 6) = 28.4, p > 0.001. Age Cohort
Contrasts suggest that the effect of Age Cohort was not significant
in any of the baseline Task Types but that it reached significance
in all IVIS Task Types except the Calling and Dialing task. Task
Type Contrasts suggest that drivers found the nBack task to be
the most difficult, followed by the SuRT task, then the Navigation
Entry and Audio Entertainment tasks, then the Calling and
Dialing and Text Messaging tasks, followed by the Single Task.
Task Type Contrasts by Age Cohort suggest that the effect of Age
Cohort was somewhat larger in the Audio Entertainment task
than the SuRT task but that the Age Cohort effect was otherwise
indistinguishable.

Inspection of the data reveals a relatively consistent effect of
age across each of the in-vehicle tasks.

Age Cohort by Mode of Interaction
The interaction between Age Cohort and Mode of Interaction was
also significant, χ2(1, 5) = 20.7, p > 0.001. Age contrasts found
no effect of age in any of the tasks. Mode of Interaction contrasts
found that the subjective evaluation of workload differed between
the Modes of Interaction. Specifically, drivers felt that Auditory
Vocal tasks were easier to complete than tasks completed using
the Center Stack or Touchscreen displays. All of which were
reported to be easier than the nBack task. Mode of Interaction

contrasts by Age Cohort suggest that the magnitude of the Age
Cohort effect was smaller in the SuRT task than several of the
other task interactions.

Age Cohort by Mode of Interaction by Task Type
The three-way interaction between each of these factors was not
significant, χ2(1, 3, 2) = 7.52, p = 0.275. This lack of interaction
is visible in Figure 5 where a main effect of age is apparent with
highly consistent effects of Mode of Interaction and Task Type.

DISCUSSION

This research investigated the unique challenges that older
drivers face when completing several common tasks using the
In-Vehicle Information System (IVIS) of six 2018 vehicles. Prior
research has shown that compared to younger drivers, older
drivers exhibit greater difficulty dividing attention between tasks.
This has been shown both in general laboratory tasks and in
driving. How these generally reported differences are manifest
in interactions with real-world vehicle technologies has not
been well studied. This research provides additional insight into
the unique challenges faced by older drivers as they interact
with modern in-vehicle technologies, by addressing two sets of
previously unanswered questions related to IVIS use.

Q1: Do IVIS interaction demands differ for older and younger
drivers? If so, how?

Results suggest that, compared to younger drivers, older
drivers experienced increased workload when interacting with
IVIS. Older adults were slower to respond to the DRT stimuli
(higher cognitive demand), were more likely to fail to respond to
the forward LED (higher visual demand) and required more time
to complete all tasks (increased exposure). Measures of cognitive,
visual, and temporal demand for older and younger drivers
indicated nearly identical patterns between all conditions (e.g.,
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TABLE 9 | Pairwise comparisons for NASA-TLX subjective responses as a function of mode of interaction and age cohort.

Mode of interaction Single Auditory vocal Center console Center stack nBack SuRT

Means and SD Ages 21–36 (n = 24) Mean (SD) 3.75 (2.65) 6.57 (3.79) 9.02 (4.24) 8.98 (4.33) 11.4 (3.73) 10.4 (4.25)

Ages 55–75 (n = 24) Mean (SD) 5.08 (3.27) 8.12 (4.39) 10.4 (4.2) 10.6 (4.74) 12.1 (4.09) 10.1 (4.53)

Age cohort contrasts 2.55 3.42 2.93 3.21 1.53 −0.10

Mode of interaction contrasts Single

Auditory vocal 13.60**

Center console 20.29** 11.70**

Center stack 23.46** 15.56** 0.69

nBack 27.00** 20.54** 8.29** 8.66**

SuRT 21.52** 13.61** 2.46 2.12 −5.52**

Mode of interaction contrasts Single

by age cohort Auditory vocal 0.43

Center console 0.29 −0.09

Center stack 0.34 −0.10 0.01

nBack −1.13 −1.86 −1.49 −1.68

SuRT −2.93* −4.14** −3.40** −3.82** −1.80

*p<0.01, **p<0.001.

conditions that resulted in high workload for younger drivers also
resulted in high workload for older drivers). However, measured
workload for older drivers was consistently higher than for
younger drivers.

Q2: Are some interfaces more difficult for older drivers to use? If
so, why?

Older drivers had an especially difficult time maintaining
visual attention to the forward roadway during secondary task
interactions (as quantified by Hit Rate to the forward LED DRT
stimulus – See Strayer et al., 2017), especially when completing
IVIS tasks. IVIS task interactions are demanding in general but
especially so for older drivers. Older drivers may benefit from
interface designs that promote their continued visual attention on
or near the forward roadway (e.g., careful placement of physical
controls and dials, screen placement in-line with forward vision,
use of voice controls, etc.).

Summary of Results
Task Completion Time
Task Completion Time is an important facet of driver workload
as it represents exposure. All other demands being equal, tasks
that require longer to complete will result in greater distraction
potential (see Strayer et al., 2015). When compared to younger
drivers, older drivers required more time to complete tasks in
all experimental conditions. Some noteworthy differentiation
occurred between Task Type and Mode of Interaction.

• On average, both younger and older drivers completed
the Audio Entertainment and Calling and Dialing Task
Types in less than the 24-s time reference. Navigation Entry
and Text Messaging Task Types each required significantly
more than 24-s for both younger and older drivers.

• Tasks were completed more quickly using the center stack
display by both age groups. Older drivers, on average,
required more than 24-s to complete the Auditory Vocal
and Center Console tasks.

Reaction Time to the DRT
Reaction Time to the DRT is a reliable and valid indicator
of cognitive demand (cf. International Organization for
Standardization, 2015). Interestingly, Reaction Time to each of
the tasks was insensitive to differences in Task Type, and Mode of
Interaction. Reaction Time did, however, greatly differ between
the Single Task baseline and any of the other tasks and was longer
for older drivers. The stability of Reaction Time during IVIS
interactions regardless of Task Type and Mode of Interaction,
suggests that at least with some tasks, cognitive demand remains
constant throughout task engagement. Our analysis found that:

• Older drivers were slower than younger drivers,
across all Task Types.

• Older drivers were slower than younger drivers for all
Modes of Interaction.

Hit Rate to the DRT
Hit Rate to the DRT indicated that older drivers had a more
difficult time dividing visual attention between driving and
secondary tasks. Similar to Reaction Time, the effect of Age
Cohort was consistent for each of the four Task Types, and across
each of the three Modes of interaction. Our analysis found that:

• Older drivers hit rate was greatly reduced across all Task
Types compared with younger drivers.

• Older drivers were less likely to respond to the forward LED
across each of the three Modes of Interaction.

Subjective Measures
• All drivers found the Calling and Dialing and Text

Messaging Task Types to be less demanding than the
Navigation Entry and Audio Entertainment Task Types.
Overall, older drivers reported IVIS task interactions to be
more demanding than younger drivers.

• Both older and younger drivers reported that voice
commands were easier to use than the Center Console
or Center Stack controls. Older drivers reported that all
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FIGURE 2 | Task completion time for the full factorial of age cohort by mode of interaction by task.

FIGURE 3 | Detection response task reaction time for the full factorial of age cohort by mode of interaction by task.
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FIGURE 4 | Detection response task hit rate for the full factorial of age cohort by mode of interaction by task.

FIGURE 5 | Task load index subjective workload for the full factorial of age cohort by mode of interaction by task.
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Modes of Interaction were more demanding than reported
by younger drivers.

• Comments from both groups were primarily negative
in tone. The similarity in comments made by drivers
emphasizes a need for improvement of these in-vehicle
systems for all drivers across the age range.

Further Discussion
The time required to complete tasks is a simple and effective way
to evaluate general task demands. This has been noted by other
researchers when applied to visual-manual interactions with IVIS
systems (e.g., Green, 1999). We found that all tasks imposed
cognitive and visual demands. Not surprisingly however, hit
rates to the forward LED were even lower for tasks that
diverted driver’s eyes from the road. Thus, an assessment of task
completion time with a measure of visual attention may sufficient
to understand driver workload when completing the discrete
tasks with IVIS.

Findings from this research suggest that workload estimates
derived from younger drivers may underestimate the workload
experienced by older drivers. In the Visual Manual Distraction
Guidelines published by National Highway Transportation Safety
Administration [NHTSA] (2013), a participant sampling strategy
that includes drivers from 4 age groups is recommended. Given
the consistent performance differences between younger and
older drivers, we recommend that future testing give higher
priority to evaluating older users. Systems that older adults find
easy to use will also be usable by younger adults; however, the
converse may not always be the case.

A logical and potentially incorrect generalization of these
findings would be to assume that poorly performing Task Types
or Modes of Interaction would result in increased on-road
distraction. While this may be true, it may also be the case that
drivers naturally refrain from activities that are complex, error
prone, or slow to complete. Frustration arising from these tasks
may cause drivers to seek out simpler ways of IVIS interaction.
For example, voice recognition systems in vehicles show promise,
however, driver usage of these systems continues to be low (Viita,
2014). The reason being that they often require the use of precise
keywords spoken in a very specific, and rigid order. The result
may be an interaction that is more complex, frustrating, and
distracting than the same action completed using the touchscreen
on the center-stack.

Results from this evaluation should, therefore, be interpreted
as a measure of the user experience, or distraction potential
(Ranney et al., 2009; Lee and Strayer, 2004), and not necessarily
a reflection of the level of on-road distraction that would be
expected from these Task Types and Modes of Interaction.
Paradoxically, it may be the case that the most difficult and
demanding systems evaluated in this research are also the
least likely to result in driver distraction because they are not
used. Furthermore, there is the possibility that the in-vehicle
information systems that are the most cumbersome to use
may ultimately result in users abandoning the IVIS in lieu
of their personal cell phone to achieve the same tasks. This
captures what has been described as the Usability Paradox
(Lee and Strayer, 2004) wherein distraction may increase with

usability. Likewise, poorly designed systems may discourage use
and therefore decrease distraction potential overall. Complex
user requirements may pose unnecessary system-based barriers,
which could result in circumstances where older drivers are faced
with no good options.

Design Recommendations
Compared to younger drivers, older drivers in this research
exhibited slower Reaction Time, decreased Hit-Rate, longer
Task Completion Time, and reported higher task demand when
interacting with IVIS. These findings suggest that, at a minimum,
older drivers should be included in a Universal Design validation
as their interactions with vehicle technologies may significantly
differ from that of younger drivers (Czaja et al., 2009). Relevant
principles of Universal Design for vehicle manufacturers include
Equity, Flexibility, Simplicity, Perceptibility, Error Recovery, and
Accessibility (Farage et al., 2012). These principles may provide a
framework for improvement of IVIS design. Clearly, an emphasis
on simplicity would benefit drivers of all ages (Farage et al., 2012).

Both older and younger drivers exhibited difficulty dividing
attention between tasks presented on the touch screen and the
forward roadway. Data from this study suggests that a center
console interactions are especially cumbersome for older drivers.
Care should be taken to help drivers maintain their visual
attention on the forward roadway without introducing unnatural
interfaces that may cause interference with safe driving. While
voice commands may help to reduce many of the potential
problems of other interface types, they will only be used by drivers
if the systems accurately process requests in a timely fashion.
Even so, auditory vocal interactions imposed a relatively high
level of cognitive demand on drivers. No interface is demand free
and all interactions with vehicle technologies should be carefully
considered and restricted when reasonable.

CONCLUSION

This research investigated the challenges faced by younger and
older drivers as they completed several common tasks using the
In-Vehicle Information System (IVIS) of a representative sample
of six 2018 vehicles. Compared to younger drivers, older drivers
exhibited significant increases in cognitive and visual workload
when completing IVIS tasks. Older drivers had difficulty dividing
their visual attention between IVIS tasks and the forward
roadway. In some cases, older drivers responded to fewer than
25% of LED illuminations presented on the forward windscreen.

Older drivers also required significantly more time than
younger drivers to complete all task interactions. An analysis
of subjective workload found that drivers were generally aware
of task demands but may have underestimated their actual
workload, as quantified in the other measures. Comments
provided by drivers after each task interaction suggested that
both older and younger drivers shared similar concerns about the
experience of modern IVIS. Results from this research suggest
that current versions of IVIS are demanding and difficult to
use, especially for older drivers. For drivers to fully realize the
potential benefits of current and future vehicle technologies, a
renewed focus on accessible design is required.
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TERMS AND NOMENCLATURE

Detection
Response Task
(DRT)

The DRT is an International Standards Organization
protocol (International Organization for Standardization,
2015) for measuring attentional effects of cognitive demand
in driving. In this research, a vibrotactile device emitted a
small vibration stimulus, similar to a vibrating cell phone or
an LED light stimulus changing color from orange to red.
These changes cued the participant to respond as quickly
as possible by pressing the microswitch attached to a finger
against the steering wheel. DRT reaction time increases and
hit rate decreases as the workload of the driver increases.

In-vehicle
information system
(IVIS)

The collection of features and functions in vehicles that
allow motorists to complete tasks unrelated to driving while
operating the vehicle. In this report, the terms IVIS and
system are used interchangeably. The IVIS features we
tested involved up to four Task Types (see below) and up to
three Modes of Interaction (see below).

Modes of
Interaction

The way a user interacts with an IVIS to perform a task.
Modes of Interaction were categorized into three types:
Voice Commands, Center Stack, and Center Console. In
this report, Mode and Mode of interaction is used
interchangeably.

NASA TLX A questionnaire-based metric assessing the subjective
workload of the driver. The TLX assesses mental demand,
physical demand, temporal demand, performance, effort,
and frustration.

nBack task The nBack task presented a prerecorded series of numbers
ranging from 0 to 9 at a rate of one digit every
2.25 seconds. Participants were instructed to say out loud
the number that was presented two trials earlier in the
sequence. The nBack task places a high level of cognitive
demand on the driver without imposing any visual/manual
demands and was used as a high workload reference task.

Primary driving task Activities that the driver must undertake while driving
including navigating, path following, maneuvering, and
avoiding obstacles.

Reference task A task used for the purpose of comparing different tests or
test results across vehicles or systems.

Single-task baseline When the driver is performing the primary driving task (i.e.,
driving) without the addition of workload imposed by IVIS
interactions.

Secondary-task A non-driving related additional task.

SuRT task The variant of the Surrogate Reference Task (SuRT, ISO TS
14198) used in this report required participants to use their
finger to touch the location of target items (larger circles)
presented in a field of distractors (smaller circles) on an iPad
Mini tablet computer that was mounted in a similar position
in all the vehicles. The SuRT task places a high level of
visual/manual demand on the drivers because they must
look at and touch the display to perform the task. The SuRT
task served as a reference for the visual/manual demands
associated with performing IVIS interactions.

Task completion
time

The time to complete a task. Task completion time was
defined as the time from the moment participants first
initiated an action to the time when that action had
terminated, and the participant said, “done.” When
assessed using the visual occlusion methodology, the
NHTSA guidelines provide an implicit upper limit of

24 seconds of total task time. While originally intended
for visual/manual tasks, these guidelines provide a
reasonable upper limit for task durations of any Mode
or Task Type.

Task Type Tasks were categorized into one of four Task Types:
Audio Entertainment, Calling and Dialing, Text
Messaging, and Navigation, depending on vehicle
capabilities. These Task Types were completed via
different Modes equipped in each vehicle for each
interaction.

Visual demand The visual workload associated with the performance of
a task. This would include the structural interference
associated with taking the eyes off the forward roadway
as well as the central interference in visual processing
that arises from cognitive demand. In this report, we
refer to the visual demand associated with performing
IVIS tasks with different Modes of Interaction when the
vehicle is in motion.

Visual reference
task

A variant of the SuRT task (see above) served as the
visual reference task in the current research.

Voice Commands The Voice Commands method in which users
communicate with the IVIS via voice recognition and
structured commands. Voice Commands are aimed
toward hands free interactions but may incorporate
some visual manual interactions such as using steering
wheel controls for activation. Voice Commands are one
of the three Modes of Interaction evaluated in this
research.

Workload The aggregate of cognitive, visual, and manual
demands on the driver. A motorist’s workload reflects a
combination of demands from the primary task of
driving and any secondary tasks performed by the
driver. The terms demand and workload are used
interchangeably in this report and we develop separate
metrics for cognitive workload and visual workload.
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Assessment of Drivers’ Perceptions
of Connected Vehicle–Human
Machine Interface for Driving Under
Adverse Weather Conditions:
Preliminary Findings From Wyoming
Mohamed M. Ahmed*†, Guangchuan Yang† and Sherif Gaweesh†

Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY, United States

Connected vehicle (CV) technology aims to improve drivers’ situational awareness
through audible and visual warnings displayed on a human–machine interface (HMI),
thus reducing crashes caused by human error. This paper developed a driving simulator
test bed to assess the readability and usefulness of the Wyoming CV applications. A total
number of 26 professional drivers were recruited to participate in a driving-simulator
study. Prior to driving the simulator, the participants were trained on both the concept
of CV technology and the developed CV applications as well as the operation of the
driving simulator. Three driving simulation scenarios were designed. For each scenario,
participants drove two times: one with the HMI turned on and another one with the HMI
turned off. After driving the simulator, a comprehensive revealed-preference survey was
employed to collect the participants’ perceptions of CV technology and Wyoming CV
applications. Results show that the Wyoming CV applications were most favored under
poor-visibility driving conditions. Among the Wyoming CV applications, forward collision
warning and rerouting applications were experienced as the most useful. Approximately
89% of the participants stated that the Wyoming CV applications provided them
with improved road condition information and increased their experienced safety while
driving; 65% of the participants stated the CV applications and the HMI did not introduce
distraction from the primary task of driving. Finally, this paper concludes that the design
of CV HMI needs to balance a trade-off between the readability of the warnings and
drivers’ capability to safely recognize and timely respond to the received warnings.

Keywords: Wyoming connected vehicle pilot, human–machine interface, driver behavior, human factors, driving
simulator

INTRODUCTION

In the United States, Interstate 80 (I-80) is a major corridor for east–west freight movement and
passenger travel in the country. The 402-mile I-80 freeway corridor in Wyoming is considered
to be a unique freeway corridor because it is all located above 6,000 feet (1,829 m) in elevation
and with very few alternate routes. As a mountainous rural freeway, the total traffic volume is
not high; nevertheless, the commercial truck volume makes up 30–55% of the total traffic flow
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(WYDOT, 2017). As a consequence of Wyoming’s adverse winter
weather conditions, such as snowstorms, strong crosswinds,
icy road surface, and low visibility from blizzard and the
presence of work zones, there have been remarkable traffic crash
records along I-80 in Wyoming, which resulted in fatalities,
road closures, and tremendous economic loss (WYDOT, 2017).
In reality, it was found that more than 90% of motor vehicle
crashes were attributed at least in part to human error (Nhtsa,
2015). With the booming of vehicle technology, connected
vehicle (CV) technology has been widely introduced into the
market at a fast pace. CV technology is designed to improve
drivers’ awareness of hazards and situations they cannot even
see through vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), and infrastructure-to-vehicle (I2V) dedicated short-range
communication (DSRC) technologies so that proactive reactions
could be made to avoid potential crashes (Shladover, 2018).
A handful of studies have been conducted to assess the benefits
of CV applications on reducing traffic collisions (Jeong et al.,
2014; Dey et al., 2016; Olia et al., 2016; Zulkefli et al., 2017).
In general, these studies demonstrate that CV technology has
great potential in reducing the probability of traffic collisions on
various transportation facilities and under different weather and
traffic conditions.

With consideration of the challenging driving conditions on I-
80 in Wyoming, the United States Department of Transportation
(USDOT) selected Wyoming to develop, test, and deploy a suite
of CV applications that utilize V2V, V2I, and I2V real-time
communication technologies to provide warnings and advisories
regarding various road conditions to heavy truck and light
vehicle drivers (Gopalakrishna et al., 2016). The CV applications
developed in the Wyoming CV pilot are expected to enable
CV drivers to have awareness of upcoming hazardous traffic
and roadway situations; therefore, drivers could make proactive
reactions to avoid potential crashes. One of the key components
of the Wyoming CV system is the on-board human–machine
interface (HMI), which delivers received real-time geospecific
basic safety messages (BSMs) and traveler information messages
(TIMs) to drivers. Nevertheless, to date, there still lacks a clear
understanding of how drivers recognize and response to the
notifications displayed on the CV HMI. In fact, a well-designed
HMI has the potential to provide CV drivers with proactive
decision-making supports so that CV drivers could more timely
respond to an imminent hazardous traffic condition and, thus,
reduce the probability of involvement in traffic collisions.
However, inappropriate integration of various CV warnings and
advisories may mislead, distract, or even disturb drivers from
their normal driving task (Li et al., 2017; Talamonti et al., 2017).
These adverse effects are particularly significant during high-
workload situations or driving under inclement weather and road
surface conditions.

In this regard, this research aims to assess the effectiveness
of the CV applications developed by the Wyoming CV Pilot
Development Program. The assessment methodologies employed
in this study have two steps. First, this research developed a
CV driving-simulator test bed to simulate different traffic and
weather conditions on I-80 in Wyoming. Then, professional
snowplow truck and highway maintenance vehicle drivers from

the Wyoming Department of Transportation (WYDOT) were
invited to participate in the developed driving-simulator study.
After experiencing the Wyoming CV applications in a simulated
environment, each participant was requested to finalize a
reveal-preference questionnaire survey, in which the participant
provided perceptions of effectiveness of the CV applications as
well as the visual distractions caused by the Wyoming CV HMI.

The remainder of this paper is organized as follows:
Section “Literature Review” presents a review of the literature
regarding HMI design and evaluation. Section “Description of
Wyoming CV Applications and HMI” describes the functions
of the Wyoming CV applications and HMI display layout.
Section “Assessment of Wyoming CV HMI” documents
the development of driving-simulator testing scenarios and
participants’ evaluation of the CV applications after driving the
developed simulation scenarios; finally, preliminary findings and
discussion of the lessons learned from this pilot study are listed in
Section “Concluding Remarks.”

LITERATURE REVIEW

HMI Display Design
In current practice, various modalities have been employed for
the development of HMI display. In general, these modalities can
be classified into four categories (Péter et al., 2017): mechanical,
acoustic, visual, and haptic interfaces.

Mechanical interfaces require a mechanical interaction from
the driver, which could be pressed by hand, finger, or foot;
pulled, slid, or rotated by hand; or touched by hand or finger.
The interfaces may include pedal, steering wheel, button, switch,
stalk, slider, and controller knobs. Some advanced practices
have been developed in these ordinary interfaces to enhance
the driving performance on roads, such as electronic throttle
control, electrical braking systems, electrical steering systems,
etc. (Wang et al., 2016). Acoustic interfaces are common output
interfaces because an acoustic (or auditory) interface does not
require drivers to take off their eyes off the road; hence, it
could be considered a safer modality than the visual one. These
interfaces include beeps, voice feedback (i.e., spoken messages),
and voice control. Beeps are suitable for drawing drivers’
attention. However, it provides unidentified information unless
the driver recognizes the source of the beeper. Visual interfaces
when used solely are usually used to communicate information in
non-critical events. This is because visual messages could fail to
deliver important information if the information displayed goes
unnoticed by drivers. Over years, numerous visual interfaces were
included in vehicles to suit different applications of autonomous
and connected vehicles, including indicator lights, LCD displays,
organic light emitting diode (OLED) displays, and head-up
displays (HUD). However, the most detrimental effect of using
visual interfaces is the possible increase in visual workload
(Engström et al., 2015). The research also suggests that visual
warnings could be used as supplemental information to an
auditory or haptic warning. Haptic interfaces provide the driver
with information through the driver’s tactile sense, such as
a lane-keeping warning system that develops reaction torque
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when departing from the lane (Montiglio et al., 2006), and
the haptic steering interface (Steele and Gillespie, 2001; Boyle,
2012), which can give navigation by developing sequenced pulses
on the wheel clockwise or counterclockwise according to the
required direction.

For the design format of messages that are displayed on the
HMI, the Federal Highway Administration (FHWA) emphasizes
that they should adhere to standard message formats. It is
highly recommended to use familiar signs and messages that
are similar to what is provided in the MUTCD (FHWA, 2015).
This is because drivers may get confused with regard to the
meaning of non-standard signs. In addition, spatial compatibility
is required for the design of the message in the context of
communicating information to drivers because the selection of a
response is directly related to the position of the related stimulus.
Information provided on HMIs should match what is provided
on real-world traffic control devices (FHWA, 2015). Péter et al.
(2017) point out that HMI devices are initially developed to
provide services that enhance the efficiency of driving tasks.
General aspects and standards for effective HMIs include
the following requirements: readability, clarity, interpretability,
accessibility, and ease of handling. Sentouh et al. (2014) indicate
that the implementation of HMI should address a number of
challenges, including what information is important for drivers,
how information is displayed, when, under what circumstances,
and in what order the information should be presented to drivers.
Olaverri-Monreal and Jizba (2016) summarize the issues involved
in the field of human–machine interaction; it was concluded
that the in-vehicle HMI should provide an intuitively meaningful
indication of the presence of a warning and its timely status. In
addition, it is crucial to investigate driver distraction levels as
well as the modality and dimension of the visual warnings and
their suitable in-vehicle locations. Biondi et al. (2017) investigated
the effectiveness of auditory, vibrotactile, and multimodal (i.e.,
combination of two or more modalities) HMI warnings; it was
found that multimodal warnings appeared to be effective in low-
workload conditions. However, the effect vanishes as the overall
level of workload increases.

Assessment of HMI
The most commonly used HMI design-assessment
methodologies found in the literature are based on (1) stated-
preference questionnaire surveys, (2) field-experiment testing
using instrumented vehicles, and (3) driving-simulator testing.

For the questionnaire-survey method, Höltl and Trommer
(2013) compared European drivers’ perceptions of advanced
driver assistance systems (ADAS) through an online
questionnaire survey, which aimed at collecting each driver’s
rating of different ADAS applications in terms of perceived
usefulness, ease of use, efficiency, and changed driving behavior.
Bazilinskyy and de Winter (2015) conducted an international
survey to gather drivers’ opinions and preferences on auditory
interfaces. The results show that the auditory interfaces are
preferred for the application of parking assistance and a forward
collision warning (FCW) system. Another worldwide connected
vehicle survey conducted by Accenture Consulting (2016)
shows that traffic information, weather information, and a

speed camera are the most popular HMI applications. For
the field-experiment method, Fitch et al. (2014) investigated
whether collision avoidance systems should present individual
crash alerts in a multiple-conflict scenario or present only
one alert in response to the first conflict. This was because, in
reality, secondary alerts may startle, confuse, or interfere with
drivers’ execution of an emergency maneuver. Testing results
show that drivers who received both the FCW and lane-change
merge alerts were significantly faster at steering away from
the lateral crash threat than the drivers who received only the
FCW alert. Song et al. (2016) evaluated drivers’ response to
HMI under two different types of warning systems, emergency
warning and general warning, by combining various modalities.
Study results show that, for emergency alerts, the most effective
warning information was transmitted by integrating “voice,
graphic, and text” or “repeated computer tone and text.” In
the case of a general warning alert, the “repeated computer
tone, voice, graphic, and text” combination was indicated to be
the most effective.

Bao et al. (2012) evaluated truck drivers’ following behavior
to an in-vehicle crash warning system in a naturalistic driving
environment. Results indicate that the presence of warnings
increased mean time-headway by 0.28 s, and drivers’ response
time to the forward collisions was 15% faster than the baseline
condition (i.e., no in-vehicle crash warning system). Biondi et al.
(2018) developed a rating tool for assessing HMIs of various
ADASs. Based on a field-experiment testing, the authors point
out issues that are related to visual, auditory, and haptic warnings;
for example, auditory warnings used by the rear parking sensor
were not indicative of the distance of the vehicle to obstacles,
visual warnings adopted by a blindspot monitor were located in
unconventional locations, and accelerations operated by the lane
keep assist system were in some cases uncomfortable and jolty.

In comparison with the questionnaire survey and field-
experiment methods, a driving simulator has the advantages of
testing different HMI design alternatives in a safe environment,
and environmental variables can be better controlled. Cummings
et al. (2007) investigated the impacts of single versus multiple
warnings on driver performance. It was found that participants’
reaction times and accuracy rates were significantly affected by
the type of collision event and alarm reliability. Moreover, the
use of individual warnings did not significantly affect driving
performance in terms of reaction time or response accuracy.
Osman et al. (2015) tested the location of the visual HMI display
in a connected-vehicle simulator experiment. Results reveal that
the majority of respondents preferred the visual display to
be provided as a HUD in the midsection of the windshield.
Jakus et al. (2015) investigated the effectiveness of integrating
multimodal interfaces and using single-modal interfaces. Three
different interfaces were defined: (1) visual, (2) auditory, and
(3) a multimodal auditory and visual interface. Results show
that the interaction with visual and audio head-up displays was
significantly faster and safer. In term of efficiency, no significant
difference was found between the visual only and audiovisual
modalities. However, the majority of the users preferred to use
multimodal interfaces. Zhao et al. (2016) developed an integrated
driving simulator and microsimulation modeling framework to
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evaluate the environmental benefits of CV applications. The
authors point out that driving simulator–based experiments
have the advantage of accounting for the response of human
drivers to the recommended speed profiles, thus safely and
more accurately evaluating the benefits of CV applications.
Ma et al. (2016) employed a driving simulator to compare
the effectiveness of physical roadside dynamic message signs
(DMS) and virtual DMS (VDMS) generated by CV technology.
Effectiveness was measured in terms of message comprehension,
distraction, and overall difficulty level in receiving messages.
It was concluded that, in general, VDMS performed better
than DMS, particularly with the increase of the message length
and under higher driving workload conditions. Schwarz and
Fastenmeier (2017) investigated the effects of modality (e.g.,
auditory vs. visual) and specificity (e.g., low vs. high volumes)
on warning effectiveness. Results show that the effects of
specificity is dependent on the modality of the warning. Francois
et al. (2017) compared three speedometer display patterns in a
simulated truck-driving setting: digital, analog, and redundant
speedometers. It was found that the digital speedometer is
more efficient and less visually distracting for absolute and
relative reading tasks, whereas the analog speedometer is more
effective for detecting a dynamic speed change. The redundant
speedometer has the best performance when compared to the
two single types for each of the three reading tasks. Naujoks
et al. (2017) explored the potential of using visual-auditory
HMI to inform drivers in a non-distracting way. Based on the
driving-simulator testing, it was found that participants clearly
favored the HMI with additional speech-based output, which
demonstrates the potential of speech to enhance the usefulness
and acceptance of HMI. Houtenbos et al. (2017) examined the
effects of audiovisual warning of the speed and direction of
intersecting vehicles at intersections using a driving simulator.
Based on a postexperiment questionnaire survey, the authors
conclude that the beeps (audio modality) were regarded as more
useful than the lights (visual modality). Vaezipour et al. (2018)
designed a driving simulator experiment to investigate drivers’
acceptance of various types of in-vehicle HMIs (i.e., visual advice
only, visual feedback only, and visual advice plus feedback) and
the impact of in-vehicle HMI on driving behavior. Results show
that visual advice only HMI was most accepted by participants,
and both advice and feedback HMIs were found to benefit eco-
safe driving behavior.

With consideration of the costs of each assessment
methodology and the availability of facilities at the time
the research was conducted, this research employed
integrated driving-simulator testing and revealed-preference
questionnaire survey methods to identify drivers’ perceptions
of Wyoming CV HMI.

DESCRIPTION OF WYOMING CV
APPLICATIONS AND HMI

CV Applications
The Wyoming CV applications were classified into five categories
based on their function and communication technologies

(Gopalakrishna et al., 2016): category 1: forward collision
warning (FCW), category 2: distress notification (DN), category
3: situational awareness (SA), category 4: work zone warnings
(WZW), and category 5: spot weather impact warning (SWIW).
A detailed illustration of the existing communication and traffic
control devices along the Wyoming I-80 corridor and the
DSRC locations that are deployed on the corridor can be
found in Ahmed et al. (2019a).

Forward Collision Warning (FCW)
Forward collision warning is a V2V communication-based safety
application that issues a warning to the CV driver in case of
an impending front-to-rear collision with another CV ahead in
traffic in the same lane and direction of travel. FCW aims to
help CV drivers avoid or mitigate front-to-rear vehicle collisions
in the forward path of travel. This CV application is critically
important for safety along I-80 in conditions when snowplows
are moving slower than following traffic and/or low visibility
conditions caused by adverse weather. The developed FCW has
two warning levels: the cautionary level and the alert level. The
HMI displays a yellow cautionary warning icon along with a loud
beep sound when the time-to-collision is greater than 5 s but less
than 9 s; drivers need to be prepared to brake when receiving the
cautionary FCW. When the collision time is less than 5 s, the alert
FCW is triggered; the HMI displays a red warning icon along
with continuous loud beeps. Drivers need to immediately begin
braking to avoid rear-ending the leading vehicle.

Distress Notification (DN)
Distress notification is a V2I communication-based safety
application that enables CVs to communicate a distress status
back to the Wyoming CV system when the vehicle’s sensors
detect an event that might require assistance from others (e.g.,
air bag deployed and vehicle disabled) or the CV driver manually
initiates a distress notification. The DN, which includes the
vehicle category, location, content, and time of the message, is
sent to the nearest roadside unit (RSU). The RSU forward it to the
Wyoming CV system for notifying system operators. If an RSU
is out of the range of DSRC, the DN is expected to be received
by nearby CVs that are traveling in the same and/or opposite
direction via V2V communication. These CVs will forward the
DN to an RSU that is connected to the Wyoming CV system.

Situational Awareness (SA)
The SA application adopts I2V and V2I communication
technologies to assemble important travel information from
Wyoming CV system operators and communicate them directly
to CV drivers through both DSRC and satellite communications.
SA enables delivery of up-to-date downstream traffic and road
conditions that may affect driving safety to CV drivers. The
SA application includes weather alerts, speed limitations, vehicle
restrictions, road surface conditions, incidents ahead advisories,
truck parking availability, and road closures, etc.

Work Zone Warnings (WZW)
The WZW application employs I2V communication technology
to provide CV drivers information about the unsafe conditions
that exist in an active work zone, such as obstructions
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in the vehicle’s travel lane, lane shifts and closures, speed
reductions, and construction vehicles/workers entering or
exiting the work zone.

Spot Weather Impact Warning
SWIW is a special case of SA that warns CV drivers of local
hazardous weather conditions, such as rain, snow, fog, or strong
winds. The primary difference between SWIW and other SA
applications is that it provides more localized information.

The majority of the visual warnings were developed following
Manual on Uniform Traffic Control Devices (MUTCD) guidance
(FHWA, 2009); detailed descriptions of each CV application,
including its communication technology or technologies, visuals
that are displayed on the CV HMI, and messages delivered by this
CV application, are summarized in Table 1.

Layout of Wyoming CV HMI
Figure 1 illustrates how the Wyoming CV warnings are displayed
on the HMI screen. In general, these CV warnings are categorized
into four priority levels based on the urgency of the imminent
situation: Level 1–FCW, Level 2–variable and regular speed
limit, Level 3–critical warnings, and Level 4–advisory warnings,
respectively. In this pilot study, critical warnings were determined
to be situations that would significantly affect driver’s operation
of vehicle (e.g., icy road surface, work zone, severe weather,
etc.) or appear beyond expectation (e.g., road closure, accident
or distressed vehicle ahead, fog or strong wind ahead, etc.).
Advisory warnings aimed to provide advisory information to
draw drivers’ awareness while driving, mainly including adverse
weather conditions that may affect driving, such as rain and snow,
location of rest area or parking area, etc. Within the critical and
advisory warnings, in case there are multiple warnings appearing

simultaneously on the HMI, warnings that are more urgent are
displayed closer to the driver, i.e., on the left side of the HMI.

ASSESSMENT OF WYOMING CV HMI

Apparatus
The CV driving simulator study was conducted at the University
of Wyoming Driving Simulator Lab (WyoSafeSim). The motion-
based, high-fidelity driving simulator can switch between a
passenger car (2004 Ford Fusion) cockpit cab and a freight truck
(2000 Sterling AT9500 18-wheeler semi-trailer) cockpit cab. It is
mounted on a three-degrees-of-freedom D-Box motion platform,
which comprises four electro-mechanical linear actuators to
provide two rotational and one translational degrees of freedom
(roll, pitch, and heave). The simulator provides motion cues to
immerse the driver into a real driving experience with changes
in kinematics, such as velocity, acceleration, and deceleration.
In addition, a low-frequency vibration transducer is mounted
on the vehicle floor to simulate vibrations generated by engine
and road. The simulator has open architecture software with
complete source code of simulation creator tool, which offers
flexibility of building roadways and developing driving scenarios
that could replicate the actual driving environments. The CV
HMI was mounted on the dashboard of the simulator to provide
participants with the various CV warnings as illustrated in
Figure 2.

Participants
This research recruited a total of 26 professional drivers to
participate in the CV driving-simulator study to assess the
effectiveness of the Wyoming CV HMI. The participants

TABLE 1 | Summary of the Wyoming CV applications.

CV category Technology Visual(s) Messages delivered

Forward collision warning (FCW) V2V An impending front-end collision with a CV ahead in the same traffic lane and direction of
travel.

Distress notification (DN) V2I and V2V A distress notification is sent to other CVs as well as local traffic management center to
seek emergency help.

Situational awareness (SA) I2V and V2I Road surface conditions: an icy or slick spot road will be encountered while driving.
Variable speed limits: advisory/regulatory operating speed limits for existing road and/or
weather conditions.
Road closures and restrictions: road closed to all vehicle types or certain types of vehicles
such as light trailers or light high profile vehicles.
Parking availability: information provided for available close by parking or rest areas.

Work zones warning (WZW) I2V An active work zone ahead as well as distance to the work zone, lane closure, and speed
limit.

Spot weather impact warning (SWIW) I2V and V2I An adverse weather condition, such as rain, snow, fog, strong wind, or severe weather,
ahead.
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FIGURE 1 | Layout of the Wyoming CV HMI (Ahmed et al., 2019b).

are professional snowplow truck drivers and employees from
WYDOT; they are expected driving connected trucks and
connected maintenance vehicles after the full deployment of the
CV system in Wyoming. The selection of participants considered
a wide range of factors that might affect the acceptance or
perception of CV technology, such as age, education level,
driving experience, etc. Because potential Wyoming CV users are
commercial truck drivers, WYDOT snowplow truck and freeway
maintenance vehicle drivers, and Highway Patrol vehicle drivers,
at this stage, all the participants were male. Based on a predrive
survey questionnaire, it was summarized that the participants’
ages ranged from 21 to 61 years (Mean = 42; S.D. = 10.3).
Among the 26 participants, 15 graduated from high school, nine

FIGURE 2 | Truck simulator with CV HMI.

have a college degree, and two have a postgraduate degree. All
participants had a valid commercial or class C driver’s license
with an average driving experience of 14.5 years (range: 0.5–
36 years, S.D. = 11). Twenty-five of the participants reported
they never had any ophthalmic surgery (one participant had laser
vision correction in 2006). During the driving simulator study,
all the participants were in good health condition without vision,
audition, and emotional issues that might affect their normal
driving (e.g., angry, depressed, dizzy, etc.). All the participants
reported that they have encountered reduction in visibility due
to snow, blizzards, fog, smoke, or heavy rain while driving on
I-80 in Wyoming.

Driving-Simulator Study Scenarios
Three comprehensive simulation scenarios were developed to
simulate different real-world traffic and weather conditions on
I-80-like freeways: work zone with FCW in fog, slippery road
surface due to snowy weather, and road closure due to accident
in severe weather, respectively. After a warm-up session, each
participant drove each simulation scenario two times; one with
the CV HMI turned on and the other one with the CV HMI
turned off. To eliminate the potential impact of any learning
effect on the simulation result, this research randomly assigned
the sequence of these six simulation scenarios to each participant.
Prior to the driving simulator study, participants were provided
with training on both the basic concept of the Wyoming CV
system and hands-on operation of the driving simulator under
the CV environment. Figure 3 illustrates the driving simulator
study at the WyoSafeSim lab.
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The driving simulator test bed was designed as a two-way,
four-lane freeway segment with a 75-mph (120 km/h) speed
limit to represent the basic operational conditions of I-80 in
Wyoming. To control for the potential impact of the ambient
traffic on participants’ driving behavior, the average and standard
deviation of speed of the ambient traffic was coded to match
speed distributions similar to the Wyoming I-80 in alike adverse
weather conditions.

The work zone simulation scenario aimed to test the Wyoming
CV system’s WZW and FCW applications. These CV applications
are expected to help in avoiding potential collisions at a freeway
work zone due to reduced visibility caused by fog. The general
simulation procedure is detailed as follows:

Participants first accelerated to the normal freeway driving
speed (i.e., 75 mph). A fog area was design ahead of a work
zone; a “fog area” CV warning with an advisory speed limit
of 65 mph (105 km/h) were displayed on the CV HMI before
participants entered the fog area. In the work zone, the right
lane of the freeway was closed following typical construction
zone layouts in Wyoming; a series of WZWs along with an
advisory speed limit of 45 mph (75 km/h) were shown on the
CV HMI to alert participants to change lanes and reduce speed
before entering the work zone. To simulate an FCW, a slow-
moving truck was designed to appear in the work zone; a worker
suddenly crossed the lane in front of the slow-moving truck,

FIGURE 3 | Illustration of driving simulator study at WyoSafeSim lab: (A) A
simulation scenario; (B) CV HMI.

and thus, the truck made an emergency brake to yield to the
worker. A proximity sensor was employed to trigger the truck,
indicating that the truck could make the braking action at the
designated distance in front of the simulator vehicle. Then, with
V2V communication technology, an advisory and an alert FCW
were displayed successively on the CV HMI to notify participants
of the potential forward collision. It is worth mentioning that the
foggy condition was created to allow a safe stopping sight distance
for 45 mph for the simulator vehicle type, i.e., heavy truck.

The slippery road surface simulation scenario was designed
to test the Wyoming CV system’s SWIW and DN applications.
Functions of these CV applications were to warn the participants
to reduce speed before entering an icy road segment, thus
avoiding skidding off the travel lane or being involved in a
secondary crash.

This simulation scenario started with a snowy weather
condition; a “snow” CV warning with an advisory speed limit
of 65 mph appeared on the CV HMI. Later on, a “severe
weather” CV warning with an advisory speed of 45 mph
were displayed on the CV HMI. Before entering the icy road
segment, an “icy surface” CV warning with a 35 mph (55 km/h)
advisory speed limit were displayed on the CV HMI to warn
participants to reduce speed when driving on the icy road. Prior
to entering the icy curve, a “distressed vehicle” warning was
received to alert participants there was a skidding-off accident
ahead, indicating that participants should drive with extreme
caution. For participants who lost control of the vehicle due to
speeding, they were asked to use the DN application to generate
and send a distress message to the TMC and other CVs on
the road (after sending the DN, the simulation scenario was
automatically terminated).

The road closure simulation scenario intended to test the
Wyoming CV system’s SWIW and SA applications. These CV
applications provided participants with real-time road closure
notification due to an incident as well as information about the
nearest rest area to help participants avoid being jammed on the
closed freeway or involve in a secondary crash. A “snow” CV
warning with a speed limit of 65 mph was displayed on the CV
HMI. Later on, a “severe weather” CV warning with an advisory
speed of 45 mph were displayed. A pile-up crash was designed
on the freeway mainline to simulate a road closure condition; the
crash was located downstream of a rest area. “Accident ahead”
and “road closed” warnings were displayed on the CV HMI; then,
a “rest area” notification appeared on the CV HMI to inform
participants about the nearest rest area. If a participant exited the
freeway to the rest area, a voice message was played to inform
the participant to park the vehicle and stop this driving simulator
scenario. Otherwise, the participant was queued in front of the
crash location on the freeway.

Sequence of the CV warnings and general layout of each
driving-simulator study scenario are illustrated in Figure 4.

Questionnaire Survey
After experiencing the Wyoming CV application in the driving-
simulator study, a comprehensive postdrive questionnaire survey
was employed to collect participants’ qualitative opinions
regarding their preferences on different CV warning modalities
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FIGURE 4 | Description of driving simulator study scenarios: (A) work zone with FCW in fog; (B) slippery road surface due to snowy weather; (C) road closure due to
accident in severe weather.

and the effectiveness of CV technology under various real-
world driving conditions. The questionnaire survey was initially
designed by the University of Wyoming research team and then
reviewed, revised, and approved by the USDOT Volpe National
Transportation Systems Center.

Results show that the majority of participants (96.2%)
preferred to have the CV warnings displayed at the combination
of visual and auditory modalities. For the auditory-warning
modality, it was found that using a simple “beep” sound for
advisory warnings and a series of louder “beep” sounds for critical
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warnings would best draw a driver’s attention while a repeated
voice message tended to disturb normal driving. For the visual-
warning modality, results show that, by grouping CV warnings
to different priority levels and presenting warnings that have a
higher priority closer to the driver (i.e., left side on the CV HMI),
drivers tended to more easily perceive the imminent safety hazard
when multiple warnings were displayed on the CV HMI. Overall,
participants indicated that CV technology was most useful under
poor-visibility driving conditions, such as rainy, foggy, blowing
snow, and sun glare weather conditions, as illustrated in Figure 5.
It was found that, under normal daytime driving conditions,
participants felt that CV technology did not introduce significant
benefits in comparison with when driving under adverse weather
conditions that resulted in a slippery road surface, when the view
of the road ahead was partially blocked by other vehicles on the
curvy terrain, or driving at night.

In addition to qualitative descriptions, the questionnaire
survey also collected participants’ assessment of the

readability and usefulness of the Wyoming CV applications.
Readability refers to how easily participants felt they
recognized a CV warning or a bundle of CV warnings;
usefulness means whether a CV warning helped drivers
to recognize an imminent safety hazard or assisted them
in better planning their trip. The assessment contains two
components: assessment of CV technology and the specific
CV applications, respectively. Responses were measured
on a 7-point Likert scale (example: strongly disagree to
strongly agree). Accordingly, the evaluation results were
converted to a 1–7 score, in which score 1 corresponds
to a very negative assessment result and score 7 to a very
positive assessment result. The numerical values were used for
quantification of assessments and comparisons across different
CV applications.

Table 2 presents 26 participants’ assessment results of the
Wyoming CV system. In addition to the scores generated from
the Likert scale questionnaire survey, this paper categorizes
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FIGURE 5 | Rank of the effectiveness of CV technology under various driving conditions. Poor visibility conditions = rain, fog, snow, sun glare weather conditions;
view of road be partially blocked = view of the road ahead is partially blocked by other vehicles or the curves and other terrains; other = road work.

TABLE 2 | Participants’ assessment results of CV technology.

Scale items Mean SE Positive Neutral Negative

(a) Readability of CV warnings

A1: After experiencing the CV applications, how easy was it to understand the CV technology and
warnings?

6.1 0.80 96.2% 3.8% 0%

A2: Do you think that warnings among the different CV applications are confusing? 5.5 0.95 80.8%** 19.2% 0%

A3: Do you think that the CV warnings and the display unit are introducing any distraction from the main
driving task?

5.2 1.37 73.1%*** 15.4% 11.5%

A4: Were the visual warnings clear, obvious, and convey the required message? 5.7 0.93 84.6% 15.4% 0%

(b) Usefulness of CV Technology

B1: Do you think the CV system provided you with improved road condition information? 5.8* 1.14 85.7% 9.5% 4.8%

B2: Do you think that having the CV applications would help to increase traffic safety and reduce crashes? 5.9 1.14 88.5% 7.7% 3.8%

B3: How likely will you be dependent on the CV applications to warn you for upcoming hazardous
conditions, when fully implemented on I-80?

4.2 1.61 42.3% 30.8% 26.9%

B4: Would you like to have the CV applications in your vehicle? 4.8 1.67 65.4% 23.1% 11.5%

*Based on 21 available samples; **positive feedback means CV applications were NOT EXPERIENCED AS confusing; ***positive feedback means CV applications and
the display units were not experienced as introducing any distraction.
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TABLE 3 | Participants’ assessment results of the specific CV applications.

CV applications Readability Usefulness

Mean SE Positive Neutral Negative Mean SE Positive Neutral Negative

FCW 5.9 0.99 84.6% 15.4% 0% 6.1 1.03 88.5% 11.5% 0%

DN 6.0 1.11 88.5% 7.7% 3.8% 5.7 1.12 84.6% 11.5% 3.8%

SA (road surface) 6.1 0.80 96.2% 3.8% 0% 5.7 1.08 84.6% 11.5% 3.8%

SA (rerouting) 6.1 1.13 92.3% 3.8% 3.8% 6.0 1.10 84.6% 15.4% 0%

WZW 6.2 0.97 88.5% 11.5% 0% 5.8 1.24 80.8% 15.4% 3.8%

SWIW 5.9 0.91 92.3% 7.7% 0% 5.5 1.27 73.1% 19.2% 7.7%

participants’ perceptions of CV technology into three categories:
positive (scores 5–7), neutral (score 4), and negative (scores
1–3). In general, the majority of participants provided positive
feedback regarding the Wyoming CV applications and indicated
that CV technology provided improved road condition
information and would help to increase traffic safety.

Table 3 presents participants’ assessment results of the
readability and usefulness of the specific CV applications. Overall,
the readability and usefulness of the Wyoming CV applications
have been well accepted by the participants; specifically, FCW and
rerouting notifications were found to be most useful.

CONCLUDING REMARKS

This study assessed the subjective experiences related to the
readability and usefulness of the Wyoming CV application in
a simulated environment. It was found that the majority of
the participants preferred to have the CV warnings provided
in a combination of visual and auditory modalities. For visual
warnings, this study grouped the CV warnings into four priority
levels and presented warnings that have a higher priority closer
to the driver. This was considered by the participants to be
an effective way for them to perceive the imminent safety
hazard when multiple warnings were displayed on the HMI
simultaneously. For auditory warnings, the participants reported
that a simple “beep” sound for advisory warnings and a series
of louder “beep” sounds for critical warnings would best draw
their attention while a repeated voice message tended to disturb
normal driving. The participants indicated that CV technology
was most useful under poor-visibility driving conditions; FCW
and rerouting were the most useful CV applications. It is
worth pointing out that FCW and rerouting CV applications
have the most significant potential to realize the WYDOT CV
pilot’s strategic goals to improve safety and mobility. Generally
speaking, FCW and rerouting applications are tactical-level
CV applications, which can directly help drivers to avoid a
crash or being congested on the freeway. In comparison, DN,
SWIW, WZW, and other SA applications are strategic-level CV
applications, which aim to assist drivers more easily to recognize
safety hazards or unexpected events, particularly when drivers’
recognition ability is limited by visibility.

Nevertheless, assessment results reveal that there are still
a couple of issues that need to be considered to further
improve the design of the Wyoming CV HMI. The primary

issue is the potential distraction of CV HMI. As presented
in Table 2, approximately 27% of participants indicated that
distraction could be introduced by the Wyoming CV HMI
(i.e., 12% found the CV warning distracting, and 15% found
them neutral). Another issue is that the usefulness of CV
technology tends to be less significant during normal daytime
driving conditions or when drivers can recognize hazardous
conditions without receiving CV warnings. From Table 2, it
was found that only 42% of participants stated that they are
going to depend on the CV applications to identify upcoming
hazards, and less than two thirds of the participants showed
desirability of having CV technology in their vehicles. These
findings are consistent with a previous study that found drivers
may not exactly trust in advanced driver assistance systems (Kidd
et al., 2017) and also further proved previous research findings
that truck drivers would like to receive acceptable feedback
that is designed and implemented properly (Roetting et al.,
2003) and displeasure with the continuous auditory warnings
(Bazilinskyy et al., 2019). Therefore, these findings indicate
that, under normal daytime driving conditions, the repeated
auditory or visual CV warnings might distract drivers from
their driving task. With this consideration, this study suggests
that the design of CV HMI needs to add a user customization
capability to suit the needs of individual users, such as a
CV system that can be automatically or manually deactivated
under normal daytime driving conditions. Nevertheless, it is
necessary to clarify that this study is highly practice-focused,
which aimed at supporting the WYDOT CV pilot. At this stage,
this study only recruited 18 male drivers from WYDOT and
the trucking industry; findings of this pilot study presented
some preliminary insights into the optimal design of CV
HMI display in a way that drivers can perceive CV warnings
promptly without being distracted. Considering the increasingly
popularity of CV technology, future studies need to recruit
a larger number of participants that cover a wider range of
demographic features to further investigate general drivers’
perceptions of the Wyoming CV HMI through statistical analysis
and modeling, which will further benefit the design of CV HMI
for general purposes (Engström et al., 2015; Biondi et al., 2017;
Vaezipour et al., 2018, 2019).

In fact, safe driving is the principle task for human drivers. As
specified by the National Highway Traffic Safety Administration
(Nhtsa, 2009), the primary requirement of the in-vehicle HMI
is to deliver desired warnings or notifications to a driver
while minimizing driver distraction. Therefore, the optimal
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design of CV HMI needs to balance a trade-off between the
readability of the messages (e.g., maximum number of messages
displayed on the CV HMI, length of each message and the
modality of the message, etc.) and drivers’ capability to safely
recognize and timely respond to the received message(s). This
is particularly critical during high-workload situations or under
adverse weather conditions when drivers need more response
and reaction time to an unexpected event because overloaded CV
HMI information may distract the driver and lead to safety issues.
However, there is still a lack of a comprehensive assessment
of the effectiveness of different CV HMI display designs and
development of CV HMI design guidelines considering human
factors. Specifically, the following aspects need to be further
investigated: (1) Which kind of HMI display modality (i.e.,
visual, auditory, voice message, or a combination of visual and
auditory) best delivers the meaning of a warning? (2) What is
the maximum number of warnings that can be displayed on
the HMI without confusing drivers? (3) When should an early
warning be displayed and how long should the warning remain
on the HMI? (4) How to prioritize different warnings when
they are displayed simultaneously on the HMI. In summary,
incorporating human factors into the design and development
of CV HMI has become increasingly critical, which aims to
minimize the potential distractions introduced by these in-
vehicle technologies.

DATA AVAILABILITY STATEMENT

The data that support the findings will be available upon
reasonable request from the corresponding author, MA.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by University of Wyoming IRB. The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

MA, GY, and SG: study conception and design. SG and GY:
experiments and data collection. GY: analysis and interpretation
of results. GY and MA: drafted manuscript preparation. All
authors reviewed the results and approved the final version
of the manuscript.

FUNDING

This research was sponsored by the United States Department
of Transportation (USDOT) (Grant No. DTFH6116RA00007)
and the Wyoming Department of Transportation (WYDOT)
(Grant No. RS04218).

ACKNOWLEDGMENTS

The authors thank the Volpe National Transportation Systems
Center for reviewing and revising the questionnaire survey, and
the participants from the WYDOT and Trihydro Corporation for
participating in the driving simulator study and their feedback on
the Wyoming CV HMI.

REFERENCES
Accenture Consulting (2016). Accenture Connected Vehicle Survey: What

Drivers Want. Available online at: https://www.accenture.com/us-en/insight-
automotive-connected-vehicle (accessed July, 2020).

Ahmed, M. M., Yang, G., Gaweesh, S., Young, R., and Kitchener, F. (2019a).
Performance evaluation framework of Wyoming connected vehicle pilot
deployment program: summary of Phase 2 pre-deployment efforts and lessons
learned. J. Intell. Connect. Vehicles 2, 41–54. doi: 10.1108/jicv-03-2019-
0006

Ahmed, M. M., Yang, G., and Gaweesh, S. (2019b). Development and assessment of
a connected vehicle training program for truck drivers. Transp. Res. Rec. 2673,
113–126. doi: 10.1177/0361198119827904

Bao, S., LeBlanc, D. J., Sayer, J. R., and Flannagan, C. (2012). Heavy-truck
drivers’ following behavior with intervention of an integrated, in-vehicle crash
warning system: a field evaluation. Hum. Fact. 54, 687–697. doi: 10.1177/
0018720812439412

Bazilinskyy, P., and de Winter, J. (2015). Auditory interfaces in automated driving:
an international survey. Peer J Comput. Sci. 1:e13. doi: 10.7717/peerj-cs.13

Bazilinskyy, P., Larsson, P., Johansson, E., and de Winter, J. C. F. (2019).
Continuous auditory feedback on the status of adaptive cruise control, lane
deviation, and time headway: an acceptable support for truck drivers? Acoust.
Sci. Technol. 40, 382–390. doi: 10.1250/ast.40.382

Biondi, F., Strayer, D. L., Rossi, R., Gastaldi, M., and Mulatti, C. (2017). Advanced
driver assistance systems: using multimodal redundant warnings to enhance
road safety. Appl Ergon. 58, 238–244. doi: 10.1016/j.apergo.2016.06.016

Biondi, F. N., Getty, D., McCarty, M. M., Goethe, R. M., Cooper, J. M., and
Strayer, D. L. (2018). The challenge of advanced driver assistance systems

assessments: a scale for the assessment of the human-machine interface of
advanced driver assistance technology. Trans. Res. Rec. 2672, 113–122. doi:
10.1177/0361198118773569

Boyle, R. (2012). No more GPS voice: haptic steering wheel buzzes to give you
directions. Popular Sci.

Cummings, M. L., Kilgore, R. M., Wang, E., Tijerina, L., and Kochhar, D. S. (2007).
Effects of single versus multiple warnings on driver performance. Hum. Fact.
49, 1097–1106. doi: 10.1518/001872007x249956

Dey, K. C., Rayamaihi, A., Chowdhury, M., Bhavsar, P., and Martin, J. (2016).
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication
in a heterogeneous wireless network – Performance evaluation. Trans. Res. Part
C 68, 168–184. doi: 10.1016/j.trc.2016.03.008

Engström, J., Johansson, E., and Östlund, J. (2015). Effects of visual and cognitive
load in real and simulated motorway driving. Trans. Res. Part F 8, 97–120.
doi: 10.1016/j.trf.2005.04.012

FHWA, (2009). Manual on Uniform Traffic Control Devices for Streets
and Highways. Washington, D.C: U.S. Department of Transportation –
FHWA.

FHWA, (2015). Multiple Sources of Safety Information from V2V and V2I:
Redundancy, Decision Making, and Trust-Safety Messages Design Report.
Washington, D.C: U.S. Department of Transportation – FHWA.

Fitch, G. M., Bowman, D. S., and Llaberas, R. E. (2014). Distracted Driver
Performance to Multiple Alerts in a Multiple-Conflict Scenario. Hum. Fact. 56,
1497–1505. doi: 10.1177/0018720814531785

Francois, M., Crave, P., Osiurak, F., Fort, A., and Navarro, J. (2017). Digital,
analogue, or redundant speedometers for truck driving: impact on visual
distraction, efficiency and usability. Appl. Ergon. 65, 12–22. doi: 10.1016/j.
apergo.2017.05.013

Frontiers in Psychology | www.frontiersin.org 11 August 2020 | Volume 11 | Article 188934

https://www.accenture.com/us-en/insight-automotive-connected-vehicle
https://www.accenture.com/us-en/insight-automotive-connected-vehicle
https://doi.org/10.1108/jicv-03-2019-0006
https://doi.org/10.1108/jicv-03-2019-0006
https://doi.org/10.1177/0361198119827904
https://doi.org/10.1177/0018720812439412
https://doi.org/10.1177/0018720812439412
https://doi.org/10.7717/peerj-cs.13
https://doi.org/10.1250/ast.40.382
https://doi.org/10.1016/j.apergo.2016.06.016
https://doi.org/10.1177/0361198118773569
https://doi.org/10.1177/0361198118773569
https://doi.org/10.1518/001872007x249956
https://doi.org/10.1016/j.trc.2016.03.008
https://doi.org/10.1016/j.trf.2005.04.012
https://doi.org/10.1177/0018720814531785
https://doi.org/10.1016/j.apergo.2017.05.013
https://doi.org/10.1016/j.apergo.2017.05.013
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01889 August 16, 2020 Time: 14:16 # 12

Ahmed et al. Assessment of Connected Vehicle HMI

Gopalakrishna, D., Garcia, V., Ragan, A., English, T., Zumpf, S., Young,
R. K., et al. (2016). Connected Vehicle Pilot Deployment Program Phase 1,
Comprehensive Pilot Deployment Plan, ICF/Wyoming. Report No. FHWA-JPO-
16-297. Washington, D.C: U.S Department of Transportation.

Höltl, A., and Trommer, S. (2013). Driver Assistance Systems for Transport System
Efficiency: influencing Factors on User Acceptance. J. Intell. Trans. Syst. 17,
245–254. doi: 10.1080/15472450.2012.716646

Houtenbos, M., de Winter, J. C. F., Hale, A. R., Wieringa, P. A., and Hagenzieker,
M. P. (2017). Concurrent audio-visual feedback for supporting drivers at
intersections: a study using two linked driving simulator. Appl. Ergon. 60,
30–42. doi: 10.1016/j.apergo.2016.10.010

Jakus, G., Dicke, C., and Sodnik, J. (2015). A user study of auditory, head-up and
multi-modal displays in vehicles. Appl. Ergon. 46, 184–192.

Jeong, E., Oh, C., Lee, G., and Cho, H. (2014). Safety Impacts of Inter-
vehicle Warning Information Systems for Moving Hazards in Connected
Vehicle Environments. Trans. Res. Rec. 2424, 11–19. doi: 10.3141/
2424-02

Kidd, D. G., Cicchino, J. B., Reagan, I. J., and Kerfoot, L. B. (2017). Driver trust in
five driver assistance technologies following real-world use in four production
vehicles. Traffic Inj. Prevent. 18:su1.

Li, Y., Xing, L., Wang, W., Wang, H., Dong, C., and Liu, S. (2017). Evaluating
impacts of different longitudinal driver assistance systems on reducing multi-
vehicle rear-end crashes during small-scale inclement weather. Accident Anal.
Prevent. 107, 63–76. doi: 10.1016/j.aap.2017.07.014

Ma, J., Smith, B. L., and Fontaine, M. D. (2016). Comparison of In-Vehicle
Auditory Public Traffic Information With Roadside Dynamic Message
Signs. J. Intell. Trans. Syst. 20, 244–254. doi: 10.1080/15472450.2015.10
62729

Montiglio, M., Martini, S., and Murdocco, V. (2006). “Development of a lane
keeping support system for heavy trucks,” Proceedings of the 3th ITS World
Congress, London, U.K.

Naujoks, F., Forster, Y., Wiedemann, K., and Neukum, A. (2017). Improving
Usefulness of Automated Driving by Lowering Primary Task Interference
through HMI Design. J. Adv. Trans. 2017:6105087.

Nhtsa. (2009). Technology Applications for Traffic Safety Program: A Primer. Report
No. DOT-HS-811-040. Washington, D.C: U. S.Department of Transportation.

Nhtsa. (2015). Traffic Safety Facts: Crash Status – A Brief Statistical Summary.
Report No. DOT-HS-812-115. Washington, D.C: U.S. Department of
Transportation.

Olaverri-Monreal, C., and Jizba, T. (2016). Human factors in the design of human–
machine interaction: an overview emphasizing V2X Communication. IEEE
Trans. Intell. Vehicles 1, 302–313.

Olia, A., Abdelgawad, H., Abdulhai, B., and Razavi, S. N. (2016). Assessing the
potential impacts of connected vehicles: mobility, environmental, and safety
perspectives. J. Intell. Trans. Syst. 20, 229–243. doi: 10.1080/15472450.2015.
1062728

Osman, O. A., Codjoe, J., and Ishaq, S. (2015). Impact of time-to-collision
information on driving behavior in connected vehicle environments using a
driving simulator test bed. J. Traffic Logist. Eng. 13, 18–24.

Péter, G., Zsolt, S., and Aradi, S. (2017). Highly Automated Vehicle Systems. Report
No. 978-963-313-173-2. Budapest: Budapest University of Technology and
Economics.

Roetting, M., Huang, Y. H., McDevitt, J. R., and Melton, D. (2003). When
technology tells you how you drive: truck drivers’ attitudes towards feedback
by technology. Trans. Res. Part F 6, 275–287.

Schwarz, F., and Fastenmeier, W. (2017). Augmented reality warnings in vehicles:
effects of modality and specificity on effectiveness. Accident Anal. Prevent. 101,
55–66. doi: 10.1016/j.aap.2017.01.019

Sentouh, C., Popieul, J. C., Debernard, S., and Boverie, S. (2014). Human-machine
interaction in automated vehicle: The ABV Project. IFAC Proc. Vol. 47, 6344–
6349. doi: 10.3182/20140824-6-za-1003.01721

Shladover, S. E. (2018). Connected and automated vehicle systems: introduction
and overview. J. Intell. Trans. Syst. 22, 190–200. doi: 10.1080/15472450.2017.
1336053

Song, T. J., Park, S., and Oh, C. (2016). Field experiment for exploring the effects
of in-vehicle warning information on driver’s responsive behavior. J. Eng. 2016,
124–133. doi: 10.1049/joe.2015.0173

Steele, M., and Gillespie, R. B. (2001). Shared control between human and machine:
using a haptic steering wheel to aid in land vehicle guidance. Proc. Hum. Fact.
Ergon. Soc. Ann. Meet. 45, 1671–1675. doi: 10.1177/154193120104502323

Talamonti, W., Tijerina, L., Blommer, Swaminathan, R., Curry, R., and Ellis,
R. D. (2017). Mirage events & driver haptic steering alerts in a motion-base
driving simulator: a method for selecting an optimal HMI. Appl. Ergon. 65,
90–104.

Vaezipour, A., Rakotonirainy, A., Haworth, N., and Delhomme, P. (2018). A
simulator evaluation of in-vehicle human machine interfaces for eco-safe
driving. Trans. Res. Part A 118, 696–713. doi: 10.1016/j.tra.2018.10.022

Vaezipour, A., Rakotonirainy, A., Haworth, N., and Delhomme, P. (2019). A
simulator study of the effect of incentive on adoption and effectiveness of an
in-vehicle human machine interface. Trans. Res. Part F 60, 383–398.

Wang, C., Yu, L., and Hao, Y. (2016). Automotive Usability: Human Computer
Interaction in the Vehicle. Available online at: http://homepages.rpi.edu/
~{}gricer/symposium/papers/Automotive_paper.pdf (accessed July, 2020).

WYDOT, (2017). Wyoming DOT Connected Vehicle Pilot: Improving Safety and
Travel Reliability ON 1-80 in Wyoming. Cheyenne, WY: Wyoming Department
of Transportation.

Zhao, Y., Wagh, A., Hou, Y., Hulme, K., Qiao, C., and Sadek, A. W. (2016).
Integrated Traffic-Driving-Networking Simulator for the Design of Connected
Vehicle Applications: Eco-Signal Case Study. J. Intell. Trans. Syst. 20, 75–87.
doi: 10.1080/15472450.2014.889920

Zulkefli, M., Mukherjee, P., Sun, Z., Zheng, J., Liu, H. X., and Huang, P. (2017).
Hardware-in-the-loop testbed for evaluating connected vehicle applications.
Trans. Res. Part C 78, 50–62. doi: 10.1016/j.trc.2017.02.019

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ahmed, Yang and Gaweesh. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 188935

https://doi.org/10.1080/15472450.2012.716646
https://doi.org/10.1016/j.apergo.2016.10.010
https://doi.org/10.3141/2424-02
https://doi.org/10.3141/2424-02
https://doi.org/10.1016/j.aap.2017.07.014
https://doi.org/10.1080/15472450.2015.1062729
https://doi.org/10.1080/15472450.2015.1062729
https://doi.org/10.1080/15472450.2015.1062728
https://doi.org/10.1080/15472450.2015.1062728
https://doi.org/10.1016/j.aap.2017.01.019
https://doi.org/10.3182/20140824-6-za-1003.01721
https://doi.org/10.1080/15472450.2017.1336053
https://doi.org/10.1080/15472450.2017.1336053
https://doi.org/10.1049/joe.2015.0173
https://doi.org/10.1177/154193120104502323
https://doi.org/10.1016/j.tra.2018.10.022
http://homepages.rpi.edu/~{}gricer/symposium/papers/Automotive_paper.pdf
http://homepages.rpi.edu/~{}gricer/symposium/papers/Automotive_paper.pdf
https://doi.org/10.1080/15472450.2014.889920
https://doi.org/10.1016/j.trc.2017.02.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Frontiers in Psychology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 2216

ORIGINAL RESEARCH
published: 11 September 2020

doi: 10.3389/fpsyg.2020.02216

Edited by: 
Oren Musicant,  

Ariel University, Israel

Reviewed by: 
Iveta Eimontaite,  

Cranfield University, United Kingdom
Lee Skrypchuk,  

Jaguar Land Rover, United Kingdom

*Correspondence: 
Guy Cohen-Lazry  

guy.cohenlazry@gmail.com

Specialty section: 
This article was submitted to  

Performance Science,  
a section of the journal  
Frontiers in Psychology

Received: 14 June 2020
Accepted: 07 August 2020

Published: 11 September 2020

Citation:
Cohen-Lazry G and Borowsky A 
(2020) Improving Drivers’ Hazard 

Perception and Performance Using a 
Less Visually-Demanding Interface.

Front. Psychol. 11:2216.
doi: 10.3389/fpsyg.2020.02216

Improving Drivers’ Hazard Perception 
and Performance Using a Less 
Visually-Demanding Interface
Guy Cohen-Lazry* and Avinoam Borowsky

Human Performance Evaluation Lab, Industrial Engineering and Management Department, Ben-Gurion University of the 
Negev, Beer-Sheva, Israel

In-vehicle devices and infotainment systems occasionally lead to driver distraction, and 
as a result, increase the risk of missing on-road information. In the current study, a novel 
multi-touch interface for an in-vehicle infotainment system was evaluated, which potentially 
requires less visual attention and thus may reduce distraction and increase safety. The 
interface was compared with a functionally similar control interface in terms of hazard 
perception metrics and mental workload. Twenty-two participants drove a simulated route 
once with each system. During each drive, which included eight potentially-hazardous 
scenarios, participants were instructed to interact with one of the in-vehicle interfaces to 
perform phone calls or to navigate to specified destinations. Eye-gaze data were collected 
throughout the drive to evaluate whether participants detected the hazards while interacting 
with the in-vehicle interface, how much time they needed to identify them, and for how 
long they engaged with the secondary task. Additionally, after each drive, participants 
completed a NASA R-TLX questionnaire to evaluate their subjective workload during their 
engagement with the secondary tasks. Participants using the multi-touch interface needed 
less time to complete each secondary task and were quicker at identifying potential 
hazards around them. However, the probability of detecting hazards was similar for both 
interfaces. Finally, when using the multi-touch interface, participants reported lower 
subjective workload. The use of a multi-touch interface was found to improve drivers’ 
performance in terms of identifying hazards quicker than the control condition. The road 
safety and driver distraction implications of this novel interface are discussed.

Keywords: hazard perception, in-vehicle interfaces, interface design, multi-touch interface, mental workload, 
driver distraction, eye movements

INTRODUCTION

While driving, drivers occasionally engage with secondary tasks and become distracted. These 
tasks may be  activities that relate to safety or performance, like using navigational aids (driving-
related activities; Pfleging and Schmidt, 2015), or activities that are not related to driving, like 
phone conversations or radio tuning (non-driving-related activities; Pfleging and Schmidt, 2015). 
In the United  States alone, nine people are killed daily in crashes related to driver distraction, 
and more than a 1,000 are injured (National Center for Statistics and Analysis, 2017). The most 
significant negative effect on drivers’ performance is caused by distractions that are both visually 
and manually demanding (Klauer et  al., 2006; Vegega et  al., 2013). The diversion of drivers’ gaze 
away from the forward roadway to the in-vehicle device “affects the degree to which drivers are 
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able to perform primary driving tasks, such as event or object 
detection, and maintain vehicle control” (Vegega et al. 2013, p. 21).

The visual-manual driver distraction guidelines (National 
Highway Traffic Safety Administration, 2012), adopted and 
applied by most manufacturers, suggest that any visual-manual 
task that may be  performed on a system, should be  designed 
in such a way that it “can be  completed by the driver while 
driving with glances away from the roadway of 2  s or less 
and a cumulative time spent glancing away from the roadway 
of 12 s or less” (National Highway Traffic Safety Administration, 
2012, p.  10). One way to follow these guidelines is to use 
speech-based interfaces. Studies have shown that, for performing 
certain tasks, speech-based interfaces improve drivers’ 
performance in aspects such as lateral positioning (Itoh et  al., 
2004), speed management (Gärtner et  al., 2001), and hazard 
detection (Ranney et  al., 2002). Also, speech-based interfaces 
reduce the time required to complete tasks and drivers’ subjective 
workload (Itoh et  al., 2004). Nevertheless, other studies have 
shown contradictory results. Yager (2013), for example, has 
tested drivers’ distraction by asking drivers to engage in secondary 
tasks and to respond to occasional illuminating lights. Yager 
has shown that, even though using speech-based interfaces 
reduce drivers’ reaction times to the illuminating light compared 
with manual-interfaces, they still react slower than drivers who 
do not engage in a data-entry task at all. In another study 
(Lee et  al., 2001), the use of speech-based interfaces caused 
a 30% increase in drivers’ reaction times to periodic braking 
of a lead vehicle and introduced a higher workload. In a study 
regarding cognitive distraction in driving (Strayer et  al., 2014), 
the authors have found that the cognitive demands of speech-
based interfaces pose a significant threat to traffic safety, when 
used for specific tasks such as texting and e-mailing.

In the current research, a novel approach is taken to reduce 
driver distraction when using an in-vehicle device. A new touch-
based interface is evaluated [hereafter multi-touch interface 
(MTI)], which does not require drivers to gaze toward the 
screen and thus potentially reduces drivers’ distraction. The MTI 
is designed as such that, in order to use any command, the 
driver places three fingers anywhere on the screen, and the 
system detects their absolute and relative locations and adapts 
to them. Then, by removing two fingers off the screen, the 
driver initiates one of three menus (functions) that is uniquely 
assigned to each finger. The menus, starting from the left-most 
finger, are a radio menu, a phone menu and a navigation menu. 
When a particular menu is selected, the driver can slide her 
finger either up, down, left, or right to select one of four 
predetermined selections from a star-like menu (i.e., favorites). 
Each phase is accompanied by an appropriate display in case 
the driver wishes to verify her actions visually. The fact that 
the MTI identifies the triple-touch wherever the driver places 
her fingers reduces the driver’s need to gaze at the screen to 
search for specific touch-buttons spatially. This feature addresses 
a significant disadvantage of other touch-based interfaces, which 
require users to make almost the same number of glances toward 
them as tactile interfaces to perform tasks (Bach et  al., 2008).

A driving simulator study was conducted to compare the MTI 
with a typical in-vehicle interface [hereafter control interface (CI)] 

to test the hypothesis that the MTI will help drivers to complete 
a predefined secondary task quicker than the CI and that the 
MTI will lead to better hazard perception performance than the 
CI. The CI that was chosen for this study was a popular infotainment 
application that was downloaded from Google Play over half a 
million times and included both a visual-manual and speech-
based interfaces. Three relevant measures were chosen to compare 
the interfaces. First, the time drivers needed to complete a task 
was recorded, since minimizing the secondary task’s duration is 
an effective method for reducing driver distraction (National 
Highway Traffic Safety Administration, 2012) and increasing safety. 
For the second metric, an eye-tracker was used to measure hazard 
perception, a measure, which is highly correlated with traffic 
safety (Horswill and McKenna, 2004; Horswill et al., 2015). Third, 
whenever a hazard was identified, we measured the time participants 
needed to identify it, as another indication of hazard perception 
quality. Finally, the NASA R-TLX was used to test whether the 
fact that the MTI requires less visual attention also reduces drivers’ 
workload compared with the CI.

Twenty-two participants were asked to drive two simulated 
routes, once using each system, during which they were instructed 
by the experimenter to initiate phone-calls or change the 
destination in the navigation system. The CI was used either 
in its visual-manual modality or its speech-based modality. 
Throughout the drive, various scenarios that required drivers’ 
attention (not necessarily their action) were initiated, during 
which drivers’ gaze and task performance were measured. Since 
the MTI potentially requires fewer number of glances toward 
the in-vehicle display than the CI, it was expected that:

Hypothesis 1: when using the MTI, participants will 
complete the predefined secondary tasks faster;
Hypothesis 2: when using the MTI, participants will 
be more likely to detect hazards;
Hypothesis 3: when using the MTI, participants will 
identify hazards faster; and
Hypothesis 4: when using the MTI, participants will 
be experience lower levels of workload than the CI.

MATERIALS AND METHODS

Participants
Twenty-two undergraduate students from the Ben-Gurion 
University (BGU) of the Negev (12 female, ages 21–28  years, 
M  =  25.5, SD  =  2.11) volunteered to a 1-h session, for which 
they were compensated by course credit. All participants had 
normal or corrected to normal visual acuity and normal contrast 
sensitivity. Participants who had glasses were asked to wear 
contact lenses for the experiment. Participants reported having 
a valid driver’s license for at least 3 years (M = 7.34, SD = 2.10), 
and driving, on average, at least twice a week.

Apparatus
The experiment was conducted using a medium-fidelity desktop 
driving simulator. Participants were seated on a gaming seat 1.1 m 
away from three 24'' LCDs, providing ~90° of horizontal view. 
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The driving simulator was controlled via a G27 Logitech steering 
wheel and a set of pedals. The driving environment was generated 
using a simulator software provided by Realtime Technologies 
Inc. (RTI; Royal Oak, MI). The experimental route was a 15-min 
long drive in an urban environment, in which participants were 
instructed to keep the right lane whenever possible and drive 
as they would typically do in similar real-world situations.

Participants’ point of gaze was monitored using a Dikablis 
light-weight head-mounted eye-tracker (Ergoneers Inc., Manching, 
Germany). The eye-tracker’s software synchronizes data regarding 
participants’ gaze with the scene displayed on the simulator 
screen to provide a measure of where participants’ point of gaze 
is located at any given moment of the drive. The two types of 
interfaces (the MTI and the CI) were installed on a 7'' Lenovo 
tablet. The tablet was positioned to the right of the steering 
wheel, where an in-vehicle device is commonly located (Figure 1).

Driving Scenarios
Participants drove two simulated routes, during which they 
encountered 12 driving scenarios (eight were hazardous scenarios, 
and four were filler scenarios that did not include any hazard). 
Participants were also asked to perform tasks using the in-vehicle 
tablet 12 times during each drive. Eight out of the twelve 
tasks were given 4  s before a scenario (target or filler). This 
resulted in eight tasks for which we could measure participants’ 
hazard perception performance, and four tasks and four scenarios 
which served as decoys.

The same eight scenarios were used for both drives, but 
in a randomized order, to allow a direct comparison between 
the interfaces. Thus, each participant experienced each scenario 
twice, once while performing a task using the MTI and once 
while performing the same task using the CI.

In-Vehicle Tasks
During a drive, participants were verbally instructed by the 
relevant system to complete two types of tasks. Participants were 
asked either to make a phone call to one of four pre-programmed 
numbers (four tasks) or to change the destination in the navigation 

systems to one of four pre-programmed options (four more 
tasks). When using the MTI, the entry method was always the 
multi-touch-based interface. When using the CI, four tasks (Set 1) 
were completed using a visual-manual (touch) interface, and 
four tasks (Set 2) were accomplished using a speech-based 
interface. All tasks using the touch interface required three taps 
on the screen: one tap to choose the required “app” (i.e., navigation 
or phone), a second tap to enter the “favorites” screen, and a 
third tap to choose the requested destination or contact. The 
speech-based interface required only one click to activate the 
system’s “listening mode.” Appendix A provides a comprehensive 
description of the eight scenarios, the type of the associated 
task and the modality used for that task when using the CI.

Workload Evaluation
To assess levels of workload, participants filled in the NASA 
R-TLX. This questionnaire consists of six Likert-style items 
measuring factors such as “mental demand,” “effort,” and 
“frustration” on a scale ranging from one (low) to nine (high). 
Participants filled in the same questionnaire twice, once after 
using the MTI and once after using the CI.

Experimental Design
A two (interface type) by eight (scenario) within-subject 
experiment was designed to minimize the effect of individual 
differences, and each participant experienced the same eight 
scenarios using both interfaces. The order of scenarios was 
randomized so that the two drives did not resemble one another. 
Additionally, the order of the interfaces that the drivers had to 
use was counterbalanced between participants. However, for each 
scenario, the type of task and the modality used (when using 
the CI) remained the same. For example, during the scenario 
where a car was pulling into the road from the right shoulder, 
participants always had to make a phone call, and the modality 
was always visual-manual (for a complete list, see Appendix A).

Procedure
Upon arrival at the lab, participants were briefed about the 
study and were asked to sign an informed consent form. During 
a 25-min learning session, participants were introduced to both 
interfaces and to the presets pre-programmed into them (four 
phone numbers and four destinations). Participants were allowed 
to practice and engage with both interfaces and to ask questions 
if they had any. Participants were also introduced to the 
simulator, where they were allowed to drive for 10 min without 
the secondary tasks and for 5 min while performing secondary 
tasks. Then, the two 15-min experimental drives began. Following 
each drive, participants were asked to fill in the NASA R-TLX 
questionnaire. After finishing the two driving sessions and 
filling the questionnaires, participants were debriefed and were 
allowed to ask questions about the experiment and the study’s 
goals. The study was reviewed and approved by the internal 
Human Subjects Research Committee at BGU.

Dependent Variables
Task duration was calculated as the time interval between the 
initiation of a pre-recorded auditory request to complete a task 

FIGURE 1 | The simulator setup, with the tablet installed to the right of the 
steering wheel.
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(4  s before the beginning of a scenario) and when the task was 
completed. The end of the task was defined as either releasing 
the last finger off the screen (MTI), making the last click  
(CI – visual-manual interface) or finishing the speech command 
(CI – speech-based interface). A binary variable was used to 
evaluate hazard identification. Hazard identification was either 
marked as a success (i.e., participants noticed the hazard in the 
scenario, “1”) or as a failure (i.e., participants did not notice 
the hazard in the scenario, “0”). A value of “1” was assigned 
whenever the participant’s gaze was fixated at the hazard for 
more than 100 ms (International Organization for Standardization, 
2014). Note that since we used an eye-tracking system to evaluate 
hazard identification, it can only account for identification using 
the central vision. It may well be that drivers were able to discern 
the hazard sooner using their peripheral vision, but this would, 
in any case, require the shift of the central vision system to the 
location of the hazard to complete its recognition. The time it 
took participants to identify a hazard was defined as the time 
interval between the beginning of a scenario (when the hazard 
instigator became visible) and the participant’s first glance towards it.

Analysis
Analyses were all conducted using SPSS version 23 (IBM Corp., 2015). 
A repeated measures mixed-model regression was used, using 
two independent variables as fixed effects: interface type (MTI 
or CI) and task type (navigation or phone). Two variables 
(participants and scenario number) were also included in the 
models as random effects. The interactions between the variables 
were not relevant for the current study and were left out of 
the models. Furthermore, since the MTI was used using only 
one modality, and the CI was used using two different modalities, 
the analyses had to be  separated. Thus, in order to compare 
between the two types of interfaces in terms of the various 
dependent measures, each CI modality (visual-manual or speech-
based) was compared to the MTI using a separate regression 
model within the generalized linear mixed model (GLMM). 
These two separate regression models were applied once for 
the secondary task duration (log-linear regression), once for 
hazard identification (logistic regression) and once for the 
hazard identification time (log-linear regression).

Each regression model included task type and interface type 
as fixed effects and participants and scenarios as random effects. 
All second-order interactions were included in the models. 
Overall, six different models were used in the analyses 
(Appendix B provides an extended description of the analyzed 
models). The significance level was set to α  =  0.05. Final 
models were achieved using a backward elimination procedure, 
and post hoc pairwise comparisons were corrected for multiple 
comparisons using the sequential Bonferroni procedure.

RESULTS

Task Duration
Two linear regression models included a log transformation 
of the secondary task’s duration as the dependent variable. 
With regard to the visual-manual modality (Set 1), the final 

model supported Hypothesis 1 and revealed that the interface 
type’s main effect was significant [F(1, 96)  =  44.6, p  <  0.01], 
as participants were faster to complete the secondary task when 
using the MTI (M  =  2.95  s, SD  =  2.69) than when using the 
CI (M  =  7.34  s, SD  =  4.14). Task type [F(1, 96)  =  0.63, 
p  <  n.s], scenario [F(2, 96)  =  0.02, p  <  n.s], and participant 
[F(20, 96)  =  1.56, p  <  n.s] were all insignificant. Similarly, 
with regard to the speech-based modality (Set 2), Hypothesis 
1 was again supported as it was found that interface type had 
a significant effect on secondary task’s duration [F(1, 87) = 29.8, 
p  <  0.01], with participants performing the task faster when 
using the MTI (M  =  3.97  s, SD  =  2.98) than when using the 
CI (M  =  7.74  s, SD  =  3.96). Task type [F(1, 87)  =  3.55, 
p  <  n.s], scenario [F(2, 87)  =  1.12, p  <  n.s], and participant 
[F(20, 87)  =  1.11, p  <  n.s] were all insignificant. Means task 
durations are presented in Figure  2. The averages presented 
in this figure and every other figure in this paper are based 
on raw data means and not on the model estimates.

Hazard Identification Probability
Two logistic regression models included hazard identification 
as the dependent variable. With regard to the visual-manual 
modality, the final model of the first logistic regression did 
not support Hypothesis 2, as it revealed that interface type 
did not significantly affect participants’ probability of detecting 
a hazard, χ2(1)  =  0.19, p  =  n.s; participants identified 61% of 
all hazards when using the MTI and 57% of all hazards when 
using the CI. Among all other variables, scenario was the 
only significant variable, χ2(3)  =  10.93, p  <  0.01, whereas task 
type χ2(1) = 0.01, p < n.s and participant χ2(20) = 4.51, p < n.s 
were both insignificant. Similarly, with regard to the speech-
based interface, Hypothesis 2 was again not supported since 
the final model of the second logistic regression revealed that 
interface type did not significantly affect participants’ probability 
of detecting a hazard, χ2(1) = 0.57, p = n.s; participants identified 

FIGURE 2 | Average task completion duration for the two interfaces and the 
two scenario sets. Bars represent standard error.
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72% of all hazards when using the MTI and 70% of all hazards 
when using the CI. Again, among all other variables, scenario 
was the only significant variable, χ2(3) = 14.11, p < 0.01 whereas 
task type χ2(1)  =  4.12, p  <  n.s and participant χ2(20)  =  7.95, 
p  <  n.s were both insignificant. Hazard detection rates for the 
different scenarios are presented in Figure  3.

Hazard Identification Time
Two linear regression models included a log transformation 
of hazard identification time as the dependent variable. With 
regard to the manual-visual modality, the final model of the 
first linear regression supported Hypothesis 3 and revealed 
that the effect of interface type was significant [F(1, 91) = 47.16, 

p  <  0.01], with participants identifying the hazards quicker 
when using the MTI (M  =  0.65  s, SD  =  1.70) than when 
using the CI (M = 1.20 s, SD = 2.63). Task type [F(1, 91) = 0.62, 
p  <  n.s], scenario [F(2, 91)  =  0.74, p  <  n.s], and participant 
[F(20, 91) = 1.52, p < n.s] were all insignificant. Similar results, 
supporting Hypothesis 3, were found for the second linear 
regression model with regard to the speech-based modality 
such that interface type had a significant effect on hazard 
identification time [F(1, 93) = 31.93, p < 0.05], with participants 
identifying the hazards quicker when using the MTI (M = 0.45 s, 
SD  =  1.27) than when using the CI (M  =  0.72  s, SD  =  0.75). 
Task type [F(1, 93)  =  3.77, p  <  n.s], scenario [F(2, 93)  =  1.81, 
p  <  n.s], and participant [F(20, 93)  =  2.05, p  <  n.s] were all 
insignificant. Estimated means of the hazard identification times 
are presented in Figure  4.

NASA R-TLX
The fourth item in the NASA R-TLX, regarding task performance, 
is rated on an inverse scale (1 – high performance, 9 – low 
performance) and was inversed before data analysis. To compare 
the workload that participants experienced while using each 
interface, a repeated-measures analysis of variance (ANOVA) 
was conducted with R-TLX ratings as the dependent variable 
and interface type as a within-subject fixed factor. As hypothesized 
(Hypothesis 4), there was a significant effect of interface type 
on participants’ workload ratings, F(1, 87)  =  16.64, p  <  0.01. 
The difference between the questionnaire’s items was insignificant, 
F(5, 87)  =  2.04, p  <  n.s. The NASA R-TLX ratings for each 
item, presented in Figure  5, show that the MTI scored lower 
than the CI across all effort and pressure factors, indicating 
lower workload. When asked about their task performance 
using each one of the in-vehicle interfaces (fourth item on 

FIGURE 3 | The probability of a participant in either group to detect a 
hazard, presented per the eight different scenarios.

FIGURE 4 | Average hazard-identification durations for the two interfaces 
and the two scenario sets. Bars represent standard error.

FIGURE 5 | Average NASA R-TLX ratings for the six factors, comparing the 
multi-touch interface (MTI) and the control interface (CI). Bars represent 
standard error.
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the NASA R-TLX), participants rated the CI significantly higher, 
meaning they thought that their performance was better when 
interacting with it than when interacting with the MTI (Figure 5). 
This result is intriguing since the aforementioned objective 
measures have indicated better performance when using the MTI.

DISCUSSION

This study was aimed at evaluating a novel concept of interfaces 
for in-vehicle devices that target the reduction of driver distraction 
and the increase of safety. The interface was compared with 
a control interface allowing both visual-manual and speech-
based interactions. Since all findings were similar for both types 
of input modalities, from hereon, we will disregard this difference 
between modalities and only discuss the differences between 
the two systems. Results point to a significant improvement 
in three distraction-related measures. First, in-line with Hypothesis 
1, when using the MTI, the time participants needed to complete 
each task was significantly reduced. One possible explanation 
for the longer time participants needed to complete tasks using 
the CI is that, to operate it, participants had to visually locate 
and aim their finger at the right touch-button three times. 
The MTI, on the other hand, could be  operated anywhere on 
the screen, without glancing towards it even once. Second, as 
predicted in Hypothesis 3, participants identified hazards faster 
when using the MTI. Finally, as expected in Hypothesis 4, the 
workload participants reported was also significantly reduced 
when the MTI was used. The decrease in task duration time 
is an essential aspect in designing in-vehicle interfaces, and it 
has been shown that the longer people glance away from the 
road to perform a secondary task, the likelihood of a crash 
increases (e.g., Simons-Morton et al., 2014). Burns et al. (2010) 
have discussed the negative effect of long task-durations and 
have suggested that a key manner in which this risk could 
be  decreased is by designing interfaces that support quicker 
performance. The results of the current study are consistent 
with their claim, showing that indeed a shorter task-duration 
may lead to an increase in safety. Despite these essential 
improvements, Hypothesis 2 was disconfirmed as we  did not 
find any advantage for the MTI concerning drivers’ probability 
of identifying a hazard. One possible explanation regards the 
overall difficulty of identifying hazards in the various scenarios.

By examining the identification probabilities in Figure  3, it 
is evident that in six out of the eight scenarios, the probability 
of identifying a hazard was either very high or very low. This 
suggests that, in most cases, identifying a hazard was either very 
easy (ceiling effect) or very difficult (floor effect) when using 
both interfaces, thus reducing the possibility of revealing significant 
differences between them. Nevertheless, despite this lack of 
difference between the interfaces, when using the MTI, participants 
were faster at identifying hazards than when they were using 
the CI. Possibly, this difference is rooted in the experimental design.

Throughout the experiment, the time between the requirement 
to complete a task and the initiation of a scenario was fixed 
at 4  s. Additionally, as seen in Figure  2, participants using 
the MTI needed, on average, less than 4  s to complete a task, 

whereas participants using the CI needed more than 7  s. Thus, 
it seems that, on average, participants using the MTI completed 
their tasks before the initiation of the hazardous scenario. 
Hence, throughout the entire duration of the scenario, participants 
were not distracted by a secondary task and could divert all 
their attention to the road. Conversely, participants using the 
CI were still engaged in performing the secondary task for a 
few more seconds when the scenario started. Nevertheless, 
they were still able to identify the hazard before the end of 
the hazardous scenario. These task duration differences between 
the groups explain why the hazard identification times were 
shorter for the MTI even though the identification probabilities 
were similar for both interfaces. Participants using the MTI 
had their full attention allocated to monitoring the environment 
throughout the entire scenario, whereas participants using the 
CI had to divide their attention between the secondary task 
and the road environment, at least for a few seconds. Still, 
even though participants who were using the CI began monitoring 
the environment later, the relatively long duration of the 
scenarios (~10  s) and the aforementioned ceiling and floor 
effects allowed them to identify the hazards at a similar likelihood 
to that of participants who were using the MTI. This might 
explain the similarities in identification probabilities alongside 
with the differing identification times.

This analysis of task duration may also put into perspective 
the results regarding the hazard identification times. Since 
drivers using the MTI completed their tasks before the initiation 
of the scenario, they did not, in fact, identify hazards while 
performing secondary tasks. Therefore, their superiority in 
identifying hazards faster than participants using the CI may 
be  an effect of performing a single task and not two tasks 
simultaneously, which is a well-known advantage in hazard 
perception tasks (e.g., Burge and Chaparro, 2018). Further 
research is required to determine whether the MTI also reduces 
hazard identification times during the performance of secondary 
tasks. Nevertheless, even if the faster hazard identification times 
are the result of performing just one task, this result still 
denotes an advantage in favor of the MTI.

This study’s results suggest an advantage for a multi-touch-
only interface over common tactile interfaces. However, several 
limitations have to be  acknowledged. First, the sample size and 
its homogeneity (undergraduate students) limit the results’ 
generalizability. Second, using the touch-only interface may pose 
requirements (e.g., a certain level of dexterity) or have implications 
that were not studied here. Jin et  al. (2007), for example, have 
shown that touch interfaces have to be designed differently when 
designing for the elderly. This aspect of the interface was not 
examined in this study and should be  a part of future studies. 
Third, while this study focused on the real-time hazard perception-
related effects, the introduction of a new interface probably has 
long-term effects as well. Specifically, future research should 
examine people’s attitudes towards the interface (e.g., their trust 
or annoyance with it), and whether they find it useful. Fourth, 
due to technical limitations, the order of scenarios was not 
randomized between participants. Although this could have led 
to a learning effect, an examination of Figure  3 suggests that 
even if such an effect existed, it affected both groups similarly, 
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as indicated by their similar detection rates throughout all scenarios. 
Finally, while the study compared the MTI with a control interface, 
it did not use a no-task reference condition as a baseline for 
drivers’ non-distracted performance. Therefore, although the MTI 
showed significant advantages when compared to the CI, it is 
not possible to tell how distracting the system is when compared 
to driving without a non-driving-related secondary task.

This study, thus, has shown that the MTI, which is based 
on a non-visual MTI, has two advantages over a representative 
in-vehicle touchscreen interface and a speech-based interface. 
Participants using MTI needed less time to complete phone 
and navigation tasks and also experienced a lower workload. 
These two variables are closely related to the concept of hazard 
perception and thus suggest a significant potential for systems 
such as the MTI in reducing driver distraction and enhancing 
safety (e.g., Burns et  al., 2010) An analysis of the results 
regarding hazard identification time and hazard identification 
probabilities pointed to issues in the experimental design that 
provide possible alternative explanations for some of the results. 
Thus, concerning these two variables, we  are currently unable 
to determine whether the MTI does or does not have an 
advantage over the CI. Further studies will be  designed to 

allow an exploration of these other variables using different 
scenario designs and timings.
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APPENDIX A

Out of the eight hazardous scenarios, four included a materialized hazard, like a car on the shoulders pulling out into the road or a car that fails to maintain its lane 
position or speed properly. The four other scenarios included latent hazards, like workers standing in a construction area next to the road (that could jump into the 
participant’s lane at any moment) or a playground next to the road (from where a child could run into the road). Table A1 describes the eight scenarios.

APPENDIX B

Two different general linear mixed models were used to analyze each dependent variable. One regression was used to model the differences between the experimental 
system and the control system when using the visual-manual modality in both systems, and the other was used to model the differences between the systems when 
using the speech-based modality in the control system and the multi-touch modality in the experimental system. Notably, participants in the experimental system used 
only the visual-manual modality. These two separate regression models were applied once for the secondary task completion time (log-linear regression) dependent 
variable, once for hazard identification (logistic regression) dependent variable, and once for the hazard identification time (log-linear regression) dependent variable. 
Overall, six models were analyzed, as shown in Table A2.

TABLE A1 | Driving scenarios, tasks, and input modalities.

Scenario Type of task Experimental 
modality

Control system 
modality

Set 1

A bus station close to the road (scenario 7)

A detection was defined as looking behind the bus station to make sure no pedestrians walk 
there

NAV MT VM

A tree hiding the sidewalk during a turn (scenario 6)

A detection was defined as looking for a hidden pedestrian behind the tree
NAV MT VM

A construction site (scenario 4)

A detection was defined as gazing at the site to make sure no workers barge into the road
PHC MT VM

A car pulling into the road (scenario 2)

A detection was defined as observing the car as it pulled out and into the road
PHC MT VM

Set 2

A car unable to maintain lane and speed (scenario 8)

A detection was defined as making more than one observation of that vehicle
NAV MT SB

A playground near the road (scenario 1)

A detection was defined as gazing at the site to make sure no workers barge into the road
NAV MT SB

A stopped truck on the right lane (scenario 5)

A detection was defined as observing the car as the driver passed by it
PHC MT SB

A phone booth near the road (scenario 3)

A detection was defined as looking for a pedestrian to walk from within or behind the booth
PHC MT SB

VM, visual manual; MT, multi-touch; SB, speech-based; NAV, navigation; PHC, phone call.

TABLE A2 | A summary of the regression models used for the analyses.

Dependent variable

Task completion time Hazard-identification Hazard-identification time

Control system interface
Visual-manual (Set 1 scenarios) Regression model 1 Logistic regression model 1 Regression model 3
Speech-based (Set 2 scenarios) Regression model 2 Logistic regression model 2 Regression model 4
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During Autonomous Driving
Alice C. Stephenson1* , Iveta Eimontaite1, Praminda Caleb-Solly2, Phillip L. Morgan3,
Tabasum Khatun1, Joseph Davis1 and Chris Alford1

1 Health and Applied Sciences, University of the West of England, Bristol, United Kingdom, 2 Bristol Robotics Laboratory,
University of the West of England, Bristol, United Kingdom, 3 Human Factors Excellence (HuFEx) Research Group, and
Centre for Artificial Intelligence, Robotics and Human-Machine Systems (IROHMS), School of Psychology, Cardiff University,
Cardiff, United Kingdom

Driving cessation for some older adults can exacerbate physical, cognitive, and mental
health challenges due to loss of independence and social isolation. Fully autonomous
vehicles may offer an alternative transport solution, increasing social contact and
encouraging independence. However, there are gaps in understanding the impact of
older adults’ passive role on safe human–vehicle interaction, and on their well-being.
37 older adults (mean age ± SD = 68.35 ± 8.49 years) participated in an experiment
where they experienced fully autonomous journeys consisting of a distinct stop (an
unexpected event versus an expected event). The autonomous behavior of the vehicle
was achieved using the Wizard of Oz approach. Subjective ratings of trust and reliability,
and driver state monitoring including visual attention strategies (fixation duration and
count) and physiological arousal (skin conductance and heart rate), were captured
during the journeys. Results revealed that subjective trust and reliability ratings were high
after journeys for both types of events. During an unexpected stop, overt visual attention
was allocated toward the event, whereas during an expected stop, visual attention
was directed toward the human–machine interface (HMI) and distributed across the
central and peripheral driving environment. Elevated skin conductance level reflecting
increased arousal persisted only after the unexpected event. These results suggest that
safety-critical events occurring during passive fully automated driving may narrow visual
attention and elevate arousal mechanisms. To improve in-vehicle user experience for
older adults, a driver state monitoring system could examine such psychophysiological
indices to evaluate functional state and well-being. This information could then be used
to make informed decisions on vehicle behavior and offer reassurance during elevated
arousal during unexpected events.

Keywords: autonomous vehicle, eye tracking, heart rate, human–machine interaction, human–machine interface,
older adults, skin conductance level, trust
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INTRODUCTION

The private car is a vital element for the mental and physical
well-being of older adults. Due to reduced mobility, the public
transport system can be inconvenient and inaccessible (Broome
et al., 2009). For example, challenges such as walking to a bus
stop, or getting on and off a bus, can cause significant problems
for adults with mobility issues. As such, driving provides access
to local services, social events, and encourages participation in
out-of-home activities. As well as the practical benefits to driving,
research has indicated several affective advantages such as feelings
of sensation, power, and youthfulness (Eisenhandler, 1990; Steg,
2005; Bergstad et al., 2011). However, age-related declines
in cognitive, visual capacities, physical disability, and illness,
subsequently impact driving ability as it becomes more physically
and cognitively demanding. The possibility of becoming a non-
driver rises with age (Anstey et al., 2006), and some drivers
choose to restrict their driving (Dellinger et al., 2001). Driving
cessation can have a negative impact on mobility and well-being,
and feelings of isolation can be amplified (Qin et al., 2019). Some
older adults find it more difficult to leave the home and stop
participating in local or social activities (Marottoli et al., 2000),
which in turn leads to a poorer quality of life. Consequently,
ceasing driving can rapidly exacerbate physical, cognitive, and
mental health challenges, and loss of independence.

Autonomous vehicles (AVs) promise to improve driving safety
and efficiency by effectively removing the human from the
driving task altogether. The role of the human is dependent on
the level of autonomy of the vehicle. The Society of Automotive
Engineering illustrated six levels of automation, ranging from
0 “No automation,” to 5 “Full automation” (SAE, 2018). While
Levels 2 and 3 require a driver to monitor the environment and
take back control of the vehicle when requested; Levels 4 and 5
requires little to no input from the driver. As different cognitive
and physical demands of the task are replaced by automation
elements, AVs may offer an alternative transport solution for
the older population. By enabling a viable transportation option,
mobility is likely to be restored enabling older adults to lead
more independent lives (Smith and Anderson, 2017). In turn,
this should promote participation in local and social events,
encouraging feelings of social inclusion and satisfaction.

While the advent of AV technology offers many potential
advantages for an aging population, the impact of the role as
a passive driver on safe human–vehicle interaction and older
adults’ well-being is not fully understood. Previous research has
indicated the negative impact of partially automated vehicles
on safe vehicle interaction, where the human is expected
to stay ‘in-the-loop’ and take back control of the vehicle
during expected or unexpected situations. Yet during Level 5
autonomous driving, the potentially negative consequences of
a takeover request are eliminated due to the fully automatic
capabilities of the vehicle. SAE (2018) refers to the in-vehicle
user as a ‘passenger’ rather than a form of driver. Although
the negative consequences of a takeover should be eliminated,
previous research has demonstrated that full automation still has
a significant impact on cognitive and affective functional state.
From a cognitive perspective, studies have demonstrated that

automation can increase mental underload and promote deficit
attentional strategies (Young and Stanton, 2002). Automation
has also been shown to encourage complacency and overtrust of
a system (Parasuraman and Manzey, 2010), as well as increase
frustration levels, particularly when automation cannot be
overridden (Comte, 2000). These issues are potentially amplified
in an older adult population with aging-related impairments,
as they are more likely to rely on automated systems (McBride
et al., 2011), find it more difficult to perform two or more tasks
simultaneously (Kramer and Madden, 2008), and are more prone
to lack understanding of advanced technology (Mann et al.,
2007). Moreover, research has indicated that older adults have
concerns using AVs due to issues related to trust and confidence,
such as not having an operator nearby during failures (Faber and
van Lierop, 2020). As such, some autonomous driving situations
may initiate feelings of anxiety, and repeated activation of a
stress response could be potentially damaging to their health and
well-being (Cohen et al., 2007).

Considering the significant impact on a passenger’s functional
state, a driver state monitoring (DSM) system including cognitive
and affective indices to improve safety and well-being has
been proposed (Collet and Musicant, 2019). A DSM system
continuously monitors a user using a hybrid of measures
including biological (e.g., muscle activity) and physical measures
(e.g., blink frequency). By synthesizing and classifying functional
state, the system can provide feedback to the passenger or adapt
vehicle behavior. DSM systems have traditionally been applied
during manual driving scenarios to detect fatigue and inattention.
Situations such as night-time driving (Phipps-Nelson et al., 2011),
prolonged driving (Finkleman, 1994), and extreme temperatures
(Xianglong et al., 2018) can induce fatigue; whereas mobile
phones (Strayer and Drews, 2007), in-vehicle systems (Arexis
et al., 2017), and eating (Tay and Knowles, 2004) can induce
inattention. In a manual driving scenario, a DSM system can use
remote sensors to monitor fatigue behaviors such as prolonged
eyelid closures and yawning. Upon detection of these behaviors,
the system can warn the driver, or others, of the potentially
dangerous situation.

Detecting fluctuations in cognitive and affective states with
a DSM system has many potential benefits for improving
passenger well-being and safety during Level 5 driving. The
information about a passenger’s state could be used to modify
in-vehicle information or vehicle behavior. For example, the
in-vehicle system could provide reassurance at the appropriate
time to reduce stress levels. It could also adapt vehicle behavior
to improve comfort, e.g., leaving more headway between the
vehicle in front. Alternatively, the system could identify the
passenger’s cognitive load to present the optimum amount of
feedback or information. For example, it could choose between
auditory or/and visual feedback modalities depending on what
the user is doing or how they are feeling. If the system detects
lapses in attention, it could encourage automation monitoring.
Manual driving research has provided promise toward the
technical development of real-time unobtrusive sensors to detect
driver state, however, additional studies are now needed to
uncover the impact of autonomous driving scenarios on human
cognition and arousal.
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It is not possible to measure typical performance indicators
of functional state during Level 5 autonomous driving as the
passenger is not required to carry out manual driving behaviors
(i.e., speed or lateral position changes). Capturing the human
response in real-time may disentangle functional states during
dynamic autonomous driving scenarios. To this end, most studies
have utilized continuous measures such as eye gaze and indices of
physiological arousal.

Cognitive underload and attentional deficits during
automated driving have been demonstrated by measures of
visual attention indexed by ocular behaviors. Visual strategy
and the distribution of fixation points can provide information
about where and when participants are shifting their attention.
In general, eye gaze has been shown to be directed away from the
driving environment (De Winter et al., 2014), and horizontal gaze
dispersion is greater (Louw and Merat, 2017), when compared
to manual driving, indicating lower situation awareness and
reduced load. However, cognitive load and attentional allocation
evolves over time with changing task demands. For example,
Strauch et al. (2019) found that participants fixated in safety-
critical areas (i.e., the steering wheel and forward roadway) more
so during automated versus manual driving.

Several studies have attempted to understand the associations
between constructs related to automation monitoring and
attention itself. For example, participants with a high level
of trust tended to monitor the road less (e.g., Helldin et al.,
2013; Hergeth et al., 2016; Körber et al., 2018; Walker et al.,
2019); and longer fixation duration and higher fixation count on
the driving environment were associated with greater situation
awareness (Shinohara et al., 2017). Considering the age-related
differences in human-automation interaction, it is not clear
whether similar relationships arise in older adult populations
during Level 5 driving.

Suboptimal levels of cognitive functioning can also be assessed
via psychophysiological measures of autonomic arousal (Lohani
et al., 2019). Carsten et al. (2012) found that heart rate was
lower during autonomous driving when compared to semi-
automated and manual driving, providing further support
for cognitive underload during periods of automation. Yet,
manual driving is confounded by physical effort (e.g., moving
the steering wheel, changing gears) and cardiac activity is
likely to be modulated by motor demands (Laborde et al.,
2017). Similar to studies measuring eye gaze, research into
physiological indices have indicated that safety-critical events
impact functional state. For example, Zheng et al. (2015)
found that masseter electromyography increased, and self-
reported comfort decreased, as the headway between the lead
vehicle decreased. During unexpected takeover requests and
misleading notifications, Ruscio et al. (2017) demonstrated an
increase in sympathetic arousal measured by increased skin-
conductance response amplitude. As increases in arousal have
been linked to attention narrowing (e.g., Laumann et al., 2003),
these results suggest that the breadth of attentional focus
is limited during safety-critical events (Meinlschmidt et al.,
2019). However, Ruscio et al. (2017) employed semi-automated
driving with takeover requests. Therefore, participants were
anticipating a takeover. This is distinct to Level 5 AVs

where participants will not anticipate having any direct
control of the vehicle.

Considering the potential AV benefits for older adults,
such as maintaining mobility and independence, and the age-
related individual differences related to human-automation
collaboration, a comprehensive understanding of older adults’
psychophysiological state during periods of automated driving,
particularly during safety-critical situations, is needed. Typically,
research employs comparisons of autonomous driving to manual
driving, but does not consider the distinct physical and cognitive
demands. To this end, the aim of the present study was to
investigate visual attention and autonomic arousal responses of
older adults to a safety-critical event during a Wizard of Oz real-
world autonomous journey. Participants experienced two types
of stops: (i) one journey with the vehicle executing an unexpected
stop due to detection of a ‘hazard’ (considered the safety-critical
event) and, (ii) a different journey with an expected stop due
to route set up in a repeated measures design with participants
acting as their own controls. We monitored visual attention via
fixation duration and fixation count, as well as physiological
indices of electrodermal activity and heart rate. We also collected
retrospective self-reported trust and reliability ratings in addition
to summary qualitative feedback. We predicted the unexpected
event would narrow the focus of overt visual attention coupled
with an increase in autonomic arousal. This study formed part
of the FLOURISH AV research project1 funded by Innovate UK,
which studied older adults’ perceptions and interactions with
AVs, including the development of an HMI, through co-design
in a series of simulator and real-life studies.

MATERIALS AND METHODS

Participants
Thirty-nine adults originally participated in this study.
Two participants were excluded from all analyzes due to
the AV experiencing technical errors during the journeys,
leaving 37 participants (16 females, 21 males, mean
age ± SD = 68.35 ± 8.49 years, range 48–89 years, two
participants under 60 years). Due to recording errors during
data collection, only 30 participants’ physiological data
were subsequently analyzed (12 females, 18 males, mean
age ± SD = 69 ± 8.75 years, range 48–89 years). Due to
vision complications such as cataract (three), technical errors
including unsuccessful calibration of the eye tracker (five), and
low gaze samples (three), only 26 participants’ eye tracking
data were subsequently analyzed (12 females, 16 males, mean
age± SD = 67.19± 7.32 years, range 52–89 years).

Five participants had corrected hearing. 17 participants were
educated to degree level and 10 participants were working full-
or part-time. All but three participants held a valid driving
license, driving, and on average drove 2,500–4,900 miles a
year. No participants had any previous experience with highly
automated driving. Those with significant health conditions (e.g.,
epilepsy, neurological impairments, and coronary issues) were

1http://www.flourishmobility.com
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not permitted to take part. Participants received a £20 voucher
as compensation for their participation to cover expenses. All
participants gave written informed consent in accordance with
the Declaration of Helsinki and were fully debriefed at the end of
the study. Ethical approval was obtained by the Faculty of Health
and Applied Sciences University of the West of England Research
Ethics Committee (HAS.18.09.024).

Apparatus
Autonomous Vehicle
A Pod Zero autonomous pod provided by Aurrigo (RDM Group)
was used as the AV (see Figure 1). The Pod is a compact research
and development vehicle designed to be used in pedestrian areas
and shared pedestrian/vehicle routes. It is electrically driven
and can be used continuously for a period of 10+ hours of
normal operation. It is a four-seater vehicle, with two benches
facing each other designed similarly to a four-seater in a train.
Due to safety regulations, a safety person was always present
in the vehicle observing the environment and had access to an
emergency stop button. Four marshals supervised the front and
back of the vehicle, and the route was supervised by additional
marshals at each intersection to ensure no vehicles or pedestrians
caused an obstruction.

The autonomous behavior of the Pod was achieved using
the Wizard of Oz approach (Kelley, 1985), whereby the Pod
was remotely teleoperated in manual mode using a hand-held
wireless control unit by an operator positioned behind the
vehicle not in view of the participant. Driving the Pod in
the teleoperated mode ensured that its actions were replicable
between participants; the Pod could be made to respond similarly
to different obstacles and followed the route as planned. At the
beginning of the study, participants were told the vehicle was
run fully autonomously. During debriefing, participants were told
the Pod was operated manually by a teleoperator walking behind
and remotely controlling it during the study. As the driving route
involved a pedestrian area, the vehicle was controlled at walking
speed, approximately 3–5 mph.

Human–Machine Interface (HMI)
The human–machine interface (HMI) was presented on a
HannsG HT161HNB 15.6′′ Multi Touch Screen connected

to a Kodlix GN41 Mini PC (Windows 10, Intel Celeron
processor, 8 GB RAM, 64 GB). The design of the HMI
was informed by HMI design principles, public engagement
workshops with older adults, and feedback from previous
iterations of the HMI (Morgan et al., 2018; Eimontaite et al., 2019;
Voinescu et al., 2020).

The HMI graphical touch screen displayed the vehicle speed,
time remaining until destination, a safe stop button, a journey
map, vehicle ‘health,’ and journey set up/change options (see
Figure 1). The functionality of the safe stop button was described
to the participant at the beginning of the study, emphasizing
that pressing this icon would initiate the vehicle to stop. The
vehicle ‘health’ icon provided information about the current
working order of the automated system including the tires,
brakes, network, and battery level. During the study, the vehicle
health was always shown as being in good working order. The
HMI presented visual and audio notifications to describe the
vehicle’s behavior and journey course, such as “Turning left” and
“You have arrived at your destination.”

Journeys
Participants in the study went on six consecutive counterbalanced
journeys. Before each journey, participants were provided with
a scenario that specified the journey they were required to set
up. There were six possible destinations/stops in total: Home,
Health Center, Recycling Center, Sports Center, Sports Field, and
Post Office. Among the six journeys there was always a journey
including an expected stop, and another journey including an
unexpected stop due to the ‘hazard.’ Both journeys were of an
equivalent length and lasted for approximately 6 min. Some of
the other journeys also included other variables such as picking
up a friend. As the main focus of the current paper is to
investigate the impact of an unexpected event, other journeys
will not be described in detail. All journeys were randomized
between participants so that the unexpected stop happened
either during journey two or journey five, and the expected stop
happened during journey one, journey three, or journey four.
Overall, participants experienced approximately 60 min of the
automated driving system.

The expected stop was initiated during journey set up and
was therefore expected by the participants. A few seconds before

FIGURE 1 | Autonomous vehicle and human–machine interface. (A) Autonomous Pod utilized during the study. (B) Human–machine interface display during the
journey.

Frontiers in Psychology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 57196147

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-571961 September 17, 2020 Time: 18:46 # 5

Stephenson et al. Driver State Monitoring in Autonomous Driving

the vehicle stopped, an HMI notification “You are arriving at
[Stop]” was shown. Once the vehicle stopped, a notification “You
have arrived at [Stop]” was shown. The HMI then displayed an
option to either resume or stop the journey. All participants
resumed the journey.

The unexpected stop was executed as an emergency stop
appearing to the participants as happening suddenly, and as such,
was not anticipated by the participants. A marshal was instructed
to answer their mobile phone and walk in front of the Pod. The
teleoperator of the Pod would then initiate the vehicle to stop. The
HMI notification “The vehicle detected a hazard in the road and
has stopped. Your journey will resume shortly” was presented on
the touch screen. Once the marshal had moved safely out the way,
the Pod would restart and continue the journey. The participant
was not required to do anything.

Procedure
Figure 2 shows a schematic of the experimental procedure.
Participants arrived and met the researcher near the student
accommodation area on the university campus, where the study
took place. Participants were reminded of the content of the
information sheet, asked about their well-being, and whether
they had any concerns or questions. They were told that the

study involved setting up a designated route on the HMI before
experiencing AV journeys around the student accommodation
area, for a total of six journeys. They signed printed copies of
the consent form and filled in the paper pre-trial questionnaires.
Next, they were shown images of the HMI and described
the overall layout. Once the physiological and eye tracking
equipment were set up, participants were taken outside and
introduced to the Pod. Participants sat inside the vehicle wearing
a seatbelt and facing forward. They were introduced to the safety
driver but were advised not to converse with them. Likewise, the
safety driver was told not to converse with the participant. Inside
the Pod, participants were shown the HMI. At the beginning
of each journey, the participant received the journey scenario
that specified the journey destination and stop if there was
one. Participants were required to set up the journey using
the HMI. During the first journey, the researcher assisted them
with setting up the journey and answering any questions they
had. All participants successfully set up the journeys throughout
the trial. Once the journey was set up, the vehicle started, and
the journey began. Participants were told they could interact
with the HMI as little or as much as they wished to. During
the journey, the HMI would present notifications describing
the journey process, such as “Turning left.” The HMI also

FIGURE 2 | Experimental procedure. (A) During the unexpected journey event, a marshal walked in front of the vehicle. The vehicle stopped and displayed a
message, “The vehicle has detected a hazard in the road. The vehicle will resume shortly.” The vehicle resumed once the roadway was clear. (B) During the
expected journey event, the vehicle came to a stop when it reached a destination. A message displayed, such as, “You have arrived at Sports Center.” The
participant was required to press “Resume” on the HMI for the vehicle to resume the journey.
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displayed a navigation map showing the vehicle route (see
Figure 1B). After each journey, participants provided verbal trust
and reliability ratings to a researcher, including a reason for their
rating. This process was repeated six times and all participants
completed six journeys. Afterward, participants left the vehicle
and filled in several post-trial questionnaires. The full testing
session, including the induction and filling out questionnaires,
lasted for approximately 150 min, depending on inter-individual
variability. We found that a significant amount of time was
required and needed to be scheduled when conducting studies
with older participants. It was important to ensure a pace that did
not increase fatigue, and enough time to reflect and discuss issues
raised and answer questions.

Measures
Trust and Reliability Ratings
We measured trust and reliability with a single-item scale to
limit interruptions to the AV journeys. Participants were asked
to rate how much they trusted the AV on a scale from 0 “Did
not trust” to 10 “Completely trust.” They were also asked how
reliable the vehicle was on a scale from 0 “Not reliable” to 10
“Completely reliable”. They were then asked to provide a reason
for their rating. Ratings were taken verbally from participants
at the end of every journey. The rating was also taken during
the pre- and post-trial questionnaire phase, where participants
were asked their current trust and reliability ratings of AVs on
a paper questionnaire.

Physiological Signals
Continuous physiological acquisition of heart rate (beats per
minute; BPM) and electrodermal activity (skin conductance
level; µS) were collected using an Empatica E4 wristband
(Empatica Inc., Cambridge, MA, United States and Milan,
Italy) to measure levels of autonomic arousal. The sampling
frequency for the electrodermal activity sensor was 4 Hz and the
photoplethysmography sensor on the Empatica measured blood
volume pulse at 64 Hz. The internal Empatica software derived
the BPM. The Empatica E4 wristband was placed on participants’
non-dominant wrist to reduce the possibility of motion artifacts.
The Empatica was fastened tightly as comfortable for the
participant, so the wristband did not move around inducing
artifacts. The E4 also collected acceleration data from a 3-axis
accelerometer, which enabled monitoring of wrist movements.
The sampling frequency of the accelerometer was 32 Hz.

An event marking button on the Empatica E4 was pressed in
front of a camera, which triggered a LED light to be illuminated
on the Empatica, and simultaneously logged a timestamp in the
data. This mode of creating a marker was done to aid the later
analysis of when events of interest (i.e., the unexpected stop)
occurred in the physiological data.

Eye Tracking
Tobii Pro Glasses 2, an eye tracking device, was used to collect
fixation metrics (Tobii Glasses Eye Tracker, Tobii Technology,
Stockholm, Sweden). The Tobii Glasses are a wearable eye tracker
worn like a pair of glasses. The design is lightweight and has
no side or bottom frame, preventing any distraction in the

participant’s visual field. The head unit is comprised of several
cameras: a high-definition camera captured the participant’s field
of view (82◦ horizontal and 52◦ vertical), and two eye tracking
sensors below each eye captured participants’ pupil diameter and
movements. To improve the accuracy of the eye tracking sensors,
near-infrared lights illuminated the pupil. The sensors have a
sampling rate of 100 Hz.

The Tobii Pro Glasses do not work with standard eyeglasses, as
glasses can create additional glint that can lead to data corruption.
Individuals wearing glasses were asked to remove them, and
a suitable prescription lens from a set supplied as part of the
Tobii kit was attached to the glasses. Once the participant was
wearing the head unit, the manufacturer’s calibration procedure
was followed which consisted of the participant fixating on a
central target. This process typically took less than 30 s. In
addition, participants were asked to view specific objects in the
environment so that the accuracy and alignment of the system
could be checked.

Pre-processing
Physiological Arousal
Data were opened and pre-processed in Microsoft Excel 2016
using Excel’s in-built functions. Electrodermal activity and heart
rate values, with corresponding timestamps, were pre-processed
separately and followed the same procedure. For electrodermal
activity (4 Hz sampling rate), every four samples were averaged
to produce one value for every second, and similarly, 1 s averages
were used to analyze heart rate data. The averaged data were
aligned to the appropriate time point, to allow for averaging
across time points of interest. Time points of interest were derived
from timestamps in a video recording and the Empatica event
marker. Z-scores were calculated to standardize the data due to
the individual variability of physiological responses (Braithwaite
et al., 2013) resulting in z-transformed skin conductance level
(zSCL) and z-transformed heart rate (zHR). For data relating
to the unexpected and expected stop, data were averaged within
two times of interest: 30 s before the stop, and 30 s after the
stop. 30 s was chosen as this is a standard epoch length used
in vigilance and psychophysiological state monitoring research
(e.g., Berry et al., 2015) and in other AV research investigating
changes in physiology in response to events (Ruscio et al., 2017).
This was also the minimum duration of recorded activity after
the specific events that was not affected by other events such as
the end of the journey.

Fixation Metrics
Eye tracking analysis was undertaken using Tobii Pro Lab
software version 1.138 (Tobii Technology, Stockholm, Sweden).
We first assessed the gaze sample percentage across the entire
recording. The eye tracking glasses captured a mean of 80%
(SD = 18%) of gaze samples.

Events were first logged to indicate the start and end of
events in the recording. Times of Interests (TOIs) were defined
by selecting the appropriate start and end event markers. This
allowed for segmentation of the data into intervals of time
relevant to subsequent data analysis. The ‘Pre-stop’ TOI was
considered the 30 s before the presentation of the notification
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when the vehicle stopped; the ‘During’ TOI consisted of the time
the notification was displayed visually (up to approximately 15 s);
the ‘Post-stop’ TOI was considered the 30 s after the presentation
of the notification. Gaze data from the recording were then
manually mapped onto an image best depicting the overall visual
view of the participant.

Next, Areas of Interests (AOIs) were defined on each
mapped image for each TOI (see Figure 3). Three AOIs
were created representing the HMI, the central view of the
driving environment, and the peripheral view of the driving
environment. To finish, the ‘I-VT Filter (Fixation)’ was applied
to the data, which set the velocity threshold parameter at 30
degrees/second. If the sample was below this threshold, it was
classified as a fixation.

Total fixation duration and total fixation count metrics were
exported from Tobii Pro Lab to Microsoft Excel 2016. Because the
time of the critical event varied across participants, and to enable
standardized comparison which took into account variability
within patterns of fixations, it was necessary to calculate fixation
count and fixation duration as a proportion of the total number of
fixations and fixation durations. Fixation duration was defined as
the amount of time spent looking at each AOI divided by the total
duration of fixations. Fixation count was defined as the number
of fixations toward each AOI divided by the total number of
fixations. Averages were then calculated for subsequent analyzes.

RESULTS

All statistical analyzes were performed using IBM SPSS
Statistics for Windows, version 26 (IBM Corp., Armonk,
NY, United States). Descriptive statistics were performed,
and normality was verified using the Shapiro–Wilk test and
visualization of QQ plots of the unstandardized residuals.
Assumptions of sphericity were tested using Mauchely’s test
and, if violated, Greenhouse–Geisser estimates were used in
the repeated measures calculations. The statistical threshold for
significance was set to two-tailed p < 0.05. Effect size was
reported as eta squared (η2) for one-way ANOVA significant
results and partial eta squared (η2

p) for two-way ANOVA
significant results (Cohen, 1988). Post hoc analyzes were run with
Bonferroni correction.

FIGURE 3 | Areas of Interest (AOI) for eye tracking analysis. (A) Central
environment. (B) Peripheral environment. (C) Human–machine interface.

For trust and reliability ratings, a one-way repeated measures
ANOVA (Journey: pre, unexpected, expected, and post) was
undertaken. A 2 (Stop: unexpected and expected) × 2 (TOI: 30 s
before and 30 s after) repeated measures ANOVA was performed
to understand the impact of an expected and unexpected stop
on heart rate and skin conductance level z scores. Two two-way
repeated measures ANOVA were undertaken on both fixation
count and fixation duration measures. The first was a 2 (Stop:
unexpected and expected) × 3 (AOI: central, peripheral, and
HMI) repeated measures ANOVA to understand the impact
of journey type on AOI. The second ANOVA was a 2 (Stop:
unexpected and expected) × 3 (TOI: pre-stop, during, and post-
stop) repeated measures ANOVA to understand the impact of
journey type on time.

Trust and Reliability Ratings
The descriptive statistics are displayed in Table 1. For
trust ratings, a significant repeated measures ANOVA
[F(2.05,73.86) = 15.05, p < 0.001, η2 = 0.295] with post hoc
comparisons revealed that trust increased significantly from
pre-all journeys to post-all journeys [p < 0.001], from pre-all
journeys to the unexpected stop [p < 0.001], and from pre-
all journeys to the expected stop [p < 0.001]. There was no
significant difference in trust ratings between the unexpected and
expected stop [p = 0.100].

For reliability, the one-way repeated measures ANOVA
model showed that the main effect for journey was significant
[F(1.44,51.79) = 25.56, p < 0.001, η2 = 0.415] and post hoc
comparisons revealed that reliability ratings increased from pre-
all journeys to post-all journeys [p < 0.001], from pre-all journeys
to the unexpected stop [p < 0.001], and from pre-all journeys to
the expected stop [p < 0.001]. Again, there was no significant
difference in reliability ratings between the unexpected and
expected stop [p = 0.100]. Overall, these findings indicate that
subjective trust and reliability increased after AV experience and
were not differentially impacted by the unexpected event.

Heart Rate
A 2 (stop: unexpected and expected)× 2 (time: pre-stop and post-
stop) repeated measures ANOVA on zHR yielded no significant
main effects of stop, time, or an interaction effect [F(1,29) ≤ 0.56,
p ≥ 0.461]. Heart rate was similar between the period before the
expected stop [M = −0.15, SD = 1.01] and after the expected
stop [M = −0.12, SD = 0.93]; and between the period before the
unexpected stop [M =−0.13, SD = 0.95], and after the unexpected
stop (M = −0.06, SD = 0.92). As illustrated in Figure 4, heart
rate increased during the unexpected stop, but this did not reach
statistical significance.

Skin Conductance Level
The ANOVA model revealed no significant main effects for stop
[F(1,29) = 0.17, p = 0.684] or time [F(1,29) = 0.37, p = 0.546].
However, the interaction effect was significant [F(1,29) = 0.98,
p = 0.019, η 2

p = 0.176].
Pairwise comparisons revealed that during the unexpected

stop, zSCL was greater following the stop [M = 0.16, SD = 0.83]
when compared to zSCL preceding the stop [M = −0.05,
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TABLE 1 | Mean (SD) of trust and reliability ratings over journeys.

Subjective rating(0–10) Journeys

Pre- Post- After an unexpected stop After an expected stop

Trust 7.11 (2.50) 9.22 (1.13) 9.16 (1.43) 9.00 (1.78)

Reliability 7.19 (2.39) 10.00 (0.88) 9.35 (1.18) 9.45 (1.02)

FIGURE 4 | Heart rate and skin conductance level during an unexpected (red) and expected (blue) stop. Gray dashed line represents the time point the vehicle
stopped. Shaded areas represent ± the standard error of the mean difference. (A) Heart rate (z-transformed). (B) Skin conductance level (z-transformed).

SD = 0.72; p = 0.043]. There was no difference in zSCL before
[M = 0.06, SD = 0.96] and after [M = −0.09, SD = 0.89]
the expected stop.

In combination with the heart rate data, these results indicate
that sympathetic arousal increased following vehicle cessation
during the unexpected stop. See Figure 4 for a depiction of the
skin conductance level response.

Fixation Count
The 2 (stop: expected and unexpected) × 3 (AOI: central
view, peripheral view, HMI) repeated measures ANOVA
yielded a significant main effect of AOI [F(1.42,35.55) = 27.74,
p < 0.001, η2

p = 0.526], and a significant two-way interaction
[F(1.52,38.10) = 28.47, p < 0.001, η2

p = 0.532]. The main effect of
the stop was not significant [F(1,25) = 0.44, p = 0.51; Table 2].

Post hoc comparisons of the two-way interaction revealed a
higher number of fixations on the central environment during
an unexpected stop compared to an expected stop [p < 0.001];
whereas fixation count was greater on the HMI area during the
expected stop, compared to the unexpected stop [p < 0.001].

Overall, during the unexpected stop, the number of fixations
were higher on the HMI area compared to the peripheral
environment [p < 0.001], and the central environment compared
to the peripheral environment [p < 0.001]. During the expected
stop, the number of fixations were higher on the HMI compared
to the central environment [p < 0.001], and the HMI compared
to the peripheral environment [p < 0.001]. In combination, these
results reveal that the number of fixations within the central
environment was higher during an unexpected stop, whereas

the number of fixations within the HMI was higher during
an expected stop.

The 2 (stop: unexpected and expected) × 3 (time: pre-stop,
during, and post-stop) repeated measures ANOVA revealed no
significant main effects of time [F(1.56,39.03) = 0.88, p = 0.399] or
stop [F(1,25) = 0.44, p = 0.513], nor a significant interaction effect
[F(1.21,30.21) = 1.45, p = 0.244; Table 3]. See Figures 5, 6 for a
depiction of the results.

Fixation Duration
The 2 (stop)× 3 (AOI) ANOVA model yielded a significant main
effect for AOI [F(1.59,39.72) = 29.23, p < 0.001, η2

p = 0.539], and
a significant interaction effect [F(1.58,39.37) = 23.27, p < 0.001,
η2

p = 0.482]. The main effect for stop was not significant
[F(1,25) = 0.44, p = 0.516; Table 2].

Post hoc comparisons revealed that fixation duration on
the HMI was longer during the expected stop compared to
the unexpected stop [p = 0.003], but longer on the central
environment during the unexpected stop compared to the
expected stop [p < 0.001]. Fixation duration on the peripheral
environment was marginally greater during the expected
compared to the unexpected stop [p = 0.055]. Additionally,
for the unexpected stop, fixation duration was shorter for the
peripheral environment when compared to the HMI [p < 0.001]
and the central environment [p < 0.001]. For the expected
stop, fixation duration was longer on the HMI compared the
peripheral environment [p < 0.001] and the central environment
[p < 0.001].

The 2 (stop) × 3 (time) repeated measures ANOVA revealed
a significant main effect of time [F(1.63,40.82) = 6.52, p = 0.006,
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TABLE 2 | Mean (SD) of fixation metrics count (%) and duration (%) across the human–machine interface (HMI), central environment, and peripheral environment during
expected and unexpected stops.

Fixation metric HMI Central environment Peripheral environment

Expected Unexpected Expected Unexpected Expected Unexpected

Fixation count (%) 52.57(30.07) 30.32(28.23) 20.70(20.02) 46.50(26.35) 17.81(20.85) 12.52(14.76)

Fixation duration (%) 32.36(27.75) 18.86(23.06) 11.99(13.86) 30.03(22.55) 8.44(11.54) 5.07(5.97)

TABLE 3 | Mean (SD) of fixation metrics count (%) and duration (%) across pre-, during, and post- expected and unexpected autonomous journeys.

Fixation metric Pre- During Post-

Expected Unexpected Expected Unexpected Expected Unexpected

Fixation count (%) 31.94(25.91) 28.87(25.68) 30.17(42.32) 30.43(31.74) 28.97(20.38) 30.04(25.03)

Fixation duration (%) 17.36(16.87) 17.58(17.79) 19.34(31.02) 19.51(25.30) 16.08(13.95) 16.88(19.27)

FIGURE 5 | Fixation count (%) during expected and unexpected events (stops). (A) Fixation count during unexpected and expected journey events over areas of
interest. (B) Fixation count during unexpected and expected journey events over times of interest. Bolded line represents the median value. Box represents the
interquartile range. Vertical lines represent the lower/upper adjacent values. ♦ represents the mean value. **p < 0.001, *p < 0.05.

η2
p = 0.207]. The main effect for stop [F(1,25) = 0.44, p = 0.516]

and the interaction effect were not significant [F(2,50) = 0.21,
p = 0.813]. Fixation duration was greater during the stop
[M = 19.96, SD = 8.42] compared to after the stop [M = 16.48,
SD = 7.72], regardless of whether it was an expected or
unexpected stop [p = 0.01]. See Table 3 for an overview of the
means and standard deviations.

In combination, these results suggest that while similar
visual demands were afforded to the scene, participants
visual attention was distinctly allocated during the unexpected
and expected stops. Fixation duration was longer on the
central environment during an unexpected stop, whereas
fixation duration was longer on the HMI during an expected
stop, indicating distinct visual attention resource allocation
between the different types of stop. The results are depicted
in Figures 7, 8.

DISCUSSION

This study sought to understand the impact of an unexpected
event during Level 5 autonomous driving on gaze behavior,
autonomic arousal, and associated trust levels. To accomplish
this, an experiment was designed where the participants
experienced what they thought were autonomous journeys
that included two stops on separate journeys: one unexpected
stop initiated by a ‘hazard,’ and one expected stop initiated
as part of the planned journey set up. Elevated electrodermal
activity persisted after the unexpected stop. Gaze fixation
metrics revealed several visual behavior differences. Overall,
participants searched the central environment, inclusive
of the ‘hazard,’ for longer during the unexpected stop,
whereas during the expected stop, the HMI area captured
visual attention, as measured by greater fixation counts and
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FIGURE 6 | Total fixation count during expected and unexpected journey events (stops). The heat map represents the summary of all gaze points in the visual
environment over three time points of interest. Colors indicate the total gaze fixations (fixation count increases from green – yellow – orange – red).

FIGURE 7 | Fixation duration (%) during unexpected and expected journey events (stops). (A) Fixation count during unexpected and expected journey events over
areas of interest. (B) Fixation count during unexpected and expected journey events over times of interest. ♦ represents the mean value. **p < 0.001, *p < 0.05.

FIGURE 8 | Total fixation duration during expected and unexpected journey events (stops). The heat map represents the summary of all fixations in the visual
environment over three time points of interest. Colors indicate the total gaze fixation duration (fixation duration increases from green – yellow – orange – red).
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longer fixation durations. Trust and reliability ratings also
increased from pre-journey values and remained high after each
type of journey.

The distribution and duration of fixations measured with
eye tracking outline the differences between the two types of
journeys: while in the unexpected stop journey participants had
longer fixation durations and greater fixation count toward the
central environment (containing the ‘hazard’), in the expected
stop visual attention was directed toward the HMI. Visual
behaviors between stops were similar over time, indicating
similar demands on visual attention. General visual scanning
behavior can be understood by fixation counts, as more shifts
within a scene are associated with a greater frequency of fixations.
Fixation duration can provide further insight by indicating
visual attention demands. Basic visual processing research has
demonstrated that fixation duration increases with visual scene
complexity (Pomplun et al., 2013) and cognitive load (Rayner,
1998), and is linked to uncertainty (Brunyé and Gardony,
2017). As such, our patterns of results imply that during
an unexpected stop, visual attention was directed toward the
central environment containing the ‘hazard,’ with the participants
searching for information, rather than focusing on other aspects
of the scene. These results are similar to research studying
ocular behavior during manual driving and hazardous situations.
The variance of fixations decreased when presented with a
critical situation (Chapman and Underwood, 1998). In contrast,
fixation duration increased coming up to, and during, a critical
situation (e.g., Chapman and Underwood, 1998; Underwood
et al., 2005). In addition, a negative relationship between
task demands during driving and visual scanning behavior
has been demonstrated, i.e., higher task demands reduced the
dispersion of visual scanning (e.g., Recarte and Nunes, 2003;
Savage et al., 2013). Moreover, Guo et al. (2019) found that
fixation frequency and duration increased during accident scenes
reflecting increased anxiety.

Searching for information related to the unexpected event
might be explained by increased anxiety (Guo et al., 2019):
the narrowing of visual attention, focusing on the hazard,
is a common feature of increased arousal and stress (Chajut
and Algom, 2003; Gable and Harmon-Jones, 2010). Moreover,
the physiological results show increased sympathetic arousal,
following the unexpected stop. Skin conductance levels increased
with vehicle braking due to the unexpected event. This
increase persisted up to 30 s, yet there was no significant
difference found during the expected stop journey. Driving
studies have indicated that high skin conductance levels are
modulated by various phenomena such as increased workload
(e.g., Mehler et al., 2012), stress (e.g., Affanni et al., 2018),
anxiety (Barnard and Chapman, 2018), and lower trust in
automation (Morris et al., 2017; see Lohani et al., 2019 for
a review). It is therefore difficult to infer specifically why
skin conductance levels rose, other than reflecting an overall
increase in sympathetic arousal. Trust ratings were high after
all journeys, implying trust levels did not modulate sympathetic
arousal. However, response bias, particularly following verbal
ratings, may have led to an overestimation of self-reported
trust. It should be noted that trust was measured retrospectively

once the vehicle had successfully completed the journey.
Factors such as trust, workload, and anxiety are time-varying,
and as such, participants may have experienced lower trust
levels during the journey, represented by heightened skin
conductance. However, as the vehicle behaved appropriately
to the unexpected event (e.g., braking and notifying the
participant), and the journey completed successfully, this
may have encouraged participants to rate their trust of
the vehicle’s behavior positively at the end of the journey
(Choi and Ji, 2015).

We did not find any statistically significant difference in
heart rate although Figure 4 shows elevated heart rate, similar
to skin conductance, for the unexpected stop compared to
the expected stop. As skin conductance is regulated by the
sympathetic nervous system, and heart rate is modulated
by both the activation and suppression of sympathetic and
parasympathetic branches of the autonomic nervous system,
respectively (Thayer et al., 2010), our results suggest that
the vehicle stopping in response to a unexpected event
might reflect a mild sympathetic dominance. Ruscio et al.
(2017) measured physiological responses to takeover requests
following various warnings. During semi-autonomous driving,
heart rate decreased relative to manual driving following
reliable warnings, misleading warnings, and no warnings. Skin
conductance response amplitude increased during misleading
warnings and no warnings. They also found that respiratory sinus
arrhythmia, an index of parasympathetic activity, increased from
manual driving to an unexpected takeover with no warning.
Their results reveal an imbalance between the parasympathetic
and sympathetic branches during takeovers preceded by a
misleading or no warning. The authors suggest that this
discrepancy may reduce attentional capacity, resulting in
cognitive overload. Although we did not measure specific or
non-specific response amplitude changes, but rather changes in
skin conductance level, our results are compatible as we found
a similar moderate effect of increased skin conductance level
following vehicle cessation without any warning (unexpected
stop). However, our results are difficult to directly compare
to Ruscio et al. (2017) findings as we did not measure
physiological responses during manual driving or initiate a
takeover request. We also did not separate parasympathetic
activity from sympathetic activity; therefore, it is not clear
whether a reduction in attentional capacity was associated with
an increase in sympathetic activation as measured by an increase
in skin conductance level.

A potential limitation in our study was the use of the
Empatica E4 for assessing autonomic arousal. Gruden et al.
(2019) recently found that manual driving-related movement
artifacts impacted heart rate variability and skin conductance
level measurements. Reasonable accuracy and reliability have
been reported for this device providing wrist movements are
low (Pietilä et al., 2017; Ragot et al., 2017), which was the
case during our study, as Level 5 driving does not require
behaviors such as changing gears. Nevertheless, we conducted
additional analyzes and confirmed that accelerometer values did
not differ between conditions (included in the Supplementary
Material). In addition, conventional physiological research
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measures from the distal or intermediate phalanges of the
ring and index fingers where there are a larger number
of active eccrine sweat glands (Freedman et al., 1994;
Boucsein, 2012). The E4, like many wearables, measures
skin conductance via wrist sensors. As the wrist is less responsive
to skin conductance, an underestimation of parameters is
expected (van Dooren and Janssen, 2012; Payne et al., 2016).
Despite this, the Empatica E4 was a relatively unobtrusive
measurement device and was sensitive to changes in skin
conductance level.

Despite the potential benefits of measuring sympathetic
arousal and ocular behavior during Level 5 driving, it is not
possible to avoid limitations inherent to skin conductance and
eye tracking measurements. Due to a one- to four- second
delay, or response latency, following a stimulus presentation
(Boucsein, 2012), skin conductance measurements should not
be used to detect time-critical events and are therefore not a
usable metric on their own for a DSM system. In addition,
it should be acknowledged that the skin conductance level
values we measured were contaminated by skin conductance
responses. If skin conductance responses were triggered by
events during the journey, this would increase the underlying
skin conductance level. Therefore, the values we report are
impacted by both tonic and phasic responses to the events.
Furthermore, it is well acknowledged that fixations cannot
occur without attention, but attention can occur without
fixations (Posner, 1980). Eye tracking is unable to detect the
periphery of a participant’s visual gaze, but stimuli can be
perceived pre-attentively in peripheral vision. Participants may
have therefore discerned the notification and inhibited saccadic
movement for further processing. Caution is therefore required
in directly attributing changes in indirect measures, such as
visual attention assessed with eye tracking, to direct measures
of central attention. A robust DSM system may consequently
benefit from including a variety of measures. The results
obtained here do show significant differences in visual gaze
behavior, perhaps reflecting changes in visual strategy as a
result of reallocation of attentional resources relating to the
unexpected event.

Although the current study attempted to produce increased
ecological validity compared to laboratory studies, safety
restrictions were put in place including the speed of the vehicle,
the safety driver, and the marshals surrounding the vehicle.
On average, the vehicle went between 3 and 5 mph. The
speed of a vehicle has been shown to correlate with self-
reported workload measures, i.e., the greater the speed, the
greater self-reported workload (Fuller, 2005). However, research
has found that this depends on the situation complexity.
Low-complexity environments including motorways at faster
speeds, or high-complexity situations including town centers
at lower speeds, may modulate load in a similar manner
(Paxion et al., 2014). In our study, the vehicle drove around
a pedestrianized area, where the speed limit was 10mph.
The vehicle shared the lane with pedestrians, cyclists, and
obstacles such as bollards. Therefore, driving at a greater
speed would not have been possible nor realistic or safe, even
during manual driving.

Finally, the results imply that the unexpected event placed
significant demands on attentional resources. However, eye
tracking is an indirect measure of attention, and as the study
mimicked Level 5 autonomous journeys, no direct performance
measure could be derived to support this view. Yet, all
participants were introduced to a “safe stop” button on the HMI,
which could be pressed at any time if they wanted the vehicle
to stop. None of the participants activated the safe stop. They
could also have accessed the “vehicle health” icon, providing
information about the overall health of the vehicle. None of the
participants accessed this icon during the times of interest. Taken
together, these findings suggest that the unexpected stop was not
perceived as particularly dangerous as neither subjective reports
nor subjective ratings, or all physiological indices reflected an
extreme response that may be associated with more imminent
or extreme danger. This is supported by summary qualitative
analysis where 12 of the participants, representing around a third
of the sample, expressed unease (e.g., “nervous it would not stop,
would like a horn”) when discussing the unexpected stop with
the researchers after journey completion. A further 3 expressed
ease or confidence (e.g., “had stopped before, would this time”)
in relation to the event, with the remainder simply noting that
the vehicle had spotted the ‘hazard’ and stopped, performing its
intended functions. In addition, as our study only included one
unexpected event, further investigations using different types of
unexpected events are needed to be able to characterize functional
states to specific safety-critical scenarios.

Although our results are supported by the above-mentioned
driving studies, the study presented in this paper varies
considerably as our participants were not active manual drivers
in control of the vehicle. As ocular behavior and motor
execution are intrinsically linked both spatially and temporally,
active drivers successfully fixate directly at the objects being
interacted with or ones that precede the action. Despite these
differences, our results are in agreement with Strauch et al.
(2019) who investigated eye gaze of passengers during real-
world autonomous driving. They found a greater frequency
of fixations on safety-relevant AOIs when joining a highway
during an autonomous journey when compared to manual
driving and to the rest of the route. Visual scanning behavior
was therefore affected by safety-critical situations regardless of
active involvement in the driving task. Strauch et al. (2019)
participants’ mean age was 23 years, and so our results extend
this earlier research and suggest that older adults display
broadly similar ocular behaviors to younger adults during safety-
critical situations. However, our study does differ, as passengers
could interact with an HMI throughout the journeys. Unlike
a passenger in a manually driven car, in a Level 5 vehicle the
monitoring of the automated system can take more significance,
given the reduced need to pay attention to the road ahead.
Despite this, we found that attentional focus narrowed toward
the ‘hazard’ before, during, and after the critical event, which was
also accompanied by an increase in skin conductance reflecting
increased sympathetic nervous system arousal following the
vehicle response.

Repeated stress response activation and consequential
negative emotions may have a significant impact on overall
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health and well-being. Therefore, a DSM system could react
in response to detecting increased arousal by either modifying
the vehicle’s behavior, alerting the driver, or modifying HMI
notifications and providing status updates or information about
future events. For example, the HMI might adapt safety-
related notifications to make them more engaging, multimodal,
and alerting, depending on individual characteristics and the
attentional level of the passenger (ranging from inattentive
to over-alert). Moreover, the vehicle could learn the types of
situations that have a negative impact on passenger well-being
and adapt vehicle route or driving style to avoid them.

Taken together, these results have several critical implications
for the safe implementation of Level 5 AVs for older adults.
Our results reveal possible narrowing of visual attention and
heightened arousal during an unexpected event as demonstrated
by increased sympathetic arousal and a smaller distribution
of fixations, coupled with an increase in fixations toward
the unexpected event. In combination with consistently high
trust ratings, these results suggest that the passive process of
automated driving may restrict the focus of visual attention
and heighten adverse responses. This study also demonstrates
that the physiological indices examined can be useful and
practical measures for evaluating passengers’ functional state
during real-world autonomous driving. As such, a DSM system
that includes these measures might be able to detect these
behaviors and make an informed decision on vehicle behavior
and adapt HMI notifications accordingly. The potential for
negative experiences during Level 5 driving, coupled with human
limitations in sustained monitoring during low and high arousal
situations, suggests that a DSM system may be a necessary
adjunct to fully AVs in supporting potentially vulnerable people
in unexpected situations.
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P. A. Hancock*
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This work considers the future of driving in terms of both its short- and long-term
horizons. It conjectures that human-controlled driving will follow in the footsteps of a
wide swath of other, now either residual or abandoned human occupations. Pursuits that
have preceded it into oblivion. In this way, driving will dwindle down into only a few niche
locales wherein enthusiasts will still persist, much in the way that steam train hobbyists
now continue their own aspirational inclinations. Of course, the value of any such
prognostication is in direct proportion to the degree that information is conveyed, and
prospective uncertainty reduced. In more colloquial terms: the devil is in the details of
these coming transitions. It is anticipated that we will see a progressive transformation of
the composition of on-road traffic that will be registered most immediately in the realm
of professional transportation in which the imperative for optimization exceeds that in
virtually all other user segments. The transition from manual control to full automation
will be more punctate than gradualist in its evolutionary development. As performance
optimization slowly exhausts the commercial sector, it will progressively transition more
into the discretionary realm by dint of simple technology transfer alone. The hedonic
dimension of everyday driving will be dispersed and pursued by progressively fewer
individuals. The traveling window of generational expectation will soon mean that human
driving will be largely “forgotten,” as each sequential generation matures without this,
still presently common experience. Indications of this stage of progress are beginning to
be witnessed in the demographic profile of vehicle usage and ownership rates. The
purpose of the exposition which follows is to consider and support each of these
stated propositions.

Keywords: driving, automation, cognition, human factors, autonomous systems

INTRODUCTION: A SHORT GLANCE BACK – A LONG LOOK
FORWARD

There are many and varied forms of human work activities which have, across history, been
undertaken. Each of these pursuits would have been considered commonplace, natural, and
everyday actions to the contemporaries who witnessed them. In and amongst these, for example,
the blacksmith and the peddler were, at one time, almost ubiquitous sights in the world. But now
these particular activities, like many other occupations, have largely disappeared from the public
landscape. And this to such an extent that we need to access our web-based search engines even
to find out who “gas-lighters” and “hop-winders” actually were. These latter pursuits were both
common enough and persisted well into the middle twentieth century. How much more recondite
are occupations such as night-soilers, town-criers, fletchers, alewives, mudlarks, and gandy-dancers,

Frontiers in Psychology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 57409759

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.574097
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.574097
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.574097&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.574097/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-574097 September 17, 2020 Time: 18:48 # 2

Hancock Driving Into the Future

to name only a few. Not many today could even say what these
latter forms of work actually were, or to suggest how the product
of these endeavors shaped everyday life at that time. We see
that technology changes the functional landscape of work and
inventions such as cell phones serve to exterminate jobs such
as “tic-tac” man, even to the point that these jobs are now
effectively forgotten. The nature of work changes and we, as
individuals and society, change along with it (Hancock, 1997).
However, none of the aforementioned pursuits, even in their own
day, were ever as ubiquitous or as well-recognized, as that of
“driver.” Indeed, drivers, in their many forms and incarnations
(e.g., carters, teamsters, chauffeurs, truckers, pilots, steersmen,
bicycle messengers, pyramid stone sled drivers, charioteers, etc.),
have persisted now throughout an interval that can be even
measured in multiples of millennia. As a result, our collective,
social driving habits have been woven into the very fabric of
civilized society and this driving enterprise is arguably an integral
part of virtually all nominally “civilized” collectives. Few are
the people who do not meet and encounter drivers regularly or
indeed for that matter participate themselves in driving on a daily
basis. But will drivers go the way of typesetters, switchboard-
operators, or even more appositely, the human-computer; names
which now ring only anachronistically and obscurely in our
modern ears? Thus, the aspiration for the present evaluation is to
consider and specify what precisely is driving us into the future?
Given this ubiquity, the focus of the present work consists of an
examination of the following important propositions. (i) What
will compose driving in the future? (ii) With the onset of vehicle-
control automation, will the profession and skill of driving fade,
like others, into memory? and (iii) What of society in a world
where no humans drive?

As Yogi Berra is reputed to have observed, “prediction is hard,
especially about the future.” However, the purpose here, as it
has been in other associated works (e.g., Hancock, 2008), is to
ruminate upon what, with respect to driving, is to come. The
magnitude of change that promises to occur with the widespread
penetration of autonomous vehicles (Rajasekhar and Jaswal,
2015), is very much in proportion to the extent of driving’s past
and persistent longevity as well as its present ubiquity (and see
Litman, 2017). Thus, the uncertainty which is associated with
this anticipated degree of change is great in proportion (Hancock
et al., 2019). To begin, we need first to briefly glance back in time
in order to proceed cogently and thoughtfully into the future.
Although it is not the purpose here to examine and rehearse the
evolution of the specific role of driver in any exhaustive detail,
it is enough to assert that we can find evidence of individuals
in charge of some form of powered transportation back almost
to the edges of recorded history. Mostly, this began by using
animals as the power source, and with these capacities, drivers
conveyed passengers and material (in all its forms), from origins
to destinations; transport being the heart of trade and commerce
and so the arteries and lifelines of civilization. Only consider
here, for example the “Silk Road,” which covered even thousands
of miles (Liu, 2010). The demand that was imposed upon early
drivers tended, to some degree, to covary with the purported
“intelligence” of the pack animals involved. Oxen proved to be
sturdy but exhibited relatively little independent intentionality.

FIGURE 1 | The donkey-powered water wheel of Carisbrooke Castle which
was used to raise a water-bucket from an extremely deep well (at right). While
the donkeys need “training” as to how to walk on the wheel, once that skill had
been mastered, little in the way of subsequent human intervention is required.

Mules are hardy but, in human eyes, prove relatively stubborn
compared to their close relative, the horse. Some animals, such
as sled dogs, are viewed as exhibiting especially high levels of
intrinsic intelligence, and so enabled the driver to proceed in a
less immediately controlling manner. Regardless of the degree
of these inherent levels of animal intelligence, if some rigid
constraints could be imposed upon their actions, then selected
animals can act almost independently (autonomously) from their
human supervisor. If the constraining context is framed with
sufficient ingenuity, e.g., a donkey on a wheel, then minimal
human intervention may be required (see Figure 1). From this
point of view, autonomous transportation is not necessarily a
recent invention but one which, in differing guises, has been
around for quite some time, e.g., “Open Sesame.” Perhaps the first
watershed in driving, at least in terms of ground transportation,
was when the source of power morphed from animal to artificial
origins. The co-variation here with the Industrial Revolution
being no happenstance. But now we stand on the verge of
the next, and arguably, more profound watershed in vehicle
functionality. This change is qualitatively and quantitatively
distinct from any previous incarnation of transition. I frame
the understanding of this approaching watershed in light of the
recognized, and above referenced step-change, from animal to
artificial power.

FROM LIVING MUSCLE TO ARTIFICIAL
POWER

It is evident here that I have not featured any substantive
discussion of wind-power and the comparable human conquest
of the oceans as routes for trade and social interaction (e.g.,
Revelle, 1962; Campbell, 1995). However, in principle, each of
the observations that I make are as applicable to “driving on
the sea” as they are to “driving on the land.” To an extent, the
nature of driving changed radically when artificially powered
transportation became widely available. Effectively, the first of
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these forms of transport came about with the development of
the steam-engine although, as I have noted, it can be argued
that wind-powered vehicles preceded steam power, again even
by millennia. In steam-powered trains, drivers tend largely to
exercise control over one essential single degree of freedom (see
e.g., Oborne et al., 2014), that being longitudinal velocity. Any
degree of lateral control, i.e., route selection, point manipulation
etc., tended to be the domain of another human decision-
maker within the overall system. Although the train driver’s
task consists of more than just controlling this one variable, the
steam train footplate personnel were primarily involved in this
activity either by facilitating or retarding longitudinal velocity
on a momentary or more prolonged timescale. Some of these
same strictures transferred to ground transportation when steam
power was extended to on-road vehicles (Lay, 1992). However,
it can be argued, and convincingly so, that horse-riders had
already mastered many of these skills and the coachmen of the
horse-drawn carriage era would transition fairly seamlessly into
powered-vehicle chauffeurs, as history confirms. The inherent
driving control skills themselves did not change radically with the
transition of the source of power, but the growth of peak vehicle
velocity began to impose higher, or more accurately different,
cognitive demands upon the person at the controls.

It is not formally known, but can well be suggested, that the
cognitive workload imposed upon early powered-vehicle drivers
on the road proved to be an increment over that for say steam-
train drivers. For, as we know, early steam-trains required a
full footplate crew, whereas, effectively, steam-powered cars did
not. The invention of the auto-starter also had important effects
here since it obviated numerous procedural steps involved with
vehicle activation, some of which required quite satisfying quite
extensive degrees of physical workload. Here, the combination of
physical and procedural constraints proved to be a barrier that
technological advances could and did resolve (and see Möser,
2002). Also, we see that the roadway context of driving and
the density of traffic began to exert further influences; although
a horse-drawn carriage driver in downtown New York of the
late nineteenth century would protest that their task had been
no sinecure! This assertion about increments in workload can
be a polemic one because each of these respectively identified
roles were, and had been, composed of multiple tasks, as most
professions were then and still are today (Hancock et al., 2020).
Regardless of any such disputations, the evident fact is that each
of the respective modes of transport were created or evolved
so that human controllers could satisfactorily accomplish the
task that was then set before them. There is little point in
creating a vehicle that is absolutely uncontrollable. In sum,
across the ages, driving has represented a satisficed not an
optimized task (and see Simon, 1969), and the fabricated road
environments vehicles occupy were specifically and intentionally
structured to support this form of functionality and thus the
associated level of sustainable cognitive demand. These various
historical predicates for cognitive workload regulation mean
that collisions have proved to be relatively infrequent. For
example, the Insurance Institute for Highway Safety (IIHS),
provide data that indicates that in the United States in 2018 there
were only 1.13 fatalities per 100 million vehicle miles traveled

(Insurance Institute for Highway Safety, 2020). This startling lack
of fatal collisions becomes especially evident when we begin to
consider the number of potential opportunities for collision on
roadways, a point upon which I elaborate more below. The next
threshold, which promises to be that of fully automated driving
control is one decked with the “banners” of improvements in
safety and efficiency (Kyriakidis et al., 2017; Hancock, 2018a;
Hancock et al., 2020a). The empirical question, however, is
whether autonomous vehicle collision avoidance capacities can
now ubiquitously exceed the proven rates of human-mediated
avoidance? In some sense, this question matches the evident
degree of success of the human driver in coping with the imposed
cognitive workload of driving vs. the equivalent capacity for
autonomous vehicles to deal with that same imposed external
demand. In the section which follows, I examine this proposition
concerning the replacement of the human controller (driver).
I aim to do this by throwing a purposive and explicit light
on the quite remarkable abilities of humans to adapt to the
satisficed demands of everyday driving. In short, my purpose, pro
tem, is to emphasize just how good human beings actually are
already at driving.

THE MOST PRACTICED SKILL IN THE
WORLD

Unlike many of the human professions and pursuits which,
as we have seen, have now faded into the mists of time,
driving has persisted and grown in proportion to the size
of the populace and number of vehicles in circulation. To
the present, we have experienced essentially two centuries of
powered ground transportation with well over 100 years of
individually driven automobiles. It is fair to say that the very
landscape of countries such as the United States, Canada,
and the like, have been sculpted by the presence and utility
of the automobile and its particular needs (see Figure 2).

FIGURE 2 | The nature of the urban landscape is massively influenced by the
need to cater to powered vehicles and the requirements and ramifications of
the overall transportation infrastructure (Ingram and Liu, 1999). It should also
be noted that the nature of the rural landscape is also contingent upon this
requirement, although materially, this can appear to be less impactful (Image
reproduced with permission. iStock.com/Domepitpat).
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In many, if not most cities of the world, the service of the
automobile is a principal concern. Even in countries, such as
those in Europe, where towns and cities were never explicitly or
originally designed for the modern automobile, the car’s impact
exerts considerable and persistent effects. This re-engineering
of the cityscape to accommodate the automobile stands, to
some degree, in concert with the way that the burgeoning sea-
based trade of Amsterdam sculpted its reticulation of waterways
and canals. Accommodations for vehicles either motivated or
manipulated our modern urban landscapes and if we change
vehicles’ functionality alongside the inevitable changes in the
nature of the infrastructure that supports them, it promises to
have a profound social impact, well beyond the confines of the
vehicle itself (Stead and Vaddadi, 2019).

The area of urban design, the interaction with roadways and
their influence is itself a research domain of vast extent (see
e.g., Kenworthy, 2006). It is sufficient here to acknowledge these
broad and diverse impacts. However, the present focus here is on
individual human behavior in executing the role of driver. It is
reasonable to assert that there is, and has been, no human skill
more practiced than driving. True, all individuals do not engage
in driving and so this is not a truly ubiquitous human practice
(Hancock et al., 2009). Rather, the statement is applicable as
more of a socially, nomothetic assessment. When we total up the
number of commuters, professional drivers, and vehicle owners
in general, it can be seen that vast swathes of the human race
engage in this one activity and that it exceeds essentially any other
singly practiced public skill; certainly in terms of the number of
hours involved. It is also reasonable to assert that driving is the
last great bastion of “analog” control. This does not mean that
digital technologies are not involved in the control functions of
modern vehicles, assuredly they are. Rather, it means that driving
still requires the momentary exercise of psychomotor skill for
continuous tracking whereas, in comparison, the vast majority of
our other daily skills are now almost fully digital in nature and
largely, or even solely require punctate mouse-clicks or button
presses of the user. The exception here being video games which
still feature this fulfilling, “tracking” aspect of human experience.
As with many skills, and especially psychomotor skills, practice
improves capability, even across periods of decades or more on
the same task (Crossman, 1959).

With respect to such skill acquisition and its exhibition
(Newell and Hancock, 1984; Hancock and Newell, 1985), humans
are good at driving and are arguably, on average, even excellent at
collision avoidance (cf., Yuris et al., 2019). But how can this be?
We are all aware of the carnage on the roads and especially in the
driving research community, we have been imbued with fatality
and collision rates as the mantra of concern. But what we have
never really attacked is the question of the relative rates of these
human failures; that is, specification of the elusive denominator;
the absolute number of non-events. In reality, how many non-
collisions do actually occur per unit time to set against these
adverse and life-altering vehicle accidents? It is quite natural
for researchers, as well as the public in general, to focus upon
the events that did occur and to direct scant, if any, residual
attention to the events which did not. It is a human failing of
both memory and ratiocination that we are poor at calibrating

with respect to all forms of non-event. While there are clear
evolutionary reasons why this neglect should be so, it still serves
to bias our assessment in multiple areas, especially when the
positive events prove as dramatic and life changing as a serious
road collision. However, if we take as the unit of “non-collision”
the space occupied by a vehicle multiplied by the time it occupies
that space, and then reference this value to the frequency of
actual collisions, which are represented by two vehicles or objects
in transportation research (or more properly, any two material
entities) occupying that same unit of space and time. If we were
to conduct such a calculation, then human capacities must be
well in excess of the 99.9999% reliability level. Arguably, it is
even several orders of magnitude better than this. Of course,
these levels of performance are not independent of increases in
cognitive workload and effort, especially when driving conditions
become demanding (Hancock et al., 1990). Automation does
make it possible for people to begin to select the level of their
participation, but they are not able to do so when automation
in driving become obligatory. Nevertheless, this relative degree
of human driver reliability makes the grand claims about safety
gains for autonomous vehicles difficult to fulfill on both relative
and absolute scales. The idea that eliminating driver error can
be done by eliminating drivers is therefore rather problematic.
As noted elsewhere, any absolute gains in collision reduction
is a morally laudable achievement (Hancock, 2019a). However,
the full scale of the issue in which both the numerator of
collision frequency is juxtaposed to the denominator of non-
collision frequency, has still to be even approximately identified,
quantitatively speaking.

Claims for greater efficiency, in respect to transit times,
may well suffer from similar lacunae in data specification. That
is, individual transit times may be collected and plotted as
putatively representative samples, but then their expansion and
aggregation into assessment across the complete transportation
system to hand is fraught with all of the perils of generalization.
Obviously, as fully automated vehicles begin to predominate
these associated electronic calculations become more tenable.
However, in reality, the problem of mixed equipage, consisting
of many automated vehicles interspersed with those of differing
and nominally “lesser” capacity, serves to inhibit precise transit
time specifications. However, the latter metric of change
in transportation “efficiency” may perhaps, objectively, be
somewhat easier to realize than the more safety critical failure-
collision, non-collision ratio as has been mentioned above. Of
course, these touted gains in efficiency are exactly what are held
out as vitally supportive reasons for embracing automated driving
in the first place. The mantra runs that automated vehicles can be
“stacked” more efficiently together within the various roadways,
traveling mere feet from each other in platoons, convoys, and
the like. Technically, this has been shown to be a feasible
configuration (see Lee et al., 2018). Yet what remains largely
unproven are the outflow influences of these selective groupings
on other traffic; presumably at some other juncture “embedded”
within the same system. Tantalizing desiderata, such as greater
“free time” is also offered to the innocent traveler, so inclined to
adopt these commercially motivated innovations. However, as I
have argued elsewhere, increasing “time” tends to be vacuumed
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up by the profit-driven system which then exploits the enhanced
opportunity to have individuals now “work” on their way to
work (Hancock, 2019c). In other words, this promise will largely
serve to simply re-cast the physical location of, mostly, electronic
work-based interactions. We have all become witness to this very
phenomenon, as involved in response to the recent pandemic.

Critically, of course, lauding human driving abilities does
not sell driverless vehicles. Nor does the defense of human
capacities involved in driving greatly capture the attention
of an information-jaded public. It seems, therefore, that the
autonomous vehicle juggernaut will roll on despite any such
observations (Daily et al., 2017). However, faced with this almost
inevitable line of autonomy’s progress, the next consideration
has to be one of the transition periods between human and
computer control, and what challenges we are facing in the
immediate, near-term. This particular challenge is tied to the
presumed map of the transition phase bound up with the “levels
of automation” taxonomy. This is most evidently articulated in
the six Society of Automotive Engineers (SAE) levels conception
to which I now turn.

THE LEVELS AUTONOMY DESCRIPTION
AND ITS ASSOCIATED FALLACIES AND
FAILURES

To this point, the present work has been framed around
the general arguments concerning the long arc of driving
history. It will in its concluding section, proceed to some
prognostications concerning driving’s future and some of the
associated incarnation (and see also Pettersson and Karlsson,
2015). However, in terms of past, to present to future, it is
important to consider the volatility and change embedded,
especially within our own present transitional times (Hancock
et al., 2013). The focus here is on the now, quite famous,
and relatively ubiquitous “levels of automation” taxonomy and
some pertinent critiques of it, as well as the path forward
that it apparently offers. Criticisms here are somewhat palliated
since the SAE construct does have facets of evident utility.
Precisely where and how this formulation developed is a
task for others to establish. Suffice it to say that I find that
much of the thinking underlying these levels of automation
formulation can be attributed to one of the luminaries of
human-machine interaction; namely Thomas Sheridan (e.g.,
Sheridan and Verplank, 1978; Sheridan, 2002; and see Sheridan,
1992, p. 358, also Hancock and Sheridan, 2011). His “ten
levels of interaction” proposition was one that could apply to
many operational contexts and domains. Here, via the SAE
promulgation, it has been directly applied to the transitional
phases of driving control. There are a number of pertinent
criticisms that are relevant to its application to the future of
driving, whatever form that future driving takes (and see Parkes
and Franzen, 1993).

We can begin with the physical form of the SAE scale itself (see
Figures 3A,B). The description begins at a zero level and provides
what appears, putatively, to be a series of equal integer steps.
The first impression is that we are looking at these respective

steps from 0 and 5 on an apparent ratio scale, although whether
this ratio implication was ever actually explicitly intended is
probably rather doubtful. This implies an equal-interval structure
between each of the discrete steps. This is a false implication and
can be extremely misleading. It begins with the assertion that
zero provides a no automation baseline state, but in itself this
is also simply incorrect. Even for vehicles which well-preceded
the modern, large-scale transportation thrusts such as the
“Intelligent Vehicle-Highway Systems” (IVHS) (and see Hancock
and Parasuraman, 1992), there was plenty of automation in
cars, and some of it associated with immediate roadway control
such as “cruise control.” This assumptive foundation of a zero
level is evidently in error. A further implication of the SAE
taxonomy is that each sequential step, between the respective
levels, represents an equivalent change in functionality. As we are
experiencing now, this implication is also false; most especially
as we consider Stages 2 and 3 and compare them with Stage 4 for
example. A further indication that this is an engineering-oriented
perspective derives from the fact that there are actually six total
levels identified, although the use of a zero anchor tends to convey
otherwise. What this means is that there is no true intermediate
step between the respective ends of what appears implicitly to
be a continuum. The absence of such a “middle” state inhibits
conceptualization to a degree that is not immediately obvious
to users and/or designers who first encounter this influential
representation. Some will chide that these objections as either
rather trivial or only the musings of a nit-picking criticaster;
but far from it. This representation has been taken as a form
of de facto design “roadmap,” laying out apparently sequential
and logical steps to achieve a fully autonomous future; a goal
that itself is most often not adequately questioned. But it is the
shortcomings in this conceptualization that presently threaten
to lead to disruption and dysfunctionality. Of course, since the
elaboration of transportation systems in the real-world is largely
an empirical exploration anyway, and so no comparable “control”
in order to assess the degree of any such dysfunctionality, is ever
really feasible.

It is not simply the temptingly pristine representation of each
individual step which proves to be problematic. The boundaries
between each putative “level,” so readily and solidly illustrated
in Figure 3A, and to a somewhat lesser extent in Figure 3B,
are themselves frangible thresholds. In actuality, each sequential
stage, at least to some degree, bleeds into some of its companions,
and that not always to the level that is immediately adjacent
to it (i.e., some elements of Stage 2 link directly to Stage 4,
etc.). And underlying the whole illustration is the unstated, but
highly influential implication, that “progress” necessarily requires
us to move ever-upward in this hierarchy of levels (i.e., Stage
3 is two better than Stage 1, etc.). Through further subliminal
suggestion, it also implies that full vehicle autonomy “must”
be the socially desirable and ultimate design goal that we are
aiming for. After all, in general is not anything better than
zero? And if 5 is the top, is that not what we are aiming for?
Rather than accept this assumption, it is one that we should most
severely question (and see Hancock, 2014, 2017a). What precisely
is the explicit, pragmatic need for automated vehicles? Do we
not presently have enough humans on the face of the Earth in
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FIGURE 3 | (A,B) SAE specified transition phases between no automation and full automation. The upper version is from 2014, the lower is the most recent revised
version and is designated: SAE J3016 Standard: Levels of Driving Automation,” and is reproduced here with permission of SAE International. Propagated as a form of
descriptive taxonomy, it promises to become a design ontology. Therein lies a number of debatable and potentially misleading assumptions as articulated in the text.
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order to provide a sufficient number of controlling “drivers?”
And when the evolving shibboleth of improved safety is once
again paraded before a somewhat naive public and even trooped
before professional scientists, let us ask expressly, where are the
data to confirm this assertion? And most especially, where is the
data that directly compares human safety records with automated
control performance in exactly the same operational conditions?
(and see Hancock, 2018a). Until this information is produced
and analyzed, if indeed it is actually being recorded in such
fully comparable instances, we will not know whether the whole
process is indeed “safer,” or whether safety is once again being
used as a “weasel” word to mean whatever its protagonists choose
it to mean in order to convince others of their case (and see
Hancock and Volante, 2020). There are no necessary reasons why
many, if not all, of the assumptions embedded in the SAE levels
description may not be flawed or simply incorrect.

With respect to the perspective promulgated in the five
levels conception, there is another assumption, perhaps even
more insidious for its unstated presence. This is that control
is, in essence, a zero-sum function. In this concept, what any
automated and autonomous systems gains, the human must
necessarily lose. There have been numerous recent and cogent
challenges to this assumption (see e.g., Shneiderman, 2020).
There is no necessary reason why an overall expansion of
mutual degrees of control could not be enacted i.e., a greater
than zero-sum. This requires us to think of technologies more
as team-mates than simple surrogates or direct replacements.
The fallacy of the zero-sum of control persists only if we
think in the constrained terms of monetary vehicle control.
However, if we elevate our argument to a more macro-
level concern for transportation and its diverse demands, this
underlying restrictive premise is fractured, and the expansive
vision of mutuality and sharing emerges (and see Gadsden
and Habibi, 2009). In the various points discussed above, the
“levels of automation” have, to a degree, morphed from an
initial descriptive taxonomy to an eventual design ontology.
As representative of our approaching transition into a new
incarnation of driving, what is in essence the next watershed
of driving itself, we need now to discuss the most immediate,
problematic element of the SAE depiction as representing a form
of an immediate future driving roadmap.

As has been discussed and elucidated elsewhere (e.g., Hancock,
2019a), one of the most pivotal issues of today concerns whether
it is even feasible for a driver to recover full active control of their
vehicle in the Stage 2 or Stage 3 conceptions of these proposed
automation levels. While this might possibly be feasible in other
realms of transportation (e.g., large container-ship control, and
to a lesser extent commercial aircraft control; Scallen et al.,
1996), the time-horizon limitations for successful resolution to
momentary on-road challenges and/or automation failures seems
sufficient to defeat the advocated and advertised resumption
of manual control in these ground vehicles. It should also be
noted that any innovative change, even in the other, arguably less
temporally challenging transport circumstances (i.e., air, ocean),
has been accompanied by transient increases in failure rates.
We must be prepared for these spikes in adverse outcomes,
as is discussed in more detail below (and see Hancock, 2011,

2019a). Most especially, this seems to apply to vehicles in high-
density traffic situations, and/or on high-velocity roadways. It
is not that we cannot conceive of these control transitioning
technologies, but rather whether it is practicable, feasible, and
even advisable to pursue these forms of control return strategy
(Desmond et al., 1998). For, in these respective stages, the
“driver’s” role is translated into one of passive monitoring,
which is a role that we understand already that humans can be
extremely poor at (Hancock and Warm, 1989; Hancock, 2013b,
2017b). Response latencies increase across time in such vigilance
situations (Hancock, 2017b), as do the frequency of missed
signals as epitomized in the well-recognized “vigilance decrement
function.”

Although Stages 2 and 3 are more than difficult to manage
in terms of human-vehicle interfaces and recovery response, if
we do choose to adopt these forms of transition, it may be
especially pertinent to consider a “driver command by negation”
architecture (and see Hancock and Verwey, 1997). Here, the
automation temporarily assumes complete command and so
communicates that state through differing perceptual modes
(e.g., voice warnings, visual icons, etc.). The only response
required of the driver at this juncture is a no statement.
This form of interaction does not require any form of an
affirmation, i.e., “I agree.” Rather, the human requirement here
is only an interruptive “command by negation,” i.e., “I disagree.”
Pilot command by negation (PCN) is quite a well-known as a
human-machine communication strategy, especially in aviation
(Hancock, 2007). This command structure follows an old maxim
in law being qui tacet consentit or, “he who is silent agrees,” or
even more simply, “silence gives consent.” However, it is almost
without doubt that the time constants involved in ground-vehicle
control takeovers will eventually defeat any form of human
interaction after putatively regaining such control (Hancock,
2019a). In terms of driving, the temporal paradox might be
expressed as follows. The Stage 2 and 3 takeover policies almost
inevitably require that we know the future beyond the time
horizon that normative perception-response provides. That being
so, we would need a degree of prospection that we do not
currently possess. Indeed, if we did possess prospection to
this degree, we would already be able to anticipate that future
event successfully enough that take-over would be unnecessary.
The temporal constraints of the human response system itself
prevents this from happening (Hancock and Weaver, 2005;
Francis et al., 2020).

One further unwritten sub-text here is one that features
the issues of control and legal liability. For, if we employ the
traditional vision of liability, then the individual human driver is
both responsible for control and thus at fault when failure occurs.
However, if we employ a systems-based perspective, the skein of
responsibility becomes much more complicated and potentially
exposes the vehicle’s manufacturers, and their constituent sub-
contractors, in a way inimical to their own best interests. This
is one of the touchpoints where the radical differing “magesteria”
of technology (science) meets that of the law (Hancock, 2020).
It will be especially edifying to witness how the two competing
visions of driving, i.e., the commitment to driverless vehicles
vs. the shared control/driver assist strategies play out in the
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coming decade, especially in light of this liability issue. Given
the tide of technological progress, it appears the long-term
winner is basically already decided in the ground transport
realm. However, the race is still in progress and the forces which
continue to favor a human driver-centered approach are by no
means negligible.

A final issue upon which we can reflect concerning human
interaction with autonomous vehicles is the concern for
attribution error (Hancock et al., 2020b; Stanton et al., 2020).
Much of the interaction on our roadways is mediated currently by
implicit communication between human drivers. Such behaviors
are, for example, evident at unregulated intersections, where eye-
contact can mediate arrival and departure priority. Attribution
is also contingent upon facets of behavior such as courtesy and
etiquette. These self-same strictures are in action when drivers
interact with other road users such as pedestrians, bicyclists,
etc. Here, shared common assumptions and expectations mean
that it is not only the formal rules of the road which guide
action but informal, social ones also. This is also why driving
in differing countries with different cultures and varying implicit
assumptions can prove to be rather stressful. The central point
here being that courtesy, empathy, and implicit knowledge
are not yet built into automated vehicles nor their controlling
software. Nor does there appear to be any great customer clamor
for manufacturers to do so. The question that we can ask
is whether such attributional dissonance between human and
automated vehicle will necessarily lead to conflict, confusion,
and collision (Hancock, 2018b). This concern is, of course, one
that is greater than automated terrestrial vehicles, for it asks
questions about our physical interaction with all other objects,
and most especially advanced forms of technology. For example,
how are robots supposed to react to the presence and motion of
people, both their users and others in their ambient environment?
Here, the principles of biomimesis gives us a lead. For, in nature,
we often implicitly understand our role in gatherings such as
crowds, or in unusual situations such as cattle stampedes or
during the running of the bulls (in the latter situations, getting
out of the path of the animals being a recommended strategy).
These sorts of principles of self-organization and self-separation
are now being codified into advanced commercial aircraft. It
is almost certain that they will be incorporated into driverless
vehicles also. In conclusion, with respect to the present stage
of control transition, the SAE description has proved to be a
provocative and probing proposition. While not without some
element of value, it has served to both frame and constrain the
avenues of progress in the driverless vehicle world to arguably, a
disproportionate degree of influence.

Although not engaging in prescriptive designations per se,
it still remains possible to consider the relative advantages and
disadvantages of both human-centered and automation-focused
driving propositions, and this I have presented in Table 1
which follows. I am very aware of the propensity to couch
these forms of observation in the comparative terms of so-
called MABA-MABA (men are better at; machines are better
at) types of juxtaposition. Indeed, the merits of such contrasts
have previously been discussed and debated, and that rather
extensively so (see e.g., Sheridan et al., 1998; Dekker and Woods,

2002; Hancock, 2007; De Winter and Hancock, 2015). As a
result, the observations given in Table 1 serve more as points of
discussion for greater scientific and social consideration rather
than hard and fast rules for function allocation between either
human, automation, or human and automation together working
in some form of concert.

In general, we have become well aware of the capabilities
and flaws associated with human behavior (e.g., see Hancock
and Matthews, 2015). In particular, drivers can become fatigued,
stressed, and/or distracted (Hancock et al., 2003). In part reaction,
the promulgated advocacy for automation is that automated
vehicles would not be vulnerable to these influences. Similarly,
human drivers can only tolerate certain absolute levels of
task-related workload, and theories of driving have even been
predicated upon each individual’s management of this, their
own dynamic levels of regulated task demand (see e.g., Fuller,
2005). Further, although human drivers can, in general, satisfy
the demands placed upon them, there remain large differences
in individual capacity which means a lack of uniformity of
competence of the human drivers on our roadways.

Yet the promised alleviation of these concerns for human
shortfalls by aspiringly autonomous vehicles does not itself
come without costs. Members of the driving community, in
giving up control, also give up some degree of personal privacy.
They certainly give up some aspects of personal autonomy
and in so doing they must interact with machines whose
full spectrum of functions they need not necessarily either
understand or trust (see Hancock et al., 2011a,b). Such machines
are, like all computer systems, to a degree, vulnerable to cyber-
attack. Rational decisions as to the strategy adopted for future
transportation ought to be founded on factually supported
assessments of the veracity of purported gains of automation, as
compared to what is frequently advertised by those wishing to
sell advanced vehicles (Hancock et al., 2019). In respect of both
the promised gains in safety, in terms of reduced frequency of
collision, and in terms of gains in trip time efficiency, the data
should be determinative over advocational publicity. Sadly, as
with many such social policies, this does not promise to be so.

Many of the present concerns with the approaching incursion
of automated vehicles are ones that are necessarily embedded
in the period of transition that we currently inhabit. It is
also important to note that driving is only one example of
this transition, as the same issues task many other operational
domains. This general debate is articulated in further detail in
the section which immediately follows. In a number of ways,
this global transition from human to computer is epitomized
in the description of SAE Stages 2–4 in which the emigration
of control from the human is taken up, in a form of zero-sum
way, by the attendant automation. However, as noted earlier,
progress through each of the discrete stages is neither necessary
nor obligatory. However, as with comparable innovations in
advanced aviation operations, we will witness various transient
effects during this epoch of transition. These transients have to
be recognized so that collectively, we can be cognizant of the
degree that the outcome pattern of performance witnessed is
reflective of the novel elements associated with such transitions,
as opposed to any fundamental flaws in any particular line of
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TABLE 1 | Side-by-side descriptions of a series of advantages and disadvantages for human control juxtaposed with automated control.

Driver-controlled Automation-controlled

Advantages Disadvantages Advantages Disadvantages

Significant pool of accumulated skill Obligatory task focus for effective
Performance

Advertised superiority in transit
efficiency

Potential violation of personal privacy

Often able to respond to unexpected
events

Human controller suffers from
progressive fatigue

Advertised reduction in collision
frequency/intensity

Vulnerable to cyber attack

Proven low relative error rate Vulnerable to stress and workload
disruptions

Readily scalable for widespread
utilization

Difficulty in dealing with bespoken
challenges

Control fosters individual self-efficacy Poor at extensive monitoring activity Ready inter-operability with other
automated systems

Contemporary lack of all affect

Capable of subtle forms of
pattern-recognition

Relatively slow rates of skill
accumulation

Little performance degradation across
time

Imposes constraints on personal
human freedom

Uses most complex control mechanism
currently known

At risk for distraction during active
control

On-line, remote operational
improvements possible

Non-transparent operational states

Able to experience joy and fulfillment Large individual differences across user
population

Currently perceived as “inevitable.” Vulnerable to rider distrust and neglect
of use

The vulnerabilities of this structure to misinterpretation as deterministic compositions between the relative capacities of human and machine are articulated in the
associated text. Descriptions of the team advantages and disadvantages have not been presented in the Table but are discussed in the text.

technical development. The latter concern emerges when failure
rates spike and companies and institutions, whose personnel are
attuned to such acute changes in event numbers, tend to react
accordingly. Much here depends upon the business cases made
for the innovations offered and the way that the market responds
to these technological offerings. There is also, of course, an overall
propensity to reject retrenchment such that when a new system is
initiated, it proves hard if not impossible to return to the older
approach, should the new one fail to deliver on its advertised
promises. This form of antipathy to putatively “backward” steps
in technology is a powerful force, and one to be reckoned with.

In ground transportation, the period of transition is liable
to be quite a prolonged one. More formally, the percentage
prevalence of on-road legacy systems is liable to be high. This is
in part because, like the function of transportation itself, vehicles
are not exclusively utilitarian in nature. Indeed, a non-trivial
proportion of travel is undertaken for purely hedonic reasons
and the ownership of vehicles is not solely for pragmatic transit,
but often for the pleasure of ownership. Like other high legacy
systems, such as firearms, there will then persist in use a broad
mixture of age and capability of on-road vehicles. The efforts of
infrastructure designers to parse these various segments of the
traveling inventory into differing regions of spatial operations, or
temporal distinctions in terms of permitted hours of operation,
will be motivated by the imperatives of efficiency. However, these
forces will be pitted against the persistent desire for freedom
of operation. It is liable to be a complex and polemic trade-
off involving such opposing forces. And across this checkered
landscape is emerging the observed trend for reduction in vehicle
ownership rates, especially among the cadre of younger drivers
(cf., Shaheen and Cohen, 2013; Knittel and Murphy, 2019). As to
the stability of these trends and their social, cultural, and national
variations across the globe, the trends are rather regionally
contingent. However, there is little doubt that the injection of
permanent circulating autonomous vehicles for hire and their
immediate availability via smartphone linkages will further serve

to influence vehicle purchase decisions as future generations face
their own mobility challenges. In sum, transition is liable to be a
motif of transport systems for some time yet to come. However,
transport exerts wider influences than simple passage between
origin and destination alone. It is to these impacts that I next turn.

DRIVING AS THE “WEDGE” ISSUE: TO
CHANGE DRIVING IS TO CHANGE
SOCIETY

In many ways, driving very much represents the “thick end of the
wedge.” It is, what I have thus termed the modal, “wedge” issue
concerning the penetration of ever more autonomous systems
into human life (Hancock, 2015, 2019b). In the steps from an
analog to a digital world, driving retains at least the vestiges of
a past and passing era. Lives across the world have already been
vastly transformed by this revolution, but now the tide of such
change is attacking perhaps its last and most formidable bastion.
As such, we are not simply looking at the future of driving,
we are surveying what promises to be a differing way of social
organization and human existence. The issue of momentary
control is embedded within a much wider concern for personal
autonomy. That is, when we relinquish the effective momentary
control of the vehicle, we are also abdicating from the full
expression of freedom that it represents. Future vehicles will
come pre-programmed with multiple origins and destinations;
and even some present vehicles have these resident capacities.
Departures from these everyday journeys linking home, work,
grocery store etc., will be exception processed. But just as no
man is an island, so no autonomous vehicle will actually be
completely autonomous. That is, such vehicles will necessarily be
embedded into a systems-wide integrated transport system that
will require to know about each componential element; where it
is coming from and where it is going to, and when. While this
requirement might well make it harder to accomplish “getaways”
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after robberies, a constraint that socially we might approve of, it
will also interfere with many other more provocative dimensions
of privacy. For example, how do we organize a surprise party,
when the data are necessarily available to let inquirers know
exactly where one’s friends and colleagues are? This might be a
fairly puerile example, but it does serve to make the point; there
are occasions upon which people do not wish to let anyone or
anything know where they are going. Changing the nature of
momentary vehicle control thus has outflows into society that
need be neither immediately obvious nor easily anticipatable. As
mentioned in the summary here, we also neglect to consider the
pleasures of driving at our peril.

As the proponents and pilgrims of higher, automated “safety”
wend their unhindered ways through the lines of social discourse,
what of those who still personally want to drive? Must their
pursuit be limited to out of the way facilities, fit only for
enthusiastic hobbyists? Will we not lose something more than a
symbol when the steering wheel is finally abandoned? Driving is
not merely the simple act of vehicle control; it is a declaration of
personal expression. In a world where the natural propensity of
the dominant consumerist system is to curtail such elaborative
forms of human behavior, automated control of one’s personal
vehicle represents another step along the straight-jacketed road
to obligatory social conformity. Let us then beware of what is
here driving us into the future. For, it may not be the panoramic
promise of autopia that we are being taught to visualize, but
something potentially much more disturbing.

ARE WE THERE YET?

How far off is the future? This is always a thorny conundrum.
No one disputes the fact that semi-automated vehicles have
already been “let loose” in the world to conduct an informal
empirical exploration of their capacities in the wild as it were.
And these more recent incarnations are inevitably introduced
into worlds which, for the foreseeable future will, as has been
noted, still contain various and traditional forms of human
vehicle control. With temporary transference of human driver
skills across vehicles, such as that experienced in renting a car,
it may be that drivers will traverse the differing levels of tactical
and strategic control, as represented by Stages 2 and 4 of the SAE
specification. This might even be envisaged within truly short
periods of time, such as the transfer that occurs when one rents a
totally different model and generation of vehicle. In this general
sense the introduction of more automated vehicles, is no different
from offering new iPhones, Tablets, and other advanced forms of
computational consumer systems which are designed but never
exhaustively tested before deployment. The issue here is that these
new technologies control a one-ton vehicle proceeding at 60 mph
and glitches, faults, bugs, and errors are not merely frustrating,
they can be fatal (and see Templeton, 2020). But is this same
process not as true for other, equally safety-critical systems such
as advanced fly-by-wire aircraft whose similar failure we have
witnessed in recent months? It might be suspected that in rather
the same way that an aircraft crash draws widespread news
coverage and single vehicle fatalities much less public attention,

so the respective flaws in automated ground transportation will
draw neither the same level of social disapprobation, nor the same
level of regulatory scrutiny as is visited upon commercial aircraft
and their functioning. We might well hope this is not the case,
but precedent militates against this aspiration. Here, again, time
will tell the tale.

At one and the same time that we are about to radically
change the nature of physical transportation and its control,
we are witnessing a forced proliferation of the “electronic”
transportation of information. Here data is, to the greatest
degree possible, substituted for material, and the transport of
data is so much more easily achieved. Why “port” material
goods if, for example, 3-D printers can take remote instruction
and create a need item on the spot? The pandemic, which
began essentially at the start of 2020, now engulfing our world
has forced a re-casting of movement imperatives. Here, much
discretionary, and elective travel has been curtailed, or at least
stultified (and see Ellwood, 2020). Ways are now being envisaged
to extend that propensity to what has previously been viewed
as obligatory transportation when, assumedly, the pandemic
subsides (cf., Freedman, 2017). At the same time, the whole
demographic of the driving public is itself in a state of flux.
Today’s younger generation no longer see vehicle ownership as
obligatory or even perhaps even preferable. Services such as
Uber, Lyft, etc., tend to mean that personal travel is an on-
demand requirement that does not necessarily entail a vehicle
of one’s own. Timeshared vehicles and on-demand transport
are even more likely to burgeon if pure driverless (and perhaps
individually ownerless) vehicles circulate in local environments.
If a number of these trends are sustained, and if they are
underwritten by greater profit, and there is no reason to believe
they will not be, then motivations for goals such as improved
roadway capacity may begin to dissipate as the absolute level of
vehicle numbers on roadways are themselves reduced. This is
another of the promises held out to the public to persuade them
toward collective acceptance.

What were once thought to be rather fanciful notions, e.g.,
the delivery of small packages by purpose-directed drones, now
look much more realistic in light of the times in which we live.
Rather paradoxically, the collision rates, which assumedly ought,
at least to a degree co-vary with the number of vehicles on
the road (Hancock, 2013a) does not seem to follow any such
simple relationship. Such patterns challenge us to understand
what safety levels will be like in an increasingly mixed equipage
situation (Sivak and Schoettle, 2015). There might, for example,
be the opportunity for low-level flying personal transport to be
substituted for on-road vehicles. All this is to say that we are
now fully engulfed in perhaps the next great wave of powered
transportations evolution. If the first wave was characterized by
the replacement of human muscle with animal power, and the
second the replacement of animal strength by artificial power,
then the third wave is most certainly the one where human
movement control is abrogated to a computational surrogate. As
each of these steps were accompanied by fairly radical changes
in the organization and structure of human society, so we
cannot but expect that the latter will exert both anticipated,
but also unknown effects in a similar manner. Driving is not
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merely the act of vehicle control; it is a relationship between a
person and the world in which they live (Singer, 2014). For good
or bad, we are changing driving’s rules and with them the very role
of vehicles in society itself (Howey, 2012). The step-change that
we are in the middle of will recast the world as we understand it.

A SUMMARY NOT YET CONCLUDED

As we conclude with a vision of a slowly diminishing, then dying,
then virtually an extinct activity of driving, we must spare a final
thought for those who actually love it as a desired pursuit. Here,
we not only include those that actually rely on driving for their
profession, such as taxi drivers, truck drivers and the like, but
also for those various ancillary enthusiasts. What of those whose
profession is a Formula One driver, NASCAR racer, dragster,
and those who enjoy watching these forms of vehicle-related
entertainment? Will crowds turn out to watch autonomous stock
car racing in the same way we now have a niche for “battling”
robots? Perhaps, but one senses not. How will Formula One look
when an fully designed, tested, and evaluated optimal control
algorithm can easily exceed even the greatest human exponent of
the art? And what of the simple, plain experience of satisfaction
in controlling one’s own destiny on the open highway? Will
books such as “Zen and the Art of Motorcycle Maintenance”
(Pirsig, 1974) be inspired by autonomous motorcycles? There
is therefore an important hedonomic dimension to driving
(Hancock et al., 2005; Hagman, 2010) which extends well beyond
the mere utilitarian necessity to relocate persons and material

from origin to destination. Of course, these pleasurable and
hedonic values have to be set against the traditional concerns
in driving for downsides such as pollution, driving’s subsequent
contribution to global warming, the problems of over-crowding
and time-wasting in queues and gridlock etc. However, if driving
is the wedge issue that I have identified, then it is possible
to postulate that many presently gratifying, associated human
activities will be submerged and then extirpated by the insensible
tide of spreading autonomy. It will not be too long before our
children may ask, in all naivete: “what was a driver?” And
after that what? The changes to society will extend well beyond
only these vanishing hedonomic dimensions. Most disturbingly,
the growth of independent, autonomous vehicles will, without
careful political legislation, serve very much to limit human
freedom. In the same way that even presently existing video
surveillance systems curtail and constrain people’s actions, the
inability to “see the USA in your Chevrolet,” is something more
than just transferring momentary vehicle control from a human
to an AI-based autonomous substitute. Rather, it promises to
represent a profound change in the human condition. When
driving into the future, we need to be much more wary about the
coming roads, whether they be ones either more or less traveled.
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Urban areas that allow street parking exhibit a heightened crash risk that is often

attributed to factors such as reduced road width, decreased visibility, and interruptions to

traffic flow. No previous on-road studies have investigated how the demands of searching

for parking affect driving performance, physiology, and visual attention allocation. We

are interested in these effects on the driver and their possible influence on the safety

of the environment. While simulator studies offer several benefits, the physical, mental

and social pressures incurred by searching for parking in an urban streetscape cannot

be emulated in a simulator. We conducted an on-road instrumented vehicle study with

28 participants driving in downtown Toronto, Canada to explore the effect of searching

for street parking on drivers. During the experiment, participants drove two routes in a

counterbalanced order: one route with a parking search task, and the other route as a

baseline. Speed and lane position were measured via vehicle instrumentation, heart rate

and galvanic skin response were measured through physiological sensors, and gaze

position was collected through a head-mounted eye-tracker. Participants completed the

NASA Task Load Index after each route. It was found that while searching for parking,

participants drove slower and closer to the curb, and perceived higher workload. While

there were no statistically significant effects in physiological measures, there was a rise

in heart rate approaching statistical significance. A detailed analysis of eye-tracking data

revealed a clear change in glance behavior while searching for parking, with an increase

in long off-road glances (>2 s) and decrease in shorter off-road glances (<1.6 s). Some

exhibited behaviors (e.g., slowing down) may be seen to compensate for the potentially

negative effects of increased demands associated with parking search, while others (e.g.,

increase in long off-road glances) have the potential to increase crash risk. This study acts

as an important first step in revealing changes in driving performance, physiology and

glance behavior brought on by searching for parking in a real-world urban environment.

Keywords: driver behavior, distraction, on-road study, instrumented vehicle, visual attention, traffic safety, parking

1. INTRODUCTION

The convenience and often limited availability of street parking makes it a coveted
resource in many downtown areas. Hampshire and Shoup (2018) highlighted 22 studies
in 15 different cities from 1927 to 2015 examining proportions of traffic cruising for
parking. The latest (2005–2015) of these studies found an average of just under 40%
of traffic cruising for parking across 3 cities. More recent studies found the number of
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vehicles cruising for parking to be 15% in Stuttgart, Germany
(Hampshire and Shoup, 2018), 5–6% in San Francisco, CA,
and 3–4% in Ann Arbor, MI (where cruising refers only to
excess travel due to the search for parking) (Weinberger and
Millard-Ball, 2017). Regardless of the variability in statistics,
measurement methods and definitions, it is widely regarded that
street parking can be difficult to find on demand (especially in
urban areas during busy times of the day). At these times drivers
may be forced to search for parking on or off their intended
route. As presented in detail below, many studies document the
heightened crash risk evident in areas that allow street parking.
However, to the best of our knowledge, no studies have attempted
to measure the effect on drivers of engaging in the parking search
task, nor how drivers actively searching for parking while driving
affect the safety of the road environment. In this paper, we present
an on-road instrumented vehicle study investigating how drivers’
vehicle control, workload, physiology, and glances are affected by
searching for street parking.

There has been significant research on the safety effects of the
presence of street parking. A review of street parking in the U.S.
estimated that it was associated with 15% of crashes (Sisiopiku,
2001). Similarly, a 1971 report concluded that street parking was
directly or indirectly responsible for 20% of all urban crashes
in the U.S. (Highway Research Board, 1971). The report named
five primary reasons for why street parking increases crash risk:
increased obstacles (i.e., parked vehicles), disruption of traffic
flow by cars leaving parking spaces, disruption of traffic flow by
cars entering parking spaces, drivers or passengers exiting parked
vehicles, and reduced sight distance of pedestrians. Decreased
road width and sight restrictions due to parked vehicles have also
been cited as an issue (Greibe, 2003; Box and Levinson, 2004;
Cao et al., 2017). A study conducted by Edquist et al. (2012)
showed that the visual complexity of an urban environment in
the presence of parked cars can increase the workload of drivers
and influence their driving behavior. In that study, there was
little difference between an environment that did not allow street
parking and one with empty bays, suggesting that the presence
of parked cars was the most significant contributor to workload.
Some have argued that searching for parking results in drivers
slowing down to safer speeds, reducing crash severity (Lerner-
lam et al., 1992; Daisa and Peers, 1997; Marshall et al., 2008),
or that parked vehicles can protect pedestrians by separating
moving traffic from the sidewalk (Lerner-lam et al., 1992).
Despite these arguments and supposed safety benefits of street
parking, crash risk appears to be elevated in areas that allow it.

While no studies were found that assessed the task of
searching for parking, tasks that generally visually engage drivers
have been shown to affect many measures of driving, such as lane
position and lane position variability, speed and speed variability,
reaction time to external events, and subjective workload (Regan
et al., 2008). The tasks most commonly studied are voluntary in-
vehicle tasks (e.g., mobile phone use) that often have a manual
component in addition to visual. Few studies were found that
examine visual secondary tasks without a manual component or
that concern distractions outside of the vehicle. A recent analysis
of the largest naturalistic driving study to date found that some
observable type of distraction was involved in 68% of crashes and

that extended glances to external objects were associated with a
crash risk 7.1 times that of normal driving (Dingus et al., 2016).
Visual search is the premier component of searching for parking
and requires drivers to scan the environment on the side of the
road to locate and confirm vacant spots in tandem with reading
posted parking restrictions and road markings. The existence
of parked cars provides an obstacle to getting within reading
distance of roadside signage and contributes to the complexity
of the road environment. While searching for parking, it is
expected that drivers spend more time glancing off-road and
exhibit an increased number of off-road glances, an effect that
we aim to verify and quantify in this study. Regarding driving
behavior, the addition of a visual task has been shown to result
in reduced speeds and increased lane keeping variability (Dingus
et al., 1995; Engström et al., 2005; Zhang et al., 2006). The same
behavior was found when drivers drove in an environment with
higher visual complexity (Edquist et al., 2012). Similar results are
anticipated for speed and lane keeping variability when drivers
are tasked with searching for parking. In addition, because sign
reading is assumed to be a significant aspect of finding street
parking, it is possible that drivers drive closer to the curb when
searching to allow them to read posted parking restrictions,
particularly due to the potentially small letter sizing (see: example
in Figure 4). In order to quantify how drivers are affected while
searching for parking, both vehicle control and glance behavior
require investigation.

In addition to visual demand, searching for parking may
increase cognitive demand and stress. Drivers searching for
parking in an urban center could be further burdened with the
task of navigating while searching for parking. In addition, the
time drivers spend locating a parking space has been shown
to be a major influencing factor in choosing a parking spot
(Brooke et al., 2014). Time spent looking for parking is time
removed from the driver’s ultimate destination, making the
search for parking a task best done as quickly as possible. Time
urgency has been shown to relate to driver stress and affect
driving behavior (Hennessy and Wiesenthal, 1999). In addition,
as drivers search and obstruct traffic in busy areas, they are
likely to find themselves under the pressure of following vehicles,
who may honk or keep close distances. This social pressure can
further contribute to the stress of the driver and pressure them
to maintain a speed that makes the parking search more difficult.
These cognitive load and stress effects can be assessed through
various measures including self-reports (Hart, 2006) as well as
heart rate and skin conductance, which are known to rise under
increased stress and cognitive load (Healey and Picard, 2005;
Mehler et al., 2012). These measures have been used in other on-
road studies as quantifiers of stress levels in drivers; such a study
found an increase in heart rate, indicating a rise in stress level,
exhibited by drivers when parallel parking manually compared
to parking with assistive technology (Reimer et al., 2016).

From existing research, it is unclear what (if any) the effects of
searching for parking while driving are on drivers and, in turn,
the road environment. To investigate this, we conducted an on-
road instrumented vehicle study in downtown Toronto, Canada,
to explore how drivers’ vehicle control, perceived workload,
physiology, and glance behaviors change while searching for

Frontiers in Psychology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 57426273

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ponnambalam and Donmez Searching for Street Parking

parking in a busy urban area. As an inaugural step into
investigating the parking task, we focus only on the search
itself and not the task of parking the vehicle. To the best of
our knowledge, no other research has investigated the effects
of searching for parking at the driver level from any of the
perspectives of vehicle control, perceived workload, physiology,
and visual attention allocation.

2. EXPERIMENTAL METHOD

To study the effects of searching for parking at the driver level,
an experiment must adequately simulate the parking search task
in a controlled manner and allow for relevant measures to be
recorded under representative driving scenarios. Despite the
limitations of on-road studies in regards to experimental control,
driving simulators have other limitations that render them less
effective to study parking search. For example, it is hypothesized
that the social pressure of blocking traffic is a contributor to the
demands on the driver while searching for parking; this pressure
cannot be induced in a simulator. In general, the perception
and influence of risk is limited in a simulated environment. In
addition, sign reading and visual scanning are key components of
searching for parking, and simulators are limited in the resolution
and visual detail they can provide, making them less effective
in studies that focus on visual scanning (Kaptein et al., 1996).
We therefore chose to conduct our study on the road in an
instrumented vehicle. The study was approved by the University
of Toronto Research Ethics Board (protocol number 32795).

As this experiment was the first to examine the effects of
searching for parking, we preferred to focus on roads with
attributes that pose the highest demands on drivers: complex
visual environment, erratic traffic flow, and high occupancy of
pedestrians and cyclists. The busy environment also ensures that
others (i.e., drivers in following vehicles) are affected by changes
in driving behavior, such as potential reductions of speed.
This maintains the social pressure expected when searching for
parking while driving. However, as this is a first step, we chose
not to explicitly investigate this influence nor the influence of
time pressure, though both are expected to play a role in the
searching for parking task. A simulator study by Edquist et al.
(2012), though they did not study the parking search itself,
showed that areas with many empty parking bays did not create
as high a visual demand on drivers as when there were many
parked cars (90% of bays occupied), thus we also conducted the
study on roads with a high occupancy of parked cars. There was
one (within-subject) independent variable in this study with two
levels: driving with a parking search task and driving with no-
task (baseline). Participants completed two 15- to 20-min routes
under the parking-search and baseline conditions. While both
routes were selected to be similar in length and complexity, the
order of the routes and the conditions were fully counterbalanced
across the participants to remove the potential effects of route and
order confounds. During the analysis, it was validated that route
and order did not significantly affect the results. The experiment
was run between July 2017 and October 2017, on Saturdays
or Sundays, starting at either 10:30 a.m. or 1:30 p.m. Running

experiments during the summer and only on weekends offered
some level of control over the weather and traffic density as well
as the number of pedestrians in the area, and ensured that there
would be no road work or waste collection interruptions during
the experiment.

2.1. Participants
Participants were recruited via posters placed around the
university campus and on online forums. Due to insurance and
Research Ethics Board constraints, participants were required
to be between the ages of 35 and 54 and have a full driver’s
license for at least 3 years. Therefore, our sample represented a
low-crash risk group (Cooper, 1990; McGwin and Brown, 1999).
Participants could not wear glasses during the experiment as this
affected the quality of data gathered by the head-mounted eye
tracker. Therefore, only drivers who can legally drive without
glasses (contacts were allowed) could participate in the study.
Twenty-eight participants (14male and 14 female, mean age 41.9,
st. dev. of age 5.7) completed the experiment, however due to
equipment malfunctions not all participants had full sets of data
(discussed inmore detail in the section 4). Of those that answered
(23 participants), 80% reported that they drive a vehicle a few
days a week or more. When asked how frequently they drive in
the downtown location of the study, 38% of participants reported
a few days a week or more, 44% reported a few days a month, and
17% a few days a year. Participants were compensated at CAN
$15/h.

2.2. Apparatus
The instrumented vehicle was a 2014 Toyota RAV4 equipped
with a MobilEye device to sample data from the Controller Area
Network (CAN bus) connection. The MobilEye also provided
measures calculated through image processing techniques
applied to video from its internal camera (such as lane position).
Another camera mounted on the dashboard provided video of
the front-view of the vehicle. Both the MobilEye and front-facing
camera can be seen in Figure 1.

FIGURE 1 | MobilEye (black unit) and front-facing camera mounted on

windshield.
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Electrocardiogram (ECG) and galvanic skin response (GSR)
sensors produced by Becker Meditec were used to measure heart
rate and skin conductance, and recorded data at 240 Hz; three
electrodes were placed on the chest to read the ECG signal and
two electrodes were placed on the bottom of the left foot to obtain
the GSR signal. Both the hand and foot are popular placements
for GSR measurement in driving studies; one study investigated
both placements and found both to be feasible (Avcı et al., 2014).
We opted for the foot placement as we presumed the wires would
then be less disturbing to the driver while driving. Gaze position
was captured using the head-mounted Dikablis Eye-Tracking
Glasses (Figure 2), produced by Ergoneers. When calibrated, this
device uses two cameras pointed toward the eyes to determine
gaze position (tracked at 50 Hz) and overlays the gaze position
on video data captured by its front-view camera.

The data from all devices was synced with vehicle data during
data collection. A computer and monitor in the back seat allowed
for real-time monitoring of data (Figure 3).

FIGURE 2 | Driver outfitted with Dikablis eye-tracking glasses.

FIGURE 3 | Data collection computer and monitor in the backseat of the

instrumented vehicle.

2.3. Parking Search Task
The task was designed to induce only the loads of visually
searching for parking while driving rather than the task of
parking itself. Participants were asked to identify legal, vacant
parking spaces that were in their direction of travel and on
the same street they were on. In the parking-search condition,
there were four predetermined sections of each route where
participants were asked to search for parking continuously (these
sections ranged from approximately 400–800 m). They were
told to verbally announce each space they encountered that they
understood to be vacant and legal. After each announcement,
they were told whether the parking space was indeed legal or
why it was not. They then continued to search for parking.
Participants were not asked to stop nor park. They were
given turn-by-turn directions during the experiment (in both
conditions) to eliminate the navigation component of the
parking search; although not investigated in our experiment,
this component is expected to further distress drivers in
real-life scenarios.

2.4. Procedure
The experiment contained both an off-road and an on-road
component and took an average of 2 h. Participants first read
and signed the informed consent form. They provided their
driver’s license to verify their age and license type and were aware
that a scanned record was made for insurance purposes. After
signing the informed consent document, participants filled out
questionnaires to gain insights into their driving behavior and
history. Participants were then given an instructional booklet
that provided a brief overview of parking rules in Toronto and
explained the restrictions described by parking signage found
along the experimental driving routes (Figure 4). After going
through the booklet on their own, participants were administered
a five-question quiz and were assured that their performance on
the quiz would not affect their participation in the rest of the
experiment. The multiple-choice quiz tested their understanding
of parking signage; after each question, if they chose an incorrect
response, the investigator discussed the correct answer with the
participants. The purpose of the booklet and quiz was to ensure
that all participants had the sameminimum level of exposure and
understanding of the parking restrictions and signs in the area.

Participants were then taken to the instrumented vehicle
and seated in the driver seat. They were given time to adjust
the seat position and mirrors. The lead investigator sat in the
passenger seat and a research assistant was seated behind the
investigator, operating the data collection computer. Participants
first completed a 5- to 10-min familiarity drive to allow them to
get used to the vehicle. They were told that the investigator would
provide them with turn-by-turn directions and that they should
ask questions about operating the vehicle during the familiarity
drive as talking during the experiment would be discouraged. The
familiarity drive was on roads similar to the experimental routes.
After the familiarity drive, the participants were outfitted with
the physiological sensors and the head-mounted eye-tracking
device, which was calibrated before each experimental route.
They then completed the two experimental routes, one with the
searching for parking task and the other serving as the baseline.
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FIGURE 4 | Example of sign explanation in parking instructions booklet provided to the participants.

As previously stated, the order of the routes and the conditions
were fully counterbalanced across the participants to remove the
potential route and order confounds. After each experimental
route, participants completed the NASA Task Load Index (Hart
and Staveland, 1988). As part of the questionnaire, they were
required to complete a pairwise comparison of six types of
workload based on which they felt contributed more to their
workload. This calibration was done only once per participant
after the first drive. For both drives, drivers rated the extent
to which they felt six different types of demand (e.g., mental,
physical) during the drive. After the second route, participants
exchanged seats with the investigator and were driven back to
campus and given their compensation.

3. ANALYSIS

The experiment produced vehicle, physiological, eye-tracking,
and subjective data from 28 participants each driving two 15- to
20-min routes under the parking-search and baseline conditions.
While both routes were similar in length and complexity, they
contained a variety of different streets and intersections. To
mitigate these differences, each route included the same 540
m stretch of Bloor St. driven west to east by all participants,
once under the baseline condition and once while searching
for parking. Participants had already completed at least two
sections of parking search before reaching the region, regardless
of whether it was their first or second drive. For these reasons, this
region was the focus of analysis for vehicle control, physiology,
and glances. However, perceived workload was assessed at the
end of each route, and therefore its analysis did not focus on
the Bloor St. stretch. The Bloor St. stretch contains a single lane
in each direction, each with a separated bike lane (Figure 5A).
There is paid street parking allowed at parking bays indicated
by pavement markings, signs, and bollards; parking on the right
side of the street was observed to be almost fully-occupied at
the times when the experiment took place (by reviewing videos

post-experiment), with 3 or 4 spaces free out of 25 on average in
the region.

3.1. Vehicle Control
We captured vehicle control through speed and lane position
as well as their variability, measured as standard deviation
(within participants) and all provided by the MobilEye device.
Traffic flow, signal status, and pedestrian behavior could not
be controlled during the experiment, thus there were many
instances where participants were forced to stop or slow down,
regardless of the speed they would normally choose. It was
observed that on the Bloor St. stretch, speeds under 15 km/h
were driven when participants were either slowing or stopping
due to interruptions in the road, such as a red light, vehicles
parking, pedestrians crossing, or congested traffic. Therefore,
when calculating average speed and standard deviation of speed,
only data recorded for speeds above 15 km/h was considered;
drivers drove above 15 km/h 68.8% of the time (on average) when
driving the Bloor St. stretch.

For all other vehicle measures, the entire set of data from the
stretch was used. Lane position was recorded via the Distance to
the Left Lane value provided by the MobilEye System (located
6 cm right of the center of the front windshield, Figure 1); this
is calculated by the device using lane marking detection on
video captured by its internal camera. Vehicle measures between
the two experimental conditions were compared by paired t-
tests. Time spent driving the Bloor St. stretch and time spent
driving the stretch above 15 km/h were also compared between
conditions using paired t-tests and applied as offset variables
where appropriate in the statistical analysis of glance metrics.

3.2. Subjective Workload
The NASA TLX was administered after both experimental drives,
with participants completing the pairwise comparison section
only after the first drive. This pairwise comparison of six
workload types produced a weighting for each participant, 5
being the type of workload they felt most contributed to their
drive and 0 being the least. An average workload score (from 0 to
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FIGURE 5 | Views from the head-mounted camera on the Dikablis eye-tracker used for glance analysis. (A) Snapshot of Bloor St. (B) Gaze position indicated by the

red cross-hair. (C) Bounded region considered “on-road”.

20) was calculated for each condition with these weights and the
participant ratings (from 0 to 20) of the amount of each type of
workload they experienced. The overall self-reported workload,
and its components, were compared between the two routes via
paired t-tests.

3.3. Physiological Measures
Physiological measures included average heart rate (calculated
from EKG signals) and average galvanic skin conductance.
Paired t-tests were carried out to compare the two experimental
conditions with regard to physiological measures.
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3.4. Glance Measures
Glances were coded by reviewing eye tracking videos (Figure 5B)
and determining the periods when the driver had an off-road
glance, i.e., was looking outside of the perimeter deemed on-road
(Figure 5C). The length of a glance included both the fixation
on the area of interest as well as the saccade to the area before
the fixation, as defined by the International Organization for
Standardization (ISO 15007-1). Glances less than 100 ms were
removed from analysis as they may not represent meaningful
fixations (Crundall and Underwood, 2011). In addition, because
our interest was on searching for parking while driving, glances
during periods where drivers were slowing to a stop, stopped
(generally at a red traffic signal or to allow pedestrians to cross
the street, not because they were searching for a parking spot), or
following a very slow-moving vehicle were not of interest. Drivers
tended to scan the environment far more during these periods,
greatly skewing results. Therefore, glances were filtered to include
only those made while the vehicle was moving above 15 km/h.

Based on an on-road study using an eye-tracker, it was
reported that drivers rarely glance off the road for longer than
1.6 s (Sodhi et al., 2002); in addition, through a naturalistic
driving study, it has been shown that glances off the forward
roadway of over 2 s double the risk of a crash (Klauer et al.,
2006). These two thresholds (1.6 and 2 s) are used widely in
the study of driver distraction (e.g., Sodhi et al., 2002; Horrey
and Wickens, 2007; Hallihan et al., 2011; Reimer et al., 2014).
Thus, we also used these thresholds in our analysis. It should be
noted that Klauer et al. (2006) utilized video recordings of the
participants’ face to assess gaze direction. Thus, their method is
likely not as precise as our study’s assessment of glance duration
(hence the label “off the forward roadway” as opposed to “off-
road”); however, the naturalistic nature of the study entails a high
level of ecological validity.

Our glance measures included percentage of time looking
away from the road, average off-road glance duration, rate of
off-road glances per minute, and rate of shorter (<1.6 s) and
long (>2 s) off-road glances per minute. Percent time and glance
duration measures were analyzed with paired t-tests. Number
of glances data were non-normal, thus were modeled through
generalized linear models with the Poisson distribution and log
link function, and with task condition (baseline or parking-
search) as the predictor variable. The time spent above 15
km/h in minutes was used as an offset variable; therefore, the
models predicted rate of glances (/min). Repeated measures were
accounted for using generalized estimating equations.

4. RESULTS

As mentioned earlier, some participants had to be dropped
from analysis of some measures due to equipment malfunctions.
Table 1 summarizes the number of participants whose data
were analyzed for each measure, as well as their gender and
age information.

4.1. Vehicle Control
The time spent driving the Bloor St. stretch was not expected to
significantly differ between conditions, as the stretch contained 2

TABLE 1 | Number of participants with usable data for each measure.

Measure N Age mean, standard

deviation

NASA TLX 14 male, 14 female 41.9, 5.7

Driving duration, speed 13 male, 13 female 42.2, 5.7

Lane position 12 male, 13 female 42.5, 5.7

Galvanic skin response 12 male, 12 female 42.4, 5.9

Heart rate 11 male, 12 female 42.6, 6.0

Glance measures 9 male, 7 female 42.8, 5.7

traffic signals and various traffic conditions that greatly affect this
measure regardless of whether the searching task was performed.
Indeed, there was no significant difference; it took participants
an average of 77.2 s to complete the stretch while searching for
parking (SD = 25.2 s) and 73.0 s in the baseline (SD = 17.1 s);
t(25) = 0.66, p = 0.51. When considering only speeds above 15
km/h (Figure 6), the average speed was found to be significantly
higher in the baseline condition (M= 28.8 km/h, SD= 4.0 km/h)
than when drivers were searching for parking (M = 26.3 km/h,
SD = 3.2 km/h), t(25) = 2.34, p = 0.03, Cohen’s d = 0.68. The
standard deviation of speed above 15 km/h was also, on average,
significantly higher in the baseline (M = 5.5 km/h, SD = 1.8
km/h) than in the parking-search condition (M = 4.4 km/h,
SD = 1.0 km/h), t(25) = 2.27, p = 0.03, Cohen’s d = 0.67. The
average distance to the left lane significantly differed between
conditions (Figure 6); drivers drove further from the left lane
when searching for parking (M = 1.62 m, SD = 0.13 m) than in
the baseline (M = 1.57 m, SD = 0.13 m), t(24) = 2.11, p = 0.045,
Cohen’s d = 0.37. The standard deviation of distance to the left
lane did not differ significantly when participants searched for
parking (M = 0.33 m, SD = 0.09 m) compared to their baseline
(M= 0.37 m, SD= 0.14 m), t(24) = 1.54, p= 0.14.

4.2. Subjective Workload
The overall NASA TLX score was significantly higher during
the parking-search route (M = 54.63, SD = 14.53) than in the
baseline route (M = 39.02, SD = 11.27), t(27) = 5.36, p <

0.001, Cohen’s d = 1.19. Figure 7 displays the raw (un-adjusted
by weighting, for comparison) rating for each specific type of
workload by task conditions. These box plots as well as the
ones presented later depict the minimum, maximum, 1st and
3rd quartiles, and the median, as well as the mean overlaid on
the box as triangles along with its value. The difference between
parking-search and baseline routes for the individual workload
components were all significant: physical [1.86; t(27) = 2.6, p =

0.02, Cohen’s d = 0.43], mental [3.28; t(26) = 3.7, p = 0.001,
Cohen’s d= 0.84], temporal [4.78; t(27) = 5.5, p < 0.001, Cohen’s
d = 1.03], performance [1.9; t(27) = 4.4, p < 0.001, Cohen’s d =

0.69], effort [3.46; t(27) = 3.4, p = 0.002, Cohen’s d = 0.87] and
frustration [2.40; t(27) = 2.5, p= 0.02, Cohen’s d= 0.51].

4.3. Physiological Measures
The average skin conductance did not differ significantly between
conditions, t(23) = 1.51, p = 0.14. The difference in average
heart rate approached significance, with participants exhibiting
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FIGURE 6 | Average and standard deviation of speed and lane position. The mean is reported in the boxplot and indicated with a triangle.

a potential increase when searching for parking (M = 78.99
beats/minute (bpm), SD = 12.34 bpm) over the baseline (M =

77.89 bpm, SD= 12.55 bpm), t(22) = 1.76, p= 0.09.

4.4. Glance Measures
As shown in Figure 8, participants spent more time looking off-
road (driving over 15km/h) when searching for parking (M =

53%, SD = 17%) than in the baseline condition (M = 39%,
SD = 15%), t(15) = 2.80, p = 0.01, Cohen’s d = 0.70. Further,
considering only when driving over 15 km/h, participants had
longer off-road glances while searching for parking (M = 1.1 s,
SD = 0.4 s) than in the baseline (M = 0.7 s, SD = 0.2 s); t(15) =
3.5, p = 0.003, Cohen’s d = 0.87. Rate of all off-road glances was
not significant, χ2(1) = 1.36, p = 0.24; however, rate of off-road
glances under 1.6 s, χ2(1)= 10.94, p < 0.001, and the rate of off-
road glances over 2 s, χ2(1) = 22.11, p < 0.001, were significant.
The rate of off-road glances under 1.6 s was 28% higher in the
baseline condition compared to the parking-search condition,
95% CI = (9, 47%), whereas the rate of off-road glances over 2
s was 235% higher in the parking-search condition than in the

baseline, 95% CI = (81, 520%). The plots for significant findings
in glance rates are found in Figure 9.

5. DISCUSSION

This is the first known study that attempts to quantify the
effect searching for parking has on drivers through an on-
road experiment. We aimed this study to act as a first step
into understanding how the necessity for searching for street
parking affects the safety of the road environment. The use of
an instrumented vehicle and head-mounted eye tracker allowed
for relatively precise data collection in a real-world environment,
compared to simulator and naturalistic studies. The parking-
search task designed for this experiment was a simplified
version of the search for parking drivers normally experience.
Participants were not required to navigate, did not have any time
pressures enforced on them, and were only required to search
for parking that was in the same direction and on the same
street as they were going. We found evidence that searching for
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FIGURE 7 | NASA TLX un-weighted ratings for each workload category and task condition.

FIGURE 8 | Percent time glancing off-road and average duration of off-road glances.

parking has a measurable effect on drivers, particularly on their
perceived workload, vehicle speed and lane position and glance
behavior. Drivers reported an increase in workload and were
found to drive slower and closer to the curb when searching for
parking. They also exhibited longer off-road glances and more
frequent long off-road glances. Given the simplification of the

parking-search task in this experiment, it is expected that drivers
in a similarly complex environment are affected even more so in
natural conditions.

Under the condition of searching for parking in which
they experience increased perceived workload, participants
drove slower on average. Lowering speed is often seen as a
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FIGURE 9 | Rates of off-road glances (total, under 1.6 s, above 2 s) per minute.

compensatory strategy that has been observed when drivers
experience high visual workload (Engström et al., 2005). A
decrease in the standard deviation of average speed was also
observed, however the lower speed variability may be a statistical
artifact of the generally lower speeds exhibited when searching
for parking. The Edquist et al. (2012) simulator study found
that drivers drove further from the curb in similar conditions
to the Bloor St. stretch (i.e., urban environment, single lane in
each direction, fully occupied parking bays along both sides)
analyzed in our study; it was suggested that thismay be dangerous
as vehicles were positioned closer to oncoming traffic. Worth
noting is that the influence of this potential danger is likely
minimized when driving in a simulator study, possibly leading to
riskier behavior than found in a real environment. Our analysis
revealed that when tasked with searching for parking in similarly
visually complex conditions, participants drove closer to the curb.
Drivers may have purposefully kept themselves farther from
oncoming traffic while they engaged in a potentially distracting
task. However, it is also possible that they drifted nearer to the
parking bays as they visually inspected them for vacancy, or to
better read parking signs with small letter sizing. Interestingly,
it was observed that participants received many of their cues
regarding the legality of parking spaces by the presence of
other parked cars, rather than by reading the parking signage
thoroughly. For this reason, it was difficult to investigate how
their understanding of the parking rules may have affected the
task, and modifications to the experimental methodology would
be needed to do so. In addition, further research is needed to

comment on the role reading signs plays in the search for parking.
There was no increase in lane keeping variability observed,
despite the hypothesis that it would increase under heightened
visual load as reported in another study (Engström et al., 2005).
The lack of significance in our study may be due to the generally
low speeds of the driving area which allowed participants to
maintain their course with minimal deviation; it is suggested that
further research be done in an area where speeds average above
40 km/h. A lack of statistical power may also explain these and
other non-significant findings.

Participants self-reported a clear increase in workload
between driving under the baseline condition and driving when
periodically searching for parking. While not explicitly studied,
we found evidence that time pressure could be induced by the
social aspects of driving (i.e., slowing traffic) and not only by
the driver’s own motivation to complete the task as quickly as
possible. The results of the NASA TLX questionnaire revealed
that the largest average difference in demand reported was
in temporal demand; this indicates that drivers did feel time
pressure when searching for parking even though there was no
deadline to reach a destination. It seems then that the rate at
which they performed the task was at least partially imposed on
them by external pressures, social or otherwise.

This study revealed that searching for parking brought on
measurable differences in glance behavior. Participants exhibited
fewer off-road glances under 1.6 s but more glances over 1.6 s (as
suggested by the minimal change in overall rate of glances) when
searching for parking compared to the baseline. This suggests
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FIGURE 10 | Fixation on point B allows more of the road ahead to be maintained in the driver’s central vision than fixation on point A.

an adjustment of visual scanning behavior when searching for
parking by lessening the number of short glances they perform
to allow more long off-road glances. Long off-road glances can
reduce the driver’s ability to respond to unexpected events on
the road (Liang et al., 2012). Drivers exhibiting more frequent
long off-road glancesmay contribute to amore dangerous driving
environment. Even though participants were found to decrease
the number of short off-road glances when searching for parking,
the total percentage of off-road glance duration was still higher
in this condition compared to the baseline. It is important to
note that not all off-road glances are equivalent. Glances made
off-road far ahead of the vehicle (Figure 10, point B) still allow
the driver to maintain the environment ahead in their field of
view, while fixations on points closer to the vehicle with a higher
angular velocity (Figure 10, point A) have a reduced portion of
the road ahead held in their view. Further analysis on the angular
velocity of fixation points is needed to determine how unsafe
long off-road glances are. In addition, some off-road glances are
necessary to ensure a safe environment, such as glances to a
pedestrian about to cross the street.

Physiological signals (heart rate and galvanic skin response,
GSR) were expected to reflect an increase in workload. Although
heart rate variability is another measure of workload, it was not
analyzed given that our study did not provide the recommended
5-min minimum of baseline signal to properly assess any
change in HRV between task conditions (Shaffer and Ginsberg,
2017). However, average heart rate showed only a slight
increase approaching significance when drivers were searching
for parking, and average GSR did not show any significant
difference between task conditions. The lack of significance may
again be due to a lack of power resulting from our limited
sample size or from the variability introduced from the driving
environment encompassing uncontrolled factors (e.g., pedestrian
jay-walking, traffic signal status, behavior of other traffic) that

may have impacted the driver’s physiological state more than
the searching for parking task. Another possible factor, given
that participants did self-report a clear increase in workload,
is that increased sensory information taken in when searching
for parking caused a decrease in heart rate counter to the rise
experienced due to stress. This phenomenon, known as “sensory
intake,” has been suggested to occur when drivers are intently
focused on absorbing sensory information (e.g. visually searching
for an open parking space) (Mehler et al., 2008). The GSR sensors
used in the study could also be unreliable due to the noise in
the signal brought on by the vibrations in the vehicle and the
movement of the participant; a more robust placement than the
bottom of the foot may have achieved better results.

Our work adds to the growing body of on-road experimental
studies that aim to quantify driver behaviors in real-world
environments. We found that, when searching for parking,
drivers exhibited some compensatory behaviors which are
conducive to a safer driving environment, such as reduced speed.
They also exhibited behaviors which can be considered unsafe,
such as increased off-road glances over 2 s. It is recognized
that, though statistically significant, the differences in speed
and lane position between task conditions are relatively small.
Further investigation in different types of road environments
is needed to conclude whether such differences can contribute
to the heightened crash risk that has been exhibited in areas
that allow street parking. This work serves as an important
initial step in investigating how searching for parking affects
drivers, and acts as an invitation to continue researching a
common, often taxing task for drivers that may contribute to
crash risk in busy urban areas. Such findings would justify the
development of measures, such as changes in road design or
parking search assistance via mobile applications, that provide
additional benefits to drivers beyond reducing traffic congestion
and parking payment efficiency.
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Cognitive impairment is a significant risk factor for hazardous driving among older drivers
with Alzheimer’s dementia, but little is known about how the driving behavior of mildly
symptomatic compares with those in the preclinical, asymptomatic phase of Alzheimer’s
disease (AD). This study utilized two in-car technologies to characterize driving behavior
in symptomatic and preclinical AD. The goals of this pilot study were to (1) describe
unsafe driving behaviors in individuals with symptomatic early AD using G-force triggered
video capture and (2) compare the driving habits of these symptomatic AD drivers
to two groups of cognitively normal drivers, those with and those without evidence
of cerebral amyloidosis (CN/A+ and CN/A−) using a global positioning system (GPS)
datalogger. Thirty-three drivers (aged 60+ years) were studied over 3 months. G-force
triggered video events captured instances of near-misses/collisions, traffic violations,
risky driver conduct, and driving fundamentals. GPS data were sampled every 30 s and
all instances of speeding, hard braking, and sudden acceleration were recorded. For the
early AD participants, video capture identified driving unbelted, late response, driving
too fast for conditions, traffic violations, poor judgment, and not scanning intersections
as the most frequently occurring safety errors. When evaluating driving using the GPS
datalogger, hard breaking events occurred most frequently on a per trip basis across all
three groups. The CN/A+ group had the lowest event rate across all three event types
with lower instances of speeding. Slower psychomotor speed (Trail Making Part A) was
associated with fewer speeding events, more hard acceleration events, and more overall
events. GPS tracked instances of speeding were correlated with total number of video-
captured near-collisions/collisions and driving fundamentals. Results demonstrate the
utility of electronic monitoring to identify potentially unsafe driving events in symptomatic
and preclinical AD. Results suggest that drivers with preclinical AD may compensate for

Frontiers in Psychology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 59625785

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.596257
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.596257
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.596257&domain=pdf&date_stamp=2020-10-27
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.596257/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-596257 October 23, 2020 Time: 11:30 # 2

Davis et al. In-Vehicle Technology in Alzheimer’s Disease

early, subtle cognitive changes by driving more slowly and cautiously than healthy older
drivers or those with cognitive impairment. Self-regulatory changes in driving behavior
appear to occur in the preclinical phase of AD, but safety concerns may not arise until
symptoms of cognitive impairment emerge and the ability to self-monitor declines.

Keywords: driving, Alzheimer’s disease, naturalistic, technology, preclinical Alzheimer’s disease, driving mobility

INTRODUCTION

Older drivers with cognitive impairment are at high risk
for unsafe driving, carrying a relative crash risk of 2–5
times higher compared to matched controls (Marshall, 2008).
Alzheimer’s disease (AD), one of the most prevalent diseases
affecting cognition in older adults (Alzheimer’s Association,
2019), adversely impacts driving. Individuals with AD are at
increased risk for failing a road test with disease progression
(Duchek et al., 2003; Ott et al., 2008), make more safety errors
when driving in their own environment compared to cognitively
normal older adults (Davis et al., 2012), and are at greater
risk for crashes (Drachman and Swearer, 1993). Despite their
increased risk, drivers with AD continue to drive during their
disease course but may modify their behavior by reducing
driving in complex situations (Festa et al., 2013; Molnar et al.,
2013). This includes driving without passengers, during daytime
hours, good weather, light traffic, and residential rather than
commercial environments. Festa et al. (2013) Despite behavioral
modification, however, most drivers with AD eventually need to
cease driving due to progressive cognitive and functional decline
(Connors et al., 2018).

Little is known about how driving is affected early in the
disease process or the pathological process underlying that
decline. AD begins decades (∼2–3) before overt expression of
cognitive symptoms as beta amyloid, the pathological marker of
AD, begins to accumulate in the brain. The presence of cerebral
amyloid has been directly associated with driving. Specifically,
several postmortem studies of the brains of older drivers who
were killed in motor vehicle crash (MVCs) have found that many
had the neuropathologic changes of AD but had never been
diagnosed (Johansson et al., 1997; Viitanen et al., 1998; Kibayashi
and Shojo, 2002; Gorrie et al., 2007).

The development of biomarkers for AD has allowed for
in vivo studies of amyloid deposition and driving behavior.
Traffic violations and accidents over the 3 years prior to
brain imaging was strongly related to accumulating amyloid on
positron emission tomography [PET] scans, even in individuals
not yet displaying measurable cognitive impairments resulting
from the disease (i.e., preclinical AD) (Ott et al., 2017b). More
abnormal levels of cerebral amyloid detected using Pittsburgh
compound B radiotracer via PET predicted poorer performance
on a standardized road test among cognitively normal older
adults (Roe et al., 2017). Using naturalistic methodology, real
world driving behavior appears to change even in the preclinical
phase of the disease with amyloid positive older adults driving
to fewer places/unique destinations, traveling fewer days, and
taking fewer trips compared to amyloid negative same-aged
peers. Furthermore, those with preclinical AD had fewer trips

with any aggressive behaviors and showed a greater decline across
a 2.5-year follow-up period in the number of days driving per
month and number of trips taken (Roe et al., 2019).

CURRENT STUDY

To date, there is little data examining the spectrum of age-related
driving behavior ranging from normal cognition to preclinical
AD to symptomatic AD. Using a convenience sample of older
drivers, the goal of this pilot study was to describe naturalistic
driving behavior among these three groups using in-vehicle video
and global positioning system (GPS) technologies. The first aim
was to describe the types of hazardous driving errors captured by
video technology in a subset of the sample of older adult drivers
with early AD. The second aim was to compare the driving
behaviors of drivers with early AD to two groups of cognitively
normal (CN) drivers, those with evidence of brain amyloid
(preclinical AD; CN/A+) to healthy adults without evidence of
brain (CN/A−) over 3 months of naturalistic driving.

MATERIALS AND METHODS

Participants
Symptomatic AD drivers (n = 11) were recruited from a
multidisciplinary outpatient memory clinic in Rhode Island. All
participants underwent a diagnostic evaluation by a neurologist
at the Center. Neurological examination results were judged to be
normal for age or consistent with AD. For inclusion, Mini-Mental
State Examination (MMSE) (Folstein et al., 1975) scores were
<28 and Clinical Dementia Rating (Morris, 1993) (CDR) scores
were categorized as CDR = 0.5 or 1, indicating questionable or
mild dementia. It is well established that CDR 0.5 is equivalent
to mild cognitive impairment (Morris et al., 2001). Participants
met diagnostic criteria for possible or probable AD based on
NINCDS-ADRDA criteria (McKhann et al., 1984). Patients were
on a stable dose of a cholinesterase inhibitor for 6 weeks, if
prescribed. The amyloid status was known only for a subset of
the cognitively impaired participants, as amyloid imaging was not
a standard part of the original study protocol. Amyloid imaging
was obtained within 18 months of study entry (M = 333 days;
range = 56–511 days). Amyloid imaging results are presented
in Table 1 to add to the clinical characterization of the early
AD group. This subset of participants underwent amyloid PET
imaging using the radiotracer 18F-Florbetapir (Clark et al., 2011)
as part of their participation in other clinical research studies. An
established standardized uptake value ratio (SUVR) threshold of
>1.19 was used to indicate amyloid PET positivity (Clark et al.,
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TABLE 1 | Demographic characteristics of participants.

CDR 0 (CN/A−) (n = 11)
(%) or M (SD)

CDR 0 (CN/A+) (n = 11) N
(%) or M (SD)

CDR.5/1 (AD) (n = 11) N
(%) or M (SD)

Statistic p

Women, N 5 (45%) 5 (45%) 5 (45%)

White, N 10 (91%) 11 (100%) 11 (100%)

MCI/CDR.5, N 0 (0%) 0 (0%) 9 (82%)

MMSE (total) 29.18 (1.67) 29.09 (1.30) 25.18 (3.84) F = 9.66 0.001*

Age, years 73.33 (5.21) 73.71 (5.12) 72.88 (6.84) F = 0.56 0.95

Education (years) 17.45 (1.97) 16.55 (1.86) 15.45 (3.36) F = 1.78 0.19

*Implies difference between CDR 0 vs. CDR.5/1.CN/A−, cognitively normal/amyloid negative; CN/A+, cognitively normal/amyloid positive; AD, Alzheimer’s disease; CDR,
Clinical Dementia Rating Scale; MCI, mild cognitive impairment.

2012; Johnson et al., 2013). All scans were read by two clinical
neuroradiologists who gave also gave a clinical read of the scan.
One participant had a SUVR threshold of 1.16 but had a positive
clinical read. That participant was considered to be amyloid
positive in this study. The sample was further characterized by
apolipoprotein (ApoE) genotype, a known risk factor for AD
if the ε4 allele is present. Of the eight participants with ApoE
genotyping completed, 50% possessed the ε4 allele.

All participants were >60 years of age, English speaking
with a valid driver’s license. Exclusion criteria included
ophthalmologic, physical, or neurologic disorders other than
dementia that impair their driving abilities, visual acuity worse
than 20/40 in best eye using distance vision measured by
wall chart, homonymous hemianopia or bitemporal hemianopia,
musculoskeletal disorders causing major physical handicaps,
history of alcohol or substance abuse by DSM V criteria within
the past year, had used sedating medications that impair level
of consciousness or attention, had a language impairment that
would interfere with the ability to participate in the study, or
had a previous road test evaluation or opinion of caregiver or
health professional that they were unsafe to drive. Study protocols
were approved by the Rhode Island Hospital Institutional Review
Board, and all participants provided written informed consent
that was also signed by a study partner.

Since beta-amyloid is the primary driver and earliest marker
of AD pathogenesis and cascade, it was selected as the main
biomarker (Jack et al., 2018). A group of cognitively normal
drivers were selected from participants enrolled in a longitudinal
study assessing preclinical AD and driving performance (R01
AG043434) at Washington University School of Medicine in St.
Louis and matched for age and gender to the early AD group.
All participants were cognitively normal (CDR = 0), ≥65 years
old, had a valid driver’s license, drove at least once per week,
and had in vivo imaging of amyloid using PET with either
Pittsburgh compound B (PIB) or florbetapir AV45 radiotracer
to confirm group membership. PET imaging was selected if it
occurred 2 years before or 6 months after the installation date of
datalogger in the participant’s vehicle. Eleven participants were
selected with amyloid negative scans and 11 with evidence of
amyloid based on centiloid values (Su et al., 2015). Accepted cut-
offs of centiloids were based on the mean cortical SUVR with
partial volume correction via regional spread function (RSF) [PIB
MCSUVR RSF≥ 16.4 and AV45 MCSUVR RSF≥ 20.6] (Su et al.,
2015, 2018, 2019). The amyloid negative group had 27.3% the

ApoE ε4 allele carriers, and 63.6% were ApoE ε4 allele carriers
in the amyloid positive group. The participant’s vehicle had to
be manufactured in the year 1996 or newer in order to have
access to the onboard diagnostic port (OBDII). Study protocols
were approved by the Washington University Human Research
Protection Office, and written informed consent was obtained
from all participants.

Study Procedures
Cognition
At study enrollment, all participants completed cognitive
measures, including a global measure of cognition (MMSE) and
a task of psychomotor speed and set shifting (Trail Making Parts
A and B, respectively) (Reitan, 1956). Trail making was selected
because it has been shown to be related to naturalistic driving
errors (Papandonatos et al., 2015). Time in seconds to complete
the tasks were used in data analyses. Higher scores on Trails A
and B reflect worse performance (i.e., slower time).

Technology
Vehicles were equipped with two forms of technology, an event-
based video recording system (Drivecam) R© was equipped for
CDR > 0 drivers and a GPS datalogger was equipped for all
drivers. Because these results reflect the combination of drivers
from two different parent studies, only the vehicles of the mild
AD group were equipped with the camera system. All three
groups had the GPS datalogger installed to capture naturalistic
driving behavior.

The DriveCam video camera is a palm-sized, exception-based
video event recorder that was mounted in a bracket secured
to the windshield behind the rearview mirror with an adhesive
similar to what holds the rearview mirror in place. This system
is a validated method for detecting and evaluating driving safety
errors in AD (Ott et al., 2017a). Camera views were the forward
roadway and the driver in the vehicle interior. Once installed, the
camera continuously captured video and temporarily saved the
previous several seconds in a video buffer. If the device was not
triggered by excessive g-forces, all data was deleted permanently
10 s later. Data were protected from unauthorized access and
removal and was only viewable by DriveCam’s staff and site
research staff. The site research staff, comprised of a neurologist,
neuropsychologist, and occupational therapist specializing in
driving evaluation, reviewed the events weekly to ensure no
egregious events occurred that would prompt recommendation
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for a road test or driving cessation. DriveCam staff scored all
videos according to a standardized procedure developed and
validated by their company for commercial drivers (Myers et al.,
2012). DriveCam staff were blind to all clinical information
regarding dementia severity.

A commercial GPS datalogger (G2 Tracking DeviceTM, Azuga
Inc., San Jose, CA, United States) was plugged into the vehicle’s
OBD-II port and data collected every 30 s. This naturalistic
driving methodology, termed the Driving Real World In-
Vehicle Evaluation System (DRIVES), is a validated method
of driving data collection for older adults (Babulal et al.,
2016). The device collected data every time the vehicle was
driven and recorded adverse driving events (hard braking,
sudden acceleration, and speeding) anytime they occurred during
a trip, regardless of the 30 s sampling that occurred for
other datalogger measures. Speeding was determined based on
the datalogger’s GPS, specifically the latitude and longitude
and the posted speed limit in the vehicle’s location. The
device compared the vehicle’s speed to the posted speed limit
and if the driver was going 6 miles per hour or more
above the posted speed limit in that area, an occurrence of
speeding was recorded.

Driving Behavior
A total of 3 months of driving were selected for study for all
participants from a larger sample of longitudinal driving. Three
months were selected because the cognitively impaired group was
enrolled in a driving intervention trial where the first 3 months
were monitoring only. Inclusion of only the first 3 months of
driving avoids any confounds associated with the intervention.
To ensure that we were only analyzing the driving behavior of
the study driver, videos captured by other drivers were deleted.
Since the driver cannot be identified by the GPS logger, drivers
had to be driving their vehicle for at least 75% of the time to be
included in the current study. Vehicle use was reported by the
study partner (M = 94%, range = 75–100). The cognitively normal
control group were exclusive drivers of their vehicles (100%). For
all groups, any driving events were deleted if they were captured
during known times that the study driver was not driving due to
illness, travel, etc.

Driving errors captured by video were categorized into the
following behaviors and scored according to total demerit points:
collisions/near collisions, distractions (food, passengers, cell
phone, and other electronic devices), awareness (late response,
poor scanning of roadway, and failure to check mirrors), driver
conduct (poor judgment, aggressive/reckless), fundamentals
(excessive speed for conditions, failure to leave an out, and unsafe
lane change), following too close, driver condition (drowsy),
traffic violation (rolling stop, failure to stop at stop sign or light,
speeding, not on designated roadway, and unsafe/risky behavior).
The specific events or problems were graded for safety risk
on a 0–10 point demerit scale. A single unsafe driving event
could have more than one demerit category, such as judgment
error combined with poor awareness of intersection, leading to a
combined driving severity rating score for the individual items.
Error frequency was used to describe error types. Total demerit

points were used to examine correlational relationships between
driving events captured with video and GPS logger behavior.

Driving behavior captured by the DRIVES were aggregated
from daily trip reports for each vehicle over the course of the
participant’s entire participation in the study (up to 5 years).
Daily trip data included date, starting and ending latitude and
longitude, starting and ending time, distance of trip (miles),
trip time (minutes), idling time (minutes), and counts of hard
braking, sudden acceleration, and speeding. The first 3 months
of a participant’s driving behavior were extracted and were
examined per 100 trips, where a trip was defined from “ignition
on” to “ignition off.” For example, an excursion from home to
the grocery store and back to home without any other stops
would be considered two trips. Hard braking, hard acceleration
and speeding events per trip were analyzed separately and in
combination. As multiple events of a particular type could occur
in a single trip, data were analyzed for each event type using a
two-step procedure: (a) number of trips per 100 in which such an
event occurred and (b) number of events per trip for trips with at
least one such event. In addition, other aspects of speeding, such
as the duration of speeding episodes, average speed in miles, trip
distance and trip time, were analyzed.

Statistical Analysis
Participants with and without preclinical AD (all CDR = 0) were
matched on age and gender to participants with symptomatic
AD (CDR > 0). Spearman’s ρ correlational analyses using
Bonferroni correction for multiple comparisons were used to
examine relationships between driving behavior captured with
video and the GPS datalogger. Generalized linear modeling
(GLM) techniques were used to determine effects of amyloid and
cognitive status on event frequency per 1,000 miles driven. All
analyses were carried out using the GLM function in R 3.5.31.
Event frequency was modeled via an over-dispersed Poisson
distribution with amyloid group (CN/A−, CN/A+, and AD) as
the sole model predictor. Exposure differences were accounted
for by adjusting for 1,000 miles driven via an offset variable.
Point and interval estimates of group effects were estimated in
the logarithmic scale as log (Rate Ratios) and then exponentiated.
In addition, measures of cognition (MMSE, Trails A and Trails B
time) were analyzed as secondary predictors of event frequency.

RESULTS

Demographic characteristics of these older drivers are presented
in Table 1. Groups were matched on age (p = 0.95), education
(p = 0.19), and gender. As expected, the early AD group had
lower MMSE scores than the cognitively normal groups. When
examining the early AD group with the video technology, there
were four collisions with objects such as curbs, mail boxes, parked
cars, but none with other moving vehicles. The most frequently
occurring safety events were driving unbelted, late response, too
fast for conditions, rolling stop, poor judgment, following too
close, speeding, and failing to scan intersections (see Figure 1).

1https://cran.r-project.org
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FIGURE 1 | Total number of unsafe driving events video recorded over 3 months of driving in the AD group (n = 11).

The next set of analyses included all three groups to examine
differences in driving behavior using the DRIVES. Table 2 shows
that hard braking events were the most commonly occurring
behavior on a per trip basis across all three groups, followed
by speeding in the CN/A− group and by hard acceleration
in the CN/A+ and early AD groups. Summing across event
types, driving events occurred in one in five trips taken by
CN/A− or early AD drivers vs. one in eight trips taken
by CN/A+. When only considering trips in which adverse
driving events occurred (see Table 3), repeat events in the
same trip were only common for speeding, with 0.9 more
speeding events per trip on average in the CN/A− and early
AD groups compared to the amyloid positive group (4.3 vs. 3.4
speeding events).

To control for driving exposure, driving events were corrected
per 1,000 miles driven (see Table 4 for point estimates and 95%
confidence intervals for the driving event rate per 1,000 miles
driven). After correcting for driving exposure, speeding was the
most common event type in both the CN/A− and early AD
groups, while hard braking remained the most common event
type in the CN/A+. Table 5 shows point estimates and 95%

TABLE 2 | Adverse driving event rate per 100 trips using DRIVES technology.

Event Type Group

CN/A− CN/A+ AD

Hard breaking 11.07 8.13 8.52

Hard acceleration 5.98 4.45 8.52

Speeding 9.81 2.21 5.52

Overall 21.50 12.61 19.42

TABLE 3 | Adverse driving event count per trip for trips including an event using
DRIVES technology.

Event type Group

CN/A− CN/A+ AD

Hard breaking 1.27 1.26 1.28

Hard acceleration 1.47 1.26 1.41

Speeding 4.27 3.37 4.30

Overall 3.01 1.85 2.40

TABLE 4 | Adverse driving rate per 1,000 miles driven (95% Confidence Interval)
using DRIVES technology.

Event type Group

CN/A− CN/A+ AD

Hard breaking 19.7 (13.9, 27.8) 13.9 (10.1, 19.3) 18.1 (13.2, 25.0)

Hard acceleration 12.3 (3.5, 42.8) 7.6 (3.7, 15.7) 20.0 (8.0, 50.5)

Speeding 58.5 (37.7, 90.6) 10.1 (3.4, 30.4) 39.6 (18.3 86.0)

Overall 90.4 (69.0, 118.4) 31.6 (17.6, 57.0) 77.8 (50.3, 120.3)

confidence intervals for the ratio of driving events per 1,000
miles driven between (a) the cognitively normal groups (CN/A−
vs. CN/A+) and (b) early AD vs. preclinical AD (CN/A+).
The preclinical AD group had the lowest rate across all three
types of driving events (hard braking, hard acceleration, and
speeding), but the differences were especially pronounced for
speeding behavior.

Spearman correlations were calculated to examine the
relationship between error types captured with each technology
in the mild AD group. The strongest correlations were between
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TABLE 5 | Ratios of adverse driving rates per 1,000 miles driven (95% Confidence
Interval) using DRIVES technology.

Event type Group

CH/Amyloid− vs. CH/Amyloid+ AD vs. CH/Amyloid+

Hard breaking 1.41 (0.88, 2.27) 1.30 (0.83, 2.05)

Hard acceleration 1.62 (0.38, 6.84) 2.64 (0.82, 8.53)

Speeding 5.78 (1.77, 18.90)++ 3.92 (1.02, 15.10)+

Overall 2.86 (1.50, 5.46)+++ 2.46 (1.18, 5.11)+

+ Implies p < 0.05, ++ Implies p < 0.01, +++ Implies p < 0.001.

speeding registered by the datalogger and collision/near collisions
and fundamentals of driving (i.e., failing to keep an out, too
fast for conditions, and failure to yield; rho = 0.81 and 0.87,
respectively. Hard breaking and hard acceleration were not
consistently related to errors captured by video analysis.

Poisson regression models showed no significant effect of
MMSE or Trails B time on driving event frequency (count of
braking, speeding, and sudden acceleration in a trip). However,
Trails A time had significant non-linear effects on overall event
frequency (p = 0.03) that are depicted graphically in Figure 2.
Further analysis of the non-linear effects (e.g., parabolic curve)
taken apart showed that the initial drop in driving events was

correlated with lower speeding event rates with increasing Trails
A time (p = 0.03), whereas the later increase in events was
related to higher hard acceleration event rates with increasing
Trails A time (p = 0.09). Hard braking event rates were relatively
insensitive to Trails A time (p = 0.64).

DISCUSSION

Two in-vehicle technologies were used in our study to
characterize driving errors and behaviors in older adult drivers
with preclinical and early symptomatic AD compared to
cognitively normal adults without any evidence of AD pathology.
In the early AD drivers, g-forced triggered events produced
common errors predominantly related to inadequate anticipation
of situations, such as late response or driving too fast for
the situation. AD drivers also frequently showed errors of
judgment and made frequent traffic violations around speeding
and responding to road signage (i.e., stop signs and traffic
lights). Despite these instances of poor judgment, actual
collisions were very rare during the study period. These g-force
triggered safety events are consistent with the types of driving
events we previously captured with continuous video recording
in mild AD drivers compared to cognitively normal older

FIGURE 2 | Adverse driving rates per 1,000 miles driven using DRIVES technology as a function of Trail Making Part A duration (in seconds).
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adults (Davis et al., 2012). These findings also confirm prior
data that used a semiautomated data reduction method to
isolate relevant driving errors from continuous video recorded
naturalistic driving to detect cognitive impairment-associated
driving behaviors in older adults (Davis et al., 2018; Moharrer
et al., 2020). This suggests that an event-based approach, rather
than more costly and staff time intensive continuous monitoring
of behavior via video, may be a sensitive method to study
driving risk in AD.

Global positioning system data logger technology was used
to address potential differences in driving behaviors among
cognitively normal, preclinical AD, and symptomatic AD. From
this data, a distinct pattern of driving behavior emerged among
drivers with preclinical AD compared to cognitively normal
older adults without evidence of AD and early AD. Specifically,
drivers with preclinical AD drove more slowly and had the lowest
number of aggressive events over the 3-month period. These data
are also consistent with prior work showing that older drivers
in the preclinical phase of AD restrict their driving compared to
healthy peers (Babulal et al., 2019; Roe et al., 2019).

The current results extend these findings by offering insights
into how driving may change across the spectrum of normal
aging to symptomatic AD by including a group of mild AD
drivers for comparison. Results suggest that in the earliest stage
of AD there may be a period of self-regulatory behavior during
amyloid accumulation but where cognitive functioning remains
unaffected. As the disease progresses and cognition begins
to decline with disease progression and neurodegeneration,
inhibitory control over more aggressive driving behavior may
begin to erode. As such, the AD drivers may revert back
to “normal” driving habits including excessive speed. This is
consistent with prior work showing that AD drivers whose
naturalistic driving was video recorded showed poorer tactical
self-regulation behavior and made twice as many critical events
as healthy older drivers. They were also three times more
likely to be unaware of these events (Paire-Ficout et al., 2018).
Unfortunately, the early AD group may need to continue to use
compensatory strategies (i.e., cautious driving) to prevent more
egregious safety errors and accidents. It is possible that early AD
drivers could maintain independence longer by increasing their
awareness of driving errors and the provision of compensatory
strategies. Prior intervention studies suggest that this may be
possible. For example, we showed that a behavioral intervention
aimed at correcting the specific driving errors reduced the
frequency of driving errors in a group of drivers with early AD
(Ott et al., 2017a).

Given that the cognitive processes of attention and executive
functioning decline in AD and have been shown to relate
to driving errors (Anderson et al., 2012; Papandonatos et al.,
2015), we examined the relationship between measures of
these constructs and driving events captured by the data
logger. In this study, simple psychomotor speed was associated
with driving behavior. Specifically, more acceleration events,
slower speeds, and more overall events were associated with
slower psychomotor speed. This suggests a relationship between
cognitive impairment and driving behaviors may be captured
with the data logger.

This study utilized two different passive monitoring in-vehicle
technologies to understand driving behavior. As such, it was of
interest to explore the relationship between behaviors captured
with g-force triggered video technology vs. the data logger, as the
video provides more context to the behaviors captured with the
data logger. Data indicated that some, but not all, event types
were highly related. Specifically instances of speeding registered
by the datalogger were related to instances of collision/near
collisions and errors in driving fundamentals. Hard breaking
and hard acceleration were not strongly related to safety errors.
These relationships could only be examined in a small sample of
early AD participants, and more work will be needed to better
understand these findings, but preliminarily, these data support
the idea that aggressive events captured with the data logger may
indeed reflect risky driving behavior.

There are several limitations to this study. First, this is a
small sample of older drivers, and results should be viewed
as preliminary and only applicable to the aging population.
The CN and early AD participants were recruited from two
regionally different locations. It is possible that geographic
differences in population density, type of driving, and seasonal
weather changes may have impacted the results. The cognitively
normal older adult drivers (CDR 0) did not have the video
technology installed in their vehicles, so it is unclear how these
behaviors may occur in a cognitively normal population or the
degree to which amyloidosis might influence this relationship
based on these data alone. In addition, it is unclear the
degree to which events captured with the GPS data logger
correlate with actual unsafe behavior or simply more assertive or
effective defensive driving in a healthy population. The strong
relationship between video captured safety events and GPS
events in the cognitively impaired group would suggest that
the GPS captured events reflect actual risky behavior, possibly
more erratic driving, in the cognitively impaired group. Lastly,
results need be replicated in a larger sample of racially and
ethnically diverse older drivers as participants in this study were
all non-Hispanic white, which limits generalizability to other
diverse populations.

Our results offer preliminary findings that suggest that
in-vehicle technology can detect behavioral differences
between drivers at different points in the spectrum of
normal aging to early AD. With the increase in Advanced
Driver Assistance Systems (ADAS) as standard features
in vehicles, instrumented vehicle technology may offer a
unique opportunity to detect early behavioral change in older
adults that could signal increased risk for unsafe driving.
These types of technology could be used to identify when an
individual may need to start considering driving retirement
with instances of unsafe behaviors serving as early markers of
cognitive decline. Objective measurement of driving changes,
in conjunction with report of driving changes using driving
questionnaires could lead to further assessment with an
occupational therapist, driving specialist, or monitoring by a
healthcare provider. Future research should employ multiple
modalities for assessing driving behavior over extended
periods of time to obtain a more complete characterization of
the aging driver.
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Pedestrians’ Understanding of a
Fully Autonomous Vehicle’s Intent to
Stop: A Learning Effect Over Time
Michal Hochman* , Yisrael Parmet and Tal Oron-Gilad

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beersheba, Israel

This study explored pedestrians’ understanding of Fully Autonomous Vehicles (FAVs)
intention to stop and what influences pedestrians’ decision to cross the road over time,
i.e., learnability. Twenty participants saw fixed simulated urban road crossing scenes with
a single FAV on the road as if they were pedestrians intending to cross. Scenes differed
from one another in the FAV’s, distance from the crossing place, its physical size, and
external Human-Machine Interfaces (e-HMI) message by background color (red/green),
message type (status/advice), and presentation modality (text/symbol). Eye-tracking
data and decision measurements were collected. Results revealed that pedestrians tend
to look at the e-HMI before making their decision. However, they did not necessarily
decide according to the e-HMIs’ color or message type. Moreover, when they complied
with the e-HMI proposition, they tended to hesitate before making the decision. Overall,
a learning effect over time was observed in all conditions regardless of e- HMI features
and crossing context. Findings suggest that pedestrians’ decision making depends on
a combination of the e-HMI implementation and the car distance. Moreover, since the
learning curve exists in all conditions and has the same proportion, it is critical to design
an interaction that would encourage higher probability of compatible decisions from the
first phase. However, to extend all these findings, it is necessary to further examine
dynamic situations.

Keywords: fully autonomous vehicle, external human-machine interfaces, presentation modality, road crossing,
eye movements

INTRODUCTION

Crossing the street in the Fully Autonomous vehicle (FAV) era will differ from road crossing today
since, among other things, the crossing decision will not be influenced by informal pedestrian –
driver human-human communication (like eye contact, facial expressions, gestures, or body
movements) that is necessary to understand driver intention (Rasouli et al., 2018). Thus, in the
FAV era, with the absence of a human driver, the main challenge would be to establish pedestrians’
understanding of FAV intentions so that they can make safe crossing decisions.

Simulation studies reported that an external human-machine interfaces (e-HMI) mounted on
the vehicle enhances the interaction with pedestrians by reducing the uncertainty regarding FAV
intent, improving pedestrians’ initial trust and understanding (Deb et al., 2018; Ackermann et al.,
2019; Ackermans et al., 2020). It was claimed that pedestrians have high trust and confidence
in the e-HMI, even before getting to know it, and they tend to comply with its instructions
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(Holländer and Butz, 2019). Moreover, even after a malfunction,
trust and confidence recovered quickly (Holländer and Butz,
2019). Inconsistent with this claim, a Wizard of Oz (WoZ) study
suggested that people prefer to decide for themselves when to
cross, as they do today, based on the FAV’s distance and speed
from their crossing point (Clamann et al., 2017). Another video-
based study followed by questionnaires reported similar trends
(Mahadevan et al., 2018).

Few studies dealt with the form of the visual e-HMI messages.
One distinction is between advice messages that suggest to the
pedestrian whether to cross the road or not (e.g., “please cross,”
“walk,” “stop”) and status messages that display the FAV status,
like “Driving,” “Stopping,” etc (Deb et al., 2018; Ackermann
et al., 2019). Another distinction was between text and symbol
messages (Deb et al., 2018; Ackermann et al., 2019). A study that
looked at pedestrians’ comprehension of the e-HMI messages
through questionnaires revealed that participants assessed advice
messages as more comfortable than status messages, independent
of text or symbol-based presentation (Ackermann et al., 2019).
On the contrary, Deb et al. (2018) found that a textual “Braking”
status message was preferred over textual advice “Walk” message.

Studies also varied in the way they measured pedestrians’
understanding. One way is to measure the time it took the
pedestrian to decide whether to cross the road in a VR simulation
(Clamann et al., 2017; Dey et al., 2018). Decision time was faster
when e-HMI display included text or symbol compared to no
e-HMI (Dey et al., 2018). Another way is through subjective
questionnaires and ratings (Deb et al., 2018; Ackermann et al.,
2019). A third way is through accuracy rate, that is, whether
the pedestrian’s decision was in agreement with what was being
displayed on the e-HMI [compatible responses, noted as the
e-HMI proposition in Ackermann et al. (2019)]. This can also
be measured through the error probability (i.e., the probability
of incompatible responses), that is, decisions that were not in
agreement with the e-HMI display.

When examining an e-HMI, it is essential to explore
learnability. Learnability was found to significantly affect users
adopting new technology and on user satisfaction from a product
(Noel et al., 2005). Also, it was found that learnability directly
influences safety when considering drivers (Noel et al., 2005).
When investigating the learnability of a pedestrian’s interaction
with a FAV, in a WoZ field experiment, researchers found a
learning curve over time but in a rather limited form as the
authors based the learning on rating questionnaires over time
(Faas et al., 2020). Researchers investigated learnability with a
single item: the participant agreement with the statement, “It
is easy to learn that the light signal on the vehicle indicates
yielding” (strongly disagree – strongly agree) while comparing
steady, flashing, and sweeping light signals.

The current study aims to investigate factors that influence
pedestrians’ understanding of a FAV’s intention by looking at
their decisions and scanning patterns when aiming to cross
the road, in fixed simulated scenes from the perspective of the
pedestrian, in general, and over time. The factors examined are
related to the characteristics of the e-HMI, color, message type
(advice or status message) and modality (text or symbol), and
the crossing context; FAV size and distance from the crossing

place. Also, using eye-tracking to measure pedestrians’ visual
attention distribution while deciding to cross is common in
pedestrian behavior studies (e.g., Tapiro et al., 2016). Explicitly,
it can indicate whether pedestrians looked at the e-HMI and
for how long before the decision to cross or not. Field research
investigated pedestrians’ gaze patterns, but only with a manual
car that did not include e-HMI (Dey et al., 2019). Another
research reported a negative correlation between pedestrians’
subjective understanding of the FAV intention and their gaze
fixation duration (Liu et al., 2020). Furthermore, to our
knowledge, the interaction between the crossing decision making
(to cross or not cross) and pedestrians’ gaze behavior on the FAV’s
e-HMI is yet to be investigated in general and learnability over
time. Also, with regard to the measurement of response time and
error probability.

The following hypotheses are suggested: h1- the e-HMI’s
proposition would lead pedestrians to make more compatible
decisions, particularly when it conflicts with the crossing
conditions (e.g., short distance). This hypothesis is based
on previous contradicting findings regarding what affects
pedestrians to cross in the FAV world like distance (Clamann
et al., 2017) or e-HMI proposition (Holländer and Butz, 2019).
h2- Advice message would reduce error probability compared
to status message (Ackermann et al., 2019). h3- is regarding
learnability, we expect error probability and response time to
reduce over time regardless of the crossing context and e- HMI
display characteristics due to learnability.

MATERIALS AND METHODS

Participants
Twenty students aged 21–34 (M = 26, SD = 3, 11 females)
participated in the experiment. One participant’s data were
excluded due to technical problems. As compensation, seven
participants received course credit and 13 a payment of $10.
All participants had normal contrast sensitivity and visual acuity
of at least 6/6. Participants were free to withdraw from the
study at any time.

Apparatus
Experimental Environment
The study was conducted at the Eye Tracking laboratory using a
desktop test station computer with a 22′′ screen. Participants were
situated approximately 70 cm from the screen. The Gaze point
eye tracker was located below the screen (see Figure 1).

Fixed Scene Generation
One hundred and eight fixed scenes were generated using the
VT-MAK VR tools1 with a typical local city’s 3D terrain model.
The crossed road was a one direction two-lane urban road. To
add realism to the scene, the city’s typography included buildings,
light posts, vegetation, etc (Figure 2). The images were taken
from the pedestrian’s perspective as if standing on the curb and
looking to the left before crossing the street. Each image included

1https://www.mak.com/
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FIGURE 1 | The experimental testbed, consisting of a 22′′ screen, the Gaze
point eye-tracking system and the keyboard to collect participants’ responses.

a combination of a single FAV (small or big) on the closer lane,
either far (20 m) or close (9 m) to the pedestrian’s crossing
point in the simulation. The e-HMI size in the far distance was
0.9 cm × 0.9 cm and in the close distance 20 cm × 20 cm. The
e-HMI was located on the roof of the car (this location was found
to be very useful in previous research (Bazilinskyy et al., 2020). It
included a sign that could convey either a written message (text)
or a symbolized message (see Figures 2, 3). Also, the message
content could be a status message (“Slowing” or “Driving”) or
advice message (“Cross” or “Don’t Cross”). Also, the e-HMI
background color was green or red. I previous research, it was
found that color convention helped pedestrians understand the
FAV intention; that is, a green e-HMI indicated it was s safe to
cross, and the red implies that it was unsafe to cross (Rouchitsas
and Alm, 2019; Bazilinskyy et al., 2020). Besides, baseline images
without the e-HMI were created, with a variation of car size
and crossing distance (for the content of the entire images, see
Supplementary Appendix 1).

Eye-Tracking System
The Gaze point eye-tracking system was used to measure pupil
diameter and gaze direction with an accuracy visual angle of
0.5–1 degree (Figure 1). The system uses an eye camera and
an infra-red eye illuminator to sample a close image pupil at a
sample rate of 60 Hz.

Road Crossing Task
Each participant took part in three consecutive sessions
(Figure 4). In each session, participants were asked to observe 36
consecutive crossing scenes and decide for each one, as quickly
as possible, if it was safe to cross the road or not. The decision
was made by selecting the “Safe to cross” or “Not safe to cross”
designated keyboard buttons.

Dependent Variables
Estimated Error Probability
An error was defined as the incompatibility of the participant’s
selection (whether to cross or not) with the sign meaning
(as a priori defined). If the selection had not the same value

(safe/unsafe), it was counted as an error. In the model, we
predicted the estimated error probability. Within the images that
had no e-HMI, the incompatible response was unknown, and
therefore, the error probability was undefined.

Response Time
Time from the moment the image was displayed until the
participant pressed a decision button.

Eye-Tracking Measures
Total fixation duration and the total number of fixations on the
e-HMI. A fixation was defined as a period of at least 100 ms
that the eyes remain relatively still. The gaze data is based on
the position variance technique (Jacob, 1995), that is, a sequence
of gaze data estimates spatially located within a local region are
determined to belong to the current fixation, while subsequent
data outside of this local region is identified as the beginning
of a new fixation. The fixations counted were only the ones
within the area of interest (AOI), which was defined as the e-HMI
sign (Figure 5).

Learnability
Learnability was defended as the improvement in performance
over time, from the trial to trial, that is, the reduction in the error
probability, response time, and the number of fixations.

Subjective Measurements
A written explanation of the sign meaning and rating its
comprehension level (on 10-point rating scale), followed by
an open interview on how each participant made their
crossing decisions.

Experimental Design
A within-subject design. The following independent variables
were defined: e-HMI (included/none), message type (status
message/advise message), modality (text/symbol), car size
(big/small), color (red/green) and car distance (close/far),
altogether a 2∧6 factorial design.

Procedure
Participants were invited individually to the lab for approximately
30 min. Following instructions and signing a consent form, they
performed visual acuity and contrast sensitivity tests (Ginsburg,
1984). Next, the eye calibration was done. After calibration,
participants performed a short practice of the road crossing
task with five baseline images (no e-HMI). The experiment
was divided into three consecutive sessions. After each session,
there was a 30 s break. The sessions and the images within
them were given in random order. Sessions included images
with all combinations of car size, distance from the crossing
place, and e-HMI content options. Each session contained
four baseline images. Throughout the experiment, each image
variation appeared three times with slight variations of the
surrounding urban crossing road environment (e.g., building
facade). Following the three sessions, participants were asked to
explain each sign’s meaning and rate their comprehension level.
Then an open interview was conducted. Then an open interview
was conducted. The experimental flow is described in Figure 4.
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FIGURE 2 | Sample crossing scenes, as seen from the perspective of the pedestrian. Each row (a–d) demonstrates an examined factor. (a) Modality: left- Text,
right- Symbol. (b) Message type: left- Status, right- Advice. (c) Distance: left- close, right- far. (d) Car size: left – Small (Kancil),right- Large (Audi).

Eye-Tracking and Area of Interest (AOI)
Definition
Eye movements and fixations data were collected and synced
with the experimental timeline for each crossing scene through
a designated software. Once the experiment ended, the software
was used to determine whether the fixations were within
the defined AOI and only that data (within the AOI) was
summed per image. In the baseline images (no e-HMI), the
entire image (car and environment) was defined as the AOI.
For the rest, the area around the e-HMI was defined as the
AOI. Its exact size was defined as the minimum size that
can be expected around 0.5–1 degree in a high-end eye-
tracker when the computer distance from the participant was
68.6 cm (Bojko, 2013). Hence, the AOI is defined as the

multiplication of each side in the e-HMI (sign) frame length by
1.43 (see Figure 5).

Data Analysis
A Wilcoxon test was performed to examine whether there was
a difference in the dependent variables between the compatible
responses and the incompatible ones. Next, a Generalized
Linear Mixed Model (GLMM) was used to analyze the effect
of the independent variables (message type, modality, e-HMI
background color, car size, and distance) on the estimated
error probability (incompatible responses, a binary logistic
regression within the GLMM) of all responses over time, to
examine learnability from trial to trial. Then, the effects of
the independent variables were further examined on response
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FIGURE 3 | The e-HMI Messages; each column displays the message type (status or advice) in both written (in Hebrew) and symbolic messages. The background
color is compatible with the message meaning according to the color convention.

FIGURE 4 | The experimental flow.

time (ln transformed response time, a normal regression within
the GLMM) and the number of fixations on the AOI over
time both for all responses and for the compatible response
[(ln transformed number +1), a normal regression within the
GLMM]. Beyond the fixed effect, participants and image numbers
were included as random effects to account for individual
differences among participants and variation among images.
Utilizing a stepwise process, only the main effects and the
significant interactions were included in the final model. All

FIGURE 5 | Defining the AOI around the e-HMI.

three models used the same predicting effects- message type,
modality, e-HMI background color, car size, and car distance.
The final model included only significant effects or interaction
related parameters.

RESULTS

Crossing Decisions, Response Time, and
Eye-Tracking Data
Overall, 75% (1401 out of 1867) of the decisions were compatible,
and 25% (466) were incompatible. Wilcoxon tests revealed
that the number of fixations for compatible responses was
significantly smaller (Mean = 3.46, SD = 2.67) compared to
incompatible ones (Mean = 3.85, SD = 3.02, p < 0.001).
In addition, response time for the compatible responses was
significantly shorter (Mean = 1.27 s, SD = 0.97) compared to
incompatible responses (Mean = 1.50, SD = 1.25, p < 0.001).
Table 1 shows that when the FAV is close and the e-HMI
background is red, response times and the number of fixations
were about twice as high in the incompatible responses compared
to the compatible ones. Delving into the details, only 14 responses
of all trials were incompatible (compared to 452 that were
compatible in the same conditions) when the e-HMI background
was red, and the car was close, and a single participant made 8
of them. This participant had dispersed response times (0.49–
12.04 s), including two considerably longer ones (9.36 and
12.04 s) that occurred at the beginning of the experiment. Longer
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TABLE 1 | Crossing decisions number of fixations and response time.

Measurements Compatible crossing decision Incompatible crossing decision

Red Green Red Green

Close Far Close Far Close Far Close Far

Number of fixations

Mean 3.25 3.52 4.39 3.13 6.14 3.57 3.78 4.06

Median 3 3 3 3 4 3 3 3

Confidence interval 0.006 0.011 0.015 0.007 0.09 0.02 0.01 0.02

Response Time [sec]

Mean 1.14 1.44 1.48 1.15 3.00 1.43 1.38 1.72

Median 0.91 1.10 1.08 0.94 1.74 1.16 1.27 1.27

Confidence interval 0.00 0.01 0.01 0.00 0.06 0.006 0.01 0.01

FIGURE 6 | Sample images with high error rates (the right image received 50% error rates and the left 74%). The commonality amongst them was the green
background e-HMI and close distance (for both symbol and text modality).

response time may imply that when pedestrians take a risk and
decide to cross in close distance and red e-HMI, they tend to
hesitate before crossing. It may suggest that they understood the
risks of crossing and decided to cross despite them.

Images That Received High Incompatible
Responses
Twenty images out of the 96 images yielded an error rate of
45% or higher per image. All of these images had a green
background. The FAV distance was close in eighteen of them,
which implies that according to the FAV’s e-HMI, pedestrians
could have crossed, but they decided not to (sample images
are shown in Figure 6). One specific symbol message (the car
slowing status symbol, see Figure 6) on the right) received the
highest error rate. This symbol was also the lowest-ranked in the
comprehensive subjective ratings (average score of 3.6 out of 10).

Estimated Error Probability in General
and Over Time
Distance and Color
A significant interaction was found between the color the distance
in the estimated error probability [χ2 (df = 1) = 185.3, p < 0.001];
see Table 2 and Figure 7 Top. In the close distance, there
was a significant difference in the estimated error probability
between the e-HMI colors, compared to the far distance. Post hoc

(Tukey’s-HSD) analyses revealed that in the close distance, the
red background e-HMI had a significantly higher probability of
compatible responses compared to the green background e-HMI

TABLE 2 | The effect of e-HMI related factors (message type, modality, color) and
crossing context factors (car size, distance, and order) on the Estimated error
probability (GLMM).

Estimated error probability

Factors χ2 (df = 1) p-value

Order 11.07 0.00***

Message type 3.74 0.053

Modality 8.56 0.003**

Color 13.11 0.00***

Car size 0.27 0.60

Distance 32.31 0.00***

Message type * Modality 17.59 0.00***

Car size * Distance 17.27 0.00***

Message type * Color 4.9 0.03*

Modality * Color 9.52 0.002**

Car size * Color 7.88 0.005**

Distance * Color 185.3 0.00***

The χ2 ratio is a measure of the overall significance of the model. *p < 0.05,
**p < 0.01, ***p < 0.001.
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FIGURE 7 | Estimated error probability. Top: By distance and color over time. Middle: By message type and modality over time and Bottom: By message type and
color over time. Note: in the graphs, for visualization only, the estimated error probability was sampled in 4 chronologic locations (order) – after the first impression
(image #1), at the beginning (after image #10), middle (following image #50) and at the end of the experiment (image #96), and the estimated error probability
average is displayed for each sample.

(z = −13.63, p < 0.001). An opposite trend was found in the far
distance; the estimated error probability in the green e-HMI was
much lower from the red in the far one (z = 4.1, p < 0.001). Also,

overall, results revealed a strong interaction between the fixed
image order (each image had a random chronological location
in each trial) and the estimated error probability. It was found
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that the estimated error probability reduced over time for each
color – distance combination [χ2 (df = 1) = 11.07, p < 0.001];
that is, there was a learning effect over time. See Figure 7 top.

Modality, Message Type, and Color
It was found that there was an interaction between the message
type and the color [χ2 (df = 1) = 4.90, p < 0.05], see Table 2.
Post hoc (Tukey’s-HSD) analyses revealed that there was no
significant difference in the estimated error probability in the red
background e-HMI for the different message types (z = −0.51,
p = 0.6) (Figure 7 Bottom). This finding means that when there
was a red background e-HMI, pedestrians tended to decide not to
cross in both messages type. However, in the green background
e-HMI, pedestrians had higher errors when they received status
messages compared to advice messages (z = 2.9, p < 0.05)
(Figure 7 Bottom). Also, there was an interaction between the
message type and the modality [χ2 (df = 1) = 17.59, p < 0.001]
(Figure 7 Middle). In the status message, the estimated error
probability for text messages was lower than for symbol messages
(z = −4.5, p < 0.001). A learning effect over time that is being
reflected by the reduction of the estimated error probability
seems to have a similar pattern for each message type-modality
combination (Figure 7 Middle) and each message type-color
combination (Figure 7 Bottom).

Response Time in General and Over
Time
Distance and Color
There was an interaction between the distance and color for
response time of the compatible responses [F(1,1389) = 34.0,
p < 0.001] see Table 3. Post hoc (Tukey’s-HSD) analyses
revealed that in the close distance, response times for compatible
responses were shorter for the red background e-HMI color
(Mean = 1.14 s, SD = 0.71) compared to the green (Mean = 1.48 s,
SD = 1.18, p < 0.001), as shown Figure 8. In the far distance,
response time was shorter when the e-HMI background color was
green (Mean = 1.15 s, SD = 0.69) compared to red (Mean = 1.44,
SD = 1.29, p < 0.05). Overall, response time was shorter over
time for each combination of distance-e-HMI background color,

TABLE 3 | The effect of color and crossing context factors (car size, distance, and
order) on Response time (ln transformed) and number of fixations for all responses
and the compatible responses (GLMM).

Response time Number of fixations

All
responses

Compatible
responses

All
responses

Compatible
responses

Factors F (1,1855) F (1,1389) F (1,1855) F (1,1389)

Order 38.20** 37.01*** 12.00* 11.18*

Car size – – 6.55* 6.40*

Distance 1.12 0.17 16.60*** 15.73***

Color 2.74 4.32* 5.58* 5.54*

Distance * Color 39.06*** 34.0*** 20.62*** 20.42***

The F ratio is a measure of the overall significance of the model.*p < 0.05,
**p < 0.01, ***p < 0.001.

for all responses [F(1,1389) = 38.2, p < 0.01] and for compatible
responses [F(1,1389) = 37.01, p < 0.01], as seen in Table 3 and
Figure 8. Thus, there was a learning effect over time. Moreover,
the learning effect shown through the reduction of response
time seems to have a similar pattern for all four distance-
color combinations.

Number of Fixations in General and
Overtime
Distance and Color
In general, there was an interaction between the color, distance,
and the number of fixations [F(1,1389) = 20.42, p < 0.001]
for the compatible responses (Table 3 and Figure 9). Post hoc
analysis revealed that in the close distance, there were less
fixations on the red e-HMI background (Mean = 3.25 SD = 2.27)
compared to the green one (Mean = 4.39, SD = 3.43, p < 0.001).
Findings reveal that for both colors, the number of fixations was
reduced over time [F(1,1389) = 11.18, p < 0.05], which indicates
upon learnability. However, in the close distance, the number of
fixations was reduced more notably compared to the far distance.
In other words, the learnability overtime was more significant in
the close distance compared to the far distance (Figure 9).

Rate of Fixations per Millisecond
One can rightfully argue that the number of fixations will increase
if response time increases, which is why it is also necessary to
look at the rate of fixations. This is a similar analysis to the one
in 3.5.1 of the number of fixations but now with response time
as a covariate, leading to an examination of the rate of fixations
per millisecond. If the response time as a covariate in the model
is statistically significant, it implies that the fixation rate changes
over time. Depending on the estimated mean of this covariate,
one can identify the rate of change in the number of fixations over
time. If the rate estimate is less than one, it means that as response
time increases, the increase in the number of fixations decreases
(indicating that fixations are becoming longer). Oppositely, if
the rate estimate is larger than one, it indicates that the number
of fixations increases as the time progresses (indicating a more
erratic movement of the eyes).

The final statistical model yielded the following significant
effects: Learnability over time remained significant
[F(1,1378) = 7.24, p < 0.007], main effects for car size
[F(1,1374) = 4.54, p < 0.033] distance [F(1,1375) = 24.09,
p < 0.001], and an interaction for color and modality
[F(1,1375) = 8.98, p < 0.003]. Most importantly for this
analysis, response time as a covariate was statistically significant
[F(1,1392) = 1272.03, p < 0.00001], indicating that indeed the
rate of fixations changes over time. The estimated rate was 0.663
(SE = 0.018) thus, less than 1, indicating that as response time
increases, the number of fixations increases too, but at a lower
rate. Hence, most likely fixations are becoming longer in time.

DISCUSSION

This study aimed to explore which parameters affect pedestrians’
understanding of the FAV’s intentions as expressed in crossing
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FIGURE 8 | Response time for compatible responses by distance and color over time.

FIGURE 9 | Number of fixations for compatible responses: By distance and color over time.

decisions of participants on fixed crossing scenes, as well as
the change of crossing decisions over time (learnability). Results
revealed that pedestrians fixated on the FAV’s e-HMI, in line with
previous research (Dey et al., 2019; Eisma et al., 2020). But, unlike
what has been suggested in a previous study (Holländer and Butz,
2019), pedestrians do not always base their decision on the e-HMI
proposition as demonstrated through the e-HMI background
color, or message type - instruction or status. It was found that in
25% of the time, pedestrians made crossing decisions that were
incompatible with what the e-HMI proposed. From observing
the images that got the most incompatible responses, one can
attain that in those, pedestrians made their decisions based on
the FAV distance from the crossing place and decided not to
cross when the FAV was close. Yet, the e-HMI background was
green and proposed to cross. Also, it was found that when the
e-HMI background was red and the distance was far, pedestrians
sometimes decided to take the risk and cross (Figure 7 Top). This
finding is in line with previous research that explored the effect of
distance on pedestrians’ crossing decision (Clamann et al., 2017).

Nevertheless, when pedestrians made the compatible crossing
decision when the FAV was close and the e-HMI was green,
they lingered and did not decide to cross immediately. These
findings were pronounced by longer response times and a
higher number of fixations compared to green background
e-HMI in the far distance (Figure 8 and Table 3). Also, when
the FAV was far, and a red background e-HMI appeared,
pedestrians also hesitated and took some time to decide
(Table 3 and Figure 9). These results imply that, most
likely, pedestrians base their decisions on a combination of
distance and the e-HMI proposition. These findings can be
explained by color conventions and distance. When the color
convention fits the pedestrian’s expectations and risk due to the
car’s distance, fewer fixations were needed. However, in cases
where the e-HMI color convention conflicted with pedestrians’
expectations, it was necessary to further gaze on the e-HMI
to understand the message and take more time to decide
(Figure 8 and Table 3). These findings confirm h1 that the
e-HMI can help make the compatible decision when there
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are conflicts but not always, as shown in the 25% of the
incompatible responses.

Learnability
Overall, there was a learning effect over time for the various
fixed effects. This was reflected in the reduction in error
probability over time (Figure 7 and Table 2), as well as in the
shortening of response times and the reduction in the number
of fixations over time in all conditions (Figures 8, 9 and Table
3). The learning curve seems to have a similar pattern for all
combinations of conditions crossing conditions (e.g., distance-
color combinations). These findings are aligned with previous
research findings regarding the learning effect over time (Faas
et al., 2020) and strengthen them. Thus we can confirm h3 that
there is a learning effect regardless of the crossing context and
e-HMI display content.

Message Type, Modality, and Color
Results revealed that the green background e-HMI for advice
message tended to be more intuitive since it had a lower estimated
error probability than the green background for e-HMI status
message (see Table 2). Also, in the advice message, there was
no difference between the two modalities (see Figure 7 Bottom).
These results confirm h2 and can be explained by the fact
that pedestrians today are more familiar with advice messages,
in both modalities, and not familiar with status messages in
general and with regard to FAVs. Further, it was easier to
express a status message through text than through symbols,
but this may change in the future when symbols become more
standardized and common.

This study sheds more light on the contradicting findings of
previous studies and emphasizes that pedestrians are not yet in
a stage where they trust FAV e-HMI entirely in contrast to some
findings (Holländer and Butz, 2019). However, they do not ignore
it (in contrast to Clamann et al., 2017; Mahadevan et al., 2018).
This study revealed, from analyzing the number of fixations and
response time, that pedestrians tend to decide for themselves
whether to cross the road based on a combination of the FAV
distance from the crossing place and the e-HMI background color
and instructions.

Our study highlights the importance of the e-HMI and how
it may affect pedestrians’ decision to cross. However, several
limitations must be noted. A major limitation is in the crossing
conditions of only one FAV and one pedestrian at a specific
time, unlike the real world. Another limitation refers to the form
of presentation, that is, the fixed scenes. Although this form
allows us to examine pedestrian behavior parameters (such as
understanding) more deeply, it ignores other parameters that
are associated with the dynamicity of the road crossing task.
Lastly, the study population included a convenience sample of
students. Future studies should examine our findings in dynamic
scenarios and with more complex and varied crossing conditions
such as multiple FAVs on the road, different car types, etc.
Further, pedestrians’ decisions may be influenced by the presence
of other pedestrians, which we did not examine. Last but not
least, as shown in pedestrian studies (e.g., Tapiro et al., 2016,
2020), findings must be further evaluated across cultures and

with regard to children and older adults. Finally, while this study
addressed learnability, we still do not know enough about how
and if the eHMI proposition will lead pedestrians to behave in
compliance with its recommendation even in conflict situations,
to establish this, we need to examine the learnability curve further
using varied learnability inflators, such as system errors, misses
and false alarms, varying trust level, etc.

CONCLUSION

Over time, learning was apparent in response times and gaze for
crossing context and e-HMI characteristics combinations for the
compatible and all responses. Therefore, it is essential to provide
e-HMI designs that will minimize error probability and provide
fast response times, and need for only a minimal number of
fixations on the e-HMI from the first phase. The existence of
learning is encouraging, as it implies that crossing performance
can be improved over time. Further, color conventions play
a significant role in pedestrians crossing decisions today, and
they will probably influence decisions in the FAV world as
well, at least in the upcoming decade. This finding is important
and emphasizes that it is essential to adhere to existing color
convention, in line with Bazilinskyy et al. (2020) and not use
neutral colors for all FAV messages, as some researchers have
suggested (Dey et al., 2020). Yet, pedestrians also considered the
FAV’s distance from the crossing place when deciding to cross,
especially in conflict situations. This skill of estimating the risk
of the crossing from the distance of the vehicle is necessary
for today’s pedestrians. Still, it may diminish in the future FAV
world if and when pedestrians will over trust the e-HMI and base
their decisions solely on its recommendations and status. This
research used fixed scenes, which allows examining in-depth, how
pedestrians related to the crossing scene over time in the FAV
world and how the e-HMI influenced their decision. However,
to extend these findings, it is necessary to conduct further
studies with dynamic various crossing complexities, examine
further learnability inflators, and include diverse, multicultural
populations, such as the elderly and children.
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The use of automation in cars is increasing. In future vehicles, drivers will no longer

be in charge of the main driving task and may be allowed to perform a secondary

task. However, they might be requested to regain control of the car if a hazardous

situation occurs (i.e., conditionally automated driving). Performing a secondary taskmight

increase drivers’ mental workload and consequently decrease the takeover performance

if the workload level exceeds a certain threshold. Knowledge about the driver’s mental

state might hence be useful for increasing safety in conditionally automated vehicles.

Measuring drivers’ workload continuously is essential to support the driver and hence

limit the number of accidents in takeover situations. This goal can be achieved using

machine learning techniques to evaluate and classify the drivers’ workload in real-time. To

evaluate the usefulness of physiological data as an indicator for workload in conditionally

automated driving, three physiological signals from 90 subjects were collected during 25

min of automated driving in a fixed-base simulator. Half of the participants performed

a verbal cognitive task to induce mental workload while the other half only had to

monitor the environment of the car. Three classifiers, sensor fusion and levels of data

segmentation were compared. Results show that the best model was able to successfully

classify the condition of the driver with an accuracy of 95%. In some cases, the model

benefited from sensors’ fusion. Increasing the segmentation level (e.g., size of the time

window to compute physiological indicators) increased the performance of the model for

windows smaller than 4 min, but decreased for windows larger than 4 min. In conclusion,

the study showed that a high level of drivers’ mental workload can be accurately detected

while driving in conditional automation based on 4-min recordings of respiration and

skin conductance.

Keywords: automated driving, classification, driver, workload, physiology, secondary task, machine learning

1. INTRODUCTION

According to the National Highway Traffic Safety Administration (NHTSA), 2,935 fatal crashes
occurred on U.S. roadways due to driver’s distraction in 2017. This represents 9% of all fatal crashes
(NHTSA, 2017). Performing a secondary task while driving is one cause that increases the risk to
have an accident, among other factors such as fatigue, mood or demanding driving conditions.
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The latter lead to hazardous drivers states as named by Darzi
et al. (2018). To solve that issue, car manufacturers aim at
reducing the rate of accidents by proposing an increasing level of
automation in cars to support the driver. According to the Society
of Automotive Engineers (SAE) classification (SAE, 2018), the
next generation of vehicles that will emerge on our roads will
be conditionally automated cars, corresponding to Level 3 of
the SAE taxonomy. At this automation level, the driver will no
longer be in charge of the main driving task, neither monitoring
the environment. However, the car alerts the driver that he or
she has to take over control of the car when the automation is
reaching its limit. The commonly accepted approach is sending a
takeover request (TOR) to the driver (Kim et al., 2019). Various
ways of alerting the driver are being tested (Petermeijer et al.,
2017), such as visual, auditory and haptic alerts, or a combination
of those. Thus, the driver must be ready to take over control at
any moment during the ride. The role of the driver in such a
situation will switch quickly from passenger behind the wheel to
driver. Besides, on the basis of decisions taken by the authorities
concerned, drivers could be allowed to engage in a Non-Driving-
Related Task (NDRT) during periods of conditionally automated
driving. The driver might be out-of-the-loop if he or she is
engaged in a NDRT. It was recently defined by Merat as being
“not in physical control of the vehicle, and not monitoring
the driving situation, or in physical control of the vehicle but
not monitoring the driving situation” (Merat et al., 2019). The
engagement of drivers in a NDRT would distract them from the
supervision of the environment for which they are responsible.
They could be distracted visually, orally, cognitively, or bio-
mechanically (Pettitt et al., 2005). These are not exclusive and
drivers’ could be distracted in different ways at the same time.
The distraction induced by performing a NDRT using another
sensory channel might also increase the mental workload (MWL;
Mehler et al., 2009).

Previous studies showed that performing NDRTs that involve
various modalities affect the gaze behavior and takeover
performance of drivers (Nakajima and Tanaka, 2017; Wandtner
et al., 2018). To address this issue, Parasuraman et al. (2000)
suggested that “well-designed information automation can
change human operator mental workload to a level that is
appropriate for the system tasks to be performed.” If we want
the drivers to safely engage in NDRTs, it is crucial to find a way
to measure continuously their state and use this information to
dynamically support the driver. Various types of measures that
depict the operator’s state could be used such as performance,
subjective or physiological measures. Under real situations, it
might not be the best option to rely on subject ratings for
adapting the level of automation. Driving data were suggested
in previous studies to show drivers’ distraction and elevations
of MWL induced by a NDRT in manual driving (Engström
et al., 2005). However, this source of data cannot be used in
conditionally automated driving since the car is performing the
main driving task most of the time, except during takeover
situations. Previous research has shown that increases of MWL
and cognitive distraction can easily be detected with cameras
using eye-tracking, face-based or EEG features (Li and Busso,
2013; Hogervorst et al., 2014). For practical issues, a EEG headset

would not be comfortable to wear for drivers, therefore, we are
not considering this signal in this study. When the driver’s gaze
is toward the windshield and facing the camera, these features
could be useful for predicting driver’s workload continuously.
However, the driver’s gaze often changes direction in the car.
Thus, it may be difficult to use only these data sources in real
driving conditions to measure driver cognitive load.

In this context, physiological signals seem to be the best option
to evaluate continuously and non-intrusively changes in MWL
of drivers while performing a secondary task in conditionally
automated driving. Recent advances in technology allow for
a recording of physiological signals with embedded sensors
that drivers could wear in real-world environments such as
wristbands, smartwatches, or smart clothes (Sonderegger, 2013;
Angelini et al., 2014). Features computed from raw physiological
signals could be used to classify the driver’s state using recent
machine learning techniques. This information could be used to
adapt either the automation level or the interaction level between
the driver and the car. Such a system would help reducing
fatalities due to bad takeover behavior and performance and
therefore increase safety on roads. Besides, this system could also
increase the user experience in automated cars because drivers
would be able to engage in their favorite activity during the ride.
This is because, based on such information, an automated system
could adapt the type of warning (e.g., display of a loud and
startling sound in case of low activation of the driver vs. smooth
visual hint in case of situations of high activation) or even decide
not to send out a TOR because it calculated that there is not
enough time to safely take over control under given conditions
(e.g., travel speed, distance to the object, state of the driver).

2. RELATED WORK

2.1. Mental Workload
Being one of the most widely invoked concepts in human
factors and ergonomics, MWL represents a topic of increasing
importance in research and practice (Young et al., 2015).
MWL can be explained in terms of the balance between the
demands of a situation (task and environmental context) and
the resources an individual has available to overcome the
situation (Wickens, 2008). While task demands are generally
referred to as stress, strain describes the impact of task
demands on the human (Schlegel, 1993). MWL is generally
defined as a multidimensional construct which is determined
by task characteristics, operator characteristics (e.g., attentional
resources, skills), and the environmental context (Young et al.,
2015). One of the main reasons for the increasing interest in
MWL lies within its link to human performance and hence
the possibility to identify suboptimal workload conditions that
might lead to stress, errors and incidents in the driving context
(Brookhuis and De Waard, 2001). It is generally agreed upon
that MWL can be considered a basic precursor of stress, errors,
and accidents—it has been difficult however to establish an
exact relationship between the concepts, which mainly might
be due to difficulties in the accurate measurement of MWL
(Young et al., 2015).
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Three main approaches have been put forward for assessing
MWL, including measures of task performance (primary and/or
secondary task), subjective ratings based on questionnaires and
physiological measures (Gawron, 2019). The first approach is
based on techniques measuring task performance on a primary
and a secondary task. While generally an acceptable level
of performance in the primary task can be maintained in
high workload conditions, performance on the secondary task
is highly correlated with MWL since the secondary task is
associated with the spare capacity unused for completion of
the primary task (Young et al., 2015). The primary-secondary
task paradigm has been shown to be a good indicator of
MWL in experimental research. Its implementation however is
linked with some rather severe drawbacks (e.g., artificial setup
of test environment with a high need for standardization and
control of the task scenarios; Fisk et al., 1986). In some driving
studies, the performance on the primary task was measured
using driving data (longitudinal and lateral parameters) and
the secondary task performance was used as an indicator of
MWL (Engström et al., 2005; Mehler et al., 2009). The second
approach is to assess MWL as subjective state based on subjective
ratings. This implies the assumption that humans are capable
of evaluating and expressing the level of MWL they experience
in a specific task after task completion. Some widely used
questionnaires for measuring MWL subjectively are the NASA-
TLX (Hart and Staveland, 1988) or the Rating Scale Mental
Effort (Zijlstra and Doorn, 1985). Task load questionnaires
are easy to apply and interpret but come along with some
methodological issues which are due to the subjectivity of the
measure and the retrospective bias of post-task assessments
(Bulmer et al., 2004). The third approach to measure MWL
is the assessment of physiological indicators. In this regard,
two groups of physiological indicators can be differentiated,
indicators of the autonomic nervous system and indicators of
the central nervous system. Cardiovascular indicators (e.g., heart
rate and heart rate variability) as well as electrodermal activity
(e.g., tonic and phasic skin conductivity) are often referred to
as useful indicators of MWL in research (De Waard, 1997).
However, considerable drawbacks for the assessment of MWL
via physiological parameters are the troublesome procedure of
applying electrodes, the generally rather high signal to noise
ratio as well as the interfering influence of physical activity
(Huigen et al., 2002). As mentioned before, it is difficult to
measure MWL using task performance or subjective ratings in
real-world conditions. In this study, these measures are used to
control the success of MWL manipulation. Besides, the use of
physiological signals as a potential source of data for measuring
MWL in conditionally automated driving is explored. In the
present study, we concentrate onmeasurements of the autonomic
nervous system for classifying drivers’ workload. This is because
we consider EEG or near-infrared spectroscopy are being less
suitable under real-world conditions since drivers might be
averse to wearing a headset. Besides, drivers’ gaze can constantly
switch between the windshield, the dashboard and potentially a
tablet or a smartphone held in the hands during conditionally
automated driving, which makes it challenging to continuously
capture this feature. However, we are convinced that these

measures could also represent interesting indicators and should
be considered in future research.

2.2. Definition of Physiological Indicators
2.2.1. Electrodermal Activity (EDA)
The first selected physiological signal is the EDA, which is defined
as the changes in the electrical conductivity of the skin, caused
by the fluctuations of sweat in glands regulated by the autonomic
nervous system (Cacioppo et al., 2007). The latter can be declined
in two main components. One feature which can be derived from
EDA data is the tonic level of EDA which refers to the slow-
acting components of electrical activity such as the mean level
of EDA or slow climbing and decreases over time. The most
common measure of this component is the skin conductance
level. Changes in this measure reflect general changes in arousal
(Cacioppo et al., 2007). The second component is the phasic
component of EDA, which refers to fast-changing properties of
the signal. It is measured with the Skin Conductance Responses
(SCRs). Previous research suggested that both components
are important and may rely on different neural mechanisms
(Cacioppo et al., 2007). Phasic SCRs can be distinguished into two
categories called non-specific SCRs (NS-SCRs) and event-related
SCRs (ER-SCRs). The first one gathers responses occurring in
the absence of identifiable eliciting stimuli, while the second
one characterizes subjects’ electrodermal reaction to stimuli. One
commonly used indicator is the frequency of NS-SCRs, which
is generally between one and five per minute at rest, and more
than 20 per minute in periods of high arousal. To characterize
ER-SCRs, indicators such as latency, amplitude, rise time and
half recovery time are usually used (Boucsein, 2012). The same
indicators can be calculated identically for NS-SCRs, except
for latency which requires a time-stamped triggered event to
be calculated.

2.2.2. Electrocardiogram (ECG)
The second selected physiological signal is the ECG. Various
indicators can be computed based on ECG data such as the
heart period (the time interval between successive heart cycles)
and the heart rate variability (HRV; Camm et al., 1996). The
heart period is also known as the inter-beat interval (IBI).
Another widely used metric to evaluate the cardiac activity is the
heart rate (HR) which corresponds to the number of heartbeats
per unit of time, usually per minute. HRV is a general term
that refers to time changes in IBI. These measures are used
as indices of autonomic nervous system regulatory activities
and have been related to individual differences in attention and
cognition in various groups of populations (Cacioppo et al.,
2007). Previous studies showed that mental effort is related to
changes in cardiovascular state (Aasman et al., 1987; Bernston
et al., 1993) and more specifically in HRV (Mulder, 1992). The
HRV can be quantified by two different categories of methods.
The first method is the time-domain method. This category
contains both statistical and geometric measures, depicting the
variability of time between heartbeats (Camm et al., 1996). Malik
and Terrace (1996) recommend indicators to use in this regard
that are the standard deviation of IBI (SDNN, for estimating
the overall HRV), the HRV triangular index (an estimate of

Frontiers in Psychology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 596038107

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Meteier et al. Classification of Drivers’ Workload

the overall HRV), the standard deviation of IBI calculated over
short periods (SDANN, an estimate of long-term changes of
HRV) and the square root of the mean squared differences of
successive IBI (RMSSD, an estimate of short-term components
of HRV). While some specialists in the field advise calculating
common statistical time-domain HRV measures such as SDNN
or RMSSD using at least a 5-min ECG recording (Camm et al.,
1996; Malik and Terrace, 1996), other investigations have utilized
ultra-short term measures (below 5 min) (Shaffer and Ginsberg,
2017). Studies showed that 10 s for HR, 30 s for RMSSD and
60 s for other metrics such as pNN50 could be enough to get
a reliable measure of cardiac activity (Salahuddin et al., 2007;
Baek et al., 2015). Other metrics such as SDANN and the HRV
triangular index require long-time monitoring (at least 20 min,
preferably 24 h; Malik and Terrace, 1996). The second method
to evaluate changes in HRV is the frequency-domain method.
Power spectral density method provides information on how
power (e.g., variance) distributes as a function of frequency.
Three main components can be distinguished in periods of two
to 5 min of recording, including the Very Low Frequency (VLF;
below 0.04 Hz), the Low Frequency (LF; between 0.04 and 0.15
Hz) and the High Frequency (HF; between 0.15 and 0.4 Hz;
Malik and Terrace, 1996). More recent researches suggest that
20–90 s could be enough to evaluate the components of HF
and LF (Salahuddin et al., 2007; Baek et al., 2015). However,
the use of VLF should be avoided to interpret recordings
shorter than 5 min. The ratio LF/HF is also an indicator used
to emphasize the behavior of the two main branches of the
autonomic nervous system.

2.2.3. Respiration
The third physiological signal recorded in this study is the
respiration of drivers. The respiratory system is complex and
sensitive to other psychological variables (Cacioppo et al., 2007).
Respiration forces the chest to expand and this movement of
chest expansion can be measured by piezoelectric sensors. The
respiratory system is linked with other muscles of the body
as well as with the nervous system. Under ideal conditions,
the respiratory activity is regular and harmonious but it can
be perturbed when experiencing stressful situations. Previous
research showed that respiration influences both EDA and heart
activity (Cacioppo et al., 2007). Several measures can be extracted
based on the information provided by breathing transducers such
as the breathing rate (BR), which corresponds to the number of
breathing cycles per minute. Inspiratory and expiratory volumes
and durations, the ratio of both, and the complexity of the signal
(through spectral analysis) are also measurements that can be
derived from the raw breathing signal.

2.2.4. Respiratory Sinus Arrhythmia (RSA)
Heart rate changes as a function of the respiratory cycle. This
phenomenon is called respiratory sinus arrhythmia. RSA has
become of great interest in recent years since the tight coupling
of both signals can be used as an index of the vagal control of the
heart (Cacioppo et al., 2007). Many factors influence RSA such as
posture, age, or activity. The main measure is the magnitude of

RSA but both frequency and time domain methods can be used
as well since they showed similar results.

2.3. Influence of MWL on Physiological
Measures
Previous studies already investigated the influence of increased
MWL induced by cognitive tasks on the physiological state
of subjects. The goal is to summarize previous findings in
order to get a better appreciation of the expected results in
this study. Studies that manipulated MWL by administering a
secondary NDRT to drivers were reviewed, as well as studies
that manipulated MWL with a cognitive task that subjects
had to perform on a computer under experimental laboratory
conditions. Previous research showed that the EDA level
increases with increasing task difficulty. It has been shown for
subjects performing oral or auditory tasks while driving in the
real field (Collet et al., 2009) or in a simulated environment
(Mehler et al., 2009, 2012). The same effect was found for a visual
task performed while driving in both real field and simulated
environments (Engström et al., 2005) or on a computer (Ikehara
and Crosby, 2005). However, no effect of task difficulty was found
on EDA for an auditory task performed in a driving simulator
(Engström et al., 2005). A possible explanation was provided
by Mehler et al. (2012) in their follow-on study for this non-
consistent effect of incremental difficulty of task on EDA in
the study of Engström et al. (2005). Some participants might
have disengaged from the task when performed at high levels
of difficulty, resulting in a lower physiological activation. This
shows the high importance of controlling the performance of
the participants with regard to the secondary task. For measures
describing the cardiac activity, HR and IBI were also shown to
be sensitive to increased task difficulty. IBI decreases (e.g., HR
increases) with increasing difficulty of the visual task performed
in both simulated and real environment (Engström et al., 2005).
The same effect was found for auditory tasks (with verbal prompt
or not) performed under real driving conditions (Engström et al.,
2005;Mehler et al., 2009). Collet et al. (2009) found similar results
since HR of participants increased when performing various
oral and auditory tasks while driving. An effect of increased
task demand induced by the environment in simulated driving
was also found on HR and frequency-based HRV measures
(Brookhuis et al., 2004; Brookhuis and de Waard, 2010). In
addition, the respiratory activity of subjects is also sensitive to the
performance of the auditory prompt-verbal response “n-back”
task while driving (Mehler et al., 2009). This study showed a
plateau effect between the 1-back and 2-back conditions for BR
and EDA, suggesting that it might be difficult to distinguish two
different levels of high cognitive workload using physiological
measures. Subsequently, Mehler et al. (2012) found that the
seeming plateau effect in the earlier study was an artifact of the
methodology employed and that when the order of task difficulty
is randomized, significant differences in EDA level between the
1-back and 2-back were observed, confirming that the mean
EDA level increases with task demand. In summary, previous
studies led in various experimental settings already showed that
changes in driver’s workload can bemeasured using physiological
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signals. Some significant results were found in both real field
and simulated environments (Engström et al., 2005), although
the simulation was probably less realistic than it is now. Some
indicators such as the mean EDA level or IBI can be used to
measure changes in workload. Increasing task difficulty lead
to increasing MWL, which goes with reduced IBI (e.g., higher
HR), increased mean EDA level and increased BR. Some of
these measures showed to vary when engaging in tasks involving
different sensory channels such as auditory, oral or visual tasks.
The fact that a speech-based cognitive task increases EDA, HR,
and BR (Collet et al., 2009; Mehler et al., 2009) is particularly
relevant for our study. We expect that these indicators will play a
significant role in the classification of drivers’ condition.

2.4. Classification of Workload
Our contribution is to classify drivers’ workload using
physiological measures during conditionally automated driving.
In this regard, the classification results and procedure from
previous studies, including the type of chosen physiological
signals, the features generation and selection techniques, the
selected classifiers, the validation techniques, or the number
of classes to predict are reported. In this section, we reviewed
studies for which the experimental task was the accomplishment
of a NDRT during manual driving periods (real or simulated
driving) or the performance of a single cognitive task in a
laboratory. For each study, the method employed by authors to
perform the classification is described.

Ferreira et al. (2014) asked two groups of adults (young vs. old)
to perform two different cognitive tasks on a computer, testing
their perceptual speed and visio-spatial cognitive processing
capabilities. Each group performed three blocks of these two
tasks, with two different difficulty levels of the tasks. One hundred
and twenty-eight features were extracted from the EEG, ECG,
EDA, heat flux, and respiration raw signals. Features were
computed from 10 and 60-s segments using sliding windows
with a step of one second. An inter-subject classification achieved
results from 64 to 86% accuracy to distinguish two difficulty
levels, depending on the task, the age group and the time window
used for classification. The best scores were achieved mostly with
data collected from young participants but with a high variation.

Haapalainen et al. (2010) administered six elementary tasks
to 20 young subjects on a computer. Tasks were asking for
visual perception and cognitive speed. A Naive Bayes classifier
had to choose between two levels of cognitive load (low vs.
high) using features derived from non-overlapping segments of
psychophysiological measures during the tasks. Features such
as statistical indicators of pupil diameter, GSR, heat flux, mean
absolute deviation of ECG, EEG power values, two mental
state outputs, heart rate and time-based HRV features were
calculated. A leave-one-out approach was used for validation.
Finally, the authors averaged the classification results across all
participants, using the best feature from each sensor. An average
of 76 and 71.4% of accuracy was achieved with respectively the
heat flux and mean absolute deviation from ECG. An accuracy
of 81.1% was achieved by combining both features. Besides,
the classification with EDA as an input feature showed the
lowest performance.

In another study led by Hogervorst et al. (2014), 14
participants had to perform the visual n-back task on a
computer at different levels of difficulty (rest, 0, 1, and 2-
back). Each participant did 8 epochs of 2 min of that
task in the 3 difficulty levels. Features such as frequency-
based indicators from EEG, mean EDA level, time-based
HRV indicators, breathing frequency, and eye-related indicators
were used. The best classification accuracy reached was a
little over 90% for distinguishing high (2-back) and low
(0-back) workload on the basis of 2 min segments with
all indicators. The breathing frequency was the most useful
physiological measure for classifying workload level. Using only
physiological features, the best accuracy achieved was around
75% to distinguish 2-min segments of 0-back and 2-back
task using the support vector machine classifier. This score
decreased slightly under 70% when using 30-s segments for
the classification.

Son et al. (2013) collected driving, physiological and eye
movement data of 30 participants performing the auditory n-
back task while driving. Task difficulty was varied on three levels
(0, 1, and 2-back task) for a duration of 2 min each. HR and
skin conductance level were used as physiological features. Ten-
second windows across all 2-min windows were used to compute
the features. A support vector machine classifier with a nested
cross-validation technique was used to classify periods of normal
driving and dual-task periods (NDRT and driving). The heart
rate showed the best accuracy as a single feature to classify
workload with 80% accuracy. In addition, all models with the two
physiological inputs (HR and skin conductance level) obtained at
least 82.6% accuracy.

A recent study led by Darzi et al. (2018) aimed at identifying
the causes of hazardous driver states, using a combination
of driver characteristics, vehicle kinematics, and physiological
measures. 21 drivers were asked to perform four 45-min
sessions of simulated driving. Each driving session contained
eight scenarios with changing weather, traffic density and
NDRT. The classification of cell phone usage periods only with
physiological data is the most relevant result for our study
because it is close to what we are trying to achieve in this
experiment, except that it is in the context of conditionally
automated driving. During cell phone use, participants indicated
to have a higher MWL with regard to NASA-TLX (NASA
Task Load Index, Hart and Staveland, 1988) results. Seventeen
features were computed from four physiological signals (ECG,
EDA, respiration, and temperature) from each 4-min scenario.
It included time-based and frequency-based HRV measures,
skin temperature, indicators of tonic and phasic EDA and
respiration rate and variability. To automatically classify drivers’
condition, the support vector machines, logistic regression and
decision trees were selected as classifiers. For the physiological
features, the baseline value was subtracted to driving value and
then normalized using the minimum and maximum during a
session. Only significant features to the stepwise forward feature
selection (threshold of 0.05) were selected and the leave-one-
out validation method was employed. Only with physiological
features, classifiers were able to detect that participants used the
cell phone while driving with a 81.8% accuracy. The most useful
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TABLE 1 | Summary of state of the art.

References Physiological features Best classifier Best performance (accuracy) Best features

ECG EDA RESP

Ferreira et al. (2014) Yes Yes Yes QDA 86% (60 s) EEG, respiration rate

Haapalainen et al. (2010) Yes Yes No NB 83.70% Heat flux, HRV

Hogervorst et al. (2014) Yes Yes Yes SVM 75% (2-back vs. 0 back, 120 s) EEG, respiration, RMSSD

Son et al. (2013) Yes Yes No SVM 82.9% HR, skin conductance

Darzi et al. (2018) Yes Yes Yes LR 82.3% (cell phone or not) ECG gradient, respiration rate

Solovey et al. (2014)
Yes Yes No MLP 75.7%; HR only : 74%

Yes Yes No LR 90% (30 s); HR : 80–85%

Le et al. (2018) No No No DT 89.91%

QDA, Quadratic Discriminant Analysis; NB, Naïve Bayes; SVM, Support Vector Machine; LR, Logistic Regression; MLP, Multilayer Perceptron; DT, Decision Tree.

physiological features for classification were the mean breathing
rate and the absolute value of the gradient of the ECG signal.

Another main study in this domain had been led by Solovey
et al. (2014). They conducted two field studies with 20 and 99
drivers to classify workload of drivers only with physiological
data using respectively a subject-dependant and a subject-
independent classification approach. Once again, the n-back task
was used to manipulate drivers’ workload (auditory prompt and
verbal answer with digits). Various size of time windows (10–30 s)
and overlapping factors (0–75%) were tested. Statistical measures
of HR, skin conducatance level and vehicle velocity were used for
classification. For the subject-dependant classification, accuracies
around 75% were achieved with all classifiers (except for the k-
Nearest Neighbor one) using all features. The model accuracy did
not decrease much using only HR features for classification. For
the subject-independent classification, accuracies around 90%
were achieved only with physiological measures. The additional
driving features did not increase accuracy, suggesting that
physiological measures alone have a great potential for classifying
drivers’ workload in automated driving (where driving features
are not available). Logistic Regression, Multilayer Perceptron and
Naïve Bayes classifiers were themost efficient ones. Increasing the
time widows for computing features increased the accuracy, with
the best accuracy achieved with a 30-s time window. However,
the overlapping factor did not affect the accuracy of the system.

Finally, Le et al. (2018) recently considered using near-
infrared spectroscopy to similarly classify drivers workload
being cognitively distracted by a NDRT. Again, the n-back task
was chosen for manipulating workload and 6 features were
computed from the sensor data. Five-fold cross-validation and
a principal-component analysis were applied to data before the
final classification. Five different classifiers were tested to classify
three workload levels (driving only vs. driving + 1-back vs.
driving + 2-back), including decision-tree, discriminant analysis
model, logistic regression, support vector machine and nearest
neighbor classifiers. Scores above 88% accuracy were achieved
for subject-dependant classification and between 84 and 90% for
subject-independent classification. The results obtained in this
study are very promising the results are obtained for classifying
three levels of workload compared to other studies that classified
only two levels. However, the sensor was placed on the forehead

of drivers, who may not be willing to wear such a device under
real driving conditions.

To summarize the findings from previous studies, the main
results of each article are presented inTable 1. Overall, decreasing
the time window for computing physiological measures showed
to decrease accuracy. Apart from psychological features such as
EEG, some of the best physiological features to classify MWL
were the breathing rate, HR or the mean absolute deviation
of IBIs. Another main result to consider is that the models
developed in several studies always benefited from sensor fusion.
This leads to a compromise to classify the driver’s condition.
Previous research reviewed here raises a fundamental issue if
we want to implement such systems in vehicles. The stake is
to find the best trade-off between the number of physiological
signals, features and time window to build a reliable and robust
model (e.g., high accuracy with low variance). If too many signals
are selected, it is difficult for the driver to wear many sensors
under real driving conditions. Also, if a time window of a few
minutes is needed to get an acceptable accuracy, this takes us
away from real-time MWL assessment and therefore makes an
implementation of such a system less credible.

3. CURRENT STUDY

In this paper, we propose a solution that classifies the driver’s
MWL (high vs. low) based on physiological data during
conditionally automated driving. In particular, the following
contributions are made:

• Creation of a dataset containing three physiological signals
(ECG, EDA, and respiration) of 90 subjects in the specific
context of conditionally automated driving in a simulator.

• Manipulation of drivers’ MWL through a verbal cognitive task
with a rigorous experimental approach. The selected task is
similar to a task that drivers might engage in under real driving
conditions (e.g., talking on the phone or to another passenger).

• Validation of the success of workload manipulation by means
of the widely used questionnaire NASA Task Load Index
(NASA-TLX, Hart and Staveland, 1988).

• Training of three different classifiers to predict drivers’
condition, using a k-fold cross-validation approach.
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FIGURE 1 | Takeover situations.

FIGURE 2 | The driving simulator.

• Evaluation of the effect of selected physiological
signals and segmentation level (e.g., size of time
windows used to compute features) on performance
of classifiers.

Our approach differs from previous studies because it investigates
the change of MWL of drivers in the specific context of
conditionally automated driving. With the future rise of
automated driving, it is important to validate that the results
of previous findings are consistent with the increase of drivers’
MWL at higher levels of automated driving. Besides, the
measures used to classify drivers’ MWL differ from some
previous studies that used eye-tracking, EEG or driving features.
In this study, only physiological signals that can be collected in
real-world conditions using smart embedded sensors are used.
Therefore, findings from this study are relevant to the potential
use of physiological signals for detecting changes in MWL of
drivers in future conditionally automated cars.

4. MATERIALS AND METHODS

4.1. Experimental Method
4.1.1. Participants and Experimental Design
90 young participants (24.15 ± 5.95 years old) within a tight
age range were recruited for this study. 40 of them identified
themselves as male, 49 as female and 1 as other. Participants were
mainly students. All participants were required to hold a driving
license and be of good general health. Students received course
credit for their participation. All the research and measurements

followed the tenets of the Helsinki agreement and written
informed consent was obtained from all participants.

The experimental design was a 2 × 6 mixed-design with the
task difficulty as a between-subject variable (secondary task vs.
no secondary task) and the takeover situation as a within-subject
variable (deer vs. traffic cone vs. frog vs. can vs. false alarm 1
and 2). The cognitive NDRT that half of the participants had
to perform was a verbal cognitive task named oral backward
counting (Siegenthaler et al., 2014; Krueger et al., 2019). It
consisted of counting backwards for 20 min from 3,645 by step
of 2. This artificial task was chosen because it is a continuous task
similar to a discussion on the phone or between passengers in
the car. With such task, a higher level of MWL was continuously
induced over a long period of time. This gave the possibility to
investigate the effect of segmentation on physiological signals.
Also, the engagement in such difficult task could be measured.
The six takeover situations included four obstacles that led to
taking over control: a deer and a frog crossing the road, as well
as a traffic cone and a can standing on the track (Figure 1).
Participants also received two false alarms. They could choose
to take over control if they estimated that the situation was
dangerous for them and the car. The takeover situations were
implemented in the scenario to make it more realistic and
engaging for participants. However, the effect of the takeover
situation on the physiological state of subjects is not presented
in this work.

4.1.2. Material and Instruments
The experiment was conducted on a fixed-base simulator, as
shown in Figure 2. It is composed of two adjacent car seats with
seat belts and a Logitech G27 steering wheel with the gas, brake
and clutch pedals. The clutch was not used in this study since
the car used in the simulation had an automatic gearbox. The
orientation and the longitudinal position of the seats toward
the steering wheel were adaptable like in a real car. All this
structure was installed in front of a large screen where the driving
simulation software was back-projected with a projector (model
Epsilon EH-TW3200). Two speakers were set up behind the seats
to immerse the driver in the simulated driving environment.
A cabin-like room with low ambient lighting contained all of
this installation. The driving simulation used GENIVI software,
developed with Unity by a consortium of car manufacturers.
The scenario used for the experiment was a replication of
the Yosemite National Park (USA) and included conditionally
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automated driving features. It was modified to add the obstacles
triggered by the experimenter, leading to six takeover requests
throughout the driving session. During the experiment, the
Biopac MP36 hardware recorded the physiological signals of
drivers, at a sample rate of 1,000 Hz. Appropriate parameters
were used for each channel. A digital low pass filter with a
frequency of 66.5 Hz and a Q factor of 0.5 reduced the noise
of the three signals. For the EDA and RESP signals, the filter
had a respective gain of 2,000 and 1,000. The SS57LA and
SS2LB lead sets (Biopac) with disposable Ag/AgCl pre-gelled
electrodes (EL507 and EL503, Biopac) respectively collected the
EDA and ECG of participants. The SS5LB respiratory effort
transducer (Biopac) recorded the respiration via chest expansion
and contraction. The voice of participants assigned to the
manipulation group was recorded by an audio recorder placed
behind the dashboard.

4.1.3. Measures
Physiological signals of participants were recorded throughout
the whole experiment, including ECG, EDA, and RESP. Based
on these data, physiological indicators were calculated. The
creation of features from these indicators is presented later in the
article (section 4.2.1). The subjective workload was assessed using
the widely used questionnaire NASA-TLX (Hart and Staveland,
1988). It is a 6-item questionnaire where participants report
their subjective level of workload during a task. After their
experience in the driving simulator, participants were asked to
rate their workload during the main driving session. The scale
was modified due to visualization problems on the questionnaire.
Hence, each item rated on a 11-point scale, from 0 to 10 (0= Low,
10 = High). The mean score of the six items was computed to
create a global score of MWL rating from participants. To ensure
that participants were engaged enough in the NDRT throughout
the driving session, we also measured NDRT performance of the
participants. The frequency of orally spoken number (i.e., the
number of orally spoken numbers per minute) was calculated
from recordings obtained with the voice recorder. From times
to times, participants stopped counting since the task was
monotonous. For that reason, we also counted the number of
times the experimenter asked the participant to resume counting.

4.1.4. Procedure
After initial instructions about the experiment, participants
answered a questionnaire containing socio-demographic
questions (i.e., age, gender, driving experience, accidents, etc.).
To record the physiological signals, the experimenter attached
electrodes and the respiration belt to the participants’ body. Three
electrodes were attached to record the ECG, two above both
ankles and one at the right wrist. For the EDA, two electrodes
were attached to the index and middle finger of the right hand of
participants. Then, the experimenter asked them to take a seat
in the simulator. The experiment took place in three distinct
periods. Oral instructions were given by the experimenter
before each period to ensure that participants understood the
experimental procedure. As described in the section 4, the three
periods took place in the same scenic environment. During the
first period, participants had to monitor the environment of the

FIGURE 3 | Upper part: The dashboard displaying the icon indicating the

autopilot mode, the speed of the car and the number of engine’s revolutions

per minute. Bottom-left: gray icon—Autopilot OFF, Bottom-middle: green

icon—Autopilot ON, Bottom-right: Red icon—Takeover Request (TOR).

car while it was driving in conditional automation for 5 min.
They were told that no takeover could be requested during this
period. Indicators computed during this phase corresponded to
the physiological baseline of participants.

The second period served as a practice session for the
participants. During 5 min, they could familiarize with the
takeover process as well as with the driving functions of the
simulator (e.g., sensitivity of the steering wheel, gas and brake
pedal etc.). Before starting, the experimenter reminded the
subjects that they were driving a level 3 vehicle. The meaning
of icons showing the state of the autopilot on the dashboard
was explained to the driver (cf. Figure 3). For each TOR, the
simulation displayed a red icon on the dashboard and played an
audio chime in the speakers. The experimenter also explained
how the participants could take over control of the car, either
by steering the wheel, braking or pressing the upper-right button
placed on steering wheel. For the practice session, drivers were
told that three false alarms would be triggered to become familiar
with the process. After the three false alarms were triggered,
the experimenter made sure that participants understood the
process. Then, they had the chance to drive manually until the
end of the 5 min. This study does not include the analysis of data
during the practice drive.

The third period consisted of the main driving session that
lasted 20 min. The experimenter reminded the participants
to take over control of the car only in a situation that they
considered dangerous for themselves and the vehicle. They had to
react accordingly to six TORs. Each one was randomly triggered
between 1 min and a half and 4 min after the previous TOR.
The randomization of time between takeover was implemented
to avoid an expectation effect. Once participants gained control
over the critical situation and considered it as safe again, they
were instructed to reengage the autopilot. To do that, they had
to position the car in the center of the right lane and press a
button on the steering wheel. In addition, half of the participants
had to perform the speech-based cognitive secondary task while
the car was driving. At the end of the session, participants
were asked to stop the car and leave the simulator. The
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experimenter removed electrodes and the participants could fill
in the last part of the questionnaire. Then, they were thanked
and discharged.

4.1.5. Pilot Study
Eight people took part in the pilot study. The purpose was to
check that all the data were correctly recorded (physiological
signals and driving data) and that the driving scenario was
running flawlessly. Shadows on the lane due to the reflection of
sunlight on trees were removed from the driving environment.
Indeed, obstacles were not triggered at the same location for
all participants to minimize the impact of the visibility of
drivers during the takeover situations. Also, the original design
contained a third experimental condition. This condition was to
count backwards by step of 13 to induce a higher cognitive load.
However, we realized that it was too demanding to perform this
task for 20 min.

4.1.6. Statistical Analysis
The analyses were performed using IBM SPSS Statistics 25.
By examining the audio files recorded during the execution of
the NDRT, we found that the calculation task was performed
correctly and accurately. Four participants made some errors
during the NDRT. Three of themmade amistake in the transition
from 3,001 to 2,999, starting again from 3,999. The fourth
participant obtained an even score at the end. However, they
were not removed from the analysis because they kept counting,
which was the most important for the inducement of MWL.
For the subjective ratings of the NASA-TLX, nine participants
were removed due to due to issues with the online questionnaire.
To test for the difference of MWL between the control group
and the treatment group, analyses of variances (ANOVAs) were
calculated for each questionnaire item and the global score of
MWL. Cohen’s effect size is reported when the ANOVA showed
a significant result.

4.2. Classification Method
This section describes the methodology used to classify drivers’
condition (secondary task vs. no secondary task) based on the
recorded physiological signals. A first goal was to investigate
the effect of sensor fusion on classification accuracy. The
classification was performed for each signal independently
(ECG, EDA, RESP), each possible pair of signals and all
signals combined. A second goal was to observe the effect of
segmentation level. In other words, the main driving session
was segmented into windows of different size that were used to
compute features. Six segmentation levels were tested : 1, 2, 5,
10, 20, and 40. With a segmentation level of 1, the features were
computed from one 20-min window, whereas a segmentation
level of 40 consisted of 40 30-s windows for computing features.
The higher the segmentation level was, the more training
examples the algorithm had for training. This process aimed at
investigating the shortest time required to record physiological
parameters to classify accurately the MWL of drivers. Overall,
this work will help to find the best trade-off between the number
and type of physiological signals needed, the optimal time-span
for recording physiological data and the performance of a model

to classify the level of MWL workload, with the ultimate goal
of implementing such model in future automated vehicles under
real-world conditions.

4.2.1. Data Preprocessing
The preprocessing of raw physiological data was automated using
the Neurokit library in Python (Makowski et al., 2021). Neurokit
is a module that provides high-level integrative functions to
process and exploit bio-signals. Signals from the baseline and
driving phases were processed separately. The result of the
processing step resulted in the computation of physiological
indicators. To summarize the indicators computed in this study,
a definition of each indicator calculated from physiological raw
signals is proposed in Table 2.

The EDA signal was processed using methods of convex
optimization (Greco et al., 2016), which defines EDA as the sum
of three terms: the phasic component, the tonic component,
and an additive white Gaussian noise term incorporating
model prediction errors as well as measurement errors and
artifacts. To be able to process the EDA signal with the convex
optimization method, it had been down-sampled to 50 Hz to
reduce computation time. The signal had also been filtered with
a Finite Impulse Response low-pass filter of fourth order with a
cut-off frequency of 5 Hz and smoothed using the convolution of
a filter kernel with the input signal (Smith, 1999). That smoothing
process used the moving average principle, with a window size
of three-quarters the sampling rate. The output was the EDA
raw signal, the filtered signal, the tonic component, the phasic
component, the SCR onsets, peak indexes and amplitudes. Based
on the related work, we chose to use the filtered signal, the tonic
component and indicators that characterize NS-SCRs because
we evaluate changes in drivers’ state over a long period. Hence,
EDA indicators including the minimum, maximum, standard
deviation and mean values of filtered and tonic EDA signals were
computed in this study, in addition to the frequency and the
mean amplitude of NS-SCRs.

The ECG signal was filtered with a Finite Impulse Response
band-pass filter of fourth-order with cut-off frequencies of 3
and 45 Hz. A QRS-detector algorithm was used to locate R-
peaks from the ECG signal (Hamilton, 2002). The output was
the ECG raw signal, the filtered signal and the R-peaks indexes.
From that, HR and HRV indicators were computed. HRV
indicators included time domain, frequency domain and non-
linear domain indicators.

The respiration signal was filtered with a Butterworth
band-pass filter of second-order with cut-off frequencies of
0.1 and 0.35 Hz and smoothed with the same process
than EDA and a rectangular window size (also known as
Dirichlet window) of 3 s (Smith, 1999). The output was the
respiration raw signal, the filtered signal, the respiratory cycles
onsets, and respiratory phases (inspirations and expirations).
From that, indicators of rate and variability of respiration
were computed.

Also, from both respiration and ECG signal, RSA features
were computed using the peak-to-trough (P2T) and Porges–
Bohrer methods. The P2T algorithm computes all RSA estimates
in a given period. For each breath, an estimate of RSA is
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TABLE 2 | Summary of physiological indicators computed from raw physiological signals.

Signal Indicator Domain Description

EDA

Mean raw level The mean value of filtered EDA signal

Min raw value The minimum value of filtered EDA signal

Max raw value The maximum value of filtered EDA signal

Std raw value The standard deviation of filtered EDA signal

Mean tonic level The mean value of tonic EDA signal

Max tonic value The minimum value of tonic EDA signal

Min tonic value The maximum value of tonic EDA signal

Std tonic value The standard deviation of tonic EDA signal

Amp. NS-SCRs The mean amplitude of NS-SCRs (computed from phasic EDA signal)

Freq. NS-SCRs The number of NS-SCRs per minute (computed from phasic EDA signal)

ECG/RESP

Mean Rate

Time

The mean number of cardiac cycles per minute

Mean The mean time of IBIs/BBs

Median The median of the absolute values of the successive differences between adjacent IBIs/BBs

MAD The mean absolute deviation of IBIs/BBs

SD The standard deviation of IBIs/BBs

SDSD The standard deviation of the successive differences between adjacent IBIs/BBs

CV The Coefficient of Variation, i.e., the ratio of SD divided by Mean

mCV Median-based Coefficient of Variation, i.e., the ratio of MAD divided by Median

RMSSD The square root of the mean of the sum of successive differences between adjacent IBIs/BBs

CVSD The coefficient of variation of successive differences; the RMSSD divided by Mean

LF

Frequency

The spectral power density pertaining to low frequency band (0.04 to 0.15 Hz)

HF The spectral power density pertaining to high frequency band (0.15 to 0.4 Hz)

LF/HF The ratio of low frequency power to high frequency power

SD1

Non-linear

Measure of the spread of IBIs/BBs on the Poincaré plot perpendicular to the line of identity

SD2 Measure of the spread of RR intervals on the Poincaré plot along the line of identity

SD2/SD1 Ratio between long and short term fluctuations of IBIs (SD2 divided by SD1)

ECG

pNN50

Time

The proportion of successive IBIs greater than 50 ms, out of the total number of IBIs

pNN20 The proportion of successive IBIs greater than 20 ms, out of the total number of IBIs

TINN The baseline width of IBIs distribution obtained by triangular interpolation

HTI The HRV triangular index (total number of IBIs divided by the height of IBIs histogram)

VHF

Frequency

Variability, or signal power, in very high frequency (0.4–0.5 Hz)

LFn The normalized low frequency, obtained by dividing the low frequency power by the total power

HFn The normalized high frequency, obtained by dividing the low frequency power by the total power

LnHF The log transformed HF

CSI

Non-linear

The Cardiac Sympathetic Index (longitudinal variability of Poincaré plot divided by transverse variability)

CVI The Cardiac Vagal Index (logarithm of the product of longitudinal and transverse variability)

CSI_modified The modified CSI (the square of the longitudinal variability divided by transverse variability)

RESP

Mean amplitude Time The mean respiratory amplitude

ApEn
Non-linear

The approximate entropy of RRV

DFA2 A long-term fluctuation value. Only be computed if mora than 640 breath cycles in the signal

RSA

Mean Mean of RSA estimates

Mean Log The logarithm of the mean of RSA estimates

SD The standard deviation of all RSA estimates

NoRSA The number of breath cycles from which RSA could not be calculated

RSA_PB The Porges–Bohrer estimate of RSA, optimal when the signal to noise ratio is low, in ln(ms^2)

Identical indicators computed from both ECG and respiration (RESP) signal are grouped together. IBIs refers to interbeat intervals (ECG) and BBs refers to breath-to-breath cycles

(RESP).
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calculated by subtracting the shortest heart period during
inspiration from the longest heart period during a breath cycle
(Lewis et al., 2012). RSA features included the mean, the
standard deviation and the logarithm of the P2T estimates (in
milliseconds), in addition to a measure computed with the
Porges–Bohrer method, as explained in Lewis et al. (2012).

4.2.2. Feature Generation and Normalization
The same feature engineering process was applied to data of
all participants, regardless of their experimental condition. Each
indicator presented above was calculated for each segment of
the driving phase. It was taken as a feature for the classification.
For each indicator, an additional feature was computed,
corresponding to the difference of that indicator between the
driving segment and the baseline. That feature engineering
process aimed at taking into account the physiological state of
participants at rest and evaluate the individual changes on each
indicator during the driving session (Darzi et al., 2018). In this
way, the model performance should be higher for a between-
participant validation procedure, since the ultimate goal is to
build a model that would performwell with any subject inside the
car. In total, the three raw physiological signals served to compute
122 features corresponding to 61 physiological indicators (10
from EDA, 27 from ECG, 19 from RESP, five from RSA). For
classifiers sensitive to the range of features, data were normalized
using the maximum and minimum of each feature during a
driving segment. The minimum value was subtracted to the
feature value and then divided by the difference between the
maximum and minimum values.

4.2.3. Feature Selection
Statistical analysis techniques are usually employed to check for
the effect of a between-subjects factor on dependant variables.
Therefore, we chose to do an ANOVA on each one of the
122 features independently. Only the physiological features that
reached the significance level (p-value lower than 0.05) were
used for classification. The number of features was not the
same depending on the segmentation level and the physiological
signals used for the classification task.

4.2.4. Selected Algorithms
At this step of the procedure, the dataset consisted of some
selected features that were used as input of classifiers for
the training and validation procedure. Three algorithms were
selected based on results from previous research in the field
(Son et al., 2013; Solovey et al., 2014; Darzi et al., 2018) and
for their ease of implementation. They have been implemented
in Python using the scikit learn machine-learning framework
(Pedregosa et al., 2011). The effect of selected physiological
signals and segmentation level was tested with each classifier.
Their classification principle is detailed below:

Random Forest Classifier (RF): A random forest is a meta
estimator that fits some decision tree classifiers on various
sub-samples of the dataset and use averaging to improve the
predictive accuracy and control over-fitting (Breiman, 2001).

C-Support Vector Classifier (SVC): The support vector
classifier uses boundaries (linear or more complex) to separate

data in the input feature space. The separation boundary is
defined by a kernel. In this experiment, we tested four different
kernels: the linear, the sigmoid and the polynomial ones, as well
as the radial basis function (Hsu et al., 2010).

Multi-Layer Perceptron Classifier (MLP): A multi-layer
perceptron consists of a set of nodes distributed in a number of
layers. It contains at least three layers of nodes: an input layer, a
hidden layer and an output layer. Except for the input nodes, each
node is a neuron that uses a non-linear activation function. The
multi-layer perceptron utilizes backpropagation as a supervised
learning technique for training (Hastie et al., 2009). Here, we use
the multi-layer perceptron as a classifier, meaning that the output
layer contains only two nodes that output the probability that the
driver was performing a secondary task or not, based on input
features. The classifier contained one hidden layer and we only
tested to change the number of neurons in that hidden layer.

4.2.5. Optimization and Validation
To maximize the performance of classifiers, an optimization of
hyperparameters of the three selected classifiers was done. The
hyperparameter search aims to find the set of hyperparameters
that minimizes the loss and maximizes the classification accuracy
(Claesen and De Moor, 2015). The grid search technique was
chosen to search for the best set of hyperparameters. It consists
of predefining a range of values to test for each hyperparameter.
The classifier tests all possible combinations of parameters for
training and validation procedures. A first iteration of that
grid search technique (GridSearch1) was performed with a
wide range of values. The goal was to eliminate values of
hyperparameters for which the model does not perform well
and hence reduce this range for the final optimization during
the validation procedure. It was done on the entire dataset
which was split into a training set (75% of samples) and a
validation set (25% of samples). The hyperparameters that have
been tested during this first optimization procedure can be found
in Table 3. The definition and the chosen range of values for
each parameter are presented. This first procedure was done for
each level of segmentation and the feature selection process was
also applied. The second hyperparameter optimization process
was done during the final validation procedure. It used a
reduced range of values defined after the first optimization.
The k-fold cross-validation method was select to validate the
performance of classifiers and prevent classifiers from overfitting
the data (Hastie et al., 2009). In this procedure, the dataset
was split into 10-folds. Classifiers were trained using data from
9 subsets and then validated on the remaining subset. The
validation was repeated 10 times, with each subset acting as
the validation subset once. The second step of optimization
with a refined range of parameters (GridSearch2) was performed
within the final validation pipeline. The 10-fold validation
procedure was performed once for each set of hyperparameters.
Graphs and tables report results for the set of hyperparameters
that gave the best mean accuracy for the classification overall
10 subsets.
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TABLE 3 | Tweaked hyperparameters during the first iteration of the grid search procedure (GridSearch1 ), with chosen ranges and step values for each parameter.

Classifier Parameter name Parameter definition Range

RF

n_estimators Number of trees in the forest. [10, 507, 1,005, 2,000]

max_features Number of features to consider when looking for the best split. Sqrt

max_depth Maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure

or until all leaves contain less than 2 samples.

[None, 10, 57, 105, 152, 200]

SVC

kernel Specifies the kernel type to be used in the algorithm [linear, RBF]

C Regularization parameter. [2e-3, 2e-1, 2e1, 2e7, 2e9, 2e11]

gamma Kernel coefficient for RBF kernel. [2e-13, 2e-9] by step of 10

MLP

solver Solver used for weight optimization. [lbfgs, adam]

max_iterations Maximum number of iterations.

Solver iterates until convergence or number of iterations.

[500, 1,500]

alpha L2 penalty (regularization term) parameter. [1e-4, 1] by step of 10

hidden_layer_sizes The number of neurons in the hidden layer. [32, 64, 128, 256, 512]

random state Determines random number generation for weights and bias initialization. [0, 42]

RBF refers to Radial Basis Function.

5. RESULTS

5.1. Statistical Validation of MWL
Inducement
5.1.1. Engagement on Task
The indicator used to check for the engagement on task was the
frequency of orally spoken numbers. The participants counted
backward, on average, to the number 2,740 (M = 2740.03, SD =

311.28), making an average of 452 (M = 452.49, SD = 155.64)
calculations throughout the driving session. It is equivalent to
22.6 numbers orally spoken per minute, e.g., approximately one
number every 3 s. During the experiment, the experimenters
asked participants to resume counting on average twice (M =

2.00, SD= 1.77).

5.1.2. Subjective Ratings (NASA-TLX)
To control the success of the MWL manipulation, subjective
ratings of workload collected from the NASA-TLX questionnaire
were used. Results indicate higher level of reported MWL for
the group that performed the secondary task (M = 4.64, SD =

0.90) compared to the control group (M = 3.90, SD = 1.42;
F(1, 79) = 7.77, p < 0.05, d = 0.63), regarding the global score
of the NASA-TLX. The difference was also significant between
both groups for mental demand (F(1, 79) = 59.85, p < 0.001,
d = 1.73), performance (F(1, 79) = 9.07, p < 0.05, d = 0.67)
and frustration (F(1, 79) = 6.83, p < 0.05, d = 0.58). Means and
standard deviations for all components of the questionnaire are
shown in Figure 4.

5.2. Classification of Drivers’ Workload
5.2.1. Reduction of Hyperparameter Range
The first iteration of the grid search (GridSearch1) gave insights
about the influence of hyperparameter values on the performance
of the model. The RF classifier obtained the poorest results
with 2,000 estimators and a maximum depth of 200. For the
final pipeline, we reduced the range for these two parameters.

The SVC classifier performed best across all segmentation levels
with the linear kernel and C-values of 2e-1, 2e1, and 2e7.
Therefore, we chose to only use the linear kernel and refine
the final range of C-values. For some segmentation levels, the
MLP classifier did not converge to achieve the best score after
1,500 iterations. Therefore, it was set to 2,000 for the final
pipeline. The lbfgs solver (which stands for Limited-memory
Broyden–Fletcher–Goldfarb–Shanno) was selected for the final
optimization process because it gave better results more often
than the adam solver. The smallest alpha value (1e-4) did not
show satisfying results so it was excluded from the final range
of values. The number of neurons in the hidden layer did not
have much influence (except for 512 neurons). Therefore, a
similar range of values was chosen. Finally, the random state was
set at 42 for challenging the model with random initialization
of weights and biases during the final procedure. The chosen
range and step values for each hyperparameter tested during the
final optimization procedure (GridSearch2) are summarized in
Table 4.

5.2.2. Influence of the Number of Selected

Physiological Signals
Figure 5 shows the means and standard deviations of the
classification accuracy using the 10-fold validation procedure.
Results are reported for each classifier depending on the type and
the number of chosen physiological signals, with a segmentation
level of 1. For each combination of selected signals, Table 5
shows the best mean accuracy (and standard deviation) and the
classifier which performed best to classify drivers’ condition over
the 10-folds. Using only EDA as the input signal, the model
showed the lowest performance, achieving between 69 and 73%
accuracy regardless of the classifier. The model with ECG alone
achieved 82–89% accuracy. With only one physiological signal as
the input of classifiers, the respiration achieved the best results
with an accuracy close to 90% on average over the 10-folds.
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FIGURE 4 | Subjective ratings of MWL collected from the NASA-TLX questionnaire. Low value means high performance for the Performance item.

TABLE 4 | Final range of values tested for each hyperparameter (GridSearch2 ).

Classifier Parameter name Range

RF

n_estimators [10, 257, 505, 752, 1,000]

max_features sqrt

max_depth [None, 10, 40, 70, 100]

SVC
kernel linear

C [2e-3, 2e7] by step of 10

MLP

solver lbfgs

max_iterations 2,000

alpha [1e-3, 1] by step of 10

hidden_layer_sizes [32, 64, 128, 256]

random state 42

With two signals as the input of classifiers, the combination of
EDA and ECG features showed the lowest accuracy, between 82
and 89% accuracy. The combination of EDA and respiration as
input signals gave 87–89% accuracy. The best combination of
two signals was respiration and ECG, achieving 92–94% accuracy
depending on the selected classifier. Finally, the combination of
the three signals resulted in accuracy between 91 and 92% for
classifying drivers’ condition.

5.2.3. Influence of the Segmentation Level
For each classifier and each segmentation level from 1 to 40,
Figure 6 shows the means and standard deviations achieved by
the model after the classification task. The results are reported
only for selected signals that achieved accuracy over 85% with a
segmentation level of 1 with at least two classifiers. It includes the
respiration alone, both pairs of EDA with respiration and ECG
with respiration, and the fusion of the three signals. Best results
for each level of segmentation are summarized in Table 6. The

classifier and the combination of signals that gave the best results
are also reported.

6. DISCUSSION

6.1. Manipulation of Workload
Regarding the results from the experimental manipulation,
measures of task performance showed that participants were
sufficiently involved in the NDRT they were asked to perform.
Indeed, they counted orally with a rate of one number every 3 s
on average. Subjective ratings of MWL showed that participants
in the NDRT condition reported a significantly higher level of
MWL than participants in the control group. Mental demand
was the component that showed the largest effect size. Results
from task performance and subjective ratings indicate that the
manipulation of MWL of participants was successful. We can
hence consider that performing such speech-based NDRT for
20 min in conditionally automated driving is increasing the
MWL of drivers. From that, the effect of a higher level of MWL
on the collected physiological data of drivers can be analyzed.
A procedure using machine learning techniques for classifying
drivers’ MWL was used and an interpretation of results is
proposed below.

6.2. Interpretation of Results Depending on
the Selected Signals
The results are first interpreted for the effect of selected
physiological signals on classification performance. Features
were computed with a segmentation level of 1, meaning
that physiological indicators were calculated from the entire
driving period (20 min). With only one physiological signal
selected as an input of the model, results showed that the
model was performing poorest when the only EDA signal
was selected. Using ECG alone, the model performed best,
achieving an accuracy of 89% with the RF classifier. However,
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FIGURE 5 | Classification accuracy as a function of selected physiological signals and classifier.

TABLE 5 | Best score for each combination of selected signals (with a

segmentation level of 1).

Selected signal Best classifier Best accuracy [Mean (SD)]

EDA RF 0.73 (0.15)

ECG RF 0.89 (0.09)

RESP RF 0.88 (0.15)

EDA + ECG RF 0.89 (0.09)

EDA + RESP RF 0.89 (0.13)

ECG + RESP MLP 0.94 (0.06)

EDA + ECG + RESP SVC/MLP 0.92 (0.09)

Bold values show the best score achieved by the model.

from the three physiological signals alone, the model showed
more consistent results across classifiers with the respiration
signal selected alone as input. Indeed, each of the three
classifiers achieved 87–88% of accuracy, but with higher variance
compared to ECG. We can consider that both features computed
independently from the respiration and ECG signals are useful
to distinguish the driver conditions (verbal secondary task vs. no
secondary task).

If we now look at the effect of sensor fusion on classification
results, the fusion of EDA and ECG did not give better results
than the ones achieved with ECG alone. In the same way,
the fusion of EDA and respiration signals was not better than
respiration alone. In previous studies, EDA indicators such as
mean skin conductance level were shown to be sensitive to an
increase of MWL (Engström et al., 2005; Mehler et al., 2009).
Similar indicators were computed in this work such asmean tonic
and raw level of EDA. Additional indicators relating the long-
term changes of driver’s state such as the frequency of NS-SCRs
were supposed to improve the accuracy of the system. Results

suggest that EDA features were the least useful ones to classify
drivers’ condition, as found by Haapalainen et al. (2010) and
Son et al. (2013). Nevertheless, the model can achieve 73% with
EDA features, which confirms that drivers’ skin conductance is
affected by the performance of a secondary task involving a verbal
function (Engström et al., 2005; Collet et al., 2009; Mehler et al.,
2009).

However, the model benefited from the fusion of two sensors
without EDA. Indeed, the fusion of respiration and ECG signals
showed to increase the accuracy of the system compared to
the respiration or ECG alone, achieving accuracy levels of over
90% using all classifiers. This is consistent with statements made
above, confirming that the ECG and respiration features are
useful for classification. Also, the variance of scores obtained
over the 10-folds was lower. This suggests that the performance
of classifiers varied less from one-fold to the other during the
classification task, making the model more robust. Besides, the
fusion of the three signals as inputs of the model performed
similarly (or slightly worse) than the one of respiration and ECG.
The variance and accuracy achieved were also similar regardless
of the classifier. Overall, the fusion of ECG and respiration
showed to achieve the best performance to specify the drivers’
condition, with an accuracy of 94% and a standard deviation
of 0.06 across the 10-folds with the MLP classifier (Table 5). It
is probably due to the additional respiratory sinus arrhythmia
features that were computed during the processing of ECG and
respiration signals. These features were taken into account in
the classification procedure and might have helped the model
to capture more information about the change of phase between
ECG and respiration signals during the execution of the task.

If we compare the results to reviewed studies reported in
Table 1, the accuracy achieved in this study is better, using
only physiological features for the classification. Still, results
must be compared carefully since the experimental settings
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FIGURE 6 | Classification accuracy as a function of the segmentation level and classifier.

TABLE 6 | Best score for each segmentation level, with corresponding signals

and classifier.

Segmentation

level

Best selection of signals Best

classifier

Best accuracy

[Mean (SD)]

1 ECG + RESP MLP 0.94 (0.06)

2 ECG + RESP SVC 0.95 (0.07)

5 EDA + RESP RF 0.95 (0.05)

10 ECG+RESP/EDA+ECG+RESP SVC 0.90 (0.05)

20 ECG+RESP/EDA+ECG+RESP RF 0.89 (0.04)

40 ECG+RESP/EDA+ECG+RESP RF 0.84 (0.05)

Bold values show the best score achieved by the model.

varied from one study to another: the driving environment,
the task to complete or the classification procedure. The tasks
performed by participants in previous studies were either visual
or auditory. The only study in which the task was similar to the
task administered in our experiment is the one led by Solovey
et al. (2014). Participants had to perform the auditory n-back
task and answer verbally to targets. Overall, if we compare
our results with those of the latter study based on accuracy
measurement, a better accuracy was achieved in this work,
probably because the features were calculated over a 20-min
time window.

6.3. Interpretation of Results for the Effect
of Segmentation Level
In this study, the effect of segmentation on the performance of
themodel was also investigated. For each driver, the physiological
signals collected during the driving session were split into several
parts (from 1 to 40) and physiological indicators were computed
for each segment. Regardless of the classifier and the chosen
physiological signals, increasing the segmentation level from 1 to
5 showed to increase the accuracy of the model. Especially for
respiration alone and respiration with EDA signals, the model
gained around 10% of accuracy, as shown on Figure 6. For these
signals that gave a lower accuracy with a segmentation level of 1,
the model benefited from sensor fusion. The features computed
on 4-min time windows (segmentation of 5) were more accurate
to depict the condition of drivers. For segmentation levels of
5–40, increasing the segmentation level showed to decrease the
accuracy, regardless of the selected signals. Even if the model

had more training example for the classification task, it was more
difficult to predict the driver’s condition when the features were
computed on time windows shorter than 4 min. However, even
with 30-s time windows, the model was still able to achieve
84% accuracy with both ECG and respiration and the three
signals (Table 6). For small time windows, Solovey et al. (2014)
also found that enlarging the time window used for computing
features (e.g., decreasing the segmentation level) increases the
accuracy of the model. Again, if we compare our results with
those of the latter study based on accuracy measurement, a lower
accuracy was obtained in our study over 30-s time windows
(84 vs. 90%). However, they used sliding windows to compute
features so their model probably had more training data than our
model to maximize its performance. Finally, another interesting
result is that increasing the segmentation level showed to reduce
the variance for some pairs of signals (error bars on Figure 6).
This would suggest that the model could be more robust if a
reduced time window is used for evaluating driver’s state.

6.4. Selection of Best Trade-Off Between
Performance and Number of Physiological
Signals
For an implementation of a model able to classify drivers’ MWL
in future automated cars, the goal is to select the best trade-
off between the length of the time window used to compute
features from the physiological signals and the performance of
the system. Based on results obtained in this study, we would
select a time window of 4 min to compute features since that
segmentation level gave the best accuracy with low variance. For
the selection of signals, three options would be possible based on
results obtained in this work. The first option would be to choose
only the respiration alone as input signal. It would facilitate the
implementation of suchmodel under real-world conditions since
only one sensor would be necessary to detect driver’s MWL with
a high accuracy (over 90%). The respiration could be measured
either using non-contact respiratory monitoring methods (Min
et al., 2010; Al-Khalidi et al., 2011) or contact-based methods
using a piezoelectric sensor mounted in the seat belt. The second
option would be to select the three signals, because it showed the
lowest variance over the 10-folds, meaning that the prediction in
real-time of driver’s condition would be more reliable from one
time to the next. If EDA and ECG would be selected as inputs
signals in addition of RESP, both signals could be collected from
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an intelligent watch or from sensors integrated in smart garments
(Sonderegger, 2013; Schneegass et al., 2015). The third option
would be to use EDA and respiration signals, that showed the
highest performance (high accuracy and low variance) in the
present study. In practice, recent advances in technology allow
for a continuous recording of the EDA and ECG signals. EDA
can be collected from wearable devices such as watches, but they
might not give measures as sensitive as the ones obtained with
the gold-standard sensors used in this experiment. This can be
explained by the lower sensitivity of the wrist tissue and the
lower density of eccrine glands in this area compared to the
volar surface of the hands (palms) or the foot (sole) (Taylor and
Machado-Moreira, 2013). Besides, watches are currently using
a plethysmograph sensor and do not provide fine-grained HRV
features. However, we must consider that advances in wearable
devices and smart clothes might give the possibility to collect
robustly and continuously ECG, EDA and respiration signals
in a near future. Technologies such as built-in sensors in the
seat, radars or intelligent clothes with electrodes such as socks
or chest strap are conceivable. Since, we cannot predict the
pace of development of new technologies in the field of smart
sensors and garments, we make here a proposition based on
the empirical results of this work, taking into account the three
physiological signals. Therefore, based on results obtained in
this experimental study it can be argued that the combination
of EDA and respiration signals with a time window of 4 min
should be selected for an optimal prediction of orally induced
MWL in conditionally automated driving. In previous studies,
physiological indicators showed a great potential to detect an
increase of driver’s MWL due to the performance of a secondary
task while driving manually. This study showed that it is also
possible to use such indicators for distinguishing two different
levels of driver’s MWL at a higher level of automation. Previous
findings on MWL evaluation can hence be considered in the
specific context of automated driving (Level 3 or more according
to the SAE taxonomy; SAE, 2018). Therefore, physiological
sensors could be worn by drivers so that the car could evaluate
their state continuously in conditionally automated driving. This
evaluation of driver’s state could be used by the car along with
the evaluation of the driving situation to provide an optimal
support to the driver through in-car interfaces. However, the
successful implementation and acceptance of such algorithm
depends on people’s willingness to wear such sensors in the car.
However, although highly interesting and challenging for the
future development of the car industry, this is a different topic
and not the subject of this paper.

6.5. Limitations and Further Research
There are several limitations that need to be discussed. A first
limitation is that the verbal task might have influenced the
respiratory pattern of subjects and therefore influenced our
physiological indicators (Cacioppo et al., 2007). Therefore, based
on the present findings, we can only state that a higher level
of MWL induced by a continuous verbal task can be accurately
detected in the context of conditionally automated driving.
Future research needs to be conducted to investigate to what
extent similar results could be obtained in situations of high

MWL induced by a task that does not require the participants
to speak. In addition, only a subset of all available features
were used for the classification task. However, some features
that were excluded could have been useful for the classification
because of their correlation with other features. Therefore,
different strategies for feature selection should be explored. Also,
similar experiments should be conducted to collect physiological
data from drivers performing cognitive tasks that involve other
modalities. The visual and/or auditory n-back task (without
verbal answer) could be used to manipulate the MWL of drivers,
as done in previous studies (Mehler et al., 2009; Son et al.,
2013; Hogervorst et al., 2014; Solovey et al., 2014). Therefore, the
model developed as part of this study needs to be evaluated using
other NDRTs.

Another stake for the emergence of driver’s state systems
under real conditions is to be able to evaluate MWL in real-time.
Since, Solovey et al. (2014) obtained an accuracy of around 90%
using sliding windows of 30 s, it would be interesting to test the
effect of sliding windows on our data to generate more training
examples and see if it increases the performance of the model.
Further studies should focus on evaluating MWL on shorter
epochs of cognitive task. The duration of the task performed
by drivers in this study was rather long (20 min). Even if the
segmentation of data was tested, it might have facilitated the
model to achieve good results. Another experiment should be
led with participants performing cognitive NDRTs on shorter
periods. In this way, it would be closer to reality because drivers
might not perform verbal task during 20 min. Based on the new
collected data, the same model will be tested to see if it still
performs well to predict the MWL level of drivers on shorter
periods. If the model’s performance decreases too much, the
model will need to be refined. To do that, we could consider using
model architectures that are efficient with temporal data such
as recurrent neural networks. The perceptron used in the MLP
classifier would be replaced by gated recurrent units or long-short
term memory cells (Hochreiter and Schmidhuber, 1997).

7. CONCLUSION

The main contribution was to use machine learning techniques
to specify drivers’ condition (verbal task or no task). Three
different classifiers along with sensor fusion and six levels of data
segmentation were compared. Results show that the model was
able to successfully classify the state of the driver with an accuracy
of 95% using physiological features from two signals, computed
from 4-min windows. The model benefited from sensors’ fusion
when the respiration and ECG were both selected as input
signals. We also showed that increasing the segmentation level
from 1 to 5 increased the performance of the classifiers, but
increasing the segmentation level from 5 to 40 decreased the
performance. For the concrete implementation of such a model
under real driving conditions, a fusion of EDA and respiration
signals with a time window of 4 min should be considered to
compute physiological features in order to classify drivers’ MWL
in conditionally automated driving.

Frontiers in Psychology | www.frontiersin.org 16 February 2021 | Volume 12 | Article 596038120

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Meteier et al. Classification of Drivers’ Workload

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because the dataset is saved in a repository and used
only in the context of the AdVitam project. Requests to
access the datasets should be directed to Quentin Meteier,
quentin.meteier@hes-so.ch.

ETHICS STATEMENT

This study involving human participants was reviewed and
approved by Ethics Committee of the Department of Psychology
of the University of Fribourg. The participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

EM, AS, LA, MW and OA developed the research question. QM
and AS were responsible for study design and data collection.

QM, SR and MC developed machine learning algorithms and
conducted data analysis. QM and AS wrote the manuscript. QM
and AS designed the experimental procedure and collected the
data. QM and SR implemented the classification procedure. All
authors contributed to the writing and revision processes.

FUNDING

This work has been funded by Hasler Foundation (Switzerland).

ACKNOWLEDGMENTS

This work has been supported by Hasler Foundation in the
framework of the AdVitam project. The authors would like to
thank all the persons who contributed to this paper. Special
thanks are due to Christian Océane Minot, Laura Rege Colet,
Stanislav Riss and Christian Schoepfer, for their help in collecting
the data.

REFERENCES

Aasman, J., Mulder, G., and Mulder, L. J. M. (1987). Operator effort and

the measurement of heart-rate variability. Hum. Factors 29, 161–170.

doi: 10.1177/001872088702900204

Al-Khalidi, F. Q., Saatchi, R., Burke, D., Elphick, H., and Tan, S. (2011).

Respiration rate monitoringmethods: a review. Pediatr. Pulmonol. 46, 523–529.

doi: 10.1002/ppul.21416

Angelini, L., Khaled, O. A., Caon, M., Mugellini, E., and Lalanne, D. (2014).

“Hugginess: encouraging interpersonal touch through smart clothes,” in ISWC

’14 Adjunct (Seattle, WA). doi: 10.1145/2641248.2641356

Baek, H., Cho, C.-H., Cho, J., and Woo, J. (2015). Reliability of ultra-short-term

analysis as a surrogate of standard 5-min analysis of heart rate variability.

Telemed. J. e-Health 5, 404–414. doi: 10.1089/tmj.2014.0104

Bernston, G. G., Cacioppo, J. T., and Quigley, K. S. (1993). Respiratory

sinus arrhythmia: autonomic origins, physiological mechanisms,

and psychophysiological implications. Psychophysiology 30, 183–196.

doi: 10.1111/j.1469-8986.1993.tb01731.x

Boucsein, W. (2012). Electrodermal Activity. Springer US.

doi: 10.1007/978-1-4614-1126-0

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Brookhuis, K., Waard, D., and Samyn, N. (2004). Effects of mdma (ecstasy),

and multiple drugs use on (simulated) driving performance and traffic safety.

Psychopharmacology 173, 440–445. doi: 10.1007/s00213-003-1714-5

Brookhuis, K. A., and De Waard, D. (2001). “Assessment of drivers’ workload:

performance, subjective and physiological indices,” in Stress, Workload and

Fatigue, P. A. Hancock and P. A. Desmond (Lawrence Erlbaum Associates),

321–333. doi: 10.1201/b12791-2.5

Brookhuis, K. A., and de Waard, D. (2010). Monitoring drivers’ mental workload

in driving simulators using physiological measures. Accident Anal. Prevent. 42,

898–903. doi: 10.1016/j.aap.2009.06.001

Bulmer, M., De Vaus, D. A., and Fielding, N. (2004). Questionnaires. London;

Thousand Oaks, CA: Sage Publications.

Cacioppo, J. T., Tassinary, L. G., and Berntson, G. G. (Eds.) (2007).

Handbook of Psychophysiology, 3rd Edn. Cambridge University Press.

doi: 10.1017/CBO9780511546396

Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J.,

et al. (1996). Heart rate variability: standards of measurement, physiological

interpretation and clinical use. Task force of the European society of cardiology

and the north American society of pacing and electrophysiology. Circulation

93, 1043–1065.

Claesen, M., and De Moor, B. (2015). Hyperparameter search in machine learning.

arXiv preprint arXiv:1502.02127.

Collet, C., Clarion, A., Morel, M., Chapon, A., and Petit, C. (2009). Physiological

and behavioural changes associated to the management of secondary tasks

while driving. Appl. Ergon. 40, 1041–1046. doi: 10.1016/j.apergo.2009.01.007

Darzi, A., Gaweesh, S. M., Ahmed, M. M., and Novak, D. (2018). Identifying

the causes of drivers’ hazardous states using driver characteristics, vehicle

kinematics, and physiological measurements. Front. Neurosci. 12:568.

doi: 10.3389/fnins.2018.00568

De Waard, D. (1997). The measurement of drivers’ mental workload (Ph.D. thesis).

Traffic Research Centre, University of Groningen, Haren, Netherlands.

Engström, J., Johansson, E., and Östlund, J. (2005). Effects of visual and cognitive

load in real and simulated motorway driving. Transport. Res. F Traffic Psychol.

Behav. 8, 97–120. doi: 10.1016/j.trf.2005.04.012

Ferreira, E., Ferreira, D., Kim, S., Siirtola, P., Roning, J., Forlizzi, J. F., et al. (2014).

“Assessing real-time cognitive load based on psycho-physiological measures

for younger and older adults,” in 2014 IEEE Symposium on Computational

Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) (Orlando, FL:

IEEE), 39–48. doi: 10.1109/CCMB.2014.7020692

Fisk, A. D., Derrick,W. L., and Schneider,W. (1986). Amethodological assessment

and evaluation of dual-task paradigms. Curr. Psychol. Res. Rev. 5, 315–327.

doi: 10.1007/BF02686599

Gawron, V. J. (2019). Human Performance, Workload, and Situational

Awareness Measures Handbook. CRC Press. doi: 10.1201/97804290

19562

Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., and Citi, L. (2016). cvxEDA:

a convex optimization approach to electrodermal activity processing. IEEE

Trans. Biomed. Eng. 63, 797–804. doi: 10.1109/TBME.2015.2474131

Haapalainen, E., Kim, S., Forlizzi, J. F., and Dey, A. K. (2010). “Psycho-

physiological measures for assessing cognitive load,” in Proceedings of the

12th ACM International Conference on Ubiquitous Computing - Ubicomp ’10

(Copenhagen: ACM Press), 301. doi: 10.1145/1864349.1864395

Hamilton, P. (2002). “Open source ECG analysis,” in Computers in Cardiology

(Memphis, TN: IEEE), 101–104.

Hart, S. G., and Staveland, L. E. (1988). “Development of NASA-TLX (task

load index): results of empirical and theoretical research,” in Advances in

Psychology, Volume 52 of Human Mental Workload, eds P. A. Hancock and N.

Meshkati (Amsterdam: North Holland), 139–183. doi: 10.1016/S0166-4115(08)

62386-9

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2nd Edn. New York, NY:

Springer-Verlag.

Frontiers in Psychology | www.frontiersin.org 17 February 2021 | Volume 12 | Article 596038121

mailto:quentin.meteier@hes-so.ch
https://doi.org/10.1177/001872088702900204
https://doi.org/10.1002/ppul.21416
https://doi.org/10.1145/2641248.2641356
https://doi.org/10.1089/tmj.2014.0104
https://doi.org/10.1111/j.1469-8986.1993.tb01731.x
https://doi.org/10.1007/978-1-4614-1126-0
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s00213-003-1714-5
https://doi.org/10.1201/b12791-2.5
https://doi.org/10.1016/j.aap.2009.06.001
https://doi.org/10.1017/CBO9780511546396
https://doi.org/10.1016/j.apergo.2009.01.007
https://doi.org/10.3389/fnins.2018.00568
https://doi.org/10.1016/j.trf.2005.04.012
https://doi.org/10.1109/CCMB.2014.7020692
https://doi.org/10.1007/BF02686599
https://doi.org/10.1201/9780429019562
https://doi.org/10.1109/TBME.2015.2474131
https://doi.org/10.1145/1864349.1864395
https://doi.org/10.1016/S0166-4115(08)62386-9
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Meteier et al. Classification of Drivers’ Workload

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hogervorst, M. A., Brouwer, A.-M., and van Erp, J. B. F. (2014).

Combining and comparing EEG, peripheral physiology and eye-related

measures for the assessment of mental workload. Front. Neurosci. 8:322.

doi: 10.3389/fnins.2014.00322

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2010). A practical guide to support vector

classification. Technical report.

Huigen, E., Peper, A., and Grimbergen, C. A. (2002). Investigation into the

origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 40, 332–338.

doi: 10.1007/BF02344216

Ikehara, C., and Crosby, M. (2005). “Assessing cognitive load with physiological

sensors,” in Proceedings of the 38th Annual Hawaii International Conference on

System Sciences (Big Island, HI), 295a.

Kim, H., Kim,W., Kim, J., Lee, S.-J., and Yoon, D. (2019). “A study on the effects of

providing situation awareness information for the control authority transition

of automated vehicle,” in 2019 International Conference on Information and

Communication Technology Convergence (ICTC) (Jeju Island), 1394–1396.

doi: 10.1109/ICTC46691.2019.8939867

Krueger, E., Schneider, A., Sawyer, B. D., Chavaillaz, A., Sonderegger, A., Groner,

R., et al. (2019). Microsaccades distinguish looking from seeing. J. Eye

Movement Res. 12, 1–14. doi: 10.16910/jemr.12.6.2

Le, A. S., Aoki, H., Murase, F., and Ishida, K. (2018). A novel method

for classifying driver mental workload under naturalistic conditions with

information from near-infrared spectroscopy. Front. Hum. Neurosci. 12:431.

doi: 10.3389/fnhum.2018.00431

Lewis, G. F., Furman, S. A., McCool, M. F., and Porges, S. W. (2012). Statistical

strategies to quantify respiratory sinus arrhythmia: are commonly used metrics

equivalent? Biol. Psychol. 89, 349–364. doi: 10.1016/j.biopsycho.2011.11.009

Li, N., and Busso, C. (2013). “Analysis of facial features of drivers under cognitive

and visual distractions,” in 2013 IEEE International Conference on Multimedia

and Expo (ICME) (San Jose, CA: IEEE), 1–6. doi: 10.1109/ICME.2013.6607575

Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Lespinasse, F., Pham, H., et al.

(2021). Neurokit2: a python toolbox for neurophysiological signal processing.

Behav. Res. Methods. doi: 10.3758/s13428-020-01516-y

Malik, M., and Terrace, C. (1996). Heart rate variability. Standards of

measurement, physiological interpretation, and clinical use. Eur. Heart J. 17,

354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868

Mehler, B., Reimer, B., and Coughlin, J. (2012). Sensitivity of

physiological measures for detecting systematic variations in cognitive

demand from a working memory task. Hum. Factors 54, 396–412.

doi: 10.1177/0018720812442086

Mehler, B., Reimer, B., Coughlin, J., and Dusek, J. (2009). The impact of

incremental increases in cognitive workload on physiological arousal and

performance in young adult drivers. Transport. Res. Rec. 2138, 6–12.

doi: 10.3141/2138-02

Merat, N., Seppelt, B., Louw, T., Engstrom, J., Lee, J. D., Johansson, E., et al.

(2019). The “Out-of-the-Loop” concept in automated driving: proposed

definition, measures and implications. Cogn. Technol. Work 21, 87–98.

doi: 10.1007/s10111-018-0525-8

Min, S. D., Kim, J. K., Shin, H. S., Yun, Y. H., Lee, C. K., and Lee, M. (2010).

Noncontact respiration ratemeasurement system using an ultrasonic proximity

sensor. IEEE Sensors J. 10, 1732–1739. doi: 10.1109/JSEN.2010.2044239

Mulder, L. J. M. (1992). Measurement and analysis methods of heart rate

and respiration for use in applied environments. Biol. Psychol. 34, 205–236.

doi: 10.1016/0301-0511(92)90016-N

Nakajima, Y., and Tanaka, K. (2017). “Effects of active and passive secondary tasks

in a take-over situation during automated driving,” in 2017 IEEE International

Conference on Systems, Man, and Cybernetics (SMC) (Banff, AB), 1161–1166.

doi: 10.1109/SMC.2017.8122769

NHTSA (2017). Distracted Driving in Fatal Crashes (Traffic Safety Facts Research

Note. National Center for Statistics and Analysis.

Parasuraman, R., Sheridan, T., and Wickens, C. (2000). A model for types and

levels of human interaction with automation. IEEE Trans. Syst. Man Cybernet.

A Syst. Hum. 30, 286–297. doi: 10.1109/3468.844354

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830. doi: 10.5555/1953048.2078195

Petermeijer, S., Bazilinskyy, P., Bengler, K., and de Winter, J. (2017). Take-over

again: investigating multimodal and directional TORs to get the driver back

into the loop. Appl. Ergon. 62, 204–215. doi: 10.1016/j.apergo.2017.02.023

Pettitt, M., Burnett, G., and Stevens, A. (2005). “Defining driver distraction,”

in Intelligent Transportation Society of America - 12th World Congress on

Intelligent Transport Systems (San Francisco, CA), 5.

SAE. (2018). Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles.

Salahuddin, L., Cho, J., Jeong,M. G., and Kim, D. (2007). “Ultra short term analysis

of heart rate variability for monitoring mental stress in mobile settings,” in 2007

29th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (Lyon), 4656–4659. doi: 10.1109/IEMBS.2007.4353378

Schlegel, R. E. (1993). Chapter 17/21, Driver mental workload. Automot. Ergon.

359–382.

Schneegass, S., Hassib, M., Zhou, B., Cheng, J., Seoane, F., Amft, O., et al. (2015).

“Simpleskin: towards multipurpose smart garments,” in Adjunct Proceedings

of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous

Computing and Proceedings of the 2015 ACM International Symposium on

Wearable Computers, UbiComp/ISWC’15 Adjunct (New York, NY: Association

for Computing Machinery), 241–244. doi: 10.1145/2800835.2800935

Shaffer, F., and Ginsberg, J. (2017). An overview of heart rate variability metrics

and norms. Front. Public Health 5:258. doi: 10.3389/fpubh.2017.00258

Siegenthaler, E., Costela, F. M., McCamy, M. B., Di Stasi, L. L., Otero-

Millan, J., Sonderegger, A., et al. (2014). Task difficulty in mental arithmetic

affects microsaccadic rates and magnitudes. Eur. J. Neurosci. 39, 287–294.

doi: 10.1111/ejn.12395

Smith, S. W. (1999). The Scientist and Engineer’s Guide to Digital Signal Processing.

California Technical Pub., San Diego, CA.

Solovey, E. T., Zec, M., Garcia Perez, E. A., Reimer, B., and Mehler, B. (2014).

“Classifying driver workload using physiological and driving performance data:

two field studies,” in Proceedings of the 32nd Annual ACM Conference on

Human Factors in Computing Systems - CHI ’14 (Toronto, ON: ACM Press),

4057–4066. doi: 10.1145/2556288.2557068

Son, J., Oh, H., and Park, M. (2013). Identification of driver cognitive workload

using support vector machines with driving performance, physiology and eye

movement in a driving simulator. Int. J. Precis. Eng.Manufactur. 14, 1321–1327.

doi: 10.1007/s12541-013-0179-7

Sonderegger, A. (2013). “Smart garments-the issue of usability and

aesthetics,” in Proceedings of the 2013 ACM Conference on Pervasive

and Ubiquitous Computing Adjunct Publication, UbiComp ’13 Adjunct

(New York, NY: Association for Computing Machinery), 385–392.

doi: 10.1145/2494091.2495969

Taylor, N., andMachado-Moreira, C. (2013). Regional variations in transepidermal

water loss, eccrine sweat gland density, sweat secretion rates and electrolyte

composition in resting and exercising humans. Extreme Physiol. Med. 2:4.

doi: 10.1186/2046-7648-2-4

Wandtner, B., Schomig, N., and Schmidt, G. (2018). Effects of non-driving related

task modalities on takeover performance in highly automated driving. Hum.

Factors 60, 870–881. doi: 10.1177/0018720818768199

Wickens, C. D. (2008). Multiple resources and mental workload. Hum. Factors 50,

449–455. doi: 10.1518/001872008X288394

Young, M. S., Brookhuis, K. A., Wickens, C. D., and Hancock, P. A. (2015).

State of science: mental workload in ergonomics. Ergonomics 58, 1–17.

doi: 10.1080/00140139.2014.956151

Zijlstra, F., and Doorn, L. (1985). The Construction of a Scale to Measure Perceived

Effort. Department of Philosophy and Social Sciences.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Meteier, Capallera, Ruffieux, Angelini, Abou Khaled, Mugellini,

Widmer and Sonderegger. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 18 February 2021 | Volume 12 | Article 596038122

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3389/fnins.2014.00322
https://doi.org/10.1007/BF02344216
https://doi.org/10.1109/ICTC46691.2019.8939867
https://doi.org/10.16910/jemr.12.6.2
https://doi.org/10.3389/fnhum.2018.00431
https://doi.org/10.1016/j.biopsycho.2011.11.009
https://doi.org/10.1109/ICME.2013.6607575
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1177/0018720812442086
https://doi.org/10.3141/2138-02
https://doi.org/10.1007/s10111-018-0525-8
https://doi.org/10.1109/JSEN.2010.2044239
https://doi.org/10.1016/0301-0511(92)90016-N
https://doi.org/10.1109/SMC.2017.8122769
https://doi.org/10.1109/3468.844354
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/j.apergo.2017.02.023
https://doi.org/10.1109/IEMBS.2007.4353378
https://doi.org/10.1145/2800835.2800935
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1111/ejn.12395
https://doi.org/10.1145/2556288.2557068
https://doi.org/10.1007/s12541-013-0179-7
https://doi.org/10.1145/2494091.2495969
https://doi.org/10.1186/2046-7648-2-4
https://doi.org/10.1177/0018720818768199
https://doi.org/10.1518/001872008X288394
https://doi.org/10.1080/00140139.2014.956151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


ORIGINAL RESEARCH
published: 19 February 2021

doi: 10.3389/fpsyg.2021.596278

Frontiers in Psychology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 596278

Edited by:

Haneen Farah,

Delft University of

Technology, Netherlands

Reviewed by:

Sophie Lemonnier,

EA7312 Laboratoire de Psychologie

Ergonomique et Sociale pour

l’Expérience Utilisateurs

(PERSEUS), France

Carryl L. Baldwin,

Wichita State University, United States

*Correspondence:

Rachel Shichrur

rachelsh@ariel.ac.il

Specialty section:

This article was submitted to

Performance Science,

a section of the journal

Frontiers in Psychology

Received: 18 August 2020

Accepted: 25 January 2021

Published: 19 February 2021

Citation:

Shichrur R, Ratzon NZ, Shoham A and

Borowsky A (2021) The Effects of an

In-vehicle Collision Warning System

on Older Drivers’ On-road Head

Movements at Intersections.

Front. Psychol. 12:596278.

doi: 10.3389/fpsyg.2021.596278

The Effects of an In-vehicle Collision
Warning System on Older Drivers’
On-road Head Movements at
Intersections
Rachel Shichrur 1*, Navah Z. Ratzon 2, Arava Shoham 2,3 and Avinoam Borowsky 4

1Occupational Therapy Department, Faculty of Health Sciences, Ariel University, Ariel, Israel, 2Occupational Therapy

Department, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel,
3Occupational Therapy Clinics, Clalit Health Services, Dimona, Israel, 4 The Department of Industrial Engineering and

Management, Ben-Gurion University of the Negev, Be’er-Sheva, Israel

With age might come a decline in crucial driving skills. The effect of a collision

warning system (CWS) on older drivers’ head movements behavior at intersections

was examined.

Methods: Twenty-six old-adults, between 55 and 64 years of age, and 16 Older drivers

between 65 and 83 years of age, participated in the study. A CWS (Mobileye Inc.)

and a front-back in-vehicle camera (IVC) were installed in each of the participants’ own

vehicles for 6 months. The CWS was utilized to identify unsafe events during naturalistic

driving situations, and the IVC was used to capture head direction at intersections.

The experimental design was conducted in three phases (baseline, intervention, and

carryover), 2 months each. Unsafe events were recorded by the CWS during all phases

of the study. In the second phase, the CWS feedback was activated to examine its effect

on drivers’ head movement’ behavior at intersections.

Results: Older drivers (65+) drove significantly more hours in total during the intervention

phase (M = 79.1 h, SE = 10) than the baseline phase (M = 39.1 h, SE = 5.3) and the

carryover phase (M = 37.7 h, SE = 5.4). The study revealed no significant differences

between the head movements of older and old-adult drivers at intersections. For

intersection on the left direction, a significant improvement in drivers’ head movements’

behavior was found at T-junctions, turns and four-way intersections from phase 1 to

phase 3 (p < 0.01), however, two intersection types presented a decrease along the

study phases. The head movements’ behavior at roundabouts and merges was better

at phase 1 compared to phase 3 (p < 0.01). There was no significant reduction of the

mean number of CWS unsafe events across the study phases.

Conclusions: The immediate feedback provided by the CWS was effective in terms

of participants’ head movements at certain intersections but was harmful in others.

However, older drivers drove many more hours during the active feedback phase,
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implying that they trusted the system. Therefore, in the light of this complex picture,

using the technological feedback with older drivers should be followed with an additional

mediation or follow-up to ensure safety.

Keywords: technology—assistive/supportive, older drivers, in-vehicle camera, feedback, head movements,

naturalistic driving

INTRODUCTION

Older Drivers’ Safety
The percentage of older individuals (typically defined as ≥65
years; Vespa et al., 2018; National Highway Traffic Safety
Administration, 2020). in society has been steadily increasing
worldwide and is expected to reach 90 million in 2050 in only
the United States. This population constitutes about a quarter
of all licensed drivers (Pomidor, 2015). In 2018, 6,907 drivers
above the age of 65 were killed on US roads, constituting 19%
of all road fatalities in the US (National Highway Traffic Safety
Administration, 2020). In modern life, older adults, similar to all
age groups, are dependent on driving as the primary mode of
transportation, allowing them to maintain autonomy (Classen,
2010). However, the prevalence of medical impairments, decline
in vision, cognition, motor abilities, and somatosensory functions
rises with age, whichmay have substantial effects on driving skills,
including the ability to perform proper scanning (Karthaus and
Falkenstein, 2016; Samuel et al., 2016).

Researchers suggest that the underlying frailty, medical
conditions, and medication-use contribute significantly to crash
disparities between older and younger drivers and increased risks
of injury and fatality in older drivers (McGwin et al., 2000;
Langford and Koppel, 2006). The data of Bédard et al. (2002)
showed that older drivers are more vulnerable to the traumatic
effects of crashes. The odds of a fatal injury for older drivers (65–
79) were 2.3 times of that of drivers aged 40–49 and the odds
of a fatal injury for drivers older than 80 was even five times
more of that of the younger drivers. Consistently, several studies
confirmed that drivers aged ≥65 pose danger to themselves and
to other road users as compared with drivers at younger age
groups (Dellinger et al., 2004; Awadzi et al., 2008). Findings from
a driving simulator study (Park et al., 2017) indicated that older
adults (65.6 ± 5 years) have some limitations, primarily relating
to left turns against oncoming traffic and while overtaking a lead
vehicle. In a study by Bao and Boyle (2009), for example, older
drivers (65–80) had a significantly smaller proportion of visual
sampling to the left and right-hand side of the intersection during
intersection negotiations when compared to younger (18–25)
and middle-aged (35–55) drivers.

These circumstances raise the need to balance between
encouraging independent living and protecting the rights of the
safe older drivers, vs. the practitioners’ duty to identify unsafe
driving and protect other road users.

Vision and Safe Driving
Studies agree that for a driver, vision is crucial for collecting
driving-relevant information from the driving environment (Van
Houten and Retting, 2001; Green, 2002). Visual attention, a

critical skill for avoiding crashes while driving, is used to
direct information processing resources (using eye and head
movements) to spot potentially important visual events. Older
drivers (65+) tend to identify hazards less often when hazards
are located in the periphery of the visual scene (Bromberg et al.,
2012).

Moreover, safe driving relies on the drivers’ ability to make
quick head turns and eye movements, scan other spatial locations
such as mirrors, lead cars, pedestrians, and road traffic signs, and
shift their attention to the road. The timing of performing glances
before moving forward at an intersection is critical. It takes 1.8–
2.9 s to identify approaching vehicles before leaving the stop line
(Hostetter et al., 1986 as cited in Fisher et al., 2016). Most drivers
make glances to the left and the right; however, only a few make
a secondary glance (Fisher et al., 2016). A secondary glance is
defined as “a glance toward an area from which a threat might
emerge at a time after the foot moves from the brake, or after the
start of acceleration into the intersection when there is not a stop”
and is considered “the last best chance to abort the movement
into the intersection” (Fisher et al., 2016, p. 94).

In this study, head movements were used as a proxy of gaze
position. It has already been shown that for horizontal visual
angles larger than 30◦ an observer must move his head toward
the target area and the gaze position follow this (Land and Tatler,
2009). In this study the focus was identifying glance position at
intersection, which generally requires scanning at large visual
angles. In addition, Metz and Krueger (2010) recommend
using head movement analysis instead of eye movement at
intersections due to severe data loss of eye movements that often
occurs when scanning requires wide visual angles that require
head movements. The authors added that in their study head
movement was a good and reliable alternative to eye movements.
Capturing head movements during a drive is becoming more
common especially due to the prevalence of low cost in-vehicle
cameras that allow it.

Visual Search for Threats
Visual search is a prominent process that drivers must apply
in order to identify road hazards. Visual search evidence in
the driving domain shows that scanning patterns are typically
different between older and younger-experienced drivers. Bao
and Boyle (2009), for example, showed that older drivers do
not utilize their full scanning range when compared to middle-
aged drivers, and tend to check fewer areas before executing
a maneuver through intersections, specifically during left and
right turns. Romoser and Fisher (2009), concluded that regardless
of driver’s cognition, speed-of-processing, or useful field of
view (UFOV) status if drivers do not turn their heads to scan
for cross-traffic when turning at intersections, they will fail to
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detect unanticipated vehicles that may conflict with their turn.
Inattention can cause drivers to exhibit unsafe behaviors during
the driving task, such as greater lane position variability, reduced
headway distance, and reduced time-to-collision. Additionally,
inattention may also reduce a driver’s capability to respond to
hazardous situations, as indicated by delayed reactions (Strayer
et al., 2003; Lees and Lee, 2007).

Interventions to Improve Older Drivers’
Road Scanning Skills
Despite older drivers deteriorated scanning behavior, some
studies have shown that visual search for threats is a skill that
can be trained and improved. Romoser and Fisher (2009), for
example, used a driving simulator to train older drivers (70+).
They found that active training with direct feedback (using a
driving simulator), compared to passive training (e.g., telling
drivers where to look without actually driving), is a more effective
strategy for increasing the likelihood that older drivers will look
for threats during a turn. Their active training increased the
likelihood of hazard detection during a right or left turn by
nearly 100% in both post-training simulator tests and field drives
(Romoser and Fisher, 2009). Similarly, Pollatsek et al. (2012)
were able to consistently train older drivers (70+) to both scan
the roadway environment and to learn to allocate their attention
more effectively.

Nevertheless, this evidence shows only an initial step toward
finding ways to preserve and even improve older drivers’
visual search skills in order to make them safer drivers and
compensate for age-related deterioration of driving skill. An
important aspect that was overlooked in these studies is the
possibility of exploiting the advantages of in-vehicle technology
and specifically using collision-warning systems (CWS). This
exploitation would be used with the purpose of (1) facilitating
more efficient road scanning and (2) providing an overall
better safe-driving performance while combining humans with
technology vs. humans alone.

Although there currently is encouraging evidence regarding
the potential of an intervention aimed to improve older drivers’
driving performance at least partially, the way toward making
older adults safer drivers is still long. This delay is especially
worrying if one considers their over-representation in fatal
traffic crashes, poor scanning performance, and overall reduced
driving performance compared to younger-experienced drivers.
Considering that older drivers look less often to the left and
right at intersections than younger adults do, the question then
becomes whether there is a way to improve older adults’ scanning
at intersections by using current in-vehicle technology (Caserta
and Abrams, 2007; Bao and Boyle, 2009).

In-vehicle Data Recorders (IVDR)
In recent years, due to various technological improvements,
IVDR technology offers CWS that can help drivers to pay
attention to road hazards and objects to avoid collisions (Maltz
and Shinar, 2004; Wang et al., 2016; Hubele and Kennedy, 2018).
This technology may be especially valuable when other tasks
compete for driver’s attention. The task of the warning system

is to attract the drivers’ attention back on to the road, especially
when the road demands increase.

Modern in-vehicle safety technologies offer Advanced Driver
Assistance Systems (ADAS) that helps drivers drive safer and pay
attention to road hazards. ADAS are becoming more ubiquitous
in newer cars and may significantly reduce crashes related to
impaired visual search, distraction, or lack of attention. Hickman
et al. (2015) have collected retrospective crash data from 14motor
carriers including a total of 151,624 truck-years on different types
of roads. The authors have demonstrated that lane departure
warning (LDW) significantly reduced a LDW-related crashes by
1.92 times and roll stability control (RSC) significantly reduced a
RSC-related crashes by 1.56 times. Integrating between real-time
on-road driving data, with systems that monitor information
regarding the drivers’ scanning behavior (such as IVC), ADAS are
designated to help drivers identify unnoticed road hazards as well
as use the feedback received by the system to facilitate their road
scanning behavior training when distracted (Carr and Grover,
2020). Analyzing the different patterns of spatial attention and
driving behavior will assist in modifying inferior behaviors in an
effort to improve road safety.

Recruiting such technologies to assist the older driver in
driving safer, as well as in taking advantage of the feedback
received by the system in order to facilitate their scanning
behavior, has been set as a goal for current researchers (Carr
and Grover, 2020). This research is expected to provide further
insight regarding older drivers’ spatial attention and head
movements behavior in correlation with unsafe driving-related
events on the road. Therefore, the present study proposes an
intervention procedure that combines CWS and IVC as an
integrated tool to enhance older drivers’ safety and awareness
of safety while driving. The effects of an CWS’s feedback on
older drivers’ unsafe CWS events and head movements will
be analyzed.

Hypotheses
This study has three hypotheses:

1. The feedback-based intervention provided by CWS in
phase 2 will be found effective in improving the head
movements behavior of study population at intersections and
in reducing their involvement in hazardous driving-related
events (provided by the CWS).

2. Old-adults group (55–64) will have better head movements at
intersections than the older drivers’ group (+65).

3. Positive correlations will be found between low quality of the
head movements at intersections as measured by IVC and
hazardous driving-related events as obtained fromCWS in the
study phases.

METHODS

The study population included 42 drivers: 26 old-adults (55–64
years old,M = 59.4, SD= 3.1), and 16 older drivers (65–83 years
old, M = 70.9, SD = 5.32). The study population included 25
men and 17 women. All participants were independent drivers
with a valid driver’s license and with normal or corrected to
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normal vision. Recruitment was done via e-mails, and snowball
sampling method, targeting old-aged volunteers who pursue an
independent lifestyle. Volunteers were compensated for the time
they spent participating in the study for 6 months.

To exclude potential effects of depression and cognitive
impairments, participants had to score five or fewer points on
the Geriatric Depression Scale (Yesavage et al., 1982) and to
score above 24 in the Mini-Mental State Examination (Folstein
et al., 1975). Other exclusion criteria included a medical history
of neurological, orthopedic, and/or psychiatric conditions with
permanent impairments or using drugs that, according to the
guidelines of the pharmaceutical company, may interfere with
driving. In each participant’s private vehicle, a CWS and IVCwere
installed to identify unsafe events during on-road driving and to
capture head movements’ behavior data at intersections.

Primary Outcome Measure Tools
Collision-Warning Systems (CWS)
ADAS technology offers collision-warning systems (CWS) that
provide a forward collision warning (FCW) and a lane departure
warning (LDW), helping drivers drive safely. The CWS is a
vision-based tool for the vehicle, which continually measures
the time/distance to the vehicle in front and lane marks. The
ultra-speed data processor includes algorithms that follow lane
marks and road curves, detect cars and pedestrians, and follow
the headway distance, working in the rain and at night. It is
programmed to detect only five types of objects, specifically:
trucks, cars, motorcycle, bicycles, and people. The system follows
four types of safety outcomes.

(a) Urban Forward Collision Warning (uFCW)—A risk
warning for urban collision is activated when driving is
<30 km/h. The system calculates the time it will take to stop the
car without touching the other car, and a risk event is recorded
when the distance between the cars is 2.7 s.

(b) Forward Collision Warning (FCW)—A risk warning for
rear-end collision is activated when driving 30 km/h and above.
The system calculates the time it will take to stop the car without
touching the other car, and a risk event is recorded when the
distance between the cars is 2.7 s.

(c) Unsafe Headway Warning (HW)—The warning is
activated from 30 km/h and above. The system calculates the time
it will take to stop the car without colliding with the object in
front of the vehicle, and a risk event is recorded when the distance
between the car and one of the aforementioned objects is 1 s.

(d) Sudden Lane Deviations Warning (LDW)—A lane
departure without signaling warning is activated from 55 km/h
and above. The CWS focuses on driving safety and analysis of
the technical skill of the driver and provides a driving profile.
The riskiness grade used in this study obtained by the CWS is
a calculation of the mean number of all types of unsafe events per
hour from the four types of safety outcomes (uFCW, FCW, HW,
and LDW).

In-vehicle Front-Back Camera (IVC)
Each vehicle was equipped with a dual-lens video camera that
captured both the driving scene from the driver’s perspective
(i.e., driving context) as well as the driver’s face. This front-back

camera configuration allowed capturing the participant’s head
direction dependent on the driving context (e.g., driving on a
straight road, approaching an intersection). The camera had a
high definition (HD) video quality and a 64 GB SD card to
allow recording 9 h of driving each time. Once the card was full,
it was removed from the vehicle, analyzed on a computer, and
replaced with a blank card. Recording the driver’s face provided
the information regarding head movements.

Data Preparation
As mentioned above, the front-facing camera provided an
immense amount of real-world driving data of the traffic
environment from a driver’s perspective. Thus, at each phase of
the study, it was decided to focus on the first 120 intersections
that each participant encountered and examine the head
movement behavior of each participant at each intersection.
The intersections were classified into five types according to
their geometric structure (merging road, roundabout, turn,
T junction, and four-way intersection). The direction of
travel of the driver (right/left/straight and also the presence
of secondary glances when needed) and the presence of
other road users (vehicles and pedestrians) were registered.
Examples of different types of intersections can be seen in
Figures 1A–C.

Procedure for Coding Research Data
Each coder was given a list of proper road scanning behavior
expected at each intersection that was predefined by the
research team [a complete list of all head movements
demands for each intersection is provided in Appendix A
(Supplementary Material)]. Each coder was asked to indicate
whether the driver scanned the intersection properly (given
a score of “2”), whether the road scanning behavior was only
partially correct (given a score of “1”), or whether the scanning
behavior at that specific intersection was improper (given a score
of “0”) for each intersection per participant. In cases where a
coder was not sure how to classify the driver’s head movement
behavior at a specific intersection, he or she consulted with
the research team, who made a classification decision based on
a discussion.

Primary, a pilot data-coding procedure was conducted where
four researchers from the research team analyzed two drivers’
videos. Each researcher viewed the camera videos independently,
identified 30 intersections, classified them, defined the head
movements requirements at each intersection, and reviewed
the actual head-based behavior of each driver. A between
rater reliability test of this pilot data coding procedure showed
reliability of only 76.6%. In order to improve the inter-
rater reliability percentage, three additional meetings were
required in which the researchers consulted on uniformity in
interpreting the data obtained from the videos. This process
was repeated until the raters were able to achieve inter-
rater reliability of over 90%. To promote the research, three
additional research assistants, trained by the research team,
were recruited to view camera videos and code the participants’
horizontal head rotations. Each research assistant viewed the
same 30 intersections of the same driver, and classified his head
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FIGURE 1 | (A) A left turn at a four-way intersection. (B) A left turn at a two-lane T junction. (C) A right turn at a T junction.

movements as: proper head movements = “2,” partially proper
head movements = “1,” or improper head movements = “0.”
Checking the inter-rater reliability of the three research assistants
in analyzing the same 30 intersections showed high reliability
of 97%.

Experimental Design
The experimental design was a A2<P3∗I5∗D4> mixed design.
The between-subjects independent variables included the
age group (A: old-adults or older drivers). The within-
subjects independent variables included the experiment’s
phase (P: 1, 2, or 3), the intersection type (I: 1–5, see data
preparation section), and the travel direction (D: 1–4, see
data preparation section). The dependent variables included
the score of the head movements (proper head movements
= “2,” partially proper head movements = “1,” or improper
head movements = “0”), the number of unsafe events per
hour for each one of the four types of safety outcomes
(uFCW, FCW, HW, and LDW), and CWS riskiness grade
(Mobileye, Inc.).

Procedure
The institutional review at Tel Aviv University board approved
this study. Informed consent forms were obtained from all the
volunteers prior to commencing the study. After signing the
informed consent, each participant completed the questionnaires
that were relevant for the screening tools, and only those whomet
the inclusion criteria were able to participate in the study. Since
this study is focused on naturalistic driving, the research location
was determined according to the participants’ convenience in
their community (e.g., a quiet room in a community center or
the driving laboratory at the University). Next, the CWS was
installed by expert technicians in each of the participants’ own
vehicle at his/her house. After verifying the system functioned
properly, each driver was given a personal identification code

number to type in before starting the vehicle. The technicians
disassembled the systems after a period of 6 months, at the end
of the study.

The study included three phases, and each phase lasted
about 2 months. During the first (silent) phase, unsafe events
were recorded without the use of active alerts. In the second
phase (intervention), the CWS feedback was activated in all
the participants’ vehicles to examine its effectiveness. In the
third phase, the feedback was silenced to examine behavioral
change. In each phase, the drivers’ head movements were
also examined. A comparison was made between the three
phases of the study for the two age groups, and also
each subject was self-compared between the pre- and post-
intervention phase. The study period included a variety of
driving events (such as lane deviations and risk of rear-end
collisions), under a variety of road or traffic situations (such
as dense traffic in urban roads or inter-urban highways) and
weather conditions.

Data Analysis
In order to assess the effectiveness of the feedback-based
intervention at improving head movements’ behavior, several
statistical tests were carried out within the Generalized Linear
Mixed Models (GLMM) framework. The head movements
behavior analysis, included a logistic regression model with a
logit link function. The independent variables that were included
in the initial model included: age group (old-adults and older
drivers), gender, phase (1, 2, or 3), and intersection type (1–5).
The initial model also included three second-order interactions
of intersection type∗phase, age group∗phase, and intersection
type∗age group, and a third-order interaction of phase∗age
group∗intersection type. Participants were also included into
the model as a random effect. The dependent variable included
head movements’ behavior that was coded as a binary variable
(proper head movements behavior = 1 and Improper head
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movements behavior = 0). Notably, although we initially coded
partially proper behavior as well, due to the small number
of cases they were not included in the analysis. This logistic
regression model was applied twice: once for the left travel
direction and once for the right travel direction. A backwards
elimination procedure was applied for each model such that
non-significant interactions were removed in case they were not
statistically significant.

In order to statistically examine the effect of the feedback-
based intervention in reducing risk-related driving events we
applied a repeated measures analysis within the GLM framework
in SPSS. This model was applied twice. One model included the
average number of CWS events per km driven per participant as
the dependent variable and the other model included the average
number of CWS events per hour driven per participant. Phase
was included as the independent variable in both models.

In addition, Pearson correlations were used to examine the
correlations between head movements behavior and unsafe
driving events. Analysis of the research videos revealed that
drivers behaved differently at traffic light intersections as opposed
to unsignalized intersections because they were guided by
the light signals and did not have to scan the environment
themselves. Thus, signalized intersections were excluded from
the study. As a result, the percentage of four-ways intersections
and T junctions was low relative to other intersections in the
sample as in Israel, traffic lights control most In order to
statistically examine driving characteristics differences between
the two age groups and across the three phases of the study,
two linear regression models were applied within the framework
of General Linear Model (GLM). This GLM was applied twice:
once for number of kilometers driven and once for number of
hours driven as dependent variables. The independent variables
that were included in the initial models were: phase (1, 2,
or 3), and age group (old-adults and older drivers). The
models included a second-order interaction of age group∗phase.
Participants were included as a random effect of these types
of intersections.

All analyses were carried out at a significant level of
5 percent. Next, all significant effects of the final model
were further analyzed using post-hoc pairwise contrast
comparisons analysis where the Bonferroni correction
procedure for multiple comparisons was also applied whenever it
was required.

RESULTS

The results chapter includes four main sections. The first section
presents an examination of the feedback-based intervention
efficacy on the study population (hypothesis 1). The second
section presents the analyses related to the participants’ head
movements at intersections and differences between age groups
(hypothesis 2). The third section presents the correlations
between head movements at intersections and unsafe events
(CWS) (hypothesis 3). Section four presents additional analyses
related to driving exposure in terms of hours driven and
distance traveled.

TABLE 1 | A summary of the final logistic regression model’s fixed effects of head

movements.

Fixed variables F df2 df1 sig

Corrected model 46.9 3,638 16 0.00

Age group 0.03 3,638 1 0.86

Gender 0.37 3,638 1 0.54

Phase 4.26 3,638 2 0.01

Intersection type 135.7 3,638 4 0.00

Intersection type*phase 7.9 3,638 8 0.00

*p < 0.05, **p < 0.01.

Section 1: Examining the Efficacy of the
Feedback-Based Intervention on the Study
Population
Hypothesis 1 estimated that the feedback-based intervention
provided in phase 2 by the CWS will be found effective
in improving the head movements of study population at
intersections. In order to assess the effectiveness of the feedback-
based intervention at improving head movements’ behavior and
reducing unsafe driving events, the study used a linear regression
within the GLMM framework. As presented in Table 1, the phase
variable was found significant [F(2,3,638) = 4.26, p< 0.01].Table 1
presents a summary of the significant fixed effects that were
included in the final model.

The final regressionmodel for examining the headmovements
showed that the independent variables entered into the model
found to be significant were phase, intersection type and
their interaction. Post-hoc pairwise contrast comparisons of the
significant interaction between the intersection type and the
phases of the study are shown in Figure 2. The Y axis presents
the estimated mean probability of proper head movements
at intersections.

According to Figure 2, T-junctions, turns and four-way
intersections drivers’ head movements’ behavior was better at
phases 2 and 3 compared to phase 1 (p < 0.01). A significant
difference was found between phases 1 and 3 (p < 0.01).
There was no significant difference between phases 2 and 3
for these three types of intersections. However, two intersection
types presented a decrease along the study phases. Roundabout
and merges head movements’ behavior was better at phase 1
compared to phase 3 (p < 0.01). At merges the decrease from
phase 1 to phase 2 was significant (p < 0.01) but there was no
significant difference between phases 2 and 3 and for roundabout
there was no significant difference between phases 1 and 2 but the
decrease from phase 2 to phase 3 was significant (p < 0.01).

In order to examine the effect of the feedback-based
intervention in reducing risk-related driving events as mentioned
in hypothesis 1, a repeated measures analysis within the
GLM framework was applied. Both models didn’t present any
significant differences between the average number of CWS
events (neither the model per hour nor the model per km
driven) per participant. Figure 3 illustrates driving patterns
according to CWS unsafe events per hour before, during, and
after the intervention.
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FIGURE 2 | Interaction between intersection types and study phases.

FIGURE 3 | CWS estimated mean number of events per hour throughout the study phases (n = 40).

The CWS mean number of unsafe events per hour refers to
the whole drivers’ population. According to Figure 3 although
the mean number of safety incidents per hour is noticeably

increasing across the study’ phases, there were no significant
differences between the mean number of CWS unsafe events per
hour across the phases of the study.
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Section 2: Analysis of Head Movements’
Behavior at Intersections
As noted in the method section, the dependent variable
representing the quality of the head movements’ behavior was
coded into three levels: proper head movements’ behavior = “2,”
partially proper head movements’ behavior = “1,” and improper
head movements’ behavior = “0.” The Percentage of improper,
partially proper and proper head movements were computed for
each type of intersection (5 types altogether). The descriptive
information regarding improper head movements’ behavior is
presented in Table 2.

As showed in Table 2, most improper head movements at
intersections were associated with right or left merges, forward
four-ways intersection, and roundabout to the left across the
study phases.

Hypothesis 2 estimated that the old-adults group (55–64)
will have better head movements at intersections than the older
drivers group (+65). The purpose of the current analysis was to
examine this assumption. In order to test whether the differences
in the head movements’ behavior between the old-adults and the
older drivers are significant across the three study’s phases, we
used a logistic regression model within the GLMM framework as
noted in the data analysis section. Notably, since the model of all
5 intersection types at the right direction did not yield significant
effects, it is not presented here, and the study focuses on left
direction only. As shown in Table 1, the final logistic regression
model revealed that no effect was statistically significant for the
age group and its interactions with the study phase or intersection
type. In other words, there were no significant differences
between the mean percentage of head movements’ behavior of
older and old-adult drivers at intersections across the three
phases of the study, suggesting that hypothesis 2 was rejected.

Section 3: Correlations Between Head
Movements at Intersections and Unsafe
Events
Hypothesis 3 anticipated positive correlations between poor head
movements’ behavior at intersections as measured by IVC and
hazardous driving-related events as obtained from CWS across
the study phases. This analysis was aimed at examining whether
the quality of the head movements’ behavior at intersections was
related to the number of risky events produced by the CWS.
Table 3 presents the correlations between head movements and
the number of unsafe events. The CSW in the table represents the
riskiness grade obtained by the total mean number of all unsafe
events per hour.

Through examining the correlations between head
movements’ behavior and risky driving events, it seems
that the statistically significant correlations are mainly found
in phases 2 and 3. Moderate positive correlations were found
for the improper head movements and negative correlations for
the proper head movements at all CWS categories. The positive
correlations indicate that as the percentage of the improper head
movements increases, the number of unsafe events increases as
well. Diversely, the significant negative correlations indicate that

when the proper head movements rate increases, the number of
unsafe events decreases.

Section 4: Driving Exposure (Total Number
of Hours Driven and Distance Traveled)
Additional analyses were carried out to examine the differences
between driving exposure of old adults and older drivers. The
two age groups that participated in the study, old adults and
older drivers, did not significantly differ in terms of gender and
education variables as well as in driving history-related variables
such as driving days per week and road accident history. The
average age was different between the groups consistent with the
experimental design. During the entire study period (6 months),
the old-adults group drove a total of 9,568 km, while the older
group drove a total of 7,071 km, however, the difference was
not statistically significant. The final GLM model included one
significant main effect of phase [F(2,68) = 5.957, p< 0.01] and one
significant second-order interaction of age group∗phase [F(2,68)
= 5.695, p < 0.01]. Figure 4 presents the average total number of
kilometers driven by each group per phase (i.e., along a period of
2 months per phase).

Phases 1–3 represent the pre-intervention, intervention, and
post-intervention phases, respectively. According to Figure 4, the
older drivers appeared to travel a shorter distance than the old-
adult drivers in phases 1 and 3. However, during the intervention
phase, where the feedback from the CWS was activated, they
traveled a more considerable distance than the old-adult drivers.
Post-hoc pairwise contrast comparisons using the Bonferroni
correction for multiple comparisons revealed that among the
older drivers, phase 1 (EM = 1815.3 km, SE = 286.4) was not
significantly different from phase 2 or 3 (EM = 3537.7 km, SE
= 520.6; EM = 1717.6 km, SE = 385.8, for phase 2 and 3,
respectively). Phase 2 was significantly different from phase 3,
suggesting that drivers tended to drive many more kilometers
during the intervention phase than the post-intervention phase.
Among the old-adults, there was a significant difference between
the total number of kilometers driven in phases 1 (EM =

3697.7 km, SE = 602) and 3 (EM = 2662.9 km, SE = 438.9).
However, the intervention phase (EM = 3207 km, SE = 455.7)
was not statistically significant in either phase 1 or phase 3.

To further characterize the participants’ driving patterns, the
study also examined the total number of actual driving hours,
defined as the number of hours driving after reducing the total
number of standing engine hours (when the engine is activated
without driving). The study found that the old-adult group drove
a total of ∼190 h, while the older drivers’ group drove in total
∼156 h. The GLM model included one significant main effect of
phase [F(2,70) = 7.428, p< 0.01] and one significant second-order
interaction between age group∗phase [F(2,70) = 4.03, p < 0.05].
Figure 5 presents the total number of hours driven for each phase
of the study.

Phases 1–3 represent the pre-intervention, intervention and
post-intervention phases, respectively. According to Figure 5,
the older drivers appeared to be driving fewer hours than the
old-adults in phases 1 and 3. However, during the intervention
phase, where feedback from the CWS was activated, they drove
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TABLE 2 | Mean proportion (%) of improper head movements’ cases at intersections in each of the study phases.

Phase M-R M-L Ro-F Ro-R Ro-L Tu-R Tu-L Tj-R Tj-L 4W-F 4W-R 4W-L

1 30 30 5 1 9 2 0 0 1 22 0 0

2 28 25 3 4 12 3 3 0 0 21 1 0

3 31 26 4 1 13 3 2 0 0 20 0 0

R, Right; L, Left; F, Forward; M, Merge; Ro, Roundabout; Tu, Turn; Tj, T-junction; 4W, 4-ways intersection.

This table is based on 120 junctions per participants. The mean proportions are based on 40 participants in phase 1, 36 participants in phase 2, and 37 participants in phase 3. The

sum of each row in this table equals 100%.

TABLE 3 | Correlations between head movements and unsafe driving.

Phase Head movements CWSa HWb uFCWc LDWd (right) LDWd (left)

1 Improper −0.01 −0.03 −0.08 0.05 0.002

Partially proper −0.07 −0.04 0.05 −0.10 −0.03

Proper 0.02 0.03 0.04 −0.01 0.01

2 Improper 0.06 0.00 −0.09 0.32 −0.07

Partially proper 0.48** 0.38* 0.15 0.36* 0.56**

Proper −0.19 −0.11 0.06 –0.41* −0.08

3 Improper 0.20 −0.07 0.32 0.26 0.38*

Partially proper 0.29 0.26 −0.08 0.38* −0.06

Proper –0.43* −0.15 −0.26 –0.54** −0.31

*p < 0.05 and **p < 0.01.
aCollision warning system (riskiness grade).
bHeadway warning.
cUrban forward collision warning.
dLane departure warning.

more hours than the old-adults. Post-hoc pairwise contrast
comparisons of the main effect revealed that the older group
phase 1 (EM = 39.1 h, SE = 5.3) was not significantly different
from phase 3 (EM = 37.7, SE = 5.4). However, phase 2 (EM =

79.1, SE = 10.0) was significantly different from phase 1 and 3,
suggesting that drivers tended to drive many more hours during
the intervention phase than the post-intervention phase. Among
old-adults, there was a significant difference between the total
number of hours driven in phases 1 (M = 70.6, SE = 10.8)
and 3 (M = 51.8, SE = 8.7), with a smaller total number of
hours driven in the post-intervention phase compared to the pre-
intervention phase. There was no significant difference between
the intervention phase (M = 67.5, SE= 9.8), and phases 1 and 3.

DISCUSSION

The present study was aimed at examining the influence of
a collision warning system (CWS) visual or auditory feedback
on older drivers’ driving and head movements’ behavior. The
feedback-based intervention provided by CWS was found to
be effective in improving study population’s head movements’
behavior at certain intersections such as T-junctions, turns and
four-way intersections but was not effective at roundabout and
merges, on the left direction.

The study findings showed that most of the improper head
movements were associated with the types of intersections

such as right or left merges, turning left at roundabouts
and forward four-ways intersection. Possible explanations are
divided between drivers’ real road scanning difficulties or
problems arising from excessively strict coding of improper head
movements at these intersection types. At merges for example, it
is possible that drivers were not scanning properly side roads that
merge from the left because they knew they had the right-of-way
forward and believed that the “responsibility” of road scanning
was on the merging drivers.

Analyzing the IVC research videos showed that drivers rarely
turn their heads sideways at road merges and therefore “gained”
a high percentage of improper head movements. In the study of
Lemonnier et al. (2020), they found most of the significant effects
on oculomotor behaviors, but not on head orienting behaviors.
In the same way, this may partly explain the high score of
improper head movements in this specific type of intersection.
Little is known about drivers’ scanning behavior of merging side
roads because most studies that measure drivers’ road scanning
behavior rarely focus on merges of side roads into the main
road (Cheng et al., 2016). Moreover, the very few studies that
investigated road scanning patterns atmerging side roads focused
on the scanning patterns of drivers who were merging into
the main road rather than on drivers who were driving on the
main road.

The current study also demonstrates that the proper head
movement’s behavior at roundabouts deteriorated from phase 1
and 2 to phase 3. We assume that the reason for the lack of
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FIGURE 4 | Mean number of kilometers driven per age group.

FIGURE 5 | Mean number of hours driven per age group.
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effectiveness lies in the characteristics of the CWS feedback. The
CWS feedback is not very effective at low speeds to begin with
and most of the safety warning are activated only when driving
speed is above 30 or 55 km/h (including FCW, HW, and LDW).
Due to the fact that roundabouts are a known traffic calming
countermeasure where lower speeds are generally observed
(Zubaidi et al., 2020), the warnings were probably less active
than the usual. Roundabouts are considered in the literature a
good alternative to signalized or controlled intersections because
of several advantages, such as the reduction of speed and fatal
crashes and the enhancing of traffic capacity (Zubaidi et al., 2020).
However, despite these advantages that roundabouts provide, it
seems that crashes still occur. The recent study of Zubaidi et al.
(2020) investigating the factors that contribute to injury severity
sustained by drivers involved in crashes at roundabouts, found
that one of the contributory factors was that vehicles did not wait
to make a left turn. The current study findings are consistent with
this research demonstrating a high percentage of improper head
movements when turning left at the roundabouts. When turning
left, the operational characteristics of roundabouts every time
traffic approaches an entry point, should force drivers to slow
down and regard the traffic entering the roundabout otherwise
a possible conflict between road users could occur.

The study findings, showing a high percentage of improper
head movements at four-ways intersections without a traffic light
during the first phase, justify the global tendency to transform
them to be controlled intersections or roundabouts (Zubaidi
et al., 2020). The complex geometric structure of uncontrolled
four-ways intersections can explain the high percentage of
improper head movement behavior scores at phase 1 and the
improvement throughout the phases as drivers needed the
CWS intervention to assist their road scan behavior. According
to the literature, four-ways intersections require extra visual
scanning that includes looking in both directions and, in
addition, performing a secondary scan by making another glance
(Romoser and Fisher, 2009; Yamani et al., 2015; Samuel et al.,
2016). In a review article by Samuel et al. (2016), they emphasize
the importance and complexity of taking secondary glances at
these types of intersections. Further research is needed to analyze
the difficulties of older drivers in performing secondary glances at
intersections using IVC and CWS to develop scanning behavior
interventions, improve road scanning ability and thus reduce the
risk of car accidents in older drivers (Romoser and Fisher, 2009;
Samuel et al., 2016; Lococo et al., 2018).

Findings of the study revealed that the intervention phase
improved the road scanning head movements of the study
population at T-junctions and turns. According to Bao and
Boyle (2009), older drivers do not utilize their full scanning
range when compared to middle-aged drivers, and tend to
check fewer areas before executing a maneuver through
intersections, specifically during left and right turns. Similar
to the results of simulator intervention studies (Romoser and
Fisher, 2009; Pollatsek et al., 2012), the results of the current
naturalistic study demonstrated evidence of improved older
drivers’ head search behavior at these specific intersections,
considered dangerous intersections, with the advantages of using
CWS technology.

In opposed to hypothesis 1, the intervention was not
found to be effective in reducing drivers’ involvement in
hazardous driving-related events. The current study findings
seem to contradict the conclusions of several studies that have
investigated the effects of immediate feedback on improving
driving performance by examining unsafe events measured by
IVDR (Campbell et al., 2007; Toledo et al., 2008). Also, studies
investigating the effectiveness of IVDR’s immediate feedback in
young drivers have shown significant improvement in speeding
and additional non-significant improvement in acceleration
and hard braking (Farmer et al., 2010; Farah et al., 2014). A
retrospective study by Hickman et al. (2015) shows improvement
in truck fleets following the introduction of the LDW system.
These studies, however, investigated relatively young drivers
(teens and young adults) compared to the current study older
population. In fact, the current studies’ results are in alliance
with some of the recent studies concerning older drivers. Only
one study was conducted on older Japanese taxi drivers and
CWS. It was published only in the Mobileye’s website1 and this
research concludes that once the CWS was installed, the number
of accidents due to front-end collisions decreased by 85% down
to zero and also significantly improved driving habits. A close
examination of the Japanese study, reveals that they combined
the feedback of collision avoidance systems with robust driver
training by the fleet managers to improve driver’s behavior
further. It was found that although advanced safety features and
automated vehicles offer great potential to improve road safety
and the mobility of drivers, older drivers are skeptical about this
technology and are least likely to rely on ADAS to improve their
safety on the road (Robertson et al., 2017; Nielsen and Haustein,
2018).

Researches claim that the reason immediate negative feedback
is not sufficiently effective over time is that drivers forget most of
their near-accidents very quickly, and therefore it is worthwhile
that drivers will be given retrospective feedback in addition to
immediate feedback (Chapman et al., 2000). A retrospective
feedback shows drivers a summary of their driving patterns to
raise their awareness and motivation and make a real change in
behavior for more extended time periods (Chapman et al., 2000).
This argument is supported by findings from other domains such
as gamification. Xie (2016), for example, have shown that when
young drivers are driving in a driving simulator and receive
meaningful feedback with game-design elements, it results in
reduced distraction and motivates lasting behavioral changes.
Two studies examined the long effects of retrospective feedback,
which was conducted through tracking on a dedicated web site
for drivers use, indicated an immediate improvement from the
beginning of the study. In one study, the improvement was
maintained throughout the 9 months of the driving monitoring
(Musicant et al., 2007). In the second study, the improvement was
maintained over a 4-month period, while in the fifth month, an
increase in the number of undesired events above the baseline
average was evidenced (Lotan and Toledo, 2006). Intervention
studies from various fields have demonstrated the importance
of active professional mediation for successful intervention and

1https://drive.google.com/file/d/1uNCPIwmqysQLen7Zidj5L4j93wYscwgk/view
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achieving significant improvement (Lahav et al., 2008; Ratzon
et al., 2009; Romoser and Fisher, 2009). The CWS is currently
considered a “Stand-Alone” technology (meaning only the driver
receives the technological feedback), and it is not enough to
be used as an educational tool for older drivers. Therefore,
additional mediation or follow-up is recommended for ensuring
older drivers’ safety.

In contrary to Hypothesis 2, the results of the study showed
that there were no significant differences between old-adults and
older drivers in all types of head movement’s behavior—mainly
proper and improper head movements throughout the three
phases of the study. These findings are not in accordance with
the literature. According to several studies, it has been shown that
older drivers perform a reduced road scanning comparing to old-
adults or experienced young drivers while driving at intersections
(Bao and Boyle, 2009; Dukic and Broberg, 2012; Romoser et al.,
2013). However, the present study compares older drivers to old-
adults, aged 55–65, and maybe if the study had compared older
drivers to younger drivers, the result would have been more
similar to literature.

Visual distraction is considered among the major causes of
road accidents (Khan and Lee, 2019). Therefore, the current
study examined the relationship between head movements’
behavior and risky driving. Analyzing the correlations between
CWS unsafe events and head movements’ behavior revealed that
Hypothesis 3 was verified. It was found that mainly in phases
2 and 3, there were statistically significant moderate positive
correlations between improper head movements’ behavior at
intersections as measured by IVC and hazardous driving-
related events as obtained from CWS. Additionally, there were
significant negative correlations with proper head movements’
behavior and the riskiness grade (total mean number of unsafe
events per hour) and LDW. Theses correlations proved that a
connection between the two variables exists, and that might be a
way to improve the older population’s head movements’ behavior
at intersections by using current in-vehicle technology.

The connection between CWS unsafe events and head
movements’ behavior was not trivial because CWS technology
monitors driving throughout the whole driving period and
counts unsafe events in a wide range of driving situations
activated from 30 km/h and above. However, the IVC road scan
coding in the study focuses only on intersections where drivers
tend to slow down naturally according to road infrastructure. The
CWS scores consisted of the number of unsafe events recorded
during the driving period in relation to the drivers’ travel time
and as noted in the method section. These scores included a
variety of driving events (such as lane deviations and risk of
rear-end collisions), under a variety of road or traffic situations
(such as dense traffic in urban roads or inter-urban highways).
Driving at intersections is just a small part of this variety of
driving situations and conditions. Similar correlations between
driving performance and visual distraction were reported by
other researchers (Hirayama et al., 2013; Yang et al., 2015).

Additional results of the study showed a significant increase
in both the number of kilometers traveled and the number
of driving hours among the older drivers at the intervention
phase, when the CWS was active, compared to the pre- and

post-activation phases. In old-adults, however, there has been
a marked decline in driving kilometers and the number of
driving hours throughout the phases. Research data from phase
1 showing that older drivers have reduced driving kilometrage
and driving hours are in line with known literature that older
drivers conduct “self-regulation” on their driving to reduce the
likelihood of accidents. Self-regulation is defined as making
adjustments in driving to accommodate for changes in cognitive,
sensory, and motor capabilities, such as shorter distance travel,
avoiding rush hour travel, only driving in urban settings, avoiding
nighttime travel, or stopping driving in general (Ekelman
et al., 2009; Meng and Siren, 2012; Svancara et al., 2020). It
seems that older drivers may benefit from the presence of
CWS in their vehicles, as drivers with these systems appear
willing to drive more and as a result maintain their mobility
option to a greater extent than drivers without the technology.
It is possible that driving with immediate feedback, alerting
to possible dangers on the road, may have increased their
confidence to drive even at times when they had previously
tried to reduce driving. In the third phase, when the feedback
“crutches” were removed, there was a return to the previous
driving patterns as in the first phase. On the other hand,
among old-adults that do not regulate their driving yet, the
intervention phase has not caused a significant change, as seen
in the older drivers.

These findings, along with the findings that older drivers
tended to trust the CWS as manifested by the significantly
higher number of hours they drove during the intervention phase
present a complex picture. On the one hand, older drivers are
more confident to drive with the help of a CWS which is a
good thing as it supports their independent mobility. On the
other hand, the CWS is not perfect and while it improves road
scanning performance in some cases it impairs other cases. Thus,
the inclusion of CWS and other in-vehicle technologies should be
done with cautious making sure that the benefits are greater than
the cost and does not compromise safety.

LIMITATIONS AND FURTHER RESEARCH

Since coding relied solely on head movements, if drivers
depended only on their eye movements, UFOV, or wore
sunglasses, an improper head movement was registered.
However, the driver might have managed to road scan the area,
but without considerable head movement. When considering the
results, it is important to take into account that the analyses
are based on a relatively small sample. Scoring on a 0–2
scale may have limited the sensitivity of this metric further.
As was mentioned above, the present study compares older
drivers to old-adults, aged 55–65, and maybe if the study had
compared older drivers to younger drivers, the result would
have been more similar to the literature. Further research is
needed to better understand the right combination of immediate
and retrospective feedback to maximize its impact on driving
behavior. Further studies are warranted to examine the combined
feedback on improving road scanning patterns of older drivers
without compromising their safety.
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CONCLUSIONS AND
RECOMMENDATIONS

1. The immediate feedback of the CWS encouraged the older
population to drive significantly more hours during the
intervention phase and thus increased their involvement in
everyday life. Being aware of the CWS’s benefit can assist in
making sure that older drivers continue enjoying a normal yet
safe driving routine.

2. The results of this study showed that the immediate feedback
provided by the CWS was partially effective in terms of
participants’ head movements at certain intersections (T-
junctions, turns, and four-ways) but not in others (roundabout
and merges). The feedback intervention was not effective in
terms of reducing the number of CWS events across the
study phases.

3. The CWS is currently considered a “Stand-Alone” technology
(meaning only the driver receives the technological feedback),
and it is not enough to be used as an educational tool for
older drivers. Therefore, additional mediation or follow-up is
recommended for ensuring older drivers’ safety.

4. The combined feedback (immediate and retrospective) could
allow drivers to receive an immediate response on unsafe
driving events and “near accidents,” and get a more detailed
explanation of the meanings and consequences of their
impaired driving behavior later on.

5. Combining the information from CWS’s alerts and IVC
with a telematics system will allow fleet managers/safety
organizations/driving rehabilitators to analyze the driving
patterns and habits of each older driver. With this hard data,
they could support and train drivers who have bad driving
habits as well as reward safe drivers’ behavior. Retrospective
feedback can be given to vehicle fleets by an authority, such
as a fleet manager, through a feedback call/driving rating
compared to other drivers in the company/providing reward
to those who improve.

6. In regards to elderly drivers who drive in private vehicles,
driving improvement can be rewarded through providing

discounts when buying insurance (Pay as you drive), or mobile
feedback messages to summarize a driving period.

7. Nevertheless, when introducing such aiding technologies to
the vehicles of elderly drivers, caution should be exercised
because these technologies have a complex-positive and
negative effect that needs to be examined in further studies.
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Background: While advanced driver assistance technologies have the potential to 
increase safety, there is concern that driver inattention resulting from overreliance on these 
features may result in crashes. Driver monitoring technologies to assess a driver’s state 
may be one solution. The purpose of this study was to replicate and extend the research 
on physiological responses to common driving hazards and examine how these may differ 
based on driving experience.

Methods: Learner and Licensed drivers viewed a Driving Hazard Perception Task while 
electrodermal activity (EDA) was measured. The task presented 30 Event (hazard develops) 
and 30 Non-Event (routine driving) videos. A skin conductance response (SCR) score 
was calculated for each participant based on the percentage of videos that elicited an SCR.

Results: Analysis of the SCR score during Event videos revealed a medium effect 
(d = 0.61) of group differences, whereby Licensed drivers were more likely to have an 
SCR than Learner drivers. Interaction effects revealed Licensed drivers were more likely 
to have an SCR earlier in the Event videos compared to the end, and the Learner drivers 
were more likely to have an SCR earlier in the Non-Event videos compared to the end.

Conclusion: Our results support the viability of using SCR during driving videos as a marker 
of hazard anticipation differing based on experience. The interaction effects may illustrate 
situational awareness in licensed drivers and deficiencies in sustained vigilance among learner 
drivers. The findings demand further examination if physiological measures are to be validated 
as a tool to inform driver potential performance in an increasingly automated driving environment.

Keywords: electrodermal activity, autonomous vehicles, driving experience, hazard perception, young drivers

INTRODUCTION

Advanced driver assistance systems (ADAS) have the potential to drastically reduce vehicle 
crash injury and death but may be  accompanied with possible setbacks. Recent experience 
demonstrates that overreliance on this technology poses a separate set of risks where drivers 
may be  unable to regain vehicle control in situations of technology failure (Krompier, 2017; 
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Vogelpohl et al., 2019). One approach to addressing this problem 
is to augment safety by monitoring driver state (e.g., drowsiness, 
workload, and levels of vigilance) by using physiological 
measurements (Balters and Steinert, 2017; Lohani et  al., 2019), 
but a model to understand the complexity of the relationship 
between physiological measures, individual driver cognitive 
state, and the implications for driving behavior and performance 
is far from complete (Balters and Steinert, 2017).

One psychophysiological measure of autonomic arousal 
utilized to monitor driver state is electrodermal activity (EDA). 
EDA is a measure of neuronally mediated autonomic changes 
in the electrical properties of the skin, and has been shown 
to be  a sensitive index of sympathetic nervous system activity 
(Braithwaite et  al., 2013; Dawson et  al., 2017). Tonic skin 
conductance levels and phasic skin conductance responses 
(SCR), are elements of EDA that have long been used in the 
driving literature to measure workload, risk of accident (Hulbert, 
1957; Taylor, 1964; Helander, 1978), as well as levels of stress 
and tension (Michaels, 1960; Healey and Picard, 2005). A recent 
study by Darzi et  al. (2018) found decreased tonic skin 
conductance levels to be indicative of sleep deprivation. However, 
if driver state monitoring is to become a successful intervention 
to facilitate the safe interplay of driver assistance technology 
and driver manual takeover, psychophysiological monitoring 
models must not only incorporate cognitive states but also 
how individual responses may vary based on experience (Collet 
and Musicant, 2019) and the acquisition of critical driving skills.

For example, a critical skill that develops with driving 
experience is hazard perception (Quimby et al., 1986; McKenna 
and Crick, 1991; Horswill and McKenna, 2004). Hazard 
perception is the learned ability to detect, predict, recognize, 
and respond to developing hazards (Horswill and McKenna, 
2004; Wetton et  al., 2011; Crundall et  al., 2012; Crundall, 
2016) and has been associated with crash risk (McKenna and 
Crick, 1991). Kinnear et  al. (2013) found that compared to 
novice drivers, experienced drivers were twice as likely to 
demonstrate an SCR when watching videos containing a driving 
hazard. The videos used in this study were validated to distinguish 
between novice and experienced drivers as part of the 
development of the United  Kingdom hazard perception test. 
The difference between novices and experienced drivers was 
in the period leading up to the hazardous event, termed the 
“anticipatory period.” Subsequent hazard perception and SCR 
research have found similar results (Tagliabue and Sarlo, 2015; 
Barnard and Chapman, 2016; Tagliabue et  al., 2017) but have 
been conducted outside the United  States.

A potential reason for these differing autonomic responses 
to driving hazards between novice and experienced drivers 
emerges from literature suggesting the role of somatic experience 
on decision-making. Specifically, evidence suggest that this 
learning not only occurs from explicit knowledge of reward/
punishment schedules, but also from affect-based somatic signals 
(i.e., pulse rate blood flow, pupil response, etc.) experienced 
by the driver (Damasio, 1994; Phelps et  al., 2014; Petracca, 
2020). Known as the somatic marker hypothesis (Damasio, 
1994), this theory has potential implications for novice vs. 
experienced drivers suggesting that prior positive or negative 

experience results in the formation of a gut feeling or “somatic 
marker” (i.e., a physiological response) which in turn biases 
the options available for decision-making when encountering 
a similar situation in the future. This “feeling-based” system 
for decision-making complements and operates in parallel to 
the rational decision-making process, which if it were operating 
in isolation would take too long to reach complex decisions. 
However, decision speed and accuracy could be  ecologically 
viable if facilitated using feedback from the autonomic and 
the somatic nervous systems via the emotion circuitry in the 
brain (Bechara and Damasio, 2005). Taken together, these 
biologically based decision-making theories have relevance for 
driver assessment of hazards, a decision-making process which 
needs to occur rapidly. Drivers who have progressed past the 
novice (or learner) stage would have a larger library of experience 
to draw from, allowing their feeling-based appraisal to identify 
potential risks earlier, and bias a behavioral response to anticipate 
and avoid the impending hazard.

The purpose of this study was to replicate and extend 
research investigating measures of autonomic arousal (i.e., EDA) 
during the viewing of driving hazards for young drivers differing 
in experience levels in the United States context. As the stimuli 
developed for previous studies were from the United Kingdom, 
they could not be  readily used in the United  States context 
due to the differences in the driver position in the vehicle 
and the direction of travel lanes. Thus, we  developed a novel 
Driving Hazard Perception Task (Ehsani et  al., 2020) and 
measured SCR during videos where a hazard occurred (Event), 
and videos of routine driving (Non-Event). Videos were extracted 
from real-world driving captured as part of a large-scale 
naturalistic driving study. While driving simulators more closely 
mimic the on-road driving task, the focus here was autonomic 
responses to developing hazards, rather than driving task 
performance. Videos including naturally occurring cues therefore 
provided the stimuli necessary for this study. The use of videos 
for this purpose has been demonstrated previously (Kinnear 
et  al., 2013) and is commonly used for hazard perception 
testing. We hypothesized that more experienced drivers (Licensed) 
would have a greater likelihood of SCR than Learner drivers 
during Event videos, and both Learner and Licensed drivers 
would have a greater likelihood of SCR during the Event videos 
compared to the Non-Event videos. By replicating and extending 
the literature supporting the finding of heightened autonomic 
arousal during hazard anticipation induced by experiential 
learning, we  would be  providing valuable information to the 
developers of driver state monitoring systems.

MATERIALS AND METHODS

Participants
Participants were recruited through flyer, email, website 
announcements, and in person from the Baltimore metro region. 
To be  included in the study, participants needed to be between 
the ages of 16–20  years and have a valid driver’s license or 
learner’s permit and speak English fluently. To be  included in 
the Learner group, drivers held a valid learner’s permit and 
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had driven less than 1,000  miles as assessed by self-reported 
mileage. To be  included in the Licensed group, participants 
had a valid non-commercial driver’s license for a minimum 
of 2  years and had driven more than 3,000  miles in the past 
12  months as assessed by self-reported annual mileage. 
Exclusionary criteria included: (1) a history of neurologic disorder 
(e.g., epilepsy, cerebral palsy, traumatic brain injury, and Tourette 
syndrome), (2) a history of visual impairment, (3) the inability 
to read English fluently, and (4) the presence of psychiatric 
illness or neurodevelopmental disorders assessed via The Mini 
International Neuropsychiatric Interview for Children and 
Adolescents (MINI-KID). All study procedures were approved 
by the Johns Hopkins Medicine Institutional Review Board.

Study Visit
Participants came to a single study session after passing an 
initial phone screening interview. Participants were introduced 
to the physiological recording equipment after informed consent 
and eligibility for the study confirmed with the MINI-KID. 
After the physiological recording equipment was placed on 
the participant and the quality of the data collection was 
verified, a 2-min baseline measurement was collected (the 
participant sat quietly and was task free) before the 
commencement of The Driving Hazard Perception Task that 
included 60 30-s videos [30 Event videos (hazard develops) 
and 30 Non-Event videos (routine driving)]. The development 
and details about the task may be found in Ehsani et al. (2020) 
and in the Supplementary Material. After the task, the recording 
equipment was removed, and participants completed 
demographics and medication history questionnaires. The 
participants were provided with a $50 gift card as compensation.

Calculation of SCR Score
Measurement windows in the Event videos were defined from 
the first frame the hazard appeared on the screen to 3  s after 
the driver was required to perform an evasive action (see 
Figure  1). The window included the evasive action due to the 
delayed response of SCR (Braithwaite et  al., 2013). These 
windows approximated the anticipatory period from the study 

of Kinnear et  al. (2013). In Non-Event videos, non-hazardous 
occurrences were randomly selected from general driving clips 
with timing that corresponded to the event videos. Descriptions 
of the frames chosen to define the measurement windows are 
in Supplementary Table S1 (Supplementary Material). To 
avoid learning effects, the Onset Time of these measurement 
windows were staggered so that in the Event and Non-Event 
videos, Early Onset videos had the window at the beginning, 
Middle Onset videos had the window in the middle, and the 
Late Onset videos had the window toward the end of the video.

For an SCR to be included in the data, the phasic component 
increase of the EDA signal was required to be  equal to or 
exceed 0.03  μS (Braithwaite et  al., 2013), and the waveform 
onset was initiated within measurement window, and the peak 
was achieved within 10 s of the waveform onset. While Kinnear 
et  al. (2013) used a 0.05  μS threshold, we  opted to use the 
current acceptable threshold due to improvements in technology. 
These analyses were performed using AcqKnowledge Biopac Basic 
Scripting Software, 5.0, and the results were visually inspected 
for quality control. Participants were monitored during the data 
acquisition for behavior that might induce an SCR artifact (e.g., 
yawning, deep breaths, and body movement). There were no 
SCRs attributed to these artifacts during the measurement windows.

Repeating the method in Kinnear et al. (2013), we calculated 
an SCR score. This dependent measure reflects non-responses 
as well as responses. To calculate an SCR Score, the number 
of Event and Non-Event video clips where the participant 
exhibited an SCR response during the measurement window 
were summed. To do this, Event periods were coded (using 
Matlab) as a 0 or 1, depending if an SCR occurred within 
the time frame. On rare occasions, a participant demonstrated 
two SCRs during the time frame, but it was still coded as 
“1.” The following equation was used to calculate each participant’s 
SCR score for Event and Non-Event videos:
 

SCR Score no of clips with SCR
total no of clips

%
.

.
( )= ×

  

 
100

This score represented the proportion of clips within each 
video type that elicited an SCR.

FIGURE 1 | Measurement windows for event videos.
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Data Analysis
All analyses were conducted using IBM Statistics SPSS v26. 
To compare Learner and Licensed drivers on SCR score, a 
mixed model ANOVA was used with Group as the between 
subject variable and Video Type as the within subject factor. 
We  reported main effects and interactions from this  
analysis. Post hoc pairwise comparisons were examined with 
Bonferroni corrections applied for multiple comparisons. Due 
to our small sample, when values of p approached  
significance, we  calculated effect sizes. Effect sizes were 
assessed using Cohen’s d with small, medium, and large 
effect sizes as Cohen’s d 0.3–0.5, 0.5–0.8, and ≥0.8,  
respectively (Cohen, 1992).

Data were also examined for influences due to age, sex, 
and the task design effects of trial order and Onset Time.

RESULTS

Participant Demographics
Participants included 41 drivers aged 16–20-years old. Three 
participants were excluded from analyses after reporting regular 
use of medications known to blunt SCR response. For the 
remaining 38 participants, 20 were Learner drivers who reported 
holding a United  States learner’s permit for 1.29  ±  1.05  years 
(mean  ±  SD) and driving less than 900  miles of self-reported 
miles (mean  ±  SD: 293  ±  306). The Licensed drivers (n  =  18) 
had a United  States driver’s license (n  =  16) or International 
license (n = 2) for at least 2 years (mean ± SD: 2.74 ± 0.62 years) 
and had more than 3,000 self-reported driving miles in the 
past 12  months (mean  ±  SD: 4,766  ±  1,708). All participants 
had normal or corrected to normal vision and did not 
report colorblindness.

The male:female ratio for the groups was: Licensed 11:7; 
Learner 6:14; [χ2(1)  =  3.71, p  =  0.054]. Licensed drivers were 
slightly older than Learner drivers, F(1,36)  =  5.79, p  =  0.021. 
We had no missing data. Licensed and Learner drivers differed 
significantly in number of miles driven, F(1,36)  =  132.78, 
p < 0.001 such that Licensed drivers reported a higher number 
of miles driven compared to Learner drivers. Additionally, 
Licensed drivers reported having driven for more years than 
Learner driver, F(1,36)  =  26.00, p  <  0.001. Participant 
demographics are presented in Table  1.

Analysis of SCR Score
Preliminary analyses revealed no significant main effects of 
age or sex, and no interaction with other variables; thus, 
we  omitted sex from the model, but we  included age as a 
covariate as there were group differences. There was no apparent 
video order effect, but a mixed model ANOVA (Onset Time: 
Early, Mid, and Late)  ×  2 (Event)  ×  2 (Group) revealed a 
significant three-way interaction [F(1,36)  =  5.669, p  =  0.023, 
r2  =  0.136, observed power 0.639] indicating group had a 
different effect on SCR score depending on Onset Time and 
Event Type.

Do Learner and Licensed Drivers Experience 
Differences in Psychophysiological Reactions to a 
Driving Hazard?
The results of a 2  ×  2 mixed model ANOVA, with Video 
Type as the within subject factor (Event or Non-Event) and 
Group as the between subject factor (Learner or Licensed), 
revealed a Group effect that approached significance 
[F(1,36)  =  3.623, p  =  0.065, r2  =  0.094, observed power 0.457, 
d  =  0.64]; the medium effect size indicating Licensed drivers 
were more likely to have an SCR response than Learner drivers 
(meanLic ± SD = 32.06 ± 16.18; meanLearn ± SD = 21.71 ± 16.12). 
There was no significant interaction effect [F(1,36)  =  0.474, 
p  =  0.496, r2  =  0.013, observed power 0.103], suggesting that 
the group effect was consistent across Event and Non-Event videos.

Pairwise comparisons further probing the Group effect 
approached significance for the Event Videos [F(1,37)  =  3.524, 
p  =  0.069, d  =  0.61], the medium effect indicating Licensed 
drivers more likely to have an SCR response than Learner 
drivers in the Event videos (meanLicEvent  ±  SD  =  34.59  ±  17.96; 
meanLearnEvent  ±  SD  =  24.24  ±  16.02; see Figure  2). The  
difference between groups did reach significance in the Early 
Onset Event Videos, [F(1,37)  =  6.259, p  =  0.017; 
meanLearnEvent  ±  SD  =  22.22  ±  18.73; meanLicEvent  ±   
SD  =  41.36  ±  27.96] indicating a greater likelihood of an SCR 
in the Licensed drivers compared to Learner drivers if the 
hazard appeared early (Figure  3, letter a).

There was no Group effect for the Non-Event Videos 
[F(1,37)  =  1.691, p  =  0.202, d  =  0.42], yet in the Late Onset 
Non-Event Videos, there was a significant difference between 
groups [F(1,37)  =  05.393, p  =  0.026; meanLearnNonEvent  ±   
SD  =  15.00  ±  12.10; meanLicNonEvent  ±  SD  =  25.46  ±  15.60] 

TABLE 1 | Demographics and driving history.

  Learner (n = 20)   Licensed (n = 18)   Group comparisons

Mean(SD) Range Mean(SD) Range F-statistic p value

Age (years) 18.37(1.78) 16.12–20.87 19.47(0.79) 18.04–20.78 5.79 0.021
Sex* 6M/14F 11M/7F 3.71 0.054
Miles driven** 293 (306) 0–900 4,766(1708) 3,000–9,240 132.78 <0.001
Time driving*** 1.29(1.05) 0.06-3.02 2.74(0.62) 2.02–4.17 26.00 <0.001

*Pearson Chi-Square value reported.
**Miles driven: self-reported total mileage for learner drivers; self-reported mileage in the past 12 months for licensed drivers.
***Time driving: number of years from permit (for learner) or license (for licensed) issued date and time of study assessment.
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indicating the Licensed drivers were more likely to have an 
SCR than Learner drivers during routine driving if the 
measurement window was toward the end of the video (Figure 3, 
letter b).

There was a significant difference between Early and Late 
Onset Event Videos in the Licensed group 
(meanLicEarly  ±  SD  =  41.36  ±  27.96; meanLicLate  ±   
SD  =  27.02  ±  16.39; p  =  0.024), indicating that the Licensed 
drivers were more likely to have an SCR response if the hazard 
developed earlier in the video compared to the end of the 
video (Figure  3, letter c). However, for the Learner group, 
there was a significant difference between Early and Late Onset 
Non-Event videos (meanLearnEarly  ±  SD  =  26.50  ±  20.33; 
meanLearnLate  ±  SD  =  15.00  ±  12.10; p  =  0.018), indicating the 
Learner drivers were more likely to have an SCR response 
earlier in the Non-Event videos compared to the end of the 
Non-Event video (Figure  3, letter d).

Are Drivers More Likely to Show an SCR in 
Event Videos Compared to Non-Event Videos?
There was not a significant effect of Video Type [F(1,35) = 0.109, 
p  =  0.744, r2  =  0.003, observed power 0.062, d  =  0.29],  
indicating a similar likelihood across all videos to have an 
SCR response (meanEvent  ±  SD  =  29.14  ±  17.54; 
meanNon-Event  ±  SD  =  24.08  ±  17.20).

Yet, in Early Onset videos, there was a significant difference 
between video type in the Licensed group [F(1,17)  =  5.776, 
p  =  0.028; meanLicEvent  ±  SD  =  41.36  ±  27.96; 
meanLicNonEvent ± SD = 28.33 ± 22.82] indicating Licensed drivers 
were more likely to have an SCR when a hazard developed 
compared to routine driving (Figure  3, letter e) when the 
measurement window was at the beginning of the video.

In the Late Onset videos, there was a significant difference 
in the Learner group between video types [F(1,19)  =  5.794, 
p  =  0.026, r2  =  0.234, observed power  =  0.627; meanLearnEvent   
±  SD  =  24.55  ±  19.81; meanLearnNonEvent  ±  SD  =  15.00  ±  12.10] 
indicating Learner driver were more likely to have an SCR 

when a hazard developed than compared to routine driving 
(Figure  3, letter f) when the measurement window was at the 
end of the video.

DISCUSSION

The purpose of this study was to examine differences in the 
autonomic responses (SCR) of Learner and Licensed drivers 
in response to video stimuli in the United  States, replicating 
past studies performed in the United  Kingdom. These 
psychophysiological differences will provide insights into how 
experience should be incorporated in the algorithms monitoring 
driver cognitive state in this increasingly automated driving 
environment. Overall, Learner drivers did demonstrate fewer 
SCRs than the Licensed drivers during The Driving Hazard 
Perception Task, and Event videos appeared to discriminate 
between Learner and Licensed drivers. The medium effect 
size suggests the relationship between driving group and SCR 
score in event videos was meaningful (d  =  0.61) but the 
sample was underpowered to reach statistical significance. 
This finding is consistent with previous research examining 
differences in autonomic arousal between novice and 
experienced drivers (Kinnear et  al., 2013) in a controlled 
setting. The addition of Non-Event videos to the task was 
novel, and Licensed drivers were more likely to exhibit an 
SCR in and Event video than Non-Event if the hazard developed 
early. Conversely, Learner drivers were more likely to 
demonstrate an SCR in the Event videos if the hazard 
developed late.

The design of this study differs from the experiment that 
it sought to replicate in one critical aspect, and this may 
explain underpowered results compared to the clear picture 
of greater autonomic responses in experienced drivers in 
Kinnear et  al. (2013). The stimuli used for this study were 
derived from naturalistic driving dashcam footage as opposed 
to the professionally filmed hazard perception clips that were 

FIGURE 2 | Mean skin conductance response (SCR) score by Group and Video Type with SE Bars.
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used in the United  Kingdom study. The United  Kingdom 
clips were developed during the design of the official hazard 
perception test and went through a detailed validation process 
(Grayson and Sexton, 2002). As such, they included validated 
examples of developing hazards and included defined timing 
windows, allowing differentiation between “anticipatory” (or 
precursory) and “event” areas in the time window of the 
defined hazard. Differentiation between the anticipatory and 
event periods could not be  as clearly made in this study 
because the experimental stimuli lacked an extended build 
up period. This lack of definition between the anticipatory 
and the event stages of the hazards may have masked differences 
between novice and more experienced drivers and points to 
the importance of the experimental stimuli in measuring 
hazard perception.

This study also found an influence of Onset Time that 
had not been previously examined. This may also be  an 
experiment artifact related to the specific stimuli, but the 
findings do suggest some important factors as it relates to 
autonomous driving and driver monitoring. Licensed drivers 

had a pattern of decreased likelihood of producing an SCR 
when the hazard developed later in the video, yet the Learner 
drivers maintained similar responses regardless of the timing 
of the hazard. This finding provides evidence that may 
be  indicative of situational awareness as it relates to hazard 
prediction. As more experienced drivers have more time to 
observe the environmental and behavioral stimuli in a 
developing scene, they are better able to predict possible 
behaviors, and thus less likely to elicit an SCR when a 
predicted hazard occurs. Learners, on the other hand, were 
equally “surprised” when the hazard developed regardless of 
the time spent observing the situation. This theory coincides 
with current work indicating hazard prediction is the 
subcomponent of hazard perception that differentiates 
experienced and novice drivers (Crundall, 2016; Ventsislavova 
et  al., 2019). The similar pattern of decreased likelihood of 
producing an SCR later in the video was observed in the 
Learner drivers in the Non-Event videos. The Licensed drivers, 
in contrast, had a consistent likelihood of an autonomic 
response regardless of the timing of the measurement window. 

FIGURE 3 | Skin conductance response score by Onset Time and Group. SE bars. Matched letters indicate statistically significant differences in mean score. Panel 
(A): in the Event videos, (a) Licensed drivers had a greater SCR score in the Early Onset compared to Learner drivers; (c) Licensed drivers had a greater SCR score 
in Early Onset compared to Late Onset. Panel (B): in the Non-Event videos, (b) Licensed drivers had a greater SCR score in the Late Onset compared to Learner 
drivers; (d) Learner drivers had a greater SCR score in the Early Onset compared to Late Onset. Across Panels: (e) Licensed drivers had a greater SCR score in the 
Event Early Onset compared to Non-Event Early Onset; (f) Learner drivers had a greater SCR score in the Event Late Onset compared to the Non-Event Late Onset.
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We  have labeled these videos as Non-Event, but the routine 
driving captured by the dashcam will inherently include 
situational cues to which more experienced drivers may 
respond. While the Licensed drivers consistently attend to 
these potential hazard cues throughout an “uneventful” video 
clip, the patterns observed in the Learner drivers may 
be  physiological evidence of previously identified novice 
deficiencies in lack of awareness and sustained vigilance.

This interpretation of differences in situational awareness 
and sustained vigilance is presented with caution for there 
are other possible interpretations. While there was an overall 
lower reactivity of Learner drivers, it may be  these drivers 
needed a longer period to discriminate between Event and 
Non-Event videos, and thus video type differences were only 
seen in the Late Onset videos for this group due to sustained 
vigilance. In contrast, the Licensed driver decreased reactivity 
in Event videos as time progresses may be indicative of decreased 
sensitivity rather than prediction. Regardless, the timing of 
the measurement window in a naturalistic driving video does 
need to be  investigated as it points to different levels of 
experience may predispose drivers to hazard detection 
vulnerabilities that manifest at different stages on the driving 
task. These investigations should include several task versions 
with different timing windows for the same stimuli. This 
research design would clearly examine the influence of timing 
independent from possible stimuli specific responses that is 
a limitation of the current study. Additionally, this would 
improve the input to driving monitoring algorithms determining 
the appropriate wait time between driver hazard orientation 
and expected SCR.

While this study describes our groups as differing in 
experience, exposure and experience are not the same thing. 
An individual driving on the same routes is not likely to 
be as experienced as an individual who is driving on different 
road types and in varied traffic scenarios. However, 
epidemiological evidence suggests that exposure and experience 
(and crash risk) are related (Elvik, 2006). As there is no 
established measure of experience, participants were screened 
for inclusion in the study based on their exposure as a proxy 
of experience. Additionally, there was a significant difference 
in age between the two groups, as well as a lower age range 
of the Learner group, but age was used as covariate in 
the analyses.

In conclusion, this experimental study used a novel Driving 
Hazard Perception Task and measured SCR during videos where 
a hazard occurred (Event), and videos of routine driving 
(Non-Event). A medium effect size suggests that videos containing 
a hazard (Event) appeared to discriminate between novice and 
more experienced drivers, but the sample was underpowered 
to reach statistical significance. The confounding influence of 
Onset Time may be an additional factor influencing the findings. 
The decreased likelihood of SCR as the videos progress may 
be  an indicator of situational awareness that needs further 
investigation. While physiological measures such as SCR may 
be useful for research and real-time state measurement relating 
to automated technologies and situational awareness, more 
needs to be  understood with regard to experimental design 

and use of stimuli for validating such standards. Regardless, 
our research provides evidence that SCRs relative to hazard 
perception do differ based on experience, and this needs to 
be included in the model of driver state monitoring to properly 
understand the physiological signal and to facilitate safe 
integration of ADAS technologies in vehicles.
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Driver performance is crucial for road safety. There is a relationship between
performance and stress such that too high or too low stress levels (usually characterized
by stressful or careless driving, respectively) impair driving quality. Therefore, monitoring
stress levels can improve the overall performance of drivers by providing either an alert
or intervention when stress levels are sub-optimal. Commonly used stress measures
suffer from several shortcomings, such as time delays in indication and invasiveness
of sensors. Grip force is a relatively new measure that shows promising results in
measuring stress during psychomotor tasks. In driving, grip force sensor is non-invasive
and transparent to the end user as drivers must continuously grip the steering wheel.
The aim of the current research is to examine whether grip force can be used as a
useful measure of stress in driving tasks. Twenty-one participants took part in a field
experiment in which they were required to brake the vehicle in various intensities. The
effects of the braking intensity on grip force, heart rate, and heart rate variability were
analyzed. The results indicate a significant correlation between these three parameters.
These results provide initial evidence that grip force can be used to measure stress in
driving tasks. These findings may have several applications in the field of stress and
driving research as well as in the vehicle safety domain.

Keywords: grip force, stress, steering wheel, driving, heart rate variability, heart rate, psychomotor tasks,
physiologic indices

INTRODUCTION

“Will I have to learn how to drive?” asked the 10 year-old daughter of one of the authors recently.
Although it is a common belief that autonomous cars will take over in the next few years, the more
probable answer is that she would have to learn how to drive unless she is willing to rely solely on
public transportation. According to Litman (2019), it is not until the 2050s that fully autonomous
cars, in which no human involvement is required (known as level 5 in the autonomous driving scale
defined by the Society of Automotive Engineers International), will be commonly used. Until such
time, driver performance will remain critical in road safety.

Road accident investigation (Hendricks et al., 2001) and observational studies (Dingus et al.,
2016) indicate that about 90% of all road accidents result from human error. To improve road
safety, it is essential to recognize the factors affecting driver performance, specifically, factors that
can be moderated to improve driver performance and road safety. This paper focuses on one such
factor—temporal driver stress.

Frontiers in Psychology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 617889146

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.617889
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2499-3321
http:orcid.org/0000-0002-4455-6153
http:orcid.org/0000-0002-8448-7906
http:orcid.org/0000-0002-6639-0262
http:orcid.org/0000-0002-0582-4821
https://doi.org/10.3389/fpsyg.2021.617889
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.617889&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.617889/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-617889 June 2, 2021 Time: 17:25 # 2

Sahar et al. Grip Force as Stress Measure

Stress is defined as “. . .a real or interpreted threat to the
physiological or psychological integrity of an individual that
results in physiological and/or behavioral responses” (McEwen,
2000). According to the transactional model, stress is the
outcome of appraisals of demands and personal competence,
together with a coping strategy that mediates between external
demands (Lazarus and Folkman, 1984). Appraisal processes
generate various outcomes or stress symptoms: physiological,
emotional, and behavioral (Matthews, 2001). McGrath (1976)
stated that stress results from an interaction between three
elements: perceived demand, perceived ability to cope, and
perceived importance of coping with the demand.

The concept of “stress” is often used as a synonym to
the “mental workload” concept (Staal, 2004). Accordingly, the
mental workload is also referred to as a transactional concept
since it represents an interaction between mental capacities and
task demands (Dehais et al., 2020). Furthermore, some stress
definitions hold that stress represents a higher mental workload
(Brookhuis and De Waard, 2010; Hou et al., 2015).

An additional definition by Mulder and Moray (1979) suggests
that mental workload is “. . .an inferred construct that mediates
between task difficulty, operator skill, and observed performance”
(Mulder and Moray, 1979; p. 443). Thus, based on Mulder
and Moray’s (1979) definition of mental workload and the
mentioned definition of stress by McGrath (1976), the main
difference between mental workload and stress stems from the
perceived ability to cope with the demands, namely, unlike
mental workload (Mulder and Moray, 1979), stress is caused by
the perceived consequences of failing to cope with the demands
(McGrath, 1976).

Indeed the confusion between the terms “workload” and
“stress” is an entangled issue, as these terms are not yet adequately
defined nor unambiguously differentiated in the literature.
Furthermore, the manifestations through the sympathetic
nervous system of stress and workload are similar and may be
indistinguishable (Alsuraykh et al., 2019). This confusion will
not be resolved within the framework of the present study, and
henceforth we shall use only the term “stress” for simplicity.

One of the common descriptions of the relationship between
performance and stress is based on findings made more than
a century ago by Yerkes and Dodson (1908), later described
as an “inverted U-shaped curve.” According to the inverted
U-shaped curve, the upper and lower levels of stress yield
unsatisfactory performance, while the mid-level produces the
best performance (Hancock, 1989; Hancock and Szalma, 2008).
Concerning driving, higher stress levels are harmful to driver
performance (Qu et al., 2016). At the other end of the scale,
very low stress, termed by Hancock and Szalma (2008) as
“under-stimulation,” was found to impair driver performance
(Joosen et al., 2017).

The construct of stress is divided into chronic and acute
stress (Segerstrom and Miller, 2004). Chronic stress refers
to a continuous state beyond a specific driving situation.
Acute stress refers to a single event of short duration or a
“micro-event” (Meyer et al., 2010). In the context of driving,
short-duration events that may cause stress are unexpected
events that, in turn, require sudden and unplanned reactions

(Davies and Underwood, 2000). Stress-inducing driving events
require two main maneuvers from the driver: manipulating the
steering wheel and braking. Studies on driver stress have used
manipulations such as driving through a labyrinth or slalom to
force the driver to manipulate the steering wheel (Zontone et al.,
2020) and pedestrians or other objects erupting into the road to
force the driver to brake intensely (Daviaux et al., 2020).

Acute stress during driving causes a high mental workload
(Wiberg et al., 2015) and adverse effects (Frasson et al., 2014)
that may decrease driver performance (Brookhuis and De
Waard, 2010; Rastgoo et al., 2019). Adding automation would
not necessarily provide drivers with a less effortful working
environment (Botzer et al., 2016). However, detecting acute
stress during driving may allow various interventions that would
reduce potential risks. An example of such an application is
stress-adaptive car systems that modify the parameters of in-
vehicle driver-aiding systems based on the driver’s stress levels
(Collet and Musicant, 2019). Another application is in-car just-
in-time stress management interventions (e.g., mild temperatures
and music, bio-feedback interfaces, and chatbots) administered
when the stress levels are too high (Balters et al., 2019).

Acute stress is manifested physiologically by the sympathetic
nervous system, which stimulates the body’s “fight or flight”
response. This response is antagonistic to the parasympathetic
nervous system, which reduces stress (Contrada and Baum,
2011). These reactions can be measured in many ways, such as
maximal heart rate (HR) (Kudielka et al., 2004), power spectra in
specific frequency bands of the heart rate variability (HRV) signal
(Allen et al., 2014), galvanic skin response (GSR) (Al-Fudail and
Mellar, 2008), eye-related measures (Matthews et al., 2015), and
cortisol levels (Yamaguchi et al., 2006).

In HRV analysis, the cardiac signal is divided into three
components: VLF (very low frequency, 0–0.04 Hz), LF (low
frequency, 0.04–0.15 Hz), and HF (high frequency, 0.15–
0.4 Hz) (Malik, 1996). The LF measure reflects the sympathetic
system (and therefore is related to stress), while the HF
measure reflects the parasympathetic system (Sztajzel, 2004). The
LF/HF ratio indicates the balance between the sympathetic and
parasympathetic divisions of the autonomic nervous system and
is used as a measure of stress as well (Kristal-Boneh et al., 1995;
McCraty et al., 1995).

The measures mentioned above suffer from several practical
shortcomings. Cortisol level analysis is not suitable during task
performance since it is not easily measured continuously. GSR,
HR, and HRV measurements may be inconvenient for use
in realistic driving scenarios (Healey and Picard, 2005) and
may even be considered obtrusive (Dinges et al., 2005). These
measures also suffer from delays in the measurement (the time
gap between the stressful event and the observed response). GSR’s
delays are between 2 and 11 s long (Kucera et al., 2004; Dawson
et al., 2007; Bruun, 2018), and valid analysis of changes in HRV
may require a continuous signal of 4–5 min in duration (Nickel
and Nachreiner, 2003). Cortisol measurement reacts to stressors
with a delay of several minutes, sometimes up to half an hour
(Kirschbaum and Hellhammer, 1994).

Eye-related measures, such as pupil dilation (Palinko et al.,
2010), fixation duration (Matthews et al., 2015), saccade rate,
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and gaze shifts (Tomer et al., 2018), as well as saccadic range
(May et al., 1990), were reported as indices of mental workload.
There is limited evidence for ocular measures as stress indicators,
and most findings are concerning pupil dilation (Pedrotti et al.,
2014). Though a stressor’s administration leads to pupil dilation,
the pupil’s size is susceptible to light intensity and requires
an illumination-controlled environment—not practical for non-
lab applications (Pedrotti et al., 2014). While eye closure level
is useful in measuring drowsiness (Grimberg et al., 2020), it
is also not useful for stress measurement. Finally, GSR and
HRV do not always correlate strongly with stress, neither
induced (e.g., Rohleder et al., 2006; Zhai and Barreto, 2006) nor
measured by well-established measures, such as cortisol level
(e.g., Healey and Picard, 2005).

Therefore, it may be useful to develop additional stress
measures that provide solutions to the issues discussed earlier.
One such possible measure is grip force, found to be capable of
measuring stress in a prompt and non-invasive manner.

Continuous and repeated stress measurements using non-
invasive methods have been of great interest in recent years.
Hernandez et al. (2014) measured the amount of force applied to
a computer keyboard and a mouse. Although not suitable for use
in driving tasks, it shows that hand muscle tonus measurement
has the potential to be an indication of stress. Wahlström et al.
(2002) examined the effect of stressors (e.g., time pressure and
verbal provocation) on various factors, including the grip force
upon a computer mouse. Grip force increased when stressors
were used. However, this effect was attributed both to stress and
the mouse operation’s speed. In another research that used grip
force on a computer mouse, Liao et al. (2006) found greater grip
force in response to higher time pressure. It should be noted that
these studies manipulated the mental workload rather than the
stress, as no direct implications for low-performance outcomes
were involved. These two studies also used static tasks (e.g., math
problems and typing tasks), making it difficult to extend their
findings to other contexts such as driving tasks.

Wagner et al. (2015) examined the feasibility of grip force
as a measure of stress in tracking tasks. Grip force was
higher in the presence of stress. This study provides initial
evidence of distinguishing between stressful and non-stressful
conditions during physical tracking tasks by measuring the grip
force. Recently, these findings were successfully reconstructed
(Botzer et al., 2020). Mühlbacher-Karrer et al. (2017) used the
measurement of a driver’s grip force on a steering wheel as part of
a stress estimation system. However, the grip force’s contribution
to the stress level calculation was only 10%. Another limitation of
this study is that it was conducted only in a simulator and not in
actual driving, ignoring the effect of other factors on grip force
other than stress (e.g., vehicle accelerations). Additionally, the
mere driving an actual car in an experiment is known to induce
a state of stress (Balters et al., 2019), as the consequences of one’s
performance are tangible, unlike participating in an experiment
conducted in a simulator.

We aim to study the relationship between grip force and other
more common indices of stress, namely, physiological indices
and performance indices during short-duration driving events.
The purpose of the study, hopefully its main contribution, is

to provide initial empirical evidence to grip force as an index
of stress in driving tasks. To this end, one should define the
appropriate driving events that elicit acute stress. In previous
research, forced changes in driving behavior were found to
cause stress (Ross and Burnett, 2001; Lee and Winston, 2016;
Saxena, 2017). Such changes may result from the road conditions
and unexpected factors that force emergency maneuvers (i.e.,
a braking sign or a figure bursting into the road). Specifically,
stopping in response to a STOP sign during driving and the
necessity to brake have been found to induce stress in an
experimental context (Min et al., 2002; Collet et al., 2014;
Prasolenko et al., 2017; Sugiono et al., 2019).

Thus, in this study, we used diverse heart rate measurements
to show that braking events lead to higher stress as manifested
in psychophysiological changes of heart measurements. By
manipulating stress-inducing driving events and measuring their
effect on the heart and also grip force measurements, we
aim to verify the use of grip force as a valid measure of
stress during driving.

In the current research, grip force and heart rate measures
(HRV and HR) were recorded while driving and braking in
various intensities (in response to a STOP sign), as described
in “Experimental Setup and Methods.” We hypothesized that
intense braking during driving affects grip force and elicits
correlations between grip force, HRV, and HR measures. Thus,
grip force data were analyzed as a function of braking intensity,
and correlations among grip force and heart rate measures (HRV
and HR) were calculated to validate the grip force measure against
an accepted measure of stress (see section “Results”). HRV and
HR data were also analyzed as a function of braking intensity,
serving as a manipulation check.

EXPERIMENTAL SETUP AND METHODS

Participants
Twenty-one participants took part in this study. Due to technical
issues (failure in recording the data of one participant), we used
the data from 20 participants. All participants were bachelor
course students. All participants were male, between the ages of
24 and 34 (average 28.45, SD 2.18), and had a private car driver’s
license for at least 4 years.

Before the experiment, the participants underwent a safety
briefing, including a description of the experimental task, and
completed an informed consent statement. A safety supervisor,
positioned in the front passenger seat, was responsible for
maintaining safety during the experiment.

Apparatus
The experiment was conducted using an instrumented Kia Nero
(hereafter, the “Mobile-Lab”; Figure 1). The Mobile-Lab1 is
equipped with sensors for monitoring the vehicle and road
environment, including inertial measurement units (Lidar, GPS
antennas, and several cameras), and sensors for monitoring
indices of the driver using the Mindware Mobile Impedance

1http://www.ariel.ac.il/wp/mobile-lab/
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FIGURE 1 | The Mobile Lab, equipped with GPS and sensors, Mindware and grip force sensors, as well as additional equipment that was not used in the current
research.

FIGURE 2 | The general layout of the experimental driving session.
Experimental manipulations: mandatory speed sign (one of two speeds: 50 or
60 km/h) and STOP sign (at various distances: 15, 20, 25, 30, 35, or 40 m).
Each participant performed the driving sessions under all combinations of
speeds and braking distances at random order.

Cardiograph (heart activity measurement system Model 50–
2303-00, 2014, with a sampling rate of 500 Hz and 24-bit
ADC digitization). Cardiac data were recorded from electrodes
affixed to the participant’s chest. A grip force self-developed
measurement system was used (utilizing a force-sensitive resistor
sensor, sampled by an Arduino UNO R3 board). Both systems
were equipped with three-axis accelerometers.

Procedure
The participants performed 12 experimental driving sessions.
Each session involved driving along a straight path of
approximately 200 m at one of two mandatory speeds (50 or
60 km/h) and braking at varied mandatory distances (15, 20,
25, 30, 35, or 40 m), as shown in Figure 2. Each participant
performed the driving sessions under all combinations of
speed and braking distances (two speeds × six distances = 12
conditions) in random order. Each participant performed two
training sessions of about 2 min (during which they got

acquainted with the experimental path) and 12 experimental
driving sessions (one for each condition), which lasted nearly
20 min overall. After each experimental driving session, the
participant was instructed to leave the vehicle stationary for 15 s.

Data Preparation and Analysis
Procedures
To analyze the data from both acquisition systems used
(Mindware and the self-developed grip force measurement
system), first we synchronized the data (see section “Data
Synchronization”). After the data synchronization, we used the
acceleration data to identify the peak deceleration for each
driving session. Each session was characterized by a static phase
(of at least 15 s), an acceleration phase, and a deceleration
phase (as demonstrated in Figures 3, 4), in contrast to other
acceleration data (e.g., data from the training sessions) which
were less organized. Later, HRV and HR heart rate measures and
grip force measures were calculated (see “Heart Rate Measures
Calculation” and “Grip Force Data Preparation and Calculation”)
and analyzed (see section “Data Analysis”). Figure 5 summarizes
the flow of these processes.

Data Synchronization
Cardiac activity data and grip force data were synchronized
post factum, according to the accelerometers’ data (from both
measuring systems), using a dynamic time wrapping (DTW)
algorithm. Both data acquisition systems (Mindware for HRV
data and the self-developed grip force measurement system)
were equipped with three-axis accelerometers (X, Y, and Z),
which were fixed to the vehicle’s chassis. Acceleration data were
recorded by each system in a synchronized manner with the
physiological data (HRV and HR data at the Mindware system
and grip force data at the grip force measurement system).
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FIGURE 3 | Synchronized acceleration vectors of both accelerometers (of the Mindware system—in black—and the self-developed grip force measurement
system—in red) in the direction of the vehicle’s travel, during three successive experimental driving sessions, of a single participant.

First, the grip force system’s sampling rate was uneven and
ranged between 80 and 120 ms (8–12 Hz). Since a pre-condition
of the DTW procedure is that “the data should be sampled at
equidistant points in time” (Senin, 2008), a standard method
to deal with this requirement is resampling the data as has
been done in the current study. The resampled grip force
data had a 10 Hz sampling rate. The Mindware system had a
sampling rate of 500 Hz.

Next, for each system separately, a unified vector of the
three axes was calculated (√X2+Y2+Z2 ), using a 1-s sliding
window. Finally, a DTW algorithm was used to synchronize
these acceleration vectors from both systems. A similar
synchronization method has been used by Mantilla et al. (2017)
to detect temporal synchronization. DTW was proven to be a
robust distance measure for time series, enabling the matching
of similar plots even if they are out of phase in the time axis
(Keogh and Ratanamahatana, 2005).

Heart Rate Measures Calculation
To properly calculate the HRV LF measure and LF/HF ratio, a
minimum sliding window size of 30 s is required (De Rivecourt
et al., 2008; Wang et al., 2009). Typically, an HRV window size
is between 20 s and several minutes. For example, Mulder et al.
(2009) used a 300-s window, whereas Healey and Picard (2005)
used 100- and 300-s windows. It should be noted that the decision
about the window size is often arbitrary.

A small window size of 30 s is sufficient if combined with a
short-time Fourier transform (Li et al., 2019). Therefore, in the
current research, a sliding window with a window size of 30 s
was implemented to the cardiac data for computing the HRV
LF and HF measures and the LF/HF ratio as well as for heart
rate. The center of the window was determined according to the
braking event’s maximal deceleration. Since there were pauses
of 15 s after each braking event (as described in “Procedure”),

there could not have been any other experimental effect on the
physiological signals during the entire window size other than the
effect of the forced braking event itself. In addition, to account
for the chi-square distribution of HRV and heart rate values
(Van Roon et al., 2004), a natural log transformation was applied
to these measures.

Grip Force Data Preparation and Calculation
Grip force data under the threshold of 5 N (newton) was
considered mostly white noise due to its proximity to the lower
boundary of the grip force sensitivity. Accordingly, grip force
data below 5 N was excluded. Grip force data was collected and
resampled at a 10 Hz rate (as detailed in “Data Synchronization”).
Grip force measures were calculated to explore various aspects
of grip force in relation to the other measures. The grip
force measures calculated were mean, maximum (max), and
standard deviation (sd).

These grip force measures were calculated using a 2-s time
window, centered around each braking event’s peak deceleration.
Due to this study’s preliminary nature, there are no widely
accepted guidelines to rely on for grip force window size in
stress measurement. In defining the time window, we referred
to the preliminary findings from an ongoing study regarding
this issue, which shows an initial inclination toward the use of
a narrow time window of fewer than 5 s in calculating grip force
as a measurement of stress (Botzer et al., 2020). Additionally, we
based this decision on the indication received from an analysis
detailed and illustrated in Appendix A.

Based on psychophysical and physiological reports and stress
models (Liu and Ulrich, 2014), exponential logarithmic or
sigmoid transformation functions, rather than linear functions,
are expected. For example, electromyography is reported to
have a logarithmic transfer function (Rezazadeh et al., 2012).
Therefore, a natural log transformation was applied to the grip
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FIGURE 4 | An example of a braking event as expressed by the various measures recorded. A single braking event of participant number 1. The X-axis represents
time (s), plots (from top to bottom): acceleration (g), grip force (N), raw ECG signal (mV), HR (BPM), HRV—LF (ms2), HRV—HF (ms2), and HRV—LF/HF ratio.

force calculated measures since the higher end of grip force is
limited by the maximal grip strength (for each individual).

Data Analysis
The linear mixed model (LMM) was selected to analyze the
effects of braking intensity on the various physiological measures,
primarily due to its suitability to repeated-measures designs (Peat
and Barton, 2014). In this method, within-subject correlations
are modeled using the covariance structure, built on the variance
around the outcome measurement at each time point and on the
correlations between measurements taken at different times from
the same participant (Peat and Barton, 2014).

A meta-analysis method was used to analyze the correlation
of grip force measures with HR and HRV measures. The
correlations between these measures for each participant
served as the meta-analysis input. This procedure enabled the
consideration of inter-personal variance (for further description,
see “Results”).

RESULTS

To examine our hypothesis that compelled braking during
driving elicits correlating measured patterns of grip force and
heart rate, we first explored the braking events’ effects on grip
force. All three LMMs were fitted to the data with the assumption
of a linear relationship in order to study the nature of the
relationship between the three grip force measures (i.e., Ln
transformation of mean, max, and sd of grip force) and the
D parameter for maximal deceleration (i.e., the intensity of
braking events). Maximal deceleration (D) was included in the
model as the predictor and grip force measures as the predicted
variables (see rows 1–3 in Table 1 for a formal description of
these three-mixed effect models and Figures 6A–C for their
visual depiction).

Significant main effects were found for maximal deceleration
on all three grip force transformations (p < 0.001; see rows 1–3 in
Table 1). Based on the models’ coefficients (rows 1–3 in Table 1
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FIGURE 5 | Data preparation and analysis procedures: a workflow description of the data preparation procedures, data synchronization procedure, and the data
analyses used.

and Figures 6A–C) and in accordance with our hypothesis,
the findings indicate that higher deceleration (braking intensity)
predicted greater grip force (i.e., mean and maximum grip force)
and larger changes in grip force (i.e., grip force sd).

An additional four-LMM analysis was performed to
investigate whether braking events elicit stress as manifested
by HRV and HR measures (the models are described in rows
4–7 of Table 1). The four additional LMMs include the D
parameter for maximal deceleration (i.e., braking intensity)

as the predictor and Ln-transformed HRV (LF, HF, and
LF/HF ratio) and HR measures as predicted variables (see
rows 4–7 in Table 1 for a formal description of these three
mixed-effect models).

The additional LMM analysis showed a main effect for
maximal deceleration on heart rate (p < 0.001; row 6 in Table 1
and Figure 6D), and a moderate trend toward significance was
also found on HRV LF/HF ratio (p = 0.069; row 4 in Table 1
and Figure 6E). The LMMs for maximal deceleration on HRV

TABLE 1 | Summary of linear mixed model analyses for various models.

Model β0 (SE) β1 (SE) F P Adj. R2

Grip force

Ln(meanGF)=β0+β1(D)+bi+ε 6.527 (0.044) 0.244 (0.061) 16.4 0.0001*** 0.465

Ln(maxGF)=β0+β1(D)+bi+ε 6.512 (0.042) 0.318 (0.061) 26.54 < 0.0001*** 0.375

Ln(sdGF)=β0+β1(D)+bi+ε −6.724 (1.182) 10.401 (1.896) 30.963 < 0.0001*** 0.209

HR and HRV

Ln(LF/HF)=β0+β1(D)+bi+ε 1.333 (0.235) 0.21 (0.37) 3.33308 0.0693· 0.19

Ln(LF)=β0+β1(D)+bi+ε 5.852 (0.257) −0.15 (0.354) 1.2628 0.2624 0.453

Ln(HR)=β0+β1(D)+bi+ε 4.438 (0.038) 0.097 (0.025) 41.89 < 0.0001*** 0.882

Ln(HF)=β0+β1(D)+bi+ε 4.546 (0.264) −0.262 (0.331)a 0.6404 0.4244 0.51

mean GF, mean grip force; maxGF, maximum grip force; sdGF, standard deviation of the grip force; LF, HF, and LF/HF, heart rate variability measures; HR, heart rate, D,
maximal deceleration (−g) during the braking event; bi , random effect parameter for driver i; ε, error term. aHRV HF’s negative value represents the inhibitory pattern of the
parasympathetic system during stressful situations. It is assumed that bi ∼ N(0,σb). Significance codes: 0 ≤ “***” < 0.001 < “**” < 0.01 < “*” < 0.05 < “.” < 0.1 < “ ” ≤ 1.
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FIGURE 6 | The plots illustrate the significant LMM models described in Table 1. Higher x-axis values (-g) represent a higher braking intensity in this figure. (A–C)
Ln-transformed grip force [Ln(N)], (A) mean grip force, (B) maximal grip force, and (C) standard deviation of grip force, as a function of braking intensity (–g).
(D) Ln-transformed HR [Ln(BPM)] as a function of braking intensity (–g). (E) Ln-transformed HRV LF/HF as a function of braking intensity (–g). Gray dots represent
observations. Black dots represent the mean of each binned group of observations (according to deceleration), with 95% confidence interval. The blue line
represents smoothed conditional means using lm smoothing.
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LF and HF were not significant (p = 0.262 and p = 0.424,
respectively). Based on the additional models’ coefficients for
maximal deceleration on HRV LF/HF ratio and HR (rows 4 and
6 in Table 1 and Figures 6D,E) and in accordance with the
assertion presented in the introduction (i.e., that braking events
induce stress), higher declaration (braking intensity) predicted
greater HRV LF/HF ratio and HR.

Our hypothesis addressed the association between grip force
and HRV and HR as prevalent measures of stress. Specifically, the
hypothesis aimed to serve as an additional association between
grip force and stress. To test this hypothesis, Pearson correlations
were calculated separately for each participant, followed by a
meta-analysis procedure. This integration of the two procedures
(i.e., separate correlations followed by a meta-analysis) was
designed to include the participants as a random effect, partly
similar to using LMM. Separate correlations were conducted
between heart measures (HRV and HR) and the grip force’s
central tendency indices (i.e., mean and maximum grip force) as
mentioned above.

The meta-analysis procedure was applied for the separate
correlations, using the “meta” R package. The meta-analyses
examined all possible correlations between each heart measure
and each grip force measure. The effect sizes were transformed
into standard values using Fisher’s r to z transformation
(Rosenthal, 1991). The z-transformed score has a standard error
of 1/√

(n− 3)
, where n is the number of braking events for each

participant. The inverse of this error was used as a weight for
each individual z-transformed score so that participants with
smaller standard errors were given more emphasis. After this
weighting, all participants’ values were aggregated by averaging
their z-transformed scores. Rosenthal (1991) suggests this as
a conservative procedure. Finally, z-transformed scores were
translated back to r values. The meta-analysis was applied to
the grip force’s central tendency indices and heart rate measures
(HRV LF, HRV HF, HRV LF/HF ratio, and HR). Additionally,
natural log transformation was used for all heart rate and
grip force measures. Table 2 contains the descriptions of the
correlations and the values of the meta-analysis’ coefficients.

Six of the eight correlations were significant, and the
correlations’ direction was consistent with our hypothesis (i.e.,
significant positive correlations for grip force with HRV LF/HF
ratio and with HR; significant negative correlations for grip force
with HRV HF negative values represent the inhibitory pattern
of the parasympathetic system during stressful situations). The
direction of the correlation between mean grip force and HRV
LF was not consistent with the hypothesis, and the correlation
between max grip force and HRV LF was not significant
(p = 0.892). Although four of the six significant correlations were
highly significant (p < 0.001), their effect size was relatively small
(i.e., smaller than 0.3, Cohen, 1992).

DISCUSSION

This study’s main aim was to examine the feasibility of detecting
driver stress by grip force measurement in actual driving

scenarios. Accordingly, the study’s main goal of indicating that
grip force can serve as a measure of stress in driving tasks was
mostly achieved.

The assertion that braking as a response to a STOP sign elicits
stress has a vast support (e.g., Min et al., 2002; Collet et al., 2014;
Prasolenko et al., 2017; Sugiono et al., 2019). Accordingly,
the LMM analyses conducted in the current study revealed
that, during braking as a response to a STOP sign, maximal
deceleration had a highly significant effect on the HR measure.
In addition, a moderate trend toward significance was found
regarding maximal deceleration’s effect on HRV LF/HF ratio
measure. Since these measures (HRV LF/HF ratio and HR) are
referred to as stress measures (Kristal-Boneh et al., 1995; McCraty
et al., 1995; Sztajzel, 2004; Allen et al., 2014), this finding offers
additional support for braking as a stress-inducing driving event.

Braking intensity had a highly significant effect on all grip
force measures. This finding, combined with the re-confirmed
assertion that braking events induce stress, leads to a possible
deduction that grip force constitutes an indication of stress.
However, unlike HR and HRV, grip force may also be affected
during braking by the task itself. Therefore, another possible
explanation for consideration is that, during braking events, grip
force may have been affected by the braking task solely or by a
joint effect of stress and the braking task.

The analyses also showed correlations of HRV HF and LF/HF
ratio with grip force’s transformations. The correlations of HRV
HF with grip force’s transformations had a negative direction,
consistent with the parasympathetic system’s inhibitory pattern
during stressful situations (Hall et al., 2004; Hjortskov et al., 2004;
Vuksanović and Gal, 2007). The correlations of HRV LF/HF
ratio with grip force’s transformations had a positive direction
as can be expected since HRV LF/HF ratio is known to increase
during stressful situations. These findings may serve as further
modest validation of grip force as a measure of stress. It should
be noted that these correlations were weak. However, this may
result from the different acquisition systems used (Milstein and
Gordon, 2020). Additionally, weak correlations among different
physiological measures of mental states are not an unfamiliar
phenomenon (Contrada and Baum, 2011).

In this study, the participants had to brake in response to
a STOP sign, which is known to induce stress, a response
that was also found here as expressed by the effect of
braking intensity on HR and on HRV LF/HF ratio. Grip
force’s magnitude was also affected by the intensity of these
braking events, a finding that lends partial support to our
hypothesis that grip force is an indication of stress during
driving events. This hypothesis received further support by
the correlations of grip force and HR and HRV measures.
Therefore, it is feasible that grip force can be used as a
measure of stress in braking events during actual driving. These
findings may contribute to further investigations needed to
establish this relatively new measure of stress, specifically in
driving contexts.

As found in the current study, a stressor’s physiological
response during driving can be detected using grip force upon a
steering wheel, even with a small time window of 2 s. Compared
to other more established measures of stress, such as HRV, which
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TABLE 2 | Summary of meta-analyses of correlations, for all k = 20.

Measures in correlation Pearson’s r Fisher’s z p 95% CI

1. Ln(meanGF)–Ln(LF/HF) 0.1108 7.66 < 0.0001*** [0.0826, 0.1388]

2. Ln(maxGF)–Ln(LF/HF) 0.0622 4.29 < 0.0001*** [0.0338, 0.0905]

3. Ln(meanGF)—Ln(LF) −0.0513 −3.53 0.0004*** [−0.0796, −0.0229]

4. Ln(maxGF)–Ln(LF) −0.002 −0.14 0.8921 [−0.0304, 0.0265]

5. Ln(meanGF)–Ln(HR) 0.0293 2.02 0.0436* [0.0008, 0.0577]

6. Ln(maxGF)–Ln(HR) 0.0395 2.72 0.0065** [0.0110, 0.0679]

HRV HF negative values represent the inhibitory pattern of the parasympathetic system during stressful situations

7. Ln(meanGF)–Ln(HF) −0.1631 −11.33 < 0.0001*** [−0.1907, −0.1353]

8. Ln(maxGF)–Ln(HF) −0.09 −6.21 < 0.0001*** [−0.1181, −0.0617]

meanGF, mean grip force; maxGF, maximum grip force; sdGF, standard deviation of the grip force; LF, HF, and LF/HF, heart rate variability measures; HR, heart rate.
Significance codes: 0 ≤ “***” < 0.001 < “**” < 0.01 < “*” < 0.05 < “.” < 0.1 < “ ” ≤ 1.

require much larger time windows, grip force’s narrow window
can enable a “real-time” assessment of the effect of stressful
situations on the driver.

According to the summation of the current research findings,
grip force may be considered as one of the measures of stress
in mobile environments such as vehicles. By measuring the
driver’s stress level in “real time,” various interventions can be
employed to prevent calamities from occurring due to inferior
human performance under stressful conditions. The usage of
non-invasive measures of stress that do not interfere with the
user’s experience allows access to the information in the realistic
environment of vehicles despite the limitations inherent in it.

Measuring stress in a vehicle is beneficial not only for
human-controlled cars but also for self-driving vehicles. It is
clear that, in such scenarios, the grip force measurement will
not be on the steering wheel but at different grip points in
the vehicle or on mobile devices held by the passengers, such
as smartphones and tablets. Information about the passengers’
stress levels may aid the vehicle’s control system to adjust its
conduct to minimize stress and thus achieve a better user
experience. Moreover, by measuring grip force exerted on a
surface of a non-operation means, stress measurement may
reflect a purer indication of stress, without possible influences of
task-conducting-related grip force.

The current research has some limitations. First, due to the
difficulty to differentiate stress from related terms (Alsuraykh
et al., 2019), it should be mentioned that the manipulation used
in the current study (i.e., a STOP sign as a mandatory stopping
position) may not have been experienced solely as stress by
the participants. Second, this study examined a limited range
of potential stress-eliciting driving events. Additional driving
events such as lane crossing, overtaking, or driving in heavy
traffic should also be evaluated in a similar manner to gain
more comprehensive insights regarding the potential of driving
incidents being used as stressors. This may also help clarify
whether grip force was a result of stress elicited during braking.

The third limitation is the use of a homogeneous population,
constituted of male students only, with a limited range of ages.
This uniform sample limits this research’s external validity, and
further research should be conducted using more heterogenic
samples. Finally, the “noisy” signal of the measured grip force (as

illustrated in Figure 4) may interfere with the analysis of the state
of the driver. Therefore, other data processing methods (e.g., fast
Fourier transform) should be considered if real-time assessment
is required (Zak et al., 2020).

CONCLUSION

The current research’s primary purpose and contribution are
to provide initial empirical evidence on the extent to which
grip force may serve as an additional index of stress in driving
tasks and its validation using HR and HRV measures. Heart
measures were affected by braking, a finding which is consistent
with the findings of previous studies and which establishes the
assertion that braking events induce stress. Variations in grip
force as an outcome of these stress-inducing braking events
support its suitability for stress measurement in driving scenarios.
The correlation of grip force and heart measures strengthens
the statement that, similar to heart measures, grip force is an
appropriate measure of stress.

The ability to identify a specific change in stress during a
driving scenario using a non-invasive measurement tool which
is transparent to the end user has the potential of introducing
in-car just-in-time stress management interventions. It may also
help develop a stress-adaptive car system that may adjust its
conduct according to the driver’s current level of stress. Future
investigations may aid in describing the relationship of grip force
and stress in driving as well as in other tasks.
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APPENDIX A—DEFINING GRIP FORCE’S TIME WINDOW

To define the proper time window in the calculation of the grip force measures, we explored the following time windows: 2, 5, 10, 20,
and 30 s. We have conducted the meta-analysis procedure described before (as detailed in the “Data Analysis” and “Results” sections)
for each of these time windows.

For each combination of the three Ln-transformed grip force transformations (mean, maximum, and standard deviation) and
the four Ln-transformed heart rate measures (HRV LF, HRV HF, HRV LF/HF ratio, and HR), we have calculated the Pearson
correlation coefficients.

The following plot (see Figure A1) represents the confidence intervals of the Pearson correlation coefficients for each of
these time windows.

As indicated in the plot, for the 2-s time window, the lower end of the confidence interval is larger than zero. From this, it seems
that the choice of the 2-s time window is reasonable.

FIGURE A1 | Confidence intervals of the Pearson correlation coefficient (r) for meta-analyses of Ln-transformed grip force’s measures (mean, maximum, and
standard deviation) with Ln-transformed heart rate measures (HRV LF, HRV HF, HRV LF/HF ratio, and heart rate) for each grip force’s time window (2, 5,
10, 20, and 30 s).
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