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Distinct Impacts of Land Use and
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Land use has been recognized as an important anthropogenic forcing of climate change
in recent studies. However, climatic effects of land management practices have been
little discussed and compared to land-use impacts. As land-atmosphere interactions via
surface fluxes are particularly strong during the warm season, we investigate the impacts
of historical land use and present irrigation practices on summer temperatures in the
Northern Hemisphere using the most recent version of Community Earth System Model.
Our results suggest that historical land use leads to an overall cooling in the middle
latitudes and a warming in the tropics, and the sign and magnitude of the changes in
temperature depend on the type of land cover change. On the other hand, summer
irrigation leads to a significant cooling over many irrigated areas due to enhanced
evapotranspiration, and the local cooling is comparable to and even stronger than the
land-use effects. Both land use and irrigation can also significantly influence the intensity
and frequency of hot extremes. Land use shows stronger impacts during the night
through ground heat flux feedback, while irrigation shows stronger impacts during the
day through latent heat flux feedback. Our comparison demonstrates the importance of
irrigation in local and regional climate, highlighting the necessity of considering such
land management practices in future assessments of regional climate change and
climate mitigation.

Keywords: land use – land cover change, climate modeling, land-atmosphere interaction, irrigation, CESM2

INTRODUCTION

It is widely recognized that land use/land cover change (hereafter referred to simply as land use)
affects the overlying atmosphere through land-atmosphere interactions, and thus modifies the
local and broader-scale climate. The importance of land use in the climate system promoted the
Coupled Model Intercomparison Project Phase 5 (CMIP5) to include land use forcing in its climate
projections (Hurtt et al., 2011). Based on the CMIP5 simulations, many studies have been carried
out to investigate the impacts of land use on climate (Brovkin et al., 2013; Kumar et al., 2013; Di
Vittorio et al., 2014) and extreme events (Lejeune et al., 2017, 2018; Chen and Dirmeyer, 2018;
Li et al., 2018). It is found that land use can have impacts comparable to increased greenhouse
gasses or sea surface temperature variations for many climate variables (Avila et al., 2012; de Noblet-
Ducoudré et al., 2012), and land-use forcing can be as important as other anthropogenic forcings

Frontiers in Earth Science | www.frontiersin.org 1 June 2020 | Volume 8 | Article 2455

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2020.00245
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2020.00245
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2020.00245&domain=pdf&date_stamp=2020-06-26
https://www.frontiersin.org/articles/10.3389/feart.2020.00245/full
http://loop.frontiersin.org/people/924741/overview
http://loop.frontiersin.org/people/853239/overview
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00245 June 24, 2020 Time: 17:44 # 2

Chen and Dirmeyer Impacts of Land Use/Irrigation

in explaining the historical changes in temperature extremes over
the regions with extensive land use (Chen and Dirmeyer, 2018).

Besides land use, which usually refers to conversions from one
land cover to another due to human activities, land management
practices and their climatic impacts have drawn increasing
attention recently (Luyssaert et al., 2014; Mahmood et al., 2014).
As an important agricultural practice to maintain adequate soil
moisture for stable crop production, irrigation not only modifies
the surface water budget, but also affects the energy balance of
the land surface, thereby altering the climate (Kueppers et al.,
2007). For instance, irrigation can change surface partitioning
of available energy between sensible and latent heat fluxes
by allowing more evapotranspiration through increased soil
moisture and larger vegetation coverage, potentially lowering
near-surface temperatures over the irrigated areas.

Recent modeling studies have demonstrated the significant
impacts of irrigation on near-surface climate and atmospheric
circulation (e.g., Boucher et al., 2004; Kueppers et al., 2007;
Lobell et al., 2009; Sacks et al., 2009; Lo and Famiglietti, 2013;
Wei et al., 2013; Lu and Kueppers, 2015; de Vrese et al., 2016;
Huang and Ullrich, 2016; Krakauer et al., 2016), especially the
strong cooling effects on daytime temperatures or hot extremes.
It is proposed that irrigation can be an effective way to mitigate
the regional warming of hot extremes (Hirsch et al., 2017;
Thiery et al., 2017). Studies based on satellite observations also
indicate the substantial local cooling of irrigation (Ambika and
Mishra, 2019; Chen and Dirmeyer, 2019b), and imply that the
cooling effects may be underestimated by global climate models
due to their coarse spatial resolutions (Sorooshian et al., 2011;
Chen and Dirmeyer, 2019b).

Despite its fundamental importance in altering the regional
climate, the full scope of land management has rarely been
considered in recent climate assessment projects. For instance,
CMIP5 did not include irrigation as a historical forcing (Kumar
et al., 2013), and many of the participating Earth system
models did not implement irrigation schemes in their land
surface models (Singh et al., 2018). The project Land-Use and
Climate, Identification of Robust Impacts (LUCID), for example,
is mainly focused on the biogeophysical impacts of historical
land use (de Noblet-Ducoudré et al., 2012). There are a few
studies demonstrating the siginificance of irrigation compared
to other land surface changes. For instance, the effects of
irrigation on water vapor flows are equally as important as
deforestation (Gordon et al., 2005); the cooling of irrigation
is most pronounced compared to increased leaf area index
and reduced tillage (Lobell et al., 2006). However, few studies
have investigated the impacts of irrigation and its relative
importance compared to historical land use in modifying local
and regional temperatures.

With the goal of comparing these two types of land
management, this study uses a state-of-the-art Earth system
model, Community Earth System Model version 2 (CESM2),
to investigate the separate impacts of land use and irrigation
on summer temperatures and extreme heat events. We focus
on boreal summer temperature because of the strong land-
atmosphere interactions and high irrigation demands during
the warm season, when these two land surface forcings should

have the most profound climatic impacts and the greatest
social implications.

METHODOLOGY

Land-Use Experiments in CESM2
The land-use experiments are conducted with CESM2, which
is a coupled Earth System model composed of separate climate
system components for atmosphere, ocean, land, sea ice and land
ice. The major focus of this study is on the interactions between
the land surface and atmosphere, so only the Community
Atmosphere Model (CAM6) and Community Land Model
(CLM5) components are used in our simulations (no interactive
ocean or sea ice), with the component set F2000climo at a
spatial resolution of 0.9◦

× 1.25◦. The F2000climo component
set allows climatology simulations with cyclic circa-year-2000
forcing, in which there are prescribed sea surface temperature
(SST) and sea ice cover with a fixed CO2 concentration of
367.0 ppm. Monthly mean climatology of SST and sea ice cover
are derived from a merged product based on the monthly mean
Hadley Center Sea Ice and SST dataset, version 1 (HadISST1),
and version 2 of the NOAA weekly Optimum Interpolation
SST (OISST2) analysis during the period 1995–2005 (Hurrell
et al., 2008). Compared with the previous version of CLM,
improvements are made in CLM5 to better represent soil and
plant hydrology, snow density, carbon and nitrogen cycling
and coupling, the representation of crops and human land
management (Lawrence et al., 2019).

In CLM5, land surface heterogeneity is represented as a nested
subgrid hierarchy, in which grid cells are composed of multiple
land units (such as the vegetated unit and crop unit). The
vegetated unit can be composed of different plant functional types
(PFTs), and the crop unit can be composed of different crop
functional types (CFTs). Land use is represented as the changes
in percent PFTs and CFTs within a grid cell. In this study, two
land-use experiments (pre-industrial and present) are carried out
with prescribed pre-industrial and present land cover conditions
(Table 1). The difference between present and pre-industrial can
be considered as the impacts of historical land use. A two-tailed
Student’s t-test is conducted to assess the significance of the land-
use induced difference. Details of the pre-industrial land cover
can be found in Hurtt et al. (2006) and Lawrence et al. (2012),
while the present land cover is derived from MODIS satellite data
as described in Lawrence and Chase (2007).

Irrigation in CLM5
In the CLM5, there are a total of 31 managed crop types
(Lawrence et al., 2018). Each crop type has rainfed and irrigated

TABLE 1 | Experimental design in CESM2.

Name Land cover Irrigation scheme

pre-industrial pre-industrial (1850) off

present present (2015) off

irrig present (2015) on
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CFTs, which are placed on separate soil columns. The proportion
of irrigated CFTs is based on a dataset of areas equipped for
irrigation (Portmann et al., 2010), which is shown in Figure 1D.
When irrigation is enabled, the model checks if the crops need
irrigation in the first time step after 6 AM local time every day. If
the crop leaf area is greater than zero and the available soil water is
below a specified threshold, irrigation will be triggered. Irrigated
water is removed from river water storage and applied directly
to the ground surface. Details of the irrigation scheme in CLM5
can be found in Lawrence et al. (2018). To separate the impacts of
land use and land management, an irrigation experiment, irrig,
is carried out with the present land cover conditions (Table 1).
Irrigation is not automatically activated in the pre-industrial
and present experiments, so the difference between irrig and
present can be considered as the effects of irrigation. A two-tailed
Student’s t-test is used to assess the significance of the irrigation
induced difference.

Because the prognostic biogeochemical model is activated to
estimate the vegetation phenology, land initial conditions for
each experiment are obtained from a separate 700−year offline
spin−up run, then each experiment is conducted for 60 years
with output saved at three-hourly intervals.

Indices of Hot Extremes
Previous studies suggest that land use and irrigation have
significant impacts on hot extremes (Avila et al., 2012; Pitman
et al., 2012; Christidis et al., 2013; Hirsch et al., 2017; Thiery
et al., 2017). Therefore, we assess the changes in four warm
extreme temperature indices, listed and defined in Table 2, as
recommended by the CCl/CLIVAR/JCOMM Expert Team on
Climate Change Detection and Indices (ETCCDI; Alexander
et al., 2006). These indices are based on daily maximum and
minimum temperature and are developed to assess the intensity
and frequency of extreme temperature events.

Additionally, to understand the mechanism of temperature
responses to changes in land use and land management, other
land surface variables (such as surface fluxes and radiation)
are also included in our analysis. With the focus on daily
minimum and maximum temperature, we identify the timing
of daily maximum (minimum) land surface temperatures
(Ts) based on three-hourly model output, and extract the
corresponding surface fluxes and radiation when Ts reaches the
daily maximum (minimum).

RESULTS

Historical Land Use and Irrigation
Activities
Figures 1A–C shows the historical land cover change from
pre-industrial to present day over the Northern Hemisphere.
Deforestation has mainly occurred in the Midwest of the US,
eastern Europe, India, eastern China, and in tropical areas
such as Central America, Africa, and southeastern Asia. Most
of the deforestation is driven by agricultural demand through
cropland expansion in the middle latitudes, which has also led to
grassland loss in such regions as the Great Plains, Eastern Europe,

TABLE 2 | Temperature indices used in this study.

Index definition Unit

TXx The warmest day of the year K

TNx The warmest night of the year K

TX90p Number of days when TX > 90th percentile days

TN90p Number of days when TN > 90th percentile days

TX is daily maximum temperature, and TN is daily minimum temperature. Definitions
of these indices can be found at http://etccdi.pacificclimate.org/list_27_indices.
shtml (Karl et al., 1999; Peterson et al., 2001).

and India. Meanwhile, the conversion of cropland back into
forest or grassland occurs in some regions of the northeastern
US and western Europe. Grassland degradation (conversion of
grassland into bare ground) is found in some regions of the
Tibetan Plateau, which might be associated with over-stocking
(Li et al., 2013).

Areas of the irrigated cropland are shown in Figure 1D.
The irrigation systems are mainly distributed in northern India,
eastern China, the Middle East, Southern Europe, the Central
Valley in California, the North American Great Plains, and the
Mississippi Embayment, according to Portmann et al. (2010).
Based on the irrigation experiment, the total amount of irrigated
water can be estimated in CLM5 (Figure 2A), which shows
good agreement with observationally based estimates (Thiery
et al., 2017), indicating that CESM2 is an appropriate tool to
investigate the impact of irrigation (Huang and Ullrich, 2016;
Thiery et al., 2017). Seven subregions with high irrigation rates
are selected for regional analysis. We also identified the month
with the highest irrigation rate (Figure 2B). Summertime peak
irrigation occurs mostly in the middle latitudes, such as North
America, the Mediterranean, and western/eastern Asia. In the
tropics and regions that are influenced by monsoons (such as
the East Asian Monsoon and North American Monsoon), the
highest irrigation rate is mainly found in spring, which is the
dry season prior to the onset monsoon rains. However, there is
still a large amount of irrigated water applied during the summer
in those regions, according to the irrigation algorithm in CLM5
(Supplementary Figure S1), exerting impacts on the surface
climate then as well.

Changes in Temperature
Due to possible different responses of daytime temperature
to deforestation at the land surface (Ts) and 2-m air (T2m)
reported in our previous work (Chen and Dirmeyer, 2019a),
we present the results of Ts and T2m separately (Figure 3).
Historical deforestation leads to a significant daytime warming
at the land surface (Ts) in the tropics, India, and the central
US (Figure 3A). However, the change in daily maximum T2m
largely depends on the type of land use. Cooling effects on
T2m are found in parts of the central US, Central America and
Columbia, where the major land use is the conversion of forest
into cropland and grassland. For regions like India and Southeast
Asia where forest and grassland are converted into cropland,
there is increased daily maximum T2m. In eastern Europe, the
combined effects of deforestation and grassland conversion do
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FIGURE 1 | Changes (% of each grid cell) in major plant functional types [PFTs: (A) tree, (B) grass, (C) crop] from pre-industrial to present day in the Northern
Hemisphere, and areas (% of each grid cell) of the irrigated crop (D).

FIGURE 2 | Total amount of irrigated water (Qirrig in mm/year) on a log scale (A) and the month with the highest irrigation rate (B). The red boxes show the seven
subregions: 1. California’s Central Valley (CA), 2. the Great Plains (GP), 3. the Mississippi Embayment (MS), 4. Southern Europe (SE), 5. the Middle East (ME), 6. India
(IN), and 7. Eastern China (EC).

not result in significant changes to either Ts or T2m. In eastern
China, although there is no significant change in daily maximum
Ts, land use can significantly decrease daily maximum T2m.
Conversion of grassland into cropland over the Great Plains
tends to substantially decrease both daily maximum Ts and T2m.
Additionally, grassland degradation in the Tibetan Plateau leads
to significant warming.

During the night, there are consistent changes in Ts and T2m
(Figures 3E,G), which show a similar pattern to the changes in

daily maximum Ts (Figure 3A). Significant cooling is found in
the Great Plains and eastern Europe, while warming land surface
and 2-m air are found in a majority of the deforested areas.

Irrigation activities can lead to a significant cooling at both the
land surface and the 2-m air throughout the day, with greater
changes in daytime temperatures. The cooling effects are more
local, but comparable to (and even stronger than) the impacts
of the historical land use. Table 3 shows the regional changes in
daily maximum and monthly mean T2m and Ts due to historical
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FIGURE 3 | Changes in summer daily maximum (A–D) and minimum (E–H) land surface temperature (Ts in K) and 2-m air temperature (T2m in K) due to historical
land use (left) and irrigation (right). Stippling indicates significance at the 95% confidence level.

TABLE 3 | Regional average temperature changes due to land use and irrigation in the irrigated grid cells (with total summertime irrigation greater than 30 mm) in seven
sub-regions. Bold numbers indicate over half of the grid cells have statistically significant temperature changes at the 95% confidence level.

Sub-regions CA GP MS SE ME IN EC

No. of grid cells 11 25 11 20 37 33 43

Qirrg (mm) irrigation 77.23 73.88 86.14 50.17 47.17 42.27 46.96

T2m daytime(K) land use −0.24 −0.73 −0.76 −0.12 −0.42 0.48 −0.19

irrigation −1 −0.81 −0.38 −0.36 −0.65 −0.51 −0.58

Ts daytime (K) land use 0.03 −1.66 0.79 −0.4 −0.5 1.26 0.27

irrigation −2.12 −1.46 −0.88 −0.87 −1.29 −1.41 −0.95

T2m monthly (K) land use −0.31 −0.8 0.1 −0.14 −0.46 0.48 −0.01

irrigation −0.8 −0.52 −0.16 −0.23 −0.48 −0.51 −0.49

Ts monthly (K) land use −0.24 −1.1 0.55 −0.22 −0.52 0.68 0.13

irrigation −1.19 −0.71 −0.31 −0.4 −0.7 −0.88 −0.61

land use and irrigation in the irrigated regions, where land use
usually also occurs during the historical period. For instance,
the local cooling by irrigation can be up to 2.1 K on daily
maximum Ts and 1.0 K on T2m in California. In India, land
use leads to significant land surface warming (about 1.3 K),
while irrigation cools local temperature by 1.4 K. Only in the
Mississippi Embayment and Great Plains does land use show
greater impacts on daily maximum or monthly mean 2-m air

than irrigation. In southern Europe, because of the mixed land
use (both increased and decreased cropland) and relatively fewer
areas with irrigation (Figures 1C,D), significant change is only
manifested in the irrigation impacts on daily maximum Ts. There
are also areas of warming away from the irrigated regions, which
result from shifts in the general circulation driven by irrigation.
Broader atmospheric effects are discussed further in section
“Changes above the surface.”
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Changes in Surface Fluxes
To understand the mechanism of the temperature responses,
we investigate the changes in the diurnal cycle of surface fluxes
(Figure 4 for daytime and Figure 5 for nighttime). During the
daytime, there is increased latent heat flux (LE) and decreased
sensible heat flux (H) in the regions with the conversion of
grassland to cropland (Figure 4A), such as the northern Great
Plains, Eastern Europe, and northeastern China, where there is
decreased Ts (Figure 3A). Increased LE is also found in the
afforested regions, such as the northeastern US and western
Europe, where there is a slight cooling at the land surface. In most
areas of the tropics, deforestation leads to significantly decreased
LE, suggesting the less evapotranspiration and consequently
more H (Figure 4C) over the open land than the forest, resulting
in a warming effect at the land surface (Figure 3A). However,
in the United States Midwest, there is an evident decrease in H
mainly due to decreased surface roughness after deforestation,
which can explain the warming land surface but cooling of the
air (Figures 3A,C).

Compared to LE and H, ground heat flux (G) responds to
land use with relatively small magnitudes during the daytime.
Therefore, its change is not a major factor influencing the
daytime temperature change. Generally, deforestation leads to
more heat flux stored in the ground, while afforestation or
grassland conversion results in a reduction of heat entering the
ground because of more surface available energy being used as
latent heat flux. During nighttime, there is an upward ground
heat flux. In other words, the heat stored in the soil layers during
the daytime can feed back to the land surface and enter the

lower atmosphere. Therefore, changes in G show opposite signs
during the daytime and nighttime (Figures 4E, 5E), and the
nighttime Ts and T2m (Figures 3E,G) are mainly determined by
the changes in G.

Compared with land use, irrigation leads to consistently
increased latent heat flux and decreased sensible heat flux
throughout the day in the irrigated areas, especially in the Great
Plains, California, and northwestern India (Figures 5B,D, 6B,D).
Reduced Ts and T2m are mainly associated with the evaporative
cooling of irrigation.

Changes Above the Surface
Land use and land management do not only modify the
local land surface features; they are also able to influence
the atmosphere and large-scale circulation. Therefore, the
temperature changes (especially for T2m) can also be associated
with the atmospheric feedback to land use or land management.
Figure 6 shows the changes in summer total cloud cover
and precipitation due to land use and irrigation. Land use
leads to a significant increase in cloud cover and precipitation
over the northern plains of North America and parts of
eastern Europe, which corresponds to the cooling effects in
those regions. A significant decrease in cloud cover and
precipitation is found in northern India and tropical Africa,
which corresponds to the land use-induced warming effects
in those regions. Irrigation generally increases cloud cover
in many regions, possibly due to enhanced local convective
processes, but the significant increase in precipitation is only
found in northwestern India and limited regions of the Great

FIGURE 4 | Changes in summer daytime latent heat [LE in W/m2, (A,B)], sensible heat [H in W/m2, (C,D)], and ground heat [G in W/m2, (E,F)] fluxes due to
historical land use (left) and irrigation (right). Note that the scale of the label bar for G is different than those for LE and H. Stippling indicates significance at the 95%
confidence level.
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FIGURE 5 | Changes in summer nighttime latent heat [LE in W/m2, (A,B)], sensible heat [H in W/m2, (C,D)], and ground heat [G in W/m2, (E,F)] fluxes due to
historical land use (left) and irrigation (right). Stippling indicates significance at the 95% confidence level.

FIGURE 6 | Changes in summer monthly mean cloud cover [in %, (A,B)] and total precipitation [in mm, (C,D)] due to historical land use (left) and irrigation (right).
Stippling indicates significance at the 95% confidence level.

Plains in the United States, which exhibit significant cooling
effects of irrigation.

Although the changes in large-scale circulation and remote
effects of land use/land management are not the scope of this
study, the evident atmospheric feedback certainly demonstrates
the impacts of land surface change on temperature through
land-atmosphere interactions. For instance, the conversion of
grassland into cropland in the northern plains of North America
enhances evapotranspiration at the land surface, which exerts
cooling effects based on the surface energy budget. On the other
hand, higher evapotranspiration may lead to more cloud cover,

which in turn decreases surface and near-surface temperature,
and also potentially enhances precipitation, which further
increases soil moisture and surface evapotranspiration.

Changes in Hot Extremes
We also examine the changes in hot extremes due to land use and
land management (Figure 7). Generally, deforestation slightly
reduces the intensity and frequency of hot events in middle
latitudes during daytime, but leads to evidently more intense
and frequent hot events during nighttime. The conversion of
grassland into cropland, especially in the northern plains, shows
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FIGURE 7 | Changes in warmest day [TXx in K, (A,B)], warmest night [TNx in K, (C,D)], number of warm days [TX90p in days, (E,F)] and number of warm nights
[TN90p in days, (G,H)] due to historical land use (left) and irrigation (right). Stippling indicates significance at the 95% confidence level.

significantly reduced hot extremes. On the contrary, the impacts
of irrigation on hot extremes are more evident during daytime.
Significantly reduced hot extremes are found in the irrigated
regions (except eastern China), where the irrigation-induced
cooling can be stronger than the land-use impacts. It should be
noted that maximum temperature in India occurs in late spring
before the monsoon when there is a high irrigation demand.
Therefore, strong cooling effects are found in this region, but
are not manifested in the summertime temperature responses
discussed in previous sections.

DISCUSSION AND CONCLUSION

This study presents a comparison between land use and irrigation
with respect to their impacts on summer temperatures. Tropical
deforestation shows an evident warming effect, especially at
the land surface and during the nighttime. However, land-
use impacts in the middle latitudes are dominated by the
cooling effect of grassland conversion, while the extensive
deforestation in the United States Midwest does not show strong
impacts on local or regional temperature. A few caveats should
be noted regarding the deforestation-temperature relationship.

First, uncertainties still remain in current land surface models in
representing the energy partitioning between latent and sensible
heat flux (Chen et al., 2018; Cai et al., 2019). Unlike the observed
decrease in ET after deforestation (Meier et al., 2018), the
models suggest a slight increase in latent heat flux (Figure 4A),
consequently exerting a cooling effect. Second, the model
suggests a warmer land surface but cooler air mainly due to the
decreased sensible heat flux after deforestation. The conversion
of forest lands to agriculture reduces surface roughness and
increases aerodynamic resistance, so the heat transfer becomes
less efficient over the open land (Chen and Dirmeyer, 2019a).
Consequently, less efficient turbulent heat exchange with the
atmosphere leads to land surface warming (Figure 3A) but
cooling of the lower-atmosphere (Figure 3C). The dominance of
surface roughness (or aerodynamic resistance) in deforestation-
induced biophysical effects has been documented in previous
studies (Liao et al., 2018; Winckler et al., 2019a). The different
responses in Ts and T2m to deforestation are also found
in another climate model (Winckler et al., 2019a). However,
further assessments of land-use impacts on temperature are
necessarily taken using multi-model experiments, such as The
Land Use Model Intercomparison Project [LUMIP, (Lawrence
et al., 2016)]. Furthermore, observation-based studies suggest
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nighttime cooling (Schultz et al., 2017; Liao et al., 2018), which
can be attributed to the decreased turbulence after deforestation
and less heat aloft being brought to the surface (Lee et al., 2011).
However, our results suggest nighttime warming of deforestation,
which is mainly driven by the heat storage in the ground.
Similar nighttime warming is also shown in other climate models
(Vanden Broucke et al., 2015; Winckler et al., 2019b), suggesting
ground heat flux and the nocturnal boundary layer need further
attention in future model evaluation and development.

Meanwhile, a strong cooling effect is found in the irrigated
areas, especially during the daytime and at the land surface. For
instance, irrigation in California reduces daytime Ts by over
2 K. Such a cooling effect of irrigation is even greater than the
land-use impacts in many regions (Table 2). Even though the
irrigation-induced cooling is also confirmed through ground-
based and satellite observations (Bonfils and Lobell, 2007; Lobell
et al., 2008; Chen and Dirmeyer, 2019b), caution should be taken
to interpret the simulated irrigation effects. The local cooling of
irrigation can be even stronger if the model is run at a higher
spatial resolution (Kueppers et al., 2007; Lobell et al., 2009;
Sacks et al., 2009; Lo and Famiglietti, 2013; Lu and Kueppers,
2015; Huang and Ullrich, 2016; Chen and Dirmeyer, 2019b). For
instance, there is up to 7 K of cooling due to irrigation over
California based on a regional climate model (e.g., Kueppers
et al., 2007), which highlights the impacts of irrigation at local
or regional scales.

It also should be noted that uncertainties exist in current
irrigation simulations. Observation-based studies suggest a
nighttime warming in irrigated areas (Kanamaru and Kanamitsu,
2008; Chen and Jeong, 2018) because irrigation increases soil
heat capacity (Kalnay and Cai, 2003) and thermal conductivity
(Kanamaru and Kanamitsu, 2008), which allows more heat to
be stored during daytime and released from the ground to the
air during nighttime. Meanwhile, elevated moisture of the air
would enhance downward longwave radiation, which would have
a warming effect especially during night (Souri et al., 2020).
In our results, although increased ground heat flux (implying
more heat entered into the soil) is evident in the irrigated
areas during daytime (Figure 4F), decreased ground heat flux
(implying more heat released from the ground) is not found
during nighttime (Figure 5F), and irrigation leads to a slight
cooling in daily minimum temperature (Figures 3F,H). The
issue with the simulated response of minimum temperature to
irrigation has also been documented in other model-based studies
(Kueppers et al., 2008; Huang and Ullrich, 2016). As ground
heat flux is calculated from the residual of the surface energy
balance in order to precisely conserve energy (Lawrence et al.,
2018), the model bias may be associated with the uncertainties
in surface flux parameterization in land surface models. The
uncertainties in the representation of irrigation characteristics are
also documented in other climate models, such as the Max Planck
Institute for Meteorology’s Earth System model (MPI-ESM),
and regional climate models. The irrigation-induced temperature
change can be highly related to the land-atmosphere coupling
scheme used in the model, irrigation effectiveness, timing of
irrigation (de Vrese and Hagemann, 2017). Kueppers et al.
(2008) also found that the simulated effects of irrigation vary

among different regional climate models due to different model
physics and irrigation parameterizations. These factors should
to considered in future assessments of irrigation impacts, and
multiple-model approaches are necessary to further evaluate
the uncertainties in the representation of irrigation in different
Earth system models.

Additionally, there are possibly remote impacts of land use or
irrigation on climate beyond the regions where the land use and
land management occur. For instance, there are evident changes
in temperature (Figure 3), evapotranspiration (Figure 4), cloud
cover (Figure 6) in the northeast of Caspian Sea, although
irrigation is only applied in the south of this region. Such a non-
local effect of irrigation is also shown in previous studies using
different climate models (e.g., Puma and Cook, 2010). Although
many studies have discussed the remote effects of land use and
land management (e.g., Wei et al., 2013; Badger and Dirmeyer,
2016; de Vrese et al., 2016; Swann et al., 2018), the detected
remote effects can be influenced by many factors, such as the
length of simulations (Swann et al., 2018), representation of ocean
circulation (Badger and Dirmeyer, 2016; Krakauer et al., 2016),
and model physics (de Vrese et al., 2016), which need further
investigation in future studies.

Our results mainly present the climatic impacts of land use and
land management during summer because of the strong land-
atmosphere interactions and intensive agricultural practices in
the warm season. We acknowledge land cover change also has
significant impacts on temperature during winter, especially for
boreal deforestation, which exerts a cooling effect through snow-
albedo effects (Davin and de Noblet-Ducoudré, 2010); irrigation
also occurs in winter in some regions and has the potential to
alter temperature then (Chen and Jeong, 2018). Supplementary
Figure S2 shows a significant cooling in the deforested areas in
the United States Midwest and Northern Plains and a significant
warming effect of tropical deforestation during the boreal winter.
However, no evident change in surface temperature is found in
the irrigation regions in this study.

As the goal of this paper is to emphasize the relative
importance of land management in regional climate (Thiery et al.,
2017) and the implications in hot extreme adaptation under
the background of global climate change (Hirsch et al., 2017),
our results suggest that the local cooling effects of irrigation
can be as strong as the land-use impacts during the boreal
summer. As the cropland area is projected to continue growing
in all the shared socioeconomic pathways (SSPs) in CMIP6
and about a half of the SSP scenarios suggest an increase in
irrigated cropland area in the future (Lawrence et al., 2016), the
importance of land management in local and regional climate will
be amplified by potentially intensified irrigation activities under
a warming climate. Additionally, considering the enhanced ET
due to irrigation (Figure 4B), which can potentially raise wet-
bulb temperatures (Kang and Eltahir, 2018), humidity should also
be considered in future assessments of irrigation impacts on heat
waves and their social impacts.

In summary, this study highlights the importance of irrigation
in local and regional climate based on the experiments
using the most recent version of CESM. It should be noted
that other land management practices, such no-till farming
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(Davin et al., 2014) or cover crops (Lombardozzi et al., 2018), may
also have certain climatic consequences from the biogeophysical
perspective through radiative processes. Also, there are many
approaches to irrigation (e.g., surface irrigation, sprinklers
including center-pivot irrigation, drip irrigation) drawing from
both surface water and groundwater. Current models do not
represent this variety, yet each has different potential effects on
soil moisture and surface fluxes including evaporative cooling.
Therefore, toward a comprehensive understanding of the climatic
impacts of land management, different agricultural practices
should be considered and compared when assessing regional-
scale climate adaptation and mitigation (Lobell et al., 2006;
Seneviratne et al., 2018).
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From 2015 to 2019 we installed high-frequency (HF) sea surface temperature (SST),
salinity, fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) sensors
on a cardinal buoy of opportunity (ASTAN) at a coastal site in the southern Western
English Channel (sWEC) highly influenced by tidal cycles. The sensors were calibrated
against bimonthly discrete measurements performed at two long-term time series
stations near the buoy, thus providing a robust multi-annual HF dataset. The tidal
transport of a previously unidentified coastal water mass and an offshore water mass
strongly impacted the daily and seasonal variability of pCO2 and pH. The maximum tidal
variability associated to spring tides (>7 m) during phytoplankton blooms represented
up to 40% of the pCO2 annual signal at ASTAN. At the same time, the daily variability
of 0.12 pH units associated to this tidal transport was 6 times larger than the annual
acidification trend observed in the area. A frequency/time analysis of the HF signal
revealed the presence of a day/night cycle in the tidal signal. The diel biological cycle
accounted for 9% of the annual pCO2 amplitude during spring phytoplankton blooms.
The duration and intensity of the biologically productive periods, characterized by large
inter-annual variability, were the main drivers of pCO2 dynamics. HF monitoring enabled
us to accurately constrain, for the first-time, annual estimates of air-sea CO2 exchanges
in the nearshore tidally-influenced waters of the sWEC, which were a weak source to
the atmosphere at 0.51 mol CO2 m−2 yr−1. This estimate, combined with previous
studies, provided a full latitudinal representation of the WEC (from 48◦75′ N to 50◦25′

N) over multiple years for air-sea CO2 fluxes in contrasted coastal ecosystems. The
latitudinal comparison showed a clear gradient from a weak source of CO2 in the tidal
mixing region toward sinks of CO2 in the stratified region with a seasonal thermal front
separating these hydrographical provinces. In view of the fact that several continental
shelf regions have been reported to have switched from sources to sinks of CO2 in
the last century, weak CO2 sources in such tidal mixing areas could potentially become
sinks of atmospheric CO2 in coming decades.

Keywords: buoy of opportunity, high-frequency, tidal cycle, multi-annual, air-sea CO2 exchanges, ocean
acidification, coastal ecosystems
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INTRODUCTION

The dynamics of the carbonate system in the ocean are
complex and simultaneously controlled by physical, chemical,
and biological processes (Zeebe and Wolf-Gladrow, 2001).
As an interface between land, ocean, and atmosphere,
coastal ecosystems are characterized by strong physical and
biogeochemical heterogeneity, introducing further complexity
into the coastal carbon cycle and carbonate system dynamics
(Walsh, 1991; Gattuso et al., 1998; Muller-Karger et al., 2005).
Despite representing only 7% of the global ocean, coastal
ecosystems are a key component of the global carbon cycle
because of their disproportionately high rates of primary
production (10–30%) and organic matter remineralization
(Walsh et al., 1988; de Haas et al., 2002; Bauer et al., 2013). The
coastal ocean therefore exhibits enhanced air-sea CO2 fluxes
(FCO2) compared to open oceans (Tsunogai et al., 1999; Thomas
et al., 2004; Chen and Borges, 2009). According to the most
recent estimates, during the 1998–2015 period coastal ecosystems
were a global CO2 sink of 0.20 ± 0.02 Pg C yr−1 compared to a
net CO2 sink of 1.7± 0.3 Pg C yr−1 for the open ocean (Roobaert
et al., 2019). Coastal ecosystems account for 13% of the total
CO2 sink despite representing a much lower proportion of global
ocean surface area (7%). In terms of anthropogenic CO2 sink,
coastal ecosystems represent 4.5% (Bourgeois et al., 2016) of the
latest estimates of 2.6 ± 0.3 Pg C yr−1 for the 1994–2007 period
(Gruber et al., 2019) and 2.6 ± 0.6 Pg C yr−1 for the last decade
(Friedlingstein et al., 2019). Due to their proximity with human
activities, coastal ecosystems are also particularly vulnerable
to anthropogenic forcing such as eutrophication and ocean
acidification (OA) (Borges and Gypens, 2010; Borges et al., 2010;
Cai et al., 2011, 2017; Bauer et al., 2013). Coastal ecosystems can
show extremes of OA hotspots due to the intrusion of acidified
water with low saturation state �arag (Feely et al., 2016, 2010;
Chan et al., 2017; Fennel et al., 2019) or conversely constitute
refuge with more stable pH (Chan et al., 2017).

In the context of climate change and continuous atmospheric
CO2 increase, unraveling CO2 system dynamics and air-sea CO2
fluxes in coastal ecosystems remains a major challenge (Laruelle
et al., 2018). Long-term high-frequency (HF) monitoring of the
carbonate system in coastal ecosystems is essential to distinguish
natural variability from responses to anthropogenically induced
changes at various temporal and spatial scales (Borges et al.,
2010; Ciais et al., 2014). Extreme or short-scale events may
affect mean estimates of coastal carbon fluxes, thus budgets
based on short time-series of observations should seldom be
viewed with caution (Salisbury et al., 2009). In the past decade,
autonomous moorings and observing platforms considerably
improved estimates of air-sea CO2 fluxes at various time and
spatial scales to better constrain carbon budgets in coastal
ecosystems (Sutton et al., 2014; Xue et al., 2016; Reimer et al.,
2017). Recent technical advances in terms of measurement of
partial pressure of surface CO2 (pCO2) and pH (Sastri et al.,
2019) mean that it is now possible to develop accurate long-term
records of these parameters in nearshore ecosystems. Combining
HF measurements of pH or pCO2 with discrete carbonate system
parameters (DIC/TA) can be a valuable tool for carbon cycle

research based on autonomous moorings (Cullison Gray et al.,
2011). This type of calibrated data could then potentially be
included in large international databases such as the Surface
Ocean CO2 Atlas (SOCAT, Bakker et al., 2016).

A key challenge for the scientific community focusing on
the coastal marine environment is to integrate observations
of essential ocean variables for physical, biogeochemical, and
biological processes on appropriate spatial and temporal scales,
in a sustained and scientifically based manner (Farcy et al.,
2019). The European projects JERICO and JERICO-Next (2010–
2020) built an integrated and innovation-driven coastal research
infrastructure for Europe, notably for the observation of the
carbonate system parameters, based on Voluntary Observation
Ships (VOS), long-term time series, and buoys of opportunity
(Puillat et al., 2016; Farcy et al., 2019). From 2011 to 2015, a VOS
program provided seasonal and latitudinal HF measurements
across the Western English Channel (WEC), enabling first
assessments of air-sea CO2 fluxes (FCO2) dynamics in the
WEC and adjacent coastal seas (Marrec et al., 2013, 2014,
2015). As part of the French network for the monitoring of
coastal environments (SOMLIT1), two long-term time-series
in the WEC off Roscoff have been implemented to monitor
carbonate parameters at SOMLIT-pier and SOMLIT-offshore
stations. Sampling in this program is bimonthly and can
therefore miss specific, short-term events occurring between
scheduled sampling dates. In the framework of the national
program COAST-HF (Coastal Ocean Observing System-High
Frequency2), the cardinal buoy of opportunity “ASTAN,” located
halfway between the two SOMLIT sampling sites, was equipped
with oceanographic and meteorological sensors to complete the
discrete sampling.

This study describes the benefits and challenges of deploying
and maintaining a HF autonomous coastal observation platform
of opportunity. We report the results of 5 years of HF pCO2
and ancillary data recorded at the ASTAN buoy and 5 years of
low frequency monitoring of similar parameters at the SOMLIT-
pier and SOMLIT-offshore sites. We examine the dynamics of
sea surface pCO2 and associated FCO2 from tidal to inter-
annual timescales. We identify the main factors controlling
pCO2 variability at short timescales using frequency analysis
and quantify the impact of the tidal and diel cycles on CO2
system dynamics. Ultimately, we place the annual FCO2 data in
a broader context to fully describe the latitudinal variability of
FCO2 throughout the WEC.

STUDY SITE

The WEC is part of the North-West European continental shelf,
one of the world’s largest temperate margins, and is a pathway
between the North Atlantic and the North Sea. High salinity
and relatively warm waters from the North Atlantic Drift flow
eastward to the western Channel entrance (Salomon and Breton,
1993). The WEC is characterized by three distinct hydrographical

1http://somlit.epoc.u-bordeaux1.fr/
2http://coast-hf.fr
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regimes: permanently well-mixed waters in the southern WEC
(sWEC), seasonally stratified waters in the northern WEC
(nWEC) and a frontal structure separating these hydrographical
provinces (Pingree and Griffiths, 1978). The intense tidal streams
permanently mix the water column from the bottom to the
surface all year round in the sWEC, although weak and brief
stratification can occur during summer, particularly during neap
tides with low wind velocity (L’Helguen et al., 1996; Guilloux
et al., 2013). Many rivers and estuaries discharge freshwater
into the sWEC, with enhanced river influx during winter due
to intense precipitation (Tréguer et al., 2014). These freshwater
inputs release nutrient stocks into the marine environment
(Meybeck et al., 2006; Dürr et al., 2011; Tréguer and De La Rocha,
2013) fueling spring phytoplankton blooms (e.g., Del Amo et al.,
1997; Beucher et al., 2004) and maintaining substantial primary
productivity in summer, when light is the limiting factor, not
nutrients (Wafar et al., 1983).

The ASTAN buoy is a cardinal buoy of opportunity located
3.1 km offshore from Roscoff (48◦44′55′′ N; 3◦57′40′′ W,
Figure 1), east of the Batz Island. The mean bathymetry is around
45 m. This location is characterized by strong tidal streams with a
tidal range up to 8 m during spring tides. The weather conditions
can be rough with frequent gusts of wind and storms making
work at sea difficult, especially on a mooring. During winter
storms, the swell and waves north of the Batz Island can reach
6–7 m high, but the mooring is somewhat protected by the island
from swell from the North Atlantic Ocean.

Two low-frequency stations are present either side of the HF
buoy (Figure 1), with SOMLIT-pier located south of the buoy
(48:43′59′′ N; 3:58′58′′ W) and SOMLIT-offshore located north
(48:46′49′′ N; 3:58′14′′ W). Despite their close proximity, these
two stations are quite different. SOMLIT-pier is located very
close to the coast, strongly influenced by coastal waters, with a
particular hydrodynamic regime: a strong tidal range and a low
water column (around 5 m). SOMLIT-offshore is characteristic
of sWEC surface waters with a well-mixed water column (around
60 m), with the distance from the coast (3.5 km) limiting the
impact of rainwater and river inflow.

MATERIALS AND METHODS

High-Frequency Measurements From the
ASTAN Buoy
From 2015 to 2019, conductivity and temperature were recorded
every 30 min using a SBE16 + (SeaBird, Inc.) instrument.
A Cyclops7 fluorimeter (Turner Designs, Inc.) and a SBE43
sensor (Seabird, Inc.) measured at the same frequency Chl-a
fluorescence and DO, respectively. The manufacturer accuracies
were ± 0.005◦C for the temperature sensor, 2% for oxygen
saturation and 0.0005 S/m for conductivity. TBTO R© anti-
fouling cylinders and black Tygon R© tubing were installed in the
pumping circuit to prevent biofouling, which is a major issue for
deployment of sensors in coastal water, with a critical period from
May to September.

A Submersible Autonomous Moored Instrument for CO2
(SAMI-CO2, SunBurst Sensors) was installed from March 2015

to December 2019 to measure pCO2 in seawater with a 1-
h frequency. The SAMI-CO2 sensor uses calibrated reagent-
based colorimetry to measure the change in pH of the dye
[bromothymol blue (BTB)]. The BTB is contained in a gas-
permeable membrane that is exposed to the environment. The pH
change is driven by diffusion of CO2 across the membrane. The
dye absorbance is recorded at two wavelengths, corresponding
to the absorption peaks of acid/base forms of BTB. Blank
measurements were performed regularly in distilled water for
quality control. The accuracy of measurements reported by the
manufacturer is ± 8 µatm (DeGrandpre et al., 1997). All sensors
were recovered every 3 months for inspection, cleaning, battery
checks and control of reagent levels.

Bimonthly Measurements at Fixed
Stations SOMLIT-Pier and
SOMLIT-Offshore
From March 2015 to December 2019, bimonthly sampling
was performed at SOMLIT-pier and SOMLIT-offshore fixed
stations (Figure 1) during neap tides and at high tide slack.
CTD profiles were obtained with a Seabird SBE19 + with
accuracies for temperature and computed salinity of 0.005◦C
and 0.002 respectively. Discrete seawater was sampled using
10 L Niskin bottle. Salinity measurements were performed
by sampling seawater in glass bottles with a rubber seal and
analyzed in the following months in a temperature regulated
room with a portasal Guidline Salinometer at the SHOM (Service
Hydrographique et Oceanographique de la Marine) with an
accuracy of 0.002. For DO measurements seawater from the
Niskin bottle was transferred into 280 mL brown glass bottles
that were sealed with special caps to remove all air after addition
of 1.7 mL of Winkler reagent I and II. Bottles were kept in
the dark in a water bath and analyzed by the Winkler method
using potentiometric end-point determination using a Metrohm
titrator. The estimated accuracy of this method is 0.2 µM
(Carpenter, 1965). For Chl-a measurements 500 ml of seawater
were filtered through a GF/F (Whatman) glass filter under
0.2 bar vacuum. The filters were stored in a plastic tube at
−20◦C before analysis. The EPA (1997) extraction method was
used in which Chl-a was extracted in a 90% acetone solution
for a few hours at 4◦C, followed by measurement of Chl-
a concentration using a Turner AU10 fluorometer. Nutrient
concentrations (PO3−

4 and SiO4
−) were determined using an

AA3 auto-analyzer (AXFLOW) following the method of Aminot
and Kérouel (2007) with accuracies of 1 ng L−1 and 0.01 µg L−1

for PO3−
4 and SiO4

−, respectively. During the same period,
total alkalinity (TA), dissolved inorganic carbon (DIC) and pH
were measured at SOMLIT-pier and SOMLIT-offshore stations.
Seawater was sampled in 500 mL borosilicate glass bottles and
poisoned with 50 µL of saturated HgCl2. TA and the DIC
were determined at the SNAPO (Service National d’Analyse des
Paramètres Océaniques) using potentiometric analysis following
the Edmond (1970) method and DOE (1994) with accuracies
of 2.5 µmol kg−1 for both parameters (see Marrec et al., 2013
for details on this method). pH was determined using the same
protocol as for the ASTAN buoy measurements (see below).
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FIGURE 1 | (Right) Map and bathymetry (5 and 50 m isobaths) of the study area in the sWEC with the location of the ASTAN buoy (yellow square) with the two
SOMLIT sampling sites: SOMLIT-pier (upward triangle) and SOMLIT-offshore (downward triangle) and the location of the Roscoff observatory. (Top left) Map and
bathymetry (200 m isobath) of the North Atlantic Ocean with the location of the Mace Head atmospheric station, the black frame represents the WEC. (Bottom left)
Map and bathymetry (50 m isobath) of the WEC with the Meteo France station (white square) for wind speed data, E1 (downward triangle), L4 (upward triangle) and
FerryBox transect from Roscoff to Plymouth used in the comparison of FCO2 in Section “Dynamics of FCO2 in the WEC” and Figure 10.

From March 2017 to December 2019, additional sampling for
pH and TA in the vicinity of the ASTAN buoy was performed
every 2 weeks. 50 discrete samples for the determination
of TA and pH were collected in 500 mL borosilicate glass
bottles and poisoned with 50 µL of saturated HgCl2. TA was
determined from approximately 51 g of weighed sample at
25◦C using a potentiometric titration with 0.1M HCl using a
Titrino 847 plus Metrohm. The balance point was determined
by the Gran method (Gran, 1952) according to the method
of Haraldsson et al. (1997). The accuracy of this method
is ± 2.1 µmol kg−1 (Millero, 2007) and was verified by Certified
Reference Material (CRM 131) provided by A. Dickson (Scripps
Institute of Oceanography, University of South California, San
Diego, United States). pH was determined with an accuracy
of 0.002 pH units by spectrophotometry (Perin-Elmer Lambda
11) at a controlled temperature of 25◦C with the method of
Clayton and Byrne (1993) and corrected by Chierici et al.
(1999), using the sulfonephthaleindiprotic indicator of meta-
CresolPurple (mCP).

Calculated Data
Dissolved Oxygen Saturation
Calculation of dissolved oxygen saturation (DO%) gives access to
the impact of non-thermodynamical processes, such as biological
production and respiration, on the variation of DO. The DO%
was calculated from Eq. 1 using in situ temperature, salinity, and
dissolved oxygen concentrations.

In C∗ = A1 + (
A2 × T

100
)+ [A3 × log(

T
100

)]

+S× [(B1 + (B2 ×
T

100
)+ B3 × (

T
100

)2)]

DO% = (
DO
C∗

)× 100 (1)

Where C∗ is the concentration of DO at saturation, A and B
coefficients are constants described in Weiss (1970), T is the SST
(in K) and S the sea surface salinity (SSS).
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Carbonate System Parameters
At the ASTAN buoy, we used the combination of TA, pH, SSS
and SST as input parameters in the CO2 chemical speciation
model (CO2sys Program, Pierrot et al., 2011). We used the
equilibrium constants of CO2 proposed by Mehrbach et al.
(1973), refitted by Dickson and Millero (1987) on the total
pH scale, as recommended by Dickson et al. (2007) and Orr
et al. (2015), and including PO3−

4 and SiO4
− concentrations.

At SOMLIT-pier and SOMLIT-offshore, from January 2015
to April 2018, we used the combination of TA, DIC, SSS,
SST, PO3−

4 and SiO4
− concentrations, and from May 2018 to

December 2019 we used the combination of pH, DIC, SSS,
SST and PO3−

4 and SiO4
− concentrations as input parameters

in the model. We use the standard uncertainty propagation
package updated by Orr et al. (2018) for comparison with
current computations of uncertainty on the carbonate system
parameters in the field of OA. The average uncertainty on
pCO2calc were estimated at 11 µatm for TA/pH, at 18 µatm
for DIC/TA and at 8 µatm for pH/DIC. These uncertainties
were in agreement with similar pCO2calc computations using
the propagation technique: 20 µatm for Shadwick et al. (2019)
and 15 µatm for Kapsenberg et al. (2017) with DIC/TA as
entry parameters.

To estimate pH variations from pCO2 at the ASTAN
buoy (pHcalc), we relied on 20 seasonal surveys performed in
2011, 2019 and 2020, when we collected more than 150 data
points for TA and SSS covering the entire SSS gradient (0–
35.5) in the Penzé and Morlaix rivers, the main sources of
freshwater input at our study site. We combined these data
with the 2016 discrete dataset marked by intense freshwater
inputs at the ASTAN site with important rainfall (563 mm
during that winter compared to 274 mm during 2019), and
SSS varying from 34.50 to 35.50. We were able to establish
a very robust relationship between TA and SSS (n = 236,
r2 = 0.98) with the following equation 2 (Supplementary
Figure S1):

TAcalc = 50.4(± 0.5)∗SSS + 575(± 14) (2)

We therefore estimated the HF pH with CO2sys using the
same parameters SST, SSS, pCO2 and TAcalc. We compared the
discrete pH values obtained in 2019 at the ASTAN buoy with
the spectrophotometric technique [precision of 0.001 and bias
of 0.005 pH units (Dickson et al., 2007)] to the pHcalc from
the TA/SSS relationship (Supplementary Figure S2). From this
comparison, we estimate the uncertainty on the pHcalc at 0.04.

Deconvolution of Thermal and Non-thermal
Processes on pCO2
The variability of surface pCO2 caused by thermal and non-
thermal processes was estimated from Takahashi et al. (1993,
2002). The method is based on the well-constrained temperature
dependence of pCO2 (4.23%◦C−1) (Takahashi et al., 1993). It
helps to construct the thermally forced seasonal pCO2 cycle
(pCO2

therm, Eq. 3) and remove the thermal effect from observed
pCO2 (pCO2

non−therm, Eq. 4). We then were able to quantified

the respective influence of δpCO2
therm (pCO2-pCO2

non−therm)
and δpCO2

non−therm (pCO2-pCO2
therm) on the pCO2.

pCOtherm
2 = pCO2,mean × e0.0423×(Tobs−Tmean) (3)

pCOnon−therm
2 = pCO2,obs × e0.0423×(Tmean−Tobs) (4)

For HF data from the buoy, pCO2,obs and Tobs are the calibrated
pCO2 data (Figure 2 and Supplementary Figure S2) from
the SAMI-CO2 and the SST measured at ASTAN, respectively.
pCO2,mean is the mean sea surface pCO2 (420 ± 50 µatm,
n = 30788) and Tmean the annual average temperature
(13.20 ± 2.09◦C, n = 33442), calculated from the most complete
HF dataset recorded in 2016 and 2019 (Supplementary Table
T1). For bimonthly data, means were calculated from January
2015 to December 2019 based on the bimonthly dataset: pCO2,obs
is the pCO2 computed from TA/DIC and pH/DIC, with an
annual mean of pCO2,mean = 410 ± 64 µatm (n = 109) at
SOMLIT-pier and pCO2,mean = 436 ± 39 µatm (n = 119)
at SOMLIT-offshore. The average temperature observed at
SOMLIT-pier was Tmean = 13.17 ± 2.27◦C (n = 119) and
at SOMLIT-offshore was Tmean = 13.05 ± 2.04◦C (n = 121)
(Supplementary Table T1).

Air-Sea CO2 Fluxes
Atmospheric pCO2 (pCO2

air) was calculated from the CO2
molar fraction (xCO2) from the Mace Head site (53◦33′ N
9◦00′ W, southern Ireland) (Figure 1) of the RAMCES network
(Observatory Network for Greenhouse gases) and from the
water vapor pressure (pH2O) using the Weiss and Price (1980)
equation. Atmospheric pressure (Patm) was obtained from the
weather station of the Roscoff Marine Station, and the wind
data from the Guipavas meteorological station (48◦26′36′′ N,
4◦24′42′′ W, Météo France) (Figure 1). All data were recorded at
hourly frequency and then allocated to the HF pCO2 signal of the
ASTAN buoy obtained every 30 min by linear interpolation, daily
means were then assigned to discrete values of SOMLIT stations.
FCO2 (in mmol C m−2 d−1, Eq. 5) at the air-sea interface was
determined from the difference of pCO2 between the surface
seawater and the air (δpCO2 = pCO2-pCO2

air), SST, SSS and
wind speed.

FCO2 = k× α× δpCO2 (5)

Where k represents the gas transfer velocity (m s−1) and α

represents the solubility coefficient of CO2 (mol atm−1 m−3)
calculated as in Weiss (1970). The exchange coefficient k (Eq. 6)
was calculated according to the wind speed with the updated
algorithm of Wanninkhof (2014) appropriate for regional to
global flux estimates and high spatial and temporal resolution of
wind products:

k = 0.251× u2
10 × (

Sc
660

)−0.5 (6)

Where u10 represents the wind speed at 10 m height (m s−1)
and Sc the Schmidt number at in situ surface temperature, which
varied from 770 to 1250.
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FIGURE 2 | Correlations between HF and discrete data for (A) SSS, (B) DO (µM), (C) Chl-a (µg L−1), and (D) pCO2 (µatm). Left plots show discrete measurements
versus sensor values, with n the number of discrete measurements, red lines the linear regression between discrete and sensor measurements and associated r2

values. The right plot shows the differences between sensor values and discrete measurements over time. Dashed lines represent standard deviation of the
difference between sensor values and discrete measurements, and dotted lines represent three times the standard deviation.
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Wavelet Analysis
To extract further information on our HF data, mathematical
transformations were applied. In 2016 and 2019 the HF dataset
covered a major part of the year, and all the studied parameters
were measured simultaneously. Wavelet analyses were thus
performed on SST, SSS, DO%, and pCO2

non−therm to identify the
principal frequencies driving the variability of these parameters.
Typically, Fourier transforms are used to quantify the constant
periodic component in time series. This method is limited
when the frequency content changes with time, as in the case
of ecological time-series. To overcome these limitations, the
wavelets analysis became the norm in environmental time-series
analysis, and were used for example to analyze El Nino Southern
oscillation (Goring and Bell, 1999) or to follow precipitations
distributions (Santos and de Morais, 2013). Wavelet analysis
maintain time and frequency localization in a signal analysis,
decomposing a time-series into a time-frequency image. This
image, generated as a power spectrum, provides simultaneous
information on the amplitude of any periodic signals within
the series, and on how this amplitude varies with time (Santos
and de Morais, 2013). Our measurements were carried out at
stations influenced by many factors, stationary or not (e.g., tidal
range, currents, day–night cycle, marked seasons. . .). In the case
of such HF analysis of an environmental signal the continuous
wavelet transform (CWT) must be used and the Morlet wavelets
are privileged to follow localized scales (Cazelles et al., 2008).
The wavelets analysis is also suitable for the analysis of the
relationship between two signals, and thus determining the links
between each of the environmental variables studied. We used
the cross-wavelets transforms to estimate the covariance between
each pair of time-series as a function of frequency. The wavelet
analyses were carried out from the Matlab package “wavelet-
coherence” (Grinsted et al., 2004) on Matlab v2015b.

RESULTS

Reliability of the Dataset
From the 06/03/2015 to the 31/12/2019, SST from the Seabird
SBE16 + of the ASTAN buoy and from SBE19 + used during
discrete sampling at SOMLIT-offshore were very well-correlated
(r2 = 0.99, n = 99, standard deviation of the residuals < 0.1◦C)
(Supplementary Figure S3). We used the bimonthly discrete
measurements of SSS, DO and Chl-a from the SOMLIT-
offshore station to determine whether post-calibration of the
corresponding sensors of the SBE16 + deployed at the ASTAN
buoy was necessary. These samples were collected during high
tide slack when the ASTAN and SOMLIT-offshore surface waters
had similar biogeochemical properties according to our transect
data. The SSS values were in good agreement with discrete salinity
measurements with a 1:1 relationship (r2 = 0.95, n = 111; standard
deviation of the residuals < 0.02) (Figure 2A). Similarly, for DO
the linear relationship between both measurements was close
to 1:1 (DO = 1.03*DOSBE43−6.7, r2 = 0.91, n = 109, standard
deviation of the residuals < 4.4 µM) (Figure 2B). During the
5 years of study, the mean difference between discrete DO and
DO measured by the SBE43 sensor was 0.31 µM. In light of these

results, no corrections were applied to the HF SSS and DO. For
Chl a two different fluorometers were used during the study, from
March 2015 to June 2018 and from June 2018 to December 2019.
During the first and second deployments, fluorescence (in relative
fluorescence units, RFU) showed significant correlations with
discrete Chl-a concentrations of (1) Fluorescence = 0.18∗Chl-
a + 0.04, r2 = 0.52, n = 48 and (2) Fluorescence = 0.11∗Chl-
a + 0.25, r2 = 0.43, n = 17, respectively (Figure 2C). Once
the two different conversions between fluorescence and Chl-a
measurements were performed, the standard deviation on the
residuals was 0.34 µg L−1. Conversion of in situ fluorescence
into Chl-a concentrations has always been challenging, with
fluorescence influenced by numerous factors: heterogeneity of the
phytoplankton community structure across the year (Southward
et al., 2005; Guilloux et al., 2013), phytoplankton taxonomy
(Proctor and Roesler, 2010), cell size (Alpine and Cloern, 1985),
pigment packing (Bricaud et al., 1983, 1995; Sosik et al., 1989;
Sosik and Mitchell, 1991) and the effect of non-photochemical
quenching (Xing et al., 2012). Despite these limitations, Chl-
a concentrations remains a suitable proxy for phytoplankton
biomass (Carberry et al., 2019). The standard deviations obtained
on the residuals were close to those obtained with similar sensors
on the Armorique Ferry Box between Roscoff and Plymouth
(Marrec et al., 2014), therefore no further corrections were
applied to the converted Chl a signal.

Maintenance of the SAMI-pCO2 sensor was conducted at
least every 3 months and more often during the productive
period. Offsets between discrete pCO2 estimates and SAMI-pCO2
were detected each time. The offset remained stable during the
deployment periods. For example, from the 13/07/2017 to the
31/08/2017, the mean difference between discrete measurements
and the sensor was + 8.9 µatm, while from 02/10/2017 to
11/01/2018 it was −9.9 µatm. The pCO2 values obtained from
the sensor were corrected using measured offsets. From March
2015 to March 2017, we used the TA/DIC measurements at
SOMLIT-offshore during high tide slack to compute pCO2. The
pCO2 values obtained from the sensor were corrected from
the measured offset, taking into account the average difference
between SOMLIT-offshore and ASTAN buoy. Once the offset was
corrected (Figure 2D), we obtained a 1:1 relationship between
in situ pCO2 computed from DIC/TA and pCO2 values given by
the SAMI-CO2 (r2 = 0.80, n = 48) with a standard deviation of
the residuals of 16.9 µatm. From March 2017 to December 2019,
to reduce errors linked to short time and space scales variability,
discrete samples for the determination of pH and TA were taken
very close to or directly from the buoy at the same depth than
the SAMI sensor. We used this pH/TA combination to compute
sea surface pCO2 at the buoy since they provide accurate pCO2
values (Millero, 2007). We obtained a better 1:1 relationship
between in situ pCO2 computed from pH and TA and pCO2
values given by the SAMI-CO2 (r2 = 0.98, n = 48) with a standard
deviation of the residuals of 7.1 µatm.

The percentage of environmental parameters acquired by each
sensor had a mean success rate of 60% (Table 1). The SST and
SSS mean ratios were most reliable due to the robustness of
these sensors. SSTs measured concomitantly by the CTD and the
SAMI-CO2, were well-correlated (Supplementary Figure S3B).
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TABLE 1 | Percentage of data acquired for each parameter measured at the
ASTAN buoy from March 2015 to December 2019.

SST SSS DO Fluorescence pCO2

2015 67.7% 50.3% 37.8% 47.11% 47.2%

2016 91.0% 88.5% 88.7% 85.9% 60.8%

2017 74.0% 88.8% 57.3% 60.4% 13.2%

2018 75.0% 75.0% 60.1% 0% 25.4%

2019 68.2% 65.9% 35.7% 68.8% 74.5%

DO and fluorescence sensors were more sensitive to specific
problems (e.g., biofouling) due to the substantial sensitivity of
detection technologies used by theses sensors, which are based on
polarography (SBE43) and optics (Cyclops C7), respectively. The
SAMI-CO2 was the most impacted sensor in terms of acquisition,
principally due to frequent battery shortage, missing reagents,
or problems with embedded electronics. With the installation
of radio transmission during summer 2018, it was easier to
detect breakdowns and therefore quickly undertake repairs. The
percentage of data acquisition thus increased for all sensors from
this point onwards.

Physical and Biogeochemical Variability
of Coastal sWEC Waters
Variability of Physical Parameters
Sea surface temperature and SSS showed marked seasonality
with cold and fresh water during winter and early spring,
and warmer and more saline waters during summer and early
fall (Figures 3A,B). SST ranged from 9.0◦C during winter to
17.0◦C during summer. Averaged seasonal SST at SOMLIT-
pier was warmer than at SOMLIT-offshore during summer
(15.89 ± 0.70◦C, n = 31 vs. 15.34 ± 0.66◦C, n = 31,
p-value < 0.001), and colder during winter (10.44 ± 0.78◦C,
n = 36 vs. 10.75 ± 0.76◦C, n = 37, p-value < 0.001)
(Supplementary Table T1). The seasonal mean of SSS varied
from ∼35.15 ± 0.13 in winter to ∼35.27 ± 0.13 in summer. SSS
at SOMLIT-pier was significantly lower than at SOMLIT-offshore
because of larger freshwater inputs during the winter with a mean
difference of 0.30 (Supplementary Table T1). During summer
SSS at both stations was in a similar range. At the ASTAN buoy,
high-frequency SSS measurements indicated a variability of up
to 0.70 within 24 h cycles in winter and up to 0.30 during
summer. Interannually, the climatology was calculated from HF
daily means of SST and SSS values over 5 years and SST followed
a similar pattern between years, except in winter 2018 when
the coldest SST was observed, with a 1.5◦C difference compared
to the 5-year average. SSS did not follow regular seasonality:
in 2015 and 2017 SSS followed the 5-year average, with SSS
values remaining above 35.0; while in 2016 and 2018, winter SSS
decreased down to 34.80 and 34.50, respectively (Figure 3B).

Variability of Chl-a Concentrations and DO%
The SOMLIT-pier DO% and Chl-a were higher than SOMLIT-
offshore values, with a mean difference around 2% and
0.05 µg L−1 in winter, and around 10% and 0.1 µg L−1 in
summer. At ASTAN, the variations of HF DO% and converted

Chl-a showed similar dynamics with high DO% > 110%, high
Chl-a concentrations (>2 µg L−1) during spring, and low Chl-
a (<0.5 µg L−1) concentrations associated with low DO values
close to the equilibrium and/or undersaturated during fall/winter
with a mean DO% of 98.2± 1.6% during winter and values below
93% in November (Figures 3C,D and Supplementary Table T1).
The DO oversaturation generally lasted around 6 months, from
April to September, and surface waters were close to equilibrium
and/or undersaturated in DO for the rest of the year. High-
frequency DO% data recorded at the ASTAN buoy were closer
to the data observed at SOMLIT-offshore than at SOMLIT-pier.
Both DO% and Chl-a were characterized by high variability when
observed from HF measurements, particularly during spring and
summer. DO% and Chl-a followed the same general pattern each
year but differed temporally. For example DO oversaturation
(DO% above 115%) and high Chl-a (5 µg L−1) were observed
in early spring (March) during 2015, but only during late spring
(May) in 2018 (Figures 3C,D), when large riverine inputs marked
by lower SSS values occurred.

Variability of pCO2 and FCO2
At SOMLIT-offshore and SOMLIT-pier, pCO2 ranged from 295
to 507 µatm on an annual scale (Figure 3E). Minimum values
(<350 µatm) were observed during spring and early summer,
with pCO2 values below atmospheric equilibrium (pCO2

air

ranging from 400 to 410 µatm). Maximum values (>450 µatm),
above atmospheric equilibrium, were observed during fall and
early winter (Figure 3E). Surface water CO2 undersaturation
relative to pCO2

air lasted around 6 months, from April to
September, while CO2 oversaturation dominated the rest of
the year, inversely related to DO%. During summer, pCO2 at
SOMLIT-offshore was higher than at the SOMLIT-pier (+ 65
µatm mean difference), while during winter we observed an
opposite pattern (−23 µatm mean difference). HF pCO2 was
generally well-correlated to the low frequency data. However,
during May 2016 and 2019 HF data indicated important
drawdowns below 300 µatm (related to high Chl a values), which
were not detected by the low frequency monitoring.

The annual amplitude of FCO2 (Figure 3F) varied from
−14 mmol C m−2 d−1 to + 26 mmol C m−2 d−1. During winter,
the fluxes were positive, with surface waters releasing CO2 to the
atmosphere, while the spring negative values revealed a strong
absorption of atmospheric CO2. During spring, atmospheric CO2
absorption at the SOMLIT-pier was larger (−2.10± 1.80 mmol C
m−2 d−1, n = 29) than at SOMLIT-offshore (0.29± 1.00 mmol C
m−2 d−1, n = 31), with an average difference of 1.8 mmol C m−2

d−1 (Supplementary Table T1). During winter, the two stations
acted rather similarly, with important CO2 emissions to the
atmosphere during the high wind speed periods (e.g., December
2015 and January 2018) (Figure 3F). The HF monitoring enabled
the observation of important daily FCO2 variations during the
spring of 2015 and 2016. For example, during 2015 HF data
revealed values down to−14 mmol C m−2 d−1, compared to the
FCO2 computed from discrete sampling around−4 mmol C m−2

d−1. Similar observations were made during winter 2015, 2016,
2017 and 2019 with, as in 2017, high HF FCO2 values of 26 mmol
C m−2 d−1 compared to values of 3 mmol C m−2 d−1 computed
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FIGURE 3 | (. in black) High-frequency, (+ in blue) SOMLIT-pier, and (* in blue) SOMLIT-offshore data of (A) SST (◦C), (B) SSS, (C) DO% (%), (D) Chl-a (µg L−1), (E)
pCO2 (µatm) and (F) FCO2 (mmol C m−2 d−1) from January 2015 to January 2020. Colored lines represent the climatology of (A) SST, (B) SSS, and the pCO2

atm

(µatm) on (E). The black lines of (C,F) represent the atmospheric equilibrium of DO and CO2, respectively. Negative FCO2 (sink of atmospheric CO2) values are
represented in blue, and positive FCO2 (source of CO2 to the atmosphere) are in red.

from discrete sampling at the same time. Mean seasonal FCO2
were relatively similar at the three stations during winter, with
values between + 2.0 and +4.0 mmol C d−2 m−1 (Figure 4).
The spatial difference was more marked during spring, when
FCO2 was negative at SOMLIT-pier (less than −2 mmol C m−2

d−1) and at ASTAN buoy (around −1.6 mmol C m−2 d−1), but
close to equilibrium at SOMLIT-offshore (around −0.3 mmol C
m−2 d−1). During summer, SOMLIT-pier and ASTAN buoy had
values close to atmospheric equilibrium, while SOMLIT-offshore
surface waters released CO2 at + 1.0 mmol C m−2 d−1. During
fall, all sites exhibited large emissions of CO2 to the atmosphere
with values between + 2 and + 6 mmol C m−2 d−1.

Frequency Analysis
Frequency Study of the Physical Structure
Wavelet analyses were applied to the 2016 and 2019 HF SST
and SSS data (Figure 5A) to identify the main frequencies of
variability at the ASTAN buoy. The years 2016 and 2019 were
used because the datasets were the most complete. For both years,
the SST followed closely the climatology, while the SSS signal was

more variable each year because of the high riverine variability
but did not show extreme values as those recorded in 2018.

A 12 h cycle, representative of the tidal period of 0.5
day, clearly appeared on both wavelet analyses throughout the
year: high variance values between the signal and the wavelets
appeared, indicating more marked correlations during the
summer period for SST and during winter for SSS. The diurnal
cycle (period of 1 day) appeared weakly and episodically in the
wavelet transformation of SST data. The crossed wavelets of SST
and SSS highlighted the main periodicity of 0.5 days. At the 12 h
frequency, we clearly observed a phase alternation, represented
by the change of direction of the arrow, with a signal in phase
from October to April, and shifted the rest of the year. The
statistical analysis revealed very sharp phase changes and allowed
precise pinpointing of the different physical characteristics of two
water masses influencing HF measurements. For example, the
first inversion started on April 10 during 2016, while the second
inversion occurred on November 9 in 2016. Similar analysis for
2019 revealed an inversion on November 7 in 2019, remarkably
close in terms of inter-annual variability. These results underline
the potential of HF monitoring combined to wavelet analyses
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FIGURE 4 | Seasonal mean FCO2 (mmol C m−2 d−1) across a coast-to-offshore gradient at (A) SOMLIT-pier (B) ASTAN buoy, and (C) SOMLIT-offshore from 2015
to 2019. The high frequency means were established only for seasons with a number of observations nobs > 1500, and for the bimonthly stations with a nobs > 4.
The error lines represent the standard deviation.

FIGURE 5 | Wavelet power spectrum based on the Morlet wavelets during the year 2016 for (A) SST (◦C), SSS, and cross-wavelet spectrum between SST and
SSS, and for (B) DO% (%), pCO2

non−therm (µatm) and cross-wavelet spectrum between DO% and pCO2
non−therm. Time is expressed in day of the year. The color

bars represent the power of the wavelet transform, in absolute squared value. A high power is represented in yellow. For the cross-wavelets spectrum, the arrows
indicate if the signals are in phases (arrow pointing right) or in phase inversion (arrow pointing left). White bands represent a lack of data.
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for following shifts in terms of physical regimes in complex
nearshore ecosystems.

Frequency Study of Biogeochemical Parameters
Wavelet transformation for the biogeochemical parameters DO%
and pCO2

non−therm (Figure 5B), representative of biological
processes, revealed two characteristic frequencies of 0.5 and
1 days. These frequencies were more marked during summer
compared to winter, with higher power. The cross-wavelet
analysis revealed that these two frequencies were identical for
both parameters underlying potential diel biological cycles in
surface waters at the ASTAN buoy. However, the phases did
not show any relevant pattern, and the cross wavelet between
the biological and the physical parameters didn’t bring more
information (not shown). For the 12 h signal, we did not
observe distinct regimes similar to those of SST and SSS.
In winter, they seemed shifted, with DO% maximal when
pCO2

non−therm decreased.

Short-Term Variability of Physical and
Biogeochemical Parameters
Short-term variability of HF data recorded at the ASTAN buoy
during two representatives 6-days periods in January 2016 and
May 2016 is shown in Figure 6. From 05/01/2016 to 10/01/2016
(winter period, Figure 6A), SST ranged from 11 to 14◦C, and
SSS from 34.85 to 34.95. The SST and SSS varied following 12-h
cycles: SST and SSS differences within a 6-h time frame ranged
from 0.10 to 0.30◦C for SST and from 0.03 to 0.40 for SSS.
These two parameters followed the same pattern as the tidal
ranges. During high tides SST and SSS reached their highest
values, while during low tides minimum SST and SSS values were
observed. Similarly, 6-h variation was observed for DO and pCO2
(Figure 6C). DO ranged from 264 to 274 µM, and pCO2 ranged
from 443 to 457 µatm with a 6-h difference of around 7 µM and
13 µatm, respectively.

From 20/05/2016 to 25/05/2016 (spring period, Figure 6B),
SST ranged from 15.80 to 17.20◦C, and SSS from 35.18 to 35.25.
We observed 6-h variations of SST around 0.40◦C, and 6-h
variations of SSS around 0.50. SSS followed the tidal variations,
and SST was in the opposite phase; i.e., the phase shift highlighted
by the wavelet analysis had occurred. DO and pCO2 patterns were
linked to the 12 h tidal cycle, as suggested by the wavelet analysis.
During the bloom (Figure 6D), DO ranged from 277 to 290 µM,
and pCO2 from 347 to 379 µatm. 6-h variations were 8 µM for
DO and 20 µatm for pCO2. pCO2 was correlated with the tidal
pattern, while DO was in the opposite phase. These observations
highlight the importance of the tidal cycle in daily variations of
biogeochemical parameters at the ASTAN buoy.

DISCUSSION

Short-Scale Variability of the CO2
System in Coastal sWEC
Discrete data, wavelet analysis and HF data described in
Section “Short-Term Variability of Physical and Biogeochemical
Parameters” highlighted the tidal transport of two distinct water

masses: firstly a coastal water mass (CWM), unidentified in
previous studies (Marrec, 2014), with properties corresponding
to the SOMLIT-pier data and present at ASTAN during low
tides; secondly an offshore water mass (OWM) corresponding to
SOMLIT-offshore data and present at ASTAN during high tides.
During the 5 years of observations, the CWM had lower SST
during winter, higher SST during summer; and generally lower
SSS (Figures 3A,B) (Supplementary Table T1) than the OWM.
The phase inversion observed in November and April (Figure 5),
which occurred every year, was the consequence of the opposite
SST seasonality between the CWM and the OWM (lower SST
in summer in OWM and lower SST in winter in CWM). The
influence of tides on pCO2 dynamics is prominent in estuarine
ecosystems (De la Paz et al., 2007; Bozec et al., 2012; Oliveira
et al., 2018), but has also been observed in various continental
shelves of the world ocean (DeGrandpre et al., 1998; Hofmann
et al., 2011; Horwitz et al., 2019). Several studies have reported
the impact of the tidal cycle on pCO2 over various European
continental shelf provinces, for example in the nWEC (Litt et al.,
2010), in the Bay of Brest (Bozec et al., 2011) or in the Cadiz Bay
(Ribas-Ribas et al., 2011, 2013). Likewise, enhanced variability at
12-h periods of DO% and pCO2 were associated to tidal levels
and SST/SSS variations at ASTAN (Figures 5, 6). Previous studies
were limited to shorter periods of observation, spanning from
20 h to 4 months, with tidal amplitude lesser than 2 m (Litt et al.,
2010; Ribas-Ribas et al., 2011, 2013) or to a semi-enclosed bay
with limited tidal exchange with the adjacent open ocean (Bozec
et al., 2011). During 5 years, we observed mean variations of
DO% and pCO2 around 10% and 15 µatm, respectively, during
tidal cycles. The maximum tidal variability associated to spring
tides (>7 m) during phytoplankton blooms (16% for DO% and
88 µatm for pCO2

non−therm) represented up to 50 and 40%
of the respective annual signals at ASTAN. These variabilities
reflected the important tidal transport of the CWM and OWM
in the coastal sWEC, distinctively revealed by HF monitoring
at the ASTAN buoy.

In addition to the tidal variability of DO% and pCO2 as a
result of the presence of distinct water masses at ASTAN, HF
monitoring of these biologically dependent variables should also
present diurnal variability. During the day, the combination of
photosynthesis and respiration is supposed to increase DO% and
decrease pCO2

non−therm, whereas during the night, respiration
processes tend to decrease DO% and increase pCO2

non−therm.
Borges and Frankignoulle (2003) first revealed a combination
of the tidal signal coupled with the biological diel cycle on
pCO2 variations in the English Channel. The impact of the
diel cycle on DO%, pCO2

non−therm and FCO2 had also been
detected and quantified during the productive period in the
nWEC (Marrec et al., 2014). In the adjacent Bay of Brest, HF
data showed a maximum of DO% and a minimum of pCO2
at dusk, and a maximum of pCO2 and a minimum of DO%
at dawn (Bozec et al., 2011). More recently, Liu et al. (2019)
highlighted the superimposition of the diel biological signal on
the pCO2 tidal signal in a subtropical tidal estuary. In our case,
the main difficulty was to extract the diurnal signal from the
high tidal signal, which dominated the short-term variability
of pCO2, as also observed by Dai et al. (2009) in several
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FIGURE 6 | Short-term variability of SST (◦C) (blue) and SSS (red) during (A) winter, from 05/01/2016 to 10/01/2016, and (B) summer, from 20/05/2016 to
25/05/2016; and short-term variability of DO (µM) (blue) and pCO2 (µatm) (red) during (C) winter and (D) summer. Black lines represent tidal height (m). Smooth lines
in blue and red are obtained using a moving average filter with a 2-h span on the corresponding parameters.

ecosystems of the South China Sea. At the ASTAN site, the diel
variability of DO% and pCO2

non−therm was indistinguishable due
to the prevalence of the tidal signal (Figure 6). However, the
wavelet analysis revealed a potential day/night cycle for DO%
and pCO2

non−therm (Figure 5), with an important signal on a
24 h period. To estimate the effect of the biological diel cycle on
these parameters, we separated the signal, keeping only the data
at dusk and dawn according to PAR values measured at the buoy.
The day–night differences for DO% and pCO2

non−therm clearly
appeared during the productive period, when such differences
were the most pronounced (Figure 7). The data revealed a diel
biological cycle with maximum differences of + 5% for DO%
and −22 µatm of pCO2

non−therm between dawn and dusk.
A 10–15 day cycle appeared between day and night variability
of DO% and pCO2

non−therm, with more pronounced day–night
differences at certain periods. This period was closely related
to the time when the dawn/dusk cycle was in phase with the
low/high tide cycle (data not shown), which means that similar

water masses (CWM or OWM) were in vicinity of the ASTAN
buoy at dusk and dawn. The annual mean difference of the
day/night DO% was 0.6%, and 3 µatm for pCO2

non−therm,
remaining rather low compared to tidal variability. However,
when considering the maximum wavelet amplitude of %DO and
pCO2

non−therm during the bloom (Day ∼140 corresponding to
May, Figure 5), the day/night signal accounted for 30% of the
annual variation of DO% and for 9% of the annual variation
of pCO2

non−therm. As well as revealing the significant tidally
induced variability of the pCO2 signal, HF monitoring of coastal
sWEC waters provided key information about the impact of the
diel biological cycle on the CO2 system.

Combining HF measurements of pH or pCO2 with discrete
carbonate system parameters (DIC/TA) can be a valuable tool for
carbon cycle research based on autonomous mooring (Cullison
Gray et al., 2011). Our robust TA/SSS relationship established
in Section “Carbonate System Parameters” was concordant with
similar relationships estimated in North Atlantic waters mixing
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FIGURE 7 | Diurnal variability of (A) DO% (%) and (B) pCO2
non−therm (µatm) data extracted at dawn (red) and dusk (blue) ± 3 h during the productive period, from

22/03/2016 to 27/04/2016. Smooth lines in blue and red are obtained using a moving average filter with a 5-data span on the corresponding parameters.

with freshwater from non-limestone Irish rivers with similar TA
end members (McGrath et al., 2016). We therefore estimated
HF pHcalc for 2016, which varied from 8.00 during winter to
8.20 during summer (Figure 8A). These values were within
the range of the in situ pH estimated between 7.97 and 8.35
by Marrec (2014) in the WEC and with pH values reported
by McGrath et al. (2019) in Irish coastal waters (between 8.00
and 8.30). Unsurprisingly, pHcalc exhibited opposite dynamics
to pCO2 and was strongly related to the tidal signal. During
spring/summer, low pHcalc values were observed at high tide and
high pHcalc values at low tide, with 12-h variations up to 0.12 units
(Figure 8B). The pH variability is particularly intense in coastal
ecosystems (Ostle et al., 2016; Brodeur et al., 2019) resulting from
various biogeochemical and physical processes (Waldbusser and
Salisbury, 2014). In this study, most of the variability of pHcalc
observed at the ASTAN site during spring likely resulted from
tidal transport of the CWM and the OWM with contrasting
biological and physical properties.

Hydes et al. (2011) reported long-term pH decrease of−0.002
to −0.004 pH unit yr−1 from 1995 to 2009 in the northwest
European continental shelf, higher than in the Atlantic waters
(Kitidis et al., 2017) and in the open ocean (Doney et al.,
2009). At a daily time-scale, we observed variations up to 6
times greater than this regional annual acidification trend, and
the seasonal variation was 10 times greater than the decadal
change in the area. These strong variabilities are similar to the
observations of McGrath et al. (2019) who reported, in similar
coastal ecosystems in Ireland, a pH variability from 10 to 50
times greater than the decadal change linked to OA. Large
changes of pCO2 and pH were previously observed during
short measurements period at fixed locations in various coastal
ecosystems (Hofmann et al., 2011; Saderne et al., 2013). Intense
changes in pH and saturation state �arag have also been reported
at coastal mooring sites in the California Current Ecoystem with
natural variability overlapping with preindustrial conditions but
also revealing critical OA conditions (Sutton et al., 2016). This
variability has direct implications for calcifying species because
variable pH exposure can affect organism response to OA (Vargas

et al., 2017). Extremes decrease of �arag have also been related
to pteropods shell dissolution (Feely et al., 2016) and identified
as a potential threat for the shellfish industry (Salisbury et al.,
2008). Marine organisms in regions of persistent low pH might
be locally adapted to OA (Sanford and Kelly, 2011; Pespeni et al.,
2013). However, knowledge gaps about when and where corrosive
conditions occur (Feely et al., 2016; Chan et al., 2017; Fennel
et al., 2019) and how the timing of such conditions relates to
key life stages (Legrand et al., 2017; Kapsenberg et al., 2018) still
have to be filled to assess vulnerability to OA. Here we showed
large daily changes in pH/pCO2 but also DO/SST at the ASTAN
mooring associated with the tidal transport of the CWM and the
OWM in the nearshore area of the WEC over 5 years. These data
can improve experimental design to evaluate organism response
under real-world conditions by submitting these organisms to
realistic variability in carbonate parameters (Chan et al., 2017)
but also to varying DO and SST (Reum et al., 2016) instead
of previous classical experimental designs (Noisette et al., 2016;
Legrand et al., 2017) used in the WEC.

Seasonal and Interannual Control of
pCO2 in Coastal sWEC
Previous studies investigating the seasonal patterns of pCO2 in
the WEC indicated important physical and biological influence
on carbonate cycling (Borges and Frankignoulle, 2003; Padin
et al., 2007; Dumousseaud et al., 2010; Litt et al., 2010; Kitidis
et al., 2012). With our 5 years of HF and discrete data we
further investigated the seasonal and inter-annual variability of
pCO2 in the proximal area of the sWEC. Following the approach
proposed by Takahashi et al. (1993, 2002), we discriminated the
influence of thermal processes (pCO2

therm) from non-thermal
processes (pCO2

non−therm) (Figures 9A,B) and we quantified
the respective influence of δpCO2

therm and δpCO2
non−therm on

pCO2 (Figure 9C).
The SST followed a rather regular pattern every year with

limited inter-annual variations. Since pCO2
therm is mainly

influenced by temperature, we observed a variation of pCO2
therm
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FIGURE 8 | (A) pHcalc (in pH units on the total scale at in situ SST) at the ASTAN buoy during the year 2016 as explained in Section “Carbonate System Parameters”
with (B) emphasis on the spring short-term variability of pHcalc (black dot) and the water level [in meters (orange line)] from 28/05/2016 to 09/06/2016.

FIGURE 9 | (A) pCO2
therm (blue), (B) pCO2

non−therm (red) (C) δpCO2
therm = pCO2-pCO2

non−therm (blue) and δpCO2
non−therm = pCO2-pCO2

therm (red) (all in µatm) for
(.) High-frequency, (+) SOMLIT-pier, and (*) SOMLIT-offshore data. Dashed lines represent the maximum and minimum of the monthly mean of δpCO2

therm (blue) and
δpCO2

non−therm (red).

mirroring SST variations, varying from 325 to 490 µatm
during winter and summer, respectively. δpCO2

therm varied
from + 67 µatm due to increasing SST during summer to
−104 µatm due to decreasing SST during winter. In 2018, winter

values diverged from the other years with lower SST (−1.5◦C)
compared to average values. Therefore, the lowest pCO2

therm

values (around 345 µatm) and a δpCO2
therm of −104 µatm

(20 µatm lower than the other years) were encountered that
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year. It is worth noting that during the same period SSS largely
diverged from the average with values as low as 34.60, only
recorded by HF monitoring. The decrease of pCO2 induced
by thermal processes was counterbalanced by particularly high
pCO2

non−therm values at this time (>500 µatm). The strong
impact of non-thermal processes in winter 2018 might be related
to intense riverine inputs, which brought a large amount of
organic material. Besides this interannual variability, the 5-year
dataset at the two discrete stations revealed spatial variability of
the thermal effect on pCO2. During winter, pCO2

therm was lower
at SOMLIT-pier (or CWM) compared to SOMLIT-offshore (or
OWM), due to stronger cooling of nearshore waters during the
winter regime. δpCO2

therm revealed an impact 7 µatm higher
of the SST cooling on pCO2 in the CWM (Supplementary
Table T1). During summer, after the shift from the winter to
the summer regime, SST was higher at SOMLIT-pier than at
SOMLIT-offshore. δpCO2

therm showed that this higher SST was
responsible for a potential increase of 5 µatm of pCO2 in CWM
compared to OWM (Supplementary Table T1).

Non-thermal effects on pCO2, pCO2
non−therm, are strongly

influenced by biological production/respiration processes,
but also by factors such as lateral advection, vertical mixing,
air-sea CO2 exchanges, dissolution/formation of CaCO3,
sediment/water-column interactions, or riverine inputs.
However, this parameter remains a valuable and efficient
approach to assess the impact of biological processes on
pCO2 variability (Thomas et al., 2005). Windspeed data
(Supplementary Figure S4) showed a rather stable signal
(higher values during winter’s storms and lower values during
spring/summer) throughout the 5 years of study, which did not
induce large inter-annual pCO2

non−therm variability. The HF
data showed a clear opposite dynamic between Chl-a-DO%,
and the pCO2

non−therm signals both temporally and in terms of
intensity. The opposite patterns indicated that pCO2

non−therm

could reasonably be considered as an indicator to quantify the
effect of biological processes on natural pCO2 variability.

Spring in the sWEC is characterized by phytoplankton blooms
between March and April fueled by the winter nutrient stock.
The onset of spring phytoplankton blooms depends on light
availability throughout the well-mixed water column (Wafar
et al., 1983; L’Helguen et al., 1996). Surface waters, and the
entire water column (except when weak and short stratification
occurred), still exhibited relatively high Chl-a concentrations
and oversaturated DO% along the summer since nutrient stocks
(particularly nitrate) are rarely totally depleted because of
the light limitation induced by strong mixing (Wafar et al.,
1983; L’Helguen et al., 1996; Marrec, 2014). In fall, light
availability becomes insufficient to support the substantial level of
primary production required to maintain DO% oversaturation.
Respiration and remineralization processes therefore become the
main driver of pCO2 variability, consuming DO, releasing CO2,
and driving the nutrient concentrations as in other temperate
ecosystems of the northwest European continental shelf (Bozec
et al., 2011; Marrec et al., 2013; Salt et al., 2016; Hartman et al.,
2019). The biologically productive periods were accompanied
by DO% > 100% and Chl-a concentrations > 1 µg L−1

from April to October every year, with oxygen saturation

reaching values up to 120%. During winter the heterotrophic
activity (respiration and remineralization of organic matter)
dominated with much lower Chl-a and undersaturated DO%.
δpCO2

non−therm showed a regular pattern driven by these
production/respiration processes, with a strong coupling between
the start/end of < 0 δpCO2

non−therm and > 100% DO% values,
and proved to be a suitable indicator of the extent and duration
of the productive period (Figure 9C).

Important interannual variability was observed with respect
to the onset and end of the productive period, as indicated by
the DO% and δpCO2

non−therm signals. In 2015, DO% started to
be significantly higher than 100% in March, synchronized with
an increase of Chl-a, and surface waters remained oversaturated
in DO up to mid-September, while in 2018, the productive
period started in May and ended in late August. 2018 was
characterized by larger freshwater inputs (Figure 3B) due
to heavy precipitations in late winter/early spring, and thus
reduced light availability, associated with greater turbidity,
which might have limited light penetration in the mixed water-
column and thus delayed the start of the productive period.
The pCO2

non−therm and δpCO2
non−therm signals followed similar

dynamics. In 2015, pCO2
non−therm and δpCO2

non−therm started
to decrease and to be negative, respectively, in April, whereas
negative δpCO2

non−therm started to be observed in May in 2018.
Positive δpCO2

non−therm values were observed from September
in 2015 and from August in 2018. The decrease of pCO2

non−therm

in spring can be particularly rapid, as in spring 2016 with
a drawdown of around 250 µatm during a 2-month period
(March–May), revealing a large consumption of pCO2 by
biological activity partly counteracted by the increasing SST and
pCO2

therm at the same period.
Spatial variability was visible from the discrete data,

particularly in summer, when pCO2
non−therm was persistently

lower at SOMLIT-pier (CWM) than at SOMLIT-offshore
(OWM). During the productive period, seasonal minimal
δpCO2

non−therm values lower than −100 µatm were observed in
the CWM every year, while the δpCO2

non−therm signals never
reached values below −70 µatm in the OWM. The shallower
depth in the CMW favors light penetration, which can result
in higher pelagic production (when nutrients are not depleted)
compared to the deeper OWM. The role of benthic production
processes on CO2 variations is also important in proximal
shallow areas (Hammond et al., 1999; Cai et al., 2000; Forja et al.,
2004; Waldbusser and Salisbury, 2014; Oliveira et al., 2018). The
low δpCO2

non−therm associated to CWM during the productive
period might include both higher pelagic and benthic production,
with a predominance of the latter. The tidal transport of the
CWM over adjacent seagrass and macroalgae beds with high CO2
consumption (Ouisse et al., 2011; Bordeyne et al., 2017) extended
the biological productive period of the CWM to the benthic
compartment. The δpCO2

non−therm seasonal mean difference of
30 µatm recorded between both stations was therefore a gross
estimation of the benthic compartment production within the
nearshore area. Similarly, a nearshore to offshore gradient was
observed during fall and early winter. Values of δpCO2

non−therm

in the CWM of 130 µatm were 40 µatm higher than in the
OWM, the important benthic and pelagic remineralization in the
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shallower CWM contributing to a larger increase of pCO2. This
increase was partly counteracted by the decreasing pCO2

therm due
to fall and winter SST cooling as discussed above.

Our data revealed a somewhat classical picture of pCO2
control in temperate ecosystems with counteracting effects of
thermodynamic and biological activity depending on the seasons
(Thomas et al., 2005; Bozec et al., 2011). The combined 5-year
HF and discrete data allowed for the first time the quantification
of rather large interannual and spatial variability in the proximal
surface waters of the sWEC. Non-thermal processes, that we
assumed to be mainly controlled by biological activity, were the
main driver of pCO2 in the coastal sWEC, as shown by the larger
amplitude, both during winter and summer, of pCO2

non−therm

compared to pCO2
therm. The interannual variability of pCO2

depended mainly on the duration and the intensity of the
productive period. The weak interannual variability in terms
of SST limited its control over the 5 years of study on pCO2
compared to production/respiration processes.

Dynamics of FCO2 in the WEC
Our study provides FCO2 estimates at daily, seasonal and
annual time scales. One major limitation for estimating HF
FCO2 is the requirement to access HF atmospheric CO2 data
in the surrounding study area. Northcott et al. (2019) recently
demonstrated the impact of higher atmospheric CO2 transported
by offshore winds from urban and agricultural land on FCO2
estimates in Monterey Bay, California. This concern was also
addressed by Wimart-Rousseau et al. (2020) in their study of
FCO2 in the vicinity of a highly urbanized area. Unfortunately,
we did not have access to local HF atmospheric CO2 data, so
atmospheric xCO2 data from the RAMCES network collected at
the Mace Head site (53◦33′ N 9◦00′ W, southern Ireland) were
used to calculate pCO2

atm. The dominant onshore south-westerly
winds and rather lowly urbanized surroundings in our study
area mean that the Mace Head record should be representative
of our study site. The use of local wind products from the
nearby Guipavas weather station (Supplementary Figure S4)
and of recent gas transfer velocity parametrization adapted to
regional estimates (Wanninkhof, 2014) limited the error linked
to different wind products in regional air-sea flux estimations
(Roobaert et al., 2018). The impact of rain, extreme wind events
and associated bubble entrainment, surface films or boundary
layer stability (Wanninkhof et al., 2009 for a review) are factors
inducing additional uncertainty into gas transfer velocity k,
and therefore HF FCO2 calculation, but remain particularly
difficult to assess. The eddy covariance technique, as used by
Yang et al. (2019) in the nWEC, can overcome most of these
limitations inherent to gas transfer velocity parametrization, and
presents some undeniable advantages for studying HF FCO2.
However, the use of in situ seawater pCO2 sensor remained
the most effective way to study pCO2, examine its control, and
simultaneously estimate air-sea CO2 fluxes using widely used
wind dependent gas transfer velocity parametrization.

The main benefit of HF data was to assess daily FCO2
variability and capture extreme events such as high fluxes
observed during winter or abrupt shifts and drawdown during
spring. For example, during winter 2017 a HF FCO2 of 26 mmol

C m−2 d−1 was recorded at ASTAN compared to values of
3 mmol C m−2 d−1 computed from discrete values at the
same time. During spring, as explained in Section “Seasonal
and Interannual Control of pCO2 in Coastal WEC,” the large
interannual variability of the intensity and trigger of spring
blooms was responsible for variable spring drawdown in pCO2,
revealing sudden and strong inversions of the fluxes. For
example, in March 2016 FCO2 was on average positive with a
monthly maximum of + 5.93 mmol C m−2 d−1 (03/27/16), and
within a few days became negative, with a monthly minimum of
−4.42 mmol C m−2 d−1 (04/19/16). This large daily variability
should be taken into account when considering the spring
average carbon sink for each year (with a mean estimate at
−2.12 mmol C m−2 d−1). With the method applied in Section
“Short-Scale Variability of the CO2 System in Coastal sWEC”
we were able to separate the day/night signal during this
period and found a mean difference of FCO2 of −0.12 mmol
m−2 d−1 due to the diel biological cycle. This estimation was
understandably lower than the day–night difference estimated
at −0.90 mmol m−2 d−1 for FCO2 during spring in the
stratified and more productive nWEC (Marrec et al., 2014). FCO2
based on HF data provided relevant information on short-term
variability, the main caveat of the cardinal buoy data being the
significant loss of data, which hindered computation of mean
seasonal averages.

The mean seasonal FCO2 values for the three sites during
the 5 years of study were compared to assess the seasonal and
spatial variability of FCO2 along a coastal/offshore gradient
(Figure 4). FCO2 computed from the HF data at ASTAN
exhibited similar overall variability as FCO2 obtained from
discrete measurements at SOMLIT-pier (CWM) and at SOMLIT-
offshore (OWM). Similar general patterns between HF and
discrete data at the seasonal level have also been reported in
recent studies (Shadwick et al., 2019). Regardless of sampling
frequency and locations, the three studied sites acted as strong
sources of CO2 to the atmosphere during winter/fall. During
spring, SOMLIT-pier and ASTAN acted as sinks of atmospheric
CO2, with higher CO2 sink at SOMLIT-pier than at ASTAN,
while fluxes computed at SOMLIT-offshore indicated exchanges
near equilibrium. Summer was the only time of the year
when significant differences in terms of flux intensity and
direction were observed between the three sites. This time of
the year corresponds to the shift from dominant production of
organic matter by photosynthetic organisms toward dominant
remineralization and respiration processes, which usually start
earlier in the deeper well-mixed water column at SOMLIT-
offshore. The 2015/2018 years were marked by large differences
in terms of the date of onset and length of the productive period,
which were poorly reflected in the mean seasonal spring and
summer FCO2. However, the following fall was marked by large
differences in terms of emissions of CO2 to the atmosphere, much
lower in 2018 compared to 2015 when it was driven by high
wind speeds (maximum monthly mean of 9.7 m s−1). The mean
wind speeds recorded during fall 2018 (4.6 m s−1) were followed
by lower than average wind speeds the following winter months
(4.6 m s−1 compared to mean 5.2 m s−1) (Figure 3), which still
resulted in significant flux differences, driven this time by the
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delayed remineralization period (Figure 4). This study confirms
that seasonal variability of FCO2 in this part of the NE European
continental shelf is controlled by complex interactions between
high/low wind speeds, production/respiration of organic matter
and winter cooling (Kitidis et al., 2019).

On an annual basis, given the dominant impact of the tidal
cycle at ASTAN, it seemed particularly interesting to assess the
proximal coastal/offshore gradient of FCO2 from the buoy data
only. In 2016/2019 the HF dataset was sufficiently complete to
attempt an estimation of annual FCO2 in the CMW and OMW
based on tidal separation of the HF signal. We separated the
dataset according to high tides (>8 m) and low tides (<2.5 m),
as previously explained. The annual mean FCO2 over 2016/2019
was estimated at 0.37 mol C m−2 yr−1 for the CMW and 0.65 mol
C m−2 yr−1 for the OWM (Figure 10). The mean HF FCO2 of
0.51 mol C m−2 yr−1 for 2016/2019 at the ASTAN buoy was
obviously within the range of FCO2 in the CWM and OWM.
FCO2 computed at ASTAN comprised both the tidal and diurnal
signals and was therefore representative of nearshore surface
waters in the sWEC. Comparison of these HF budget with the
annual mean budget for 2016/2019 based on discrete sampling
at SOMLIT-pier (0.35 mol C m−2 yr−1) and SOMLIT-offshore
(0.62 mol C m−2 yr−1), which we assumed representative of
the CWM and OWM, respectively, revealed very similar values.
Here, the arbitrary separation of the HF data according to tide
levels provided coherent results with discrete samples collected
at noon during neap tides at both SOMLIT stations. We were
able to estimate FCO2 in the CWM and OWM with the ASTAN
mooring, which underly the great potential of cardinal buoys
to capture the dynamic of FCO2 in nearshore tidal ecosystems.
It is worth noting that CO2 emissions at SOMLIT-offshore
(averaged over the 5-year period) showed a similar trend but
lower values than emissions computed from 2011 to 2013 at the
same site (Figure 10), with an atmospheric CO2 increase of + 9
to + 15 µatm recorded between the studies. These new estimates
in nearshore waters of the sWEC over a 5-year period combined
with previous studies provided a full latitudinal representation
over multiple years for FCO2 in the WEC (Figures 1, 10). This is
particularly relevant since proximal areas are currently excluded
from global estimates in the coastal ocean (Bourgeois et al.,
2016). The latitudinal comparison showed a clear gradient from
a weak source of CO2 in the tidal mixing areas toward sinks
of CO2 in the stratified regions less influenced by tidal mixing
in agreement with recent global modeling studies (Laruelle
et al., 2018). Interestingly, in the tidal mixing ecosystems the
sources increased from nearshore to offshore waters, whereas in
stratified ecosystems the sink increased toward nearshore waters.
Andersson and Mackenzie (2004) first suggested that shelves may
have turned from a CO2 source in the preindustrial time to a
sink at present and that the CO2 uptake rate would increase with
time. More recently Cai (2011) and Bauer et al. (2013) suggested
an increasing global shelf CO2 sink with time as a result of the
atmospheric pCO2 increase. The latest SOCAT data confirm this
trend with a slower pCO2 increase in shelf waters compared to
atmospheric pCO2 that could increase the air-sea gradient and
thus the uptake of atmospheric CO2 in the decades to come,
although high spatial variability in air–sea fluxes is to be expected

FIGURE 10 | Annual mean FCO2 (mol C m−2 y−1) across the WEC at
discrete stations SOMLIT-pier and SOMLIT-offshore for the 2015–2019 period
(dark red), in the CMW, OMW and at ASTAN based on HF data from 2016
and 2019 (red) from this study1; at SOMLIT-offshore (orange), in the sWEC
(orange) and nWEC (blue) for the period 2011–2013 from Marrec (2014)2; and
at discrete stations E1 and L4 (dark blue) for the period 2007–2010 from
Kitidis et al. (2012)3.

across shelf regions (Laruelle et al., 2018). This is particularly
significant for the sWEC, which is a weak source of CO2 and
could potentially become a sink of CO2 in the coming decades.

CONCLUSION

The recent OceanObs 2019 conference highlighted the need
for innovative and sustained coastal observatories (Farcy et al.,
2019) notably for the study of FCO2. In the last decade, the
emergence of new high-performance pH and pCO2 sensors has
been extremely valuable for the investigation of OA and FCO2
(Sastri et al., 2019). Here, the implementation of a cardinal buoy
of opportunity equipped with such novel sensors into an existing
network of time-series and Ferrybox monitoring programs
provided a robust multiple year assessment of FCO2 and also pH
variability in a temperate coastal ecosystem. This is particularly
relevant on a socio-economical level since nearshore ecosystems
host large stocks of shellfish species sensitive to ongoing ocean
acidification. Numerous cardinal buoys are present in the global
coastal ocean to direct traffic, particularly along rocky shores with
large tidal ranges. These buoys of opportunity can be equipped
with meteorological and oceanographic sensors and transmit
data daily to the shore, thus providing real-time data for the
study of coastal ecosystems under climate change. This network
of buoys therefore has significant potential to be exploited for
efficient, low cost observation of coastal ecosystems.
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Based on the 2019 assessment of the Global Carbon Project, the ocean took up on

average, 2.5 ± 0.6 PgC yr−1 or 23 ± 5% of the total anthropogenic CO2 emissions

over the decade 2009–2018. This sink estimate is based on simulation results from

global ocean biogeochemical models (GOBMs) and is compared to data-products based

on observations of surface ocean pCO2 (partial pressure of CO2) accounting for the

outgassing of river-derived CO2. Here we evaluate the GOBM simulations by comparing

the simulated surface ocean pCO2 to observations. Based on this comparison, the

simulations are well-suited for quantifying the global ocean carbon sink on the time-scale

of the annual mean and its multi-decadal trend (RMSE <20 µatm), as well as on the

time-scale of multi-year variability (RMSE <10 µatm), despite the large model-data

mismatch on the seasonal time-scale (RMSE of 20–80 µatm). Biases in GOBMs have a

small effect on the global mean ocean sink (0.05 PgC yr−1), but need to be addressed to

improve the regional budgets and model-data comparison. Accounting for non-mapped

areas in the data-products reduces their spread as measured by the standard deviation

by a third. There is growing evidence and consistency among methods with regard to the

patterns of the multi-year variability of the ocean carbon sink, with a global stagnation in

the 1990s and an extra-tropical strengthening in the 2000s. GOBMs and data-products

point consistently to a shift from a tropical CO2 source to a CO2 sink in recent years. On

average, the GOBMs reveal less variations in the sink than the data-based products.

Despite the reasonable simulation of surface ocean pCO2 by the GOBMs, there are

discrepancies between the resulting sink estimate from GOBMs and data-products.

These discrepancies are within the uncertainty of the river flux adjustment, increase

over time, and largely stem from the Southern Ocean. Progress in our understanding
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of the global ocean carbon sink necessitates significant advancement in modeling and

observing the Southern Ocean carbon sink including (i) a game-changing increase

in high-quality pCO2 observations, and (ii) a critical re-evaluation of the regional river

flux adjustment.

Keywords: ocean carbon uptake, anthropogenic CO2, ocean carbon cycle model evaluation, riverine carbon flux,

variability of the ocean carbon sink, seasonal cycle

1. INTRODUCTION

The Global Carbon Project provides annual budgets of the
anthropogenic perturbations to the global carbon cycle. It
assesses CO2 emissions from burning of fossil fuels, cement
production and land-use change as well as the evolution of
the ocean and land carbon sinks, and of the atmospheric
CO2 inventory. The Global Carbon Project has published
annual updates of the Global Carbon Budget (GCB) since 2007
(Canadell et al., 2007; Le Quéré et al., 2009) with more detailed
documentations since 2013 (e.g., Le Quéré et al., 2013, 2014;
Friedlingstein et al., 2019).

Fossil fuel CO2 emissions reached 10.0 PgC yr−1 in 2018, but
the fraction of the CO2 remaining in the atmosphere has been
remarkably stable at 45% on average since 1958. Land and ocean
have sequestered 29 ± 5 and 23 ± 5%, respectively, of total fossil
and land-use change emissions over the last decade, 2009–2018
(Friedlingstein et al., 2019). The ocean figures prominently in the
Global Carbon Budget by having sequestered 25% of cumulative
CO2 emissions since 1850. Over the same period, the land has
sequestered 30% of cumulative emissions, but has also released
a comparable amount of CO2 by land-use change emissions
(Friedlingstein et al., 2019).

The ocean carbon sink (SOCEAN) has been estimated from
global ocean biogeochemical models (GOBMs) since the start of
the GCB activity. Initially, the land sink was calculated from the
balance of the CO2 emissions, the increase in the atmospheric
inventory and the flux into the ocean (Le Quéré et al., 2013). Due
to the decisive role of the ocean sink estimate for the calculated
land sink, the ocean models were scaled to the mean ocean
anthropogenic carbon sink for the 1990s of 2.2 ± 0.4 PgC yr−1

as estimated by the IPCC based on three selected methods after
examination of seven independent observational-based methods
(Denman et al., 2007). Hence, the GOBMs were only used
to estimate the year-to-year change around the mean 1990s
anthropogenic carbon sink. Since 2017, the land sink is estimated
independently, based on Dynamic Global Vegetation Models
(DGVMs), and the GOBMs are not scaled anymore to the 1990s
sink (Le Quéré et al., 2018b). This change in methodology has
reduced the ocean carbon sink estimate in the GCB by roughly
0.2 PgC yr−1 and the independence of land and ocean sink
estimates allowed for the introduction of the budget imbalance
(BIM) in the Global Carbon Budget. The BIM quantifies the gap
between the best estimates of emissions and sinks, and hence
reflects limitations in our understanding of the global carbon
cycle. The BIM is 0.4 PgC yr−1 or 4% of CO2 emissions for
the decade 2009–2018 and could either be due to overestimated

emissions or underestimated sinks. The uncertainties in the sinks
(land and/or ocean) are more likely to play an important role for
the BIM given that it has the same magnitude now as in the 1960s,
when the emissions were a lot smaller.

The estimate of the mean SOCEAN and its year-to-year
variability is discussed in comparison with ocean carbon sink
estimates from data-based pCO2 mapping methods, which
are referred to as pCO2-based data-products in the GCB or
data-products in short. The mapping methods use statistical
interpolation or neural network regression to map the global
sea-surface pCO2 field based on pCO2 measurements from the
Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016) and
other environmental data-sets (Rödenbeck et al., 2015). Despite
SOCATv2019 containingmore than 25million observations, they
cover only a tiny fraction of the spatio-temporal pCO2 field (on
the order of 2% of the monthly 1 × 1◦ pixels in 1982–2018). The
spatial and temporal autocorrelation of the pCO2 field around
the data locations, with a global median spatial autocorrelation
length of 400 ± 250 km (Jones et al., 2012), suggests that the
observations also include information about a larger region than
the actual sampling site and hence the implicitly observed ocean
area is substantially larger than 2%. Nevertheless, the sparsity
of the observations and their highly uneven coverage in space
and time remain a major challenge. In order to upscale these
scarce observations to a globally gridded product, the mapping
methods make use of a range of assumptions and input data sets
(Rödenbeck et al., 2015).

GOBMs andmappingmethods approach the estimation of the
ocean carbon sink from opposite sides. The GOBMs simulate the
carbon transport with large-scale ocean circulation and resolve
carbon source and sink processes on large spatial and temporal
scales. The GOBMs thereby constrain the air-sea CO2 flux by
the transport of carbon into the ocean interior, which is also
the controlling factor of ocean carbon uptake in the real world.
When carbon is transported from the surface mixed layer into
the ocean interior, more CO2 can be taken up at the surface.
The air-sea CO2 flux in GOBMs therefore depends strongly
on the simulated large-scale ocean circulation. In contrast,
the data-products are based on statistical tools to map scarce
pCO2 observations and derive the ocean sink with the use of
gas-exchange parameterizations. They are more closely linked
to observations, but their estimated air-sea CO2 flux depends
strongly on uncertainties in the gas-exchange parameterization
(e.g., Wanninkhof, 2014; Woolf et al., 2019) and gridded wind
products, and there is no constraint from the ocean interior
perspective. Ocean inversion and data-assimilated models that
combine the process understanding of the GOBMs and are tied
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to observations are becoming available, but are so far limited to
estimating the (decadal) mean ocean sink, annual estimates for
the last 10 years, and/or regional estimates (e.g., Mikaloff Fletcher
et al., 2006; Verdy and Mazloff, 2017; DeVries et al., 2019).

As the estimates of SOCEAN are not tied to an observational
estimate any more since the GCB 2017, an accurate simulation
of the mean ocean carbon sink by the models has become more
important. Model evaluation was introduced in 2018 (Le Quéré
et al., 2018a, Figure B1) as a single mismatch metric between
surface ocean pCO2 (partial pressure of CO2) observations from
the Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016).
A thorough documentation of the strengths and weaknesses
of the CO2 source and sink characteristics modeled by the
GOBMs used in the GCB has been lacking thus far. In this
study, we aim to assess the performance and spread of the
GOBMs with respect to simulations of surface pCO2 and air-
sea CO2 exchange, on different time-scales (preindustrial mean;
historical: monthly, annual including the trend, and multi-
year variability), document the effects of recent changes in
methodology in the GCB 2019 ocean carbon sink estimate, and
highlight consistencies and challenges across GOBMs and data-
based pCO2 mapping methods.

2. METHODS

2.1. Definition of Air-Sea CO2 Fluxes
The contemporary air-sea CO2 flux (Fnet) can be decomposed
into multiple terms:

Fnet = Fant,ss + Fant,ns + Fnat,ss + Fnat,ns + Friv,ss + Friv,ns (1)

where the subscript ant denotes anthropogenic, nat natural,
riv rivers, ss steady state, and ns denotes non-steady state.
Anthropogenic refers to the direct effect of atmospheric CO2

increase only. The annotation steady state stands for fluxes in a
constant or preindustrial climate and non-steady state for climate
change and natural climate variability effects on the respective
flux. Based on the assumption that ocean and atmosphere were
in equilibrium in preindustrial times, the global total of Fnat,ss is
supposed to be zero, although regional fluxes are different from
zero. The steady-state preindustrial state, i.e., the sum of Fnat,ss
and Friv,ss, is characterized by net outgassing of CO2.

The ocean sink SOCEAN as defined in the GCB accounts for a
subset of terms in Fnet. This is motivated to capture those terms
directly influenced by anthropogenic perturbations, including
climate change, but also comprises climate variability:

SOCEAN = Fant,ss + Fant,ns + Fnat,ns (2)

with Fant,ss being the flux in response to the atmospheric CO2

increase only, Fant,ns the effect of climate change and variability
on Fant,ss, and Fnat,ns being the effect of climate change and
variability on the natural CO2 flux. Note that this definition
of the ocean carbon sink SOCEAN in the GCB is different from
the definition of the “anthropogenic CO2 sink” referred to as
the change in ocean carbon content only due to the direct
effect of increasing CO2 concentration in the atmosphere (Fant,ss

+ Fant,ns), often used in the observational ocean carbon cycle
community (e.g., Gruber et al., 2019).

The steady-state river flux, Friv,ss, i.e., the ocean outgassing
due to carbon transport from land to sea, is estimated to be
between 0.45 ± 0.18 PgC yr−1 (Jacobson et al., 2007) and 0.78
± 0.41 PgC yr−1 (Resplandy et al., 2018). The steady-state
outgassing of riverine carbon reflects the balance between the
input into the ocean of inorganic and organic carbon by rivers
and the burial of inorganic and organic carbon in the oceanic
sediments (Sarmiento and Sundquist, 1992). Riverine carbon
is transported to the open ocean in the form of particulate
or dissolved organic carbon and subsequently remineralized to
inorganic carbon, which can be exchanged with the atmosphere.
In the pre-industrial state, the riverine outgassing is considered
to occur in the open ocean with the coastal ocean being neither a
source nor a sink for CO2 (Regnier et al., 2013). We thus consider
that the underrepresentation of coastal data points in SOCAT and
hence in the data-based products does not justify omitting the
river flux adjustment.

The non-steady state river flux component, Friv,ns,
consists of anthropogenic perturbations of river fluxes and
natural variability. These non-steady state components
should conceptually be included in the GCB, but are not
accounted for due to a lack of annually resolved and regularly
updated estimates. The organic carbon export from terrestrial
ecosystems into aquatic systems has increased by 1.0 ±

0.5 PgC yr−1 since pre-industrial times (Regnier et al., 2013).
This exported carbon is partly respired in the land-ocean aquatic
continuum (freshwaters, estuaries, coastal areas), partly buried
in sediments, and to a smaller extent transferred to the open
ocean (Regnier et al., 2013).

2.2. Global Ocean Biogeochemistry Models
Contributing to the Global Carbon Budget
The Global Ocean Biogeochemical Models used in the GCB
are general ocean circulation models with coupled ocean
biogeochemistry. The nine contributing models in GCB2019
are NEMO-PlankTOM5 (Buitenhuis et al., 2013), MICOM-
HAMOCC (NorESM-OC, Schwinger et al., 2016), MPIOM-
HAMOCC6 (Paulsen et al., 2017), NEMO3.6-PISCESv2-gas
(CNRM, Berthet et al., 2019), CSIRO (Law et al., 2017),MITgcm-
REcoM2 (Hauck et al., 2018), MOM6-COBALT (Princeton,
Adcroft et al., 2019), CESM-ETHZ (Doney et al., 2009), and
NEMO-PISCES (IPSL, Aumont et al., 2015). A detailed overview
table of model spin-up, initial conditions and forcing can be
found as Table A2 in Friedlingstein et al. (2019). Here, we only
summarize the main features. The GOBMs use a fixed resolution
in longitude of between 0.5 and 2◦ and eight out of the nine
models use a varying resolution in latitude between 0.17 and
2◦ (see Table A2 in Friedlingstein et al., 2019). The number of
depth levels varies between 30 and 75. The models are spun-
up with varying spin-up procedures for a period ranging from
28 to 1,000 years. All models except for MPI initialize from
alkalinity and pre-industrial dissolved inorganic carbon (DIC)
fields from either GLODAPv1 (Key et al., 2004) or GLODAPv2
(Lauvset et al., 2016). MPI initializes from a uniform distribution
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followed by a long spin-up (several 1,000 years). The time-
step of the models varies between 15 and 96 min and CO2

flux and surface pCO2 are saved with a monthly frequency
(Supplementary Table 2).

Here, we add FESOM-REcoM to this suite of GOBMs, which
will replace MITgcm-REcoM in future releases of the GCB. It
consists of the biogeochemical model REcoM2 (Hauck et al.,
2013, 2018; Schourup-Kristensen et al., 2014) coupled to the finite
element ocean circulation model FESOM-1.4 (Wang et al., 2014).
The model previously described by Schourup-Kristensen et al.
(2014, 2018) has been updated to use the mocsy2.0 routines for
carbonate chemistry including water vapor correction (Orr and
Epitalon, 2015), the photodamage parameterization by Álvarez
et al. (2018), and the dust fields from Albani et al. (2014) as
surface forcing for iron. River fluxes of carbon and nutrients
are switched off to comply with the GCB protocol. The multi-
resolution mesh configuration is based on a coarse mesh with
a global nominal resolution of 1◦, which is increased to about
25 km north of 50◦N and to about 1/3◦ in the equatorial belt,
and is also moderately refined along the coasts (REF mesh in
Sidorenko et al., 2015; Rackow et al., 2018). The simulation
shown here is the second cycle of JRA-55-do forcing 1958–
2017. Alkalinity and preindustrial DIC are initialized from
GLODAPv2 (Lauvset et al., 2016). In the following, we include
FESOM-REcoM in all analyses, and give total budget numbers
with and without FESOM-REcoM to document the effects of
methodological changes on the GCB2019 ocean sink estimate
exactly as in Friedlingstein et al. (2019).

The GOBMs are forced with atmospheric reanalysis data sets
and observed atmospheric CO2 concentration. As the model
simulations are updated once a year for the latest calendar year,
only atmospheric reanalysis data sets that are regularly updated
within few months can be used. Five out of the ten models are
forced with either JRA-55 or JRA55-do (Kobayashi et al., 2015;
Tsujino et al., 2018, CSIRO, MITgcm-REcoM, FESOM-REcoM,
MOM6-COBALT, CESM-ETHZ, IPSL), two models are forced
with NCEP/NCAR-R1 (Kalnay et al., 1996, MPIOM-HAMOCC
and NEMO-PlankTOM5) and two models use NCEP/NCAR-
R1 with CORE-II corrections (CNRM and NorESM). CORE-II
(Yeager and Large, 2008) and ERA-20C (Poli et al., 2013) forcing
data sets are used for the spin-up by single groups.

The monthly atmospheric CO2 mixing ratio (xCO2, in ppm,
including the seasonal cycle) is an average of Mauna Loa and
South Pole stations for the 1958–1979 period and of multiple
stations with well-mixed background air thereafter (Ballantyne
et al., 2012; Dlugokencky and Tans, 2019). Data prior to
March 1958 are estimated with a cubic spline fit to ice core
data from Joos and Spahni (2008). As the seasonality in this
global time-series is dominated by the northern hemisphere
land, some modeling groups (CNRM, IPSL) derive an annual
mean xCO2 from the provided monthly fields to avoid an
out-of phase seasonal cycle in the southern hemisphere.
The provided atmospheric xCO2 is converted to pCO2 by
accounting for atmospheric sea-level pressure patm (CESM-
ETH, NEMO-PlankTOM5, MOM6-COBALT, IPSL, FESOM-
REcoM, CSIRO) or with a constant sea-level pressure (CNRM:
1,000 hPa, NorESM: 1013.25 hPa). Two models use xCO2

TABLE 1 | Specifications of Global Ocean Biogeochemical Models: River carbon

input, net burial and conversion from xCO2 (ppm) to pCO2 (µatm) using

atmospheric sea-level pressure patm and water vapor correction.

Model River C

(PgC yr−1)

Burial

(PgC yr−1)

patm Water vapor

correction

MITgcm-REcoM 0 0 No No

MPI 0 0 No No

CESM-ETH 0.33 0.25 Yes No

CNRM 0.61 0.94 Fixed at

1,000 hPa

Yes

CSIRO 0 0 Yes No

NorESM 0 0 Fixed at

1013.25 hPa

No

PlankTOM 0.72 0.72 Yes Yes

MOM6-COBALT 0.11 0.18 Yes Yes

IPSL 0.61 0.59 Yes Yes

FESOM-REcoM 0 0 Yes Yes

without conversion to pCO2 (MITgcm-REcoM, MPI, Table 1).
Five models (CNRM, NEMO-PlankTOM5, MOM6-COBALT,
IPSL, FESOM-REcoM) further take into account the water vapor
pressure (pH2O) correction as

pCO2 = xCO2 ·
(

patm − pH2O
)

(3)

The GOBMs do not consider river fluxes of carbon, alkalinity
and nutrients into the ocean in the versions used here (MITgcm-
REcoM, FESOM-REcoM, NorESM-OC, MPIOM-HAMOCC6,
CSIRO) or their river fluxes are approximately balanced by burial
in sediments (NEMO-PlankTOM5, IPSL, Princeton, CESM-
ETHZ). In this case, these river fluxes do not induce a river-
driven net sea-to-air CO2 flux. Only in CNRM is the burial
substantially larger than the lateral inflow of carbon into the
ocean (Table 1).

2.2.1. GOBM Simulations and Analysis
Two simulations are performed by each modeling group.
Simulation A is designed to reproduce the interannual variability
and trend in the ocean carbon uptake in response to changes
in both atmospheric CO2 and climate. Simulation A is forced
with interannual varying atmospheric forcing and increasing
atmospheric CO2. This is the contemporary CO2 flux simulation
and it includes the following terms:

FsimA = Fant,ss + Fant,ns + Fnat,ss + Fnat,ns + Fdrift+bias (4)

Simulation B is a control simulation with constant atmospheric
forcing (normal year or repeated year forcing) and constant
preindustrial atmospheric CO2 (modeling groups use either 278
or 284 ppm). It represents the natural steady-state flux plus any
flux due to bias and drift:

FsimB = Fnat,ss + Fdrift+bias (5)

All models except CNRM and IPSL use a climatology or single
year forcing for simulation B. Simulation B of CNRM is forced
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by cycling over the first 10 years of the NCEP/NCAR-R1
forcing. IPSL instead contributed a simulation with constant
atmospheric CO2 and interannual varying atmospheric forcing
that corresponds to Fnat,ss + Fnat,ns + Fdrift+bias.

In order to derive SOCEAN from the model simulations, we
subtract the annual time-series of simulation B from the annual
time-series of simulation A for all models that used single year
or climatological forcing for their simulation B. Assuming that
Fdrift+bias is the same in simulations A and B, we thereby correct
for any model drift. Further, this difference also removes the
Fnat,ss, which is often a major source of biases. Simulations B
of IPSL and CNRM have to be treated differently due to their
different protocols. For these models, we fit a linear trend to
the simulation B and subtract this linear trend from simulation
A. This approach assures that the interannual variability is not
removed from IPSL simulation A. It will also remove a potential
trend in Fnat,ns, which tends to be substantially smaller than the
trend in Fant,ss, but is still of potential interest in the context of
decadal variability in the ocean carbon sink.

Modeling groups submit global and regional annual time-
series of the ocean carbon sink integrated from their nativemodel
grids. This procedure avoids errors in the integrated carbon
sink due to interpolation. These data are used for all time-series
figures. Three regions are considered: north (>30◦N), tropics
(30◦S-30◦N) and south (<30◦S). Further, gridded fields of pCO2

and air-sea CO2 flux on a 1x1 degree grid are used for model
evaluation. The regional CO2 fluxes are not corrected for bias
and drift of the control simulation, as the assumption of zero
Fnat,ss only holds on the global level. The submitted time-series
and gridded fields for simulation A and B are published in the
data repository Pangaea (Hauck et al., 2020).

2.3. Data-Based pCO2 Mapping Methods
Three mapping methods are used here: the MPI-SOMFFN
(Landschützer et al., 2016), the Jena-MLS (Rödenbeck et al.,
2014), and the CMEMS (Denvil-Sommer et al., 2019) methods.
The products are regularly updated, now covering the period
1982–2018 (Jena-MLS, MPI-SOMFFN) or 1985-2018 (CMEMS).
All methods are based on SOCATv2019 surface ocean fugacity
of CO2 (pCO2 corrected for the non-ideal behavior of the
gas) as input data set, which is an update of SOCAT version
3 (Bakker et al., 2016). CMEMS used only two thirds of the
SOCATv2019 data for training the method and the rest for
validation.We refer to the resulting data sets as pCO2-based data-
products. From these gridded pCO2 products, the contributing
groups calculated the air-sea CO2 flux using their own methods,
and integrated their global and regional ocean carbon sink
estimates over their native grids to provide the resulting air-
sea CO2 flux time-series. MPI-SOMFFN and CMEMS use
the global monthly atmospheric xCO2 time-series. Jena-MLS
uses the spatially and temporally explicit xCO2 boundary
conditions from the Jena Carbo Scope atmospheric inversion
(Rödenbeck et al., 2018). All methods convert xCO2 to pCO2

using sea-level pressure and the water vapor correction. All three
mapping methods use a quadratic gas-exchange formulation
(k · U2 · (Sc/660)−0.5) with the transfer coefficient k scaled to
match a global mean transfer rate of 16 cm/h (Wanninkhof,

1992; Naegler, 2009) and the Schmidt number Sc estimated with
a third-order polynomial fit of sea surface temperature. The
mapping methods use different wind speed products [Jena-MLS:
NCEP/NCAR-R1 (Kalnay et al., 1996), MPI-SOMFFN: ERA-
INTERIM (Dee et al., 2011), CMEMS: ERA5 (Hersbach et al.,
2020; Simmons et al., 2020)] for the calculation of the CO2

flux (Supplementary Table 1). Gridded fields of pCO2 and air-
sea CO2 flux were submitted for the evaluation, where MPI-
SOMFFN and CMEMS submitted monthly 1 × 1◦ fields. The
daily 4 × 5◦ Jena-MLS fields were regridded to monthly 1 ×

1◦ fields using nearest neighbor interpolation with the griddata
function from the python SciPy module. The submitted time-
series and gridded fields are published in the data repository
Pangaea (Hauck et al., 2020).

The data-products are based on contemporary sea surface
pCO2 observations and thus estimate Fnet (see Equation 1). In
order to compare them with the SOCEAN estimate, they have to be
adjusted for the riverine flux Friv,ss (using 0.78 ± 0.41 PgC yr−1,
Resplandy et al., 2018). The riverine adjustment is attributed to
three latitudinal bands using the spatial distribution of Aumont
et al. (2001) with the caveat that the regional boundaries are
defined at 20◦Nand 20◦S as opposed to the latitudinal boundaries
of 30◦N/S used in the GCB otherwise. This results in additive
river flux adjustment terms of Friv,ss of 0.20 PgC yr−1 (north),
0.19 PgC yr−1 (tropics), and 0.38 PgC yr−1 (south).

2.4. Area Weighting
GOBMs and mapping methods all cover different amounts of
ocean surface area. To close the Global Carbon Budget with CO2

sources and sinks, the total ocean area has to be considered.
Hence, the total ocean area covered by each GOBM andmapping
method on their native grids was requested and compared to the
global ocean area of 361,900,000 km2 from ETOPO1 (Amante
and Eakins, 2009; Eakins and Sharman, 2010).

The ocean area covered by the ocean models range between
352,050,000 km2 for MITgcm-REcoM which excludes the Arctic
north of 80◦N to 365,980,000 km2 for MPI. The ocean
models hence cover 97.3–101.1% of the global ocean area.
These differences in ocean coverage originate from the grid
specifications in coastal regions, besides the missing Arctic
and Mediterranean Sea in MITgcm-REcoM. As none of the
models resolves coastal processes explicitly, we scale the annual
time-series of the total ocean carbon sink by the ratio of the
ETOPO1 global ocean area (Amante and Eakins, 2009; Eakins
and Sharman, 2010) to the modeled ocean area.

The covered ocean area ranges from 88.9% of the global
ETOPO1 ocean area in two data-products (MPI-SOMFFN and
CMEMS) to 101.4% in the Jena-MLS. The non-mapped ocean
area in MPI-SOMFFN and CMEMS are located all along the
coasts and in marginal seas, including the Mediterranean Sea and
the Arctic Ocean. We apply the same area-scaling procedure to
the data-products as to the models to yield a consistent estimate
of the global ocean carbon sink.

The areal correction is not applied to the regional fluxes due to
the lack of information on area coverage per region. The effects
of this area-correction or its omission are described and discussed
in sections 3.2 and 4.5.
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Global and regional time-series of GOBMs and data-products
after area weighting but without river flux adjustment are
archived in ICOS (Global Carbon Project, 2019).

2.5. Quantification of Temporal Variability
To quantify agreement of GOBMs and mapping methods on
the multi-year variability of the GCB ocean sink estimate, we
define four distinct periods. We chose the years 1992, 2001, and
2011 as boundaries for the four phases following Landschützer
et al. (2015). These years also mark cusps in the ensemble mean
of data-products, most pronounced in the Southern Ocean. We
tested the trend significance within these multi-year periods from
start year to end year with a Mann-Kendall test using the python
module pyMannKendall (Hussain and Mahmud, 2019).

Furthermore, we calculate the amplitude of interannual
variability (AIAV, Rödenbeck et al., 2015) as the temporal
standard deviation of the air-sea CO2 exchange derived from
the gridded fields as follows: (1) air-sea CO2 exchange filtered
for water depth exceeding 400 m (not subsampled for SOCAT
sampling sites), (2) spatially-integrated, (3) 12-months running
mean filter applied, and (4) detrended. Our AIAV calculation
differs from Rödenbeck et al. (2015) only by the detrending
which is used to separate out the variability from the trend. It
differs from the AIAV shown in Friedlingstein et al. (2019) by the
detrending and also by the time period considered (1992–2018),
which is shorter but has a larger data density.

2.6. Evaluation Metrics
We use the gridded pCO2 fields for model evaluation on which
we apply two filters. First, we follow Rödenbeck et al. (2015) by
using only open ocean data points where water depth exceeds
400 m (thereby excluding 8% of the ocean area). Second, we
subsample data-points from models and mapping methods for
which there is a matching fCO2 (fugacity of CO2) value from
the binned SOCATv2019 product (gridded, on a monthly 1
× 1◦ resolution; Bakker et al., 2016), which we refer to as
pCO2 in the following. The fugacity of CO2 is 3–4‰ smaller
than the partial pressure of CO2 (Zeebe and Wolf-Gladrow,
2001). We acknowledge the importance of this distinction in
the observational community, but consider it negligible for the
model evaluation.

We generate global and regional monthly mean pCO2 time-
series by averaging over all subsampled pCO2 data points in
a given region. All data points are weighted equally. Monthly
correlation coefficient and root mean squared error (RMSE)
between simulated and observed pCO2 are calculated from
the subsampled data sets before calculating the spatial average.
Statistics are calculated for the period 1992–2018, due to the
limited data availability of surface pCO2 observations prior to
1992 (Bakker et al., 2016).

Annual time-series are calculated from the monthly mean
subsampled time-series after integration over regions. Annual
RMSE and correlation coefficient are calculated from these time-
series, contrary to the monthly statistics. We consider this to
be more robust than to calculate the annual mean at each pixel
given the data sparsity. Hence, the annual metrics are to be
interpreted as a measure of the misfit on the large regional

TABLE 2 | Global bias and drift of annual air-sea CO2 flux in control simulation of

individual Global Ocean Biogeochemical Models. The drift is calculated as a linear

fit to the full annual time-series 1959–2018.

Model Bias (PgC yr−1) Drift (PgC yr−2)

MITgcm-REcoM −0.07 −0.0015

MPI 0.09 0.00022

CESM-ETH 0.14 −0.0012

CNRM 0.31* −0.0017*

CSIRO −0.21 0.0034

NorESM −0.01 0.00049

PlankTOM −0.05 −0.0026

MOM6-COBALT 0.37 −0.0020

IPSL 0.19 −0.0024

FESOM-REcoM 0.19 0.0026

*An updated simulation with CNRM with repeated 1948 forcing yields slightly lower bias

(0.26) and drift (−0.0003).

or global spatial scale and on the multi-year time-scale (mean
and trend). RMSE and correlation coefficient were additionally
calculated from detrended annual mean time-series to separate
out the mismatch of interannual variability on large spatial scales.
For the GOBMs and data-products, a second annual time-series
is calculated from the full data set to distinguish “true” variability
from a potentially biased variability stemming from the sparse
and inhomogeneous sampling.

The pCO2 mismatch is calculated as simulated or mapped
pCO2 minus SOCAT pCO2 at each data-point of the subsampled
data set. It is then spatially averaged into a monthly time-series
and temporally averaged into an annual time-series. The mean
bias is calculated as the average of the annual mean mismatch.

3. RESULTS

3.1. Control Simulation—Global and
Regional CO2 Flux
The tenGOBMs simulate a preindustrial ocean carbon sink Fnat,ss
+ Fdrift+bias (simulation B) between −0.21 to 0.37 PgC yr−1 with
a mean of 0.1 PgC yr−1 (0.08 PgC yr−1 without FESOM as in
Friedlingstein et al., 2019, a positive number indicates a flux into
the ocean; Table 2, Figure 1). It follows from the definition of
Fnat,ss = 0, that any deviation of CO2 flux in simulation B from
zero is considered a model bias. The drift of CO2 flux in the
control simulations varies between−0.0026 and 0.0034 PgC yr−2

and is thus small compared to the trend of CO2 flux in the
historical simulation. The smallest drifts are found in two models
with long spin-up (1,000 years, NorESM and MPI). CNRM and
IPSL show more variability due to their forcing choices. FESOM-
REcoM falls within the range of the other GOBMs with a positive
bias and drift (Table 2).

The strong positive bias in CNRM can be explained by the
burial flux which is larger than the river carbon input and leads
to a CO2 flux into the ocean in the preindustrial state. The burial
is also larger than the river input in MOM6-COBALT, but not
large enough to explain the bias of 0.37 PgC yr−1. Other positive
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FIGURE 1 | Annual air-sea CO2 flux in control simulation (simulation B) of individual Global Ocean Biogeochemical Models. This is equivalent to

FsimB = Fnat,ss + Fdrift+bias (Equation 5), where any flux different from zero is considered a bias and any temporal change in the control simulation is considered a drift.

Positive: CO2 flux into the ocean.

or negative biases cannot be explained by an imbalance of burial
and river fluxes.

There are substantial natural CO2 fluxes into and out of the
ocean on a regional level that have previously been assessed
using ocean inversions and ocean models (Mikaloff Fletcher
et al., 2007). All GOBMs reproduce the natural CO2 outgassing
flux in the tropics, particularly the large flux to the atmosphere
in the equatorial Pacific (Figure 2). There is less agreement
on the relative contributions to natural CO2 outgassing in the
tropical Indian Ocean vs. the tropical Atlantic with a slightly
larger contribution from the tropical Atlantic in MPI, NorESM,
CSIRO, CESM-ETH, MOM6-COBALT, and FESOM-REcoM as
in Mikaloff Fletcher et al. (2007). NEMO-PlankTOM simulates
a much larger outgassing in the tropical Indian Ocean, whereas
MITgcm-REcoM has close to zero flux and CNRM even a slight
CO2 uptake in the tropical Indian Ocean.

There are differences between the models on the relative
contributions of certain regions also in the northern extra-
tropics, where the inversion showed the strongest CO2 uptake
in the low- and mid-latitude North Pacific, followed by the low-
and mid-latitude North Atlantic and then high-latitudes (north
of 49◦N). This pattern is only reproduced by NorESM. Other
models (MPI, CSIRO, CNRM, CESM-ETH, MOM6-COBALT,
FESOM-REcoM) simulate a larger uptake in the high-latitudes
than in the low- and mid-latitude North Atlantic. NEMO-
PlankTOM5 and MITgcm-REcoM exhibit a small net outgassing
signal in the low- and mid-latitude North Pacific or the low- and
mid-latitude North Atlantic, respectively.

In the southern extra-tropics, the inversion exhibited CO2

uptake with the strongest signal in the South Pacific, followed by
the Southern Indian Ocean and the South Atlantic. This pattern
is reproduced by NEMO-PlankTOM, CSIRO and CESM-ETH.
Other models found a stronger CO2 sink in the Southern Indian
Ocean than in the Southern Pacific Ocean (NorESM, CNRM,
MOM6-COBALT). In contrast, MPI and MITgcm-REcoM show
weak outgassing signals in the South Pacific or South Atlantic,
respectively. FESOM-REcoM produces a net zero flux in the
South Pacific.

Previously identified discrepancies between ocean models
and the ocean inversion estimates on the natural CO2 flux
prevail in the Southern Ocean (Mikaloff Fletcher et al., 2007,
models: roughly zero flux, ocean inversion: outgassing). MPI and
MITgcm-REcoM models have no net natural CO2 outgassing in
the regions 44–58◦S or south of 58◦S, all other models have net
outgassing in at least one of these regions. The total natural CO2

outgassing signal in the Southern Ocean is smaller in all models
than in the ocean inversion.

3.2. Historical Simulation—Global CO2 Flux
Since models are not scaled to the observational constraint
of the 1990s anymore, their bias and drift as determined
with the control simulation has to be subtracted to satisfy
our definition of SOCEAN . The mean correction applied in the
GCB2019 (Friedlingstein et al., 2019) varies between −0.36 and
+0.16 PgC yr−1 when averaged over the 1990s and the multi-
model mean CO2 flux is thereby reduced by 0.07 PgC yr−1.
The correction leads to a larger model spread with a standard
deviation of 0.27 PgC yr−1. Similar reductions and larger spreads
of the ensemble mean CO2 flux result for other time periods,
e.g., a reduction of 0.06 and 0.05 PgC yr−1 for the 2000s and the
period 2009–2018, respectively (Table 3).

To close the Global Carbon Budget, the total ocean area has
to be considered, and we scale all GOBMs to the same global
ocean area. This has a small effect on the ocean carbon sink
estimate with corrections of −0.02 PgC yr−1 for the MPI model
to +0.05 PgC yr−1 for MITgcm-REcoM, when averaged over
the 1990s. The multi-model mean increases by 0.01, 0.01, and
0.02 PgC yr−1 when averaged over the 1990s, 2000s, and 2009–
2018, respectively (Table 3). Themodel spread is further enlarged
as the CO2 flux in the MPI model which has already the lowest
ocean carbon sink, is further reduced and the CO2 flux in the two
models with the largest ocean carbon sink (CSIRO, NorESM) is
further increased.

Taken together, the bias-correction and area-weighting reduce
the multi-model mean ocean carbon sink estimate slightly and
increase the model spread (Table 3). All models are within the
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FIGURE 2 | Natural air-sea CO2 flux in individual Global Ocean Biogeochemical Models as derived from control simulation B. The air-sea CO2 flux is averaged over

the last 10 years of the control simulation. The bar plots exhibit integrated air-sea CO2 fluxes over the regions used in Mikaloff Fletcher et al. (2007). The lower right bar

plot shows the ocean inversion results from Mikaloff Fletcher et al. (2007, MF07). Positive numbers indicate a flux into the ocean.

observational constraint of anthropogenic ocean CO2 uptake
for the 1990s of 2.2 ± 0.6 PgC yr−1 before and after applying
these corrections. This observational constraint is based on an

assessment taking into account indirect observations with seven
different methodologies (Denman et al., 2007). These methods
include the observed atmospheric O2/N2 concentration trends
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TABLE 3 | Ensemble mean and standard deviation of air-sea CO2 flux before and after applying corrections.

Method Ensemble mean ± std (PgC yr−1)

1990s 2000s 2009–2018

GLOBAL OCEAN BIOGEOCHEMISTRY MODELS

Simulation A 2.03 ± 0.20 2.21 ± 0.21 2.55 ± 0.24

Sim A, bias-corrected 1.96 ± 0.27 2.15 ± 0.28 2.50 ± 0.31

Sim A, bias-corrected and area-weighted 1.97 ± 0.30 2.17 ± 0.31 2.52 ± 0.34

Sim A, bias-corrected and area-weighted (incl FESOM-REcoM) 1.99 ± 0.25 2.17 ± 0.26 2.52 ± 0.29

DATA-PRODUCTS

Raw (Fnet) 1.44 ± 0.26 1.55 ± 0.20 2.15 ± 0.16

Area-weighted Fnet 1.54 ± 0.18 1.66 ± 0.14 2.31 ± 0.10

Area-weighted and river adjustment applied (SOCEAN ) 2.32 ± 0.18 2.44 ± 0.14 3.09 ± 0.10

Note that the first three rows are for nine models as in Friedlingstein et al. (2019) and the fourth row is for 10 models including FESOM-REcoM. The river adjustment is 0.78 PgC yr−1

(Resplandy et al., 2018).

(Manning and Keeling, 2006; Keeling and Manning, 2014), an
ocean inversion method constrained by ocean biogeochemistry
data (Mikaloff Fletcher et al., 2006), and a method based on
chlorofluorocarbons (McNeil et al., 2003). In the GCB, the
confidence interval was adjusted to 90% to avoid rejectingmodels
that may be outliers but are still plausible (2.2 ± 0.6 PgC yr−1,
Friedlingstein et al., 2019).

The spread in the covered ocean area is larger in the data-
products than in the GOBMs and area-scaling has a pronounced
effect on their ocean carbon sink estimate. The area-scaling
changes the 1990s ocean carbon sink by +0.15, −0.02, and
+0.18 PgC yr−1 in MPI-SOMFFN, Jena-MLS, and CMEMS,
respectively. The ensemble mean increases by 0.10 PgC yr−1

and the standard deviation is substantially reduced from 0.26
to 0.18 PgC yr−1 (Table 3). The area-weighting effect increases
over time to 0.16 PgC yr−1 over the period 2009–2018. The
standard deviation of the data-products decreases over time,
but is still reduced by a third through area-weighting in the
decade 2009–18.

The ocean carbon sink estimate from data-products is
the contemporary CO2 flux, hence an adjustment for the
preindustrial CO2 outgassing due to river carbon flux has to
be applied to comply with SOCEAN . The river flux adjustment
of 0.78 ± 0.41 PgC yr−1 (Resplandy et al., 2018) to the data-
products results in a larger ocean carbon uptake compared to the
GOBMs. The data-products mean of 2.32 ± 0.18 PgC yr−1 (±1
standard deviation) of the 1990s falls within the observational
constraint for the 1990s. The discrepancy between model and
data-based estimates varies between 0.35 PgC yr−1 in the 1990s
and 0.27 PgC yr−1 in the 2000s, to 0.57 PgC yr−1 in 2009–2018,
and 0.82 PgC yr−1 in the last year 2018. The uncertainty in
the river flux adjustment of ±0.41 PgC yr−1 (Resplandy et al.,
2018) can explain a large part of the mean discrepancy. Due
to a backlog in submissions to the SOCAT database, the total
amount of observations used to constrain the last year has a third
less observations (1.3 million observations in 2019 and 2 million
observations in 2018) than in previous years. Therefore, 2018 also
shows quite a remarkable spread between the mapping methods.

The models generally simulate an enhanced CO2 uptake
during El Niño events, though not all models show a response
to all strong and very strong El Niño events (e.g., NorESM
and MPI El Niño 1997/98, Figure 3 lower panel). Models
and data-products show the same patterns of variability, but
differences exist in the mean SOCEAN and in the decadal trends.
This is particularly pronounced since 2005, but also applies to
earlier decades 1980–2000 (Figure 3). While the uncertainty in
the river flux adjustment can account for a large part of the
mean discrepancy, it cannot explain the difference in trends
since 2005. The discrepancy in trends could only be explained
through the riverine term by a reduced riverine outgassing over
time, which would mean a reduced river carbon inflow into
the ocean under the assumption of a constant ratio of river
carbon inflow to riverine outgassing. There is, however, no
indication of a decreased river transport of carbon into the ocean
(Regnier et al., 2013).

3.3. Historical Simulation: Regional CO2

Flux
Separating the global SOCEAN into large-scale regional bands
reveals substantial differences in our understanding of the
mean ocean carbon sink and its variability. In the tropics,
GOBMs and data-products agree well on the mean of SOCEAN
and its variability (Figure 4). Models simulate a mean uptake
of 0.01 PgC yr−1 in 2018 with a spread from outgassing
of 0.16 PgC yr−1 in NEMO-PlankTOM to an uptake of
0.32 PgC yr−1 in CNRM. The data-products agree on a small
tropical CO2 sink of 0.04–0.19 PgC yr−1. The ensemble of data-
products and GOBMs agree that the tropics are in the process of
turning from a CO2 source to a CO2 sink. The first occurrence of
the tropical CO2 sink was in 2015 in the data-product ensemble
and in 2014 in the GOBM ensemble.

In the north, GOBMs simulate a CO2 sink of 0.85–
1.45 PgC yr−1 in 2018. Seven models and all data-products fall
within an envelope of 1.15–1.45 PgC yr−1. The CO2 sink in
the MITgcm-REcoM set-up without the Arctic and CESM are
lower with 0.89 and 0.85 PgC yr−1, respectively, and stagnate
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FIGURE 3 | Annual air-sea CO2 flux from Global Ocean Biogeochemistry Models (GOBMs) and data-products used in the Global Carbon Budget 2019, after applying

bias and area-corrections and river flux adjustment of 0.78 PgC yr−1 (Resplandy et al., 2018). (A) Mean of model ensemble and data-product ensemble as thick lines,

individual models and data-products as thin dashed lines. (B) Individual models and data-products in color. Gray bars indicate strong and very strong El Niño events

with the extended Multivariate ENSO index (MEI) being above 1.5 for at least 3 months in a row (Wolter and Timlin, 2011). Positive numbers indicate a flux into

the ocean.

since 2000. The data-product ensemble mean yields a CO2 sink
lower than the model ensemble mean by 0.1–0.2 PgC yr−1

between 1985 and 2001 and good agreement since 2005.
The largest model spread occurs in the Southern Ocean

with the models simulating a CO2 sink between 1.11 PgC yr−1

(CNRM) and 1.84 PgC yr−1 (CSIRO) in 2018. Six models fall
in an envelope of 1.16–1.50 PgC yr−1. One model (CNRM)
is lower than the multi-model mean by about 0.3 PgC yr−1

throughout the entire period, although it comes closer in 2018
with a simulated sink of 1.11 PgC yr−1. Two models are
higher with NorESM simulating higher CO2 uptake by about
0.3 PgC yr−1 throughout the entire period with 1.78 PgC yr−1

in 2018 and CSIRO branching off the other models in 1980
to reach 1.84 PgC yr−1 in 2018. The data-products have the
largest temporal variability and different patterns of interannual
variability in the south and result in CO2 uptake estimated
between 1.67 and 2.09 PgC yr−1 in 2018, after river flux
adjustments. The data-product mean is higher by 0.3 PgC yr−1

than the model ensemble mean. The only exception is the
early 2000s where the data-product mean comes close to the
model ensemble mean due to the low CO2 sink in the MPI-
SOMFFN product in the late 1990s and early 2000s. The Jena-
MLS exhibits similar variability but on a higher mean level and

the CMEMS and the GOBMs show weaker internannual and
multi-year variability.

The ocean carbon sink in FESOM-REcoM is close to the
multi model mean globally and in the tropics. The simulated
ocean carbon uptake in the north is at the high end of the
simulated range, clustering with the CNRM, NorESM, MOM6-
COBALT, and IPSL models. In the south, FESOM-REcoM is in
the lower range of simulated carbon uptake, but still on average
0.24 PgC yr−1 above CNRM.

3.4. Historical Simulation: Multi-Year
Variability of CO2 Flux
Allmodels and data-products show a slower growth or stagnation
of the ocean sink in the 1990s and a reinforcement in the 2000s
(Figure 3). Here, we test the consistency of multi-year variability
of the ocean carbon sink among the GOBMs and the data-
products in the three regions (Figure 5). We use the term multi-
year variability to describe variability on a time-scale longer than
interannual variability (1–3 years), but not strictly restricted to a
decade (decadal variability, DeVries et al., 2019).

In the data-products, phase I (1985–1992) is characterized by
a positive trend in the south (p = 0.013) and no significant trends
in the tropics and the north. The significant trend for the south
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FIGURE 4 | Annual air-sea CO2 flux integrated over the regions North (north of 30◦N, top), Tropics (30◦S-30◦N, center), South (south of 30◦S, bottom). These

time-series are taken from the historical simulation A and are not corrected for biases or covered area. Note the different scales for different regions. Horizontal lines

have the same distance in all subfigures (0.2 PgC yr−1). Positive: CO2 flux into the ocean. Left: Ensemble mean of Global Ocean Biogeochemical Models and

data-products. Individual models in gray. Right: Individual models and data-products color coded.

in the data-products does not coincide with a significant trend in
the models. The model ensemble mean also suggests a positive
trend in the tropics, although with less certainty (p = 0.036). It
is noteworthy that there is least confidence in data-products in
phase I due to lower data availability, and the highest confidence
in phases III and IV.

In phase II (1992–2001), the trend in the south is reversed (p =
0.001) in the data-product ensemble, and is zero in the north and
in the tropics. The model ensemble mean also suggests a negative
trend in the tropics, although with less certainty (p = 0.032).
The significant trend for the south in the data-products does not
coincide with a significant trend in the models. Although there
are discrepancies on whether or not the ocean carbon sink was
decreasing, GOBMs and data-products agree remarkably well
on the slow-down or stagnation of the ocean carbon sink in
phase II (1992–2001) with no GOBM or data-product exhibiting

a significantly increasing trend. All GOBMs and data-products
agree on the absence of a significant trend in the north.

Phase III (2001–2011) is again characterized by a sign reversal
and strong positive trend in the south (p = 0.006) in the data-
product ensemble mean, accompanied by a positive trend in the
north (p = 0.006) and no trend in the tropics with a remarkable
agreement of all data-products. Themodel ensemble mean agrees
with positive trends of CO2 flux in the north (p= 0.008) and south
(p = 0.020).

Finally, in phase IV (2011–2018) the data-product ensemble
mean exhibits a positive trend in the tropics (p = 0.004), which is
however only matched by one GOBM out of the full ensemble.
The ensemble means of data-products or GOBMs indicate no
significant trend in the north and south, although few individual
GOBMs and data-products do so. Phase IV is shorter than the
other phases and therefore potentially less conclusive.
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FIGURE 5 | Multi-year variability of regional air-sea CO2 flux with agreement

among methods on no significant or a decreasing trend in phase II and an

increasing trend in the extratropics in phase III. Shown are the average and

standard deviation of annual CO2 flux for the ensemble of data-products and

the ensemble of Global Ocean Biogeochemical Models (GOBMs) in the north

(top), tropics (center) and south (bottom). Broken lines represent significant

trend over that time-period. Numbers indicate the number of individual

data-products and GOBMs that agree on the significant trend and are only

given if the trend of the ensemble average is also significant. Note the different

scales for different regions. Horizontal lines have the same distance in all

subfigures (0.2 PgC yr−1). Positive: CO2 flux into the ocean.

While models and data-products agree on the large-scale
(quasi-)decadal variability (Figure 5), the strength of the
interannual variability and its hot spots differ largely (Figures 6, 7
y-axis). Among the data-products, MPI-SOMFFN and CMEMS
show similar patterns of variability with the largest amplitude of
interannual variability per pixel in the subpolar regions of all
basins and the equatorial Pacific (Figure 6). The same spatial
pattern although generally higher variability is visible in the

Jena-MLS product. The data-products generally distribute the
variability roughly equally between these regions. In the model
suite, only MOM6-COBALT and MITgcm-REcoM distribute the
variability similarly among these regions, although in MITgcm-
REcoM the variability is not limited to these regions. Some
models place most of the variability in the tropical Pacific
(CSIRO, PlankTOM, CESM-ETH, NorESM), in other models
the northern subpolar regions and the equatorial Pacific are
dominant regions of variability (FESOM-REcoM, IPSL and
CNRM). MPI exhibits strong variability in the Southern Ocean
and the North Atlantic.

The amplitude of interannual variability (AIAV) of the global
and regional CO2 flux time-series of GOBMs and data-products
is summarized in Figure 7 (y-axis). The interannual variability
as reproduced by GOBMs and data-products fall into similar
ranges in the north (0.02–0.08 PgC yr−1) and in the tropics
(0.05–0.16 PgC yr−1). There is disagreement among GOBMs and
data-products on the AIAV in the south with the data-products
varying between 0.08 and 0.18 PgC yr−1 while all GOBMs are
below 0.1 PgC yr−1.

3.5. Historical Simulation: Model and Data
Comparison
Model evaluation was introduced as a single mismatch metric
usingmonthly surface ocean pCO2 observations from the Surface
Ocean CO2 Atlas (SOCAT, Bakker et al., 2016) in Le Quéré et al.
(2018a, their Figure B1). Here, we show a detailed model-data
comparison formodels and data-products with the SOCAT pCO2

data set on three time-scales: (i) monthly, (ii) annual + trend, and
(iii) multi-year variability. The latter is the approach most closely
quantifying interannual to multi-year variability, and therefore,
we argue, the most appropriate metric for the Global Carbon
Budget, with the aim to quantify the mean SOCEAN and the
deviation from previous years (i.e., multi-year variability).

Annual time-series of subsampled pCO2 from GOBMs and
data-products are compared to SOCATv2019 for the ensemble
mean of the GOBMs and data-products (Figure 8 with statistics
on annual + trend time-scale), and for all individual models and
data-products in the Appendix (Supplementary Figures 3–15).
The data-products follow the SOCAT pCO2 closely, with the
best agreement in the tropics (RMSE = 2.0 µatm, r = 0.991,
Figure 8), followed by the north (RMSE = 4.0 µatm, r = 0.985),
and slightly lower agreement in the south (RMSE = 5.5 µatm,
r = 0.968). As expected, the average of the subsampled pCO2 of
the data-products deviates from the average of the fully gridded
product. It is, however, remarkable, that this difference is smallest
in the north and largest in the south, confirming that data
coverage is best in the north and sampled pCO2 can represent
the entire area reasonably well. In the tropics and the south,
larger differences between subsampled mean pCO2 and average
over the full domain suggest that data coverage is insufficient to
adequately represent these large areas.

The subsampled GOBM pCO2 captures the variability of
SOCAT pCO2 remarkably well (Figure 8), given that SOCAT
pCO2 is an independent data set for the models. The model
ensemble mean shows the highest correlation in the tropics
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FIGURE 6 | Spatially resolved amplitude of interannual variability (AIAV) of annual air-sea CO2 flux calculated as the standard deviation of the detrended annual CO2

flux for all GOBMs and data-products.

(r = 0.963), but the lowest RMSE in the north (5.1 µatm).
While the high correlation in the tropics indicates that the
variability is well-captured, the RMSE is higher here as the
water vapor correction, which is not included in some models,
has a stronger effect at higher temperatures (see discussion
on mean bias below). It is noteworthy that the mismatch
between modeled and observed pCO2 in the south is lower
since 1999. Similar to the data-products, the difference between
subsampled and full domain average pCO2 is largest in
the south.

In the following, we will show that the RMSE in comparison
with SOCAT pCO2 time-series is smaller on the relevant
time-scale of multi-year variability (GOBMs: <10 µatm, data-
products: <5 µatm, Figure 9) than on the time-scale annual
+ trend (GOBMs: <20 µatm, data-products: <7 µatm) and
substantially smaller than on the monthly time-scale (GOBMs:
20–80 µatm, data-products: <20 µatm).

The monthly means of modeled surface ocean pCO2 cover
a large range of simulated realizations, from smaller (e.g.,
PlankTOM, north, Supplementary Figure 6) to larger seasonal
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FIGURE 7 | Summary figure of temporal variability (y-axis) and model-data mismatch (x-axis). Mismatch of simulated or mapped pCO2 and observed sea surface

pCO2 for the period 1992–2018 on the time-scale of multi-year variability and amplitude of interannual variability (AIAV) of CO2 flux. x-axis: RMSE of spatially-averaged

detrended annual time-series. y-axis: amplitude of interannual variability, defined as the standard deviation of the detrended annual time-series of air-sea CO2 flux.

These statistics are shown globally, and regionally for north, tropics, and south as indicated in the figure panels.

cycles (e.g., MPI, south, Supplementary Figure 4) compared to
the observations, pointing to model deficiencies in representing
the seasonal cycle correctly, especially in the Southern Ocean
(Kessler and Tjiputra, 2016; Mongwe et al., 2016, 2018). Most
models exhibit larger variability than in the observations on a
monthly basis. This is mirrored in correlations of modeled and
observed monthly pCO2 ranging from 0.2 to 0.8 and the RMSE
from 20 to 80 µatm (Figure 9A and Supplementary Figure 1).
The data-products are inter- and extrapolations of SOCAT data,
and hence have higher correlation coefficients and lower RMSEs
than the GOBMs. However, they also have RMSEs of 15–20µatm
(see also Gregor et al., 2019) and correlation coefficients of 0.8–
1.0 with lower correlation values in the southern and northern
extratropics (Figure 9A, Supplementary Figures 1, 3–15 for
individual models and data-products). Comparison on monthly
time-scales is a common approach to measure misfit between
estimated and observed pCO2 (e.g., Le Quéré et al., 2018a;
Friedlingstein et al., 2019; Gregor et al., 2019).

On the time-scale annual + trend, correlations for annual
time-series are between 0.8 and 1 for all models, except in
the Southern Ocean with values down to 0.6 (Figure 9B and

Supplementary Figure 1). Despite all models having similarly
high correlation values, the RMSEs range between 4 and 20µatm.
Data-products have correlation coefficients close to 1 and RMSE
lower than 4 µatm. As the pCO2 signal on the annual + trend
time-scale is dominated by the continuous atmospheric CO2

increase, we conclude that models and data-products capture the
climate trend of increasing surface pCO2 reasonably well.

Finally, on the time-scale of interannual and multi-year
variability (statistics of detrended annual time-series, Figures 7,
9C, and Supplementary Figure 2), RMSEs between GOBMs
and SOCAT are small (globally: 3.5–7 µatm); with the lowest
mismatch in the tropics (2–4 µatm), and the largest mismatch
in the south (6.5–9.5 µatm). On this time-scale, correlation
coefficients are generally higher for GOBMs with lower RMSE,
with highest correlation coefficients in the tropics (0.5–0.9) and
lower in the extratropics (0.2–0.9 in the north and 0.2–0.8
in the south). The data-products are by design closer to the
observations and have RMSEs below 2 µatm, except in the
Southern Ocean with RMSEs up to 5 µatm, and correlation
coefficients of above 0.8 in the south and above 0.9 elsewhere. The
data-products cluster closely together in the north, with a wider
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FIGURE 8 | Comparison between annual sea-surface pCO2 from SOCATv2019 (Bakker et al., 2016) and the model ensemble mean (left) or data-product ensemble

mean (right) globally (top), and in the different regions North, Tropics, South as indicated in the figures. Red solid line shows model or data-product mean from

subsampled models/data-products at SOCAT sampling sites. Broken lines indicate the area-weighted average from the full models (not subsampled). Correlation

coefficient r and Root Mean Squared Error RMSE are calculated from the annual time-series 1992–2018, i.e., the white area in the figures. These figures are shown for

all models and data-products separately in the Supplementary Material.

range in the tropics and the south; again suggesting that data-
availability can constrain the data-products better in the north
than elsewhere.

The mean bias (Figure 9D, x-axis) is a measure of how well
the models capture the mean pCO2. It ranges between −1 and
+15µatm globally and up to 20µatm in the tropics. Somemodels
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FIGURE 9 | Mismatch of simulated or mapped pCO2 and observed sea surface pCO2 for the period 1992–2018 on different time-scales: (A) monthly, (B) annual +

trend as derived from annual statistics, (C) multi-year variability as derived from detrended annual statistics, (D) long term mean. (A–C) Display the mismatch as

RMSE and correlation coefficient. In (D) the mean bias is plotted against the correlation coefficient. Global figures are shown here, regional figures (north, tropics,

south) are displayed in the Supplementary Material. Note the different scales on the x-axis.

show a consistent positive bias as expected from the missing
water vapor correction. The water vapor correction would reduce
the modeled pCO2 by 2 µatm at 0◦C and by 15 µatm at
30◦C. Including the water vapor correction in all models would
substantially reduce the bias and would therefore allow for more
detailed interpretation of model biases, e.g., in comparison to the
regional CO2 flux in the preindustrial control simulation. The
mean bias of the data-products is always positive and small by
design with a maximum of 5 µatm in the south.

4. DISCUSSION

The ocean mitigates climate change by sequestering
anthropogenic CO2. A high-quality assessment of the ocean
carbon sink is critical for assessing changes in the contemporary
carbon cycle and to robustly project its evolution into the future.
Sudden changes in the ocean carbon sink would immediately
affect the allowable emissions for limiting global warming to
well below 2◦C. Furthermore, reliable quantification of the
ocean carbon sink is also an important constraint on the land
carbon sink estimate when combined with accurately reported

emissions. The latter contributes 60–90% of the observed decadal
variability in the natural carbon sinks (DeVries et al., 2019), but
cannot be directly observed.

The ocean carbon cycle community is blessed with an
annually-updated global compilation of quality-controlled
surface ocean pCO2 observations (the Surface Ocean CO2

Atlas, SOCAT, Bakker et al., 2016), which can be used to
derive the ocean carbon sink and to evaluate global ocean
biogeochemical models (GOBMs). The ocean carbon sink can
be assessed currently within <2 years delay through ocean
surface pCO2 observations combined with mapping methods
and additional data sets and parameterizations, and by global
ocean biogeochemical models. We demonstrated that these
different tools agree reasonably well when enough high-quality
observations are available. It has to be noted though, that the
discrepancy between GOBMs and data-products is increasing
over time, being larger in 2018 than in any year before.

The biggest discrepancies exist in the Southern Ocean,
where model biases are largest and high-quality ship-board
measurements are scarce and biased toward summer. Novel
autonomous methods are starting to fill data gaps, e.g., pH
sensors on biogeochemical Argo floats in the Southern Ocean
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(Bushinsky et al., 2019), but the uncertainty of calculated
pCO2 from pH sensors is higher than from direct pCO2

observations (Williams et al., 2017). A global-scale high-quality
ocean pCO2 observation network combining traditional and
novel observation systems is needed to improve the accuracy of
the ocean carbon sink from observations.

4.1. The Mean Ocean Carbon Sink
The GOBMs best estimate for the mean ocean carbon sink is 2.1
± 0.5 PgC yr−1 between 1994 and 2007, which is 0.5 PgC yr−1

lower than a recent anthropogenic carbon estimate of 2.6 ±

0.3 PgC yr−1 based on ocean interior observations (Gruber et al.,
2019). The two estimates overlap within the given uncertainties.
More importantly, the 2.6± 0.3 PgC yr−1 in Gruber et al. (2019)
is equivalent to the geochemical increase in ocean inorganic
carbon or Fant,ss + Fant,ns (Clement and Gruber, 2018). Gruber
et al. (2019), however, also estimate outgassing of natural carbon,
Fnat,ns, to be −0.4 ± 0.24 PgC yr−1 over the same period. This
is based on the difference of the net flux from a data-product
(Landschützer et al., 2016) adjusted for riverine outgassing (i.e.,
Fant + Fnat = Fnet − Friv) and two estimates of temporally-
resolved Fant [transient steady state scaled Landschützer et al.
(2016) and ocean inversionMikaloff Fletcher et al., 2006]. Hence,
in order to compare the same conceptual SOCEAN flux (Fant,ss +
Fant,ns +Fnat,ns, Equation 2), the GOBM’s SOCEAN estimate has to
be compared with the sum of Gruber’s Fant and Fnat,ns fluxes; and
the resulting 2.2 ± 0.4 PgC yr−1 are in good agreement with the
numbers presented here and in the GCB releases (Friedlingstein
et al., 2019). It is not a circular argument to use Gruber’s Fant plus
Fnat,ns to compare to the GOBMs which are independent of both
the Fant and Fnat,ss estimates in Gruber et al. (2019). There would
be some circularity when comparing to the data-based products,
which is not done here.

On a regional level, global ocean biogeochemical models
and data-products agree reasonably well on the mean ocean
carbon sink in the tropics and in the northern exratropics. An
exception to that is the offset between 1985 and 2003 in the
northern extratropics. The better agreement since the early 2000s
coincides with a large increase in number of (global) observations
from 400,000 to 1,300,000 observations between 2003 and 2006
(Bakker et al., 2016), and a jump from a few hundred to a few
thousand observations in the North Atlantic in 2002 (Lebehot
et al., 2019). There is substantial disagreement on the mean ocean
carbon sink in the Southern Ocean between GOBMs and data-
products. This offset might be related to the high uncertainty
of the river-flux adjustment, to an overestimate of the ocean
carbon sink based on SOCAT observations due to a sampling
bias or to model biases. Bushinsky et al. (2019) demonstrated
that adding biogeochemical Argo floats to the input data set
for two of the three mapping methods used here, reduces the
Southern Ocean carbon sink by 0.39–0.75 PgC yr−1 south of 35◦S
due to added winter-time data with previously underrepresented
outgassing of CO2. However, a systematic bias of 4 µatm well
within the float pCO2 uncertainty of around 11 µatm (Williams
et al., 2017) would half the impact of the additional data from
floats (Bushinsky et al., 2019). The global river flux adjustment
(Resplandy et al., 2018) is distributed across the ocean based on

one ocean circulation model study (Aumont et al., 2001). How
much CO2 outgasses in which ocean region depends on model
assumptions, such as the remineralization time-scale of organic
carbon and the burial. Further sensitivity studies on the effect of
model assumptions are needed to constrain the regional river flux
adjustments better.

4.2. Multi-Year Variability of the Ocean
Carbon Sink
There is growing evidence for a multi-year variability of the
ocean carbon sink with remarkable consistency among data-
products and GOBMs on a global stagnation of the ocean
carbon sink in the period 1992–2001 and an extra-tropical
strengthening between 2001 and 2011 (Figure 5, Rödenbeck
et al., 2015; Landschützer et al., 2016; DeVries et al., 2019;
McKinley et al., 2020). Explanations for this multi-year variability
range from the ocean’s response to changes in atmospheric
circulation (Le Quéré et al., 2007; Landschützer et al., 2015;
Keppler and Landschützer, 2019), especially the variations in the
upper ocean overturning (DeVries et al., 2017) to external forcing
through surface cooling associated with volcanic eruptions and
variations in atmospheric CO2 growth rate (McKinley et al.,
2020). Themappingmethods and an ocean inversemodel suggest
that the GOBMs underestimate the magnitude of the multi-
year variability (DeVries et al., 2019). Cooling due to volcanic
eruptions and variations in atmospheric growth rate are included
in the model forcing and the ocean circulation’s response to
climate variability is part of the model dynamics. Which of the
two is the dominant factor is not distinguished in our analysis.

In the most recent period since 2011, all data-products yield
a strong increasing trend of SOCEAN in the tropics. This is not
reproduced by the GOBMs, even though they generally represent
the same amplitude of interannual variability (AIAV) as the data-
products (Figure 7). In the northern extra-tropics, the AIAV of
the data-products is smallest of all regions (<0.08 PgC yr−1),
but nevertheless varies by a factor of two between the data-
products. The GOBMs fall within the same range. In the southern
extratropics, the magnitude of the variability is by no means
understood, with a large range of AIAV among data-products
and GOBMs.

4.3. Lessons Learned From pCO2 Data
Mismatch
The pCO2 data mismatch has to be interpreted in the context
of high spatial and temporal ocean pCO2 variability. The 1998–
2011 mean pCO2 varies spatially between 280 µatm in the high-
latitude North Atlantic and North Pacific to over 440 µatm in
the equatorial Pacific (Landschützer et al., 2014). Seasonal and
interannual variability of surface pCO2 can be 100 µatm or more
(Wanninkhof et al., 2013). The zonal mean 1pCO2, i.e., the
difference between surface ocean pCO2 and atmospheric pCO2

ranges from 40 µatm just south of the equator (outgassing) to
−20 µatm at 40◦ of both hemispheres and −60 µatm (uptake)
in the northern high latitudes (Wanninkhof et al., 2013). The
global mean1pCO2 varied only between−2 to +1µatm between
1990 to 2009 according to Wanninkhof et al. (2013) and between
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−3 to 1 µatm from 1982 to 2000 and have since then increased
to −6 µatm in the MPI-SOMFFN data-product used here (not
shown). Over the same period, the global mean CO2 flux has
always been into the ocean and has not changed sign in the
same product. This illustrates that the global mean 1pCO2 is
dominated by the large areas in the tropics whereas the CO2

flux is dominated by the subpolar regions with the highest wind
speeds. We conclude from this context, that it is difficult to
quantify an uncertainty of the CO2 flux based on the pCO2 bias
or RMSE, but that it is encouraging that the GOBMs show only
slightly weaker correlation with the SOCAT pCO2 (0.94 globally)
than the data-products (0.98) indicating that interannual and
multi-year changes are captured reasonably well (Figure 8).

The detailed comparison of mapped and simulated pCO2 with
SOCAT data at sampling locations reveals that there is no relation
between the RMSE or bias of the GOBMor data-product with the
magnitude of temporal variability (Figure 7). We can therefore
not constrain the “true”multi-year variability by choosingmodels
with lower pCO2 biases. Our analysis further assesses the fidelity
of the GOBMs and data-products on different time-scales.
While GOBMs have clear weaknesses on resolving the seasonal
cycle (Figure 7A, Supplementary Figures 1, 3–15, Kessler and
Tjiputra, 2016; Mongwe et al., 2016, 2018), they capture the
pCO2 on annual + trend time-scale reasonably well, and even
better on the time-scale of multi-year variability (Figures 7,
9, and Supplementary Figure 2). We argue that the detrended
annual statistic is more informative for the evaluation of annual
estimates of SOCEAN with the aim to robustly estimate the mean
SOCEAN and multi-year variability. The monthly statistics, which
are most commonly used to evaluate GOBMs and data-products
(Rödenbeck et al., 2015; Friedlingstein et al., 2019; Gregor
et al., 2019) quantify to a large extent the representation of the
seasonal cycle. Based on our analysis of model-data mismatch,
we conclude that misrepresentations of the seasonal cycle in
GOBMs have little effect on the global annual estimate of SOCEAN .
Yet, they illustrate the weaknesses of GOBMs to represent the
underlying mechanisms correctly, which questions their ability
to produce robust projections into the future.

4.4. Constraints on the Regional CO2 Flux
Some models are clear outliers in the regional SOCEAN time-
series, e.g., CESM and MITgcm show the lowest SOCEAN in
the north, CNRM shows the highest flux in the tropics, and
CNRM and NorESM exhibit a very low and very high SOCEAN
in the south, respectively. These models simulate very similar
RMSEs and correlation coefficients in comparison to SOCAT
pCO2 as the other GOBMs and hence the regional fluxes cannot
be constrained by the pCO2 mismatch. In fact, CNRM shows the
lowest RMSE in the south and in the tropics, but this assessment
is hampered by the large global SOCEAN bias in CNRM.

Similarly, the regionally resolved comparison of the
preindustrial control air-sea CO2 flux with ocean inversion
estimates (Mikaloff Fletcher et al., 2007) is not conclusive on
which models are more realistic than others, e.g., there is no
obvious explanation for the low SOCEAN in CESM in the north
to be found in the preindustrial air-sea CO2 flux in CESM in
this region. However, a few impressions can be noted. MITgcm

and MPI have clear issues with no net CO2 outgassing in the
preindustrial Southern Ocean. Models with a high CO2 uptake
in the north show this also in the preindustrial simulation
(NorESM, CNRM, MOM6-COBALT, FESOM-REcoM),
indicating that the model set-up and parameter choices lead to a
vigorous overturning in the north. CNRM and FESOM-REcoM,
which simulate the lowest historical SOCEAN in the south, are the
models with the strongest preindustrial outgassing south of 58◦S,
but still lower than in Mikaloff Fletcher et al. (2007).

4.5. Changes in Methodology in GCB2019
GOBMs have biases and they drift, which can be quantified
with a control simulation that is required for the GCB since
2019 (Friedlingstein et al., 2019). The global ocean carbon sink
estimate for the GCB can be corrected for model bias and
drift and the effect of this correction is small on the ensemble
global mean sink as some GOBMs have positive and others
negative biases. Regional and subregional biases are, however,
not quantified and cannot be corrected for as the assumption of
net zero steady state natural flux only holds globally. Therefore,
regional estimates of SOCEAN are associated with a higher
uncertainty and uncorrected gridded fields from historical model
simulation A are used for model evaluation. This introduces an
inconsistency between adjusted global estimates for SOCEAN on
the one hand and unadjusted regional SOCEAN estimates and
model evaluation on the other hand. Model simulations with
reduced global biases are desirable for a more robust model-data
comparison and reduced uncertainty of regional ocean carbon
sink estimates.

Two of the mapping methods represent <90% of the global
ocean area. This results from unmapped areas all along the
coast lines, the Mediterranean and other marginal seas, including
the Arctic Ocean. This mirrors the poor data coverage in
some marginal seas (Mediterranean Sea, Canadian archipelago,
Chinese Sea, Malaysian Archipelago) and in the Arctic Ocean.
Thus, ideally, these gaps would be closed by data collection
or data sharing for these regions, as well as mapping. This
correction is on the order of 0.1–0.15 PgC yr−1 and is considered
conservative as it is smaller than the estimate for the Arctic
Ocean of 0.12 ± 0.06 PgC yr−1 (Schuster et al., 2013) and the
global coastal ocean carbon sink of 0.2 PgC yr−1 (Roobaert
et al., 2019), which, however, overlaps partly with the area
covered by the global data-products (37% of the area in the
coastal product is already represented in the global product of
Landschützer et al., 2016) and by the Arctic Ocean. This simple
approach uses the maximally covered area of the data-products,
i.e., regions which are mapped in some months of the year are
not filled (e.g., parts of the Southern Ocean which are mapped
in summer but not in winter). While this approach might tend
to overestimate the flux in the permanently ice-covered parts
of the Arctic Ocean, the region north of 80◦N covers only
1% of the global ocean area. The area correction is dominated
by the coastal ocean, which has a similar flux density as the
open ocean (0.39 mol C m−2yr−1 coastal south of 60◦N vs.
0.35 mol C mr−2yr−1 globally Wanninkhof et al., 2013; Roobaert
et al., 2019). The simplistic area-scaling approach to fill data
gaps is hence considered conservative, also in comparison to the

Frontiers in Marine Science | www.frontiersin.org 18 October 2020 | Volume 7 | Article 57172055

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Hauck et al. Global Carbon Budget Ocean Sink

60% higher area correction from a time-resolved gap-filling using
ocean models (McKinley et al., 2020).

While the effect of the area correction on the mean
ocean carbon sink is small (0.1–0.15 PgC yr−1) compared
to the uncertainties, e.g., from the river flux adjustment
(±0.41 PgC yr−1; Resplandy et al., 2018) or the gas-exchange
calculation (±0.6 PgC yr−1; Woolf et al., 2019), the spread
between data-products can be reduced by a third when taking
the area-correction into account and is thus considered an
important correction.

4.6. Strengths, Weaknesses, and Ways
Forward
Both approaches have uncertainties, and both have strengths
and weaknesses. An ensemble of GOBMs is a robust tool to
estimate the global ocean mean carbon sink and anthropogenic
trends, with their spread likely being driven by differences
in the strength of the simulated overturning circulation (e.g.,
Doney et al., 2004; Goris et al., 2018). Large-scale multi-year
variability is driven by the interplay of external forcing and ocean
circulation (McKinley et al., 2020). The smaller the spatial and
temporal scale of interest, the more important it becomes that
the GOBMs simulate the delicate interplay between physical
and biological processes appropriately. The seasonal cycle is a
testbed for how well GOBMs reproduce these interactions, and
most GOBMs fail to reproduce the seasonal cycle of air-sea
CO2 flux satisfyingly, especially in the Southern Ocean (Figure 9,
Supplementary Figure 1, Kessler and Tjiputra, 2016; Mongwe
et al., 2016, 2018). Data-products, in turn, are closely tied to
surface ocean observations, which carry imprints of temporal and
spatial variability. Their key strength is therefore the assessment
of interannual and multi-year variability, particularly in regions
with high data densities.

We see potential for improvement in all contributions to
the ocean carbon sink estimate: (1) Extending and sustaining
the high-quality surface ocean observing network is pivotal to
reduce uncertainty in the data products obtained with mapping
methods from surface pCO2 observations, especially in data-poor
regions; (2) mapping methods should represent the full global
ocean including coastal areas, marginal seas and the Arctic and
work toward including data from novel observation platforms,
such as biogeochemical Argo floats and saildrones, which is to
date still hampered by lower accuracy for pCO2 data from novel
platforms; (3) a robust understanding of river carbon, alkalinity
and nutrient input into the ocean and of the partitioning of river
carbon fluxes in burial and carbon outgassing and its regional
distribution is critically needed. A spatially-resolved field of river-
induced effects on surface pCO2 by current generation ocean
biogeochemical models along with sensitivities to assumptions,
e.g., on remineralization time-scale would be highly desirable to
take riverine fluxes into account for the assessment of model-data
mismatch; (4) GOBMs are to reduce bias and drift for a more
robust regional assessment and model evaluation. Further model
improvement is needed to reduce the model-data mismatch,
particularly in the high latitudes; including the water vapor
correction in all models is a simple but crucial step to allow for
interpretation of other model biases; (5) and finally, remaining

discrepancies in multi-year variability from data-products and
GOBMs remain to be resolved.
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Global model reanalyses of temperature and radiation are used for many purposes

because of their spatial and temporal homogeneity. However, they use sub-models for

lakes that are smaller than the model grid. This paper compares the simplified small-lake

model, known as FLake, used in the European Centre global reanalysis known as

ERA5, with observations made in and near Lake Champlain in northern Vermont. Lake

Champlain is a challenging test for the ERA5 FLake model. The lake, which extends over

several grid cells, is the lowest region at 30m above sea level within complex mountain

topography. The smoothing of the adjacent mountain topography means that the ERA5

grid cells containing the lake have higher mean elevations then 30m, and this contributes

to a small cool bias in FLake mid-summer temperatures. The seasonal cycle of FLake

temperatures has a sharper peak than the observed lake temperatures. In winter, lake

temperatures are close to 3◦C, while the 30m deep FLake mixed layer (ML) is near

freezing. In May and June, FLake maintains a deep ML, while lake profiles are generally

strongly stratified with peak temperatures near the surface several degrees above the

model ML. One possible contributing reason is that inflowing river temperatures that are

not considered by FLake are as much as 5◦C above the lake surface temperature from

April to June. The lake does develop a ML structure as it cools from the temperature peak

in August, but the FLake ML cools faster and grows deeper in fall. We conclude that the

vertical mixing in the FLake ML is stronger than the vertical mixing in Lake Champlain.

Keywords: reanalysis, FLake model, lake-atmosphere coupling, Lake Champlain, seasonal cycle

KEY POINTS

- Highermean elevations in ERA5, from smoothing the adjacentmountain topography, contribute
to a small cool bias in FLake mid-summer temperatures.

- Inflow of warmer river water contributes to observed lake stratification as the lake warms.
- The seasonal cycle of FLake temperatures has a sharper summer peak than observed.
- The vertical mixing driving the FLakeML is stronger than the vertical mixing in Lake Champlain.

INTRODUCTION

This paper will compare in-situ data for Lake Champlain, which is bordered by the states of
Vermont and New York and the province of Quebec, with the sub-grid-scale lake model FLake
(Mironov, 2008; Dutra et al., 2010; Mironov et al., 2010) used in the current reanalysis from
the European Center for Medium-Range Weather Forecasts (ECMWF), known as ERA5 (C3S:
Copernicus Climate Change Service, 2017). Exchanges of energy and water differ greatly for land
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and water surfaces, and at the land-ocean boundary. Global
models explicitly handle this transition using a land-sea grid-
box fraction. Over land, both large lakes that are resolved by the
model grid, and the large numbers of unresolved smaller lakes
are modeled in ERA5 using the one-dimensional FLake model
to compute the diurnal and seasonal cycle of lake temperature
profiles, and the contribution to themean grid-box surface fluxes.
This study will focus on Lake Champlain, but small lakes are
extensive over the continents. For example, Canada has about
31000 small lakes with areas between 1 and 100 km2 which
substantially impact surface temperature (Verseghy andMacKay,
2017).

The broader context is a University of Vermont project
called Basin Resilience to Extreme Events (BREE), funded by
the National Science Foundation to understand the ecohydrology
and economic impacts of the lake as climate and extreme events
change. Already toxic blooms of blue-green algae in summer
contaminate the shallow lake waters near the urban area of
Burlington Vermont, impacting local health and tourism (Isles
et al., 2015). In the broad context, the BREE project is developing
an integrated assessment model for the Lake Champlain region
(Zia et al., 2016) with an atmospheric model (Huang et al., 2019)
driving a lake circulation model, coupled to a biogeochemistry
model (e.g., Isles et al., 2017), and to land-use and governance
issues (Bitterman and Koliba, 2020; Doran et al., 2020).

This study however, which started as a BREE student summer
project by the second author (DR), has a limited scope. We
compare the simplified 1-D FLakemodel fromERA5with surface
and profile measurements for two sites on Lake Champlain that
are available for several years.

REANALYSIS AND OBSERVATIONS

ERA5 Domain and Observation Sites
The operational ECMWF analysis-forecast system is under
continual development with significant upgrades typically twice a
year. For historic reanalysis a frozen version of the model is used.
This paper uses the latest reanalysis, ERA5, based on model cycle
Cy41r2, which was introduced operationally in 2016. Extensive
details of the representation of physical processes, including the
surface parameterization and parameter tables, are available in
Hersbach et al. (2020) and Cy41r2 (2016). Here we give a very
brief overview.

The land-surface model in ERA5, known as HTESSEL
(Balsamo et al., 2009, 2011), represents each grid-box in terms
of the fraction of eight tiles, one of which is FLake for sub-
grid-scale lakes (Mironov et al., 2010). Note that the tiles at the
interface of the soil-atmosphere are in energy and hydrological
contact with one single atmospheric profile above and one single
soil profile below. Each grid-box is divided into eight fractions:
two vegetated fractions (high and low vegetation without snow),
one bare soil fraction, three snow/ice fractions (snow on bare
ground/low vegetation, high vegetation with snow beneath, and
lake-ice), and two water fractions (interception reservoir, and
sub-grid-lakes which have a specific sub-model (FLake, described
in next section). The distinction between low and high vegetation
is particularly important for snow, because exposed snow has a

high albedo, whereas, a canopy with snow underneath has a low
albedo (Betts and Ball, 1997; Betts et al., 2001). The vegetation
characteristics in ERA5 are defined by fractional cover and the
type of the dominant high and low vegetation, which are based
on the Global Land Cover Characterization (GLCC) data set
derived from 1 km AVHRR (Advanced Very High Resolution
Radiometer) satellite observations (Loveland et al., 2000). For
each vegetation type, Leaf Area Index (LAI) has an annual
cycle, which comes from a satellite-derived monthly climatology
(Boussetta et al., 2011) and which modulates evapotranspiration.

We use ERA5 grid-boxes that are 0.25 × 0.25 degrees,
corresponding to about 27.8 km in latitude and 20 km in
longitude at 44◦N, and therefore, an area of about 550 km2. Lakes
with an area >1% grid-box cover are represented by FLake, but
they are aggregated to a single lake tile, which communicates with
the single grid scale atmospheric profile.

Figure 1A shows the mean topography of the 0.25 degree
ERA5 grid as a square pattern, showing the north-south chain
of the Green Mountains in central Vermont to the east of Lake
Champlain, and the higher Adirondack mountains to the west
in New York. ERA5 also represents the sub-grid-scale orography
(not shown) to improve estimates of the surface stress. The New
York-Vermont border runs through the lake (black line) north to
the Canadian border at 45◦N.

Figure 1B shows the ERA5 grid-boxes which are rectangular
in geographic coordinates, superimposed on a map of the
sites where there are observations around Lake Champlain for
comparison. This paper is a direct comparison of the ERA5
FLake tile model data and the ERA5 grid-mean data with
observational data, primarily from the Diamond Island (green
diamond) and Colchester Reef (red triangle) sites. We will use
ERA5 data from 2012 to 2017. Recent work over the central
Canadian Prairies (Betts et al., 2019) showed that the near-
surface air temperature bias in ERA5 is small, typically < ±1◦C
for the April to October warm season with no snow. This is
much less than the earlier reanalysis known as ERA-Interim
(Betts and Beljaars, 2017).

ERA5 FLake Tile Model
The representation of inland water bodies (lakes, reservoirs,
rivers, and coastal waters) is important in order to account for
the thermal inertia effects, albedo and roughness characteristics
of open water and to account for phase change during
freezing/melting. This is simulated in ERA5 by the Fresh-
water Lake model FLake [Mironov (2008), Mironov et al.
(2010)], which was chosen for its intermediate complexity,
particularly adapted for numerical weather prediction and
climate applications. Moreover, FLake benefits from a large
research community effort, contributing to validation and
development [FLake (2017)]. Its use and evaluation as the tile
representing sub-grid-scale lakes in the ECMWF HTESSEL land
surface model (Balsamo et al., 2009, 2012) is discussed in Dutra
et al. (2010) and Balsamo (2013).

The FLake model was developed to predict the surface
temperature in small lakes of various depths on time scales
from a few hour to a year, specifically for numerical weather
prediction. Key parameters are lake fraction and lake depth
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FIGURE 1 | (A) ERA5 (0.25◦)2 grid for larger domain showing model grid mean topography and (B) Lake Champlain observation sites with ERA5 grid boxes

superimposed. The green diamond and red triangle mark our main observation sites: Diamond Island and Colchester reef.

which are mapped from global datasets—see Chapter 11.11 in
Cy41r2 (2016). The global lake depth and coverage datasets were
developed by Kourzeneva (2010), Kourzeneva et al. (2012), and
Choulga et al. (2014). The FLake model is based on a two-
layer parameterization of the lake temperature profile, with an
upper mixed layer (ML) above the stratified lake thermocline
extending down to lake bottom. These are described using
the concept of self-similarity for the evolving temperature
profile. Figure 2A is a schematic of this parameterization,
adapted from Mironov (2008). The model is forced at the
surface by the wind at the lowest model level, as well as
by temperature, humidity and precipitation and the shortwave
and longwave radiation; and it adjusts to a new equilibrium
profile on timescales of a few hour. Full details are available
in Chapter 8.8 in Cy41r2 (2016). The key parameters are
ML Temperature (MLT) and ML Depth (MLD); Bottom layer
temperature (BLT), and a profile shape factor for the lower
layer. ERA5 provides hourly data, which we have integrated
to UTC (Universal Time) daily means. Observations made in
Eastern Standard Time (EST) will be converted to the same
time-base: UTC=EST+5. Our climate analysis begins with daily
and monthly timescales, which are longer than the FLake
adjustment time.

Figure 2B shows the tight coupling on daily timescales
(R2 ≈ 0.95) between ML temperature and ML depth for
August 2015 and 2016 for the ERA5 grid-box centered on
44.25◦N, −73.25◦W. August has the most linear structure
because it is near the time of maximum temperature, and
2016 (a warmer summer than 2015) has a slightly warmer and
deeper ML.

METHODS

Observations
We compare observations and ERA5 for the seasonal cycle
of lake temperature (Twater) and air temperature (Tair) for 2
key sites run by the Forest Ecosystem Monitoring Cooperative
(FEMC, 2019). Diamond Island (green diamond in Figure 1B)
at 44.237◦N, 73.333◦W has 15-min observations for 2012–
2017, including Twater at 3m depth, and Tair at 42.6m above
mean sea-level (MSL) (see Duncan and Waite, 2017). The
mean elevation of Lake Champlain is 29.9m (98ft) MSL, with
a typical annual variation that can be as large as ±1m. We
compare the Diamond Island data with the ERA5 grid-box
centered at 44.25◦N, −73.25◦W which has a mean elevation
of 208.3m MSL. For this grid-box the ERA5 lake cover is 4%
and the lake depth is 48.6 m: the FLake model limits lake
depth to 50m. Lake temperature profiles to a depth of 85m
for the Otter Creek Segment (OCS) near Diamond Island are
available about 10 times a year for 2012–2017 from the Vermont
Department of Environmental Conservation Lake Monitoring
Program (VTDEC, 2019). Inflowing river temperatures for the
Otter Creek (OCRT, 2019) are also available about 10 times a year
for the same period, except there is no data for 2014.

Colchester Reef at 44.555◦N, 73.329◦W (red triangle in
Figure 1B: FEMC, 2019) also has 15-min Twater at 3m depth and
Tair at 47.1m MSL for 2015–2017, which we will compare with
the ERA5 grid-box centered at 44.5◦N, −73.25◦W, which has
a mean elevation of 148.4m MSL. For this grid-box the ERA5
lake cover is 14% and the lake depth is 33.8m, but we have no
comparison lake profile data.
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FIGURE 2 | (A) Idealized self-similar profile in the FLake model and (B) Tight coupling on daily timescales between ML temperature and ML depth in August.

ERA5 Processing
The hourly ERA5 data was accessed at quarter degree resolution
from the Copernicus Climate Data Store (C3S: Copernicus
Climate Change Service, 2017). We used the 6–18 h short-term
forecasts that are initialized from the 0 and 12 UTC analyses. This
resolves the diurnal cycle well and removes the initial spin-up
in the first 6 h of the forecast (Betts et al., 2019). These short-
range forecasts are close to the analyzed large-scale flow, but they
already contain any systematic errors in the land surface model
(Haiden et al., 2016).

For the seasonal cycle, the ERA5 hourly grid point data were
reduced to daily means in UTC days. The observations are
15m means, and from these we also computed daily (UTC) and
monthly means.

RESULTS

Air and Water Temperature Comparison
We will directly compare the seasonal cycle of air and water
temperature between ERA5 and FLake and the observations.
There are some issues. The mean height of the surface of Lake
Champlain (above MSL) is 29.9m. In times of major flood,
like Tropical Storm Irene in 2011, it rose above 31m. Lake
Champlain at 30m elevation is surrounded by higher terrain
shown in Figure 1A. The Adirondack Mountains to the west
have many peaks above 1,200m, and the Green Mountains to
the east have peaks above 1,000m. The ERA5 native resolution
of 31 km (sampled at a quarter degree) smooths the topography.
For example, Mount Marcy is in the gridbox at 44◦N, 74◦W, only
40 kmwest of the lake, with a peak elevation above 1,500m, while

this ERA5 grid-box has a mean elevation around 600m. The
smoothed ERA5 topography does not represent the mountain
peaks, nor the smaller hills that surround the lake. As a result,
all the ERA5 grid-boxes that include parts of the lake have
mean elevations higher than 30m; and this height difference
increases southward.

FLake is a simplified model with a specified fixed lake area and
depth for each grid-box. There is no water flow or water balance
equation, so the transfer of heat and water by rivers and lake
circulations are not represented.

Figure 3 compares the mean annual cycle of Tair, and Twater

(at 3m below the mean lake surface) for 2012–2017 for Diamond
Island and 2015–2017 for Colchester Reef, with the ERA5 2-m
mean air temperature (T2m) and the FLake model MLT on the
corresponding ERA5 grid-boxes. The right-hand-scale shows the
mean seasonal cycle of the FLake MLD, which is constrained by
the specified model lake depths, which are 48.6m and 33.8m for
the southern and northern grid-boxes.

The Diamond Island air temperature (Figure 3A) is warmer
than ERA5 by 1.1±0.3◦C in the warm season (April to
September) and 1.6±0.4◦C for the cold season (October to
March). The elevation difference between model topography and
measured air temperature (at 42.6mMSL, 12.7m above the lake)
is 165.7m, and a nominal correction for this elevation difference,
using the standard atmosphere lapse rate of −6.5 ◦Ckm−1, is
1.1◦C, comparable to the warm season bias. However, it should
be noted that the model 2-m temperatures are computed to
represent synoptic measurements above a grass plot, while the
observations are on a small island tower at 12.7m above the lake
surface. In addition, we are averaging over day and night with
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FIGURE 3 | (A) Mean annual cycle of Tair, T2m, Twater, MLT, and MLD for Diamond Island and (B) Colchester Reef (right).

substantially different boundary layers. The Colchester Reef air
temperature (Figure 3B) is warmer than ERA5 by 0.4± 0.5◦C in
the warm season and 1.5 ± 0.5◦C for the cold season. In April
and May the two air temperature are very close. The elevation
difference between model topography of 148.4m for this grid-
box at 44.5◦N and the sensor height of 47.1m MSL is 101m;
giving a nominal correction using the standard atmosphere lapse
rate of 0.66◦C, which is comparable to the summer bias.

The measured water temperatures for Diamond Island (left)
are warmer than the FLake MLT. The difference is largest in May
and June (4.1 ± 0.8◦C), smallest at the peak lake temperatures
in August (1.2 ± 0.2◦C), and the difference is again large in
December and January (3.3± 0.8◦C). Only at the peak in August
is the difference in lake temperatures the same as the difference in
air temperatures, which is likely connected to the higher elevation
of the ERA5 grid-box above the lake.

In winter, the Diamond Island water temperatures at 3m
depth remain above freezing. In contrast the FLake MLT falls to
0◦C in January and stays at 0◦C through March with a surface ice
thickness in February and March that ranges from 20 to 76 cm.
This same unrealistic 0◦C ML with the FLake model was seen in
an earlier study of Sparkling Lake in northern Wisconsin, which
was part of the LakeModel Intercomparison Project (Stepanenko
et al., 2010). For Lake Champlain, the two coldest winters are
2014 and 2015, when the FLake model has the thickest February-
March ice layer (66 and 76 cm, respectively) and Lake Champlain
froze over on February 12 and 14, respectively. For the other four
warmer winters the FLake ice depth was between 20 and 37 cm,
and Lake Champlain did not freeze over.

The warming of the FLakeMLT from its frozen state is slow in
spring, but we also see the lake ML cools faster in the fall than
the Diamond Island water temperatures. For the grid-point to
the north including Colchester Reef, MLT rises faster in spring
and falls a little faster in fall. This is related to the smaller

specified depth in the lake model. As a result, in May and June
the difference between measured Twater andMLT is (1.9± 1.2◦C)
(smaller than for Diamond Island), with the smallest difference
in July (1.0 ± 0.6◦C) and a similar large difference in December
and January (3.3 ± 0.8◦C). These lake temperature comparisons
near Diamond Island are discussed further in the next section.

Seasonal Comparison With Otter Creek
Segment Profiles
Profiles of lake temperature with depth are made at several
locations on Lake Champlain. The Otter Creek Segment (OCS)
profiles down to 85m are close to Diamond Island. Figure 4A
shows the mean temperature profiles for 2012–2017, binned in
4m ranges of depth down to 50m, from May to October. Two
late April profiles (from 2010 and 2013) show almost constant
temperatures in the range 3.5–3.8◦C with depth, just below the
temperature of maximum density of water (3.98◦C). The lake
warms from the surface in May, June and July (red curves),
reaching its maximum temperature in August (heavy black line)
and then cooling in September and October (blue curves). We
show only monthly mean profiles, which are 6-year averages,
because the data is heterogeneous. There are typically only 2
profiles in May and as many as 4 profiles in August; and profiles
are on different days in different years. During the warming
phase, there is a strong stratification with depth in the mean,
as well as in most individual profiles (see next section), with no
suggestion of a ML. However, after August as the lake is cooled
from the surface, these mean profiles show the development of
a ML, which is also seen in individual profiles. There is no cold
season profile data.

Figure 4B is the Diamond Island comparison just for water
temperatures. It shows the annual cycle of the ERA5 MLT and
also BLT (bottom layer temperature at 48.6m depth), along with
the Diamond Island Twater at 3m below the surface. From the
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FIGURE 4 | (A) Mean monthly temperature profiles with depth for Otter Creek Segment and (B) seasonal cycle of ERA5ML depth, ERA5 water temperatures and

different observations at different depths.

profiles in the left panel, May to October Otter Creek Segment
means have been calculated. T6:OCS is the mean for the near-
surface layers down to 12m. The close agreement between Twater

(fully sampled at 15min) and T6:OCS (sampled only a few
times a month) is encouraging. Lake Champlain for the Otter
Creek segment is much deeper than 50m, and the OCS profiles
go as deep as 90m. So we also show the 50m comparison of
T50:OCS, which corresponds to the depth of ERA5 BLT, as well
as T86:OCS, an 86 m-mean at lake bottom. It is clear there is
consistency between the BLT and the poorly sampled deep layer
OCS temperatures from May to October. In winter, the BLT is
close to 3◦C. The temperature, T:OCRT (in green), comes from
another dataset for the Otter Creek river temperatures (OCRT,
2019) measured shortly before the river enters Lake Champlain.
The annual sampling is poor, the scatter is large and there is
no data for 2014. However, these temperatures of the inflowing
nearby river are around 5◦C warmer in spring than the Diamond
Island Twater.

It is clear that the ERA5 MLT is cooler than the near-surface
lake observations. In mid-summer the small differences of order
1◦C are probably connected to cooler air temperatures of the
ERA5 grid-box which has a mean elevation over 170m above
the elevation of Lake Champlain. However, MLT is 4◦C cooler
than Diamond Island Twater in May and June. As discussed in
the previous section, the FLake MLT falls to 0◦C in January
and stays at 0◦C through March with a surface ice layer. As
ML depth increases to a peak in May, MLT rises much slower
than Twater and T6:OCS. The OCS mean profile observations
show that Lake Champlain is strongly stratified in Spring. It
does not have the ML that is imposed in the FLake model. The
Twater observations in winter and the few T6:OCS in April (not
shown) suggest the lake is close to maximum density near 3◦C.
Stepanenko et al. (2010) noted this same behavior and suggested

that vertical mixing was too strong in Spring in FLake and two
other models. In the fall, the ERA5ML reaches almost the full
FLake model depth in November, which then cools through 3◦C,
typically in mid-December.

A separate issue is that FLake cannot represent the rivers that
run into Lake Champlain year-round. The warmer river inflow in
Spring contributes to the stratification of the lake (Morrill et al.,
2005), as suggested by the higher Otter Creek river temperatures
T:OCRT shown in Figure 4B.

The next section illustrates the seasonal differences between
the ERA5 and the OCS profiles for a single year: May to
October 2016.

ERA5-Otter Creek Segment 2016 Profile
Comparisons
Figure 5 compares the ERA5 (44.25◦ N, 73.25◦ W) temperature-
depth profiles (dashed) with the Otter Creek Segment (OCS)
profiles (solid) down to 50m for the same dates in 2016 to
illustrate differences between the warming and the cooling
period, and the differences between the FLake ML and
observations. The plots again show that ERA5 tends to
underestimate the temperature of the lake especially in the spring
and late fall. Figure 5A shows that the measured OCS profiles
in late May are strongly stratified in the first 10m. In contrast,
ERA5 has deep cold ML down to 40m. The model ML profile,
which was at 0◦C into March, reaches 2◦C on April 22, and
climbs roughly 1◦C every 10 days, reaching 5◦C on May 24. The
OCS profiles are all stratified in June and July as well, with one
exception, June 14, which shows a 23m deep ML after a few days
with strong winds. At depths of 40-50m the observed profiles and
ERA5 agree well.

Figure 5B compares daily profiles from the peak lake surface
temperature in August through the cooling period in September
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FIGURE 5 | (A) Comparison of temperature depth profiles between ERA5 (dashed) and Otter Creek Segment (solid) for the same dates: May to July and (B) August

to October.

and October. During the cooling period, most of the OCS profiles
show a ML, so the agreement with ERA5 is better, although
the OCS profiles are mostly warmer than the ERA5 profiles. As
mentioned earlier thismay be partially due to the higher elevation
of the lake surface in ERA5 (198m above Lake Champlain),
and warmer temperatures in inflowing rivers may play a role
in August. After October when we have no profiles, Figure 4B
shows that the deep ERA5ML continues to cool faster than
the Diamond Island water temperatures, as it cools toward 0◦C
in mid-winter.

DISCUSSION AND CONCLUSIONS

Lake Champlain is a challenging test for the ERA5 FLake model
in ERA5 where the native resolution of ERA5 is 31 km, which we
have sampled at a quarter degree. The lake is the lowest region
at 30m MSL within complex mountain topography (Figure 1A)
and extends over several grid cells. For the Colchester Reef
and Diamond Island sites, where we have extensive comparison
data, the mean ERA5 grid-box elevations are above the lake
surface by 118m and 178m, respectively. This contributes to
mean near-surface air temperatures in ERA5 that are cooler than
observations of order 1◦C. We compared the seasonal cycle of
grid-box air temperature and lake temperature from FLake with
a range of observations. The FLake model gives reasonable peak
summer temperatures, consistent with the higher mean elevation
and cooler air temperatures for the ERA5 grid boxes.

However, the seasonal cycle of FLake temperatures has a
sharper peak than observed lake temperatures. In winter, lake
temperatures are close to 3◦C not far below the temperature of

maximum density, while the deep FLake ML cools to 0◦C in
February and March with a surface ice cover ranging from 20
to 76 cm thickness in warm and cold years respectively,. The
recovery from this deep cold ML is slow in spring. In May
and June, while FLake maintains a deep ML, the lake profiles
are generally strongly stratified with peak temperatures near
the surface several degrees above the model ML. One possible
contribution is that inflowing river temperatures that are not
considered by FLake are as much as 5◦C above the lake surface
temperature from April to June. The lake does develop a ML
structure as it cools from the temperature peak in August.
However, the FLake ML cools faster and grows deeper in fall as
the model lake returns to a deep near-freezing mixed layer in
winter. For the Diamond Island site comparison, the model lake
bottom temperatures at 48.6m correspond closely to observed
lake temperatures at 50m fromMay to October.

Our conclusion is that the vertical mixing in the FLake ML
is stronger than the vertical mixing in Lake Champlain. Higher
spatial resolution would reduce the small cool bias in FLake mid-
summer temperatures associated with the high bias of the ERA5
grid-box elevations from the smoothing of the adjacentmountain
topography. Choulga et al. (2019) are working on improving the
resolution of both the orography and the depth topography of
the lake.

DATA AVAILABILITY STATEMENT

The ERA5 reanalysis data are available from the Copernicus
data store at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=form; The Diamond Island
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dataset is available from Duncan and Waite (2017). The
Colchester Reef dataset is available from FEMC (2019).
The Otter Creek Profiles are available from VTDEC (2019).
The Otter Creek River Temperatures are available from
OCRT (2019).
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The Annual Cycle of Air-Sea Fluxes in
the Northwest Tropical Atlantic
Sebastien P. Bigorre* and Albert J. Plueddemann

Upper Ocean Processes Group, Woods Hole Oceanographic Institution, Woods Hole, MA, United States

In this article we analyze 11 years of near-surface meteorology using observations
from an open-ocean surface mooring located in the Northwestern Tropical Atlantic
(51◦W, 15◦N). Air-sea fluxes of heat, freshwater, and momentum are derived from these
observations using the Coupled Ocean–Atmosphere Response Experiment (COARE)
bulk parameterization. Using this dataset, we compute a climatology of the annual
cycle of near-surface meteorological conditions and air-sea fluxes. These in situ data
are then compared with three reanalyses: the National Centers for Environmental
Prediction-Department of Energy [NCEP-DOE (hereafter referred to as NCEP-2)], the
European Centre for Medium-Range Weather Forecasts (ECMWF) Interim and the
Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-
2) reanalyses. Products from the Clouds and the Earth’s Radiant Energy System
(CERES) and the Tropical Rainfall Measuring Mission (TRMM) are also used for
comparison. We identify the agreements and characterize the discrepancies in the
annual cycles of meteorological variables and the different components of air-sea
heat fluxes (latent, sensible, shortwave, and longwave radiation). Recomputing the
reanalyses fluxes by applying the COARE algorithm to the reanalyses meteorological
variables results in better agreement with the in situ fluxes than using the reanalyses
fluxes directly. However, the radiative fluxes (longwave and shortwave) from some
of the reanalyses show significant discrepancies when compared with the in situ
measurements. Longwave radiation from MERRA-2 is biased high (too much oceanic
heat loss), and NCEP-2 longwave does not correlate to in situ observations and other
reanalyses. Shortwave radiation from NCEP-2 is biased low in winter and does not track
the observed variability in summer. The discrepancies in radiative fluxes versus in situ
fluxes are explored, and the potential regional implications are discussed using maps of
satellite and reanalyses products, including radiation and cloud cover.

Keywords: annual cycle, surface meteorology, air-sea fluxes, tropical, Atlantic

INTRODUCTION

The northwest tropical Atlantic hosts a multitude of air-sea interaction phenomena that
impact the climate, ecosystem and society on a wide array of temporal and spatial
scales. Numerous hurricanes are created or intensified there, due to high sea surface
temperature (SST) and low wind shear (Wang et al., 2006). Oceanic barriers layers in
the Northwest Tropical Atlantic are the thickest in the world (Mignot et al., 2012) and
contain subsurface heat anomalies that intensify hurricanes (Balaguru et al., 2012). Anomalies
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of the meridional migration of the Intertropical Convergence
Zone (ITCZ) lead to interannual to decadal variability of
SST’s meridional gradient (“dipole mode”) which are linked
to droughts in Northern Brazil and the Sahel region (Servain
et al., 1999). The trade winds converge in the region, giving
rise to the Hadley circulation, which then feeds the atmospheric
meridional heat transport from Equator to poles. The Gulf
of Mexico, Caribbean Sea, and Northwest Tropical Atlantic
form the Atlantic Warm Pool (AWP). Anomalous ascent in
the upper troposphere above the AWP leads to an anomalous
Hadley-type circulation, with interhemispheric exchange and
anomalous subsidence in the Southeast Pacific (Wang et al.,
2010). The westward trade winds also carry aerosols from Sub-
Saharan Africa (Weinzierl et al., 2017), which affect albedo, cloud
nucleation, and fertilization in the ocean and Amazonian forest
(Bristow et al., 2010).

One of the most prominent features of the regional climate
is the ITCZ, where the trade winds from the Northern and
Southern hemispheres converge. Precipitation has a meridional
maximum at the ITCZ (Chiang et al., 2002), which is surrounded
by a large cloud cover that influences Earth’s albedo and the
regional radiative forcing. The ITCZ has a latitudinal extent
of about 5◦and is located near, although slightly north of the
Equator over most of the ocean basins. Waliser and Gautier
(1993) used 17 years of visible and infrared satellite observations
to infer the climatology of cloud convection associated with
the ITCZ. Their study indicates that in the Atlantic ocean, the
mean ITCZ is centered near 6◦ N, but moves meridionally
from near the Equator in February–March to 10◦ N in August
through October when the convection also increases in intensity.
Servain et al. (1999) showed that the northward migration of
the ITCZ influences not only the seasonal cycles but also inter-
annual modes of variability. Using a 9 years record of satellite
precipitation data from Tropical Rainfall Measuring Mission
(2001–2009), we computed a monthly climatology. This Tropical
Rainfall Measuring Mission (TRMM) climatology is shown in
Figure 1 as maps of the daily precipitation accumulation in
the Northwest Tropical Atlantic in April and October. The
Northwest Tropical Atlantic Station (NTAS) site is free of the
ITCZ influence in April, but notably impacted by the northern
edge of the ITCZ in October, with expected precipitation of 3–
5 mm/day.

To circumvent the scarcity of observations in the ocean,
air-sea interaction studies often rely on Numerical Weather
Prediction (NWP) products such as reanalyses. Reanalyses
blend model forecasts with observations that are assimilated
in a physically consistent manner in order to produce gridded
datasets (Dee et al., 2011; Gelaro et al., 2017). For each reanalysis,
the assimilation scheme, including the forecast model, remains
the same. Reanalyses are therefore often used for climate studies.
Comparison between reanalyses and independent datasets is
valuable to detect and quantify the uncertainties or possible
biases in the reanalyses but also to complement limited available
observations. Note that NTAS data is withheld from assimilation
in forecast models. Since NTAS is located in a region with
otherwise sparse data, the NTAS dataset provides an opportunity
to test the performance of reanalyses in the region. In this

study we compare in situ data from the NTAS buoy with three
commonly used reanalyses: the NCEP-DOE (hereafter referred
to as NCEP-2), the European Centre for Medium-Range Weather
Forecasts (ECMWF) Interim and the Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-2).

The self-consistency of reanalysis products is of significant
benefit, but different products do not always give consistent
descriptions of climate phenomena or agree with observations,
pointing to the need for an assessment of errors and their
effects on climate simulations. For example, Brunke et al. (2011)
compared meteorological variables and air-sea fluxes from 11
Numerical Weather Prediction products (six reanalyses, four
satellite based analyses and one hybrid product) to in situ
observations collected during 12 cruises in the tropics and mid-
latitudes. They found that MERRA reanalysis performed best
among all products, with small biases in latent and specific
heat, and momentum fluxes, and small standard deviation error.
In comparison, ECMWF Re-Ananalysis Interim (ERA-Interim),
and NCEP-2 were among a group with larger standard deviation
errors compared to in situ fluxes. Some of the errors were
attributed to bulk variables, and some to residual effects (model,
assimilation, and bulk algorithm). Wen et al. (2017) analyzed the
sensitivity of an ocean general circulation model (OGCM) forced
with NCEP-2 and NCEP Climate Forecast System Reanalysis
(CFSR). They showed that different zonal wind stress and wind
stress curl between the two reanalyses lead to different biases in
the subsurface ocean in the outer tropical Atlantic. Comparison
between the OGCM simulations and in situ observations at the
PIRATA mooring at (38◦W, 15◦N), indicated a warm bias of
4◦C below 150 m when using the NCEP-2 forcing. Comparison
with satellite SST indicated that discrepancies in surface flux
caused cold (warm) SST biases in NCEP-2 (CFSR) in the central-
eastern tropical Atlantic. The authors concluded that more in situ
observations were crucial around the North Equatorial current
and near the Caribbean Sea.

In this article, we use 11 years of in situ observations to
describe the mean and seasonal cycle of near surface meteorology
and air-sea fluxes in the northwest tropical Atlantic. This method
provides insight into important climate timescales with well-
known physics. This dataset is then compared to estimates from
reanalyses; discrepancies are characterized using time series and
spatial maps. The paper is organized as follows: section “Materials
and Methods” presents the in situ data and the reanalyses;
section “Results” presents the results of the comparison, section
“Discussion” discusses the results and their relevance to the
regional tropical Atlantic, section “Summary and Conclusion”
summarizes and concludes.

MATERIALS AND METHODS

In situ Meteorology and Fluxes
The NTAS is an open ocean (5,000 m water depth) surface
mooring with a nominal location of 51◦W, 15◦N, roughly
1,000 km east of Martinique in the lesser Antilles. It is north of
the Equatorial currents system, but in the trade wind system.
From September through November the site is influenced by
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FIGURE 1 | Tropical Rainfall Measuring Mission daily precipitation accumulation (mm) in color shading and white isolines every 2 mm (label locations denoted by
black crosses): averages for April (left) and October (right) during period 2002 to 2011. Green arrows are 10-m wind vectors, averages for same months, using
Seawinds data from 2000 to 2012. White cross indicates the NTAS buoy location near 51◦W, 15◦N. Coastlines in black lines.

the ITCZ (Figure 1). The NTAS mooring is an air-sea flux site
and an Ocean Reference Station (Cronin et al., 2012) within
the OceanSITES network1 maintained by the Upper Ocean
Processes Group at the Woods Hole Oceanographic Institution.
The in situ data collected at NTAS are not distributed to the
Global Telecommunications System (GTS) and withheld from
data assimilation into the reanalysis models. The in situ NTAS
observations are therefore a truly independent dataset that can
be used to evaluate reanalyses and help improve their physical
models and assimilation schemes. The work presented here
offers such an evaluation and suggests some possible leads for
improvement. In addition, Josey et al. (2014) showed that data
assimilation of mooring observations can sometimes create non-
realistic local anomalies in reanalyses.

Mooring turn-arounds (recovery and replacement with a
refurbished system) are conducted at nominal annual intervals
to ensure that data are collected from freshly calibrated
instrumentation. For each turn-around, the replacement
mooring is deployed typically a day or more before recovery
of the existing mooring to ensure overlap of the observations

1http://www.oceansites.org

and validation of the data. The new and existing moorings are
deployed near two fixed nominal sites that are 11 km from
each other. Comparison of buoy data during the period of
overlap, along with shipboard measurements meteorology
and conductivity-temperature-depth (CTD) profiles, in
combination with pre- and post-deployment calibrations,
allow the identification and correction of errors and drifts on
both moorings (Bigorre and Galbraith, 2018). Using corrected
data from the first through eleventh NTAS deployments (NTAS
1–NTAS 11) we create an 11-year contiguous record for analysis
(April 1, 2001 until March 31, 2012). Note that there was no
overlap between the third and fourth deployments; the 2 days
gap was filled by repeating data from the last day of NTAS 3 to
first day of NTAS 4.

The NTAS buoys are outfitted with two sets of Air-Sea
Interaction METeorology (ASIMET) instrumentation (Hosom
et al., 1995) that measure: air temperature (ATMP) and relative
humidity (HRH), wind speed (WSPD) and direction (WDIR),
barometric pressure (BPR), precipitation (PRC), downward
longwave (LWR) and downward shortwave (SWR) radiations,
and sea surface temperature (SST). ASIMET measurements are
made at roughly 3 m above the sea surface; SST is measured about
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0.8 m below the air-sea interface. The raw observations are either
single or multiple samples during each minute; when multiple
samples are taken, they are averaged to produce a 1-min record.

The accuracy of the ASIMET data has been characterized
using comparisons with measurements from ships, fixed
platforms and satellites (Colbo and Weller, 2009; Bigorre
et al., 2013; Weller, 2018; Schlundt et al., 2020), as well as
Computational Fluid Dynamics simulations (Emond et al.,
2012). Colbo and Weller, 2009 describe the accuracy of
ASIMET measurements at NTAS and from similar moorings
in trade winds regions. The ASIMET measurement errors are
summarized in Table 1, which includes recent improvements on
error characterization. Typical sources of errors include sensor
drift, solar heating (air temperature and humidity), platform
motion and flow distortion. Drifts are evaluated using post-
calibrations and field validations (Bigorre and Galbraith, 2018).
Solar heating may induce high temperature bias during the day
in low wind conditions (Anderson and Baumgartner, 1998).
Using data from a mooring deployed in the Gulf Stream, where
high winds and currents induced significant platform motion
and tilt, Bigorre et al. (2013) showed that the total wind speed
error could reach up to 10% of the true wind in these extreme
conditions. Schlundt et al. (2020) compared satellite and ASIMET
wind measurements from other Ocean Reference Stations in
the trade winds regions, including NTAS, and observed that
wind speed discrepancies were less than 5% and consistent with
flow distortion from CFD simulations (Emond et al., 2012). An
empirical correction to the flow distortion exists that reduces the
wind speed error to 5% of the true wind (Bigorre et al., 2013;
Schlundt et al., 2020). This correction was not implemented here,
as the flow distortion and platform motion errors are small at
NTAS and do not impact our conclusions. However, the present
work does use wind velocity relative to the water surface, thanks
to the near-surface current meter deployed under the NTAS
buoy that provides a proxy for surface current. Platform motion
also influences radiation measurements. The ASIMET 1-min
shortwave measurements are an average over six samples taken 10
s apart, which decreases the tilt error. Longwave measurements
are a snapshot at the end of each minute, but are also less sensitive
to tilts since radiation in the infrared band is more diffuse than
the shortwave signal.

The ASIMET meteorological 1-min data are hourly averaged
and input in the version 3.0 of the COARE bulk flux algorithm
(Fairall et al., 1996, 2003; henceforth COARE-3). COARE-3 is
a bulk algorithm for air-sea fluxes that was initially calibrated
with datasets from tropical regions and later extended to extra-
tropical regions with mid-range winds. The COARE algorithm
includes a physical model of the upper-ocean thermal evolution
(warm-layer and cool skin), based on the diurnal cycle of the
heat fluxes. This allows for the conversion of SST from its bulk
measurement below the surface to its skin value at the air-
sea interface. Through an iterative procedure, better estimates
of the air-sea heat fluxes can then be computed. For example,
while the downward component of longwave radiation (QL↓) is
measured by ASIMET, the upward component of longwave (QL↑)
is computed as the product of seawater emissivity (0.97) with
the Stefan-Boltzmann constant (5.67 10−8 W m−2 K−4) and the
fourth power of the skin SST. The difference (QL↓–QL↑) is the net

TABLE 1 | ASIMET measurement errors for daily averages on the NTAS buoy.

Measurement Errors and Biases

Specific humidity (g kg−1) Total: 0.4 g kg−1

Air temperature (◦C) Total: 0.1 (◦C)

Wind speed (ms−1) Flow distortion: < 4% Tilt: < 4% Total: 8% or
0.4 m s−1

Wind direction (deg) Compass accuracy: 5 (deg) Flow distortion: 5
(deg) Total: 10 (deg)

Bulk SST (◦C) Accuracy: 8 10−4 (◦C) Flow distortion (high
bias): < 0.1 (◦C) Total: 0.1 (◦C)

Barometric pressure (mb) Accuracy: 0.083 (mb) Drift: 0.11 (mb) Total: 0.2
(mb)

Precipitation rate (mm hr−1) Flow distortion (low bias): < 10%

Incoming longwave (Wm−2) Accuracy: 3.1 (W m−2) Tilt: < 5% Total: 4 (W
m−2)

Incoming shortwave
(Wm−2)

Accuracy: 1.5 (W m−2) Tilt: < 5% Calibration
low bias: < 5% Total: 6 (W m−2)

Latent heat flux (W m−2) 12 W m−2

Sensible heat flux (W m−2) 2.5 W m−2

Net heat flux (W m−2) 15.5 W m−2

Momentum flux (N m−2) 0.01 N m−2 or 14%

longwave radiation flux QL. The upward component of shortwave
(QS↑) is computed using a daily average albedo of 0.055, so that
the net shortwave radiation flux QS = 0.945 QS↓, where QS↓ is
the downward shortwave flux measured by ASIMET. Since some
of the reanalyses used in this work provide only QS and QL, the
comparison with ASIMET will focus on the net radiative fluxes.

In addition to QS and QL, the COARE algorithm also
computes the turbulent fluxes of sensible heat (QB), latent heat
(QH), and wind stress (τ). Together, these provide the net
fluxes of heat, momentum and freshwater exchanged between
the atmosphere and ocean. Here we use the oceanographic
convention, with positive fluxes being downward (e.g., positive
net heat flux warms the ocean). COARE is also used to adjust
the meteorological variables (wind speed, air temperature, and
humidity) to a standard height of 10 m. The in situ observations
are adjusted from their original measurement height (about 3 m
above sea level), as well as reanalysis data when necessary (e.g., air
temperature and humidity in NCEP-2 and ERA-Interim are valid
at 2 m). It is the ASIMET and reanalyses values adjusted to 10 m
that are presented in section “Results.”

The errors associated with ASIMET measurements in the
trade wind region have been documented by Colbo and Weller
(2009) using the first two deployments at NTAS, as well as
the first three deployments at a site in southeast Pacific, off
Chile. These authors note that the daily and annual errors are
reduced by averaging compared to the instantaneous errors.
The ASIMET measurements of air temperature and relative
humidity are collocated and the errors induced by radiative
heating are partially anti-correlated, leading to a reduced error
in specific humidity (Anderson and Baumgartner, 1998). Colbo
and Weller (2009) estimated the annual biases for net radiation
fluxes (downward minus upward components) were mostly
from the errors in the downward components, which were one
order of magnitude larger than errors in skin temperature and
albedo. The ASIMET errors discussed by Colbo and Weller
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(2009) are reproduced in Table 1, with the updated wind
speed error.

The turbulent flux errors were computed by adding a random
noise to the meteorological variables, which were then input
into the COARE algorithm. The random noise was modeled
with a normal distribution (zero mean, standard deviation
from Table 1). Each derived turbulent flux therefore included
a random contribution, whose standard deviation was used
to quantify its associated measurement error. These errors are
reported in Table 1 and are 12 (2.5) W m−2 for latent (sensible)
and 0.01 N m−2 for the momentum flux. The error for the total
(turbulent plus radiative) net heat flux is 15 W m−2.

To compare in situ ASIMET data with the reanalyses and
satellite observations, all variables were daily averaged. The
annual cycle was then computed by averaging together the 11
members of the 11-year record. We use the median of each
11-member ensemble to decrease the impact of outliers.

Reanalyses Products
The National Centers for Environmental Prediction (NCEP)
produces the NCEP-DOE reanalysis, often referred to as NCEP-
2 (Kanamitsu et al., 2002); it is an updated version of the
initial NCEP-NCAR (NCEP-1) reanalysis but uses the same
210 km horizontal resolution with 28 vertical levels and
outputs data at 6 h intervals. Some of the corrections include
reduction of the albedo over the ocean [from unrealistically
large values in NCEP-1 (around 0.15) to values of 0.06–
0.07], better orography representation (especially in Amazonian
basin), and improved parameterizations (addition of non-local
vertical diffusion scheme to avoid undesirable vertical eddy
flux convergence of heat, moisture, and momentum within the
planetary boundary layer; better shortwave radiation scheme that
reduced surface insolation).

The National Aeronautics and Space Administration (NASA)
produces the Modern-Era Retrospective Analysis for Research
and Applications (MERRA). The MERRA-2 forecast model is
run on 72 layers with 50 km × 50 km spatial resolution but
output is produced on 0.625◦ × 0.5◦ longitude-by-latitude grid.
The atmospheric model has a time step of 30 min for its
physics parameterization, although the dynamics time step is
considerably shorter (Rienecker et al., 2008). MERRA-2 improves
on MERRA (Molod et al., 2015; Bosilovich et al., 2016; Gelaro
et al., 2017) through assimilation of additional data, such as
aerosols, and upgrades of parameterizations in the forecast model
(e.g., background gravity wave drag, relationship between the
ocean surface stress and the ocean roughness). Details and
evaluation of the forecast model in MERRA-2 are presented
in Molod et al. (2015). In MERRA-2, SST is from the daily
1/4◦ resolution data from National Oceanic and Atmospheric
Administration (NOAA) Optimal Interpolation Sea Surface
Temperature (OISST) (Reynolds et al., 2007) from 1982 through
March 2006; and daily 1/20◦ resolution data from Operational
Surface Temperature and Ice Analysis (OSTIA) (Donlon et al.,
2012) from April 2006 onward. After January 2003, the
NOAA OISST product is a blended product between infrared
Advanced Very High Resolution Radiometer (AVHRR) and
microwave Advanced Microwave Scanning Radiometer – Earth

Observing System (AMSR-E), while prior to that date the data is
from AVHRR only.

ERA-Interim’s atmospheric model has a 30 min time step,
uses 60 layers in the vertical and 79 km horizontal resolution
for surface fields (Dee et al., 2011). Compared to its predecessor
ERA-40, the ERA-Interim reanalysis benefited from a better cloud
scheme, which increased convection and improved atmospheric
stability, wind in the tropical band and timing of precipitation
events. Other modifications included a moist-boundary layer
scheme, which increased stratocumulus cover in upwelling
regions, orographic and surface roughness effects, and the
impact of salinity on humidity at the ocean surface. This led
to decrease in tropical ocean total cloud cover, and increase
in land cloud cover, especially high clouds (Dee et al., 2011).
For dates between 1981 and 2001/12, ERA-Interim used the
same SST input data as ERA-40 (two-dimensional variational
interpolation analysis of the most recent 24-h buoy and ship data,
and satellite-retrieved SST data with bias removed). According
to Fiorino (2004), the NCEP 2DVAR SST product (Reynolds
and Smith, 1994) is very similar to the operational product
OISST.v2 (Reynolds et al., 2002), except in eastern equatorial
regions, western boundary currents and high latitudes, and the
latter SST product was actually used in ERA from 2001/07 to
2001/12. Starting in 2002/01, a switch was made to data used in
the ECMWF operational forecasting system, beginning with the
daily operational NCEP product, and after 2009 to data from the
OSTIA product (Donlon et al., 2012).

Gridded reanalyses data were extracted for a region between
10◦W and 70◦W and 2◦N to 35◦N, which encompasses the
tropical/subtropical North Atlantic. Wider areas were used for
some satellite products, such as cloud cover, to encompass the
Equatorial region. For each reanalysis, data was extracted from
the gridpoint nearest to the center between the two nominal
NTAS sites, namely 50.9◦W, 14.8◦N. Distance from the selected
gridpoint and the NTAS center is 2.5, 37, and 67 km for ERA-
Interim, MERRA2, and NCEP2, respectively. These reanalyses
provide meteorological variables similar to the ones measured
by the ASIMET sensors, but at model standard heights (10 m
or 2 m, typically). The reanalyses also provide air-sea fluxes
that are derived from models using different surface layer
parameterization schemes that can depart from the COARE-3
algorithm. To enable a comparison between the datasets from
ASIMET, MERRA-2, ERA-Interim and NCEP-2 and which are
available with temporal resolutions of 1 min, 1, 3, and 6 h,
respectively, the data were averaged to daily values.

Satellite Remote Sensing
The clouds and the earth’s radiant energy system (CERES)
sensors on satellite platforms Terra and Aqua provide top of
the atmosphere radiance fluxes. Kato et al. (2013) adjusted the
CERES fluxes using cloud measurements from MODIS and other
geostationary satellites, as well as aerosols transport models,
and air temperature and humidity profiles from the Goddard
Earth Observing System (GEOS-5.4.1) Data Assimilation System
reanalysis. The resulting energy balanced and filled (EBAF)
CERES fluxes show better agreement with in situ surface stations,
compared to initial CERES surface fluxes. Monthly 1◦×1◦
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surface radiance fluxes from CERES EBAF Edition 4.0 are used
in this article.

The TRMM product used in this paper is from the
multi-satellite precipitation analysis (TMPA), namely the 3B42
version 7 (Huffman et al., 2007), with daily resolution on
a grid 0.25◦×0.25◦. Behrangi et al. (2012) use 3 years of
data (2007–2009) to compare CloudSat, which has better
sensitivity to light rain, and show good agreement with TRMM
estimates in the tropics.

The MODerate resolution Imaging Spectroradiometer
(MODIS) sensor, equipped with 36 spectral channels from the
visible into the infrared frequency range, started operation
aboard the Earth Observing System – Terra (EOS-Terra) and
Earth Observing System – Aqua (EOS-Aqua) satellites since
2000 and 2002, respectively. The MODIS data used here is from
Collection 6.1 EOS-TERRA MODIS Atmosphere Level-3 data
of MOD08 (Platnick et al., 2017). The cloud mask fraction from
this dataset results from a two-tiered averaging processing: the
ratio of pixels with clouds sampled at 1 km to the total number
of pixels are first averaged in boxes 5 × 5 km; the 5 km regions
are then averaged in each 1◦×1◦ L3 output grid box. The cloud
mask cloud fraction is based on daytime and night time samples.

RESULTS

Surface meteorological variables from in situ ASIMET
measurements at NTAS tend to agree well with estimates
from reanalyses and satellite products at nearby grid points. This
converging tendency is encouraging, and provides support for
the efforts of the observational, modeling and remote sensing
communities. It also bears support to the value of in situ
observations, as a reference for measurements in terms of quality
and temporal resolution. We describe in the following sections
the comparison of the surface meteorological observations and
fluxes between the different datasets used here, and point out the
levels of (dis)agreements between them.

Surface Meteorology
Figure 2 show the annual cycle of the near-surface meteorology
at NTAS. The annual cycle was computed as the median from the
eleven members ensemble that the 11-year long dataset covers.
The annual averages are computed as the arithmetic mean over
this annual cycle and shown to the right of each annual cycle plot.
The annual cycle is dominated by the cold and warm seasons,
in boreal winter and summer, respectively. Air temperature at
10 m (ATMP) is minimum (∼25◦C) in February and maximum
(∼28◦C) in September. SST shows an annual cycle comparable to
ATMP, albeit delayed by about 2 weeks in winter. SST is warmer
than ATMP all year long, but the difference reaches a maximum
above 0.6◦C in the winter and fall, and a minimum of 0.3◦C in
June. The annual cycle of specific humidity is also analogous to
ATMP, with a minimum (14 g kg−1) in February and maximum
(18 g kg−1) in September. The precipitation rate is minimum
(near 0.015 mm hr−1) from February to June, then increases to
its annual maximum (0.1 mm hr−1) in late September, and tapers
off in the fall.

The annual cycle of WSPD and BPR is dominated by the
stalling of the trade winds in the fall when both WSPD and BPR
reach their annual minima (6 m s−1 and 1013 mb, respectively),
concurrent with the northernmost position of the ITCZ and
its closest approach to NTAS. WSPD and BPR have an annual
double maximum. The first maximum is in February with peak
values reaching 8 m s−1 and 1016 mb, respectively, and the
second one is in July, with slightly lower (higher) values for
WSPD (BPR). Wind direction (not shown) remains mostly
easterly with a small northerly component during the year.
The annual range of variability is only about 10◦, going from
250◦ T in January and February to 260◦ T in May, then back
down to 253◦ in August, peaking at 262◦ T in November (the
oceanographic convention is used here: wind is blowing toward
the stated directions).

The annual cycle of the surface state atmospheric variables
in the reanalyses generally match the ASIMET data, albeit with
some notable biases. Compared to the ASIMET estimates, the
fall ATMP is warmer in NCEP-2 and colder in MERRA-2.
However, for the annual averages the differences are comparable
to the ASIMET error. ERA-Interim has a persistent cold
bias (annual averaged bias is -0.4◦C) that is larger than the
ASIMET error and consistent with the cold bias found by
Brunke et al. (2011). The winter minimum of ATMP is
reached in early March in NCEP-2 and MERRA-2, delayed
compared to the late February minimum observed in ASIMET
and ERA-Interim.

The annual average SST in NCEP-2 agrees well with ASIMET,
whereas MERRA-2 and ERA-Interim are slightly colder (∼0.1 to
0.2◦C). All three reanalyses show the winter minimum of SST
in early March, delayed compared to the ASIMET minimum in
late February. NCEP-2 and ERA-Interim SST show the winter
minimum delayed by about a week from the ATMP minimum,
consistent with ASIMET, whereas MERRA-2 shows the SST
minimum leading ATMP by about 5 days.

Compared to ASIMET, the air specific humidity is dryer
in MERRA-2 and ERA-Interim and wetter in NCEP-2. The
MERRA-2 specific humidity tracks ASIMET throughout the year,
within the ASIMET measurement error. ERA-Interim is similar
to MERRA-2, except with an enhanced dry bias in the fall
and winter. The NCEP-2 wet bias is enhanced in late winter
and early spring, reaching up to 1 g kg−1 during February-
March. The wet bias for NCEP-2 is consistent with the results
of Brunke et al. (2011), however, the seasonal dry bias in ERA-
Interim is distinct.

Wind speeds for MERRA-2 and ERA-Interim agree well with
the in situ values; discrepancies are small compared to the
expected ASIMET error. In contrast, the NCEP-2 wind speed is
biased high by 0.7 m s−1 on average or about 10% of the wind
speed. The discrepancy increases to 12% in winter and is lower
(6%) in summer. Brunke et al. (2011) also found a high bias in
the NCEP-2 wind speed.

The annual cycle of barometric pressure is similar to ASIMET
for both ERA-Interim and NCEP-2, although biased low by about
0.2 and 0.5 mb, respectively. Note that the MERRA-2 reanalysis
product does not provide surface pressure, so discrepancies
could not be assessed; instead, ASIMET pressure data were
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FIGURE 2 | Time-series of annual cycle of near surface meteorology at NTAS location, and annual averages on the right. From left to right, top to bottom: air
temperature at 10 m, wind speed at 10 m, skin sea surface temperature, barometric pressure, specific humidity at 10 m, rain rate. Gray shading indicates error
associated with ASIMET measurements on the NTAS buoy. ASIMET (black), MERRA-2 (red), NCEP-2 (green), ERA-Interim (blue). Based on daily data from April 1,
2001 through March 31, 2012.

used when computing fluxes with the COARE-3 algorithm
and MERRA-2 data.

Although the ASIMET RM Young self-siphoning rain
gauges may under-estimate rainfall by 10% (e.g., Serra
et al., 2001; Colbo and Weller, 2009), the in situ rain rate

agrees well with the Tropical Rainfall Measuring Mission
satellite estimate. The MERRA-2 rain rate shows relatively
good agreement (±20%) with both ASIMET and TRMM.
The rain rate from NCEP-2 shows good agreement with
ASIMET in spring and summer (February–August), but is
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FIGURE 3 | Time-series of annual cycle of air-sea bulk fluxes at NTAS location, and annual averages on the right. Positive values mean heat input into the ocean.
From left to right, top to bottom: latent heat, net shortwave radiation, sensible heat, net longwave radiation, net heat, wind stress. Gray shading indicates error
associated with ASIMET measurements on the NTAS buoy. ASIMET (black), MERRA-2 (red), NCEP-2 (green), ERA-Interim (blue). Solid (dotted) lines denote native
(hybrid) reanalyses fluxes. Based on daily data from April 1, 2001 through March 31, 2012.

significantly higher in September–November when the ITCZ
extends north. The ERA-Interim rain rate is consistently
biased high by ∼100%, and is the only product that shows
a noticeable bias compared to ASIMET during the “dry
season” (February–June). A histogram of rain rate (not
shown) for the whole record shows that ERA-Interim

has more low rain events compared to ASIMET and the
reanalyses used in this study. This result is consistent
with Dee et al. (2011), who show that ERA-Interim
exhibits about 1 mm day−1 more rain compared to Global
Precipitation Climatology Project (GPCP) in the Northwest
Tropical Atlantic.

Frontiers in Marine Science | www.frontiersin.org 8 January 2021 | Volume 7 | Article 61284276

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-612842 January 15, 2021 Time: 15:28 # 9

Bigorre and Plueddemann Annual Cycle Northwest Tropical Atlantic

Air-Sea Fluxes
The annual cycle of air-sea fluxes from ASIMET and reanalyses
are shown in Figure 3. Note that the sensible heat flux associated
with precipitation (Fairall et al., 1996) is small (peaks slightly
below 0.3 W m−2 in October) and is neglected in the current
work. The ASIMET turbulent heat fluxes (QH, QB) show a
maximum oceanic heat loss in winter when wind stress is the
strongest. The turbulent heat flux is dominated by latent heat
loss (-134 W m−2) and the sensible heat flux is much smaller
(-4 W m−2). The net longwave flux QL is negative all year long
and has a maximum heat loss in winter. The net shortwave
radiative flux QS is positive all year long, with a minimum in
winter and double maximum in April and August. The net heat
flux QN is therefore negative in winter (ocean heat loss) and
positive in summer (ocean heat gain). The climatological annual
average of the ASIMET net heat flux is over 40 W m−2, indicating
that on average the ocean gains heat at the air-sea interface at
NTAS. The surface heat gain is from net shortwave radiation,
which is partly compensated by heat loss through latent heat and
net longwave radiation. The net balance between annual averages
of heat flux components is QN = QS +QL – QH – QB = 232 – 52 –
134 – 4 = 42 Wm−2.

The air-sea turbulent fluxes of heat and momentum provided
by the reanalyses (hereafter native fluxes) exhibit an annual cycle
similar to the ASIMET in situ estimates. However, there are
noticeable biases. The reanalyses native fluxes overestimate the
turbulent heat loss (QH + QB) during the whole annual cycle
when compared to the ASIMET estimate. Latent heat loss QH
is biased 15 to 28% high across the three reanalyses used here.
The ERA-Interim bias is minimum in winter. Sensible heat flux
is overestimated by 75 and 150% in MERRA-2 and ERA-Interim,
respectively. These discrepancies are larger than the 10% error
associated with the COARE-3 bulk flux algorithm. The annual
average of QB in NCEP-2 aligns with the ASIMET estimate,
but QB in NCEP-2 is higher (lower) than ASIMET in winter
(summer). The annual net heat input QN, is biased low in all three
reanalyses (near zero), compared to the oceanic heat gain (42 W
m−2) estimated by ASIMET.

Most of the net heat flux bias can be explained by the
overestimate (25 to 38 W m−2) of latent heat loss in the reanalyses
native fluxes (Table 2). Since the surface meteorology shows
relatively good agreement (Figure 2), we therefore investigate
whether the biases in QN are caused by a difference in the bulk
formulation used in the reanalyses compared to the COARE
algorithm used on the ASIMET in situ data. To do so, we
follow Smith et al. (2001) and compute “hybrid” reanalyses air-
sea fluxes, using the meteorological variables provided by each
reanalysis and the same bulk algorithm as the ASIMET estimates.
The common bulk algorithm used here is COARE-3.

The hybrid flux estimates (dotted lines in Figure 3) show a
dramatic impact for latent heat flux. All three reanalyses hybrid
QH agree with the ASIMET estimates (generally within the error
bar) throughout the annual cycle, and the annual means differ
by less than 10 W m−2. The improvement in the hybrid latent
heat flux cannot be explained by biases in the meteorological bulk
variables for two reasons. Firstly, all three reanalyses improve

and the meteorological variables in MERRA-2 and ERA-Interim
showed very little biases compared to the ASIMET in situ
measurements. Secondly, the wet bias in NCEP-2 (0.5 g kg−1)
reduces the vertical gradient in humidity and therefore QH, by
10% or 10 W m−2 in the region near NTAS (the winter bias is
roughly twice that amount). However, the high bias in wind speed
in NCEP-2 increases bulk fluxes, so biases in humidity and wind
speed compensate each other when computing QH. Therefore,
the correcting factor for the latent heat flux QH must be the
transfer coefficient (Dalton number).

The small, but significant overestimates of QB for MERRA-2
and ERA-Interim are reduced in the native fluxes, reducing biases
by about 50%. However, QB in NCEP-2 deteriorates slightly in
the hybrid formulation, where a low bias of about 2 W m−2 is
introduced. This low bias is opposite to what is expected from
the high bias in wind speed in NCEP-2, and again points to
the transfer coefficient as the likely contributor. Although the
sensible heat flux is much smaller than the latent heat flux (4 W
m−2 compared to 136 W m−2 for the ASIMET yearly averages),
its contribution to the atmospheric buoyancy flux is important
for convection phenomena.

The native wind stresses in ERA-Interim and MERRA-2 are
consistently higher than the ASIMET estimate despite relatively
good agreement in wind speed. The high bias is significant (larger
than the ASIMET error) for MERRA-2. However, both ERA-
Interim and MERRA-2 hybrid stresses are in good agreement
with ASIMET. Interestingly, the NCEP-2 native wind stress
agrees with ASIMET despite the high bias in native wind speed.
When the NCEP-2 hybrid stress is computed from native wind, it
shows a ∼20% high bias. Whether the native wind speed (ERA-
Interim, MERRA-2) or stress (NCEP-2) agrees better with the
in situ observations may depend on what wind data (speed or
stress) are assimilated in the reanalyses, and the algorithms used
to convert between speed and stress.

The introduction of a common bulk algorithm better
reconciles the reanalyses turbulent heat fluxes with the ASIMET
estimates and reduces the discrepancies in net heat flux. However,
there remain important seasonal differences in QS and QL that
motivate examination of the annual cycle of radiative fluxes,
which we focus on below.

The ASIMET net shortwave radiation QS shows a distinct
seasonal cycle with a minimum near 190 W m−2 in winter and
double maxima near 260 W m−2 in April–May and 250 W m−2 in
August. The structure of the ASIMET annual cycle in QS matches
the Clouds and the Earth’s Radiant Energy System (CERES)
satellite data remarkably well, although the CERES net shortwave
is about 10 W m−2 higher. Since the NTAS site lies south of the
Tropic of Cancer, two shortwave peaks might be expected, but the
clear-sky shortwave (dashed line in Figure 3) shows a much less
pronounced trough than ASIMET. This suggests that seasonal
cloud cover plays a role in the warm season QS variability. All
three reanalyses show a double maximum of net shortwave in the
warm season, although it is hardly noticeable in ERA-Interim and
the relative height of the peaks is reversed in NCEP-2. Another
notable departure of NCEP-2 QS from ASIMET is a significant
low bias (20% or 40–50 W/m2) in winter.
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TABLE 2 | Averages over 11 years record of air-sea fluxes and surface meteorological values (directly given by reanalyses, and adjusted to common standard heights
using COARE 3.0).

QB (W m−2) QH (W m−2) QS (W m−2) QL (W m−2) QN (W m−2) Stress (N m−2) WSPD (m s−1) qa (g kg−1) tair (◦C) tskin (◦C)

ASIMET −3.9 −133.5 231.5 −52.4 41.7 0.079 6.55 16.74 26.64 27.28

MERRA2 −7.0 −171.5 238.2 −62.4 −2.6 0.098 6.93 15.99 26.36 27.05

NCEP2 −4.0 −170.6 223.8 −51.9 −2.8 0.082 7.72 17.43 26.86 27.24

ERA −10.3 −158.4 234.1 −57.9 7.5 0.09 7.07 16.4 26.3 27.13

ASIMET + COARE3 −3.9 −133.5 231.5 −52.4 41.7 0.079 7.04 16.34 26.55 27.05

MERRA2 + COARE3 −3.1 −132.5 238.2 −61.0 41.6 0.075 6.91 15.99 26.36 26.81

NCEP2 + COARE3 −2.1 −129.3 225.4 −49.0 45.1 0.096 7.7 16.89 26.77 27.05

ERA + COARE3 −6.3 −142.5 233.2 −55.3 29.1 0.079 7.05 15.83 26.16 26.89

Net longwave radiation QL is negative all year in all products,
and the ocean loses more heat than it receives in the infrared
band. The annual cycle of downward longwave (not shown),
as measured by ASIMET, tracks the air temperature, with a
winter (summer) minimum (maximum) around 390 W m−2

(420 W m−2). The ASIMET QL (Figure 3) is maximum in
summer (-45 W m−2) and minimum in winter (-60 W m−2)
with an annual mean of -52 W m−2. The structure of the
ASIMET annual cycle in QL matches the CERES satellite data.
ERA-Interim QL tracks ASIMET during the whole annual cycle,
albeit with a consistent bias of about 5 W m−2. MERRA-2 has
a more significant bias (10–15 W m−2) and more pronounced
seasonal variability. The NCEP-2 annual mean QL is the closest to
ASIMET, but its annual cycle is not correlated to ASIMET, CERES
or the other reanalyses MERRA-2 and ERA-Interim. We will see
in the section “Discussion” that this discrepancy is a regional
effect and appears to be related to the discrepancy in NCEP-2 net
shortwave QS noted above.

DISCUSSION

We have compared ASIMET in situ observations at NTAS with
reanalyses gridded data. For each reanalysis, we presented here
the data from the gridpoint closest to NTAS location. Using
data from the next closest gridpoints surrounding the NTAS
location did not introduce discrepancies larger than the ASIMET
measurement errors, even for the data set with the coarser
resolution (NCEP-2). We also looked, for each air-sea interaction
variables discussed in this work, at the correlation between the
NTAS gridpoint and other gridpoints. The correlation maps
(not shown) indicate that the NTAS location is representative
of a large domain in the northwest tropical Atlantic. For
longwave radiation and wind speed, the domain with high
correlation (>0.8) around NTAS is smaller but still extends
almost 1000 and 2000 km in the meridional and longitudinal
directions, respectively. The near-surface state variables from
the NTAS buoy match those from reanalyses with minor
discrepancies, and precipitation and humidity were among the
variables that differed from observations. In addition, there were
significant discrepancies in the radiation fields. This suggests that
relationships among atmospheric water vapor, cloud cover, and
radiation should be explored. In order to apply the findings in

a regional context, we consider spatial maps from the reanalyses
compared to satellite remote sensing products.

In boreal winter, downward shortwave radiation is low
in NCEP-2 compared to CERES and MERRA-2, in a large
domain encompassing the western North Tropical Atlantic
region (Figure 4), whereas downward longwave radiation is high
(Figure 5). Figures 6, 7 show the difference in the climatological
for the winter and summer seasons between the reanalyses
(MERRA-2 and NCEP-2) and CERES observations. In NCEP-2,
most of the north tropical Atlantic shows this winter low bias
in downward shortwave radiation and high bias in downward
longwave radiation. Although these biases disappear north of the
ITCZ in the boreal summer, they emerge to the south of the ITCZ.

MERRA-2 does not show significant biases in downward
shortwave radiation in the north tropical Atlantic, except for
low values in summer in and north of the Caribbean Sea.
Compared to CERES, downward longwave radiation is low in
MERRA-2 across the whole north tropical Atlantic in winter,
and in the central north tropical Atlantic (including the NTAS
region) in the summer.

The radiation biases between reanalyses and satellite data
described above are similar to the discrepancies with the ASIMET
in situ observations at NTAS, shown in Figure 3. In winter,
NCEP-2 also shows a wet bias at NTAS. The intensification of
humidity and radiation biases in winter in NCEP-2 is not seen
in MERRA-2 or ERA-Interim. Atmospheric water vapor can
absorb longwave radiation and participate in cloud formation,
which in turn impact shortwave radiation. It is therefore possible
that the humidity and radiation biases in NCEP-2 are not
fortuitous but rather indicate a characteristic of its modeled
hydrological cycle. Due to radiation absorption, integrated water
vapor, and downward longwave radiation are related. Most of
the absorption occurs in the first 1000 m above the surface in
cloud free conditions (Ruckstuhl et al., 2007). Specific humidity
being a good proxy for integrated water vapor, we looked at
the relationship between downward longwave radiation and
specific humidity (Figure 8). A clear relationship is visible in
the ASIMET in situ data, which is fitted to a power law and
is in good agreement with similar observations by Ruckstuhl
et al. (2007). A similar relationship and power law fit is exhibited
using the ERA-Interim and MERRA-2 data. The goodness-of-fit
R2 is 0.67, 0.77 and 0.69 in ASIMET, MERRA-2, and ERA-
Interim, respectively. All datasets show a correlation (0.82, 0.88,
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FIGURE 4 | Maps of seasonal climatology from years 2002 to 2011 in the tropical Atlantic: net shortwave radiation flux at the surface (in W m-2), during boreal winter
months (left) and summer (right). CERES (top row), MERRA-2 (middle row) and NCEP-2 (bottom row).
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FIGURE 5 | Maps of seasonal climatology from years 2002 to 2011 in the tropical Atlantic: net downward longwave radiation flux at the surface (in W m−2), during
boreal winter months (left) and summer (right). CERES (top row), MERRA-2 (middle row) and NCEP-2 (bottom row).
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FIGURE 6 | Differences of climatological seasonal averages of shortwave radiation. Left: winter (DJF), right: summer (JJA). Top MERRA-2 minus CERES, bottom:
NCEP-2 minus CERES. MERRA-2 and CERES were interpolated to the NCEP-2 spatial grid.

0.83, respectively), between longwave radiation and humidity,
significant at p < 0.01. NCEP-2 data also shows a significant,
although weaker correlation (0.42), with a larger data scatter and
a noticeable difference in the resulting power law fit (R2 = 0.17).
The data used in Figure 8 are for all sky conditions, but the same

relationship is seen when differentiating between cloudy and
clear-sky conditions (not shown). Note that ERA-Interim shows
a strong relationship between downward longwave radiation and
specific humidity, LWR(q), despite a small dry bias. This indicates
that the presence of a strong LWR(q) relationship, and not
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FIGURE 7 | Differences of climatological seasonal averages of downward longwave radiation. Left: winter (DJF), right: summer (JJA). Top MERRA-2 minus CERES,
bottom: NCEP-2 minus CERES. MERRA-2 and CERES were interpolated to the NCEP-2 spatial grid.

necessarily its details, may be used as a self-sufficient diagnostic
tool to evaluate the quality of downward longwave radiation in
reanalyses, independent of observations.

The surface radiation fields and humidity are also related
through cloud cover. Cloud fraction maps from MODIS show
a local minimum in winter in a large domain around NTAS

(Figure 9). This region with sparse cloud coverage coincides
with a local maximum shortwave input area in winter in both
MERRA-2 and CERES (Figure 4). In contrast, in NCEP-2
the same region has high cloud coverage and low downward
shortwave radiation in winter. In spring and summer, MODIS
cloud data shows that the ITCZ encroaches on the region
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FIGURE 8 | Scatter plots of downward longwave radiation vs. specific humidity using daily averages between 2002 and 2012 (black dots). Power law fits to the daily
values (green lines and annotations). Mean and one standard deviation in 1 g kg-1 bins (red lines).

surrounding NTAS from the south and east. In comparison,
the summer cloud cover around the ITCZ is much weaker in
NCEP-2, so that NTAS is located in a region with minimal

cloud cover. These differences in NCEP-2 cloud cover in winter
and summer are consistent with NCEP-2 anomalous annual
cycle of shortwave radiation at NTAS in Figure 3. The MODIS
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FIGURE 9 | Maps of season averaged cloud fraction from MODIS and NCEP2. Winter (DJF) and summer averages based on daily data from years 2002 through
2012. Magenta cross denotes NTAS location.
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FIGURE 10 | Daily cloud fraction at NTAS, based on MODIS data for period 2001 to 2012.

cloud fraction extracted at NTAS peaks in July (Figure 10),
which coincides with the summer local minimum of downward
shortwave radiation seen in the in situ ASIMET data. The all sky
downward shortwave radiation measured at NTAS is low in July,
although the clear-sky theoretical value does not show such a
minimum (Figure 3). This indicates that the variability of cloud
cover and solar radiation are related in the seasonal and intra-
seasonal in the NTAS region. Moreover, NCEP-2 cloud cover and
shortwave radiation also co-vary consistently with each other, but
not with the observations.

SUMMARY AND CONCLUSION

We evaluated here the seasonal cycle of near surface meteorology
in the Northwest Tropical Atlantic region using long term
in situ observations from the NTAS oceanic surface mooring. We
compared three commonly used reanalyses, NCEP-2, MERRA-
2, and ERA-Interim, to the in situ observations and analyzed the
strengths and weaknesses of each.

Most surface meteorological variables observed with the
ASIMET instrumentation at NTAS are reproduced well by the
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three reanalyses MERRA-2, ERA-Interim, and NCEP-2. Minor
discrepancies included high (low) seasonal biases in NCEP-2
(ERA-Interim) specific humidity, a high bias in NCEP-2 wind
speed (albeit not reflected in the stress) and high biases in
NCEP-2 and ERA-Interim precipitation. Precipitation from the
Tropical Rainfall Measuring Mission satellite sensor agreed well
with the ASIMET in situ measurements at NTAS. More notable
were discrepancies in radiative fluxes. Although measurements
of net longwave and shortwave radiations are similar between
ASIMET and CERES remote sensing, three issues were found
when comparing ASIMET to reanalyses: (1) longwave radiation
in MERRA-2 is biased low by 10 to 15 W m−2 and this bias is
present in most of the tropical Atlantic, (2) downward shortwave
radiation in NCEP-2 is biased low (50 W m−2) in the boreal
winter, and departs from other datasets in summer, (3) the annual
cycle of downward longwave in NCEP-2 does not show an annual
cycle consistent with the in situ data.

The native fluxes provided by the reanalyses underestimate the
net ocean heat gain. However, when re-computed with the same
bulk algorithm (COARE-3) and using meteorological variables
from the reanalyses, these hybrid fluxes agree relatively well with
the in situ estimates. The 11-year mean fluxes are within 10 W
m−2. The net ocean heat gain based on COARE-3 is between 30
and 45 W m−2.

Of particular concern are the biases in the radiative fluxes
observed in NCEP-2 and MERRA-2. These biases exist in
large domains of the tropical Atlantic and vary during the
year. The seasonal variability and spatial structure of NCEP-
2 longwave and shortwave errors are consistent with its
anomalous cloud cover compared to MODIS cloud cover
data. NCEP-2 underestimates downward shortwave in winter.
MERRA-2 underestimate net longwave radiation at NTAS
and in most of the north tropical Atlantic. The source of
this bias deserves attention as it could be related to clouds
or aerosols, which are important parameters for climate
studies. Moreover, longwave being responsible for most of
the radiative forcing associated with global warming it is
important for reanalyses to reproduce accurate representations
on basin scales like the tropical Atlantic. We suggest that
the presence of a strong LWR(q) relationship be used as a
validation check for downward longwave radiation in reanalyses
datasets. Similarly, departure of shortwave radiation from the
clear-sky background can also be useful to detect erroneous
patterns in cloud cover.

As Wen et al. (2017) showed, the impact of 50 W
m−2 error in ocean heating at the air-sea interface leads
to SST anomalies of order 0.5◦C in the north tropical
Atlantic. Since SST is a controlling factor for atmospheric
convection and hurricane development, care must be taken
into using accurate air-sea heat fluxes in this region. Wen
et al. (2017) also showed that inaccuracies in wind stress
forcing lead to deep heat anomalies and biases in the
mixed layer depth. The north tropical Atlantic is a place
of intricate air-sea interaction phenomena, such as ocean
barrier layers that store heat, modify the upper ocean
stratification and are controlled by a subtle balance between
air-sea fluxes, and freshwater input. Careful use of reanalyses

is therefore warranted in studies of the north tropical
Atlantic region.
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The reliability of surface net heat flux data obtained from the latest satellite-based

estimation [the third-generation Japanese Ocean Flux Data Sets with Use of Remote

Sensing Observations (J-OFURO3, V1.1)] was investigated. Three metrics were utilized:

(1) the global long-term (30 years) mean for 1988–2017, (2) the local accuracy evaluation

based on comparison with observations recorded at buoys located at 11 global oceanic

points with varying climatological characteristics, and (3) the physical consistency with

the freshwater balance related to the global water cycle. The globally averaged value of

the surface net heat flux of J-OFURO3 was−22.2Wm−2, which is largely imbalanced to

heat the ocean surface. This imbalance was due to the turbulent heat flux being smaller

than the net downward surface radiation. On the other hand, compared with the local

buoy observations, the average difference was−5.8Wm−2, indicating good agreement.

These results indicate a paradox of the global surface net heat flux. In relation to the

global water cycle, the balance between surface latent heat flux (ocean evaporation) and

precipitation was estimated to be almost 0 when river runoff from the land was taken

into consideration. The reliability of the estimation of the latent heat flux was reconciled

by two different methods. Systematic ocean-heating biases by surface sensible heat

flux (SHF) and long wave radiation were identified. The bias in the SHF was globally

persistent and especially large in the mid- and high latitudes. The correction of the bias

has an impact on improving the global mean net heat flux by +5.5W m−2. Furthermore,

since J-OFURO3 SHF has low data coverage in high-latitudes areas containing sea ice,

its impact on global net heat flux was assessed using the latest atmospheric reanalysis

product. When including the sea ice region, the globally averaged value of SHF was

approximately 1.4 times larger. In addition to the bias correction mentioned above, when

assuming that the global ocean average of J3 SHF is 1.4 times larger, the net heat flux

value changes to the improved value (−11.3W m−2), which is approximately half the

original value (−22.2 W m−2).
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INTRODUCTION

Surface net heat flux, defined as the total heat exchange between
the atmosphere and oceans, affects both atmospheric and oceanic
processes. In addition, the surface net heat flux determines the
actual state of atmospheric-ocean interaction and the climate
system. Therefore, the surface net heat flux is an essential climate
variable (ECV) and an essential observational variable (EOV).
Accurate and observational estimations are required globally
(Cronin et al., 2019). Global estimates based on observations
are necessary to understand long-term climate change and
related responses, in addition to validating climate model results.
Consequently, estimating surface net heat flux using satellite
observations and improvements are of vital importance.

Several efforts have been made to estimate based on satellite
observations (e.g., Pinker et al., 2014) and the data products are
available, but how reliable is the satellite estimation of surface
net heat flux? This question is not self-evident. This is because
the satellite-based surface net heat flux estimation is obtained by
combining the output of the turbulent flux estimation and the
radiation flux estimation, which are being promoted as separate
research projects. Although each product has been previously
evaluated in several studies (e.g., Andersson et al., 2011; Rutan
et al., 2015; Bentamy et al., 2017), there are few studies related
to net heat flux. Therefore, it must be evaluated as a surface net
heat flux.

A recent study evaluated the estimation of the surface net
heat flux resulting from ocean reanalysis as well as atmospheric

Abbreviations: AMI, Active Microwave Instrument; AMSR-E, Advanced
Microwave Scanning Radiometer—Earth observing system; ASCAT, Advanced
Scatterometer; CFSR, NCEP Climate Forecast System Reanalysis (Xue et al.,
2011); CGLORS 05V3, Ocean reanalysis at the Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC) (Storto et al., 2014); CORE.2, Common Ocean
Reference Experiment Version 2, known as the flux product of Large and Yeager
(2009); ECCO v4, The Estimating the Circulation and Climate of the Ocean
(https://www.ecco-group.org); ECDA, Ensemble Coupled Data Assimilation; ERA
Interim, European Center for Medium-Range Weather Forecasts Reanalysis-
Interim (Dee et al., 2011); ERA5, European Center for Medium-Range Weather
Forecasts Reanalysis-5 (Hersbach et al., 2020); ERS, European Space Agency
(ESA) Remote-Sensing Satellite; GECCO2, The German contribution of the
Estimating the Circulation and Climate of the Ocean project (ECCO); GLORYS2
v1 and v3, Ocean reanalysis at Mercator Ocean: https://www.mercator-ocean.
fr/en/science-publications/glorys/; GloSea5, UK Met Office Global Seasonal
Forecasting System version 5 (Scaife et al., 2014; MacLachlan et al., 2015);
GODAS, NCEP Global Ocean Data Assimilation System; HOAPS, Hamburg
Ocean Atmosphere Parameters and Fluxes from Satellite data (Andersson et al.,
2011, 2017); ISCCP, International Satellite Cloud Climatology Project; J-OFURO,
Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (Tomita
et al., 2019); JRA-55, the Japanese 55-year Reanalysis (Kobayashi et al., 2015);
MERRA, Modern-Era Retrospective analysis for Research and Applications;
MOVE-C, Multivariate Ocean Variational Estimation System–Coupled Version
Reanalysis; NCEP-R2, NCEP-DOE AMIP-II reanalysis (Kanamitsu et al., 2002);
NOC, National Oceanography Center; OAFlux, Objectively Analyzed Air-sea
Fluxes (Yu and Weller, 2007); ORA-IP, Ocean Reanalysis Intercomparison
Project (Balmaseda et al., 2015); ORAS4, ECMWF operational ocean reanalysis
(Balmaseda et al., 2013); OSCAT, Oceansat-2 Scatterometer; PEODAS, Predictive
Ocean Atmosphere Model for Australia (POAMA) Ensemble Ocean Data
Assimilation System (Yin et al., 2011); SSMI, Special Sensor Microwave Imager;
SSMIS, Special Sensor Microwave Imager/Sounder; TMI, Tropical Rainfall
Measurement Mission (TRMM) Microwave Imager; TOA CERES/ERAi DIV, The
hybrid product of CERES and ERA-Interim (Liu et al., 2015); UR025.3 and 025.4,
University of Reading global ocean reanalysis.

reanalysis and satellite-based estimations (Valdivieso et al., 2017).
The results showed that the ocean reanalysis gave close to 0 for
the global mean surface net heat flux, while the atmospheric
reanalysis and satellite-based estimates indicated that the global
mean had a bias of heating the ocean. In addition, a comparison
with observations from local buoys indicates that the satellite-
based estimation was in good agreement, but ocean reanalysis
estimates had a bias of cooling the ocean.

Yu (2019) reported that modifying the bulk equation of
the turbulent heat fluxes improved the global heat balance
in satellite-based estimations (OAFlux-HR). However, it was
indicated that a large physical inconsistency regarding freshwater
balance occurs when using the modified equation.

These two studies highlight the “paradox” of surface net heat
flux estimations. This occurs because of the poor agreement
between the global heat balance and the local accuracy in
addition to similar inconsistencies between the heat and
freshwater balances.

In this study, the latest satellite-derived surface net heat flux
dataset, J-OFURO3 (Tomita et al., 2019) is evaluated using the
following three metrics: (1) the long-term (30 years) mean, (2)
local accuracy, and (3) physical consistency. In addition, the
advancement in the satellite data will be estimated by comparing
the current data with the previous generation dataset, J-OFURO2
(Tomita et al., 2010). The number of buoys used for comparison
has also increased from those in past studies because of the
inclusion of buoys inmid- and high-latitude areas. Through these
efforts, the state of the latest satellite-based surface net heat flux
estimations is better understood. Finally, suggestions for future
improvements are provided.

MATERIALS AND METHODS

Satellite-Derived Air-Sea Heat Flux
Datasets
J-OFURO (https://j-ofuro.isee.nagoya-u.ac.jp) is a research
project on estimating surface heat, momentum, and freshwater
fluxes based on satellite remote-sensing observations. The project
also provides the global dataset for the research community.
Although the first dataset (Kubota et al., 2002) did not cover the
entire global region, the second-generation dataset, J-OFURO2
(Tomita et al., 2010) provided global surface net heat flux data
for 1988–2008, with their own turbulent heat flux estimation and
surface radiations obtained from ISCCP (Rossow and Schiffer,
1991). From here, we refer to the J-OFURO2 dataset as J2.

The third-generation dataset: J-OFURO3 (Tomita et al., 2019)
was first released as V1.0 for 1988–2013. The J-OFURO3 is
characterized by the use of multi-satellite, multi-microwave
sensors, and the state-of-the-arts estimation algorithm (e.g.,
Tomita et al., 2018). During the data period of 1988–2013, data
from the satellite microwave radiometer sensors: SSMI/SSMIS
series, TMI, AMSR-E, and AMSR2 were used to estimate
atmospheric specific humidity, which is essential for estimating
latent heat flux. In addition to abovemicrowave radiometers, data
from microwave scatterometers: ERS AMI series, QuikSCAT,
ASCAT, and OSCAT series were used to estimate ocean surface
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winds. In addition to these estimates of surface specific humidity
and surface winds, using ensembles obtained from 12 types
of global SST products including satellite observation data
and surface air temperature data obtained from atmospheric
reanalysis data, the turbulent heat fluxes were calculated. J-
OFURO3 provides a global net heat flux using its own surface
turbulent heat flux estimates and surface radiation flux estimates
utilizing ISCCP FD and CERES SYN1D (Doelling et al., 2013,
2016; Loeb et al., 2018). Please note that the J3 upward long wave
radiation flux has been recalculated using J-OFURO3′s ensemble
sea surface temperature data for consistency with other fluxes in
J-OFURO3. This procedure is also the same as that of J2, despite
the sea surface temperature data being different. Furthermore,
J-OFURO3 calculates the evaporation from the ocean surface
based on the J-OFURO3 surface latent heat flux and provides
data on the freshwater flux in combination with the data for
precipitation obtained from GPCP (Adler et al., 2003, version
2.3). These data were also used to confirm the consistency of
the surface heat flux with the hydrological cycle. More details on
J-OFURO3 V1.0 can be found in Tomita et al. (2019) and the
official data documentation (Tomita, 2017).

The latest version, J-OFURO3 V1.1 with some updates
including source data version updates, minor algorithm changes,
and extended data periods covering 30 years for 1988–2017 have
been released. For surface radiation data in V1.0, we found a
temporal discontinuity in 2000. This temporal discontinuity is
caused by changing input source data (i.e., from ISCCP to CERES
products). Therefore, in the V1.1 we adjusted the radiations of
ISCCP to CERES, assuming CERES is well calibrated. From here,
we refer to the J-OFURO3 V1.1 dataset as J3.

The surface net heat flux (NHF) is calculated as the sum of
the following components: net shortwave radiation (SWR), net
long wave radiation (LWR), surface latent heat flux (LHF), and
sensible heat flux (SHF), that is, NHF = SWR + LWR + LHF
+ SHF. In this study, all heat fluxes assumed to be positive
when they are directed upward, away from the ocean surface to
the atmosphere.

In this study, evaluation of J3 for 1988–2017 was the main
focus, but to confirm the progress from J2, a comparison for
1988–2008 was also conducted. For J2, the monthly data of the
1-degree grid was used, and for J3, the monthly data of the
0.25-degree grid was used.

Furthermore, we have used another satellite-based product
for comparison, namely: HOAPS-4.0 (Andersson et al., 2017).
HOAPS is characterized by the unique development of both
precipitation and evaporation (LHF) using SSMI and SSMIS
series observations. The EUMETSAT Satellite Application
Facility on Climate Monitoring (CM SAF) provides monthly
global data from July 1987 to December 2014, with a spatial
resolution of 0.5.

Calculation of Global Long-Term Average
Because the satellite-derived air-sea net heat flux datasets used
in this study are gridded data, the globally averaged value is
indicated as the area-weighted average value obtained from the
data of each original grid size. The “global” means the region 0-
360E, 90S-90N. However, it should be noted that the J2 and J3

data do not include data over land and sea ice areas. The global
long-term average is calculated by the arithmetic mean over time
after calculating the global area-weighted average.

In situ Observation Data
Buoy data were used to obtain the sea truth of the surface net heat
flux. To obtain the surface net heat flux, the buoy measurements
must provide a dataset of all components to estimate surface
heat fluxes. Although there are few such buoys having sensors
for radiation measurement, there are 11 in the global oceans that
capture varying climatological characteristics (Figure 1, Table 1).
These buoys are part of the following observation networks:
ocean climate stations and the global tropical moored buoy
array in NOAA/PMEL, the Ocean Reference Stations in the
WHOI. The KEO, PAPA, and NTAS buoys are in the North
Pacific region, and three TAO buoys (McPhaden et al., 1998)
are in the tropical Pacific Ocean. There are two RAMA buoys
(McPhaden et al., 2009) in the Indian Ocean. The PIRATA
(Servain et al., 1998) and WHOTS buoys are in the Atlantic
Ocean. STRATUS (Weller, 2015) is the only buoy in the Southern
Hemisphere. The Southern Ocean Flux Station (SOFS, Schulz
et al., 2012) and Agulhas Return Current (ARC) buoys are located
in the Southern Hemisphere, but because they do not provide
sufficient observational data, they were excluded from the main
comparison of this study.

The four surface heat flux components (SWR, LWR, LHF, and
SHF) were calculated from the hourly observation data of each
buoy. Subsequently, the daily average values were derived after
the flux calculations. Furthermore, the monthly averaged value
was calculated from the daily averaged value of the flux data. The
NHF was calculated from the monthly average value, and if any
components were missing, all the components were set as the
missing values.

The flux calculation was performed according to the method
described by Tomita et al. (2010). The net SWR was calculated
from the observed downward SWR according to Equation (1):

SWR = − ↓ SWR (1− α) (1)

where α is the surface albedo, and the climatological monthly
mean values on each grid obtained from the ISCCP have been
used in this study. The net LWRwas calculated from the observed
downward LWR and the calculated upward LWR value from the
sea surface temperature (SST) according to Equations (2) and (3),

LWR= ↑ LWR− ↓ LWR (2)

↑ LWR= (ε σ SST4
+ (1− ε)↓ LWR) (3)

where ε is the emissivity at the ocean surface, set as 0.984
following Konda et al. (1994), and σ is the Stefan–Boltzmann
constant (5.679× 10−8 Wm−2 K−4).

For the LHF and SHF, the bulk flux calculation algorithm,
COARE 3.0 (Fairall et al., 2003) was used. The input parameters
required in the flux calculation using the algorithm are air
temperature, humidity, winds, SST, and sea level pressure. For
all parameters, the observed values at each buoy were used. The
algorithm also requires the observation height of each parameter.
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FIGURE 1 | Long-term (30 years) average of global surface net heat flux obtained from J-OFURO3 V1.1 monthly data for 1988–2017. Positive values are upward heat

flux. Unit in W m−2. Locations of 11 buoys used in comparison are indicated as black circles.

The observation height information for each buoy listed in
Supplementary Table 1 was used. For the SST, a skin/warm layer
correction was not conducted.

The accuracy of the data on surface net heat flux obtained
from in situ buoys is estimated to be 8 W/m2 on average (Colbo
andWeller, 2009; Cronin et al., 2019), while the values are slightly
higher on a daily scale. For each flux component, the long-term
averaged accuracy for SWR, LWR, LHF, and SHF are estimated
5.0, 3.9, 1.5, and 5.0 W/m2, respectively. It can also be confirmed
that the mid-latitude buoys (KEO) almost exhibit the same range
(Tomita et al., 2010).

Comparison
The buoy data are point values while the satellite data are
gridded. Therefore, we compared the values on gridded satellite
data that include the locations of the buoys with the values
calculated from the buoy measurements. All comparisons were
conducted monthly. The statistics: bias, RMS, and correlation
coefficient, r, were calculated for each flux component using the
following equations:

bias =
1

n

n
∑

l=1

(sl−bl)

RMS =

√

√

√

√

n
∑

l=1

(sl−bl−bias)2

n

r =

∑n
l=1 (sl−s) (bl−b)

√

∑n
l=1 (sl−s)2

∑n
l=1 (bl−b)

2

where s and b are the satellite gridded value and buoy point
value, respectively, and n is the number of monthly data at each
buoy (see Table 1). It should be noted that the RMS is defined
as a form in which the bias is removed from the difference
between s and b (Taylor, 2001). All statistics values are available
as Supplementary Data.

RESULTS

Global Long-Term Mean
Figure 1 shows the distribution of the long-term (1988–2017)
mean for the global NHF obtained from J3. The figure represents
the climatological features of the distribution for the NHF. In the
tropical zone, a net heat flux exists from the atmosphere to the
ocean, and in mid- and high-latitudes, there is a net heat flux
from the ocean to the atmosphere.

Examining regional features, there is a larger heat flux from
the atmosphere to the ocean in the eastern tropical Pacific and
at the equator. These areas contain upwelling ocean currents.
In addition, there is large net heat flux from the ocean to
the atmosphere at the western boundary current region for
both hemispheres. Moreover, there is a strong flux contrast
corresponding to the ocean fronts in these areas.

The global long-term average value calculated from J3 is
−22.2W m−2. This indicates that the net heat flow is to the
ocean surface. Although the characteristics of the qualitative
distribution are not significantly different from common
knowledge, this value is more than one order of magnitude larger
from the viewpoint of global surface heat balance (NHF→ 0).

The results are similar when compared with the global average
value obtained from the previous generation dataset (J2). J2 data
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TABLE 1 | Summary of buoy observation data used for the comparison with J-OFURO3.

Site name Location Start date End date N Framework Provider

1 KEO 32.3N, 144.6E 2004/6/17 2018/12/31 105 OCS* NOAA/PMEL

2 PAPA 50.1N, 144.9W 2007/6/9 2018/12/31 108 OCS* NOAA/PMEL

3 TAO/TRITON 0N, 165E 2006/7/13 2017/9/8 63 GTMBA
†

NOAA/PMEL

4 0N, 170W 2006/6/25 2018/10/29 49 GTMBA† NOAA/PMEL

5 0N, 140W 2006/9/16 2018/12/31 76 GTMBA† NOAA/PMEL

6 PIRATA 0N, 23W 2007/5/26 2014/7/6 46 GTMBA† NOAA/PMEL

7 RAMA 0N, 80.5E 2008/8/10 2014/8/17 35 GTMBA† NOAA/PMEL

8 15N, 90E 2008/10/20 2016/5/21 50 GTMBA† NOAA/PMEL

9 WHOTS 22.75N, 158W 2008/8/14 2018/9/24 152 ORS§ WHOI

10 STRATUS 20S, 85W 2000/10/8 2018/4/7 192 ORS§ WHOI

11 NTAS 15N, 51W 2001/3/31 2018/6/11 187 ORS§ WHOI

N indicates the number of valid monthly means.

*https://www.pmel.noaa.gov/ocs/.
†https://www.pmel.noaa.gov/gtmba/.
§http://uop.whoi.edu/ReferenceDataSets/index.html.

End date is based on the data availability by 2018/12/31.

FIGURE 2 | Comparison of global long-term averages among various estimates. The values (except for f J-OFURO2 and J-OFURO3) were drawn from Valdivieso

et al. (2017). Positive values are upward heat flux. Almost all estimates are indicating ocean heating. Please also see the list of abbreviations of each dataset name and

reference.

are only available for 1988–2008. The average values for J2 and J3
in 1988–2008 were 22.2 and 23.2Wm−2, respectively.

Figure 2 shows the average values of the global NHF obtained
by various estimation approaches. Except for the values of J2
and J3, the values are shown by Valdivieso et al. (2017). From

this figure, with a few exceptions, the global long-term average
of NHF tends to indicate a net heat flux to the ocean for
most methodologies. Most satellite-based estimates, including J2
and J3, show greater ocean heating than those shown in ocean
reanalysis estimates.
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FIGURE 3 | Balance of each component for the global long-term average of

J-OFURO3 for the surface net heat flux (NHF). The balance for the turbulent

heat flux (TUR) and the net surface radiation (RAD), in addition to the full

components: the net shortwave radiation (SWR), the net long wave radiation

(LWR), the latent heat flux (LHF), and the sensible heat flux (SHF) are shown.

Figure 3 shows the balance among components that consist
of NHF. In J3, the turbulent flux is smaller than the net radiation,
resulting in an NHF of−22.2Wm−2.

Comparison With Buoys
Figure 4 shows the bias between the J3 estimates and buoy
observations. At all buoy points except RAMA (15N, 90E), the
bias is negative, indicating a significant ocean heating bias in
J3. In particular, large negative biases were found in buoys in
the western tropical Pacific (0N, 165E), central tropical Pacific
(0N, 170W), and central tropical Indian Ocean (0N, 80.5E). The
overall averaged bias is −5.8W m−2, and the averaged bias at
mid-high latitudes excluding buoys in the tropical zone is−3.1W
m−2, which shows good agreement.

There are cases in which the positive and negative biases of
each component cancel each other out (Figure 4B). For example,
at KEO, SW, and LH show positive biases, while LW and SH show
negative biases. The sum of absolute biases of the components is
27.6W m−2, which is significantly larger than the absolute NHF
bias of 1.5W m−2. Similar canceling out of biases was seen in
Stratus, RAMA (15N, 90E), and TAO (0N, 140W).

Unexpectedly, Figure 4B indicates that the SH bias is always
negative for these data, while biases of the other components
show both negative and positive biases depending on the buoy
locations. A comparison using more comprehensive global buoy
data that can calculate turbulent heat flux confirms these negative
SH biases, especially over the open ocean area (Tomita et al.,
2019). The influence of SH biases on the global long-term mean
of NHF is discussed in the “Discussion” section.

FIGURE 4 | Biases (J-OFURO3 minus buoys) of the surface heat fluxes at

each buoy site for (A) the surface net heat flux (NHF) and (B) components. The

comparison results are based on 1,063 monthly means from 11 sites.

In addition, a pattern of characteristic bias was also observed
in the LW. Relatively large negative biases in LW were found
in the KEO, STRATUS, and WHOTS buoys located in the
subtropics and mid-latitudes. The negative LW biases were
relatively small at buoys in the tropics. The KEO and STRATUS
buoy networks correspond to areas that have significant
cloudiness consisting of low-level clouds.

The same comparisons were made using both J2 and J3 data
for the period up to 2008. An improvement from the previous
generation data was confirmed. Figure 5 shows the bias, RMS,
and the correlation for the NHF for J2 and J3. From the data
in this figure, significant improvements in statistics from J2
were confirmed. At most buoy points, the RMS and correlation
coefficients are improved. For the bias, on average, the absolute
bias of J3 is slightly higher than that of J2. However, J2 has a small
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FIGURE 5 | Advances in comparative statistics of the (A) bias, (B) RMS, and correlation coefficient of surface net heat flux (NHF) for J-OFURO2 (J2) and J-OFURO3

V1.1 (J3). Note that the buoys are listed in different orders in (A) and (B).

bias due to canceling out of the large positive and large negative
biases. Such large positive and negative biases were improved in
J3, while a slight negative bias was observed.

Consistency With Freshwater Flux
The LHF, which is one of the surface heat flux components, is
proportional to the evaporation rate from the ocean surface and
is a part of the freshwater flux as a counterpart for precipitation.
Therefore, by checking the consistency between the latent heat
flux (evaporation) and the surface freshwater balance one can
evaluate the surface heat balance from a different perspective.

In general, the global ocean freshwater flux defined as
(evaporation minus precipitation) is positive because a
significant amount of water evaporates from the ocean.
The evaporated water is transported to land by atmospheric
advection, mainly in the form of water vapor. On a long-term
average, the changes in atmosphere disappear and the net
positive freshwater flux over the ocean is balanced by the runoff
of river water from the continent into the ocean (i.e., freshwater
flux–runoff= 0).

The global long-term mean value of ocean evaporation in J3
was 3.4 mm/day, while the precipitation over the ocean obtained
from GPCP V2.3 was 3.0 mm/day. Therefore, the global long-
term mean of freshwater flux was calculated as 0.4mm per day.
The result showed a good balance after considering the runoff
from land. Various estimates have been obtained by studies on
river runoff. These values range from approximately 0.27 to
0.34 mm/day (Schlosser and Houser, 2007). More recent studies
estimate river runoff as 0.29 (Ghiggi et al., 2019) and 0.31
(Wilkinson et al., 2014) mm/day. According to these previous

studies, if we assume a value of 0.3 mm/day of river runoff, the
freshwater balance estimated from J3, GPCP, and the river runoff
is 0.1 mm/day, which is a reasonable result. An improvement was
confirmed compared to the estimation using J-OFURO2 (Iwasaki
et al., 2014).

Although there are various global precipitation datasets (Kidd
and Huffman, 2011), GPCP is used as the standard dataset in
numerous studies (e.g., Andersson et al., 2011; Tapiador et al.,
2017; Yu, 2019; Gutenstein et al., 2021). However, most studies
suggest that much of the uncertainty in water balance lies
in precipitation products as well as evaporation. To confirm
the differences in the results that depend on the satellite
products, we reconfirmed the results using another satellite
precipitation/evaporation product, HOAPS-4.0. Consequently, it
was confirmed that the long-termmean precipitation of HOAPS-
4.0 for 1988–2014 (2.9 mm/day) was slightly smaller than that of
GPCP V2.3 for the same period (3.0 mm/day). For evaporation,
the long-term mean HOAPS-4.0 value for 1988–2014 was 3.4
mm/day. Therefore, the global ocean freshwater flux value (0.5
mm/day) was slightly higher than that estimated by J3 (0.4
mm/day, for 1988–2014), while being sufficiently comparable.

DISCUSSION

The global long-term mean value of the NHF from the J3 data
was consistent with the previous generation data. The tendency
of ocean heating is similar to other estimates such as satellite
and ocean reanalysis. However, its value was large in magnitude,
−22.2W m−2, indicating a significant negative imbalance. In
contrast, by comparison with local 11 buoys, the average bias
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was found to be −5.8W m−2 and the negative largest value of
−15.7W m−2 was found at buoy in the western tropical Pacific.
Therefore, the relationship between the global mean value of J3
and the local bias was inconsistent, and the paradox of surface
heat flux was confirmed. In previous studies (Pinker et al., 2017;
Valdivieso et al., 2017), several tropical and subtropical buoys
data (Stratus) were used for the evaluation of surface net heat
flux. In contrast, for this study, the comparison was performed
using more buoy data which included mid-high latitude buoys
(KEO and PAPA). These data contained longer time series,
and the paradox was confirmed. The cause is discussed in the
following text.

In contrast to the excessively large negative imbalance for
the NHF in the global long-term mean, the globally averaged
ocean surface freshwater flux estimated by surface latent heat flux
(evaporation) in J3, GPCP, and runoff was almost 0. This result
was consistent with a previous estimate (Trenberth et al., 2007).
Because the sum of these independently estimated components
was close to 0, J3 the LHF is considered to be very reliable.
Therefore, the cause of the imbalance might be other than the
LHF. The comparison of the J3 LHF with more comprehensive
global buoys (Figure 6A) revealed that the total bias was fairly
small (<1Wm−2) while there are some regional biases. This fact
also strongly suggests that the cause of the excessively large global
long-termmean imbalance of NHF is likely to be other than LHF.

In contrast to the LHF, the J3 SHF had a persistent bias. As
shown in the Results (Section “Comparison with Buoys”), the
SHF showed negative biases in the comparisons with all of the
11 buoys. Negative biases were also confirmed by comparison
with more comprehensive buoy observations (Figure 6B). There
are negative biases in almost all open ocean areas except for the
coastal area, and a larger negative bias occurs especially in mid-
high latitudes (Tomita et al., 2019). Figure 7 shows the bias of
the SHF as a function of latitude. In order to investigate the effect
of this SHF bias characteristic on the global averaged value, this
bias was corrected by using a fitting curve and the global averaged
value was recalculated. The global long-term mean value of the
SHF without bias correction was +8.1W m−2, while the global
long-term average value after bias correction was 13.3W m−2.
This bias correction has an impact of improving the global mean
of the NHF by +5.5W m−2, but a large imbalance of −16.7W
m−2 still remains. However, the number of buoy observations
on which this bias correction was based does not completely
cover global oceans (as seen in Figure 6B). It is necessary to
consider a more robust correction method in the future. As
shown in Figure 7B, the cause of this SHF bias is in the air
temperature. The J3 uses atmospheric reanalysis data instead
of satellite retrieval for air temperature estimation, and it is
desirable to refer to better air temperature estimates or develop
a satellite-based retrieval method in the future.

Furthermore, the data coverage of J3 SHF over high-latitudes
is small. In the presence of sea ice, J3 cannot calculate the
turbulent heat flux; therefore, the estimation of turbulent heat
flux over regions with sea ice is overlooked. In a simple test
performed using ERA5 (Hersbach et al., 2020), which has
complete global coverage, the global ocean average value is
approximately 30% smaller than the original ERA5 value when

the sea ice area is excluded for simulating the coverage of J3.
When including the sea ice region, the global ocean average
SHF value is approximately 1.4 times larger. This is a reasonable
result considering the large air–sea temperature difference (i.e.,
large SHF) with sea ice at high latitudes. The same test for LHF
does not give the same result. In the case of LHF, the value
corresponding to the sea ice region does not have a large influence
on the global ocean averages, and by including the sea ice region,
the global averaged value decreases slightly. In addition to the
bias correction mentioned above, when assuming that the global
ocean average of J3 SHF is approximately 1.4 times larger, the
NHF value changes to the improved value (−11.3 W/m2), which
is approximately half the original value (−22.2 W/m2). This
indicates the limits of microwave satellite-based flux products
such as J3 and the importance of considering the value of SHF
over the sea ice region in the global ocean heat balance.

The LWR also had a notable bias characteristic. The LWR bias
was relatively small in the tropics, while it was comparatively
large in the subtropics andmid-latitudes. For example, the largest
biases were found in the KEO and Stratus data. These were
−5.7 and −4.7W m−2, respectively. A detailed comparison was
performed to investigate the cause in detail. Figure 8 shows
the bias in the upward and downward components of the long
wave radiation described by Equation (2). As shown in Equation
(3), the upward component of the LWR is not completely
independent of the downward component, but the bias shows
small negative values (<1W m−2). The major factor of the LWR
bias is the downward component. Validation of the downward
LWR assessments was performed using more comprehensive
buoy observations (Rutan et al., 2015; Kato et al., 2018). Our
results are consistent with their results, indicating that the bias is
<5W m−2; however, the spatial characteristics of the error have
never been investigated thoroughly.

The buoy locations of Stratus and KEO are known as oceanic
areas frequently covered by low-level clouds (e.g., Klein and
Hartmann, 1993). In contrast, for the high latitude area of the
North Pacific, PAPA, which is also characterized by low-level
clouds, the downward LWR shows a good agreement. A more
detailed investigation of the bias and the relationship with clouds,
air temperature, and sea surface temperature will be needed
better understand this phenomenon.

In the above, we discussed the possibility of large biases
outside the 11 buoys (which showed relatively good agreement
on the global heat balance). As another possibility, we discuss
the effect of the difference due to the bulk formula and the
associated calculation method on the global heat balance. In
general, the selection of a bulk formula has a major influence
on the estimation of the global turbulent heat and momentum
fluxes. Based on a comparative study (Brunke et al., 2003; Iwasaki
et al., 2010), COARE 3.0 is used in J3 and other satellite products.
Brodeau et al. (2017) estimated that changes in the bulk formula
will affect the global heat balance by 10%, and the use of different
bulk formulae may significantly change the global heat balance.
However, it is necessary to pay attention to consistency with other
physics by changing the bulk formula. Yu (2019) confirmed that
although the global heat balance was improved by changing the
bulk formula, the change in LH caused a freshwater imbalance.
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FIGURE 6 | Biases (J-OFURO3 V1.1 minus buoy) of (A) latent heat flux (LHF) and (B) sensible heat flux (SHF). The biases in this figure were calculated from global

buoy data used in the J-OFURO3 Quality Check System (Tomita and Hihara, 2017).

FIGURE 7 | Biases (J-OFURO3 V1.1 minus buoy) of (A) surface sensible heat

flux (SHF) and (B) air temperature (Ta) as a function of latitudes. The solid lines

show 2nd order polynormal fitting curves. The biases in this figure were

calculated from global buoy data used in the J-OFURO3 Quality Check

System (Tomita and Hihara, 2017). Note that the data in near coastal region

(the distance from coastline < 200 km) were removed in this comparison.

Similar results are expected for J3. Improvements in the bulk
formula for turbulent heat fluxes are needed, while maintaining
consistency with other physics.

In this study, we focused on the long-term mean surface net
heat flux. The daily satellite-derived data set is very useful for
analyzing the flux variation over time-scales varying from several
days to inter-annual or decades. This type of analysis was not
in the scope of this research. Weller (2015) showed that precise
and long-term buoy observation revealed long-term flux trends.

FIGURE 8 | Biases (J-OFURO3 minus buoy) of downward and upward

components of the long wave radiations.

It will be useful for the verification of satellite data in the future.
However, the number of buoys will still be small to understand
the overall characteristics of these fluctuations.

In general, the uncertainty of precipitation and evaporation
from the ocean is a major challenge in understanding of the
water cycle. Improving satellite-based products should address
this challenge. In this study, the state-of-the-art satellite-based
products, J-OFURO3 (Tomita et al., 2019) and HOAPS-4.0
(Andersson et al., 2017), were confirmed to be consistent with
each other in the estimation of freshwater flux, which confirms
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the improvement of satellite products. Estimating and providing
uncertainty information is also important. An approach that
combines satellite and ocean observations with the estimation
of atmospheric energy transport derived from atmospheric
reanalysis data is also a powerful tool to better estimate global
surface fluxes (e.g., Liu et al., 2015, 2017; Carton et al., 2018). In
the future, it will be necessary to combine multiple approaches,
while improving satellite products by their comparison with
such approaches.
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Despite the well-recognized importance in understanding the long term impact of
anthropogenic release of atmospheric CO2 (its partial pressure named as pCO2air) on
surface seawater pCO2 (pCO2sw), it has been difficult to quantify the trends or changing
rates of pCO2sw driven by increasing atmospheric CO2 forcing (pCO2swatm_forced)
due to its combination with the natural variability of pCO2sw (pCO2swnat_forced) and
the requirement of long time series data records. Here, using a novel satellite-based
pCO2sw model with inputs of ocean color and other ancillary data between 2002 and
2019, we address this challenge for a mooring station at the Hawaii Ocean Time-series
Station in the North Pacific subtropical gyre. Specifically, using the developed pCO2sw
model, we differentiated and separately quantified the interannual-decadal trends of
pCO2swnat_forced and pCO2swatm_forced. Between 2002 and 2019, both pCO2sw and
pCO2air show significant increases at rates of 1.7 ± 0.1 µatm yr−1 and 2.2 ± 0.1
µatm yr−1, respectively. Correspondingly, the changing rate in pCO2swnat_forced is mainly
driven by large scale forcing such as Pacific Decadal Oscillation, with a negative rate
(-0.5 ± 0.2 µatm yr−1) and a positive rate (0.6 ± 0.3 µatm yr−1) before and after
2013. The pCO2swatm_forced shows a smaller increasing rate of 1.4 ± 0.1 µatm yr−1

than that of the modeled pCO2sw, varying in different time intervals in response to the
variations in atmospheric pCO2. The findings of decoupled trends in pCO2swatm_forced

and pCO2swnat_forced highlight the necessity to differentiate the two toward a better
understanding of the long term oceanic absorption of anthropogenic CO2 and the
anthropogenic impact on the changing surface ocean carbonic chemistry.

Keywords: surface pCO2, remote sensing, anthropogenic CO2, sea surface temperature, North Pacific

INTRODUCTION

Since industrialization, the global ocean has been a major sink of the increasing atmospheric CO2,
absorbing ∼25% of anthropogenic CO2 in recent years (Sabine et al., 2004a; Friedlingstein et al.,
2019; Gruber et al., 2019). On one hand, the continuous ocean sink of atmospheric CO2 (its partial
pressure is named as pCO2air) is changing ocean carbonic chemistry and the ocean carbon cycle
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(Borges et al., 2005; Cai et al., 2006; Fujii et al., 2009; Landshützer
et al., 2013; Wanninkhof et al., 2013; Xiu and Chai, 2014). On the
other hand, the resulting ocean acidification has great potential
to degrade marine ecosystems and marine biota, particularly the
calcifying organisms such as shellfish and corals (Widdicombe
and Spicer, 2008; Doney, 2010; Fabricius et al., 2011; Dickinson
et al., 2012; Chan and Connolly, 2013; Davis et al., 2017). Both
impacts are closely related to the sustainable development of the
marine biota and ecology. Therefore, the anthropogenic effect
on surface seawater carbonic chemistry and the potential of the
ocean in absorbing anthropogenic CO2 in the changing world are
pressing concerns of the environmental research community.

At present, the study on anthropogenic CO2 at the sea surface
is quite limited. Instead, there are many studies on anthropogenic
CO2 in the ocean interior. The anthropogenic CO2 stored in
the ocean exists in various forms of carbon, originating from
the cumulative CO2 emissions from human activities (e.g., fossil
fuel combustion, cement production, etc.) since the beginning of
the Industrial Revolution. Several chemical and isotopic tracer
approaches have been attempted to estimate the size of this
pool of anthropogenic CO2 (e.g., Sabine et al., 2002, 2004b; Lee
et al., 2003; Quay et al., 2017; Gruber et al., 2019). However,
due to the sparse measurements of chemical tracers in space
and time, there is still significant uncertainty in the long-term
accumulation rates of anthropogenic CO2 and the potential of the
ocean in continued absorption of anthropogenic CO2, making it
important to investigate the anthropogenic CO2 variabilities at
the sea surface.

One approach for tracking changes in surface pCO2sw is
through the collection of autonomous underway and mooring
observations over the global ocean (e.g., Surface Ocean CO2
Atlas (SOCAT, Bakker et al., 2016; Sutton et al., 2019). Many
studies focused on the overall variabilities in surface pCO2sw
and CO2 flux (e.g., Rödenbeck et al., 2015; Landshützer et al.,
2016, 2019; Gregor et al., 2019; Denvil-Sommer et al., 2019; Iida
et al., 2020 among others). However, because of the absence
of isotope tracers in the autonomous observing systems of
surface pCO2sw, it is very challenging to estimate how much
anthropogenic CO2 emissions is driving measured pCO2sw.
Alternatively, it is known that surface pCO2sw is affected by
both increasing atmospheric CO2 forcing (mainly caused by
anthropogenic CO2 emissions) and natural oceanic forcing
(e.g., driven by oceanic physical and biogeochemical dynamics)
(Fennel et al., 2008; Ikawa et al., 2013; Xue et al., 2016). The
effect of atmospheric CO2 forcing on surface pCO2sw (named
as pCO2swatm_forced hereafter) actually refers to the changes of
surface pCO2sw driven by the increase of atmospheric CO2.
Since the increase of atmospheric CO2 is due to anthropogenic
emissions, the changing rates of pCO2swatm_forced in the
past decades can be used to infer the interannual-decadal
variations of the anthropogenic signals in surface pCO2sw.
Yet the pCO2swatm_forced should be differentiated from the
total observed pCO2sw because of the combination of the
natural variability in surface pCO2sw (pCO2swnat_forced). Here
pCO2swnat_forced refers to the remaining pCO2sw component
without atmospheric CO2 forcing effect, which could be
influenced by different physical and biogeochemical processes in

the ocean, including the biological activities (i.e., photosynthesis
and respiration), ocean warming driven by climate change
and anthropogenic CO2 emissions, and ocean mixing, etc.
The effect of all these different processes was regarded as
the overall natural oceanic forcing effect on surface pCO2sw,
It should be clarified that, although we regard all these
different oceanic processes to be natural, their changes can
still not be completely due to “natural” forcing because
these changes in 2002–2019 inherently and implicitly contain
atmospheric forcing.

Long time data records are needed to quantify the interannual-
decadal trends of pCO2swatm_forced and pCO2swnat_forced in the
ocean. Indeed, Sutton et al. (2019) analyzed the time scale
of trend detection using 40 autonomous mooring time series
of total observed surface pCO2sw over the globe, and found
that anthropogenic trend detection requires a minimum 8
and 16 years of data records for the sites studies in open
ocean and coastal regions, respectively. However, the current
global time series observation network of surface pCO2sw
just starts to approach these time scales, which has made
it difficult to track the atmospheric forcing effect for most
oceanic environments where the moorings are deployed. Several
recent studies attempted to examine the anthropogenic trend
in pCO2sw based on underway measurements in the past
decades (Takahashi et al., 2009, 2014; McKinley et al., 2011).
For example, Takahashi et al. (2009, 2014) found that pCO2sw
is increasing at varying rates of 1.2 ± 0.5∼2.1 ± 0.5 µatm yr−1

in different ocean basins. However, the ship-based measurements
are quite limited in both spatial and temporal coverage, leading
to many uncertainties in the derived rates. More importantly,
these rates are not exactly referring to the atmospheric forcing
rates of surface pCO2sw, because of the combination of natural
variability (i.e., pCO2swnat_forced) as mentioned above and the
difficulty to differentiate and quantify both pCO2swatm_forced

and pCO2swnat_forced using in situ observations of surface
pCO2sw alone.

When combined with in situ surface pCO2sw observations,
satellite remote sensing has become an important tool for
synoptic estimation of surface pCO2sw (e.g., Lohrenz et al.,
2010, 2018; Hales et al., 2012; Signorini et al., 2013; Bai et al.,
2015; Chen et al., 2019). Without a spectroscopic method for
direct measurements of surface pCO2sw from space, it is possible
to develop satellite-based pCO2sw models through correlations
with other related environmental variables. A satellite-based
surface pCO2sw model also makes it possible to differentiate
pCO2swatm_forced from pCO2swnat_forced. Indeed, satellite data
accumulated in the past 20 years show great potential to quantify
the interannual-decadal trends of the atmospheric forcing effect
on pCO2sw. However, the past remote sensing studies mainly
focused on the retrieval of seasonal surface pCO2sw (e.g.,
Lefèvre et al., 2005; Chierici et al., 2009; Zhu et al., 2009;
Borges et al., 2010; Jo et al., 2012; Tao et al., 2012; Marrec
et al., 2015; Parard et al., 2015; Le et al., 2019), and are quite
limited in predicting interannual variability because of their
insufficient parameterization of increasing atmospheric CO2
forcing (Shadwick et al., 2010; Chen et al., 2019). Therefore,
the satellite-based pCO2sw algorithms need to be refined to
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FIGURE 1 | The geolocation of the study site WHOTS (annotated in black star), and the general climate mode of the North Pacific in terms of PDO based on the
HadISST data set (Rayner et al., 2003) for the period 1870–2019.

enable their capabilities in assessing the interannual trends of
pCO2swatm_forced and pCO2swnat_forced.

The Woods Hole Oceanographic Institution Hawaii Ocean
Time-series Station (WHOTS) near Hawaii in the North Pacific
Subtropical Gyre (NPSG) maintains high resolution surface
pCO2sw observations. It provides an important open ocean
reference for Hawaiian coral reefs (Dore et al., 2003; Sutton
et al., 2017; Terlouw et al., 2019), thus is important to know
the interannual-decadal trends of the atmospheric forcing effect
on surface pCO2sw for a better understanding of the long-term
ocean acidification and oceanic absorption of anthropogenic
CO2. The WHOTS station was selected mainly because it has
sufficient field data records for anthropogenic trend detection
as mentioned above. WHOTS is located at station ALOHA (A
Long-term Oligotrophic Habitat Assessment) (Karl and Church,
2018) in the NPSG (Figure 1), under the large-scale climate
forcing of Pacific Decadal Oscillation (PDO). Several published
studies investigated the interannual variability of the upper ocean
carbon cycle at this station (Dore et al., 2003, 2009; Keeling et al.,
2004; Palevsky and Quay, 2017). For example, based on a 14-year
time series (1988–2002) at ALOHA, Brix et al. (2004) found that
surface pCO2sw and isotopic 13C/12C showed long-term increase
and decrease (yet no rates were provided), respectively, and they
attributed it to the uptake of isotopically light anthropogenic CO2
from the atmosphere. Using the same data time series of pCO2sw
at ALOHA, Dore et al. (2003) found that the significant decrease
in CO2 sink in 1989–2001 was driven by the climate variability in
salinity (Lukas and Santiago-Mandujano, 2008). Later based on
a longer data record of 19 years (1988–2007) at ALOHA, Dore
et al. (2009) presented a pCO2sw increasing rate of 1.88 µatm
yr−1. In contrast, with a synthesis of 35 years of observations in
the North Pacific, Takahashi et al. (2006) found the interannual-
decadal change in surface pCO2sw is mostly correlated with the
increases of sea surface temperature (SST) and anthropogenic
CO2. Therefore, it is necessary to further investigate the effects
of both anthropogenic CO2 emissions and the climate-driven
natural variability in the ocean on surface pCO2sw. However, to
date, no studies have differentiated these two forcing effects.

Considering the importance of addressing this knowledge
gap to promote our understanding of the ocean capability in
absorbing anthropogenic CO2 in the long run, here we for

the first time differentiate the atmospheric forcing and natural
forcing effects on surface pCO2sw, that’s, pCO2swatm_forced and
pCO2swnat_forced, based on a novel satellite-based pCO2sw model
developed in this study. Specifically, the objectives of this
study include: (1) develop a satellite-based surface pCO2sw
model at WHOTS, which should be able to capture the
interannual-decadal variabilities in pCO2sw and differentiate
pCO2swatm_forced and pCO2swnat_forced, and (2) quantify the
interannual-decadal trends of both terms in the past 2 decades,
and understand its implications for ocean acidification and long
term oceanic uptake of anthropogenic CO2. Although the study
was conducted at the WHOTS station, the findings in this
study may provide insight on the interannual-decadal trends
of pCO2sw driven by atmospheric and natural forcing effects,
respectively, in other global subtropical open ocean regions.
More importantly, the approach developed in this study can be
extended to other regions with sufficient data available.

DATA AND METHODS

Data
The WHOTS station (22.7◦N, 158◦W) is located in the
subtropical oligotrophic region of the North Pacific and
is operated by the Woods Hole Oceanographic Institution
(WHOI). Field data time series [including surface pCO2sw, and
pCO2air, SST, and sea surface salinity (SSS)] at this station
collected between 2004 and 2018 at led by NOAA’s Pacific Marine
Environmental Laboratory and were obtained from the National
Centers for Environmental information (NCEI)1 (Sutton et al.,
2012). Specifically, the pCO2 data were measured by a non-
dispersive infrared gas analyzer (LI-CORTM, model LI-820),
which has a sampling frequency of every 3 h, with an accuracy
of 2 µatm (or better) (Sutton et al., 2014; Sabine et al., 2020).
Surface pCO2sw data were collected at a water depth of <0.5
m, and the pCO2air data were collected at 1.2 m above the
sea surface. SST and SSS were obtained from a CTD (SBE16)
integrated in the autonomous CO2 mooring system. The details
of data collection, processing, and quality control can be found

1https://www.nodc.noaa.gov/ocads/oceans/Moorings/
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FIGURE 2 | Interannual variations of the monthly SST (A), SSS (B), Chla (C), pCO2air, and pCO2sw (D) at the WHOTS station in the period of 2002–2019. Note that
the ship-based monthly pCO2sw time series at HOT calculated from DIC and TA measurements was overlaid in (D) for reference, and the calculated pCO2air in (D)
is based on the data of atmospheric CO2 measured at MLO.

in Sutton et al. (2014). These data were binned to daily time
series to remove the diurnal variations (i.e., 0.4∼3.4 µatm), which
are not considered in this study. The data time series were then
averaged at monthly scales as presented in in Figures 2A,B,D.
The Hawaii Ocean Time-series (HOT) program also maintains
ship-based monthly sampling of surface pCO2sw calculated from

dissolved inorganic carbon (DIC) and total alkalinity (TA) at this
location (Figure 2D). We chose to use the high-frequency data
from the WHOTS buoy mainly to assure that there are sufficient
data available to develop the machine learning pCO2sw model
and the monthly averages of the modeled pCO2sw should have
lower bias than the monthly observed pCO2sw at HOT.
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NASA standard daily SST (Figure 2A) and 8 day Chlorophyll-
a (Chla, mg m−3) (Figure 2C) Level-3 data products (version
R2018.0) covering the study region for the period of July
2002–December 2019 with a spatial resolution of ∼4 km
were downloaded from the NASA Goddard Space Flight
Center (GSFC)2. These Level-3 data products were derived
from measurements by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Aqua satellite.

Clearly there are lots of data gaps in the field measurements
(e.g., SST, pCO2air, pCO2sw, Figures 2A,C). Full record of SST
is obtained from MODIS. For a full data record of pCO2air at
WHOTS between 2002 and 2019, daily time series of atmospheric
xCO2 (in unit of ppm) at Mauna Loa Observatory (MLO) in
Hawaii between 2002 and 2019 were obtained from the NOAA
ESRL Global Monitoring Laboratory (2019), and this data was
regarded as the atmospheric xCO2 at WHOTS over the study
period considering the close distance between Mauna Loa and
WHOTS. To calculate the corresponding pCO2air at WHOTS
from the atmospheric xCO2 following the standard operating
procedures (Weiss, 1974; Dickson et al., 2007), ancillary daily
data of sea surface air pressure (in unit of atm) and specific
humidity (in unit of%) were obtained from the National Centers
for Environmental Prediction (NCEP), with a spatial resolution
of 2.5◦. The derived pCO2air (Figure 2D) together with the
MODIS data (Figures 2A,C) were used to estimate pCO2sw
between 2002 and 2019 based on the developed pCO2sw model.
It should be clarified that, for broader impact, one main reason
in choosing MODIS SST and NCEP ancillary data instead of
other in situ data at the WHOTS mooring was to demonstrate
our model capability in dealing with the uncertainties in each
parameter, particularly when extending our method to other
locations or regions where field measurements could be limited.

Methods
Surface pCO2sw is mainly controlled by four oceanic processes –
the thermodynamic effect, biological activity, physical mixing,
and air-sea CO2 exchange (Fennel et al., 2008; Ikawa et al., 2013;
Xue et al., 2016). Accordingly, satellite-derived variables of SST,
SSS, and Chla are commonly used to estimate surface pCO2sw
from remote sensing in past studies (Olsen et al., 2004; Ono
et al., 2004; Lohrenz and Cai, 2006; Sarma et al., 2006; Lohrenz
et al., 2010, 2018; Nakaoka et al., 2013; Chen et al., 2016, 2017,
2019). However, these algorithms are quite limited in capturing
the long-term trend in pCO2sw, mainly because of the insufficient
parameterization of the anthropogenic or atmospheric CO2
forcing effect on pCO2sw. Feely et al. (2006), and Landshützer
et al. (2013, 2016) have investigated the interannual and decadal
variations of pCO2sw and CO2 flux under the anthropogenic
CO2 forcing, yet to better quantify this effect, further studies
are needed to differentiate the warming effect of SST from
the atmospheric effect on surface pCO2sw and quantify both
effects separately.

Dore et al. (2003) found that the significant increase of
pCO2sw at ALOHA in 1989–2001 was mainly caused by the
increase of SSS due to excess evaporation over this period,

2https://oceancolor.gsfc.nasa.gov/

suggesting that the physical changes in the subtropical North
Pacific may affect the ocean biogeochemistry including surface
pCO2sw. Yet in this study, SSS was found to have little effect
on pCO2sw (R = 0.102 at p > 0.05, which explains 1% nges in
pCO2sw) at the WHOTS station over the period of 2004∼2018,
as also found by Sutton et al. (2017) which shows a small
effect (<5%) of salinity changes on pCO2sw increase. The SMOS
satellite maintains the longest SSS data record since 2009 (Font
et al., 2009, 2013), however, a comparison between the field SSS
and SMOS-derived SSS shows a very large uncertainty of 1.1 for
SSS ranging between 34.5 and 35.5 at WHOTS. As such, SSS was
not used in the model. The mixed layer depth (MLD) could drive
the interannual dynamics of surface pH at ALOHA (Dore et al.,
2009), yet considering the lack of MLD data from remote sensing
and the covariations of SST and MLD dynamics, we chose to
use SST alone to indicate the effect of warming and mixing on
surface pCO2sw. Therefore, the inputs of the satellite pCO2sw
algorithm included observed SST and pCO2air, and concurrent
MODIS-derived Chla, as well as Julian day (Jday) normalized
sinusoidally to “tune” the seasonal cycles of pCO2sw (Friedrich
and Oschlies, 2009; Signorini et al., 2013; Chen et al., 2016, 2017),
and the output was modeled pCO2sw (Eq. 1). In total, there
were 3074 matched data samples between 2004 and 2017. Within
this dataset, data samples collected in 2016 (N = 311) were kept
for independent validation considering its near full coverage in
each month (other years do not); the remaining were randomly
divided into two groups: one for model training (N = 1,934), and
the other for model validation (N = 829).

Various approaches have been used to model pCO2sw from
remote sensing, such as polynomial regression, mechanistic semi-
analytical approach, machine-learning approaches (Friedrich and
Oschlies, 2009; Jo et al., 2012; Landshützer et al., 2013; Bai et al.,
2015; Moussa et al., 2016; Lohrenz et al., 2018). Chen et al. (2019)
did extensive comparisons of these approaches and found that,
the Random Forest based Regression Ensemble (RFRE) was the
most robust one in modeling pCO2sw. Therefore, this approach
was used in this study with model parameters locally tuned
for the WHOTS station (Eq. 1). RFRE is one type of machine
learning technique, which ensembles many weighted regression
trees to implement the random forest algorithm (Breiman, 1996,
2001; James et al., 2013) in Matlab (R2017a). For better model
generalization, the RFRE takes advantage of each regression
tree via bootstrap aggregation (or bagging) (Breiman, 1996;
James et al., 2013) in model parameterization. In the model
training phase, the ensemble regression trees grow independently
on a drawn bootstrap replica of the training dataset. That’s,
each regression tree can randomly select a subset of predictors
at each split and can involve many splits in the algorithm.
This manipulation greatly reduces the correlations among the
developed regression trees, resulting in improved independency
among the regression trees. The mean square error was used as
loss function to adjust the model performance in each iteration.
Briefly, there are two important parameters to define the RFRE
model structure: the minimum leaf size and the number of
regression trees. Leaf size refers to the number of data samples
used in each node of a regression tree, and its minimum thus
determines the splits and depth of a regression tree. By trial
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and error, these two parameters were optimized to be 8 and
28, respectively. With these settings, the RFRE model became
stable and had the best model statistics, thus it was used to
predict pCO2sw. See Chen et al. (2019) for more details of
the RFRE approach.

Modeled pCO2sw = fRFRE[SST, log10(Chla), pCO2air,

cos(2π × Jday/365)] (1)

Standard statistical measures, including root mean square
difference (RMSD, both absolute and relative), coefficient of
determination (R2), mean bias (MB), mean ratio (MR), unbiased
percent difference (UPD), and mean relative difference (MRD)
(Barnes and Hu, 2015), were used to quantify the accuracy of the
modeled pCO2sw.

We varied SST, Chla, and pCO2air by ± 1◦C, and ± 20%,
and ± 5 µatm, respectively, to examine the sensitivity of the
model to changes in each variable. The changes are based on the
uncertainties in the MODIS-derived SST and Chla (Gregg and
Casey, 2004; Mélin et al., 2007; Hu et al., 2009) as well as on the
seasonal variations in pCO2air.

The modeled pCO2sw is the sum of pCO2swatm_forced and
pCO2swnat_forced. Just as its name implies, the pCO2swnat_forced

refers to the pCO2sw without atmospheric CO2 forcing,
thus based on the model developed following Eq. 1, the
pCO2swnat_forced was calculated by assuming that the pCO2air
remained at the same level as in in the start year (i.e., 2002)
of the study period (Eq. 2). The pCO2swatm_forced was defined
as the difference between the modeled pCO2sw (Eq. 1) and
pCO2swnat_forced (Eq. 3). To quantify the natural forcing effect,
the net atmospheric CO2 forcing effect over the study period
(2002–2017) remained at exactly zero by keeping the pCO2air
values in the model at the same level as in 2002. By doing
so, both the derived pCO2swnat_forced and pCO2swatm_forced are
relative quantities to the year of 2002, which should be higher
than those derived by referring to pre-industrialization. However,
either referring to 2002 or other years only affects the absolute
values of these quantities, and they would affect the changing
rates of trends in both pCO2swnat_forced and pCO2swatm_forced in

the past two decades that we are interested in.

pCO2swnat_forced
= fRFRE[SST, log10(Chla), pCO2air@2002,

cos(2π × Jday/365)] (2)

where the pCO2air@2002 means the pCO2air data in 2002–2019
remained at the same level as in 2002 by assuming that there is
no additional atmospheric effect referred to 2002.

pCO2swatmp_forced
= pCO2sw− pCO2swnat_forced (3)

Trends in pCO2sw, pCO2swatm_forced, pCO2swnat_forced,
pCO2air, SST, and Chla were quantified based on their monthly
anomalies, which were derived by subtracting the monthly
climatologies from the monthly averages between 2002 and 2019
using least-square technique.

RESULTS

Figure 3 shows the performance of the RFRE-based pCO2sw
algorithm in both model training and validation. Clearly, most
of the data pairs of the observed and modeled pCO2sw followed
closely along the 1:1 line, with a RMSD of 2.2 µatm (0.6%) and R2

of 0.98. The additional independent validation (Figure 4) using
the data time series in 2016 also shows good consistency between
the observed pCO2sw and modeled pCO2sw, with a RMSD of 4.3
µatm (1.1%) and R2 of 0.87.

The RFRE model is more sensitive to changes in SST
and pCO2air than to changes in Chla (Figure 5). Statistically,
with + 1◦C (-1◦C) added to SST, the modeled pCO2sw was higher
(lower) than the original pCO2sw, with RMSD of 9.7 µatm (2.6%)
[8.0 µatm (2.1%)], R2 of 0.89 (0.93), and MB of 8.5 µatm (-6.8
µatm). The resulting pCO2sw shows slight underestimation and
overestimation in cases of 20% increase and 20% decrease in Chla,
with MB of 1.3 and −1.3 µatm, respectively. With + 5 µatm in
pCO2air, the new pCO2sw was estimated higher than the original
pCO2sw, with RMSD of 5.7 µatm (1.6%), R2 of 0.90, and MB
of 3.7 µatm. With −5 µatm in pCO2air, the new pCO2sw was

FIGURE 3 | The RFRE model performance in estimating surface pCO2sw in both model training (A) and model validation (B).
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FIGURE 4 | The RFRE model performance in reconstructing the surface pCO2sw data time series in 2016, in comparison with the corresponding mooring-observed
surface pCO2sw. Note that none of the field observations in 2016 was used in the model development. The error bar represents one standard deviation of the
diurnal changes of pCO2sw time series.

underestimated compared to the original pCO2sw with RMSD of
6.1 µatm (1.6%), R2 of 0.89 and MB of−4.2 µ atm.

In the North Pacific subtropical gyre at the WHOTS station,
time series of pCO2sw between 2002 and 2019 was obtained using
this RRFE-based pCO2sw algorithm, with good consistency to
the observed pCO2sw in the overlapped time periods (Figure 6).
Overall, the pCO2sw follows the same seasonal pattern as SST
from high values in summer to low values in winter, with a
seasonal magnitude of ∼50 µatm, in the opposite phase of
pCO2air (Figure 6). In addition, the pCO2sw was lower than the
pCO2air most of the time over the years, suggesting a continuous
CO2 flux from the atmosphere to the ocean.

Both pCO2sw and pCO2air show significant increase between
2002 and 2019 (Figure 6). After removing the seasonality signals,
statistically, the pCO2sw had a mean rate of 1.7 ± 0.1 µatm yr−1

(R2 = 0.80, at p < 0.05), lower than the rate of pCO2air (2.2± 0.1
µatm yr−1, R2 = 0.99, at p < 0.05), as shown in Figure 7. The
pCO2swnat_forced shows a significant increasing rate of 0.2 ± 0.1
µatm yr−1 (R2 = 0.07, at p < 0.05) on average in the study period.
In contrast, the pCO2swatm_forced, which is just driven by the
atmospheric CO2 forcing, had a mean rate of 1.4± 0.1 µatm yr−1

(R2 = 0.84, at p < 0.05), but tended to plateau since 2016. Indeed,
the pCO2sw without the thermodynamic effect (i.e., pCO2nonT,
Chen and Hu, 2019) had similar interannual patterns as pCO2ant
at a mean rate of 1.2 ± 0.1 µatm yr−1. Correspondingly, the
Chla time series did not show any trends over the years while
the SST was increasing at an overall rate of 0.03 ± 0.01◦C yr−1

(R2 = 0.07, at p < 0.05). This warming trend could be influencing
the pCO2natural trend.

Clearly, there are some visible trends (e.g., <10 years)
particularly in SST and pCO2swnat_forced different from those
over the 20-year time frame (Figure 7). To further investigate
the trends in each variable, we quantified the rates of each for
a variety of periods starting between 2002 and 2015, ending
between 2006 and 2019, with durations ranging from 5 to 18 years
(Figure 8). It is found that, at confidence level of >95%, the
SST had a negative and positive rate of −0.1 ± 0.02◦C yr−1

and 0.1 ± 0.05◦C yr−1 for periods ending in ≤2013 and >2013,

respectively (Figure 8A). Again, the Chla did not show any
trend over the years. Correspondingly, pCO2swnat_forced shows a
very similar pattern as the rates in SST, with a negative rate of
−0.5± 0.2 µatm yr−1 for periods ending in≤2013, and a positive
rate of 0.6 ± 0.3 µatm yr−1 for periods ending in >2013. The
anthropogenic forcing on atmospheric pCO2 tends to accelerate
over the study period consistent with the published studies
(Canadell et al., 2007), with a rate of 1.7 ± 0.1 µatm yr−1

for periods ending in ≤2011, and a rate of 2.3 ± 0.2 µatm
yr−1 for periods ending in beyond 2011, and the acceleration
is getting even stronger (2.4 ± 0.1 µatm yr−1) after 2016.
As a result, the pCO2sw shows a lower rate (1.5 ± 0.4 µatm
yr−1) for periods starting in 2002–2005, ending in 2006–2019; a
higher rate (2.2 ± 0.3 µatm yr−1) for periods starting in 2006–
2013, ending in 2010–2017; and a lower rate (1.5 ± 0.4 µatm
yr−1) again for periods starting in 2006–2013, ending in 2018–
2019. Correspondingly, the pCO2swatm_forced shows similar but
significantly weaken signals (at p < 0.05) in these three time
frames, with rates of 1.6 ± 0.3 µatm yr−1, 1.8 ± 0.5µatm yr−1,
and 0.9± 0.5 µatm yr−1, respectively.

DISCUSSION

Model Uncertainty
The satellite-based RFRE pCO2sw model developed in this study
had a RMSD of 4.3 µatm (1.1%), significantly smaller than
most of the published pCO2sw algorithms in open ocean waters
(Olsen et al., 2004; Feely et al., 2006; Nakaoka et al., 2013;
Moussa et al., 2016). This uncertainty is reasonably acceptable
considering the diurnal variations (i.e., 0.4∼3.4 µatm) in surface
pCO2sw at WHOTS.

The sensitivity of the pCO2sw model to each input variable
indicates not only the model’s capacity in tolerating the
uncertainty of each variable, but also the model’s response to
real changes in each variable. Specifically, the positive feedback
of modeled pCO2sw to changes in SST are consistent with
the thermodynamic effect on pCO2sw (increased SST leads to
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FIGURE 5 | Sensitivity of the RFRE pCO2sw algorithm to uncertainties in satellite-derived SST (A,B) and Chla (C,D) and to the natural variability of pCO2air (E,F).

an increase in pCO2sw and vice versa). The negative response
of the pCO2sw model to Chla suggests that the increase
(decrease) in Chla indicates stronger (weaker) biological uptake
of oceanic CO2, therefore, the resulting modeled pCO2sw was
lower (higher) than without the Chla perturbation. Although the
Chla level at the WHOTS station is consistently low (Figure 2C),

the sensitivity analysis here suggests the necessity of including
Chla in the model to better modulate the seasonal variations
of surface pCO2sw. Yet it should be noted that, Chla is only a
proxy to indicate the overall biological activities that could affect
surface pCO2sw. Although there is no visible change in surface
Chla, still there could be possible changes in the phytoplankton
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FIGURE 6 | Modeled pCO2sw in the full time period between 2002 and 2019, in comparison with the mooring-observed surface pCO2sw and calculated pCO2air at
WHOTS. Note that the calculated pCO2air is based on the data of atmospheric CO2 measured at MLO.

community and net community production. The insignificant
responses of the pCO2sw model to the 20% change in Chla
suggest the model is insensitive to uncertainties in the satellite
Chla. For the same reason, the biological uptake of CO2 tends
to have a quite limited effect on pCO2sw in the oligotrophic
ocean, consistent with previous studies (Chen and Hu, 2019).
For regions where satellite Chla is not available due to severe
cloud coverage (e.g., some tropical and high latitude zones), a
first examination of the Chla effect on surface pCO2sw using
field observations (if there are) is suggested to determine the
potential bias that would be resulted in pCO2sw if Chla is not
included in the model. The changes of pCO2air directly affect the
gradient between pCO2air and pCO2sw, which drives the air-sea
CO2 exchange, thus, it is reasonable to see a positive response
of the pCO2sw model to changes in pCO2air. The resulting
increase (MB = 3.7 µatm) in pCO2sw was slightly weaker than the
assigned increase of 5 µatm in pCO2air, which may be due to the
ocean’s increasing Revelle Factor and reduced buffering capacity
of seawater (Fassbender et al., 2017).

Interannual Changes of pCO2sw Driven
by Natural and Atmospheric Forcing
In response to the accelerating rates of pCO2air, the modeled
surface pCO2sw shows different rates at various time intervals.
Specifically, the 5 year pCO2sw trends we derived for the periods
of 2007–2011, 2008–2012, and 2009–2013 are high at rates of 2.5,
2.1, and 2.5 µatm yr−1, respectively, which are higher than the
relatively low rates in period of 2003–2007 visually interpreted
from Figure 1 in Dore et al. (2009). To further examine the
trends in pCO2sw, we analyzed the ship-based monthly pCO2sw
datasets at ALOHA from HOT program (used in Dore et al.,
2009). Indeed, the 5 year HOT-based pCO2sw trends starting
in 2007–2008 did show low values, but these low values are
insignificant at p > 0.05, yet no such statistics was available
in Dore et al. (2009). For the 5 year pCO2sw trend starting in
2009, the HOT-based pCO2sw and our modeled pCO2sw show
close trends of 2.5 and 2.2 µatm yr−1, respectively, at p < 0.05.
Meanwhile, the overall trend we detected in surface pCO2sw (i.e.,

1.7 ± 0.1µatm yr−1) in period of 2002–2019 was a bit smaller
than that (i.e., 1.88 µatm yr−1) in period of 1988–2007 found
in Dore et al. (2009) and that (i.e., 2.4 µatm yr−1) in period
of 2003–2014 presented in Sutton et al. (2017). This could be
reasonable considering the different physical and biogeochemical
dynamics on decadal time scales and the acceleration of ocean
acidification in the western North Pacific (Ono et al., 2019).
Besides, it should be noted that the ship-based monthly pCO2sw
dataset is derived from measurements of DIC and TA collected
approximately once a month to compose this monthly dataset.
In contrast, our monthly pCO2sw is based on the daily modeled
pCO2sw and is validated thoroughly with daily-averaged in situ
measurements at WHOTS. Therefore, the trends in the modeled
pCO2sw we derived here should be reliable with high confidence.
Also, the mooring measures pCO2sw at surface of <0.5 m, while
the ship-based HOT data were based on the mean measurements
within 0–30 m, which could be another potential source for the
discrepancy. In the North Pacific subtropical gyre (represented
by the WHOTS station), the interannual changes of surface
pCO2sw is mainly driven by both SST and pCO2air (Figures 7, 8
and Table 1), consistent with the published studies (Takahashi
et al., 2006). Despite the little impact of SSS on pCO2sw shown
in our study period (2002–2019), a further experiment with
SSS added into our model was conducted. It shows that the
inclusion of SSS did not result in any significant difference
in the modeled pCO2sw and pCO2swnat_forced. Considering the
important impact of SSS on pCO2sw in 1989–2007 presented in
Dore et al. (2003), it seems that the effect of SSS depends on
the specific study periods. Here we prefer to exclude SSS from
our model mainly considering the large error (i.e., 1.1) in the
SMOS SSS at present. With more accurate SSS data available from
satellites in the future, it could be possible to include SSS to better
model the variations of pCO2sw, particularly the effect of rainfall
minus precipitation on pCO2sw in any time periods. However,
most of the published studies directly regarded the interannual
trend of pCO2sw as the trend of anthropogenic pCO2sw. It
should be noted that the anthropogenic pCO2sw refers to the
pCO2sw impacted by atmospheric CO2 increases, thus most of
the reported anthropogenic trend of pCO2sw actually refers to
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FIGURE 7 | Interannual variations of the monthly anomalies in SST (A), Chla (B), pCO2air and modeled pCO2sw (C), modeled pCO2swnat_forced and
pCO2swatm_forced (D), and PDO index (E) in the period of 2002–2019.
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FIGURE 8 | Interannual changing rates of SST (A), Chla (B), pCO2air (C), modeled pCO2sw (D), modeled pCO2swnat_forced (E), and pCO2swatm_forced (F) for a
variety of periods starting between 2002 and 2015, and ending between 2006 and 2019 at Station WHOTS. The X-axis and Y-axis represent the start year and end
year, respectively, of each rate analyzed. The diagonal lines (i.e., 5, 10, and 15 years) indicate the length of trend periods. A white cross is superposed on the plot
when the p value was >0.05.

the total rate of pCO2sw (Takahashi et al., 2009, 2014; McKinley
et al., 2011; Sutton et al., 2019), which also includes the natural
variability of pCO2sw driven by the general oceanic processes
(e.g., thermodynamics, ocean mixing, biological activities).

In this study, both the natural and atmospheric CO2 forcing
effects on pCO2sw were separately quantified. The rates in
pCO2swnat_forced over the study period follow a similar pattern
as those in SST with a correlation coefficient (R) of 0.82,
indicating that the interannual trend signals in pCO2swnat_forced

are mainly driven by SST, at least over the study period of
2002–2019. The cooling characteristics in SST between 2002 and
2012 resulted in a significant negative rate in pCO2swnat_forced,
and the warming effect since 2013, which were also reported in
previous studies (Sutton et al., 2017; Terlouw et al., 2019), leads
to a significant positive rate in pCO2swnat_forced. In addition to
the global warming effect on SST, the interannual SST dynamics
could also be attributed to the changes in MLD because of the
ocean mixing effect on SST. As such, the interannual variations
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in pCO2swnat_forced could also be driven by the MLD changes,
and more DIC enriched waters would be entrained into the
surface when MLD deepens and SST decreases (Dore et al.,
2009). Overall, it seems that the rate of pCO2swnat_forced tends
to correspond to decadal oscillations in SST between cooling
and warming periods associated with PDO (Yasunaka et al.,
2014; Newman et al., 2016; Landshützer et al., 2019). Indeed,
the interannual PDO (Figure 7E) shows very similar variation
patterns to the SST (Figure 7A) with a significant correlation of
R = 0.53 (Table 1). Specifically, the PDO decreased progressively
from 2004 to 2012, was low in 2011–2012, reached a maximum
in 2015, and then decreased from 2015 to 2019. As a result, the
pCO2swnat_forced also shows a significant correlation (R = 0.41,
see Table 1) with PDO, suggesting the large scale climate
forcing also contribute to the natural oceanic forcing effect on
surface pCO2sw.

With the exclusion of pCO2swnat_forced, the pCO2swatm_forced

rates were significantly smaller than the corresponding
pCO2sw rates in various time intervals (Figure 8). Although
pCO2swatm_forced is mainly driven by the oceanic uptake of
increasing atmospheric CO2 (R = 0.91), it shows distinctively
different patterns in changing rates from that of the pCO2air
over various time intervals in 2002–2019. This different response
of pCO2swatm_forced toward pCO2air seems mainly caused by
the buffering effect of dissolved CO2 in seawater (Egleston
et al., 2010). However, for the tendency of pCO2swatm_forced

to plateau after 2016, there could be several potential
explanations depending on the condition of air-sea CO2
fluxes. Specifically, it would be reasonable to observe a plateau
signal in pCO2swatm_forced if there is little change in air-sea
CO2 fluxes after 2016; yet if the dissolved CO2 keeps increasing
after 2016, the little response in pCO2swatm_forced would tend
to suggest that a larger fraction of dissolved CO2 stays in forms
of other carbonate species (i.e., HCO3−, CO32−), significantly
lowering the Revelle factor and enhancing the ocean’s buffering
capacity in recent years; and if there is a decrease in air-sea CO2
fluxes after 2016, it would be likely that a fration of bicarbonate
and carbonate species are converted to dissolved CO2, which
would lower the ocean’s buffering capacity and promote ocean
acidification. Xue and Cai (2020) found that TA minus DIC can
be used as a proxy for deciphering ocean acidification. Here
using the ship-based monthly TA and DIC data in the study
period, we found a significant decreasing trend in TA minus
DIC over the years (Figure 9A), which suggests a strong ocean
acidification in the study period. However, the changing rates

of TA minus DIC is distinctively higher in recent years since
2014 (Figure 9B), suggesting a stronger ocean acidification and
weaker buffering capacity in the past few years. Indeed, ocean
acidification has shifted the carbonate chemistry speciation and
lowered the CaCO3 saturation state (Orr et al., 2005; Doney
et al., 2009; Krug et al., 2011), yet further studies are needed to
investigate and quantify the changing patterns of the air-sea CO2
flux and the carbonate species over the past decades. In general,
the oceanic uptake of anthropogenic CO2 is resulting in more
rapid changes in carbonic chemistry in the surface ocean and
accelerating ocean acidification (Feely et al., 2009; Ono et al.,
2019), yet a revisit of such phenomenon is needed when more
satellite/field data are available in the coming years.

Implications
Long time series data are required to investigate the
anthropogenic effect on surface pCO2sw. However, the field data
are always limited in both spatial and temporal coverage. For
example, few of the 40 global pCO2sw mooring stations have
data coverage of >10 years (Sutton et al., 2019), and the global
field pCO2sw database (i.e., SOCAT or LDEO, Bakker et al.,
2016; Takahashi et al., 2019), although greatly accumulated in
recent years, still has data gaps in some regions and at some
time intervals. More importantly, it is impossible or difficult
to separate the pCO2swatm_forced and pCO2swnat_forced signals
apart based on purely field measurements to better quantify the
anthropogenic forcing impact on surface pCO2sw. Instead, with
the related environmental variables observed from satellites,
surface pCO2sw models using satellite data and other ancillary
data can be developed and applied to the full satellite data
record over the past ∼20 years. Besides, SSS measurements
from SMOS and SMAP satellite have been available since 2009
and 2015, respectively, with longer and accurate data records
available, the interannual and decadal trends in surface pCO2sw
as well as the natural forcing and atmospheric CO2 forcing
components can be further studied. The recovered long time
series of pCO2sw can be used to quantify both pCO2swatm_forced

and pCO2swnat_forced accordingly. The findings of decoupled
changing rates in pCO2swatm_forced and pCO2swnat_forced in this
study highlight the necessity of differentiating the two, in order to
have a better understanding of the long term oceanic absorption
of anthropogenic CO2 and its buffering capacity in the long term.
Therefore, this study sets a template for future study to examine
both natural and anthropogenic or atmospheric CO2 forcing
effects on pCO2sw in various oceanic systems over the past

TABLE 1 | Correlation coefficients among the monthly anomalies of pCO2sw, pCO2sw nat_forced, pCO2swatm_forced, SST, Chla, pCO2air, and PDO index, with insignificant
correlation (i.e., p > 0.05) annotated in italic.

Correlation coef. pCO2sw pCO2sw nat_forced pCO2swatm_forced SST Chla pCO2air PDO index

pCO2sw 1 / / / / / /

pCO2sw nat_forced 0.54 1 / / / / /

pCO2swatm_forced 0.89 0.11 1 / / / /

SST 0.52 0.82 0.18 1 / / /

Chla -0.04 -0.13 0.02 -0.03 1 – /

pCO2air 0.89 0.26 0.91 0.27 0.06 1 /

PDO index 0.19 0.41 0.01 0.53 0.06 0.12 1
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FIGURE 9 | The interannual variations of the monthly anomalies in TA minus DIC, which was a proxy of ocean acidification, based on the ship-based monthly TA and
DIC measurements at ALOHA in surface waters (A), and the corresponding interannual changing rates for a variety of periods starting between 2002 and 2015, and
ending between 2006 and 2019 (B). In (B), the X-axis and Y-axis represent the start year and end year, respectively, of each rate analyzed, the diagonal lines (i.e., 5,
10, and 15 years) indicate the length of trend periods, and a white cross is superposed on the plot when the p-value was >0.05.

decades, toward an improved understanding of anthropogenic
forcing on surface pCO2sw.

Specifically, the pCO2sw in the North Pacific subtropical
gyre shows various increase rates in response to the increasing
pCO2air between 2002 and 2019. The accelerating increase rates
in pCO2air and the weaker rates in pCO2sw indicate stronger
gradients between pCO2air and pCO2sw, which implies an
accelerated oceanic CO2 uptake and ocean acidification. If the
warming effect continues following the decadal pattern in SST
in recent years since 2010, a steady rate of ∼0.8 ± 0.1 µatm
yr−1 in pCO2swnat_forced (see Figure 8E) would be expected
in the coming few years. The weaker rate in pCO2swatm_forced

in recent years in response to the accelerating rate in pCO2air
implies a lower ocean buffering capacity leading to more rapidly
changing oceanic carbon chemistry and ocean acidification, yet
further study in this field is needed to promote our knowledge
and understanding.

Based on observations at WHOTS, the present work
demonstrated the necessity in differentiating the atmospheric
forcing and natural forcing effects on surface pCO2sw, and
show unprecedented information on their interannual-decadal
trends over both short and long time scales. The WHOTS
station is located in the North Pacific Subtropical Gyre, therefore,
the results and findings should be referential to understand
the overall surface pCO2sw dynamics for a broader impact of
the ocean in absorbing anthropogenic CO2, particularly under
both anthropogenic CO2 forcing and natural oceanic forcing
(Henson et al., 2016).

More importantly, the pCO2sw model was developed using
satellite-derived environmental data and other ancillary data,
thus the model is capable to tolerate the uncertainties involved
in each variable as demonstrated in the sensitivity analysis. This
is of great importance and significance to locations or areas where
very limited data are available. Specifically, with these limited field
observations of surface pCO2sw, it would be possible to develop
a surface pCO2sw model with related environmental variables
from satellite and ancillary data from NCEP to differentiate the
two forcing effects following Eqs 1 and 2. With nearly 20 years

of satellite data records, it would be straightforward to extend
the current study to other oceanic regions to investigate the
interannual-decadal surface pCO2sw dynamics by differentiating
the atmospheric forcing and natural forcing effects toward a
better understanding of the ocean in absorbing anthropogenic
CO2 and its impact on the surface ocean carbonate chemistry.

CONCLUSION

The rate of anthropogenic or atmospheric CO2 forcing pCO2sw
in surface seawater has been difficult to characterize because
of the interaction of natural variability in pCO2sw and the
requirement of long time series data records. In this study,
we show that a remote sensing algorithm applied to the
WHOTS station in the North Pacific subtropical gyre can
reveal the interannual-decadal variability of surface pCO2sw
between 2002 and 2019. Such an ability enables the separation
of atmospheric CO2 forced pCO2sw (pCO2swatm_forced) from
natural variability in pCO2sw (pCO2swnat_forced). We believe that
this is the first time such atmospheric CO2 forced pCO2sw and
natural oceanic processes driven pCO2sw are mathematically
differentiated and their interannual-decadal changing rates are
statistically quantified. Results show unprecedented information
on their interannual-decadal rates over both short and long time
scales at the WHOTS site. With the availability of ocean color data
and other ancillary data globally, it is straightforward to extend
the current study to other oceanic regions.
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Earth system models parameterize ocean surface fluxes of heat, moisture, and

momentum with empirical bulk flux algorithms, which introduce biases and uncertainties

into simulations. We investigate the atmosphere and ocean model sensitivity to algorithm

choice in the Energy Exascale Earth System Model (E3SM). Flux differences between

algorithms are larger in atmosphere simulations (where wind speeds can vary) than ocean

simulations (where wind speeds are fixed by forcing data). Surface flux changes lead to

global scale changes in the energy and water cycles, notably including ocean heat uptake

and global mean precipitation rates. Compared to the control algorithm, both COARE

and University of Arizona (UA) algorithms reduce global mean precipitation and top of

atmosphere radiative biases. Further, UA may slightly reduce biases in ocean meridional

heat transport. We speculate that changes seen here, especially in the ocean, could be

even larger in coupled simulations.

Keywords: earth system modeling, ocean-atmosphere interactions, boundary layer turbulence, upper ocean

processes, climate dynamics

1. INTRODUCTION

Ocean surface fluxes of heat, moisture, and momentum control the ocean’s impact on weather
and climate. Despite many years of field studies, data set development and parameterization
improvements, available data sets still do not close the surface energy budget (L’Ecuyer et al.,
2015) and uncertainties in fluxes are too large to detect trends (Rhein et al., 2013). The methods
used to calculate ocean surface turbulent fluxes are a significant contributor to surface energy
budget uncertainties. While the methodological contribution to observational products has been
acknowledged and fairly well-explored (e.g., Yu, 2019), the contribution to the spread of Earth
system models is not well-understood. In this study we use atmosphere and ocean model
simulations to quantify how sensitive model results are to surface flux algorithm design.

The methods used to calculate ocean surface turbulent fluxes in numerical models and global
observational products rely on bulk flux algorithms. These algorithms use “bulk” quantities—sea
surface temperature (SST) and near-surface values of air temperature, humidity, and wind speed—
which are easier to measure than direct measurements of fluxes (e.g., Edson et al., 1998), and can
be measured by remote sensing platforms. Bulk algorithms have been compared by Zeng et al.
(1998), Brunke et al. (2002, 2003), and Brodeau et al. (2016), among others. While these studies are
valuable for understanding how different aspects of algorithm design affect surface flux estimates,
they have one limitation when it comes to understanding impacts on model results: they are based
on comparison of fluxes using pre-specified bulk variables. Thus, the differences in fluxes do not
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feed back onto the bulk variables. Therefore, such studies do not
allow us to fully understand the changes that result when the
algorithms are used in ocean and atmosphere general circulation
models, in which case the flux differences do result in changes
in the bulk variables. Understanding these feedbacks is key to
assessing the full model sensitivity to algorithm choice.

A number of past studies give strong evidence suggesting that
model sensitivity to ocean surface flux calculation is significant
and important. Looking at the atmospheric response, Harrop
et al. (2018) found that tropical Pacific precipitation biases in
the Energy Exascale Earth System Model (E3SM) are reduced
by including the effects of convective wind gustiness in flux
calculations. Large and Caron (2015), building on the work of
Zeng and Beljaars (2005), showed that parameterizing diurnal
variation of SST in a global atmosphere model can affect net
ocean surface heat flux and precipitation. Polichtchouk and
Shepherd (2016) showed that the effects of changing the ocean
surface roughness formulation in a global model are apparent
across the globe and through the full depth of the troposphere.
Compared to atmosphere models, the sensitivity of ocean models
to surface flux algorithms is comparatively unexplored. However,
it has been shown (Holdsworth and Myers, 2015; Kostov
et al., 2019) that surface heat flux specification is important
for simulating the Atlantic Meridional Overturning Circulation
(AMOC). These studies providemotivation for asking what other
aspects of ocean model behavior may be sensitive to surface flux
algorithm choice.

Given the wide ranging aspects of model climate (i.e., the
main features of the simulated Earth system) that are affected
by flux calculation methods, and the large number of studies
that compare bulk flux algorithms using pre-specified bulk
variable data, it is surprising that there are not more studies
investigating the consequences of bulk flux algorithm choice in
global models—especially in ocean models. We aim to fill this
gap, and identify three major aims in doing so:

1. Identify regions where differences between fluxes are largest.
This will assist developers of parameterizations to understand
uncertainties and identify strengths and weaknesses. Given
the uncertainties in observation-based flux data sets (Găinuşă-
Bogdan et al., 2015), it is difficult to identify a “least biased”
parameterization. Instead we aim to identify where the
differences between algorithms are significant, based on the
what might be expected from internannual and longer term
variability. Regions with significant differences can then be
prioritized for more detailed regional process studies and
analysis of structural differences in the algorithms.

2. Understand how the choice of test methodology (atmosphere
vs. ocean simulations) affects the apparent outcome. Due
to their different forcing data requirements, atmosphere
and ocean simulations allow different amounts of flux-bulk
variable feedback. Strobach et al. (2018) showed that inclusion
or exclusion of such feedbacks has a large impact on ocean
model simulations, and similar issues likely affect atmosphere-
only simulations. Thus, our work will help modelers and
parameterization developers to understand how the choice of
testing framework may influence results.

3. Explore which other aspects of model climate are affected,
to help model developers understand how surface flux
parameterization may influence the perceived biases of the
overlying atmosphere and/or underlying ocean model(s).
Based on the studies mentioned above, we expect differences
in precipitation, large-scale atmospheric circulation, and
possibly in deep water formation at high latitudes. However,
changes in other quantities and/or regions are possible.

The structure of this paper is as follows: section 2 summarizes
the bulk flux algorithms, model simulations and observational
data; section 3 presents results—of both surface fluxes and other
aspects of model climate; section 4 includes further discussion
and summarizes our findings.

2. DATA AND METHODS

2.1. Bulk Flux Algorithms
Exchanges of heat, moisture and momentum between
atmosphere and ocean are calculated in global models using bulk
flux algorithms. These algorithms parameterize turbulent fluxes
based on bulk quantities: sea surface temperature (SST), near-
surface air temperature and humidity, and near-surface wind
speed. Bulk flux algorithms have sound theoretical foundations
in Monin-Obukhov similarity theory. However, many aspects of
the algorithms are empirical, relying on constants and functional
forms estimated from (a relatively small number of) ship- and
buoy-based observational campaigns. The general form of the
flux algorithms can be expressed as:

Eτ = ρCD( EUz − EUs)UB (1)

QH = ρcpCH(θz − θs)UB (2)

QE = ρLvCE(qz − qs)UB (3)

where Eτ is the wind stress, QH is the sensible heat flux, and QE

is the latent heat flux. The main differences between algorithms
lie in the calculation of the transfer coefficients CD, CE, and CH ,
but there are also differences in UB (which may simply be the
wind speed or may have a modification due to boundary layer
eddies or convective gustiness), and even in the calculation of qs
(surface specific humidity) and Lv (latent heat of vaporization).
Other terms appearing in the equations are ρ (air density),
cp (specific heat capacity of air), θ (potential temperature), q

(specific humidity), and EU (wind velocity). Subscript z refers
to a value at height z in the atmosphere (in our case, the
height of the lowest atmosphere model level), while subscript s
refers to the value at the ocean surface. The sign conventions
employed mean that Eτ is the force exerted on the ocean by the
wind, and positive values of QH and QE correspond to heat
gain by the ocean. The coefficients CD, CE, and CH have two
main dependencies: stability (turbulence is enhanced in unstable
conditions) and surface roughness (the ocean surface becomes
rougher at higher wind speeds). Many researchers have proposed
different formulations for these coefficients, and the differences
in their formulations are responsible for some of the differences
between algorithms. In addition, several seemingly more trivial
issues (e.g., reduction of surface specific humidity due to ocean
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salinity; use of constant air density) can strongly affect flux
calculations (Brodeau et al., 2016). This study uses three bulk
flux algorithms: they are described in detail in the references
given, but here (and in Table 1) we summarize some of their key
features and differences.

The first, which we refer to as “control,” is the algorithm used
in the Energy Exascale Earth System Model version 1 (E3SMv1
Golaz et al., 2019). It is based on the work of Large and Pond
(1981, 1982) and Large and Yeager (2004, 2009). The algorithm
uses two stability classes—stable and unstable. The roughness
length for momentum varies with wind speed. The roughness
length for heat takes one of two constant values depending
on stability, while that for moisture uses a single constant for
all stability cases. Surface specific humidity is calculated with
a simple formula based on temperature only and accounts for
reduction due to ocean salinity.

The University of Arizona algorithm (Zeng et al., 1998), which
we refer to as “UA,” uses four stability cases (strongly stable,
weakly stable, weakly unstable, and very unstable). Roughness
lengths for momentum, heat and moisture are continuously
varying functions of wind speed. Surface specific humidity uses
a more accurate formula than the control algorithm, based on
temperature and surface pressure. Again, the reduction due to
ocean salinity is accounted for. Similarly, UA uses a temperature-
dependent function for Lv, while the other two algorithms use
a single constant. Finally, UA includes a gustiness factor due
to large boundary layer eddies in unstable conditions, which
increases fluxes in unstable, low wind conditions.

The third algorithm is based on the COARE (Coupled Ocean
Atmosphere Response Experiment) version 3.0 algorithm (Fairall
et al., 2003) which we refer to as simply “COARE.” This uses three
stability cases (stable, weakly unstable and strongly unstable)
and roughness length functions are similar to the UA algorithm.
Surface humidity calculation uses the samemethod as the control
algorithm. COARE, like UA, includes a gustiness factor to
account for increased fluxes in unstable, low wind conditions.
The correction of sea surface temperature due to cool skin and
diurnal warm layer effects available in COARE are not used.

2.2. Model Experiments
We test model sensitivity to ocean surface flux algorithm in
a “standard resolution” version of E3SM similar to version
1 used in Golaz et al. (2019). The components of E3SM
include atmosphere, land, ocean, sea ice, land ice, and river
routing models. The atmosphere and land model horizontal
resolutions are ∼1◦ and the ocean and sea ice model horizontal
resolutions are ∼50 km. The tests performed for this study
fall into two categories: one uses active atmosphere and land
model components, with sea surface temperature and sea ice
distribution pre-specified (this configuration is referred to as
an atmosphere run); the other uses active ocean and sea ice
components, with near-surface meteorology and river discharge
pre-specified (this configuration is referred to as an ocean run).
The ocean and sea ice data used in the atmosphere runs is based
on a repeating year representative of observations in the year
2000. The atmosphere and river discharge data used in the ocean
runs is from the JRA55-do data set (Tsujino et al., 2018)—a
version of the JRA-55 reanalysis adjusted tomake it more suitable
for forcing ocean models.

For each configuration (atmosphere and ocean), three
simulations are performed—one with each of the algorithms. The
atmosphere runs are 6 years long and analysis is based on the
final 5 years. The ocean runs are 10 years long and the first year is
disregarded when calculating climatologies but is used for some
time series analysis. The ocean runs were originally intended to
be the same length as the atmosphere runs, but we took advantage
of an opportunity to extend them. Longer model runs would have
been valuable, particularly for the ocean model, which can take
hundreds to thousands of years to reach equilibrium (Li et al.,
2013; Petersen et al., 2019). However, computing resources did
not allow for such an ambitious investigation and we feel that
the present simulations can still provide a valuable perspective on
the degree of sensitivity compared to other model developments
(e.g., tuning of parameterizations).

To understand howmuch of the observed differences between
model runs may be due to internal climate variability, we use
the E3SM v1 pre-industrial control run (produced for phase 6 of

TABLE 1 | Bulk flux algorithm overview.

Algorithm Stability classes and functions Roughness lengths

Control Stable (D74); Unstable (D74) Momentum: wind dependent. Heat, water: constants

UA Very stable (Holtslag et al., 1990); Stable (D74); Unstable (D74); Very

unstable (Kader and Yaglom, 1990)

Momentum: Smith (1988), constant Charnock parameter. Heat, water:

Brutsaert (1982).

COARE Stable (Beljaars and Holtslag, 1991); Unstable (D74); Very unstable (Fairall

et al., 1996b)

Momentum: Smith (1988), variable Charnock parameter. Heat, water: Fairall

et al. (2003)

Algorithm Surface humidity

dependence

Lv dependence Gustiness Cool skin Diurnal

warm-layer

References

Control T Constant No No No Large and Pond, 1981, 1982; Large

and Yeager, 2004

UA T, p T Boundary layer free convection No No Zeng et al., 1998

COARE T Constant Boundary layer free convection No No Fairall et al., 1996b, 2003

Further details, e.g., constants, are given in the cited publications. D74 refers to the widely-used stability function formulation described in and advocated by Dyer (1974), although

earlier publications described parts of this formulation.
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the Coupled Model Intercomparison Project [CMIP6]). We use
the final 100 years of the run (model years 401–500) to quantify
internal variability.

When analyzing spatial fields, all variables are interpolated
onto a common 1◦ latitude-longitude grid. Heat fluxes and
precipitation are interpolated using an integral-conservative
method, while wind stress and sea surface height are bilinearly
interpolated. We used interpolation tools and several other data
processing tools from the netCDF Operators package (Zender,
2020). Global averages are calculated on native model grids.

2.3. Observational Data
Most of the analysis presented here is based on the above
model runs, but a few observational data sets are used to
contextualize the results. We deem uncertainties in global
gridded ocean flux products to be too large to use them
for the basis of ranking the flux algorithms (Găinuşă-
Bogdan et al., 2015; Yu, 2019). However, we use one
such product, OAflux (Yu et al., 2006; Yu and Weller,
2007), to ascertain how the estimated internal variability of
E3SM compares with observed variability in the real world.
Precipitation from the atmosphere simulations is compared with
1981−2010 long-term averages fromGPCP (Global Precipitation
Climatology Project; Adler et al., 2003, 2018), a satellite-gauge

merged observational data set. Global top of atmosphere (TOA)
radiation measurements from the Clouds and the Earth’s
Radiant Energy System (CERES) mission are used to assess
the atmosphere simulations: we use version 4.1 of the energy
balanced and filled (EBAF) monthly means (Loeb et al., 2018;
Doelling, 2019).

3. RESULTS

We first look at the differences in ocean surface fluxes between
model simulations, before looking at the effects on other aspects
of model climate in the ocean and atmosphere.

3.1. Surface Flux Changes
Changes in latent heat flux are shown in Figure 1. It is
immediately clear that there are differences in sensitivity between
atmosphere (left column) and ocean (right column) simulations.
Themagnitudes of differences are generally larger for atmosphere
simulations than for ocean simulations and the spatial patterns
differ. However, because the atmosphere simulations have both
large positive and large negative differences, there is significant
cancellation when considering the global means (Table 2). The
sensitivity as shown by the global means therefore ends up being

FIGURE 1 | Differences in annual mean latent heat flux climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run (shown in Supplementary Figure 2).
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TABLE 2 | Long-term annual mean surface flux components from atmosphere

and ocean simulations, averaged over global oceans.

Control UA COARE

QE (W m−2 ) atmo –107.04 –104.32 –104.43

ocn –98.35 –96.64 –95.49

Evaporation (mm day−1) atmo 3.70 3.68 3.61

ocn 3.39 3.41 3.30

QH (W m−2) atmo –13.72 –13.63 –14.36

ocn –14.13 –14.40 –14.32

Rs,net (W m−2) atmo 171.3 171.6 172.6

ocn 169.3 169.2 169.3

Rl,down (W m−2) atmo 360.6 360.3 358.6

ocn 339.0 338.9 339.2

Rl,up (W m−2) atmo –409.1 –409.4 –409.3

ocn –393.2 –393.5 –394.6

Qnet (W m−2) atmo 1.70 4.45 3.02

ocn 2.60 3.63 4.04

The sign convention for heat fluxes is positive into the ocean (i.e., positive values warm

the ocean). Evaporation is positive by definition. The flux components shown are latent

heat flux QE ; sensible heat flux QH; net shortwave radiation Rs,net; downward longwave

radiation Rl,down; upward longwave Rl,up and net surface heat flux Qnet = Rs,net +Rl,up +

Rl,down +QE +QH.

more consistent between atmosphere and ocean tests [e.g., (UA−

control) is positive for both atmosphere and ocean].
At this point we pause to note that the global means in Table 2

also show latent heat fluxes are of larger magnitude (i.e., more
evaporation) in the atmosphere runs than in the ocean runs.
However, the physical significance of this fact is doubtful, as the
values are likely to be strongly affected by the forcing data sets
(Figure 2 and Supplementary Figure 1) and initial conditions,
and may even reflect differences introduced by masking and
interpolating from different model grids. We therefore do not
dwell further on quantitative comparisons between ocean and
atmosphere simulations.

Considering the spatial patterns of latent heat flux differences
in Figure 1, a few regions stand out that have similar patterns
of sensitivity in both the atmosphere and ocean runs. Examples
include the Southern Ocean (e.g., around 50◦S, 180◦E) in
COARE − control, and the eastern tropical Pacific (around 5◦S,
120◦W) in UA−control. Several other regions, however, have
opposite changes in the atmosphere and ocean runs. For example,
around the Gulf Stream at 35◦N, 60◦W (a region of large
evaporation and therefore negative values in the sign convention
of Figure 1) in the UA−control atmosphere comparison, UA
has a positive change (less evaporation) relative to control,
while in the UA−control ocean comparison, UA has a negative
change (more evaporation). Other regions with opposite changes

FIGURE 2 | Annual mean 10-m wind speed difference between (left column) pairs of atmosphere model runs and (right column) atmosphere model runs and forcing

data used in ocean model runs. The same observation-based wind forcing is used for all three ocean model runs.
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between atmosphere and ocean runs include parts of the North
Atlantic Current (40◦N, 50◦W) and eastern tropical Pacific (5◦S,
120◦W) in COARE − control, and the Kuroshio (35◦N, 140◦E)
and Agulhas (35◦S, 15◦E) currents in UA−control.

The regional inconsistencies between atmosphere and ocean
simulations bring into question the robustness and significance
of the differences shown. We argue below that some of the
inconsistency between ocean and atmosphere sensitivity tests
arises because the different test methods probe different aspects
of the bulk flux algorithms. In the meantime, to address the
question of significance, we compare the magnitude of changes
to the interannual standard deviation of latent heat flux from
the E3SMv1 pre-industrial control run (stippling in Figure 1).
In the atmosphere sensitivity tests, large areas of the world’s
oceans exhibit significant changes. For the ocean tests, however,
only a small fraction of ocean areas has significant changes.
The chosen significance threshold (E3SMv1 interannual standard
deviation) has similar patterns andmagnitudes as the interannual
standard deviation from the OAflux observational product
(Supplementary Figure 2). An alternative significance threshold
can be calculated as the range (maximum minus minimum) of
5-year means from the E3SM control run and from OAflux.
This results in a larger threshold (Supplementary Figure 2), and
therefore would lead to smaller areas of significant changes in
Figure 1.

Evaporation differences (Table 2) largely reflect differences
in latent heat flux. Thus, global mean evaporation is generally
larger in control than in UA or COARE. However, one slight
complication in this is that UA uses a temperature-dependent
value for the latent heat of evaporation (Lv in Equation 3) while
control and COARE both use a single constant. This accounts
for the fact that UA has the largest evaporation in the ocean
simulations, despite have a smaller magnitude of latent heat flux
than control.

Compared to latent heat flux, sensible heat flux (Figure 3)
shows greater consistency between sensitivity in atmosphere
and ocean simulations. Taking the UA−control comparisons,
for example, both the atmosphere and ocean simulations show
negative changes across much of the tropics and subtropics
and positive changes in parts of the Southern Ocean and
North Atlantic. That being said, there are still clear differences.
For example, tropical changes for UA−control are smaller
(and generally not significant) in the atmosphere tests but are
significant in the ocean tests.

Comparing across algorithms, we see that similarity between
UA and COARE runs is generally greater for sensible heat flux
than for latent heat flux (especially in the ocean simulations). This
can be seen by noting that Figures 3A,C are quite similar and, to
an even greater extent, Figures 3B,D are similar. Relative to this,
the pairwise comparisons (A vs. C; B vs. D) in Figure 1 show less

FIGURE 3 | Differences in annual mean sensible heat flux climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run. Note that the color scale is different from that in Figure 1.
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similarity. This is in line with the finding of Brunke et al. (2011)
who showed that, in observational flux products, latent heat
flux uncertainties were dominated by algorithm differences, but
sensible heat flux and wind stress uncertainties were dominated
by bulk variable differences.

Despite the similarities in patterns of sensible heat flux
differences shown in Figure 3, the global averages do not paint
a clear picture. For example, in the atmosphere runs COARE
has the largest magnitude, while in the ocean runs, UA has the
largest magnitude. As a further example, for control and UA,
the ocean simulations have larger magnitude sensible heat fluxes
than for the atmosphere simulations, while for COARE, the
atmosphere simulation has the larger magnitude. It should be
noted that the differences in sensible heat flux between algorithms
can be the same order of magnitude as differences in latent heat
fluxes, even though the sensible fluxes themselves are an order of
magnitude smaller.

By changing the sensible and latent heat fluxes, bulk flux
algorithms can directly change the ocean surface net heat
flux. Further indirect net heat flux changes are possible due
to changes in radiation fluxes. In the ocean simulations, SST
changes affect upward long wave radiation, though downward
long wave and short wave are both specified by the forcing. In
the atmosphere simulations, temperature, cloud, and humidity
changes affect downward long wave and short wave radiation,

though the upward long wave is specified by the forcing (Note
that small differences occur in the forcing-specified fields in
Table 2 due to sea ice differences). These indirect radiation
changes are of similar magnitudes to the latent and sensible
heat flux differences. The combined impact of changes in all
heat flux components are relatively large, in a relative sense. For
example, the UA atmosphere simulationQnet is more than double
that of the control atmosphere simulation, and the COARE
ocean simulation Qnet is more than 50% greater than that of
the control ocean simulation. The effects of these changes on
the atmosphere and ocean model climate are discussed in the
following subsections.

We turn next to wind stress sensitivity. For zonal wind stress
(Figure 4), ocean and atmosphere tests produce qualitatively
similar results. There are, however, differences in the magnitude
of changes (especially in midlatitudes) and some regions where
sensitivity is of opposite sign in the atmosphere and ocean
simulations (mostly in the Southern Ocean, e.g., at 45◦S, 0◦E).
The effects of UA and COARE, relative to the control algorithm,
are similar in the ocean simulations: relative to control both UA
and COARE cause increased eastward wind stress inmidlatitudes
and increased westward wind stress in the tropics. Note that
this essentially corresponds to UA and COARE giving a larger
wind stress than control for any particular wind speed. While the
same general pattern holds for the atmosphere simulations, the

FIGURE 4 | Differences in annual mean zonal wind stress climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run.
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COARE−UA atmosphere comparison reveals that their patterns
are subtly different enough to result in significant differences.

Finally, for meridional wind stress (Figure 5) ocean and
atmosphere tests produce very different results: in atmosphere
tests, most of the regions with significant differences are in
midlatitudes, while in ocean tests, the significant differences are
almost entirely equatorward of 30◦. Nonetheless, a few regions
show consistent changes across both ocean and atmosphere tests.
For example, in the UA-control comparisons, several subtropical
marine stratocumulus regions (off the coasts of California, Chile,
Namibia, Western Australia) have consistent changes between
atmosphere and ocean simulations. The same holds to a lesser
degree for the COARE-control comparisons.

3.2. Atmosphere Model Sensitivity
The analysis above is mostly concerned with the changes
that occur at the ocean surface when using different bulk
flux algorithms. We next consider what changes occur in
the atmosphere model. We start with precipitation, as this is
one of the most important outputs of Earth system models
and previous studies (Brunke et al., 2008; Harrop et al.,
2018) have demonstrated sensitivity to ocean surface flux
parameterization methods.

Figure 6 shows that the precipitation changes induced by
the change of flux algorithm have a rather noisy pattern. In
general, the largest differences occur in the tropics, where the
largest precipitation amounts occur. Some coherent regions of
changes occur in and around the Intertropical Convergence
Zone (ITCZ) and in monsoon regions (south and southeast
Asia, west Africa). In the case of the Asian monsoon systems,
the precipitation changes are likely related to moisture source
evaporation reductions (for UA and COARE relative to control)
in the Arabian Sea, Bay of Bengal, South, and East China Seas
(Pathak et al., 2017; Hu et al., 2021), despite the likelihood of
accompanying circulation changes (Harrop et al., 2019). In the
case of the West African monsoon, the picture is less clear
due to the presence of evaporation decreases in the Gulf of
Guinea (∼0◦N, 0◦E) and increases in the tropical North Atlantic
around 10◦N, 20◦W(for UA and COARE relative to control). We
conjecture that theWest African westerly jet (Lélé et al., 2015; Liu
et al., 2020) can provide a causal link between the tropical North
Atlantic evaporation changes and Sahelian precipitation changes,
but this merits further investigation.

Regional precipitation changes further poleward consist
of a patchwork of small (though significant) precipitation
changes, without any obvious pattern. This may be because
precipitation changes in these regions occur due to differences

FIGURE 5 | Differences in annual mean meridional wind stress climatology between simulations with different bulk flux algorithms. The atmosphere and ocean

simulation results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual

standard deviation from the E3SMv1 pre-industrial control run. Note that the color scale is different from that in Figure 4.
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FIGURE 6 | Differences in annual mean precipitation climatology between simulations with different bulk flux algorithms (left column) and annual mean precipitation

biases relative to GPCP (right column). Stippling designates regions where the absolute value of the difference is larger than the interannual standard deviation from

the E3SMv1 pre-industrial control run.

in both circulation and moisture source region evaporation,
with different processes dominating in different seasons.
Seasonal analyses (not shown) support this to some extent.
For example, summer precipitation in UA and COARE,
relative to control, show a dipole with less precipitation in
northwest Europe and more in the Iberian peninsula. Such
a dipole has been linked to Atlantic multi-decadal Gulf
Stream SST variability (e.g., Palter, 2015) so it is possible
that the algorithm-induced Gulf Stream heat flux changes
in our study have the same effect as the multidecadal SST
variability-induced heat flux changes seen in observations.
Meanwhile, in winter, a different and roughly opposite
precipitation change occurs — wetter over the United Kingdom
and drier in southwest Europe. A similar pattern occurs
in the northwest Pacific between Alaska and California.
Observational evidence (e.g., Wills et al., 2016; Wills and
Thompson, 2018) suggests that these changes could be caused
by circulation changes related to Gulf Stream and Kuroshio
heat flux changes, but more detailed study is needed to better
understand this.

Also shown in Figure 6 are biases relative to the GPCP long-
term mean. The biases are generally larger than the differences
between simulations, and therefore have very similar patterns for
all three atmosphere simulations. While the spatial patterns of

biases do not offer a clear differentiation between algorithms, the
global mean statistics do. For the global mean bias, COARE has
the lowest (+0.32mmday−1), followed byUA (+0.37mmday−1)
then control (+0.38 mm day−1). For the root mean square error
(RMSE), COARE again has the lowest (0.98 mm day−1), while
control and UA have very similar values (1.02mm day−1). These
global annual mean figures obscure more nuanced regional and
seasonal patterns, making selection of a “best” algorithm even
more challenging.

The largest precipitation biases in Figure 6 occur in the
tropics, and especially in the warm pool of the Indian and Pacific
oceans. This region is examined more closely in Figure 7, which
shows distinct patterns of zonal mean bias in different seasons.
All seasons share the feature that the model simulations generally
have an exaggerated double maximum compared to GPCP. This
is a widespread and long-standing problem in Earth system
models (e.g., Zhang et al., 2015) and so it is interesting to note that
algorithm choice makes some notable differences. In particular,
UA has a markedly lower bias north of the equator in boreal
summer (JJA) and COARE has the most realistic results in boreal
spring (MAM). However, no single algorithm has the best results
in all seasons. This point is reinforced by the precipitation RMSE
for this sub-region: UA has the lowest in JJA and SON; COARE
has the lowest in MAM; control has the lowest in DJF.
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FIGURE 7 | Zonal mean, seasonal mean precipitation from the three atmosphere simulations and GPCP observational data: (A) December to February; (B) June to

August; (C) March to May; (D) September to November. The zonal sector considered is 60◦E to 180◦E. GPCP data were bilinearly interpolated to the same 1◦ grid as

the other data before calculating. Text in each panel shows the area-weighted root mean square difference, in mm day−1, between each model and the GPCP data,

calculated from gridded data rather than from the zonal means.

TABLE 3 | Long-term annual mean near-surface meteorology from atmosphere

simulations, averaged over global oceans, unless otherwise indicated.

Control UA COARE

Precip (mm day−1) 3.33 3.31 3.24

Precip (global)a 3.08 3.07 3.01

T2m (◦C) 16.63 16.55 16.46

q2m (g kg−1) 11.09 11.02 10.81

U10m (m s−1) 7.52 7.14 7.20

(T2m − Ts) (◦C) –1.05 –1.12 –1.18

Variables are total precipitation; 2-m air temperature T2m; 2-m specific humidity q2m; 10-m

wind speed U10m; and difference between T2m and surface temperature TS.
a For land and ocean combined.

Table 3 shows that, relative to control, both UA and COARE
have lower global (land and ocean combined)mean precipitation.
This is in line with the evaporation changes shown in Table 2,
demonstrating that, at least in a global sense, there is a general
balance between evaporation and precipitation changes.

We next look at other aspects of near surface meteorology
affected by choice of bulk flux algorithm, bearing in mind that
the method of forcing the atmosphere model with specified sea
surface temperatures strongly constrains some fields. Mean 2 m
air temperature over the oceans is highest in control, followed
by UA, with COARE the lowest. The differences at first glance
appear modest (< 0.2◦C between control and COARE), but
when reformulated as a difference between surface and 2 m
temperature (also shown in Table 3), they seem somewhat more
significant. The same is true of 2m specific humidity: the absolute
values appear similar but, considering that the differences arise
just 2 m above surfaces of identical temperature, the size of
the differences is more surprising. Finally, and arguably most
importantly, the 10 m wind speed is reduced in both UA and
COARE compared to control. This result is significant as it
suggests that some of the atmosphere simulation flux changes,
discussed above, occur due to changes in wind speed rather than
changes in stability and roughness formulations.

Other changes in model climate higher in the atmosphere
also occur. We briefly mention a few (and refer to relevant
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figures in the Supplementary Material). Coherent patterns of
zonal wind changes occur throughout the full depth of the
troposphere (Supplementary Figures 3, 4). These changes bear
some resemblance to changes induced by a decrease in surface
roughness in Polichtchouk and Shepherd (2016), though in our
case the changes are smaller and mostly limited to the winter
hemisphere. The global mean temperatures at several different
pressure levels (Supplementary Figures 5, 6) are reduced in both
UA and COARE, relative to control. We suggest that this is a
result of the net heat flux changes, though this interpretation is
slightly complicated by net heat flux changes over land, which
we do not consider here. Likewise, we suggest that changes
in precipitable water (reduced in UA and COARE, relative to
control; not shown) are due to reduced ocean evaporation in UA
and COARE.

There are also differences in certain metrics that governmodel
simulations of variability and climate change. Arguably most
important is the net top-of-atmosphere (TOA) radiation. Control
has the smallest, at +0.58 W m−2, followed by UA (+1.05
Wm−2) then COARE (+1.54Wm−2). While the absolute values
from our relatively short sensitivity tests may not be especially
meaningful due to large internannual variability (e.g., Loeb et al.,
2018), the differences are important, especially considering the
magnitude of biases seen in Golaz et al. (2019) who reported
TOA imbalance smaller than observed in both the coupled
(model minus observations = −0.54 W m−2) and AMIP (model
minus observations = −0.71 W m−2) simulations. Noting that
those simulations used the control algorithm, and based on the
differences between the three algorithms, UA therefore does best
at correcting this bias, while COARE slightly overshoots. The
differences arise from a combination of changes in clouds and
clear-sky longwave emission.

High quality satellite observations from CERES-EBAF v4.1
data allow calculation of mean biases and root-mean-square
differences (RMSD) for several TOA radiation quantities
(Table 4). In most quantities, UA is intermediate between
COARE and control. This means that the smallest bias usually
occurs with control (e.g., TOA net longwave) or COARE (e.g.,
TOA net shortwave). This does, however, conceal a number
of more complicated regional biases. For example, compared
to control, COARE seems to reduce the mean bias in net
cloud radiative effect, but part of this improvement comes from
COARE’s increased bias in subtropical stratocumulus shortwave
cloud forcing. Similarly, we see that UA has the smallest net cloud
forcing RMSD, despite the fact that COARE has the smallest net
cloud forcing mean bias. We also note, in reference to the above
discussion of net TOA radiation, that UA has the smallest bias
and RMSD in that quantity.

3.3. Ocean Model Sensitivity
Changes in the ocean model are, like changes in the atmosphere
model, constrained by the forcing dataset. In fact, for the ocean
model the forcing is a stronger constraint because the wind
speed—arguably the biggest factor in the atmosphere model
changes seen above—is prescribed. Nonetheless, we do see ocean
model responses due to the subtle changes in net heat flux,
evaporation and wind stress. These are described here.

TABLE 4 | Global mean and global root-mean-square (RMS) of annual mean

differences between model and observations.

Bias RMSD

Control UA COARE Control UA COARE

Precipitation

(mm day−1)

0.38 0.37 0.32 1.02 1.02 0.98

TOA net radiation

(W m−2)

–0.34 0.13 0.64 8.19 7.97 8.38

TOA net shortwave

(W m−2)

–1.43 –1.36 –1.05 9.63 9.70 9.77

TOA net longwave

(W m−2)

–0.96 –1.36 –1.55 5.71 6.20 6.07

Net cloud forcing

(W m−2)

–6.98 –6.84 –6.37 11.16 10.94 11.00

Shortwave cloud

forcing (W m−2)

–3.64 –3.57 -3.14 10.17 10.18 10.25

Longwave cloud

forcing (W m−2)

–3.34 –3.26 -3.23 6.51 6.75 6.55

Precipitation is compared to GPCP observations. TOA radiation quantities are compared

to CERES-EBAF v4.1 observations.

TABLE 5 | Ocean simulation global mean statistics.

Control UA COARE

SST (◦C) 18.23 18.28 18.42

SSS (PSU) 34.58 34.58 34.55

1SSH (cm)a 38.27 30.99 70.06

1OHC (1022 J)b –10.51 –1.254 +3.763

|SSS restoring| (m PSU yr−1) 12.5 12.2 12.4

|u| (cm s−1) 7.87 8.30 8.21

|v| (cm s−1) 4.05 4.24 4.18

Statistics are long-term annual averages unless otherwise indicated. Variables are sea

surface temperature SST; sea surface salinity SSS; sea surface height SSH; ocean heat

content OHC; SSS restoring; eastward surface current component u; and northward

surface current component v. For SSS restoring, u and v, the absolute value is taken

before applying spatial and temporal averaging.
aAverage SSH over model year 10 relative to initial condition.
bOHC in December of model year 10 relative to initial condition.

The SST in the ocean simulations is able to vary, though it is
strongly constrained by the air temperature in the forcing. The
differences seen in Table 5 are therefore reflecting the different
algorithms’ preferred (T2m − Ts) values, shown in Table 3:
COARE has the highest (Ts − T2m) and therefore the highest
Ts, followed by UA, then control. While the SST is not able
to respond fully to the differences in net heat flux, the ocean
heat content (OHC) is able to respond more. We therefore see
that changes in OHC (denoted 1OHC) over the course of the
ocean simulations do reflect the differences in net heat flux:
the algorithms are ranked control, then UA, then COARE, in
increasing order for both SST and1OHC. It should be noted that
the differences in1OHC betweenmodel runs are of a comparable
magnitude to observed decadal variability and trends, and are
therefore physically meaningful.
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Changes in evaporation could, in principle, affect both ocean
salinity and sea level. However, surface salinity is subject to
salinity restoring (the model field is relaxed to observational
climatology; see Petersen et al., 2019 for further details) and
this effectively cuts any link between evaporation changes and
ocean salinity changes. It is therefore not surprising that all three
ocean simulations have very similar surface salinity (Table 5).We
can however, look at the magnitude of salinity restoring that is
required to stop the model drifting away from observations. The
mean absolute values are similar for all three simulations: UA has
the lowest value, followed by COARE.

The changes in sea surface height (1SSH in Table 5) over
the course of each ocean simulation are all of unrealistically
large magnitude, likely due to a systematic imbalance between
precipitation in the forcing data set and evaporation calculated
in the model. However, differences (between ocean simulations)
in the sea level change (Table 5) do reflect the evaporation
differences seen in Table 2: UA has the largest evaporation and
therefore the smallest sea level rise, while COARE has the smallest
evaporation and the largest sea level rise. The remainder of the
sea surface height changes include thermosteric effects, i.e., the
expansion of sea water as it warms. The thermosteric component
is isolated by subtracting the global ocean mean change due to
evaporation. Thus, the difference between two algorithms can be
expressed as:

1SSHA−B
thermosteric

= (SSHA
year10 − SSHA

initial)

− (SSHB
year10 − SSHB

initial)+ (
∑

time

[EA − EB])

(4)

where A and B denote the two algorithms being compared, EA,B
are the global mean evaporation rates and the summation gives
the cumulative evaporation difference. The spatial patterns of
differences (between different bulk flux algorithms) are shown in
Figure 8. Relative to control, UA and COARE result in similar
changes, albeit with larger magnitudes for COARE. The changes
are fairly symmetric about the equator, with the following
key features: small changes of both signs for most regions
equatorward of 15◦; larger negative changes in the tropical east
Pacific; relatively large increases between 15◦ and 45◦; and large
decreases poleward of this, especially in the Southern Ocean. This
all suggests that much of the extra heat content of the UA and
COARE simulations, caused by the larger net heat flux with these
algorithms compared to control, ends up being “stored” in the
subtropics and midlatitudes.

Ocean surface velocity is strongly constrained by the wind
field specified in the forcing data. However, differences in velocity
component magnitudes do occur (Table 5). We see that UA has
the highest velocities, followed closely by COARE, and control
has the lowest by a considerable margin. Note that this is the
reverse of the pattern seen in the atmosphere 10 metre wind
speeds seen in Table 3. Both of these changes are consistent with
the fact that, for a particular wind speed, UA gives the largest
wind stress, followed by COARE then control. Such differences
were also found (at least for moderate wind speeds) in Zeng et al.
(1998; their Figure 3C). This means that, where wind speeds are

FIGURE 8 | Differences in model year 10 sea surface height between

simulations with different ocean surface bulk flux parameterizations. The

changes in sea surface height due to evaporation differences have been

removed as in Equation (4).

specified (in the ocean simulations) UA gives the largest wind
stress and therefore the highest ocean surface velocities. On the
other hand, when the wind speed can vary but the surface velocity
is fixed (in the atmosphere simulations), UA results in the lowest
wind speeds while giving similar wind stress.

A number of other variables are affected by the choice
of bulk flux algorithm, though the changes are relatively
minor. The Atlantic Meridional Atlantic Circulation (AMOC)
is unrealistically weak in all three simulations (as has been
noted in other E3SMv1 simulations; Golaz et al., 2019; Petersen
et al., 2019) and there are only minor differences between them.
However, AMOC is slightly stronger in UA and control than
in COARE (Supplementary Figure 7). Possibly related to this
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FIGURE 9 | Mean global meridional ocean heat transport (positive northwards) from ocean simulations. Also shown is a reanalysis-based observational estimate from

Trenberth and Caron (2001): shading represents ±1 standard error, based on their error analysis using assumed uncertainties in derived surface fluxes.

are changes in wintertime ocean mixed layer depths in the
North Atlantic Deep Water formation regions (not shown) and
changes in the global meridional heat transport (MHT; Figure 9).
However, global MHT integrates more processes than just the
AMOC (e.g., Forget and Ferreira, 2019), and it is in fact the
tropical maxima of MHT (shallower circulations more directly
linked to surface fluxes) that are changed most—generally of
slightly larger magnitude in UA than in control and COARE. As
with the AMOC, the MHT differences do not have large enough
impacts to significantly reduce the model’s background biases.
Even so, we suggest that the sensitivity of ocean circulation to
algorithm choice deserves longer model runs and further study,
beyond the more directly affected quantities discussed here.

4. CONCLUSIONS AND FURTHER
DISCUSSION

We have performed sensitivity tests of three ocean surface flux
parameterizations in the atmosphere and ocean components of
E3SM. Spatial patterns of heat flux and wind stress sensitivity
differ significantly between ocean and atmosphere simulations,
with largermagnitudes of changes in the atmosphere simulations.
This is not surprising given that wind speed—which strongly
affects surface fluxes—can vary in the atmosphere simulations
but is specified by the forcing data in ocean simulations. What
is perhaps more surprising is the degree of consistency (between
ocean and atmosphere simulations) of the global mean latent heat
flux and net surface heat flux sensitivity.

The impact of wind speed-flux feedbacks on the atmosphere
simulation sensitivity highlights the central role of wind speed
in determining fluxes. Thus, the ocean simulations (with fixed
wind speeds) tell us more about the theoretical aspects of

algorithm design (e.g., the functional forms of stability and
roughness formulae) while at the same time revealing how
the ocean may respond to flux changes. On the other hand,
the atmosphere simulations (where wind speed can vary)
tell us about the combined effects of theoretical changes
and resultant wind speed differences. Thus, our results show
that, relative to the control algorithm, COARE has greater
theoretical differences, but when wind speeds are allowed to
vary, UA has a greater overall effect. A regional example of
this is shown in Figure 10 for the Gulf Stream, where both
COARE and UA have lower magnitude of annual mean latent
heat flux than control (Figure 1). Figure 10 shows that, for
wind speeds greater than about 12 m s−1, both COARE and
UA have lower magnitude latent heat fluxes than control.
However, it is also clear that the distribution of wind speeds
are shifted, with UA having the lowest speeds, followed by
COARE and then control having the highest. Another illustration
of the importance of wind speed changes in the atmosphere
simulations is the degree of correspondence between the latent
heat flux changes (Figure 1, left column) and the wind speed
changes (Figure 2, left column): patterns of negative wind
speed differences match closely with positive latent heat flux
differences (i.e., due to the sign convention, negative flux
magnitude differences).

An important caveat to this interpretation, however, is that
some of the impacts of the UA algorithm are tempered by its
use of temperature-dependent Lv (latent heat of vaporization).
Thus, although UA has larger differences (relative to control) in
latent heat flux and net heat flux, COARE has a larger difference
in evaporation, and therefore a larger impact on precipitation.
This can have other important consequences for modeled global
energy and water cycles, as was seen in the ocean simulations:
compared to control, UA simulates a sea level fall and OHC
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FIGURE 10 | (A) Latent heat flux quantiles, as functions of 10-m wind speed, and (B) 10-m wind speed distributions, for the three atmosphere simulations in a region

around the Gulf Stream (60−70◦W, 35−42◦N). The quantiles and wind speed distribution are calculated from 3-hourly model output from the winter season

(December, January, and February) over model years 2−6 of each simulation, binned into 1 m s−1 bins. (C) December to February multi-year mean latent heat flux

difference between UA and control atmosphere simulations, with the region used in (A,B) shown by the green box. Note that the heat flux sign convention in (A) is

opposite to that used in (C): positive values correspond to evaporation. The colors shown in the legend of (B) also apply to (A).

increase, while COARE simulates sea level rise andOHC increase.
Of course, the comparison with control is somewhat arbitrary
and does not have any physical significance when interpreting
any single model simulation. It does however, underscore that the
algorithms give different portrayals of the links between global
energy and water cycles. This point is particularly important for
coupled Earth systemmodeling, where conservation of water and
energy are important constraints in model realism. The effects of
flux algorithm choice in this respect are the subject of ongoing
coupledmodel development and testing within the E3SMproject.

It is worth noting that the absolute values (from any
single simulation) of quantities like 1OHC are not physically
meaningful. Instead, they are a product of the disequilibrium
between the forcing data and initial conditions [see Strobach
et al. (2018) for a thorough exploration of such disequilibrium
conditions]. Nonetheless, the differences between algorithms in
their responses to this disequilibrium are meaningful: these
kind of differences are exactly what may yield variations in
estimates of transient climate response to greenhouse gas and
other anthropogenic climate forcing.

We finish by revisiting our aims for this study and
summarizing the key results for each:

1. Our atmosphere sensitivity tests suggest that parts of the
tropical Indo-Pacific region (∼20◦N−20◦S, 60◦E−150◦W),
along with western boundary currents, are hotspots of
algorithm differences, as might be expected from the fact that
these regions are the continued focus of ocean-atmosphere
interaction research (e.g., Edson et al., 2013). In addition,
our ocean sensitivity tests highlight the tropical east Pacific
and the Southern Ocean as regions of uncertainty, worthy
of further study. It is interesting to note that these regions

include a number of “edge cases” recognized in recent
ocean-atmosphere interaction research. The Indo-Pacific
warm pool can exhibit strong diurnal SST warming (Fairall
et al., 1996a) and gusty winds in thunderstorm cold pools
(Zeng et al., 2002). Western boundary currents and the
eastern tropical Pacific are both domains of strong gradients
with complex wind-wave-current interactions which are not
well-understood (Villas Bôas et al., 2019). The Southern
Ocean features consistently strong winds and extreme wave
conditions. These cases lead to uncertainties in fluxes and
differences between the algorithms, both by design and due
to insufficient direct flux observations to constrain bulk
algorithm formulation.

2. We find that the choice of test methodology seems to highlight
different aspects of the algorithms’ differences. Atmosphere
simulations, by allowing a wind speed-flux feedback cycle,
show the highest absolute magnitudes of flux differences
between algorithms. This has the advantage of allowing
investigation of changes in wind speed distribution due to
differences in algorithms’ surface roughness formulations.
However, it has disadvantages in that changes in any particular
location may be influenced by remotely forced atmospheric
circulation changes (e.g., tropical forcing of midlatitude
circulation), and that changes may be due to model internal
variability (i.e., chaotic differences in weather patterns). Our
significance testing is intended to address this, but the
relatively short simulations used here are certainly a minor
limitation of this study.

3. Finally, we have demonstrated that impacts of algorithm
choice are seen throughout the atmosphere and oceanmodels.
Of particular importance in the atmosphere simulations are
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the systematic circulation changes and differences in global
mean precipitation and TOA radiative effects. There are also
important regional changes— for example in heat fluxes in the
seas adjacent to the Asian Monsoon system, with associated
precipitation changes over land. In the ocean, we see small
but notable impacts on meridional overturning circulations
and meridional heat transport. It is interesting to speculate
that the changes seen in these quantities in a coupled model
setup (where the larger magnitude flux changes seen in the
atmosphere simulations might be imposed on the ocean)
could be larger than seen in our ocean simulation results.
This possibility, along with the differences in global energy
and water cycle responses discussed above, are good reasons
to pursue coupled Earth system model sensitivity testing in
future studies. Indeed, such efforts are already underway in the
E3SM project.

In the absence of a definitive observational basis to rank
algorithms by flux biases, these other changes offer a way to
inform algorithm choice. In particular, both UA and COARE
improve on the control algorithm in global mean precipitation
and TOA radiative metrics, though there are some important
regional changes that should also be considered. In the
ocean, UA seems to reduce biases slightly (in comparison to
control) in the Atlantic meridional overturning circulation
and meridional heat transport.

DATA AVAILABILITY STATEMENT

1. Model source code is available at https://
github.com/E3SM-Project/E3SM/commit/
121d1c99d1c8573dc9e57536a0819ec7f423e2ee. Raw model
output is available at https://portal.nersc.gov/archive/home/
j/jeyre/www/. Intermediate data used to create the figures
and tables in this article are available at https://osf.io/4enh5/.
Computer code used to create the figures and tables is
available at https://bitbucket.org/jack_eyre/oceanfluxes_
13apr2021. Some additional calculations were used from the
MPAS-Analysis package (https://github.com/MPAS-Dev/
MPAS-Analysis).

2. OAflux, CERES-EBAF and GPCP are publicly available from
repositories given in the References section and cited in
the text.

AUTHOR CONTRIBUTIONS

JRE implemented the UA algorithm in E3SM, performed
the model runs and data analysis, and led the writing. XZ
provided guidance on modeling strategy and analysis methods,
and contributed to the writing. KZ implemented the COARE
algorithm in E3SM and contributed to the writing. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was supported by the U.S. Department of
Energy (DE-SC0016533, DE-AC52-07NA27344/B639244).
KZ was supported by the Office of Science of the U.S.
Department of Energy as part of the Earth System Modeling
Program. The Pacific Northwest National Laboratory is
operated for DOE by Battelle Memorial Institute under
contract DE-AC05-76RL01830.

ACKNOWLEDGMENTS

We thank Thomas Tonazzio and Chris Fairall for providing
the COARE algorithm code. We thank Luke Van Roekel
and Po-Lun Ma for assistance in setting up the model runs.
Michael Brunke, Joellen Russell, and Chris Castro provided
much useful advice about details of the flux algorithms and
interpretation of results. We thank the editor and reviewers
for their constructive comments. This research used resources
of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User
Facility operated under Contract No. DE-AC02-05CH11231. We
gratefully acknowledge the computing resources provided on
Blues, a high-performance computing cluster operated by the
Laboratory Computing Resource Center at Argonne National
Laboratory.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2021.642804/full#supplementary-material

REFERENCES

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J.,
et al. (2003). The version-2 global precipitation climatology project (GPCP)
monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167.
doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., et al.
(2018). GPCP Version 2.3 Combined Precipitation Data Set (Updated Monthly).
Available online at: https://psl.noaa.gov/data/gridded/data.gpcp.html (accessed
February 07, 2020).

Beljaars, A. C. M., and Holtslag, A. A. M. (1991). Flux parameterization over
land surfaces for atmospheric models. J. Appl. Meteorol. Climatol. 30, 327–341.
doi: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2

Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C. (2016).
Climatologically significant effects of some approximations in the bulk

parameterizations of turbulent air–sea fluxes. J. Phys. Oceanogr. 47, 5–28.
doi: 10.1175/JPO-D-16-0169.1

Brunke, M. A., Fairall, C. W., Zeng, X., Eymard, L., and Curry, J. A.
(2003). Which bulk aerodynamic algorithms are least problematic
in computing ocean surface turbulent fluxes? J. Clim. 16, 619–635.
doi: 10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2

Brunke, M. A., Wang, Z., Zeng, X., Bosilovich, M., and Shie, C.-L. (2011).
An assessment of the uncertainties in ocean surface turbulent fluxes in 11
reanalysis, satellite-derived, and combined global datasets. J. Clim. 24, 5469–
5493. doi: 10.1175/2011jcli4223.1

Brunke, M. A., Zeng, X., and Anderson, S. (2002). Uncertainties in sea surface
turbulent flux algorithms and data sets. J. Geophys. Res. Oceans 107, 5–1–5–21.
doi: 10.1029/2001JC000992

Brunke, M. A., Zeng, X., Misra, V., and Beljaars, A. (2008). Integration
of a prognostic sea surface skin temperature scheme into weather

Frontiers in Marine Science | www.frontiersin.org 15 May 2021 | Volume 8 | Article 642804130

https://github.com/E3SM-Project/E3SM/commit/121d1c99d1c8573dc9e57536a0819ec7f423e2ee
https://github.com/E3SM-Project/E3SM/commit/121d1c99d1c8573dc9e57536a0819ec7f423e2ee
https://github.com/E3SM-Project/E3SM/commit/121d1c99d1c8573dc9e57536a0819ec7f423e2ee
https://portal.nersc.gov/archive/home/j/jeyre/www/
https://portal.nersc.gov/archive/home/j/jeyre/www/
https://osf.io/4enh5/
https://bitbucket.org/jack_eyre/oceanfluxes_13apr2021
https://bitbucket.org/jack_eyre/oceanfluxes_13apr2021
https://github.com/MPAS-Dev/MPAS-Analysis
https://github.com/MPAS-Dev/MPAS-Analysis
https://www.frontiersin.org/articles/10.3389/fmars.2021.642804/full#supplementary-material
https://doi.org/10.1175/1525-7541(2003)004$<$1147:TVGPCP$>$2.0.CO;2
https://psl.noaa.gov/data/gridded/data.gpcp.html
https://doi.org/10.1175/1520-0450(1991)030$<$0327:FPOLSF$>$2.0.CO;2
https://doi.org/10.1175/JPO-D-16-0169.1
https://doi.org/10.1175/1520-0442(2003)016$<$0619:WBAAAL$>$2.0.CO;2
https://doi.org/10.1175/2011jcli4223.1
https://doi.org/10.1029/2001JC000992
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Reeves Eyre et al. Ocean Flux Algorithm Effects

and climate models. J. Geophys. Res. 113. doi: 10.1029/2008jd01
0607

Brutsaert, W. (1982). Evaporation into the Atmosphere: Theory, History and

Applications. Environmental Fluid Mechanics. Dordrecht: Springer.
Doelling, D. (2019). CERES Energy Balanced and Filled (EBAF) TOA

Monthly Means Data in netCDF Edition4.1. Available online at:
10.5067/TERRA-AQUA/CERES/EBAF-TOA_L3B004.1 (accessed 23, June
2020).

Dyer, A. J. (1974). A review of flux-profile relationships. Bound. Layer Meteorol. 7,
363–372. doi: 10.1007/BF00240838

Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E., and Fairall,
C. W. (1998). Direct covariance flux estimates from mobile
platforms at sea*. J. Atmos. Ocean. Technol. 15, 547–562.
doi: 10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2

Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall,
C. W., et al. (2013). On the exchange of momentum over the open ocean. J.
Phys. Oceanogr. 43, 1589–1610. doi: 10.1175/JPO-D-12-0173.1

Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young,
G. S. (1996a). Cool-skin and warm-layer effects on sea surface temperature. J.
Geophys. Res. Oceans 101, 1295–1308. doi: 10.1029/95JC03190

Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson,
J. B. (2003). Bulk parameterization of air–sea fluxes: updates and
verification for the COARE Algorithm. J. Clim. 16, 571–591.
doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S. (1996b).
Bulk parameterization of air-sea fluxes for tropical ocean-Global atmosphere
coupled-Ocean atmosphere response experiment. J. Geophys. Res. Oceans 101,
3747–3764. doi: 10.1029/95JC03205

Forget, G., and Ferreira, D. (2019). Global ocean heat transport dominated
by heat export from the tropical Pacific. Nat. Geosci. 12, 351–354.
doi: 10.1038/s41561-019-0333-7
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Atmospheric responses to ocean surface temperature (ST) fronts related to western
boundary currents have been extensively analyzed over the last two decades. However,
the organized near-surface response to ST, which is defined as the temperature of open
water and sea ice, excluding land surface, at higher latitudes where sea ice exists
has been rarely investigated due to the difficulties of observations. Here, 32 years of
high-resolution atmospheric reanalysis data are analyzed to determine the atmospheric
responses to ST fronts in the Bering Sea and Chukchi Sea. In the Chukchi Sea,
the convergence of 10-m-high wind increases in October and November, when the
horizontal gradient and Laplacian of ST become noticeable. On the other hand, an
ST contrast between the continental shelf and the southwestern deep basin develops
in winter in the Bering Sea. In both seas, the spatial distribution of surface wind
convergence and the Laplacians of ST and sea level pressure agree well with each other,
demonstrating the pressure adjustment mechanism. The vertical mixing mechanism is
also confirmed in both seas. Ascending motion and diabatic heating develop over the
Chukchi Sea in late autumn, but are confined to the lower troposphere. Turbulent heat
fluxes at the surface become especially large in this season, resulting in an increase
of diabatic heating and low-level clouds. Low-level clouds and downward shortwave
radiation exhibit contrasting behavior across the shelf break in the Bering Sea that
corresponds to the ST distribution, which is regulated by the bottom topography.

Keywords: Bering Sea, Chukchi Sea, air-sea interaction, pressure adjustment, vertical mixing, sea surface
temperature, sea ice, Climate Forecast System Reanalysis
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INTRODUCTION

Air-sea interaction studies in recent decades have revealed that
the mid-latitude marine atmosphere is significantly affected by
ocean surface temperature (ST). Ocean ST fronts associated with
warm western boundary currents such as the Gulf Stream and
Kuroshio induce horizontal air temperature gradients, leading
to low pressure anomalies, convergence, and ascending motion
over the warm flank of the ST front (e.g.,Minobe et al., 2008;
Tokinaga et al., 2009; Sasaki et al., 2012). This is referred to as
the pressure adjustment mechanism (PAM) (e.g.,Takatama et al.,
2015). On the other hand, winds in the marine atmospheric
boundary layer (MABL) are strengthened over high ST areas
due to intensified vertical mixing, which is referred to as the
vertical mixing mechanism (VMM) (Wallace et al., 1989). This
effect produces horizontal gradients of wind speed across ST
fronts, resulting in wind stress curl or divergence anomalies
immediately above the ST fronts (Chelton et al., 2004). These
two mechanisms are not contradictory to each other, and their
relative dominance depends on the background wind direction
with respect to the ST front (Chelton and Xie, 2010; Takatama
et al., 2015). The influence of a mid-latitude ocean ST front is
not only found in mesoscale MABL properties, but can develop

into large-scale phenomena, with a higher ST able to penetrate
the middle and upper troposphere. The resultant diabatic heating
over the Gulf Stream remotely affects circulation over the Barents
Sea and Eurasia (Minobe et al., 2008; Sato et al., 2014). Luo
et al. (2017) and Luo B. et al. (2019) furthermore revealed that
the combination of the positive phase of the North Atlantic
Oscillation (NAO) and the Ural blocking set up a pathway
that effectively brings moisture from the Gulf Stream region to
the Barents Sea, and resultant increase of downward longwave
radiation enhanced the warming in the Barents Sea. ST anomaly
around the Gulf Stream was related with the strengthening of the
westerly wind that tended to make the Ural blocking last longer.
Such remote effect from the mid latitudes to the polar region has
been also confirmed in the Southern Hemisphere. Wintertime
higher ST in the Tasman Sea modifies storm tracks, leading to
warming over the Antarctic Peninsula (Sato et al., 2021).

The atmospheric responses to relatively cold ST fronts have
also been investigated in recent studies. A prominent ST front
exists in the subarctic region of the Northwestern Pacific Ocean,
which is referred to as the Oyashio front. This front is formed at
the southern edge of subarctic low-salinity water and corresponds
closely to the ST contour of 4◦C in winter (Yasuda, 2003). The
ST and surface turbulent heat flux around the Oyashio front

FIGURE 1 | (A) Annual-mean climatology of the Euclidean norm of horizontal gradient of ST, and latitude-time sections of monthly climatological data of the ST
horizontal gradient in (B) the Chukchi Sea and (C) the Bering Sea. Black solid lines in (A) are depth contours of 200 m. The areas enclosed with black dashed lines
in (A) are the domains for (B,C). The middle dashed line near the 200-m-contour in the Bering Sea is the coordinate origin of latitude for (C). Contours in (B,C) show
ST, and the intervals indicated by thin and bold contours in (B,C) are 2 and 20◦C, respectively.
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are lower than those around the Kuroshio Extension, but the
Oyashio front has clear effects on the subarctic atmosphere.
Satellite data show that the Laplacian of MABL thickness is
proportional to surface wind divergence and the Laplacian of
ST, even around the Oyashio front (Shimada and Minobe,
2011), which indicates an effective PAM. Masunaga et al. (2015)
confirmed the impact of the subarctic ST front using high-
resolution atmospheric reanalysis data. Kawai et al. (2019) also
showed evidence of the VMM across the Oyashio front from
intensive in situ observations. Furthermore, numerical modeling
and reanalysis data have indicated that the atmospheric response
to the Oyashio front affects the wintertime Aleutian low on a
decadal scale (Frankignoul et al., 2011; Taguchi et al., 2012).

For decades, the Arctic Ocean has been warming and the sea
ice concentration has been decreasing significantly (e.g.,Vaughan
et al., 2013). It has been demonstrated that the drastic change of
the Arctic sea ice significantly affects the atmospheric circulation
(e.g.,Honda et al., 2009; Mori et al., 2019), but some other
studies have denied their relationship (e.g.,McCusker et al.,
2016).This issue still remains controversial, but it has been
recently pointed out that connections between the Arctic and
mid latitudes becomes obvious only in brief periods and in
conditions with weakened potential vorticity gradient, which
may lead to the discrepancy between the previous studies (Luo
D. et al., 2019; Rudeva and Simmonds, 2021). Another study
demonstrated implications of the warming of the Bering and
Chukchi Seas for the large-scale circulation. Tachibana et al.
(2019) indicated that these seas warmed during the winter of
2017–2018 and played an important role in causing the poleward
upglide motion of anomalous southerly over the seas, resulting
in jet meanders.

Clarifying basic physical processes in the Arctic air-sea
interaction is indispensable for climate research. Very large
horizontal temperature gradients are produced across the
marginal ice zone, and sea-breeze-like circulation is formed over
ice edges (e.g.,Chu, 1987). Crawford and Serreze (2016) indicated
that a narrow band of strong horizontal gradient along the Arctic
coastline plays a role in intensifying cyclones that cross the coast
in summer. Organized near-surface convergence/divergence
in response to ST in high latitude areas where sea ice
exists, however, has not been sufficiently investigated due
to difficulties conducting observations.Seo and Yang (2013)
indicated from model simulations that the PAM is effective
even in the Chukchi Sea. Therefore, this study further analyzes
atmospheric reanalysis data to investigate the climatological
features of atmospheric responses to ST in the Bering Sea and
Chukchi Sea. The study data are presented in sections “Data”
and “Results” describes the PAM in both seas, See section
“Discussion” discusses the effect on solar radiation at the sea
surface, the VMM, and the temporal trends, and provides a
summary of the study.

DATA

Monthly Climate Forecast System Reanalysis (CFSR) data were
analyzed from 1979 to 2010, which were provided by the National

FIGURE 2 | Annual-mean climatologies of (A) 10-m-high wind convergence,
(B) the sign-reversed Laplacian of ST, and (C) the Laplacian of SLP. Black
solid lines are depth contours of 200 m. Black dashed and solid boxes denote
analysis areas in Figures 3, 4, respectively. A two-dimensional median filter of
5 × 5 is applied to the Laplacians of ST and SLP.
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FIGURE 3 | Annual relationships (top) between the SLP Laplacian and surface wind convergence and (bottom) between the SLP and ST Laplacians averaged over
the areas defined by the black dashed boxes in Figure 2 in (A,C) the Chukchi Sea and (B,D) the Bering Sea based on monthly climatological data. Gray thin straight
line is the linear regression line. Error bars denote ± 1 standard deviation. A two-dimensional median filter of 5 × 5 is applied to the Laplacians of ST and SLP.

Centers for Environmental Prediction (NCEP) (Saha et al.,
2010). The atmospheric model adopted in the CFSR had a high
horizontal resolution of approximately 38 km with 64 vertical
levels (T382L64). Observations were assimilated with a three-
dimensional variational method and CFSR data were produced
by an atmosphere-ocean-land coupled assimilation system. Note
that ocean STs were relaxed every 6 h to 0.25◦ daily mean
optimum interpolation values based on observations in order
to provide a stronger constraint on the sea surface. Sea ice
concentration was predicted in the forecast guess and assimilated
to obtain a realistic sea ice distribution. The CFSR successfully
reproduced the trends of sea ice extent, which was slightly
positive for the Antarctic and negative for the Arctic (Saha et al.,
2010). The horizontal resolution of the CFSR data released to the
public is 0.3125◦ for surface meteorological variables and heat
fluxes, 0.5◦ for vertical velocity and cloud water, and 1.0◦ for
diabatic heating rates. The author additionally used monthly data
of the Climate Forecast System version 2 (CFSv2) operational
analysis from April 2011 (Saha et al., 2014) to examine
temporal trends in see section“Temporal Trends.” Diabatic
heating data after 2010 are not released, therefore climatological

mean fields are investigated by using only the CFSR data
until 2010.

RESULTS

Distribution of ST, Sea Level Pressure,
and Surface Convergence
Here, the term “ST” refers to the surface temperature of water
or sea ice that is directly in contact with the atmosphere. Thus,
ST does not necessarily indicate the seawater temperature, but
excludes land surface temperature. In the climatological mean,
the Euclidean norm of the horizontal gradient of ST is the largest
in the zone around 72◦N east of Wrangel Island in the Chukchi
Sea, and along the shelf break over the continental shelf in the
Bering Sea (Figure 1A). (The Euclidean norm of gradient vector
is referred to simply as “gradient” hereafter in this manuscript.)
The ST gradient in the Chukchi Sea becomes obvious in July,
reaches its maximum in November, and begins to diminish from
December (Figure 1B). On the other hand, the ST over the
continental shelf in the Bering Sea is consistently lower than that
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in the southwestern basin (Aleutian Basin) (Figure 1C). The ST
contrast between the shelf and basin is lowest in July and August,
starts increasing from autumn, and reaches a peak in March,
when sea ice extends the furthest toward the shelf break. The
spatial distributions of the climatological means of surface wind
convergence and the Laplacians of ST and sea level pressure (SLP)
correspond well to each other (Figure 2). An intriguing feature is
that their spatial patterns clearly reflect the bottom topography of
the Bering Sea and their maxima lie along the shelf break. The
annual scatter plots between −52ST, 52SLP, and convergence
obtained from the monthly climatological data exhibit linear
relationships in both the Chukchi and Bering Seas, although these
relationships are slightly distorted and the dispersion is larger
in the Chukchi Sea (Figure 3). The good spatial agreement and
the linear relationship indicate that the PAM is effective (Minobe
et al., 2008; Shimada and Minobe, 2011). The Chukchi and Bering
Seas are discussed separately in the following subsections.

Chukchi Sea
In the Chukchi Sea, convergence of the 10-m-high wind increases
in October and November, but is close to zero or even negative
from January to September (Figure 4A). The seasonal cycles
of 52SLP and 52ST agree well with the cycle of convergence.
ST in the Chukchi Sea is highest in August, but its meridional
gradient peaks in November (Figure 4C). The direction of the
ST gradient vector in this region is northward in autumn. In
November, sea ice is already increasing, but does not completely
cover the surface, and the ST is still relatively high due to
warm water coming from the Bering Sea. Conversely, ST in
the region north of the Chukchi Sea drops below -20◦C, which
results in the largest gradient and Laplacian in November. From
December, the Chukchi Sea is filled with sea ice and the ST
substantially decreases.

Regarding the atmospheric responses to ST, the vertical
velocity and diabatic heating in the lower troposphere show the
same seasonal cycle as the surface convergence (Figure 5). Low-
level upward motion and diabatic heating develop in October
and November; however, these responses are restricted to the
boundary layer, unlike those in the Kuroshio and the Gulf
Stream. Sasaki et al. (2012) showed that the ascending motion
due to large diabatic heating extended to the upper troposphere
over the Kuroshio in the East China Sea in early summer. The
diabatic heating in the CFSR product consists of six components:
vertical diffusion, deep convection, shallow convection, large-
scale condensation, and solar and longwave radiation. The
diabatic heating over the Chukchi Sea shown in Figure 5b is
dominated by vertical diffusion (see Supplementary Figure 1).
Large-scale condensation is the second largest component, and
peaks in October (Figure 5c), which corresponds well to the
cloud water mixing ratio (Figure 5e). Condensation results in
low-level clouds between 950 and 800 hPa and evaporation cools
the near-surface air; longwave radiation also reflects this pattern
(Figure 5d). The other three components of diabatic heating are
negligible. Sensible and latent heat fluxes in the Chukchi Sea are
less than ± 20 W m−2 except in autumn, and both exceed 60 W
m−2 in October and November (Figure 5f), leading to large near-
surface diabatic heating. Basically the highly stable atmosphere

FIGURE 4 | Monthly climatology of 10-m-high wind convergence and the
Laplacians of ST and SLP averaged over the black-solid box area in Figure 2
in (A) the Chukchi Sea and (B) the Bering Sea. (C) Monthly climatological data
of ST averaged between 167.5 and 174.0◦W in the Chukchi Sea. Cyan
dashed line represents a temperature of -1.8◦C.

suppresses forcing from the sea surface. However, in October and
November, when the sea surface begins to freeze, the supply of
heat and water vapor from the surface increases drastically and
the heat flux gradients become large. As a result, low-level ascent

Frontiers in Marine Science | www.frontiersin.org 5 July 2021 | Volume 8 | Article 598981137

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-598981 July 20, 2021 Time: 15:45 # 6

Kawai Temperature Fronts in Chukchi/Bering Seas

FIGURE 5 | Seasonal variations of (a) vertical velocity, (b) total diabatic heating rate, (c) large-scale condensation component, (d) longwave radiation component,
(e) cloud water mixing ratio, and (f)surface turbulent heat fluxes averaged over the area of 68.0–72.5◦N, 167.5–174.0◦W (black solid box in Figure 2) in the Chukchi
Sea. Negative values in (a) indicate ascending motion. Black bold lines in (a–d) are zero contours.

and diabatic heating are organized over the Chukchi Sea, but do
not penetrate the stable polar atmosphere.

Bering Sea
According to the annual mean values, the surface convergence
and 52ST are largest over the shelf break. Surface winds
diverge over the continental shelf region (Figure 2A). Over
the shelf break region, the convergence and 52SLP exhibit

clear seasonality, being smaller in summer and larger in winter
(Figure 4B). 52ST over the shelf break is negative throughout
the year and especially large from January to April due to sea ice
extending over the continental shelf.

The convergence-divergence pattern across the ST front
corresponds to ascending motion over the shelf break and
descending motion on the northern side in the lower troposphere
(Figures 6a,c). This ascent-descent pattern becomes obvious in
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February and March (Figure 6b). The ascent that occurs in
November and December extends throughout the troposphere
across the shelf break, which is likely due to a synoptic-scale
phenomenon rather than surface forcing. While the minimum
of the climatological mean SLP is south off the Aleutian
Islands, far away from the shelf break in February-March, it
is located near the shelf break in November-December (see
Supplementary Figure 2). This implies that the formation of the
descending motion over the shelf tends to be suppressed by the
ascending motion near cyclone centers in November-December.
The mean meridional wind in winter is southward in the lower
troposphere and northward in the middle and upper troposphere
(Figure 6c). This spatial pattern of the meridional and vertical
velocity implies the formation of horizontal convection over the
continental shelf.

Diabatic heating is almost confined to the boundary
layer (Figure 7B) and determined by vertical diffusion (see
Supplementary Figure 3), similar to the Chukchi Sea. It peaks
in January and February (Figure 7A). Although the latent heat
flux is largest immediately above the shelf break, the sensible
heat flux and low-level diabatic heating peak over the continental
shelf approximately 200 km away, where the ice concentration
is approximately 15%, at the southern edge of the marginal ice
zone (Figure 7E). The contours of diabatic heating in the latitude-
altitude diagram slant northward, and diabatic heating at the
level of 900 hPa is largest over the shelf break (Figure 7B).
Large-scale condensation and the cloud water mixing ratio are
noticeable between 800 hPa and 900 hPa south of the shelf break
(Figures 7C,D).

DISCUSSION

Effect on Shortwave Radiation and
Precipitation Into the Ocean
Cloud water concentrates in the lower troposphere and exhibits
a clear contrast across the shelf break in the Bering Sea. Clouds
significantly affect shortwave radiation into the ocean. Figure 7D
suggests that the distribution of low-level clouds reflects that of
ST, whereby the horizontal gradient of cloud water below 700 hPa
is large along the shelf break from winter to summer (Figure 8),
although the meridional contrast vanishes in September to
December (Figure 8C). The spatial distribution of downward
shortwave radiation at the sea surface clearly reflects that of
the low-level cloud water mixing ratio (Figures 9A,B). As solar
radiation also depends on latitude, it exhibits a trough on the
southern side of the shelf break in the Aleutian Basin. The
precipitation rate also shows a contrast between the shallow shelf
region and the deep basin, and is slightly intensified over the shelf
break (Figures 9C,D).

As the wintertime oceanic mixed layer reaches the bottom
in the shallow continental shelf region (Kawai et al., 2018),
the mixed layer in the shelf region is cooled more than that
in the deep southwestern basin. In the Bering Sea, the bottom
topography regulates the upper ocean temperature and the
low-level atmosphere, as Xie et al. (2002) indicated for the
Yellow and East China Seas. The spatial distribution of low-level

FIGURE 6 | (a) Annual-mean climatology and (b) latitude-time section of
vertical velocity between 850 and 900 hPa. (c) Latitude-altitude section of
vertical velocity (color) and two-dimensional wind vector for February to
March. Scaling for the arrows is given near the upper-right corner in (c) (red
arrow, meridional and vertical components of 3.0 m s−1 and 1.0 × 10−2 Pa
s−1). Black bold lines in (b, c) are zero contours. The black dashed box in (a)
is the average domain for (b,c).

clouds that reflects the bottom topography then controls the
shortwave radiation entering the ocean. Photosynthetically active
radiation (PAR) is proportional to the shortwave radiation, and
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FIGURE 7 | (A) Latitude-time section of total diabatic heating averaged between 900 and 1,000 hPa, and altitude-latitude sections of (B) total diabatic heating, (C)
large-scale condensation component, and (D) cloud water mixing ratio over the Bering Sea (black dashed box in Figure 6A) for January to February. Black bold
lines in (A–C) are zero contours. (E) Sensible heat flux (bold line), latent heat flux (thin line), and sea ice concentration (dashed line) for January to February.

the characteristic pattern of incoming radiation will have an
impact on the marine ecosystem in the Bering Sea.

Vertical Mixing
The previous subsection described the PAM, but the
VMM is also effective. The spatial distribution of high-
pass-filtered ST and 10-m-high wind speed shows good

correspondence, albeit with some disagreement (Figure 10).
The wind speed anomalies are positive over the shelf break
and the southern Chukchi Sea, where ST exhibits warm
anomalies.

According to the diagnostics of Takatama et al. (2015),
although the PAM almost completely determines the surface
convergence, the surface curl is mainly accounted for by the
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FIGURE 8 | Climatology of the cloud water mixing ratio averaged between
700 and 1,000 hPa for (A) January to April and (B) May to August. (C) Cloud
water mixing ratio from 700 to 1,000 hPa averaged over the black dashed box
in (A,B) for January to April (black), May to August (red), and September to
December (blue).

VMM; this difference can be explained by the background
wind direction with respect to the ST front. Along-front (cross-
front) wind leads to wind stress curl (divergence) due to the

VMM (Chelton et al., 2004), and the PAM is independent
of the wind direction. Low-level geostrophic wind tends to
blow parallel to the ST front in the Chukchi Sea, and
perpendicular to the front in the Bering Sea (Figure 11A).
A downwind ST gradient –v10·5ST is observed over the
continental shelf near the shelf break in the Bering Sea, and
the crosswind ST gradient –v10 × 5ST is larger than –
v10·5ST in the Chukchi Sea (Figures 11B,C). Thus, the
contribution of downward momentum input to surface curl
is expected to be relatively large in the Chukchi Sea. The
convergence of downward momentum input by the VMM
also reinforces surface convergence in the Bering Sea, but
its relative contribution is small and the PAM dominates
surface convergence.

In this study, the effect of sea ice roughness is not examined.
A colder sea surface makes the atmosphere more stable and
the surface wind weaker. Larger friction over sea ice has the
same effect of reducing the near-surface wind speed. Hence,
it is expected that the contrast in the near-surface friction
across an ST front becomes much larger when sea ice exists
on the cold side, which magnifies both the VMM and PAM.
Sea ice roughness depends on factors such as the sea ice
concentration and the thickness and age of ice; however, the
effects of these factors on air-sea interactions are beyond the
scope of this study.

Temporal Trends
Linear trends were calculated for the period from 1979 to
2020. The trend of ST in the Chukchi Sea is striking around
75◦N in October and 72.5◦N in November (Figure 12A). As
a result, areas with a large ST gradient shifted northward
in October and November, and the gradient around 72.5◦N
became larger in December due to the delay and retreat of
sea ice formation (Figure 12C). In the Bering Sea, ST shows
warming trends in summer and autumn, and no significant
trend in winter and spring (Figure 12B). There is also
no clear trend in sea ice concentration (Figure 12D). (In
fact, cooling trend was seen in the northern shelf region in
winter for the period until 2010, the warming in the 2010s
obscured the trend.) Hereafter, the trend in the Chukchi
Sea is discussed.

Remarkable trends of cloud water are observed in October
and November (Figure 13A). Cloud water decreases near the
surface but increases above 900 hPa, indicating an increase
in the altitude of low-level clouds. This is consistent with
the observational results of Sato et al. (2012), who showed
that the base height of low-level clouds became higher as
a result of the Arctic warming. A vertical velocity trend is
observed near the surface in November and December, which
is related to the delay of sea ice extension (Figure 13B). In
October-November, the decrease of sensible heat flux in the
southern Chukchi Sea (Figure 14) corresponds to the delay of
freezing, suggesting that the atmospheric change led to the ocean
warming. The increases of upward and downward longwave
radiation at the surface balanced with each other south of
75◦N. Downward shortwave radiation slightly decreased, maybe
due to the change of low-level clouds. The positive trends
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FIGURE 9 | Climatology of (A,B) solar radiation at the sea surface and (C,D) precipitation rate for (A,C) January to April and (B,D) May to August. White lines are
depth contours of 200 m.

FIGURE 10 | Annual-mean climatology of spatially high-pass-filtered (A) ST and (B) 10-m-high wind speed. The high-pass-filtered anomaly is derived as the
deviation from the 5 × 5 grid mean. Black thin lines are depth contours of 200 m.

of sensible and latent heat fluxes in 72–77◦N, corresponding
to the northward shift of marginal ice zone, mean that the
warmed sea surface strengthened turbulent heat transfer to

the atmosphere, and the warm water inflow from the Pacific
Ocean (Shimada et al., 2006) would offset the surface heat
loss. In the region north of 78◦N, the changes of turbulent
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FIGURE 11 | Annual-mean climatology of (A) SLP, (B) sign-reversed
downwind ST gradient, and (C) sign-reversed crosswind ST gradient. The
intervals indicated by thin and bold contours in (A) are 1 and 5 hPa,
respectively.

heat fluxes were negligible and the increase of downward
longwave radiation was dominant. In summary, while the ocean
warming increased the heat release to the atmosphere in the

northern Chukchi Sea, downward radiation drove the ST rise
near the polar, which is consistent with the indication of
Lee et al. (2017).

Summary
It is expected that the horizontal temperature gradient will
increase substantially over the border between open water and
sea ice, similar to the ST fronts related to western boundary
currents in the mid latitudes; however, air-sea interaction from
the viewpoint of the ST front has seldom been investigated at
high latitudes. Therefore, this study examined the atmospheric
responses to ST in the Chukchi and Bering Seas, where
sea ice develops in the cold season, using a high-resolution
atmospheric reanalysis dataset. In the Chukchi Sea, ST peaks
in August, but its horizontal gradient becomes largest in
November. Convergence of 10-m-high wind is also large in
October and November, and approximately zero or negative
from January to September. On the other hand, there is
a clear contrast in ST between the continental shelf and
the southwestern deep basin of the Bering Sea throughout
the year, which develops in winter. The ST front shifts
southward as sea ice spreads over the shelf region, and
the front is located immediately above the northern flank
of the shelf break in March, when the marginal ice zone
extends furthest south. In both the Chukchi and Bering
Seas, the spatial distribution of surface wind convergence and
the Laplacians of ST and SLP agree well with each other,
which demonstrates an effective PAM. The VMM is also
confirmed in both seas.

Ascending motion and diabatic heating develop over the
Chukchi Sea in October and November, corresponding to
surface wind convergence; however, this response is confined
to the lower troposphere. Diabatic heating is dominated by
the vertical diffusion component. Turbulent heat fluxes at
the sea surface becomes especially large in late autumn,
when sea ice is increasing, resulting in the intensification
of heating and low-level clouds. Ascent is also strengthened
over the shelf break and a circulation pattern similar to
horizontal convection appears over the shelf in the Bering
Sea in late winter. Low-level clouds show a clear contrast
across the shelf break in the Bering Sea, and downward
solar radiation at the surface reflects the spatial pattern
of the clouds. The bottom topography regulates the ST
and affects clouds and incoming radiation through the ST.
During 1979–2020, the Arctic Ocean including the Chukchi
Sea experienced drastic warming and retreat of sea ice in
autumn, although the ST exhibited no clear trends in the
Bering Sea in the cold season. Over the Chukchi Sea, there
was a tendency for low-level clouds to rise in October
and November, which corresponded to the warming trend.
This is consistent with a previous study that analyzedin situ
observation data. The analysis of surface heat fluxes supported
the indication of previous study that while downward longwave
radiation was responsible for the ST increase near the polar,
the ocean warming increased turbulent heat fluxes in the
northern Chukchi Sea.
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FIGURE 12 | Latitude-time sections of (A,B) ST and (C,D) sea ice concentration trends for 1979–2020 in (A,C) the Chukchi Sea and (B,D) the Bering Sea. White
dots denote statistical significance at the 95% confidence level. Contours show climatologies of (A,B) ST and (C,D) sea ice concentration. The intervals indicated by
thin and bold contours are 2 and 20◦C in (A,B) and 5and 25% in (C,D), respectively.

FIGURE 13 | Trends of (A) cloud water mixing ratio and (B) vertical velocity
averaged over the area of 68.0–72.5◦N and 167.5–174.0◦W (black solid
rectangle in Figure 2A) in the Chukchi Seafor 1979–2020. Black bold lines
are zero contours. White dots in (A) and pluses in (B) denote statistical
significance at the 95 and 90% confidence level, respectively.

FIGURE 14 | Trends of surface heat fluxes averaged over the area of
167.5–174.0◦W in October-November for 1979–2020. Thick solid lines
denote statistical significance at the 95% confidence level, and thin chained
lines show no significance.

In the Chukchi and Bering Seas, the development of an ST
gradient and subsequent impacts on the atmosphere are regulated
by the season and bottom topography. This study only focused on
the local responses; their effects on a synoptic or larger scale and
their modulation under the Arctic warming should be analyzed
in future research.
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On the Treatment of Soil Water Stress
in GCM Simulations of Vegetation
Physiology
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5University of Groningen, Centre for Isotope Research, Groningen, Netherlands, 6Facultad de Ing. y Cs. Hídricas, Universidad
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United Kingdom

Current land surface schemes in weather and climate models make use of the so-called
coupled photosynthesis–stomatal conductance (A–gs) models of plant function to
determine the surface fluxes that govern the terrestrial energy, water and carbon
budgets. Plant physiology is controlled by many environmental factors, and a number
of complex feedbacks are involved, but soil moisture control on root water uptake is
primary, particularly in sub-tropical to temperate ecosystems. Land surface models
represent plant water stress in different ways, but most implement a water stress
factor, β, which ranges linearly (more recently also curvilinearly) between β � 1 for
unstressed vegetation and β � 0 at the wilting point, expressed in terms of volumetric
water content (θ). β is most commonly used to either limit A or gs, and hence carbon and
water fluxes, and a pertinent research question is whether these treatments are in fact
interchangeable. Following Egea et al. (Agricultural and Forest Meteorology, 2011, 151
(10), 1,370–1,384) and Verhoef et al. (Agricultural and Forest Meteorology, 2014, 191,
22–32), we have implemented new β treatments, reflecting higher levels of biophysical
complexity in a state-of-the-art LSM, Joint UK Land Environment Simulator, by allowing
root zone soil moisture to limit plant function non-linearly and via individual routes (carbon
assimilation, stomatal conductance, or mesophyll conductance) as well as any (non-linear)
combinations thereof. The treatment of β does matter to the prediction of water and
carbon fluxes: this study demonstrates that it represents a key structural uncertainty in
contemporary LSMs, in terms of predictions of gross primary productivity, energy fluxes
and soil moisture evolution, both in terms of climate means and response to a number of
European droughts, including the 2003 heat wave. Treatments allowing ß to act on
vegetation fluxes via stomatal and mesophyll routes are able to simulate the
spatiotemporal variability in water use efficiency with higher fidelity during the growing
season; they also support a broader range of ecosystem responses, e.g., those observed
in regions that are radiation limited or water limited. We conclude that current practice in
weather and climate modelling is inconsistent, as well as too simplistic, failing to credibly
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simulate vegetation response to soil water stress across the typical range of variability that
is encountered for current European weather and climate conditions, including extremes of
land surface temperature and soil moisture drought. A generalized approach performs
better in current climate conditions and promises to be, based on responses to recently
observed extremes, more trustworthy for predicting the impacts of climate change.

Keywords: photosyhthesis, soil moisture, stomatal conductance, internal CO2 concentration, heatwave 2003

INTRODUCTION

Water availability exerts a major control on vegetation gross
primary productivity (GPP), as well as on the land surface
energy balance. It has been estimated that ∼40% of the global
vegetated land surface, particularly in sub-humid, semi-arid, and
arid regions (Stocker et al., 2018; O’Sullivan et al., 2020),
experiences plant activity/growth limitations caused by seasonal
water deficits (Nemani et al., 2003; Beer et al., 2010). In the context
of future projections of ecosystem response, soil moisture stress is
predicted to increase over large regions (Berg et al., 2016; Ukkola
et al., 2020). Consequently, there is a clear requirement to
incorporate accurate, process-based models of plant response to
soil moisture stress in coupled land-atmosphere climate models.
However, the models currently used to represent biogeophysical
and biogeochemical processes in Earth System Models, or even
simpler GCMs, are often unable to properly capture observed
responses to soil moisture stress (e.g., Beer et al., 2010; Powell et al.,
2013; Medlyn et al., 2016; De Kauwe et al., 2017; Restrepo-Coupe
et al., 2017; Peters et al., 2018; Paschalis et al., 2020).

Plants respond to reductions in soil moisture content (SMC)
through a range of drought tolerance and prevention strategies; a
thorough review of the state of our knowledge of these processes is
provided in Harper et al. (2021). The immediate response is to
reduce physiological activity, which has consequences for primary
production and for transpiration. Land-atmosphere feedbacks
involving anomalously high near-surface vapor pressure deficit
and leaf boundary temperature (see e.g., Ball et al., 1987), further
exacerbate concurrent soil drought and atmospheric aridity (Zhou
et al., 2019). Such conditions are more likely when meteorological
drought occurs, often as a result of stagnant atmospheric
conditions (e.g., summertime blocking). Such events see a
reduction in carbon uptake, with possible consequences for
plant growth and below-ground carbon allocation, but also
increase the Bowen ratio, raise surface temperature and can
lead to further dessication of the soils, at a Clausius-Clapeyron
rate (see for instance the review in Seneviratne et al., 2010 and
Vargas Zeppetello et al., 2019).

Most land surface schemes do incorporate the process of
downregulation of photosynthesis, or of stomatal conductance,
but this is mostly done in a simplistic way and with a macroscale
approach; a review of the range of complexity is available in
Verhoef and Egea (2014). A typical LSM represents the
regulation of stomatal conductance as a simple generic function
of SMC, generally expressed in terms of volumetric water content
(θ, m3 m−3). This simple generic function is the so-called “beta”
function, where β is a factor between zero and one that limits

photosynthesis in some way (this depends on the LSM, see Section
2). Above a critical SMC, θc, there is no stress (β � 1), and below the
critical threshold value, stress increases as SMC decreases, until the
wilting point, θw, is reached (β � 0). Alternative, yet related,
expressions are available whereby stomatal regulation occurs
through changes in the soil matric potential, ψ (a measure of
how tightly the water is held in the soil pores, thereby affecting
water uptake by the roots), expressed in pressure units, such as
MPa. θ and ψ are closely related, via the water retention curve, and
some models emulate a ψ-type parametrization via a curvilinear
dependence on θ (see more details in Verhoef and Egea, 2014). It is
important to note, in this context, that the widely adopted linear
relationship in most LSMs simulates unrealistically low plants
resiliency to water stress in drought conditions (Niu et al.,
2020, as well as the discussion in; Verhoef and Egea, 2014).

A recent survey of land surface schemes currently in use in the
land surface processes community (available in Peters et al., 2018)
has indicated that three strategies, or pathways, exist: 1) those that
impose soil moisture stress by regulating stomatal conductance
(e.g., LPJ-GUESS, LPJ-C13, CLM); 2) those that impose soil
moisture stress by downregulating photosynthesis (e.g., SiB2,
CLM, JULES); 3) those that employ some form of control on
mesophyll conductance (e.g., SIBCASA, ORCHIDEE) and 4) those
that employ all strategies at once (e.g., SIBCASA, ORCHIDEE).
Table 1 provides a summary of the above and suggests that there is
currently no community consensus onwhat approach is to be used.
At the same time, Table 1 illustrates that individual research
groups have chosen the plant water stress strategy that best
suited their specific scientific objective (e.g., the simulation of
GPP), rather than choosing an approach that considers land
surface fluxes and processes in an interconnected way.

A different approach to modelling the stomatal response to
drought in LSMs is that based on plant hydraulics modelling (Eller
et al., 2020; Sabot et al., 2020). This approach offers a promising
and mechanistic alternative to the empirical β function approach,
but it still has some limitations for global and long-termmodelling
related to model parameterization and limited knowledge on plant
traits plasticity and acclimation (Anderegg and Venturas, 2020).

Themain research question in this paper is what impacts those
a-priori decisions on the “β pathway” have on the concurrent
prediction of the surface energy balance, of GPP and surface
temperature. A secondary question is whether, via triggering
feedbacks involving near-surface atmospheric conditions, the
choice of β pathway can alter the simulation of weather and
climate trajectories and, ultimately, have consequences for ESM
projections of climate change, particularly with regards to
extremes such as heatwaves.
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This study aims therefore to comparatively evaluate the
impact of the pathway between soil moisture stress and
vegetation function on the simulation of GPP and latent heat
flux (LE) for a range of biomes and climates in Europe, under
controlled conditions, enabling a direct comparison of the
different strategies. A further focus is the ratio of leaf-internal
to ambient CO2 (Ci/Ca, here denoted as χ), which relates the
assimilation rate to stomatal conductance (see for instance
Prentice et al., 2014; Dewar et al., 2018), as 1) it is observable,
even at the large scale, via the measurement of various isotopes; 2)
it can be used as a proxy for water use efficiency (see for instance
Peters et al., 2018) to confront model predictions; and 3) it has
been shown to be (weakly) dependent on atmospheric CO2

concentration (e.g. Lavergne et al., 2020), so a more robust
indicator of long-term vegetation function. For all these
reasons, χ must thus be thoroughly considered as a key
variable in the study of anthropogenic climate change, but
instead, it has been shown to be poorly represented by current
LSMs (see the discussion in Peters et al., 2018), particularly in
terms of (continental-scale) interannual variability.

The approach to the investigation is to adopt a generalized,
agnostic β approach in a state-of-the-art LSM, driven by
observed meteorology over a large region, and to focus on
simulation fidelity in terms of climate means and variability,
including the response to recent heat waves, particularly the
extreme heat wave of 2003. The study is organized as follows:
Introduction re-visits the Egea et al. (2011) solutions for aspects
that matter to coupling to a full Land Surface Model (LSM);
Methods describes Methods and Data used in the modelling
study; Results presents results for climate means (3.1), for a
composite of European droughts in the 1979–2011 period (3.2)
and for the extreme growing season of 2003 (3.3), to then move
into Europe-wide water use efficiency, first at the large scale level
(3.4), next a mechanistic analysis at the stomatal and PFT level
(3.5–3.6), to re-emerge to a scaling up of the results at European
level, based on the isotopic fractionation Δ metric from Peters
et al. (2018) in 3.7. Discussion discusses the implications of this
study for climate studies, revisits Peters et al. (2018) from the
perspective of model development, and suggests further avenues
for progress, particularly from the point of view of more efficient
numerical solutions; Summary and Conclusion provides
summary and conclusions.

Idealised Analytical Solutions
The study by Egea et al. 2011, (E11 hereafter) developed and
exploited analytical solutions for the simultaneous equation set
that governs the fast, dynamic evolution of assimilation (A),
stomatal conductance (gs) and leaf internal CO2 concentration
(Ci), the more dynamic component of χ, observed during the
diurnal cycle. Numerical solutions were based on an approach by
Baldocchi (1994), and eliminated the need for iteration, while
enabling complete freedom in the treatment of β. In order to
understand the results in this study, which moves beyond E11 in
implementing the framework into a full land surface simulation
scheme, offered by the JULES LSM, the E11 equations are first re-
visited in a highly idealized manner. This is a useful exercise,
because in coupling E11 to a land surface scheme such as JULES,
some feedbacks with the canopy environment become possible, at
least in part (when JULES is used offline, as driven by observed
meteorology) or more completely (when JULES is within the
parent HadGEM3-GC31 GCM), clouding our interpretation of
the primary chain of mechanisms and of the feedback responses.
This preliminary step is thus important, because it enables the
reader to better appreciate the motivation of the study, as well as
to build expectations for what understanding can be achieved at
this stage, prior to coupling to a complex land surface scheme, or
even to a GCM.

Figure 1 provides a conceptual-level prediction of the shape of
the functional relationships between soil moisture availability and
land surface prognostic variables, when applying the E11
framework to the coupled A-gs model contained in an LSM
such as JULES. The relative stomatal conductance, gs/gs(β � 1), is
shown on the x-axis, while relative assimilation, A/A(β � 1), is
shown on the y axis, where gs(β � 1) and A(β � 1) are the
unstressed stomatal conductance and assimilation, respectively. If
no other stress, or any feedbacks, are imposed, the relationship
should be linear, as in the typical Ball-Berry plot, and that linear
relationship is indicated by the black straight line. The three
panels in Figure 1 show, instead, the responses obtained in the
E11 framework: by imposing soil moisture stress (β) on the
stomatal conductance pathway (left panel, blue curve), a
curvilinear relationship is revealed, and this shape generally
implies a higher water use efficiency (WUE) at intermediate β
levels; the other two pathways (biochemical and mesophyll) show
no deviation from the linear relationship. Adding an idealized

TABLE 1 | different strategies for imposing soil moisture stress on plants, as used in a number of current Land Surface Models (adapted and expanded from Peters et al.,
2018).

LSM Stomatal Biochemical Mesophyll References

JULES v4.4 X Clark et al. (2011); Best et al. (2011)
LPJ-GUESS X Smith et al. (2001), Smith et al. (2014)
LPJ-C13 X Gerten et al. (2004); Sitch et al. (2003)
ORCHIDEE-MICT X X X Guimberteau et al. (2018)
CLM v4.5 X X Oleson et al. (2013)
SiBCASA X X X Schaefer et al. (2008)
SiB4 X Haynes et al. (2019)
NOAH-MP X X Niu et al. (2020)
VIC X Liang et al. (1994)
JSBACH X X Mäkelä et al. (2019)
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vapor pressure deficit (VPD) feedback term to E11 (center
panel, this is done by editing the leaf-level atmospheric input
file to the E11 model that increases VPD in proportion to 1/β),
causes no change in the stomatal pathway, but now causes the
two non-stomatal pathways to also become curvilinear, and to
partially emulate the stomatal pathway, with a higher WUE,
maximized near the β mid-range. The addition of a term that
emulates (leaf) temperature feedback (right panel, this is done
by increasing leaf temperature linearly by a factor proportional
to 1/β) further increases WUE (right panel) for all three
pathways. The rightmost panel is the one that most
resembles field observations under conditions of vegetation
stress, e.g., what is shown in E11 for some agricultural crops
in southern Spain.

Figure 2 shows the response of χ to relative stomatal aperture
(as directly caused by the soil moisture stress) for the three
pathways, under the same conditions imposed for Figure 1:

when no feedback with the atmosphere is allowed (left panel),
any of the non-stomatal routes show a very high value of χ under
stressed conditions, which results from the suppression of
assimilation, as directly caused by β. This is not observed in
the stomatal pathway, because stomata close, but assimilation
carries on unhindered by β, using CO2 inside the stomatal
chamber. The three pathways behave identically for unstressed
vegetation. When a VPD feedback is allowed (center panel), the
two non-stomatal pathways show a reduction of χ in the lower
range of stomatal conductance, while the stomatal pathway
solution resembles the one in the leftmost panel. The
introduction of a leaf temperature feedback (right panel) has
different effects on the biochemical and stomatal pathways: the
former returns to higher levels of χ for low stomatal conductance
conditions (strong soil moisture stress), while the latter shows a
reversal at low stomatal conductance levels, with χ increasing.
The latter is the response that most strongly resembles the field

FIGURE 1 | Idealized solutions provided by the Egea et al. (2011) model: relative stomatal conductance (gs/gs (β � 1), x axis) versus relative assimilation (A/A (β � 1),
y axis) for the three pathways and for zero feedback with the canopy air environment (left panel), VPD feedback with the canopy air environment (center panel) and VPD
plus leaf temperature feedback with the canopy air environment (right panel).

FIGURE 2 | Idealized solutions provided by the Egea et al. (2011) model: relative stomatal conductance (gs/gs (β � 1), x axis) versus internal CO2 concentration, Ci (y
axis, expressed asEq. 5) for the three pathways and for zero feedbackwith the canopy air environment (left panel), VPD feedbackwith the canopy air environment (center
panel) and VPD plus leaf temperature feedback with the canopy air environment (right panel).
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observations in E11, as well as those presented in Yan et al.
(2017).

These exploratory analyses strengthen the need for an
investigation of the E11 under conditions that more closely
resemble those of a GCM, albeit without incurring the
additional complexity of GCM errors in the surface energy
balance, which would hinder our understanding.

METHODS

The JULES Land Surface Component of
HadGEM3-GC31
JULES (the Joint United Kingdom Land Environment Simulator)
is based on the Hadley Centre land surface scheme MOSES2. Full
descriptions of JULES are provided in Best et al., 2011; Clark et al.,
2011. JULES simulates the exchange of water, momentum and
energy between the soil, land surface, and atmosphere. It is driven
by sub-daily (typically 3-hourly) time series of radiation,
precipitation, temperature, humidity, wind speed and surface
pressure. The soil is divided into layers, with the thermal and
hydraulic characteristics defined for all layers. It is important for
the interpretation of the experiments presented in this study to
note that the soil column in each grid box is vertically resolved by
four layers of increasing thickness, down to a total depth of 3 m.
Land surface tiles share a single soil column, and soil moisture is
thus shared across tiles in each grid box.

In its standard configuration, JULES divides the land-surface
into nine surface types: broadleaf trees, needle leaf trees, C3
(temperate) grass, C4 (tropical) grass, shrubs, urban, inland
water, bare soil, and ice. Crops are treated as grasses. Sub-grid
heterogeneity is represented by tiling of land-surface types (for
example, Essery et al., 2003). All land grid boxes can be made up
of any mixture of the nine land-surface types, except ice. The
surface fluxes of moisture and heat are computed individually for
each tile, and the state of the grid box is prognosed via the
aggregation of tiles fluxes.

The biophysical state of each vegetation tile is defined by its
leaf area index (LAI), canopy height and rooting depth. In the
JULES experiments presented in this study a seasonal vegetation
phenology, based on a MODIS climatology, is imposed at each
grid point, so that no aspect of dynamic vegetation is enabled; this
conscious decision imposes a buffering effect on the perturbation
experiments, but makes it easier to interpret the sensitivity to β
pathway, also because the dynamic vegetation aspects of JULES
have been tuned in the past for the biochemical β route.

The surface fluxes of moisture and heat in JULES depend on
the atmospheric boundary conditions and the characteristics of
the land surface. The fluxes are computed by a network of
parameterizations including soil surface, stomatal and
aerodynamic resistances. Stomatal resistance also controls the
intake of CO2, and is thus the link between the carbon, water and
energy cycles. The stomatal resistance parameterization (Cox
et al., 1998) depends on environmental conditions, including
the ambient concentration of CO2.

JULES calculates the photosynthesis rate using the method
described in Collatz et al. (1991) for the C3 pathway and

Collatz et al. (1992) for the C4 pathway. Potential
photosynthesis takes place at the minimum of three limiting
rates: light; enzyme kinematics (Rubisco); and the transport of
photosynthetic products. The potential photosynthesis is reduced
under water-stressed conditions by β, the soil moisture
availability factor. Photosynthesis is scaled from the leaf to the
grid box scale under the assumption that the rate of
photosynthesis is a function of the LAI.

The Implementation of a Flexible Treatment
of β Into JULES
The three equations that must be solved simultaneously in order
to produce land surface prognostics for temperature, moisture,
GPP, and relative fluxes to the atmosphere are:

A � c
(Cc − Γp)
(Cc + βA) (1)

gsc � g0 +m
A

(Cs − Γ)(1 + Ds
Dp) (2)

A � gt(Cs − Cc) (3)

In Eq. 1, for Rubisco-limited photosynthesis (Ac), c � Vcmax

and βA � Kc(1 + Oi/Ko); for Light-limited photosynthesis (Aj),
c � J/4 and βA � 2Γp, where Vcmax is the maximum carboxylation
rate (μmol m−2 s−1) and J is the electron transport rate (μmol
m−2 s−1), the Kc,o are the Michaelis-Menton kinetic factors for
carboxylation and oxygenation (Pa), Γ* is the chloroplastic CO2

photocompensation point in the absence of mitochondrial
respiration (μmol mol−1) and Cc is the chloroplastic CO2

concentration (μmol mol−1).
In Eq. 2 gsc (mol m−2 s−1) is the stomatal conductance to CO2,

g0 (mol m−2 s−1) is the cuticular conductance, Cs (μmol mol−1) is
the CO2 concentration at the leaf surface, Γ is the CO2

compensation point (μmol mol−1), Ds is the vapour pressure
deficit at the leaf surface,m is equal to 1/(1-f0) andD* isDmax/(m-
1); f0 and Dmax are the parameters defined by Jacobs et al. (1996).

In Eq. 3 gt (mol m−2 s−1) � (gsc · gm)/(gsc + gm), where gm is the
mesophyll conductance to CO2 diffusion (mol m−2 s−1).

In order to solve the simultaneous set above, the three
equations that describe A, gsc and gm as a function of Cc were
coupled together and solved for Cc, resulting in a cubic
relationship, which was solved using the Baldocchi (1994)
method. This approach is very flexible and removes the
requirement for iteration, which is computationally inefficient.
The mathematical details are fully explained in the
Supplementary Material section. Similar to the approach in
E11, the scheme was first tested at a small selection of
FLUXNET sites (not shown), e.g., for accuracy and for
numerical stability, but then applied to the regional distributed
simulations shown here.

In order to find solutions for the A-gs sub-model, enabling soil
moisture stress to impact the biochemical pathway (assimilation)
the conductance pathways (stomatal, mesophyll), or any
combinations thereof, the functional relationships, as in E11, are:

A � ApβB; gs � gsβS; gm � gmβM
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where β, as in E11, can be applied to any single pathway, or
combinations, or to all, with different shapes (linear or
curvilinear) and weights (see E11 for a large selection of tests).
The subscripts i,j � B, S and M correspond to biochemical,
stomatal, and mesophyll limitations, respectively (see Table 2).

The general expression for β, also enabling non-linear
dependence, is, as in E11:

βi �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 θ ≥ θc

[ θ − θw
θc − θw

]qj

θw < θ < θc

0 θ ≤ θw

(4)

where βi is a soil moisture dependent function ranging from 1 to
0. The subscript j for the qj exponent signifies that independent
functional shapes can be adopted in the definition of each βi,
enabling complete freedom for each pathway (see Table 2); for
further details, see the discussion, after Eq. 16, in E11.

Following E11, in order to test the relative influence of soil
moisture stress on canopy-atmosphere exchange processes, we
have set up Europe-wide JULES model experiments with the
following four model configurations, constituting four sensitivity
experiments.

Configuration QB fully corresponds in its design (application
to photosynthetic capacity) to that of the original JULES, and
could in principle be considered our control experiment. We have
chosen, however, to include an unmodified JULES integration
(CTL) in our analysis, as it was deemed useful in order to
understand the impact of using the analytic solution method
in E11 (see the full development in Additional Materials) and to
quantify any uncertainty. Configuration QS applies soil moisture
limitation stress to stomatal closure exclusively; configuration
QM applies soil moisture limitation stress to the mesophyll
conductance exclusively; C6, finally, applies soil moisture
limitation stress to all three pathways, albeit with differing
weights and functional shapes (see the motivation for these
choices in E11).

Experimental Design
We have configured a Europe-wide (35N–65N, 10W to 40E)
JULES (a full set was run with v2.2 initially, but for all results
presented here we have re-run with v4.4, Clark et al., 2011),
driven by meteorological data (net radiation, precipitation, wind,
reference height temperature and humidity; WATCH, Weedon
et al., 2011). The model grid configuration, in the horizontal and
vertical, is identical to that in Clark et al. (2011); model
parameters, in particular those controlling photosynthesis, are

also standard. Each grid point comprises 9 “tiles”, five of which
are plant functional types (PFTs), the others are ice, bare soil,
urban. The model is run continuously, at half-hourly time steps,
for 33 years, from 1979 to 2011. We apply an initial spin-up to
each simulation, to create 1979 balanced initial conditions for soil
prognostics; spin-up completion is governed by convergence of
soil moisture and soil temperature solution (to within 1%
between spin-up cycles). Typically, each model goes through
30 spin-up cycles of 10 years each, until full convergence, for a
maximum total of 300 years.

The E11 scheme was implemented as an alternative to the
standard A-gs scheme (see Cox et al., 1998), albeit only for C3
plants at this initial (developmental) stage. The abundance of C4
plants in the European domain chosen for this study is minimal
(mostly less than 10%, with only a single grid point found to be
dominant in Turkey) and any grid points containing a fraction of
C4 plants above 15% are discarded from the analysis presented in
this paper. This approach is fully consistent with our forcing of
the model using observed meteorology, by which individual grid
points are fully independent from each other (and tiles partially
so, because of the shared within-soil solutions), so that any tiles
potentially “contaminated” by C4 biophysics cannot contribute to
the evolution of fluxes in any neighboring grid cells. This is
because in the off-line setup there is no horizontal advection of air
between grid points. Future applications with the coupled GCM,
in which air can move freely between grid points, will require
development of an equivalent β pathway treatment for C4 plants.

Atmospheric CO2, thus Ca�Cs were fixed at 360 μmol mol−1

for the period.

Special High-Frequency Stomatal-Level
Diagnostics
New stomatal level diagnostics for Ci (also for leaf-level VPD, not
shown here), for each PFT, were introduced in JULES, in order to
study the evolution of χ in high detail (time-step level), and to
enable intrinsic Water Use Efficiency (iWUE) and isotopic
discrimination metric (Δ, ‰) diagnostics, see 2.6, to be used
for comparison with FLUXNET observations in the diurnal and
seasonal cycle of Ci(χ). The Ci equation is:

Ci � Cs − A
gsc

(5)

The equation used to estimate Δ from Ci is, as in Peters et al.
(2018):

Δ ≈ Δd + (Δp − Δd) Ci

Ca
(6)

where Δp (27‰) and Δd (4.4‰) are the isotopic discriminations
during assimilation catalysed by the enzyme Rubisco in C3
photosynthesis and molecular diffusion of CO2 through the
stomata, respectively.

iWUE ≈
ca · (1 − Ci

Ca
)

1.6
(7)

TABLE 2 | the configuration of the βi functions enabling the four sensitivity
experiments with JULES.

ß pathway QS QB QM C6

Biochemical exponent qj�B 0 1 0 0.25
Mesophyll exponent qj�M 0 0 1 0.5
Stomatal exponent qj�S 1 0 0 0.25
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These time-step level diagnostics of Ci and Δ, thus iWUE, were
next resampled to 3-hourly frequency for each PFT (5 in total in
this study), GPP-weighted as in observations, and for each grid
box in the domain. As such, the output is large, and more detailed
than what can be achieved in a GCM setting. The same high-
frequency diagnostics, for simulation QB, were used in Peters
et al. (2018). The ecosystem-level water use efficiency, eWUE, was
computed using the ratio of NPP and evapotranspiration from
grid-box daytime averages, as represented by 6-hourly model
statistics, then projected onto monthly means.

Observational Datasets Used for Model
Assessment
The FLUXCOM data were obtained from Jung et al. (2019) and
are used as monthly means over 0.5o grid boxes. While we realize
that FLUXCOM are not actually observations, it is often assumed,
for evaluation purposes, to be a suitable extrapolation of the
measured net ecosystem exchange from many eddy-covariance
sites across Europe. This also enables the study to be verified with
a relatively independent dataset (the version chosen upscales the
FLUXNET observations by using neural networks to combine it
with remote sensing and meteorological data, in this case also
WFDEI). This is the best compromise achievable in bridging the
field scale (FLUXNET towers) to the large scale used in this study,
without direct use of re-analysis products, which are strongly
model-dependent in terms of surface fluxes. The measurements
used as reference for iWUE are derived from FLUXNET data, as
described in Peters et al. (2018), Section S5, and summarized in
their Table S3. To compare these two better, relative changes in
‰ from the baseline (years 2002–2006) are shown in Results.
Averaging of Ci, thus iWUE, over time was also GPP-weighted,
such that high-photosynthesis hours are represented the most.

Definition of JULES Soil Moisture Droughts
for Masking of Regional Flux Averages
JULES soil moisture droughts are defined by the seasonal average
(AMJJAS) of the linearly calculated β anomaly (Δβ) at each grid
point, as deviations from the 1979–2011 climatology in CTL
(enabling a common comparison). A regional mask is
constructed from these Δβ for each year through a three-step
process, using a quantile approach. At first, drought thresholds
were calculated for each grid cell and each month as the 20th
percentile of daily β values using the CTL simulation.
Subsequently, differences between monthly averages of β and
monthly drought thresholds were summed up over the period
April to September for each grid cell and each year, and grid cells
were marked as dry for a particular year when this sum was
negative. Integrating over the period April to September, which
was selected based on GPP values, allows to capture droughts of
different intensities and durations, i.e., short, intense droughts as
well as prolonged, weaker droughts. Finally, drought masks were
created by selecting the largest connected area identified as dry
within the model domain for each year. These drought masks
were applied to all simulations, to guarantee consistency in spatial
averages across simulations.

RESULTS

All experiments (CTL, QB, QS, QM, C6) were spun-up
individually and run for the full period. However, in terms of
presentation, in order to reduce the number of plots and sub-
plots, CTL is only shown in terms of long-term soil moisture
memory, as QB is virtually identical to CTL in terms of land-
atmosphere fluxes. First the climatological biases of some
variables of interest will be shown, then the 2003 heat wave
response will be used as a surrogate for future climate conditions,
as suggested for instance in Schär et al. (2004), where it was
shown how the 2003 event represents an outlier for current
climate, but is, instead, compatible with a temperature
probability distribution function (PDF) extracted from climate
projections forced by a strong climate change scenario. For
completeness, we have also included a more general
assessment of all major droughts in the period.

Climatological Biases
All biases have been computed relative to FLUXCOM products
(Jung et al., 2019). Similar plots have also been produced with
alternative products in the ILAMB verification toolkit, but are not
shown here, as they would not bring extra information. The focus
for the fluxes is on the growing season (MAM + JJA), as autumn
and wintertime responses to the perturbation experiments are of
much smaller amplitude, but soil moisture will be shown over a
more extended period, because of soil moisture memory effects,
which are of interest.

Figure 3 shows the GPP climatological biases for experiments
QB, QS, and C6, which are the most salient. Overall, the figure
indicates that the QB model (nearly identical to CTL, not shown)
tends to overestimate European GPP in spring, particularly in
central Europe, which is made worse, and more widespread, by
QS and C6. In summer, following an overactive use of soil
moisture (mostly by vegetation) at the center of the domain,
the GPP tends to be underestimated by QB, as well as, in the
North and South of the domain, by QS and C6; there is a slight
overestimation at the center of the domain, and over the Alps.
The summer biases are sufficient to overwhelm the annual mean.

Figure 4 shows the LE response, which, to a large extent, reflects
the transpiration response, given the high vegetation fraction for
these large-scale experiments. For the three models, QB, QS, and
C6, latent heat tends to be overestimated in Spring nearly
everywhere in Europe, while for Summer a dipole emerges, with
a slight overestimation in North and Central Europe, but a
pronounced underestimation in Southern Europe, very likely due
to soil dessication. No significant differences are seen, however,
between QB and C6 in any of the seasons, which is an important
result in view of what has been found for the GPP response. Model
QS shows some indication of a bias reduction in the NE portion of
the domain, but a worsening in the SE (over Greece and Turkey).

Figure 5 shows the sensible heat flux (SH) response, which is
nearly insensitive to the model formulation in spring, and shows
small regional responses in summer, which mirror the responses
seen in the latent heat flux maps (Figure 4): this small response to
model formulation is again rather expected (because the model
was run with observed meteorology and is thus constrained) and
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rather reassuring, as in most years European plants are not water
stressed for periods of time long enough to impact climate means.

Figure 6 shows the available soil moisture response in terms of
the β factor in the soil: since it is a relative measure, and weighted
by layer thickness, it reflects the effect on the bulk of the roots for
the JULES vegetation (mostly forests and C3 grasses in this
European domain), with a possible buffering effect from the
deepest layer, which is more accessible to trees than grasses.
The response of each model is quite strikingly different: while QB

is virtually identical to CTL (some differences are expected, since
these are long-term spun-up experiments, and any numerical
residual would show strongly in a cumulative variable such as soil
moisture), the QM response is mostly a strong drying, seen in all
seasons, but with a strong North-West to South-East gradient.
The response of QS is, instead, a moistening, again with a strong
NW to SE gradient. The C6 response is, remarkably, nearly
identical to the QB (CTL) response, indicating that this
combined pathway for soil moisture impact on the surface

FIGURE 3 |Mean climatological bias for GPP in simulations QB, QS and C6 against FLUXCOM observations. MAM mean (top row) and JJA mean (bottom row).
Units: gC m−2 d−1.

FIGURE 4 | Same as Figure 3, albeit for latent heat. Units: W m−2.
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latent heat flux is nearly soil moisture neutral. These responses
are consistent with, and do help to interpret, the LE and SH
responses seen previously in Figures 4, 5, both in terms of the N-S
gradient and in terms of the seasonal evolution.

Response to Multiple Droughts in the
1979–2011 Period
Figure 7 shows a panoramic view of all droughts in Europe, with
different severities, both in terms of intensity (going as far as a Δβ
exceeding −0.3) and of spatial extent. Key drought years present
characteristics that are spatially consistent, indicative of a large-
scale atmospheric forcing, and often corresponding to heat waves,
such as 2003 and 2010, as discussed in Fischer et al. (2008) and in
Russo et al. (2015). Notable droughts in recent times are 1995
(United Kingdom and Spain), 1996 (North Europe), 2002
(Poland, Belarus), 2003 and 2011, over most of Western
Europe, 2005 (Spain) and 2010 (Russia, mostly outside the
domain). By using the mask constructed from Figure 7, it is
next possible to produce a synthesis plot that presents the
response to the treatment of β, for each year in which a
significant drought has been identified.

Figure 8 provides a synthesis of model behavior for 20 soil
moisture drought years, indicated by dots of different magnitude,
according to spatial extent and intensity, expanding from the
focus on the largest disturbance, 2003, which remains a
prominent benchmark in terms of area extent and intensity.
Figure 8 shows the summary of model flux errors, averaged
over each drought year, extracted from the data used for Figures
3–5 (and defined as difference from identically processed
FLUXCOM observations), against the annual AMMJAS Δβ.

Figure 8A shows that themajority of drought years correspond to
years of (overly) depressed GPP; however, the depressed vegetation

production response is strongly dependent on the treatment of β,
which can be appreciated by how clustered the coloured dots are, and
less dependent on the intensity of the drought, as the dots tend to be
organized in horizontal bands, rather than on a diagonal. Simulations
QS and C6 correspond to the data clusters with the least bias in GPP
for those soil moisture drought years, independent of location.

Figure 8B shows the errors in the evaporative fraction (EF),
which is included here to account for differences in the sum of SH
and LE between simulations and FLUXCOM products. The
errors are now aligned on a diagonal, with smaller values of
Δβ mostly corresponding to a negative bias (caused by a positive
error in SH and a negative error in LE, see Figure 8C, and
Figure 8D), and larger values of Δβ leading to a positive bias in
EF. Simulation QS is closest to EF observations for 2003, with
C6 second-best, albeit similar to QB, and with QM displaying the
largest bias. The small amplitude Δβ (negative EF bias) seem to
correspond to points in the Northern portion of the domain.

For LE flux, Figure 8C shows that the error metric is now
aligned on a diagonal (unlike GPP) and tends to be dominated by
the southern portion of the domain, where JULES strongly
underestimates LE in the climatology. As the drought severity
increases, the LE flux bias is reduced, suggesting that the LE
response to Δβ starts to plateau, and the model has an
opportunity to “catch up” to observations. There are
indications that QM, the most liberal treatment of β in terms
of soil water usage, has the least error overall, while QS, the most
conservative, is exaggerating the LE response, particularly at
moderate Δβ levels. Relative advantages are not so clear for
the other treatments (QB, C6), even for the largest events.

Figure 8D shows the error in SH as a function of Δβ, which is
aligned on a diagonal with slope opposite to the one for LE: SH is
strongly underestimated in severe drought cases, meaning that the
observed heating from the anomalous 2003 soil dessication is not

FIGURE 5 | Same as Figure 3, albeit for sensible heat. Units: W m−2.
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simulated faithfully, and slightly overestimated in moderate drought
cases. For this variable, simulation QM seems to be slightly worse
than the others for themost pronounced droughts (better skill for low
intensity droughts), while QS seems to have a small advantage overall
at medium Δβ levels; C6 is quite similar to QB in this respect.

The overall lesson is that, while GPP errors are affected
systematically by the choice of β treatment, the errors in
energy fluxes are shifted to different equilibria, reflecting
climatological shifts in soil moisture, and could be interpreted
as a near-neutral response.

Response to Extreme Atmospheric Forcing:
The European Heat Wave of 2003
Figure 9 shows the evolution of GPP during the 2003 summer
heat wave, as monthly means, from April to August, for
simulations QB, QS, and C6, the most interesting ones,

analyzed in terms of the evolution of model error (against
FLUXCOM). While it is well-known that Spring 2003 saw
clear skies and warmer conditions, leading to enhanced
vegetation activity while there was still ample soil moisture
availability, both QB and C6 exaggerate this response,
particularly over France and Germany, with C6 showing the
largest response in April, which implies a larger soil moisture
usage. This deficit can then lead, via soil memory, to a
suppressed GPP in each of the JJA months; in this respect,
C6 is an improvement over QB, as it is apparently able to
sustain a larger JJA GPP. Simulation QS is nearly identical to
C6, albeit with a slightly smaller amplitude for the JJA signal
for the Western Europe mean, therefore the smallest error
overall, while simulation QM (not shown) has a far smaller
response.

For latent heat flux during the Summer 2003 heat wave
(Figure 10), simulation C6 hardly shows any difference to

FIGURE 6 | Climatology of available soil moisture, as indicated by ß in each simulation, as compared to the control simulation (CTL). All values apply to the full soil
profile. ß is unitless.
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FIGURE 7 | Annual extent and intensity of drought anomalies across Europe in the period 1979–2011, as revealed by the ß factor in the JULES land surface model
(CTL experiment). ß is unitless.
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CTL (better evidenced in the soil moisture maps, Figures 6, 11),
while simulation QS displays a more interesting seasonal
behavior, with a regional worsening of the dry bias in Spain
and Eastern Europe (June), then in a region that covers
France, Germany and Poland by August. This indicates that
the enhanced GPP response in Spring has indeed
consequences for the water cycle, via soil moisture memory, so
that the errors in JJA are larger than for QB and C6. Simulation
QM (not shown) shows a similar, albeit even more pronounced
enhanced spring behavior, with a strong overestimation
throughout, particularly from May to July, in most of
central Europe, but then a relative reduction of the dry bias in
August. These behaviors might amplify and lead to far worse
summer conditions if the heat wave had been repeated in 2004
in this region.

Figure 11 reveals a soil moisture evolution for 2003 that
mostly explains the above results for GPP and latent heat.
Simulation QS is increasingly accumulating soil moisture in
the soil, in a rather linear way, from April to August, but this
is then reflected in too strong a limitation of transpiration, thus
latent heat, as will be shown in Figure 12. Simulation C6 is closest
to CTL, and demonstrates a neutral response to the soil moisture
stress, despite having achieved the best performance in terms of

the simulation of GPP in Figure 9. Simulation QM (not shown)
responds as an enhanced QS: starting from already dry
conditions, it develops a seasonally increasing drying in the
soil, which is compatible with too liberal a use of soil
moisture, e.g., for Eastern Europe in spring and summer.

Comparison of Ecosystem Water Use
Efficiency
Figure 12 shows a comparison of ecosystem water use efficiency
(eWUE, calculated here from NPP and evapotranspiration at
grid-box level) for the year 2003, one of the key years identified
in Peters et al. (2018), as a seasonal evolution. It is clear that, as
early as April, a large area of Europe experienced high eWUE, as
the atmosphere was clear and net radiation abundant, but
springtime soil moisture was already starting to become
depressed, as was seen in Figure 11. As the season evolved,
and assimilation (A) dropped due to increased plant water
stress, particularly for the southern part of the domain,
differences start to become obvious for the treatments
involving a stomatal conductance route: QS and C6 show a
clear advantage over the entire 45–60 latitude band, from May
to August. This is quite easy to explain for simulation QS, which

FIGURE 8 |Model errors in GPP (top left), evaporative fraction (top right), latent heat (bottom left) and sensible heat (bottom right) for the top ten droughts in Europe
in the period 1979–2011 identified via the mask developed from Figure 7.
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showed a large 2003 soil moisture surplus when compared to the
other simulations, but more subtle for simulation C6, which
shows virtually no change in soil moisture when compared to
CTL, and even to QB. The C6 response must then be explained

by changes in carbon assimilation, which must have become
more efficient. It remains to be seen whether this advantage
represents a realistic response, by further verification against
observations.

FIGURE 9 | Seasonal evolution of GPP response to the 2003 heat wave for simulation QB, QS, C6, as compared to FLUXCOM. The 2003 season starts at the top
row, with the April 2003 monthly mean response, and ends in August 2003, with the monthly mean response. Units: gC m−2 d−1.
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The Diurnal and Seasonal Cycles of
Stomatal Conductance
Figure 13 shows the diurnal and seasonal evolutions of stomatal
conductance for water vapor (gs) for a grid point in France nearest
the location of maximum heating in summer 2003, and for the

broadleaf land tile (the C3 grass response is very similar, albeit
less sharp). Time runs from 2002, near the bottom, to 2006 near
the top of each panel: 2002 was a relatively cold and wet summer
in this region, while 2003 experienced one of the worst summer
heat waves in recent times for this portion of Europe. By

FIGURE 10 | Seasonal evolution of Latent Heat Flux (LE) response to the 2003 heat wave for simulations QB, QS, C6 (as compared to FLUXCOM). The 2003
season starts at the top row, with the April 2003 monthly mean response, and ends in August 2003, with the monthly mean response. Units: W m−2.
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comparing the different responses, from left to right, pathway QB
sees a strong reduction in stomatal conductance in 2003, as
compared to 2002 and later years, in which a vegetation
recovery occurred. An even stronger response can be seen in
the second column, corresponding to pathway QS, which is easy
to understand from the point of view of the β (Eq. 4). The
mesophyll pathway (QM) shows the least reduction of stomatal
conduction in 2003, while C6 exhibits an interim response in
comparison to QB and QM.

The Diurnal and Seasonal Cycles of Ci(χ)
Figure 14 shows the diurnal and seasonal evolution of Ci for
the same grid point shown in Figure 12, which is fully
indicative of χ evolution, since reference level CO2 is
prescribed in these simulations, due to the atmosphere
being forced. The difference between the four different

simulations is striking, particularly for years in which plants
experienced strong environmental stress, such as 2003.
Simulation QS exhibits the strongest response: by closing
the stomata during periods of increased drying, such as
early 2003, the Ci level drops dramatically, as had been
anticipated in Figure 2. However, at the peak of the 2003
summer heat wave, during the late stage of the diurnal cycle,
when the soil moisture stress (and the mounting temperature
stress, which compounds the effect) starts to reach its peak, Ci

returns towards the Ca value (in the early morning and late
evening), because photosynthesis stops, also as seen previously
in Figure 2, due to a compound stress effect. Simulation C6
shows a response that is qualitatively similar, albeit with
smaller magnitude, while simulations QB and QM hardly
drop the Ci level at all, also consistent with what had been
seen in Figure 2.

FIGURE 11 |Seasonal evolution of available soil moisture response to the 2003 heat wave in all simulations, as compared to CTL. The 2003 season starts at the top
row, with the April 2003 monthly mean response, and ends in August 2003, with the monthly mean response. ß is unitless.
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Comparison With Intrinsic Water Use
Efficiency From FLUXNET Observations
It is expected that in years of drought vegetation stress will also be
revealed bymeasurements of isotopic discrminination, which was
the main topic of Peters et al. (2018). The mechanisms involved in
the process of photosynthesis favor the lighter 12CO2 molecule
over the heavier 13CO2 molecule, at several stages in the
mechanistic chain. This leads to ‘discrimination’: stressed
vegetation will present lower δ13C � 13C/12C values, relative to
the atmosphere, and the difference is denoted by the symbol Δ �
δ13Ca−δ13Cv (units of ‰). In JULES, Δ can be estimated
approximately, by using in Eq. 6, Methods. Supplementary
Figure S1 shows the domain average behavior of the four C3
vegetation types in the JULES experiments, as annual
anomalies for the year 2003. Because of drought stress, it is
expected that NPP will be reduced compared to other years,
and that Δwill be smaller, which is: see Figure S1 of Peters et al.
for the curve of Ci/Ca vs Δ, what is shown by observations and
by the model intercomparison in Peters et al. (2018).
Supplementary Figure S1 reveals that grasses suffer the
most during the severe drought year of 2003, with NPP
reductions of over 100 Tg C, while needleleaf trees are quite

resilient (also because they are mostly located outside the area
of drought, but a similar calculation with a drought mask
shows the same qualitative behavior). Simulation C6 shows the
least drop in NPP and the most realistic response in terms of
the combined NPP/Δmetric, as compared to the data in Peters
et al. (2018), with the anomaly in Δ reaching values of -0.15 for
grasses, while simulation QB tends to have a Δ closer to 0 or
above. It is next possible to plot the combined gridbox Δ data
on a map and to compare with observations.

Figure 15 shows a superposition of iWUE in observations
(Peters et al., 2018), and as produced by JULES, computed by
using Eq. 7, and using 3-hourly Ci at PFT level. The four panels
show the response (marked by dots and color-coded for change in
iWUE, as originally presented in Peters et al., 2018) over the
region mostly affected by the 2003 heat wave, namely Western
Europe, where iWUE reached a maximum, indicated by the green
color. The dots show data from point observations; the insets at
the top right of each panel show the PDF of values in the domain.
It is clear from the comparison of the four panels that the
biochemical pathway for β fails to simulate the high level of
iWUE reached by plants in Western Europe during the 2003 heat
wave. The β pathways that retain some level of control via
stomatal conductance are more realistic, with the C6

FIGURE 12 | Seasonal evolution of ecosystem Water Use Efficiency (eWUE) for simulation CTL, followed by the difference between each simulation (QB, QS, C6),
and CTL. Units are g C per kg of H20.
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(combined) pathway achieving the best match with observations,
as had shown by other case studies in Southern Spain (see E11).

The original multi-model presentation of this figure (see
Supplementary Material in Peters et al., 2018), indicated that
most LSMs struggle to simulate the shift to higher iWUE (greener
colors), which is summarized for the observation sites in the PDFs
in each inset. The original JULES-CTL had in fact failed to
capture both the magnitude and spatial extent of the impact,
similar to the QB simulation developed for this study, which
clearly missed the high level of iWUE reached by plants in
Western Europe during the 2003 heat wave, so that it was
replaced with configuration C6.

iWUE and eWUE originate at different scales in the model,
the first stomatal, via the Ci route, and the second involving
area averaging of carbon and water fluxes over each grid box,
weighted by PFT abundance, and are thus compared against

different types of observations. The consistency of the
improvement, from iWUE to eWUE, over a coarser scale
and over a larger domain, for well-observed events like
2003, gives us further confidence that our proposed
pathways strongly improve the JULES drought response,
not just for reductions in GPP and LE (achieved in all
schemes) but especially for their relative ratio (captured
best by the C6 configuration).

DISCUSSION

The E11 model was implemented in a state-of-the-art LSM,
JULES, now with complete freedom in enabling soil moisture
stress to limit photosynthesis (QB), stomatal conductance (QS) or
mesophyll conductance (QM), independent of any a-priori

FIGURE 13 | The diurnal and seasonal evolution of stomatal conductance (gs, m s−1) as filled contours for the JULES Plant Functional Type 1 (Broadleaf Trees) at a
grid point in France. The diurnal cycle (GMT hour) is shown on the x axis, while the seasonal cycle (indicated by years from 2002 to 2006, top) is shown on the y axis. The
four experiments are QB, QS, QM, and C6 in each column.
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assumptions on what are the controlling mechanisms and
pathways. A combined treatment (C6) was also tested, taken
from the E11 recommendations. A conscious decision was made,
at this stage, to choose a framework in which GCM biases in
surface energy balance would not cloud the investigation, thus
observed meteorology was used as a forcing. Additionally, the
parsimonious requirements for computational resources enabled
a broad set of experiments, including a lengthy LSM spin-up
(cycles up to 300 years) for each, could be made feasible, unlike in
a full GCM set-up. It has also to be remembered that, at this stage,
the solution algorithm has yet to be made efficient, and these
simulations, based on polynomial solutions, are slow, unsuitable
for a GCM environment.

The primary purpose of this LSM development was indeed to
answer the question of whether or not the a-priori decision of
implementing the β limitation on just one of the model
components, e.g., photosynthesis, as in models based on the
Collatz et al. (1991) formulation, has consequences for our
ability to credibly predict the future of land surface dynamics.
There is strong demand for predicting the fate of feedbacks
between the energy and water cycles (but including carbon
over longer periods), as triggered by soil moisture deficits, but
such an investigation must be carried out incrementally, with
many of the feedbacks purposefully disabled, in order to enable
clearer understanding.

The overall model sensitivity seems to be revealed more
systematically on the GPP side than on the energy fluxes, as
adjustments occur, as revealed by EF, also in response to long-
term soil moisture memory. This flux adjustment can be seen as a
reassuring result in this particularly constrained experimental
setup. Because of non-linearities in the system, models in which β
is applied to stomatal conductance tend to limit transpiration,
thus to conserve soil moisture, while only partially affecting GPP,
except perhaps in parts of Southern Europe at the end of summer.
Models in which β is applied to mesophyll conductance tend to
overuse soil moisture, creating a deficit, particularly evident in
semi-arid regions, and causing stress (from drought and heating)
at the end of summer, but this does not seem to have any effect on
GPP, implying that water use efficiency is increased in Southern
Europe.

Analysis focusing on the 2003 summer heat wave revealed
that the environmental stress, as an earlier and more intensive
use of soil moisture by evaporation across Europe, causes an
even stronger sensitivity response in the four models that have
been analyzed. While a negative bias in GPP is present in all
models, the 2003 heat wave is most credibly simulated by
applying the combined pathway (C6) for the months June,
July and August, despite an earlier overestimation of GPP.
The heat wave can, however, develop more severely (making
the dry bias even worse) when using models with β applied

FIGURE 14 | The diurnal and seasonal evolution of internal CO2 pressure (Ci, Pa) as filled contours for the JULES Plant Functional Type 1 (Broadleaf Trees) at a grid
point in France. The diurnal cycle (GMT hour) is shown on the x axis, while the seasonal cycle (indicated by years from 2002 to 2006, top) is shown on the y axis. The four
experiments are QB, QS, QM, and C6 in each column.
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directly to stomatal control, particularly in Southern Europe, or
be classified as less severe when using any models that involve
mesophyll conductance (e.g., QM, or even the more moderate
C6). It is unclear whether the more intensive water use incurred
by models including the mesophyll pathway would be
sustainable if the anomalously dry and warm conditions were
to last for more than 1 year, unlike what happened in post-2003:
for Europe winter precipitation is normally sufficient to
recharge soil moisture on an interannual basis, but this is not
true for other regions, e.g. for the Southern United States, which
has been experiencing multi-year drought conditions in
recent years.

For χ, the diurnal and seasonal behavior uncovered in the
latter part of the study are fully consistent with the expectations
raised by the idealized study in the introduction: during the heat
wave, enhanced stress conditions (e.g., at noon and/or at the peak
of summer) result in stomatal closure, which then results in a
strong reduction of χ, but does not necessarily need imply a direct
reduction of GPP, as caused instead by making the decisions,
conscious or not, of imposing β on carbon assimilation, as is done
in many second-generation LSMs. Comparisons provided in E11,
and many references therein, indicate that low levels of χ, made
possible in JULES with the new generalized analytical scheme, are
credible, and indicative of a correct chain of mechanisms.

A strong confirmation of this interpretation is the fact that
results of all experiments were now used to compute iWUE from
Ci, and showed that the C6 formulation performs comparatively
better against the data collected and analysed in Peters et al.
(2018) study, revealing a very realistic response of the model to
the 2003 perturbation, which seems governed by mechanisms at
the stomatal level, and primarily by the fast evolution of Ci. The
comparison of eWUE (performed on grid-scale variables) and
iWUE (performed at stomatal and PFT level Ci every 3 h) show
complete consistency and indicates that applying the β stress to
photosynthesis alone is unable to reproduce a credible vegetation
response to the large 2003 event, as well as, from the new analysis
in this study, to the other European droughts in the simulated
period.

It has also to be remembered that Ci can also be used to
compute the isotopic discrimination metric, Δ, and that in the
Peters et al. (2018) study JULES (in the C6 configuration)
performed best when assessed against independent isotopic
measurements, and against other models, some of which had
been specifically developed to simulate isotopic discrimination.
This further confirmation (and more analysis, see Supplementary
Material), via the Ci chain of mechanisms, indicates that Ci

dynamics is more credibly represented by allowing soil
moisture stress to affect all plant function at once, which has

FIGURE 15 |Water Use Efficiency anomaly for 2003 (Δ iWUE, %), as revealed by the Peters et al. (2018) dataset and as simulated by JULES using the four different
ß pathways.
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important implications for applications to studies of climate
variability and change including the carbon cycle.

There are, however, shortcomings in the adopted
methodology: it is impossible, with the current set of
experiments, driven by observed meteorology, to estimate the
full impact of the surface temperature feedback, because the
experimental setup only allows feedback to the leaf-level
temperature, but this is then nudged towards the value of the
atmospheric near-surface temperature, for each JULES model
time step in the 3-hourly meteorological forcing data intervals. If
anything, because of the use of observed meteorology as drivers,
the present results are indicative of a muted version of possible
land-atmosphere feedbacks that can be unleashed by choosing
one model configuration over another.

The impact of feedbacks would very likely be significantly
larger in a free-running GCM experiment. This may result in
more dramatic conclusions with respect to suitability for the
CMIP-type climate predictions, particularly if any form of
dynamic vegetation (e.g., dynamic phenology or phenology
plus competition) is taken into account, as the present results
indicate that soil moisture response is over large scales and long
time periods, thus with the potential for altering important
components of the terrestrial carbon cycle.

However, while the experiments in this study have
demonstrated that the generalized β scheme is fully functional
(and numerically stable), the solution scheme is more expensive (at
least a factor 3x) than the original JULES scheme, because of the use
of complex polynomials (see Supplementary Material), which are
onerous and hard to optimize, even with modern compilers.

A Practical Proposal for Future Solution
Schemes for the E11 Model
As discussed above, the new implementation of the E11 model,
now inside a state-of-the-art land surface scheme, JULES, was
successful, and the prognostics that are produced seem sound in
all respects. The scheme is, however, more expensive than the
original (iterative) scheme in JULES; this is currently untenable
for use in GCMs, but this study suggests that the same set of
experiments should now be run in a full GCM setting. In order to
find viable configurations, Supplementary Figure S2 in
Supplementary Materials suggests possible future avenues for a
more computationally parsimonious implementation. Starting
from the top, the standard JULES scheme is summarized, then
the E11 scheme implemented in this paper. Two further solution
schemes are proposed. The first one is inspired by a classic
forward-backward in time (FTBT) scheme, used in a variety of
ocean and atmospheric models (e.g. in WRF), either A or gs are
diagnosed at the start of each time step, and then a quadratic
equation for Cc is solved at each time step (depending on gs or A
on alternate time steps), which is cheaper than solving a cubic
equation. A second additional scheme is proposed, in which gs is
initially estimated as a simple prognostic (as in Sellers et al., 1996,
but also reminiscent of the modified Matsuno, 1966, scheme, in
which an initial Euler step precedes an imitation of an implicit
time scheme), leading again to a quadratic equation for the other
two variables. This implementation was successful in SiB2 and

also reduced fast time oscillations, which can potentially be
incurred by FTBT-type schemes. This same approach could in
the future be applied to the prediction of χ, or to Cc.

Once a suitable numerical implementation is found, with
computational costs comparable to the standard JULES scheme,
and once a C4 scheme for the β pathway is developed, it will be
possible to run the same type of experiment in the HadGEM3-
GC31 GCM, albeit only for the most promising configuration,
C6, given the large computational costs involved.

SUMMARY AND CONCLUSION

Wehave implemented the generalized, analytical and simultaneous
soil water stress scheme of Egea et al. (2011) into a state-of-the-art
land surface model, JULES, which can be used at multiple scales,
including global offline and coupled to the HadGEM3 GCM. In
this study, we have chosen to focus on the European region, and to
drive JULES with observedmeteorology, in order to retain a degree
of control on feedbacks and to enable comparison with the
standard (CTL) JULES configuration. The implementation
required the development of a new solution set for the three
simultaneous equations that are used to prognose A, gs, and Cc.
A further development in Egea et al. (2011) that was implemented
in JULES is the inclusion of mesophyll conductance. The new
prognostic scheme was shown to be successful and to enable
complete freedom in imposing soil water stress, β, via any
pathways (stomatal, biochemical, mesophyll) or any
combinations thereof, including non-linear relationships
between soil moisture values and β.

Results show that the treatment of soil moisture stress matters
to the simulation of land surface climate in Europe, particularly for
summer, but even extending into Spring and Autumn. All land
surface prognostics are affected by the choice of β pathway, but
particularly those controlling water and carbon fluxes between the
land and the atmosphere, as well as soil moisture dynamics, which
shows a cumulative effect, with strong depletion if a mesophyll
conductance pathway is chosen, and strong surplus (particularly in
the Southern part of the domain) if a stomatal pathway is chosen.
Seasonal and climatological feedbacks between soil moisture levels
and land surface fluxes are then triggered.

Responses to the drought involved in the exceptional 2003
summer heat wave, also expanded to other droughts in the last
30 years, demonstrate how important vegetation function
feedbacks, from intra-seasonal to interannual, can be initiated
even in a modelling framework in which the atmospheric signal
is imposed. Under such conditions, it has been shown that models
including a stomatal pathway can reach very low levels of stomatal
conductance, accompanied by very low, and realistic, χ levels,
which result in more realistic simulation of intrinsic and ecosystem
Water Use Efficiency, as well as, via a specific metric of isotopic
fractionation (Δ), large scale anomalies in vegetation activity. This
skill in representing the chain of mechanisms involved in drought
response is not normally seen in LSMs, suggesting that the realistic
prediction of the feedbacks involved in changes in the carbon cycle
requires re-visiting some of the most fundamental assumptions in
LSMs used for climate prediction.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 68930120

Vidale et al. Vidale Soil Water Stress GCMs

166

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

PV, GE and AV designed the experiments. GE and PV
implemented the E11 model into JULES, which required the
development of new numerical solution methods (see
Supplementary Materials), mostly accomplished by GE. PV
and BB-S ran all experiments with JULES 2.2; PV then re-
ported the E11 model to the more recent JULES 4.4 and ran
initial quality assurance and stability experiments, but PM
finally completed the full set of experiments presented in this
article. MT and OM performed the analysis of climatological
biases and variability; MT produced the analysis of drought
years and the synthesis of annual GPP responses, as well as
revised energy flux figures. PV conducted the idealised WUE
and χ analyses at the start of the article and wrote the diagnostic
code for Ci, VPD and T* at stomatal and PFT levels. WP helped
with the water-use efficiency analysis and provided comments
on the text.

FUNDING

This research has been supported by the Horizon 2020
programme: PRIMAVERA (grant no. 641727), the National
Environmental Research Council (NERC), United Kingdom
Earth System Modelling (grant no. NE/N017951/1) and by

NERC grant IMPETUS (NE/L010488/1). WP acknowledges
funding from the H2020 ERC project ASICA (grant no. 649087).

ACKNOWLEDGMENTS

PLV and PM acknowledge the NERC-Met Office HRCM
research programme and the EU-Horizon2020
PRIMAVERA programme. MT and PM acknowledge the
CSSP Porcelain grant. GE acknowledges the award of a
postdoctoral fellowship from Fundación Ramón Areces
(Madrid, Spain) and support from the University of
Seville. We kindly acknowledge the contributions from
Mr E. van Schaik to the research presented. This work
used eddy covariance data acquired by the FLUXNET
community. We acknowledge the financial support to the
eddy covariance data harmonization provided by
CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck
Institute for Biogeochemistry, National Science
Foundation, University of Tuscia, Université Laval and
Environment Canada, and US Department of Energy and
the database development and technical support from
Berkeley Water Center, Lawrence Berkeley National
Laboratory, Microsoft Research eScience, Oak Ridge
National Laboratory, University of California Berkeley,
University of Virginia.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2021.689301/
full#supplementary-material

REFERENCES

Anderegg, W. R. L., and Venturas, M. D. (2020). Plant Hydraulics Play a Critical
Role in Earth System Fluxes. New Phytol. 226, 1535–1538. doi:10.1111/
nph.16548

Baldocchi, D. (1994). An Analytical Solution for Coupled Leaf Photosynthesis and
Stomatal Conductance Models. Tree Physiol. 14, 1069–1079. doi:10.1093/
treephys/14.7-8-9.1069

Ball, J. T., Woodrow, I. E., and Berry, J. A. (1987). “A Model Predicting Stomatal
Conductance and its Contribution to the Control of Photosynthesis under
Different Environmental Conditions,” in Progress in Photosynthesis Research.
Editor J. Biggens (Dordrecht: Martinus Nijhoff), IV, 221–224. doi:10.1007/978-
94-017-0519-6_48

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al.
(2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and
Covariation with Climate. Science 329, 834–838. doi:10.1126/science.1184984

Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S. I., van den Hurk, B.,
et al. (2016). Land-atmosphere Feedbacks Amplify Aridity Increase over Land
under Global Warming. Nat. Clim Change 6, 869–874. doi:10.1038/
nclimate3029

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B.,
et al. (2011). The Joint UK Land Environment Simulator (JULES), Model
Description - Part 1: Energy and Water Fluxes. Geosci. Model. Dev. Discuss. 4,
595–640. doi:10.5194/gmdd-4-595-2011

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., et al.
(2011). The Joint UK Land Environment Simulator (JULES), Model

Description - Part 2: Carbon Fluxes and Vegetation Dynamics. Geosci.
Model. Dev. 4, 701–722. doi:10.5194/gmd-4-701-2011

Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A. (1991). Physiological and
Environmental Regulation of Stomatal Conductance, Photosynthesis and
Transpiration: a Model that Includes a Laminar Boundary Layer. Agric. For.
Meteorol. 54, 107–136. doi:10.1016/0168-1923(91)90002-8

Collatz, G., Ribas-Carbo, M., and Berry, J. (1992). Coupled Photosynthesis-
Stomatal Conductance Model for Leaves of C4 Plants. Funct. Plant Biol. 19,
519–538. doi:10.1071/pp9920519

Cox, P. M., Huntingford, C., andHarding, R. J. (1998). A Canopy Conductance and
Photosynthesis Model for Use in a GCM Land Surface Scheme. J. Hydrol. 212-
213, 79–94. doi:10.1016/S0022-1694(98)00203-0

De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al.
(2017). Challenging Terrestrial Biosphere Models with Data from the Long-
Term Multifactor Prairie Heating and CO 2 Enrichment experiment. Glob.
Change Biol. 23, 3623–3645. doi:10.1111/gcb.13643

Dewar, R., Mauranen, A., Mäkelä, A., Hölttä, T., Medlyn, B., and Vesala, T. (2018).
New Insights into the Covariation of Stomatal, Mesophyll and Hydraulic
Conductances from Optimization Models Incorporating Nonstomatal
Limitations to Photosynthesis. New Phytol. 217, 571–585. doi:10.1111/
nph.14848

Egea, G., Verhoef, A., and Vidale, P. L. (2011). Towards an Improved and More
Flexible Representation of Water Stress in Coupled Photosynthesis-Stomatal
Conductance Models. Agric. For. Meteorol. 151 (10), 1370–1384. doi:10.1016/
j.agrformet.2011.05.019

Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., et al.
(2020). Stomatal Optimization Based on Xylem Hydraulics (SOX) Improves

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 68930121

Vidale et al. Vidale Soil Water Stress GCMs

167

https://www.frontiersin.org/articles/10.3389/fenvs.2021.689301/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2021.689301/full#supplementary-material
https://doi.org/10.1111/nph.16548
https://doi.org/10.1111/nph.16548
https://doi.org/10.1093/treephys/14.7-8-9.1069
https://doi.org/10.1093/treephys/14.7-8-9.1069
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1126/science.1184984
https://doi.org/10.1038/nclimate3029
https://doi.org/10.1038/nclimate3029
https://doi.org/10.5194/gmdd-4-595-2011
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1016/0168-1923(91)90002-8
https://doi.org/10.1071/pp9920519
https://doi.org/10.1016/S0022-1694(98)00203-0
https://doi.org/10.1111/gcb.13643
https://doi.org/10.1111/nph.14848
https://doi.org/10.1111/nph.14848
https://doi.org/10.1016/j.agrformet.2011.05.019
https://doi.org/10.1016/j.agrformet.2011.05.019
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Land Surface Model Simulation of Vegetation Responses to Climate. New
Phytol. 226, 1622–1637. doi:10.1111/nph.16419

Essery, R., Pomeroy, J., Parviainen, J., and Storck, P. (2003). Sublimation of Snow
from Coniferous Forests in a Climate Model. J. Clim. 16 (11), 1855–1864.
doi:10.1175/1520-0442(2003)016<1855:sosfcf>2.0.co;2

Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A Biochemical Model
of Photosynthetic CO2 Assimilation in Leaves of C3 Species. Planta 149, 78–90.
doi:10.1007/bf00386231

Farquhar, G., andWong, S. (1984). An Empirical Model of Stomatal Conductance.
Funct. Plant Biol. 11, 191–209. doi:10.1071/pp9840191

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S. (2004).
Terrestrial Vegetation and Water Balance-Hydrological Evaluation of a
Dynamic Global Vegetation Model. J. Hydrol. 286, 249–270. doi:10.1016/
j.jhydrol.2003.09.029

Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Yue, C., Dantec-Nédélec, S.,
et al. (2018). ORCHIDEE-MICT (v8.4.1), a Land Surface Model for the High
Latitudes: Model Description and Validation. Geosci. Model. Dev. 11, 121–163.
doi:10.5194/gmd-11-121-2018

Harper, A. B., Williams, K. E., McGuire, P. C., Duran Rojas, M. C., Hemming, D.,
Verhoef, A., et al. (2021). Improvement of Modelling Plant Responses to Low
Soil Moisture in JULESvn4.9 and Evaluation against Flux tower
Measurements. Geosci. Model. Dev. 14 (6), 3269–3294. doi:10.5194/gmd-
2020-273

Haynes, K. D., Baker, I. T., Denning, A. S., Stöckli, R., Schaefer, K., Lokupitiya, E.
Y., et al. (2019). Representing Grasslands Using Dynamic Prognostic Phenology
Based on Biological Growth Stages: 1. Implementation in the Simple Biosphere
Model (SiB4). J. Adv. Model. Earth Syst. 11 (12), 4423–4439. doi:10.1029/
2018ms001540

Jacobs, C. M. J., Van den Hurk, B. M. M., and de Bruin, H. A. R. (1996). Stomatal
Behaviour and Photosynthetic Rate of Unstressed Grapevines in Semi-arid
Conditions. Agric. For. Meteorol. 80, 111–134. doi:10.1016/0168-1923(95)
02295-3

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., et al. (2019).
The FLUXCOM Ensemble of Global Land-Atmosphere Energy Fluxes. Sci.
Data 6, 74. doi:10.1038/s41597-019-0076-8

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). A Simple
Hydrologically Based Model of Land Surface Water and Energy Fluxes for
General Circulation Models. J. Geophys. Res. 99 (D7), 14415–14428.
doi:10.1029/94JD00483

Mäkelä, J., Knauer, J., Aurela, M., Black, A., Heimann, M., Kobayashi, H., et al.
(2019). Parameter Calibration and Stomatal Conductance Formulation
Comparison for Boreal Forests with Adaptive Population Importance
Sampler in the Land Surface Model JSBACH. Geosci. Model. Dev. 12 (9),
4075–4098. doi:10.5194/gmd-12-4075-2019

Matsuno, T. (1966). Numerical Integrations of the Primitive Equations by a
Simulated Backward Difference Method. J. Meteorol. Soc. Jpn. 44, 76–84.
doi:10.2151/jmsj1965.44.1_76

Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K.,
et al. (2016). Using Models to Guide Field Experiments: A Priori Predictions for
the CO 2 Response of a Nutrient andWater-Limited Native Eucalypt woodland.
Glob. Change Biol. 22, 2834–2851. doi:10.1111/gcb.13268

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C.
J., et al. (2003). Climate-Driven Increases in Global Terrestrial Net Primary
Production from 1982 to 1999. Science 300, 1560–1563. doi:10.1126/
science.1082750

Niu, G. Y., Fang, Y. H., Chang, L. L., Jin, J., Yuan, H., and Zeng, X. (2020).
Enhancing the Noah-MP Ecosystem Response to Droughts with an Explicit
Representation of Plant Water Storage Supplied by Dynamic Root Water
Uptake. J. Adv. Model. Earth Syst. 12 (11), e2020MS002062. doi:10.1029/
2020ms002062

Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D.,
et al. (2013). Technical Description of Version 4.5 of the Community Land
Model (CLM), NCAR Earth System Laboratory – Climate and Global
Dynamics Division. Technical Report. Boulder, Colorado, USA. TN-503+STR.

Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., et al.
(2020). Rainfall Manipulation Experiments as Simulated by Terrestrial
Biosphere Models: Where Do We Stand? Glob. Change Biol. 26, 3336–3355.
doi:10.1111/gcb.15024

Peters, W., van der Velde, I. R., van Schaik, E., Miller, J. B., Ciais, P., Duarte, H. F.,
et al. (2018). Increased Water-Use Efficiency and Reduced CO2 Uptake by
Plants during Droughts at a continental Scale. Nat. Geosci. 11, 744–748.
doi:10.1038/s41561-018-0212-7

Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H.
M. A., Rowland, L., et al. (2013). Confronting Model Predictions
of Carbon Fluxes with Measurements of Amazon Forests Subjected
to Experimental Drought. New Phytol. 200, 350–365. doi:10.1111/
nph.12390

Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J. (2014).
Balancing the Costs of Carbon Gain and Water Transport: Testing a New
Theoretical Framework for Plant Functional Ecology. Ecol. Lett. 17, 82–91.
doi:10.1111/ele.12211

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989).
Numerical Recipes: The Art of Scientific Computing. Cambridge, U.K.:
Cambridge University Press, 992.

R Development Core Team (2010). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. Available
at: http://www.R-project.org (ISBN 3-900051-07-0.

Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J.,
Costa, M. H., et al. (2017). Do dynamic Global Vegetation Models
Capture the Seasonality of Carbon Fluxes in the Amazon basin? A Data-
Model Intercomparison. Glob. Change Biol. 23, 191–208. doi:10.1111/
gcb.13442

Russo, S., Sillmann, J., and Fischer, E. M. (2015). Top Ten European Heatwaves
since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 10
(12), 124003. doi:10.1088/1748-9326/10/12/124003

Sabot, M. E. B., De Kauwe, M. G., Pitman, A. J., Medlyn, B. E., Verhoef, A., Ukkola,
A. M., et al. (2020). Plant Profit Maximization Improves Predictions of
European forest Responses to Drought. New Phytol. 226, 1638–1655.
doi:10.1111/nph.16376

Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I., Berry, J., et al.
(2008). Combined Simple Biosphere/Carnegie-Ames-Stanford Approach
Terrestrial Carbon Cycle Model. J. Geophys. Res. 113, G03034.
doi:10.1029/2007JG000603

Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., et al. (2004).
The Role of Increasing Temperature Variability in European Summer
Heatwaves. Nature 427, 332–336. doi:10.1038/nature02300

Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A.,
et al. (1996). A Revised Land Surface Parameterization (SiB2) for Atmospheric
GCMS. Part I: Model Formulation. J. Clim. 9, 676–705. doi:10.1175/1520-
0442(1996)009<0676:arlspf>2.0.co;2

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al.
(2010). Investigating Soil Moisture-Climate Interactions in a Changing
Climate: A Review. Earth Sci. Rev. 99, 125–161. doi:10.1016/
j.earscirev.2010.02.004

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al.
(2003). Evaluation of Ecosystem Dynamics, Plant Geography and
Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation
Model. Glob. Change Biol. 9, 161–185. doi:10.1046/j.1365-
2486.2003.00569.x

Smith, B., Prentice, I. C., and Sykes, M. T. (2001). Representation of
Vegetation Dynamics in the Modelling of Terrestrial Ecosystems:
Comparing Two Contrasting Approaches within European Climate
Space. Glob. Ecol Biogeogr. 10, 621–637. doi:10.1046/j.1466-
822x.2001.00256.x

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., et al. (2014).
Implications of Incorporating N Cycling and N Limitations on Primary
Production in an Individual-Based Dynamic Vegetation Model.
Biogeosciences 11, 2027–2054. doi:10.5194/bg-11-2027-2014

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Peñuelas, J., and
Seneviratne, S. I. (2018). Quantifying Soil Moisture Impacts on Light Use
Efficiency across Biomes. New Phytol. 218, 1430–1449. doi:10.1111/
nph.15123

Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman, A.
J. (2020). Robust Future Changes in Meteorological Drought in CMIP6
Projections Despite Uncertainty in Precipitation. Geophys. Res. Lett. 47,
e2020GL087820. doi:10.1029/2020GL087820

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 68930122

Vidale et al. Vidale Soil Water Stress GCMs

168

https://doi.org/10.1111/nph.16419
https://doi.org/10.1175/1520-0442(2003)016<1855:sosfcf>2.0.co;2
https://doi.org/10.1007/bf00386231
https://doi.org/10.1071/pp9840191
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://doi.org/10.5194/gmd-11-121-2018
https://doi.org/10.5194/gmd-2020-273
https://doi.org/10.5194/gmd-2020-273
https://doi.org/10.1029/2018ms001540
https://doi.org/10.1029/2018ms001540
https://doi.org/10.1016/0168-1923(95)02295-3
https://doi.org/10.1016/0168-1923(95)02295-3
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1029/94JD00483
https://doi.org/10.5194/gmd-12-4075-2019
https://doi.org/10.2151/jmsj1965.44.1_76
https://doi.org/10.1111/gcb.13268
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
https://doi.org/10.1029/2020ms002062
https://doi.org/10.1029/2020ms002062
https://doi.org/10.1111/gcb.15024
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.1111/nph.12390
https://doi.org/10.1111/nph.12390
https://doi.org/10.1111/ele.12211
http://www.R-project.org
https://doi.org/10.1111/gcb.13442
https://doi.org/10.1111/gcb.13442
https://doi.org/10.1088/1748-9326/10/12/124003
https://doi.org/10.1111/nph.16376
https://doi.org/10.1029/2007JG000603
https://doi.org/10.1038/nature02300
https://doi.org/10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2
https://doi.org/10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1466-822x.2001.00256.x
https://doi.org/10.1046/j.1466-822x.2001.00256.x
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.1111/nph.15123
https://doi.org/10.1111/nph.15123
https://doi.org/10.1029/2020GL087820
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Vargas Zeppetello, L. R., Battisti, D. S., and Baker, M. B. (2019). The Origin of Soil
Moisture Evaporation “Regimes”. J. Clim. 3232 (20), 6939–6960. Retrieved
from: https://journals.ametsoc.org/view/journals/clim/32/20/jcli-d-19-0209.1.
xml. doi:10.1175/jcli-d-19-0209.1

Verhoef, A., and Egea, G. (2014). Modeling Plant Transpiration under Limited Soil
Water: Comparison of Different Plant and Soil Hydraulic Parameterizations
and Preliminary Implications for Their Use in Land Surface Models. Agric. For.
Meteorol. 191, 22–32. doi:10.1016/j.agrformet.2014.02.009

Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H.,
et al. (2011). Creation of the WATCH Forcing Data and its Use to Assess
Global and Regional Reference Crop Evaporation over Land during the
Twentieth Century. J. Hydrometeorol. 12 (5), 823–848. doi:10.1175/
2011jhm1369.1

Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S., et al.
(2019). Land-atmosphere Feedbacks Exacerbate Concurrent Soil Drought and
Atmospheric Aridity. Proc. Natl. Acad. Sci. USA 116 (38), 18848–18853.
doi:10.1073/pnas.1904955116

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Vidale, Egea, McGuire, Todt, Peters, Müller, Balan-Sarojini and
Verhoef. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 68930123

Vidale et al. Vidale Soil Water Stress GCMs

169

https://journals.ametsoc.org/view/journals/clim/32/20/jcli-d-19-0209.1.xml
https://journals.ametsoc.org/view/journals/clim/32/20/jcli-d-19-0209.1.xml
https://doi.org/10.1175/jcli-d-19-0209.1
https://doi.org/10.1016/j.agrformet.2014.02.009
https://doi.org/10.1175/2011jhm1369.1
https://doi.org/10.1175/2011jhm1369.1
https://doi.org/10.1073/pnas.1904955116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


fmars-08-688299 August 30, 2021 Time: 12:47 # 1

ORIGINAL RESEARCH
published: 06 September 2021

doi: 10.3389/fmars.2021.688299

Edited by:
Meghan F. Cronin,

Pacific Marine Environmental
Laboratory, National Oceanic

and Atmospheric Administration
(NOAA), United States

Reviewed by:
Samson Hagos,

Pacific Northwest National Laboratory
(DOE), United States

Chunlei Liu,
Guangdong Ocean University, China

*Correspondence:
Seiji Kato

seiji.kato@nasa.gov

Specialty section:
This article was submitted to

Ocean Observation,
a section of the journal

Frontiers in Marine Science

Received: 30 March 2021
Accepted: 16 August 2021

Published: 06 September 2021

Citation:
Kato S, Rose FG, Chang F-L,

Painemal D and Smith WL (2021)
Evaluation of Regional Surface Energy

Budget Over Ocean Derived From
Satellites. Front. Mar. Sci. 8:688299.

doi: 10.3389/fmars.2021.688299

Evaluation of Regional Surface
Energy Budget Over Ocean Derived
From Satellites
Seiji Kato1* , Fred G. Rose2, Fu-Lung Chang2, David Painemal2 and William L. Smith1

1 NASA Langley Research Center, Hampton, VA, United States, 2 Science Systems and Applications Inc., Hampton, VA,
United States

The energy balance equation of an atmospheric column indicates that two approaches
are possible to compute regional net surface energy flux. The first approach is to
use the sum of surface energy flux components Fnet,c and the second approach is
to use net top-of-atmosphere (TOA) irradiance and horizontal energy transport by the
atmosphere Fnet,t. When regional net energy flux is averaged over the global ocean,
Fnet,c and Fnet,t are, respectively, 16 and 2 Wm−2, both larger than the ocean heating
rate derived from ocean temperature measurements. The difference is larger than the
estimated uncertainty of Fnet,t of 11 Wm−2. Larger regional differences between Fnet,c

and Fnet,t exist over tropical ocean. The seasonal variability of energy flux components
averaged between 45◦N and 45◦S ocean reveals that the surface provides net energy
to the atmosphere from May to July. These two examples demonstrates that the energy
balance can be used to assess the quality of energy flux data products.

Keywords: energy budget, climatology, ocean surface, remote sensing, atmosphere-ocean coupling

INTRODUCTION

Estimating the surface energy budget is one of the key components of understanding energy
flow within the Earth system. Surface energy fluxes determine the energy input to the ocean and
energy transfer through the ocean-atmosphere boundary. In addition, surface fluxes often drive
processes occurring near the surface. For example, energy fluxes at the surface affect cloud processes
occurring in the boundary layer (e.g., Betts, 1985; Betts and Ridgway, 1988; Albrecht et al., 1990;
Bretherton and Wyant, 1997; Wood, 2012). In addition, surface radiative fluxes play a key role in
determining sea ice melts (Hudson et al., 2013). Both low-level clouds (Soden et al., 2008; Loeb
et al., 2018) and sea ice play a critical role determining climate feedback and Earth’s energy budget
(Hartmann and Ceppi, 2014).

Components of the surface energy flux are radiative flux (irradiance), turbulent flux, and
flux associated with mass transfer. Surface irradiance is composed of shortwave and longwave
irradiances. Downward surface shortwave irradiance is the solar irradiance transmitted through
the atmosphere. Part of the irradiance that reaches the surface is reflected by the surface, which
can be reflected back to the surface by the atmosphere, and the rest is absorbed by the surface.
Broadband ocean surface albedo is about 0.05 (e.g., Kato et al., 2002) but the albedo depends on
solar zenith angle and surface wind speed (Cox and Munk, 1955) and chlorophyll concentration (Jin
et al., 2004). Downward surface longwave irradiance is the emitted irradiance by the atmosphere.
Similar to the shortwave irradiance, a part of the downward longwave irradiance is reflected and
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the rest is absorbed by the surface. The surface also emits
longwave irradiance, with a magnitude depending on the
temperature and emissivity, with the latter being a function of
wind speed over ocean (Sidran, 1981; Masuda et al., 1988).

Turbulent heat fluxes consist of sensible and latent heat fluxes.
These are enthalpy fluxes and depend on near surface and surface
properties (e.g., Cronin et al., 2019). In addition to these enthalpy
fluxes, the enthalpy is transferred through the atmosphere-
ocean boundary when water is transported by precipitation and
evaporation (Mayer et al., 2017; Trenberth and Fasullo, 2018;
Kato et al., 2021).

From a regional ocean energy budget perspective, surface
fluxes are needed to separate the energy input from that by
horizontal energy transport by ocean, provided that the regional
ocean temperature tendency is known (Trenberth and Solomon,
1994). Despite the importance of surface energy fluxes, there is
a large uncertainty associated with surface fluxes derived from
satellite observations. The uncertainty in the regional monthly
mean net surface irradiance over ocean estimated by Kato et al.
(2020) is 13 Wm−2. Similarly, a typical error in a long-term
mean net energy flux over ocean is 10 Wm−2 (Cronin et al.,
2019). In addition, temperatures of raindrops and water vapor
are needed to estimate the enthalpy transfer associated with
water mass transfer (Mayer et al., 2017; Kato et al., 2021). As a
consequence, when satellite derived surface flux data products
are integrated to assess the surface energy balance, the residual of
annual global surface energy balance is about 10–15 Wm−2 (Kato
et al., 2011; Stephens et al., 2012; Loeb et al., 2014; L’Ecuyer et al.,
2015; Wild et al., 2015). Therefore, annual net surface energy
fluxes averaged over global ocean is one order of magnitude
larger (Meyssignac et al., 2019) than the mean ocean heating
rate of 0.8 Wm−2 (Johnson et al., 2016; Loeb et al., 2018;
von Schuckmann et al., 2020).

Computed surface fluxes have been evaluated using
observations. However, the spatial and temporal coverage
of surface observations are limited. Comparisons of similar
data products are useful to identify outliers and unphysical
assumptions. Even though the regional energy budget bias
in satellite-based data products is significant, the bias can
be explained by the sum of uncertainties of all components
(L’Ecuyer et al., 2015). A less explored approach for evaluating
energy budget flux products is to use horizontal energy transport
by the atmosphere and to compare the resulting net surface
energy flux with the sum of surface energy flux components.
In this study, we integrate surface energy data products and
demonstrate the use of energy divergence in the atmosphere in
evaluating surface energy flux data products. In addition, we
examine regional water mass balance to understand whether
the regional water mass balance residual can explain the energy
balance residual. Furthermore, we analyze the seasonal variability
of surface energy fluxes to test whether the variability can be
used in the evaluation. If the physical processes are robust, the
seasonal variability might be used to evaluate the quality of
energy data products.

Section “Regional Water Mass and Atmosphere Energy
Budget Equations” introduces regional energy and water mass
budget equations that are used in this study. Data products

used in this study are described in section “Data Products.”
Regional net surface energy flux and mass balance, as well as
seasonal variability of surface energy fluxes are discussed in
section “Results.”

REGIONAL WATER MASS AND
ATMOSPHERE ENERGY BUDGET
EQUATIONS

One form of energy balance equations of an atmospheric column
is the balance between energy tendency in the column and fluxes
at boundaries, i.e., top-of-atmosphere (TOA), lateral boundaries,
and at surface boundary (Trenberth, 1997). The energy flux at the
top boundary is the net TOA irradiance RTOA. RTOA is the sum
of absorbed shortwave irradiance, which is the insolation minus
reflected shortwave irradiance and emitted longwave irradiance
multiplied by −1 (because the net is defined downward positive
in this study). Fluxes at the surface include net surface irradiance
Rsfc, sensible heat flux FSH and latent heat flux FLH , and enthalpy
flux associated with precipitation Ffallout and evaporation Fv. The
atmosphere can transport enthalpy, potential energy and kinetic
energy through lateral boundaries. The energy budget equation of
an atmospheric column is then expressed as (Mayer et al., 2017;
Trenberth and Fasullo, 2018; Kato et al., 2021),

1
g

∂

∂t

∫ psfc

0

(
cpT + 8s + k + l

)
dp

+
1
g
∇ ·

∫ psfc

0
Ua
(
cpT + 8 + k+ l

)
dp

=
(
RTOA−Rsfc

)
+ FSH + FLH + Fv + Ffallout−Fh (1)

where Ua is the dry air horizontal velocity, cp is the specific heat
capacity, T is the temperature, 8 is the geopotential, 8s is the
surface geopotential, k is the kinetic energy, p is the pressure,
psfc is the surface pressure, t is time, and g is the gravitation
acceleration at sea level. All energy terms include contributions
from dry air, water vapor and hydrometeors and they are added
weighted by their respective mixing ratios r,

k = ka + rvkv + rlkl + riki + rrkr + rsks (2)

cp = cpa + rvcpv + rlcl + rici + rrcr + rscs (3)

where cpa is the specific heat capacity of dry air at constant
pressure, cpv is the specific heat capacity of water vapor
at constant pressure, and c is the specific heat capacity of
hydrometeors. Subscripts v, l, i, r, s are, respectively, water vapor,
liquid and ice cloud particles, rain, and snow. The latent heat l is
the sum of the enthalpy change when water vapor is condensed
or hydrometeors are evaporated,

l =
∑

j = v,l,i,r,s

ljrj = lvrv − ll (rl + rr)− lf (ri + rs) (4)

lv is the enthalpy of vaporization, lf is enthalpy of fusion, r is
the mixing ratio. The latent heat is determined by the enthalpy

Frontiers in Marine Science | www.frontiersin.org 2 September 2021 | Volume 8 | Article 688299171

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-688299 August 30, 2021 Time: 12:47 # 3

Kato et al. Ocean Regional Surface Energy Budget

release when water vapor is condensed or snow and ice crystals
are melted. Therefore, ll in this case is the specific heat capacity
multiplied by the temperature difference between cloud particles
or raindrops and the reference temperature. The Fh term on the
right side of Eq. 1 represents the divergence of moist static and
kinetic energy associated with hydrometeors moving at different
velocities from the dry air velocity (Kato et al., 2021),

Fh =
1
g

∫ psfc

0

 ∑
j = v,l,i,r,s

∇ · vjrj
(
cjT + kj + lj +8

) dp. (5)

Because Fh is not provided by data products used in this study, we
assume that velocities of all hydrometeors are equal to the dry air
velocity (i.e., Fh = 0). The enthalpy fluxes associated with water
mass transfer Fm are the sum of,

Ffallout = −cwṖ (Tw − T0) (6)

Fv = cpv Ė (Tskin−T0) (7)

and
Fm = Ffallout + Fv (8)

where cw is the specific heat capacity of either ice or liquid
water, Tw is 2 m wet bulb temperature, Tskin is the ocean skin
temperature, T0 is 0◦C (Mayer et al., 2017; Trenberth and Fasullo,
2018), Ṗ is the precipitation rate and Ė is the evaporation rate.

The energy balance Eq. 1 suggests two possible ways of
computing net surface energy flux. One way is to use all the
surface flux components,

Fnet,c = Rsfc−FSH−FLH−Fm (9)

where Fnet,c is positive downward (hereinafter the component
approach). The second method for deriving the net surface flux
suggested by Eq. 1 is to use TOA net irradiance, atmospheric
divergence, and tendency terms (hereinafter the transport
approach),

Fnet,t = RTOA −
1
g

∂

∂t

∫ psfc

0

(
cpT +8s + k+ l

)
dp

−
1
g
∇ ·

∫ psfc

0
Ua
(
cpT +8+ k+ l

)
dp. (10)

This approach is used by, for example, Trenberth (1997);
Trenberth et al. (2001), Trenberth and Stepaniak (2004); Liu
et al. (2015), and Mayer et al. (2017); Trenberth and Fasullo
(2018), and Liu et al. (2020). Similar to the energy balance Eq. 1,
the water mass balance equation for an atmospheric column is
(Trenberth, 1991),

1
g

∂

∂t

∫ psfc

0
rdp +

1
g
∇ ·

∫ psfc

0
Uardp− Fr = Ė− Ṗ (11)

where

Fr =
1
g

∫ psfc

0

∑
j = v,l,i,r,s

∇ · vjrjdp (12)

and the precipitation rate Ṗ = Ṗr + Ṗs is the sum of rain and
snow rates. Eq. 11 states that the tendency and convergence of
water mass is balanced with the difference of precipitation and
evaporation rates at the surface. Because of the assumption of
hydrometeors traveling with the dry air velocity, Fr = 0. The
energy balance Eq. 1 and water mass balance Eq. 11 are related
through the diabatic heating term in the total energy equation of
the atmospheric column (e.g., Kato et al., 2021).

DATA PRODUCTS

The TOA and surface irradiance data product used in this study
is the Edition 4.1 Clouds and the Earth’s Radiant Energy System
(CERES) Energy Balance and Filled (EBAF). Global net TOA
irradiances averaged over 10 years from July 2005 to June 2015
is adjusted to 0.71 Wm−2 based on ocean heating rates, ice
warming and melts, and atmospheric and lithospheric warming
(Johnson et al., 2016; Loeb et al., 2018). A detailed description
of the method to produce TOA and surface irradiances included
in the product and their uncertainty are given, respectively, in
Loeb et al. (2018) and Kato et al. (2018). Horizontal transport
of moist static energy and water vapor, as well as surface
turbulent fluxes are derived from the ERA-Interim reanalysis
data product (Dee et al., 2011). Although mass is not conserved
in the original data product (Mayer et al., 2017; Trenberth and
Fasullo, 2018; Liu et al., 2020), it is conserved in the ERA-Interim
data product used in this study. Mass correction procedures
and the method to compute horizontal transport are discussed
in Trenberth and Fasullo (2018). Two other sets of surface
turbulence fluxes used in this study are Version 3 SeaFlux
data product (Roberts et al., 2020) and the Version 3 of the
Objectively Analyzed Air-sea Fluxes (OAFlux) (Yu et al., 2008).
Precipitation rate data product used in this study is Version 2.3
Global Precipitation Climatology Project (GPCP) data product
(Adler et al., 2012). EBAF irradiances, SeaFlux turbulent fluxes,
and GPCP precipitation rates are derived using primarily satellite
observations. The time period used in this study is from January
2001 to December 2016.

RESULTS

In this section, we investigate the consistency of regional surface
energy budget derived by two different approaches (Eqs. 9, 10).
Seasonal variabilities of surface net energy fluxes averaged over
45◦N to 45◦S ocean are compared to check the consistency of the
temporal variability.

Regional Surface Energy Budget and
Water Mass Balance
Figure 1 shows four surface energy flux components that appear
on the right side of Eq. 1. The net irradiance Rsfc is primarily a
function of latitude. A positive net irradiance over the tropical
ocean is largely compensated by latent heat flux FLH . Sensible heat
flux FSH is much smaller than FLH . In addition, the meridional
gradient of FSH is much smaller than the meridional gradient of
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FIGURE 1 | (Top left) Surface net irradiance derived from Edition 4.1 Energy Balance and Filled (EBAF) product, (top right) latent heat flux derived from Version 3
SeaFlux product, (bottom left) SeaFlux sensible heat flux, and (bottom right) enthalpy flux associated with water mass transfer derived from Version 2.3 Global
Precipitation Climatology Project (GPCP) and SeaFlux. All maps are climatological mean values from January 2001 to December 2016. Net irradiance and fluxes are
defined positive downward. Units is Wm-2 for all plots. Mean values averaged over the global ocean are shown with titles.

Rsfc and FLH . The spatial pattern of the enthalpy flux associated
with water mass transfer Fm resembles the spatial pattern of
precipitation rate. When these components are averaged over the
global open water, Rsfc, FLH , FSH , and Fm are, respectively, 126,
−97, −12, and −1 Wm−2. The sum of these four components
is 16 Wm−2, which is one order of magnitude larger than the
annual global mean ocean heating rates. Note that the annual
global mean ocean heating rate given in Johnson et al. (2016) of
0.68 Wm−2 is averaged over the entire global area. Therefore, the
ocean heating rate averaged over the global ocean is 0.93 Wm−2,
which is estimated as the product of 0.68 Wm−2 and the ratio
of the global area to the ocean area of 1.37 (=0.510 / 0.372).
We ignore enthalpy transported to the global ocean by river
runoff, which is about 10% of water evaporated from the ocean
(Rodell et al., 2015).

The regional energy budget computed by Eq. 9 Fnet,c,
expressed as the sum of Rsfc, FLH , FSH , and Fm, is shown
in the left panel of Figure 2. A positive value indicates that
net energy is transferred to the ocean. The right panel of
Figure 2 also shows the regional energy budget computed by
Eq. 10 Fnet,t . The net surface flux Fnet,t averaged over the
global open water is 2.1 Wm−2, whereas its Fnet,c counterpart
is 16.3 Wm−2. Mayer et al. (2021) who computed net surface
energy flux over ocean with ECMWF ERA5 (Hersbach et al.,
2018) by the transport approach report Fnet,t of 1.6 Wm−2.
Josey et al. (2013) who computed net surface energy flux over
ocean with OAFlux turbulent fluxes (Yu and Weller, 2007)
and International Satellite Cloud Climatology Project (ISCCP)

irradiances (Zhang et al., 2004) by the component approach
report Fnet,c of 29 Wm−2. The difference between Fnet,c and Fnet,t
is the atmospheric energy balance residual εE,

εE = Fnet,c−Fnet,t. (13)

The difference between Fnet,c and Fnet,t exists over tropics
(bottom left plot of Figure 2). Spatial distribution of Fnet,t is not
necessarily correct, but a casual comparison for Fnet,c and Fnet,t
showing large εE over the tropics leads us to conclude that the
tropical region is largely responsible for the larger energy budget
residual from the component approach. The standard deviation
over the tropics (bottom right plot of Figure 2) is nearly equal to
εE over the tropics while it is larger than εE over mid-latitude. This
indicates that seasonal variability of εE is small over the tropics,
but larger seasonal variability exists over mid-latitude. Note that
the spatial pattern of εE shown in the bottom left plot of Figure 2
differs from the spatial pattern of Figure 3 of Kato et al. (2016)
because different energy balance equations of an atmospheric
column, hence different energy flux data products, are used.

Because FLH is equal to Ėlv, Eqs. 9, and 11 suggest that
a bias in the regional water mass balance can affect regional
surface energy balance. In order to assess regional water mass
balance, in Figure 3 we plot the divergence of water vapor as
a form of the latent heat plus the tendency term on the top
left panel and lv0(Ṗ − Ė) on the top right panel where lv0 is
the enthalpy of vaporization at 0◦C. In the tropics, water vapor
converges toward the inter tropical convergence zone (ITCZ)
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FIGURE 2 | (Top left) Regional net surface energy flux computed with net irradiance, sensible and latent heat fluxes, and enthalpy flux associated with water mass
transfer (component approach Fnet,c) (Top right) Regional net surface energy flux computed with top-of-atmosphere (TOA) net irradiance, moist static divergence,
and moist static energy tendency (transport approach Fnet,t ). (Bottom left) Difference of regional net surface energy fluxes, Fnet,c – Fnet,t. (Bottom right) standard
deviation of reginal monthly Fnet,c – Fnet,t computed over 192 months. All maps are climatological mean values from January 2001 to December 2016. Net
irradiance and fluxes are defined positive downward. Units is Wm-2 for all plots. Mean values averaged over global ocean are shown with titles.

where larger precipitation rates are present. For the atmosphere
to balance water mass by Eq. 11 regionally, the sum of values
shown in left and right plots needs to be 0. The bottom left plot
of Figure 3 shows the water mass balance residual expressed in
Wm−2. Regions with negative values are where convergence is
too large, precipitation rate is too small, or evaporation rate is
too large. Although the size is unknown, the Fh term defined
by Eq. 5 that are neglected in this study can contribute to both
energy and water mass balance residuals (Kato et al., 2021).
While the standard deviation is relatively large over the tropics
(bottom right plot of Figure 3), the spatial pattern of water mass
residual differs from the spatial pattern of net surface energy
flux (top left panel of Figure 2). This indicates that the bias is
not limited to a common component, i.e., FLH and lvĖ, which
affect both balances, but also in other energy flux components
likely play a role.

To understand the effect of water mass balance residual to
surface net energy flux, however, we assume that all water mass
residual is caused by one component of water mass fluxes. If the
residual is caused by the bias in FLH , the bias corrected Fnet,c is,

Fnet,c−lv0εM = Rsfc−FSH−FLH−Fm−lv0εM (14)

where the water mass balance residual εM is

εM =
1
g

∂

∂t

∫ psfc

0
rdp +

1
g
∇ ·

∫ psfc

0
Uardp + Ṗ−Ė (15)

If the residual is caused by latent heat divergence then the bias
corrected Fnet,t is,

Fnet,t−lv0εM = RTOA −
1
g

∂

∂t

∫ psfc

0

(
cpT + 8s + k + l

)
dp

−
1
g
∇ ·

∫ psfc

0
Ua
(
cpT + 8 + k + l

)
dp−lv0εM. (16)

The water mass balanced surface net energy flux is Fnet,c −
lv0εM and Fnet,t − lv0εM , which are shown, respectively, on the
left and right panel of Figure 4. The surface net energy flux shown
in Figure 4 is the flux if regional water mass were balanced. We
can further combine surface net energy fluxed derived from two
approaches and water mass correction to form the water mass
corrected atmospheric energy balance residual,

Fnet,c − Fnet,t − lv0εM = εE − lv0εM (17)

Figure 5 shows regional εE − lv0εM . The bias can be associated
with any of the energy flux components that appear in Eqs 9, and
10. The bias in FLH can also contribute to εE − lv0εM , provided
that biases in water mass flux components are present in a way
that the sum is not altering the regional water mass balance.
Regions with a positive value need a larger upward surface energy
flux or a smaller moist energy and kinetic energy divergence.
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FIGURE 3 | (Top left) Latent heat divergence plus tendency derived from ERA-Interim. (Top right) Diabatic heating by precipitation minus surface latent heat flux
derived from GPCP and SeaFlux. (Bottom left) Regional water mass balance computed as latent heat divergence, tendency, and diabatic heating by precipitation
minus surface latent heat flux. (Bottom right) Standard deviation of the reginal monthly water mass balance computed over 192 months. Regional values are
16-year climatological mean (from January 2001 to December 2016). Units is in Wm-2 for all plots. Mean values averaged over the global ocean are shown with titles.

FIGURE 4 | Water mass balanced surface net energy flux Fnet,c – lv0εM given by Eq. 11 on the panel left and Fnet,t – lv0εM given by Eq. 13 on the panel right.
Regional values are 16-year climatological mean (from January 2001 to December 2016). Units is in Wm-2 for all plots. Mean values averaged over the global ocean
are shown with titles.

Seasonal Variability
Figure 6 shows climatological seasonal variability of energy flux
components averaged between 45◦N and 45◦S over ocean. The
net TOA irradiance (blue line in the top plot) seasonal variability
is similar to the seasonal variability of the climatological global
mean shown in Fasullo and Trenberth (2008). The seasonal
variability is largely caused by insolation driven by the Earth-to-
sun distance, which in turn affects absorbed shortwave irradiance.
The energy divergence in the atmosphere averaged between 45◦N

and 45◦S over ocean is relatively constant. During May through
July, the atmosphere transports more energy than net TOA
irradiance, indicating that additional net energy is provided from
the surface during these months. The bottom plot of Figure 6
shows the surface flux components separately. The net surface
irradiance is indicated by the blue line and three estimates
of turbulent flux from SeaFlux, OAFlux and ERA-Interim are
indicated, respectively, by red, magenta, and green lines. In
Figure 6, the net surface irradiance is positive downward and
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FIGURE 5 | Water mass corrected atmospheric energy balance residual εE – lv0εM defined by Eq. 14 in Wm-2. Mean value averaged over the global ocean is
17.8 Wm-2. Regional values are 16-year climatological mean (from January 2001 to December 2016).

the turbulent fluxes are positive upward. From May to July,
ERA-Interim turbulent flux is larger than the net irradiance,
while SeaFlux and OAFlux turbulent fluxes are smaller than
the net irradiance throughout the year. The larger ERA-Interim
turbulent flux than the net irradiance during May through
July is interpreted as the surface providing net energy to the
atmosphere, which is consistent with the top plot of Figure 6.
This result suggests that SeaFlux and OAFlux turbulent fluxes
are too small or both the net surface irradiance and divergence
are too large during these 3 months. More importantly, annual
mean turbulent fluxes averaged over 45◦N to 45◦S over ocean
derived from three different products differ by nearly 20 Wm−2,
which is approximately 14% of the annual mean value. The
20 Wm−2 difference of turbulent fluxes is nearly equivalent
to the difference between the net surface energy fluxes derived
from two methods.

Although the net surface energy fluxes derived by the two
methods differ by more than 10 Wm−2, Figure 6 indicates
that differences of turbulent fluxes derived from ERA-Interim,
SeaFlux, and OAFlux are nearly constant throughout the year.
As a consequence, once respective annual mean values are
subtracted, seasonal variabilities derived from two data products
are similar (Figure 7, bottom plot). After the corresponding
annual mean is subtracted, the difference in climatological
monthly mean variability is less than ±2 Wm−2, which is
approximately 10% of the amplitude of the seasonal cycle.

DISCUSSION AND SUMMARY

Energy flux data products were integrated by two different
methods to assess the regional surface energy balance. The first

method is to use all surface flux components and the resulting
net surface flux is denoted by Fnet,c. The second method is to
use the TOA net irradiance, horizontal energy transport by the
atmosphere, and tendency for which the resulting net surface
flux is denoted by Fnet,t . While the uncertainty in regional Fnet,c
is larger than Fnet,t , the advantage of the component approach
is that it provides all components. The transport approach only
provides the net surface energy flux. However, Fnet,c averaged
over the global ocean is 16 Wm−2 while Fnet,t averaged over
the global ocean is 2 Wm−2. The comparisons of net surface
energy fluxes derived from both approaches shed lights into the
uncertainties of their components. For example, the net surface
energy flux averaged over global ocean is nearly equal to the
ocean heating rate provided that the enthalpy transported by river
runoff is negligible. Because annual mean ocean heating rate is
0.93 Wm−2, the size of combined biases from flux components
used in estimating the net surface energy flux averaged over global
ocean is nearly equal to Fnet,c. Our results also indicate that the
residual of energy balance (16–0.93 Wm−2) is larger than the
residual of mass balance (4 Wm−2) when they are averaged over
global ocean. It is not obvious why the energy balance residual is
larger than the mass balance residual. One reason might be due to
the components achieving energy and mass balances. The surface
energy balance is achieved largely among Rsfc, FSH , and FLH while
the mass balance is achieved among FLH , precipitation rate, and
horizontal transport of water.

The water mass residual indirectly affects energy budget
residual. Kato et al. (2021) show that regional water mass is
not conserved when multiple data products are integrated. This
is also illustrated in Figure 3. Horizontal transport of water
vapor derived from ERA-Interim is shown on the top left plot
of Figure 3. The annual mean water vapor transport from ocean
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FIGURE 6 | (Top) Climatological monthly mean net TOA irradiance (blue line) defined as positive downward and divergence of moist static and kinetic energy (red
line) averaged between 45◦N and 45◦S over ocean. (Bottom) Net surface irradiance (blue line), turbulent flux (i.e., the sum of sensible and latent heat fluxes) derived
from SeaFlux (red line), ERA-Interim (green line), and Objectively Analyzed Air-sea Fluxes (OAFlux) (magenta line). Turbulent fluxes are positive upward. Climatological
means are computed with 16 years of data (January 2001 to December 2016) and error bars indicate the standard deviation.

to land is 4 × 104 km3 yr−1 in the units of volume, which is
equivalent to 3.2 PW or approximately 10 Wm−2. This is nearly
the same size of the energy flux from ocean to land (Fasullo
and Trenberth, 2008), indicating that the ocean to land energy
transport is dominated by latent heat divergence. Our value of
water mass divergence averaged over the global ocean in the
units of energy flux of 11 Wm−2 is consistent with the value
given in Trenberth and Fasullo (2013) and Rodell et al. (2015).
At a regional scale, water vapor divergence plus tendency in the
atmosphere should balance with Ė− Ṗ (Eq. 3). This implies that
Ṗ − Ė averaged over the global ocean should be approximately
−10 Wm−2, provided that the tendency term is small. When
GPCP precipitation rate and SeaFlux latent heat flux are used,
Ṗ − Ė averaged over global ocean is −7 Wm−2. This suggests
that biases in Ṗ and Ė are nearly the same size and partially
cancels when Ė is subtracted from Ṗ. This may be the reason for
the smaller water mass balance residual than the energy balance
residual averaged over the global ocean. Note that the annual
mean latent heat flux form OAFlux averaged over global ocean is
approximately 5.5 Wm−2 smaller than the SeaFlux counterpart
value so that Ṗ − Ė averaged over global ocean is −1.5 Wm−2,
which gives a larger εM than εM computed with SeaFlux.

The Ė− Ṗ value also depends on precipitation data product.
Generally, precipitation rate estimated over ocean is uncertain
due to lack of ground-based direct observations compared
to precipitation rate estimated over land (Sun et al., 2018).
A study by Behrange and Song (2020) suggests that GPCP
precipitation rate over global ocean is underestimated by 9%.
Precipitation rates over the ITCZ regions estimated by GPCP are

generally smaller than those estimated from a similar multiple
observation merged global precipitation data product of the
CPC Merged Analysis of Precipitation (CMAP; Xie and Arkin,
1997). In addition, GPCP precipitation over the tropics is smaller
than TRMM 3B42 precipitation (Masunaga et al., 2019). In
particular, heavy rain rates larger than 30 mm day−1 over ocean
occur less frequent in GPCP precipitation than TRMM 3B42v7
precipitation (Masunaga et al., 2019). The spatial pattern of water
mass residual (lower left of Figure 3) suggests that the residual is
not limited over the ITCZ, indicating that the water mass balance
residual is not entirely caused by our choice of data products.

The surface net energy flux Fnet,c averaged over the global
ocean of 16 Wm−2 is smaller than the maximum standard
deviation of regional net fluxes of approximately 30 Wm−2

derived from 12 data products shown in Yu (2019). Therefore,
regional Fnet,c shown in Figure 2 could change depending on
the data product. Nevertheless, given the regional water vapor
balance residual shown in Figure 3, the water mass balance
residual contributes a large portion of the energy balance residual
for some regions.

We showed that sums of latent heat and sensible heat fluxes
from SeaFlux and OAFlux averaged between 45◦N and 45◦S over
ocean during May through July are likely to be too small because
the atmosphere transports energy more than energy input from
the top and bottom boundary. If the moist static divergence
is too large, the net surface irradiance is also too large. The
difference between annual mean Fnet,c and Fnet,t averaged over
45◦N to 45◦S is 18 Wm−2. The 20 Wm−2 difference of turbulent
fluxes found between three products is nearly equivalent to the
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FIGURE 7 | (Top) Monthly climatological mean of net surface energy flux variability computed by the component approach (Fnet,c) using the EBAF data product and
SeaFlux (blue line), OAFLux (magenta line), and ERA-Interim (green line). Net surface energy flux computed by the transport approach (Fnet,t ) is shown with red line.
All values are averaged between 45◦N and 45◦S over ocean. Corresponding annual mean is subtracted from monthly means. Means are average from January 2001
to December 2016 and error bars indicate the standard deviation. (Middle) Difference of monthly climatological mean variabilities Fnet,c – Fnet,t, i.e., the red,
magenta, and green lines minus the blue line shown in the top plot. (Bottom) Monthly mean climatology minus annual mean of sensible and latent heat fluxes
computed with SeaFLux, OAFlux, and ERA-Interim products.

FIGURE 8 | Difference of surface (left) latent heat flux and (right) sensible heat flux derived from OAFlux and SeaFLux data products (OAFlux minus SeaFlux)
averaged over 16 years (from January 2000 to December 2015) in Wm-2. Fluxes are defined positive upward.
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difference of Fnet,c and Fnet,t . In addition, if we assume that
the 2.5 Wm−2 uncertainty in regional outgoing TOA shortwave
and longwave irradiances (Loeb et al., 2018) and the 10 Wm−2

uncertainty in horizontal transport (Trenberth and Fasullo,
2018) are independent, then the uncertainty in regional Fnet,t is
11 Wm−2 [=(2.52

+2.52
+102)1/2]. Therefore, the 18 Wm−2 is

likely to be larger than the uncertainty in TOA net irradiance and
transport combined.

The root-mean-square (RMS) difference of monthly mean
downward irradiances compared with observations at buoy sites
that are mostly located in the tropics is 11 and 5 Wm−2,
respectively, for shortwave and longwave irradiances (Kato et al.,
2018). The estimated uncertainty in the regional monthly mean
net surface irradiance over ocean is 13 Wm−2 (Kato et al., 2020).
The uncertainty in regional turbulent flux in Fnet,c is difficult
to estimate. A casual comparison of latent heat flux shown in
Figure 1 with the latent heat flux from the Japanese Ocean Flux
Data Set with Use of Remote-sensing Observations (J-OFURO)
(Figure 4 of Tomita et al., 2019) suggests that SeaFLux FLH over
tropics is smaller than Japanese ocean flux data set with use of
remote-sensing observations (J-OFULO) FLH . Comparisons of
daily mean J-OFULO FLF against buoy observations in Tomita
et al. (2019) yield a typical RMS difference of less than 25 Wm−2.
If there is a random error contribution, the RMS difference in
monthly means is expected to be smaller. In fact, climatological
mean differences of regional FSH and FLH from SeaFLux and
OAFlux are within 10 Wm−2 for most regions (Figure 8),
although the differences of FSH and FLH over tropical regions
have the same sign. All these results suggest that estimated
uncertainties in monthly mean Rsfc, FSH , and FLH are of the order
of 10 Wm−2.

As mentioned in Cronin et al. (2019), the uncertainty in
satellite derived gridded energy products is larger than the
in situ observation uncertainty of ∼10 Wm−2 in a long-term
averaged value (e.g., monthly mean) largely due to limitations
in observing surface air temperature and humidity. Near surface
temperature and humidity affect both downward longwave
irradiance and sensible and latent heat fluxes. In addition, ocean
skin temperature retrieved from satellite observations is the
temperature of the thermal skin layer of about a 0.1 mm thick
below ocean surface (Wong and Minnett, 2018). Furthermore,
the ocean thermal skin layer temperature is generally lower than
ocean temperature below the surface at a depth of ∼2 m because
of evaporative cooling at the air-sea interface (Smith et al., 1996).
Therefore, satellite derived skin temperature can be different
from ocean surface temperature (Cronin et al., 2019).

In addition to these input variables, there is the uncertainty
associated with the turbulent flux parametrizations and the use
of bulk state variables (Cronin et al., 2019; Yu, 2019). Gustiness
of wind speed can alter turbulent fluxes and needs to be taken
into account. Wind speed dependent ocean surface roughness
length and transfer coefficients need to be improved, and their
dependence on the sea state might need to be incorporated
into parameterizations. Furthermore, deriving latent heat flux
from satellites is challenging because of their diurnal sampling
and calibration stability (Robertson et al., 2020). Also, a larger
footprint size and broad passive microwave channel weighting

functions are not ideal for deriving near surface humidity with
a required spatial resolution (Robertson et al., 2020).

Advances in remote sensing techniques to derive surface air
temperature and humidity will help reduce errors in surface
irradiance. In addition, better observations of ocean surface
temperature, wind speed at a high temporal resolution, and
sea state at a global scale are needed to improve turbulent
fluxes. Some promising observations to improve surface fluxes
are proposed in Cronin et al. (2019) and are expected to provide
indispensable observations toward reducing uncertainties in
estimating regional surface energy fluxes. Our results highlight
the weakness of the component approach to estimate regional
net surface energy flux and identify regions where larger issues
remain. Our analysis indicates that large surface energy flux
biases exist in the tropics, which is consistent with earlier
studies (Loeb et al., 2014; Kato et al., 2016). Improving future
observations need to target the regions with large residuals,
which could lead to improved understanding and reduction of
these biases. In addition, toward achieving the goal of improving
surface energy flux, data product integration and physical
processes demonstrated in this study can be used to assess the
quality of individual data products. Reducing surface energy
budget uncertainty needs coordinate efforts among surface
radiation and turbulent flux data providers.
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The role of sea ice melting on the air-sea CO2 flux was investigated at two ice camps in
the East Siberian Sea of the Arctic Ocean. On average, sea ice samples from the two
ice camps had a total alkalinity (TA) of ∼108 and ∼31 µmol kg−1 and a corresponding
salinity of 1.39 and 0.36, respectively. A portion (18–23% as an average) of these sea
ice TA values was estimated to exist in the sea ice with zero salinity, which indicates
the excess TA was likely attributed to chemical (CaCO3 formation and dissolution) and
biological processes in the sea ice. The dilution by sea ice melting could increase the
oceanic CO2 uptake to 11–12 mmol m−2 d−1 over the next 21 days if the mixed layer
depth and sea ice thickness were assumed to be 18.5 and 1.5 m, respectively. This role
can be further enhanced by adding TA (including excess TA) from sea ice melting, but
a simultaneous release of dissolved inorganic carbon (DIC) counteracts the effect of TA
supply. In our study region, the additional impact of sea ice melting with close to unity
TA:DIC ratio on air-sea CO2 exchange was not significant.

Keywords: Arctic Ocean, East Siberian Sea, sea ice melting, ikaite, total alkalinity

INTRODUCTION

The carbon dioxide concentration in the atmosphere has increased from ∼280 ppm in the
preindustrial era to the current ∼410 ppm due to human activities, such as the use of fossil
fuels, cement production, and land-use changes (Le Quéré et al., 2018). During this period of
increasing atmospheric CO2, more than a third of anthropogenic CO2 has been absorbed by the
ocean through the air-sea gas exchange (Sabine et al., 2004; Gruber et al., 2009, 2019). Specifically,
it has been suggested that marginal seas bordering continents contribute disproportionately to
storing anthropogenic CO2 despite their small spatial coverage (∼7%) (Cai et al., 2006; Chen
and Borges, 2009; Lee et al., 2011). As of 2005, the Arctic Ocean had absorbed 2.5–3.5 Pg C
of anthropogenic CO2 (Tanhua et al., 2009), which is twice the amount expected for the area it
covers. The absorption of CO2 by the Arctic Ocean may be further enhanced by increasing surface
area exposed to the atmosphere and reduced surface partial pressure of CO2 (pCO2) caused by
mixing with ice melt waters (Bates et al., 2006; Sejr et al., 2011). However, opposing results were
also reported (Cai et al., 2010; DeGrandpre et al., 2020). Oceanic CO2 uptake can be suppressed
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as a result of increasing temperature and decreasing nutrient
availability, which reduces CO2 solubility and biological CO2
uptake, respectively (Cai et al., 2010; Land et al., 2013).
According to the Intergovernmental Panel on Climate Change,
sea ice coverage in September will be reduced by ∼50% in
Representative Concentration Pathways (RCP) 2.6 scenario and
by almost 100% in RCP8.5 scenario compared to observational
sea ice extent from 1986 to 2005 (Pörtner et al., 2019). Based
on the 2◦C warming scenario, Niederdrenk and Notz (2018)
suggested a ∼20% reduction of the sea ice extent in March and a
∼15% chance of near ice-free conditions during summer months
by the end of this century. In this future scenario, contrary to
the impact of the increasing ice-free surface on the air-sea CO2
flux, Arctic Ocean warming will reduce the seawater solubility
of CO2 and may be capable of weakening the CO2 absorption
processes involved in the annual cycle of sea ice formation and
melting (Manizza et al., 2013; Ouyang et al., 2020). The latter
effect explained below is the main focus of this study.

Arctic sea ice begins to form during the fall season. During
sea ice formation, impurities such as salt, gasses, and particles
are partly rejected to the underlying seawater and partly trapped
within the sea ice structure. As sea ice cools down and brine
partly freezes, the salinity of the brine remaining in the brine
pocket increases, causing a buildup of dissolved inorganic carbon
(DIC) and total alkalinity (TA). In addition, the contraction of
the brine volume in sea ice caused by low temperatures can make
sea ice effectively impermeable to brine transport (Golden et al.,
2007). Along with these processes, the crystallization of calcium
carbonate minerals (Ikaite: CaCO3·6H2O) can be facilitated in
the sea ice (Papadimitriou et al., 2004; Dieckmann et al., 2008,
2010; Geilfus et al., 2013; Rysgaard et al., 2014; Obbard et al.,
2016; Petrich and Eicken, 2017). As pCO2 increases in response
to CaCO3 precipitation, the CO2 efflux from the sea ice to the
atmosphere is enhanced during the fall season when sea ice is
formed (Geilfus et al., 2013). However, brine rejection during sea
ice formation causes an increase in salinity (and density) of the
surrounding seawater, and thus facilitates the sinking of surface
water, sequestrating CO2 at greater depths (Miller et al., 2011;
König et al., 2018). During the melting season, the CO2 flux from
the atmosphere to the sea ice and seawater becomes dominant.
In the sea ice, pCO2 of the brine decrease due to the dissolution
of CaCO3 crystals and a dilution by snow and sea ice melt water
with low DIC (Geilfus et al., 2012, 2015; Lannuzel et al., 2020).
Furthermore, as water from sea ice melting is released at the
ocean surface, DIC and pCO2 in the seawater decrease, thereby
increasing the uptake of CO2 from the atmosphere to the ocean.
CaCO3 crystals are also released at the ocean surface during
sea ice melting, supplying an excess TA that is not explained
by a conservative linear relationship between salinity and TA
(Nedashkovsky et al., 2009; Geilfus et al., 2012; Rysgaard et al.,
2012; Chen et al., 2015). Geilfus et al. (2016) performed a sea
ice-seawater mesocosm experiment to show the effect of CaCO3
crystal export on water column carbonate chemistry during sea
ice growth and degradation. The presence of CaCO3-induced
TA was reported more than 30 years ago in both Arctic and
Antarctic seawaters (e.g., Jones et al., 1983; Chen, 1985). The
brine rejection and CaCO3 production involved in the seasonal

waning and waxing of sea ice may serve as a natural CO2
pump in polar regions (Rysgaard et al., 2007). However, the
impact of these processes has not been fully explored despite
increasing efforts to include inorganic carbon dynamics related
to sea ice (e.g., Moreau et al., 2015, 2016; Fransson et al., 2017;
DeGrandpre et al., 2019).

The East Siberian Sea (ESS) is one of the least studied
subregions in the Arctic Ocean, although this region is
experiencing the most rapid change in sea ice coverage, which
could be partially attributed to recent Siberian heatwaves (Stroeve
et al., 2012; Krumpen et al., 2019; Overland and Wang, 2020;
Wang et al., 2020). In this perspective, we aim to quantify the
effect of sea ice melting on the summertime CO2 absorption
capacity of the ESS, dependent on the degree of freshening and
TA/DIC concentration and ratio of the sea ice. Following Chen
(1985) and Nomura et al. (2013a), we also evaluated excess TA
of sea ice, including the possible contribution of CaCO3 using
a conservative linear mixing relationship between salinity and
TA, which only requires analytical systems for salinity and TA
that are more easily accessible to research groups (e.g., chemical
oceanographers) investigating this issue.

MATERIALS AND METHODS

This study was performed in August 2017 as part of the Arctic
Cruise program (ARA08B) of the Korea Polar Research Institute,
using the icebreaker ARAON. Two ice camps were established
for sampling sea ice cores, snow, and melt pond water. The
first ice camp sampling (IC1) was conducted on 13 August
and the second (IC2) on 16 August (Figure 1). IC1 and IC2
were located at 77◦35.8552′N, 179◦19.4508′E and 75◦22.0475′N,
176◦14.0973′E, respectively, and were predicted to be covered by
1st-year ice (Figure 1C, obtained from the National Snow and
Ice Data Center). Four sea ice cores were obtained from IC1,
and three sea ice cores and five melt pond water samples were
collected from IC2. One snow sample covering the sea ice core
sites was collected from both ice camps. The sea ice cores had
a diameter of 9 cm and were extracted using a MARK II coring
system (Kovacs Enterprises, Roseburg, OR, United States) and
stored in polyethylene (PE) bags at −20◦C. All sea ice samples
were transported to the laboratory for analyses of TA and DIC
after the cruise (October, 2017). Melt ponds were not found
at IC1, however, melt pond water was sampled at IC2 using a
peristaltic pump. Samples were stored in 500 mL borosilicate
bottles and immediately mixed with a 200 µL saturated mercury
(II) chloride (HgCl2) solution.

In the laboratory (January, 2018), the sea ice cores were cut
into 20 cm-long segments, transferred to commercially available
low-density polyethylene (LDPE) bags and then mixed with
the saturated HgCl2 solution in proportion to sea ice sample
weight (0.04% by sample volume) to prevent biological activity.
The LDPE bags were twice sealed with a vacuum sealer (FM-
06, Eiffel, Seoul, South Korea) and a Nylon/polyethylene bag.
The samples stored in gas-tight laminated plastic bags and
the Nylon/polyethylene bag presented indistinguishable DIC
concentrations (Hu et al., 2018). It was also shown that the use
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FIGURE 1 | Sea ice concentration of the Arctic Ocean on (A) 13 August 2017, and (B) 16 August 2017. Color shading indicates the percentage of sea ice obtained
from the National Snow and Ice Data Center (NSIDC; Maslanik and Stroeve, 1999). (A) Location of the first ice camp (IC1; open circle) and the Sea Ice Index regions
of the Arctic Ocean (numbers), corresponding to (1) Central Arctic, (2) East Siberian Sea, (3) Chukchi Sea, (4) Beaufort Sea, (5) Canadian Archipelago, (6) Hudson, (7)
Baffin, (8) Greenland Sea, (9) Barents Sea, (10) Kara Sea, and (11) Laptev Sea. Data for the Sea Ice Index regions were taken from Meier et al. (2007). (B) Location of
the second ice camp (IC2; open circle) and seawater sampling stations (closed circle). Roman numerals represent the locations of previous studies investigating the
impact of sea ice melting on air-sea exchange of CO2: (I) Cai et al. (2010), (II) Else et al. (2013), (III) Rysgaard et al. (2013), and (IV) Rysgaard et al. (2012). (C) Sea ice
age in the 33rd week (08/14 to 08/20) of 2017, obtained from the NSIDC (Tschudi et al., 2019). The locations of the two ice camps are also shown (white circles).

of the Nylon/polyethylene bags and the vacuum sealer caused
no significant changes in the properties of seawater samples
(Hu et al., 2018). After the sea ice and snow samples were
completely melted, meltwater samples were slowly transferred to
500 mL borosilicate bottles to prevent the formation of bubbles.
The DIC in the transferred samples (DICICE) was measured
via coulometric titration using a Versatile Instrument for the
Determination of Titration Alkalinity (VINDTA 3C, Marianda,
Kiel, Germany) at room temperature.

Because of very low salinity (<3) and TA values (<220 µmol
kg−1), the sea ice samples were mixed with various volumes
of HgCl2-poisoned seawater collected in the East Sea (Sea of
Japan) (salinity of 32 and TA of 2100 ± 2 µmol kg−1), and
the TA of the mixture (TAMIX) was measured by potentiometric
titration (Millero et al., 1993) using a VINDTA 3C instrument.
The mixing (thus increasing salinity of samples) might reduce
any potential problem caused by the difference in ionic strength
in the TA samples and seawater certified reference material
(CRM; prepared and distributed by Andrew Dickson, Scripps
Institution of Oceanography) used to calibrate our analysis
system. To validate this dilution method for TA measurement,
we measured the TA value of the diluted seawater sample using
CRM. In the salinity range of 15–32, measured TA values were
consistent with the calculated TA values using a mixing ratio
between CRM and deionized water (Supplementary Table 1).
Prior to mixing, the ice meltwater sample and the seawater
were, respectively filtered with syringe filter units of 0.45-µm
pore size (ADVANTEC, 25HP045AN, Tokyo, Japan) and glass
microfiber filters (GF/F; Whatman) at room temperature for the
removal of phytoplankton and bacteria contribution on TA (Kim
et al., 2006). It is noted that both ice meltwater and seawater are
undersaturated with respect to ikaite at room temperature due
to the high solubility of ikaite (Bischoff et al., 1993). Each empty
borosilicate bottle was weighed, which was followed by weighing

the bottle containing the seawater and the bottle containing the
seawater and the sample. Based on weight changes, the mixing
ratios of the sample and seawater were accurately determined.
The salinity values of the seawater (SSW) were measured using
a portable salinometer (8410A), while a portable conductivity
meter (Orion Star A222) was used to determine the salinity of
the sea ice meltwater (SICE), snow (SSN), and melt pond water
(SMP). All salinity values were reported as practical salinity unit
in this study, and thus unit was not indicated. The salinity
values (SMIX) of the sample mixtures were determined based on
the corresponding mixing ratios. Finally, a linear SMIX-TAMIX
relationship was established for each sea ice segment sample
and used to determine a TA value in the corresponding sea
ice sample (i.e., TAICE) in combination with SICE. Confidence
intervals at the 95% significance level for these TA measurements
were determined from the uncertainties of the linear regressions.

Routine analyses using CRM ensured that the analytical
precision for the DIC and TA measurements was approximately
1 and 2 µmol kg−1, respectively. The DIC and TA of snow
(DICSN and TASN , respectively) and melt pond water (DICMP
and TAMP, respectively) samples were determined using identical
procedures as described above. Initial seawater conditions, which
were required to examine the effect of sea ice melting on the air-
sea CO2 flux, were ascertained from the mean DIC and TA values
of surface seawater samples taken between the latitudes 75 and
77◦N (collection locations shown in Figures 1A,B). The seawater
DIC and TA measurements were also done using the VINDTA
3C. Seawater pH was measured by a spectrophotometric method
to evaluate a possible contribution of organic alkalinity to our
results (Clayton and Byrne, 1993; Ko et al., 2016). We used
the CO2SYS program (CO2SYS Excel Macro version 2.3, Lewis
and Wallace, 1998) to calculate pCO2 from the measured TA
and DIC using measured sea surface temperature, and TA from
the measured pH and DIC at the room temperature (Table 1),
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the carbonate dissociation constants of Mehrbach et al. (1973)
(the equations refitted by Dickson and Millero, 1987) and other
ancillary thermodynamic constants tabulated in Millero (1995).
We also used the boron to chlorinity ratio of Lee et al. (2010).
This set of thermodynamic constants yielded the agreement
(comparable to analytical precision; ∼2 µmol kg−1) between
measured CRM TA and calculated value from measured pH and
DIC value of CRM, as previously demonstrated in a range of
laboratory and field studies (McElligott et al., 1998; Lueker et al.,
2000; Millero et al., 2006).

Finally, air-sea CO2 flux (F) was estimated from an air-sea
difference in pCO2 (1pCO2 = atmospheric pCO2 − seawater
pCO2) and the following equation,

F = k × K0 × 4pCO2 (1)

where, k represents the gas transfer velocity determined from
Wanninkhof (2014), and K0 is the solubility coefficient in
seawater for CO2 (Weiss, 1974). We used 400 µatm for the
atmospheric pCO2, which was reported in Barrow, Alaska
(71.3 ◦N, 156.6 ◦W) by the Scripps CO2 program.1 The
mixed layer depth used in this study was provided from the
Monthly Isopycnal and Mixed-layer Ocean Climatology data
(Schmidtko et al., 2013).

RESULTS AND DISCUSSION

Total Alkalinity and Dissolved Inorganic
Carbon in the Ice Camp Samples and
Factors Affecting Them
The average lengths (±1 standard deviation) of the sea ice cores
were 110.3 (±35.9) cm at IC1, and 128.3 (±9.1) cm at IC2. At
IC1, SICE ranged from 0.16 to 2.88, and TAICE and DICICE ranged
from 27 to 219 µmol kg−1 and from 25 to 209 µmol kg−1,
respectively (Figures 2A–D). In general, SICE, TAICE, and DICICE
increased with depth at IC1. A similar profile was reported in the
sea ice samples collected in the Beaufort Sea at the beginning
of summer (Scharien et al., 2010). At IC2, the top (shallower
than 30 cm) ice layer of two samples had higher values of SICE,
TAICE and DICICE relative to the middle layer (Figures 2E,F).
However, in common with IC1, the bottom (deeper than 50 cm)
ice layer has the highest values of SICE, TAICE, and DICICE in all
samples at IC2. In addition, the salinity profile shown in Fransson
et al. (2013) was similar to our results (Figure 2F). The overall
values of these components were lower in IC2, with SICE in the
range 0.05–1.23 and TAICE and DICICE in the ranges of 3–87 and
16–77 µmol kg−1, respectively. As expected, the primary factor
controlling TAICE and DICICE were salinity-related changes such
as concentration and dilution during sea ice formation and
degradation, respectively, which may be affected by weather
conditions (e.g., air temperature above seas). In the snow and
melt pond water, the TA and DIC distributions also increased
with increasing salinity. The estimated TASN and DICSN values
(± 95% confidence intervals) were−4± 4 and 17± 0 µmol kg−1

1http://scrippsco2.ucsd.edu
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FIGURE 2 | Vertical distributions of salinity (SICE ; black, x-axis on the bottom of each panel), dissolved inorganic carbon (DICICE ; blue, x-axis on the top of each
panel), and total alkalinity (TAICE ; red, x-axis on the top of each panel) with a 95% confidence interval. (A–D) represent results for Ice Camp 1 (IC1) and (E–G) for Ice
Camp 2 (IC2). The TAICE values shown with an open circle were statistically insignificant at a 95% confidence interval.

at IC1, and 0 ± 4 and 18 ± 1 µmol kg−1 at IC2, respectively.
The negative TA value of the snow sample may be attributed to
acid (e.g., SO4

−2 and NO3
−) deposition (Björkman et al., 2013;

Macdonald et al., 2017).
The concentrations of SICE, TAICE, and DICICE were lower at

IC2 than at IC1 (Figure 1A), indicating that the volume of sea
ice melting at IC2 was comparatively greater. These observations
are also consistent with the formation of melt pond only at
IC2. For the melt pond water, TAMP and DICMP were in the
ranges of 17–88 and 40–91 µmol kg−1, respectively. SSN (∼0.013)
was found to be much lower than SMP (0.20–0.95). Thus the
melt ponds appear to be significantly affected by sea ice melting.
However, additional evidence such as oxygen isotope is required
to confirm source waters for melt pond. The sea ice meltwater
likely diluted or washed out the salts from the sea ice (Fransson
et al., 2011; Geilfus et al., 2015; Kotovitch et al., 2016), and
TA and DIC accumulated at the boundary regions between the
ice crystals. Fresh water is released as sea ice melts, and air
gaps emerge inside the sea ice, increasing permeability and the
air-ice gas exchange flow (Cox and Weeks, 1983). Enhanced
permeability may partially compensate for such a loss in DIC,

which could explain the occurrence of some sea ice samples with
DICICE:TAICE > 1 (Figures 2E–G). Previously, a laboratory sea
ice chamber experiment reported an air-to-ice CO2 flux during
ice melt (Kotovitch et al., 2016).

Excess Total Alkalinity in Sea Ice
The regression equations between TAICE and SICE for both
IC1 and IC2 show non-zero intercepts of 19 ± 8 µmol kg−1

(R2 = 0.98, p < 0.005) and 7 ± 4 µmol kg−1 (R2 = 0.95,
p < 0.005), respectively (Figures 3A,B). These excess TA values
at S = 0 (TAEX) indicate that the sea ice samples were influenced
by a process that shifted a conservative TA-S mixing line upward.
We attribute the positive intercepts to the contribution of CaCO3
(TACC) in the sea ice (i.e., TAEX formed by TACC). However,
an alternative explanation is the contribution of freshwater
containing TA, as studies have reported that rivers discharging
into the Arctic Ocean have an average TA of ∼1000 µmol kg−1

(Cooper et al., 2008). Pipko et al. (2011) reported lower values
for the ESS (∼470 and ∼850 µmol kg−1 from the Kolyma and
Lena rivers, respectively). We, therefore, tested the possibility
that riverine TA produced the TAEX in our sea ice samples. We
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first assumed that the proportion of all chemical species rejected
during the formation of sea ice was the same as that in seawater
with no CaCO3 precipitation. In other words, the TA value of
any sea ice should fall on a linear relationship between two points
representing pure ice (i.e., SICE = 0 and TAICE = 0 µmol kg−1)
and the source seawater that froze to generate the sampled sea
ice (Figure 3C).

Two seawater endmembers were considered to investigate the
effect of riverine water on our TAEX : Pacific Winter Water in the
Chukchi Sea (S = 32.99 and TA = 2269 µmol kg−1; Qi et al.,
2017) and the same seawater but diluted by 10% with river water
(S = 0 and TA = 1048 µmol kg−1). The 10% contribution of river
waters was chosen based on Jung et al. (2021) conducted in the
same cruise. Three points, including zero salinity and TA values,
form a triangle zone between the two lines shown in Figure 3C.
In principle, any data falling above this zone (or above the upper
line; Figures 3A,B) cannot be explained by riverine TA only,
and must include the effect of sea ice TAEX . Thus almost all
data with SICE < 1 could support the presence of TAEX (formed
by ikaite) in sea ice. The higher concentration of TAEX in the
upper layer is consistent with previous studies suggesting that
ikaite concentration is related to the temperature of the sea ice
(Fransson et al., 2013; Rysgaard et al., 2013, 2014). In contact
with the cold atmosphere, the top of the sea ice is favorable
(close or lower than freezing temperature) for ikaite precipitation
(Bischoff et al., 1993), and a relatively large amount of ikaite can
be preserved in summer (Nomura et al., 2013a). On the other
hand, a lower concentration of ikaite in the middle and bottom
layers suggested that ikaite was exported to underlying seawater
in summer (Rysgaard et al., 2013). If no CaCO3 precipitation was
assumed to occur, any sea ice affected by a riverine contribution
(<10%) should fall within the triangle zone with no exception.
However, the converse is not always true. In other words, all the
data located within the triangle zone were not only affected by
riverine TA, allowing the contributions of other TAEX sources
to them. Therefore, it was required to assess the whole data
together. If riverine TA was the only TAEX source, the regression
of all available data should approach a zero TA with decreasing
salinity, as riverine TA (accumulated in the source seawater)
mixed with sea ice meltwater with no TAEX . To test this, we
randomly selected the same number of data points within the
same salinity ranges as IC1 and IC2, and calculated the intercept
of the linear regression line. Repeated simulations (n = 50,000)
showed that it was nearly impossible for the case of mixing with
river water (<10%) to produce the observed TAEX of 19 and
7 µmol kg−1 in IC1 and IC2, respectively (Figures 3D,E). The
riverine TA could produce a TAEX of ∼4 and ∼2 µmol kg−1 at
IC1 and IC2 at best, respectively, which are values that lie within
the uncertainties of our estimates.

Another factor capable of altering sea ice acid-base balance is
organic acids (Yang et al., 2015; Ko et al., 2016), because high
dissolved organic carbon concentrations (up to 600 µM) were
reported in the Arctic sea ice (Thomas et al., 1995). However,
according to the TA definition of Dickson (1981), organic acids
with pKa ≥ 4.5 do not change TA because a dissociated conjugate
base reacts with a proton of titrant, and thus cause no change
in TA, whereas organic acids with pKa < 4.5 reduce TA (Ko

et al., 2016; Hu, 2020). The former is the same as the effect of
CO2 dissolution on TA. Therefore, our TAEX estimates cannot
be generated by organic bases originating from dissolved organic
matter production or degradation of particulate organic matter.
Rather, our results would be underestimated if there was a
significant production of weak organic acids with pKa < 4.5. As
an exception, if the sea ice samples had precipitates consisting of
metal ions and conjugate bases of organic acids with pKa ≥ 4.5,
they would increase TA, whose effect is identical to that of
CaCO3 crystals (Hu, 2020). To our knowledge, such a precipitate
was not reported in sea ice. Finally, phytoplankton uptake of
nutrient increase TA. However, ocean climatology databases
(World Ocean Atlas 2018 and Global Ocean Data Analysis
Project version 2) showed depletions of NO3

− in the surface layer
of the study area (Garcia et al., 2019; Olsen et al., 2020).

Weak organic acids can introduce an error in calculating a
carbonate variable from two measured ones (e.g., pCO2 from
TA and DIC), because organic acids proportionally change
the contributions of other species (e.g., CO3

2−, B(OH)4
−) to

TA (Ko et al., 2016). Thus we evaluated the effect of organic
acids contained in Arctic seawater on the internal consistency
among seawater carbonate parameters by comparing measured
TA (TAMEAS) and calculated one (TACALC) from measured pH
and DIC. The difference (1TAM−C = TAMEAS – TACALC) can be
attributed to the effect of organic alkalinity (conjugate bases of
weak acids) (e.g., Yang et al., 2015; Ko et al., 2016). The estimated
1TAM−C was∼7 µmol kg−1 in seawaters, and thus the potential
organic alkalinity contributions were estimated to be ∼0.3 and
∼0.1 µmol kg−1, at IC1 and IC2, respectively, if taking into
account a linear reduction of 1TAM−C with decreasing salinity.
Thus we ignored the effect of organic alkalinity on estimating
the impact of sea ice melting on air-sea exchange of CO2 in the
following section.

Previous studies showed that the ikaite concentration in sea
ice samples varies considerably in time and space (Rysgaard
et al., 2012, 2013; Fischer et al., 2013; Geilfus et al., 2013;
Nomura et al., 2013a). Our estimates are much lower than
most of those observed in previous studies (Table 1). It is a
note that ikaite concentration is a half of TAEX in our study
because 1 mole of CaCO3 equals 2 moles of TA. Factors affecting
ikaite formation and dissolution include air and ice temperatures
(controlling sea ice formation), salinity (affecting ion strength,
crystal nucleation, and concentrations of CO3

2− and Ca2+

ions), pH (affecting CO3
2− concentration), CO2 removal (by

air-sea exchange or CO2 assimilation; affecting pH and DIC),
snow (affecting ice temperature), and other ion species (Mg2+,
PO4

3−, and SO4
2− as inhibitor or facilitator) (Papadimitriou

et al., 2013, 2014; Rysgaard et al., 2013, 2014; Hu et al., 2014;
Tollefsen et al., 2018). However, unfortunately, it was not possible
to assess the effects of various ions, salts, and pH on the
estimated ikaite concentrations of the previous studies (shown
in Table 1), because temporal evolutions of these variables
from winter to summer were not available. In general, previous
estimates of higher ikaite concentration during winter than in
summer indicate a seasonal reduction of ikaite concentration
during the warming period (Rysgaard et al., 2013). Similarly,
our summer sampling, and thus under conditions of enhanced
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FIGURE 3 | Relationships between TAICE and SICE at IC1 (A) and IC2 (B). Red lines indicate the linear regression lines. Positive intercepts suggest the existence of
CaCO3 crystals in sea ice samples. Color shading represents the depths for the sea ice segments. (C) Linear relationships representing conservative mixing between
pure sea ice water (S = 0 and TA = 0 µmol kg-1) and two seawater endmember values (open circles), with one representing Pacific Winter Water and the other
representing the same seawater but diluted by 10% with river water with TA = 1048 µmol kg-1. These lines are also shown in (A,B). Note that SICE and TAICE in the
winter season are likely to be located in the triangle (close to the bottom line) because river discharge in winter (67 km3 month-1) is ∼25% of summer (253 km3

month-1) in the Arctic Ocean (Holmes et al., 2012). In the winter, net community production, which can deviate the linear relationship between salinity and TA by
raising TA, is limited by reduced solar radiation. The square symbol represents the mean seawater TA and S values in the East Siberian Sea (ESS). Probability
distribution plots showing intercept values that could be produced from excess TA in river water with no CaCO3 precipitation at IC1 (D) and IC2 (E). An anomalously
high TAICE value (=219 µmol kg-1; Figure 2A) was excluded in this figure and calculating the linear regression. It is a note that including it increased the y-intercept
(i.e., TAEX ).

sea ice degradation, was probably one of the factors accounting
for the relatively low ikaite concentration observed in our study.
In addition, ikaite could transform into calcite or vaterite when
exposed to air at higher temperature (>10◦C) (Sánchez-Pastor
et al., 2016; Purgstaller et al., 2017). At room temperature, the
transformation of ikaite in the melted sea ice sample could
result in an underestimation of our calculated TAEX if particulate
calcite or vaterite were preserved and filtered. However, our
sea ice meltwater with low salinity was undersaturated with
respect to calcite (saturation state of calcite is <0.3), suggesting
that the effect of transformation of ikaite was negligible on our
TAEX estimate.

Rysgaard et al. (2013) compared the TA-to-salinity (TA:S)
ratios in sea ice and seawater. The TA:S ratios were greater
in sea ice relative to those in the water column by ∼17 µmol
kg−1 S−1 as TA (not ikaite). The same study also showed that
ikaite concentrations measured by an image analysis technique
fell within the same range of sea ice TA (i.e., TAICE = TACC and
TAEX < TACC), implying that a TA fraction (TASAL) explained

by the conservative TA-salinity relationship existed as ikaite
within their sea ice samples. Based on this result, it could be
inferred that our approach attributing only TAEX to ikaite could
underestimate ikaite concentration in sea ice. If extrapolating
the excess TA:S in sea ice of Rysgaard et al. (2013) to our study
(i.e., assuming simultaneous removal of ikaite and solutes with
decreasing salinity or increasing dilution by sea ice melt water),
IC1 and IC2 with the mean salinity values of 1.39 and 0.36 could
have the sea ice TAEX of ∼27 and ∼6 µmol kg−1, respectively,
reducing the gap between Rysgaard et al. (2013) and our study.
The effects of sea ice ikaite formation on air-sea exchange of
CO2 need to be separated because the effects of TASAL can be
evaluated from the seawater TA-S relationship without an effort
to measure ikaite.

Our TAEX values are also substantially lower than estimates
of 160–240 µmol kg−1 (ikaite contribution as TA) reported by
Rysgaard et al. (2012), who sampled drifting ice floes in the
Fram Strait during the summer of 2010. In addition, a study
conducted in the Pacific sector in the Arctic Ocean suggested
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large enhancements in seawater TA caused by dissolution of
ikaite crystal in the marginal sea ice zone during summer (Chen
et al., 2015), which was quantitatively consistent with the result
of Rysgaard et al. (2012). However, an assumption that Rysgaard
et al. (2012) made to estimate ikaite tended to overestimate
ikaite concentration. They calculated ikaite concentration from
the difference between TA and DIC in sea ice, although DIC is
not a conservative parameter due to gas exchange and biological
processes. In fact, Moreau et al. (2015) suggested that a TA:DIC
ratio of∼2 in sea ice could be caused by outgassing. If comparing
the TA:S ratio in sea ice and seawater of Rysgaard et al. (2012),
their sea ice samples had the sea ice TAEX of ∼107 µmol kg−1

at salinity of 3.9, which could be further reduced to 15–55 µmol
kg−1 when normalizing to our sea ice salinity values. Nomura
et al. (2013a) measured TA after filtering sea ice meltwaters to
remove ikaite crystal, and then estimated a loss of TA relative
to salinity. Their result represents only TASAL in sea ice, thus
underestimating total ikaite concentration. Overall, our TAEX
could not represent the whole ikaite concentration in sea ice
despite a TAEX production due to ikaite formation, but instead
should be used to separate the effects of sea ice melting on
seawater carbonate chemistry that is not explained by sea ice
salinity. Combining our approach and that of Nomura et al.
(2013a) can reveal both TAEX and TASAL in sea ice, and thus total
ikaite concentration.

Impact of Sea Ice Melting on Air-Sea
Exchange of CO2
Based on the characteristics of the sea ice samples, we examined
the impact of sea ice melting by calculating the potential uptake
of atmospheric CO2 in the MLD of the ESS (Table 2). The
ESS MLD was assumed to be ∼20 m in the study area in
summer (Schmidtko et al., 2013) with an average thickness of
sea ice of ∼1.5 m (Global Ice-Ocean Modeling and Assimilation
System; Zhang and Rothrock, 2003). Daily air-sea CO2 flux
was estimated from the equation (1), and the required gas
transfer velocity (k) was calculated using the mean wind speed
of ∼7.0 m s−1 (measured during the survey) following the
suggestion of Wanninkhof (2014). The enhancement in the total
carbon content due to air-sea CO2 exchange was calculated
under the assumption that the sea ice located in the marginal
ice zone was completely melted and mixed with seawater in
the MLD. We also assumed that the pCO2 of the seawater
returned to an original condition (pCO2

iSW) through the air-
sea CO2 exchange without considering further degradations of
sea ice and biological processes in our study region. The original
condition corresponded to approximately pCO2 of 309 µatm
determined based on our observations (TAiSW = 2037 µmol
kg−1, DICiSW = 1932 µmol kg−1, SiSW = 29.4, and TiSW = 0◦C;
where iSW indicates “initial seawater condition”) conducted
during our survey period. The mean TAICE values were estimated
from the linear TAICE-SICE relationship (Figure 3) and the
mean salinity at the two ice camps (1.39 at IC1 and 0.36 at
IC2). Sea ice (1.5 m) melting at IC1 (TAICE = 108 µmol kg−1,
TAEX = 19 µmol kg−1, and DICICE = 97 µmol kg−1) caused
seawater (18.5 m) pCO2 value to be reduced to ∼277 µatm.

If TAEX is excluded, the resulting pCO2 is ∼280 µatm. In the
case of IC2 (TAICE = 31 µmol kg−1, TAEX = 7 µmol kg−1,
and DICICE = 25 µmol kg−1), seawater pCO2 was reduced to
∼276 µatm after sea ice melting (∼278 µatm without considering
TAEX). These estimated pCO2 drops were twice that found in
the Amundsen Gulf, Arctic Ocean during the spring season
(Fransson et al., 2013).

In the 1st day after the complete melting and mixing in the
MLD (20 m), the estimated CO2 uptake from the atmosphere was
∼13 mmol m−2 d−1, increasing pCO2 and DIC concentration
in the MLD by ∼1.7 µatm and ∼0.66 µmol kg−1, respectively,
at both IC1 and IC2 without a TA change. This approach was
repeated every day until the pCO2

iSW was recovered, which took
approximately 21 days, giving the mean CO2 uptake rate of 11–
12 mmol m−2 d−1. However, achieving air-sea equilibrium in this
way was impossible because more than 200 days were required,
during which sea conditions could significantly vary (Woosley
and Millero, 2020). As a result, the total oceanic uptake of CO2
was approximately 246 and 251 mmol m−2 for 21 days in IC1
and IC2 samples, respectively. Our estimate (11–12 mmol m−2

d−1) is broadly consistent with those estimated from other field
observations of TA and DIC in the ESS (−0.3 to 10.9 mmol m−2

d−1, where a positive value indicates ocean uptake) (Nitishinsky
et al., 2007; Semiletov et al., 2007; Bates and Mathis, 2009), and
are also similar to the effect of sea ice melting (CO2 uptake of
2.4–10.6 mmol m−2 d−1) in other areas (Chukchi Sea, Beaufort
Sea, and Greenland Sea) of the Arctic Ocean (Figure 1; Cai
et al., 2010; Rysgaard et al., 2012, 2013; Else et al., 2013). In the
Arctic Ocean the thickness of MLD was temporarily reduced to
∼2 m due to strong stratification by ice melted water (Woosley
et al., 2017). If the sea ice (IC1) meltwater is confined to the
2 m of MLD, surface pCO2 could be reduced to 56.9 µatm but
equilibrated with atmospheric CO2 in 7 days. Because of rapid
rise of pCO2 in the shallower MLD, oceanic CO2 uptake rate
(∼4.8 mmol m−2 d−1) over 21 days was lower than our estimate
for 20 m of MLD.

The impact of sea ice melting on the oceanic CO2 absorption
capacity is affected by the degree of freshening and the amount
of TAICE, and TAICE:DICICE ratio. In our study region, the
increase in the CO2 uptake was mainly due to the dilution-
induced pCO2 decrease (∼30 µatm) by sea ice melting
(Table 2 and Supplementary Figure 1). The release of TAICE
did not reduce seawater pCO2 due to the effect of DICICE
(TAICE:DICICE = ∼1.1), which can offset the pCO2 decrease.
The exclusion of TAEX also did not significantly change the
mean flux rate and time required to recover the pCO2

iSW .
Our estimate for increased CO2 uptake rate driven by sea ice
melt was not significantly different from that (∼12 mmol m−2

d−1 or 250 mmol m−2 in total) expected from a mixture
with pure sea ice meltwater (zero TAICE, DICICE, and SICE).
Because our sea ice samples were collected late summer, the CO2
absorption of the partially degraded sea ice may have canceled
out the effect of TAEX by reducing TAICE:DICICE ratio. If TAICE
and DICICE of IC1 sample are mainly controlled by CaCO3
formation and dissolution without a contribution of air-ice CO2
exchange (TAICE:DICICE = ∼2; Rysgaard et al., 2012), the CO2
uptake from the atmosphere would be ∼19 mmol m−2 d−1.
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TABLE 2 | Properties of source waters and estimated potential CO2 uptake rate in the mixed layer depth of the ESS.

Type Station TA DIC S pCO2 Flux

(µmol kg−1) (µatm) (mmol m−1 d−1)

Source properties Seawater 2037 1932 29.4 309

Sea ice melt water IC1 108 97 1.4 5

Sea ice melt water IC2 31 25 0.4 1

Potential CO2 uptake Dilution only 1884 1787 27.2 277 11.9

Dilution + DICICE + TAICE IC1 1892 1794 27.3 277 11.7

IC2 1887 1789 27.2 276 12.0

Dilution + TAICE IC1 1892 1787 27.3 260 18.8

IC2 1887 1787 27.2 272 13.8

Dilution + TAICE – TAEX IC1 1891 1787 27.3 263 17.5

IC2 1886 1787 27.2 273 13.3

In addition, if applying the summertime TAICE concentration
(∼533 µmol kg−1) and TAICE:DICICE ratio (∼2) of Rysgaard
et al. (2012) to our study region, the seawater pCO2 could be
reduced to ∼241 µatm, thereby increasing CO2 uptake to ∼27
mmol m−2 d−1.

Finally, based on the TAMP and DICMP values determined
at the sites, a pCO2 of 234 ± 146 µatm (average ± 1
standard deviation) was expected in the melt pond water with
a temperature of ∼0◦C. Previous studies suggested the CO2
uptake from the atmosphere to melt pond water ranged from
0.13 to 38.6 mmol m−2 d−1 from spring to summer (Nomura
et al., 2010, 2013b; Geilfus et al., 2012, 2015). As the melt
ponds appear to be affected by sea ice melting, the absorption
of CO2 by the melt pond water should be included when
assessing the role of sea ice melting on atmospheric CO2
sequestration. In fact, a study estimated 5–15% contribution
of melt ponds to Arctic Ocean CO2 uptake (Geilfus et al.,
2015). However, in this study, the data were insufficient to
extrapolate, and we note the importance of investigating the role
of melt ponds in future studies. Melt ponds in the Canada Bain
and the Chuckchi Sea shelf showed the pCO2 ranges of 36–
381 and 139–625 µatm, respectively (Bates et al., 2014; Geilfus
et al., 2015). The broad pCO2 ranges found in three regions
imply a large variation in time and space, and inconsistent
sampling timing after melt water formation should be taken into
account to properly assess the CO2 absorptions by melt ponds
(Geilfus et al., 2015).

CONCLUSION

We evaluated variations in the total carbon content due to
sea ice melting and estimated the corresponding enhancements
of the air-to-sea CO2 flux in the East Siberian Sea. Of the
two ice camps, IC2 was located at the edge of the sea ice,
and thus the loss of sea ice meltwater and brine was greater
than at IC1, resulting in a TAICE value four times higher
at IC1 (∼108 µmol kg−1) than at IC2 (TAICE = ∼31 µmol
kg−1). Moreover, the large positive intercepts in the SICE-TAICE
regression could be attributed to ikaite remained in summer
sea ice. The enhancements in the CO2 uptake by sea ice

melting were mainly due to the dilution (release of meltwater
containing a low level of DIC), and the effect of the TAICE
release (reducing pCO2) was largely canceled out by DICICE.
Our sea ice samples showed relatively low salinity and TAICE
compared to those in other regions. The regional difference might
be caused by variations in environmental factors affecting sea ice
and ikaite formations to some extent. In addition, the difference
in methods used to determine sea ice ikaite might prevent a
direct comparison among the past studies. The potential air-
sea CO2 flux determined in our study (i.e., ESS in summer)
was similar to or slightly higher than those reported in other
regions (Table 1).

Climate change-induced changes in environmental condition
during sea ice formation and degradation may alter physical and
chemical properties of sea ice including CaCO3 formation. In
addition, current understanding of sea ice carbon parameters is
not sufficient to fully address its effects on ocean biogeochemistry
despite the previous efforts made a decade ago (Rysgaard
et al., 2012; Fischer et al., 2013; Geilfus et al., 2013).
Therefore, it appears that continued monitoring studies are
required. Nonetheless, to our knowledge, there was no previous
sea ice TA data to compare with our results in the East
Siberian Sea. Given large spatiotemporal variations in the
Atlantic sector of the Arctic Ocean, further studies on this
issue should be followed in the Pacific sector using various
complementary methods for the determination of sea ice ikaite.
It might also be needed to separate the ikaite effect on
seawater inorganic chemistry into TAEX and TASAL because
the latter can be assessed easily by sea ice salinity. In
parallel, to determine factors affecting the large variations
in ikaite concentrations, laboratory experiments on ikaite
formation and degradation should also be conducted in the
conditions representing changing physical and biogeochemical
environments in the Arctic Ocean.
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The air-sea gas transfer velocity (K660) is typically assessed as a function of the 10-m
neutral wind speed (U10n), but there remains substantial uncertainty in this relationship.
Here K660 of CO2 derived with the eddy covariance (EC) technique from eight datasets (11
research cruises) are reevaluated with consistent consideration of solubility and Schmidt
number and inclusion of the ocean cool skin effect. K660 shows an approximately linear
dependence with the friction velocity (u*) in moderate winds, with an overall relative
standard deviation (relative standard error) of about 20% (7%). The largest relative
uncertainty in K660 occurs at low wind speeds, while the largest absolute uncertainty in
K660 occurs at high wind speeds. There is an apparent regional variation in the steepness
of the K660-u* relationships: North Atlantic ≥ Southern Ocean > other regions (Arctic,
Tropics). Accounting for sea state helps to collapse some of this regional variability in K660

using the wave Reynolds number in very large seas and the mean squared slope of the
waves in small to moderate seas. The grand average of EC-derived K660 ( − 1:47  +
 76:67u* +  20:48u2*  or 0:36  +  1:203U10n +  0:167U2

10n) is similar at moderate to high
winds to widely used dual tracer-based K660 parametrization, but consistently exceeds
the dual tracer estimate in low winds, possibly in part due to the chemical enhancement in
air-sea CO2 exchange. Combining the grand average of EC-derived K660 with the global
distribution of wind speed yields a global average transfer velocity that is comparable with
the global radiocarbon (14C) disequilibrium, but is ~20% higher than what is implied by
dual tracer parametrizations. This analysis suggests that CO2 fluxes computed using a
U2

10n dependence with zero intercept (e.g., dual tracer) are likely underestimated at
relatively low wind speeds.
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1 INTRODUCTION

Approximately a quarter to a third of CO2 emitted by human-
related activities is absorbed annually by the global oceans
(Khatiwala et al., 2013; Friedlingstein et al., 2020), which has
mitigated its atmospheric greenhouse effect but led to ocean
acidification. Air-sea gas flux is generally estimated with a bulk
formula, i.e., as the air-sea concentration difference (DC)
multiplied by the gas transfer velocity (K). K is typically
parametrized as a function of the 10-m neutral wind speed
(U10n), but there is still considerable uncertainty in this
relationship (Wanninkhof, 2014). More than half of the
uncertainty in estimates of the net global air-sea CO2 flux
arises from errors in the parametrization of K (Woolf et al.,
2019), which severely hinders our ability to quantify the current
carbon cycle and forecast climate in the near future.

The micro-metrological eddy covariance (EC) method
provides a direct measurement of CO2 flux that is independent
of seawater concentration. EC flux is derived from the
correlation between rapid (typically 10 Hz) fluctuations in the
vertical wind velocity (w) and in the dry mixing ratio of CO2 in
the atmosphere (XCO2). The resultant CO2 flux is converted to
molar concentration units (e.g., mmol m-2 d-1) using the mean
dry air density (rdry):

FluxCO2
= rdry  w0X 0

CO2
(1)

Here the primes denote fluctuations and the overbar indicates
temporal averaging, typically over intervals of 10 minutes to
an hour.

Combining the EC flux with concurrent measurement of DC,
K can be independently determined by rearranging the bulk
formula. In the case of seawater CO2 measurement, the gas
analyzer measures the fugacity of CO2 in an equilibrator (fCO2w

in matm, proportional to dissolved concentration by the gas
solubility) and in the atmosphere (fCO2a in matm), which allows
for the approximation (conversion from matm to atm and from
m s-1 to cm hr-1 not shown):

K = FluxCO2=DC ≈ rdry  w0X 0
CO2

=Solbulk=(fCO2w − fCO2a) (2)

On a ship, fCO2w and fCO2a are typically measured from ca.
5 m below and 15 m above the ocean surface, respectively. The
bulk solubility Solbulk (in mol m-3 atm-1) is computed from the
underway water temperature and salinity at ca. 5m depth. To
account for the temperature dependence in the gas transfer
velocity and facilitate comparison between different
measurements, K is further normalized to 20 °C via the
Schmidt number (Sc), where the exponent n is typically
assumed to be -1/2 over the open ocean:

K660 = K 660 =Scð Þn (3)

Building upon the works of Ward et al. (2004) and McGillis
and Wanninkhof (2006), Woolf et al. (2016) identified two main
ways in which near surface temperature gradients may impact
the air-sea CO2 concentration gradient: the presence of a cool
skin and a diurnal warm layer. Driven by heat fluxes at the
Frontiers in Marine Science | www.frontiersin.org 2195
surface (latent heat, longwave radiation, and sensible heat,
Saunders, 1967; Soloviev and Schluessel, 1994) and present
ubiquitously over the ocean, the cool skin effect causes the
temperature at the air-sea interface to be ~0.2°C cooler than
water ca. 1 mm below (Donlon et al., 2002). The diurnal warm
layer refers to heating of the top meters of the ocean due to
incoming shortwave radiation, a phenomenon more important
in tropical regions and at low wind speeds (e.g., Fairall
et al., 1996).

Accounting for these near surface temperature gradients led
to a substantial increase in the estimated global net CO2 uptake
(Woolf et al., 2016; Watson et al., 2020). However, these global
flux estimates used a K660 parametrization that was derived from
the dual tracer (3He/SF6) technique (e.g., Ho et al., 2006). 3He
and SF6 differ from CO2 from at least two perspectives: 1) they
are much less soluble than CO2, and solubility is important in
bubble-mediated gas exchange (Woolf, 1997; Asher and
Wanninkhof, 1998); 2) they are inert, whereas the air-sea
exchange of CO2 is affected by chemical enhancement due to
the carbonate kinetics (Wanninkhof, 1992). In addition, the
derivation of K660 from the 3He/SF6 measurements is highly
sensitive to the Schmidt number exponent n, which is thought to
deviate from -1/2 at low wind speeds (e.g., Esters et al., 2017;
Nagel et al., 2019). It is arguably more robust to use K660 directly
derived from CO2 measurements to estimate the global/regional
CO2 flux to avoid the aforementioned possible sources
of uncertainty.

Eddy covariance measurements of air-sea CO2 flux from ships
have improved significantly since the maturation of the motion
correction algorithms (Edson et al., 1998; Landwehr et al., 2015)
and adoption of fast response, closed-path CO2 analyzers with a
dryer (Nafion) to eliminate the signal contamination due to
fluctuations in water vapor (Miller et al., 2009; Blomquist et al.,
2014; Landwehr et al., 2014). There have been about a dozen
cruises since the late 2000s that used this method to derive K660

for CO2 (following Eq. 2 and 3). The original analyses of these
data were made on different averaging timescales, used outdated
fits for the solubility and Schmidt number of CO2 (Wanninkhof,
1992), and typically ignored near surface temperature gradients.
This reevaluation addresses those inconsistencies and presents
the first synthesis of shipboard EC CO2 flux-derived K660

measurements. We assess the comparability and variability in
the K660 measurements in Section 3, with an exploration of the
impact of waves on gas exchange. We then compare the grand
average of the EC-derived K660 measurements with the dual
tracer estimate and global radiocarbon estimate in Section 4 and
offer some outlooks in Section 5.
2 EXPERIMENTAL

2.1 Datasets
Table 1 and Figure 1 summarize the eight datasets (11 cruises)
reevaluated in this study (also see Supplementary Figure 1).
Most cruises took place in mid/high latitudes (sea surface
temperature, or SST, well below 20 °C), where CO2 fluxes were
June 2022 | Volume 9 | Article 826421
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largely into the ocean. Only the tropical cruise SO-234/235 and
the Southern Ocean cruise ANDREXII experienced periods of
significant CO2 evasion. Most of the observations were made at
10-m neutral wind speeds of 3-13 m s-1 (friction velocity u* of
approximately 0.1 to 0.5 m s-1). The North Atlantic cruise
HiWinGS had largest sample size and experienced the highest
wind speed (up to 25 m s-1), while SO-234/235 and the North
Atlantic cruise Knorr-07 had the smallest sample sizes. NBP-
1210/1402 in the Southern Ocean, JR18007 in the Arctic, and
HiWinGS had the most hours of low wind measurements. The
polar datasets of K660 here (NBP-1210/1402 and JR18007) do not
include periods near sea ice.
Frontiers in Marine Science | www.frontiersin.org 3196
All the cruises above used a closed-path CO2 analyzer (LI-
COR or Picarro cavity ringdown analyzers) with a Nafion dryer,
effectively eliminating the issue of water vapor interference in the
CO2 signal and the need for a Webb correction (e.g., Landwehr
et al., 2014; Blomquist et al., 2014). We do not consider data from
the earlier GasEx studies in this reevaluation. The SO GasEx
(Edson et al., 2011) cruise used an open-path LI-COR CO2

analyzer with known water vapor interference (Landwehr et al.,
2014; Blomquist et al., 2014). GasEx98 (Wanninkhof and
McGillis, 1999; McGillis et al., 2001) and GasEx01 (McGillis
et al., 2004) used a closed-path LI-COR CO2 analyzer but
without a dryer. Observations by Prytherch et al. (2017) near
FIGURE 1 | Hours of K660 measurements from eight datasets (11 cruises) at different wind speeds and the global wind distributions. The approximate u* values are
shown on the bottom of the plot.
TABLE 1 | Shipboard eddy covariance CO2 gas transfer measurements using closed-path infrared analyzers (LI-COR Li-7200 or modified LI-COR Li-7500) or cavity
ringdown analyzers (Picarro G1301-f, G2311-f) with a physical dryer.

Cruise ID Time Ship Region CO2 analyzer N > 20 (30)
matm

Mean
SST

Original reference

Knorr-07
(a/b)

Jun-Jul 2007 Knorr North Atlantic Modified LI-COR Li-7500 61 (61) 13 Miller et al., 2009

Knorr-11 Jun-Jul 2011 Knorr North Atlantic Modified LI-COR Li-7500 215 (215) 10 Bell et al., 2017
SOAP Feb-Mar 2012 Tangaroa Southern Ocean

(temperate)
Modified LI-COR Li-7500 220 (220) 15 Landwehr et al., 2018

NBP-1210/
1402

Jan-Feb 2013; Feb-Mar
2014

Palmer Southern Ocean (polar) LI-COR Li-7200 302 (302) 0 Butterworth & Miller,
2016

HiWinGS Oct-Nov 2013 Knorr North Atlantic Picarro G1301-f (LI-COR Li-
7200)

530 (467) 10 Blomquist et al., 2017

SO-234/235 Jul-Aug 2014 Sonne Tropical Indian LI-COR Li-7200 86 (44) 25 Zavarsky et al., 2018
ANDREXII Feb-Apr 2019 James Clark

Ross
Southern Ocean
(subpolar)

Picarro G2311-f 289 (199) 1 Yang et al., 2021

JR18007 Aug 2019 James Clark
Ross

Arctic Picarro G2311-f 278 (278) 6 Dong et al., 2021
June 2
022 | Volu
N indicates the hours of open water flux measurements with minimum |DfCO2| of 20 (30) matm. SST indicates underway water temperature (typically at a depth of ~5 m).
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sea ice used a Fast Greenhouse Gas Analyzer (Los Gatos
Research), which is substantially noisier than the closed-path
LI-COR and Picarro cavity ringdown analyzers and thus resulted
in a much greater flux uncertainty (Yang et al., 2016); those
observations are also not considered in this analysis.

Cruise data were supplemented with model U10n data provided
by the ECMWF global reanalysis (ERA-5) and ocean wave data from
a hindcast based on ERA-5 forcing (ERA-5H). The ERA-5 reanalysis
provides a comprehensive record of the global atmosphere, land
surface, and ocean waves from 1950 onwards. Compared with the
previous reanalysis (ERA-Interim), ERA-5 benefits from over a
decade of research and development in model physics, core
dynamics, and data assimilation. The reanalysis also offers an
increase in horizontal resolution (31 km) and time resolution (1
hour), as well as an increase in the vertical atmospheric model levels.
The ERA-5 output was produced with ECMWF IFS Cy41r2, used
for the operational forecast from March 8 to November 2016. For
more details, please refer to Hersbach et al. (2020).

Even though ERA-5 has an ocean wave component, in this
study we use wave data from an hindcast (ERA-5H). This hindcast
is based on a more advanced version of ECMWF wave prediction
system ecWAM (Cy47r1; ECMWF, 2020). The ERA-5H is a long
global wave model simulation (1979-2020), forced by ERA-5
hourly 10-m neutral winds, surface air density, gustiness, and
sea ice cover. The latter is used to prevent wave generation and
propagation in all areas with the sea ice cover >30%. Like ERA-5,
the output of ERA-5H is hourly, but it has finer spatial (~20 km)
and spectral resolutions (ERA-5: 24 directions, 30 logarithmically
spaced frequencies, last frequency ~0.56 Hz; ERA-5H: 14 km, 36
directions and 36 frequencies, last frequency ~1 Hz). The ERA-5H
benefits from an updated wave physics for wind input and swell
dissipation (based on the work of Ardhuin et al., 2010) and has
been successfully incorporated into the operational ecWAM wave
model component of IFS (Bidlot, 2019).

Model data are collocated with the cruise data using a bi-
linear interpolation in space and a linear interpolation in time.
For the purpose of this study, the total significant wave height
(Hs) and the mean squared slope (MSS) of the waves from the
model are used (see ECMWF, 2020 for further details). It is
important to note that the MSS here is determined with the high
frequency cut-off given by the model discretization (~1 Hz).

2.2 Reevaluation Methods
EC CO2 flux data are reevaluated to ensure comparability.
Significant changes to some of the original data include:

- CO2 flux data averaged to hourly interval (minimum of 40
minutes required per hour) following recommendation by
Dong et al. (2021)

- Solubility and Schmidt number computed following the
equations given by Wanninkhof (2014)

- Air-sea CO2 concentration difference computed with
consideration of the skin temperature effect (see Eq. 4 below)

The cool skin effect is accounted for when computing the gas
transfer velocity:
Frontiers in Marine Science | www.frontiersin.org 4197
K660 = rdry  w0X 0
CO2

fCO2wSolbulk –  fCO2aSolskinð Þ−1 660=Scð Þ−0:5
(4)

The CO2 solubility at the skin temperature (Solskin) is used to
calculate the equilibrium atmospheric concentration. The skin
temperature is estimated from the COARE3.5 model using
underway water measurements and meteorological
observations as inputs (see e.g., Fairall et al., 1996 and Zhang
et al., 2020 for validation of the modeled cool skin temperature
effect). Because Solskin is almost always greater than Solbulk,
relative to the original analyses (Eq. 2) the inclusion of the
cool skin effect reduces K660 slightly during CO2 invasion, and
increases K660 slightly during CO2 evasion. For example, at a
fCO2a value of 400 matm and a cool skin effect of 0.17°C, the
difference between DC with consideration of cool skin (fCO2w

Solbulk – fCO2a Solskin) and the ‘traditional’ DC (Solbulk (fCO2w –
fCO2a)) equates to about 2 matm. If Solbulk (fCO2w – fCO2a) is –30
matm, consideration of the cool skin reduces K660 by ~7%. Note
that to ensure comparability with previous publications, Sc here
is computed using the bulk, rather than skin, temperature. Using
the skin temperature to compute the Schmidt number would
generally increase K660 by ~0.5% (see Woolf et al., 2016 for
further discussion on this detail).

Woolf et al. (2016) suggested that in the presence of a diurnal
warm layer, the bulk underway temperature will be different
from the temperature at the base of the thermal diffusive layer
(i.e., subskin temperature at ca. 1 mm depth). We have assumed
a negligible diurnal warm layer effect and assume that underway
water temperature is equal to the subskin temperature for two
reasons. First, in-situ skin (or subskin) temperature was rarely
measured on these cruises, while match ups with satellite skin (or
subskin) temperatures are very rare. Two, measurements of
subskin temperature using a floating thermistor (aka the
NOAA “sea snake”) during HiWinGS and SO GasEx suggest
that for open ocean at mid/high latitudes, the diurnal warm layer
effect is small (see Supplementary Figures 2, 3). Note that near
surface temperature gradients might have been more important
for the tropical cruises SO-234/235.

Original references for HiWinGS and for SO-234/235
included data where |DfCO2| was as low as ~20 matm. Selecting
an appropriate |DfCO2| threshold is important for minimizing
random uncertainty as well as bias in K660. As shown by
Dong et al. (2021), the bottom-up uncertainty in K660 (derived
from uncertainty in EC flux and dominated by random
uncertainty) increases significantly when |DfCO2|< 20 matm. At
wind speeds < ~6 m s-1, a more stringent threshold of 30 matm is
needed to maintain a reasonable signal:noise ratio. In addition,
any bias in the air-sea CO2 concentration difference (e.g., due to
measurement uncertainty or unaccounted for near surface
temperature gradients) would have a proportionally greater
impact on K660 at low |DfCO2| values. For example,
uncertainty in fCO2w from the Surface Ocean CO2 Atlas
(Bakker et al., 2016) is often taken to be ~2 matm. A total
uncertainty in air-sea CO2 gradient of 3 matm (considering
similar contribution from errors due to fCO2a and
temperature) would contribute to a relative uncertainty in K660
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of ~15% at |DfCO2| = 20 matm. A more stringent |DfCO2|
threshold reduces the amount of data available, and so the
reanalyzed HiWinGS and SO-234/235 data are presented with
minimum |DfCO2| of both 20 and 30 matm.

For most cruises, we use the bulk u* computed with the
COARE3.5 model from the least distorted shipboard wind speed
measurement. Note that this bulk u* is largely a function of wind
speed and atmospheric stability, and does not explicitly consider
the impact of waves. For SOAP, the EC system was positioned
lower and closer to ship’s bow, which caused significant flow
distortion (Landwehr et al., 2018). The authors estimated U10n

from the EC u* using the COARE3.5 u* vs. U10n relationship, but
the corrected U10n still tends to be higher than the ECMWF data
except at the highest wind speeds (see Table 2). For the SO-234/
235 cruises, where the EC system was also positioned lower, the
in-situ U10n tends to be higher than the ECMWF data except at
the lowest wind speeds. While the ECMWF U10n estimates are
not exempt from bias, this comparison implies that the K660 vs.
u* relationships for SOAP and SO-234/235 could be subject to an
additional U10n-driven uncertainty of ~10%.
3 RESULTS

To facilitate the interpretation of the large number of data points
from all cruises (~2000 hours of K660 observations), this work
focuses on the statistics (e.g., mean, standard deviation, standard
error) of binned hourly K660 values. The standard deviation is
used to illustrate variability, while the standard error reflects the
accuracy in the measurement. The hourly data from each cruise
are included in the supplement for interested readers.

3.1 Moderate Winds
We first look at K660 data at moderate wind speeds (u* 0.1-0.5 m
s-1, or U10n of approximately 3-13 m s-1), which encompasses the
majority of the measurements (Figure 1). We choose u* as the
default independent parameter for assessing the variability in
K660, in accordance with the custom of similarity theory. K660

scales approximately linearly with u* within this range
(Figure 2). We note that much of the HiWinGS data at
intermediate wind speeds were collected during the decline of
intense storms, when the waves were much larger than typically
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observed at those windspeeds. This probably led to enhanced
transfer. See Section 3.3 for further discussion about waves.

The regression statistics, computed both from the bin-
averaged K660 as well as from hourly K660 data, are shown in
Table 2. The r2 value in the hourly K660 fit to u* tends to be
higher for more localized cruises (e.g., SOAP and JR18007) and
lower for cruises spanning a large spatial (e.g., NBP-1210/1402,
ANDREXII) or temporal (e.g., HiWinGS) range. The mean in
the K660 vs. u* slopes in the moderate wind regime is about 93
(cm hr-1 (m s-1)-1), with a relative standard deviation of ~15%
and a range of ~40%. The steepness in the K660 vs. u* slopes
appears to follow a general trend of North Atlantic ≥ Southern
Ocean > Arctic and tropical Indian. The K660-U10n relationships
are similar to the K660-u* relationships in spatial distribution but
are less linear (Supplementary Figure 4).

Any bias in the K660 vs. u* (orU10n) relationships could be due
to biases in u* (or U10n), in the EC flux, or in the air-sea
concentration difference. The slope between in-situ derived
U10n and U10n from the ECMWF model is within 4% from
unity (relative standard deviation of 2.5%), with the exception of
SOAP and SO-234/235 (see Reevaluation Methods). The good
agreement implies that any bias in the in-situ u* (or U10n) data
(e.g., due to flow distortion) is generally small. Plotting K660

against U10n from ECMWF does not substantially change the
mean K660 vs. U10n relationships (Supplementary Figure 4).

The quasi-linearity between K660 and u* at moderate wind
speeds allows us to assess possible biases in flux and in the air-sea
concentration difference. Data at low |DfCO2|, typically
discarded in the calculation of K660, are particularly useful for
evaluating such biases. Normalizing the measured EC flux for the
kinetic forcing, here we define a new term:

Akinetic flux = FluxCO2 u
−1
* 660=Scð Þ−0:5= DC K660 u

−1
* (5)

The akinetic flux is plotted against DC (Figure 3), including
the low |DfCO2| data that are often-discarded. It is apparent that
the akinetic flux from all cruises follow a broadly similar trend
(slope = K660 u

−1
* , the dimensionless transfer coefficient; Jähne

et al., 1987). For cruises with both positive and negative
concentration differences (NBP1210/1402, ANDREXII, and
SO-234/235), the akinetic flux approximately goes through the
origin. The fact that the EC flux is roughly zero when the
concentration difference is zero suggests that both the flux and
TABLE 2 | Regression analyses between CO2 K660 (in cm hr-1) and friction velocity (in m s-1) between u* values of 0.1 and 0.5 m s-1.

Cruise ID K660 fit to u* (bin-averages) K660 fit to u* (hourly data) r2 of hourly fit Min/median/max in DfCO2 In-situ U10n vs. ECMWF U10n

Knorr-07(a/b) -2.7 + 103.1u* -0.2 + 91.1u* 0.48 -122/-51/-36 0.46 + 0.97 U10n_ECMWF
Knorr-11 -4.3 + 105.8u* -5.7 + 112.2u* 0.58 -110/-50/-35 0.96 + 0.96 U10n_ECMWF
SOAP -2.9 + 83.2u* -7.7 + 96.2u* 0.72 -130/-54/-36 1.91 + 0.88 U10n_ECMWF
NBP-1210/1402 -4.7 + 88.8u* -3.2 + 85.3u* 0.51 -250/-55/24 0.43 + 0.99 U10n_ECMWF
HiWinGS -2.7 + 94.6u* (-4.4 + 104.3u*) -4.3 + 99.8u* (-6.8 + 111.9u*) 0.40 (0.37) -63/-41/-11 0.33 + 0.96 U10n_ECMWF
SO-234/235 -0.3 + 58.2u* (-3.3 + 77.1u*) -2.0 + 66.9u* (-1.9 + 72.0u*) 0.54 (0.67) -49/9/40 -0.45 + 1.13 U10n_ECMWF
ANDREXII -2.0 + 94.0u* -4.8 + 100.0u* 0.46 -87/-12/76 0.16 + 1.01 U10n_ECMWF
JR18007 -4.5 + 79.0u* -3.8 + 78.1u* 0.72 -183/-122/-64 0.50 + 0.97 U10n_ECMWF
June 202
The mean K660 vs. u* slope in the moderate wind regime is 93 (cm hr-1 (m s-1)-1). The minimum |DfCO2| threshold is generally 30 matm (see main text for details). For HiWinGS and SO-234/
235 cruises, additional statistics for |DfCO2| > 20 matm are presented in parenthesis. Also shown are the minimum, median and maximum in DfCO2 (matm), including periods omitted from
K660 calculation, and the relationship between in-situ U10n and U10n from the ECMWF model (both in m s-1).
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concentration measurements do not suffer from large bias. From
this, we conclude that the variability in the mean K660 vs. u*
relationships among different cruises is not primarily due to
measurement uncertainties.

Figure 4 shows the variability and uncertainty in K660 within
this dataset. For individual cruises, standard deviation (standard
error) is computed from hourly K660 data within u* bins. Relative
standard deviation (relative standard error) is the standard
deviation (standard error) above divided by the bin-averaged
K660. Similar statistics are also computed from the bin-averaged
K660 (black lines). While standard error in K660 tends to increase
with u* (as expected), the relative standard error is at its
minimum in moderate winds (generally within 10%). The
lowest and highest wind speed bins for each cruise have the
smallest sample sizes, which contribute to larger relative
standard error. The next sections will focus on K660 in the low
and high wind speed regimes.

3.2 Low Wind Regime
Gas exchange at low wind speeds (u* <0.25 m s-1, or U10n < 7 m s-1)
has received relatively little attention over the last decade. Figure 4
shows that the relative uncertainty (both relative standard error and
relative standard deviation) in K660 of CO2 is the largest at low
winds. This is partly caused by the increase in the turbulent integral
time scale at low wind speed, which increases the EC sampling
error. Large relative uncertainty at low wind speeds is observed in
fluxes of CO2 (Dong et al., 2021) as well as in momentum and heat
(Blomquist et al., 2014). In addition, processes other than wind that
affect gas exchange (e.g., chemical enhancement, surfactants,
convection) probably contribute more significantly towards the
variability in K660 at low winds.

The absolute uncertainty in K660 at low winds is small, and the
bin-averaged K660 from all of the cruises significantly exceeds the
dual tracer parametrization (Ho et al., 2006) by a few cm hr-1 at u*
Frontiers in Marine Science | www.frontiersin.org 6199
below 0.25 m s-1 (Figure 2). This amounts to a mean difference
of ~75% at u* of 0.15 m s-1. There are several possible reasons for
this discrepancy between dual tracer and EC-derived K660: a) very
few dual tracer measurements of K660 over the ocean were made at
low wind speeds, with only two points below a wind speed of 5 m
s-1 in Ho et al., 2006; b) the quadratic fit of dual tracer K660 was
forced through the origin; c) chemical enhancement, we discuss
below. Physical considerations lead us to expect some gas transfer
even at very low wind speeds. For example, Mackay and Yeun
(1983) estimate the ‘still air’ K660 to be ~0.4 cm hr-1. Convective
turbulence related to heat fluxes may further enhance K660 under
calm conditions, and the COARE3.0 model estimates this to
contribute ~2 cm hr-1 at typical (slightly unstable) oceanic
conditions (see e.g., Yang et al., 2011).

Furthermore, unlike the dual tracers 3He and SF6, the air-sea
exchange of CO2 is subject to chemical enhancement due to
carbonate equilibrium kinetics (faster in warmer waters, e.g., Soli
and Byrne, 2002). Based on the film model of Hoover and
Berkshire (1969) and carbonate kinetics, Wanninkhof (1992)
estimated the chemical enhancement of CO2 to be on the order
of 2 cm hr-1. Jähne et al. (2010) derived a similar value for
chemical enhancement by concurrently measuring the exchange
of N2O (no chemical enhancement) and CO2 in a wind-wave
tank. The enhancement was found to be well described by a
surface renewal model that incorporates carbonate kinetics.
Considering together the field and laboratory evidence as well
as theoretical understanding, it is highly likely that using the dual
tracer parametrization of K660 (e.g., Ho et al., 2006) will result in
an underestimation of air-sea CO2 exchange at low wind speeds.

The computed K660 from EC CO2 fluxes could be even greater
at low wind speeds if we assume a different Schmidt number
scaling. Liss and Merlivat (1986) found that the wind speed
dependence in K660 is weaker within the smooth surface regime
(below U10n of 3.6 m s-1 per their definition), where gas exchange
A B

FIGURE 2 | (A) K660 averaged to friction velocity (u*) bins in linear scale; (B) the same but in log-log scale. Also shown is the dual tracer relationship from Ho et al., 2006.
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is dominated by waterside diffusive processes. They suggested
that K660 should be scaled with Sc-2/3 within this smooth regime;
then once waves appear the Schmidt number exponent
transitions to -1/2. Recent laboratory (Nagel et al., 2019) and
field (Esters et al., 2017) observations imply that there is a
smooth transition in n between -2/3 and -1/2. The intercepts
of the K660-u* fits (over u* range of 0.1-0.5 m s-1) are negative for
all cruises (Table 2), which implies different physical processes
occurring at low wind speeds. All cruises (except for SO-234/
235) took place in waters less than 20 °C (the temperature
Frontiers in Marine Science | www.frontiersin.org 7200
where Sc of CO2 = 660). Scaling to K660 from K with Sc-2/3

instead of Sc-1/2 would lead to an increase in K660 by ~10% (from
SST = 10 °C) to ~20% (from SST = 0 °C), and bring the intercept
in the K660-u* relationship closer to zero. In Supplementary
Figure 5, K660 normalized using a variable Schmidt number
exponent (Esters et al., 2017) is shown, which can be compared
against Figure 2. We retain the Sc-1/2 scaling for the rest
of this work to ensure comparability with previous dual tracer
and 14C analyses and provide the K data at ambient SST in
the supplement.

It is worth repeating that accounting for the cool skin effect
(i.e., use of Eq. 4 instead of Eq. 2 and 3) increases the magnitude
of DC and thus reduces the derived K660 of CO2 in regions of CO2

invasion. Vertical gradients in fCO2w between the depth of water
sampling (typically ~5 m) and the subskin due to diurnal warm
layer formation may occur under calm conditions and strong
solar irradiance. We have not explicitly considered warm layer in
this analysis due to a paucity of near surface temperature
observations, incomplete input variables needed for modeling
the warm layer (e.g., solar flux missing for several cruises), and
uncertainty in the model (Fairall et al., 1996). To illustrate an
order of magnitude effect, the global mean daytime difference
between the subskin and ~5 m depth is about 0.08°C at U10n =
5 m s-1 based on NOAA’s long-term shipboard measurements
between 70°N and 60°S. This corresponds to an isochemical
change (i.e., constant alkalinity and total dissolved inorganic
carbon; Woolf et al., 2016) in fCO2w of about 1.4 matm. The effect
of warm layer on DC is thus similar in magnitude to the cool skin
effect at this wind speed, but in the opposite direction. Inclusion
of any warm layer effect in regions of CO2 invasion would
thus increase the derived K660 of CO2 by ~5% at |DfCO2| = 30
matm. Large swaths of the global oceans experience low wind
speeds. Given the uncertainty surrounding the various
concurrent physical processes, gas exchange under these
A B C

FIGURE 4 | (A) standard error in hourly K660 for each cruise (colored markers) and the standard error of the bin-averages for all the cruises (black line); (B) the same
but showing the relative standard error in hourly K660; (C) the same but showing the relative standard deviation in hourly K660. Standard deviation here is
approximately the root mean squared error, not mean absolute error.
FIGURE 3 | Akinetic flux vs. the air-sea concentration difference in
moderate winds.
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conditions requires further investigation (e.g., a dedicated
research campaign in calm conditions, similar to GasEx01 but
with improved flux methodology and a thorough examination of
the surface temperature profile).

3.3 High Wind Regime and Waves
A number of studies over the last decade have focused on gas
exchange at high wind speeds (especially HiWinGS), where K660

is considered to be the most uncertain. As shown in Figure 4, at
u* above 0.5 m s-1 the standard errors in K660 (absolute and
relative) for individual cruises as well as for bin-averages of all
cruises do increase in high winds. In contrast, the relative
standard deviation does not increase with wind speed. This is
likely in part because the relative uncertainty in EC CO2 flux
tends to decrease with increasing wind speed, presumably due to
better sampling statistics (i.e., more turbulent eddies blowing
past the sensor within a given averaging time; see Dong et al.,
2021). Thus, the perceived large uncertainty in K660 in high
winds can at least be partly attributed to the paucity of
observations. More measurements under those extreme
conditions will improve the accuracy in K660.

What does this large dataset tell us about the effect of wave
breaking and bubble-mediated gas exchange on K660? Following
Woolf (1997) and the COARE model (Fairall et al., 2011), CO2

gas transfer velocity is often thought to be the sum of diffusive
(i.e., interfacial) gas exchange (scaled with u*) and bubble-
mediated gas exchange. Bubble-mediated exchange, scaled with
the whitecap fraction, is judged to be the reason why CO2

transfer is much faster than DMS transfer at high wind speeds
(e.g., Bell et al., 2017) and has been estimated to be dominant
exchange pathway for CO2 in rough seas (e.g., Blomquist et al.,
2017). The whitecap fraction is long thought to have a cubic wind
speed dependence, but observations during HiWinGS at wind
speeds up to ~ 24 m s-1 show an overall windspeed dependence
in whitecap fraction that is much weaker than cubic (Brumer
et al., 2017a). This might be one reason why the u* (and U10n)
dependence in K660 of CO2 is closer to linear than to cubic
(Figure 2 and Supplementary Figure 4).

Another possibility for the near linear dependence in K660 of
CO2 on u* could be saturation in diffusive gas exchange at very
high wind speeds. This phenomenon has sometimes been
observed in the more soluble gas dimethyl sulfide (DMS), e.g.,
during SO GasEx as described by Blomquist et al. (2017) and
during Knorr-11 as described by Bell et al. (2013), and it could
partly compensate for the rapid increase in bubble-mediated gas
exchange with wind. In the following, we explore the use of wave
parameters, rather than whitecap fraction, to represent the effects
of wave breaking and bubbles on K660.

Figure 5 shows the distribution of significant wave height
(Hs) for all the cruises. HiWinGS in the North Atlantic and
ANDREXII in the sub-polar Southern Ocean (two cruises with
high K660:u*; see Table 2) experienced some of the largest waves
at moderate to high wind speeds (also see Supplementary
Figure 6). In contrast, NBP-1210/1402 in the polar Southern
Ocean and JR18007 in the Arctic (two cruises with low K660:u*;
see Table 2) often encountered small waves, possibly due to the
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close proximity of sea ice and thus shorter fetch. For context,
Figure 5 also shows the global distribution in Hs from ECMWF
ERA5 (0.5° hourly resolution data; Hersbach et al., 2018), here
approximated from 12 evenly spaced days in year 2020 (e.g., 1st

January, 1st February, 1st March…). Hs data from the individual
cruises span from below to above the global distribution.

Brumer et al. (2017b) suggested the K660 is better
parameterized as a function of the wave Reynolds number
(RHw = Hs u*v

-1) than as a function of wind speed, where v is
the viscosity of seawater. K660 is plotted against the wave
Reynolds number (RHw) in Figure 6. Here Hs from the
ECMWF model and seawater viscosity at 20°C (rather than
ambient temperature) are used to compute RHw for all cruises.
Using ambient water viscosity substantially increases the
discrepancy in the K660-RHw relationships between polar and
temperate cruises.

It appears that RHw does help to collapse the variability in K660

among the different cruises in very heavy seas (i.e., RHw > 106). For
example, the relative standard deviation in K660 among HiWinGS,
SOAP, ANDREXII, and Knorr-11 at RHw between 2 • 106 and 3 •
106 is 12-14%. In comparison, the relative standard deviation at u*
above 0.5 m s-1 is about 20% for these cruises (Figure 4). Note that
the K660 data from all cruises fall below the Brumer et al. (2017b)
parametrization (K660 = 2:04 · 10−4R0:88

Hw ) in heavy seas because that
parametrization was largely developed from the original HiWinGS
K660 data. Those data were overestimates due to an incorrect
treatment of CO2 solubility.

In less extreme seas (i.e., RHw < 106), RHw explains less of the
variability in K660 than u*. For example, the relative standard
deviation in bin-averaged K660 among all cruises at RHw of 3.8 •
105 is 38%. Possible explanations for this include a) RHw is an
imperfect descriptor of wave breaking, especially for small scale
waves, and b) breaking of large-scale waves and bubble-mediated
processes become dominant for CO2 gas exchange only in very
heavy seas, whereas gas exchange at lower wind speeds is
dominated by diffusive transfer.

The mean squared slope (MSS) of the waves incorporates to an
extent the combined effect of wind and smaller-scale waves. Frew
et al. (2004) observed that K660 consistently correlates better with
MSS than with wind speed at a coastal location at fairly low wind
speeds. Figure 7 shows the CO2 K660 vs. MSS from the ECMWF
model (integrated up to 1 Hz) as well as vs. the ECMWF U10n. In
small to moderate seas, MSS explains slightly more variance in K660

than U10n. For example, between MSS of 0.025 to 0.04, the relative
standard deviation inK660 averaged inMSS bins among all cruises is
~15%. In comparison, the relative standard deviation as a function
of ECMWF U10n is close to 20% at moderate wind speeds of ~10 m
s-1. In rougher seas, the advantage of using MSS over U10n, u*, or
RHw to parametrize is K660 less obvious.

The regional variability in the K660-u* relationships is less
apparent in the K660-RHw and K660-MSS relationships, which
implies that variations in waves in different ocean basins
contribute towards the regional variability in K660. A logical future
step for extrapolating the K660 data to the global oceans may be to
develop a wind/wave-dependent parametrization of K660 (e.g., as a
function of RHw andMSS). However, in the next section we take the
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simpler approach of computing the grand average K660-u*
relationship and combining it with the global wind speed
distribution. The resultant global average K660 implied from EC
CO2 flux measurements is then compared against tracer-
based estimates.
4 COMPARISON TO TRACER-BASED
ESTIMATES AND IMPLICATIONS ON THE
GLOBAL CO2 FLUX

A fairly robust constraint for global average air-sea CO2

exchange is the 14C disequilibrium. Wanninkhof (1992)
Frontiers in Marine Science | www.frontiersin.org 9202
combined an estimate of this value with the global mean wind
speed and assumed a quadratic wind speed dependence (with no
gas exchange at U10n = 0) to develop a widely used K660

parametrization. The 14C-based global average K660 value has
since been reassessed by Naegler et al. (2006); Krakauer et al.
(2006); Sweeney et al. (2007), and Müller et al. (2008).
Accordingly, the 14C tracer based K660 parametrization has
been updated by Wanninkhof (2014). Naegler (2009) further
corrected the global average K660 estimates upwards by
accounting for the changing oceanic radiocarbon inventory
due to CO2 uptake and using realistic reconstructions of sea
surface 14C disequilibrium.

Our study incorporates over 2000 hours of EC K660 data from 11
cruises around different parts of the global oceans. Is the overall
A B

FIGURE 6 | K660 averaged into bins of RHw (20 °C) in semi-log scale (A) and log-log scale (B).
FIGURE 5 | Hours of K660 measurements at different significant wave heights and the global distribution of significant wave height from ECMWF.
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mean of these observations representative of the global average and
how does that compare to the tracer data? The grand average of EC
K660 data (average of the bin averages) from all cruises is shown in
Figure 8. The polynomial fits of this data to u* and to U10n,
weighted by the standard error in each bin, are K660 = −1:47 +
76:67u* + 20:48u2* and K660 = 0:36 + 1:203U10n +  0:167U2

10n,
respectively (K660 in cm hr-1; u* and U10n in m s-1). A power fit of
the grand average as a function of wind speed yields an exponent
that is less than two: K660 = 1:92 + 0:57U1:68

10n . The relative standard
error is ~7% and the relative standard deviation of our grand
average is ~19% at moderate wind speeds. We note that for users
who wish to apply the above equations to estimate CO2 fluxes, the
cool skin effect should be taken into account in the calculation of DC
and the Schmidt number should be computed at the subskin, rather
than skin, temperature.

To compute a global average K660 from EC observations, we
primarily utilize the global Cross-Calibrated Multi-Platform
(CCMP) wind speed distribution (0.25°, 6-h resolution; Atlas
et al., 2011), which was used by Wanninkhof (2014) to develop
the 14C-based K660 parametrization. Combining the grand average
of EC K660 as a function of u* with the CCMP wind speed
distribution (transformed to u* according to the COARE 3.5
stress relationship), we get a global average K660 implied from EC
observations of 20.6 cm hr-1, with a standard error (standard
deviation) of 1.5 (3.9) cm hr-1. This global average is well within
the range and uncertainties of the corrected global average values
(18.2 ± 3.6 cm hr-1) reported by Naegler (2009) based on 14C
disequilibrium (Figure 9). Using the ECMWF ERA5 global wind
speed distribution (0.25°, 1-h resolution; Hersbach et al., 2020)
instead, we get a slightly lower global average, EC-implied K660 of
19.7 cm hr-1. This was estimated by applying the coefficients
provided in by Fay et al. (2021, Table A2) to the CCMP-based K660.

Some regions of the global oceans are missing (e.g., most of
the Pacific Ocean) from or underrepresented (e.g., tropics) in this
analysis. We have chosen to omit coastal measurements from
Frontiers in Marine Science | www.frontiersin.org 10203
stationary sites, which may be more affected by spatial
heterogeneity in the flux footprint (e.g., Yang et al., 2019),
fetch (e.g., Prytherch and Yelland, 2021), and different wave
breaking characteristics compared to the open ocean.
Furthermore, there are some differences between the grand
average Hs from all the cruises and the global average Hs in
high winds (see Supplementary Figure 6). Nevertheless,
Figures 8, 9 suggest that the grand average of EC K660 from
the 11 cruises is a reasonable representation of the global average
air-sea CO2 exchange.

The tracer-based K660 parametrizations (Wanninkhof, 2014 and
Ho et al., 2006) are noticeably lower (i.e., below the 95% confidence
bands) than the grand average of EC K660 data at low wind speeds
(Figure 8). As discussed in Section 3.2, this discrepancy likely relates
to the early assumption of no gas exchange atU10n = 0. In moderate
to high winds, the tracer-based estimates are within the confidence
bands of the EC K660 grand average.

Based on the CCMP global wind distribution, the implied
global average K660 from EC CO2 measurements is about 20%
higher than the dual tracer estimate from Ho et al. (2006).
Adjusting K660 upwards at low wind speeds but not at high
wind speeds will affect the spatial and temporal variability in
estimated CO2 fluxes. The lower latitude oceans are typically
regions of net CO2 emission and tend to have fairly low wind
speeds. Meanwhile, in temperate/high latitudes, the spring
phytoplankton bloom usually coincides with shoaling of the
ocean mixed layer that is in part aided by a seasonal reduction
in wind speed. Our results suggest that previous estimates of CO2

emission and uptake in such instances could be underestimated.
5 LOOKING FORWARD

Overall, the relative uncertainty in K660 is largest at very low
wind speeds (Section 3.2), while the absolute uncertainty is
A B

FIGURE 7 | (A) K660 averaged into bins of ECMWF U10n; (B) K660 averaged into bins of ECMWF mean squared slope (MSS).
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largest at very high wind speeds (High Wind Regime andWaves).
Despite combining 11 cruises, data during these extreme
conditions remain scarce (Figure 1) and should be the foci of
future field projects. Future measurements in the tropics and in
the Pacific Ocean should further improve the representativeness
of the grand average EC K660 and aid the development of a wind/
wave-dependent parametrization of K660.

One of the key advantages of the EC technique is the ability to
capture variability in K660 on much shorter timescales (one to a
few hours; see Dong et al., 2021) than tracer-based approaches
(days to years). EC is thus well suited for studying the more
ephemeral processes that affect air-sea exchange. The analysis
presented here has taken the approach of bin-averaging K660 data
in various parameter spaces (e.g., u*, U10n, RHw, and MSS). This
approach is useful for reducing measurement noise but could
have the undesirable effect of averaging out the processes of
interest. Hourly data from all the cruises are included in the
supplement. Future analysis of this dataset (plus any additional
datasets) on shorter timescales (e.g., without bin-averaging) may
illuminate further process-level insights.

Consideration of waves helps to explain some of the
variability that is not accounted for by U10n (or by a U10n

dependent formulation of u*). Future EC K660 measurements
should clearly be accompanied by high resolution wave
Frontiers in Marine Science | www.frontiersin.org 11204
measurements (such as during Knorr-11 and HiWinGS). At
low to moderate wind speeds, given the fact that K660 is more
scattered vs. ECMWF U10n (Figure 7) than vs. in-situ U10n

(Supplementary Figure 4), it is plausible that an in-situ
observation of surface roughness or MSS would be superior to
the current model MSS for parametrizing K660. Such a
measurement possibly also helps to account for the dampening
of smaller-scale waves by surfactants (Frew et al., 2004). Further
model development (e.g., Janssen and Bidlot, 2021) extending
the MSS estimate to higher frequencies (i.e., including micro-
breaking) may also be fruitful. At high wind speeds, the current
use of RHw ignores any directional difference between wind and
wave, which has been proposed to have some influence on gas
exchange (Zavarsky and Marandino, 2019). Following Blomquist
et al. (2017) and Brumer et al. (2017b), this work only considers
Hs of the total waves in the calculation of RHw. The supplement of
this paper includes hindcast wave data for both wind-sea and
swell, permitting a more thorough investigation into the effects of
wind-wave directional offset as well as the different influences
from wind-sea and swell on gas exchange.

Partitioning the total gas transfer velocity into diffusive and
wave-dependent bubble components (following the approaches
of e.g., Blomquist et al., 2017; Deike and Melville, 2018),
constrained by multiple gases of different solubility, is
necessary to further improve process-level understanding in
gas exchange. In addition to CO2 and DMS, concurrent K
measurement of another gas (preferably with solubility less
than or similar to CO2) would be particularly useful. Such an
approach applied in two different wind-wave facilities at high
wind speeds with many tracers spanning a wide range of
solubilities suggests that bubble-mediated gas transfer is not
significant for gases with similar solubility to CO2 (Krall et al.,
2019). This discrepancy between field and laboratory data needs
further investigations. Active thermography (e.g., Frew et al.,
2004) represents an alternative method to investigate K
(especially diffusive exchange) on a short temporal scale.
Though given the low Schmidt number of heat (~9), derivation
of K660 using this method is very sensitive to the assumption of
the Schmidt number exponent.

Our discussion so far has not explicitly considered the impact
of surfactants. Recent observations (Sabbaghzadeh et al., 2017;
Mustaffa et al., 2020) show large spatial variability in sea surface
surfactant concentrations, which in turn affect the rate of gas
transfer (Pereira et al., 2018; Yang et al., 2021). Yang et al. (2021)
used a novel measurement of the gas transfer efficiency to show
that the effect of surfactants on CO2 K660 could be on the order of
30% at a global mean wind speed of 7 m s-1, with even greater
effects at lower wind speeds. Future cruises with EC CO2 fluxes
would benefit from concurrent observations of such
controlling factors.
6 CONCLUSION

In this work, we reevaluate eddy covariance (EC)-derived CO2

gas transfer velocity (K660) estimates from eight datasets (11
FIGURE 8 | Grand average of EC K660 from all cruises vs. friction velocity,
with the smaller (larger) error bars indicating standard error (standard

deviation). The thick red line indicates the weighted polynomial fit to this data  

(K660 = −1:47 + 76:67u* + 20:48u2* ), while the thin red lines are the 95%

confidence bands for the fit. Combining the grand average of EC K660 with
the CCMP wind distribution yields a global average K660, which is shown
along with the Naegler (2009) estimate. Also shown are previous K660

relationships from Wanninkhof (2014) based on 14C disequilibrium and from
Ho et al. (2006) based on the dual tracer (3He/SF6) method.
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research cruises). The reevaluation process unified flux averaging
times, applied consistent and updated calculations of solubility
and Schmidt number, and considered the ocean cool skin effect.
Measurement biases in wind, flux, and DC were found to be
minor. K660 scales approximately linearly with the friction
velocity (u*) in moderate winds, with a relative standard
deviation (relative standard error) of about 20% (7%).

EC-derived K660 at low wind speeds is relatively uncertain,
but consistently exceeds the dual tracer estimate, perhaps due to
chemical enhancement in CO2 exchange and the assumptions of
the tracer model. The relative standard error (but not the relative
standard deviation) in K660 increases substantially as wind speed
becomes higher. This suggests the perceived large uncertainty
in K660 in high winds is at least in part due to a paucity
of observations.

The steepness in the K660-u* slope demonstrates some
regional variability (North Atlantic ≥ Southern Ocean > Arctic,
Tropics), and this variability was not primarily due to
measurement uncertainties. Compared to wind speed or u*, the
modeled wave Reynolds number (RHw, a proxy for breaking of
largescale waves) helps to collapse some of the variability in K660

in very heavy seas, while the modeled wave mean squared slope
(MSS, a proxy for breaking of smaller waves) may capture more
of the variability in K660 in calmer seas. The K660-RHw and K660-
MSS relationships also show less regional variability than the
K660-u* relationships, further illustrating the value of accounting
for waves when parameterizing K660.

Combining the grand average of EC-derived K660 from 11
cruises with the global distribution of wind speed yields a global
average transfer velocity that is comparable with the most recent
estimates based on global radiocarbon (14C) disequilibrium. The
EC-implied global average K660 is however ~20% higher than
what is implied by the widely used K660 parametrizations based
on dual tracer (Ho et al., 2006), with the largest difference at low
wind speeds. Our analysis suggests that estimates of CO2 fluxes
Frontiers in Marine Science | www.frontiersin.org 12205
using aU2
10n dependence with zero intercept (e.g., dual tracer) are

likely biased when wind speeds are low.
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The past decade has seen significant technological advance in the observation of trace
gas fluxes over the open ocean, most notably CO2, but also an impressive list of other
gases. Here we will emphasize flux observations from the air-side of the interface including
both turbulent covariance (direct) and surface-layer similarity-based (indirect) bulk transfer
velocity methods. Most applications of direct covariance observations have been from
ships but recently work has intensified on buoy-based implementation. The principal use
of direct methods is to quantify empirical coefficients in bulk estimates of the gas transfer
velocity. Advances in direct measurements and some recent field programs that capture a
considerable range of conditions with wind speeds exceeding 20 ms-1 are discussed. We
use coincident direct flux measurements of CO2 and dimethylsulfide (DMS) to infer the
scaling of interfacial viscous and bubble-mediated (whitecap driven) gas transfer
mechanisms. This analysis suggests modest chemical enhancement of CO2 flux at low
wind speed. We include some updates to the theoretical structure of bulk
parameterizations (including chemical enhancement) as framed in the COAREG gas
transfer algorithm.

Keywords: gas transfer velocity, chemical enhancement, bubble mediated transfer, COARE gas flux parameterization,
Dimethylsufide (DMS), cardon dioxide (CO2), bulk algorithm, direct observation
1 INTRODUCTION

The exchange of gases between the atmosphere and ocean is an important process in global budgets
of many gases with significant implications in climate, biogeochemical cycles, oceanic ecosystems,
and pollution. Because of its importance to global carbon budgets, biology, and climate, carbon
dioxide (CO2) tends to dominate our interest in the subject but many gases including oxygen (O2),
carbon monoxide (CO), dimethylsulfide (DMS), ozone (O3), and sulfur dioxide (SO2) to name a
few, are also relevant - see Johnson (2010) for a list of 79 gases. The exchange of non-reactive gases
are usually expressed as vertical fluxes which are principally driven by wind speed and the sea-air
concentration difference of the gas. Gas fluxes may be measured directly from ships with bow-
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mounted eddy correlation systems or estimated from mean
concentrations using so-called bulk flux relationships (Fairall
et al., 2000; Wanninkhof et al., 2009). Arrays of in situ
measurements are not practical for global or regional budget
closure, so some combination of satellite, reanalysis, and data
assimilation synthesis is needed (Cronin et al., 2019; Shutler
et al., 2020). These approaches rely on the bulk relationships.
Thus, the principal application of direct measurements
[including deliberate dual tracer techniques, Ho et al. (2011)]
is in determining the appropriate bulk scaling variables and
coefficients. It turns out this is a complex issue that involves
similarity theory, chemistry, laboratory studies, process models
such as direct numerical and large eddy simulations (DNS and
LES), and a variety of experimental approaches in the field (see
Garbe et al., 2014, for an overview).

The mass flux of some scalar variable, x, can be directly
estimated from measurements of turbulent correlations in the
near-surface atmosphere with the direct covariance (a.k.a. eddy
correlation) technique:

Fx = rad w0rx 0 ≅ w0x0 (1)

Here rad is the density of dry air, rx the mixing ratio of x (mass
of x per dry mass of air), w′ and x′ are turbulent fluctuations of
vertical velocity and dry air mole fraction of x, respectively. More
often though, the air-sea flux is computed using the bulk method:

w0x0 = CxSz Xs − Xzð Þ = c1=2x u* Xs − Xzð Þ (2)

where X is the mean concentration of x and the subscripts s and z
refer to the value at the air-ocean interface and height z,
respectively. S is the mean wind speed, Cx is the transfer
coefficient for the mass flux of x, c1=2x is the scalar transfer
component specific to x and u∗ =

ffiffiffiffiffiffi
Cd

p
*U10 is the friction

velocity where Cd is the drag coefficient and U10 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 + V2

p
is the vector average wind speed for mean components U and V
at reference height z = 10 m. Note mean wind speed is distinct
from the mean vector wind components and is defined as S2 =
(U + u0)2 + (V + v0)2, where the capitals and primes denote of the
mean and turbulent fluctuations of the horizontal wind
components. Differences between the mean wind speed, and
vector-averaged winds are associated with gustiness (Fairall et al.,
1996; Fairall et al., 2003).

The essence of bulk parametrizations is captured in
specification of the transfer coefficient, Cx, which is obtained

directly by measuring w0x0, Sz, Xs, and Xz and applying (2). Note
Cx will depend on z and buoyancy forcing as defined in Monin-
Obukhov similarity theory (MOST – see e.g., Fairall et al.
(1996)). Bulk algorithms have a long and successful history in
meteorology; in this paper we will focus principally on the
COARE family of flux codes (Fairall et al., 2011) where
COAREG defines codes for gas transfer. There are certainly
other products to choose from for gas transfer purposes, e.g.,
FluxEngine (Goddijn-Murphy et al., 2016; Shutler et al., 2016) or
FuGas (Vieira et al., 2020).

While (2) is commonly used to estimate fluxes of sensible heat
and moisture, the gas transfer community more often uses a
Frontiers in Marine Science | www.frontiersin.org 2210
formulation based on a transfer velocity, kx,

Fx = axkx   Xw=ax − Xað Þ = axkxDX (3)

where ax is the dimensionless solubility of the gas x in seawater,
kx the transfer velocity for the gas X, Xw and Xa the mean
concentrations of x at some depth in water and some height in
air, and we use DX to denote the sea-air difference in X taking
solubility into account. Note that, compared to (2), expression
(3) has the additional complexity of solubility. Superficially, kx is
equivalent to CxSz = c1=2x u∗ in (2). Because Cx for heat and
moisture is approximately constant with the friction velocity or
wind speed, we might infer that kx is roughly proportional to
wind speed. Would that it was so simple. To illustrate the
variability in transfer with the properties of trace gases, Fairall
et al. (2011) recast (3) as

Fx = axkxDX =
axkx
u*

" #
u*DX
h i

= CPx u*DX
h i

(4)

with CP being interpreted as characterizing the chemical
variability and u∗DX characterizing the physical forcing.
Figure 1 in Fairall et al. (2011) shows CP varying by 4 orders
of magnitude with small values (2 × 10-6) for the highly insoluble
gas neon, increasing with solubility to about 0.03 for ax = 100
(e.g., ethanol) and then leveling off with increasing solubility.
This leveling off for highly soluble gases is well understood to be
the limit imposed by transfer in the atmosphere – i.e., similar to
water vapor, which is unconstrained by transfer resistance on the
ocean side, CPv = c1=2v ≈ 0:035. Both CO2 (solubility on the order
of 0.5) and DMS (solubility on the order of 15) are intermediate
to these extremes.

Early wind tunnel measurements (Liss and Merlivat, 1986)
and analysis of 14C in the ocean (Wanninkhof, 1992) found the
transfer velocity of CO2 (i.e., kco2) to be non-linear in wind speed.
Woolf (1993) argued that the stronger wind speed dependence of
CO2 was due to enhancement by bubbles generated by breaking
waves. Because the enhancement was solubility dependent,
Woolf predicted that more soluble gases would have a more
linear wind speed dependence – a prediction that has been borne
out by observations of DMS transfer velocity (e.g., Blomquist
et al., 2006).

Ocean surface waves are an essential component in air-sea
fluxes. The fluxes of momentum and kinetic energy from the
atmosphere to the ocean are driven by a direct input to the ocean
currents via viscous stress and input to waves via the pressure-
wave slope correlation known as form drag. Viscous stress
dominates the exchange at low wind speeds. As the winds
increase, the dominant mechanism for exchange transfers to
the form drag imposed primarily by wind waves with some
modulation due to longer waves and swell. The action of the
form drag grows waves which transfer their momentum and
energy to ocean currents and turbulence initially through micro-
breaking (Edson et al., 2013). The transition is complete once the
waves become fully rough; a condition often associated with the
onset of visible wave breaking around 7 m s-1. At this point,
bubble-mediated processes begin to gain importance (Woolf,
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1993) and breaking of longer waves plays an increasingly
important role in momentum and, particularly, energy
exchange (Melville, 1996).

The simplicity of bulk flux relations (2) and (3) is somewhat
misleading because complexity may be hidden in the transfer
coefficients. The simplest forms contain little complexity, with
power law dependence on wind speed at some reference height,
typically 10m.

kx = c1xU
2
10 (5)

where the coefficient c1x depends on the gas and U in m s-1 (kx in
cm hr-1). For CO2 c1x is on the order of 0.25 (Wanninkhof, 2014).
However, there is debate about the power law with up to 3rd-
order polynomials in wind speed being used (Wanninkhof et al.,
2009). The temperature dependence of kx is usually captured
through a temperature-dependent Schmidt number Scx = v/Dx,
whereDx is the oceanicmolecular diffusivity and 660 is the reference
value of Scco2 at 20°C (although the 1/2 exponent may not hold in all
conditions).

k660x = c1xU
2
10 Scx=660ð Þ1=2 (6)

Since the bulk gas and water concentrations are measured
well away from the interface, mixing processes in both media
must be considered. This has led to the development of
physically-based parameterizations that attempt to capture the
relevant processes in a unified mathematical structure (e.g. Liss
and Slater, 1974; Fairall et al., 2011; Goddijn-Murphy et al.,
2016). If this is successful, it is not necessary to measure c1x for
each gas of interest. This is the approach for the COAREG gas
flux parameterizations where both atmospheric and oceanic
interfacial forcing are framed within surface-layer turbulent
scaling theory. In the ocean, turbo-molecular mixing and
bubble mediated transfer are treated as parallel processes.

While wave processes are important in almost all aspects of
air-sea interactions, it is interesting that many very successful
parameterizations do not explicitly include wave properties. This
is because wave properties are highly correlated with wind speed.
Thus, simple representations in the drag coefficient, Cd, or kx are
done with wind speed alone. Ironically, decades of experimental
and theoretical effort (see Brumer et al., 2017a) have yet to yield
wave-based parameterizations for Cd, or kx that give significantly
better RMS fits to direct observations over the open ocean. This is
partly due to the large sampling noise of the observations and
partly the noisy and uncertain nature of characterizations of the
wave field. However, that is not the complete story because wind-
only parameterizations essentially characterize transfer for a
mean wave climatology associated with that wind speed. We
expect that when the waves depart significantly from that mean,
then air-sea fluxes may be affected. For example, in a coastal
region offshore winds may yield quite different fluxes compared
to onshore winds at the same wind speed, as has been observed
for sea spray (Yang et al., 2019). Regardless of our ability to
explicitly include wave variables in a parameterization,
separating near-surface turbulent and bubble-mediated
processes in physically-based treatments of gas transfer is useful.
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In this paper we will further discuss air-sea fluxes –
principally gas transfer and its forcing mechanisms – in the
context of the COARE algorithms. We will not attempt a detailed
attack on all issues (e.g., discussion in Johnson et al., 2011; Woolf
et al., 2019), but focus on specific topics where significant
progress has been made through observations, theory, or
numerical modeling. The principal scaling variables for kx are
solubility, Schmidt number, friction velocity, and whitecap
fraction. The last two variables may be estimated with wind-
only formulae or with formulae that add some wave information.
We begin with a discussion of theoretical background, then
sketch the formulation of COARE [taking from detail provided
in Fairall et al. (2011)]. We will briefly describe direct
observations and focus on three recent field programs. We will
discuss wave-based parameterizations and the difficulty of
determining them with observations alone. Because of their
more than one order of magnitude solubility differences,
simultaneous DMS and CO2 observations can be analyzed to
separate the turbo-molecular and bubble-mediated components.
To do this, we will also have to deal with chemical enhancement
of CO2 flux (Wanninkhof, 1992; Luhar et al., 2018; Jørgensen
et al., 2020). The turbo-molecular transfer is found to be quite
linear with the tangential component of the stress. The bubble
component is approximately linear with either whitecap fraction
or air-entrainment rate of breaking waves but there is still some
uncertainty in characterizing those quantities which will
be discussed.
2 THEORETICAL BACKGROUND

In this section we describe a simple 1-dimensional theoretical
framework for describing the flux-profile relationships for trace
gas transport between the atmosphere and ocean. The approach
has its roots in observations from wind tunnels and flat Kansas
plains, so application over the ocean requires a certain
skepticism. It is known that wind speed does not strictly obey
the conventional log-layer behavior within the wavy boundary
layer. Furthermore, distortions by wave motions on the ocean
side occur on scales that are greater than the normal ‘10% of the
mixed layer depth’ usually ascribed to the surface layer where
‘law of the wall’ scaling is appropriate. Our justification for using
this approach for gas transfer applications is based on the small
scale of the molecular sublayer and the transition to the turbulent
sublayer – this occurs at mm scales where local dominant wave-
induced slopes are negligible. This theoretical approach allows us
to conceptualize the balance of the processes and to create a
scaling structure that can be tuned to observations with only a
few universal parameters.
2.1 Fluxes, Solubility, Similarity and Turbo-
Molecular Transport
In the absence of significant in situ sources or sinks, the vertical
flux of some scalar variable, x, in either fluid can be defined as the
sum of molecular and turbulent diffusivities
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Fx = −Dx
∂X
∂ z

+ w0x0 (7)

In the case where z is height or depth, the flux is positive
directed away from the interface. Near the surface the turbulent
flux can be represented in terms of the local gradient and a
turbulent eddy diffusivity, K(z), so that

Fx = − Dx + K zð Þ½ � ∂X
∂ z

(8)

We can integrate (8) from the surface to some reference
height (depth), zr, to obtain the total change of X between the
surface (subscript s) and zr,

Xs − Xrð Þ = DXr =
Z zr

0

Fxdz
D + K zð Þ½ � = Fx

Z zr

0

dz
D + K zð Þ½ � (9)

If we define an air-side transfer velocity of x, kxa, as acting
between the surface and some reference height in the
atmosphere, zra, then

Fxa = kxa Xsa − Xzrað Þ = kxaDXra (10)

Thus, (9) and (10) imply

k−1xa =
Z zra

0

dz
D + K zð Þ½ � (11)

Similarly, we can define a turbo-molecular flux on the
water side

Fxw = kxw Xsw − Xzrwð Þ = kxwDXrw (12)

While temperature is continuous across the interface, gas
concentrations are not so we must account for the discontinuity
by defining the solubility, ax as

ax = Xsw=Xsa (13)

If we assume the atmospheric flux is continuous with the
oceanic flux (applicable to a gas not undergoing rapid chemical
reactions), then we can derive (4) where

k−1x = k−1xw + axk
−1
xa (14)

We use Monin-Obukhov Similarity (MOS) to describe the
turbulent diffusivity (Fairall et al., 2000, hereafter F00): MOS
defines surface turbulent flux scaling parameters u* and x* in
terms of turbulent conditions sufficiently far from the interface
that fluxes of momentum or of a scalar x (i.e. trace gases) are
completely carried by turbulent covariance

w0u0 = −u2* (15a)

w0x0 = −u*x* (15b)

The profile of a dynamical variable can be described via a
dimensionally consistent combination of the scaling parameters,
z, and a dimensionless function of z/L, where L is the MOS
buoyancy length scale. This leads to a simple specification of
turbulent diffusivity
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K zð Þ = k zu*=f z=Lð Þ ≈ k zu* (16)

where ɸ is an empirical function that characterizes the
enhancement of diffusion in convective conditions or
suppression in stratified conditions and k is the von Karman
constant, k ≈ 0.4. Stability effects may be substantial but for
dealing with near-surface and interfacial aspects of gas transfer,
we can assume ɸ = 1.

F00 discuss solutions to (9) and (11) using an approximation
for K(z) that accounts for the suppression of turbulence near the
interface which occurs in the sublayer

z < du = ln=u* (17)

Where l is a coefficient on the order of 10. This is done by
expressing K(z) as

K zð Þ = k zu*= 1 + du=zð Þ (18)

The form of (18) produces a smooth transition from molecular-
dominated diffusion to turbulent diffusion and has the effect of
extending the depth of the molecular layer. The analytical
solution to (9) produces a near-surface linear profile
(molecular sublayer) that transitions to a logarithmic profile
(turbulent sublayer)

DXs zð Þ
Fxs

=
1
2c

log (G=a)

+
2 du − b

2c

� �
d

arctan (
b + 2cz

d
) − arctan (

b
d
)

� �
(19)

where a = Dx du, b =Dx, c = ku*w, d = ½4Dxduku*w − D2
x�1=2 G = a

+ bz + cz2.
In principle, this solution applies to vertical transfer of

dissolved gas within the ocean in the absence of chemical
reactions. The analytical profile in the turbulent layer can be
approximated

DX
Fx

=
DXm

Fx
+

1
k   u*

log 
z

5   du

� �
(20)

where 5du is the maximum extent of the molecular sublayer
(Zülicke, 2005) and DXm characterizes the total change in X over
that layer. Using l =10, the analytical solution gives

u*  DXm

Fx
=

1
k

p
2
(l   k   Scx)

1=2 + log (5 l   k   Scx)
1=2

	 
h i

= 7:8   Sc1=2x + 2:5   log (10   Sc1=2x ) (21)

The logarithmic form is an idealization because of the
distortions of the wave motions. At heights well above the
significant wave height, atmospheric logarithmic profiles are
observed over the ocean (e.g. Edson et al., 2004). In the ocean,
wave induced displacements are a significant fraction of the
mixed layer depth and an idealized log-layer may not exist
(Zheng et al., 2021). However, we still expect the idealized
solution to reasonably describe the main aspects of the profile
at cm scales.
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2.2 The Wavy Boundary Layer - Viscous
Stress Versus Wave Stress
Waves add another complication because of their role in the
momentum transfer and the friction velocity. The fluxes of
momentum and kinetic energy from the atmosphere to the
ocean are, except in light winds, dominated by input to waves
via the pressure-wave slope correlation – the so called form drag.
The action of the wind grows waves which, when they break,
transfer their momentum and energy to ocean currents and
turbulence. The wind is also subject to a viscous drag which
directly drives surface currents and near-surface turbulence. Far
from the interface, (but still within the surface layer of the marine
boundary layer), the momentum flux from the atmosphere
(surface stress) can be expressed as the covariance of
atmospheric turbulent velocity fluctuations similar to (1)

t = ra  w0u0 = −ra   u
2
�a (22)

where u′ represents fluctuations of wind speed in the in the mean
wind direction (for simplicity, we ignore the crosswind stress
component). Near the air-sea interface (even within the influence
of surface wave disturbances) the momentum flux is the sum of
viscous, turbulent, and wave-pressure components tv, tt, tg.
Thus, while the total stress may be assumed to be
approximately constant in height, the turbulent tt, component
is not constant in the wave boundary layer (Ortiz-Suslow et al.,
2021). At the interface, turbulence is negligible, and so the
momentum flux delivered to the ocean is the sum of viscous
(subscript v) and gravity wave drag (subscript g)

t = tn + tt + tg = tns + tgs = −pana
∂U
∂ z

� �
s
+ p0  

∂h
∂ xu

� �
s

= −ra u2�an + u2�ag
� �

(23)

Viscous (tangential) drag is the product of the air kinematic
viscosity with the wind gradient at the surface (subscript s), while
the gravity wave drag is the correlation of ‘ pressure fluctuations,
p’, and the wave slope’ rho is the symbol for density, p the symbol
for pressure (ƞ is the vertical displacement of the surface by
waves) and xu is the horizontal coordinate in the mean wind
direction. Soloviev (2007) and Fairall et al. (2011) argue that, at
scales less than 1 m near the interface, u*av should scale with the
turbulent diffusion because the wave-pressure correlation has
reduced the turbulent momentum flux. This has been discussed
in more detail by Cifuentes-Lorenzen et al. (2018) who suggest
the wave stress component decays exponentially with a height
scale of about 1 m. The portioning suggested by (23) can be
written

u2�a = cdU
2
10 = cdn + cdg

� �
U2
10 = u2�an + u2�ag = u2�an + agu

2
�a (24)

Cifuentes-Lorenzen et al. (2018) use the parameter ag which
is the fraction of wave stress to total stress so that

u�an = u�a  
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ag

p
(25)
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Fairall et al. (2011)) give an estimate of the ratio of viscous to
total stress as

u�an = u�a  
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cdn=cd

p
(26)

and provide a simple formulation [see Figure B1 in Fairall et al.
(2011)]. Figure 1 shows estimates of ag as a function of 10-m
wind speed and wave age, cp/U10 where cp is the phase speed of
the waves with frequency corresponding to the peak of the wave
energy spectrum. ag is small at low winds and increases with
wind speed; viscous and wave components of stress are
comparable at wind speeds on the order of 12 m s-1 (see
Figure 1). Friction velocity on the ocean side is computed
assuming the atmospheric viscous stress drives the oceanic
viscous stress:

u�wn =

ffiffiffiffiffiffi
ra
rw

r
  u�an (27)

2.3 Atmospheric and Ocean Side
Turbulent-Molecular Diffusion and Bubbles
On the atmospheric side of the interface, the behavior of kxa is
well-constrained by direct covariance flux measurements of
water vapor [see Figure 4 in Fairall et al. (2000)] and other
trace gases of high solubility/reactivity (Yang et al., 2014; Yang
et al., 2016; Porter et al., 2020). While (11) implies a sensitivity of
kxa to molecular diffusivity, it turns out that the variation of
atmospheric diffusivity amongst trace gases of interest is not
significant (Rowe et al., 2011). Direct flux measurements of
soluble trace gases to date (Yang et al., 2016; Porter et al.,
2020) have shown some departures from water vapor or heat,
but the measurement techniques are probably not sufficiently
accurate to reject a simple water vapor analogy representation.
The importance of air-side transfer declines as solubility declines.
For DMS (solubility on the order of 15) kxa contributes about 5%
to (14) while for CO2 (solubility on the order of 0.5) it
contributes about 0.2%. For solubility greater than 100, kxa
dominates (14) and kx/u*a≈kxa/u*a≈0.03.

On the ocean side of the interface the total transfer is assumed
to be the sum of turbo-molecular, kv, and bubble-mediated, kb,
processes:

kw = kn + kb (28)

The turbo-molecular part can be computed via (11) and (18)
with the molecular sublayer part given by (21). The much smaller
molecular diffusion coefficients in the ocean ( Scx on the order of
1000 compared to 1 in the atmosphere) imply that most of the
change in trace gas concentration on the ocean side occurs in the
molecular transport sublayer. Figure 2 contrasts the oceanic
profiles for temperature ( Sct = 5.9) and CO2 ( Scw = 660) at a
water temperature of 20°C. The analytical solution is shown by
the solid line and the log-layer portion by the dashed line. In this
normalized form the log-layer slopes are the same but the offset
caused by the molecular sublayer portion is relatively much
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larger for CO2 – implying the computation of the flux for CO2 is
much less sensitive to specification of the depth of the ocean side
concentration measurement.

Bubble-mediated transfer is associated with air entrained by
breaking waves. Wave breaking that entrains air rarely occurs in
lighter wind regimes with a crude threshold of U10 ≈ 5-8 m s-1.
Gas transfer enhancement by bubbles has been studied in
laboratory experiments (Woolf, 1993; Rhee et al., 2007; Krall
et al., 2019) and with numerical models (Woolf and Thorpe,
1991; Liang et al., 2013; Deike et al., 2017). The laboratory studies
quoted here conflict somewhat on the importance of bubbles.
The numerical model approach is based on injecting into the
Frontiers in Marine Science | www.frontiersin.org 6214
ocean a numerical plume of bubbles with a spectrum of sizes. Gas
transfer from the bubbles is computed for each bubble size as the
plume rises and is vertically transported; total transfer is
computed by integrating over the size spectrum. Turbulent
mixing of the bubble plume may be neglected or can be very
sophisticated (e.g., Liang et al. (2013) use a Large Eddy
Simulation model). The variety of assumptions (injection
depth, rise rate, bubble spectrum, bubble transfer rates, clean
vs. dirty bubble, plume density, etc) lead to a variety of outcomes.
Laboratory (Callaghan, 2013; Callaghan et al., 2016; Callaghan,
2018) and numerical modeling (Deike et al., 2016; Deike and
Melville, 2018) have also advanced understanding of the
FIGURE 1 | Wave stress fraction, ag, vs wave age, Cp/U10, at different values of u = U10. The lower curves correspond to lower wind speeds.
FIGURE 2 | Normalized profiles of ocean temperature and CO2 concentration computed from the analytical solution (solid lines) K(z) = kzu*/(1+du/z). The dashed
lines are using (21) to represent the turbulent log-layer part of the profile.
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connection between wave breaking and dissipation, air
entrainment, bubble populations, and whitecap coverage.

An example of a parameterization developed for bubble
transfer can be found in Woolf (1993),

kxb = BV0fwha
1
x ½1 + (eaxSc

1=2
xw )−1=n�−n (29)

where B is an empirical constant tuned to observations, V0 =
2450 cm hr-1 is the air volume entrainment flux per unit
whitecap fraction, fwh is the whitecap fraction, e = 14, and n
=1.2. This form is chosen so that the transfer velocity obeys the
expected limits for low solubility (bubble mediated flux depends
on the diffusion, but not on solubility) and high solubility
(bubble mediated flux scales inversely with solubility). There is
some debate about the scaling of the forcing in (29): should it be
whitecap fraction, actively breaking fraction, air entrainment
velocity (V), or dissipation of wave breaking energy? The Woolf
form assumes the scaling is V = V0 fwh with whitecap fraction
scaling as U3 : 41

10 based on a fit to whitecap observations by
Monahan (1971). Recent observations (Brumer et al., 2017b;
Anguelova and Bettenhausen, 2019) have shown the Monahan
formulation overestimates the wind-speed dependence which
leads to overly large gas transfer estimates in high winds. Gas
transfer versions of the COARE bulk transfer model, COAREG
(Fairall et al., 2011), use (29) but Liang et al. (2013); Goddijn-
Murphy et al. (2016), and Deike et al. (2017) offer viable
alternatives to (29).

2.4 Chemical Enhancement
The COAREG models treat various gases with the assumption
that they are conservatively transported. However, transfer of
CO2 is complicated by carbonate chemical reactions on the water
side – a phenomenon referred to as chemical enhancement.
Hoover and Berkshire (1969) (hereafrter HB69) express the
chemical enhancement of CO2, CE, as

CE Tð Þ = TT= TT − 1ð Þ + tanh  Qdð Þ= Qdð Þ½ � (30)

where, adapting the notation of Wanninkhof and Knox (1996),
TT and Q depend on CO2–carbonate reaction rate constants and
diffusivity (Dco2), and d = Dco2/k is diffusion layer thickness.
Temperature dependence is explicit in TT and Q. Wind speed
dependence is implied in d but no explicit functional form
is given.

Wanninkhof (1992) (hereafter W92) considered this effect in
the analysis of passive tracers to derive a formula for the
enhanced transfer velocity for CO2 ken660. He uses a
temperature-dependent but wind speed independent form for
CE given by a polynomial fit, p(T), to CE(T) at a constant k of
1 cm hr-1.

ken   660 = p Tð Þ + 0:31  U2
10(Sc=660)

1=2 (31)

W92’s formula gives p(T) = 3 cm hr-1 in the tropics and 2 cm
hr-1 for conditions relevant to the HiWinGS experiment (see
Section 3.2). Wanninkhof and Knox (1996) define CE = ken/k
and examine the HB69 model with observations from several
alkaline lakes and also estimate CE for the equatorial Pacific
Frontiers in Marine Science | www.frontiersin.org 7215
Ocean. Note, this implies that as ken/k approaches 1.0 with
increasing winds, CE becomes small.

More recently, Fairall et al. (2007), hereafter F07, investigated
air-sea transfer of ozone by considering the 1-dimensional
conservation equation with a simple chemical reaction

−
∂

∂ z
−Dx

∂X
∂ z

+ w0x0
� �

− arX = 0 (32)

where flux is positive downward, X is the mean mass
concentration and ar = CxyY is the reactivity coefficient for the
reaction of constituent X and constituent Y with a reaction rate
constant of Cxy. F07 assumed ozone was completely destroyed in
seawater and that the reactions are with unspecified oceanic
chemicals in significantly large concentration such that the
reaction is pseudo first-order in X and ar is equivalent to a rate
constant (s-1).

Here, we adapt this approach to CO2. Following McGillis and
Wanninkhof (2006), we assume the ocean mixed layer CO2

concentration, Xe, is in near equilibrium with carbonate
chemistry. We assume that Xe is the result of a balance with
total carbonate and alkalinity so that in the absence of significant
temperature gradients it is essentially independent of depth. This
is a more complex case than for ozone, but we again make the
simplifying assumption that the reaction is pseudo first order in
Xe and reactivity can be represented by a simple reactivity
coefficient ar (s-1) or time constant tr = 1/ar (s). The time
constant i s unknown but can be es t imated f rom
measurements. Thus, for a reactive gas in equilibrium like
CO2, (32) can be written

−
∂

∂ z
½−Dx

∂ X − Xeð Þ
∂ z

+ w0x0� − ar X − Xeð Þ = 0 (33)

The turbulent flux is represented in terms of turbulent
diffusivity coefficient, K(z), so that

−
∂

∂ z
½− Dx + K zð Þð Þ ∂X

0

∂ z
� − arX

0 = 0 (34)

where X′=X−Xe. Following F07, we can use (34) to define a
general flux variable, Fx, as

Fx = − Dx + K zð Þ½ � ∂X
0

∂ z
− ar

Z z

0
X 0 z0
� �

dz0 (35)

The gradient term expresses the sum of molecular and
turbulent diffusion and the second term the gain or loss of X
via chemical reaction. In steady state as expressed by (35), Fx is
independent of depth and equal to the flux at the interface, Fx(0)
= Fxs. For non-reactive gases, we can use (35) with ar = 0 to
characterize the transport through the water

X0
s − X0 zð Þ
Fxs

=
DXs zð Þ
Fxs

=
Z z

0

1
Dx + K z0ð Þ dz

0 =
1
kxw

(36)

Using the analytical solution (19) for the non-reactive case,
kxw represents the transfer velocity of x on the water side to some
reference depth, z, on the order of 1 m. For ar > 0 an analytical
solution corresponding to (34) with (18) does not exist.
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Jørgensen et al. (2020) found solutions for (34) without the near-
surface turbulence suppression. Another approach was
developed by Luhar et al. (2018) who solved this problem by
assuming that (18) could be approximated by setting the
turbulent eddy diffusion coefficient to zero within some scale
dm of the surface (see Figure 3) and K(z) = kzu*w for z greater
than dm. Thus within a scalar molecular layer a stagnant (non-
turbulent) film is assumed. If K(z) is set to 0 for z < dm, the
solutions of (34) with K(z) = 0. are exponentials. So the complete
profile is given by

X =fA1exp (
ffiffiffiffiffi
ar
Dx

q
) + B1exp  ð−

ffiffiffiffiffi
ar
Dx

q
),   z <=  dm

B2K0(x), z > dm
(37a, 37b)
where A1, B1, B2 are constants and K0 is a modified Bessel
function of order 0. Luhar et al. (2018) give an analytical
expression for transfer velocity over some depth where
chemical reactions become negligible

1
kxw

=
1ffiffiffiffiffiffiffiffiffiffi
arDx

p yK1 xdð Þsinh(lm) + K0 xdð Þcosh(lm)
yK1 xdð Þcosh(lm) + K0 xdð Þsinh(lm)

� �
(38)

where Kn are modified Bessel functions of order n, y = [1+k u*w
dm/Dx]

1/2, lm = dm(ar/Dx)
1/2, and xd is computed from

x2 =
4   ar
k   u*w

(z +
Dx

k   u*w
) (39)

where z = dm corresponds to the depth where the turbulent
transport starts. Luhar et al. (2018) examined temperature
dependent specifications for reactivity, ar, and several
candidates for dm. Their final selections captured the modest
temperature and weak wind speed dependencies of observed
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ozone deposition velocity, but because ozone has very high
reactivity they did not clearly delineate a value for dm.

In order to choose the optimum value for dm, we integrate
(36) with the specified 2-layer K(z) profile with ar = 0 and select
dm to match the asymptotic form of the non-reactive analytical
solution (21). This leads to

dm = dx =
p
2

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lu   k   Sc

p = 0:79   du=Sc
1=2 (40)

In our view, this is a rigorous choice because it guarantees the
same transfer velocity in the absence of chemical reactions.

We can use the 2-layer model to evaluate CE for CO2.
However, a more rigorous approach is a brute-force numerical
solution to (34) with (18). One advantage of this approach is we
can check and/or tune the 2-layer analytical model, which can
give us an analytical function for CE in terms of the forcing and
ar. The numerical solutions are computed using MATLAB®

differential equation solvers. With ar=0, the numerical
solutions agreed with the non-reactive analytical solution
(F00). Results for selected values of tr are shown in Figure 4
where we compute the enhancement ratio via

ken
k

=
k arð Þ

k ar = 0ð Þ (41)

The use of the ratio reduces the sensitivity to the calibration of
k = k(ar = 0) . We then compute CE as

CE =
ken
k

− 1

� �
kc31x (42)

which is shown in Figure 5, where the COAREG 3.1 transfer
velocity for gas x, kc31x, is the estimate for transfer without CE.
The Luhar et al. (2018) analytical approximation is a good match
with the numerical solution with our choice for dm. This solution
also works well for ozone. These calculations suggest CE of 3-
5 cm hr-1 for CO2 corresponding to a time constant, tr, on the
order of 3 s.
3 DIRECT OBSERVATIONS

3.1 Advances in DMS and CO2
Flux Measurement
In this paper, we tune the latest revision of the model (COAREG
3.6) to direct gas exchange observations made with the eddy
covariance (EC) method. The application of the EC method for
measuring gas fluxes at sea requires high temporal resolution
measurements of 1) vertical wind velocity, and 2) gas mixing
ratio. The advent of the motion-correction method in late 1990s
(Edson et al., 1998) enabled the derivation of the ambient vertical
wind velocity from a moving platform. This method is
subsequently refined by Miller et al. (2010); Landwehr et al.
(2015), and Blomquist et al. (2017). Comparisons of momentum
and heat fluxes between a buoy and a nearby fixed tower
demonstrate that the bias due to the motion correction is
within 6% (Flügge et al., 2016). For CO2, we utilize fluxes
FIGURE 3 | Near-surface profile of the sum of molecular and turbulent
diffusivities. The blue line is for K(z) without near-surface dissipative
suppression (Eq. (18) with du = 0 ). The dashed line is (41). The yellow line is
the Luhar et al. (2018) approximation using (41).
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measured using a closed-path instrument with a dryer. Deemed
the best practice by Landwehr et al. (2014) and Blomquist et al.
(2014), this approach avoids the water vapor cross-sensitivity in
the CO2 measurement that likely confounded earlier flux
measurements, especially using an open-path infrared analyzer
[e.g., Edson et al. (2011)]. In particular, cavity ringdown
analyzers (e.g., Picarro G2311-f) and closed-path infrared
analyzers (e.g. Licor7200) are both well suited for
measurements of air-sea CO2 flux. Recent works by Dong et al.
Frontiers in Marine Science | www.frontiersin.org 9217
(2021) demonstrate that the random uncertainty in hourly CO2

flux is typically 30-50% (mostly a function of the flux
magnitude), with sensor noise from both Picarro G2311-f and
Licor7200 only contributing a minor fraction of the total flux
uncertainty. Air-sea DMS flux measurement is made with a
chemical ionization mass spectrometer operating at near
atmospheric pressure. Hourly random uncertainty in DMS flux
is on the order of 20-30% (Blomquist et al., 2010), thanks to the
high signal-to-noise ratio in the DMS flux measurement.
FIGURE 5 | Water side transfer velocity (normalized to Sc = 660) as a function of 10-m wind speed. The basic COAREG non-bubble relationship for neutral
conditions is shown in the blue diamonds. Estimates of chemical enhancement (CE) for CO2 are shown using a numerical model (stars) an and an analytical model
(green lines) for different values of the CO2 carbonate reaction time constant, tr.
FIGURE 4 | Water side transfer velocity (normalized to Sc = 660) ratio of chemical enhanced to background value as a function of 10-m wind speed. Estimates of
chemical enhancement (CE) via (42) for CO2 are shown with star symbols using a numerical integration of (34) and (19) and the analytical model (38) as green lines
for different values of the CO2 carbonate reaction time constant, tr. The results of the Jørgensen et al. (2020) are shown as diamonds.
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3.2 Recent Field Programs
The last decade has seen over a dozen field programs dedicated to
EC gas flux measurements, with at least eight cruises and several
near shore deployments. Long term EC measurements have been
undertaken at two coastal sites. Östergarnsholm station is located
in the Baltic Sea (57°27’N, 18°59’E) and has been providing CO2

fluxes since 1995 (Rutgersson et al., 2020). Penlee Point
Atmospheric Observatory (PPAO) was established in 2014 by
the Plymouth Marine Laboratory in the Plymouth Sound on the
south-west coast of the United Kingdom (50°19.08’N, 4°
11.35 ’W). It provides CO2, CH4 fluxes (https://www.
westernchannelobservatory.org.uk/penlee,Yang et al. (2016)). A
list of all recently collected and analysed EC field measurements
is given in Table 1 along with references to relevant publications.

In this paper we focus on results from three recent campaigns
(Knorr11 in 2011, SOAP in 2012, HiWinGS in 2013), where
simultaneous air-sea exchange measurements of CO2 and DMS
are available. Some published direct measurements of DMS k660
have shown unexpected decreases at higher wind speeds:
GasEx08 (Blomquist et al., 2017), Knorr11 (Bell et al., 2013;
Bell et al., 2017), and Sonne-234/235 (Zavarsky and Marandino,
2019). This was discussed in depth by Zavarsky and Marandino
(2019) and explained in terms of flow separation using a wave
reference Reynolds number, Retr. The argument is that flow
separation (which occurs when Retr < 6.5E6) suppresses the
direct viscous transfer component and this affects DMS relatively
more than CO2 because the much larger bubble transfer for CO2

masks the decrease. The basic idea has some logic, although
Zavarsky et al. (2018) Figure 13 shows no dramatic decrease in
DMS k660 for HiWinGS despite a large fraction of suppressed
conditions for U10 > 12 m s-1. In our own analysis of HiWinGS
Frontiers in Marine Science | www.frontiersin.org 10218
data, using their Retr criterion, we find no significant difference in
k660 for DMS in suppressed vs. non-suppressed conditions, but
CO2 k660 is reduced by about 10 cm h-1 during ‘suppressed’
conditions. It seems the sudden decrease in k660 DMS in strong
winds observed in some field programs remains puzzling.
4 ANALYSIS OF OBSERVATIONS IN A
COARE CONTEXT

4.1 Turbo-Molecular and Bubble-
Mediated Drivers
The last public release of the COAREG algorithm, version 3.1
(Fairall et al., 2011), does not include CE and gives a simple form
for the transfer velocity (14) which captures the net transfer
across water (w) and atmospheric (a) surface layers We can
separate the oceanic and atmospheric components as follows

kw = 1 +
axkw
ka

� �
k = kn + kb (43)

From measurements of k, we can compute the oceanside
value, kw, which is made up of a turbulent-molecular term, kv,
and a bubble-mediated term, kb. For HiWinGS the term
multiplying k in (43) is an average of 1.054 for DMS and 1.008
for CO2. Following Appendix A of Fairall et al. (2011), we can
convert kw to k660 and write (43) as

kw   660 ≅ kn   660 + kb   660

= 37:5  A   u*n +
B  V0   fwh
ax 20ð Þ   g Tð Þ  G Tð Þ (44)
TABLE 1 | Recent field campaigns.

Year Program Region Gas Measured Platform References

2011-2012 FINO-2 tower western Baltic CO2 T Ghobadian and Stammer (2019)
2011 Knorr11 North Atlantic CO2, DMS S Bell et al. (2013, 2017); Esters et al.

(2017)
2012 SOAP southwest Pacific/Southern Ocean CO2, DMS S Landwehr et al. (2018)
2013 HiWinGS North Atlantic CO2, DMS,

methanol, acetone
S Yang et al. (2014); Blomquist et al.

(2017); Brumer et al. (2017a)
Arctic fjords Adventfjorden (flux tower) CO2 T Andersson et al. (2017)
NBP‐1210 MIZ, Southern Ocean (Punta Arenas to McMurdo) CO2 S Butterworth and Miller (2016)

2014 ACSE (SWERUS‐
C3)

(2 legs) Arctic MIZ at edge of the Siberian shelf:
Kara, Laptev, East Siberian, and Chukchi Seas

CO2 S Prytherch et al. (2017)

NBP‐1402 MIZ, Southern Ocean CO2 S Butterworth and Miller (2016)
PPAO south-west coast of the United Kingdom CO2, CH4 T Yang et al. (2016)
SPACES-OASIS
(SO234‐2/235)

western tropical Indian Ocean CO2, DMS S Zavarsky et al. (2018); Zavarsky
and Marandino (2019)

Scripps Pier, La Jolla, California SO2 P Porter et al. (2018)
2014-2015 Östergarnsholm + SAMI–CO2 CO2 T Vieira et al. (2020)
2015 Duck USACE‐FRF pier, North Carolina SO2 P Porter et al. (2020)
2017-2018 Östergarnsholm

station
Baltic Sea CO2, CH4 T Gutiérrez-Loza et al. (2019)

2018-2019 AMT4OceanSatFlux Atlantic Meridional Transect CO2 S
2018-2019 ice camp Arctic

Ocean 2018
open lead close to North Pole CO2 T Prytherch and Yelland (2021)
Jul
Platforms: ship (S), tower (T), pier (P).
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Here the first term on the right hand side represents tangential
(interfacial) transfer, while the second term indicates bubble-
mediated gas exchange (see Eq. 29). A and B are parameters
tuned to fit the observations and the temperature- and gas-
dependent factors are

g Tð Þ = Scw
660

� �1=2ax 20ð Þ
ax Tð Þ (45a)

G Tð Þ = ½1 + (14  ax=Sc
1=2
w )−1=n�−n (45b)

with n = 1.2. In (44) we have neglected buoyancy effects on the
first term, which become more important at wind speeds less
than 5 m s-1. Note that in COAREG, kv is scaled by viscous, rather
than total, friction velocity.

We can now consider the form of (44) for both CO2

(subscript c) and DMS (subscript d) with the temperature
dependent factors in kb, V0 and a(20) combined into the
single factors bc and bd

kc   660 = 37:5  A   u*n + B   bc   fwh (46a)

kd   660 = 37:5  A   u*n + B   bd   fwh

= 37:5  A   u*n + B   rdc   bc   fwh (46b)

If k values are expressed in cm hr-1, then the factor bc ≅ 830,
while bd = 130 + 2.6T where T is in °C. Thus, the ratio between
bubble-mediated gas exchange of DMS and that of CO2, rdc = bd/
bc, in (46b) varies from 0.16 to 0.22 with an average of 0.18 for
HiWinGS. The relationships in (46) can be applied to
observations of k for CO2 and DMS to estimate the constants
A and B:

A =
kw660d − rdckw660cð Þ
37:5   u*n 1 − rdcð Þ (47a)

B =
kw660c − kw660dð Þ
830   fwh 1 − rdcð Þ (47b)

Note (47) is approximate because it uses mean values for T-
dependent factors, but if (47) is applied to kw values computed
with the COAREG algorithm, then for a 10-m wind speed
adjusted to neutral conditions, U10n > 5 m s-1, the values for A
and B assumed in the algorithm will be recovered within 10%.
Also, note that the value of A depends on the form of the
friction velocity factor and B depends on choice of whitecap
formulation. If the model and the measurements are consistent,
then the values of A and B should be independent of
wind speed.

Figure 6 shows values of A and B extracted from HiWinGS
observations averaged in wind speed bins. To reduce the effects
of flux sampling uncertainty, values of CO2 transfer velocities
were only used if the absolute value of sea-air partial pressure
difference Dpco2 exceeded 20 matm. Two retrievals have been
done: 1) with bin averages of measured kw660 and 2) using power-
law fits of kw660 to wind speed in the form
Frontiers in Marine Science | www.frontiersin.org 11219
kw   660 = c0 + c1  U
m
10n (48)

We have used c0 = 6.0, c1 = 0.41, andm = 1.9 for CO2; c0 = 0.6,
c1 = 1.09, and m = 1.2 for DMS. To compute B (47b), both
retrievals used bin-averaged estimates of whitecap fraction
computed from Brumer et al. (2017b)

fwh = 5:0� 10−6
Hsu*a
nw

� �0:9
(49)

Averaging both retrieval methods yields A = 1.25 and B = 2.3,
using (49) for whitecap fraction. We have also used bin-averaged
values of observed fwh; that yields noisier results but does not
significantly change the final estimates of A and B.

In Figure 7 we show a comparison of transfer velocities
averaged in wind speed bins from the three calculation methods:
linear+bubble (46); wind speed power law (48); and a new
version of COAREG using these values of A and B and the
Brumer et al. (2017b) whitecap formulation – we are referring to
this as COAREG36. A summary of the mean and RMS statistics
is given in Table 2. Since the power law is fit directly to the mean
observations, it gives the best overall fit.

So far our specification of total gas transfer velocity (46)
requires the turbo-molecular term to scale with u*v and the
bubble-mediated term to scale with fwh. It is insightful to
reevaluate the turbo-molecular and bubble terms separately
without specifying the nature of the forcing. So we recast (47)
without the u*v and fwh factors but assume the forcing will have
some wind speed dependence:
FIGURE 6 | Retrieved values of COAREG constants, A (upper panel) and B
(lower panel), as a function of wind speed. For A, retrievals are based on
mean values of observed kw660 averaged in wind speed bins plus values of
kw660 computed from wind-speed power law fits. For B , only the wind speed
bin results are shown. There are curves for three possible choices of fwh. Data
for U10n < 6 are not shown because no whitecaps were observed.
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A   f Uð Þ = kw660d − rdc   kw660cð Þ
37:5   1 − rdcð Þ (50a)

B   g Uð Þ = kw660c − kw660dð Þ
830   1 − rdcð Þ (50b)

The results are shown in Figure 8 as a function of 10-m wind
speed. Also shown on the graphs are the COAREG forms for the
forcing: f(U) = u*v and g(U) = fwh . We can see that the turbo-
molecular term is nearly linear with the viscous stress and
showing a hint of saturation at higher winds speeds. This
could imply that our parametrization of viscous stress is too
high and our parameterization underestimates the importance of
the wave stress component at high winds speeds. The bubble-
mediated term has a much stronger wind speed dependence and
is well represented by the whitecap parameterization.
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4.2 Chemical Enhancement
We can use observations of CO2 and DMS transfer velocity to
estimate CE if the difference between CO2 and dual tracer is due
to chemical enhancement only by adding a term to (46)

kc660 = CE + 37:5Au*n + Bbcfwh (51)

kd660 = 37:5Au*n + Brdcbcfwh (52)

Taking the difference gives

kc660 − kd660 = Dk = CE + B   1 − rdcð Þ bcfwh (53)

We can solve (53) for CE but we expect the values of CE will
be the difference between two large numbers except at low wind
speeds. In order to reduce the effect of sampling uncertainty, we
have added data from four additional field programs – CO2 from
GasEx98, SOAP, and Knorr11 and DMS from SO-GasEx, SOAP,
and Knorr11 – to the ensemble of data and produced a grand
average for CO2 and DMS transfer velocities (see Figure 9). In
the case of GasEx98, CO2 fluxes were determined with a closed
path system that lacked a drier but used a long inlet. This tends to
eliminate water vapor concentration variance and may be less
affected by flux cross-talk than open path sensors. For U10 < 10m
s-1, the uncertainty in these averages is ±2.0 cm hr-1 for CO2 and
±0.4 cm hr-1 for DMS. The uncertainty in Dk is essentially that of
CO2. In Figure 10 we show Dk as a function of U10 with separate
curves for mean and medians of the four-experiment ensemble;
TABLE 2 | Summary of mean k660 (cm hr-1) and RMS difference from mean
HiWinGS measurements.

CO2 DMS

Mean RMS Mean RMS

Observation 73.9 0 24.7 0
Interface + Whitecap 80.6 6.2 28.2 3.3
Power-law 74.4 6.5 25.3 2.2
COAREG36 75.2 10.1 24.8 2.8
FIGURE 7 | Values of kw660 (upper panel, CO2; lower panel, DMS) averaged
in wind speed bins vs. 10-m neutral wind speed. The red diamonds are mean
observed values, the x’s are from the wind speed power-law fits (48), the blue
line is from (46) using A = 1.2 and B = 2.5, and the circles are means of
values computed using COAREG36.
FIGURE 8 | Extraction of wind speed dependence of the turbo-molecular
(upper panel) and bubble-mediated (lower panel) water-side transfer velocity
terms using wind speed bin averages to the HiWinGS data. Two different
whitecap formulations are used for the B term: fwh2 is (49). and fwhva is Deike
et al. (2016). The solid lines are values extracted by applying the analysis to
COAREG36 outputs.
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we also show the bubble driven component [second term on RHS
of (53)]. The data clearly imply values of CE on the order 4-6 cm
hr-1 at the lowest wind speeds but even at U10 = 5 ms-1 it is
doubtful the difference between observations of Dk and the
estimates of the bubble component are significant. This result
is similar to (Yang et al., 2022) who computed a grand-averaged
kc660 from eight field programs (including the ones used here)
and estimate CE by differencing their average with dual tracer
estimates of kc660 (Ho et al., 2006). Because the dual tracer studies
are done with non-reactive gases, the argument is that they do
not include CO2 CE. Yang et al. (2022) found CE values of about
4 cm hr-1 for U10 < 10m s-1. These results suggest tr on the order
of 3 s (ar = 0.33) should be used in (38) to estimate CE if the
difference between CO2 and dual tracer is due to chemical
enhancement only.
5 DISCUSSION AND CONCLUSIONS

In this paper we analyze concurrent observations of CO2 and
DMS fluxes and ocean-side transfer velocity from three recent
field programs. We emphasize the HiWinGS program because it
has the broadest range of wind speeds and multiple systems of
high quality covariance flux instrumentation. We frame our
Frontiers in Marine Science | www.frontiersin.org 13221
analysis in terms of the COAREG gas flux algorithm, which
treats the ocean-side transfer as the sum of direct interfacial and
bubble-mediated transfer mechanisms. We assume the
interfacial transfer component scales as the square root of the
Schmidt number and is driven linearly by the viscous friction
velocity. The total surface stress is partitioned into viscous and
wave contributions with the fraction going to viscous stress
decreasing with increasing wind speed. COAREG scales the
bubble-mediated component with whitecap fraction (Woolf,
1993) with additional temperature-dependent sensitivity to
Schmidt number and solubility. Whitecap fraction is difficult
to measure so parametrizations are uncertain, but whitecap
fraction is only one of several possible choices to characterize
the wave breaking contribution to bubble-mediated exchange
(other possibilities include air entrainment rate or wave energy
dissipated by breaking).

The analysis focuses on determination of the tuning constants
A and B, which scale with the viscous and bubble-mediated
terms. We use (47) to compute values of A and B in wind-speed
bins. Note the value of A obtained from (47a) is independent of
the formulation of whitecap scaling and B obtained via (47b) is
independent of the formulation of the forcing of the viscous
term. The wind speed dependence of A and B depends on the
wind speed dependence of the forcing terms. The values of A and
B determined from these data are essentially independent of
wind speed for the chosen forcing: linear with u*v and with a
particular whitecap formulation. At low wind speeds, there are
departures for both A and B that we associate with the effects of
chemical enhancement of CO2 transfer, which are not captured in
(47). CE is discussed theoretically in section 2.4 and a
FIGURE 10 | Difference in CO2 and DMS transfer velocities (normalized to
Sc = 660) as a function of 10-m wind speed: blue –median and red –mean.
The difference of either the red or blue curves from the COAREG estimate of
the residual bubble component is hypothesized to be chemical enhancement.
FIGURE 9 | Wind speed bin-averaged kw660 from HiWinGS, Knorr11, SOAP,
GasEx98 and GasEx08 field programs: upper panel for CO2 and lower panel for
DMS. Both mean and median are shown for HiWinGS. The heavy green line is the
mean of the five estimates. The dashed line is the COARE36 relationship.
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parameterization is presented. In section 4.2 we exploit the
difference in CO2 and DMS transfer velocities to estimate CE –
the result is noisy (Figure 10) but values are comparable to
Wanninkhof (1992) and (Zheng et al., 2021).

The product of this effort is version 3.6 of the COARE flux
algorithm – COAREG 3.6 which is available at https://
downloads.psl.noaa.gov/BLO/Air-Sea/bulkalg/cor3_6/gasflux36/
(See the Supplement to this paper for more detail on the update).
The algorithm incorporates a modern whitecap formulation that
allows either pure wind speed or wave-dependent scaling.
Chemical enhancement for CO2 via (38) is included as an
option. Wave dependence of the stress has also been updated.
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