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Editorial on Research Topic

Intestinal Dysbiosis in Inflammatory Diseases

The human body is densely colonized by more than a trillion of commensal and mutualistic
microorganisms, including archaea, bacteria, virus, bacteriophages and fungi (1–3). The majority of
these microbial communities, referred to as the microbiota, resides within the intestine and is
influenced by several factors that shape the establishment of a predominant protective, diverse or
potentially harmful population in this ecosystem. As an example, the mode of delivery exposes the
neonate to different microorganisms depending on the birth route. Vaginal-delivered babies are
usually colonized by a more protective microbiota, while C-section newborns first contact common
skin bacteria. Similarly, breastfeeding is mostly advantageous because of the immune protection
mediated by antibodies, lactoferrin and anti-microbial peptides present in human milk, besides the
known gut protective microorganisms Bifidobacterium and Lactobacillus that usually are not
present in infant formulas. These factors may protect the newborn to infections, allergies and
other future morbidities. In addition, by the introduction of solid foods and diet modifications
throughout the infancy, this early colonization may shifts towards and adult-like microbiome, that
may also be susceptible to changes by the use of medications such as antibiotics. Indeed, these drugs
can alter the local ecosystem and disrupt the neonatal microbiome that could also be shaped by host
genetics (4). Therefore, a variety of conditions can alter the humanmicrobiota and its unbalance can
potentially predispose the individuals to inflammatory diseases.

Usually, the intestinal microbiota plays an important role in a variety of physiological processes
such as the maturation of host immunity, food fermentation and digestion, vitamin synthesis,
regulation of intestinal hormones or host and drugs’metabolism. These functions exerted by the gut
microorganisms have in common the capacity to impact the inflammation and the immune
response that are triggered in chronic diseases (5, 6). In fact, the microbial-mucosal immune system
interactions are tightly regulated, mainly contributing to homeostasis and eubiosis conditions in the
gastrointestinal tract (1, 2). This tolerogenic response in the gut is fundamental to avoid excessive
org July 2021 | Volume 12 | Article 72748516
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reactions to the local commensal microbiota (or to food
antigens) meanwhile maintains the immunological competence
in a stand by condition, able to prompt react if a pathogenic
invasion occurs. However, a combination of environmental
factors such as a gastrointestinal infection and genetic
susceptibility can lead to a tolerance breakdown and intestinal
dysbiosis, with either decrease or expansion of certain
commensals, reduced diversity with an increase in pathobionts,
resulting in altered function of this ecosystem (7–9). The
outcomes of these deregulated interactions at the intestinal
mucosa can have systemic effects in host immunity and
contribute to the development of the chronic inflammatory or
autoimmune diseases, as outlined above (10, 11).

This Research Topic of Frontiers in Immunology, Mucosal
Immunity section, included reviews, mini-reviews, hypothesis
and theory, besides original research articles describing
microbiome/metabolomics studies in mice and humans. These
works evaluated the intestinal dysbiosis in inflammatory diseases
as well as the crosstalk between the commensal microbes and the
immune system. Furthermore, the role of the microbiota
modulators (diet, pre-/probiotics, and fecal microbiota
transplantation) have been discussed, focusing in the
reestablishment of the gut immune homeostasis in chronic
inflammatory conditions. A total of 24 articles accepted in this
Research Topic involved contributions from 178 researchers and
the main findings are briefly discussed in this editorial.

Considering the numerous molecules found in the gut
ecosystem, quorum sensing represents small signaling
molecules produced by bacteria, depending on the density of
these microorganisms, with a subsequent regulation of their gene
expression and bacterial physiology (12). These products are
detected by microbes, interact with the host cells and contribute
to gastrointestinal homeostasis (13). Coquant et al. showed the
importance of the quorum sensing molecules, focusing on type I
autoinducers, such as N-acyl-homoserine lactones (AHL). The
authors pointed to the impact of these molecules on the innate
and adaptive immune system, with important anti-inflammatory
effects in experiments involving intestinal cell lines, thus
indicating a perspective for the future use of natural or
synthetic AHL to regulate gut inflammation and inflammatory
bowel diseases (IBD).

Intestinal microbes may also produce short-chain fatty acids
(SCFAs), which are end products from the fermentation of
ingested dietary fibers. These molecules can bind specific
receptors on mucosal cells and impact the local or systemic
immunity, by inducing regulatory T cells (Tregs) and an anti-
inflammatory response that control the exacerbated reactions in
the gut mucosa, thus contributing to the maintenance of the
barrier integrity (14, 15). Moreover, epithelial or mucosal
immune cells express pattern recognition receptors (Toll-like
receptors - TLRs, NOD-like receptors – NLRs, and others) that
also contribute to the sensing of the host microbiota and
regulation of inflammatory processes (16). Interestingly, on
this Research Topic, Elias-Oliveira et al. emphasized the
interactions between NLRs and gut microbiota, showing the
dual role of these molecules in promoting inflammation or
Frontiers in Immunology | www.frontiersin.org 27
protecting against the harmful effects of dysbiosis-driven
diseases, such as IBD, type 1 or type 2 diabetes and obesity.

Then, to emphasize the importance of gut microbiota in
inflammatory conditions, three original research articles
explored this subject in animal models (17–28). Watanabe
et al. evaluated the importance of these microorganisms in
chronic kidney disease (CKD), by treating C57BL/6 mice,
which were submitted to unilateral ureteral obstruction
(UUO), with broad-spectrum antibiotics. The depletion of gut
microbes induced a decrease in IL-1b, IL-4, IL-6, GM-CSF, MIP-
1b, fibronectin and type I collagen, improving the renal damage.
Moreover, in Myd88DIEC mice, the bacterial translocation to
mesenteric lymph nodes, after UUO, was lower than in WT
mice. The reduced expression of inflammatory cytokines and
chemokines in Myd88DIEC mice suggested that the role of the gut
microbiota in CKD pathogenesis is related to the innate immune
receptors’ signaling. The second study, performed by Omura
et al. evaluated the gut microbiota in mouse models of acute
flaccid myelitis and multiple sclerosis (MS), which are
inflammatory conditions that affect the central nervous system
(CNS). To achieve this goal, researchers infected SJL/J mice with
Theiler’s murine encephalomyelitis virus (TMEV) and observed
that although there were no significant differences in beta or
alpha diversities between TMEV infected mice and controls,
Dorea, Marvinbryantia, and Coprococcus genera changed after
TMEV infection and correlated with immune molecules
expression (T cell receptor, Immunoglobulin genes, CD109) in
spinal cords. Lastly, Seo et al. demonstrated that the
administration of an agonistic antibody to TREM-1 (triggering
receptor expressed on myeloid cell-1) led to an improvement in
dysbiosis, restored epithelial barrier and ameliorated colitis in
mice. Besides that, the beneficial effect of a-TREM-1 was
dependent on CD177+ neutrophils and macrophages, via
TLR4/Myd88 signaling.

Dysbiosis observed in autoimmunity is associated with
impaired epithelial barrier function, systemic inflammation
and decreased regulation in the gut mucosa (29–32), as a result
of a variety of mechanisms stimulated or amplified by a dysbiotic
microbiota (31, 33). In a review article from Brown et al. authors
compiled data on intestinal dysbiosis in systemic lupus
erythematosus, rheumatoid arthritis, and multiple sclerosis,
discussing the contribution of the gut microbiota and SCFAs,
with an additional special focus on recent studies linking the
molecules from tryptophan metabolism to the protection or
induction of autoimmune diseases. In addition, Hou et al.
revised the intricate communication among leukocytes,
intestinal stem cells (ISC) and gut microbiota, showing that
this interaction is extremely important for the regenerative
capacity of the gut epithelial cells. Indeed, signals derived from
gut microbes affect the ISC development; i.e., while Tregs induce
ISC renewal, the Th1/Th2/Th17 lymphocytes inhibit ISC
activity. Besides that, authors discussed the importance of
organoids derived from ISC to study this crucial interaction
that could provide promising treatments for IBD.

Still on IBD, epidemiological studies showed higher incidence
of IBD in patients with chronic obstructive pulmonary disease
July 2021 | Volume 12 | Article 727485
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(COPD), and intestinal dysbiosis in patients with respiratory
diseases, pointing to the importance of the gut-lung axis in health
and disease (34–36). Two reviews explored this connection in the
context of IBD vs. COPD and in COVID-19. Raftery et al.
reviewed what is considered a “healthy microbiota” in the
human gut and lungs. They also showed that intestinal
dysbiosis (via bacteria metabolites) affects the lung homeostasis
and may result in systemic effects on the immune system or
production of inflammatory cytokines. De Oliveira et al. reviewed
the gut-lung axis concepts and suggested that intestinal dysbiosis
may affect the immune responses in the lungs and disease severity
in COVID-19. Preliminary studies have shown the persistence of
SARS-CoV-2 in the gastrointestinal system, and not only
intestinal dysbiosis, but also nasopharyngeal and pulmonary
dysbiosis in COVID-19 patients.

In a human cross-sectional study, Cortez et al. detected differences
in the gut microbial composition between pediatric patients with
primary sclerosing cholangitis (PSC) and those with PSC along with
ulcerative colitis (UC). In patients under 10 years old, Streptococcus
and Veillonella genera were increased in the PSC group when
compared with controls, while Veillonella and Escherichia-Shigella
were higher in the PSC+UC subjects. The increased Veillonella was
associated with active disease, and this genus, in addition to
Megasphaera, correlated with bilirubin and gamma-glutamyl
transferase. These results suggested an association between disease
activity and intestinal microbiome, thus opening new avenues for the
diagnosis and prognosis of pediatric PSC. In another study, Xu et al.
detected dysbiosis and increased intestinal permeability in patients
with encephalitis, with predominance of the Proteobacteria phylum,
and Parabacteroides andOscillospira genera, besides increased plasma
concentrations of D-lactate, intestinal fatty acid-binding protein,
lipopolysaccharides, and lipopolysaccharide-binding protein.
Furthermore, the levels of SCFAs (acetate, propionate and butyrate)
were decreased in fecal samples from patients, while there was a direct
correlation between the cerebrospinal fluid/serum albumin ratio and
Ruminococcaceae relative abundance. Altogether, these data
indicated that gut microbiota and their metabolites could play a
role in brain injury and encephalitis’ severity.

Regarding the applicability of microbiota modulators in
inflammatory conditions, several original research articles
investigated this question in experimental models. In
autoimmune diseases, Kim et al. analyzed the effect of multi-
strain probiotics (IRT5) containing Lactobacillus acidophilus,
L. casei, L. reuteri, Bifidobacterium bifidum, and Streptococcus
thermophiles in non-obese diabetic (NOD) mice. Compared to
controls, the IRT5 supplementation during 36 weeks decreased the
diabetes incidence, pancreatic inflammation, insulin
autoantibodies levels, intestinal barrier permeability, and
increased the b-cell mass in NOD mice. Gusmao-Silva et al.
administered probiotic bacteria (Lactococcus lactis NCDO 2118)
carrying a recombinant protein (Hsp65) in chronic and acute
mouse models of arthritis, and showed that this combination
suppressed arthritis onset in both models and induced regulatory
CD4+LAP+ T cells. In addition, the probiotic supplementation
decreased IL-17, IFN-g, anti-type II collagen autoantibodies,
rheumatoid factor, and promoted an increase in beneficial
Frontiers in Immunology | www.frontiersin.org 38
microbes in the gut, including Bifidobacterium and Lactobacillus.
The main findings of Sato et al. study were the beneficial effects of
the Lactobacillus jensenii TL2937 in the experimental colitis
induced by dextran sodium sulfate. Upon treatment with this
Lactobacillus strain, mice mice presented reduced disease and
myeloperoxidase activity, decreased pro-inflammatory cytokines,
and increased regulatory IL-10 and IL-27 production in
the intestine.

In allergic diseases, Yazdi et al. examined the impact of
probiotic (Lactobacillus rhamnosus GG) administration alone
or in combination with a prebiotic (turmeric powder) in asthma
induced by house dust mite in BALB/c mice. The synbiotic
administration decreased the number of eosinophils in
bronchoalveolar lavage fluid, the Th2 lymphocytes, IL-5 and
IL-13 levels, serum IgE concentrations, and hyper responsiveness
to methacholine.

Lastly, to investigate the effect of obesity and intestinal
dysbiosis in sepsis, Panpetch et al. orally administered (1!3)-
b-D-glucan (Candida albicans) in mice fed with high-fat diet,
and then induced sepsis by cecal ligation and puncture. In the
obese mice, which previously received b-D-glucan from Candida
albicans, sepsis was more severe, with liver and kidney damage,
endotoxemia, increased intestinal permeability, inflammatory
cytokines, and gram-negative bacteria in the gut. Researchers
also evaluated the effect of Lactobacillus rhamnosus L34 probiotic
on sepsis, and observed an improvement in disease severity, with
a decrease in the intestinal permeability, and an increase in anti-
inflammatory butyrate-producing commensals in the gut.

In addition, four reviews explored the mechanisms and the
impact of probiotics in the modulation of the immune responses
in human inflammatory conditions. A review by Yan and Polk
focused on the impact of probiotics and postbiotics in intestinal
homeostasis and epithelial barrier function, mucosal immune
responses, and the gut-brain axis communications. Moreover,
authors discussed the beneficial effects of probiotics or their
metabolites in IBD and colorectal cancer, thus proposing
personalized treatments based on the individual microbiome
profiles. In another important study, Cristofori et al. explored the
complex interactions among diet, microbiota, their metabolites
and the immune system, reviewing key concepts about
microbial-human evolution, hygiene hypothesis, microbiota
resilience and dysbiosis. Furthermore, the probiotics’ immune
regulatory mechanisms in the intestine were discussed, with
examples of their application in several diseases, including
IBD, irritable bowel syndrome, celiac disease, obesity, autism,
and Parkinson’s disease, evidencing why the intestine can be
considered “a door to the body”. Marietta et al. compiled a
complete and up-to-date information on the clinical trials based
on bacterial monotherapies or multistrain probiotic treatments,
as well as fecal microbiota transplantation (FMT) in several
autoimmune diseases, offering a perspective on the implications
and translation of experimental studies from animals to humans.
The highlight of the review is the discussion on the possible use
of FMT in the treatment of autoimmune diseases, including
celiac disease, multiple sclerosis, rheumatoid arthritis, type 1
diabetes and Sjögren’s syndrome. Lastly, Pecora et al. reviewed
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the role played by intestinal microbiota in celiac disease
pathogenesis and the effects of probiotic supplementation in
improving symptoms of these patients, drawing attention to the
importance of carefully evaluating which probiotic to use, the
dose and the length of treatment. In addition to these excellent
reviews, De Oliveira et al. showed the beneficial effect of
probiotics in respiratory infections, and discussed their
possible use as an adjunctive therapy in COVID-19.

In a very interesting hypothesis-driven article, Ouyang et al.
revisited the beneficial properties of Akkermansia muciniphila in
supporting an anti-inflammatory milieu in the gut, preventing
increased intestinal permeability, bacterial translocation and
systemic inflammation. Most interestingly, the authors
discussed the application of A. muciniphila supplementation in
metabolic diseases and cancer, as well as alternatives to increase
the abundance of this synbiotic microbe in our guts. Finally,
researchers hypothesized that supplementation with
A. muciniphila in patients living with HIV could decrease the
barrier permeability, bacterial translocation, inflammation, and
the risk to develop cardiovascular diseases or type 2 diabetes.

Lastly, the influence of diet on shaping the gut microbiota was
also addressed in three studies; two reviews and one original
research article. Basson et al. focused on the role of dietary fatty
acids and high-fat diets in modulating the immune system via
alterations of the gut microbiota and epithelial barrier
permeability, reviewing mainly IBD studies. Kahalehili et al.
evaluated the role of indole-3-carbinol (I3C), phytochemicals
found in cruciferous vegetables, in modulating autoimmune
diabetes through aryl hydrocarbon receptor (AhR) ligands.
Frontiers in Immunology | www.frontiersin.org 49
The metabolized I3C from the diet induced AhR activation in
the small intestine, alterations in microbiota diversity,
differentiation of Th17 cells in the lamina propria, along with
insulitis in non-obese diabetic (NOD) mice. In a very interesting
transkingdom network analysis, to predict host-microbiota
interactions, several Firmicutes phyla members were negatively
regulated by I3C. Furthermore, by utilizing AhR knockout mice,
they observed that Intestinimonas is downregulated by AhR
activation. In addition to these works, Raftery et al. discussed
the role of microbial-metabolized dietary metabolites, showing
that the intake of saturated fats induces an increased intestinal
permeability and inflammatory response. On the other hand,
high soluble fiber diet, rich in vegetables and fruits, is able to
suppress inflammatory mediators via SCFAs (mainly butyrate),
thus inducing regulatory mechanisms and protective effects in
IBD or COPD.

Collectively, the articles from this Research Topic showed
important aspects of the role played by intestinal dysbiosis in
inflammatory diseases. Furthermore, the strategic approaches for
the use of commensals or microbiota modulators, and
consequently their involvement in immune regulation were
discussed and contributed to increase the knowledge in the field.
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Gut dysbiosis, namely dysregulation of the intestinal microbiota, and increased gut
permeability lead to enhanced inflammation and are commonly seen in chronic
conditions such as obesity and aging. In people living with HIV (PLWH), several
lines of evidence suggest that a depletion of gut CD4 T-cells is associated with gut
dysbiosis, microbial translocation and systemic inflammation. Antiretroviral therapy (ART)
rapidly controls viral replication, which leads to CD4 T-cell recovery and control of the
disease. However, gut dysbiosis, epithelial damage and microbial translocation persist
despite ART, increasing risk of developing inflammatory non-AIDS comorbidities such
as cardiovascular disease, diabetes mellitus, liver steatosis and cancer. In addition to
ART, an emerging research priority is to discover strategies to improve the gut microbial
composition and intestinal barrier function. Probiotic interventions have been extensively
used with controversial benefits in humans. Encouragingly, within the last decade, the
intestinal symbiotic bacterium Akkermansia muciniphila has emerged as the “sentinel of
the gut.” A lower abundance of A. muciniphila has been shown in diabetic and obese
people as well as in PLWH. Interventions with high levels of polyphenols such as tea
or diets rich in fruit, the antibiotic vancomycin and the antidiabetic drug metformin
have been shown to increase A. muciniphila abundance, contributing to improved
metabolic function in diabetic and obese individuals. We hypothesize that gut microbiota
rich in A. muciniphila can reduce microbial translocation and inflammation, preventing
occurrences of non-AIDS comorbidities in PLWH. To this aim, we will discuss the
protective effect of A. muciniphila and its potential applications, paving the way toward
novel therapeutic strategies to improve gut health in PLWH.
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INTRODUCTION

Gut microbiota is composed of a community of microorganisms
gathered in the gastrointestinal (GI) tract. The number of
micro-organisms is 1–10 times greater in the GI tract than the
number of host cells in humans. Additionally, the number of
microbial genes is 100 times greater than that of the human
genome (1). In normal, healthy conditions, a state of eubiosis
is attained when the composition of the gut microbiota is
balanced. The gut microbiota is emerging as a prominent
player in maintaining health through several metabolic and
immune pathways. Dysregulation of gut microbiota composition,
also known as dysbiosis, can be associated with gut barrier
dysfunction and intestinal homeostasis disruption through
translocation of microbial products and proinflammatory factors
(2). Increasing evidence has put a spotlight on the contribution
of gut dysbiosis and its related inflammation in obesity,
diabetes mellitus (DM), cancer, aging and more recently, human
immunodeficiency virus (HIV) infection (3–7).

In people living with HIV (PLWH), intestinal CD4 T-cells
are a preferential target of the virus due to their high
expression of CCR5, a chemokine co-receptor allowing for
the entry of HIV, leading to their massive depletion during
early infection (8, 9). This disruption in gut homeostasis
results in dysbiosis, microbial translocation and systemic
inflammation (10, 11). Antiretroviral therapy (ART) has
transformed the lives of PLWH by rapidly controlling viral
replication and allowing CD4 recovery, reducing morbidity and
mortality. However, despite controlling viral load and CD4 T-
cell count, long-term ART reduces but does not normalize
gut dysbiosis, microbial translocation, immune activation and
inflammation (12–14). In addition to HIV itself, coinfection
with cytomegalovirus or viral hepatitis, leaky gut and microbial
translocation also lead to inflammation which has been associated
with the risk of non-AIDS comorbidities (13, 15–18). The
direct influence of dysbiosis, microbiota by-products, epithelial
barrier and local immune response will need further studies
to define their distinctive role on systemic inflammation
and subsequent development of non-AIDS comorbidities.
Cardiovascular disease, DM, liver steatosis, neurocognitive
disorders and cancer represent the most frequent manifestations
of non-AIDS comorbidities, which represent a new frontier in
the management of PLWH in today’s medical practice (19–21).
Thus, in addition to ART, strategies to improve the gut microbial
composition and intestinal barrier function are emerging as a
research priority.

Converging evidence has recently demonstrated the key role
of commensal bacteria harbored in the GI tract. Interestingly,
the bacterium Akkermansia muciniphila has been described as
a protective ally against the development of metabolic diseases
and colitis (22). A. muciniphila of the phylum Verrucomicrobia,
was first isolated and characterized in 2004. This Gram-
negative, anaerobic, non-motile, non-spore-forming bacterium
has been considered to be a next-generation beneficial microbe
(23). In humans, A. muciniphila colonizes the intestinal tract
in infanthood and will reach 1–4% of the fecal microbiota
by adulthood (24–26). Furthermore, studies have shown a

link between low A. muciniphila abundance and increased
occurrence of inflammatory metabolic diseases such as diabetes,
obesity, ulcerative colitis (UC) and Crohn’s disease (CD), all
of which are associated with epithelial gut damage and high
permeability (27–35). On the other hand, supplementation
with A. muciniphila can help protect from specific metabolic
disorders, inflammatory diseases and increase response to cancer
immunotherapy (4, 36–43). Moreover, increasing A. muciniphila
abundance with the antidiabetic drug metformin or with
high polyphenol interventions such as tea or diets rich in
fruit further improves metabolic function in diabetic and
obese individuals (42, 44–50). The causal or consequential
role of A. muciniphila in protection from various diseases
in humans remains under debate. Some evidence points
toward this symbiotic intestinal bacterium as an emerging
“gatekeeper of the gut”, associated with gut barrier integrity
and the regulation of inflammation (22, 51, 52). Herein,
we discuss recent advances in the understanding of the
protective effects of A. muciniphila and its potential relevance
in HIV infection.

THE MULTIFUNCTIONAL PROPERTIES
OF A. MUCINIPHILA

Akkermansia muciniphila encodes a particularly wide repertoire
of mucin-degrading enzymes in its relatively small genome,
uses mucin as its sole source of carbon and nitrogen, and its
downstream glycan byproducts can cross-feed other gut bacteria
(23, 53, 54). Based on its unique properties, the bacterium
was named after the Dutch microbial ecologist Antoon DL
Akkermans for his contributions to the field (55). Additionally,
this bacterium exhibits multiple biological functions, including
promoting gut barrier integrity, modulating immune response,
inhibiting inflammation and cross-feeding, called syntrophy,
with other microbiota species.

The gut barrier is organized as a multi-layered and complex
system which allows nutrient absorption while preventing the
translocation of microbes and their products. Disruption of
the gut barrier leads to the transit of luminal contents into
the bloodstream, activating the immune response and inducing
inflammation (56). Mucus covers the outer intestinal epithelial
cell layer and serves as physical protection from penetration of
micro-organisms and harmful compounds (57). In addition to
degrading mucins, A. muciniphila was also found to stimulate
mucin production (42, 52). In animal models, A. muciniphila
supplementation increased the thickness of the colonic mucus
layer approximately 3-fold, significantly more than the thickness
increased induced by the beneficial bacterium Lactobacillus
plantarum (52). Furthermore, in vitro, A. muciniphila was found
to improve enterocyte monolayer integrity by binding directly
to the enterocytes (51). Ottman et al. also showed that the
outer membrane protein Amuc_1100 of A. muciniphila improved
epithelial cell monolayer integrity in an in vitro culture after
24 h (58).

There is evidence to show that A. muciniphila may regulate
inflammation. Supplementation of this bacterium attenuated
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inflammation in an accelerated aging mouse model (52). Other
studies have also shown the anti-inflammatory properties of
A. muciniphila in different mouse models including germ-
free, liver injury and obesity models (59–64). Huck et al. (62)
reported that A. muciniphila could reduce inflammation induced
by Porphyromonas gingivalis in lean or obese mice. Ansaldoi
et al. (59) demonstrated that A. muciniphila plays a context-
dependent role in the induction of gut-resident T-cells during
homeostasis in mice. Sessa et al. reported in a cross-sectional
study of perinatally HIV-infected children and adolescents that
A. muciniphila abundance was associated with elevated IL-6 and
soluble CD14 (65).

Additionally, it should be noted that there are also other
microbes which are commonly found in the mucus layer aside
from A. muciniphila. These microbes include bacteria such
as Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia
intestinalis, and Anaerostipes caccae which produce the anti-
inflammatory short-chain fatty acid (SCFA) butyrate (66–69).
Butyrate-producing bacteria do not have the ability to degrade
mucus, but use carbon and nitrogen degraded by mucin-
degraded species such as A. muciniphila (53). Belzer et al.
(66) reported that coculturing A. muciniphila with non-mucus-
degrading butyrate-producing bacteria F. prausnitzii, A. caccae,
and Eubacterium hallii resulted in syntrophic growth and
production of butyrate. Thus, not only does A. muciniphila play
an important role by itself in protecting the gut epithelium, but
also supports anti-inflammatory intestinal microbiota.

Due to this, and considering its relatively high abundance
at all stages of life, A. muciniphila is considered a promising
beneficial microbe for some diseases, including metabolic
disorders and cancers.

SUPPLEMENTATION OF
A. MUCINIPHILA IN THE CONTEXT OF
METABOLIC DISORDERS AND
CANCERS

As a strictly anaerobic bacterium, culture of A. muciniphila
needs to be conducted under strict conditions. Advances in the
culture and preparation of A. muciniphila have made it feasible
for study as a beneficial microbe (36, 70). Supplements of this
promising bacterium include live A. muciniphila, pasteurized
(killed) A. muciniphila and A. muciniphila-derived extracellular
vesicles (AmEVs) (4, 36, 38).

Obesity and metabolic disorders including DM are closely
associated with low-grade inflammation and intestinal dysbiosis
(71). Everard et al. reported that the abundance of A. muciniphila
was 3,300-fold lower in obese mice than in their lean littermates.
A 4-week oral gavage of live A. muciniphila in mice reversed high-
fat diet-induced metabolic disorders, including fat-mass gain,
metabolic endotoxemia, adipose tissue inflammation, and insulin
resistance, and increased intestinal levels of endocannabinoids
that controlled inflammation, increased gut mucus, and increased
expression of gut antimicrobial peptides such as regenerating
islet-derived 3-gamma (Reg3γ) for innate immunity (40).

In addition, even when A. muciniphila is killed through
pasteurization, supplementation demonstrated beneficial effects
by protecting from ovariectomy-induced fat mass gain (72).
In overweight insulin-resistant humans, a randomized, double-
blind, placebo-controlled pilot study showed that daily oral
supplementation of 1010 live or pasteurized A. muciniphila
bacteria for 3 months was safe and well tolerated, and
improved insulin sensitivity, reduced insulinemia, plasma total
cholesterol, body weight, fat mass and hip circumference, without
great changes in the overall gut microbiota composition (43).
Furthermore, AmEV administration was reported to enhance
tight junction function, reduce body weight gain and improve
glucose tolerance in high-fat diet (HFD)-induced diabetic mice,
suggesting that derivatives of the bacterium are sufficient to
induce a protective response (38). These findings suggest the
direct benefit of this bacterium on the gut barrier and the
host metabolism.

Remarkably, the influence of the gut microbiota composition
in modulating tumor responses to immunotherapy has also been
reported in various cancers such as melanoma, lung and kidney
cancer. This effect was observed in different geographic regions
where microbiota might differ (North America, Europe, East
Asia) (4, 73–75). Reconstitution of germ-free mice with fecal
material from lung cancer immunotherapy responders led to
increased T-cell responses, and greater efficacy of anti-PD-1
therapy (4). Oral supplementation with live A. muciniphila after
fecal microbiota transplantation (FMT) with non-responder feces
restored the efficacy of PD-1 blockade in murine models (4).

Although the long term effects of A. muciniphila
supplementation are unknown with concerns over the
translocation of probiotics (76), this bacterium may play a
crucial role in increasing the efficacy of metabolic and cancer
therapies and provide strong scientific rationale to launch
microbiota-based clinical trials.

STRATEGIES TO INCREASE THE
ABUNDANCE OF A. MUCINIPHILA

Supplementation of A. muciniphila may be difficult or costly,
however, strategies to indirectly increase the abundance
of A. muciniphila exist through dietary interventions, the
antidiabetic drug metformin, selective antibiotics and FMT.

Dietary polyphenols are natural antioxidants, which may help
protect obligate anaerobes by scavenging oxygen radicals. Gurley
et al. reported that administration of green tea to mice, with
comparable levels of polyphenols to those consumed by humans,
resulted in significant modulation of gut microflora, with the
greatest increases observed in A. muciniphila (47). Concord
grape, cranberry and the Amazonian fruit Camu Camu have
been reported to increase the abundance of A. muciniphila
in the intestinal tract approximately 7-fold, 15-fold, and 5-
fold, respectively, reduced inflammation and body weight gain,
and increased gut barrier integrity in obese mouse models
(44, 45, 49). Although a currently unpopular option, caloric
restriction such as intermittent fasting has shown increases in
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A. muciniphila abundance (77). To scale up this approach, diet-
mimetic medications are under intense scrutiny. Among the
most commonly used in both animals and humans is the anti-
diabetic drug metformin.

Metformin is the most commonly used drug to treat DM2
and recently has been shown to reduce inflammation, exert anti-
aging effects and modify the gut microbiota composition (78).
Although metformin acts primarily as a glucose mediator in
the liver by inhibiting hepatic gluconeogenesis, accumulating
evidence suggests that metformin also mediates changes in gut
microbiota composition (79–81). Convergent reports showed
that metformin significantly increased A. muciniphila abundance
in animal models (42, 46, 82). The nitrogen-rich structure of
metformin may also play a role in the nurturing of A. muciniphila,
which requires nitrogen for proliferation and survival (80). Thus,
the use of metformin is a strategy to enrich the abundance of
A. muciniphila in the gut, among its other metabolic benefits as
seen in DM2 (83).

A. muciniphila is resistant to vancomycin, metronidazole, and
penicillin (84). Selective antibiotic treatment with vancomycin
was shown to dramastically increase A. muciniphila abundance
in young non-obese diabetic (NOD) mice, reducing their glucose
levels and the diabetes incidence when compared with untreated
NOD mice (85). In two patients from the intensive care
unit of Marseille, France, broad spectrum antibiotics increased
A. muciniphila abundance to more than 40% in stools, without
inducing gastrointestinal disorders (84). Furthermore, Uribe-
Herranz et al. reported that in pre-clinical models to study
the immune-based off-target (abscopal) effect of radiotherapy,
oral supplementation with vancomycin increased A. muciniphila
which was associated with tumor growth inhibition in mouse
models (86). Although further explorations are required in
humans, vancomycin treatment appears safe and able to increase
A. muciniphila abundance in the gut microbiota.

Fecal microbiota transplantation is also effective in restoring
eubiosis in colitis and metabolic diseases. Zhang et al. showed
that transplanting fecal bacteria from people with normal glucose
tolerance into DM2 mice downregulated levels of fasting blood
glucose, postprandial glucose, total cholesterol, triglyceride, and
low-density lipoprotein-cholesterol and increased the abundance
of A. muciniphila (87). Huang et al. reported that FMT
improved gastrointestinal symptoms and alleviated depression
and anxiety in irritable bowel syndrome (IBS) patients. Further,
gut microbiota analyses revealed that Methanobrevibacter and
A. muciniphila were the most abundant fecal microbiota a month
after compared to before FMT (88).

These animal models and human epidemiological studies
suggest methods to increase A. muciniphila abundance in
humans, but efforts to scale up its abundance in PLWH, and in
turn improving their gut health and various metabolic factors, are
yet unexplored (89).

LEAKY GUT AND DYSBIOSIS IN PLWH

HIV infection is characterized by a rapid decline in CD4 T-cell
count, early gut mucosal damage, and subsequent translocation

of microbial products through the now more permeable
epithelium (10, 90). Circulating levels of lipopolysaccharide (LPS)
and (1→3)-β-D-Glucan (BDG) are two clinically significant
markers that assess the level of bacterial and fungal translocation,
respectively, of which high levels lead to metabolic endotoxemia
(89). Our group and others have shown that LPS and
BDG translocation are correlated with immune dysfunction in
PLWH and increased risk of non-AIDS comorbidities (91–94).
Moreover, we and others have evaluated circulating intestinal
fatty acid binding protein (I-FABP) and regenerating islet-
derived protein-3α (REG3α) as two gut damage markers in
PLWH (14, 95). I-FABP, an intracellular protein constitutively
expressed in enterocytes, is released upon cell death and
subsequently detected in the blood (96, 97). REG3α is an
antimicrobial peptide secreted by intestinal Paneth cells into the
gut lumen and upon gut damage, translocates into the blood
(14). We observed that these two gut damage markers were
correlated with HIV disease progression, microbial translocation
and immune activation in PLWH (14). These findings point to
the leaky gut as a significant contributor to chronic inflammation
and non-AIDS comorbidities in PLWH.

Recently, accumulating evidence has suggested that the
gut microbiota is emerging as a prominent player in the
regulation of host metabolism and chronic inflammation (98,
99). Bacterial communities residing in the intestine of HIV-
infected individuals have been shown to differ from those of
individuals not infected with HIV, independently of age, sex
and sexual practice (6). Dysbiosis is associated with impaired
intestinal barrier activity, impaired mucosal immunity function
and worse clinical outcome in PLWH (6, 16, 100, 101). Moreover,
A. muciniphila was significantly depleted in ART-naïve and
ART-treated PLWH, compared to uninfected controls (101,
102). In one study, Mutlu et al. demonstrated that PLWH had
significantly less A. muciniphila abundance regardless of ART,
CD4 count or viral load, compared to healthy controls (102).
Rocafort et al. confirmed and expanded these results by showing
that A. muciniphila abundance was significantly higher in 49
recently infected PLWH and 55 healthy controls compared
to 71 chronically infected untreated PLWH. Furthermore, in
27 chronically infected ART-treated PLWH, A. muciniphila
abundance was similar to healthy controls (101). These findings
suggest that chronic HIV infection leads to progressive depletion
of A. muciniphila abundance, and following ART initiation,
A. muciniphila abundance returns to levels similar to those of
healthy controls. The causative role of A. muciniphila abundance
in HIV infection with respect to gut integrity and inflammation
needs to be further elucidated.

HYPOTHESIS: A. MUCINIPHILA AS A
SENTINEL FOR GUT PERMEABILITY IN
PLWH

HIV infection, metabolic disorders and cancer share common
features such as chronic inflammation and dysbiosis, which
includes the decreased abundance of A. muciniphila in the
gut microbiota (4, 40, 71, 101–104). Given this decreased

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 64514

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00645 April 8, 2020 Time: 17:5 # 5

Ouyang et al. Akkermansia muciniphila and HIV

abundance of A. muciniphila in PLWH, and considering the
benefits of increasing A. muciniphila abundance in obesity, we
hypothesize that A. muciniphila can act as a shield for gut
permeability, preventing microbial translocation and reducing
inflammation, with the aim toward decreasing risks of developing
non-AIDS comorbidities in PLWH. Potential interventions that
may increase A. muciniphila abundance in people living with HIV
are shown in Figure 1.

Leaky gut has been considered one of the most important
factors for microbial translocation and increased inflammation
in PLWH (15). In three in vitro human cell line models, Caco-
2, HT-29, and TIGK, A. muciniphila was reported to improve
enterocyte monolayer integrity and increase the expression
of cell–cell adhesion and tight junction molecules (51, 62).
Furthermore, in an accelerated aging mouse model, the thickness
of the colonic mucus layer increased approximately 3-fold after
long-term A. muciniphila supplementation (52). Therefore, we
propose that A. muciniphila might decrease inflammation by
preserving gut barrier integrity and subsequently preventing
microbial translocation in PLWH.

Furthermore, in PLWH, there is a lower abundance of
butyrate-producing bacteria (105, 106). Butyrate plays an
important role as an energy source for colonic epithelial cells and

epithelial barrier integrity, T-cell activation, colonic regulatory T
cell differentiation, gut and blood antigen presenting cell (APC)
modulation (105–109). Lower abundance of butyrate-producing
bacteria has been associated with poor clinical outcome in
Crohn’s disease, ulcerative colitis and colon cancer (110, 111).
Interestingly, A. muciniphila could promote butyrate-producing
bacteria growth and butyrate production (66). We therefore
suggest that A. muciniphila, by supporting butyrate-producing
bacteria, may also decrease inflammation in PLWH through this
method (106, 109).

Moreover, antimicrobial peptides in the gut play a prominent
role as host defense effector molecules. Specifically, the C-type
lectin REG3α secreted by human Paneth cells and its mouse
ortholog REG3γ can bind peptidoglycan and serve as bactericidal
agents against Gram-positive species (112). Live A. muciniphila
supplementation showed an increased expression of the murine
homolog REG3γ in an obese mouse model (40). Moreover,
A. muciniphila was reported to induce immunoglobulin G1
(IgG1) antibodies, antigen-specific T-cell responses and intestinal
adaptive immune responses (59). Therefore, A. muciniphila may
improve intestinal homeostasis through the increased expression
of REG3α in Paneth cells and inducing intestinal adaptive
immune responses in PLWH.

FIGURE 1 | Potential interventions to increase Akkermansia muciniphila abundance in people living with HIV.
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CONCLUSION

Epithelial gut damage, microbial translocation and inflammation
are considered common determinant mediators of inflammatory
non-AIDS comorbidities in PLWH. A. muciniphila has
emerged as the “sentinel of the gut” and has been shown to
promote gut barrier integrity, modulate immune response,
inhibit inflammation and enrich butyrate-producing bacteria.
Supplementation of A. muciniphila and other strategies
promoting the abundance of A. muciniphila have been proven
to be effective in some metabolic disorders and cancer. Recently,
clinical trials involving metformin (113), prebiotics (CIHR/CTN
NCT04058392) or FMT to increase A. muciniphila abundance
have come into fruition, and we suggest that a gut microbiota
enriched in A. muciniphila can reduce microbial translocation
and inflammation, lowering the risk of developing non-AIDS
comorbidities and improving quality-of-life in PLWH.
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Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten

in genetically predisposed individuals. Recent data shows that changes in the gut

microbiome composition and function are linked with chronic inflammatory diseases;

this might also be the case for CD. The main aim of this manuscript is to discuss our

present knowledge of the relationships between gut microbiota alterations and CD and

to understand if there is any role for probiotics in CD therapy. PubMed was used to

search for all of the studies published from November 2009 to November 2019 using

key words such as “Celiac Disease” and “Microbiota” (306 articles), “Celiac Disease” and

“Gastrointestinal Microbiome” (139), and “Probiotics” and “Celiac Disease” (97 articles).

The search was limited to articles published in English that provided evidence-based

data. Literature analysis showed that the gut microbiota has a well-established role in

gluten metabolism, in modulating the immune response and in regulating the permeability

of the intestinal barrier. Promising studies suggest a possible role of probiotics in treating

and/or preventing CD. Nevertheless, human trials on the subject are still scarce and lack

homogeneity. A possible role was documented for probiotics in improving CD-related

symptoms, modulating the peripheral immune response and altering the fecal microbiota,

although the results were not consistent in all of the studies. No evidence was found

that probiotic administration might prevent CD onset. Knowledge of the role of intestinal

bacteria in the development of CD opens new possibilities for its treatment through

probiotic administration, even though further studies are needed to better clarify whether

probiotics can help treat or prevent the disease and to define which probiotics to use, at

what dose and for how long.

Keywords: celiac disease, dysbiosis, gut microbiota, microbiome, probiotics

INTRODUCTION

Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten in
genetically predisposed individuals (1, 2). In patients with CD, immune responses to gliadin
fractions stimulate an inflammatory response. This reaction is mediated by the innate and
adaptive immunity (3). The interaction between gliadin peptides and the G protein-coupled
receptor CXCR3 on enterocytes triggers the release of zonulin, a potent intestinal barrier function
modulator. Consequently, gliadin peptides translocate into the lamina propria and activate the
immune response (4). In the lamina propria, intestinal tissue transglutaminase (tTG) reacts with
gliadin peptides to deamidate them to negatively charged glutamic acid residues that are highly
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immunogenic. After tTG-induced deamidation, gliadin peptides
activate the humoral immune response with antibodies against
gliadin and tTG and to the production of pro-inflammatory
cytokines, such as interferon gamma (IFNγ), interleukin-17 (IL-
17) and tumor necrosis factor-alpha (TNFα) (5).

Many researches have observed that different functions of
macrophages, dendritic cells and neutrophils, which are an
essential part of the innate immune system, are influenced
by the microbiota (6, 7). Gliadin peptides also stimulate an
innate immune response in the intestinal epithelium that is
characterized by increased expression of IL-15 by enterocytes,
resulting in the activation of intra-epithelial lymphocytes
expressing the activating receptor NK-G2D, a natural killer cell
marker (8, 9).

CD does not develop unless a person has alleles that encode
HLA-DQ2 or HLA-DQ8 proteins, products of two of the HLA
genes. However, HLA-DQ2 and HLA-DQ8 haplotypes are not
specific for CD because many people, most of whom do not
have CD, carry these alleles; thus, the DQ2 and DQ8 haplotypes
are necessary but not sufficient for the development of CD
(10, 11). Furthermore, with the introduction of GWAS (genome-
wide association studies), an additional 39 non-HLA regions of
susceptibility have been associated with CD development (12,
13). Several studies have identified more genes associated with
CD that are involved in immune function or related to defects in
intestinal permeability or with bacterial colonization and sensing
(14, 15).

The role of an environmental influence in CD pathogenesis is
supported by the facts that (a) HLA and non-HLA genes explain
only 55% of disease susceptibility, (b) there is a lack of 100%
concordance of CD in monozygotic twins and (c) the incidence
of this condition is increasing (16–18). Based on more recent
epidemiological data, loss of gluten tolerance may occur at the
time of its introduction into the diet or at any time in life, with
several different intestinal and extra-intestinal symptoms (19–
22). These findings suggest that other environmental factorsmust
play a role in CD development. Indeed, environmental factors
that influence the composition of the human gut microbiota,
such as birth gestational age, type of delivery, intestinal infections
and antibiotic exposure, have been associated with the risk of
developing CD (23–26).

Gut bacteria are key regulators of digestion along the
gastrointestinal tract and have a relevant impact in the synthesis
of many nutrients and metabolites (27–29). Furthermore, the
gut microbiota has a crucial immune function, inhibiting
bacterial growth and maintaining intestinal epithelial integrity
(30). Moreover, growing evidence has shown a critical role
for commensal bacteria and their products in influencing
the development, homeostasis, and function of innate and
adaptive immune cells (31, 32). Recent data support the
hypothesis that changes in the gut microbiome composition
and function are linked with chronic inflammatory diseases;
this might also be the case for CD (33). Although a gluten-
free diet (GFD) influences the gut microbiota composition
and diversity and thus represents a confounding factor,
several studies support the hypothesis that the microbiota
plays a role in the pathogenesis, clinical manifestation and

risk of developing CD (34). Moreover, it has been reported
that soluble CD14 (sCD14, i.e., an indicator of innate
immune cell activation in response to mucosal translocation
of Gram-negative bacteria) is increased in untreated patients
with CD, probably because of translocation of commensal
intestinal bacteria (35, 36). Finally, patients with persistent
symptoms on a long-term GFD have an altered microbiota
composition (37).

The evidence of intestinal dysbiosis in CD, together with
the role of the gut microbiota in regulating the immune
response, opens up the possibility of finding new therapeutic
approaches by modulating the intestinal microbiota with the use
of probiotics. The main aim of this manuscript is to discuss our
present knowledge of the relationships between gut microbiota
alterations and CD and to understand if there is any role for
probiotics in CD therapy. PubMed was used to search for all of
the studies published from November 2009 to November 2019
using key words such as “Celiac Disease” and “Microbiota” (306
articles), “Celiac Disease” and “Gastrointestinal Microbiome”
(139 articles), and “Probiotics” and “Celiac Disease” (97 articles).
The search was limited to articles published in English that
provided evidence-based data.

GUT MICROBIOTA AND ENVIRONMENTAL
FACTORS

Each healthy individual has a unique gut microbiota. Core
native microbiota are shaped in early life (i.e., in the first 36
months of age) by gut maturation, which is strongly influenced
by environmental factors such birth gestational age, type of
delivery, method of milk feeding, weaning period, lifestyle,
and dietary and cultural habits (38). When a child is 2–3
years old, a relative stability in gut microbiota composition
has been documented (33, 39). Gut microbiota are represented
by several species of microorganisms, including bacteria, yeast,
and viruses. The two major bacterial phyla are Firmicutes
and Bacteroidetes, which are 90% of the whole gut microbiota
(40). The Firmicutes phylum is composed of ≥ 200 different
genera, and Clostridium genera are 95% of the Firmicutes
phyla. Bacteroidetes consists of predominant genera such
as Bacteroides and Prevotella. Actinobacteria, Proteobacteria,
Fusobacteria, and Verrucomicrobia are the next most numerous
phyla, which are described in a “healthy gut microbiota
composition” (33, 40).

It has been observed that the HLA-DQ genotype can influence
early gut microbiota composition (41). Several studies have
demonstrated that the genotype of infants at family risk of
developing CD, carrying the HLA-DQ2 haplotypes, influences
the early gut microbiota composition. Olivares et al. (42)
reported that infants with a high genetic risk have significantly
higher proportions of Firmicutes and Proteobacteria and lower
proportions of Actinobacteria and Bifidobacteria compared with
low-risk infants. In a study including 164 healthy new-borns with
≥one first-degree relative with CD, De Palma et al. (43) showed
that milk-feeding type in conjunction with HLA-DQ genotype
has an impact in in establishing infants’ gut microbiota.
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Diet represents another key regulator of microbiome
development and homeostasis. Although recent data have shown
that breast-feeding has no protective effect on the development
of CD, studies have reported that genotype-related differences
in microbiota composition are reduced by breast-feeding
(44). Moreover, human milk oligosaccharides enhance overall
barrier integrity by making enterocytes less vulnerable to
bacterial-induced innate immunity (45).

Some observational studies have also shown that elective
cesarean delivery is linked with an increased risk of CD
onset during pediatric age, suggesting the impact of dysbiosis
during early life. The gut microbiota of children born by
elective cesarean section, compared to vaginally delivered
infants’ microbiota, has reduced microbial diversity and fewer
Bifidobacterium species (46, 47). According to some studies,
antibiotic exposure during the first year of life has been linked
with intestinal dysbiosis, reduced fecal microbial diversity, and
early onset of CD (48, 49). However, there are other studies
that did not confirm this result (50, 51), and a recent meta-
analysis found no evidence of an association between prenatal or
postnatal antibiotic exposure and CD (52).

Although it is currently recognized how these environmental
factors influence the composition of the intestinal microbiota,
there are no longitudinal studies that have defined whether and
how the gut microbiota plays a role in the development of CD.
A large, ongoing, multi-center, prospective longitudinal study
called CDGEMM (Celiac Disease, Genomic, Environmental,
Microbiome, and Metabolomic Study) has the goal of identifying
and validating specific microbiome and metabolomic profiles
able to predict loss of tolerance in children genetically at risk of
autoimmunity (53).

GUT MICROBIOTA AND IMPLICATIONS IN
CELIAC DISEASE (CD) PATHOGENESIS

The gut microbiota present in the human colon participates in
gluten metabolism. Lactobacilli and Bifidobacterium spp. may
play a role in the breakdown of gluten and its peptides to
modify their immunogenic potential (54, 55). Caminero et al.
(56) demonstrated that opportunistic pathogens and core gut
commensals produce distinct breakdown patterns of gluten with
increased or decreased immunogenicity that could influence
autoimmune risk. In particular, it has been demonstrated that
Lactobacilli can detoxify gliadin peptides after partial digestion by
human proteases; additionally, immunogenic peptides produced
by Pseudomonas aeruginosa proteases are also further degraded
and rendered less immunogenic in the presence of Lactobacillus.
These findings on the gluten-processing activities of specific
microbial strains could suggest the use of probiotics as
complementary therapy for CD.

Changes in the gut microbiota composition could also
play a role in altering the intestinal barrier and increasing
epithelial permeability (57). Disassembly of zonulin, that is
involved in tight junctions, has a pathogenic role in increasing
the intestinal permeability present in patients with CD. Some
studies have reported that dysbiosis is associated with increasing

zonulin release, disrupting tight junctions, and enhancing the
entry of incompletely digested gliadin peptides into the lamina
propria (4, 58). In addition, it is acknowledged that the gut
microbiota has an important role in the regulation of host
metabolism and immunity (59). Moreover, a recent study has
shown how gut microbiota and their metabolites enhance the
risk of developing autoimmunity through epigenetic processes
(60). To find a microbial agent for disease immunomodulation,
Bifidobacteria and Lactobacilli are the most studied strains.
Bifidobacteria strains have been described to play a role in
reducing the epithelial permeability triggered by gluten (61), in
downregulating the Th1 pathway typical of CD (62), and in
decreasing jejunal architecture damage (63). Furthermore, it has
been reported that Escherichia coli could have a protective effect
on gut barrier function (64) and that Lactobacilli strains have
immunomodulatory properties (65).

In recent years, several cross-sectional studies have evaluated
fecal, salivary, and duodenal microbiota associated with CD.
Patients with CD show a decrease in beneficial species
(Lactobacillus and Bifidobacterium) and an increase in those
potentially pathogenic (Bacteroides and E. coli) in comparison
with healthy subjects (66). In particular, some studies have
reported that Bifidobacterium spp., Bifidobacterium longum,
Clostridium histolyticum, C. lituseburense, and Faecalibacterium
prausnitzii group proportions are less abundant in untreated
patients with CD than in healthy controls (67–69). Ou Gangwei
et al. (70) have shown that rod-shaped bacteria represented a
significant fraction of the proximal small intestine microbiota in
children with CD during the so-called Swedish epidemics. These
bacteria present in the epithelial lining of the small intestine
were observed in children with CD but not in controls. Another
study analyzed the mucosa-associated microbiota of 20 children
with CD, before and after a GFD regimen, and of 10 controls,
with evidence of a peculiar microbial profile and a significantly
higher biodiversity in the duodenal mucosa of patients with CD
(71). Furthermore, Di Cagno et al. (72) demonstrated that a GFD
lasting at least 2 years did not completely restore the microbiota
of children with CD.

Wacklin et al. (34, 73) have shown microbiota alterations,
particularly in subjects with persistent symptoms despite
adherence to a long-term GFD or associated with gastrointestinal
symptoms but not with dermatitis herpetiformis. These
studies highlight that the alterations in gut microbiota are
more pronounced in the active phase of CD, suggesting
that perturbations in the interaction between the host
and the microbiota could influence CD manifestation and
evolution. However, the abovementioned CDGEMM study
could help to understand the role that the gut microbiome
show in the early steps involved in the pathogenesis of
CD (53).

PROBIOTIC SUPPLEMENTATION IN
CELIAC DISEASE (CD)

Probiotics have shown the ability to hydrolyse immunogenic
gluten peptides (56, 74–77), thus reducing their immunogenicity.

Frontiers in Immunology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 95722

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pecora et al. Gut Microbiota in Celiac Disease

TABLE 1 | Studies on human patients with celiac disease (CD) regarding the efficacy of probiotic supplementation.

Study Author and

Reference

Methods Type of Probiotics Results

Exploratory, randomized,

double-blind, placebo-controlled,

study on the effects of

Bifidobacterium infantis Natren life

start strain super strain in active celiac

disease

Smecuol et al.

(78)

22 patients with CD were given either

probiotics or placebo for 3 weeks

while not following a strict GFD.

Bifidobacterium infantis NLS

super strain

The abnormal baseline intestinal

permeability was not significantly

affected by the treatment. Symptoms

measured by the GSRS questionnaire

were significantly improved in the

group receiving probiotics

(P = 0.0035 for indigestion;

P = 0.0483 for constipation).

Administration of Bifidobacterium

breve decreases the production of

TNF-alpha in children with celiac

disease

Klemenak et al.

(79)

46 children with CD on a GFD

randomized into two groups, one

receiving probiotics and one receiving

placebo for 3 months.

Bifidobacterium breve BR03

and B. breve B632

TNF-alpha levels significantly

decreased from baseline in the

probiotics group at the end of the 3

months (p = 0.020). On follow-up, 3

months after receiving probiotics,

TNF-α levels increased again.

Probiotics and the microbiome in

celiac disease: a randomized

controlled trial

Harnett et al.

(80)

A multi-center RCT conducted in

Australia in 2011 on a group of 45

people with only partial response to

GFD. Participants took 5 drops of

VSL# twice daily for 12 weeks vs.

controls taking 5 placebo drops.

VSL#3 No statistically significant changes in

the fecal microbiota nor clinically

significant improvement in symptoms

was observed between the 2 groups.

Effect of Bifidobacterium breve on the

intestinal microbiota of coeliac

children on a gluten-free diet: A pilot

study

Quagliarello et al.

(81)

40 children with CD on a GFD were

administered either two B. breve

strains or placebo for 3 months.

Microbial DNA was extracted from

feces before and after treatment.

Bifidobacterium breve B632

and BR03 strains

A significant increase in

Actinobacteria was found as well as a

re-establishment of the physiological

Firmicutes/Bacteroidetes ratio (p <

0.01).

Celiac disease by the age of 13 years

is not associated with probiotics

administration in infancy

Savilahti et al.

(82)

Data were taken from a trial on

primary allergy prevention including

1223 babies with a high risk for

allergy. Probiotics vs. placebo were

given to mothers for 4 weeks before

delivery and to infants until the age of

6 months.

Lactobacillus rhamnosus

GG, L. rhamnosus LC 705,

Bifidobacterium breve

Bb99, Propionibacterium

freudenreichi spp.

Probiotics administration did not

affect the risk of developing CD

during the 13-year follow-up.

Early probiotics supplementation and

the risk of celiac disease in children at

genetic risk

Uusitalo et al.

(83)

Multi-center study following 6520

genetically susceptible children for a

median period of 8.7 years, recording

probiotics use by 1 year of age.

Various, mainly

Lactobacillus reuteri and

L. rhamnosus

Exposure to probiotics was not

associated with a different risk of

developing either celiac disease

autoimmunity or celiac disease.

Clinical intervention using

Bifidobacterium strains in celiac

disease children reveals novel

microbial modulators of TNF-α and

short-chain fatty acids

Primec

et al. (84)

Double-blind, placebo-controlled

study of 40 children with CD who

received either probiotics or placebo

for 3 months.

B. breve BR03 (DSM

16604) and B. breve B632

(DSM 24706)

The Firmicutes/Bacteroides ratio was

re-established. Verrucomicrobia,

Parcubacteria and some yet unknown

phyla, which may be involved in the

disease, were highlighted, as

indicated by a strong correlation to

TNF-α.

Modulating the production of

short-chain fatty acids could play a

role in restoring the microbiome.

Effects of L. plantarum and

L. paracasei on the peripheral

immune response in children with CD

autoimmunity: a RCT

Hakansson et al.

(85)

78 children with celiac disease

autoimmunity received either

probiotics or placebo for 6 months.

Phenotyping of peripheral blood

lymphocytes was conducted, and

tTG was measured before and after

treatment.

L. plantarum HEAL9 and

L. paracasei 8700:2

Different subtypes of peripheral

lymphocytes were found in the

probiotics groups vs. placebo group.

The median levels of IgA-tTG

decreased more significantly over

time in the probiotic (p = 0.013) than

in the placebo (p = 0.043) group.
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Moreover, intestinal bacteria have also been implicated in
modulating the immune response, directing the correct
differentiation of anti-inflammatory Treg cells. In patients with
CD who underwent an oral wheat challenge, circulating T cells
were collected, showing an increase in both effector T cells
and Treg FOXP3+ cells (86); however, these FOXP3+ T cells
were found to have a significantly reduced suppressive function.
Serena and colleagues suggested that this impairment may be
related to the presence of an alternatively spliced isoform of
FOXP3 and hypothesized that the intestinal microenvironment
may have an impact in modulating this alternative splicing
(60). Furthermore, studies suggest that the composition of
the intestinal microbiota can affect the permeability of the
intestinal mucosa (87, 88). In addition, probiotics would
encourage the intestinal microbiome to improve the production
of short chain fatty acids such as butyrate that can have
profound effects in modulating proinflammatory activities in
the colonic gut and in inducing health effects on the colonic
epithelia (74).

Considering this established role of microbiota in gluten
metabolism and in modulating the gut immune response, the
manipulation of the microbiome via probiotic administration
opens new possibilities for the treatment of CD and its
related symptoms. Reports on animal models have shown
promising effects of probiotics on CD. Bifidobacterium longum
CECT 7347 has been found to decrease the production of
inflammatory cytokines and CD 4+ T cells in rats (63) as well
as ameliorate gliadin-induced enteropathy (55). Saccharomyces
boulardii KK1 oral administration improved enteropathy and
decreased epithelial cell CD71 expression and local cytokine
production in gluten-sensitized mice (89). Administration of
Lactobacillus casei was found to be effective in rescuing the
normal mucosal architecture in a mouse model of gliadin-
induced villous damage (65). Bifidobacterium breve prevented
intestinal inflammation through the induction of intestinal
IL-10-producing Th1 cells (90) and ameliorated DSS-induced
colitis symptoms in mouse models as well as modulated T
cell polarization toward Th2 and Tregs both in vitro and in
vivo (91). In a recent study, Orlando and colleagues found
that Lactobacillus rhamnosus GG administration to rats could
protect the intestinal mucosa from gliadin peptide-induced
damage (92).

However, despite a number of promising in vitro and in vivo
animal studies on probiotic use, data from human trials are still
scarce and lack homogeneity. We reviewed studies on human
patients with CD published from January 2009 to December 2019
regarding the efficacy and safety of probiotic supplementation
(Table 1). Although no safety issue was observed in patients
with CD treated with probiotics, a few studies have shown that
probiotic administration might be beneficial in improving CD-
related symptoms. Smecuol et al. (78) randomized patients with
CD to receive either the Bifidobacterium Infantis Natren life
start strain or placebo and found a significant improvement
in gastrointestinal symptoms in the group receiving probiotic,
although they were not following a strict GFT. Changes in
intestinal microbiota were also documented in a 2016 study

from Quagliarello et al. (81) who analyzed microbial DNA
extracted from the feces of 40 pediatric patients with CD
before and after probiotic treatment, evidencing an increase in
Actinobacteria as well as a re-establishment of the physiological
Firmicutes/Bacteroidetes ratio. Similar results were obtained by
Primec et al. (84) in a 2019 double-blind placebo-controlled study
of 40 children with CD who were randomized to receive either
probiotics or placebo for 3 months. In contrast, Harnett et al.
(80) found no differences in the fecal microbiota counts or in the
severity of the symptoms between the group receiving probiotic
and the placebo group. Lastly, it has been documented that
probiotic treatment can modulate immunological parameters
such as TNF-α and peripheral T lymphocytes. Klemenak et al.
(79) in a double-blinded, randomized, placebo-controlled trial,
showed the positive effect of B. breve strain administration in
decreasing the production of the pro-inflammatory cytokine
TNF-α in children with CD on a gluten-free diet. The
administration of Bifidobacterium longum CECT 7347 was also
found to significantly decrease peripheral CD3+ T lymphocytes
as well as cause a slight decrease in TNF- α (79). Daily oral
administration of L. plantarum HEAL9 and L. paracasei 8700:2
for 6 months was related to changes in the immune response
in 78 children with celiac disease autoimmunity in a 2019
study from Hakansson et al. (85) interestingly, the difference
in most lymphocyte subsets found in the placebo group was
similar to that found in patients with active celiac disease,
indicating a progression of disease development that was not
observed in the probiotic group. Two studies were conducted
to investigate the ability of probiotics to prevent CD onset.
The first, from Savilahti and colleagues, analyzed data taken
from a trial on primary allergy prevention, including 1,223
babies treated with probiotics until the age of 6 months vs.
placebo, and found no difference in the risk of developing CD
during the 13-year follow-up (82). Later, Uusitalo et al. (83)
conducted a multi-center study following over 6,000 genetically
susceptible children for a median period of 8.7 years and
found that probiotic administration did not change the risk of
developing CD.

CONCLUSIONS

Although the association between alterations in the gut
microbiota and the development of CD has been demonstrated,
a definite microbial signature and the exact role of dysbiosis
in CD pathogenesis are not recognized. Further human studies
will be needed to reach a definitive conclusion on the role
of probiotics in CD using standardized probiotic formulations,
dosages and periods of treatments, as well as homogeneous
patient groups. Currently published data suggest the efficacy
and safety of probiotic supplementation in improving CD-
related symptoms (78), as well as documenting the ability of
some probiotics to alter the fecal microbiota and decrease pro-
inflammatory parameters such as TNF-α levels or peripheral
CD3+ T lymphocyte counts (79, 81). Which probiotics are
more effective, at what dose and how long they should be
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administered are yet to be definitively clarified. However,
the encouraging data on in vitro and in vivo studies, as
well as the knowledge of the mechanisms through which
intestinal bacteria modulate the development of the disease,
prompted us to continue the studies to achieve a better
understanding of the possible role of probiotics in treating and/or
preventing CD.

AUTHOR CONTRIBUTIONS

FPec and FPer wrote the first draft of the manuscript. PG, FF,
and SI performed the literature analysis and revised the first
draft. GA and SE critically revised the text and made substantial
scientific contributions. All authors approved the final version of
the manuscript.

REFERENCES

1. Green PH, Cellier C. Celiac disease. N Engl J Med. (2007) 357:1731–
43. doi: 10.1056/NEJMra071600

2. Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. (2018) 391:70–
81. doi: 10.1016/S0140-6736(17)31796-8

3. Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat
Rev Immunol. (2002) 2:647–55. doi: 10.1038/nri885

4. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al.
Gliadin induces an increase in intestinal permeability and zonulin release by
binding to the chemokine receptor CXCR3.Gastroenterology. (2008) 135:194–
204.e3. doi: 10.1053/j.gastro.2008.03.023

5. Gianfrani C, Auricchio S, Troncone R. Adaptive and innate
immune responses in celiac disease. Immunol Lett. (2005)
99:141–5. doi: 10.1016/j.imlet.2005.02.017

6. Ohkubo T, Tsuda M, Tamura M, Yamamura M. Impaired superoxide
production in peripheral blood neutrophils of germ-free rats. Scand J

Immunol. (1990) 32:727–9. doi: 10.1111/j.1365-3083.1990.tb03216.x
7. Mitsuyama M, Ohara R, Amako K, Nomoto K, Yokokura T,

Nomoto K. Ontogeny of macrophage function to release superoxide
anion in conventional and germfree mice. Infect Immun. (1986)
52:236–9. doi: 10.1128/IAI.52.1.236-239.1986

8. Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, et al.
Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis
and lymphomagenesis in celiac disease. Gastroenterology. (2003) 125:730–
45. doi: 10.1016/S0016-5085(03)01047-3

9. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al.
Coordinated induction by IL15 of a TCR-independent NKG2D signaling
pathway converts CTL into lymphokine-activated killer cells in celiac disease.
Immunity. (2004) 21:357–66. doi: 10.1016/j.immuni.2004.06.020

10. Wijmenga C, Gutierrez-Achury J. Celiac disease genetics: past, present and
future challenges. J Pediatr Gastroenterol Nutr. (2014) 59(Suppl. 1):S4–
7. doi: 10.1097/01.mpg.0000450392.23156.10

11. Bevan S, Popat S, Braegger CP, Busch A, O’Donoghue D, Falth-Magnusson K,
et al. Contribution of the MHC region to the familial risk of coeliac disease. J
Med Genet. (1999) 36:687–90.

12. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye
M, et al. A genome-wide association study for celiac disease identifies risk
variants in the region harboring IL2 and IL21. Nat Genet. (2007) 39:827–
9. doi: 10.1038/ng2058

13. Trynka G,Wijmenga C, vanHeel DA. A genetic perspective on coeliac disease.
Trends Mol Med. (2010) 16:537–50. doi: 10.1016/j.molmed.2010.09.003

14. Leonard MM, Serena G, Sturgeon C, Fasano A. Genetics and celiac disease:
the importance of screening. Expert Rev Gastroenterol Hepatol. (2015) 9:209–
15. doi: 10.1586/17474124.2014.945915

15. Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to
disease mechanisms: celiac disease as amodel for autoimmune diseases. Semin

Immunopathol. (2012) 34:567–80. doi: 10.1007/s00281-012-0312-1
16. Ludvigsson JF, Rubio-Tapia A, van Dyke CT, Melton LJ III, Zinsmeister AR,

Lahr BD, et al. Increasing incidence of celiac disease in a North American
population. Am J Gastroenterol. (2013) 108:818–24. doi: 10.1038/ajg.2013.60

17. White LE, Merrick VM, Bannerman E, Russell RK, Basude D, Henderson
P, et al. The rising incidence of celiac disease in Scotland. Pediatrics. (2013)
132:e924–31. doi: 10.1542/peds.2013-0932

18. Cristofori F, Indrio F, Miniello VL, De Angelis M, Francavilla R. Probiotics in
celiac disease. Nutrients. (2018) 10:1824. doi: 10.3390/nu10121824

19. Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, et al.
Natural history of celiac disease autoimmunity in a USA cohort followed since
1974. Ann Med. (2010) 42:530–8. doi: 10.3109/07853890.2010.514285

20. Trovato CM, Montuori M, Anania C, Barbato M, Vestri AR, Guida S,
et al. Are ESPGHAN “biopsy-sparing” guidelines for celiac disease also
suitable for asymptomatic patients? Am J Gastroenterol. (2015) 110:1485–
9. doi: 10.1038/ajg.2015.285

21. Lionetti E, Castellaneta S, Francavilla R, Pulvirenti A, Tonutti E, Amarri S,
et al. Introduction of Gluten, HLA Status, and the risk of celiac disease in
children. N Engl J Med. (2014) 371:1295–303. doi: 10.1056/NEJMoa1400697

22. Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A,
Crespo Escobar P, et al. Randomized feeding intervention in infants
at high risk for celiac disease. N Engl J Med. (2014) 371:1304–
15. doi: 10.1056/NEJMoa1404172

23. Sanz Y, De Pama G, Laparra M. Unraveling the ties between celiac
disease and intestinal microbiota. Int Rev Immunol. (2011) 30:207–
18. doi: 10.3109/08830185.2011.599084

24. Sandberg-Bennich S, Dahlquist G, Källén B. Coeliac disease is associated with
intrauterine growth and neonatal infections. Acta Paediatr. (2002) 91:30–
3. doi: 10.1111/j.1651-2227.2002.tb01635.x

25. Ivarsson A, Hernell O, Stenlund H, Persson LA. Breast-
feeding protects against celiac disease. Am J Clin Nutr. (2002)
75:914–21. doi: 10.1093/ajcn/75.5.914

26. Marild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson
JF. Pregnancy outcome and risk of celiac disease in offspring: a
nationwide case-control study. Gastroenterology. (2012) 142:39–
45.e3. doi: 10.1053/j.gastro.2011.09.047

27. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J.
(2017) 474:1823–36. doi: 10.1042/BCJ20160510

28. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in
nutrition and health. BMJ. (2018) 361:k2179. doi: 10.1136/bmj.k2179

29. Gibiino G, Ianiro G, Cammarota G, Gasbarrini A. The gut microbiota: its
anatomy and physiology over a lifetime.Minerva Gastroenterol Dietol. (2017)
63:329–36. doi: 10.23736/S1121-421X.17.02405-9t

30. Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a
risk factor for microbial infections. Curr Opin Microbiol. (2013) 16:221–
7. doi: 10.1016/j.mib.2013.03.009

31. Woo V, Alenghat T. Host-microbiota interactions: epigenomic regulation.
Curr Opin Immunol. (2017) 44:52–60. doi: 10.1016/j.coi.2016.12.001

32. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism
and the immune system.Nat Immunol. (2013) 14:676–84. doi: 10.1038/ni.2640

33. Rinninella E, Raoul P, Cintoni M, Franceschi F, G.Miggiano AD, Gasbarrini
A, et al. What is the healthy gut microbiota composition? A changing
ecosystem across age, environment, diet, and diseases.Microorganisms. (2019)
7:14. doi: 10.3390/microorganisms7010014

34. Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The
duodenal microbiota composition of adult celiac disease patients is associated
with the clinical manifestation of the disease. Inflamm Bowel Dis. (2013)
19:934–41. doi: 10.1097/MIB.0b013e31828029a9

35. Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A,
et al. Microbial translocation is associated with increased monocyte
activation and dementia in AIDS patients. PLoS ONE. (2008)
3:e2516. doi: 10.1371/journal.pone.0002516

36. Hoffmanova I, Sanchez D, Habova V, Andel M, Tuckova L,
Tlaskalova-Hogenova H. Serological markers of enterocyte damage
and apoptosis in patients with celiac disease, autoimmune

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 95725

https://doi.org/10.1056/NEJMra071600
https://doi.org/10.1016/S0140-6736(17)31796-8
https://doi.org/10.1038/nri885
https://doi.org/10.1053/j.gastro.2008.03.023
https://doi.org/10.1016/j.imlet.2005.02.017
https://doi.org/10.1111/j.1365-3083.1990.tb03216.x
https://doi.org/10.1128/IAI.52.1.236-239.1986
https://doi.org/10.1016/S0016-5085(03)01047-3
https://doi.org/10.1016/j.immuni.2004.06.020
https://doi.org/10.1097/01.mpg.0000450392.23156.10
https://doi.org/10.1038/ng2058
https://doi.org/10.1016/j.molmed.2010.09.003
https://doi.org/10.1586/17474124.2014.945915
https://doi.org/10.1007/s00281-012-0312-1
https://doi.org/10.1038/ajg.2013.60
https://doi.org/10.1542/peds.2013-0932
https://doi.org/10.3390/nu10121824
https://doi.org/10.3109/07853890.2010.514285
https://doi.org/10.1038/ajg.2015.285
https://doi.org/10.1056/NEJMoa1400697
https://doi.org/10.1056/NEJMoa1404172
https://doi.org/10.3109/08830185.2011.599084
https://doi.org/10.1111/j.1651-2227.2002.tb01635.x
https://doi.org/10.1093/ajcn/75.5.914
https://doi.org/10.1053/j.gastro.2011.09.047
https://doi.org/10.1042/BCJ20160510
https://doi.org/10.1136/bmj.k2179
https://doi.org/10.23736/S1121-421X.17.02405-9t
https://doi.org/10.1016/j.mib.2013.03.009
https://doi.org/10.1016/j.coi.2016.12.001
https://doi.org/10.1038/ni.2640
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.1097/MIB.0b013e31828029a9
https://doi.org/10.1371/journal.pone.0002516
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pecora et al. Gut Microbiota in Celiac Disease

diabetes mellitus and diabetes mellitus type 2. Physiol Res. (2015)
64:537–46. doi: 10.33549/physiolres.932916

37. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep.
(2006) 7:688–93. doi: 10.1038/sj.embor.7400731

38. Yatsunenko T, Rey FE,ManaryMJ, Trehan I, Dominguez-BelloMG, Contreras
M, et al. Human gut microbiome viewed across age and geography. Nature.
(2012) 486:222–7. doi: 10.1038/nature11053

39. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR,
et al. Enterotypes of the human gut microbiome. Nature. (2011) 473:174–
80. doi: 10.1038/nature09944

40. Laterza L, Rizzatti G, Gaetani E, Chiusolo P, Gasbarrini A. The gut microbiota
and immune system relationship in human graft-versus-host disease.Mediterr

J Hematol Infect Dis. (2016) 8:e2016025. doi: 10.4084/mjhid.2016.025
41. De Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, et al. Interplay

between human leukocyte antigen genes and the microbial colonization
process of the newborn intestine. Curr Issues Mol Biol. (2010) 12:1–10.

42. Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al.
The HLA-DQ2 genotype selects for early intestinal microbiota composition
in infants at high risk of developing coeliac disease. Gut. (2015) 64:406–
17. doi: 10.1136/gutjnl-2014-306931

43. De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, et al.
Influence of milk-feeding type and genetic risk of developing coeliac disease
on intestinal microbiota of infants: the PROFICEL study. PLoS ONE. (2012)
7:e30791. doi: 10.1371/journal.pone.0030791

44. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto
K, et al. Physiology of consumption of human milk oligosaccharides
by infant gut-associated bifidobacteria. J Biol Chem. (2011) 286:34583–
92. doi: 10.1074/jbc.M111.248138

45. Wang C, Zhang M, Guo H, Yan J, Liu F, Chen J, et al. Human
milk oligosaccharides protect against necrotizing enterocolitis by inhibiting
intestinal damage via increasing the proliferation of crypt cells.Mol Nutr Food

Res. (2019) 63:e1900262. doi: 10.1002/mnfr.201900262
46. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects

the diversity and colonization pattern of the gut microbiota during the
first year of infants’ life: a systematic review. BMC Gastroenterol. (2016)
16:86. doi: 10.1186/s12876-016-0498-0

47. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C,
Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes
colonisation and reduced Th1 responses in infants delivered by caesarean
section. Gut. (2014) 63:559–66. doi: 10.1136/gutjnl-2012-303249

48. Dydensborg Sander S, Nybo Andersen AM, Murray JA, Karlstad
O, Husby S, Stordal K. Association between antibiotics in the
first year of life and celiac disease. Gastroenterology. (2019)
156:2217–29. doi: 10.1053/j.gastro.2019.02.039

49. Marild K, Kahrs CR, Tapia G, Stene LC, Stordal K. Infections and risk of
celiac disease in childhood: a prospective nationwide cohort study. Am J

Gastroenterol. (2015) 110:1475–84. doi: 10.1038/ajg.2015.287
50. Marild K, Ye W, Lebwohl B, Green PH, Blaser MJ, Card T, et al. Antibiotic

exposure and the development of coeliac disease: a nationwide case-control
study. BMC Gastroenterol. (2013) 13:109. doi: 10.1186/1471-230X-13-109

51. Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell
V, et al. Association between early-life antibiotic use and the risk of
islet or celiac disease autoimmunity. JAMA Pediatr. (2017) 171:1217–
25. doi: 10.1001/jamapediatrics.2017.2905

52. Kołodziej M, Patro-Gołab B, Gieruszczak-Białek D, Skórka A, Pieścik-Lech
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House Dust Mite-Induced Asthma
Fariba Ghiamati Yazdi 1,2*, Amin Zakeri 3, Ingrid van Ark 2, Thea Leusink-Muis 2,

Saskia Braber 2, Sabihe Soleimanian-Zad 1* and Gert Folkerts 2

1Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran,
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Utrecht, Netherlands, 3Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark

There is a strong correlation between dysregulation of the gastrointestinal microbiota

and development of allergic diseases. The most prevalent therapies for relieving asthma

symptoms are associated with serious side effects, and therefore novel approaches

are needed. Our objective was to elucidate whether oral administration of Lactobacillus

rhamnosus GG (LGG) as a probiotic or turmeric powder (TP) as a prebiotic or both as

a synbiotic mitigate allergic inflammation including lung function, airway inflammatory

cell infiltration, Th2 cytokines/chemokine in a murine model of house dust mite (HDM)-

induced asthma. BALB/c mice were intranasally sensitized and challenged with HDM

received TP (20 mg/Kg mouse), or/and LGG (105 or 107 cfu/ml), or both orally.

Interestingly, the synbiotic intervention (HDM-TP-LGG E7) specifically suppress the

developement of airway hyperresponsiveness in response to methacholine. Besides,

our synbiotic, TP, and LGG strongly down-regulated eosinophilia, IL-5, CCL17, IL-13.

In terms of T cell response, CD4+ Th2 cells and CD4+ Th17 population were reduced

in the splenocytes of the treatment groups compared to control. The synbiotic group

not only elevated CD25+Foxp3+Treg frequency compared to asthmatic group, but also

increased T reg cells compared to the probiotic group. The synbiotic also indicated the

superior effect in suppressing Th2 cells compared to probiotic. Although, TP and LGG

alone displayed suppressive effects, this study showed that the combination therapy

consisting of TP and LGG (synbiotic) is more effective in some of the parameters

than either of the treatments alone. This novel synbiotic, might be considered as a

potential food-based drug for translational medicine and can possibly be used along

with corticosteroid treatment.

Keywords: HDM-induced asthma, synbiotic, probiotic, Lactobacillus rhamnosus GG, allergic diseases, turmeric
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INTRODUCTION

Asthma is a complicated chronic disease of which the underlying
immunological processes are still not well-grounded. According
to the World Health Organization report, asthma is the
most common non-communicable disease among children.
It is estimated that about 235 million people currently
suffer from asthma in which the majority of deaths occurs
in the elderly. In terms of health economics, asthma has
imposed a severe burden on the healthcare systems. There
are many factors associated with the increasing frequency
and severity of asthma, including genetic predisposition,
allergen exposure, air pollution, and lifestyle. Allergic
asthma is recognized by a dominant Th2 response causing
insufficient lung function, airway inflammation, increased total
IgE levels, and eosinophilia in bronchoalveolar lavage fluid
(BALF) (1–3).

Currently, the most common therapies to control asthma
symptoms are long-acting beta-agonists and corticosteroids.
Substantial evidences show that long-term use of corticosteroids
can cause corticosteroid-resistance leading to a poorly controlled
disease. Besides, many side effects have been reported, including
weight loss, growth reduction, increasing blood pressure,
muscles, and bones atrophy. Thus, there is an urgent need for
novel treatments with long-term persistence, stronger symptom
alleviation, and minimum side effects (1, 2, 4, 5).

It is postulated that certain microorganisms and/or their
metabolites can shift the inflammatory responses to Th1.
On the other hand, they may augment the production of
regulatory cytokines by proliferation of regulatory T cells
(Treg). Interestingly, both levers (Th1 and Treg) can lead to
downregulation of allergen specific Th2 responses. In this regard,
the intestinal microbiota can play a central role in governing
hyperactivation of cells toward balanced circumstance (2, 5, 6).

Probiotics are defined as the non-pathogenic microorganisms
that award healthiness to host when are consumed in adequate
numbers (6). They are able to affect both local (intestine)
and systemic inflammation by secretion of several metabolites,
like antimicrobial products or so-called “bacteriocin” and short
chain fatty acid (SCFA) (7), selective enteric pathogen exclusion,
stimulating intestinal tight junction network, and regulation of
immunological responses (8).

Given the anti-inflammatory effect of probiotics, numerous
studies have been conducted to evaluate their therapeutic effects
on alleviating allergic asthma symptoms (9–14). Sagar et al.
reported the promising effect of Lactobacillus rhamnosus and
Bifidibacterium animalis bb12 on the reduction of lung resistance
in the ovalbumin-induced allergic asthma in mice (1). Similarly,
Wu et al. demonstrated that oral pre- and post-treatment of
Lactobacillus rhamnosusGGnot only decrease the lung resistance
but also reduce BALF inflammatory cell filtration and Th2
cytokines in mice (2).

The growth, activity, and colonization of probiotic in GI can
be stimulated by the use of prebiotics. Prebiotics are regarded
as non-digestible food constituents consumed by probiotics. The
synbiotic concept refers to the combination of pro- and prebiotics
(11, 15, 16).

A growing body of clinical trials, epidemiological studies as
well as animal experiments have described herbaceous medicines
as novel complementary therapeuticmodalities formany diseases
(10, 17, 18).

Turmeric is a complex compound derived from the Curcuma
longa rhizomes. According to our pervious study, the chemical
analysis of turmeric extract indicated several components
including curcumin (polyphenol yellowish pigment of turmeric
2–5%), carbohydrates (40–70%), proteins (6–8%), oils (5–8%),
and other elements (3–5%) (19, 20). Turmeric has well-known
pharmacological activities such as anti-inflammatory function.
In addition, it has recently attracted attentions as a potential
prebiotic compound (17, 19).

Although most animal models of asthma studies have focused
on the effect of curcumin or probiotic bacteria alone, the effect of
crude turmeric combined with a probiotic bacterium has poorly
been addressed (19, 21). It was, therefore, the aim of this study
to explore the effects of long-term treatment with Lactobacillus
rhamnosus GG, turmeric powder, and their combination on
airway inflammation. In order to induce an allergic asthma
model, mice were sensitized and challenged with house dust mite
(HDM) Pro-, pre-, and synbiotic were administrated orally and
compared to budesonide as a standard therapy.

The present study indicates that a novel synbiotic can
potentially synergize the protective effects of probiotic
and prebiotic in context of allergic airway inflammation
via suppression of airway hyperresponsiveness (AHR)
BALF eosinophilia, and Th2 cells and associated cytokines
accompanied by induction of regulatory T cells.

MATERIALS AND METHODS

Mice
Male BALB/c mice at 6–8 weeks of age with body weights of
20–25 g were purchased from the Charles River Laboratories,
France and were acclimatized for 1 week prior to the start of
the experiments. Mice were housed in filter-topped makrolon
cages (Plexx, The Netherlands) and had free access to food
and water. The AIN93G control diet (Research Diet Services,
The Netherlands) was used to feed the mice ad-libitum during
the entire experimental period. All in vivo experiments were
performed in accordance with the Guidelines of the Dutch
Committee of Animal Experiments (Utrecht, the Netherlands).

The Probiotic and Prebiotic
Lactobacillus rhamnosus GG-ATCC 53103 (LGG) was purchased
from the American Type Culture Collection (USA). A capsule
of LGG was inoculated in MRS broth (Oxoid, UK) at 37◦C
overnight and bacteria were harvested in the late logarithmic
phase by centrifugation (3,200 g, 10min), washed with phosphate
buffered saline (PBS, Dulbecco’s phosphate-buffered saline,
Sigma) twice and counted by spectroscopy method (optical
density) and plating serial dilutions (19, 21). According to the
growth curve obtained from daily monitoring of Lactobacillus
rhamnosus GG-ATCC 53103, active fresh bacteria prepared daily
in the sterile PBS for oral treatments in two different doses (5 ×
105 cfu/ml, 200 µl and 5× 107 cfu/ml, 200 µl).
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Rhizomes of Curcuma longa plant (turmeric) used in this
study were provided from the local markets of Isfahan province,
Isfahan, Iran. The rhizomes were peeled, chopped and blended
with a miller (HR 2061; Philips, Netherland), and being passed
through a sieve (mesh number 140,105µm hole size) to make
turmeric powder (TP) for further experiment. TP was dissolved
in PBS to achieve an appropriate concentration. The solution was
sterilized by autoclave to prevent microbial contamination.

Murine HDM-Induced Asthma Model
BALB/c mice were intranasally sensitized on day 0 with 1 µg
HDM (Greer Laboratories, Lenoir, USA)/40 µL PBS (Lonza,
Walkersville, USA) or PBS alone under the mild anesthetic
circumstance induced by isoflurane inhalation. The protocol was
followed by intranasal challenges once a day from day 7 to
11 with 10 µg HDM/40 µL PBS or PBS alone (HDM-PBS =

positive control groups or PBS-PBS = negative control groups)
(Figure 1 and Table 1) (1, 3, 4, 22). The test groups include:
PBS-PBS (control negative group): PBS sensitized, challenged
and treated mice, PBS-TP: The control of prebiotic (TP) group
was sensitized and challenged with PBS and orally treated once
a day with TP (20 mg/kg) (17), PBS-TP- LGG E7: The synbiotic
control group was sensitized and challenged with PBS and treated
(oral gavage) with a 200 µl mixture of TP (20 mg/kg) and
107 cfu LGG /mouse HDM-PBS (control positive group): HDM
sensitized and challenged, and PBS treated mice, HDM-CS: As
a treatment positive control, intratracheal instillation from day
7 till 11 with the corticosteroid budesonide (CS) as HDM-CS
group (500 µg/kg, 40 µl), the prevalent therapy for asthmatic
patients, was performed once a day to determine the effectiveness
of our treatments. HDM- LGG E5: The probiotic group 1 was
sensitized and challenged with HDM and treated (oral gavage)
with 200µl of 105 cfu/mouse LGG, HDM-LGG E7: The probiotic
group 2 was sensitized and challenged with HDM and treated
(oral gavage) with 200 µl of 107 cfu/mouse LGG (Figure 1 and
Table 1) (1, 3, 4, 22) HDM-TP: The prebiotic (TP) group was
sensitized and challenged with HDM and orally treated once a
day with TP (20 mg/kg), HDM-TP-LGG E5: The synbiotic group
1 was sensitized and challenged with HDM and treated (oral
gavage) with a 200 µl mixture of TP (20 mg/kg) and 105 cfu LGG
/mouse, HDM-TP-LGG E7: The synbiotic group 2 was sensitized
and challenged with HDM and treated (oral gavage) with a 200
µl mixture of TP (20 mg/kg) and 107 cfu LGG /mouse. The oral
treatments started 2 weeks before sensitization (day 0) and were
continued throughout the entire procedure (day 11). Mice were
sacrificed on day 14 by pentobarbital overdose (Figure 1 and
Table 1) (1, 3, 4, 22).

Airway Responsiveness Measurement
On day 14, mice underwent anesthesia by intraperitoneal
injection of a K-M-mixture containing ketamine (Vetoquinol
S.A., France; 125 mg/kg, i.p.) and medetomidine (Pfizer,
The Netherlands; 0.4 mg/kg, i.p.). The lung resistance to
the increasing doses of methacholine (acetyl-β-methyl-choline
chloride, Sigma-Aldrich, The Netherlands; 0–25 mg/mL, 10%
puff/10 sec.) was measured by EMKA invasive measuring

instrument of dynamic lung resistance and compliance (EMKA
Technologies, France) (1, 3).

Serum
The lung functionmeasurement was carried out on day 14. Blood
was collected by cardiac puncture for measuring total serum
IgE and mice were sacrificed with the overdose of pentobarbital
injection intraperitoneally (600 mg/kg, NembutalTM, The
Netherlands). The blood was coagulated for 30min at room
temperature and centrifuged at 13,300 rpm for 5min. Serum
samples were stored at−20◦C until further use.

Bronchoalveolar Lavage
Lungs were gently lavaged with 1ml of pre-warmed pyrogen-
free saline (0.9% NaCl, 37◦C) containing protease inhibitor
tablet (Complete Mini, Roche Diagnostics, Germany). The first
lavage containing inflammatory cells was used for cytokines
and chemokines measurements. Three additional lavages with
1ml of saline were carried out to maximize cell harvesting
from the BALF. The BALF cells obtained from the 4 times
lavaging, were centrifuged (400 g, 5min), and the pellets were
pooled. The total numbers of cells were counted by the use of
Bürker-Türk chamber. Afterward, cytospin preparations were
made (centrifugation 20 g, 5min, 4◦C onto the glass) and stained
by Diff-Quick method (Merz & Dade A.G., Switzerland) to
differentiate BALF cell counts. The number of macrophages,
eosinophils, neutrophils, and lymphocytes was determined by
light microscopy (1, 3).

Preparation of Lung Homogenates
The lungs were homogenized into the Precellys 24 tissue
homogenizer tubes (Bertin Technologies, France) which
contained 500 µl of 1% Triton X-100 (Sigma-Aldrich) and
PBS containing protease inhibitor (Complete Mini, Roche
Diagnostics, Germany). The sample solutions were homogenized
by using the homogenizer instrument three times for 10 s. at
6,000 rpm with a minimum of 2min interruption period for
cooling in between. The supernatant was collected, centrifuged
at 14,000 rpm for 10min and stored at −20◦C for further
experiments. Pierce BCA protein assay kit was used to determine
the protein concentration of each sample according to the
manufacturer’s protocol (Thermo Fisher Scientific, USA). The
homogenized samples were normalized to the concentration of
1mg protein/ml (3, 4).

Cytokines Measurement
The supernatants of the lung homogenates were assayed for the
determination of cytokines and chemokine. IL-33 and CCL17
were measured via the package of DuoSet ELISA (R&D Systems)
and IL-13, IL-5, and total IgE were measured with a Ready-SET-
Go! R© ELISA (eBioscienceTM (IL13, total IgE) and InvitrogenTM

IL-5, USA) kit. All ELISA assays were performed according to
the manufacturer’s protocol. The concentrations of the measured
cytokines and chemokines were expressed as pg/mg protein
in lung homogenates and pg/mL in serum. The ELISA plates
were read at 450 nm using a Bio-Rad ELISA Reader (Bio-Rad,
Hercules, CA, USA) (3, 4).
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FIGURE 1 | Schematic overview of the experimental protocol. BALB/c mice (n = 6/group) were intranasally sensitized (i.n.) with house dust mite (HDM) or PBS on day

0 and were challenged i.n. for five consecutive days (7–11) with HDM or PBS. The oral gavage treatment started 2 weeks prior to sensitization. By oral gavage, the

mice were received 20 mg/kg TP (prebiotic), or 105 or 107 cfu/mouse LGG (probiotic) or turmeric in combination with 105 or 107 cfu/mouse of LGG (synbiotic) once a

day, throughout the study. The mice were sacrificed on day 14.

TABLE 1 | Summary of experimental platform grouping different conditions.

Group name Sensitization HDM = 1

µg/40 µl i.n. a = 40 µl

PBS = 40 µl

Challenging

i.n. = 40 µl

Oral treatment (from

day-14 to day 14) ) oral

gavage = 200 µl)

CS treatment budesonide

0.5 mg/kg i.t. b = 40 µl

PBS-PBS PBS PBS PBS -

HDM-PBS HDM HDM PBS -

HDM-CS HDM HDM PBS Budesonide

0.5 mg/kg

i.t. = 40 µl

PBS-TP-LGG7 PBS PBS TP

20 mg/kg and LGG

E7 cfu/ml

-

HDM-TP-LGG7 HDM HDM TP20 mg/kg and LGG

E7 cfu/ml

-

HDM-TP-LGG5 HDM HDM TP20 mg/kg and LGG

E5 cfu/ml

-

PBS-TP PBS PBS TP

20 mg/kg

-

HDM-TP HDM HDM TP

20 mg/kg

-

HDM-LGG E5 HDM HDM LGG E5 cfu/ml -

HDM-LGG E7 HDM HDM LGG E7 cfu/ml -

a i.n., Intranasal.
b i.t., intratracheal.

Flow Cytometric Analysis of Immune Cells
in the Spleen
Splenocyte cell suspensions were resuspended in PBS blocking
buffer containing 1% BSA and 5% FCS (Sigma-Aldrich) and
incubated for 15min at 4◦C with Fc block CD16/CD32
antibodies (BD Biosciences; 5µg/mL) to prevent non-antigen-
specific binding. Cells (5 × 105) were subsequently stained
with antibodies (eBioscience, The Netherlands, unless otherwise
stated) against CD69-APC, CD4-PerCP Cy5.5, CXCR3-PE,
T1ST2-FITC, RORγ-APC, CD25-Alexa Fluor R© 488, FoxP3-
PE Cy7, CD196-PE, and Fixable Viability Dye-eFluor R© 780
(eBioscience, USA) or matching isotype controls for 30min
at 4◦C. Cells were fixed using fixation buffer (eBioscience) or

permeabilized for intracellular staining using the intracellular
staining buffer set (eBioscience) according to the manufacturer’s
protocol. Flow cytometry was performed using FACS Canto
II (BD Biosciences), and results were analyzed using Flowjo
Software V. 10.6.2 (BectonDickinson&Company (BD).We used
fluorescence minus one (FMO) to differentiate between negative
and positive staining cell populations (3, 22).

Statistical Analysis
Results were represented as mean ± standard error of the
mean (SEM). Data were statistically analyzed using a one-way
ANOVA and post-hoc Bonferroni’s multiple comparisons test.
Significance limits were set at p ≤ 0.05. Statistical analysis was
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conducted using Graph Pad Prism software (version 7.04, Graph
Pad Software, Inc.) (19, 22).

RESULTS

Oral Administration of LGG (Probiotic), TP
(Prebiotic), and LGG-TP (Synbiotic)
Reduced Airway Hyperresponsiveness in
HDM-Allergic Mice
The EMKA lung function system was applied to detect airway
hyperresponsiveness (AHR). The baseline resistance (0.90 ±

0.05 cm H2O/(ml/sec) in PBS-PBS (negative control group)
was similar between the experimental groups (Figure 2).
Methacholine concentration-dependently increased airway
resistance andwas significantly enhanced in theHDM-PBS group
[RL 1.87 ± 0.06 to 4.38 ± 0.05 cm H2O/(mL/sec)] compared
to PBS-PBS group. Lastly, 1.56 mg/mL of methacholine caused
a significant difference between PBS-PBS and HDM-PBS
groups (p < 0.05). The airway hyperresponsiveness of the mice
receiving either 20 mg/kg TP (HDM-TP) or 105 cfu/mouse of
LGG was significantly decreased at 25 mg/mL of methacholine
(Figure 2), while the synbiotic (HDM-TP-LGG E7) seems to
be the most effective and started to alleviate hyperresponsivity
from lower concentration of methacholine (12.5 mg/mL)
(Figure 2). A consistent decrease was observed in the HDM-CS
group although the values did not reach statistical significance
(Figure 2).

Oral Administration of LGG, TP, and
LGG-TP Reduced Inflammatory Cells in
BALF of HDM-Allergic Mice
Accumulation of inflammatory cells in the lung occurs as the
result of airway inflammation in asthma. The bronchoalveolar
lavage fluid (BALF) was analyzed regarding the inflammatory
cell influx into the airways of control and treatment groups
(Figure 3). The total number of BALF cells was increased in the
mice sensitized with HDM (HDM-PBS) compared to PBS-PBS
group (Figure 3A). This increase was mainly due to eosinophils
(Figure 3C) compared to the control group (p < 0.05). The same
trend was observed for macrophages (Figure 3B), neutrophils
(Figure 3E) and lymphocytes (Figure 3D) but it was not
statistically significant. Importantly, the probiotic, prebiotic, and
synbiotic intervention significantly reduced the cell infiltration
in the BALF (p < 0.05 which was mainly due to a reduction in
eosinophils (2, 3). The number of eosinophils was significantly
reduced in the HDM-CS group (p < 0.05).

Effect of Oral Administration of LGG, TP,
and LGG-TP on the Attenuating of
Th2-Type Mediators in Lungs and IgE
Levels in Serum of HDM-Allergic Mice
The Th2 cytokines that play an important role in allergic asthma,
like IL-5, IL-13, CCL17, and IL-33 along with total IgE in serum
were measured. The mentioned cytokines and chemokine were

significantly increased in the lung homogenates of HDM–PBS
compared to the PBS–PBS control group.

Oral administration of 20 mg/kg TP, different doses of LGG
(105 or 107 cfu/mouse), and their combination as a synbiotic
mixture (containing 105 cfu/mouse of LGG and 20 mg/kg TP)
could significantly reduce the concentration of IL-5 in the lung
homogenates (Figure 4A). There was also a positive correlation
between the IL-5 concentration and number of eosinophils in
the BALF (Figure 4B, r = 0.9276, p = 0.01). In contrast to
Budesonide, the synbiotic mixtures and TP could considerably
diminish IL-13 levels in the lung homogenates compared to
HDM-PBS group as well (Figure 4C). The chemokine CCL17,
which contributes to the Th2 cell recruitment in asthma, was
elevated in HDM-PBS group compared to PBS-PBS group (p
< 0.05). Both TP and synbiotic (105 cfu/mouse of LGG and 20
mg/kg TP) significantly suppressed the chemokine level and the
same trend was observed for 105 LGG (p > 0.05) (Figure 4D).
Sensitization with HDM increased the concentration of IL-33, a
Th2-driving mediator, in the lung homogenates. All treatments
tended to suppress IL-33 levels in theHDMgroups which was not
significant (Figure 4E). There was a notable total IgE increase in
the HDM-PBS compared to PBS-PBSmice which was suppressed
significantly in the group treated with synbiotic (HDM- LGG E5)
(p < 0.05) (Figure 4F) (1–4).

Effect of Oral Administration of LGG, TP,
and LGG-TP on Relieving of Maximum
Fluorescent Intensity of Th2 and T17 in
Splenocytes
Splenocytes were analyzed for T cell populations (Figure 5D).
The abundance of Th2 and Th17 was significantly increased
in asthmatic mice compared to control group (Figures 5A,B).
All of the treatments significantly relieved the frequency of
Th2 cells. This result is in accordance with the efficiency of
LGG, TP and synbiotics in reducing CCL17 chemokine which
is implicated in attracting Th2 cells in airways (Figure 4D).
It is also elicited from the results that the synbiotics, also TP
could significantly decrease the intensity of RORγ

+CD4+Th17
cells. The attenuation of Th2 and Th17 cells by pro- pre- and
synbiotics was not followed by a shift toward a more Th1 cells
immune response (Supplementary Figure 1 ). The results also
show the CD25+Foxp3+Treg tended to increase in the synbiotic
groups compared to asthmatic group but this was not significant
(Figure 5C). The entire of gating strategy has been displayed in
Supplementary Figure 2.

Superior Effect of Synbiotic in Comparison
With Probiotic and Prebiotic in Alleviating
the Inflammation
According to the results, the synbiotic significantly started to
suppress airway hyperresponsiveness from a lower concentration
of methacholine (Figure 2).

Besides, the mice received TP (HDM-TP) or the synbiotic
combination with 105 cfu/mouse LGG (HDM-TP-LGG E5)
decreased IL-5, IL-13, and CCL17 (Figures 4A,C,D) even more
than other treatments. It is also interpreted from the results
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FIGURE 2 | House dust mite (HDM)-induced airway resistance diagram. The airway resistance was abrogated upon oral administration of 20 mg/kg TP (prebiotic), or

105 or 107 cfu/mouse LGG (probiotic) or TP in combination with 105 or 107 cfu/mouse of LGG (synbiotic). Lung resistance (RL) measured in response to increasing

doses of methacholine. PBS-PBS (control negative group): PBS sensitized, challenged, and treated mice, PBS-TP: PBS sensitized and challenged, and TP (20

mg/kg) treated mice, PBS-TP- LGG E7: PBS sensitized and challenged, and synbiotic (with 107 cfu/mouse LGG) treated mice, HDM-PBS (control positive group):

HDM sensitized and challenged, and PBS treated mice, HDM-CS: HDM sensitized and challenged, and corticosteroid treated mice, HDM- LGG E5: HDM sensitized

and challenged, and 105 cfu/mouse probiotic treated mice, HDM-LGG E7: HDM sensitized and challenged, and 107 cfu/mouse probiotic treated mice. HDM-TP:

HDM sensitized and challenged, and prebiotic treated mice, HDM-TP-LGG E5: HDM sensitized and challenged, and synbiotic (with 105 cfu/mouse LGG) treated

mice, HDM-TP-LGG E7: HDM sensitized and challenged, and synbiotic (with 107 cfu/mouse LGG) treated mice. Results are shown as mean ± SEM. *P < 0.05,

**P < 0.01, and ***P < 0.001 compared to PBS-PBS group, and #P < 0.05 compared to HDM-PBS group as analyzed using One-Way ANOVA and post-hoc

Bonferroni’s multiple comparisons test. n = 6 mice/group.

that the synbiotics (HDM-TP-LGG E5 or HDM-TP-LGG E7)
clearly displayed a superior effect than the probiotics to reduce
the concentrations of Th2-mediated cytokines such as IL-5 and
IL-13 and DC-mediated chemokine CCL17 (Figure 6). This
reduction was accompanied by downregulation of activated Th2
cells (CD69+T1ST2+T cells) and Th17 (CD169+Rorg+ cells).
It is also explicit that the synbiotic (HDM-TP-LGG E7) was
able to significantly elevate the CD25+Foxp3+Treg compared to
probiotic (HDM-LGG E7).

DISCUSSION

In the present study, we demonstrated for the first time, that
the oral administration of Lactobacillus rhamnosus GG, TP, and
their combination alleviated the allergic airway inflammation
in HDM-induced murine model of asthma. However, all of
the treatments (probiotics, prebiotics, and synbiotics) showed
suppressive effects on lung function and airway inflammation
along with Th2 related cytokines, Th2, and Th17 cells, but we
illustrated synbiotic works more effective in comparison with
other treatments alone.

Recent studies have consistently begun to elucidate the
interaction between gut microbiome function and the immune
system response. These researches invested to discover the
possiblemechanisms bywhich the resident bacteria canmodulate
Th2 allergic immune response. However, little is known about
the contribution of the molecules secreted by probiotic bacteria
(such as SCFA) to act as immune regulators. There is an interplay
between prebiotics and probiotics, for example, prebiotics are
able to support probiotics growth and lifespan. These findings

highlight the need for further investigation on synbiotic mixtures
(11–13, 15, 23).

Airway hyperresponsiveness (AHR) is one of the key clinical
features of asthma. In this study, HDM-LGG E5 and TP
could reduce AHR individually, however, the synbiotic mixture
(HDM-TP-LGG E7) demonstrated more potent suppressive
effects. In fact, the synbiotic mixture started a reduction
of airway hyperresponsiveness in the lower concentration of
methacholine (12.5 mg/ml) with a greater impact (p < 0.02).
This indicates that Lactobacillus rhamnosus GG and TP might be
able to synergize each other. Moreover, as a standard treatment
budesonide treatment showed a decreasing trend in mitigating
lung resistance (Figure 2).

The observed contribution of the probiotic, prebiotic and
synbiotic is in line with Verheijden et al. who found that the
administration of long-chain fructooligosaccharide (lcFOS)
combined with Bifidobaterium breve M-16V suppressed lung
resistance and airway inflammation in allergic mice (22).
Vos et al. also showed that a specific oligosaccharide mixture
containing short chain galactooligosaccharide (scGOS) and
lcFOS (scGOS-lcFOS) could alleviate the lung resistance and
BALF inflammatory cells in the ovalbumin (OVA)-induced
model of asthma (24). The same combination (scGOS-lcFOS)
together with Bifidobaterium breve M-16V was used by Sagar
et al. (25). They demonstrated that the synbiotic mixture
significantly reduces the percentage of BALF total inflammatory
cells and eosinophils in a murine model of chronic asthma, which
is consistent with our findings. In another study, combination
of immunofortis (prebiotic mixture) and Bifidobaterium
breve M-16V could dampen anaphylactic symptom scores
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FIGURE 3 | Differential inflammatory cell count of bronchoalveolar lavage fluid (BALF). (A) Total BALF cells, (B) the absolute number of macrophages, (C) eosinophils,

(D) lymphocytes and, (E) neutrophils. Data are shown as mean ± SEM, n = 6 mice/group. *P < 0.05 and ****P < 0.0001 compared to PBS-PBS group,
#P < 0.05, ##P < 0.01, and ####P < 0.0001 compared to HDM-PBS group. Statistical significance of differences was tested by use of One-Way ANOVA and

post-hoc Bonferroni’s multiple comparisons test.

and allergic skin response, which was stronger compared to
the individual effects of the pro- and prebiotic alone. The
so-called immunofortis and Bifidobaterium breve M-16V

could also reduce asthma-like manifestations in infants with
atopic dermatitis (26). There is a number of studies related
to the anti-inflammatory potential of Lactobacillus rhamnosus
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FIGURE 4 | Immune-related mediators’ measurements. IL-5, IL-13, IL-33, CCL17, and total IgE concentrations were measured in supernatant of lung homogenates

(pg/mg protein) and in serum for Total IgE in HDM-allergic mice. IL-5 (A), IL-5-eosinophils correlation (B), IL-13 (C), CCL17 (D), IL-33 (E), and total IgE (F). Data are

shown as mean ± SEM, n = 6 mice/group. *P < 0.05, **P < 0.01, and ****P < 0.0001 compared to PBS-PBS group, #P < 0.05, ##P < 0.01, and
####P < 0.0001 compared to HDM-PBS group. Statistical significance of differences was tested by use of One-Way ANOVA and post-hoc Bonferroni’s multiple

comparisons test.

GG and Bifidobaterium breve M-16V. Both strains, as well
as synbiotic combination of Bifidobaterium breve M-16V
and scGOS-lcFOS decreased eosinophils and neutrophils in
BALF in ovalbumin-exposed mice (1, 25, 26). LGG alone

or along with the other bacterial species and prebiotics
(galactooligosaccharides, fructooligosassharides) effectively
relieved ovalbumin-induced asthma in mice. Given the striking
effect of LGG on lung function (2, 27, 28), its combination with
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FIGURE 5 | The flowcytometry diagram of T cells subsets. Splenocytes T cell subsets. (A) The MFI of Th2 cells (CD69+ T1ST2+ of CD4+ cells), (B) Th17 cells

(CD196+ RORγ+ of CD4+ cells), (C) regulatory T cells (Tregs) (CD25+FoxP3+ of CD4+ cells) was analyzed in spleen cell suspensions, and (D) gating strategy. Values

were reported as maximun flourscence intensity (MFI). Data are shown as mean ± SEM, n = 6 mice/group. *P < 0.05 and ****P < 0.0001 compared to PBS-PBS

group, #P < 0.05, ###P < 0.001, and ####P < 0.0001 compared to HDM-PBS group. Statistical significance of differences was tested by use of One-Way

ANOVA and post-hoc Bonferroni’s multiple comparisons test.
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FIGURE 6 | Superior effect of Synbiotic than either of probiotic and prebiotic measurement. IL-5 (A), IL-13 (B), CCL17 (C), CD4+Th2 cells (D), CD25+FoxP3+Treg

(E), and CD196+ RORγ+ Th17 (F). Values were reported as maximun flourscence intensity (MFI). Data are shown as mean ± SEM, n = 6 mice/group. *P < 0.05, **P

< 0.01, ***P < 0.001, and ****P < 0.0001 compared to PBS-PBS group, #P < 0.05, ##P < 0.01, ###P < 0.001, and ####P < 0.0001 compared to HDM-PBS

group. Statistical significance of differences was tested by use of One-Way ANOVA and post-hoc Bonferroni’s multiple comparisons test.
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turmeric even unveiled more potent effects than any of the
individuals. In our study, inhibition of AHR by the synbiotic
mixture was associated with the reduced inflammatory cells
and cytokines, which might be due to flavonoid components
in turmeric possessing powerful anti-allergic properties
(19, 29, 30).

In most asthmatic patients, the main cells infiltrated in
the lungs are eosinophils, neutrophils, and lymphocytes
(18, 31), accumulating in the bronchioles and augment airway
inflammation. Among the inflammatory markers involved in
asthma, eosinophils orchestrate the paramount inflammatory
responses, including airway hyperresponsiveness, mucus
secretion of epithelial cells, and allergic cytokines production.
Recent data show that eosinophils also participate in airway
remodeling (18, 32). We showed that the total inflammatory cells
in the BALF were significantly increased in HDM–PBS asthmatic
mice compared to PBS–PBS control mice. Oral administration
with LGG, TP, and synbiotic mixture markedly decreased the
total inflammatory cell numbers into BALF. However, TP with
LGG (synbiotic) did not really show a superior effect relative
to LGG or TP alone. Probably, a maximum plateau is reached,
and a further decrease might be possible in combination with
glucocorticosteroids. It is known that there is a correlation
between reduction of inflammatory cells in the lung and
suppression of Th2 associated cytokines (33–35). Consistent
with this, we found the reduction of eosinophils in mice treated
with TP, LGG, and synbiotic mixture, which was associated with
a decrease in IL-5, IL-13, and IL-33 production.

Allergic asthma is related to a Th1/Th2 imbalance with
increased Th2 cytokines production (18). HDM triggers
inflammation in airway epithelial cells (AECs), which
consequently activates pattern recognition receptors (PRRs),
in particular, Toll-like receptors (TLRs) (36, 37). Interaction
between HDM and AECs is the central point of sensitization
phase recruiting inflammatory cells to the airway submucosa.
Subsequent exposure to HDM (challenge phase) augments
the production of IL-33, CCL17, TSLP, IL-25, and different
chemokines causing clinical manifestations.

Many investigations showed that the concentration of CCL17,
IL-33, CCL20, and CCL22 were increased in the airways of
asthmatic patients compared to healthy individuals (32, 38–40).
The concentration of IL-5 and CCL17 showed a decreasing trend
in synbiotic (HDM-TP-LGG E5) and prebiotic group. CCL17
is mainly responsible for recruiting and activating neutrophils
to the lungs (41). The falling trend of neutrophils in the BALF
and CCL17 in the lung homogenates was found in asthmatic
mice treated with synbiotic (HDM-TP-LGG E5) and prebiotic
alone compared to the HDM-PBS group (Figures 3E, 4D).
The Synbiotic with 105 cfu/ml of LGG displayed a better
suppressive effect than the probiotic (HDM-LGG E5) while the
other synbiotic could not demonstrate the same effect (data not
shown) (Figure 6C). This phenomenon can be attributed to the
so-called compatibility of probiotic and prebiotic which seems
to be a key factor in synbiotic proficiency. IL-13 was another
pivotal mediator which the synbiotics could impact on. In this
regard, HDM-TP-LGG E7 was significantly more effective than
the probiotic in lowering IL-13 (Figure 6B).

IL-33 activates DCs and attracts Th2 cells in the course
of Th2 responses (35, 42, 43). Clinically, in the biopsies of
asthmatic patients, the vigorous increase of IL-33 has been
observed compared to healthy people (44). Here we also showed
a high level of IL-33 in the lung homogenates of asthmatic
mice compared to non-asthmatic groups (p < 0.05). The
synbiotics showed a reduction trend of IL-33 level rather than
other treatments, however, the reduction was not statistically
significant (Figure 4E).

The exact underlying mechanisms by which TP, LGG or
synbiotic ameliorate inflammation remain unclear and need
further exploration. In this study, we made an attempt to
review some of the known characterized mechanisms. Several
pieces of evidence indicate that the dysbiosis in the intestinal
microbiota composition is associated with respiratory disorders.
In many studies the considerable reduction in the abundance
of bifidobacteria and lactobacilli genera has been found in
asthmatic patients compared to healthy controls (45). The gut
dysbiosis also encourages inflammation through the growth
of Enterobacteriaceae and the decrease of Lactobacilli and
Lactococci (46). Colestridia, Haemophilus, Streptococcus, and
Moraxella species have also been correlated with elevated risk
of asthma exacerbations (47). Some bacterial species especially
Lactobacillus rhamnosus GG can stimulate naïve T cells to be
differentiated to peripheral Treg (48). The commensal bacteria
along with lactobacilli and bifidobacteria are able to turn down
Th2 cell differentiation by producing special metabolites such
as short-chain fatty acids (26, 45). In line with these studies,
our findings show that the probiotic could shift the naïve T
cells to Treg, however the synbiotic indicated more potency
to increase Tregs intensity (Figure 6E). Besides, the ability that
the synbiotic was more remarkable in downregulating Th2 cells
compared to either asthmatic group or probiotic (Figure 6D).
Several evidences show the effect of gut microbiota and herbal
components are due to the SCFA production (7, 49–51). Many
studies also indicate that the enhanced effectiveness of synbiotic
above either of the constituents (probiotic and prebiotic) is due
to the production of SCFA, this implies that there is a need to
measure the concentration of SCFA produced by pro-, pre- and,
synbiotic in further studies to unravel the mechanism (52).

One of the mechanisms by which SCFAs regulate the
immune responses is to enhance the CD103+DCs of MLNs
and subsequently increase the activity of retinal dehydrogenase
2(RALDH2) in CD103+ DCs. The conversion of Vitamin A to
retinoic acid which is mediated by RALDH2 stimulates Treg cells
generation (48). In line with this study, our combination therapy
(HDM-TP-LGG E7) significantly increase Treg compared to the
TP and LGG alone which is presumably due to the concentration
of SCFA produced by LGG when is together with turmeric. The
other mechanism could involve in G protein–coupled receptor
41 (GPR41, also called free fatty acid receptor 3 or FFAR3) (53).
SCFA may elicit their regulatory functions through binding to
this protein which may impair the capacity of DCs to stimulate
Th2-mediated immune responses (54). Given that the production
of SCFA propionate, acetate and butyrate depends on indigestible
carbohydrate fermentation, the role of prebiotics in immune
response regulation are revealed.
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Th17 cells, characterized by the retinoic acid-related orphan
receptor g (ROR g) marker, which is a main transcription
factor mediating the Th17 differentiation, can stimulate tissue
inflammation, and neutrophil recruitment (55). Recent findings
have suggested that Th17 cells and its mediated cytokines
were implicated in the pathogenesis of allergic asthma. The
results indicate our synbiotics and prebiotic significantly
reduced CD196+ROR g

+Th17 cells frequency compared to
asthmatic group (Figures 5B, 6F). The marker CD196 also called
chemokine receptor 6 (CCR6), and its ligand CCL20, contributes
to the recruitment of Th17 cells and Th2 cells to the injured
tissue and specially deal with the asthma exacerbation. Since
the airway responsiveness was relieved in CCR6-deficient mice,
CCL20-CCR6 axis could be a putative approach for the asthma
therapy (56).

The first line of allergic inflammation is the elevation of IL-
33, which is mainly expressed by HDM injured lung epithelial
cells (Figure 7). IL-33 is also a chemo-attractant for Th2 cells
to the inflammation site (35, 42, 43). Synbiotic intervention
tended to reduce the concentration of IL-33. The IL-33 secretion
along with the allergen stimulation can activate ILC2 and DCs.
Activated DCs are able to polarize naïve T helpers to Th2 in
the CCL17 saturated environments (57). Our treatments specially

HDM-TP-LGG E5 proficiently mitigate the concentration of
CCL17 leading to the decreasing of Th2 frequency (Figure 7). On
the other hand, ILC2 together with Th2, secrete IL-13, IL-5, and
IL-4 which in turn differentiates B cells to IgE producing plasma
cells (58, 59). Probiotic, prebiotic, and synbiotic interventions
significantly lessened IL-5 and IL-13 production. This effect
was more striking in synbiotic groups (Figure 7). Beyond this
effect on Th2-mediated cytokines, the combination therapies also
mitigate the intensity of CD196+RORγ

+Th17 cells (Figure 7)
which is known to be elevated in asthmatic peoples (57). Our
treatments specially probiotics reduces the number of eosinophils
in BALF. As far as we know, the mechanism of our pro-, pre,
and synbiotic in Th2 suppression is independent to the Th1 since
HDM sensitization and challenge did not affect the frequency of
Th1 and even combination treatment could not affect it.

Our study not only strengthens the previous evidence
regarding the beneficial effects of probiotics and prebiotics in
the suppression of allergic responses but also suggests that their
combination (a synbiotic) might have a superior effect than any
of each treatment alone. In this study, we sensitized the mice
with HDM and then treated with PBS, LGG, TP, and synbiotics
orally during the exposure of HDM and evaluated the lung
hyperresponsiveness to the different doses of methacholine. We

FIGURE 7 | Overview of the effects of the LGG, TP and synbiotic treatment on HDM-induce murine model of asthma. After the initial exposure to HDM IL-33, GM-CSF,

TSLP and IL-25 is released by damaged tissue, and IL-33 activate DCs and ILC2. CCL17 are proliferated by activated DC, which can polarize naïve T cells into Th2

cells. LGG, TP or combination therapy tended to reduce CCL17 and IL-33 concentrations, leading to decrease DCs activation. Beyond their effect on suppressing

DC-related cytokine and chemokine, they reduced the differentiation of naïve T cells to Th2 cells significantly. ILC2 cells as well as Th2 cells have the ability to produce

IL-4, IL-5, and IL-13. Concentrations of IL-5 and IL-13 were reduced after specifically synbiotics treatment. The number of eosinophils reduced by all treatments

specially 105 cfu/ml LGG. All treatments could significantly reduce the Th2 and Th17 frequency. This reduction was more remarkable in HDM-TP-LGG E5 compared

to asthmatic and probiotic group. On the other hand, the Treg frequency showed an elevation in HDM-TP-LGG E7 compared to asthmatic and probiotic group.
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also measured the number of inflammatory cells in the BALF
and concentration of cytokines and a chemokine which are
responsible for allergic manifestation.

The present study has assessed the modulatory effects of pre,
pro, and synbiotic on allergic airway inflammation at the cellular
level. However, more broadly, research is needed to determine the
signaling pathways by which the combination therapy suppresses
the inflammatory cascade. The exploring short chain fatty acids
produced by LGGwith/without TP, characterization the probable
components released by LGG like SCFA, and interaction between
TP and LGG also need to be considered as further investigations.
It is also worthwhile to optimize the repetition times and the
duration of the treatment that lasts long effect on the body.
In addition, the other factors which determine the optimal
efficacy of a synbiotic, are 1) the duration of prebiotic and
probiotic reciprocal interaction and 2) the ability of probiotic to
be implanted into the gut, thus optimizing these factors can be
highly essential for development of food-based remedy.
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Advances in our understanding of the contribution of the gut microbiota to human health

and the correlation of dysbiosis with diseases, including chronic intestinal conditions such

as inflammatory bowel disease (IBD), have driven mechanistic investigations of probiotics

in intestinal homeostasis and potential clinical applications. Probiotics have been shown

to promote intestinal health by maintaining and restoring epithelial function, ensuring

mucosal immune homeostasis, and inhibiting pathogenic bacteria. Recent findings reveal

an approach for defining previously unrecognized probiotic-derived soluble factors as

potential mechanisms of probiotic action. This review focuses on the impact of probiotics

and probiotic-derived functional factors, including probiotic products and metabolites

by probiotics, on the cellular responses and signaling pathways involved in maintaining

intestinal homeostasis. Although there is limited information regarding the translation of

probiotic treatment outcomes from in vitro and animal studies to clinical applications,

potential approaches for increasing the clinical efficacy of probiotics for IBD, such as

those based on probiotic-derived factors, are highlighted in this review. In this era of

precision medicine and targeted therapies, more basic, preclinical, and clinical evidence

is needed to clarify the efficacy of probiotics in maintaining intestinal health and preventing

and treating disease.

Keywords: gut microbiota, immune response, inflammatory bowel disease, intestinal epithelium, intestinal

homeostasis, probiotics, probiotic-derived factor

INTRODUCTION

The human gastrointestinal tract harbors a broad range of microbiota, which exhibit wide
interpersonal differences in taxonomic composition while sharing a functional core set of specific
microbial genes and metabolic modules (1, 2). The symbiotic relationship between the gut
microbiota and the host establishes an ecosystem that provides a nutrient-rich and metabolically
favorable environment for the microbiota, while conferring important benefits to the host for
nutrient acquisition and energy balance. Research in humans and animal models has shown
that metabolites and functional factors derived from the gut microbiota strongly impact the
structural and functional maturation of the gastrointestinal tract, induction of immunotolerance,
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neurodevelopment and homeostasis of intestinal epithelial cells,
and functions of the immune and nervous systems in adulthood
[reviewed in (3, 4)].

As beneficial microorganisms for host health, probiotics have
attracted substantial research interest. The term “probiotics” was
originally defined by Lilly and Stillwell as “living microorganisms
with low or no pathogenicity that exert beneficial effects on the
health of the host” (5). Currently, probiotics are defined as “live
microorganisms that, when administered in adequate amounts,
confer a health benefit on the host” (6). Themost commonly used
probiotics include Bifidobacterium and Lactobacillus. Studies
on humans and animal models have revealed distinct cellular
and molecular mechanisms of probiotic actions, including
the blockage of pathogenic activities via the production of
antibacterial substances and competitive inhibition of pathogen
and toxin adherence to the intestinal epithelium; the regulation
of immune responses via inhibited proinflammatory responses
and enhanced anti-inflammatory immunity; the maintenance
of intestinal epithelial homeostasis, such as the preservation of
barrier structure and function and the blockade of apoptosis in
intestinal epithelial cells; and regulation of the gut–brain axis
through the production of neurotransmitters and vagus nerve
function (6–8) (Figure 1).

It is well-known that commensal microorganisms produce
variable factors to foster an optimal adaptation to new niches
in the host and to directly drive their physiological responses.
Importantly, numerous small molecules derived from the human
microbiota have been reported to exert biological activities
in the host (9). Through efforts to clarify the molecular
mechanisms underlying the effects of probiotics, recent research
has identified probiotic-derived factors as functional components
of probiotics. Notably, a new avenue for elucidating probiotic–
host interactions has been discovered, based on the identification
of probiotic-derived functional factors, including probiotic
products (proteinaceous molecules, carbohydrates, and cell wall
components) and metabolites by probiotics (Figure 2). These
factors have been shown to regulate host responses and are
considered as therapeutic targets.

This review highlights significant research findings on the
effect of probiotics on intestinal homeostasis, including the
impact of probiotic-derived functional factors on the regulation
of intestinal epithelial function, immune responses, and the
gut–brain axis. The health-promoting influence of probiotics
and probiotic-derived functional factors in intestinal diseases,
including inflammatory bowel disease (IBD), colonic cancer and
necrotizing enterocolitis, is discussed to support future studies on
therapeutic applications of probiotics.

INTESTINAL EPITHELIAL HOMEOSTASIS

In addition to absorbing nutrients and transporting water
and waste products, the intestinal epithelium serves as the
first line for the host to discriminate between pathogens and
commensal microorganisms in the intestinal tract. Degraded
integrity of this monolayer is a major defect in IBD, and
mucosal healing is a primary predictor of positive outcomes in

this disease (10). Therefore, the regulatory effects of probiotics
on intestinal epithelial cells have been widely studied as a
mechanism underlying the protection of the intestinal epithelium
against inflammation. As summarized in previous reviews
(6–8), probiotics regulate the intestinal epithelial functions
by maintaining the epithelial barrier, promoting cell survival,
stimulating the production of antibacterial substances and cell-
protective proteins, enhancing protective immune responses,
and inhibiting proinflammatory cytokine production. Many of
these responses result from the regulation of specific intracellular
signaling pathways by probiotics, such as mitogen-activated
protein kinases (MAPK) and nuclear factor (NF)-κB in intestinal
epithelial cells (6–8).

The interaction between intestinal epithelial cells and
probiotics through probiotic-derived factors has been identified
as a previously unrecognized mechanism of action. The finding
that Lactobacillus rhamnosus GG (LGG) and products recovered
from LGG culture broth filtrate can prevent cytokine-induced
apoptosis in intestinal and colonic epithelial cell models (11) led
to the identification of an LGG-derived soluble protein, p40 (12).
p40 has been shown to transactivate the epidermal growth factor
(EGF) receptor in intestinal epithelial cells (13) by stimulating the
activity of a disintegrin and metalloproteinase 17 (ADAM17) for
release of heparin-binding EGF (HB-EGF) (14). Activation of the
EGF receptor by p40 is required for p40-induced cytoprotective
responses in intestinal epithelial cells, including inhibited
cytokine-induced apoptosis, preserved barrier function, and
upregulated mucin production in intestinal epithelial cells
(13, 15). Furthermore, p40 has been found to upregulate
EGF-receptor-dependent production of a proliferation-inducing
ligand (APRIL) in intestinal epithelial cells, whichmay contribute
to increased IgA class switching in B cells and enhanced IgA
production in the intestine (16). By using a pectin/zein hydrogel
bead system to specifically deliver p40 to the colon, p40 can
prevent and treat experimental colitis in an EGF-receptor-
dependent manner (13).

Short-chain fatty acids generated by metabolizing indigestible
carbohydrates from fiber-rich diets by commensal microbiota
have long been implicated in a variety of beneficial effects
on the host. The production of acetate by B. longum subsp.
infantis 157F contributes to the defense functions of host
intestinal epithelial cells for inhibiting translocation of the
Escherichia coli O157:H7 Shiga toxin from the gut lumen to
the blood, thereby protecting mice against death induced by E.
coli O157:H7 (17). More importantly, an ATP-binding-cassette-
type carbohydrate transporter has been identified that confers a
probiotic effect on bifidobacterial strains, resulting in increased
acetate production (17).

Toll-like receptor (TLR) signaling has been reported as a target
of probiotic-derived factors in several studies. LGG and LGG-
conditioned media reduce radiation-induced epithelial injury
and improve crypt survival through a TLR-2/MyD88 signaling
mechanism, leading to repositioning of constitutive COX-2-
expressing mesenchymal stem cells to the crypt base (18). It
remains unknown whether probiotic-derived factors serve as
direct ligands for TLR activation or whether they act through
indirect mechanisms. Further studies have revealed that the
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FIGURE 1 | The mechanisms of probiotic action. Probiotics contribute to maintaining homeostasis and prevention and/or treatment of diseases in host, including (1)

blocking pathogenic bacterial effects by producing antibacterial substances and competing with pathogens for binding to epithelial cells; (2) promoting intestinal

epithelial cell homeostasis by increasing barrier function, mucus production, survival, and cytoprotective responses; (3) defining the balance between necessary and

excessive defense immunity by increasing innate immunity, such as production of IgA and defensin, up-regulating anti-inflammatory cytokine production, and inhibiting

proinflammatory cytokine production; and (4) regulating the gut-brain axis through production of neurotransmitters and through the vagus nerve. DC, dendritic cell; IL,

interleukin; HSP, heat shock protein.

protective effect of LGG against radiation-induced intestinal
epithelial injury is mediated by the production of lipoteichoic
acid (LTA), a cell wall polymer in Gram-positive bacteria. LGG-
derived LTA fosters the epithelial stem cell niche to protect
epithelial stem cells by triggering several adaptive immune
responses, including the expression of CXCL12 in macrophages
and COX-2-dependent PGE2 secretion from mesenchymal stem
cells (19).

In addition to soluble factors, probiotic-derived outer
membrane vesicles, such as E. coli Nissle 1917 and commensal
ECOR63-derived outer membrane vesicles, have been shown to
promote barrier function in intestinal epithelial cells (20), and
pretreatment of mice with E. coli Nissle 1917-derived vesicles
has been shown to ameliorate DSS-induced colitis (21). Overall,
these studies support the feasibility of applying probiotic-
derived products and metabolites as a strategy to promote
intestinal health.

In addition to the direct regulation of intestinal epithelial
cells by probiotics or probiotic functional factors, probiotics have
been found to enhance intestinal epithelial integrity through
restoring the balance of the gut microbiota profile. Metabolic
disorders are associated with dysbiosis, intestinal inflammation,
and disruption of the intestinal barrier function, resulting in
leaking of bacterial toxins into the intestinal tract to induce
chronic and systemic inflammation. This imbalanced state is
referred to as metabolic endotoxemia. The decrease in the

abundance of Akkermansia muciniphila, a mucin-degrading
bacterium in the mucus layer, was observed in adults with obesity
(22). Administration of this bacterium to mice with high-fat
diet-induced metabolic disorders was able to maintain the gut
barrier and inhibit metabolic endotoxemia (23). Interestingly,
supplementation with Bifidobacterium animalis subsp. lactis 420
to overweight adults caused an increase in Lactobacillus and
Akkermansia and fostered the metabolism toward lean status
in a randomized controlled trial (24). These results indicate the
importance of the regulatory effects of probiotics on the gut
microbiota for maintaining intestinal epithelial homeostasis.

PROTECTIVE MUCOSAL IMMUNE
RESPONSES

The identification of probiotic-induced protective immune
responses in the host has encouraged the therapeutic application
of probiotics in preclinical and clinical studies. To support
the application of probiotics, recent studies have explored the
mechanisms by which probiotics regulate immune responses. L.
reuteri stimulates the generation of indole derivatives to activate
aryl-hydrocarbon receptor (AhR), leading to the downregulation
of Thpok in CD4+ intraepithelial lymphocytes (IELs) and
reprograming CD4+ IELs into CD4+CD8αα

+ IELs (25). A study
of SIV-infected macaques demonstrated that VSL#3, Culturelle,
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FIGURE 2 | Regulation of host responses by probiotic-derived factors. Several probiotic-derived factors, including products and metabolites, have been identified to

exert health-promoting effects on the host. These functional factors of probiotics contribute to reinforcing intestinal barrier function and stimulating anti-inflammatory

immune responses, leading to ameliorating intestinal inflammatory disorders.

and inulin supplementation of antiretroviral treatment increases
the reconstitution of colonic CD4+ T cells, possibly by
increasing APC-related genes in colonic CD45+ leukocytes and
reducing inflammation-associated fibrosis. Thus, probiotics and
prebiotics provide an exciting adjunctive therapeutic approach
for enhancing gastrointestinal immune function during HIV
infection (26). As another example, the prevention of Citrobacter
rodentium-induced colitis by probiotics has been studied in mice.
Lactobacillus helveticus and L. rhamnosus have been shown to
prevent and treat C. rodentium-induced colitis in mice, which
is correlated with the downregulation of tumor necrosis factor
(TNF)α and interferon (IFN)γ, enhanced transcription of IL-10
and FOXP3, and increased follicular T-regulatory cells (27).

To support thoughtful clinical applications of probiotics,
more biological studies of humans or human models are needed.
For example, the regulation of immunological tolerance to the
microbiota by Bifidobacterium infantis 35624 has been studied
in humans. B. infantis-stimulated human dendritic cells induce
Foxp3- and IL-10-secreting T cells, which requires TLR signaling
pathways, including TLR-2, TLR-6, and TLR-9 (28). Another
study reported in vitro effects of a bifidobacterial mixture
containing B. longum, B. breve, and B. infantis, which improved
the antigen uptake and processing by DCs obtained from
peripheral blood monocytes of pediatric patients with Crohn’s
disease (CD), but not from ulcerative colitis (UC) and non-IBD
controls (29). This type of evidence supports the rationale for
adjunctive treatment in human IBD trials with specific probiotics.

The regulation of host immune responses by probiotics
and probiotic-derived factors has been highlighted by several

recent studies of probiotic–host immune cell interactions.
Polysaccharide A (PSA) from outer membrane vesicles of
commensal Bacteroides fragilis modulates the host’s innate
immune system through the TLR2 in dendritic cells, resulting
in increased regulatory T cells and IL-10 production. This
signaling event restricts the activity of T helper 17 (TH17)
cells and promotes B. fragilis colonization in germ-free mice
(30) and induces immunomodulatory effects and prevents
experimental colitis (31). Interestingly, PSA in outer membrane
vesicle-induced signaling in DCs requires IBD-associated genes,
ATG16L1 and NOD2, to activate a non-canonical autophagy
pathway during protection from colitis (32). This evidence
suggests that the functions of commensal bacterium-derived
factors are affected by host genetics, highlighting important
relationships between polymorphisms in susceptibility genes and
protective microbial effects on the host, which may extend to
probiotic-induced host responses.

Peptidoglycan (PGN) has been identified as an active
compound in probiotic functionality. PGN purified from
Lactobacillus salivarius Ls33, a strain that has protective effects
in colitis, induces IL-10-producing DCs in a NOD2-dependent
manner in vitro and protects mice from colitis in an IL-10-
dependent manner. PGN also promotes the development of
CD103+ DCs and CD4+Foxp3+ regulatory T cells. However, a
non-anti-inflammatory strain of L. salivarius-derived PGN did
not show these effects. Structural analysis suggests that PGNs
from anti-inflammatory strains contain a muropeptide, M-tri-
Lys, that mediates the protective roles of PGNs in colitis in a
NOD2-dependent, but MyD88-independent manner (33).
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Probiotic surface layer proteins, such as exopolysaccharide
(EPS) molecules, also play pivotal and beneficial roles in
probiotic–host interactions. EPS on the cell surface of B.
breve UCC2003 provides stress tolerance and promotes in
vivo persistence, but not initial colonization. EPS is also
involved in modulating the ability of commensal bacteria
to remain immunologically silent. However, EPS can reduce
the colonization levels of gut pathogens, such as Citrobacter
rodentium (34). Another surface layer protein, surface layer
protein A (SlpA), on Lactobacillus acidophilusNCK2187 has been
shown to bind to the C-type lectin SIGNR3 to exert regulatory
signals, leading to the mitigation of colitis, maintenance of
healthy gastrointestinal microbiota, and protected gut mucosal
barrier function (35). These results provide critical insights into
the potential development of probiotic or commensal-derived
factors in the treatment of intestinal inflammatory disorders.

In contrast to probiotic-derived protective factors, LTA
is considered as the Gram-positive equivalent of Gram-
negative LPS in stimulating immune responses. Deletion of the
phosphoglycerol transferase gene that is responsible for LTA
biosynthesis in L. acidophilus NCK2025 significantly reduces
colonic polyps and systemic inflammation and increases anti-
inflammatory regulatory T cells in mice with conditional APC
gene truncation in colonic and ileal epithelial cells. Thus, this
study reveals the proinflammatory role of LTA (36).

Probiotic metabolites have also been reported to exert
protective effects on the intestinal epithelium. A Lactobacillus
reuteri D8 metabolite, indole-3-aldehyde, can stimulate
lamina propria lymphocytes to secret IL-22 through AhR,
leading to phosphorylation of STAT3 to accelerate intestinal
epithelial cell proliferation, thus recovering damaged intestinal
mucosa (37).

These results support the involvement of probiotic-derived
factors in active communication between probiotics and host
immune cells for signal regulation in immune cells relevant
to innate immunity under healthy conditions and in adaptive
immune responses to disease.

THE GUT–BRAIN AXIS

The first evidence to support the involvement of the gut
microbiota in the gut–brain axis came from studies showing
abnormal neurotransmitter and brain-derived neurotrophic
factor levels, reduced anxiety responses, and increased motor
activity in germ-free mice compared to those with intact
bacterial communities (37). Subsequent research revealed that
microbiota-derived short-chain fatty acids and fermentation
products promote microglia maturation and function (38), and
a commensal bacterium, B. fragilis, restores the neurological
function (39). Furthermore, a mutation in KDM5, a histone
demethylase, has been found in intellectual disability (ID) and
autism spectrum disorder (ASD) patients. A previous study
demonstrated that KDM5 deficiency in Drosophila melanogaster
induces intestinal barrier dysfunction and changes in social
behavior that correlate with alteration of the gut microbiota,
which can be partially rescued by a probiotic Lactobacillus strain

(40). These findings indicate the need to further study probiotics
that may influence the gut–brain axis.

One pathway of gut–brain communication occurs through
activation of the vagus nerve as part of the parasympathetic
nervous system. The involvement of probiotics in regulation
of the vagus nerve function is supported by several studies.
In a mouse model of chemically induced colitis, B. longum
colonization in the gut reduced anxiety-like behavior via
activation of the vagal pathway, independently of brain-
derived neurotrophic factor production (41). In mice, L.
rhamnosus supplementation has been shown to modulate
the expression of γ-aminobutyric acid receptors in the
brain, thus affecting signaling of the major inhibitory
neurotransmitter. Consequently, this microbe-dependent
communication through the vagus nerve can ameliorate stress
and anxiety- and depression-related behavior (42). Moreover,
probiotic supplementation has been shown to markedly
change behavior in rodents, with correlated changes in central
neurochemistry. L. helveticus NS8 improves anxiety, depression,
and cognitive dysfunction in rats with chronic restraint stress.
L. helveticus NS8 also reduces plasma corticosterone and
adrenocorticotropic hormone levels, increases plasma IL-10
levels, and restores hippocampal serotonin and norepinephrine
levels and hippocampal brain-derived neurotrophic factor
mRNA expression in chronic stress rats. These results indicate
an antidepressant effect of L. helveticus NS8 in rats subjected to
chronic restraint stress depression, an effect that may be due to
the microbiota–gut–brain axis (43).

Dysbiosis has also been linked to changes in cognitive
activity and behavior, such as the pathophysiology of stress-
related disorders, anxiety, and autism in humans (44). Thus,
the effects of probiotics on neurological function and associated
disorders have been examined in humans. A randomized,
double-blinded, placebo-controlled trial showed that 4-week B.
longum 1714TM administration regulated resting neural activities
related to enhanced vitality and reduced mental fatigue as well
as neural responses during social stress, including the activation
of brain coping centers to counter-regulate negative emotions
(40). Consumption of fermented milk products containing
seven probiotic strains of Bifidobacterium, Lactobacillus, and
Lactococcus for 4 weeks affected the activity of brain regions
that control the central processing of emotion and sensation
in healthy women (45). Furthermore, a systematic review
of 10 randomized controlled trials showed that probiotic
supplementation can positively affect anxiety and depressive
symptoms in humans (46). Thus, the impact of probiotics on
the gut–brain axis is a potential area for studies on broad
probiotic applications.

INTESTINAL DEVELOPMENT AND
DISEASES IN EARLY LIFE

While colonization of the intestinal microbiota in humans
may begin in utero (47), it is significantly influenced by
microbial exposures at birth (48). Strong evidence supports the
contribution of microbiota colonization of the gastrointestinal
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tract to functional maturation of the intestinal tract (49) and
the development of immunity in early life (50). Therefore, the
impact of the probiotics on early life has attracted significant
research interest.

Effects of probiotics on intestinal development have been
observed. Neonatal LGG colonization enhances intestinal
functional maturation, including intestinal epithelial cell
proliferation, differentiation, and tight junction formation, and
increases the diversity and richness of the colonic mucosa-
associated microbiota prior to weaning in mice (51). Both live
and heat-killed LGG have been reported to enhance maturation
of the intestinal barrier function in 7-day-old conventionally
raised mice receiving treatment from postnatal day 1–7 (52).
Furthermore, L. reuteri DSM 17938 has been found to stimulate
enterocyte proliferation and migration in 8-day-old neonatal
mice treated from day 5–8 (53). In addition, monocolonization of
Lactobacillus plantarum enhanced growth in an infant germ-free
mouse model of chronic undernutrition and growth failure (54).

Supplementation with probiotics in formula milk for disease
prevention and treatment is becoming increasingly common.
Clinical studies have revealed strong evidence for treatment of
infants and young children with infectious diarrhea (55, 56)
and for prevention of antibiotic-associated diarrhea in children
(56); thus, probiotics are highly recommended for use in these
cases (57, 58).

However, the efficacy of probiotics for the prevention of
necrotizing enterocolitis (NEC) in premature infants are not
consistent. A double-blind randomized placebo-controlled trial
including 1,310 babies with the gestational ages of 23–30 weeks
found no difference of late-onset sepsis, NEC stage 2 or above or
death of babies receiving Bifidobacterium breve strain BBG-001,
as compared to babies with placebo (59). Another randomized
placebo-controlled trial including 1,099 babies born early than
32 weeks completed gestation reported that supplementation
of a probiotic combination containing B. infantis, Streptococcus
thermophiles, and Bifidobacterium lactis did not affect the rates
of late onset sepsis or mortality, but significantly reduced the
incidence of NEC (60).

Evidence of a potential impact of administering probiotics to
pregnant women on reducing the risk of newborns with NEC
has been reported. A meta-analysis of randomized controlled
trials including 18 randomized controlled trials with 4,356
pregnant women showed that the risks of death and NEC were
significantly reduced in pregnant women receiving probiotics
(61). This evidence was also reported by another systematic
review that concluded the risk of NEC was decreased in women
at risk of preterm birth receiving probiotics and antenatal
corticosteroids (62).

Although the clinical efficacy of probiotics for prevention
of NEC is uncertain, results from animal models and in vitro
experiments provide some interesting insights into the effects
of probiotics on NEC. L. rhamnosus HN001 has been shown
to attenuate NEC severity in newborn mice and premature
piglets in a TLR-9-dependent manner, and DNA from L.
rhamnosus HN001 reduces the extent of proinflammatory
signaling in cultured enterocytes (63). Furthermore, B.
infantis-conditioned medium protects against Cronobacter

sakazakii-induced intestinal inflammation in newborn mice and
inhibits interleukin (IL)-1β-induced IL-6 induction in immature
enterocytes via regulation of TLR-4 signaling (64). Further,
indole-3-lactic acid inhibits IL-1β-stimulated IL-8 production
in immature enterocytes (65). This evidence suggests that
probiotic-derived factors may aid in protection of immature
epithelium against inflammation.

The supplementation with probiotics and probiotic-derived
functional factors in early life has potential for promoting growth
and preventing some diseases. Thus, long-term health outcomes
of supplementation with probiotics and functional factors in
early life should be elucidated for expanding the application of
probiotics for human health.

INTESTINAL INFLAMMATORY DISEASES
AND CANCER

Inflammatory Bowel Disease (IBD)
IBD, consisting of UC and CD, results from a complex interaction
among an altered gut microbial community, environmental
factors, and inappropriate mucosal immune responses in
genetically susceptible individuals (66). IBD has become a public
health challenge, with accelerating incidence worldwide (67).
Current treatments for IBD, including 5-aminosalicylic acid [5-
ASA] preparations, corticosteroids, and immunosuppressive and
biological therapies, such as the use of anti-TNF agents, generally
induce sustained remission in less than half of patients (68).
Therefore, new therapeutic approaches remain an unmet need in
IBD research. Dysbiosis of the gut microbiota has been identified
in patients with IBD, although it remains unclear whether
dysbiosis is the cause or a consequence of other factors associated
with this disease (69, 70). Therefore, manipulation of the gut
microbiota, such as that induced by probiotic supplementation,
has been under investigation for prevention and treatment
of IBD.

Although probiotics have been recommended for adjunctive
therapy for inducing and maintaining a remission of pouchitis
and UC (57, 58), the clinical efficacy of probiotics for inducing
and maintaining a remission of UC is limited. Results from
a recent review analyzing 14 randomized controlled trials
including 865 participants show low-certainty evidence that
probiotics induce clinical remission in active UC patients when
compared with a placebo and little or no difference when
compared with 5-ASA (71). Based on limited information, this
review reported that the combination of probiotics and 5-ASA
may slightly improve the induction of remission compared with
5-ASA alone in patients with mild, but not severe, disease (71). In
fact, the combination of probiotics with traditional IBD therapy
is the most widely investigated treatment for UC patients in
current clinical trials. VSL#3, a probiotic preparation including
Lactobacillus, Bifidobacterium, and Streptococcus strains, was
administered to children with newly diagnosed UC who received
co-treatment of steroid induction and mesalamine maintenance
in a prospective placebo-controlled trial. This study showed that
VSL#3 improved the maintenance of remission (72). In adult
patients with mild to moderate UC who did not respond to
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conventional therapy, beneficial effects of VSL#3 on remission
induction were observed in patients with concomitant therapy
of mesalamine and corticosteroids (73). In assessing the effects
of probiotics on maintaining remission in UC patients, a
double-blind trial showed that E. coli Nissle 1917 treatment and
mesalazine treatment had equal efficacy (74). In addition, as
adjunctive treatment with 5-ASA and/or immunosuppressants,
VSL#3 reduced disease activity in patients with relapsing mild to
moderate UC in a double-blind, randomized, placebo-controlled
study (75). Pouchitis is a complication after ileal pouch-anal
anastomosis for UC treatment. Clinical studies have provided
evidence supporting the use of VSL#3 to reduce the likelihood of
relapse after ileal pouch-anal anastomosis for UC patients (76).

In contrast, studies have revealed that probiotics have little
beneficial effect on CD. For CD patients in which the diseased
gut had been removed, results from a randomized controlled
trial suggested that LGG treatment for 12 months did not
prevent endoscopic recurrence or reduce the severity of recurrent
lesions (77). In addition, Lactobacillus johnsonii LA1 did not
result in any improvements for endoscopic recurrence of CD
in patients after surgical resection of lesions in a randomized,
double-blind, placebo-controlled trial (78) or a multicenter,
randomized, controlled clinical trial (79). Current clinical
evidence suggest that probiotics, including LGG, Lactobacillus
casei, B. breve, B. longum, E. coli Nissle, and Saccharomyces
boulardii, alone or in combination with prebiotic preparations do
not strengthen the effects of conventional therapies in inducing
or maintaining remission over placebos in patients with CD
[reviewed in (80)].

Colorectal Cancer
Dysbiosis has been implicated as a risk factor or a consequence
of carcinogenesis in patients with colorectal cancer (81).
Alterations in the composition, distribution, or metabolism
of the microbiota in the colon may produce an environment
in the colon that promotes inflammation, dysplasia, and
cancer (82). Using several animal models of colon cancer,
such as azoxymethane (AOM)-dextran sodium sulfate, IL-10
knock-out, and 1,2-dimethylhydrazine-induced colon cancer
in mice and rats, studies have suggested that probiotics may
inhibit cancer development and progression by inactivating
mutagens or carcinogens, modulating intestinal microflora
and their metabolism, inducing apoptosis, and inhibiting
tumor cell differentiation by suppressing tumor-promoting
signaling pathways and immunomodulation [reviewed
in (83, 84)]. To elucidate the molecular mechanisms of
probiotic action in the prevention of tumor development,
one study revealed a L. casei ATCC334-produced tumor-
suppressive molecule, ferrichrome. This molecule stimulates
the ER stress response and c-jun N-terminal kinase (JNK)
signaling though upregulation of DDIT3 gene expression,
thus inhibiting growth and promoting apoptosis in
colonic tumor cell lines and in a xenograft model, as
reported in (85). These results emphasize the importance
of investigating probiotic-derived factors as potential
therapeutic targets.

Research has raised interesting issues regarding the roles
of probiotics in different mouse models of colonic cancer.
Administration of VSL#3, a probiotic mixture, reduced chronic
inflammation and prevented or delayed the development
of dysplasia and carcinoma in a model of AOM-DSS-
induced chronic colitis-associated cancer in wild-type mice
(86). In an AOM-IL10−/− mouse model of colitis-associated
colon cancer, treatment with VSL#3 did not protect against
inflammation or tumorigenesis. Instead, VSL#3 significantly
enhanced tumor penetrance, multiplicity, histologic dysplasia
scores, and adenocarcinoma invasion relative to non-VSL#3-
treated mice. VLS#3 treatment also altered the luminal and
mucosally adherent microbiota in this model (87). Therefore,
mechanic studies of individual bacteria on cancer development
are needed to elucidate these different responses in tumor
development upon VSL#3 administration.

Information from clinical trials on probiotics in cancer
prevention and treatment is limited. Several clinical studies have
suggested some potential roles of probiotics in suppressing colon
cancer development. In a randomized trial, L. casei and dietary
fiber significantly reduced the tumor occurrence rate after 4 years
of treatment for patients in whom at least two colorectal tumors
with a grade of moderate atypia or higher had been removed
(88). Another randomized, double-blind, placebo-controlled trial
showed that LGG and B. lactis Bb12 combined with inulin
treatment for 12 weeks in colon cancer and polypectomized
patients reduced cancer risk factors, including a modulated gut
microbiota, reduced colorectal proliferation, improved epithelial
barrier function, reduced IL-2 secretion, and increased IFN-γ
production (89). In probiotic research on cancer prevention and
treatment, results from two melanoma studies have provided
exciting evidence. Bifidobacterium increases the therapeutic
effects of antibodies targeting the PD-1/PD-L1 therapeutic
axis (90) while B. fragilis augments the immunostimulatory
effects of CTLA-4 blockade (91). Thus, combinations of
immunotherapy and probiotics for colon cancer treatment may
merit further investigation.

PPOTENTIAL APPROACHES TO
INCREASE PROBIOTIC EFFICACY

It has been challenging for prior clinical trials to assess
the bioavailability and biopharmacology of probiotics in the
gastrointestinal tract. Enhancing in vivo probiotic viability by
encapsulation may improve probiotic efficacy. For example,
encapsulation of LGG in hydrogel beads, prepared using pectin,
glucose, and calcium chloride and lyophilized by freeze-drying,
increases the survival rate and growth of LGG under low-acid
conditions and enzyme digestion conditions, thereby enhancing
the ability of LGG to prevent colitis (92).

In addition, studies defining dosing and delivery are needed
to clarify the efficacy of probiotic application as a unique
biological therapy. Current results from human studies suggest
that probiotic survival in the host gastrointestinal tract is dose-
and strain-dependent. Most probiotics can only be recovered
from feces within 1–2 weeks after consumption has ceased; thus,

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 142849

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yan and Polk Probiotics in Intestinal Homeostasis

permanent colonization of probiotic strains in the adult gut does
not occur or occurs at very low rates (93). Environmental factors
in the host have been shown to affect probiotic colonization.
B. longum AH1206 engraftment is associated with a low
abundance of resident B. longum and an under-representation
of specific carbohydrate utilization genes in the pre-treatment
microbiome (94).

Because the microbial exposure at birth shapes the acquisition
and structure of the initial microbiota in newborns (95) and
because there is a narrow time window for colonization (96),
early exposure to probiotics may enhance probiotic colonization.
A model of conventionally raised mice with neonatal LGG
colonization was generated to explore the nature of neonatal
probiotic colonization in the host. In this model, colonization
with LGG is age-dependent, with the highest colonization rates
occurring in mice receiving LGG from postnatal day 1–5 (51).

Precision medicine is expected to address unmet therapeutic
needs by offering the best available treatments to patients in
their disease course. A recent human study explored interesting
evidence that reconstitution of the indigenous fecal microbiome
and recovery of gut transcriptome toward homeostatic status
after antibiotic treatment was delayed by multiple strains of
probiotic supplementation and enhanced by autologous fecal
microbiome transplantation, although colonization of probiotics
in the gut was enhanced by the antibiotic treatment. Remarkably,
soluble factors from these probiotics inhibited growth of
the human fecal microbiota in vitro, which may contribute
to impairing the post-antibiotic probiotic benefits (97). This
evidence suggests that personalized probiotic approaches are
needed for probiotics to exert their beneficial effects without
affecting other biological events in the host.

Current therapies for IBD do not target the intestinal
epithelium, where the primary deficits occur in a subset of
patients (98). Thus, the potential role of probiotics in an
era of precision medicine is highly attractive for research. To
understand the differences between therapeutic potential and
actual clinical outcomes of probiotic use in IBD, several issues
should be considered. It is uncertain whether probiotics exert
the same functions in IBD patients as in healthy controls.
Loss of the ability to recognize and/or kill gut microbes is a
characteristic associated with the genetic polymorphisms in IBD
(99). Thus, exogenous agents, such as probiotics, may not induce
responses in IBD patients as they do in in vitro experiments
or animal models. Instead, IBD patients may respond better
to protective bacteria, such as Faecalibacterium prausnitzii, a
normal flora member under physiological conditions that is
reduced in IBD (100–102). Therefore, developing personalized
probiotic treatments with selected probiotics based on individual
alterations in microbial profile and activities, mucosal injury, and
abnormal epithelial and immune responses may open a new line
of therapy in the future.

FUTURE STUDIES

Combined with bioinformatics, rapidly developing genomic
approaches have been applied to identify biosynthetic genes and

to predict the structure and functions of the gut microbiota.
These advances facilitate research exploring the genomic features
of probiotic bacteria. For example, a comparative genomic study
identified 73 genes responsible for cell growth and replication,
constituting a core genome for the Lactobacillus family, by
analyzing Lactobacillus genomes and other genomes associated
with Lactobacilli. The definitive resource for mining Lactobacillus
contains genes modifying carbohydrates, proteins, and other
macromolecules and novel clustered regularly interspaced short
palindromic repeats (CRISPR)-CRISPR-associated protein (Cas)
systems (103). Thus, the use of genome sequence mining,
comparative genomics, andmetagenomics to study the biological
functions of predicted metabolic products of probiotics may
represent a new line of needed investigation.

One of the challenges in probiotic research arises because
probiotics are not created equally. Notably, interpersonal
variabilities in environmental factors, such as diet and
microbiome, are often neglected in study design and analysis
for probiotic research. It is well-known that host genetics and
the environment affect the composition and function of the gut
microbiota (104, 105). As components of the gut microbiota,
the functions of probiotics are also likely to be associated with
host genetics and environmental factors. Currently, interactions
between probiotics and host factors are being considered in
studies on probiotic-mediated effects. The probiotic mixture
VSL#3 treatment shows mouse strain-specific alterations
in immunologic phenotype under homeostasis conditions,
suggesting that the effects of probiotics depend on the genetic
background of the host (106). Thus, host factors should be
considered when designing studies and evaluating results. Efforts
focused on personalized probiotic applications for intestinal
homeostasis maintenance and for disease prevention and
treatment will be crucial in improving the efficacy of probiotics.
Likewise, findings from such studies may explain the wide
variability in responses to probiotics in intestinal disease.

Synthetic biology approaches have also been applied for
disease diagnosis and therapy. E. coli Nissle 1917 has been used
to develop an orally administered diagnostic reagent that can
produce detectable signals in urine to identify liver metastasis
in mice (107). In addition, two engineered E. coli Nissle 1917
strains have been generated; one enhances wound healing in
human intestinal epithelial cells by secreting EGF (108), and
the other protects the intestinal epithelium from injury in
dextran sodium sulfate-induced colitis in mice by creating
fibrous matrices consisting of trefoil factors (109). Thus, future
applications of probiotics may differ from those indicated by
previous clinical trials.

In conclusion, the current evidence highlights the potential
of probiotics and probiotic-derived factors in supporting host
homeostasis, with potential for human health and disease
prevention and treatment. However, precise mechanistic data
are needed to select specific probiotics for well-designed
and appropriately powered clinical trials. The availability of
biomarkers and specific surrogates of anticipated outcomes
would likewise accelerate studies for disease prevention and
treatment. Furthermore, the use of probiotics as carriers for
directly delivering anti-inflammatory and intestinal epithelial
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repair factors to the intestinal tract may serve as a distinct
advance in future probiotic applications.
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Virus infections have been associated with acute and chronic inflammatory central

nervous system (CNS) diseases, e.g., acute flaccid myelitis (AFM) and multiple sclerosis

(MS), where animal models support the pathogenic roles of viruses. In the spinal

cord, Theiler’s murine encephalomyelitis virus (TMEV) induces an AFM-like disease with

gray matter inflammation during the acute phase, 1 week post infection (p.i.), and an

MS-like disease with white matter inflammation during the chronic phase, 1 month p.i.

Although gut microbiota has been proposed to affect immune responses contributing

to pathological conditions in remote organs, including the brain pathophysiology, its

precise role in neuroinflammatory diseases is unclear. We infected SJL/J mice with

TMEV; harvested feces and spinal cords on days 4 (before onset), 7 (acute phase), and

35 (chronic phase) p.i.; and examined fecal microbiota by 16S rRNA sequencing and

CNS transcriptome by RNA sequencing. Although TMEV infection neither decreased

microbial diversity nor changed overall microbiome patterns, it increased abundance

of individual bacterial genera Marvinbryantia on days 7 and 35 p.i. and Coprococcus

on day 35 p.i., whose pattern-matching with CNS transcriptome showed strong

correlations: Marvinbryantia with eight T-cell receptor (TCR) genes on day 7 and with

seven immunoglobulin (Ig) genes on day 35 p.i.; andCoprococcuswith gene expressions

of not only TCRs and IgG/IgA, but also major histocompatibility complex (MHC) and

complements. The high gene expression of IgA, a component of mucosal immunity,

in the CNS was unexpected. However, we observed substantial IgA positive cells and

deposition in the CNS, as well as a strong correlation between CNS IgA gene expression
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and serum anti-TMEV IgA titers. Here, changes in a small number of distinct gut bacteria,

but not overall gut microbiota, could affect acute and chronic immune responses, causing

AFM- and MS-like lesions in the CNS. Alternatively, activated immune responses would

alter the composition of gut microbiota.

Keywords: fecal microbiome, dysbiosis, viral model for multiple sclerosis, pattern matching, predictive

metagenome analysis, PICRUSt, RNA-Seq, gene expression profiles

INTRODUCTION

Virus infections can induce tissue damage either by direct
virus replication/killing of infected cells (viral pathology) or
by immune-mediated tissue damage (immunopathology) (1, 2).
Virus infections have been associated with acute and chronic
inflammatory central nervous system (CNS) diseases, including
acute flaccid myelitis (AFM) and multiple sclerosis (MS) (3, 4).
Although inflammation of the spinal cord has been observed in
both AFM and MS, lesions localize in the gray matter in AFM
and in the white matter in MS.

Recently, there have been increased reports of patients with
AFM, a disease of acute limb weakness, with magnetic resonance
imaging (MRI) abnormalities in the gray matter of the spinal
cord (5) and pleocytosis in the cerebrospinal fluid (CSF) (3,
6). AFM has been associated with infections of viruses that
belong to the family Picornaviridae, including enteroviruses
(4, 6, 7). We do not know the precise pathomechanism of
human AFM, partly because there are few autopsy reports (8).
Although the establishment of mouse models for AFM, using
enterovirus D68 (EV-D68), has been reported (5, 9–11), the
models may not replicate the human disease, because of the usage
of neonatal/suckling mice and non-natural pathogen of mice. In
addition, although viral pathology appears to cause CNS damage
in the EV-D68 model, the different susceptibility to the EV-D68
model depending on mouse strains (11) as well as rare isolation
of virus from the CSF in human AFM (4, 6) suggested a role of
host factors including immunopathology in AFM (12).

MS is a chronic inflammatory demyelinating disease in the
CNS, involving mainly the white matter of multiple regions,
including the optic nerve, the cerebrum, and the spinal cord
(13, 14). Although the precise etiology of MS remains unknown,
autoimmune responses and environmental factors, particularly
virus infections, have been associated with the pathogenesis of
MS; autoimmune and viral etiologies have been supported by
their animal models experimentally (15).

Gut microbiota has been shown to interact with the
immune system. When the activation of the immune system
is appropriate, this contributes to the elimination/regulation of
microbes. Dysbiosis, an altered state of bacterial community,
has been associated with health conditions and diseases
(16, 17). Dysbiosis could lead to excessive activation of the
immune system; uncontrolled immune responses can cause
immunopathology, particularly in the gastrointestinal tract.
For example, inflammatory bowel diseases (IBD), including
ulcerative colitis and Crohn’s disease, are considered to reflect
inappropriate interactions between microbes and the host (18,

19). Dysbiosis has also been suggested to affect distant anatomical
sites, including the CNS, which modulates CNS diseases (20).

Although dysbiosis can affect AFM by changing systemic
and/or mucosal immune responses, in theory, the precise role of
gut microbiota in AFM is currently unknown. On the other hand,
changes of gut microbiota have been reported in MS patients,
in which uncontrolled T-cell and antibody responses enhanced
by dysbiosis may exacerbate CNS inflammation (13, 20, 21).
However, we do not know precisely what microbial changes are
associated with the uncontrolled immune responses in MS.

Theiler’s murine encephalomyelitis virus (TMEV) is a natural
enteric pathogen ofmice and belongs to the family Picornaviridae
(22). Experimentally, TMEV infection induces a biphasic disease:
an AFM-like disease with gray matter inflammation during the
acute phase, about 1 week post infection (p.i.), and an MS-
like disease with white matter inflammation, which is confined
in the spinal cord, during the chronic phase, 1 month p.i.
During both acute and chronic phases of TMEV infection,
inflammatory cells mainly composed of T-cells and macrophages
have been observed in the spinal cords (23) with upregulation
of adhesion molecules on inflammatory cells and blood vessels
(24, 25). Immunologically, T-cell and antibody responses have
been shown to play a beneficial anti-viral role during the acute
phase, but play a detrimental role that induces immunopathology
during the chronic phase (26, 27).

The TMEV model is a unique experimental system where
one can examine how one single pathogen can induce two
distinct lesions in the spinal cord: gray matter inflammation
(poliomyelitis) and white matter inflammatory demyelination.
Although the latter has been extensively used as a viral model
for MS, the former has not been studied, despite being once
used as a mouse model for poliomyelitis in the 1940s (28–30).
In this study, we hypothesized that dysbiosis would be associated
with acute and chronic inflammation in the spinal cord induced
by TMEV. By comparing and contrasting AFM- and MS-like
diseases induced by a single natural pathogen of mice, TMEV,
we investigated the interactions between altered microbiome
and CNS transcriptome, which would give an insight into the
pathophysiology of AFM and MS.

We examined fecal microbiome and CNS transcriptome
during the acute phase (day 7) and chronic phase (day 35) in
TMEV infection. Although TMEV infection neither increased
microbial diversities nor resulted in distinct microbiome
patterns, it increased the genusMarvinbryantia on days 7 and 35
and the genus Coprococcus on day 35. The abundance of genus
Marvinbryantia was correlated with eight T-cell receptor (TCR)
genes on day 7 and with seven immunoglobulin (Ig) genes on
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day 35. On day 35, abundance of the genus Coprococcus was
also correlated with gene expressions of major histocompatibility
complex (MHC) and complements as well as TCRs, IgG isotypes,
and IgA, which were distinct from the genes identified with
the genus Marvinbryantia. Although the high gene expression
of IgA, a component of mucosal immunity, in the CNS was
unexpected, substantial IgA positive cells and IgA deposition
were observed in the spinal cord. IgA gene expression was
correlated with serum anti-TMEV IgA titers, although we found
no cross-reactivity between TMEV and Coprococcus antigens.
This is the first report suggesting that acute myelitis and chronic
neuroinflammation with IgA responses could be influenced by
the changes in bacterial abundance in a limited number of
bacteria, but not overall gut microbiota changes or dysbiosis.
However, one must not rule out an alternative scenario in which
the activated immune responses themselves alter the composition
of gut microbiota.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were approved by the Louisiana
State University Health Sciences Center-Shreveport (LSUHSC-
S, LA) and the Kindai University Faculty of Medicine (Osaka,
Japan) Institutional Animal Care and Use Committee (IACUC)
guidelines and followed the National Research Council’s Guide
for the Care and Use of Laboratory Animals, the Institute
of Laboratory Animal Resources (ILAR), and the guideline
“Fundamental Guidelines for Proper Conduct of Animal
Experiment and Related Activities in Academic Research
Institutions” from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

Animal Experiments
Female 5-week-old SJL/J mice (Jackson Laboratory, Bar Harbor,
ME) were inoculated intracerebrally (i.c.) with 2 × 105 plaque-
forming units (PFU) of the Daniels (DA) strain of TMEV (31).
Control mice were injected i.c. with phosphate-buffered saline
(PBS). On days 4, 7, and 35 after i.c. injection, we harvested spinal
cords and feces from TMEV-infected and control mice (n = 5
per group at each time point, between 8:00 a.m. and 10:00 a.m.).
Since TMEV can be transmitted by the fecal–oral route, control
and TMEV-infected mice were not co-housed. We determined
the mouse number per group by power analysis (32, 33) as well as
the published guidelines (34, 35) and IACUC protocols of Kindai
University and LSUHSC-S. All mice were maintained under
specific pathogen-free conditions in our animal care facility at
LSUHSC-S or Kindai University.

RNA Sequencing
We extracted total RNA from spinal cords by the RNeasy Mini
Kit (Qiagen, Valencia, CA), according to the manufacturer’s
instructions. DNase treatment was conducted with the RNase-
Free DNase Set (Qiagen). All samples were purified to an
absorbance ratio (A260/A280) between 1.9 and 2.1.

We conducted RNA sequencing and data processing as
described previously (24). Briefly, we processed 100 ng of

total RNA to mRNA library and sequenced on the Illumina
NextSeqTM 500 system (Illumina, San Diego, CA), according
to the manufacturer’s instructions. Raw sequence data were
mapped on reference genome and counted. The read count
data were normalized with DESeq2 package in R version 3.6.0
(36, 37). Transcriptome data have been deposited into the
Gene Expression Omnibus (GEO) at the National Center for
Biotechnology Information (NCBI, Bethesda, MD; accession
no. GSE120041, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgiacc=GSE120041).

16S rRNA Sequencing
We extracted DNA from feces of TMEV-infected and control
mice, using the QIAamp R© Fast DNA Stool Mini Kit (Qiagen),
according to the manufacturer’s instructions. DNA was amplified
by PCR, using a primer set for V3 and V4 region of 16S
rRNA. The primer sequences are as follows: forward primer
= 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
CCTACGGGNGGCWGCAG-3′; reverse primer = 5′-GTC
TCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTA
CHVGGGTATCTAATCC-3′. Amplified DNA samples were
purified and attached with dual indices and sequencing
adapters, using the Nextera R© XT Index Kit (Illumina). DNA
libraries were validated by the 2100 Bioanalyzer DNA 100 chip
(Agilent Technologies, Santa Clara, CA), quantified by the
Quant-iTTM Picogreen R© dsDNA Assay Kit (Thermo Fisher
Scientific, Waltham, MA), and sequenced by the MiSeq R© System
(Illumina). Raw sequence data were denoised, demultiplexed,
aligned, and visualized by QIIME 2 (38). Microbiome data have
been deposited into the Sequence Read Archive (SRA) at NCBI
(Bioproject accession no. PRJNA561088; Biosample accession
no. SAMN12607114-SAMN12607143).

Bioinformatics Analyses
Heat Map
A heat map was drawn to determine the expression patterns
of top 30 upregulated and top 20 downregulated genes on day
35 (Figure 1) or at each time point (Supplemental Figure 1)
in the spinal cord of TMEV-infected mice, and compared the
expression levels with those on the other two time points,
using R and the packages “gplots” and “genefilter.” We obtained
the logarithmic fold-change data of each TMEV-infected
mouse, compared with controls, using regulated-logarithm
transformation (rlog) function, which added pseudocount “1” to
all count data, in DESeq2 (37).

Principal Component Analysis (PCA)
PCA was conducted to compare the microbiome among the
samples, using an R function “prcomp,” as we described
previously (39). A graph of PCA with ellipses of an 80%
confidence interval was drawn, using R packages “dplyr” and
“ggplot2.” Factor loading for principal component (PC) 2 was
used to rank a set of genes correlated with PC2 values.

Alpha Diversity
We determined alpha diversity of microbiome of fecal samples
from TMEV-infected and control groups on days 4, 7, and 35
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FIGURE 1 | Central nervous system (CNS) transcriptome data of mice infected with Theiler’s murine encephalomyelitis virus (TMEV). (A) We harvested the spinal cord

from five TMEV-infected mice per day and analyzed the gene expression patterns compared with five control mice. We drew the heat map of the top 30 genes up- or

the 20 genes downregulated in the spinal cord of TMEV-infected mice on day 35 compared with those on days 4 and 7 by the R packages “gplots” and “genefilter.”

Red, blue, and white indicate upregulation, downregulation, and no change, respectively. Humoral immunity-related genes, including immunoglobulin (Ig) heavy (Igh),

light [kappa (Igk) and lambda (Igl)], and J (Jchain) chains, were highly upregulated in TMEV-infected mice on day 35. Lists of significantly up and downregulated genes

in TMEV-infected mice were shown in Supplemental Table 2 and Supplemental Figure 1. (B) Radar chart of cluster centers calculated by k-means clustering.

(Continued)
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FIGURE 1 | K-means clustering, using an R package “cclust,” divided the genes into 15 clusters based on the expression patterns. Genes in cluster 5 were

upregulated on day 35, which included Igs. Genes in cluster 6 were upregulated at all time points, which included innate immunity and major histocompatibility

complex (MHC) genes. Genes in clusters 10 and 13 were upregulated on days 7 and 35; Cluster 10 included innate immunity genes, CD3 γ chain, and Igs. Cluster 13

included cytokines, chemokines, and T-cell-related genes. In contrast, genes in clusters 9 and 11 were downregulated on days 35 and 7, respectively. The numbers

along the axis (−3 to 6) are log ratios, compared with controls. Lists of all genes classified into each cluster were shown in Supplemental Table 3.

(n = 5 per group), using QIIME 2. To compare the number of
genera, evenness, and the combination of them between groups,
we used Faith’s phylogenic diversity index, Pielou’s evenness
index, and Shannon index, respectively (40).

K-Means Clustering
K-means clustering was conducted to classify the genes based
on their expression patterns, using an R package “cclust” (41).
Davies-Bouldin index was used to determine the optimum
number of clusters (Supplemental Figure 2) (42).

Pattern Matching
To evaluate the association between gut microbiota and CNS
gene expressions, we conducted pattern matching by R (26)
to identify correlations between spinal cord gene expressions
(with statistical differences between TMEV-infected and control
groups, P < 0.05) and relative abundance of the genus Dorea
(day 4), the genus Marvinbryantia (days 7 and 35), or the genus
Coprococcus (day 35) in fecal samples (n = 10 on days 4 and 7;
n = 8 on day 35). We considered significantly strong positive
or negative correlations when genes’ correlation coefficients (r)
were more than 0.8 or less than −0.8, respectively (calculated
by R) with P < 0.05 (calculated by functions of Microsoft Excel,
Microsoft Corporation, Redmond, WA).

Enzyme-Linked Immunosorbent Assay
(ELISA)
Anti-TMEV Antibody Isotype Determination
When the mice were killed, blood was collected from the heart
of TMEV-infected mice. The levels of serum anti-TMEV isotype
antibodies were assessed by ELISA as described previously (43).
Ninety-six-well flat-bottom Nunc-Immuno plates, MaxiSorp
surface (Thermo Fisher Scientific) were coated with TMEV
antigen at 4◦C overnight. After blocking with 10% fetal bovine
serum (FBS) and 0.2% Tween 20 in PBS, 27- or 211-fold
diluted serum samples were plated. Horseradish peroxidase
(HRP)-conjugated anti-mouse IgG1 (Thermo Fisher Scientific),
IgG2b (Thermo Fisher Scientific), IgG2c (SouthernBiotech,
Birmingham, AL), or IgA (Thermo Fisher Scientific) was used
to detect binding anti-TMEV isotype antibodies. The reaction
was developed by adding o-phenylenediamine dihydrochloride
(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan),
and stopped with 1N HCl. Absorbance was read at 490 nm
on a Model 680 Microplate Reader (Bio-Rad Laboratories,
Hercules, CA).

Anti-Coprococcus Antibody
To investigate antibody responses to Coprococcus, we obtained
Coprococcus sp. (RD014227) from the Culture Collection
Division, Biological Resource Center, National Institute of

Technology and Evaluation (NITE, Chiba, Japan) and cultured
bacteria in modified Gifu Anaerobic Medium Broth (Nissui
Pharmaceutical, Tokyo, Japan) with 1% glucose at 37◦C for
3 days under an anaerobic condition, using the anaerobic
cultivation set, AnaeroPack R© (Mitsubishi Gas Chemical, Tokyo,
Japan). We centrifuged cultured bacteria at 3,000g for 10min,
washed with PBS, and suspended the bacteria pellet in PBS
[optical density (OD)600nm = 8.0]. We sensitized mice with
the bacterial solution (44) in PBS (200 µg bacterial protein/1
× 109 bacterial cells/200 µL/mouse) intraperitoneally (i.p.) or
with emulsified the bacterial solution in complete Freund’s
adjuvant (CFA) (final concentration: 200 µg bacterial protein/1
× 109 bacterial cells/200 µL/mouse) subcutaneously, followed
with a second bacterial i.p. injection 6 days after the first
sensitization. Three days after the second challenge, we harvested
the sera from the sensitized mice and used the sera as positive
controls for anti-Coproccocus antibody ELISA. To prepare
Coprococcus ELISA antigen, we centrifuged the bacterial solution,
washed with PBS twice, and sonicated the pellet suspended in
carbonate-bicarbonate buffer (pH 9.5) with 1% TritonX-100.
Then, following centrifugation at 20,000g for 10min, we collected
the supernatant and used it as ELISA antigen. We coated
Maxisorp F8 stripes (Thermo Fisher Scientific) with Coprococcus
antigen (5 µg/well) overnight and added diluted mouse sera
(1:10, 100 µL/well) from naive, TMEV-infected, or Coprococcus-
sensitized mice. We detected anti-Coprococcus antibodies with
HRP-conjugated goat anti-mouse IgG (H+L) (Thermo Fisher
Scientific). We used the TMB substrate reagent set (BD
Bioscience, Franklin Lakes, NJ) and measured absorbance at
450 nm.

Competitive ELISAs
Competitive ELISAs were performed as described previously
(45, 46). Briefly, our standard anti-TMEV antibody ELISA was
performed as described above with the following modifications:
We incubated diluted sera from TMEV-infected mice with
TMEV antigen, Coprococcus antigen, Helicobacter pylori antigen
(47), or myelin oligodendrocyte glycoprotein (MOG)35−55

peptide (United BioSystems, Herndon, VA) (48) (final
concentration of antigen, 20 µg/120 µL) in PBS containing
10% FBS and 0.2% Tween 20 at 4◦C overnight. The mixtures
were centrifuged at 10,000 rpm (7,707g) for 5min, and the
supernatants were reacted with TMEV antigen-coated wells.

Histology
We perfused mice with PBS, followed by a phosphate-
buffered 4% paraformaldehyde (FUJIFILMWako Pure Chemical
Corporation) solution, and harvested the spinal cord. We stained
4-µm paraffin sections with Luxol fast blue (Solvent blue 38; MP
Biomedicals, Irvine, CA) for myelin visualization, as described
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previously (49). For IgA detection, we incubated the sections
with rat anti-mouse IgA monoclonal antibody (1:200 dilution,
clone 11-44-2, Beckman Coulter, Brea, CA) and anti-rat IgG-
peroxidase (Nichirei Bioscience, Tokyo, Japan). We visualized
the antibody/antigen complexes using 3,3’-diaminobenzidine
(DAB, FUJIFILM Wako Pure Chemical Corporation). As
negative and positive controls for spinal cord inflammatory
demyelinating lesions, we used sections from naive mice or
mice with experimental autoimmune encephalomyelitis (EAE)
induced with myelin proteolipid protein (PLP) 139−151 peptide
in CFA as described previously (49).

Statistics
Statistical analyses were conducted by calculating the Student
t-test or analysis of variance (ANOVA), using the OriginPro
2018b (OriginLab Corporation, Northampton, MA). P < 0.05
was considered as a significant difference.

RESULTS

Distinct Upregulation of TCR and Ig Genes
During the Acute and Chronic Phases of
TMEV Infection
TMEV has been known to induce a biphasic disease in the CNS:
acute polioencephalomyelitis in the gray matter around 1 week
p.i. and chronic inflammatory demyelinating disease in the white
matter during the chronic phase, around 1 month p.i. Although
the lesion distributions of the two phases differ (gray matter vs.
white matter), it is unclear what factors could contribute to the
difference. We determined the gene expression profiles in the
CNS of TMEV-infected mice during the time course by RNA
sequencing (24).

Prior to disease onset, on day 4, innate immunity-related
genes, including chemokines and interferon (IFN)-
induced genes, were upregulated in TMEV-infected mice
(Supplemental Figure 1A and Supplemental Tables 1, 2A).
During the acute phase, on day 7, in addition to continuous
upregulation of innate immunity-related genes, T-cell-related
genes, including TCRβ chain (Trb), were upregulated
(Supplemental Figure 1B and Supplemental Table 2B). In
contrast, during the chronic phase, on day 35, the heat map
showed that most highly upregulated genes were humoral
immunity-related genes, including Ig heavy (Igh) chains (IgA,
IgG1, IgG2b, and IgG2c), light chains [kappa (Igk) and lambda
(Igl)], and J (Jchain) chain (Figure 1A, Supplemental Figure 1C,
and Supplemental Table 2C).

To classify the genes based on time-course expressions, we
conducted k-means clustering (Figure 1B). K-means clustering
of the CNS transcriptome data divided the genes into 15
clusters whose number was determined by Davies-Bouldin index
(Supplemental Figures 2, 3). A radar chart of k-means clustering
showed that genes in cluster 5 were upregulated on day 35, genes
in cluster 6 were upregulated at all time points, and genes in
clusters 10 and 13 were upregulated on days 7 and 35. Cluster
5 included a large number of Igs, such as Igkc, Igha, and Ighg2c.
Cluster 6 included innate immune genes, such as IFN-induced

proteins with tetratricopeptide repeats (Ifit1 and Ifit3) and IFN
regulatory factor 7 (Irf7), and MHCs, such as H2-Q6, H2-K1,
and H2-Ab1 (Supplemental Table 3). Cluster 10 included IFN-
inducible genes, such as radical S-adenosyl methionine domain
containing 2 (Rsad2), Ifi44 and MX dynamin-like GTPases (Mx1
andMx2), CD3 γ chain (Cd3g), and Igs, such as Igkj3, Igkv14-111,
and Ighd4-1. Cluster 13 included cytokines (e.g., Il10, Il17ra, and
Tnf ), chemokines (e.g., Ccl3, Ccl6, and Ccr1), and T-cell-related
genes (e.g., Cd3d, Cd4, and Cd8a). In contrast, genes in clusters
9 and 11 were downregulated in the TMEV-infected group on
days 35 and 7, respectively. Representative genes in these clusters
were as follows: cluster 9, mitochondrially encoded cytochrome
c oxidases (mt-Co1, 2, and 3), myelin proteolipid protein 1
(Plp1), and glycoprotein m6b (Gpm6b); cluster 11, microRNA
(Mir6236), myelin protein zero (Mpz), and mitochondrial leucyl-
tRNA synthetase (Lars2).

No Changes in Overall Microbiome
Patterns Among the TMEV-Infected and
Control Groups
To determine whether TMEV infection changes gut microbiota,
we conducted 16S rRNA sequencing, using fecal samples.
First, we compared overall microbiome patterns among the
samples by conducting PCA of microbiome data from the
TMEV-infected and control groups at all time points. Although
all samples from the TMEV-infected group on day 35 had
low PC1 and PC2 values, PCA did not separate any groups
as a distinct population among the samples, suggesting no
overall microbiota changes among the groups (Figure 2A). We
also conducted PCA comparing the following sets of fecal
microbiome data: (1) the control groups on days 4, 7, and 35
(Supplemental Figure 4A); (2) the TMEV-infected and control
groups on day 4 (Supplemental Figure 4B); (3) the TMEV-
infected and control groups on day 7 (Supplemental Figure 4C);
and (4) the TMEV-infected and control groups on day 35
(Supplemental Figure 4D).We found that all control samples on
days 4, 7, and 35 had similar PC1 and PC2 values and that TMEV
samples were not separated as a distinct population at any time
points by PCA.

Next, we conducted PCA using all microbiome data (days
4, 7, and 35) from the TMEV-infected groups. We found that
PC2 values increased over the time course from day 4 to day
35 (Figure 2B) and that proportion of variance of PC1 and PC2
was 56% and 25% of variance among the samples, respectively
(Figure 2C). Thus, PC2 values seemed to reflect the presence of
inflammation in the CNS among the TMEV-infected groups. We
calculated factor loading to rank which bacteria in microbiota
could contribute to PC2 values (Figure 2D). At the genus level,
we found that abundance of two taxa of bacteria that belong to
the family S24-7 correlated with PC2 values positively and that of
the genus Anaeroplasma correlated with PC2 values negatively.

No Decrease in Bacterial Diversity in TMEV
Infection
To compare the fecal microbial diversities among the TMEV-
infected and control groups, we determined alpha diversity using
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FIGURE 2 | Principal component analysis (PCA) of fecal microbiome data from

the TMEV-infected and control groups. (A) When PCA was conducted using

all samples from TMEV-infected and control groups on days 4, 7, and 35, PCA

did not separate any sample groups as a distinct population, although

TMEV-infected group on day 35 had low principal component (PC) 1 and PC2

values. Ellipses indicated an 80% confidence interval of each group. (B) When

PCA was conducted using only samples from TMEV-infected groups, PC2

values increased over the time course from day 4 to day 35. (C) Proportion of

variance showed that PC1 and PC2 explained 56 and 25% of variance among

the samples, respectively. (D) Factor loading showed the correlations between

relative abundance of each bacterial taxon to PC2 values. Increased bacteria

belong to the family S24-7 and decreased bacteria belong to the genus

Anaeroplasma correlated with PC2 values. We conducted PCA of fecal sample

data (n = 5 per group at each time point), using an R function “prcomp.”

Graphs with ellipses were drawn, using R packages “dplyr” and “ggplot2”.

three indices. In Faith’s phylogenetic diversity index comparing
the richness (the number of bacterial genera), we did not
find significant differences between the TMEV-infected and

FIGURE 3 | Time course analyses of bacterial alpha diversities of microbiome

among TMEV-infected and control groups. Using QIIME 2, we compared the

number of genera, evenness, and the combination of them between the

groups (n = 5) by Faith’s phylogenetic diversity index (A), Pielou’s evenness

index (B), and Shannon index (C), respectively. (A) The numbers of bacterial

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 113861

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Microbiome in MS Viral Model

FIGURE 3 | genera differed significantly only between control groups days 4

and 35 (*P < 0.05, ANOVA). (B) We found significantly increased evenness in

the TMEV-infected group on day 35 compared with all the other groups

(*P < 0.05, ANOVA). (C) We found increased Shannon indices in

TMEV-infected groups over the time course, but no statistical differences

between the groups (P = 0.35, control vs. TMEV groups on day 35).

control groups, but only between the control groups on days
4 vs. 35 (Figure 3A). In Pielou’s evenness index comparing the
evenness of amounts of bacterial genera, the index was increased
significantly in the TMEV-infected group on day 35, compared
with the other groups (P < 0.05, Figure 3B). In Shannon index
comparing overall changes of diversity among the groups, we
found increases in the indices in the TMEV-infected groups over
the time course, but no statistical difference between the groups
(P = 0.35, the TMEV-infected vs. control groups on day 35,
Figure 3C).

Three Bacterial Genera Changed in TMEV
Infection
We drew a cumulative bar plot for relative abundance
of microbiome in each sample. At the phylum level,
although the phylum Bacteroidetes (Figure 4A, blue) and
the phylum Tenericutes (Figure 4A, red) were upregulated and
downregulated in TMEV-infected mice on day 35, respectively,
the changes were not statistically significant. We also did not
find significant changes in bacterial abundance at the order
level in any groups (Supplemental Figure 5). At the genus
level, although two taxa that belong to the family S24-7, phylum
Bacteroidetes (Figure 4B, blue), and one genus Anaeroplasma
(Figure 4B, red) that belongs to the phylum Tenericutes
were increased and decreased in the TMEV-infected groups,
respectively, the changes were not statistically significant. On
the other hand, the TMEV-groups had significant differences in
abundance of three distinct genera compared with the control
group: a decrease in Dorea on day 4 (P < 0.01) (Figures 4B, 5,
light blue); an increase inMarvinbryantia on days 7 and 35 (P <

0.05) (Figures 4B, 5, magenta); and an increase in Coprococcus
on day 35 (P < 0.05) (Figures 4B, 5, purple).

Correlations of Abundance of Three
Bacterial Genera With Distinct Immune
Gene Expressions in the CNS
To determine whether the changes in fecal microbiome were
associated with gene expressions in the CNS, we conducted
pattern matching between relative abundance of the three
bacterial genera and CNS transcriptome data (Figure 6 and
Supplemental Table 4). On day 4, abundance of the genus
Dore correlated with 525 genes (193 upregulated and 332
downregulated genes), including CD109, in the CNS (Figure 6).
On day 7, abundance of the genus Marvinbryantia correlated
with 129 genes (91 upregulated and 38 downregulated genes);
among immune genes, we found strong correlations with eight
TCR genes, including TCR δ chain (Trdj1) and one IgA gene
(Igha) (Figure 6). On the other hand, on day 35, abundance of the

FIGURE 4 | Relative abundance of fecal bacteria in the TMEV-infected and

control groups. Fecal DNA was extracted and analyzed the microbiome by

16S rRNA sequencing. (A) At the phylum level, Bacteroidetes (blue) and

Tenericutes (red) seemed to be increased and decreased in the TMEV-infected

groups, respectively, without statistical differences. (B) At the genus level, on

day 35, two taxa of the family S24-7 (blue) and the genus Anaeroplasma (red)

seemed to be increased and decreased in the TMEV-infected group,

respectively, without statistical differences.

genus Marvinbryantia correlated with 43 genes (30 upregulated
and 13 downregulated genes), which included only one TCR
gene (Traj48) and seven genes of variable regions of Ig light or
heavy chains. Additionally, on day 35, an abundance of the genus
Coprococcus correlated with 3,632 genes (2,501 upregulated and
1,131 downregulated genes); we found strong correlations with
19 TCR genes and 93 Ig genes, which consisted of six constant
region genes, including Igha, Ighg1, and Ighg2c and 87 variable
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FIGURE 5 | Three bacterial genera changed their relative abundance in the TMEV-infected group, compared with controls. Following the TMEV infection, the genus

Dorea was decreased on day 4 (**P < 0.01) and the genus Marvinbryantia was increased on days 7 and 35 (*P < 0.05). The genus Coprococcus was increased on

day 35 (*P < 0.05). We compared relative abundance of fecal microbes at the genus level using five fecal samples per group between TMEV-infected and control

groups and determined the statistical differences using Student’s t-test.

regions of heavy and light chains (Figure 6). Most of these TCR
and Ig genes were correlated with the genus Coprococcus only,
although Igha and Iglv2 expressions were also correlated with
the genus Marbinbryantia on days 7 and 35, respectively. The
abundance of the genus Coprococcus also correlated with other
immune genes, particularly genes related toMHC class I and class
II, complements, and toll-like receptors (TLRs) (Figure 6, list).

Antibody Isotype Responses in TMEV
Infection
The RNA-seq data of immune-related genes, including TCR
and Ig, during the acute and chronic phases of TMEV
infection were consistent with the findings previously reported
using various methods, such as ELISA, flow cytometry, and
immunohistochemistry in TMEV research (15, 50). We have
validated representative RNA-seq data, using real-time PCR,
including gene expressions of Ig heavy chains of IgG1, IgG2b,
IgG2c, IgA, J chains, and TCRs (Supplemental Figure 6).
Since TMEV-specific IgG-positive B and plasma cells have
been demonstrated in TMEV infection (51), we anticipated

upregulation of heavy chains (IgG1, G2b, and G2c) and κ light
chain. On the other hand, the gene expression of IgA and J chain,
reflecting the production of IgA dimers, components of mucosal
immunity, was not anticipated in the CNS of TMEV infection.

We tested whether the expression data of Ig genes could
correlate with serum anti-TMEV IgG1, IgG2b, IgG2c, and IgA
antibody titers (Figure 7). We found that all Ig isotype titers were
correlated significantly with the gene expression data, suggesting
that increased TMEV-specific Ig isotype responses explain the
upregulation of Ig isotype gene expressions in the CNS. Thus,
anti-TMEV antibody-producing cells seemed to infiltrate in the
CNS, preferentially.

IgA Deposition in the Spinal Cord During
the Chronic Phase of TMEV Infection
Although infiltration of T-cells and IgG-positive B cells in
the CNS has been known during the acute and chronic
phases of TMEV infection (15, 50), IgA responses have never
been investigated in TMEV infection, since IgA response,
in general, has been associated with mucosal immunity,
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FIGURE 6 | Correlations of relative abundance of three fecal bacterial genera with CNS gene expressions. The correlations were determined by pattern matching

between fecal microbiome and CNS transcriptome data. (Top) Representative genes correlated with bacterial relative abundance: day 4, Dorea, negative correlation

with Cd109; day 7, Marvinbrynantia positive correlation with TCRδ (Trd); and day 35, Coprococcus positive correlation with Ig heavy chain α gene (Igha) and Ig heavy

chain γ1 (Ighg1). (Bottom) A list of representative genes correlated with relative abundance of three genera positively (↑, r > 0.8), or negatively (↓, r < −0.8); complete

gene lists were shown in Supplemental Table 4. We calculated correlation coefficients between bacterial relative abundance vs. CNS gene expressions that were

significantly different between control and TMEV groups by R and listed the correlated genes whose P values < 0.05.
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FIGURE 7 | Anti-TMEV antibody isotype responses. Correlations between CNS Ig isotype expressions and serum anti-TMEV isotype antibody titers. During the

chronic phase of TMEV infection, gene expression levels of constant regions of heavy chains of IgG1 (Ighg1), IgG2b (Ighg2b), IgG2c (Ighg2c), and IgA (Igha) were

correlated with their anti-TMEV antibody isotype titers, significantly (P < 0.01, n = 10). We quantified the gene expression levels and anti-TMEV antibody titers by

RNA-seq and enzyme-linked immunosorbent assays (ELISA, absorbance at 490 nm), respectively.

not neuroinflammation. We investigated the localization
of IgA-producing cells as well as IgA deposition using
immunohistochemistry with sections of the intestine and
spinal cord from uninfected control mice as positive and
negative controls. In control mice, IgA-positive cells were
present in the lamina propria of the intestine (Figure 8A), but
absent in the spinal cord (Figure 8B). During the chronic phase
of TMEV infection, we observed demyelinating lesions in the
white matter of the spinal cord with perivascular cuffing (i.e.,
inflammation) and meningitis (Figure 8C). In the demyelinating
lesions, we detected a substantial number of intense IgA-positive
small round cells and larger cells with abundant cytoplasm,
which were present in the meninges and perivascular cuffing,
and infiltrating in the parenchyma (Figures 8D,G,H). We also
detected extracellular IgA deposition in the demyelinating
lesions. During the acute phase, TMEV induced inflammation
in the gray matter and meninges, where IgA staining was not
evident (data not shown). We also tested whether IgA positive
cells could be seen in chronic inflammatory demyelinating
lesions of the autoimmune model for MS, EAE induced with PLP
sensitization in SJL/J mice. Although we observed inflammatory
demyelinating lesions in the spinal cord of EAEmice, comparable
to TMEV-induced demyelination (Figure 8E), IgA staining was
undetectable in the EAE lesions (Figures 8F,I,K).

No Cross-Reactive Antibody Isotype
Responses to Coprococcus in TMEV
Infection
Coprococcus, a component of human fecal microbiota, has been
shown to potentially associate with humoral immune responses.
Antibody responses to Coprococcus have been reported to differ
in patients with IBD, compared with controls. Coprococcus
has also been reported to interact with immunoglobulin in
vitro. Since the gene expressions of several Ig heavy chain
isotypes were correlated with Coprococcus abundance during
the chronic phase of TMEV infection, we investigated how
Coprococcus could affect antibody responses in TMEV infection.
First, we established the ELISA system to detect anti-Coprococcus
antibody, using sera fromCoprococcus-sensitizedmice as positive
controls (44). We found that, although some sera from
TMEV-infected mice seemed to react Coprococcus antigens
weakly, we did not observe significant anti-Coprococcus antibody
responses in sera from TMEV-infected mice (Figure 9A).
Next, we tested whether anti-TMEV antibodies could cross-
react with Coprococcus antigen. We incubated sera from
TMEV-infected mice with Coprococcus antigen, positive control
TMEV antigen, or two negative control antigens: H. pylori
antigen or MOG peptide. Following overnight incubation, we
conducted anti-TMEV isotype antibody ELISA to see whether
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FIGURE 8 | IgA immunohistochemistry in inflammatory demyelinating lesions in two models for multiple sclerosis. (A) We used IgA-producing cells in the lamina

propria of the small intestine from uninfected control mice as positive controls for IgA immunohistochemistry. (B) In control mice, we did not detect IgA-positive cells in

the spinal cord. (C,D) During the chronic phase of TMEV infection, inflammatory demyelinating lesions were present in the white matter of the spinal cord, where IgA

strongly positive cells (arrows) were present in demyelinating parenchyma (D), meningitis (G), and perivascular cuffing (H). IgA deposition was also observed in

demyelinating lesions (D). (E,F) Chronic inflammatory demyelinating lesions in the white matter of the spinal cord in experimental autoimmune encephalomyelitis (EAE)

induced with myelin proteolipid protein (PLP). Despite the presence of inflammatory demyelination, there was no IgA immunoreactivity in the parenchymal (F),

meningeal (I), or perivascular (K) inflammatory lesion of the spinal cord. Scale bar = 100µm (A–F) and 20µm (G–K). (A,B,D,F–K), IgA immunohistochemistry. (C,E),

Luxol fast blue stain. Dotted lines, demyelinating lesions. Arrowheads, meningitis. These sections are representative of naive, TMEV-infected, or EAE mice (n = 3–5

per group).

adsorption with these antigens could decrease serum TMEV
isotype antibody responses. Only the adsorption of TMEV
antigen decreased anti-TMEV antibody isotype responses (IgG1,
Figure 9B; IgG2c, Figure 9C; and IgA, data not shown). Thus,
anti-TMEV antibodies did not cross-react with Coprococcus
antigen in vitro.

DISCUSSION

In the current study, we first demonstrated distinct gene
expression patterns on days 4, 7, and 35, using TMEV-infected
CNS transcriptome data by k-means clustering with a radar
chart (Figure 1). We found that T-cell-related genes, including
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FIGURE 9 | Anti-Coprococcus antibody responses in TMEV infection. (A)

Using ELISA plates coated with Coprococcus antigen, we titrated serum

anti-Coprococcus antibody responses in naive mice (n = 7), chronically

TMEV-infected mice (n = 5), and Coprococus-sensitized mice (n = 10). We

(Continued)

FIGURE 9 | did not find significantly increased anti-Coprococcus antibody

responses in TMEV infection (P = 0.65, ANOVA, compared with naive mice).

*P < 0.05, **P < 0.01, ANOVA, compared with Coprococcus-sensitized mice.

(B,C) We conducted anti-TMEV IgG1 (B) and IgG2c (C) isotype antibody

ELISAs using sera in chronic TMEV infection. We incubated the sera overnight

in the absence (None, white bar) or the presence of TMEV antigen (black bar),

Coprococcus antigen (gray bar), Helicobacter pylori antigen (hatched bar), or

myelin oligodendrocyte glycoprotein (MOG) peptide (cross-hatched bar). Only

the adsorption of TMEV antigen decreased anti-TMEV antibody isotype

responses. Shown are mean + SE of antibody titers of five sera per group.

TCR genes during the acute phase and Ig-related genes during
the chronic phase, were highly upregulated, comprising distinct
clusters 13 and 5, respectively. Next, we investigated that changes
in overall gut microbiome (i.e., dysbiosis) could be associated
with these unique gene expression patterns during the time
course of TMEV infection, using PCA and alpha diversity indices.

Although overall changes in microbiome patterns by PCA
have been demonstrated in many diseases having associations of
microbiota with pathophysiology, we did not identify samples
from TMEV-infected groups as distinct population by PCA
(Figure 2). We found increased PC2 values over the time course
by PCA of only TMEV microbiome data; the PC2 values might
reflect the presence of CNS inflammation. The PC2 values were
correlated with increased two taxa of the family S24-7 and
decreased Anaeroplasma genus. The family S24-7, which belongs
to the phylum Bacteroidetes, is anaerobic, non-motile, Gram-
negative bacteria and present within the human gut (52). The
genus Anaeroplasma, which belongs to the phylum Tenericutes,
is anaerobic, non-motile, and Gram-negative bacteria (53). The
analysis of relative abundance of bacteria at the genus level also
showed increased S24-7 and decreased Anaeroplasma genera
over the course of TMEV infection (Figure 2B). However, since
there were no statistical differences in relative abundance of
these bacteria among TMEV and control groups, the pathogenic
roles of S24-7 and Anaeroplasma could be limited, although
they might play a minor role in CNS inflammation following
TMEV infection.

We observed no significant changes in alpha diversity of
microbiome by Shannon index in TMEV-infected mice, although
we found increases in evenness by Pielou’s index over the time
course (Figure 3). In most microbiota-associated diseases and
health conditions, such as IBD and obesity, alpha diversity has
been reported to be decreased (54, 55). In TMEV infection, one
research group also reported the decreased diversity in fecal
microbiota (56, 57). Although the difference between our results
and others might be due to the environment and location of
mouse breeding such as diet and stress (58), our results were
consistent with findings in human MS by Miyake et al. (59), in
which the diversity did not show significant difference in the feces
of MS patients. In human AFM, two research groups examined
microbial flora, using nasopharyngeal swabs or CSF samples to
find the pathogens to cause AFM, rather than to characterize
microbiome (60, 61), where no consistent changes in microbiota
were observed because of a limited number and amount of
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samples. Breitwieser et al. (60) identified potential involvement
of Haemophilus influenzae and Staphylococcus aureus in one
swab sample each and discussed that bacterial infections or their
immune responses may trigger pathogenic processes.

Since overall changes in gut microbiome seemed not to
contribute to TMEV pathophysiology, we tested whether relative
abundance of distinct bacterial genera could be associated with
TMEV-induced neuroinflammation. During the time course
of TMEV infection, we identified the significant changes of
abundance of three bacterial genera, Dorea,Marvinbryantia, and
Coprococcus in TMEV-infected group (Figure 5). All the three
genera, which were isolated from human feces, are anaerobic,
non-motile and non-spore-forming Gram-positive bacteria and
belong to the family Lachnospiraceae (62–65). Using pattern
matching (Figure 6), we found strong correlations between
relative abundance of the three bacterial genera and CNS
gene expressions, including immune-related genes. On day 4,
decreased Dorea correlated with expressions of several immune-
related genes, including CD109 (66). Abundance of the genus
Marvinbryantia correlated with eight TCR genes, including α, β,
γ, and δ chains, only one Ig gene on day 7, and with only one TCR
gene and seven Ig genes on day 35. These results were consistent
with the heat map and k-means clustering data, where TCR and
Ig genes were most highly upregulated in the CNS on days 7 and
35, respectively. Except for Igha, all TCR and Ig genes correlated
with Marvinbryantia abundance were variable regions of TCR
and Ig genes. It will be interesting to test whether these TCR and
Ig genes could be used to recognize Marvinbryantia and, if so,
whether the TCRs and Igs could also recognize TMEV antigens
by molecular mimicry between bacterial and viral antigens (67).

Although the genus Marvinbryantia correlated mainly with a
limited number of TCR and Ig genes, abundance of the genus
Coprococcus correlated strongly with a larger number of TCR
and Ig genes: 19 TCR genes and 93 Ig genes including IgA and
J chains. Most of the TCR and Ig genes were correlated with
the genus Coprococcus only, although Igha and Iglv2 expressions
were also correlated with the genus Marbinbryantia on days 7
and 35, respectively. Marbinbryantia abundance was related to
mostly variable regions of a small number of TCR or Ig genes.
On the other hand, Coprococcus abundance correlated with both
variable and constant regions of Ig; increased Coprococcus may
be associated with polyclonal activation of B cells. In addition,
we found significant associations of Coprococcus abundance
with other immune genes, including MHC class I and II
and complements as well as chemokines, cytokines, and TLRs
(Figure 6, bottom list). Thus, increased Coprococcus may be
linked to a more general pro-inflammatory condition involving
not only T and B cells, but also other immune components
including antigen presenting cells.

The upregulated immune genes in the CNSwere likely TMEV-
specific, since upregulation of TMEV-specific T-cell and antibody
responses have been demonstrated in the CNS during the acute
and chronic phases of TMEV infection (15, 50). Consistent
with previous findings, we found that the upregulated IgG-
isotype gene expressions were highly correlated with TMEV-
specific IgG isotype titers (Figure 7). For the first time, we
demonstrated that increased IgA gene expression was correlated
with anti-TMEV IgA titer. Using immunohistochemistry, we

found that IgA-positive cells and IgA deposition were observed
in and around inflammatory demyelinating lesions (Figure 8).
Currently, we do not know whether IgA in the lesions
plays a protective or pathogenic role in the CNS of TMEV
infection. In EAE, an autoimmune model for MS, recirculating
intestinal IgA-producing cells have been demonstrated to
regulate neuroinflammation (68).

Although we do not know how certain bacteria in the
gut can influence the gene expressions in the CNS, one
straightforward explanation is that gut bacteria affect mucosal
immunity, resulting in the activation of systemic immune cells,
which leads to CNS infiltration. Among the three bacteria
with altered abundance in the gut microbiota in TMEV
infection, the physiological and pathogenic roles of Dorea and
Marvinbryantia genera are largely unknown. On the other
hand, the genus Coprococcus is a component of human fecal
microbiota (69, 70), and their increased abundance was observed
in patients with neuromyelitis optica (NMO), but not in
MS, compared with healthy controls (71, 72). NMO is an
inflammatory demyelinating disease, in which autoantibody
against the water channel protein aquoaporin-4 has been
associated with pathogenesis. In NMO, other bacteria including
Clostridium perfringens were also significantly increased in feces,
where several immunoregulatory roles of the bacteria have
been proposed, although the role of the genus Coprococcus
is unknown.

To clarify the role of Coprococcus in TMEV infection, we
were not able to use standard approaches using germ-free (GF)
mice or antibiotic cocktail treatment (73–77), since (1) GF mice
and antibody treatment have been shown to increase blood–
brain barrier (BBB) permeability (78); (2) GF mice have several
immunological abnormalities even in naive mice, for example,
TLR responses and T helper (Th) 17 responses which have
been shown to play a key role in TMEV infection (43, 79); (3)
depletion of microbiota by antibiotic cocktail have been shown to
be lethal in TMEV infection (56); and (4) mono-colonization of
GF mice with the non-spore-forming anaerobic Coprococcous is
technically difficult. Thus, we decided to take a different approach
by investigating antibody responses to Coprococcus.

Previously, agglutinating antibodies to Coprococcus have been
found more frequently in sera of patients with Crohn’s disease
(44, 80, 81). Sera from Crohn’s disease had not only specific
Coprococcus binding of IgG through Fab portion, but also non-
specific Coprococcus binding through Fc portions, the latter
of which was similar to Staphylococcus aureus protein A (80).
Thus, Coprococcus potentially has unique interactions with
antibodies. Here, we tested whether (1) anti-TMEV isotype
antibodies could cross-react with Coprococcus and (2) sera from
TMEV-infected mice contained anti-Coprococcus antibody titers.
In the current experiments, however, we found neither cross-
reactivities between anti-TMEV vs. anti-Coprococcus antibodies
nor induction of anti-Coprococcus antibody responses in TMEV
infection, although these negative results could be attributed
to technical difficulties in extraction of Coproccoccus antigen
(44). Thus, we do not know how increased Coprococcus
could be associated with antibody responses. Coprococcus
might have a function to increase antibody isotype responses,
particularly IgA production, which have been reported in other
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FIGURE 10 | Working hypothesis of communication between the CNS and

gut microbiota mediated by immune system. Acute or chronic CNS infection

TMEV results in inflammation of the gray matter or white matter of the spinal

cord, leading to diseases mimic acute flaccid myelitis (AFM) or multiple

sclerosis (MS), respectively. Alteration of a limited number of distinct bacteria in

gut microbiota was associated with different immune gene expressions during

the acute and chronic phases. The genus Marvinbryantia abundance

correlated with gene expressions of distinct T-cell receptors (TCR) and

immunoglobulin (Ig) A during the acute phase and those of Igs during the

chronic phase. The genus Coprococcus abundance was associated not only

TCR and Ig (IgG isotypes and IgA) but also other immune related genes,

including major histocompatibility complex (MHC) and complements (C’).

Here, alteration of a small number of gut bacteria may affect distinct immune

responses and then lesions in the CNS, although we do not know the precise

pathophysiology, particularly the CNS upregulation of IgA, which is a

component of mucosal immunity. Alternatively, activated immune response

would alter composition of gut microbiota.

gut bacteria including Clostridia and segmented filamentous
bacteria, previously (76). In EAE, a two-phase scenario of
neuroinflammation has been proposed, where (1) gut microbiota
initiates/expands autoimmune Th17 responses in gut-associated
lymphatic tissue (GALT), then, (2) this leads to Th17-cell
infiltration into the CNS (73). Similarly, in TMEV infection,
distinct gut microbiota might initiate/expand IgA-producing
cells in GALT, leading to IgA-producing cell infiltration and IgA
deposition in the CNS.

Other than alterations of immune responses by microbiota,
there are several possibilities that microbiota can affect
viral diseases. For example, bacterial components, including
lipopolysaccharide, have been shown to promote enteric virus
replication and systemic pathogenesis (82). In addition, different
enzymes from various bacteria have been shown to enhance virus
infectivity and pathogenicity in vivo (83, 84). We performed
predictive metagenome profiling, using microbiome data of
TMEV-infected groups by PICRUSt. We were able to predict
the changes in two pathways, arachidonic acid metabolism and
ether lipid metabolism; we identified sets of bacteria that belong
to the order Clostridiales were involved in the two pathways
(Supplemental Figure 7). Currently, however, we do not know
how these pathway changes in the gut microbiota could affect
neuroinflammation in TMEV infection, although it is intriguing
that changes in arachidonic and lipid metabolism in the CNS
have been reported in MS ant the TMEV model (85–89).

In conclusion, we found changes of a limited number
of distinct bacterial genera in feces during the acute and
chronic phases of TMEV infection. Each bacterial genus

identified was associated with upregulation of different TCR
and IgG/IgA gene expressions in the spinal cord (Figure 10).
This is the first report suggesting that a limited number of
gut bacteria could be associated with distinct TCR and Ig gene
expressions and influence the inflammatory events, particularly
IgA upregulation, which were observed in AFM-like and MS-
like diseases in the spinal cord. However, we cannot rule out
an alternative scenario for our findings in which activated
immune responses could be altering the composition of the gut
microbiota. Future experiments will further tease out these time-
dependent communications between certain gut bacteria and
the immune system, providing possible therapeutic strategies for
the management and treatment of inflammation associated with
AFM and MS-like diseases.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the
Gene Expression Omnibus (GEO) at the National Center
for Biotechnology Information (NCBI, Bethesda, MD, USA;
accession no. GSE120041, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgiacc=GSE120041) and the Sequence Read Archive
(SRA) at NCBI (Bioproject accession no. PRJNA561088;
Biosample accession no. SAMN12607114-SAMN12607143).

ETHICS STATEMENT

All animal experiments were approved by the Louisiana
State University Health Sciences Center-Shreveport (LSUHSC-
S, LA, USA) and the Kindai University Faculty of Medicine
(Osaka, Japan) Institutional Animal Care and Use Committee
(IACUC) guidelines and followed the National Research
Council’s Guide for the Care and Use of Laboratory Animals,
the Institute of Laboratory Animal Resources (ILAR), and
the guideline ‘Fundamental Guidelines for Proper Conduct of
Animal Experiment and Related Activities in Academic Research
Institutions’ from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

AUTHOR CONTRIBUTIONS

IT, KN, and FG conceived and supervised the project. FS, SK, YN,
AK, and IT designed and conducted immunological experiments.
SO andMF conducted bioinformatics analyses. A-MP conducted
immunohistochemistry and Coprococcus experiments. SO and
IT wrote the manuscript. All authors read and approved the
final manuscript.

FUNDING

This work was supported by grants from the National Institute
of General Medical Sciences COBRE Grant (8P20 GM 103433,
IT), the KAKENHI from the Japan Society for the Promotion
of Science [Grant-in-Aid for Scientific Research (C) KAKENHI
(SO, JP19K08569; IT, JP20K07455; and FS, JP20K07433) and
a Grant-in-Aid for Scientific Research on Innovative Areas
Frontier Research on Chemical Communications (No 17H06400

Frontiers in Immunology | www.frontiersin.org 15 July 2020 | Volume 11 | Article 113869

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgiacc=GSE120041
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgiacc=GSE120041
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Microbiome in MS Viral Model

and 17H06404, IT)], Research Program on Emerging and Re-
emerging Infectious Diseases from the Japan Agency for Medical
Research and Development (AMED) under grant number
20fk0108084h0802 (IT), The Royal Society Wolfson Fellowship,
UK (RSWF\R3\183001, FG), and Novartis Pharma Research
Grants (IT and SO).

ACKNOWLEDGMENTS

We appreciate Dr. Shiro Tochitani, Suzuka University of Medical
Science, and Dr. Hideki Noguchi, Joint Support-Center for Data

Science Research, Research Organization of Information and
Systems, for helpful comments in bioinformatics analyses. We
also thank Shantel A. Vital, Dr. Hilary A. Seifert, Paula Polk,
Dr. Felicia Lindeberg, and Namie Sakiyama for their excellent
technical help.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.01138/full#supplementary-material

REFERENCES

1. Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park A-M, et al.
Neuropathogenesis of Zika virus infection: potential roles of antibody-
mediated pathology. Acta Med Kinki Univ. (2016) 41:37–52.

2. Griffin DE. Alphavirus encephalomyelitis: mechanisms and approaches
to prevention of neuronal damage. Neurotherapeutics. (2016) 13:455–60.
doi: 10.1007/s13311-016-0434-6

3. Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters
HGM, Tyler KL, et al. Enterovirus D68 and acute flaccid myelitis—
evaluating the evidence for causality. Lancet Infect Dis. (2018) 18:e239–47.
doi: 10.1016/S1473-3099(18)30094-X

4. Morens DM, Folkers GK, Fauci AS. Acute flaccid myelitis: something old and
something new. mBio. (2019) 10:e00521-19. doi: 10.1128/mBio.00521-19

5. Hixon AM, Yu G, Leser JS, Yagi S, Clarke P, Chiu CY, et al. A mouse
model of paralytic myelitis caused by enterovirus D68. PLoS Pathog. (2017)
13:e1006199. doi: 10.1371/journal.ppat.1006199

6. McKay SL, Lee AD, Lopez AS, NixWA,Dooling KL, KeatonAA, et al. Increase
in acute flaccid myelitis —United States, 2018.MorbMortal Wkly Rep. (2018)
67:1273–75. doi: 10.15585/mmwr.mm6745e1

7. Blinkova O, Kapoor A, Victoria J, Jones M, Wolfe N, Naeem A, et al.
Cardioviruses are genetically diverse and cause common enteric infections in
South Asian children. J Virol. (2009) 83:4631–41. doi: 10.1128/JVI.02085-08

8. Kreuter JD, Barnes A, McCarthy JE, Schwartzman JD, Oberste MS, Rhodes
CH, et al. A fatal central nervous system Enterovirus 68 infection. Arch Pathol
Lab Med. (2011) 135:4. doi: 10.1043/2010-0174-CR.1

9. Hixon AM, Clarke P, Tyler KL. Evaluating treatment efficacy in a mouse
model of enterovirus D68–associated paralytic myelitis. J Infect Dis. (2017)
216:1245–53. doi: 10.1093/infdis/jix468

10. Zhang C, Zhang X, Dai W, Liu Q, Xiong P, Wang S, et al. A mouse model of
enterovirus D68 infection for assessment of the efficacy of inactivated vaccine.
Viruses. (2018) 10:58. doi: 10.3390/v10020058

11. Sun S, Bian L, Gao F, Du R, Hu Y, Fu Y, et al. A neonatal
mouse model of enterovirus D68 infection induces both interstitial
pneumonia and acute flaccid myelitis. Antiviral Res. (2019) 161:108–115.
doi: 10.1016/j.antiviral.2018.11.013

12. Chong PF, Kira R, Mori H, Okumura A, Torisu H, Yasumoto S, et al.
Clinical features of acute flaccid myelitis temporally associated with an
Enterovirus D68 outbreak: results of a nationwide survey of acute flaccid
paralysis in Japan, August–December (2015). Clin Infect Dis. (2018) 66:653–
64. doi: 10.1093/cid/cix860

13. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L,
et al. Intermittent fasting confers protection in CNS autoimmunity
by altering the gut microbiota. Cell Metab. (2018) 27:1222–35.e6.
doi: 10.1016/j.cmet.2018.05.006

14. Kira J. Genetic and environmental backgrounds responsible for the changes
in the phenotype of MS in Japanese subjects. Mult Scler Relat Disord. (2012)
1:188–95. doi: 10.1016/j.msard.2012.05.003

15. Sato F, Omura S, Martinez NE, Tsunoda I. Chapter 3: Animal models
of multiple sclerosis. In: Minagar A, editor. Neuroinflammation. 2nd ed.
Burlington, MA: Elsevier (2018). p. 37–72.

16. Park A-M, Omura S, Fujita M, Sato F, Tsunoda I. Helicobacter pylori
and gut microbiota in multiple sclerosis versus Alzheimer’s disease: 10
pitfalls of microbiome studies. Clin Exp Neuroimmunol. (2017) 8:215–32.
doi: 10.1111/cen3.12401

17. Tsunoda I. Lymphatic system and gut microbiota affect immunopathology
of neuroinflammatory diseases, including multiple sclerosis, neuromyelitis
optica and Alzheimer’s disease. Clin Exp Neuroimmunol. (2017) 8:177–9.
doi: 10.1111/cen3.12405

18. Hansen JJ. Immune responses to intestinal microbes in
inflammatory bowel diseases. Curr Allergy Asthma Rep. (2015) 15:61.
doi: 10.1007/s11882-015-0562-9

19. Mondot S, Kang S, Furet JP, Aguirre de Carcer D, McSweeney C, Morrison
M, et al. Highlighting new phylogenetic specificities of Crohn’s disease
microbiota. Inflamm Bowel Dis. (2011) 17:185–92. doi: 10.1002/ibd.21436

20. Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in
immune-mediated inflammatory diseases. Front Microbiol. (2016) 7:1081.
doi: 10.3389/fmicb.2016.01081

21. Budhram A, Parvathy S, Kremenchutzky M, Silverman M. Breaking down
the gut microbiome composition in multiple sclerosis. Mult Scler. (2017)
23:628–36. doi: 10.1177/1352458516682105

22. Boros Á, Orlovácz K, Pankovics P, Szekeres S, Földvári G, Fahsbender E, et al.
Diverse picornaviruses are prevalent among free-living and laboratory rats
(Rattus norvegicus) in Hungary and can cause disseminated infections. Infect
Genet Evol. (2019) 75:103988. doi: 10.1016/j.meegid.2019.103988

23. Tsunoda I, Iwasaki Y, Terunuma H, Sako K, Ohara Y. A comparative
study of acute and chronic diseases induced by two subgroups of Theiler’s
murine encephalomyelitis virus. Acta Neuropathol. (1996) 91:595–602.
doi: 10.1007/s004010050472

24. Omura S, Kawai E, Sato F, Martinez NE, Minagar A, Al-Kofahi M, et al.
Theiler’s virus-mediated immunopathology in the CNS and heart: roles of
organ-specific cytokine and lymphatic responses. Front Immunol. (2018)
9:2870. doi: 10.3389/fimmu.2018.02870

25. Ransohoff RM, Kivisäkk P, Kidd G. Three or more routes for leukocyte
migration into the central nervous system.Nat Rev Immunol. (2003) 3:569–81.
doi: 10.1038/nri1130

26. Omura S, Sato F, Martinez NE, Park A-M, Fujita M, Kennett NJ,
et al. Bioinformatics analyses determined the distinct CNS and peripheral
surrogate biomarker candidates between two mouse models for progressive
multiple sclerosis. Front Immunol. (2019) 10:516. doi: 10.3389/fimmu.2019.
00516

27. Sato F, Kawai E, Martinez NE, Omura S, Park A-M, Takahashi S, et al. T-bet,
but not Gata3, overexpression is detrimental in a neurotropic viral infection.
Sci Rep. (2017) 7:10496. doi: 10.1038/s41598-017-10980-0

28. Olitsky PK. Certain properties of Theiler’s virus, especially in relation to
its use as model for poliomyelitis. Proc Soc Exp Biol Med. (1945) 58:77–81.
doi: 10.3181/00379727-58-14849

29. Olitsky PK, Schlesinger RW. Histopathology of CNS of mice infected with
virus of Theiler’s disease (spontaneous encephalomyelitis.). Proc Soc Exp Biol
Med. (1941) 47:79–83. doi: 10.3181/00379727-47-13045

30. Theiler M. Encephalomyelitis of mice: I. characteristics and pathogenesis of
the virus. J Exp Med. (1940) 72:49–67. doi: 10.1084/jem.72.1.49

Frontiers in Immunology | www.frontiersin.org 16 July 2020 | Volume 11 | Article 113870

https://www.frontiersin.org/articles/10.3389/fimmu.2020.01138/full#supplementary-material
https://doi.org/10.1007/s13311-016-0434-6
https://doi.org/10.1016/S1473-3099(18)30094-X
https://doi.org/10.1128/mBio.00521-19
https://doi.org/10.1371/journal.ppat.1006199
https://doi.org/10.15585/mmwr.mm6745e1
https://doi.org/10.1128/JVI.02085-08
https://doi.org/10.1043/2010-0174-CR.1
https://doi.org/10.1093/infdis/jix468
https://doi.org/10.3390/v10020058
https://doi.org/10.1016/j.antiviral.2018.11.013
https://doi.org/10.1093/cid/cix860
https://doi.org/10.1016/j.cmet.2018.05.006
https://doi.org/10.1016/j.msard.2012.05.003
https://doi.org/10.1111/cen3.12401
https://doi.org/10.1111/cen3.12405
https://doi.org/10.1007/s11882-015-0562-9
https://doi.org/10.1002/ibd.21436
https://doi.org/10.3389/fmicb.2016.01081
https://doi.org/10.1177/1352458516682105
https://doi.org/10.1016/j.meegid.2019.103988
https://doi.org/10.1007/s004010050472
https://doi.org/10.3389/fimmu.2018.02870
https://doi.org/10.1038/nri1130
https://doi.org/10.3389/fimmu.2019.00516
https://doi.org/10.1038/s41598-017-10980-0
https://doi.org/10.3181/00379727-58-14849
https://doi.org/10.3181/00379727-47-13045
https://doi.org/10.1084/jem.72.1.49
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Microbiome in MS Viral Model

31. Daniels JB, Pappenheimer AM, Richardson S. Observations on
encephalomyelitis of mice (DA strain). J Exp Med. (1952) 96:517–30.
doi: 10.1084/jem.96.6.517

32. Xia Y, Sun J, Chen DG. Chapter 5: Power sample size calculations for
microbiome data. In: J. Chen D, Chen G, editors. Statistical analysis of

microbiome data with R ICSA Book Series in Statistics. Singapore: Springer
Singapore (2015). p. 129–66.

33. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, editors. Bioinformatics

and Computational Biology Solutions Using R and Bioconductor. 1st ed. New
York, NY: Springer (2005).

34. Richardson BA, Overbaugh J. Basic statistical considerations in virological
experiments. J Virol. (2005) 79:669–76. doi: 10.1128/JVI.79.2.669-676.2005

35. National Research Council of the National Academies. Guide For The Care
And Use Of Laboratory Animals. 8th ed. Washington, DC: The National
Academies Press (2011).

36. R Core Team. R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. (2018). Available online
at: https://www.R-project.org/

37. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

38. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-
Ghalith GA, et al. Reproducible, interactive, scalable and extensible
microbiome data science using QIIME 2. Nat Biotechnol. (2019) 37:852–7.
doi: 10.1038/s41587-019-0209-9

39. Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan
M, et al. Inflammation induces neuro-lymphatic protein expression in
multiple sclerosis brain neurovasculature. J Neuroinflammation. (2013) 10:
doi: 10.1186/1742-2094-10-125

40. Jost L. The relation between evenness and diversity. Diversity. (2010) 2:207–
32. doi: 10.3390/d2020207

41. Omura S, Kawai E, Sato F, Martinez NE, Chaitanya GV, Rollyson
PA, et al. Bioinformatics multivariate analysis determined a set
of phase-specific biomarker candidates in a novel mouse model
for viral myocarditis. Circ Cardiovasc Genet. (2014) 7:444–54.
doi: 10.1161/CIRCGENETICS.114.000505

42. Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern

Anal Mach Intell. (1979) 1:224–7. doi: 10.1109/TPAMI.1979.4766909
43. Martinez NE, Sato F, Kawai E, Omura S, Takahashi S, Yoh K, et al. Th17-biased

RORγt transgenic mice become susceptible to a viral model for multiple
sclerosis. Brain Behav Immun. (2015) 43:86–97. doi: 10.1016/j.bbi.2014.07.008

44. Hazenberg MP, Pennock-Schröder AM, van de Merwe JP. Culturing and
extraction of Coprococcus comes, absorption of serumagglutinins by soluble
fractions and relation between agglutinins and antibodies in sera of
patients with Crohn’s disease. Med Microbiol Immunol. (1986) 175:299–306.
doi: 10.1007/BF02126051

45. Wang LY, Fujinami RS. Enhancement of EAE and induction of autoantibodies
to T-cell epitopes in mice infected with a recombinant vaccinia virus
encoding myelin proteolipid protein. J Neuroimmunol. (1997) 75:75–83.
doi: 10.1016/S0165-5728(96)00235-4

46. Peterson LK, Tsunoda I, Masaki T, Fujinami RS. Polyreactive myelin
oligodendrocyte glycoprotein antibodies: implications for systemic
autoimmunity in progressive experimental autoimmune encephalomyelitis. J
Neuroimmunol. (2007) 183:69–80. doi: 10.1016/j.jneuroim.2006.11.024

47. Park A-M, Hagiwara S, Hsu DK, Liu F-T, Yoshie O. Galectin-3 plays an
important role in innate immunity to gastric infection by helicobacter pylori.
Infect Immun. (2016) 84:1184–93. doi: 10.1128/IAI.01299-15

48. Fernando V, Omura S, Sato F, Kawai E, Martinez NE, Elliott SF,
et al. Regulation of an autoimmune model for multiple sclerosis in
Th2-biased GATA3 transgenic mice. Int J Mol Sci. (2014) 15:1700–18.
doi: 10.3390/ijms15021700

49. Tsunoda I, Tolley ND, Theil DJ, Whitton JL, Kobayashi H, Fujinami
RS. Exacerbation of viral and autoimmune animal models for
multiple sclerosis by bacterial DNA. Brain Pathol. (1999) 9:481–93.
doi: 10.1111/j.1750-3639.1999.tb00537.x

50. Tsunoda I, Fujinami RS. Neuropathogenesis of Theiler’s murine
encephalomyelitis virus infection, an animal model for multiple sclerosis. J
Neuroimmune Pharmacol. (2010) 5:355–69. doi: 10.1007/s11481-009-9179-x

51. Tsunoda I, Fujinami RS. Theiler’s murine encephalomyelitis virus (TMEV).
In: Ahmed R, Chen ISY, editors. Persistent Viral Infections. Chichester, West
Sussex: John Wiley & Sons, Ltd. (1999). p. 517–36.

52. Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD,
et al. Genomic characterization of the uncultured Bacteroidales family S24-7
inhabiting the guts of homeothermic animals. Microbiome. (2016) 4:36.
doi: 10.1186/s40168-016-0181-2

53. Robinson IM, Freundt EA. Proposal for an amended classification
of anaerobic Mollicutes. Int J Syst Bacteriol. (1987) 37:78–81.
doi: 10.1099/00207713-37-1-78

54. Muñiz Pedrogo DA, Chen J, Hillmann B, Jeraldo P, Al-Ghalith G, Taneja
V, et al. An increased abundance of Clostridiaceae characterizes arthritis in
inflammatory bowel disease and rheumatoid arthritis: a cross-sectional study.
Inflamm Bowel Dis. (2019) 25:902–13. doi: 10.1093/ibd/izy318

55. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley
RE, et al. A core gut microbiome in obese and lean twins. Nature. (2009)
457:480–4. doi: 10.1038/nature07540

56. Carrillo-Salinas FJ, Mestre L, Mecha M, Feliú A, del Campo R, Villarrubia
N, et al. Gut dysbiosis and neuroimmune responses to brain infection
with Theiler’s murine encephalomyelitis virus. Sci Rep. (2017) 7:44377.
doi: 10.1038/srep44377

57. Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Espejo C, Álvarez-
Cermeño JC, Villar LM, et al. Manipulation of gut microbiota influences
immune responses, axon preservation, and motor disability in a model
of progressive multiple sclerosis. Front Immunol. (2019) 10:1374.
doi: 10.3389/fimmu.2019.01374

58. Tannock GW, Savage DC. Influences of dietary and environmental stress
on microbial populations in the murine gastrointestinal tract. Infect Immun.
(1974) 9:591–8. doi: 10.1128/IAI.9.3.591-598.1974

59. Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T,
et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis,
with a striking depletion of species belonging to clostridia XIVa and
IV clusters. PLOS ONE. (2015) 10:e0137429. doi: 10.1371/journal.pone.01
37429

60. Breitwieser FP, Pardo CA, Salzberg SL. Re-analysis of metagenomic sequences
from acute flaccid myelitis patients reveals alternatives to enterovirus
D68 infection. F1000Res. (2019) 4:180. doi: 10.12688/f1000research.
6743.2

61. Bowers JR, Valentine M, Harrison V, Fofanov VY, Gillece J, Delisle J, et al.
Genomic analyses of acute flaccid myelitis cases among a cluster in Arizona
provide further evidence of Enterovirus D68 role.mBio. (2019) 10:e02262-18.
doi: 10.1128/mBio.02262-18

62. Lawson PA, Blaut M, Simmering R, Collins MD, Taras D. Reclassification
of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea

formicigenerans gen. nov., comb. nov., and description of Dorea longicatena

sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. (2002) 52:423–
428. doi: 10.1099/00207713-52-2-423

63. Wolin MJ, Miller TL, Lawson PA. Proposal to replace the illegitimate genus
name Bryantella Wolin et al. 2004VP with the genus name Marvinbryantia

gen. nov. and to replace the illegitimate combination Bryantella formatexigens

Wolin et al. 2004VP with Marvinbryantia formatexigens comb. nov. Int J Syst
Evol Microbiol. (2008) 58:742–4. doi: 10.1099/ijs.0.65850-0

64. Wolin MJ, Miller TL, Collins MD, Lawson PA. Formate-dependent growth
and homoacetogenic fermentation by a bacterium from human feces:
description of Bryantella formatexigens gen. nov., sp.‘ nov. Appl Environ
Microbiol. (2003) 69:6321–6. doi: 10.1128/AEM.69.10.6321-6326.2003

65. Holdeman LV, Moore WEC. New genus, Coprococcus, twelve new
species, and emended descriptions of four previously described species
of bacteria from human feces. Int J Syst Bacteriol. (1974) 24:260–77.
doi: 10.1099/00207713-24-2-260

66. Zhang H, Carnevale G, Polese B, Simard M, Thurairajah B, Khan
N, et al. CD109 restrains activationof cutaneous IL-17-producing
γδ T cells by commensal microbiota. Cell Rep. (2019) 29:391–405.e5.
doi: 10.1016/j.celrep.2019.09.003

67. Tsunoda I, Fujinami RS. TMEV neuroantigens: Myelin genes proteins,
molecular mimicry, epitope spreading autoantibody-mediated remyelination.
In: Lavi E, Constantinescu CS, editors. Experimental Models of Multiple

Sclerosis. New York, NY: Springer (2005). p. 593–616.

Frontiers in Immunology | www.frontiersin.org 17 July 2020 | Volume 11 | Article 113871

https://doi.org/10.1084/jem.96.6.517
https://doi.org/10.1128/JVI.79.2.669-676.2005
https://www.R-project.org/
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1186/1742-2094-10-125
https://doi.org/10.3390/d2020207
https://doi.org/10.1161/CIRCGENETICS.114.000505
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1016/j.bbi.2014.07.008
https://doi.org/10.1007/BF02126051
https://doi.org/10.1016/S0165-5728(96)00235-4
https://doi.org/10.1016/j.jneuroim.2006.11.024
https://doi.org/10.1128/IAI.01299-15
https://doi.org/10.3390/ijms15021700
https://doi.org/10.1111/j.1750-3639.1999.tb00537.x
https://doi.org/10.1007/s11481-009-9179-x
https://doi.org/10.1186/s40168-016-0181-2
https://doi.org/10.1099/00207713-37-1-78
https://doi.org/10.1093/ibd/izy318
https://doi.org/10.1038/nature07540
https://doi.org/10.1038/srep44377
https://doi.org/10.3389/fimmu.2019.01374
https://doi.org/10.1128/IAI.9.3.591-598.1974
https://doi.org/10.1371/journal.pone.0137429
https://doi.org/10.12688/f1000research.6743.2
https://doi.org/10.1128/mBio.02262-18
https://doi.org/10.1099/00207713-52-2-423
https://doi.org/10.1099/ijs.0.65850-0
https://doi.org/10.1128/AEM.69.10.6321-6326.2003
https://doi.org/10.1099/00207713-24-2-260
https://doi.org/10.1016/j.celrep.2019.09.003
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Omura et al. Microbiome in MS Viral Model

68. Rojas OL, Pröbstel A-K, Porfilio EA, Wang AA, Charabati M, Sun T, et al.
Recirculating intestinal IgA-producing cells regulate neuroinflammation via
IL-10. Cell. (2019) 176:610–24.e18. doi: 10.1016/j.cell.2018.11.035

69. Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T. Comparison
of fecal microflora of elderly persons in rural and urban areas of Japan. Appl
Environ Microbiol. (1989) 55:1100–5. doi: 10.1128/AEM.55.5.1100-1105.1989

70. Ai D, Pan H, Li X, Gao Y, Liu G, Xia LC. Identifying gut microbiota associated
with colorectal cancer using a zero-inflated lognormal model. FrontMicrobiol.
(2019) 10:826. doi: 10.3389/fmicb.2019.00826

71. Zamvil SS, Spencer CM, Baranzini SE, Cree BAC. The gut microbiome
in neuromyelitis optica. Neurotherapeutics. (2018) 15:92–101.
doi: 10.1007/s13311-017-0594-z

72. Cree BAC, Spencer CM, Varrin-Doyer M, Baranzini SE, Zamvil SS. Gut
microbiome analysis in neuromyelitis optica reveals overabundance of
Clostridium perfringens. Ann Neurol. (2016) 80:443–7. doi: 10.1002/ana.
24718

73. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C,
et al. Commensal microbiota and myelin autoantigen cooperate
to trigger autoimmune demyelination. Nature. (2011) 479:538–41.
doi: 10.1038/nature10554

74. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al.
Mining the human gut microbiota for immunomodulatory organisms. Cell.
(2017) 168:928–43.e11. doi: 10.1016/j.cell.2017.01.022

75. Kennedy EA, King KY, Baldridge MT. Mouse microbiota models: comparing
germ-free mice and antibiotics treatment as tools for modifying gut bacteria.
Front Physiol. (2018) 9:1534. doi: 10.3389/fphys.2018.01534

76. Umesaki Y. Use of gnotobiotic mice to identify and characterize key microbes
responsible for the development of the intestinal immune system. Proc JPN
Acad Ser B Phys Biol Sci. (2014) 90:313–332. doi: 10.2183/pjab.90.313

77. van den Hoogen WJ, Laman JD, ’t Hart BA. Modulation of
multiple sclerosis and its animal model experimental autoimmune
encephalomyelitis by food and gut microbiota. Front Immunol. (2017)
8:1081. doi: 10.3389/fimmu.2017.01081

78. Braniste V, Al-AsmakhM, Kowal C, Anuar F, Abbaspour A, TóthM, et al. The
gut microbiota influences blood-brain barrier permeability in mice. Sci Transl
Med. (2014) 6:263ra158. doi: 10.1126/scitranslmed.3009759

79. Sato F, Omura S, Kawai E, Martinez NE, Acharya MM, Reddy PC, et al.
Distinct kinetics of viral replication, T cell infiltration, and fibrosis in three
phases of myocarditis following Theiler’s virus infection. Cell Immunol. (2014)
292:85–93. doi: 10.1016/j.cellimm.2014.10.004

80. Van de Merwe JP, Stegeman JH. Binding of Coprococcus comes to the Fc
portion of IgG. A possible role in the pathogenesis of Crohn’s disease? Eur
J Immunol. (1985) 15:860–3. doi: 10.1002/eji.1830150823

81. Bull K,Matthews N, Rhodes J. Antibody response to anaerobic coccoid rods in
Crohn’s disease. J Clin Pathol. (1986) 39:1130–4. doi: 10.1136/jcp.39.10.1130

82. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV,
et al. Intestinal microbiota promote enteric virus replication and systemic
pathogenesis. Science. (2011) 334:249–52. doi: 10.1126/science.1211057

83. Tashiro M, Ciborowski P, Klenk H-D, Pulverer G, Rott R. Role of
Staphylococcus protease in the development of influenza pneumonia. Nature.
(1987) 325:536–7. doi: 10.1038/325536a0

84. Scheiblauer H, Reinacher M, Tashiro M, Rott R. Interactions between
bacteria and influenza A virus in the developmentof influenza
pneumonia. J Infect Dis. (1992) 166:783–91. doi: 10.1093/infdis/166.
4.783

85. Palumbo S. Pathogenesis progression of multiple sclerosis: the role of
arachidonic acid–mediated neuroinflammation. In: Zagon IS, McLaughlin PJ,
editors. Multiple Sclerosis: Perspectives in Treatment Pathogenesis. Brisbane,
QLD: Codon Publications (2009). p. 111–23.

86. Braverman NE, Moser AB. Functions of plasmalogen lipids in
health and disease. Biochim Biophys Acta. (2012) 1822:1442–52.
doi: 10.1016/j.bbadis.2012.05.008

87. Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW. The pathologic
role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating
disease: Implications for multiple sclerosis. J Neuroimmunol. (2006) 174:21–
31. doi: 10.1016/j.jneuroim.2006.01.008

88. Palumbo S, Bosetti F. Alterations of brain eicosanoid synthetic pathway
in multiple sclerosis and in animal models of demyelination: role of
cyclooxygenase-2. Prostaglandins Leukot Essent Fatty Acids. (2013) 89:273–8.
doi: 10.1016/j.plefa.2013.08.008

89. Raddatz BB, Sun W, Brogden G, Sun Y, Kammeyer P, Kalkuhl A, et al.
Central nervous system demyelination and remyelination is independent
from systemic cholesterol level in Theiler’s murine encephalomyelitis. Brain
Pathol. (2016) 26:102–19. doi: 10.1111/bpa.12266

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Omura, Sato, Park, Fujita, Khadka, Nakamura, Katsuki, Nishio,

Gavins and Tsunoda. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 18 July 2020 | Volume 11 | Article 113872

https://doi.org/10.1016/j.cell.2018.11.035
https://doi.org/10.1128/AEM.55.5.1100-1105.1989
https://doi.org/10.3389/fmicb.2019.00826
https://doi.org/10.1007/s13311-017-0594-z
https://doi.org/10.1002/ana.24718
https://doi.org/10.1038/nature10554
https://doi.org/10.1016/j.cell.2017.01.022
https://doi.org/10.3389/fphys.2018.01534
https://doi.org/10.2183/pjab.90.313
https://doi.org/10.3389/fimmu.2017.01081
https://doi.org/10.1126/scitranslmed.3009759
https://doi.org/10.1016/j.cellimm.2014.10.004
https://doi.org/10.1002/eji.1830150823
https://doi.org/10.1136/jcp.39.10.1130
https://doi.org/10.1126/science.1211057
https://doi.org/10.1038/325536a0
https://doi.org/10.1093/infdis/166.4.783
https://doi.org/10.1016/j.bbadis.2012.05.008
https://doi.org/10.1016/j.jneuroim.2006.01.008
https://doi.org/10.1016/j.plefa.2013.08.008
https://doi.org/10.1111/bpa.12266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 04 August 2020

doi: 10.3389/fimmu.2020.01741

Frontiers in Immunology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 1741

Edited by:

Veena Taneja,

Mayo Clinic, United States

Reviewed by:

Megan K. L. MacLeod,

University of Glasgow,

United Kingdom

Heung Kyu Lee,

Korea Advanced Institute of Science

and Technology, South Korea

*Correspondence:

Laurence Morel

morel@ufl.edu

Specialty section:

This article was submitted to

Mucosal Immunity,

a section of the journal

Frontiers in Immunology

Received: 17 May 2020

Accepted: 30 June 2020

Published: 04 August 2020

Citation:

Brown J, Robusto B and Morel L

(2020) Intestinal Dysbiosis and

Tryptophan Metabolism in

Autoimmunity.

Front. Immunol. 11:1741.

doi: 10.3389/fimmu.2020.01741

Intestinal Dysbiosis and Tryptophan
Metabolism in Autoimmunity
Josephine Brown, Brian Robusto and Laurence Morel*
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The development of autoimmunity involves complex interactions between genetics and

environmental triggers. The gut microbiota is an important environmental constituent

that can heavily influence both local and systemic immune reactivity through distinct

mechanisms. It is therefore a relevant environmental trigger or amplifier to consider

in autoimmunity. This review will examine recent evidence for an association between

intestinal dysbiosis and autoimmune diseases, and the mechanisms by which the gut

microbiota may contribute to autoimmune activation. We will specifically focus on recent

studies connecting tryptophan metabolism to autoimmune disease pathogenesis and

discuss evidence for a microbial origin. This will be discussed in the context of our current

understanding of how tryptophan metabolites regulate immune responses, and how it

may, or may not, be applicable to autoimmunity.
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INTRODUCTION

Interactions between host genetics and environmental triggers are known to underlie
the development of autoimmune disorders. Among these environmental triggers, intricate
relationships between the host and its microbiota have a large impact on health and disease. In
particular, the understanding of host-microbiota relationships has generated an intense interest
in autoimmunity. The symbiotic relationship between the host and microbiota is bolstered by
mechanisms to maintain homeostasis between the two entities, including the microbiota-mediated
regulation andmaturation of the immune system (1, 2). Commensals and their products contribute
to the integrity of the intestinal barrier (3) and promote immunological tolerance (4, 5). Therefore,
pathogenic alterations to gut microbial communities, or intestinal dysbiosis, may compromise the
capacity of the microbiota to limit inflammation, which may be especially deleterious in genetically
susceptible hosts where endogenous mechanisms to control inflammation are already impaired.

Intestinal dysbiosis has been documented in human and murine autoimmunity (6–21). Specific
classes of microbes that may be associated with disease have been identified (6, 9, 17, 22), but
causal links between specific bacteria and autoimmune manifestations are still rare. It is not clear if
host genetics, environmental conditions, or interactions between them, play a role in establishing
disrupted microbial communities. In addition, whether or not dysbiosis plays a role in disease
initiation or amplification remains to be elucidated. There are three mainmechanisms by which the
microbiota could play a role in autoimmunity: molecular mimicry (23–25), an impaired intestinal
barrier that may promote bacterial translocation (20, 26), and an altered abundance of microbial
metabolites with immunoregulatory functions (21). Each of these mechanisms has the potential
to promote inflammation and consequent tissue damage, especially when combined with genetic
susceptibility to autoimmune diseases.
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Molecular mimicry has long been considered to be a major
mechanism leading to autoimmunity (27). In this process,
microbial antigens possess high homology to host antigens,
leading to cross-reactive immune responses and chronic
inflammation. There is evidence for pathogen-inducedmolecular
mimicry in autoimmunity (27). For example, Streptococcus
pyogenes is a trigger of rheumatic fever (28). Recently, studies
have also shown evidence for intestinal commensals eliciting
cross-reactive immune responses with self-antigens (23–25).

The intestinal barrier simultaneously prevents immune
responses against commensals and excludes pathogens (29).
Any compromise to this barrier has the potential to elicit
inflammatory responses against overabundant leaked microbial
antigens. Additionally, bacteria could translocate across a
compromised barrier and disseminate to distal organs to
promote inflammatory responses (20, 26). Therefore, bacterial
translocation may trigger or amplify inflammation.

In the past decade, it has become increasingly evident that
microbial metabolites play an indispensable role in immune
modulation and intestinal homeostasis (30–35). The short
chain fatty acids (SCFAs), acetate, butyrate, and propionate,
are derived from commensal fermentation of dietary fiber.
Collectively, SCFAs promote intestinal homeostasis via their
tolerogenic properties and their ability to reinforce intestinal
barrier integrity (36). Furthermore, bile acids are metabolized by
the microbiota into secondary bile acids that also have immune
modulatory activity (37). An altered distribution of tryptophan

FIGURE 1 | Pathways of mammalian and microbial tryptophan metabolism. Overview of host (endogenous) and bacterial pathways of tryptophan metabolism

highlighting kynurenine synthesis.

(Trp) metabolites has been identified in numerous autoimmune
diseases (38–49). Independently of endogenous host Trp
metabolism, enzymes in the intestinal microbiota catabolize
Trp to produce various metabolites (Figure 1) that play an
important role in immune modulation and microbiota-host
communication (50–53). The contribution of these metabolites
to autoimmune diseases has, however, not been fully appreciated.

Here we review autoimmune-associated microbial dysbiosis
and mechanisms by which it may contribute to pathogenesis.
We focus on systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), and multiple sclerosis (MS), due to the
abundance of studies reporting association and investigating
the mechanisms of microbial contributions. Among these, we
highlight host and commensal-derived Trp metabolites as anti-
and pro-inflammatory mediators in autoimmunity, illustrating
complex interactions that need to be further investigated.

EVIDENCE FOR A CONTRIBUTION OF
INTESTINAL MICROBIAL DYSBIOSIS TO
AUTOIMMUNE PATHOGENESIS

Systemic Lupus Erythematosus
SLE is a chronic autoimmune disease of complex etiology
characterized by the presence of autoantibodies against cellular
antigens, which form immune complexes that are responsible for
multi-organ heterogeneous clinical manifestations (54). Several
features emerge from studies that have compared the distribution
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of fecal bacterial 16S rDNA between SLE patients and healthy
controls (HCs). A lower Firmicutes/Bacteroidetes (F/B) ratio has
been found in two independent cohorts of SLE patients (7, 13),
but this has not been confirmed in other cohorts (16, 25).
A reduction in microbial diversity, commonly associated with
dysbiosis and disease state, has been reported in the latter two
studies with an inverse correlation between diversity and disease
activity (25). SLE subjects also presented an expansion of specific
phyla: Prevotella (7, 13), which has also been reported in RA
patients (6, 15, 17), Proteobacteria (13, 16) and Actinobacteria
(13). In a more detailed study, Ruminococcus gnavus and
Veillonella spp. were highly enriched in SLE feces and the
abundance of R. gnavus positively correlated with disease activity
(25). Importantly, SLE patients with renal involvement had a
greater abundance of R. gnavus (25). Taken together, these data
demonstrate a state of intestinal dysbiosis in SLE patients that
may be associated with disease activity.

Lupus-prone NZB/W F1 mice present with intestinal
dysbiosis at disease onset and exhibit an increased relative
abundance of Lactobacillus in established disease compared to
the pre-disease state (16). Administration of dexamethasone, a
common treatment in SLE patients, which also attenuates disease
in NZB/W F1 mice (55), decreased the relative abundance of
Lactobacillus and increased microbial diversity (16), suggesting
that some Lactobacillus spp. are associated with disease in
this model. However, colonization of NZB/W F1 mice with
L. paracasei reduced disease-associated cardiac complications
(56), although the effects on autoimmune manifestations were
not examined. Moreover, treatment of NZB/W F1 mice with
the probiotic strain L. fermentum changed their microbiota
and reduced the F/B ratio (57), improved gut barrier, and
endothelial integrity, as well as decreased serum anti-dsDNA
IgG (57). Collectively, these studies suggest that an outgrowth
of Lactobacillus may be associated with disease in the NZB/W
F1 model. On the other hand, specific Lactobacillus probiotic
strains improve disease manifestations. It is therefore possible
that specific strains of Lactobacillus are therapeutic, while others
exacerbate autoimmune complications in NZB/W F1 mice via
unknown mechanisms.

MRL/lpr lupus-prone mice also present an intestinal
dysbiosis, but it is characterized by a higher microbial diversity,
decreased Lactobacillaceae, and increased Lachnospiraceae,
Rikenellaceae, and Ruminococcaceae (8) compared to non-
autoimmune controls. However, specific pathogen free (SPF)
and germ free (GF) MRL/lpr mice presented similar disease
manifestations (58), indicating that the microbiota is not
required for disease initiation and development. Disease was
attenuated in this strain by a broad-spectrum antibiotic cocktail
or by vancomycin alone, which decreased the abundance of
Bacteroidales and Clostridiales as well as increased the abundance
of Lactobacillus (59). This suggests that dysbiosis amplifies
established disease and that Lactobacillus spp. are protective in
this model. Additionally, MRL/lpr mice have a compromised
intestinal barrier leading to gut leakage, and colonization with
Lactobacillus spp. improved intestinal barrier integrity, and
improved disease outcomes (16). In summary, these data suggest
that a low abundance of Lactobacillus may be associated with

autoimmune manifestations in MRL/lpr mice by promoting
leaky gut and potentially bacterial translocation.

Intestinal dysbiosis has also been shown in the
B6.Sle1.Sle2.Sle3 triple congenic (TC) spontaneous model
of lupus (18, 21). A unique advantage of the TC model is
the 95% genetic similarity between TC and non-autoimmune
C57BL6 (B6) mice, thus allowing B6 to serve as a true non-
autoimmune genetic control. No differences were observed in
microbial diversity, but some taxa were enriched in autoantibody
positive TC mice, including Paraprevotellaceae, Paraprevotella,
Lactobacillales, Lactobacillaceae, and Lactobacillus (21). The
increased abundance of Prevotella is consistent with the results
obtained in SLE (7, 13) and RA patients (6, 15, 17), as well as the
TRL7 transgenic model of lupus (20). Such differences were not
observed in young TC mice before they produce autoantibodies
(21), suggesting that gut dysbiosis develops with disease. Fecal
microbiota transfers (FMT) from autoantibody positive TC mice
induced the production of autoantibodies in GF B6 recipients,
and increased the frequency of germinal center B cells, plasma
cells, and follicular helper T cells (Tfh) (18, 21), all of which are
phenotypes strongly associated with lupus. Interestingly, FMTs
from either young TC mice or from TC.Rag1−/− mice did not
induce autoimmune phenotypes in GF B6 recipients (21), further
indicating that the pro-inflammatory functions of TCmicrobiota
occur after the development of autoimmunity and that they
require the presence of lymphocytes. Furthermore, autoimmune
phenotypes can be transferred horizontally between TC and
B6 mice by co-housing (21). Together, these data demonstrate
that microbial dysbiosis in the TC model amplifies autoimmune
activation rather than driving disease initiation.

Exact mechanisms by which immune reactivity occurs against
specific autoantigens in lupus remain elusive, but evidence
suggests that molecular mimicry could be one of them.
Autoantibodies against the RNA binding protein Ro60 are
produced by a majority of lupus patients (60). Bacteria such
as Bacteroides thetaiotaomicron that express orthologs of Ro60
have been identified in the intestinal microbiota of SLE patients
and HCs with a similar abundance (24). However, a microbial
origin of Ro60 autoreactivity was suggested when T cells
isolated from anti-Ro60 positive SLE patients proliferated in
response to microbial Ro60, and the sera from these patients
bound microbial Ro60 orthologs (24). This hypothesis was
verified when GF mice monocolonized with B. thetaiotaomicron
produced anti-Ro60 antibodies (24). Molecular mimicry was
also suggested when sera from SLE patients reacted with a
R. gnavus lipoglycan, and there was a positive correlation
between the serum levels of anti-lipoglycan antibodies and anti-
dsDNA autoantibodies (25). Furthermore, patient anti-dsDNA
IgG cross-reacted with R. gnavus antigens (25). These findings
were confirmed in a separate cohort of SLE patients (25),
suggesting that the association of R. gnavus expansion with
disease activity and the cross-reactivity of R. gnavus antigens
with mammalian DNA may be general to SLE. Overall, these
studies emphasize the presence of microbial antigens to which
SLE patients display immune reactivity, suggesting that certain
bacteria and their products may play a role in pathogenesis
through molecular mimicry.
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SLE patients present signs of leaky gut, such as increased fecal
IgM and IgG (25), in addition to fecal calprotectin (25, 26),
fecal albumin (26), and serum soluble CD14 (25). Enterococcus
gallinarum DNA was detected in liver biopsies from SLE and
autoimmune hepatitis patients (26). E. gallinarum increased the
expression of autoimmune promoting factors such as beta-2
glycoprotein 1 (GPI) and type I interferon when cultured with
primary human hepatocytes (26). Further, antibodies against
E. gallinarum-specific RNA were detected in both groups of
autoimmune subjects (26). This same study showed that a
compromised intestinal barrier in (NZW × BXSB)F1 lupus-
prone mice allows E. gallinarum to translocate to the mesenteric
lymph node (mLN) and liver, where it activates the AhR
pathway and promotes autoantibody production (26). Bacterial
translocation was also demonstrated in the TLR7 transgenic
model of lupus (20), in which Lactobacilllus reuteri translocates
across the intestinal barrier to stimulate type I interferon
production, and therefore exacerbate disease activity (20). The
abundance of L reuteri and its translocation were reduced by a
high fiber diet that alleviated autoimmune manifestations (20).
Together, these data indicate an impaired intestinal barrier may
allow bacteria to gain entry to circulation and distal organs in
SLE patients andmouse models of the disease. However, systemic
autoimmunity develops in the TC model in the absence of leaky
gut (21). In this model, in which neither molecular mimicry nor
leaky gut seem to be the prevalent mechanism, the dysbiotic
microbiota may amplify disease through metabolites, which will
be discussed later in this review. The differences between mouse
models may reflect differences in genetic backgrounds, disease
etiology, or disease severity, since the two “leaky gut” strains,
MRL.lpr and (NZW × BXSB)F1, present an accelerated severe
pathology as compared to TC mice. Additional screenings of
other spontaneous or induced models should be performed to
address these issues.

Rheumatoid Arthritis
RA is characterized by prolonged synovial inflammation leading
to bone erosion and cartilage destruction. Several studies have
reported an altered intestinal microbial composition in RA
patients (6, 10, 12, 15, 17, 19). A reduced microbial diversity in
two cohorts was inversely correlated with disease duration (12,
19), while increased diversity positively correlated with treatment
(12). This suggests that a decreased intestinal microbial diversity
represents, at least, a biomarker and maybe a contributor to
disease activity in RA. Alterations described in microbial taxa are
not consistent between RA patient cohorts, which may be due
to differences in ethnicity, sex, age, or environment. Intriguingly,
however, expansions of Prevotella spp. have been consistently
reported in RA patients (6, 15, 17). Increased abundance of P.
copriwas associated with disease in new-onset RA patients (6, 15)
and with a higher risk for developing RA (17), suggesting that this
microbe may play a role in disease initiation.

Evidence for a leaky gut in RA is not concrete, but it has been
proposed that gut microbes could be internalized by immune
cells in the gut, which may then traffic to the joints. Oral
bacteria found in periodontitis may also translocate to inflamed
joints where they can produce citrullinated peptides as well as

promote inflammatory cytokines (61). DNA from Prevotella (62)
and other bacterial species (63) has been identified in synovial
fluid from RA patients. There, molecular mimicry is a likely
mechanism for bacterial contribution to RA pathogenesis, as
sequence homology exists between autoantigens and Prevotella
antigens (23). An HLA-DR-presented P. copri peptide was found
in PBMCs from recent onset RA patients, and it stimulated
Th1 responses (62). These patients also had antibody responses
against P. copri (62). Colonization of SKG mice, a spontaneous
model of RA, with the microbiota from new-onset RA patients
with increased P. copri, expanded intestinal Th17 cells and
their responses to an RA autoantigen (15). SCFAs have been
hypothesized to play a protective role in RA. RA patients
consuming a high fiber diet presented increased numbers of
Treg cells, as well as decreased titers of autoantibodies and joint
inflammation compared to RA subjects consuming lower fiber
diets, presumably due to SCFAs produced from fiber (64). Indeed,
SCFAs regulate bone homeostasis through osteoclast metabolism
in mice (65), so it is possible that these metabolites could be
beneficial to patients.

Murine studies have provided some mechanistic insights
on microbial contributions to autoimmune arthritis. Under
GF conditions, K/BxN mice presented attenuated disease
manifestations, as well as reduced autoantibody titers and
frequency of germinal centers (22). Mechanistically, these
changes were linked to a loss of Th17 cells in the lamina propria
in the absence of segmented filamentous bacteria (SFB) (22).
SFB-colonized GF K/BxN mice developed arthritis, which was
associated with an induction of Th17 cells and a subsequent
increase in autoantibody titers (22). In addition to driving Th17
responses in K/BxN mice, SFB also induced Tfh differentiation
in Peyer’s patches and promoted Tfh cell migration to systemic
sites where germinal center responses and autoantibody titers
increased (66). These experiments demonstrated a causal link
between specific bacteria, SFB, and autoimmune arthritis through
the expansion of Th17 and Tfh cells.

Collagen-induced arthritis (CIA) mice that develop disease
showed microbiota perturbations, including Lactobacillus
expansions, compared to those that do not develop disease
(67). FMT from CIA mice into GF recipients induced an
arthritis phenotype (67), demonstrating causality of this
dysbiosis. Butyrate prevented disease in CIA mice (68),
suggesting that bacterial metabolites resulting from dietary
interventions may be beneficial in RA. Overall, these studies
demonstrated a contribution of the microbiota to autoimmune
joint inflammation.

Multiple Sclerosis
MS is a chronic central nervous system (CNS) disease
characterized by aberrant immune responses against myelin
autoantigens leading to axonal nerve damage. Human fecal
microbiome studies have reported differences relative to HCs
(9, 11, 14). The microbiota from patients with relapsing-
remitting MS who were in remission was more similar to
the microbiota from HCs compared to those with active
disease, although there was overlap between the active and
remission states (11). Although no global differences were found

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 174176

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Brown et al. Microbiome and Tryptophan in Autoimmunity

between the microbiota of MS-discordant twins, mice colonized
with microbiota from the MS-twins developed experimental
autoimmune encephalomyelitis (EAE) more frequently than
those colonized with the microbiota from healthy twins (69).
Moreover, splenocytes from recipients of theMS-twinmicrobiota
produced less IL-10 after stimulation in vitro (69). These
results suggest a contribution of gut microbiota to MS that is
independent from genetic susceptibility.

Unlike RA and SLE patients, Prevotella spp. were less
abundant in MS patients (9). However, a reduced Clostridia
abundance was reported in MS patients compared to HCs (9).
Interestingly, Clostridia spp. increase the differentiation and
expansion of Treg cells (4, 70), which suggests a protective
role. Moreover, the abundance of several taxa, including
Methanobrevibacter and Akkermansia, was correlated with an
increased expression of genes in T cell and monocyte innate
signaling pathways in the PBMCs of MS patients (14), suggesting
a causal link. MS patients also show signs of leaky gut (71,
72), which could allow for translocation of these bacteria and
subsequent involvement in CNS autoimmune pathogenesis.

Antibiotic treatment was protective when administered before
EAE induction in B6 mice (73) and before disease onset in
spontaneous octospinal encephalomyelitis (OSE) mice, which
presented a reduced frequency of IL-17-producing T cells
(74). However, antibiotics had no effect on established disease
in either OSE mice or a transgenic model of spontaneous
relapsing remitting disease (74). These findings demonstrate that
reducing the microbiota in murine models of MS was beneficial
only preventively. Single probiotic bacteria have also shown
preventive effects. L. reuteri attenuated EAE progression when
given before induction, noted by reduced spinal cord immune
cell infiltration, as well as the frequency and function of Th1 and
Th17 cells (75). Protection from induced disease also occurred
after colonization with L. paracasei (76). Bacteroides fragilis
prevented EAE by increasing the frequency of Treg cells (77).
Similarly, Clostridium butyricum attenuated EAE by decreasing
the frequency of Th17 cells and expanding that of Treg cells (78).
Overall, mouse studies suggest that the microbiota contributes to
MS autoimmune pathogenesis by modulating effector T cells but
has little effect once pathogenic T cells have been generated.

Although clinical and animal studies have established an
association between microbial dysbiosis and autoimmunity, it
is unknown how shifts in microbial communities arise as
few studies have examined the temporal relationship between
microbiota alterations and disease progression. Dysbiosis may
arise before disease onset due to host genetics or environmental
factors, and in this case, it may play a role in disease initiation.
However, another possibility is that dysbiosis is secondary to
disease development and/or autoimmune activation, in which it
may amplify rather than trigger disease. Therefore, more studies
are needed to understand how dysbiosis is established and at
what point it becomes pathogenic. Due to the complexity of
human microbiota studies, including cohort heterogeneity and
immunosuppressive medications, which themselves could alter
the microbiota, murine studies, including colonization of GF
mice, will be indispensable, at least in a first stage, to conduct
these mechanistic studies.

TRYPTOPHAN METABOLISM IN
AUTOIMMUNITY

Host and Microbial Tryptophan Metabolism
Pathways
The essential amino acid Trp is a precursor for the endogenous
synthesis of Kyn and serotonin by the host enzymes (Figure 1).
Indoleamine-2,3-dioxygenases (IDO1, IDO2), and tryptophan-
2,3-dioxygenase (TDO) are the mammalian enzymes responsible
for catalyzing the synthesis of Kyn from Trp. TDO expression
is mostly restricted to the liver, whereas IDO1 is expressed
in numerous tissues, most notably in immune cells and the
intestinal epithelium. IDO2 also participates in Kyn synthesis,
though with a lower activity compared to IDO1 (79). Overall,
little is known about how IDO2 participates in host physiology.
Kyn can be metabolized by several downstream enzymes to
give rise to additional metabolites, collectively referred to as
“kynurenines” (Figure 1). It has been estimated that about 90%
of dietary Trp is metabolized through the Kyn pathway, largely
by liver TDO (50). Additionally, hepatocytes express all enzymes
within the Kyn pathway and represent a significant source for
downstream kynurenines. Some kynurenines, such as quinolinic
acid and kynurenic acid exhibit neuromodulatory properties and
have thus been implicated in numerous peripheral and CNS
diseases (80, 81).De novo synthesis of NAD, an essential co-factor
in energy metabolism, represents the last step of the Kyn pathway
in some cells, such as hepatocytes and macrophages (50, 82).

Bacteria also catabolize Trp to produce a plethora of bioactive
metabolites (51–53). Some bacteria synthesize indole from Trp
via the tryptophanase enzyme (TnaA), while others synthesize
additional indoles such as indole lactic acid (ILA), indole
propionic acid (IPA), and indole aldehyde (IAld) through
separate pathways (51, 53). Furthermore, some bacteria use the
tryptophan decarboxylase enzyme to generate tryptamine (83),
which structurally resembles serotonin and binds to intestinal
serotonin receptors to regulate intestinal transit (84). Gut
microbes can also use serotonin to produce 5-hydroxy-indole-
3-acetic-acid (5-HIAA) (85). Indoles and tryptamine are known
AhR ligands (86–88) and thus function as immune modulatory
compounds (89). For example, Lactobacillus reuteri-derived
ILA activates AhR to generate immunoregulatory CD4+CD8+

intraepithelial lymphocytes (90). Further, the CARD9 risk allele
for inflammatory bowel disease (IBD) has been associated with
reduced microbial indole production, and colonization with
indole producing bacteria attenuates intestinal inflammation
(91). Tryptamine and indole-3-acetate (I3A) both suppress
pro-inflammatory responses in macrophages and hepatocytes
(92). In addition, indole modulates incretin release from
enteroendocrine cells and uncouples mitochondrial oxidative
phosphorylation resulting in lower cellular ATP levels (93). It is
therefore possible that indole could also suppress inflammation
by regulating metabolism in immune cells. Moreover, indoles
reinforce host intestinal barrier integrity (89) through pathways
such as IL-22 production (94) or the pregnane X receptor
(PXR) (95), both of which are imperative for maintaining
intestinal homeostasis. Some bacteria also have the capacity to
synthesize Kyn from Trp via the expression of IDO homologs
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(96–99). Alternatively, phosphoenolpyruvate and erythrose-4-
phosphate are precursors for the shikimate pathway, by which
microbes can synthesize aromatic amino acids, including Trp
(100). Therefore, the microbiota has an immense potential
to produce Trp metabolites, including Kyn, which have the
capacity to modulate the host immune system (51, 52). Given
the contribution of dysbiosis to autoimmunity, it is crucial to
consider the microbiota as a source of skewed Trp metabolites
and to evaluate the mechanisms by which they may contribute to
autoimmune pathogenesis.

Proinflammatory cytokines, such as type 1 and type 2
interferons, upregulate IDO1 expression in DCs (101, 102). The
resulting accumulation of Kyn increases Treg cell differentiation
(103, 104) via the AhR pathway (104). AhR is a transcription
factor activated by environmental pollutants in addition to a
plethora of Trp metabolites, either derived from the microbiota
and the endogenous Kyn pathway (105). Importantly, AhR
activation by some of these ligands has been linked to the
differentiation and function of both innate and adaptive immune
cells (105), highlighting the importance of the Trp—AhR axis in
modulating immunity. In addition, Trp depletion activates the
stress kinase general control non-derepressible 2 (GCN2) due to
the accumulation of uncharged tRNAs, which then induces cell
cycle arrest and a state of anergy in effector T cells (106), leading
to impaired proliferation and pro-inflammatory responses.
Therefore, the Kyn pathway elicits immunosuppression by
simultaneously inducing Treg cells and attenuating effector T
cell responses.

Tryptophan Metabolites in Autoimmunity
Although Kyn is considered an immunosuppressive metabolite,
its exact role in autoimmunity is poorly understood. RA (39,
40, 43, 107, 108) and SLE patients (38, 41, 42, 44, 45, 48, 109)
show a skewed distribution of Trp metabolites, characterized
by an elevated Kyn/Trp ratio in the serum, urine, and PBMCs.
Disease activity and clinical manifestations have been positively
correlated with depleted Trp and increased Kyn (42, 44, 45, 48,
109) in SLE and RA (108). In addition, Kyn was one of the
most increased metabolites in the PBMCs of SLE patients, and
it was the best metabolite to discriminate between responders
and non-responders to N-acetylcysteine treatment (45). The
prevailing interpretation is that elevated levels of T1 IFN or other
pro-inflammatory cytokines upregulate IDO1 expression (109).
An alternative non-exclusive hypothesis is that the dysbiotic
microbiota may also have an enhanced capacity to metabolize
Trp into Kyn or other metabolites.

Lupus-prone TC mice have serum metabolite alterations that
mirror those of SLE patients, including an increased Kyn/Trp
ratio (21). Additionally, compared to B6 controls, TC mice
have less Trp and more Kyn in the serum regardless of
the amount of dietary Trp consumed, suggesting an intrinsic
skewing of Trp metabolism toward the Kyn pathway (21). Kyn
serum concentration was positively correlated to autoantibody
production in TC mice and increasing dietary Trp increased
autoantibody and other autoimmune manifestations in this
model, while a low Trp diet was protective (21). 1-methyl
tryptophan (1-MT), an inhibitor of IDO1, had no effect on

disease in TC mice (21), which may indicate a microbial origin
from Kyn accumulation in this model. Alternatively, Kyn may
accumulate because of a defect in downstream catabolic enzymes.
Contrary to these results, 1-MT was therapeutic in MRL/lpr
mice (110), suggesting that endogenous Trp metabolism may be
more important in this model of lupus. Together, these studies
highlight a pathogenic role for Trp metabolism and potentially
Kyn itself in SLE.

Interestingly, Kyn activated mTOR in human PBMCs and
the Jurkat T cell line (45). SLE CD4+ T cells possess a
hyperactivated phenotype as well as signaling defects (111, 112).
Cellular metabolism regulates T cell activation, proliferation, and
differentiation (113–115), and SLE patient CD4+ T cells are
characterized by increased mTOR activation and mitochondrial
production of reactive oxygen species (116, 117). Rapamycin
treatment normalizes T cell activation and decreases disease
activity in SLE (118), demonstrating that enhanced mTOR
activation contributes to disease. As a regulator of cellular
metabolism, mTOR integrates cues from the environment such
as nutrient and oxygen availability. Its activation allows for
metabolic changes following T cell receptor stimulation to
support proliferation and differentiation into effector T cell
subsets (113–115, 119). Contrary to the established role of
Kyn in immunosuppression, its accumulation in autoimmune
patients as well as its activation of the mTOR pathway suggests
that Kyn may be pro-inflammatory in lupus. In addition to
microbial indoles, the plant-derived indole-3-carbinol (I3C) has
been shown to promote wound healing in SLE patients by
supportingM2-typemacrophage reprogramming and promoting
the expression of genes involved in the wound healing process
(120). Thus, indoles may be globally beneficial in the context
of autoimmunity.

Treg cells in RA patients showed a defective intrinsic
induction of IDO1 expression and Kyn synthesis for sustained
suppressive capacity (121). Studies in murine models of RA also
reported a defective Trp catabolism. 1-MT attenuated disease
when given before disease onset (122). Additionally, 1-MT
synergized with methotrexate, a common treatment for RA,
to prevent autoimmune manifestations (122), highlighting a
pathogenic role for Kyn synthesis in early phases of disease
development in the K/BxN model. On the other hand, treatment
with 1-MT or deletion of Ido1 in CIA mice exacerbated disease
severity by increasing IFNγ and IL-17 production (123). In the
same study, administration of Kyn at disease onset prevented
paw swelling, suggesting that Kyn is immunosuppressive in
this model. Ido2 deletion ameliorated disease in the K/BxN
model (124), and direct targeting of IDO2 activity in B cells
by administration of an IDO2-specific monoclonal antibody
phenocopied Ido2 deletion (125). In summary, blocking Kyn
synthesis in spontaneous K/BxN mice is therapeutic, but it
exacerbates disease in CIA mice. These opposing results may
be due to differences in disease etiology, either spontaneous
or induced in the context of acute inflammation. However,
the use of 1-MT is controversial since differential inhibition of
Trp catabolism depends on the 1-MT isomer used (126), and
preferential inhibition of IDO2 is achieved with D-1-MT (79).
This may explain inconsistencies between studies, underscoring
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a need for a more reliable inhibitor of this pathway. Collectively,
these studies suggest that Trp endogenous enzymes, including
IDO1 and IDO2, are important mediators of RA manifestations.

MS patients present a lower Kyn/Trp ratio in the urine (49)
and cerebrospinal fluid (46), but a higher ratio in the serum (47),
with a trend for reduced Trp and Kyn concentrations with disease
progression (46). However, IDO expression was decreased in
PBMCs of patients with stable disease compared to HCs, and
was more drastically reduced along with the serum Kyn/Trp
ratio in response to treatment (127). Moreover, a higher Kyn/Trp
ratio was observed in patients with depression (46), likely due to
decreased serotonin synthesis, and/or neuromodulatory effects
of downstream kyurenines (80, 81), which are also perturbed
in MS patients (47). Murine models of the disease have also
implicated Trp metabolism. Tdo2 deficiency (the gene encoding
hepatic TDO) is protective in EAE (128). However, DC-targeted
type 1 IFN treatment decreased EAE severity by upregulating
Ido1 expression and inducing a tolerogenic DC phenotype (129).
Overall, these studies suggest that, contrary to SLE and RA, Trp
metabolites may have an overall protective but complex effect in
autoimmune CNS inflammation.

Bacterial Trp Metabolites in Autoimmunity
While multiple studies reviewed above have implicated Trp
metabolism in autoimmune diseases, they did not address the
potential contribution of Trp metabolites of microbial origin.
A synergy between type 1 IFNs and microbial Trp metabolites
modulated astrocyte function to suppress inflammation in EAE
(130). The protective role of Trp metabolites corresponded with
reduced levels of indoles in the serum of MS patients (130).
These microbial-derived Trp metabolites act as ligands for AhR
through which they modulate the microglia-astrocyte crosstalk
to reduce inflammation in MS (131). This suggests that the
gut-brain axis could be targeted therapeutically in MS. Another
contribution of microbial-mediated Trp catabolism in EAE was
demonstrated in a study in which a Trp-restricted diet limited
the expansion and function of autoreactive T cells (132). An
interpretation of these seemingly opposite results may be that
microbial-derived Trp metabolites have different modulating
properties on immune responses in the microglia in the CNS
compared to T cells in the periphery. Interestingly, bacterial-
derived ILA and indole acetaldehyde were both decreased in
the synovial fluid of RA patients (133), suggesting that loss of
these Trp metabolites at the site of tissue injury may promote
autoimmune pathology. In support of this hypothesis, the
short chain fatty acid butyrate has been shown to increase the
production of 5-HIAA from serotonin, which promotes Breg
cell function through AhR and ameliorates murine autoimmune
arthritis (85). Overall, these studies suggest that microbial
Trp metabolites may play a significant role in MS and RA,
although both pro-inflammatory and protective contributions
have been reported.

Lupus-prone TC mice show the same pattern of elevated
Kyn and reduced serotonin as SLE patients not only in the
serum but also in their feces (21). An untargeted analysis of
fecal metabolites identified Trp metabolism as one of the most
differentially regulated pathways between TC and B6 mice (21).

Broad-spectrum antibiotic treatment reduced fecal and serum
Kyn levels in TCmice whereas it had no effect in B6 controls (21),
strongly suggesting a microbial involvement in the skewing of
Trp utilization in this model. Interestingly, Trp metabolism was
also one of the pathways differentially represented in the feces
of SLE patients (134). A direct contribution of Trp metabolites
to autoimmune pathogenesis was demonstrated when high levels
of dietary Trp exacerbated autoimmunity, whereas low dietary
Trp was protective in TC mice (21). Furthermore, FMTs from
TCmice consuming high dietary Trp induced immune activation
in GF B6 recipients, whereas the microbiota from TC mice
consuming low Trp did not (21). This suggested that the ability
of the TC microbiota to induce immune activation depends on
Trp metabolism.

A metabolic pathway analysis of 16S rDNA sequences
suggested an increased microbial Trp degradation via a Kyn
pathway in TC feces (21). In addition, the TC fecal microbiota
is enriched in Lactobacillus and Paraprevotella, which have the
capacity to catabolize Trp (21). TC mice consuming higher
amounts of dietary Trp have even greater expansions of these
bacteria, along with higher concentrations of Kyn relative to B6
(21), suggesting that this expansion may play a role in altered Trp
metabolites. It is therefore likely that microbial Trp metabolites
contribute to the inflammatory capacity of the TC microbiota,
as there is no evidence for leaky gut or bacterial translocation
in this model (21). The maintenance of intestinal barrier may
be due to the expansion of Lactobacillus supporting barrier
integrity through production of Trp metabolites (86). Together,
these studies highlight a role for the microbiotal Trp metabolites
in autoimmune pathogenesis. Further studies are necessary to
identify these metabolites and the bacteria that produce them, as
well as the mechanisms by which they promote autoimmunity.

CONCLUSION

In summary, there is a strong body of evidence from clinical and
mouse models associating microbial dysbiosis with autoimmune
diseases. More studies in larger patient cohorts and across
mouse models are necessary to define more precisely the
changes in bacterial communities that are associated with disease,
and how these changes occur relative to disease development.
Only a small number of bacterial species have been identified
to be responsible for specific autoimmune phenotypes. Some
of these intestinal bacteria promote autoimmune disease by
expressing genes with a high homology to genes in the
mammalian host, further bolstering that molecular mimicry
is a major mechanism of autoimmune activation. A major
gap in the field is a mechanistic understanding of the
bidirectional relationships between the development of dysbiosis
and autoimmune pathogenesis. Investigations have and are
continuing to reveal mechanisms by which gut resident microbes
may contribute to autoimmune activation. However, special
attention should be given to the ability of an altered microbiota
to modify metabolites, such as those within the Trp pathway,
since many have immune regulatory capabilities. Since there is
clearly a relationship of altered Trpmetabolism to autoimmunity,
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future studies should investigate how thesemetabolites, including
Kyn, could be pro-inflammatory in this context. Growing
evidence challenges the well-established notion that Kyn is
an immunosuppressive metabolite and highlights the need
for a more detailed understanding of immune-modulatory
metabolites in various disease contexts. Both pro-inflammatory
and anti-inflammatory effects of specific groups of bacteria
are observed in different models of the same disease, such
as the effects of Lactobacillus in lupus mouse models, further
emphasizing a need to understand specific mechanisms by which
the microbiota regulates autoimmunity. Finally, information on
the timing of microbiota contributions to disease is scarce,

and thus, should be an important question to address in
the future.
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The intestinal microbiome maintains a close relationship with the host immunity.

This connection fosters a health state by direct and indirect mechanisms. Direct

influences occur mainly through the production of short-chain fatty acids (SCFAs),

gastrointestinal hormones and precursors of bioactive molecules. Indirect mechanisms

comprise the crosstalk between bacterial products and the host’s innate immune system.

Conversely, intestinal dysbiosis is a condition found in a large number of chronic

intestinal inflammatory diseases, such as ulcerative colitis and Crohn’s disease, as

well as in diseases associated with low-grade inflammation, such as obesity, type 1

and 2 diabetes mellitus and cardiovascular diseases. NOD-Like receptors (NLRs) are

cytoplasmic receptors expressed by adaptive and innate immune cells that form a

multiprotein complex, termed the inflammasome, responsible for the release of mature

interleukin (IL)-1β and IL-18. NLRs are also involved in the recognition of bacterial

components and production of antimicrobial molecules that shape the gut microbiota

and maintain the intestinal homeostasis. Recent novel findings show that NLRs may act

as positive or negative regulators of inflammation by modulating NF-κB activation. This

mini-review presents current and updated evidence on the interplay between NLRs and

gut microbiota and their dual role, contributing to progression or conferring protection,

in diabetes and other inflammatory diseases.

Keywords: NLRs, microbiota, gut dysbiosis, diabetes, inflammatory diseases

INTRODUCTION

The healthy human intestine is colonized by several microorganisms, including fungi, viruses,
and bacteria belonging to different families (1). Studies on the gut microbiome show a high
number of bacteria from the Bacteroidaceae, Prevotellaceae, Rikenellaceae, and Ruminococcaceae
families in the colon (2). On the other hand, the small intestine is mainly colonized by bacteria
from the Lactobacillaceae and Enterobacteriaceae families (3). In recent years, sequencing analysis
of the 16S rRNA gene revealed an association between the gut microbiota and inflammatory
diseases (4). Changes in the composition of the intestinal microbiota, a process called dysbiosis,
play a key role in the pathogenesis of inflammatory diseases, such as rheumatoid arthritis (5),
atherosclerosis (6), ulcerative colitis, Crohn’s disease (7), and diabetes mellitus type 1 and 2 (8, 9).
Accordingly, modulation of the gut microbiota by prebiotics and probiotics, as preventive or
therapeutic strategies to mitigate the pathogenesis of inflammatory diseases, has been increasingly
investigated (10).
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Innate immunity receptors, also called pattern recognition
receptors (PRRs), are expressed by several cells and are involved
in the recognition of microbial products or endogenous self-
molecules. PRRs are key components in the pathogenesis of
inflammatory and autoimmune diseases (11, 12). Toll-Like
Receptors (TLRs) and NOD-Like Receptors (NLRs) are among
the main families that comprise the PRRs superfamily (13).
In the process of dysbiosis, the increased pathobiontic bacteria
modulates the expression and activation of TLRs, leading to
a pro-inflammatory response in the intestine and in extra-
intestinal sites (14, 15). On the other hand, NLRs have either
beneficial or harmful effects that rely on the antimicrobial factors
and pro-inflammatory cytokine profile following gut microbiota
activation. This mini review highlights the divergent roles of
NLRs in metabolic and inflammatory diseases associated with
gut dysbiosis.

GUT DYSBIOSIS IN INFLAMMATORY
DISEASES

The intestinalmicrobiota, when in homeostasis, is directly related
to the host’s health. The intestinal microbiota influences host
metabolism (16), immune system (17, 18), gut microbicide
mechanisms (19), and maintains the intestinal barrier (20).
Many studies show that environmental factors, such as the use
of antibiotics (21, 22), diet (23) and stress (24) can alter the
intestinal microbiota, increasing pathobiontic bacteria at the
expense of commensal bacteria, a process known as dysbiosis
(25). Gut dysbiosis contributes to the development of several
autoimmune, inflammatory and metabolic diseases, such as
rheumatoid arthritis (RA), inflammatory bowel diseases (IBD),
and diabetes mellitus (26, 27). However, in many cases, as in IBD
for example, it is not yet known whether dysbiosis is the cause
or consequence of the disease (28, 29). The exact role of the gut
microbiota in the pathogenesis of RA is not fully understood
either. However, germ-free (GF) mice exhibit a delay in the
development of RA when compared to the control group (30). In
the early stages of RA, a decrease in some commensal bacteria,
such as those belonging to the Bifidobacteria and Bacteroides
genus, and an increase in Escherichia coli and Proteus mirabilis
have been reported (31, 32). In addition, RA patients have an
increase in Prevotella copri as well as in anti-P. copri IgA and IgG,
suggesting that this bacteria may contribute to the pathogenesis
of RA (33).

Inflammatory bowel diseases, such as Crohn’s disease (CD)
and ulcerative colitis (UC), affect ∼3 million people in Europe
and the USA, with a high and accelerated incidence in developing
countries (34, 35). Although the etiology is still unclear, genetic
predisposition and environmental factors, such as diet and use of
antibiotics, are triggers of these diseases, characterized mainly by
chronic intestinal inflammation (34, 36). In addition, disruption
of the epithelial barrier and gut dysbiosis are widely reported
in patients and in experimental models of gastrointestinal
infections (37, 38) including patients with IBD (39, 40). 16S
rRNA metagenomic analysis showed that the microbiota present
in the feces of mice with UC is very different from microbiota

in the feces of healthy mice, mainly by an increase in species
of the phylum Verrucomicrobia and a decrease in Tenericutes
in mice with colitis, which correlates with a higher disease
score (41, 42). An increase in Enterobacteria is observed in
fecal samples from patients with CD (43). Escherichia and
Shigella abundance is also increased in this condition, when
compared to healthy individuals. In addition, a reduction of
the Roseburia, Coprococcus, and Ruminococcus genera, which
are important butyrate producers, has been reported (44, 45).
Analysis of colon biopsies from patients with IBD also shows a
decrease in Firmicutes and an increase in Bacteroidetes (46) and
patients with IBD exhibit increased biofilm production of strains
of Enterococcus when compared to strains from the control
group (47).

An imbalanced gut microbiota and changes in the intestinal
barrier function are also closely linked to the pathogenesis
of diabetes mellitus (DM) (48). DM comprises a group
of metabolic diseases characterized mainly by chronic
hyperglycemia, resulting from impaired secretion and/or
insulin functionality (49). In type 1 diabetes (T1D), also
called autoimmune diabetes, autoantibodies are present and
autoreactive lymphocytes mediate pancreatic β-cell destruction,
leading to complete insulin deficiency (50). The impact of the
microbiota on the development of T1D was demonstrated
using Myd88-deficient non-obese diabetic (NOD) mice bred in
pathogen-free (SPF) or germ-free (GF) conditions. Whereas,
SPF NOD.Myd88−/− mice are protected from T1D, mice
under GF conditions develop T1D, showing that Myd88
protective effects depend on the presence of gut microbiota
(51). In this context, many studies have shown differences in
the composition of the microbiota between diabetic and non-
diabetic patients, suggesting that these changes are associated
with the development and severity of T1D (52, 53). Bacterial
proteome studies show high enrichment with Clostridium
and Bacteroides proteins in children with T1D, whereas the
control group exhibit greater enrichment with Bifidobacterium
proteins (54). Furthermore, the decrease in lactate- and butyrate-
producing species, such B. adolescentis, is associated with T1D
autoimmunity (55).

In models of type 2 diabetes (T2D), gut dysbiosis aggravates
the inflammatory process, increases intestinal permeability and
also alters the metabolism of short-chain fatty acids, which are
important in insulin resistance (56), in addition to accelerating
the development of obesity, retinopathy and nephropathy (57).
In patients with T2D, excessive intake of carbohydrates and
proteins is associated with an imbalance in the gut microbiota,
with an increase in the Clostridium genus and a decrease in
Bifidobacterium spp. and Lactobacillus, in addition to glucose
intolerance (58). Moreover, in experimental models of T2D,
the administration of bacteria of the Bifidobacterium genus
improves glucose tolerance and confers a protective role in the
development of T2D (59, 60). Similarly, the administration of
Bacteroides acidifaciens decreases insulin resistance and even
prevents obesity (61).

Innate immunity receptors, such as NLRs, have a decisive
role in protecting the intestinal barrier against various
microorganisms from the environment. These receptors
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also modulate microbial intestinal composition, being associated
with the development of inflammatory diseases (62).

PROTECTIVE ROLE OF NLRs IN GUT
MICROBIOTA HOMEOSTASIS AND IBD

The innate immune system components are the first barrier
against infections and recognize cell death, generating a
rapid immune response due to the recognition of Pathogen-
Associated Molecular Pattern (PAMPs) and Damage-associated
molecular patterns (DAMPs), respectively (63). NLRs are part
of a variety of innate immunity receptors, located in the
intracellular environment, and initiate inflammatory processes.
NOD1 and NOD2, central members of NLRs, mainly recognize
bacterial peptidoglycan and, thus, induce gene transcription
of NF-kB and mitogen-activated protein kinases (MAPKs),
activating the expression of pro-inflammatory factors by different
cells (13).

The NOD1 receptor detects gamma D-glutamyl-meso-
diaminopimelic acid (γ iE-DAP), a peptide found mainly in
Gram-negative bacteria, but also in groups of Gram-positive
bacteria such as Listeria spp. and Bacillus spp (64–66). In the
absence of NOD1, there is expansion of some intestinal bacteria,
such as Clostridiales, Bacteroides spp., segmented filamentous
bacteria (SFB), and Enterobacteriaceae. The NOD2 receptor
detects the muramyl dipeptide (MDP) present in the bacterial
peptideoglycan and is the most important receptor in intestinal
homeostatic control (67). This receptor controls commensal
microbiota and the elimination of pathogenic bacteria in
intestinal crypts, minimizing the risk of intestinal inflammation
and colorectal cancer (68–70). Interestingly, NOD2 expression
depends on the presence of intestinal commensal bacteria,
indicating a positive feedback relationship. NOD2 deficiency
breaks this homeostatic interaction, resulting in gut dysbiosis,
and increased IBD susceptibility (69).

Other NLRs also play an important role in intestinal
homeostasis. The activation of NOD-like receptor family-pyrin
domain containing 6 (NLRP6), through oligomerization and
assembly of proteins–inflammasome complex–activates caspase-
1 and leads to the synthesis of IL-1β and IL-18 in the
intestinal epithelium (71). The deficiency of NLRP6 in mouse
colonic epithelial cells decreases IL-18 levels, promotes gut
dysbiosis and increases the risk of colitis (72, 73). IL-18
secreted by epithelial cells stimulates the barrier function and
the regeneration of epithelial cells (73). In addition, commensal
microbiota itself activates the NLRP6 inflammasome, leading
to the production of mucus by goblet cells and antimicrobial
peptides, maintaining a healthy composition of the intestinal
microbiota (74).

NLRP3, another type of NLRs, is highly expressed in the
monocytic lineage (75), and favors a greater production of IL-1β
over IL-18, leading to changes in the composition of the intestinal
microbiota (76). Under normal conditions, NLRP3 deficient
mice exhibit gut dysbiosis associated with an excessive growth
of Prevotellaceae and Bacteroidetes (77), whereas the ratio
between Firmicutes and Bacterioidetes decreases (78). Unlike

other NLRs, NLRP12 has anti-inflammatory effects, inhibiting
canonical and non-canonical NF-κB; decreasing the production
of inflammatory cytokines, chemokines and tumorigenic factors
(79–82), and controlling infection by Gram-negative bacteria
(83). NLRP12 deficiency, in a dextran sodium sulfate (DSS)-
induced colitis model, promotes colon inflammation, decreases
gut microbiota diversity and increases colitogenic bacteria, such
Erysipelotrichaceae family, depicting a protective role of NLRP12
in IBD (84).

DIVERGENT ROLES OF NLRs AND AIM2 IN
T1D DEVELOPMENT

In the past few years, several lines of evidence have demonstrated
that members of the NLRs family participate in T1D
pathogenesis. Recently, we reported that mice lacking NOD2,
but not NOD1, are resistant to streptozotocin (STZ)-induced
T1D and are unable to induce a Th1 and Th17 immune
response in the pancreatic lymph nodes (PLNs) and pancreas.
Interestingly, diabetic mice exhibit changes in the composition
of the gut microbiota, and this is associated with gut microbiota
translocation to PLNs (Figure 1). When these mice are
submitted to a broad-spectrum antibiotic treatment, previously
to the STZ injections, they do not develop signs of T1D, such as
hyperglycemia. Additionally, the administration of the NOD2
ligand, MDP, promotes STZ-induced T1D in antibiotic-treated,
STZ-injected wild-type (WT) mice. Our results demonstrate
that gut microbiota recognition by NOD2 in the PLNs triggers a
proinflammatory response, which induces a Th1 and Th17 cell
pathogenic immune response, thus contributing to STZ-induced
T1D pathogenesis (Table 1) (85).

STZ-injectedWTmice display an increase in different bacteria
groups in the gut microbiota, such as Bacteroidaceae family
and the Bacteroides genus that have been associated with
increased susceptibility to T1D in humans (91, 92). These results
recapitulate what has been found in type 1 diabetic patients, with
the Bacteroidetes phylum, the Bacteroidaceae family, and the
Bacteroides genus being more commonly found in autoantibody-
positive children than in autoantibody-negative peers (55). Other
important observation found among type 1 diabetic patients is
decreased microbiota diversity, associated with reduced relative
abundance of Bifidobacterium, Roseburia, Faecalibacterium, and
Lachnospira (91). These data indicate that gut dysbiosis observed
in type 1 diabetic patients may act as an environmental trigger
in the development of the disease and that strategies aiming
blockade of NOD2 signaling emerge as potential therapies for
T1D. Similar results were reported in spontaneous T1D mice
model. Non-cohoused NOD.NOD2−/− mice exhibit reduced
T1D incidence and a decrease in CD4+ IFN-γ+/CD8+ IFN-
γ
+ (Th1/Tc1) and CD4+ IL-17+/CD8+ IL-17+ (Th17/Tc17) T

cells in PLNs, indicating that NOD2 activation regulates T1D
development by altering the composition of gut microbiota and
by modulating the adaptive immune response (86).

Other studies also revealed that NLRP3 is required for
T1D pathogenesis. NLRP3 deficiency in NOD mice protects
against T1D by inhibiting the expression of chemokines and
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FIGURE 1 | Expression and differential functions of NLRs in Type 1 diabetes development. Elevated AIM2 expression was detected into intestinal mucosa of

pre-diabetic mice, and its activation induces the IL-18 release, which in turn, promotes the RegIIIγ production. This mechanism attenuates the gut dysbiosis,

reinforces the gut barrier and dampens the Th1 and Tc1 lymphocyte response against insulin-producing β cells, which ultimately protects against T1D. On the other

hand, NOD2 recognizes translocated muramyl dipeptide (MDP) from dysbiotic microbiota, and contributes to the activation of Th1 and Th17 lymphocytes in T1D.

Finally, upregulation of NLRP3 expression in PLNs was observed in diabetic mice, which is activated in macrophages by recognition of mitochondrial DNA (mDNA),

leads to IL-1β production and drives the pathogenic Th17 and Th1 lymphocyte generation, resulting in T1D onset.

chemokine receptors involved in immune cell migration to
pancreatic islets. NLRP3 deficiency in NOD mice reduces the
expression of CCR5 and CXRC3 on T cells and also the
gene expression of CCL5 and CXCL10 in pancreatic tissue
and these processes occur in an IRF1-dependent manner (87).
Additionally, our research group demonstrated that NLRP3
inflammasome activation by mitochondrial DNA (mDNA)
promotes IL-1β release by macrophages, contributing to the
generation of pathogenic Th17/Th1 cells in the PLNs and
to T1D susceptibility in STZ-induced T1D model (Figure 1,
Table 1) (88). In accordance, an association study in a north-
eastern Brazilian population identified two single-nucleotide
polymorphisms (SNPs) in NLRP3, rs10754558, and rs358294199,
that are associated with T1D in humans, suggesting that
variations in NLRP3 may be a predisposing genetic factor for the
development of autoimmune T1D (89).

Another innate immune receptor that results in
inflammasome assembly upon its activation, is the DNA sensor
absent in melanoma 2 (AIM2) (93, 94). The activation of AIM2
is involved in autoimmune and inflammatory diseases (95). In
the STZ T1D model, AIM2 is highly expressed in the ileum at
early stages of the disease. Interestingly, AIM2−/− STZ-injected
mice display increased T1D incidence, augmented intestinal
permeability and bacterial translocation to PLNs, which leads to a
proinflammatory response mediated by Th1 and Tc1 cells. When
the gut microbiota is depleted by a broad-spectrum antibiotic
cocktail before STZ-injections, the increased susceptibility to
T1D observed in AIM2−/− mice is abrogated (Table 1). The
effects induced by AIM2 activation in vivo are mediated by
IL-18 release, which favors regenerating islet-derived III gamma
(RegIIIγ) production, thus mitigating gut microbiota alterations
and reinforcing the intestinal barrier function. Together, our
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TABLE 1 | Summary of experimental studies about the role of NLRs in T1D.

NLR Main findings References

NOD2 Gut microbiota translocation to PLNs triggers

proinflammatory response mediated by NOD2 activation,

which contributes to STZ-induced T1D onset;

Nod2-deficient NOD mice are protected from diabetes

development and the protection is most likely mediated

by altered gut microbiota

(85, 86)

NLRP3 NLRP3 inflammasome activation by mitochondrial DNA

promotes IL-1β release, contributing to the generation of

pathogenic Th17/Th1 cells in the PLNs, and increasing

T1D susceptibility in STZ-induced T1D model;

NLRP3 deficiency in NOD mice inhibits the expression of

chemokines and chemokine receptors involved in

immune cell migration to pancreatic islets of NOD mice,

which protects NOD mice against T1D development.

(87–89)

AIM2 AIM2 plays a protective role in STZ-induced T1D by

regulating gut dysbiosis, intestinal permeability, and

reducing bacterial translocation to PLNs, which limits the

generation of diabetogenic pathogenic Th1 and Tc1 cells.

(90)

data show that AIM2 activation limits gut microbiota dysbiosis,
intestinal permeability and translocation to PLNs, decreasing a
proinflammatory response, and conferring protection against
T1D (90).

NLRs ROLE IN OBESITY, T2D AND
COMORBIDITIES

Gut dysbiosis can lead to increased permeability of the intestinal
barrier, resulting in low-grade systemic inflammation and
metabolic disorders such as obesity, T2D and ischemic stroke
(96, 97). Receptors of the innate immunity play a role in
systemic inflammation caused by obesity. Mice fed a high-
fat diet (HFD) exhibit an increase in colonic inflammation
and endotoxemia due to elevated intestinal permeability of
the colon mucosa (98). Additionally, increased TLR4 signaling
in the colon and activation of NF-κB are observed (98).
However, female mice lacking TLR4 display higher risk of
developing obesity, but also greater protection to insulin
resistance, perhaps due to the lack of TLR4 signaling in
important organs for metabolic homeostasis (99). In addition,
other studies showed that gut dysbiosis promotes a state of
metabolic endotoxemia during obesity, resulting in blood LPS
accumulation, metainflammation and insulin resistance through
CD14/TLR4 pathway (100–102).

T2D is a chronic metabolic inflammatory condition and
is the most common type of diabetes in adults worldwide
(103). This disease is initiated by the worsening of pancreatic
dysfunction, established when insulin production by β-
pancreatic cells cannot keep up with the increase in
peripheral insulin resistance (104, 105). Low-grade systemic
inflammation accompanies diabetes, with high serum levels
of C-reactive protein (CRP), tumor necrosis factor (TNF-
α), monocyte chemo-attracting protein-1 (MCP-1) and
IL-1β (106, 107). In addition, obesity, aging and other

conditions that promote low-grade chronic inflammation
are linked to increased risk of developing T2D (108–
110). Systemically, the high serum concentrations of IL-6,
IL-1β, and TNF-α increase insulin resistance and cause
endothelial dysfunction, priming the vascular system to
the development of diabetes-related diseases, including
systemic arterial hypertension (111). Meanwhile, increased
pancreatic IL-1β, IL-6, and IL-8 decrease insulin gene
expression in β-pancreatic cells, contributing to increased
insulin resistance (112).

A fine balance between the activation of innate NOD1
and NOD2 receptors is crucial for maintaining peripheral
insulin resistance. Direct activation of NOD1 receptors through
intraperitoneal administration of NOD1 ligand in WT mice
leads to an increase in peripheral insulin resistance in up to 6 h
(113). In this same study, the activation of NOD1 induced small
increases in circulating proinflammatory cytokines. In addition,
higher concentrations of inflammatory mediators are observed
in cultures of 3T3-L1 fibroblasts differentiated into adipocytes
and exposed for 18 h to NOD1 ligands (113). Inflammation of
peripheral tissues, especially adipose tissue (114), is a hallmark
of T2D and directly contributes to its pathogenesis through
adipose tissue dysfunction and subsequent complications in
energy homeostasis and intermediate metabolism (115). In this
context, double knockout NOD1/NOD2 mice are protected
against peripheral insulin resistance and peripheral inflammation
observed in the obesity (HFD)-induced T2D model (113).

NOD2 is an innate immunity receptor that recognizes
peptidoglycan in the cell wall of bacteria and, therefore,
constitutes an important link between gut microbiota and
immunity (116). Therefore, NOD2 activation profile may be
important in metabolic diseases with immune branches and,
therefore, may represent the link in the cross-talk between the
gut microbiota and these diseases. The deficiency of NOD2 in
mice allows greater translocation of bacteria from the intestine
(116). In a model of HFD, mice deficient in NOD2 exhibit
greater peripheral resistance to insulin, inflammation of visceral
adipose tissue, and higher content of bacterial DNA in the liver
(117). HFD increases the Firmicutes to Bacteriodetes ratio and
NOD2−/− mice submitted to HFD exhibit dysbiosis, represented
by an increase in the number of Helicobacter bacteria and in
the Peptococcaceae family and reduction of the Clostridium
genus, when compared to HFD-fed WT mice (117). Fecal
transplantation from obese mice to lean GF mice increases
total body mass and adipose-tissue mass. Alternatively, fecal
transplantation from lean mice to obese GF mice reduces
the adipose-tissue mass (118). In this last experimental setup,
there is an increase in the number of Bacteriodetes phylum
in the gut, which has been related to the production of
microbiota metabolites with host modulatory properties, in
particular: SCFAs (118). Interestingly, adequate consumption
of dietary fiber favors the secretion of SCFAs by the intestinal
microbiota. In addition, the activation of the GPR43 receptor
in mice, by SCFAs, in M2 macrophages of adipose tissue leads
to increased metabolic activity and favors maintenance and
homeostasis of healthy adipose tissue, improving metabolic
health (119).

Frontiers in Immunology | www.frontiersin.org 5 August 2020 | Volume 11 | Article 181088

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Elias-Oliveira et al. NLR Role in Inflammatory Diseases

CONCLUDING REMARKS

The different categories of NLRs modulate gut dysbiosis-
driven extra-intestinal and intestinal inflammatory diseases.
The effects of NLRs are diverse and may be either protective
or deleterious depending on the immunological context. In
the intestine, NLRs regulate gut microbiota composition and
translocation by influencing mucus secretion and antimicrobial
peptide production, thus playing a key role in the protection
against inflammatory bowel diseases, such as ulcerative colitis
and Crohn’s disease. Alternatively, NLRs also are activated
by microbial PAMPs (gut microbiota) or endogenous DAMPs
(components from dead or dying cells), which act as negative
or positive regulators of the innate and adaptive immunity
response and contribute to the susceptibility or resistance to
metabolic diseases such as obesity, type 1, type 2 diabetes, and

their comorbidities. Thus, the pharmacological modulation of
these receptors may represent new therapeutic strategies for these
inflammatory and metabolic diseases.
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Background: Encephalitis, the inflammation of the brain, may be caused by an
infection or an autoimmune reaction. However, few researches were focused on the
gut microbiome characteristics in encephalitis patients.

Methods: A prospective observational study was conducted in an academic hospital
in Guangzhou from February 2017 to February 2018. Patients with encephalitis were
recruited. Fecal and serum samples were collected at admission. Healthy volunteers
were enrolled from a community. Disease severity scores were recorded by specialized
physicians, including Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment
(SOFA), and Acute Physiology and Chronic Health Evaluation-II (APACHE-II). 16S
rRNA sequence was performed to analyze the gut microbiome, then the α-diversities
and β-diversities were estimated. Short-chain fatty acids (SCFAs) were extracted
from fecal samples and determined by gas chromatography-mass spectrometry.
Serum D-lactate (D-LA), intestinal fatty acid-binding protein (iFABP), lipopolysaccharide
(LPS), and lipopolysaccharide-binding protein (LBP) were measured by enzyme-linked
immunosorbent assay (ELISA). The associations among microbial indexes and clinical
parameters were evaluated by Spearman correlation analysis.

Results: In total, twenty-eight patients were recruited for analysis (median age
46 years; 82.1% male; median GCS 6.5; median SOFA 6.5; median APACHE-II 14.5).
Twenty-eight age- and sex-matched healthy subjects were selected as controls. The
β-diversities between patients and healthy subjects were significantly different. The
α-diversities did not show significant differences between these two groups. In the
patient group, the abundances of Bacteroidetes, Proteobacteria, and Bacilli were
significantly enriched. Accordingly, fecal SCFA levels were decreased in the patient
group, whereas serum D-LA, iFABP, LPS, and LBP levels were increased compared
with those in healthy subjects. Correlation analyses showed that disease severity had
positive correlations with Proteobacteria and Akkermansia but negative correlations
with Firmicutes, Clostridia, and Ruminococcaceae abundances. The cerebrospinal fluid
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albumin-to-serum albumin ratio (CSAR) was positively related to the α-diversity but
negatively correlated with the fecal butyrate concentration.

Conclusion: Gut microbiota disruption was observed in encephalitis patients, which
manifested as pathogen dominance and health-promoting commensal depletion.
Disease severity and brain damage may have associations with the gut microbiota or its
metabolites. The causal relationship should be further explored in future studies.

Keywords: gut microbiome, dysbiosis, encephalitis, short-chain fatty acids, intestinal barrier

INTRODUCTION

Encephalitis, an acute inflammation of the central nervous system
(CNS) associated with neurologic dysfunction, is a public health
concern worldwide because of its high mortality and neurological
sequelae rates (1). The reported incidence of acute encephalitis
varies worldwide but is generally estimated to be 1.7–7.4 cases
per 100,000 person-years (2). Causes of encephalitis include
viruses, bacteria, fungi, and parasites (2). Other causes include
autoimmune diseases and certain medications (3). In many cases,
the etiology remains unknown (4). Diagnosis is typically based on
symptoms and supported by blood tests, medical imaging, and
analysis of cerebrospinal fluid (5).

Some encephalitis may lead to irreparable brain damage.
Symptoms common to most types of encephalitis are headache,
fever, altered mentation, seizures, and focal neurological signs
(6). Patients require intensive medical care, with continuous
monitoring of their heart and respiratory functions and
management of their fluid and electrolyte balances (7). Although
the prognosis varies among different patients, the mortality
can be as high as 70%. In 2015, encephalitis was estimated to
have affected 4.3 million people and resulted in 150,000 deaths
worldwide (8, 9). Treatments for encephalitis remain poor and
still suffer from serious shortcomings in most intensive care units.

Current research efforts include gaining a better
understanding of how the systemic immune system responds to
inflammation in the brain. A better understanding of the gut-
microbiota-brain axis involved in the protection and disruption
of the blood-brain barrier could lead to the development of new
treatments for neuroinflammatory diseases. Previous studies
have demonstrated intestinal flora dysbiosis in neurological
diseases (10), e.g., stroke (11, 12), multiple sclerosis (13, 14), and
neuromyelitis optica spectrum disorders (15). Despite extensive
microbiome investigations in CNS diseases, few studies have
focused on the features of the intestinal flora in patients with
encephalitis. Therefore, investigations into the gut microbiome
of encephalitis patients using culture-independent techniques to
confirm and characterize these features are urgently needed.

In the present pilot study, 16S rRNA gene sequence analysis
was used to describe the phylogenetic composition of the fecal
microbiota in a cohort of encephalitis patients and compare
the results with those for healthy subjects. Specifically, the
concentrations of short-chain fatty acids (SCFAs) in fecal
samples and levels of gut permeability biomarkers in serum
samples were quantitatively detected. In addition, possibilities to

correlate microbiota-associated markers with clinical parameters
were also explored.

MATERIALS AND METHODS

Subject Enrollment and Sample
Collection
This study was a prospective observational cohort study
conducted in the neurological intensive care unit (neuroICU)
of an urban academic tertiary referral hospital in Guangzhou
for 1 year (staged start between February 2017 and February
2018). Patients were recruited based on the following inclusion
criteria: (1) diagnosed with encephalitis by specialized physicians
according to definitions from a research study published in
Lancet Infect Dis (Supplementary Table S1) (2); (2) admitted to
the neuroICU with a Glasgow Coma Scale (GCS) < 11; and (3)
had an expected length of intensive care unit (ICU) stay (IOS) of
>48 h. Disease severity scores were recorded, including the GCS,
Acute Physiology and Chronic Health Evaluation-II (APACHE-
II), and Sequential Organ Failure Assessment (SOFA) scores at
admission. The GCS is a neurological scale which aims to give
a reliable and objective way of recording the state of a person’s
consciousness. Patients with low GCS scores have worse brain
injury. The SOFA score is used to track a person’s status during
the stay in an ICU to determine the extent of a person’s organ
function or rate of failure. The APACHE-II score is a severity-of-
disease classification system, one of several ICU scoring systems.
Patients with high levels of SOFA and APACHE-II scores might
have worse prognosis. Self-reported healthy volunteers were
recruited from the Bureau of Reclamation in Guangzhou between
November 2016 and January 2017. The exclusion criteria for all
the subjects were as follows: (1) aged less than 18 years old or
more than 80 years old; (2) had used antibiotics, prebiotics or
probiotics in the last year prior to blood and feces collection;
(3) had gastrointestinal disease, (4) had malignant cancer, or
(5) were pregnant. Fecal samples and fasting blood samples
were obtained from the patients within 72 h after admission
and were collected once from individuals in the control group.
Written informed consent was obtained from all healthy subjects
and patients or their legal representatives. Ethical approval for
both the patients and healthy subjects was received from the
Medical Ethics Committee of Nanfang Hospital (No. NFEC-
2018-034), and all studies were conducted in accordance with the
Declaration of Helsinki.
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Biochemical Tests and Blood-Brain
Barrier Biomarkers
Routine blood samples for biochemical tests were obtained
within 24 h of hospital admission. All examinations were strictly
performed at the laboratory in the hospital. Data were recorded
from the hospital information system, including white blood
cell count (WBC, ×109/L), neutrophil count (NEU, ×109/L),
red blood cell count (RBC, ×1012/L), hemoglobin level (HGB,
g/L), platelet count (PLT,×109/L), alanine aminotransferase level
(ALT, U/L), total bilirubin level (Tbil, µmol/L), total protein
level (TP, g/L), albumin level (ALB, g/L), serum chlorine level
(Cl, mmol/L), serum potassium level (K, mmol/L), blood urea
nitrogen level (BUN, mmol/L), serum creatinine level (SCr,
µmol/L), C-reactive protein level (CRP, mg/L), procalcitonin
level (PCT, ng/mL), D-dimer level (DD, mg/L), brain natriuretic
peptide level (BNP, pg/mL), neuron-specific enolase level (NSE,
ng/mL), and S100 calcium-binding protein B level (S100B, µg/L).
Lumbar punctures were performed in patients for clinical reasons
within 72 h, and cerebrospinal fluid was immediately sent to the
hospital laboratory for examination. Cerebrospinal fluid albumin
(CSFA, mg/L) was subsequently recorded. The cerebrospinal fluid
albumin-to-serum albumin ratio (CSAR) was used to evaluate
blood-brain barrier permeability, as described previously (16).

Bacterial DNA Extraction and
Amplification of 16S rRNA Genes
Fresh stool samples were stored at −80◦C within 3 h after
voiding, and 0.2 g of each was aliquoted for DNA extraction.
Bacterial DNA was extracted with a magnetic bead-based stool
DNA extraction kit (Shenzhen Bioeasy Biotechnology Co., Ltd.,
China) according to the manufacturer’s instructions (17). Using
a LightCycler 480 II real-time fluorescence quantitative PCR
system (Roche Diagnostics Ltd., Switzerland), the V4 region
of the bacterial 16S rRNA gene was amplified by quantitative
real-time polymerase chain reaction (q RT-PCR) with the bar-
coded primers V4F (5′-GTGTGYCAGCMGCCGCGGTAA-3′)
and V4R (5′-CCGGACTACNVGGGTWTCTAAT-3′). Samples
that produced a visible product 290–310 bp in length were
used for further experiments. The PCR products were mixed
in equimolar ratios and purified by an EZNA Gel Extraction
Kit (Omega, United States). Finally, 16S rRNA sequencing was
conducted on an Illumina HiSeq 2500 platform, and 250-bp
paired-end reads were generated.

Sequencing and Microbial Analysis
Sequences longer than 200 bp were trimmed to 200 bp, and those
shorter than 200 bp were removed. Depending on the overlap,
we then used SeqPrep to merge the paired-end sequences and
assessed the quality of the results using open-source software
Quantitative Insights into Microbial Ecology (QIIME, version
1.9.1) (18). The quality of the sequences were checked in QIIME.
The sequences with Phred score ≥ Q20 were considered as
qualified sequences. Then, we split FASTA files based on the
paired-end barcode information, which matched 100% between
the barcode and the primer remained more than 200 bp after
removal of the barcode and primer. After that, we removed

chimeras, performed reference-based operational taxonomic unit
(OTU) clustering, and finally generated a BIOM file. All samples
were normalized to 7000 sequences to avoid possible errors
due to the use of different sequencing depths. The α-diversity
(the complexity within a community) was estimated by four
indexes and calculated by QIIME (18): (a) Chao1; (b) observed
species; (c) Shannon; and d) phylogenetic diversity (PD)-whole
tree. The β-diversity (difference between microbial communities)
was analyzed using the Bray-Curtis distance and unweighted
UniFrac distance (19, 20). To determine the significantly different
taxa between two groups, linear discriminant analysis (LDA)
coupled with effect size measurement (LEfSe) was performed
using an online utility1 (21). Significantly different bacteria with
LDA scores ≥ 3.5 were diagrammed on cladogram. Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) algorithm was performed in QIIME to predict
the functional profiles of the bacterial metagenomes (Kyoto
Encyclopedia of Genes and Genomes, KEGG) in the two groups
based on the relative abundance of individual OTUs.

Fecal Short-Chain Fatty Acid Detection
Fecal samples for SCFA analysis were frozen at −80◦C within
3 h of voiding. Six analytes were targeted for SCFA analysis,
namely, acetic acid (Dr. Ehrenstorfer, Germany), propionic acid
(Dr. Ehrenstorfer, Germany), butyric acid (Dr. Ehrenstorfer,
Germany), isobutyric acid (Supelco, United States), valeric acid
(Nu-Chek, United States), and isovaleric acid (Sigma-Aldrich,
United States). Feces were homogenized in 1.0 mL of ultrapure
water containing an internal standard, 2,2-dimethylbutyric
acid (Dr. Ehrenstorfer, Germany). After centrifugation, the
supernatant was transferred into a new tube. Then, 10 µL of
50% sulfuric acid and 0.5 g of sodium sulfate (Macklin, China)
were added to the tube along with analytically pure diethyl ether
(2 mL). The solution was vortexed for 1 min and then centrifuged
for 10 min at room temperature. The ether layer was collected
for gas chromatography with mass selective detection (5977B
GC/MSD, Agilent Technologies, Santa Clara, CA, United States)
measurement (Supplementary Table S2). The GC/MS data were
acquired and analyzed using MassHunter Workstation software
(Agilent Technologies) running on Windows 7 (Microsoft,
Redmond, WA, United States). The concentrations of fecal
SCFAs were calculated with the use of external standards and are
expressed as micromoles per gram of wet feces.

Intestinal Permeability Biomarker
Quantification by ELISA
Intestinal permeability was determined as the serum levels
of D-lactate (D-LA), intestinal fatty acid-binding protein
(iFABP), lipopolysaccharide (LPS), and lipopolysaccharide-
binding protein (LBP), as reported before (22, 23).

After centrifuging the blood samples, plasma-EDTA was
stored at −80◦C until measurement. Plasma samples used for
D-LA, iFABP, LPS and LBP quantification were analyzed in
duplicate using ELISA kits (Bio-swamp Life Science, Wuhan,
Hubei, China) following the manufacturer’s protocols.

1http://huttenhower.sph.harvard.edu/galaxy
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TABLE 1 | Clinical features obtained from 28 encephalitis patients.

Patient GCS SOFA APACHE-II Ventilator Support IOS 180d Outcome

ENC01 6 15 18 Yes 66 Dead

ENC02 4 10 28 Yes 5 Dead

ENC03 3 11 20 Yes 99 Dead

ENC04 5 10 18 Yes 68 Dead

ENC05 6 8 18 Yes 37 Dead

ENC06 5 5 26 No 45 Survived

ENC07 7 9 12 No 22 Dead

ENC08 7 4 15 No 13 Dead

ENC09 6 9 22 Yes 20 Dead

ENC10 7 4 12 No 11 Survived

ENC11 8 10 15 Yes 22 Survived

ENC12 4 5 21 No 66 Survived

ENC13 10 2 24 No 16 Dead

ENC14 5 6 18 No 4 Survived

ENC15 9 5 9 No 5 Survived

ENC16 5 7 15 Yes 16 Dead

ENC17 8 7 11 Yes 30 Survived

ENC18 9 3 12 No 8 Survived

ENC19 8 6 18 Yes 16 Dead

ENC20 3 11 19 Yes 21 Dead

ENC21 9 10 20 Yes 17 Dead

ENC22 5 9 13 No 6 Survived

ENC23 5 8 20 Yes 26 Survived

ENC24 10 7 20 No 3 Dead

ENC25 8 3 10 No 17 Survived

ENC26 8 12 19 Yes 7 Dead

ENC27 7 6 14 No 5 Dead

ENC28 6 10 21 Yes 8 Dead

GCS, Glasgow Coma Scale; APACHE-II, Acute Physiology and Chronic Health Evaluation-II; SOFA, Sequential Organ Failure Assessment; IOS, length of stay in intensive
care units; M, male; F, female.

Statistical Analysis
The continuous non-parametric data are presented as medians
(interquartile ranges, IQRs) and were analyzed using Mann-
Whitney U or Wilcoxon tests. The continuous parametric data
are presented as the means (standard deviations, SDs) and
were analyzed with Student’s t tests. The categorical data are
presented as numbers (percentages, %) and were analyzed using
chi-squared tests. For microbial analysis, QIIME analysis was
additionally performed using the Adonis test as previously
described (12). Correlations between variables were determined
with Spearman’s rank correlation test. SPSS version 20 (Statistical
Package for Social Sciences, Chicago, IL, United States) was
used for statistical analysis. Two-tailed p values of<0.05 were
considered statistically significant. The figures were generated
using GraphPad Prism 7 or R version 3.4.32.

RESULTS

Prevalence of Pathogens in Patients
With Encephalitis
Fecal samples were collected from 28 encephalitis (ENC) patients
(median age 46 years; 82.1% male; median GCS 6.5; median SOFA

2https://www.r-project.org/

6.5; median APACHE-II 14.5; median IOS 12.5). The clinical
information of all encephalitis patients is shown in Table 1. Until
180 days follow-up, there were 11 patients were alive, whereas
17 patients were deceased. Twenty-eight healthy subjects served
as the healthy controls (CON) and had fecal samples collected
once. A principal coordinate analysis (PCoA) plot showed
a significant difference in β-diversity [Bray-Curtis distance
(Figure 1A) and unweighted UniFrac distance (Figure 1B)]
between the ENC and CON groups (Adonis test, p > 0.05).
The α-diversity, including Shannon, Chao1, PD-whole tree,
observed species, and Simpson indexes, did not show significant
differences between these two groups (Mann-Whitney U test,
p > 0.05) (Figures 1C,D and Supplementary Table S3). As
indicated by taxonomic summary (Figures 1E,F) and cladogram
based on LEfSe analysis (Figure 1G), the relative abundances of
the phyla Proteobacteria, Deferribacteres and Verrucomicrobia
were higher in the neuroICU group than in the HC group.
At the family level, Enterobacteriaceae, Porphyromonadaceae,
Enterococcaceae, Verrucomicrobiaceae, Rikenellaceae and
Lactobacillaceae were enriched in the neuroICU group.

To evaluate differences in microbial composition
in the feces obtained from patients and controls, we
compared the relative abundances in both groups,
represented by read percentages (Table 2). The significantly
enriched taxa in the patient group were the phylum
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FIGURE 1 | The gut microbiota composition of encephalitis patients was significantly different from that of healthy subjects. (A,B) The β-diversity in the ENC and
CON groups was calculated by the Bray-Curtis distance (A) and unweighted UniFrac distance (B) and is shown in the PCoA plot (Adonis test, Bray-Curtis distance,
R2 = 0.090, p < 0.001; unweighted UniFrac distance, R2 = 0.124, p < 0.001). Each point represents the composition of the intestinal microbiota of one participant.
(C,D) The α-diversity of the microbiota, presented as the Shannon index (C) and PD-whole tree index (D), was calculated from samples from encephalitis patients
and healthy subjects (Mann-Whitney U test, Shannon index, p = 0.098; PD-whole tree index, p = 0.350). The boxplots display the 95% CIs, and the points lying
outside the whiskers are referred to as outliers. (E,F) Average relative abundances of the predominant bacterial taxa at the phylum (E) and family (F) levels in the
ENC and CON groups. (G) Cladogram based on LEfSe results of the CON and ENC groups. The red points represent the increased taxa in ENC group, while the
blue points represent the increased taxa in CON group. ENC, patients with encephalitis; CON, healthy subjects serving as controls.
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TABLE 2 | Significantly discriminative taxa between the twenty-eight Encephalitis patients and healthy subjects determined by Mann-Whitney U tests.

Taxa Encephalitis, M (IQR) Control, M (IQR) p value

The taxa increased in encephalitis patients

Phylum Proteobacteria 0.138 (0.084–0.241) 0.068 (0.052–0.116) 0.001

Class Bacilli 0.015 (0.006–0.028) 0.004 (0.002–0.007) <0.001

Class Gammaproteobacteria 0.096 (0.046–0.195) 0.026 (0.016–0.074) <0.001

Order Lactobacillales 0.014 (0.006–0.027) 0.003 (0.002–0.007) <0.001

Order Erysipelotrichales 0.008 (0.004–0.034) 0.004 (0.003–0.006) 0.011

Order Enterobacteriales 0.081 (0.041–0.191) 0.024 (0.013–0.058) <0.001

Family Porphyromonadaceae 0.042 (0.026–0.110) 0.016 (0.010–0.022) <0.001

Family Enterobacteriaceae 0.081 (0.041–0.191) 0.024 (0.013–0.058) <0.001

Genus Parabacteroides 0.041 (0.026–0.110) 0.016 (0.010–0.021) <0.001

Family Rikenellaceae, genus undefined 0.024 (0.009–0.043) 0.010 (0.004–0.017) 0.001

Family S24-7, genus undefined 0.007 (0.005–0.009) 0.002 (0.001–0.005) 0.001

Genus Oscillospira 0.011 (0.008–0.015) 0.006 (0.004–0.008) 0.003

Family Enterobacteriaceae, genus undefined 0.076 (0.034–0.189) 0.022 (0.012–0.056) <0.001

Genus Akkermansia 0.006 (0.003–0.016) 0.003 (0.001–0.012) 0.063

The taxa decreased in encephalitis patients

Phylum Bacteroidetes 0.442 (0.221–0.541) 0.510 (0.388–0.644) 0.078

Class Clostridia 0.236 (0.145–0.372) 0.315 (0.221–0.452) 0.075

Class Betaproteobacteria 0.012 (0.007–0.017) 0.022 (0.013–0.031) 0.011

Order Clostridiales 0.236 (0.145–0.372) 0.315 (0.221–0.452) 0.075

Order Burkholderiales 0.012 (0.007–0.017) 0.022 (0.013–0.031) 0.011

Family Lachnospiraceae 0.037 (0.022–0.059) 0.068 (0.056–0.111) <0.001

Genus Prevotella 0.007 (0.003–0.014) 0.025 (0.016–0.106) <0.001

Family Lachnospiraceae, genus undefined 0.022 (0.013–0.035) 0.035 (0.023–0.045) 0.010

Genus Faecalibacterium 0.008 (0.004–0.028) 0.040 (0.022–0.069) 0.001

Genus Ruminococcus 0.004 (0.002–0.009) 0.009 (0.004–0.016) 0.030

Genus Sutterella 0.011 (0.006–0.016) 0.021 (0.012–0.030) 0.005

M, median; IQR, interquartile range.

Proteobacteria, class Bacilli, class Gammaproteobacteria, order
Lactobacillales, order Erysipelotrichales, order Enterobacteriales,
family Porphyromonadaceae, family Enterobacteriaceae,
genus Parabacteroides, and genus Oscillospira. The
significantly depleted taxa in the patient group were the
class Betaproteobacteria, order Burkholderiales, family
Lachnospiraceae, genus Prevotella, genus Faecalibacterium,
genus Ruminococcus, and genus Sutterella.

The PICRUSt algorithm was performed to identify which
pathway or mechanism is affected, based on microbial change
(Supplementary Figure S1). As shown in the results, the
pathways upregulated in ENC group including Transport and
Catabolism, Immune System Diseases, Folding, Sorting and
Degradation, Energy Metabolism, Cancers, Lipid Metabolism,
Amino Acid Metabolism, Metabolism of Terpenoids and
Polyketides, Enzyme Families, Genetic Information Processing,
Signaling Molecules and Interaction, Metabolic Diseases,
Excretory System, Transcription, Metabolism, Cellular Processes
and Signaling, Metabolism of Other Amino Acids, Carbohydrate
Metabolism, Poorly Characterized, Membrane Transport,
Neurodegenerative Diseases, Xenobiotics Biodegradation and
Metabolism, Signal Transduction, Infectious Diseases.

The Correlations Between Microbial
Indexes and Clinical Parameters
To identify correlations between fecal microbiota composition
and health status, we first examined the correlations among
microbial α-diversity indexes (Shannon, PD-whole tree, Chao1,
observe species, Simpson) and clinical data (Supplementary
Figure S2). The blood-brain barrier permeability is presented
as the CSAR, which can reflect the degree of cerebral
inflammation. PD-whole tree was positively correlated with the
serum concentrations of potassium (r = 0.391, p = 0.040) and
S100β (r = 0.394, p = 0.038) but negatively correlated with levels
of total bilirubin (r = −0.386, p = 0.042). Observed species was
significantly correlated with S100β levels (r = 0.433, p = 0.021).
The Shannon, PD-whole tree and observed species indexes had
positive correlations with the CSAR (r = 0.468, p = 0.018;
r = 0.449, p = 0.024; and r = 0.395, p < 0.05, respectively).

Correlation analysis was subsequently performed among
clinical parameters and relative abundances of bacterial groups
detected in the feces of encephalitis patients (Figure 2). A positive
correlation of the family Ruminococcaceae reads with GCS score
was observed (r = 0.384, p = 0.044). The phylum Firmicutes
and order Clostridiales were positively associated with IOS
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FIGURE 2 | Associations of gut microbial taxa with clinical indexes. Heat map of Spearman’s rank correlation coefficient among 17 clinical indexes and 26 taxa with
abundances higher than 0.1%. n = 28; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; Spearman’s rank correlation. WBC, white blood cell count; NEU, neutrophil count;
RBC, red blood cell count; HGB, hemoglobin; PLT, platelet count; ALT, alanine aminotransferase; Tbil, total bilirubin; TP, total protein; ALB, albumin; Cl, serum
chlorine, K, serum potassium; BUN, blood urea nitrogen; SCr, serum creatinine; CRP, C-reactive protein; PCT, procalcitonin; DD, D-dimer; BNP, brain natriuretic
peptide; NSE, neuron-specific enolase; S100B, S100 calcium-binding protein B; CSAR, cerebrospinal fluid albumin-to-serum albumin ratio; GCS, Glasgow Coma
Scale; SOFA, Sequential Organ Failure Assessment; APACHE-II, Acute Physiology and Chronic Health Evaluation-II; IOS, length of stay in the ICU.

(r = −0.387, p = 0.042 and r = −0.383, p = 0.044, respectively).
The genus Akkermansia showed negative correlations with IOS
(r = 0.404, p = 0.033).

Survival analysis was further performed to explore the
association between mortality and microbial diversity (Figure 3).
When the cohort was divided into two groups with low
bacterial diversity (α-diversity < Median, n = 14) and high
diversity (α-diversity > Median, n = 14), there was no
intergroup difference in the short-term mortality. However,
when the patients were divided into two groups based on
the median of observed species, the survival analysis had a
trend toward significance [Log Rank p = 0.056, HR = 0.4035,
95%CI = (0.1543, 1.055)].

Fecal Short-Chain Fatty Acid Levels Are
Decreased in Encephalitis Patients
To evaluate the SCFAs in fecal samples from encephalitis patients
and healthy subjects, we quantified the fecal concentrations

of acetate, propionate, butyrate, isobutyrate, valerate and
isovalerate by GC-MS (Figure 4). The concentrations of
acetate, propionate and butyrate were significantly increased
in the fecal samples from encephalitis patients (acetate:
41.11 ± 25.71 µmol/g; propionate: 14.44 ± 12.28 µmol/g;
butyrate: 4.144± 5.509 µmol/g) compared with those in samples
from healthy subjects (acetate: 82.64± 43.01 µmol/g; propionate:
26.48 ± 18.34 µmol/g; butyrate: 15.84 ± 13.41 µmol/g).
Isobutyrate, valerate and isovalerate were nearly undetectable in
the vast majority of patient and control samples.

Spearman’s tests were performed to identify correlations
between fecal SCFAs and clinical parameters. Results were
shown in Supplementary Figure S3. We found that acetate was
negatively correlated with age (r = −0.433, p = 0.027), BUN
(r = −0.498, p = 0.010) and CRP (r = −0.432, p = 0.028);
propionate showed negative correlation with age (r = −0.532,
p = 0.005); butyrate was negatively correlated with CRP
(r = −0.433, p = 0.027), age (r = −0.534, p = 0.005), CSAR
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FIGURE 3 | Decreased intestinal microbiota diversity in encephalitis patients is not associated with survival in an exploratory setting. Based on the α-diversities in
healthy subjects, the patient cohort was split into two groups: α-diversity < Median and α-diversity > Median, for which a 120-day Kaplan–Meier survival plot is
shown. Twenty-eight encephalitis patients were divided based on the median of Shannon index [A, Log Rank p = 0.619, HR = 0.7917, 95%CI = (0.3055, 2.052)],
PD-whole tree index [B, Log Rank p = 0.264, HR = 0.5835, 95%CI = (0.2246, 1.516)], observed species [C, Log Rank p = 0.056, HR = 0.4035, 95%CI = (0.1543,
1.055)], Chao1 index (D, Log Rank p = 0.859, HR = 0.9182, 95%CI = (0.3548, 2.376)], successively. M, median. Numbers below the curve were patients at risk per
group.

(r = −0.539, p = 0.008) and D-LA (r = −0.390, p = 0.049) while
positively correlated with ALB (r = 0.488, p = 0.011).

Gut Permeability Was Increased in
Encephalitis Patients
To evaluate intestinal permeability in encephalitis patients and
healthy controls, we quantified the plasma concentrations of
D-LA, iFABP, LPS and LBP, which were previously reported as
intestinal integrity biomarkers (22–24). The concentrations of
D-LA, iFABP, LPS, and LBP were significantly higher in plasma
samples from encephalitis patients (D-LA: 6430.2 ± 1056.2
ng/mL; iFABP: 7.779± 1.714 ng/mL; LPS: 1218.3± 229.9 pg/mL;

LBP: 157.9 ± 23.3 ng/mL) than in samples from healthy subjects
(D-LA: 3006.6 ± 2123.4 ng/mL; iFABP: 3.813 ± 1.952 ng/mL;
LPS: 585.7 ± 297.4 pg/mL; LBP: 73.5 ± 35.8 ng/mL), indicating
that intestinal mucosal integrity was significantly reduced during
cerebral inflammation (Figure 5).

Spearman’s correlation analyses were further performed to
identify correlations among intestinal integrity biomarkers and
clinical parameters. Results were shown in Supplementary
Figure S4. The iFABP showed positive correlations with LPS
(r = 0.586, p = 0.001) and S100B (r = 0.439, p = 0.019); LPS
correlated positively with CSAR (r = 0.435, p = 0.030); LBP has
negative correlation with TP (r =−0.411, p = 0.030).
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FIGURE 4 | Comparison of six fecal SCFA levels between encephalitis patients and healthy controls. (A) acetate; (B) propionate; (C) butyrate; (D) isobutyrate; (E)
valerate; (F) isovalerate. *p < 0.05; **p < 0.01; ***p < 0.001; Mann-Whitney U test. ENC, patients with encephalitis; CON, healthy subjects serving as controls.

FIGURE 5 | Comparison of intestinal integrity biomarkers between encephalitis patients and healthy controls. (A) D-lactate; (B) iFABP; (C) LPS; (D) LBP.
***p < 0.001; Mann-Whitney U test. iFABP, intestinal fatty acid-binding protein; LPS, lipopolysaccharide; LBP, lipopolysaccharide-binding protein; ENC, patients with
encephalitis; CON, healthy subjects serving as controls.

DISCUSSION

In this observational pilot study, the microbiome of many
encephalitis patients differed substantially from that of a healthy
population, and the disruption of the microbial community
may have resulted in the dysbiosis of SCFAs. We documented
increases in the abundances of the phylum Proteobacteria as
well as other pathogens present relative to those in healthy
adults. Fecal acetate, propionate and butyrate concentrations in
patients with encephalitis decreased significantly in comparison
with those in the healthy volunteers. In addition, increased
levels of gut microbial components or products were detected
in the systemic circulation, indicating that the dysbiosis of
the commensal flora and lack of SCFAs may have been

responsible for the intestinal mucosal injury and gut permeability
elevation. A set of clinical parameters, especially the CSAR
representing the blood-brain barrier, were associated with
microbiome indexes or specific taxon abundances. This study
provides the first in vivo evidence that an altered gut flora
and the concentrations of SCFAs are associated with worse
health status. The results of these explorations suggest that
larger prospective studies should be undertaken to monitor the
microbiome of patients with inflammatory disease. Furthermore,
new therapeutic interventions (e.g., bacteriophage therapy)
targeting gut bacteria and protecting gut function may be a
potential option to improve the outcome of these patients.

Pivotal to many biological functions in the human body
is the composition of the healthy microbiota, which affects
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various physiological processes, including the development of
the digestive tract (25), gut barrier function and integrity (26),
the immune response (27), and the homeostasis of the CNS.
The effects of the gut microbiota on the brain include regulating
neurotransmitters, neurotrophic factors and synaptogenesis, as
well as maintaining BBB integrity (28, 29). Our study used
culture-independent techniques to confirm and characterize the
significant dysbiosis in encephalitis, as illustrated by a PCoA
plot. Although we did not detect a significant difference in
α-diversities between patients and healthy groups, this result
is likely underpowered owing to the sophisticated calculations
of microbial diversity indexes and the relatively small number
of patients enrolled. We observed enrichment of disease-
promoting pathogens, such as the family Enterobacteriaceae
(30), in encephalitis patients. Conversely, some taxa that were
depleted in the patient group, such as the genus Faecalibacterium,
were previously believed to confer antiinflammatory benefits
(31). These findings likely reflect numerous variables, including
derangements in host physiology, multiple treatment exposures,
and the presence of nosocomial pathogens. Moreover, pathogens
can inhibit the growth of other bacteria, a phenomenon
referred to as “colonization resistance” (32). Unexpectedly, some
probiotics [the genera Parabacteroides (33) and Akkermansia
(34)] were found to be enriched in the patient group, whereas
several pathogens [the genus Prevotella (35)] were depleted.
This result can likely be attributed to the controversial role
of taxa. As the 16S rRNA sequence cannot definitively assign
identity at the species or strain level, further exploration of the
microbiome will require targeted sequencing methods, ideally
with functional metagenomics.

To investigate the possible link between bacterial indexes
and illness status, we explored the association among clinical
parameters and both microbiome indexes and specific taxa.
The phyla Proteobacteria and Firmicutes were related to disease
severity, as reflected by APACHE-II and IOS, respectively.
Bacterial α-diversity indexes, including PD-whole tree, Shannon
index and observed species, were associated with some clinical
parameters, especially the CSAR. The CSAR is one of the most
informative parameters for BBB integrity in cases of CNS disease
(36). The BBB acts as a gatekeeper to control the passage and
exchange of molecules and nutrients between the circulatory
system and the brain parenchyma. Persistent vulnerability of an
impaired BBB caused by inflammation (37) would compromise
the CNS. Currently, no effective drugs are available for direct
treatment of BBB dysfunction. Repairing BBB function by the
gut flora is a potential therapeutic target for the development of
new-generation antiencephalitis drugs.

In our study, the fecal concentrations of acetate, propionate
and butyrate in the patients with encephalitis were significantly
lower than those in healthy subjects. Derived from intestinal
microbial fermentation of dietary fiber, SCFAs are the
main energy source of colonocytes, making them crucial to
gastrointestinal health (38). As reported before, SCFA formation
is regulated mainly by substrate availability and bacterial
species composition (39). First, in terms of the microbiota,
beneficial bacteria counts in the patients with encephalitis were
significantly lower than those in the healthy volunteers. Although

the identification of butyrate-producing microorganisms is still
under investigation (40), some known organic acid-producing
bacteria, including the family Lachnospiraceae (41), genus
Ruminococcus (42), and genus Faecalibacterium (43), were
depleted in encephalitis patients, as quantified by 16S rRNA
sequencing. Second, it is possible that fermentation substrates,
such as soluble dietary fiber (44), may have been relatively
reduced in encephalitis patients, contributing to the low SCFA
levels. These two hypotheses behind the decrease in SCFA levels
in encephalitis patients should be further investigated in future
research. SCFAs are taken up directly into the bloodstream and
transported to various organs, including the brain (45), where
they modulate tissue development and function (46). As an
inhibitor of histone deacetylases (HDACs), butyrate exhibits
antiinflammatory and neuroprotective effects through multiple
mechanisms, including enhancing neurogenesis and reducing
proinflammatory cytokine levels (47–51). Recent studies have
shown that various G protein-coupled receptors (GPRs) mediate
SCFA activities and affect the inflammatory response. SCFAs
activate GPR41 and GPR43 on intestinal epithelial cells, leading
to mitogen-activated protein kinase signaling and the production
of chemokines and cytokines (52). Moreover, butyrate promotes
antiinflammatory properties via the GPR109a signaling pathway
(53, 54). These results suggest that the decrease in SCFA levels
observed in the present study could be conducive to sustained
inflammation in encephalitis patients by mechanisms related
to HDACs and GPRs.

Short-chain fatty acids, especially butyrate, are an energy
source for colon epithelial cells and have been shown to
regulate intestinal motility (55, 56). Physiological concentrations
of SCFAs regulate intestinal barrier function by decreasing
paracellular permeability and increasing transepithelial electrical
resistance (57). Butyrate was demonstrated to improve gut barrier
function by stimulating the production of mucin, antimicrobial
peptides, and tight junction proteins (58). Regulation of occludin
expression by the intestinal microbiota has been reported in
the intestinal epithelial barrier (59) and blood-testis barrier
(60). Clostridial clusters make a great contribution to gut
homeostasis by preserving gut barrier functions and exerting
immunomodulatory and antiinflammatory properties (61). It
was speculated that alteration of the gut flora and SCFA
levels shapes the leaky gut, which subsequently results in
the translocation of microbial components, such as LPS, into
systemic circulation, activating the inflammatory response or
increasing BBB permeability. The restoration of healthy microbes
or SCFAs can potentially be a future treatment.

As a result of incomplete understanding of the pathological
mechanisms combined with individual variations in the immune
response to causative agents, treatment of encephalitis remains
a great challenge for physicians. This pilot study seeks to
explain the changes in the intestine in encephalitis patients and
highlights the possible association between the gut and brain.
Previous studies have shown that maintenance of commensal
“healthy microbes” or modulation of SCFAs may exert beneficial
effects via multiple pathways, including modulation of immune
cell proliferation, suppression of pathogenic microbes by
antimicrobial factors, and gut epithelial barrier protective effects
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(62–64). Administration of SCFAs (65) or prebiotics (66) has
been reported as an effective therapy to increase intestinal SCFA
levels. The clinical effect of increasing SCFA levels by synbiotic
administration has also been demonstrated (67). In previous
research, patients with sepsis benefited from synbiotic treatment,
having a significantly lower incidence of infectious complications
than those without synbiotic consumption (68). This evidence,
together with this study, suggests that patients may benefit
from intestinal therapeutics focused on improvement of the gut
microbiome and SCFA levels. As the gut is hypothesized to
play a central role in the progression of severe inflammation
(69), creative new approaches to repopulate the normal “health-
promoting” microbiome may present opportunities to improve
outcomes in these encephalitis patients.

As an observational pilot study, this study has several
limitations. First, this study did not aim to reveal the
precise signaling mechanisms through which gut microbiota
interacts with encephalitis but provided a first glimpse into the
superficial layer of gut-brain communication. In addition, the
consequences of altered flora on brain function throughout the
pathophysiological process of encephalitis are still unknown.
Therefore, the results should be interpreted cautiously until
additional advanced data are acquired to clarify the underlying
mechanisms. The next target for our subsequent study is trying
to maintain the commensal flora in a mouse model and, in
this way, attain any associated clinical benefits. This approach
may hopefully explain a causal relationship in the gut-brain axis.
Second, the number of fecal samples as well as enrolled patients
remains relatively modest. Due to the small sample size, we
evaluated the integrated data of patients with various etiologies of
encephalitis, limiting the insights gained from analyses. Similarly,
the correlation analyses between microbiota indexes and clinical
parameters were not controlled for multiple confounders and,
as such, merit replication in larger cohorts. Third, the single
fecal sample from each patient studied here could not provide
a dynamic view of the microbiota. A few patients could be
sampled twice because some died or were transferred to other
ward for better treatment. We believe that the gut flora and
SCFAs may change along with the recovery or deterioration of the
disease. Longitudinal analyses should be considered as a subject
of our future studies. Finally, the microbiome and SCFAs in the
cecal matter differ from those detected in fecal samples (70).
However, it is not possible to obtain cecal samples from the
human body; therefore, stool is used. The combination of these
limitations makes it challenging to establish a rigorous statistical
analysis in this study.

Taken together, our data demonstrate that disruption of
the gut microbiota was observed in encephalitis patients,
which manifested as pathogen dominance and health-promoting
commensal microbe depletion. This study adds to the emerging
literature describing dysbiosis in inflammatory diseases of the
CNS. We also identified reduced intestinal barrier integrity,
probably as a result of the dysbiosis of the gut microbiota
and SCFAs. The disease severity and the degree of brain
damage may have associations with the gut microbiota or
its metabolites. Numerous questions remain to be answered,
including the following. How does the gut microbiota affect

the blood-brain barrier? What is the mechanism by which an
increase in pathogen abundance could affect the inflammatory
system? Further studies, such as fecal microbiota transplantation
experiments, are needed to confirm the results in this study and
to evaluate the causal relationship in the gut-brain axis.
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Among numerous molecules found in the gut ecosystem, quorum sensing (QS)

molecules represent an overlooked part that warrants highlighting. QS relies on the

release of small molecules (auto-inducers) by bacteria that accumulate in the environment

depending on bacterial cell density. These molecules not only are sensed by the microbial

community but also interact with host cells and contribute to gut homeostasis. It therefore

appears entirely appropriate to highlight the role of these molecules on the immune

system in dysbiosis-associated inflammatory conditions where the bacterial populations

are imbalanced. Here, we intent to focus on one of the most studied QS molecule family,

namely, the type I auto-inducers represented by N-acyl-homoserine lactones (AHL).

First described in pathogens such as Pseudomonas aeruginosa, these molecules have

also been found in commensals and have been recently described within the complex

microbial communities of the mammalian intestinal tract. In this mini-review, we will

expound on this emergent field of research. We will first recall evidence on AHL structure,

synthesis, receptors, and functions regarding interbacterial communication. Then, we

will discuss their interactions with the host and particularly with agents of the innate and

adaptive gut mucosa immunity. This will reveal how this new set of molecules, driven by

microbial imbalance, can interact with inflammation pathways and could be a potential

target in inflammatory bowel disease (IBD). The discovery of the general impact of these

compounds on the detection of the bacterial quorum and on the dynamic and immune

responses of eukaryotic cells opens up a new field of pathophysiology.

Keywords: quorum sensing, gut microbiota, interkingdom communication, inflammatory bowel disease,

gut inflammation

INTRODUCTION

Dysbiosis in inflammatory bowel disease (IBD) is characterized by a reduction in bacterial
biodiversity. This change in biodiversity is associated with a reduction in the bacterial load
of various bacterial groups and expansion of others (1). Bacteria are capable of exchanging
small signaling molecules depending on the bacterial density, a process called quorum sensing
(QS). QS coordinates gene expression and physiology of bacterial populations. There are several
families of molecule used by microbes to communicate. A universal system relying on type II
auto-inducers (AI-2) can be used by all bacteria (2). Gram-positive bacteria use oligopeptides,
although Gram-negative QS display various molecules (3). Among them, the most studied system
is represented by the type I auto-inducers based on N-Acyl-homoserines lactones (AHL). Beyond
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bacteria–bacteria communication, QS molecules are also
involved in interkingdom interplay between gut bacteria and
host cells. In the early 2000s, researchers investigated the impact
of AHL on plant physiology (4) showing that the presence of
these molecules produced by soil bacteria can induce plant
benefits (5) such as induction of the immune system to resist
pathogens (6, 7). More recently, underlying potential on
health and disease, AHL have been described in mammals’ gut
lumen and lately in humans. It is likely that IBD dysbiosis is a
condition that cannot only modify QS but also be maintained
by QS. Therefore, a better knowledge of this largely overlooked
metabolite component appears important to improve our
understanding of the molecular mechanisms implicated in the
immune gut responses in IBD.

N-Acyl-Homoserine Lactones
Quorum Sensing Molecules for Bacteria
Bacteria are not single cells living independently. They have
“social” interactions called QS. QS was first studied in the 1970s
through the bioluminescence emitted by a marine bacterium,
Vibrio fischeri. These bacteria live in symbiosis with marine
animals. V. fischeri does not emit light at low concentrations in
the water; however, when the bacterial population is growing in
symbiosis with a squid, within a rich environment, the bacteria
emits light (8). This phenomenon is possible, thanks to QS.
However, the term was used for the first time two decades later,
by Fuqua et al. (9).

This system relies on the release, by bacteria, of small
molecules (auto-inducers) that accumulate in the environment
depending on bacterial density and are sensed by the bacteria
community. Once a threshold concentration is reached, this
triggers the expression of certain bacterial genes, encoding
for virulence factors, biofilm formation, etc. (Figure 1). Gram-
negative bacteria use AHL as one of the QS molecules (10).
AHL is a family of molecules composed by a unique lactone
ring, an acyl chain of various lengths, and substitutions at the
acyl C3 position that define the molecular species. The integrity
of the lactone ring is important for AHL immunoactivity (11).
Quorum quenching is the mechanisms by which QS signal
is degraded, and it can occur enzymatically, through acylases
(cleavage of the AHL amid bond, releasing a fatty acid and
homoserine lactone) and lactonases (hydrolysis of the HSL
ring) (12).

AHL Genes Induction
AHL diffuse freely in bacteria and recognize the receptor
LuxR, allowing them to act as a transcription factor. Once
activated, QS induces the expression of a series of bacterial
genes contributing to bacterial virulence and/or adaptation such

Abbreviations: AHL, N-acyl-homoserine lactones; 3-oxo-C12-HSL, N-(3-
oxododecanoyl)-L-homoserine lactone; AI, auto-inducer; C4-HSL, N-butyryl-
homoserine lactone; DCs, dendritic cells; IBD, inflammatory bowel disease; IFNγ:
interferon-γ; IL-10, interleukine 10; IQGAP1, IQ motif containing GTPase-
activating protein 1; MAPK, mitogen-activated protein kinase; PON, paraoxonase;
PPAR, peroxisome proliferator-activated receptor; PRR, pattern recognition
receptor; QS, quorum sensing; TGFβ, transforming growth factor-β; TLR-2, Toll-
like receptor-2; TNFα, tumor necrosis factor-α; UPR, unfolded protein response.

FIGURE 1 | Quorum sensing signaling in bacteria. Acyl-homomserine lactones

(AHLs) are auto-inducers used by Gram-negative bacteria to communicate.

The enzyme LuxI synthesizes the AHL, and the latter can diffuse freely through

the membrane. Upon reaching a threshold concentration, AHL can bind to its

receptor LuxR. The dimerization of the receptor allows it to act as a

transcription factor on the Lux box. This triggers not only the expression of

target genes involved in the virulence of the bacteria but also the expression of

AHL system LuxI/LuxR.

as toxins, motility, enzymes, secretion systems, iron uptake,
metabolism, and biofilms (Figure 1) (3). AHL also regulate their
own synthase and receptor genes, in a positive retro-control loop.
This system has been mostly described in pathogens, while the
impact of these factors on gut immunity has not been directly
investigated. However, few reports showed that AHL found in gut
ecosystem could benefit host physiology (13). Thus, there is still
a gap in research on AHL derived from commensals and their
impact on host.

Most studies have focused on the impact of auto-inducers
from the opportunistic bacterium Pseudomonas aeruginosa,
N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL)
and N-butyryl-homoserine lactone (C4-HSL). Signaling works
through the LuxI/LuxR homolog system. LuxI synthesizes the
AHL, the molecule freely diffuses in the environment, and LuxR
detects the auto-inducer, which acts as a transcription factor
(14) (Figure 1). Bacteria can use different ways to communicate:
(i) crosstalk, different species talking to each other; (ii) self-talk,
bacteria from the same species talk with its own auto-inducer
and regulate their gene expression; and (iii) eavesdropping, when
bacteria from one species can intercept the signal of another
species without creating a signal by itself (15). Indeed, some
bacteria express a LuxR homolog without its partner LuxI. LuxR
is then labeled LuxR solo, and the receptor is called SdiA (16).
For instance, Escherichia coli has the SdiA receptor without being
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able to produce an auto-inducer (17). This ability to “listen”
to other bacterial species is essential in complex ecosystem like
the gut microbiota, where hundreds of different bacteria coexist.
However, these ways of communicating bypass the bacterial
world, and those small molecules are part of an interkingdom
signaling, allowing cross-talk between gut microorganisms and
the host.

AHL Interkingdom Signaling
Since eukaryotic and prokaryotic cells have coevolved for
thousands of years, the signals from one have adapted to
the other’s. In this setting, bacterial QS molecules have been
shown to have an effect on eukaryotic cells, a phenomenon
called “interkingdom signaling” (18). To date, most studies
on the effects of AHL on mammal cells have focused not
only on the well-known 3-oxo-C12-HSL and C4-HSL from
P. aeruginosa but also on N-(3-oxohexanoyl)-L-homoserine
lactone (3-oxo-C6-HSL) from V. fischeri. AHL are amphiphilic
molecules, as lactone ring remains hydrophilic and the acyl
chain is hydrophobic. It has been shown that these properties
allow the 3-oxo-C12-HSL to diffuse freely through the cell
membrane of eukaryotic cells, similar to bacteria, while long-
chained versions are mostly actively transported (19). AHL are
chemically analogous to many lipid-based hormones such as
the eicosanoid family of lipidic and steroid hormones involved
in hundreds of biological functions in eukaryote. It is also
thought that AHL can enter the host cell, bind to intracellular
receptors, and regulate gene transcription (18). Using labeled
molecules, it has been shown that, depending on cell lines, they
can indeed enter cells and be detected in the nucleus or the
cytoplasm (19, 20).

The AHL perception mechanism in mammalian cells is still
fairly unclear. To date, no mammalian receptor has been clearly
demonstrated; only certain hypotheses have been proposed. It has
been shown that the AHL were not recognized by the classical
pattern recognition receptors (PRRs) from the innate immune
system like other microbial molecules (21). The studies done on
the 3-oxo-C12-HSL produced by P. aeruginosa have identified
different receptors based on the cell types and methods used.
Proinflammatory effects have been associated with receptors such
as nuclear factor kappa B (NF-κB) or activator protein-2 (AP-2)
(21). Using other cellular models, mitogen-activated protein
kinases (MAPKs) have been proposed as potential receptors (22).
In 2008, Jahoor et al. identified the peroxisome proliferator-
activated (PPAR) receptors PPARß/δ and PPARγ as potential
AHL receptors (23). The interaction between 3-oxo-C12-HSL
and PPARγ has also been reported by another group, at very low
concentration (1 nM) of AHL (24).

Other candidate mammalian AHL receptors are the
G-protein-coupled receptors and, among these, member 38
of the bitter taste receptor family (T2R38), one of the most
studied bitter taste receptors. It is widely expressed in the
human digestive tract from the tongue to the colon (25). In
the lower gastrointestinal tract, T2R38 is suspected to play
a role in eliciting immune responses to toxic compounds or
pathogens in digestive diseases and metabolic conditions.
Indeed, TAS2R38 polymorphisms have been linked to increased

susceptibility to infections and colorectal cancer (26–28).
Moreover, reports shows that both 3-oxo-C12-HSL and C4-
HSL can activate T2R38 in pulmonary epithelium (28). The
interaction between AHL and this receptor was described in
neutrophils, by immunofluorescence and pull-down assays
(29, 30).

Another potential AHL receptor is the IQ-motif-containing
GTPase-activating protein (IQGAP1) (31). IQGAP1 is a
scaffolding protein, participating in cytoskeleton organization
(32). It has been shown that IQGAP1 plays a role in tight
junction assembly (32), and as 3-oxo-C12-HSL is known to
disrupt junction integrity (10), the interaction between IQGAP1
and AHL seems rational.

Finally, according to the cell type, the receptors and
their localization can be different (33, 34) but mainly
involves inflammatory pathways. Host cells have developed
the abilities to disrupt QS signaling, by degrading them
through the production of paraoxonases (PON), which can
be expressed by intestinal epithelial cells and macrophages
(35). Regulation of this communication between host cells and
bacteria can occur in gut ecosystem. Moreover, it has been
shown that PON1 polymorphisms may confer protection
against the development of IBD (36). Therefore, AHL
interkingdom signaling can be viewed as potent axis of the
gut microbiota–host crosstalk in chronic inflammation and
especially in IBD.

Impact of AHL on Innate Immunity
It has been shown, on cell lines and primary cell cultures,
that AHL, depending on their acyl chain length, double
bounds, and concentrations, may differently affect innate
immune system.

Epithelial cells provide a physical barrier between the host
and the lumen of the intestine, relying on tight junctions.
This prevents the luminal content to harm the host’s integrity.
Epithelial cells contribute to the innate immune response, as
they keep foreign particles from spreading into the host mucosa.
Vikström et al. showed, on an intestinal epithelial cell line Caco-
2, that P. aeruginosa 3-oxo-C12-HSL alters intestinal barrier,
disrupting protein junctions integrity (37–40). When exposed to
the AHL, permeability to macromolecules and ions is increased,
and the expression and localization of junction proteins such
as occludin, E-cadherin, and zonula occludens-1 is modified
(37–39). This alteration process not only involves the MAPK,
notably p38 and p42/44, but also needs the phosphorylation of
junction proteins leading to disturbance of junction integrity
(37–39). Alteration of calcium signaling is also part of the
response to 3-oxo-C12-HSL (39, 41). Interestingly, C4-HSL
does not disturb barrier integrity like 3-oxo-C12-HSL (40).
Moreover, an AHL identified recently in the gut, 3-oxo-C12:2-
HSL, exerts anti-inflammatory effects on Caco-2/TC7 cell line
stimulated by interleukine-1β (IL-1β), as shown on IL-8-reduced
secretion (13).

Some groups identified AHL as chemoattractant to
neutrophils, as it is the case for 3-oxo-C12-HSL and 3-
oxo-C10-HSL, but not C4-HSL. AHL attract neutrophils in
a dose-dependent fashion, through actin remodeling and
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calcium mobilization (42, 43). Moreover, 3-oxo-C12-HSL exerts
proapoptotic function on neutrophils, by targeting mitochondria
and their calcium balance (43).

Macrophages are one of the most studied cell type regarding
3-oxo-C12-HSL impacts. Overall, the observed effects aim at
decreasing the inflammatory response, allowing the set-up of
a chronic P. aeruginosa infection. The effects are various,
from cell-volume increase through water flux (44), unfold
protein response (UPR) (45) to apoptosis (46) and also
on immune functions. Indeed, P. aeruginosa 3-oxo-C12-HSL
exerts anti-inflammatory responses in macrophages, as was
reported by Glucksam-Galnoy et al. on RAW264.7 murine
macrophages, in a dose-dependent fashion. Notably, a decrease
in tumor necrosis factor-α production and increase in IL-
10 secretion was observed (47). As mentioned earlier, when
macrophages are in a proinflammatory context, 3-oxo-C12-
HSL can modulate the NF-κB pathway resulting in a decrease
in the expression of proinflammatory cytokines such as
tumor necrosis factor-α (TNFα), regulated upon activation,
normal T cell expressed, and secreted (RANTES), or monocyte
chemoattractant protein-1 (MCP-1) (48). The involvement of
MAPK p38 has also been reported several times (21, 47,
49) but needs further studies to determine its role in the
signaling. In addition, it has been shown that macrophages in
the presence of 3-oxo-C12-HSL have a higher phagocytic activity
(49, 50), and those effects are abolished when MAPK p38 is
inhibited (49).

Dendritic cells (DCs) stimulated by lipopolysaccharides and
in the presence of 3-oxo-C12-HSL show a decrease in their
proinflammatory cytokine such as IL-12 and interferon-γ (IFNγ)
(51–53). However, reports on anti-inflammatory IL-10 are
contradictory. In both studies, the cells were stimulated by
lipopolysaccharides and exposed to the same dose of 3-oxo-
C12-HSL; one team reported an increase in IL-10 secretion by
human DCs (53), while another group did not see any change
in IL-10 production by mouse DCs (52). By modulating DCs
activation through its QS molecules, P. aeruginosa suppress
the adaptive immune response, favoring the establishment of
chronic infection (52, 53). 3-oxo-C12-HSL has also proapoptotic
effects on humans DCs, as is the case for several cell
types (54).

AHL have cell-type-specific impacts, but overall, the
effects tend to be anti-inflammatory. Besides, 3-oxo-C12-
HSL effects on apoptosis are dependent on the cell types,
as multiple studies do not report toxicity on differentiated
epithelial cells or fibroblasts (31, 55, 56). The effects
of 3-oxo-C12-HSL on immune cells are compiled in
the Table S1. These pathogen-related AHL also display
multiple disruptions on several cell functions from innate
immune cells.

Impact of AHL on Adaptive Immunity
Once again, most of the knowledge in that field relies on
3-oxo-C12-HSL from P. aeruginosa. It had been first shown
that this AHL could inhibit T-cell proliferation (57). This was
confirmed by later reports showing that the same AHL could
inhibit the proliferation and function (cytokine production)

of both mitogen-stimulated (11, 58) and antigen-stimulated
(59) T lymphocytes and modulate antibody production by
B lymphocytes (57, 58). Overall, AHL from P. aeruginosa
tend to have a less effective antibody-mediated, rather than a
more effective cell-mediated, adaptive immune response to the
bacteria, and could thus facilitate persistence of the pathogen. A
structure–activity relationship study of 3-oxo-C12-HSL indicated
that, like QS activity, immune modulatory activity requires
an intact HSL ring, L-configuration at the chiral center, and
an acyl chain of 11–13 carbons (11). Moreover, 3-oxo-C12-
HSL can rapidly induce apoptosis via mitochondrial pathway
on Jurkat cell line (60) and can inhibit DCs and T-cell
activation and proliferation, and downregulate the expression
of costimulatory molecules on DCs (54, 61, 62). This results
in shifting immune responses away from host-protective Th1
responses to pathogen-protective Th2 responses (62). More
precisely, 3-oxo-C12-HSL is able to promote the induction
of regulatory T cells such as CD4+CD25+Foxp3+ induced
regulatory T cells and to enhance their IL-10 and transforming
growth factor-β (TGFβ) production associated with reduced
IFNγ and IL-12p70 production (53). At the molecular level,
3-oxo-C12-HSL prevents human DCs maturation by blocking
the upregulation of surface molecules, including CD11c, HLA-
DR, CD40, and CD80, and DCs switched to an interleukin IL-10
(high), IL-12p70 (low) phenotype (53).

In addition, it has been reported that 3-oxo-C12-HSL
increases the expression of Toll-like receptor-2 (TLR2), in a dose-
dependent fashion, in lymphocytes from peripheral blood (63).
Those observations are interesting because it has been shown that
this AHL signaling does not rely on TLR recognition (21).

Taking together, there are limited observations showing T-cell
inhibition and Treg induction by one AHL from a pathogen. It is
crucial to look at the effect of other natural AHL especially those
coming from commensal gut bacteria.

AHL Within Intestinal Communities
Clues on the Presence of AHL in the Gut
The existence of AHL in the gut has been subject to questioning.
An article from 2013 entitled “Are There Acyl-Homoserine
Lactones within Mammalian Intestines?” examine the question
(64). Mammalian pathogens such as P. aeruginosa or Yersinia
enterocolitica are well known for their ability to produce AHL,
but what about commensal bacteria? As mentioned by the
authors, previous studies relied on the use of LuxR-based
biosensors, where the detection limit may be too high to detect
AHL from the gut, and there is thus a need for the development of
newmore sensitive tools (64).Moreover, theHumanMicrobiome
Project, aiming at sequencing and analyzing the microbiome
of several cohorts, gives clues about the presence of AHL in
the intestines. Indeed, the LuxI/LuxR homolog has been found
in three strains from the gastrointestinal tract: Hafnia alvei,
Edwardsiella tarda, and Ralstonia sp. strain 5_7_47FAA (64).
In addition, bacteria like E. coli, Enterobacter, or Klebsiella are
part of the normal gut microbiota and express, as mentioned
above, the receptor SdiA and therefore can sense AHL (17).
One must highlight the fragility of small molecules like AHL.
Indeed, they are pH sensitive and can also be inactivated by the
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FIGURE 2 | Proposed model of modulation of gut mucosa inflammation by N-acyl-homoserine lactone (AHL)-driven quorum sensing and associated cellular

pathways. Inflammatory bowel disease (IBD) is the result of multiple factors. It involves an imbalance of the microbiota (dysbiosis), an alteration of the epithelial barrier,

as well as an uncontrolled inflammation in the gut mucosa, as described on the left panel. As a result of the dysbiosis, the AHL composition is changed compared to a

physiological state. During normobiosis (right panel), when the bacterial communities are balanced, the AHL profile is modulated compared to a disease state. Beyond

reshaping bacterial composition, AHL can modulate the inflammatory state of gut mucosa as well as restore epithelial barrier integrity. The pathways involved in those

effects are listed on the right panel of the figure. We propose a strategy to control gut inflammation by modulating AHL composition using natural or synthetic AHL.

presence of ont only host lactonases like PON but also bacterial
enzymes. Those degradations can decrease the concentration
of the molecules, making it harder for biosensors to reach
the threshold detection (64). Moreover, it is also possible that
auto-inducers are present in the mammalian gut, but with a
yet unknown structure, like aryl-homoserine lactones, with an
aromatic side chain instead of an acyl chain and thus not
detectable by biosensors (64). It is also interesting to note that
AHL have been found in the rumen of cattle by several teams
(65, 66).

Our team investigated the question of AHL in the human
gut, in the context of IBD. By using mass spectrometry, we
were able to detect 14 different AHLs in the feces of IBD
patients and healthy subject, and the distribution of the AHL
were correlated to the disease state (13). Indeed, one of the
AHL was prominent: 3-oxo-C12:2-HSL. This molecule was, until
then, undescribed and carries two insaturations on its acyl
chain. 3-Oxo-C12:2-HSL was highly decreased in fecal samples
of IBD patients in flare (16%) compared to remission patients
(37.5%) and to healthy subjects (64.5%) (13). The absence
of this AHL was correlated with dysbiosis and a decrease in
Firmicutes, considered as beneficial bacteria. In addition, 3-oxo-
C12:2-HSL exerts anti-inflammatory properties on intestinal cell
lines Caco-2/TC7 (13).

Toward the Use of AHL to Modulate Microbiota

Composition and Gut Inflammation
The study of QS molecules is mainly done on single species
bacteria or in vitro cells. As emphasized by Karina Bivar
Xavier, QS is also an interspecies communication network,
and more studies on the impact of QS on multi-communities
ecosystems should be done (67). In vivo studies are crucial
to understanding relationships in an environment as complex
as the intestine. Kumari et al. have developed a whole-cell

sensing systems for the detection of AHL and have shown
that these signaling molecules detected in saliva and stool
may be potential non-invasive biomarkers of gastrointestinal
inflammatory disease (68). To emphasize this point, given
that AHL profile relies on bacterial dynamics, it could be
considered as an indicator of dysbiosis, opening new perspectives
in managing chronical diseases such as IBD. Understanding
the interactions between bacteria in high concentrations and
high diversity can help us decipher what species are most
beneficial to mammalian gut. To note, another QS type of
molecule, AI-2, has been used to modulate gut microbiota
composition and dysbiosis (69). As illustrated in Figure 2,
AHLs remain good candidates in the strategy to use natural
molecules from QS to modulate microbiota composition and
gut inflammation.

CONCLUDING REMARKS

Gut microbiota mutually interacts with coevolved host epithelial
and immune cells in a beneficial reciprocal relationship. QS
signaling of bacteria probably contributes substantially to
establishing symbiotic interactions in some cross-kingdom
interactive dynamics. In IBD, where, host–microbiota
interactions drive inflammatory response, looking at quorum
sensing changes and impact on immunity appears as a
completely novel and original approach. The mechanisms,
including the regulation of synthesis and degradation of
these diffusible signaling molecules are still not completely
understood. However, the discovery of the general importance
of auto-inducer signaling molecules involved in quorum or
efficiency sensing of bacteria and the dynamic and immune
responses by eukaryotes toward them opens up a new field
of pathophysiology.
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Type 1 autoimmune diabetes is an autoimmune disease characterized by specific

destruction of pancreatic β-cells producing insulin. Recent studies have shown that

gut microbiota and immunity are closely linked to systemic immunity, affecting the

balance between pro-inflammatory and regulatory immune responses. Altered gut

microbiota may be causally related to the development of immune-mediated diseases,

and probiotics have been suggested to have modulatory effects on inflammatory

diseases and immune disorders. We studied whether a probiotic combination that has

immunomodulatory effects on several inflammatory diseases can reduce the incidence

of diabetes in non-obese diabetic (NOD) mice, a classical animal model of human T1D.

When Immune Regulation and Tolerance 5 (IRT5), a probiotic combination comprising

Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium

bifidium, and Streptococcus thermophiles, was administered 6 times a week for 36

weeks to NOD mice, beginning at 4 weeks of age, the incidence of diabetes was

significantly reduced. Insulitis score was also significantly reduced, and β-cell mass was

conversely increased by IRT5 administration. IRT5 administration significantly reduced

gut permeability in NOD mice. The proportion of total regulatory T cells was not changed

by IRT5 administration; however, the proportion of CCR9+ regulatory T (Treg) cells

expressing gut-homing receptor was significantly increased in pancreatic lymph nodes

(PLNs) and lamina propria of the small intestine (SI-LP). Type 1 T helper (Th1) skewing

was reduced in PLNs by IRT5 administration. IRT5 could be a candidate for an effective

probiotic combination, which can be safely administered to inhibit or prevent type 1

diabetes (T1D).

Keywords: probiotics, autoimmune diabetes, regulatory T cells, gut homing receptor, gut permeability

INTRODUCTION

Type 1 autoimmune diabetes is a classical organ-specific autoimmune disease resulting
from immune-mediated destruction of pancreatic β-cells producing insulin. While genetic
predisposition plays a critical pathogenic role both in patients with T1D and in animal models of
autoimmune diabetes, environmental factors are also important for the development of clinical
disease.Among environmental factors, the microbiota is emerging as a crucial element that
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can influence T1D by modulating local and systemic host
immunity. Particularly, gut microbiota represents the largest
microbial population in humans or animals which affects not
only immune responses but also other vital processes of life, such
as nutrient uptake.

Currently, microbiota studies are gaining strong popularity
since new methods of microbiota identification, such as 16s
rRNA gene sequencing revolutionized the field. However,
the role of microbiota in T1D has been long recognized
as exemplified by the decade-old “hygiene hypothesis” (1).
According to the hypothesis, recent increases in the incidence
of autoimmune or allergic diseases including T1D could be
due to improved sanitation and relative paucity of exposure to
microorganisms that are necessary for the proper maturation
or functional adaptation of the immune system (2). Microbial
exposure can influence host immunity by multiple mechanisms
including Th1/type 2 T helper (Th2) deviation or regulatory
cell modulation (3). Consistently, when NOD mice, a classical
model of autoimmune diabetes, were rendered germ-free,
insulitis was accelerated which was accompanied by increased
Th1 and Th17 cells in the mesenteric lymph nodes (MLNs)
and PLNs (4); however, the incidence of diabetes was not
significantly changed in germ-free NOD mice (4, 5), showing
complex nature of the development of the disease phenotype
in vivo. Regarding specific microorganisms that can influence
autoimmune diabetes, Lactobacillus johnsonii, Lactobacillus
casei, Bacillus cereus, Akkermansia muciniphila, Segmented
Filamentous Bacteria (SFB), a specific strain of Clostridium
butyricum or probiotic comprising such bacteria have been
reported to reduce the incidence of diabetes in NOD mice or BB
rat, a rat model of autoimmune diabetes by modulating cytokine
profile, Treg cells, Th cell polarization, or barrier function (5–
10). Viruses, such as norovirus or lymphocytic choriomeningitis
virus (LCMV) have also been shown to inhibit the development
of autoimmune diabetes in NODmice (11, 12).

Because of profound effects of microbiota on host immunity
and therapeutic potential, a large array of microbes or their
products has been employed to treat or manage diverse
inflammatory diseases, metabolic diseases and cancers (13–
16). Particularly, probiotics, live microorganisms conferring a
beneficial physiological effect on the host, such as maintenance
of host immune homeostasis, nutrient metabolism or protection
of neonates from infection (17–19), are attractive candidates
as potential therapeutic agents against those diseases. We have
recently reported a probiotic combination comprising 5 bacteria,
IRT5, that has therapeutic effects on several autoimmune or
inflammatory disease models, such as inflammatory bowel
disease, atopic dermatitis, rheumatoid arthritis, and experimental
autoimmune encephalomyelitis (20, 21). Here, we studied
whether the microbial combination could be effective in
autoimmune diabetes of NOD mice.

MATERIALS AND METHODS

Animals
NOD mice and BDC2.5/NOD T cell receptor (TCR)-transgenic
mice purchased from Jackson Laboratory (Bar Harbor, ME, USA)

were maintained in a specific-pathogen-free environment in the
vivarium of Yonsei University College of Medicine. Mice were
considered diabetic if blood glucose levels were >16.7 mmol/l
on a single measurement or > 13.9 mmol/l on consecutive
measurements. The incidence of diabetes in female and male
NOD mice was about 70 and 30%, respectively, at 24 weeks of
age. All animals had free access to water and laboratory chow
and were kept on a 12-h light/dark cycle. All mouse experiments
were conducted in accordance with the Public Health Service
Policy in Humane Care and Use of Laboratory Animals. Mouse
experiments were approved by the IACUC of the Department
of Laboratory Animal Resources of Yonsei University College of
Medicine, an AAALAC-accredited unit.

Probiotic Administration
IRT5 (kindly provided by Korea Yakult Co, Giheung, Korea)
was mixtures of live bacteria consisting of 1 × 109 colony-
forming unit (cfu) of each of the following strains in 100
µl: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
reuteri, Bifidobacterium bifidium, and Streptococcus thermophiles.
Four-weeks-old female NOD mice were randomly assigned to
experimental group treated with IRT5 (NOD-IRT5) or control
group treated with PBS (NOD-PBS). Mice were healthy and
non-diabetic before starting IRT5 administration, and no adverse
effect of IRT5 administration was observed. Study design
and general scheme of probiotic administration are shown in
Figure S1.

Insulitis Scoring and β-Cell Mass
Insulitis score was determined using paraffin-embedded H&E
stained sections as previously described (22). In brief, the severity
of insulitis was evaluated from more than 30 pancreatic islets
from 3 or more parallel sections of different cut levels per mouse.
The degree of insulitis was categorized into 4 groups: 0, no
insulitis; 1, periinsulitis with or without minimal lymphocytic
infiltration into islets; 2, invasive insulitis with islet destruction
of ≤ 50%; 3, islet destruction of > 50%. Relative β-cell mass was
measured by point counting after insulin immunohistochemistry
of pancreatic sections, as previously described (23). Insulitis
scoring and β-cell mass determination were conducted after 12
weeks of IRT5 administration.

Insulin Autoantibody (IAA) Measurement
Serum mouse IAA levels were determined using an ELISA kit
(ABclonal, Woburn, MA, USA), according to the manufacturer’s
instructions. Briefly, 50 µl of enzyme solution was added to
samples and standards in 96-well plates. After incubation for 1 h
at 37◦C in a humid chamber and washing, substrate was added
for incubation for 15min at room temperature without light
exposure. After adding 50 µl of stop solution to each well, optical
density (O.D.) was determined at 450 nm.

Gut Permeability
Permeability of gut epithelium was determined as described
(24). In brief, mice fasted for 4 h were orally administrated
with 60 mg/100 g body weight permeability tracer of fluorescein
isothiocyanate (FITC)-labeled dextran (molecular weight, 4,000)
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(Sigma, St. Louis, MO, USA) and peripheral blood was collected
4 h later. Serum samples were diluted in equal volumes
of PBS, and the serum FITC-dextran concentrations were
determined using a fluorescence spectrophotometer (GloMax-
Multi Detection System) (Promega, Madison, WI, USA) at an
excitation wavelength of 490 nm and an emission wavelength of
540 nm.

Immunohistochemistry
For immunohistochemical staining of tight junction proteins, 2–
4µm thin sections of the small intestine (SI) were deparaffinized
and rehydrated. After antigen retrieval by microwaving in Tris-
EDTA buffer (10 mmol/l, pH 9.0) for 10min and blocking
in 10% goat serum for 30min, sections were incubated with
ZO-1 antibody (Ab) (Invitrogen, Carlsbad, CA, USA) for
30min at room temperature. Sections were then incubated
with biotinylated secondary antibody for 30min, followed by
incubation with Vectastain ABC (Vector Lab, CA, USA) and
DAB (Invitrogen) staining. Between each step, sections were
rinsed three times in TBST buffer (137mM NaCl-20mM Tris,
pH 7.4–0.1% Tween 20). After DAB staining, sections were
counterstained with Mayer’s hematoxylin.

T Cell Priming
T cell priming was evaluated by an adoptive transfer system using
carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes,
Eugene, OR, USA)-labeled lymphocytes as described (25). In
brief, naïve CD4+ T cells were prepared from the pooled spleens
of young BDC2.5/NOD mice by the negative-selection method
using a MACS CD4+ T cell isolation kit (Miltenyl Biotech,
Alburn, CA, USA). The purity of CD4+ T cells was > 95%.
CFSE-labeled CD4+ T cells (2 × 106 cells) were transferred into
recipient mice by tail vein injection. Lymphoid cells in PLNs,
MLNs and SI-LP were harvested 66 h after transfer, and single
cell suspension was analyzed for CFSE dilution by flow cytometry
gated on CD4+ and Vβ4+ cells.

Flow Cytometry
Regulatory T (Treg) cell proportion was determined as published
(16). In brief, single-cell suspensions of lymphocytes were
manually prepared from PLNs, MLNs or SI-LP of mice. To
harvest SI-LP cells, SI was opened and washed in ice-cold PBS.
After washing with PBS, tissues were transferred to a flask
containing 10% FBS-10 mmol/l EDTA in PBS. After vigorous
shaking, tissues were passed through a strainer. Tissues were
then minced in 10ml RPMI 1640 containing 0.5mg collagenase
D (Roche, Indianapolis, IN, USA) and DNase I (Roche). After
stirring for 20min at 37◦C, the supernatant was collected for
a total of 3 times. Cell pellet obtained after centrifugation at
520 g for 5min was washed and resuspended in RPMI-2% FBS.
SI-LP mononuclear cells were purified on a 40–75% Percoll
(GE Healthcare Life Sciences, Uppsala, Sweden) gradient by
centrifugation at 930 g, 25◦C for 20min. Cells were resuspended
in PBS-2% FBS-2mM EDTA. After Fc blocking, PLNs, MLNs
or SI-LP cells were incubated with a mixture of anti-CD3ε
and -CD4 Abs (eBioscience, San Diego, CA, USA) in PBS-2%
FBS-2mM EDTA at 4◦C for 30min. After permeabilization,

cells were incubated with anti-mouse/rat FOXP3 (FJK-16s) Ab
(eBioscience) at 4◦C for 30min. The FoxP3 Staining Buffer Set
(eBioscience) was used for intracellular staining according to the
manufacturer’s instructions.

To evaluate Th or cytotoxic T (Tc) cell skewing, cells
in PLNs, MLNs, and SI-LP were stimulated immediately
after isolation with phorbol 12-myristate 13-acetate (Sigma),
ionomycin (Sigma) in the presence of BD GolgiStop (BD
Biosciences) at 37◦C for 4 h. After Fc blocking, cells were stained
with fluorophore-labeled Abs specific for CD3ε, CD4, or CD8
(eBioscience) in PBS-2% FBS-2mM EDTA at 4◦C for 30min.
After surface staining, cells were stained with anti-interleukin
17A (IL-17A) (eBioscience) and -IFN-γ Ab (eBioscience) at 4◦C
for 30min using the Cytofix/Cytoperm kit (BD Pharmingen, San
Diego, CA, USA), according to the manufacturer’s instructions.
Cells were fixed in 0.5% paraformaldehyde, and then multi-
color flow cytometry was performed using a FACSCalibur
flow cytometer (BD Biosciences, San Jose, CA, USA). Data
were analyzed with FlowJo software (Tree Star, Inc., Ashland,
OR, USA).

RNA Isolation and Quantitative RT-PCR
RNA was prepared from primary tissues or extracted from
paraffin-embedded sections using the Tizol or QIAamp DNA
FFPE Tissue Kit (Qiagen, Valencia, CA, USA). cDNA was
synthesized using Superscript II (Invitrogen) and oligo (dT)12-
18 primers. Real-time RT-PCR was performed using SYBR green
(Takara, Shiga, Japan) in ABI PRISM 7000 (Applied Biosystems,
Foster City, CA, USA). All expression values were normalized to
β-Actin or GapdhmRNA levels.

Primer Sequences for Quantitative RT-PCR
mouse Zo-1-F, 5′-CCCCTCTGTCCAGCTCTTC-3′; mouse
Zo-1-R,5′-CACCGGAGTGATGGTTTTCT-3′; mouse Occludin-
F, 5′-CCTCCAATGGCAAAGTGAAT-3′; mouse Occludin-R,
5′-CTCCCCACCTGTCGTGTAGT-3′; mouse Claudin 1-F,
5′-TGG GTT TCA TCC TGG CTT CT-3′; mouse Claudin
1-R, 5′-TGT ATC TGC CCG GTG CTT T-3′; mouse
Gapdh-F, 5′-AGGTCGGTGTGAACGGATTTG-3′; mouse
Gapdh-R, 5′-TGTAGACCATGTAGTTGAGGTC-3′; mouse
β-Actin-F, 5′-AGGTGACAGCATTGCTTCTG-3′; mouse
β-Actin-R, 5′-GCTGCCTCAACACCTCAAC-3′.

Statistical Analysis
All values are expressed as the means ± SE. The incidence of
diabetes was plotted as the Kaplan-Meier curve and compared
using the logrank test. Two-tailed Student’s t-test was employed
to compare values between two groups. P-values <0.05 were
considered significant.

RESULTS

Reduced Incidence of Diabetes by
Probiotic Combination
Since IRT5, a combination of 5 bacteria (Lactobacillus
acidophilus, Lactobacillus casei, Lactobacillus reuteri,
Bifidobacterium bifidium, and Streptococcus thermophilus)
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FIGURE 1 | Incidence of diabetes in female NOD mice. (A) IRT5 was administered since 4 weeks of age for 36 weeks, and the incidence of diabetes was monitored.

Control group was treated with solvent only in the same manner (n = 10 for NOD-PBS and 24 for NOD-IRT5). (B,C) Changes of pancreatic islets. Insulitis score (B)

and relative β-cell mass (C) were determined after 12 weeks of IRT5 administration as described in the MATERIALS AND METHODS (n = 8 for NOD-PBS and 9 for

NOD-IRT5 in B; n = 7 for NOD-PBS and 8 for NOD-IRT5 in C). (D) Serum level of insulin autoantibody (IAA) was determined in NOD-PBS and NOD-IRT5 using ELISA

(n = 6 for NOD-PBS and 6 for NOD-IRT (**p < 0.01; *p < 0.05).

has been shown to be effective against several autoimmune and
inflammatory disorders (20, 21), we administered 5 × 108 cfu
IRT5 to female NOD mice by oral gavage six times a week for 36
weeks beginning at 4 weeks of age and monitored blood glucose
level. The incidence of diabetes was significantly reduced in NOD
mice treated with IRT5 compared to control NOD mice treated
with PBS (Figure 1A). Consistent with the reduced incidence of
diabetes, insulitis score was also significantly reduced in mice
treated with IRT5 (Figure 1B). Conversely, β-cell mass was
higher in mice treated with IRT5 compared to control NOD
mice (Figure 1C). Serum level of IAA, an index of autoimmunity
in NOD mice (26), was also reduced in NOD mice treated with
IRT5 compared to control mice (Figure 1D).

Reduced Gut Permeability by Probiotic
Combination
To study the mechanism of the reduced incidence of
autoimmune diabetes by IRT5, we studied possible changes
of permeability of gut epithelium since the intestine is the
first organ contacting oral administered probiotics and gut
permeability is changed in patients with T1D or animal
models of autoimmune diabetes, potentially contributing to the
acceleration of islet autoimmunity (27–29). Real-time RT-PCR
showed that the expression of Zo-1 encoding a tight junction
protein that constitutes critical physical barrier of the intestine,
was significantly increased in the SI of NOD mice treated with
IRT5 for 12 weeks (Figure 2A), suggesting improved gut barrier
function. The expression of Occludin encoding another tight
junction protein, was also increased after IRT5 administration
for 12 weeks, while statistical significance was not achieved

(Figure 2A). In contrast, the expression of Claudin-1 that
controls epithelial permeability as a tight junction protein (30)
was not significantly changed after IRT5 treatment (Figure 2A).
Significantly increased expression of ZO-1 after IRT5 treatment
was confirmed by immunohistochemistry (Figure 2B). When we
investigated the intestinal barrier function of gut epithelium by
measuring the amount of circulating FITC-dextran 4 h after oral
gavage with FITC-dextran, a significantly reduced serum content
of FITC-dextran was observed in mice treated with IRT5 for 12
weeks compared to control NOD mice (Figure 2C), supporting
enhanced barrier function by IRT5.

Increased Gut-Homing Treg Cells by
Probiotic Combination
We next studied changes of immune parameters involved in
β-cell autoimmunity after administration of IRT5. We first
assessed priming of diabetogenic T cells using the BDC2.5 TCR
transgenic system that occurs in PLNs and is critical in the
sensitization of diabetogenic T cells in vivo (29). The transgene-
encoded TCR, derived from a diabetogenic BDC2.5 T cell clone,
recognizes chromogranin A as a β-cell autoantigen in the context
of MHC class II molecule I-Ag7 (31). We observed no significant
change of the proliferation of transferred BDC2.5 T cell in
NOD mice treated with IRT5 (Figure S2), indicating that IRT5
administration does not influence diabetogenic T cell priming
in PLNs.

To assess other immune parameters modulating β-cell
autoimmunity, we studied Treg cells that are induced by
IRT5 and can exert inhibitory effects on the development of
autoimmune diabetes (32, 33), together with T cell subsets.
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FIGURE 2 | Changes of gut permeability in NOD mice treated with IRT5. (A) The expression of tight junction proteins was evaluated by real-time RT-PCR using mRNA

from paraffin-embedded tissues and specific primers (n = 7 for NOD-PBS and 5 for NOD-IRT5). (B) The expression of ZO-1 protein was evaluated by

immunohistochemistry. (C) Gut permeability was determined by measuring serum FITC fluorescence 4 h after oral administration of FITC-dextran (n = 5 for NOD-PBS

and 5 for NOD-IRT5) (*p < 0.05; ns, not significant).

The proportions of CD3+, CD4+, or CD8+ T cells were not
significantly changed in PLNs, MLNs or SI-LP after IRT5
administration (Figure S3). Contrary to our expectation, the
proportion of CD4+FOXP3+ Treg cells was not significantly
changed in PLNs or MLNs after IRT5 administration for
12 weeks (Figure 3A). There was an increasing tendency of
CD4+FOXP3+ Treg cells in SI-LP of the treated mice; however,
the difference was statistically insignificant (Figure 3A). We
next studied the expression of CCR9 that can be expressed
in Treg cells and is required for T cell homing to the SI
(34, 35). We observed increased expression of CCR9 in CD4+

T cells from SI-LP (Figure 3B). The expression of CCR9
in CD4+ T cells was not significantly changed in PLNs or
MLNs after IRT5 administration, while there was an increasing
tendency of CCR9 in CD4+ T cells of PLNs (Figure 3B).
When we studied the changes of CCR9+ Treg cells, the
proportion of CCR9+CD4+FOXP3+ Treg cells was significantly
increased in PLNs and SI-LP but not in MLNs after IRT5
administration (Figure 3C), suggesting the role of gut-homing
Treg cells in the reduced incidence of autoimmune diabetes
by IRT5. To confirm the increases of CCR9+CD4+FOXP3+

Treg cells after IRT5 treatment, we calculate the numbers of
CCR9+CD4+FOXP3+ Treg cells in PLNs, MLNs or SI-LP.
Indeed, the numbers of CCR9+CD4+FOXP3+ Treg cells were
significantly increased in PLNs and SI-LP but not in MLNs
of NOD mice treated with IRT5 (Figure 3D), corroborating
the increases of CCR9+CD4+FOXP3+ Treg cells after IRT5
administration in PLNs and SI-LP.

Reduced Th1 Polarization by IRT5
We next studied whether IRT5 administration can change
the polarization of Th cells which affects the development of
autoimmune diabetes at the effector phase (36). We observed
that IRT5 administration significantly reduced the proportion
of CD4+IFN-γ+ Th1 cells in PLNs but not in MLNs or SI-LP

(Figure 4A). The proportion of CD4+IL-17A+ Th17 cells was
not significantly changed after IRT5 administration in PLNs,
MLNs or SI-LP (Figure 4A). We also studied skewing of CD8+ T
cells since CD8+ T cells are critical effector cells in autoimmune
diabetes and CD8+ T cells can be divided into multiple subsets
according to cytokine profile, similar to CD4+ T cells (37). The
proportions of CD8+IFN-γ+ Tc1 cells or CD8+IL17-A+ Tc17
cells were not significantly changed after IRT5 administration in
PLNs, MLNs or SI-LP (Figure 4B), suggesting that IRT5 inhibits
the development of autoimmune diabetes bymodulating skewing
of CD4+ T cells rather than that of CD8+ T cells.

DISCUSSION

We observed a significant decrease of diabetes incidence after
IRT5 administration for 36 weeks, which was associated with
reduced gut permeability and increased proportion of CCR9+

gut-tropic Treg cells. In this investigation, we started IRT5
administration at 4 weeks of age because previous studies
showed that inhibition of physiological β-cell apoptosis at day
14–42 with benzyloxylcarbonyl-V-A-D-O-methyl fluoromethyl
ketone (zVAD-fmk), a pan-caspase inhibitor, was able to
inhibit sensitization to diabetogenic T cells (38) and immune
intervention at 4 weeks of age could block the development of
diabetes in NOD mice (39–41). We continued IRT5 treatment
up to 40 weeks of age because diabetes developed even after
32–36 weeks of age in our NOD colonies (25). The reduction
of gut permeability by IRT5 is consistent with previous papers
showing decreased gut permeability by several Lactobacilli
in diverse conditions (42). The pathogenic role of increased
gut permeability due to dietary cause is widely accepted in
type 2 diabetes (43, 44). On the other hand, the mechanism
and immunological impact of altered gut permeability in
autoimmune diabetes are less clear. However, several papers
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FIGURE 3 | Treg cells in NOD mice treated with IRT5. (A) Cells from pancreatic lymph nodes (PLNs), mesenteric lymph nodes (MLNs), or lamina propria of the small

intestine (SI-LP) of NOD mice that were treated with IRT5 for 12 weeks were stained with anti-CD4 and -FOXP3 mAbs for flow cytometry gated on CD3 and CD4. The

percentages of CD4+FOXP3+ cells among CD3+CD4+ cells were compared (bottom). Representative scattergrams are shown (top). The numbers in the top right

quadrants represent the percentage of CD4+FOXP3+ Treg cells among CD3+CD4+ cells analyzed (n = 6 for NOD-PBS and 7 for NOD-IRT5 in PLNs; n = 6 for

NOD-PBS and 7 for NOD-IRT5 in MLNs; n = 9 for NOD-PBS and 9 for NOD-IRT5 in SI-LP). (B) Cells prepared as in (A) were stained with anti-CD4 and -CCR9 mAbs

for flow cytometry gated on CD3 and CD4. The percentages of CD4+CCR9+ cells among CD3+CD4+ cells were compared (bottom). Representative scattergrams

are shown (top). The numbers in the top right quadrants represent the percentage of CD4+CCR9+ Treg cells among CD3+CD4+ cells analyzed (n = 8 for NOD-PBS

and 8 for NOD-IRT5 in PLNs; n = 10 for NOD-PBS and 8 for NOD-IRT5 in MLNs; n = 7 for NOD-PBS and 7 for NOD-IRT5 in SI-LP). (C) Cells prepared as in (A) were

stained with anti-FOXP3 and -CCR9 mAbs for flow cytometry gated on CD4 and FOXP3. The percentages of CCR9+FOXP3+ cells among CD4+FOXP3+ cells were

compared (bottom). Representative scattergrams are shown (top). The numbers in the top right quadrants represent the percentage of CCR9+FOXP3+ Treg cells

among CD4+FOXP3+ cells analyzed (n = 7 for NOD-PBS and 12 for NOD-IRT5 in PLNs; n = 7 for NOD-PBS and 12 for NOD-IRT5 in MLNs; n = 9 for NOD-PBS and

10 for NOD-IRT5 in SI-LP). (D) The numbers of CCR9+CD4+FOXP3+ cells were calculated from the total numbers of lymphocytes, the percentages of CD3+CD4+

cells among total lymphocytes and that of CCR9+FOXP3+ cells among CD3+CD4+ cells (*p < 0.05; ns, not significant).
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FIGURE 4 | Th1/Th17 skewing in NOD mice treated with IRT5 for 12 weeks. (A) CD4+ Th cell skewing in PLNs, MSLs, or SI-LP was evaluated by flow cytometry. The

proportions of IFN-γ+ cells and IL-17+ cells among CD3+CD4+ T cells (right). Representative scattergrams are shown (left) (n = 5 for NOD-PBS and 5 for NOD-IRT5

in PLNs; n = 5 for NOD-PBS and 4 for NOD-IRT5 in MLNs; n = 5 for NOD-PBS and 5 for NOD-IRT5 in SI-LP). (B) CD8+ Tc cell skewing in PLNs, MSLs, or SI-LP was

evaluated by flow cytometry. The proportions of IFN-γ+ cells and IL-17+ cells among CD3+CD8+ T cells (right). Representative scattergrams are shown (left) (n = 5

for NOD-PBS and 5 for NOD-IRT5 in PLNs; n = 5 for NOD-PBS and 5 for NOD-IRT5 in MLNs; n = 5 for NOD-PBS and 5 for NOD-IRT5 in SI-LP) (*p < 0.05; ns, not

significant).

have shown increased gut permeability in T1D patients or
animal models of autoimmune diabetes (27–29). Morphological
changes of gut epithelium, such as reduced crypt length were
observed after administration of Akkermansia to NOD, which
was accompanied by delayed onset of diabetes (45). Alteration in
dietary components, gut bacteria, inflammation or other factors

may contribute to the increased gut permeability in autoimmune
diabetes, which is likely to affect immune tolerization or other
immune processes in gut epithelium, gut-associated lymphoid
tissues or PLNs, influencing autoimmune processes (46).

When we studied the immunological impact of IRT5
administration, we observed no significant change in the
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proportion of total Treg cells in PLNs, MLNs or SI-LP after in
vivo administration for 12 weeks. Such results are in contrast
to a significant induction of Treg cells in MLNs after IRT5
administration for 20 days (21), which could be due to differences
in disease models. Prolonged administration of IRT5 might
lead to the downregulation of immunological changes associated
with probiotics administration. Difference in other experimental
conditions, such as distinct mouse strain might be the cause of
discrepant results between studies.

Instead, we observed a significant increase in the percentage
of CCR9+ Treg cells, indicating that the proportion of
Treg cells with gut-homing capability was increased by IRT5
administration in vivo. Since CCR9, a gut-homing receptor, is
expressed in Treg cells and crucial in Treg cell homing to gut
tissue (35), an increased proportion of CCR9+ Treg cells after
IRT5 administration is likely to enhance Treg cell homing to
target tissues, such as the intestine or pancreas. In contrast, a
previous paper reported that a butyrate-producing probiotics
(Clostridium butyricum CB0313.1) increases total Treg cells in
PLNs with significant protection against autoimmune diabetes of
NODmice (7). Nonetheless, the induction of Treg cells with α4β7
gut-homing receptor was particularly prominent, suggesting
the importance of gut-homing Treg cells in probiotics-induced
protection against autoimmune diabetes (7). Despite significant
induction of Treg cells expressing CCR9, we observed no effect
of IRT5 administration on diabetogenic T cell priming in PLNs,
draining LNs for T cells reactive to islet β-cell antigens. Such
a failure to suppress diabetogenic T cell priming in PLNs by
Treg with gut-homing receptor is probably because Treg cells
act in target organs but not in draining LNs (32). CCR9+ T
cells interact with its ligand, CCL25, to enter target organs,
and CCR9+ Treg cells would exert their effect after homing
to target tissues through interaction with its ligand, which can
explain the absence of reduced diabetogenic T cell priming in
PLNs by IRT5. Consistent with the notion that Treg cells act
in target tissue, the decrease of the Treg cell:T effector cell
ratio was observed in pancreatic islets but not in PLNs of
NOD mice (47). Increased FOXP3+ cell number has also been
found in pancreatic islets after the treatment of NOD mice with
Akkermansia, which was accompanied by delayed development
of diabetes (45). Significant increases of CCR9+ Treg cells in SI-
LP observed in this study also support the role of CCR9 on gut
homing and potential effect of CCR9+ Treg cells in target tissues.
No significant changes of total Treg cells in PLNs might also
contribute to the absence of IRT5 effect on diabetogenic T cell
priming in PLNs.

Th1 polarization is an important step in the pathogenesis
of autoimmune diabetes in NOD mice (36). Furthermore, IRT5
can downregulate Th1/Th17 polarization through generation of
regulatory DCs and subsequent induction of Treg cells (20). We
observed reduced skewing to Th1 producing IFN-γ in PLNs
by IRT5 administration, and similar changes were observed in
MLNs or SI-LP but without statistical significance. Since Th1
cells producing IFN-γ are main effector cells in autoimmune
diabetes (36, 48), reduced Th1 skewing by IRT5 is likely to
contribute to the reduced incidence of autoimmune diabetes
by IRT5. Significant changes of the proportion of Th1 cells in

PLNs without alteration of diabetogenic T cell priming by IRT5
treatment could be due to differences in signal transduction and
proliferative response between naïve cells and primed T cells
(49, 50). Recirculation of effector T cells back and forth between
target tissues and draining lymph nodes (51, 52) might also
contribute to the reduced Th1 cells in PLNs because CCR9+

Treg cells are likely to act on effector T cells in pancreatic
islets after homing to target tissues and such effector T cells
may move back to PLNs. In contrast to the skewing to Th1,
skewing to Th17 producing IL-17A was not changed by IRT5
administration, while the role of Th17 cells in autoimmune
diabetes begins to be recognized (53). Although the effect of
IRT5 reducing the incidence of autoimmune diabetes of NOD
mice is most likely due to induction of gut-homing Treg
cells and reduced Th1 polarization, other mechanisms have
been suggested, such as restoration of antigen-specific tolerance
or induction of IL-10 when genetically-modified Lactococcus
lactis or a probiotic combination consisting of Bifidobacteria,
Lactobacilli, and Streptococcus salivarius subsp. Thermophiles was
employed (6, 54).

In conclusion, we observed significantly reduced incidence
of autoimmune diabetes in NOD mice by administration of
a probiotic combination comprising 5 bacteria, which can be
explained by reduced gut permeability, increased generation of
gut-homing Treg cells and reduced Th1 polarization. However,
autoimmune diabetes of NOD mice was not completely
abrogated by our probiotic combination, which could be a
drawback in the clinical application of IRT5 to the prevention or
treatment of autoimmune diabetes. Further optimization of IRT5
by combining with other bacteria or their products comprising
active components may lead to the discovery of effective
therapeutic or preventive compounds that can be safely used for
human trial or clinical purposes. Because we recently identified
cell surface β-glucan/galactan polysaccharide of Bifidobacterium
bifidum as an active molecule inducing Treg cells (55), IRT5
or their active components could be candidates of therapeutic
agents for human immune disorders in future studies.
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Inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD) are

chronic inflammatory diseases of the gastrointestinal and respiratory tracts, respectively.

These mucosal tissues bear commonalities in embryology, structure and physiology.

Inherent similarities in immune responses at the two sites, as well as overlapping

environmental risk factors, help to explain the increase in prevalence of IBD amongst

COPD patients. Over the past decade, a tremendous amount of research has been

conducted to define the microbiological makeup of the intestine, known as the

intestinal microbiota, and determine its contribution to health and disease. Intestinal

microbial dysbiosis is now known to be associated with IBD where it impacts upon

intestinal epithelial barrier integrity and leads to augmented immune responses and

the perpetuation of chronic inflammation. While much less is known about the lung

microbiota, like the intestine, it has its own distinct, diverse microflora, with dysbiosis

being reported in respiratory disease settings such as COPD. Recent research has begun

to delineate the interaction or crosstalk between the lung and the intestine and how

this may influence, or be influenced by, the microbiota. It is now known that microbial

products and metabolites can be transferred from the intestine to the lung via the

bloodstream, providing a mechanism for communication. While recent studies indicate

that intestinal microbiota can influence respiratory health, intestinal dysbiosis in COPD

has not yet been described although it is anticipated since factors that lead to dysbiosis

are similarly associated with COPD. This review will focus on the gut-lung axis in the

context of IBD and COPD, highlighting the role of environmental and genetic factors and

the impact of microbial dysbiosis on chronic inflammation in the intestinal tract and lung.

Keywords: inflammatory bowel disease, Crohn’s disease metabolites, chronic obstructive pulmonary disease,

microbial dysbiosis, gut-lung axis

INTRODUCTION

Inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD) are chronic
inflammatory diseases that affect the gastrointestinal tract and respiratory system, respectively, with
both being characterized by recurrent disease cycles that result in tissue damage and worsening
of disease symptoms. As mucosal epithelial sites, the gastrointestinal and respiratory tracts share
structural similarities which may result in part from common embryonic origin in the primitive
foregut (1). Its hypothesized that these structural similarities may account for inherent parallels in
the immune responses at these two sites and contribute to the dynamic involvement of the gut-lung
axis in inflammation.
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CHRONIC INFLAMMATORY DISEASES

Inflammatory Bowel Disease
IBD is an umbrella term that describes chronic relapsing
inflammation of the gastrointestinal tract; the major types being
Crohn’s disease metabolites (CDM) and ulcerative colitis (UC).
CD is characterized by transmural, non-continuous, and non-
caseating granulomatous inflammation that can occur at any
point along the entirety of the gastrointestinal tract, however,
inflammation most commonly manifests in the terminal ileum
(2, 3). UC is characterized by continuous inflammation that
originates in the rectum and progresses proximally. Unlike CD,
the inflammation in UC only affects the mucosa and submucosa
and solely manifests in the colon (4, 5). The etiology of IBD has
not been fully elucidated, however, a complex interplay of genetic
susceptibility, environmental risk factors, inappropriate immune
responses directed against the microbiota, intestinal barrier

FIGURE 1 | Gut-lung axis. Communication between the intestines and the lungs occurs in both healthy situations and disease settings. In healthy individuals, both the

intestines and the lungs harbor diverse microbial communities that have evolved to complement the host and predominately comprise bacteria of the Bacteroidetes

and Firmicutes phyla. The gut microbiota performs key functions such as the generation of SCFA from the host’s diet, which play an important role in homeostatic

maintenance. Microbial dysbiosis occurs in association with chronic inflammatory diseases such as IBD and COPD and leads to loss of epithelial barrier integrity and

inappropriate immune responses directed against the microbiota. Dysbiosis is characterized by reduced diversity of Firmicutes spp. in IBD and the expansion of

Proteobacteria spp. in COPD. Genetic variations as well as environmental stimuli such as cigarette smoke or a Western diet have been linked to intestinal and lung

microbial dysbiosis. A healthy, fiber-rich diet promotes intestinal, and respiratory health.

hyperpermeability, and dysbiosis of commensal microbiota of
the intestines are thought to contribute to pathogenesis (6)
(Figure 1).

Presently there are no curative treatments for IBD. With
current management strategies, 10–35% of CD patients will
require surgery within the first year of diagnosis, and up to 60%
will require surgery within a decade of initial diagnosis (7). For
UC, 30% of patients will require a colectomy within 10 years
of diagnosis (8). Further research into the mechanisms driving
IBD is needed to identify novel therapeutic targets, and a fuller
understanding of the role of intestinal microbiota in IBD could
provide some valuable insights in pursuit of this.

Chronic Obstructive Pulmonary Disease
COPD is a progressive and largely irreversible disease that is
characterized by prolonged inflammation, tissue destruction, and
airflow obstruction leading to the reduced functional capacity
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of the lungs. The disease is driven by chronic exaggerated
inflammatory responses in the airways and parenchyma of
the lungs in response to a noxious insult such as cigarette
smoke or environmental pollutants or genetic factors such as
alpha-1 antitrypsin deficiency (Figure 1). Airway inflammation
drives airway remodeling leading to mucus metaplasia and
airway obstruction as well as tissue destruction that results
in the enlargement of the alveoli, also known as emphysema.
Smoking is a major risk factor for the development of COPD,
however, other factors such as chronic asthma, low birth weight,
childhood respiratory tract infections, pulmonary tuberculosis,
and occupational exposures to dusts have also been associated
with COPD (9). The prevalence of COPD has been reported
to be as high as 20% in never-smokers suggesting that other
risk factors for COPD have been overlooked due to the focus
on cigarette smoke (10). COPD is one of the leading causes of
mortality worldwide accounting for 3 million deaths annually
(11), and much like IBD, there is no curative treatment beyond
lung transplantation although this is still up for debate (12).

Linking IBD and COPD
Population based studies have identified an increased prevalence
of IBD in patients with COPD, and an increased risk of mortality
in patients with both COPD and CD (13–15). Furthermore,
the risk of COPD patients developing either CD or UC is
increased by 2.72 and 1.83, respectively, compared to healthy
controls (13), results that have been confirmed in additional
populations (16). Reciprocally, a retrospective study found that
CD patients were at increased risk of dying from COPD (17).
Additionally, a study in Quebec residents found that asthmatic
and COPD patients had increased incidences of CD of 27 and
55%, respectively, compared to the general population in that
province (18). There is also evidence that up to 60% of IBD
patients have some degree of subclinical lung disease (19). COPD
andCD share environmental risks, with cigarette smoke exposure
being a major risk factor for both (20). However, this does not
explain the increased prevalence of UC amongst COPD patients
as cigarette smoke has been proposed to be protective against the
development of UC in the general population (21). CD patients
without chronic lung disease have reduced pulmonary function
that correlates with the presence of sputum lymphocytosis and
eosinophilia and inversely with CD activity index (22). This
suggests that shared environmental risk factors alone are not
sufficient to induce these comorbidities and that alternative
mechanisms that link the intestine and lung are responsible.

The epithelium of the respiratory and gastrointestinal systems
are derived embryonically from the primitive foregut (1).
This shared origin likely underlies the ability of these two
mucosal surfaces to act similarly as selective barriers, allowing
for the translocation of gases or nutrients, whilst maintaining
mutualistic relationships with the microbiota and keeping
pathogens at bay. These similarities in function suggest that
these tissues may also respond to disease-causing stimuli in the
same way, which could account for the increased risk of CD
development in COPD patients. Indeed, parallels exist in the
immune systems at both mucosal sites and this is mirrored
in the immunopathology of IBD and COPD. Both disease

settings are characterized by increases in myeloid cells such
as neutrophils, eosinophils and macrophages, as well as innate
lymphoid cells (ILCs) and unconventional T cells such as γδ

T cells, all of which are important in microbial interactions
and maintenance of epithelial barriers. While this is beyond
the scope of this review, the reader is directed to the following
reviews for more information on the pathophysiology and
immunopathology of these diseases (23–26). It is well-known that
the intestinal epithelium is readily damaged in IBD (27), and
increased intestinal permeability has now also been reported in
COPD (28, 29). Whilst the association between IBD and COPD
has been largely investigated at an epidemiological level, further
research is required to elucidate the inflammatory mechanisms
that link the intestine and the lung. This review will focus
on the mechanisms linking IBD and COPD that pertain to
mucosal microbial communities and dysbiosis in disease settings
(Figure 1).

MUCOSAL MICROBIAL COMMUNITIES
AND DYSBIOSIS IN DISEASE SETTINGS

Healthy Intestinal Microbiota
The gastrointestinal tract is one of the largest surfaces of the
body that is constantly in contact with environmental factors.
At mucosal sites, such as the intestine, the immune system is
primed by interactions with the microbiota and environmental
antigens, and a fine homeostatic balance needs to be maintained
to ensure quiescence toward harmless microbes whilst being
able to promote a proinflammatory response against invading
pathogens. The intestine is the most densely colonized surface of
the human body with Bacteroidetes and Firmicutes representing
the two most abundant bacterial phyla making up approximately
90% of all microorganisms of the gastrointestinal tract (30, 31). A
mutualistic relationship exists between the intestinal microbiota
and the human host. The intestine provides a nutrient-rich niche
for the microbiota to inhabit, whilst the host benefits from the
increased digestive capacity that themicrobiota provides, from its
ability to prime the immune system, and from a reduction in the
available niche for potentially pathogenic micro-organisms (32).
In addition, the intestinal microbiome contains more than 3.3
million non-redundant genes, 150-fold greater than the human
gene complement, and these provide both metabolic and health
benefits to the host (33).

The microbiota is not stagnant, and its composition can
be altered by a variety of factors including diet, infection,
inflammation, or antibiotics; and this shift in microbial
communities is referred to as dysbiosis. Dysbiosis is often
associated with IBD (34, 35) but is also observed in a
variety of chronic inflammatory and autoimmune diseases
including rheumatoid arthritis, psoriasis, neurodegenerative
diseases, diabetes, allergic diseases, and asthma (36–42). At
present, essentially nothing is known about the gut microbiota
in COPD.

Healthy Lung Microbiota
Historically, due to a reliance on culture-dependent techniques,
the lungs were thought to be sterile. With the emergence
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of culture-independent techniques utilizing genetic sequencing,
pulmonary microbial communities have been found in the
healthy lung and characterization of the lung microbiota in
the context of respiratory diseases has become possible (43).
However, progress in our understanding of the lung microbiota
is still limited by factors such as low microbial loads in the
lower airways, contamination of samples from the upper airways
and oral cavity, and sampling methods that over-represent the
upper airways over the lower airways. This is important since the
upper and lower airways harbor distinct microbial communities
(44). A study comparing the microbial communities of both
the oral cavity and the lower airways in healthy non-smokers
and smokers identified bacteria that comprised the healthy lung
microbiota and showed that lung bacterial communities were
not significantly altered by smoking, although differences were
apparent in the oralmicrobiota. Similar to the intestines, themost
abundant bacterial phyla present in the lungs were Bacteroidetes
and Firmicutes and they did not derive entirely from the mouth
as the microbiota of the oral cavity was dominated by Firmicutes,
Proteobacteria, and Bacteroidetes (44).

Dysbiosis of Intestinal Microbiota in IBD
Dysbiosis has been associated with the development of IBD,
although whether this is cause or effect is yet to be elucidated
since most research to date has been correlative. Cross-sectional
studies are the most common for assessing the microbiota of
IBD patients but these only provide a snapshot in time (45).
Instituting longitudinal studies could assist in establishing when
dysbiosis occurs relative to the onset of intestinal inflammation
and how this may change with the course of disease but this
would require early and frequent sampling. Furthermore, the
microbiome tends to be sequenced from fecal samples and
while this is non-invasive for the IBD patient, this method
could provide inaccurate measures, especially for CD patients
where inflammation is often localized to the ileum or other
portions of the gastrointestinal tract. This sampling method can
also overlook mucosa-associated microbiota, and due to the
variations in microbial composition that are apparent across
the gastrointestinal tract, sampling methods need to be carefully
considered when formulating studies (46). Nonetheless, the
research that has been conducted to date has provided a solid
foundation upon which future studies can expand to improve our
understanding of dysbiosis in IBD.

Broadly, dysbiosis in IBD patients is associated with shifts
promoting an increase in potentially proinflammatory bacteria
and a decrease in protective bacteria. In CD patients, intestinal
dysbiosis has been characterized by a reduction in diversity
of species belonging to the Firmicutes phyla, a change that
has been suggested to occur prior to disease onset (34, 47,
48). Furthermore, a specific reduction in relative abundance
in Dialister invisus and Faecalibacterium prausnitzii species
of the Firmicutes phylum and Bifidobacterium adolescentis
of the Actinobacteria phylum, together with an increase in
the mucolytic species Ruminococcus gnavus and Ruminococcus
torques of the Firmicutes phylum is observed in CD patients
compared to healthy controls (34, 49). The importance of
intestinal microbiota in development of IBD is supported

by common experimental mouse models, such as nucleotide-
binding oligomerization domain-containing protein 2 (NOD2)-
deficiency and IL-10-deficiency which ordinarily develop ileitis
when maintained under standard housing conditions but
display reduced disease penetrance in specific pathogen-free
environments (50–53).

Adherent-invasive Escherichia coli (AIEC) is an organism that
is commonly associated with CD. This bacterium is able to take
advantage of gaps in host defense such as impaired bacterial
recognition and defective intracellular killing, allowing AIEC
to expand (54). AIEC have been found to induce granuloma
formation in the inflamed ilea (55), a hallmark pathological
feature of CD. These granulomas consist of multinucleated
giant cells and epithelioid cells, both phagocytic cells of
the macrophage lineage that activate T cells in an antigen-
specific manner, that are surrounded by a B cell corona
(56). Furthermore, it has been found that AIEC are able to
survive and replicate within macrophages without inducing
cell death, a process that also promotes increased secretion of
proinflammatory tumor necrosis factor-α (TNF-α) (57), which is
involved in the pathogenesis of CD.

A study that examined dysbiosis in an inducible model
of ileitis using Toxoplasma gondii together with high dose
indomethacin, found that severe ileitis was associated with a
shift in microbial communities from populations dominated
by species belonging to the Firmicutes phyla to those largely
represented by species belonging to the Proteobacteria phyla
(58). This dysbiosis was accompanied by translocation of AIEC
and was similar to that observed in CD patients. While these
data suggest that inflammation is sufficient to induce dysbiosis,
it is also clear that genetic susceptibility plays a role since
T. gondii induced heightened dysbiosis and AIEC invasion in
mice lacking the ileitis susceptibility gene NOD2, while disease
was significantly muted in mice lacking the proinflammatory C-
C chemokine receptor 2 (CCR2), which are a model of ileitis
resistance (58). Furthermore, it has been demonstrated in an
alternative genetic knock out model of ileitis susceptibility that
dysbiosis precedes the onset of ileitis (59).

Similar to CD, dysbiosis in UC is characterized by a reduction
in species belonging to Firmicutes and Bacteroidetes phyla, and
a concomitant increase in species belonging to Proteobacteria
and Actinobacteria phyla (60). However, at the species level,
the dysbiotic signature of UC is distinct from CD. UC patients
exhibit a reduction in relative abundance of Roseburia hominis
and Faecalibacterium prausnitzii (35), both butyrate-producing
bacteria of the Firmicutes phylum whose abundance is inversely
correlated with disease severity (35). A similar mechanism
involving the interaction of genetic susceptibility, inflammation
and microbial dysbiosis contributes to UC.

Genetics of IBD and Its Role in Intestinal
Dysbiosis
To date, more than 150 susceptibility genes have been identified
for IBD, most of which are involved in the detection and
clearance of microbial compounds (61). Three common variants
of NOD2 are associated with an increased risk of developing
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CD, with a 2–4-fold increase for heterozygous mutations and a
20–40-fold increase for homozygous mutations (62, 63). NOD2
variants are the most common mutations in CD patients of
Caucasian descent, being identified in 30% of patients (64).
Furthermore, certain variants in NOD2 have been associated
with more severe disease phenotypes including early-onset
disease, ileitis, and strictures caused by fibrosis (65–67). NOD2
is a cytoplasmic molecule that senses the pattern-associated
molecular pattern muramyl dipeptide (MDP) of gram positive
and negative bacteria, stimulating the immune response via
activation of the transcription factor NF-κB or induction of
apoptosis (68). The three common variants found in CD patients
all affect NOD2 binding toMDP resulting in loss of function (62).
This is thought to cause diminished secretion of antimicrobial
peptides, which can lead to dysbiosis and promote a mucosal
immune response (69). Functional loss of NOD2 in macrophages
may also induce IL-12 and IL-1β expression which leads to
the promotion of type 1 immune responses and inflammation
(51). Interestingly, not everyone harboring homozygous or
compound heterozygous NOD2 variants develop CD (70).
Furthermore, NOD2-deficient mice do not spontaneously
develop CD-like intestinal inflammation but require a second
genetic mutation and specific microbiota (71). This suggests
that additional factors, be those microbial, genetic or other
environmental factors, are required to promote disease onset in
susceptible individuals.

Autophagy-related 16-like protein 1 (ATG16L1) is crucial
for normal autophagy function in cells, which is a standard
cellular recycling process for protein and organelle turnover
that is upregulated during nutrient deprivation or cellular stress
signals such as microbial infection. It has been reported that
33.2% of Caucasian CD patients are homozygous for the CD-
associated polymorphism rs2241880 (T300A) increasing their
risk of developing CD by 2.38-fold (72, 73). This single nucleotide
polymorphism is a missense mutation near a caspase cleavage
site, making ATG16L1 more sensitive to degradation resulting
in diminished autophagy, impaired ability of monocytes to
clear invading pathogens and increased production of IL-
1β in response to MDP (74). Normal ATG16L1 activity in
intestinal epithelial cells (IEC) is important for maintaining the
intestinal barrier. The rs2241880 variant in CD patients has
been associated with Paneth cell abnormalities, specifically an
impaired secretory granule pathway and increased production
of proinflammatory mediators (75). Atg16l1-deficiency in IEC
has been associated with increased susceptibility to colitis in
mice, with increased CD4+ T cells and increased secretion of
proinflammatory cytokines such as TNF-α, interferon-γ (IFN-γ)
and IL-1β. Thus, diminished autophagymay induce susceptibility
through alterations to both immune cell activity and intestinal
barrier function.

Changes in NOD2 and ATG16L1, as well as other genes
involved in the intestinal epithelial barrier, microbial sensing, and
antimicrobial activity in IBD, demonstrate the impact of genetics
on the intestinal microbiota. Deficiencies in such genes are a
mechanism by which dysbiosis can precede development of IBD
and drive intestinal inflammation.

Dysbiosis in COPD
Lung Dysbiosis Is Observed in COPD
Chronic inflammatory lung diseases such as COPD and asthma
have been associated with dysbiosis of the lung microbiota with
the outgrowth of pathogenic bacteria. Mucus hypersecretion
and lower respiratory tract infections in COPD have been
associated with accelerated decline in lung function, indicating
that the lung microbiota plays an important role in COPD
pathogenesis (76, 77). The microbiota of the bronchial secretions
from COPD patients predominately comprises members of
the Proteobacteria, Firmicutes, and Actinobacteria phyla (78).
Specifically, studies that have assessed the lung microbiota
of COPD patients suggest that their bacterial communities
differ from those of healthy individuals, with an expansion of
Hemophilus spp. Afipia, Brevundimonas, Curvibacter,Moraxella,
Neisseria and Undibacterium spp. of the Proteobacteria
phylum, Corynebacterium spp. of the Actinobacteria phylum,
Capnocytophaga spp. of the Bacteroidetes phylum, and
Leptolyngbya spp. of the Cyanobacteria phylum, as well as
a reduction in microbial community diversity compared
to healthy individuals (79–82). Patients with more severe
COPD have a less diverse lung microbiota but expansion of
more pathogenic microbes (78). Furthermore, during acute
exacerbations of COPD, the lung microbiota are more unstable;
these exacerbations tend to be associated with reduced species
diversity, an increased relative abundance of Proteobacteria
mainly due to increased Moraxella spp. and a decreased relative
abundance of species belonging to the Firmicutes phyla (82, 83).
Changes in the core microbiota during acute exacerbations
of COPD allow for an expansion of respiratory pathogens
including Acinetobacter spp. and Klebsiella spp. highlighting the
important role of the commensal lung microbiota in protecting
against the colonization of pathogenic microbes (83). It is
worth highlighting that the exact nature of dysbiosis within
the lung microbiota that occurs during acute exacerbations
of COPD is dependent on the cause of the exacerbation, with
specific differences noted between bacterial and eosinophilic
exacerbations (characterized by bacterial dysbiosis and elevated
sputum eosinophils respectively). The characteristic decrease in
species diversity and relative abundance of species belonging to
the Firmicutes phyla, alongside an increase in species belonging
to the Proteobacteria phyla is more pronounced in bacterial
exacerbations (82). Bacterial exacerbations also have a significant
decrease in Streptococcus spp. and an increase in Hemophilus
spp. whilst eosinophilic exacerbations exhibit a decrease
in the Proteobacteria:Firmicutes ratio (82). Changes in the
composition of the lung microbiota are associated with changes
in local inflammatory responses, the most significant being
the negative correlation between species diversity and CXCL8,
which indicates reduced species diversity is associated with an
influx in neutrophils (82). Interestingly, in lung transplants, the
microbiota influences the immune response with Firmicutes-
dominated and Proteobacteria-dominated dysbiosis being
proinflammatory, Bacteroidetes-dominated dysbiosis being
associated with tissue remodeling, and a balanced microbial
community being associated with homeostasis (84). Collectively,
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these studies show that respiratory microbial communities can
regulate inflammation in the lungs.

Intestinal Dysbiosis Influences Lung Health
Recent research has shown that the intestinal microbiota
is important in reducing the risk of lung inflammation
by supporting mucosal immunity. Studies have shown that
depletion of intestinal bacteria through antibiotic treatment,
renders mice more susceptible to Pneumonia infection and
respiratory inflammation (85, 86). Reciprocally, viral and
bacterial respiratory infections are able to drive dysbiosis
of the intestinal microbiota demonstrating that respiratory
inflammation can influence the intestine (87, 88). In mice
lacking an intestinal microbiota, their alveolar macrophages
have an altered transcriptome which results in decreased
phagocytic activity and bacterial killing (85, 86). Dysbiosis
of the intestinal microbiota has been shown to influence the
composition of the respiratory microbiota through changes
in circulating inflammatory cytokines and translocation of
intestinal microbiota to the airways Figure 1, although this
has only been demonstrated in severe sepsis models and has
not yet been established in COPD. It has been shown that
segmented filamentous bacteria (SFB) in the intestines induced
Th17 responses and IL-22 production in the lungs and protected
against respiratory infection with S. pneumoniae with reduced
bacterial burden and lung inflammation (89). In a murine
model of sepsis, an increased abundance of gut-specific bacteria
in the lungs has been observed, with there being greater
similarities between the communities found in the intestines
and lungs than in sham mice (90). A meta-analysis of sixteen
studies found that infection with H. pylori, which colonizes the
human gastric mucosa, was associated with an increased risk
of COPD (91). During acute exacerbations of COPD there is
a significant decrease in categories of bacteria as defined by
operational taxonomic units (OTUs) in the intestinal microbiota
(83). Beyond assessing H. pylori infection in COPD patients,
and a recent study examining the intestinal microbiota in acute
exacerbations of COPD in a small group of patients (83), the
intestinal microbiota has not been investigated in COPD. This
would be of particular interest since cigarette smoking, which is
strongly associated with COPD, has been linked with dysbiosis of
fecal microbiota in CD patients, characterized by an increase in
the relative abundance of Bacteroides and Prevotella (92).

Cigarette Smoke Exposure Is a Risk Factor
for Both COPD and CD
Cigarette smoke is the most important risk factor in COPD,
with approximately 80% of COPD patients being past or
current smokers. Smoking can have prolonged effects on lung
inflammation which can persist years after smoking cessation,
despite the slowed decline in lung function and better survival
(93). In addition, active smoking is also associated with higher
mortality rates in COPD patients (94). Both active and passive
smoking is the most well recognized environmental risk factor
for CD being associated with a 2-fold increased risk of disease
(95). It is linked with early onset of disease, as well as more
aggressive disease progression with an increase in the occurrence

of strictures and fistulas and the increased likelihood of a need
for surgical intervention (96–98). Smoking may also influence
the locus of inflammation, increasing occurrence in the ileum
as opposed to the colon (99). An intervention study investigated
the effect of quitting smoking on CD severity and found that
patients who stopped for at least a year were less likely to relapse
(100). The association between smoking and CD highlights the
potential crosstalk between the lungs and intestines, although,
the possibility that noxious agents from cigarettes can reach the
intestines via the oral route cannot be ignored as an additional
CD risk mechanism (101).

Smoking also alters the composition of the intestinal
microbiota not only in CD patients but also in smokers without
IBD (102). Following smoking cessation, the fecal microbiota
is altered in non-IBD individuals with an increased relative
abundance of species belonging to Firmicutes and Actinobacteria
phyla and a decreased relative abundance of species belonging
to Bacteroidetes and Proteobacteria phyla (103). CD patients
who smoke exhibit intestinal dysbiosis characterized by a
higher Bacteroides:Prevotella ratio compared to non-smokers
and healthy smokers (92). Animal studies that examined the
impact of smoke exposure on the intestinal microbiota found
that smoking increased the relative abundance of Clostridium
clostridiforme with a decreased relative abundance of Lactoccoci
spp. and Ruminococcus albus of the Firmicutes phylum and
Enterobacteriaceae spp. in the cecum compared to control mice
(3, 104). Collectively, these studies suggest that dysbiosis of the
intestinal microbiota could be another mechanism by which
cigarette smoke might increase the risk of CD development.

A study of chronic smoke exposure in mice compared the
microbiota across the ileum, cecum, and distal colon finding
changes in microbiota (105). The authors described increased
activity of Lachnospiraceae spp. in the cecum and colon,
which is of particular interest since it has been reported that
Lachnospiraceae spp. can promote macrophage recruitment to
the colon (106). This study also demonstrated that chronic
smoke exposure may impact the intestinal microbiota by altering
mucus profiles and the local immune environment. They found
that cigarette smoke increased the secretion of the two major
ileal mucins, Muc2 and Muc3, and enhanced the cell surface
expression of the anti-adhesive Muc4 (105). However, at present
it is unclear if these changes are a result of dysbiosis, or of
cigarette smoke itself.

Cigarette smoke has been found to increase intestinal barrier
permeability in the ileum, but not the colon (107). These changes
are associated with intestinal villi atrophy, bacterial translocation
and abnormal tight junction proteins, with evidence that they
were mediated through NF-κB signaling (107, 108). Cigarette
smoke has also been found to alter Paneth cell function in mice
through reduced antimicrobial peptide expression and reduced
bactericidal capacity, which leaves mice more susceptible to
bacterial infection (108). Changes in the ileum, but not the
colon, may explain why cigarette smoke increases the risk of
developing CD whilst conceivably offering protection against
UC (95). Certain susceptibility genes have been associated
with epithelial barrier defects in CD patients who smoke. A
promoter variant in the gene encoding the aryl hydrocarbon

Frontiers in Immunology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 2144129

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Raftery et al. Links Between IBD and COPD

receptor (AHR) has been linked to increased risk of intestinal
hyperpermeability, with cigarette smoking further increasing
this risk (109). From an immunological perspective, cigarette
smoke induces an IL-17 response with increases in Th17
cells and neutrophils in the lungs and circulation (110). This
enhances intestinal Th17 cells and neutrophils, as well as IL-17-
producing type 3 innate lymphoid cells (ILC3s), in a manner
that is dependent on neutrophil recruitment via IL-17A (110).
Thus, in addition to changes in the intestinal epithelial barrier,
cigarette smoke can promote intestinal inflammation which is
already augmented in individuals who are genetically susceptible
to IBD.

Non-bacterial Microbiota in IBD and COPD
To date most studies examining the microbiota in IBD and
COPD have focused on bacteria, however, the microbiota also
encompasses fungi and viruses. Whilst this review primarily
discusses the role of bacterial dysbiosis in IBD and COPD these
other microorganisms cannot be ignored. There is evidence
to suggest that there are shifts in the intestinal viral and
fungal communities during IBD and alterations to pulmonary
communities in COPD. However, considerably more research is
needed to determine the role of viruses and fungi in the gut-lung
axis especially in the context of IBD and COPD.

The Virome and Mycobiome May Contribute to IBD
The intestinal virome is predominately comprised of
bacteriophages (111), therefore the interactions between viruses
and bacteria during IBD could play a role in dysbiosis and
disease pathogenesis (112). The most abundant bacteriophages
of the intestine include the Caudovirales order and Microviridae
family (113–115) and perhaps not surprisingly, viral dysbiosis
in IBD patients is characterized by an increase in Caudovirales
species (115, 116). This expansion is associated with reduced
bacterial diversity and does not appear to occur secondary to
changes in bacterial populations suggesting that the virome
may contribute to bacterial dysbiosis and inflammation in IBD
(115). However, virome research in IBD is in its infancy and
more studies are required to elucidate how changes in intestinal
viruses may impact upon other intestinal microorganisms and
intestinal inflammation.

A potential role for fungi in IBD pathogenesis was
first proposed in 1988 when antibodies directed against
Saccharomyces cerevisiae were identified in the blood of CD
patients (117). Furthermore, several IBD susceptibility genes are
involved in anti-fungal immune responses such as CARD9 and
CLEC7A (61). Fungal dysbiosis in IBD has been characterized
by an increased Basidiomycota:Ascomycota ratio, decreased
proportion of Saccharomyces cerevisiae and an increased
proportion of Candida albicans (118). Similar to the virome,
further research is needed to understand how changes in the
mycobiome during IBD may impact upon other microorganisms
and inflammation.

The Virome and Mycobiome in COPD
Similar to the gastrointestinal tract the respiratory tract consists
of bacteriophages and eukaryotic viruses (119, 120). COPD

patients have a heightened viral load in their lungs with an
increased abundance of influenza, cytomegalovirus, and Epstein-
Barr virus, the latter of which has been associated with pulmonary
fibrosis, a feature of COPD (121–123). More non-targeted
approaches are required to define other viruses that may be
involved in COPD pathogenesis and dysbiosis.

The most abundant fungi in healthy lungs are of the
Davidellaceae family and the genera Cladosporium, Eurotium,
Penicillium, and Aspergillus, although many other species
including Candida spp. are present as well (124). Compared
to healthy individuals, COPD patients have an increased
relative abundance of Candida spp. in their lungs (125).
Furthermore, the enhanced abundance of Aspergillus, Candida,
Phialosimplex, Penicillium, Cladosporium, and Eutypella has
been associated with severe exacerbations of COPD (126). Of
the chronic pulmonary diseases, COPD is one of the least
studied in the context of the mycobiome and more research
is required to understand how the mycobiome is altered in
COPD patients. Furthermore, the relationship between the non-
bacterial microbes of the lung and gut and their role in the
gut-lung axis have been poorly considered and are an area for
future research.

FACTORS LINKING IBD AND COPD

Dietary-Derived Metabolites Are Protective
in IBD and COPD
Certain macro- and micro-nutrients have been inversely
associated with the development of CD (127), with dietary
fiber being the most extensively researched. Soluble-fiber from
fruits and vegetables as opposed to insoluble fiber from whole
grains and cereals has shown protection against CD (128).
Non-digestible carbohydrates are fermented by saccharolytic
bacteria in the gastrointestinal tract into metabolites known
as short-chain fatty acids (SCFA), which include acetate,
propionate, and butyrate. Acetate and propionate are produced
by Bacteroidetes and butyrate by Firmicutes and these SCFA
can be immunomodulatory by preventing the transcription of
proinflammatory mediators. Butyrate in particular is an energy
source for IEC thereby promoting intestinal barrier integrity
(129), and thus it is not surprising that a decrease in butyrate-
producing bacteria is a characteristic of intestinal dysbiosis
in IBD (35). Experimental models of IBD have shown that
dietary SCFA reduce inflammation, specifically via decreases
in proinflammatory mediators such as TNF-α and nitric
oxide synthase which correlates with increased concentrations
of butyrate and propionate in the luminal contents of the
intestines (130, 131). However, the efficacy of SCFA in IBD
patients has been brought into question due to the reduced
responsiveness of their peripheral blood mononuclear cells
to n-butyrate following toll-like receptor-2 (TLR-2) activation
(132). Furthermore, for UC patients, butyrate enemas have
shown no clinical benefit (133). This could be due to the
finding that monocarboxylate transporter 1, which is responsible
for the uptake of butyrate in the intestine, is downregulated
in response to proinflammatory cytokines and its expression
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is reduced in the inflamed mucosa of IBD patients and in a
rat model of colitis (134). Interestingly, studies examining the
fecal contents of CD patients found that disease activity or
localization was not affected by SCFA concentration, although
CD disease activity was inversely correlated to levels of the
medium-chain fatty acid hexanoate (135, 136). Contradictory
to these studies, a clinical trial examining the effects of
soluble fiber supplements showed that high fiber could reduce
disease activity index in CD patients (137). Discrepancies
in research may reflect the heterogeneity of CD as well as
differences in diets, and thus, further research is required to
elucidate the effects of the different components of diet on
intestinal inflammation.

It is now known that SCFA can have immunomodulatory
effects beyond the intestines where they are produced, promoting
anti-inflammatory responses elsewhere in the body. Dysregulated
SCFA production and absorption has been implicated in a
variety of neurological, metabolic, allergic, and autoimmune
diseases (138–141). In the context of the lungs, increased dietary
fiber intake is associated with improved lung function in the
general population and a reduced risk of developing COPD
(142, 143). Increased intake of vegetables, which are high in
soluble fiber, is associated with improved COPD symptoms
such as breathlessness, as well as reduced risk of developing
COPD (144). Similar to vegetables, high dietary fruit intake
has also been associated with improved COPD outcomes and
reduced incidence of COPD (145–148). Despite this correlation
between increased dietary fiber intake and protection against
COPD, there have been few reports on the efficacy of SCFA
specifically in COPD pathogenesis highlighting that this is an
understudied area worthy of further research. High fiber diet-
producing SCFA have been shown to be immunomodulatory
in asthma responses by enhancing the production of dendritic
cells that seed the lungs but have an impaired ability to promote
pathogenic type 2 immune responses (149). A more recent
study building on these findings has shown that high fiber
diets protect against influenza by enhancing the generation
of Ly6c− patrolling monocytes from progenitors. This led to
an increase in alternatively activated macrophages in lungs
and restrained neutrophil recruitment while simultaneously
enhancing influenza-specific CD8T cells responses (150). Similar
mechanisms may be associated with the protection created
by high fiber diets in COPD where neutrophils play a key
pathogenic role in the inflamed lungs. COPD patients exhibit
poor responses to influenza vaccination (151, 152) and thus,
diet modulation may be a mechanism to improve vaccination
outcomes for this susceptible population. In all, modulation of
intestinal microbiota with high fiber diets might be beneficial
to IBD and COPD patients (Figure 1), however, further
research is required to determine how efficacious this strategy
would be.

Dietary Fat Can Alter the Gut Microbiota
and Influence Disease
Foods high in saturated fat or “Western” diets have been
associated with a variety of autoimmune and chronic

inflammatory disease including IBD and COPD (142, 153, 154).
A “Western” diet can influence the composition of the intestinal
microbiota, promote intestinal barrier permeability, and enhance
inflammation (155–157). Generally, fat intake is able to induce
proinflammatory responses through the increase in cytokines,
including TNF-α and IL-6, and neutrophils in circulation, all
of which play a pathogenic role in IBD and COPD (155, 158).
Intestinal dysbiosis induced by fat intake is characterized by an
increased Firmicutes:Bacteroidetes ratio and the promotion of
endotoxemia, which induces intestinal barrier hyperpermeability
(156, 157, 159). In CD patients, the changes induced by a high
fat diet that contribute to dysbiosis include increased intestinal
barrier permeability, reduced mucus layer thickness and
increased NOD2, TLR5, and carcinoembryonic antigen-related
cell adhesion molecule 6 (CEABAC6) expression, all of which
allow for AIEC colonization (49, 160). Generally, a high fat diet
tends to be associated with a low fiber diet, and thus, a “Western”
diet may contribute to IBD and COPD pathogenesis not only
through direct proinflammatory mechanisms but also indirectly
through a reduction in the anti-inflammatory benefits of SCFA
Figure 1.

Vitamin D Alters the Microbiota and May
Have Therapeutic Benefits in CD and
COPD
Vitamin D deficiency commonly occurs in IBD patients and
has been associated with diagnosis and the need for surgical
intervention (161). In keeping with this, colitis-prone IL-10-
deficient mice exhibit a decline in vitamin D receptor (VDR)
expression that correlates with colitis symptoms (162). In
addition, mouse models unable to produce the active form
of vitamin D, 1,25-dihydroxycholecalciferol [1,25(OH)2D3], or
lacking the VDR are more susceptible to DSS-induced colitis and
this is associated with intestinal dysbiosis characterized by an
increase in species of the Proteobacteria phylum and a decrease
in species of the Firmicutes phylum (163, 164). VDR signaling
regulates numerous antimicrobial processes including the
expression of β-defensins, cathelicidin antimicrobial peptides,
and ATG16L1 (162). In IBD patients, reduced ATG16L1
expression due to deficiency in VDR signaling promotes an
overrepresentation of intestinal Bacteroides and a decrease in
butyrate-producing bacteria (162). Interestingly, treating human
IEC with butyrate upregulates VDR expression, a phenomenon
that also translated to IL-10-deficient mice that were given
butyrate, suggesting a close link between the microbiota and
vitamin D signaling (162). Vitamin D supplementation in CD
patients results in an increase in Firmicutes species correcting
some of the dysbiosis that occurs in CD (165). In COPD
patients, increased vitamin D intake is positively associated with
improved lung function, and like IBD, vitamin D deficiency
is associated with COPD (166, 167). This could relate to the
effect of vitamin D on the intestinal microbiota. Additionally,
vitamin D plays a role in macrophage activation and shaping
the lung microbiota promoting reduced bacterial richness (168,
169). VDR-deficient mice exhibit increased inflammation in the
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lungs with up-regulation of matrix metalloproteinase-2 (MMP-
2), MMP-9, and MMP-12, the development of emphysema and
a decline in lung function mimicking COPD in humans (170).
Studies where mice are fed vitamin D have shown that vitamin
D reduces the abundance of respiratory pathobionts, such as
Pseudomonas, and increases the secretion of murine β-defensin-2
in the lungs (171). To date, very little has been done examining
the impact of vitaminD supplementation on the lungmicrobiota.
One study in cystic fibrosis patients found that the sputum of
vitamin D insufficient patients was enriched for Bacteroides and
there was a significant difference between the lung microbiota of
these patients and those who were vitamin D sufficient (172). It
is clear that the immunomodulatory and microbiota-regulating
effects of vitamin D can strongly influence inflammation in both
the intestine and the lungs. Given that vitamin D deficiency is
associated with both IBD and COPD, vitamin D supplementation
should be trialed more extensively in these patient cohorts,
specifically in patients with comorbid IBD and COPD.

THERAPEUTIC TARGETING OF THE
INTESTINAL MICROBIOTA

Antibiotics for IBD: the Yin and Yang
Early-life antibiotic treatment has been associated with early
onset CD via enhanced pathogenicity of helper T cells (173).
This link is particularly strong in children who have received
multiple doses of antibiotics or antibiotics during their first
year of life (174, 175). Antibiotics cause dysbiosis of intestinal
microbiota and a reduction in bacterial diversity, and this may
be a potential mechanism by which antibiotic therapy in early life
could result in the development of CD in genetically susceptible
individuals (176). Furthermore, short-term antibiotic treatment
may have prolonged effects, up to at least 2 years post-therapy
(177). In infancy, the intestinal microbiota between individuals
can be highly variable, before converging to more similar phyla
in adulthood (178). This may in part explain the profound impact
of antibiotic treatment on the microbiota in early childhood.

While antibiotics given in early life may promote CD, they
have been used to treat CD with varying levels of success, and
this appears to be dependent on disease location and severity as
well as the type of antibiotic (179). Differences in populations
of commensal bacteria between the ileum and colon most likely
contribute to the lack of response of ileitis patients to a variety of
antibiotics (179, 180). Patients who had undergone ileal resection
and were treated with metronidazole, an antibiotic that is usually
ineffective in patients with ileitis (180), exhibited a delay in
symptomatic recurrence (181). A systematic review of antibiotic
therapy in CD patients found that antibiotics likely have amodest
effect that may not be clinically relevant (182). Furthermore, to
maintain antibiotic treatment efficacy and prevent relapse, long-
term treatment is required, as with all therapies for CD (183, 184).
All in all, antibiotics in early life may increase the risk of CD
development in susceptible individuals but may be beneficial as
a therapeutic in established disease.

Unlike CD, antibiotic exposure is not associated with an
increased risk of developing UC (173) and indeed antibiotics are

effective as an adjunctive to conventional therapies, including
corticosteroids and 5-aminosalycilic acid (185). This emphasizes
the pathogenic role that bacterial dysbiosis plays in UC and
suggests that more therapeutics targeting both inflammation and
dysbiosis could benefit a large proportion of UC patients.

Antibiotics for COPD Are Used to Manage
Disease Exacerbations
Persistent and recurrent infections contribute to the progression
of COPD through the induction of further chronic inflammation.
Antibiotics are commonly used to treat acute exacerbations of
COPD, however, the efficacy of antibiotic treatment in mild to
moderate exacerbations is still in debate (186, 187). Treatment of
COPD patients with antibiotics enhances respiratory microbiota
diversity, decreases the relative abundance of Proteobacteria
species and increases the relative abundance of Firmicutes
species. These changes somewhat correct the dysbiosis associated
with COPD, an effect that is maintained post-therapy (80, 82).
Contrary to antibiotic therapy, corticosteroids are associated with
a decrease in species diversity and an increase of Proteobacteria
over Firmicutes corresponding to an increase in Hemophilus
spp. and Moraxella spp. and a decrease in Streptococcus spp.
changes that are associated with COPD pathogenesis (82).
The differing effects of antibiotics and corticosteroids on the
lung microbiota suggest that antibiotics are able to partially
restore lung microbial communities whilst corticosteroids may
further promote dysbiosis. Macrolides are the most commonly
prescribed antibiotics for COPD due to both anti-inflammatory
and immunomodulatory effects, however, the mechanisms by
which macrolides exert these effects have not been elucidated
(188). Relatively few COPD patients are treated with antibiotics
long-term (189), however, the few studies that have been
conducted suggest that prophylactic antibiotic treatment can
reduce exacerbations in COPD patients (190). Nonetheless,
further studies are required to understand whether long-term
antibiotics are efficacious and the impact they have on the lung
and intestinal microbiota.

Fecal Microbiota Transplants, a Possible
Treatment Strategy
Fecal microbial transplants are effective in the treatment of
Clostridium difficile infection, an intestinal disease that is linked
to intestinal bacterial dysbiosis (191). Success is associated
with an expansion in bacterial diversity including increases in
Bacteroidetes, Firmicutes and other butyrate-producing bacteria
and a decrease in Proteobacteria (192). In patients with UC,
fecal microbial transplants have some initial benefit by promoting
a change in colonic microbiota at the phylum level with a
decrease in the relative abundance of Proteobacteria species and
an increase in Bacteroidetes species. While this partially corrects
the dysbiotic changes that are associated with UC, these changes
were not prolonged and did not translate to a vast clinical
improvement (193). Another study where patients were treated
with antibiotics prior to fecal microbial transplant had better
clinical outcomes resulting in remission (194). Patients who
respond to fecal microbial transplants have been characterized
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by distinct microbial profiles compared to non-responders.
Alterations in microbiota in responders is characterized by an
increase in bacterial diversity as well as a shift in composition
toward that of the donor feces (195, 196). Lack of response
is associated with the presence of Fusobacterium spp. and
Sutterella spp. suggesting that patients should be screened prior
to treatment (196). Studies examining the efficacy of fecal
microbial transplants for UC have yielded variable results, which
could be due to a lack of consistency in methodology as well as
the heterogeneous nature of UC and more work is required to
establish if this could be an efficacious treatment strategy.

In the context of CD, there has been far less research into
the efficacy of fecal microbial transplants and at present it is not
clear if this could be a management strategy for CD patients (197,
198). With respect to COPD, no fecal or respiratory microbiota
transplant studies have been conducted and thus it is not yet
known if these strategies could be a viable option for this disease.

CONCLUSION

Microbial dysbiosis has a pivotal role in the development of
IBD and COPD impacting on the intestinal and respiratory
epithelial barriers and promoting damaging immune responses.
Circulating microbial products and their metabolites are altered
during dysbiosis and likely represent a significant component
of the gut-lung axis. Shifts in these factors, where they may be
produced at one site and act at another, provides a mechanism
for organ crosstalk in disease and the comorbid presentation of
IBD and COPD. Currently there are no curative treatments for
either disease. However, elucidating the mechanisms by which
the intestinal and respiratory microbiota drive inflammation
and promote changes in mucosal epithelial barriers could
provide new insights into disease pathogenesis and help

to improve current treatment strategies and identify novel
therapeutic targets. These may include approaches that target
the microbiota such as diet, antibiotics or fecal microbiota
transplants which may be able to modulate inflammation in the
intestines and lungs. Most microbiota studies have focused on
either IBD or COPD and have largely ignored patients with both
diseases. Additionally, there are no reports of gut microbiota
alterations in COPD, with published studies focused solely on
the lung metagenome. Future studies into patients that harbor
COPD, as well as patients with both mucosal inflammatory
diseases will provide a more complete understanding of
the microbiota in the gut-lung axis in health and disease.
Furthermore, increasing awareness and understanding of
the links between IBD and COPD will improve clinical
management and more timely detection of comorbid disease in
affected patients.
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Immunobiotics have emerged as a promising intervention to alleviate intestinal damage

in inflammatory bowel disease (IBD). However, the beneficial properties of immunobiotics

are strain dependent and, therefore, each strain has to be evaluated in order to

demonstrate its potential application in IBD. Our previous in vitro and in vivo studies

demonstrated that Lactobacillus jensenii TL2937 attenuates gut acute inflammatory

response triggered by Toll-like receptor 4 activation. However, its effect on colitis

has not been evaluated before. In this work, we studied whether the TL2937 strain

was able to protect against the development of colitis in a dextran sodium sulfate

(DSS)-induced mouse model and we delved into the mechanisms of action by

evaluating the effect of the immunobiotic bacteria on the transcriptomic response

of DSS-challenged intestinal epithelial cells. L. jensenii TL2937 was administered to

adult BALB/c mice before the induction of colitis by the administration of DSS.

Colitis and the associated inflammatory response were evaluated for 14 days. Mice

fed with L. jensenii TL2937 had lower disease activity index and alterations of

colon length when compared to control mice. Reduced myeloperoxidase activity,

lower production of pro-inflammatory (TNF-α, IL-1, CXCL1, MCP-1, IL-15, and IL-17),

and higher levels of immunoregulatory (IL-10 and IL-27) cytokines were found in

the colon of TL2937-treated mice. In addition, the treatment of porcine intestinal

epithelial (PIE) cells with L. jensenii TL2937 before the challenge with DSS differentially

regulated the activation of the JNK pathway, leading to an increase in epithelial

cell integrity and to a differential immunotranscriptomic response. TL2937-treated

PIE cells had a significant reduction in the expression of inflammatory cytokines
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(TNF-α, IL-1α, IL-1β, IL-6, IL-15), chemokines (CCL2, CCL4, CCL8, CXCL4, CXCL5,

CXCL9,CXCL10), adhesion molecules (SELE, SELL, EPCAM), and other immune factors

(NCF1, NCF2, NOS2, SAA2) when compared to control cells after the challenge with

DSS. The findings of this work indicate that (a) L. jensenii TL2937 is able to alleviate

DSS-induced colitis suggesting a potential novel application for this immunobiotic strain,

(b) the modulation of the transcriptomic response of intestinal epithelial cells would play

a key role in the beneficial effects of the TL2937 strain on colitis, and (c) the in vitro

PIE cell immunoassay system could be of value for the screening and selection of new

immunobiotic strains for their application in IBD.

Keywords: immunobiotics, intestinal inflammation, Lactobacillus jensenii TL2937, PIE cells,

immunotranscriptomic response

INTRODUCTION

Inflammatory bowel disease (IBD), which includes Crohn’s
disease (CD) and ulcerative colitis (UC), is characterized by a
chronic inflammation of the gastrointestinal tract (1, 2). Complex
interactions between the environment, the gut microbiota, and
the mucosal immune system in genetic-susceptible hosts have
been implicated in the development and progress of IBD (3).
Human clinical trials and IBD animal models have established
that the breakdown of the cytokine networks that regulate the
epithelial barrier function, the interaction of microbes with
the immune system, and tissue repair are key players in the
development of IBD (4). The great progress in the understanding
of the intestinal cytokine networks that either suppress or
promote gut inflammation has allowed the development of
several preventive or therapeutic strategies based on cytokine
regulation that are effectively used or are being evaluated
in the clinic [reviewed in (2)]. Both the enhancement of
immunoregulatory cytokines to prevent inflammation and the
blockade of pro-inflammatory cytokine pathways have been
shown to be effective in the treatment of IBD (1, 2).

Molecular and genomic studies in mouse models and in large
IBD patient cohorts are revealing the role of several cytokine
and their cellular pathways in the intestinal inflammatory
damage, and therefore, many potential alternative cytokine-based
therapies are being explored. Of interest, most of these cytokine-
based therapies have focused their attention in the modulation
of one single factor (1). The therapies based on the blockade
of tumor necrosis factor (TNF)-α, which is effective in the
majority of the IBD patients, is currently used as a standard
therapy in the clinic (2). In patients with no response to TNF-
α treatment, the blockade of other pro-inflammatory cytokines
was effective in controlling inflammation. In this regard, the
blockade of interleukin (IL)-6 (5), IL-1, or IL-18 (6, 7) is able to
ameliorate colitis in IBD patients. Of note, despite the extensive
research demonstrating the role of IL-17 and interferon (IFN)-
γ in promoting inflammation in the gut of IBD patients or
the protective role of IL-10, the blockade of IL-17A (8) or
IFN-γ (9) as well as the systemic administration of IL-10 (10,
11) has not been beneficial in IBD. In addition, considering
that most cytokines have a plethora of different roles and that

the mentioned treatments are administered systemically, several
non-desired side effects have been described for single cytokine-
based therapies (1, 2). Perhaps the best example is the blockade of
IL-6 that was described to induce gastrointestinal abscesses and
perforation because of the key role of this cytokine in intestinal
epithelial cells (IECs) repair (5).

The delicate balance between the beneficial and detrimental
effects of cytokines as well as the complex interactions that
are established between them in the context of IBD makes it
necessary that the cytokine-based therapies are tightly controlled
in a spatial, temporal, and quantitative manner. Then, therapies
that canmodulate the profile of several cytokines simultaneously,
and that impact locally in the intestinal mucosa, would be
potentially more effective and present fewer adverse effects. In
this regard, extensive research has demonstrated that beneficial
microbes with immunomodulatory capacities (immunobiotics)
are able to differentially regulate intestinal cytokine profiles and,
therefore, to protect against the inflammatory damage in both
animal models and IBD patients (12, 13). Some of the most
widely studied immunobiotic strains such as Lactobacillus casei
Shirota, L. casei BL23, and Escherichia coli Nissle 1917 have
been shown to exert beneficial effects in animal models of IBD
by regulating cytokine profiles (12). On the other hand, other
well-characterized immunobiotic strains including L. acidophilus
NCFM (14) or L. rhamnosus GG (15) did not attenuate
symptoms. Furthermore, some probiotics such as L. crispatus
M206119 have been found to aggravate dextran sulfate sodium
(DSS)-induced colitis in mice (16). These findings highlight
the importance of accurately evaluating each immunobiotic
candidate to be used in IBD.

Lactobacillus jensenii TL2937 is an immunobiotic strain that
has been widely characterized by our group. Studies in porcine
intestinal epithelial (PIE) cells demonstrated the ability of the
TL2937 strain to inhibit nuclear factor κB (NF-κB) and mitogen-
activated protein kinase (MAPK) signaling pathways (17), and
to differentially regulate the expression levels of inflammatory
cytokines and chemokines (18) in the context of Toll-like
receptor (TLR)-4 activation. In addition, the TL2937 strain is
capable of regulating the expression of activation markers and
cytokine production in antigen-presenting cells from porcine
Peyer’s patches after the activation of TLR4 (19, 20). These in
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vitro findings prompted us to evaluate the immunoregulatory
effects of L. jensenii TL2937 in vivo. Therefore, by using a
porcine model we showed that the TL2937 strain improved
the growing performance and the productivity of piglets by
reducing the intestinal inflammation associated with weaning
(21). Considering the remarkable ability of L. jensenii TL2937 to
reduce inflammatory cytokines and to increase IL-10 in our in
vitro and in vivo models, we hypothesized that this strain could
exert beneficial effects in IBD. In this work, we studied whether
the TL2937 strain was able to protect against the development
of colitis in a DSS-induced mouse model. In addition, we delved
into the mechanisms of action by evaluating the effect of the
immunobiotic bacteria on the transcriptomic response of DSS-
challenged intestinal epithelial cells.

MATERIALS AND METHODS

Animals and Ethical Statement
Five-week-old female Balb/c mice were obtained from the
closed colony at CERELA (Tucumán, Argentina). Animals were
housed in plastic cages and environmental conditions were kept
constant, in agreement with the standards for animal housing. All
efforts were made to minimize the number of animals and their
suffering. Animals were euthanized immediately after the time
point was reached. No deaths were observed before mice reached
the endpoints.

This study was carried out in strict accordance with
the recommendations in the Guide for the Care and
Use of Laboratory Animals of the Guidelines for Animal
Experimentation of CERELA. The CERELA Institutional
Animal Care and Use Committee prospectively approved this
research under the protocol BIOT-IBT4-18.

Immunobiotic Administration and
Induction of Colitis
The immunobiotic strain L. jensenii TL2937 was grown in MRS
medium (Difco, Detroit, MI) for 16 h at 37◦C (17, 19). Cultures
were kept freeze-dried and then rehydrated using the following
medium: tryptone, 10.0 g; meat extract, 5.0 g; peptone, 15.0 g;
and distilled water, 1 L, pH 7. Bacteria were cultured for 12 h
at 37◦C (final log phase) in Man–Rogosa–Sharpe broth (MRS,
Oxoid, Cambridge, UK). Lactobacilli were harvested through
centrifugation at 3,000 × g for 10min and washed 3 times with
sterile 0.01 mol/L phosphate buffer saline (PBS), pH 7.2, and
suspended in sterile 10% non-fat milk for administration to
mice (22).

L. jensenii TL2937 was administered to different groups of
mice before and/or during the induction of colitis as shown
in Figure 1A. Mice were deprived of water for 4 h, and the
immunobiotic strain was given at a dose of 108 cells/mouse/day
in a minimum volume of drinking water to animals in individual
cages (22). Control mice were treated with water containing
only non-fat milk. The lactobacilli-treated groups and the
control mice were fed a conventional balanced diet ad-libitum
during experiments.

Acute colitis was established using a previously established
method (23). Briefly, mice were administered 2.5% (w/v) DSS

36–50 kDa (Thermo Fisher Scientific, USA) in drinking water
ad-libitum for 7 days (Figure 1A). DSS was given to mice after
3 h of lactobacilli administration. Mice were examined daily for
body weight, general appearance (piloerection and lethargy),
stool consistency, and the presence of fecal blood. The animals
were sacrificed at different time points (days −1, 1, 7, and 14, of
Figure 1A) and fasted for 12 h prior to sacrifice.

Disease Activity Index and Clinical Score
For the evaluation of the impact of L. jensenii TL2937
and DSS administration in the health of mice, two scores
were calculated based in the observations performed by two
different groups of qualified personnel: the disease activity
index (DAI) (23, 24) and the clinical score (25). DAI
was calculated considering the weight loss percentage, the
presence of fecal blood, and stool consistency. DAI values
were calculated as [(weight loss score) + (stool consistency)
+ (rectal bleeding score)]/4 and scored on a 0 ± 4 scale
(Supplementary Table 1). The intensity of general appearance,
weight loss, stool consistency, and rectal bleeding was graded
to create a clinical score for the colitis ranging from 0 to 14
(Supplementary Table 1).

Cytokine Concentrations
The determination of cytokine concentration in colon was
performed following the method described by Rodrigues
et al. (25). Tissue samples (100mg) were collected from
the distal portion of the colon and homogenized in
1ml of PBS containing protease inhibitors (0.1mM
phenylmethylsulfonyl fluoride, 0.1mM benzethonium chloride,
10mM ethylenediaminetetraacetate, 20 KI aprotinin A, and
0.05% Tween 20) and centrifuged for 15min at 3,000 × g.
Blood samples were obtained by cardiac puncture under
anesthesia as described previously (26). Intestinal fluid samples
were obtained according to Albarracin et al. (27). Briefly,
the small intestine was flushed with 5ml of PBS and the
fluid was centrifuged (10,000 g, 4◦C for 10min) to separate
particulate material.

Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-
6, IL-10, IL-15, IL-17, IL-27, transforming growth factor
(TGF)-β, interferon (IFN)-γ, chemokine KC (or CXCL1), and
monocyte chemoattractant protein-1 (MCP-1) concentrations in
colon tissue were measured with commercially available mouse
enzyme-linked immunosorbent assay (ELISA) technique kits
following the manufacturer’s recommendations (R&D Systems,
MN, USA or Abcam, San Francisco, USA).

Caco-2 cell supernatants were collected after the treatments
described below. TNF-α, IL-1β, IL-6, and IL-8 were measured
with commercially available human ELISA technique kits
following the manufacturer’s recommendations (Abcam, San
Francisco, USA).

Myeloperoxidase (MPO) Assay in Colon
Tissue
Neutrophil infiltration in the colon tissue was quantified
indirectly by measurement of MPO. Colon sections were
cleared of debris, washed in PBS, and weighed. Samples were
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FIGURE 1 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the colitis induced in mice by dextran sodium sulfate (DSS) administration. (A) L. jensenii TL2937

was orally administered to different groups of mice (108 cells/mouse/day) before (PRE DSS+TL2937 group), simultaneously (SIM DSS+TL2937 group), or

continuously (CONT DSS+TL2937 group) with the administration of DSS for 7 days. Untreated mice challenged only with DSS were used as controls. The animals

were sacrificed at different time points: the end of immunobiotic administration (day −1), the start of DSS administration (day 1), the end of DSS administration (day 7),

and 7 days after the last DSS administration (day 14). (B) Body weight change was monitored daily during the study period. (C) Colon length, (D) colon length:weight

ratio, (E) disease activity index, and (F) clinical scores were evaluated at the indicated days. The results represent three independent experiments. Significant

differences when compared to the DSS control group: *P < 0.05.

homogenized in 50mM acetate buffer, pH 5.4 (MPO-assay
buffer). Homogenates were frozen at −70◦C for 20min, thawed,
sonicated for 50 s, and centrifuged at 3,600 × g for 15min at
4◦C. MPO was evaluated by adding 200ml of an appropriate
dilution of the lysate to 20mM 3,30,5,50-tetramethylbenzidine in
dimethylformamide and 30ml of 2.7mM of hydrogen peroxide

in MPO-assay buffer. The reaction mixture was incubated for
5min at 37◦C and stopped with ice-cold 200mM sodium acetate
buffer (pH 3) (26). Absorbance was read at 650 nm against a
standard curve made with commercial MPO (Sigma). The results
were expressed as specific activity of MPO (MPO units/g of
colon homogenate).
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Human and Porcine Intestinal Epithelial
Cells
The porcine intestinal epithelial (PIE) cell line was originally
established by our group (28). PIE cells were isolated from
intestinal epithelia derived from an unsuckled neonatal piglet.
The PIE cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) enriched with 10% fetal calf serum (FBS), 100
U/ml penicillin, and 100 mg/ml streptomycin (Gibco, Thermo
Fisher Scientific Co.) and plated into collagen (Type III)-coated
250ml flask (Sumilon, Tokyo, Japan). After reaching confluence,
the plate was washed twice with PBS and treated with the
buffer containing 0.1MNa2HPO4 12H2O, 0.45M sucrose, 0.36%
EDTA 4 Na, and BSA at 37◦C for 5min. Then, PIE cells were
treated with a trypsin solution containing 0.25% trypsin and
0.02% EDTA in PBS at 37◦C for 3min, and the cells were
collected by centrifugation (1,000 × g for 5min at 4◦C). After
counting their numbers, PIE cells were seeded in a new flask,
and after overnight culture, the supernatant was removed and
fresh DMEM was added for a subsequent culturing. At least
three consecutive passages were performed before the challenge
experiments were conducted.

Human epithelial Caco-2 cells were grown in DMEM
supplemented with 10% FBS, 50 U/ml penicillin, and 50 mg/ml
streptomycin and maintained at 37◦C in a humidified chamber
of 5% CO2.

Immunomodulatory Effect of L. jensenii
TL2937 in PIE Cells
PIE cells were seeded at 3 × 104 cells per well in 12-well type
I collagen-coated plates (Sumitomo Bakelite Co., Tokyo, Japan)
and cultured for 3 days as explained before. After changing the
medium, L. jensenii TL2937 (5 × 107 cells/ml) were added, and
48 h later, each well was washed vigorously with a medium at
least three times to eliminate all stimulants. Then, cells were
stimulated with DSS 5,000 Da (Wako Pure Chemical Industries
Ltd., Osaka, Japan), dissolved in DMEM, and sterilized using
DISMIC 25AS 0.45µm (ADVANTEC, Tokyo, Japan). Different
concentrations of DSS (0.1, 0.01, 0.001, and 0.0001%) were
used for cytotoxicity assay (29). Viability was measured by a
commercially available kit (Cell Titer 96TM AQueous, Promega,
Madison, USA), which depends on the physiologic reduction of
MTS to formazan. DSS 0.01% was used for the evaluation of
transepithelial electrical resistance, western blot, qRT-PCR, and
microarray studies. Caco-2 cells were seeded at 3 × 104 cells per
well in 12-well type I collagen-coated plates and treated with L.
jensenii TL2937 as described for PIE cells. After 48 h, Caco-2 cells
were stimulated with 1% of DSS (29) and inflammatory factors
were evaluated by ELISA.

Two-Step Real-Time Quantitative PCR
(qRT-PCR)
Total RNA was isolated from each cell sample using TRIzol
reagent (Invitrogen). Briefly, 100 µl of chloroform was added
to samples and stirred. After 3min standing, samples were
centrifuged at 15,000 rpm, 15min, 4◦C. The upper layer (water
layer) was collected andmixed with same amount of isopropanol.

After standing for 10min, samples were centrifuged at 15,000
rpm, 15min, 20◦C. The supernatants were eliminated, and the
pellets were washed with 75% ethanol. After centrifugation
(15,000 rpm, 15min, 4◦C), the supernatants were eliminated and
pellets were dried at 50◦C in a block incubator. Then, samples
were diluted with DEPC water. Concentration and purity
ware measured by a NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies, Inc., Wilmington, NC, USA).

DNAs were synthesized using a QuantiTect reverse
transcription (RT) kit (Qiagen, Tokyo, Japan) according
to the manufacturer’s protocol. Real-time quantitative
polymerase chain reaction (PCR) was performed with an
Applied Biosystems Real-Time PCR System 7300 (Applied
Biosystems, Warrington, United Kingdom) and the Platinum
SYBR Green qPCR SuperMix-UDG (uracil-DNA glycosylase)
with ROX (6-carboxyl-X-rhodamine) (Invitrogen). The primers
for porcine immune factors, and β-actin is provided in
Supplementary Table 2 or is described previously (18, 30). The
PCR cycling conditions were 5min at 50◦C, followed by 5min at
95◦C, and then 40 cycles of 15 s at 95◦C, 30 s at 60◦C, and 30 s at
72◦C. The reaction mixtures contained 2.5 µl of sample cDNA
and 7.5 µl of master mix, which included the sense and antisense
primers. According to the minimum information for publication
of quantitative real-time PCR experiment guidelines, β-actin was
used as a housekeeping gene because of its high stability across
porcine various tissues (18, 30). Expression of porcine β-actin
was used to normalize cDNA levels for differences in total cDNA
levels in the samples.

The expressions of tight junctions and adherens junctions
genes including occluding (Ocln), zonula occludens 1 (ZO-1),
claudin 1 (Cldn1), and β-catenin (Ctnn) were evaluated by qRT-
PCR in colon sections of mice. Tissue samples were cleared of
debris, washed in sterile PBS, and weighed. RNA was extracted
from the colon tissue samples using TRIzol reagent (Invitrogen,
USA). The primers for murine tight junctions, adherens
junctions, and β-actin are provided in Supplementary Table 2.
The reaction mixtures contained 5 µl SYBR Premix Ex TaqTM II
(5×), 0.2 µl Rox, 0.5 µl primer mix (10µM), and 0.5 µl cDNA.
The PCR cycling conditions were 30 s at 95◦C, 40 cycles of 95◦C
for 5 s, and 60◦C for 30 s. The expression of murine β-actin was
used to normalize cDNA levels for differences in total cDNA
levels in the samples.

Assessment of Intestinal Epithelial Barrier
Function
Transepithelial electrical resistance (TER) was used as a measure
of barrier function in confluent PIE cell monolayers after the
challenge with 5,000 Da DSS. For growth on porous filters, PIE
cells were grown in the DMEM and plated at 1.0 × 106 cells on
a 0.4-µm PTFE membrane (Corning, NY, USA). Cellular TEERs
were measured with an electrical resistance system,Millicell ERS-
2 Voltohmmeter (Merck Millipore, Massachusetts, USA). Cells
with stable TER readings >500 øcm were used (4–5 weeks post
plating). To evaluate the stimulus effect on the epithelial barrier,
TEER was measured at baseline and after 48 h of stimulation. The
blank measurements (transwell without cell monolayer) were
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subtracted from TEER values of each experimental condition and
were adjusted for the filter surface (0.3 cm2). The values were
expressed as ohms per cm2. The results represent the percentage
of final TER increases with respect to their basal TER value.

Apoptosis Evaluation
The GFP-CERTIFIED Apoptosis/Necrosis detection kit (Enzo
Life Sciences, Farmingdale, NY, USA) was used to evaluate
apoptosis in DSS-challenged PIE cells. The cells (6.0 × 104

cells/2ml) were seeded into a Celtite C-1 Collagen-coated 6-well
plate (SUMILON, Tokyo, Japan) and cultured at 37◦C, 5% CO2.
Apoptosis-positive controls were generated by the treatment of
PIE cells with 1mM of staurosporine for 4 h. After stimulations,
1ml of epithelial buffer was added to each well and incubated for
3min. Cells were detached by adding 500 µl of trypsin for 1min
and centrifugation at 800 rpm for 5min. The cell pellets were
washed with PBS, mixed with Dual Detection Regent, and kept
at room temperature for 15min in the dark. The measurement
was performed with BD Accuri C6 Plus (BD, New Jersey, USA)
and analyzed with FLOWJO (FLOWJO, Oregon, USA).

The caspase 3/7 was evaluated by using the CellEvent Caspase-
3/7 Green Flow Cytometry Assay Kit (Thermo Fisher Scientific,
Massachusetts, USA). PIE cells (6.0× 104 cells/2ml) were treated
with 1 µl of CellEvent Caspase-3/7 Green Detection Reagent and
incubated at 37◦C for 25min in the dark. Then, 1 µl of SYTOX
AADvanced reagent was added and incubated at 37◦C for 5min
in the dark. The measurement was performed with BD Accuri
C6 Plus (BD, New Jersey, USA) and analyzed with FLOWJO
(FLOWJO, Oregon, USA).

Western Blot Analysis
PIE cells were stimulated with L. jensenii TL2937 (5.1 × 108

cells/well) for 48 h. Then, the cells were washed three times
with DMEM medium to eliminate the bacteria and subsequently
challenged with 0.1% of DSS for 0, 10, 20, 30, and 60min. The
PIE cells were washed and resuspended in 200 µl of CelLytic
M Cell Lysis Reagent (Sigma-Aldrich, St. Louis, MO, USA),
containing protease and inhibitors of phosphates (Complete
mini, PhosSTOP, Roche, Mannheim, Germany). Cells were
transferred to 1.5-ml Eppendorf tubes and kept at 95◦C for 5min
in a water bath. The concentration of protein was estimated
using BCA assay kit (Pierce, Rockford, IL). The lysed samples
(8 µg/sample) were loaded on 10% SDS-polyacrylamide gels,
and separated proteins were transferred electrophoretically to
a nitrocellulose membrane. The cells were rinsed with PBS
and then lysed in RIPA buffer (PBS, 1% Nonidet P-40, 0.5%
sodium deoxycholate, and 0.1% SDS) with a protease inhibitor
cocktail (Sigma Chemical Co.) at 4◦C. Total cell lysates were
separated with 8% SDS–polyacrylamide gel electrophoresis and
transferred to PVDF membrane. Jun N-terminal protein kinase
(JNK) was evaluated using anti-phosphated JNK antibodies
(Santa Cruz Biotech). Blots were developed using ECL Western
blotting detection reagent kit (Amersham Pharmacia Biotech,
Inc., Piscataway, NJ). The optical protein bands were detected
by ECF substrate (GE Healthcare Japan Co., Tokyo, Japan) and
estimated from the peak area of densitogram by using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

Intracellular Ca2+ Flux in PIE Cells
Intracellular calcium mobilization was measured using the Fluo-
4 DirectTM Calcium Assay Kits from Invitrogen according to
the manufacturer’s instructions (Dojindo, Kumamoto, Japan)
as described previously (31). Briefly, PIE cells were plated
in 96-well white-walled plates and grown to 90% confluence.
Cells were serum-starved overnight and loaded with cell-
permeant Fluo-4-AM diluted in calcium-free Hanks’ balanced
salt solution supplemented with 20mm HEPES buffer provided
by the manufacturer. Intracellular calcium flux was measured by
fluorescence spectroscopy every 5 s for a total of 220 s (Victor2
Wallac, PerkinElmer Life Sciences). Background fluorescence
was measured 30 s before addition of DSS and the average
background subtracted from each value.

Immunofluorescence
PIE cells (1.0 × 106) were seeded on a Transwell 6.5-mm-
inserted, collagen-coated 0.4-µmPTFEmembrane (Corning, NY,
USA) and cultured for 8 days. Then, PIE cells were stimulated
with L. jensenii TL2937 (5× 107 cells/ml) for 48 h and challenged
with 0.1% DSS for 6 h. The Transwell was washed with PBS
and fixed with 4% paraformaldehyde phosphate buffer (room
temperature, 20min). Thereafter, the plate was washed with PBS
and blocked with 2% goat serum (room temperature, 20min).
After washing with PBS-Tween, 50 µl of Can Get Signal Solution
1 was added to each well, and 1 µl of anti-ZO-1 or anti-β-catenin
was added to make a 50-fold dilution. It was left overnight at 4◦C,
protected from light. After washing with PBS-Tween, 500 µl of
Can Get Signal Solution 2 and 0.5 µl of Alexa Flour 488 were
added (×1,000). The plate was allowed to stand for 2 h in the
shade and washed with PBS-Tween. The membrane was excised
with scissors for dissection, sealed with a mounting medium
containing DAPI, dried overnight in a vat, and observed with
OLYMPUS IX70 (OLYMPUS, Tokyo, Japan).

RNA Isolation and Quality Control for
Microarray Analysis
Total RNA was isolated from the ligand-treated and control PIE
cells using PureLink RNA Mini Kit (Life Technology Inc., USA)
along with on-column DNase treatment (18, 30). RNA integrity,
quality, and quantity were evaluated with microcapillary
electrophoresis (2100 Bioanalyzer, Agilent Technologies, Santa
Clara, CA, USA) using the Agilent RNA 6000 Nano Kit (Agilent
Technologies, Santa Clara, CA, USA). Only samples with an
RNA integrity number (RIN) of >8 were used for this gene
expression study.

Microarray Hybridization
The microarray hybridization was performed with a Porcine
Gene Expression Microarray 4× 44K oligonucleotide slide (v2.0,
Agilent Technologies, Santa Clara, CA, USA) containing 43,803
probes for the identification of known genes of the porcine
transcriptome. The microarray experiment was conducted at
Hokkaido System Science Co., according to the one-color
Microarray-Based Gene Expression Analysis Protocol v6.7
(Agilent Technologies, Santa Clara, CA, USA). For each sample,
200 ng of total RNA was converted into cDNA by reverse
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transcription. The cDNA was subsequently transcribed into
cRNA and labeled with cyanine 3 (Cy3). About 1.65 µg of labeled
cRNA was mixed with hybridization buffer and hybridized on a
microarray slide (4 samples in each slide) for 17 h at 65◦C with
constant rotation. After hybridization, microarrays were cleaned
with Gene Expression Wash Buffer and scanned with High-
Resolution Microarray Scanner (Agilent Technologies, Santa
Clara, CA, USA). The Feature Extraction software (v10.7.3.1,
Agilent Technologies, Santa Clara, CA, USA) was used for
detailed analysis of scanned images including filtering the
outlier spots, background subtraction from features, and dye
normalization. The spot intensity data for individual sample were
extracted for statistical analysis.

Statistical Analysis of Microarray Data
The normalization and differential expression analysis of
microarray data were performed with GeneSpring GX software
(v13.1, Agilent Technologies, USA). The log2-transformed
expression values of probes were normalized based on 75
percentile shifts. In order to determine the differential expression
of genes, an unpaired t-test was performed between untreated
control and stimulated samples. The pair-wise comparisons were
performed between control and each of the stimulations to
detect the differentially expressed genes. The Benjamini and
Hochberg (B-H) adjustment method was applied for multiple-
test correction. Significant differentially expressed genes were
selected on the basis of two criteria: an adjusted p-value (FDR,
false discover rate) of <0.05 and a cutoff in fold change of at
least 1.5 (18, 30). The human ortholog gene symbol of DEGs was
determined using the dbOrtho panel of the bioDBnet tool (32)
which was used for downstream functional analysis.

Network Enrichment Analyses
In order to visualize the L. jensenii TLR2937-mediated
immunotranscriptional network in DSS-challenged PIE
cells as well as to identify the regulatory genes, the subnetwork
enrichment analysis was performed using the NetworkAnalyst
online tool (33). This tool uses the InnateDB protein–protein
interaction datasets composed of 14,755 proteins and 145,955
literature-curated interactions for humans (34). Human
orthologous gene symbols of the common DEGs from all three
stimulation were uploaded into the NetworkAnalyst to construct
the interaction network based on the Walktrap algorithm
taking only direct interaction of seed genes. The network was
depicted as nodes (circles representing genes) connected by
edges (lines representing direct molecular interactions). Two
topological measures such as degree (number of connections
to the other nodes) and betweenness (number of shortest paths
going through the nodes) centrality were taken into account for
detecting highly interconnected genes (Hubs) of the network.
Nodes having a higher degree and betweenness were considered
as potentially important Hubs in the cellular signal trafficking.

Statistical Analysis
For in vivo experiments, each experimental group consisted of
three mice per group at each time point and experiments were
performed in triplicate (n = 9 for each parameter studied).

Results were expressed as mean ± standard deviation (SD).
The differences between groups were analyzed using the student
t-test. Differences were considered significant at P < 0.05
and P < 0.01. ANOVA one-way was used for analysis of
variance among multiple groups. For in vitro experiments, the
statistical analysis was performed using GLM procedures of
the SAS computer program. Mean values of relative mRNA
expression were compared using the Bonferroni correction and
multicomparison tests. Differences were considered significant
at P < 0.05.

RESULTS

L. jensenii TL2937 Alleviates DSS-Induced
Colitis in vivo
We first aimed to evaluate whether the oral administration of the
immunobiotic strain L. jensenii TL2937 was capable of avoiding
or reducing the intestinal inflammatory damage induced by
the DSS administration. For this purpose, three lactobacilli
treatment schemes were assessed as shown in Figure 1A.
The TL2937 strain was orally administered to mice before
(PRE DSS+TL2937 group), simultaneously (SIM DSS+TL2937
group), or continuously (CONT DSS+TL2937 group) with the
administration of DSS. The body weight change was used to
evaluate the general health status of TL2937- and DSS-treated
mice when compared with controls that received only DSS
(Figure 1B). Similar to DSS control animals, mice in the SIM
DSS+TL2937 group presented a gradual and continuous loss
of body weight throughout the period studied. Mice in the
PRE DSS+TL2937 and CONT DSS+TL2937 groups showed
decreases in body weights that were similar to those observed in
controls during the first 6 days after the administration of DSS.
However, these groups of TL2937-treated mice started to recover
body weights and showed values of this parameter that were
significantly higher than controls from days 7 to 14 (Figure 1B).
The colon length and the colon length:weight ratio were
evaluated to determine the severity of colitis (Figures 1C,D).
As expected, no significant differences were found in the values
of these parameters when control mice and the TL2937-treated
groups were compared before the administration of DSS (day
−1). In addition, no differences between the experimental groups
were detected on day 1 after DSS challenge. Similar to DSS
control animals, mice in the SIM DSS+TL2937 group had
reduced colon lengths and increased colon length:weight ratios
on days 7 and 14 after DSS administration (Figures 1C,D). On
the contrary, on days 7 and 14 the mice in the PRE DSS+TL2937
and CONT DSS+TL2937 groups showed significantly increased
colon lengths and decreased colon length:weight ratios when
compared to DSS controls (Figures 1C,D). To correlate the
general health status with the colon damage, we further evaluated
the disease activity index (DAI) and the clinical score on days
7 and 14 after DSS administration (Figures 1E,F). Both DAI
and clinical score values were similar in the SIM DSS+TL2937
group and control DSS mice. However, the PRE DSS+TL2937
and CONT DSS+TL2937 groups had DAI and clinical score
values that were significantly lower than the DSS control mice
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FIGURE 2 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the inflammatory response induced in mice by dextran sodium sulfate (DSS) administration. L.

jensenii TL2937 was orally administered to different groups of mice (108 cells/mouse/day) before (PRE DSS+TL2937 group), simultaneously (SIM DSS+TL2937

group), or continuously (CONT DSS+TL2937 group) with the administration of DSS for 7 days. Untreated mice challenged only with DSS were used as controls. The

animals were sacrificed at different time points: the end of immunobiotic administration (day −1), the start of DSS administration (day 1), the end of DSS administration

(day 7), and 7 days after the last DSS administration (day 14). (A) Colon myeloperoxidase (MPO) activity, (B) colon TNF-α, (C) serum TNF-α, and (D) small intestine

TNF-α were evaluated at the indicated days. The results represent three independent experiments. Significant differences when compared to the DSS control group:

*P < 0.05, **P < 0.01.

(Figures 1E,F). In particular, the absence of visible blood in
rectum or on fur was evident in PRE DSS+TL2937 and CONT
DSS+TL2937 mice.

L. jensenii TL2937 Differentially Regulates
the DSS-Triggered Inflammatory Response
in vivo
We next studied the effect of the immunobiotic treatments
on the inflammatory response triggered by the administration
of DSS. Since the increased production of TNF-α and the
infiltration of neutrophils have been described as key factors
in the inflammatory damage observed in DSS-induced colitis
(1, 2), we evaluated the colon MPO activity as an indirect marker
of neutrophil infiltration and the concentration of colon TNF-
α (Figures 2A,B). In addition, the levels of serum (Figure 2C)
and intestinal (Figure 2D) TNF-α were also determined. No
significant differences were found in the values of these four
parameters when control mice and the TL2937-treated groups
were compared before DSS administration (day −1) or on day

1 after the DSS challenge. However, significantly higher levels
of colon TNF-α and MPO activity as well as intestinal and
serum TNF-α were found in all the experimental groups at
days 7 and 14 after DSS administration when compared to day
1 (Figure 2). On days 7 and 14, no differences were observed
between the SIM DSS+TL2937 group and control DSS mice. On
the contrary, the PRE DSS+TL2937 and CONT DSS+TL2937
groups had significantly lower levels of colon MPO activity
and TNF-α in colon, intestine, and serum than control DSS
mice (Figure 2).

Considering that L. jensenii TL2937 was able to differentially
regulate the production of TNF-α in the colon and
diminished the recruitment of neutrophils, we selected the
PRE DSS+TL2937 treatment to further characterize the
immunomodulatory activity of the TL2937 strain by assessing
the levels of colon IL-1β, IL-6, IL-15, CXCL1, MCP-1, IFN-γ, IL-
17, TGF-β, IL-10, and IL-27 (Figure 3). The oral administration
of L. jensenii TL2937 to mice did not induce significant changes
in the levels of the colon cytokines evaluated before DSS
administration (day −1). In addition, no differences in the
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FIGURE 3 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the inflammatory response induced in mice by dextran sodium sulfate (DSS) administration. L.

jensenii TL2937 was orally administered to different groups of mice (108 cells/mouse/day) before (PRE DSS+TL2937 group) the administration of DSS for 7 days.

Untreated mice challenged only with DSS were used as controls. The animals were sacrificed at different time points: the end of immunobiotic administration (day −1),

the start of DSS administration (day 1), the end of DSS administration (day 7), and 7 days after the last DSS administration (day 14). (A) Colon inflammatory cytokines

and chemokines (IL-1β, IL-6, CXCL1, IL-15, MCP-1), (B) colon IFN-γ and IL-17, and (C) colon regulatory cytokines (TGF-β, IL-10, IL-27) were evaluated at the

indicated days. The results represent three independent experiments. Significant differences when compared to the DSS control group: *P < 0.05.

levels of colon pro-inflammatory cytokines were observed
when the day −1 and the day 1 after DSS administration were
compared, with the exception of IL-6 that were significantly
higher in the PRE DSS+TL2937 group (Figures 3A,B). All the
pro-inflammatory colon cytokines evaluated were increased
on days 7 and 14 after DSS administration when compared
to day 1 (Figures 3A,B). Interestingly, the concentrations
of the cytokines IL-1β and IL-6 and the chemokines IL-15,
CXCL1, and MCP-1 were significantly lower in the colon of PRE
DSS+TL2937 mice than in the DSS control group (Figure 3A).
The PRE DSS+TL2937 mice also had lower levels of colon
IFN-γ and IL-17 than DSS controls (Figure 3B). When the
immunoregulatory cytokines were analyzed, it was observed that
there were no differences in the levels of colon TGF-β between
days −1 and 1. On day 1, the levels of colon IL-10 and IL-27
were significantly higher in the PRE DSS+TL2937 group than
in DSS controls (Figure 3C). A decrease in IL-10 and IL-27 was
observed when days 7 and 14 were compared to day 1 in DSS
control mice. In addition, it was found that IL-10 and IL-27 were
significantly higher in the PRE DSS+TL2937 group than in the
DSS control group on days 7 and 14 after the challenge with DSS
while no differences between the groups were observed for colon
TGF-β concentrations (Figure 3C).

We also evaluated the effect of L. jensenii TL2937 in the
expression of Ocln, ZO-1, Cldn1, and Ctnn in the colon of mice
treated with DSS (Figure 4). No differences in the expression
levels of Ocln, ZO-1, Cldn1, and Ctnn were observed when
DSS controls and PRE DSS+TL2937 groups were compared to
basal controls in days −1 and 1 after DSS administration, with
the exception of ZO-1 that was significantly enhanced in mice
receiving the TL2937 strain. The DSS challenge reduced the
expressions ofOcln, ZO-1,Cldn1, andCtnn on days 7 and 14 after
its administration. Of note, mice in the PRE DSS+TL2937 group

had significantly higher levels of Ocln, ZO-1, and Ctnn on days
7 and 14 when compared to DSS controls. The only exception
was Cld1 that was not different when DSS controls and PRE
DSS+TL2937 groups were compared on day 7 (Figure 4). While
mice in the PRE DSS+TL2937 group had normal levels of Ocln
and Cldn1, the levels of ZO-1 and Ctnn were higher than basal
controls in days 7 and 14 after DSS administration.

L. jensenii TL2937 Diminishes DSS-
Triggered Epithelial Barrier Alterations
in vitro
Considering our previous studies demonstrating the ability
of L. jensenii TL2937 to differentially modulate inflammatory
responses in intestinal epithelial cells (17, 18), we hypothesized
that its beneficial effect in DSS-colitis in vivo could be related
to the modulation of the response of these cells to the challenge
with DSS. Then, we next aimed to characterize the effect of
L. jensenii TL2937 on intestinal epithelial cells in the context
of DSS-induced inflammatory damage. For this purpose, we
used as a model the PIE cell line developed by our group
(28). We reported previously that PIE cells show epithelial-like
morphology and create a monolayer attaching to neighboring
cells (28, 35, 36). These characteristics of PIE cells give us the
possibility of conducting in vitro studies to evaluate the epithelial
barrier function. We first evaluated the response of PIE cell
monolayers to the challenge with different concentrations of DSS
during 1, 3, or 6 h in terms of their viability (Figure 5A). A dose-
dependent effect was observed when the viability of PIE cells
was assessed after the challenge with the different concentration
of DSS. While no significant differences in cell viability were
induced by 0.0001% of DSS, the higher concentration (1%)
reduced PIE cell viability by 25%. No significant differences were
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FIGURE 4 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the inflammatory response induced in mice by dextran sodium sulfate (DSS) administration. L.

jensenii TL2937 was orally administered to different groups of mice (108 cells/mouse/day) before (PRE DSS+TL2937 group) the administration of DSS for 7 days.

Untreated mice challenged only with DSS were used as controls. The animals were sacrificed at different time points: the end of immunobiotic administration (day −1),

the start of DSS administration (day 1), the end of DSS administration (day 7), and 7 days after the last DSS administration (day 14). The expressions of occluding

(Ocln), zonula occludens 1 (ZO-1), claudin 1 (Cldn1), and β-catenin (Ctnn) were evaluated by qRT-PCR at the indicated days. The results represent three independent

experiments. Significant differences when compared to the DSS control group: *P < 0.05.

found when the 1, 3, and 6 h of stimulation were compared
within the same dose of DSS, with the exception of DSS 1%
for 6 h that induced the highest cell mortality (Figure 5A).
Considering those results, we selected 0.01% of DSS for 6 h for
further studies.

To evaluate the effect of L. jensenii TL2937, PIE cells were
treated with the bacteria, challenged with DSS and the viability
(Figure 5B) and the TER (Figure 5C) were evaluated. TL2937-
treated PIE cells had a significantly increased viability after the
challenge with DSS when compared to controls (Figure 5B). The
treatment of PIE cells with L. jensenii TL2937 did not induce
modifications in the TER index (Figure 5C). On the contrary,
DSS challenge diminished the TER index when compared
to unchallenged cells. Interestingly, TL2937-treated PIE cells
had normal TER index values after the stimulation with DSS
(Figure 5C). The barrier function of mucosal epithelial cells is

mediated mainly by the molecular structures that are established
between neighboring cells such as tight junctions and adherens
junctions. Then, we next evaluated the expression of ZO-1
(Figure 5D) and β-catenin (Figure 5E) in PIE cell monolayers
to study tight junctions and adherens junctions, respectively.
Immunofluorescence studies showed that both proteins are
mainly expressed in the cell–cell contact areas. The treatment of
PIE cells with DSS altered their expression of ZO-1 (Figure 5D)
and β-catenin (Figure 5E). An increased cytoplasmic expression
and an altered distribution on the cell surface of ZO-1 were
observed in DSS control PIE cells while TL2937-treated cells
showed a pattern of ZO-1 expression that was not different from
unchallenged cells (Figure 5D). DSS stimulation reduced both
cytoplasmic and cell surface expression of β-catenin. Although
the same reduction in β-catenin expression was observed in
TL2937-treated cells after DSS challenge, PIE cells in this group
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FIGURE 5 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the in vitro epithelial barrier alterations induced by dextran sodium sulfate (DSS) administration.

Porcine intestinal epithelia (PIE) were challenged with different concentrations of DSS for 1, 3, or 6 h for evaluation of (A) cell viability. The dose of 0.01% DSS for 6 h

was selected for further experiments. PIE cells were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h and then challenged with DSS. PIE cells challenged

only with DSS were used as controls. (B) Cell viability, (C) transepithelial electrical resistance (TER), (D) ZO-1 expression, and (E) β-catenin expression were

determined. TER index values before and after DSS challenge are indicated with white and black bars, respectively. The results represent three independent

experiments. Significant differences when compared to the unchallenged control group: *P < 0.05.

have some areas with accumulations of this protein both in the
cytoplasm and on their surface (Figure 5E).

The C-Jun N-terminal kinase (JNK) is an intracellular
signaling factor that has been reported to be activated in the
intestine of human IBD patients (37, 38). In particular, the
intracellular epithelial signaling mediated by Ca2+-Ask1-MKK7-
JNK2-c-Src cascade is involved in DSS-induced tight-junction
breakdown (39). Then, the activation of JNK (Figure 6A)
and intracellular Ca2+ mobilization (Figure 6B) were evaluated
in PIE cells challenged with DSS. It was observed that
the phosphorylated JNK (p-JNK) protein was increased in
control PIE cells between 10 and 20min (relative index of
4.1 in the peak) after DSS challenge (Figure 6A). The p-
JNK returned to basal levels after 30min in control DSS-
challenged PIE cells. In addition, DSS stimulation induced a
significant increase in intracellular Ca2+ fluxes in PIE cells
(Figure 6B). An earlier and lower increase (relative index
of 3.0 in the peak) in p-JNK levels (Figure 6A) as well

as lower intracellular Ca2+ fluxes (Figure 6B) were detected
in TL2937-treated PIE after DSS challenge when compared
to controls.

The phosphorylation of JNK in the intestinal epithelium
has been linked not only to the reduction of tight junctions
strength (39), but in addition to the expression of pro-
inflammatory cytokines such as IL-6 and TNF-α (40)
and the induction of apoptosis (41). Therefore, we also
evaluated the effect of DSS in the induction of apoptosis
in PIE cells. We performed flow cytometry studies using
Annexin V as a probe for phosphatidylserine on the outer
membrane of apoptotic cells (Figure 6C) as well as caspase
3/7 (Figure 6D). It was observed that DSS administration
significantly increased apoptotic cells when compared to
unchallenged controls. However, the apoptosis induced
by DSS was lower than that found in PIE cells treated
with the well-known apoptosis inductor staurosporine
(Figures 6C,D). Of note, the induction of apoptotic cells
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FIGURE 6 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the in vitro epithelial barrier alterations induced by dextran sodium sulfate (DSS) administration.

Porcine intestinal epithelia (PIE) were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h and then challenged with 0.01% DSS for 6 h. PIE cells challenged

only with DSS were used as controls. (A) JNK and phosphorylated JNK (p-JNK) levels, (B) Ca+2 influx, (C) apoptosis, and (D) caspase 3/7 expression were

determined in PIE cells after the challenge with DSS. The results represent three independent experiments. Significant differences when compared to the

unchallenged control group: *P < 0.05, **P < 0.01.

by DSS in TL2937-treated PIE cells was significantly lower than
that of DSS controls and resembled that found in unchallenged
PIE cells when Annexin V was used (Figure 6C). However, no
differences were found between control and TL2937-treated
PIE cells after the challenge with DSS when caspase 3/7 was
evaluated (Figure 6D).

L. jensenii TL2937 Differentially Regulates
DSS-Triggered Transcriptomic Response in
Epithelial Cells
The transcriptomic response of PIE cells to the challenge
with DSS and the effect of L. jensenii TL2937 in that response
were evaluated by microarray analysis. When DSS-treated PIE
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FIGURE 7 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the immunotranscriptomic response of intestinal epithelial cells induced by dextran sodium

sulfate (DSS) administration. Porcine intestinal epithelial (PIE) were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h and then challenged with 0.01% DSS

for 6 h. PIE cells challenged only with DSS were used as controls. The expression of differentially regulated genes with immune-related functions was evaluated by

microarray analysis. (A) Venn diagrams showing the number of differentially upregulated and downregulated genes with immune-related functions for each

experimental group. (B) PPI network and (C) heat-map analysis of genes with immune-related functions.

cells were compared with unchallenged cells, it was found
that there were 243 and 327 unique transcripts upregulated
and downregulated, respectively (Supplementary Figure 1A).
Out of these differentially regulated genes, several were
assigned to immune-related functions according to the
PPI network (Supplementary Figure 1B) and GO database
(Supplementary Figure 1C) analysis. The PPI network is
a hierarchical structure, where the Hubs show the factors
that play a central role in directing cellular response to a
given stimulus. Then, to identify the regulatory Hub genes
involved in the transcriptome network of TL2937-treated
PIE cells after the challenge with DSS, we constructed
and visualized the PPI network of differentially expressed
transcripts (Supplementary Figure 1B). The centrality measures
(degree and betweenness) indicated that UBC, UBQLN4,
PTN, ALB, IL2, ONECUT1, VTN, TTR, IFR5, APP, NUP214,
RARB, FGFR2, TF, FOXO4, AMBP, DAB2, GRB2, CFH, and
SMAD3 were the major Hub genes of the L. jensenii TL2937-
mediated transcriptional network in the DSS-treated PIE
cells (Supplementary Figure 1B; Supplementary Table 3).
The changes of immunotranscriptome response in PIE cells
after DSS challenge included genes in the following GO
Biological Process pathways: “Response to stimulus,” “Regulation
of response to stimulus,” “Cell surface receptor signaling
pathway,” “response to stress,” “Defense response,” “Regulation
of immune system process,” “Regulation of cytokine production,”
“Regulation of cell adhesion,” and “Regulation of MAPK cascade”
(Supplementary Figure 1C).

Immune-related genes were found in both upregulated
(37 unique genes) and downregulated (37 unique genes)

transcript groups (Figure 7A). In order to identify the major
immunoregulatory Hub genes involved in the transcriptomic
network of TL2937-treated PIE cells after the challenge with DSS,
we constructed and visualized the PPI network of differentially
expressed immune related genes (Figure 7B). The network
displayed that MAPK13, CD80, CD274, CD8B, CD40, CD4, F2R,
F3, OAS1, IRF5, FGFR2, IL2RG, AMBP, IL2, IL1A, SELE, and
CXCL10 were upregulated among the regulatory Hubs. While
NOS2, IL16, EPCAM, CADM3, GDF15, IL12RB1, CD28, CD209,
FGG, CXCR4, TGFA, MPO, NCF2, CSF3, CCL5, and CXCL13
were downregulated in PIE cells among the regulatory Hub genes
of the immunotranscriptomic networks (Figure 7B). Significant
differences were observed in the immunotranscriptomic
responses when TL2937-treated PIE cells were compared with
DSS controls (Figure 7C; Supplementary Table 4). The most
remarkable changes in TL2937-treated PIE cells after stimulation
with DSS were found in expression cytokines, chemokines, and
adhesion molecules.

L. jensenii TL2937 Differentially Regulates
the DSS-Triggered Inflammatory Response
in Epithelial Cells
To further evaluate gene expression changes induced by DSS
in PIE cells, qRT-PCR was performed. From the immune
and immune-related genes differentially regulated by DSS
in the microarray analysis, we selected 25 belonging to
cytokines, chemokines (Figure 8), and adhesion molecules
(Figure 9A) groups as well as NCF1, NCF2, NOS2,
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FIGURE 8 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the immunotranscriptomic response of intestinal epithelial cells induced by dextran sodium

sulfate (DSS) administration. Porcine intestinal epithelia (PIE) were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h and then challenged with 0.01% DSS

for 6 h. PIE cells challenged only with DSS were used as controls. The expression levels of TNF-α, IL-1α, IL-1β, IL-6, IL-15, TFF2, TGF-β, CCL2, CCL4, CCL8,

CCL11, CXCL5, CXCL8, CXCL9, and CXCL10 were determined by qRT-PCR. The results represent three independent experiments. Significant differences when

compared to the DSS control group: *P < 0.05, **P < 0.01.
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FIGURE 9 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the immunotranscriptomic response of intestinal epithelial cells induced by dextran sodium

sulfate (DSS) administration. Porcine intestinal epithelial (PIE) were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h, and then challenged with 0.01% DSS

for 6 h. PIE cells challenged only with DSS were used as controls. The expression levels of adhesion molecules (A) SELE, SELL, VCAM, EPCAM, and inflammatory

factors (B) NCF1, NCF2, NOS2, c, PPARα, and SAA2 were determined by qRT-PCR. The results PPAR represent three independent experiments. Significant

differences when compared to the DSS control group: *P < 0.05, **P < 0.01.

PPARγ c, PPARα, and SAA2 (Figure 9B) to be studied
by qRT-PCR.

The challenge of PIE cell with DSS significantly increased the
expression of TNF-α, IL-1α, IL-1β , IL-6, IL-15, and TFF2 when
compared to unchallenged cells (Figure 8). DSS stimulation also
induced a remarkable increase in the expression of CCL4, CCL8,
CXCL5, CXCL9, and CXCL10 as well as modest but significant
increases in CCL2 and CCL11 (Figure 8). Of note, TL2937-
treated PIE cells showed expression values of these cytokines and
chemokines (Figure 8) that were lower than the DSS control cells
and were similar to those found in unchallenged PIE cells. In our
hands, no significant variations in the expression of TGF-β and
CXCL8 were found when the different experimental groups were
compared to unchallenged PIE cells.

As shown in Figure 9A, significant higher expression levels of
SELL, SELE, and EPCAM were found when PIE cells stimulated
with DSS were compared to unchallenged cells. The expression
levels of those adhesion molecules in TL2937-treated PIE cells
were lower than the DSS controls and were similar to those
observed in unchallenged PIE cells. No significant variations
in the expression of VCAM were found when the different
experimental groups were compared to unchallenged PIE cells.

DSS stimulation induced increases in the expression levels
of NCF1, NCF2, NOS2, PPARα, and SAA2 (Figure 9B). Lower
expression levels of these factors were found in TL2937-treated
PIE cells when compared the DSS control cells. Moreover, the
expression levels were similar to those found in unchallenged PIE
cells (Figure 9B). No significant variations in the expression of
PPARγ cwere foundwhen the different experimental groups were
compared to unchallenged PIE cells (Figure 9B).

In order to confirm the immunomodulatory effect of the
TL2937 strain on IECs and validate our PIE cell system as a
potential human model, we performed experiments in human

Caco-2 cells (29). For this purpose, Caco-2 cells were treated
with L. jensenii TL2937, challenged with 1% DSS, and the
levels of TNF-α, IL-1β, IL-6, and IL-8 were measured in culture
supernatants (Figure 10). The challenge of Caco-2 cells with
DSS significantly increased the levels of the four cytokines when
compared to unchallenged cells. Of note, the levels of TNF-α,
IL-1β, IL-6, and IL-8 were significantly reduced in lactobacilli-
treated cells when compared to DSS controls.

DISCUSSION

The regulation of the cytokine networks that control the
intestinal epithelial barrier function and the mucosal immune
system has emerged as an interesting alternative for IBD
treatment (1, 2, 4). Moreover, the great progress in the
understanding of how beneficial microbes are able to
modulate mucosal cytokines has allowed the selection and
characterization of immunobiotic candidates for alleviating
intestinal inflammation in IBD patients (12, 13). In this work,
by using a DSS-induced colitis in the mouse model, we have
demonstrated for the first time the ability of the immunobiotic
strain L. jensenii TL2937 to protect the intestinal epithelium
from the inflammatory damage through the regulation of the
intestinal cytokine network.

In our hands, the administration of L. jensenii TL2937 before
the challenge of mice with DSS achieved the protective effect. In
fact, the preventive administration (PRE DSS+TL2937 group)
or the one that started before and then was administered
simultaneously with DSS (CONT DSS+TL2937 group) showed
the ability to improve the general health status of animals and
to reduce intestinal disorders mediated by the inflammatory
response. Those beneficial effects were not observed when the
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FIGURE 10 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the inflammatory cytokine production by human colon Caco-2 cells induced by dextran sodium

sulfate (DSS) administration. Caco-2 cells were stimulated with L. jensenii TL2937 (5 × 107 cells/ml) for 48 h and then challenged with 1% DSS for 48 h. Caco-2 cells

challenged only with DSS were used as controls. The levels of TNF-α, IL-1β, IL-6, and IL-8 were determined by ELISA. The results represent three independent

experiments. Significant differences when compared to the DSS control group: *P < 0.05, **P < 0.01.

immunobiotic bacteria were administered only simultaneously
with DSS (SIM DSS+TL2937 group). Our results are in line
with several other reports that have indicated that immunobiotic
preventive treatments are more effective to alleviate the
symptoms of colitis than their administration during acute active
inflammatory phases [reviewed in (12)]. For example, it was
reported that the preventive treatment with Bifidobacterium
breve NCC2950 significantly diminished the severity of DSS-
induced colitis, IEC damage, and MPO activity by the regulation
of pro- and anti-inflammatory cytokine balance, while the
administration of this strain during active DSS colitis was
not effective to control inflammation (42). Similarly, only the
preventive administration of TL2937 strain was able to improve
body weight gain, diminish DAI and clinical score values, reduce
the alterations of colon length and the colon length:weight
ratio, and diminish intestinal MPO activity. Moreover, our
results evidenced a remarkable capacity of L. jensenii TL2937
to differentially regulate the intestinal cytokine profile in DSS-
challenged mice.

The concentrations of TNF-α, IL-1β, IL-6, IFN-γ, and IL-17
were significantly lower in the colon of L. jensenii TL2937-treated
mice than in the DSS control group. All these inflammatory
cytokines have been implicated in the pathogenesis of IBD.
Earlier studies demonstrated the detrimental effects of TNF-α

in IBD and that the blockade of this cytokine was effective in
ameliorating the severity of colitis in both the T cell transfer (43)
and the DSS mouse models (44). It was also reported that the
excessive production of TNF-α weakened the intestinal epithelial
barrier function by altering IEC integrity and inducing their
apoptosis (45, 46). The interaction of TNF-α with the receptors
TNFR1 and TNFR2 stimulates the expression of inflammatory
factors through NF-κB activation, induces damage of IECs via
myosin light chain kinase (MLCK) activation (47), and stimulates
cell death through receptor-interacting protein kinase 1 (RIPK1)
and caspase protein activation (48). Moreover, a plethora of
effects have been attributed to TNF-α during the generation
and development of IBD including the induction of death in
Paneth cells, the increase in angiogenesis, the enhancement of
matrix metalloproteinase production, and the potentiation of
inflammation by the stimulation of immune cells (48). On the
other hand, although IL-6 is of importance for the maintenance
of the normal barrier function of the intestinal epithelium (49),
deregulated production of IL-6 in the gut promotes T cell
expansion and stimulates Th1 cell-mediated inflammation (50).
It was also demonstrated that the deletion of the inflammasome
component caspase-1 that is involved in the production of the
active forms of IL-1β and IL-18 (51) or the blockade of IL-1β
or IL-18 signaling (52, 53) significantly attenuates the severity of
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FIGURE 11 | Effect of immunobiotic Lactobacillus jensenii TL2937 on the immunotranscriptomic response of intestinal epithelial cells induced by dextran sodium

sulfate (DSS) administration. Global overview of the signaling pathways and immune genes differentially regulated in porcine intestinal epithelial (PIE) cells after the

challenge with DSS. Global overview of the signaling pathways and immune genes differentially regulated in PIE cells treated with L. jensenii TL2937 and challenged

with DSS.

DSS-induced colitis in mice. In addition, IL-1β is able to promote
intestinal inflammatory damage by collaborating in the activation
and differentiation of T cells that produce IL-17 or IFN-γ (54),
which are increased and are highly active in the intestinal mucosa
of IBD patients (1, 2). On the other hand, it was found that IL-10
and IL-27 were significantly higher in L. jensenii TL2937-treated
mice than in the DSS control group while no differences between
the groups were observed for colon TGF-β concentrations. It
was shown that mice deficient in either IL-10 or its receptor IL-
10R develop spontaneous colitis (55, 56). Furthermore, genetic
studies evaluating IL-10 found that some mutations in the genes
encoding IL-10 or IL-10R are associated with an early onset
of IBD development in children (57) while deficiencies in IL-
10 have been associated with pathogenic responses of IL-12-
and IL-23-producing T cells in several models of colitis (2).
It was also shown that the alterations in both IL-35 and IL-
27 exacerbate T cell transfer colitis (58). Then, the results of
this work indicate that L. jensenii TL2937 is able to induce

a differential cytokine balance in response to DSS stimulation
by decreasing the production of inflammatory cytokines and
increasing the levels of regulatory cytokines. This differential
profile could be related to a direct effect of the immunobiotic
strain on cytokine production, as observed on day −4 for IL-10
and IL-27, as well as an indirect effect due to the protection of
the intestinal epithelium against the damage that decreases the
activation of the innate immune response.

The murine model of DSS-induced colitis is particularly
useful for the evaluation of the role of both intestinal barrier
and the innate immune responses in the context of IBD
(12). In this mouse model, the administration of DSS in the
drinking water induces damage on IECs causing alterations in
the barrier functions of the surface epithelium and allowing
the passage of lumen antigens that strongly stimulate the
innate immune system. Then, considering the in vivo studies
performed here demonstrating the ability of L. jensenii TL2937
to protect mice against DSS challenge, we hypothesized that the
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immunobiotic strain would exert its beneficial effects, at least
partially, through the modulation of IEC physiology. In fact,
our experiments evaluating the expression of tight junction and
adherens junction genes in vivo, includingOcln,ZO-1,Cldn1, and
Ctnn, demonstrated the ability of L. jenseniiTL2937 to strengthen
the barrier function of IECs. Then, detailed in vitro studies were
performed by using the PIE cell line and DSS stimulation.

When the effect of L. jensenii TL2937 on the
immunotranscriptome response of DSS-challenged PIE cells
was evaluated, the most remarkable differences were found
in the expression of inflammatory cytokines and chemokines
(Figure 11). Significantly reduced expression levels of TNF-α,
IL-1α, IL-1β , IL-6, and IL-15 were found in DSS-challenged
PIE cells previously stimulated with the TL2937 strain, which
showed a strong correlation with our in vivo findings in mice
and with our studies in human Caco-2 cells. In addition to
inflammatory cytokines, IECs are able to secrete chemokines
and express adhesion molecules in response to injury, and in
this way, these cells play an active role in shaping the nature of
the intestinal immune response. It was shown that the chronic
intestinal inflammation of IBD is driven and sustained in part
by an increased production of chemokines from the inflamed
epithelium (59). In this work, the challenge of PIE cells with
DSS significantly increased their expression of CCL2, CCL4,
CCL8, CXCL5, CXCL9, and CXCL10 as well as the adhesion
molecules SELL, SELE, and EPCAM, highlighting the role of
inflamed IECs in the recruitment and activation of leukocytes
in the intestinal mucosa. Of note, most of the chemokines and
adhesion molecules evaluated were lower in TL2937-treated PIE
cells when compared to DSS control. Although we have not
performed a detailed evaluation of chemokines and adhesion
molecules in the DSS mouse model, we observed a significant
reduction in the levels of CXCL1, MCP-1, IL-15, and MPO in
the colon of TL2937-treated mice. It is tempting to speculate
that L. jensenii TL2937 would be able to beneficially modulate
chemokines and adhesion molecules in vivo. It would be
of value to evaluate the effect of the immunobiotic TL2937
strain on the recruitment and activation of leukocytes in
the intestinal mucosa, and the connection of this effect to
the protection against the intestinal damage. This could lay
the scientific basis for the application of this strain in other
inflammatory-based pathologies.

The cytokines produced by IECs and cells in the surrounding
microenvironment are key players in the control of themigration,
differentiation, and survival of IECs. The closure of erosions and
ulcers in the intestinal mucosa is promoted by the proliferation
and expansion of IECs and is critically dependent on intestinal
cytokine networks (60, 61). Studies have found that increased
apoptosis of IECs in the inflamed mucosa of IBD patients
and the overproduction of inflammatory cytokines have been
associated with the destruction of intestinal epithelial layers
by promoting apoptotic death in IECs (62). Moreover, some
inflammatory cytokines such as TNF-α and IFN-γ are able
to alter the molecular bonds between the IECs reducing the
epithelial barrier function and aggravating the epithelial erosions
(47, 63). Here, we were able to reproduce in vitro those relevant
characteristics of the intestinal mucosa of IBD patients. In our

hands, DSS administration to PIE cells significantly increased
the numbers of apoptotic cells and diminished the TER index.
Moreover, in line with our results in mice challenged with DSS,
PIE cells had an altered expression and distribution of ZO-
1 and β-catenin, indicating a clear alteration of the epithelial
barrier. Interestingly, L. jensenii TL2937 was able to significantly
reduce the alterations of all these parameters in DSS-challenged
PIE cells. As mentioned earlier, the phosphorylation of JNK
in the intestinal epithelium has been linked to some cellular
and molecular changes that are characteristic of IBD. JNK
pathway activation is related the expression of TNF-α (40), the
reduction of tight junctions strength (39), and the induction
of apoptosis (41). In our in vitro model, a clear activation of
the JNK pathway was observed in PIE cells after the challenge
with DSS. Moreover, we found that L. jensenii TL2937 was
able to differentially modulate the activation of this pathway,
since an earlier and lower increase in p-JNK levels and lower
intracellular Ca2+ fluxes were detected in this group. Previously,
we evaluated the interaction of L. jensenii TL2937 with PIE cells
and demonstrated that this bacterium is able to interact with
TLR2 and upregulate the expression of negative regulators of
the TLR signaling pathway (17). In this way, this immunobiotic
strain modulates the subsequent TLR4 activation by reducing
the activation of NF-κB and p38 signaling pathways, and the
expression of inflammatory cytokines and chemokines. It is
tempting to speculate that in the context of DSS stimulation, the
upregulation of negative regulators induced by the TL2937 strain
would allow the regulation of the JNK pathway and significantly
impact in the immunotranscriptomic response, apoptosis, and
barrier functions of PIE cells.

Because of the anatomical, physiological, and immunological
similarities of human and porcine intestine, pigs have been
considered an attractive model to study the mechanisms involved
in intestinal diseases as well as the interaction of microbes with
the immune system (64). In this work, we demonstrated that
PIE cells could give us the possibility of conducting in vitro
studies to evaluate the epithelial barrier function, the innate
immune response, and the influence of immunomodulatory
beneficial microbes on those parameters, in the context of DSS
challenge. Our statement is supported by the good correlation
found in the modulation of cytokines and chemokines by
L. jensenii TL2937 in the in vivo mouse model and the in
vitro PIE cell system. Moreover, we also found that the TL2937
strain was capable of reducing the production of inflammatory
cytokines and chemokines in human Caco-2 cells in response
to DSS, resembling the results observed in PIE cells. Caco-2
monolayers have been successfully used for the evaluation of
therapeutic alternatives on the barrier integrity, inflammation,
and cell death in response to DSS (29, 65–67). Then, our
comparative in vitro results reinforce the scientific basis for
proposing PIE cells as a good in vitro model for molecular
studies of IBD. Further comparative studies that involve the
use of lactobacilli that do not have beneficial effects on the
inflammatory response and/or the epithelial barrier in IBD
models would be of great importance to position our in vitro
system as a useful tool in the selection of potential probiotics for
UC or CD.
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CONCLUSIONS

The findings of this work allow us to arrive at three main
conclusions: (a) L. jensenii TL2937 is able to alleviate DSS-
induced colitis through the regulation of intestinal cytokine
networks suggesting a potential novel application for this
immunobiotic strain in the context of IBD. Furthermore, (b) the
modulation of the transcriptomic response of IECs by the TL2937
strain would play a key role in this beneficial effect. Although
a remarkable effect of L. jensenii TL2937 on IECs was observed
here, further studies are needed to characterize the mechanisms
involved in the protection against DSS colitis induced by this
immunobiotic strain. For example, it is known that IECs are not
efficient producers of IL-10 or IL-27, two cytokines that were
augmented in mice treated with L. jensenii TL2937. Then, the
study of the cellular and molecular interactions of the TL2937
strain with intestinal macrophages or DCs would be of value to
explain the increases of the regulatory cytokines. In addition,
we demonstrated that (c) the in vitro PIE cell immunoassay
system could be of value for the screening and selection of new
immunobiotic strains for their application in IBD. Although
murine models have been of great value to select and characterize
immunobiotics for IBD, the reduction of animals being used in
experiments has become a central topic of debate in the scientific
community (68). The good correlation between the alterations
of barrier function, epithelial cell death, and cytokine networks
found in previous in vitro and in vivo IBD models and our in
vitro findings in PIE cells show the potential value of our system
to select efficiently new immunobiotic candidates for CD or UC.
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Mariana Camila Gonçalves Miranda1, Mauro Andrade Guimarães1, Juliana Lima Alves1,
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Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 4 Instituto Federal
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Oral tolerance is the physiological process that enables the immune system to
differentiate between harmless dietary and microbiota antigens from pathogen derived
antigens. It develops at the mucosal surfaces and can result in local and systemic
regulatory and anti-inflammatory effects. Translation of these benefits to the clinical
practice faces limitations involving specificity and doses of antigen as well as regimens of
feeding. To circumvent these problems, we developed a recombinant Hsp65 delivered
by the acid lactic bacteria Lactococcus lactis NCDO 2118 directy in the intestinal
mucosa. Hsp65 is a ubiquitous protein overexpressed in inflamed tissues and capable
of inducing immunoregulatory mechanisms. L. lactis has probiotic properties and is
commonly and safely used in dairy products. In this study, we showed that continuous
delivery of HSP65 in the gut mucosa by L. lactis is a potent tolerogenic stimulus
inducing regulatory CD4+LAP+ T cells that prevented collagen-induced and methylated
bovine serum albumin-induced arthritis in mice. Clinical and histological signs of arthritis
were inhibited as well as levels of inflammatory cytokines such as IL-17 and IFN-γ,
serum titers of anti-collagen antibodies and rheumatoid factor. Oral administration of
L. lactis induced alterations in microbiota composition toward an increased abundance
of anaerobic bacteria such as Bifidobacterium and Lactobacillus. Tolerance to HSP65
and arthritis prevention induced by the recombinant L. lactis was associated with
increase in IL-10 production by B cells and it was dependent on LAP+ T cells, IL-10
and TLR2 signaling. Therefore, HSP65-producing treatment induced effective tolerance
and prevented arthritis development suggesting it can be used as a therapeutic tool for
autoimmune diseases.

Keywords: autoimmunity, Lactococcus lactis, heat shock proteins, arthritis, probiotic bacteria, oral tolerance

Abbreviations: AIA, antigen induced arthritis; CIA, collagen induced arthritis; CII, type II collagen; HSP, heat shock
protein; Hsp65-lac, recombinant Lactococcus lactis secreting Mycobacterium leprae Hsp65; LAP, latency associated peptide;
L. lactis-EP, Lactococcus lactis bearing an empty plasmid; mBSA, methylated bovine serum albumin; OVA, ovalbumin; RA,
rheumatoid arthritis.
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INTRODUCTION

The gastrointestinal mucosa harbors the largest lymphoid tissue
in the human body, with the number of lymphoid cells
exceeding the cells in other lymphoid organs by orders of
magnitude. Antigenic stimulation in the gut is also intense,
with daily absorption of 130–190 g of dietary protein and
hundred trillion of commensal bacteria from the microbiota
(1, 2). Oral tolerance is the physiological process by which
the immune system suppresses specific inflammatory immune
responses toward innocuous antigens such as microbiota
and food proteins, while maintaining protective responses
to pathogenic agents. Mechanisms involved in oral tolerance
includes regulatory cytokines and regulatory lymphocytes.
Mucosal surfaces are populated by a large number and diversity
of these regulatory lymphocytes that are able to control local
and systemic immune responses (3, 4). Therapeutic applications
of oral tolerance for chronic inflammatory diseases have been
experimentally demonstrated for decades, but translation to the
clinic practice faces limitations, mainly related to identification
of the target antigen, feeding protocols and doses of antigen
required (5).

Quantity and frequency of the antigen intake are among the
several factors that can influence the outcomes of oral tolerance.
It has been shown that ingestion of antigen via gavage induces
oral tolerance, but this process can be affected by the age and
genetic background of the animal (6, 7). On the other hand, a
regimen of continuous feeding, in which the antigen is ingested as
part of the diet or the drinking water induces a robust suppression
that is not affected by these factors (8). However, the amount
of purified protein necessary for this approach in humans is a
hindrance to its clinical use.

Another limitation of oral tolerance as therapeutic is the
identification of the antigen involved in the pathological
process. The target antigens involved in the pathogenesis of
chronic inflammatory diseases such as inflammatory bowel
diseases (IBD), obesity, or atherosclerosis are still elusive (5).
Rheumatoid arthritis (RA) is an autoimmune disease that does
not have a single antigenic target for autoimmune reaction.
An inflammatory reactivity toward extracellular proteins from
cartilage has been identified as part of the pathogenesis of the
disease in susceptible individuals and experimental arthritis can
be induced using collagen or proteoglycans as antigens (9, 10).
In addition, the drivers of autoimmune reaction diverge among
patients and they cannot be correlated to the severity of the
disease. In some cases, individuals present high levels of anti-
collagen antibodies years before the onset of any symptom (11).

Some proteins surpass this restriction for they can interact
with a vast network of receptors related to their ubiquity.
Hsp65 is one of these proteins with the advantage of being
an immunodominant antigen able to induce regulatory T cells
during thymic development (12). It belongs to the family of
HSP60 chaperones, crucial to cellular function and found in
all life forms, with strong structural homology among the taxa.
Proteins of this family have a remarkable relationship with
the immune system, functioning as a signal of cellular activity
and indicating processes such as inflammation, hyperplasia, or

oxidative stress through receptors of the innate and the adaptative
immune system (13).

Regulatory T cells may present different development and
mechanisms of action, but they can interact with heat shock
proteins. Thymic developed Treg cells usually target self-antigens,
such as mammalian HSP60, whereas peripherally developed
Treg are more likely to target exogenous antigens, such as
bacterial Hsp65. These chaperones can also interact with innate
receptors, such as TLR, in a suppressive and regulatory way (13).
Therefore, proteins from the HSP60 family play a major role
in regulating inflammation using different receptors to interact
with. A regulatory role of these proteins in RA is now very well
known. In fact, the regulatory role of HSP60 emerged in studies
using different rodent models of arthritis and diabetes (14, 15).

Initial research has proposed Hsp65 as the main precipitating
antigen in the pathogenesis of arthritis and diabetes. But when
injected with it, instead of developing the disease, animals became
refractory to its induction (13, 16–19). The immunoregulatory
properties of the HSP60 family are experimentally established in
humans and experimental models (20–22). Clinical trials based
on its peptides have already been conducted for arthritis (23)
(ongoing NCT01123655) and diabetes (24–26). However, none of
these trials are based on continuous contact with high quantities
of the whole protein through oral mucosa. One major caveat for
feeding Hsp60 or Hsp65 to induce oral tolerance in humans is the
large amount of purified Hsp65 required.

To circumvent these caveats and explore the full tolerogenic
potential of oral HSP60, our group designed a recombinant strain
of Lactococcus lactis NCDO2118 able to produce and secrete
Mycobacterium leprae Hsp65 (27). This acid lactic bacterium
is generally regarded as safe, commonly used in the dairy
industry and has become increasingly common in recombinant
technology (28, 29). Treatment with Hsp65 produced by L. lactis
(Hsp65-Lac) has been shown to be able to prevent the induction
of experimental autoimmune encephalomyelitis (EAE), colitis
(30, 31), and wild type NCDO2118 strain of L. lactis showed
beneficial properties in experimental colitis (32).

In this study, we demonstrated that oral treatment with
Hsp65-Lac was able to prevent the induction of chronic and
acute models of arthritis. The collagen induced chronic model
of arthritis (CIA) resembles several features of RA, including
induction of anti-collagen antibodies and rheumatoid factor. It
is induced by immunization with a self component (type II
collagen) mixed to a highly immunogenic protein, ovalbumin
(OVA), adsorbed in complete freund adjuvant (CFA) (33, 34). To
confirm our results, we also tested an acute model of arthritis
induced by methylated bovine serum albumin (mBSA) (35).
Although there are several pieces of evidence on the tolerogenic
role of Hsp65 in different arthritis models, including ingestion
of recombinant Mycobacterium Hsp65 (36, 37), the use of
recombinant L. lactis has advantages: it has anti-inflammatory
properties of its own, it survives through the digestive tract
and delivers large amounts of Hsp65 directly into the mucosa,
boosting its tolerogenic effect (30). In addition, L. lactis is
a gram-positive lactic bacterium that produces an endotoxin
free version of HSP65. Here we show that oral treatment with
recombinant HSP65-producing L. lactis can also prevent the
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development of acute and chronic experimental arthritis and that
the NCDO2118 strain of L. lactis induced some beneficial effects
in the microbiota composition.

MATERIALS AND METHODS

Lactococcus lactis Strain and Growth
Conditions
Two different plasmids were used to transform the L. lactis
NCDO2118 as described elsewhere (27). The constructed plasmid
vector pSEC:hsp65 used a xylose-inducible expression system
(XIES) and directed the expression of Hsp65 to the extracellular
medium. And an empty plasmid (EP; pXylT:SEC without hsp65)
was used to transform L. lactis NCDO2118, used as a control.
Both vectors included chloramphenicol resistance.

Recombinant L. lactis NCDO2118 strains were grown in Difco
M17 broth, supplemented with either 0.5% glucose (GM17) or
1% xylose (XM17) and chloramphenicol (10 µg/mL) at 30◦C
without agitation. On the first day, single colonies of recombinant
L. lactis harboring an empty plasmid (L. lactis-EP) and L. lactis
NCDO2118 harboring pXylT:SEC:hsp65 (Hsp65-lac) in 5 mL of
GM17 were cultured. On the second day, the overnight culture
was diluted 1:10,000 in XM17 to induce the expression of the
plasmid. On the third day, the animals received the recombinant
L. lactis, or the L. lactis-EP as a control, in XM17 to drink.

Biosecurity and institutional safety procedures were
performed in accordance to the standards of Comissão Técnica
Nacional de Biossegurança (CTNBIO), Brazil, for work with
genetically modified microorganisms.

Animals
Female BALB/c and C57BL/6 mice at six weeks of age were
purchased from the Central Animal Facility (CEBIO) of UFMG
and treated with ivermectin. TLR2−\ − C57BL/6 mice were
kindly provided by Dr. Sérgio Costa Oliveira, Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil, and IL10−\ −
129 Sv/Ev mice kindly provided by Dr. Donna-Marie McCafferty,
University of Calgary, Calgary. Mice were bred and housed in
cages maintained in ventilated racks at our experimental animal
facility located at Instituto de Ciências Biológicas, Universidade
Federal de Minas Gerais. All procedures were approved by
the local ethical committee for animal research (CEUA-UFMG,
Brazil, protocol 118/2013). Experiments were performed in
accordance with guidelines and regulation established by the
Conselho Nacional de Controle de Experimentação Animal
(CONCEA), Brazil.

Experimental Groups
Mice were subjected to the following treatments: N – naive group,
control non-manipulated mice; C – positive control group, mice
fed only XM17 media before arthritis induction; EP – mice fed
recombinant control L. lactis bearing an EP before induction of
arthritis; HSP – mice fed recombinant L. lactis bearing Hsp65-
containing vector (Hsp65-lac) before arthritis induction. These
groups were used for most experiments (multiple independent
ones with n = 5–6).

For in vivo neutralization of LAP+ T cells, mice received
three intraperitoneal injections of either anti-LAP monoclonal
antibody (20 mg/mouse/day; clone TW716B4) or isotype control
(IgG1) on every other day beginning at the first day of L. lactis
administration. TLR2−/− and IL10−/−mice were used to induce
the acute arthritis model after treatment with L. lactis.

Treatment With Lactococcus lactis
Oral treatment with the bacteria was performed by offering either
XM17 medium (control), XM17 medium containing L. lactis EP
or Hsp65-producing L. lactis at 1 × 109/mL in the drinking
water for four consecutive days. Mice consumed an average of
5 mL/day. Bottles were measured for liquid consumption and
changed every day. The total dose of bacteria per mouse was
estimated to be 5 × 109 CFU and the total daily dose of Hsp65
was about 35 µg per mouse (30).

Chronic and Acute Models of Arthritis
Ten days after the end of the treatment with L. lactis (day 14 of
the experiment), two antigens were used in the chronic model:
2 mg/mL OVA and 2 mg/mL collagen type II chicken (CII) in
saline solution was used in the emulsion with an equal volume
of CFA plus 4 mg/mL of macerated Mycobacterium tuberculosis.
After that, every three weeks (days 35, 56, and 77), animals
received three subcutaneous injections with 100 µL into the base
of the tail as previously described (33, 34). Finally, mice were
euthanized on day 95 of the experiment (Figure 1A). Kinetics
of the disease was recorded by collecting material a week after
each immunization.

For the acute model, C57BL/6 mice received subcutaneous
injection in the base of the tail with 100 µL saline solution
containing 10 mg/mL mBSA diluted in an equal volume of
CFA plus 4 mg/mL Mycobacterium tuberculosis H37RA as in the
chronic model, 10 days after the treatment with L. lactis (day
14 of the experiment). Fourteen days later (day 28), animals
were challenged with an injection of 10 µL of a saline solution
containing 10 µg mBSA directly into the knee joint as previously
described (35). Finally, mice were euthanized on day 29 of the
experiment (Figure 5A).

Measurement of Hind Paw Swelling and
Sensitiviy
To evaluate alterations induced by CIA, volume and sensitivity
of the hind paws of each animal were measured using both
a pachymeter and a plethysmometer (Ugo Basili, Italy) for
volume measurement and an analgesy-meter (Ugo Basili, Italy)
for sensitivity evaluation. The volume of the two hind paws were
taken and the average of values calculated. The sensibility test was
performed three times to allow the animals to get used to the
procedure. Only the fourth measure was used for evaluation.

Euthanasia and Sampling
Seven days after the challenge (acute model) or after the
immunization (chronic), mice were injected i.p. with Ketamine
(60 mg/kg) and xylazine (8.0 mg/kg). When completely sedated,
blood was collected through the aorta, sampled and centrifuged
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FIGURE 1 | Oral administration of Hsp65-producing L. lactis prevented collagen-induced arthritis in mice. (A) Schematic protocol for the chronic model of
collagen-induced arthritis. BALB/c mice were fed either XM17 broth only (C group), EP-Lac (EP group) or Hsp65-Lac (HSP group) for four days. Ten days later,
arthritis was induced with four injections of CII+OVA in CFA; at day 95 all mice were euthanized. (B) Average edema of both hind paws was measured with a
pachymeter weekly. Graphs are representative of three combined independent experiments (N = 16–17). Values from naïve unmanipulated mice are shown as a
dashed line (C) Mechanical nociceptive threshold was quantified using an Analgesy-meter (Ugo Basile, Italy) at the day 95 (N = 8). (D) Leukocytes in the synovial
cavity were counted after the cavity of the left knee was washed, and the number of total leukocytes (cells/mm3) was represented by bars (N = 5).
(E) Histopathological score based on inflammatory infiltrate, pannus, cartilage, and bone erosion was evaluated (N = 10). (F) Histological sections of the knee
collected at day 95 and stained with HE. 100× magnification. The arrow indicates the inflammatory infiltrate in the synovial cavity. Values represent the mean ± SEM.
*p < 0.05. **p < 0.005 ***p < 0.0005 in comparison to control group.

(3000 rpm) for 10 minutes after coagulation. Serum was stored
in individual tubes and frozen (−20◦C). Spleen, mesenteric and
inguinal lymph nodes were collected. The right knee of each
animal was removed for histology and the left used to obtain
the articular material or the synovial wash. Chronic model
(CIA) was carried out up to the endpoint (day 95) four times.
Lymphoid organs and cells were collected at different time points
by euthanizing a group of animals (days 42, 63, and 95 as shown
in Figure 1A).

Synovial Wash
The intra-articular lavage was obtained injecting 10 µL solution
of 3% bovine serum albumin (BSA) into the knee joint, collecting
the solution and diluting it into 90 µL 3% BSA solution to obtain
the lavage fluid. Aliquots of 30 µL joint lavage were diluted in
60 µL of Turk liquid and total white cell counts were obtained
in a Neubauer chamber with the aid of optical microscopy
(100×magnification).

Histology
Knee joint specimens were fixed in formalin (10% formaldehyde
37%, 0.65% Na2HPO4, pH 7.2) for 48 h. Samples were rinsed in
running demineralized water solution containing 10% EDTA pH
7.2 at room temperature for a period of three weeks. Pieces were
washed in water, dehydrated in alcohol baths, cleared in xylene
and embedded in histological paraffin blocks. The 4 µM sections
obtained using a microtome were stained with Hematoxylin

& Eosin (HE). Slides were qualitatively evaluated using the
following parameters: synovial hyperplasia (pannus formation),
cell exudate, depletion of cartilage and bone erosion. The severity
was scored as: not observed (0), present (1) and intense (2) as
previously described (35) as shown in Supplementary Figure S2.

Measurement of Serum Antibodies
Serum antibodies to OVA, type II collagen, Hsp65, and mBSA
were assessed by ELISA. Briefly, 96-well microtiter plates
(NUNC) were coated with a solution of OVA (5 µg/µL), CII
(5 µg/µL), mBSA (2 µg/µL), or M. tuberculosis Hsp65 (1 µg/µL)
overnight at 4◦C. Plates were incubated with serum samples
and bound antibodies detected using alkaline phosphatase
conjugated goat anti-mouse IgG (Southern Biotechnology).
Color reaction was developed at room temperature with
orthophenylenediamine (OPD; 1 mg/mL), 0.04% H2O2 substrate
in sodium citrate buffer. Reaction was interrupted by the addition
of 20 µL/well of 2N H2SO4. Absorbance was measured at
492 nm by an ELISA reader (Bio-Rad Model 450 Microplate
Reader). Results were calculated using the running sum of ODs
of 6 dilutions starting at 1:100 and ending at 1:102,400 (6
serial 1:4 dilutions). This methodology represents more precisely
antibody titers as previously described by our group (38).
Alternatively, concentration of IgG1 anti OVA were obtained
by interpolating a standard curve obtained with anti Ova IgG1
antibody (monoclonal OVA-14, Sigma). Rheumatoid Factor were
measured using a specific kit (MyBioSource).
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FIGURE 2 | Oral administration of Hsp65-producing L. lactis inhibited pathogenic serum antibodies. BALB/c mice were fed either XM17 broth only (C group),
L. lactis-EP (EP group) or Hsp65-Lac (HSP group) for four days. Non-manipulated naïve animals were used to obtain basal levels (N group, dashed line). Ten days
after treatment, arthritis was induced with four injections of CII+OVA in CFA. Sera were collected one week after each booster injection and at the end of the
experiment (day 95). Graphs are representative of three independent experiments. (A) Levels of serum anti-HSP65 IgG, (B) anti-ovalbumin IgG, (C) anti-collagen
IgG, and (D) rheumatoid factor were measured by ELISA. Values represent the mean ± SEM. *p < 0.05 compared to control C group. **p < 0.005 compared to
control C group. ***p < 0.0005.

Cell Cultures
The organs were isolated macerated and the cells adjusted in
concentration 1 × 106 cells/well in RPMI culture (Hyclone,
Logan, UT, United States) supplemented with 10% fetal
bovine serum (CULTILAB, Campinas, SP, Brazil), 2 mM
of l-glutamine (Gibco-BRL, Life Technologies, Grand Island,
NY, MO, United States), 25 mM HEPES (Sigma, St. Louis,
MO, United States), 50 µM 2-mercaptoethanol (Pharmacia
Biotech, Uppsala, Switzerland) and 20 µg/mL gentamicin sulfate
(Schering-Plough, Rio de Janeiro). To evaluate production of
cytokines, cells were stimulated with 50 µg/mL CII or 10 µg/mL
mBSA. A positive control to each sample was stimulated with
1 µg/mL anti-CD3 antibody (Bioscience) and a negative without
stimulation. After 48 h in a CO2 incubator the supernatants were
collected for measurement of IL-17, IFN-γ by ELISA.

Cytokine Measurement
Cytokines present in the supernatants of the cell cultures
were evaluated by sandwich ELISA. Briefly, 96-well polystyrene
plates (Nunc) were coated with anti-INF-γ and anti-IL-17
antibodies (BD Pharmingen, San Diego, CA, United States)

and incubated for 18 h at 4◦C. Plates were washed and
50 µL/well supernatant were incubated for 18 h at 4◦C. Detection
of cytokines was performed using biotin-conjugated anti-IL-
17 and anti-INF-γ followed by incubation with streptavidin-
peroxidase. Color reaction was developed at room temperature
with orthophenylenediamine (OPD; 1 mg/mL), 0.04% H2O2
substrate in sodium citrate buffer. Reaction was interrupted by
the addition of 20 µL/well of 2 N H2SO4. Absorbance was
measured at 492 nm by an ELISA reader (Bio-Rad Model 450
Microplate Reader).

Flow Cytometry Analysis
Allophycocyanin-conjugated (APC) mAbs to Foxp3 and CD62L;
Phycoerythrin-conjugated (PE) mAbs to CD4, CD44, TNF-
α, and LAP; PerCPCy5.5-conjugated mAbs anti-CD4, IFN-
γ, and rat IgG2a isotype control from BD Biosciences (San
Jose, CA, United States) were used as markers for T cells.
PerCP-Cy5.5-CD19, FITC-CD25, and PE-conjugated anti IL-
10 from Biolegend (San Diego, CA, United States). For
surface antigen detection, cells were labeled with monoclonal
antibodies for 30 min at 4◦C. For intracellular labeling of
cytokines and transcription factors, a fixation/permeabilization
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FIGURE 3 | Oral administration of Hsp65-producing L. lactis reduced the production of inflammatory cytokines. BALB/c mice were fed either with XM17 broth only
(C group), L. lactis-EP (EP group) or Hsp65-Lac (HSP group) for four days. Non-manipulated naïve animals were used to obtain basal levels (N group, dashed line).
Ten days after treatment, arthritis was induced with four injections of CII+OVA in CFA, as in the CIA protocol. Cytokine production during disease development was
assessed by harvesting spleens and mesenteric lymph nodes (mLN) of the animals one week after injection, and inguinal lymph nodes (ILN) on day 95. ELISA assays
were used to measure IL17 in cultures of spleen (A), mLN (B), and ILN (C) cells; IFN-γ in cultures of spleen (D), mLN (E), and ILN (F) cells stimulated with type II
collagen (CII). Frequencies of CD4+ T cells producing IFN-γ (G,H) and TNF-a (I,J) in spleens of mice at days 42 (second immunization) and 95 (end of the
experiment) were evaluated by intra-cellular staining of the cytokines and analysis by flow cytometry. Gate strategy for analysis of these T cell populations are shown
in Supplementary Figure S1. Values represent the mean ± SEM. *p < 0.05 compared to control C group. **p < 0.005 compared to control C group.
***p < 0.0005.
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FIGURE 4 | Oral treatment with Hsp65-producing L. lactis increased the frequencies of regulatory T lymphocytes. BALB/c mice were fed either XM17 broth only (C
group), L. lactis-EP (EP group) or Hsp65-Lac (HSP group) for four days. Non-manipulated naïve animals were used to obtain basal levels (N group, dashed line). Ten
days after treatment the arthritis was induced with four injections of CII + OVA in CFA, as in the CIA protocol. Spleen, mesenteric and inguinal lymph nodes were
collected after the second immunization (day 42) and at day 95 for flow cytometry analysis. Frequencies of CD4+CD25+ from spleen cells collected at day 42 and
positive for foxp3 (A); CD4+CD25+ from mesenteric lymph nodes that were LAP+ (B); CD4+CD25+ cells from inguinal lymph nodes obtained at day 42 that were
LAP+ (C); CD4+CD25+ mesenteric lymph node cells obtained at the end of the experiment (day 95) that were Foxp3+ (D) Foxp3+LAP+ (E), and LAP+ (F). Cells
from inguinal lymph nodes collected at day 95 stained for CD4+CD25+Foxp3+ (G) and CD4+Foxp3+LAP+ (H). Spleen cells collected after second immunization
(day 42) and at day 95 and stained for CD19 and IL-10 (I). Representative plots of cellular populations gated from CD4+CD25+ cells (J). Representative plots of
CD19+ IL10+ cells from spleen (K). Values represent the mean ± SEM. *p < 0.05 compared to control C group. **p < 0.005 compared to control C group.
***p < 0.0005.

kit (e-Bioscience, San Diego, CA, United States) was used after
this step. Samples were then incubated for 30 min with a
solution containing the appropriate antibodies. After washing
with PBS containing 0.5% FBS, samples were fixed with 3%
paraformaldehyde for 30 min, washed and stored in PBS at
4◦C. Cells were acquired using a FACSCanto II cytometer
(Becton Dickinson, East Rutherford, NJ, United States) and
data was analyzed by FlowJo software (Tree Star, Ashland,
OR, United States). At least 30,000 events were acquired for
each analysis. Gating strategies are detailed in Supplementary
Material (Supplementary Figure S1).

Analysis of the Microbiota Profile by
Selective Media
Media used for selective bacteria growth were BHI, BBE, MRS
Broth, Mackonkey, Agar-Manitol and Agar-Blood. Feces were
collected from the entire gastrointestinal tract of the animals
and diluted in four concentrations (2×, 4×, 6×, and 8×).
Different media were placed in separated Petri dishes, stored in
the refrigerator at 4◦C until solidified, and then feces were plated.

Dishes were incubated for 24 h at 37◦C in aerobic and anaerobic
conditions, bacterial colonies were counted and analyzed.

Statistical Analysis
All results were expressed as the mean ± SD of the mean.
Significance of differences among groups was determined by
either Student’s t-test or analysis of variance (ANOVA) with
Tukey’s range test. Most of the data represent results from two
or three independent experiments with five or six mice per group
as indicated in the legend of figures. Means were considered
statistically different when p < 0.05.

RESULTS

Oral Treatment With Hsp65-Producing
Lactococcus lactis Prevented Chronic
Collagen-Induced Arthritis Development
The pathological process triggered by CIA included joint
swelling, paw edema and synovial inflammatory infiltrate as
observed in the untreated control group (Figure 1B). Oral
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FIGURE 5 | Oral treatment with Hsp65-producing L. lactis prevented mBSA induced arthritis (AIA). (A) Female C57BL/6 mice were fed either XM17 broth (group C),
L. lactis-EP (group EP) or Hsp65-Lac (HSP Group) for four days. Ten days afterward, arthritis was induced by a subcutaneous immunization with mBSA in CFA. Two
weeks later, mice were injected with mBSA directly into the knee and 24 h after were euthanized. (B) Serum anti-mBSA total IgG levels measured by ELISA.
(C) IFN-γ measured from spleen cell cultures stimulated with mBSA. (D) IL-17 from mBSA stimulated cell cultures from mesenteric lymph nodes and (E) spleen.
(F) CD4+CD25+ from Spleen and marked for Foxp3+ and (G) Foxp3+LAP+. (H) Inguinal lymph node CD4+LAP+. Values represent the mean ± SEM. *p < 0.05 in
relation to the control group C. **p < 0.005 compared to the control group C.

treatment with Hsp65-lac was able to fully prevent paw swelling
(figure 1B) maintaining the volume closer to the one found
in naïve mice throughout the experiment. Alternatively to the
measurement of hind paw swelling by a pachymeter, we also
used a plethysmometer, capable of measuring small changes
in volume, in one separate experiment and confirmed that
mice from the control group (C) had a high paw swelling
whereas Hsp65-Lac-treated mice had a significant reduction in
paw volume (Supplementary Figure S2B). Interestingly, hind
paw swelling remained unchanged from the day 60 up to day
90 showing that a plateau was reached. Hind paw edema is

associated with increased sensitivity to pressure by force. Hsp65-
lac treated mice showed also a decreased sensitivity to pressure
when compared to control diseased mice (Figure 1C). Synovial
wash from untreated mice had a high number of leukocytes,
while L. lactis-EP treated animals scored less and most animals
from group HSP did not show any infiltrating cell in the synovial
fluid (Figure 1D). Inflammatory infiltrate, pannus formation
and bone degeneration were observed in HE stained sections
of control mice and there were absent from Hsp65-lac-treated
mice (Figures 1E,F). Oral treatment with Hsp65-lac prevented
joint damage, while L. lactis-EP had an intermediate effect
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with decrease in edema and inflammation when compared to
control animals.

Oral Treatment With Hsp65-Producing
L. lactis Reduced Specific Pathogenic
Antibodies
Specific antibodies are of great relevance to RA pathogenesis.
Serum antibodies observed during CIA development included
high levels of anti-HSP65 (Figure 2A), anti-OVA (Figure 2B),
and anti-type-II-collagen IgG (Figure 2C). Rheumatoid factor
was also induced by CIA in untreated control mice (Figure 2D).
Oral treatment with Hsp65-lac, but not with L. lactis-EP, inhibited
the production of all these pathogenic antibodies. Hsp65-lac and
L. lactis-EP reduced the levels of anti-OVA IgG1 in the beginning
and at the end of the experiment using a chronic arthritis model
(Supplementary Figure S2C).

Hsp65-Producing L. lactis Reduced
Inflammatory Cytokine Production
During CIA Development
Next, we investigate the production of IFN-γ and IL-17 by
cultured spleen cells during CIA development since these two
inflammatory cytokines are major inducers of both innate
and adaptive immune responses in RA. Hsp65-lac treated
mice had lower levels of IL-17 and IFN-γ (Figure 3) in cell
cultures of spleen (Figures 3A,D), and mesenteric lymph nodes
(Figures 3B,E) stimulated with collagen throughout arthritis
development as well as in cultures of inguinal lymph node
cells (Figures 3C,F) at day 95. Since effector inflammatory
CD4+ T lymphocytes are critical in arthritis progression, we
also examined the frequencies of IFN-γ+CD4+ T cells and
TNF+CD4+ T cells at two time points of disease development
(day 42 and day 95). Frequencies of both IFN-γ-producing
(Figures 3G,H) and TNF-producing (Figures 3I, J) CD4+
effector T cells were higher at day 42 and day 95. Oral treatment
with Hsp65-producing L. lactis reduced the frequency of both
effector T cell types at day 42 and 95 when compared to
control group. Interestingly, L. lactis bearing the EP was also
effective in reducing these cells at day 95 suggesting that
L. lactis by itself mediate some anti-inflammatory action as well.
Rise in inflammatory cytokine production by CD4+ T cells
was related to a parallel increase in the frequency of effector
CD4+CD62L−CD44+ T cells, and this was also prevented by
Hsp65-lac oral treatment (Supplementary Figure S3A).

Oral Treatment With Hsp65-Producing
L. lactis Increased the Frequency of
Regulatory T and B Cells
Many pathological processes are associated with alteration in the
frequency of regulatory lymphocytes. Decrease of Treg cells have
been observed in RA patients, and clinical improvement was also
associated with increased or restoration of Treg function (39). We
have previously shown that oral treatment with Hsp65-producing
L. lactis resulted in high frequencies of Foxp3+CD25+CD4+
Treg cells as well as regulatory CD4+ T cells expressing the

membrane form of TGF-β (Latency Associated Peptide or LAP)
in EAE (30). Attenuation of collagen-induced arthritis with anti-
CD3 monoclonal antibody is also associated with induction
of LAP+ regulatory T cells (40). In the present study, we
confirmed that oral treatment with Hsp65-lac previously to CIA
induction was associated with high frequencies of Foxp3+CD4+
Treg cells in the spleen (Figures 4A,J) and high frequencies of
CD4+LAP+ cells in mesenteric and inguinal lymph nodes after
the second immunization at day 42 (Figures 4B,C,J). At day
95 of CIA development, the augmented frequencies of these
cells were observed only in the lymph nodes suggesting that the
long-lasting effects of Hsp65-lac were regionalized. Mesenteric
lymph nodes (mLN) from Hsp65-lac-treated mice had higher
frequencies of CD4+Foxp3+ (Figures 4D,J), CD4+Foxp3+LAP+
(Figures 4E,J), and CD4+LAP+ (Figures 4F,J) Treg cells than
mLN from control mice. In addition, inguinal lymph nodes
(iLn) of Hsp65-lac-treated mice had increased frequencies of
CD4+Foxp3+ (Figure 4G) and CD4+Foxp3+LAP+ (Figure 4H)
T reg cells than iLN from control mice. B lymphocytes can
also exhibit a regulatory function (Breg cells), mainly through
IL-10 production (41). Decrease in the frequency of this cell
population has been reported in rheumatic patients (42). We
observed increased frequencies of Breg cells (CD19+IL10+) in
spleens of mice treated with Hsp65-lac prior to CIA induction
(Figures 4I,K). These findings point to other mechanisms
involved in Hsp65-lac, in accordance to the importance reported
in the literature for Breg in RA.

Oral Treatment With Hsp65-Producing
L. lactis Also Prevented Induction of an
Acute Model of Arthritis
The preventive effect of oral treatment with Hsp65-lac was also
observed in an acute model of antigen-induced arthritis. The
pathogenic process in this model differs from that of the chronic,
and Hsp65-lac induced different effects. Specific antibodies were
reduced in HSP65-lac treated C57BL/6 mice (Figure 5B), as
were the inflammatory cytokines IFN-γ from spleen cells and
(Figure 5C) and IL-17 from spleen and mesenteric lymph node
cells (Figures 5D,E). Regulatory T cells of different phenotypes
(CD4+Foxp3+, CD4+LAP+, and CD4+Foxp3+LAP+) were
also elevated by treatment with Hsp65-lac (Figures 5F–H). There
was no effect in the frequency of Treg in the mLN as it was found
on the chronic model treatment. No difference was identified
between mice treated with L. lactis-EP and the control untreated
group, in contrast with the partial effects of L.lactis-EP observed
in the CIA. These results suggest that HSP65-producing L.lactis
may prevent chronic and acute forms of arthritis by triggering
different mechanisms of suppression.

The Tolerogenic Effects of
Hsp65-Producing L. lactis in CIA Were
Dependent on LAP+ Cells, IL-10 and
TLR2 Signaling
Since LAP+ T cells have been previously reported as regulatory
cells involved in oral tolerance induced by Hsp65-lac (30), we
investigated its role on CIA model by blocking the action of
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these cells with anti-LAP antibodies in vivo. BALB/c mice were
treated with either XM17 or Hsp65-lac prior to CIA induction,
but they were also injected with either anti-LAP or control IgG1
antibodies at intermittent days during oral treatment. Only the
HSP65-lac group injected with control IgG1 were protected from
the CIA (Figure 6A). Mice treated with Hsp65-lac and injected
with anti-LAP antibodies develop CIA with similar severity,
measured by histological score, as mice treated with XM17.
Considering that we observed an increase in IL-10 producing Breg
cells (Figure 4I), we also decided to investigate the role of IL-10
in oral tolerance in our model. To address that, acute arthritis was
induced in IL10−/− 129Sv/Ev mice after treatment with Hsp65-
Lac. Histopathological score demonstrated that this cytokine was
also fundamental for the inhibitory effect of Hsp65-lac effect
in arthritis development (Figure 6B). Our previous study using
HSP65-producing L. lactis in a mouse model of colitis showed
that its tolerogenic and anti-inflammatory effects were dependent
on signaling mediated by TLR2 (32). We confirmed a similar
relevance for TLR2 for the effect of Hsp65-Lac in the prevention
of the acute model of arthritis, since TLR2−/− mice were not
affected by Hsp65-lac treatment (Figure 6C).

Treatment With L. lactis NCDO2118
Strain Resulted in Changes in the
Microbiota Composition
Lactococcus lactis NCDO2118 had been shown to present
anti-inflammatory effects when used concomitantly to colitis
development (32). We also observed some effect of L. lactis

EP in the reduction of effector inflammatory cells in CIA
model suggesting that L. lactis would have an effect per se in
disease development. Since L. lactis is a lactic bacterium that is
lodged temporarily in the upper part of the small intestine, we
hypothesized that it could interfere with oral tolerance induced in
the gut mucosa by altering the microbiota composition. Indeed,
we observed that wild type L. lactis NCDO2118 induced changes
in the profile of the microbiota identified by the growth of
fecal contents collected from treated mice in selective media
(Figure 7A) under aerobic and anaerobic conditions. Treatment
with L. lactis NCDO2118 was associated with a decrease in
anaerobic bacteria (Figure 7B) and a concomitant increase in
aerobic bacteria (Figure 7C).

DISCUSSION

Our results indicate that oral treatment with Hsp65-producing
L. lactis prevented the development of collagen-induced
and mBSA-induced arthritis in mice inhibiting clinical and
histological signs of disease. This effect was related to tolerogenic
mechanisms triggered in the gut by feeding Hsp65. Interestingly,
tolerance to Hsp65, shown by the reduction in anti-Hsp65
IgG, spread to the antigens used for CIA induction: collagen
and OVA. We observed a similar effect of Hsp65-lac in the
prevention of the EAE model (30). Antibodies to both antigens
were significantly reduced by HSP65-lac. It is noteworthy that
rheumatoid factor was also inhibited by HSP65-lac treatment.
Production of pathogenic antibodies such as the RF is quite

FIGURE 6 | Regulatory components involved in the effect mediated by Hsp65-producing L. lactis. BALB/c mice fed Hsp65-lac for four consecutive days were
previously injected with Anti-LAP antibody (HSP+ALAP) or IgG4 (HSP+IgG) intermittently for four days. Ten days after treatment arthritis was induced with four
injections of OVA+CII in CFA. At day 95 all animals were euthanized, and the right knees were used for preparation of histological sections stained with HE. IL10−\−

129 Sv/Ev and TLR2−\− C57BL/6 were treated with either XM17 broth (C IL10−\− and C TLR2−\−) or Hsp65-lac (HSP IL10−\− and HSP TLR2−\−). Wild type
(WT) mice were used as control for both experiments using the mBSA-induced acute model of arthritis. Histopathological score and HE stained section of (A) mice
treated with anti-LAP antibody. (B) Deficient for IL-10 and (C) TLR2. Bars represent the score based on inflammatory infiltrate, pannus, cartilage and bone erosion.
Values represent the mean ± SEM. *p < 0.05 compared to control C group. **p < 0.005 compared to control C group. ***p < 0.0005.
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FIGURE 7 | Profile of the small intestine microbiota after L. lactis NCDO2118 administration. C57BL/6 mice received L. lactis NCDO2118 in the drinking bottle for
4 days. After euthanasia, the entire fecal content of the small intestine was collected and cultured in different media. Representative graphs showing the CFU grown
either in all media (A), in media maintained in anaerobiosis (B), or in aerobiosis (C) for 24 h. Naive non-manipulated mice were used as control. Statistical
significance of the difference between groups was calculated using the ANOVA test. Values represent the mean ± SEM. *p < 0.05.

relevant to the development of RA (10), and its inhibition is
another piece of evidence for the large spectrum of tolerance
achieved by Hsp65-lac treatment in arthritis. The chronic model
of arthritis (CIA) was induced and sustained by administration of
four successive challenges. Remarkably, none of these challenges
were capable of breaking oral tolerance in HSP65-lac-fed mice
suggesting that immunoregulatory mechanisms triggered by oral
Hsp65-lac were robust enough to sustain tolerance even after
repeated inflammatory insults.

The profile of regulatory T lymphocytes induced by Hsp65-
Lac treatment was also close to the one observed in a previous
study using Hsp65 producing L. lactis to prevent EAE (30).
CD4+LAP+ Tregs are TGF-β producing cells that express the
surface form of this cytokine. These Tregs are fundamental for
the development of oral tolerance in different animal models
of disease (44). Hsp65-lac treatment induced the increase in
the frequencies of CD4+CD25+Foxp3+ and CD4+LAP+ Tregs.
In vivo treatment with anti-LAP antibodies clearly demonstrated
that LAP+ cells were critical for the suppressive effect of Hsp65-
lac. Even if the mechanism involved in the prevention of acute
and chronic model were different, LAP+ Treg cells was relevant
for the inhibition of both arthritis models.

Oral therapy with Hsp65-lac also increased the frequency
of IL-10 producing B cells. It is not yet established the
exact relationship between regulatory B cells and production
of pathogenic antibodies. Immunization with M. leprae DNA-
Hsp65 induced a B-cell subpopulation expressing IL-10 (45).
These B regulatory cells (Breg) were inversely associated with
symptoms in rheumatic patients (42). Transfer of IL-10+ B cells
prevented the induction of CIA in mice (41), and these cells
were crucial for the suppression of Th17/Th1 responses and
induction of Treg (46). Treatment with Hsp65-lac increased this
the frequency of this cell type in mice during chronic arthritis.

The therapeutic potential of bacterial HSP65 and endogenous
HSP60 in either rheumatoid or experimental arthritis has
been investigated for decades. However, most treatments are
based on Hsp65 derived peptides parenterally delivered. In
addition, acute and adjuvant-induced models reproduce only the
inflammatory aspects of arthritis, with autoimmune parameters
often undetectable. We tested the effects of oral treatment with
Hsp65-Lac in mBSA-induced arthritis, an acute model of disease
and showed a similar inhibitory effect with reduction in anti-
mBSA IgG, inflammatory cytokines (IFN-γ and IL-17), and
increased frequencies of CD4+Foxp3+ as well as CD4+LAP+
Treg (Figure 5) indicating the Hsp65-lac has suppressive effects
in arthritis development regardless of their mechanism of
inflammation or disease duration.

Studies conducted by our group showed that oral tolerance
induced by Hsp65-lac were not directly related to cross reaction
with bacterial products present in the adjuvant (30), and that
oral treatment with Hsp65-Lac triggered a tolerogenic effect
toward antigens used for disease induction. This suggests that
Hsp65-lac induces oral tolerance with an indirect effect in related
antigens present at the target tissue as described previously for
other inflammatory conditions such as wound and granuloma
formation (47, 48). L. lactis NCDO 2118 strain has been shown
to have anti-inflammatory effects in the gut mucosa (31), also a
major advantage of using this strain of probiotic bacterium as a
delivery system.

One of the main features of immunological tolerance over
conventional therapies is being specific and, therefore, avoiding
generalized immunosuppression. Treatment with HSP65-lac
does not induce suppression or impairment of protective
immune responses against infectious agents (30). Other studies
have shown the same for HSP60. A clinical trial applying
peptides derived from HSP60 in rheumatic patients did not
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result in immunosuppression. Treated individuals presented
higher frequencies of Foxp3+CD4+ T cells and higher expression
levels IL-10 than the placebo group, and none of them
presented compromised immune response to tetanus toxin (23).
Furthermore, reactivity to HSP60 can be related to protection
against several different infectious agents (49–51).

The use of anti-inflammatory drugs along with
immunotherapies is not uncommon. The decrease in
the inflammatory process, if not essential, provide better
performance in these therapies. The downside of this approach
is that the process of tolerance derives directly from active
immunosuppression, and most of anti-inflammatory drugs
interfere with regulatory T cell function. On the other hand,
the anti-inflammatory properties of probiotics are mediated by
active regulatory mechanisms rather than immunosuppression,
offering a possible booster for oral therapy. In our study,
although oral treatment with control L. lactis (EP) had no
effect in arthritis development, its administration resulted in
reduced frequencies of effector inflammatory CD4+ T cells
expressing IFN-γ and TNF-α. Therefore, L. lactis NCDO2118
had some anti-inflammatory effects and it may be useful not only
for immunotherapy but also for the management of arthritis.
Indeed, oral treatment with L. lactis NCDO2118 induced a shift
in the microbiota composition toward increased abundance of
anaerobic microbiota that contains beneficial bacteria such as
acid-lactic Bifidobacterium and Lactobacillus. This microbial
profile was shown to attenuate colitis in mice (52).

Microbiota manipulation can be relevant for RA pathology
and scientific studies showing beneficial effects of probiotics in
arthritis have accumulated (53, 54). In a model of collagen-
induced arthritis, oral tolerance to collagen was enhanced by its
administration along with the probiotic L. casei, which by itself
can be beneficial (55–59).

The effect of Hsp65-lac was shown to be dependent on TLR-
2 signaling in colitis (32) as it was in our model. This can be
related to the versatile nature of HSPs, being able to induce either
immunization or immunoregulation via interaction with both
innate and adaptative receptors. The regulatory effects of HSP60,
for instance, were described to be dependent on TLR-9, TLR-
4 and Myd88 in different experimental conditions and disease
models (60–62).

L. lactis is a conventional and commonly used microorganism
in the dairy products and it is increasingly studied in
recombinant biotechnology as a safe. Efficient to produce
exogenous proteins, this microorganism is already one of
the most consumed by humans. In this study, we showed
that the recombinant strain of Hsp65-producing L. lactis
NCDO2118 prevented different models of arthritis by inducing
different regulatory mechanisms. Human arthritis also presents
a multitude of pathogenic processes and demands different and
diverse therapeutic approaches.

Our results demonstrated that Hsp65-producing L. lactis can
boost tolerogenic mechanisms triggered by the oral contact
with a highly immunogenic antigen. It was able to prevent
pathogenic inflammatory events without the need of immune
suppression. Hsp65-producing L. lactis in the present format is
still not suitable for human use because of the antibiotic resistant

gene and the requirement for xylose for Hsp65 induction.
However, novel recombinant technologies that makes possible
the expression of exogenous proteins in probiotics used for dairy
products without the use of antibiotics and exogenous inducing
agents are available (62–66). A version of Hsp65-producing
L. lactis with such features would be suitable for clinical studies.
For its ubiquity, Hsp65 is a safe protein for human consumption
and our data support the idea that Hsp65-lac can be a useful
and safe therapeutic approach to regulate inflammatory process
of different origins.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The animal study was reviewed and approved by Comitê de Ética
no Uso de Animais – UFMG.

AUTHOR CONTRIBUTIONS

GG-S performed the experiments, analyzed the results, and
wrote the manuscript. SA performed the experiments to test
the role of LAP+ cells and TLR2 signaling. MM helped
with all flow cytometry analysis, helped the discussion, and
the writing of the manuscript. MG helped with the mBSA-
induced arthritis experiments. JA performed the microbiota
analysis. AV supervised the microbiota analysis. AM constructed
the recombinant L. lactis. VA supervised the construction of
the recombinant L. lactis. RO co-supervised the experiments,
discussed the results, and helped writing the manuscript. AF
designed the study, supervised the experiments, discussed the
results, and wrote the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This study was financially supported by grants from FAPEMIG
(Fundação de Amparo à Pesquisa do Estado de Minas Gerais,
APQ 00704-14, RED-00140-16), CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico – 308456/2016-5),
and PRPq-UFMG (Pró-Reitoria de Pesquisa-UFMG), Brazil.
Some of the authors are recipients of research fellowships (AF,
RO, and VA) and scholarships (GG-S, SA, MM, and JA) from
CNPq and scholarships from CAPES (MG), Brazil.

ACKNOWLEDGMENTS

We would like to thank Ilda Marçal and Hermes dos Reis
for their excellent work at the experimental animal facility.

Frontiers in Immunology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 562905171

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-562905 September 20, 2020 Time: 11:10 # 13

Gusmao-Silva et al. Hsp65-Producing Lactococcus lactis Prevents Arthritis

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.562905/full#supplementary-material

FIGURE S1 | Strategy for flow cytometry analysis of cytokine-producing cells from
BALB/c mice with collagen-induced arthritis (CIA). Cells were harvested from
spleens of BALB/c mice treated with XM17 broth (C), L.lactis-EP (EP) or HSP-Lac
(HSP) for four days and immunized 10 days later with CII + OVA + CFA for CIA
induction. IFN-γ-producing (G) and TNF-α-producing (H) CD4+ T cells in spleens
of mice at days 42 and 95 of disease development were evaluated by intra-cellular
staining of the cytokines and analysis by flow cytometry. Gate strategy used to
analyze cytokine-producing CD4 + T cells is shown.

FIGURE S2 | Histological, clinical and antibody analysis of in BALB/c
mice with collagen-induced arthritis (CIA) treated with HSP65-producing L.lactis.
Representative histological sections as it was used for score determination (A).
Upper row shows intense (1) hyperplasia (pannus), (2) bonne erosion and (3)
inflammatory infiltrate. Lower row shows a moderate degree of these same
pathological events. For histological scoring purposes, intense events scored 2,
moderate 1 and absent, 0. (B) Volume of hind paw taken with a plethysmometer.

(C) Serum anti-OVA IgG1 measured by ELISA. (D) Hind paw swelling during
chronic arthritis (CIA) development measured by a plethysmometer. (E) Anti-OVA
IgG1 of BALB/c mice at days 40 and 60 0f chronic arthritis (CIA) development.
Values represent the mean ± SEM. ∗p < 0.05 compared to control C group.
∗∗p < 0.005 compared to control C group.
∗∗∗p < 0.0005.

FIGURE S3 | Effector CD4+ T cells in mice with either chronic arthritis (CIA) or
acute arthritis (mBSA-induced) treated with HSP65-producing L.lactis. Activation
of naive CD4+ T cell into effector cell was analyzed by measuring the frequency of
CD4+CD44+CD62L-cells in spleen (A) of BALB/c with CIA at days 42 and 95
after disease induction using flow cytometry. BALB/c mice were fed either XM17
broth only (C group), L. lactis-EP (EP group) or Hsp65-Lac (HSP group) for four
days and immunized for arthritis (CIA) induction 10 days thereafter. Frequencies of
spleen (B) and mesenteric lymph nodes (C) activated CD4+CD44+CD62L-cells
of C57BL/6 mice with mBSA-induced arthritis were also analyzed by flow
cytometry. C57BL/6 mice were fed either XM17 broth only (C group), L. lactis-EP
(EP group) or Hsp65-Lac (HSP group) for four days. Ten days afterward, arthritis
was induced by a subcutaneous immunization with mBSA in CFA. Two weeks
later, mice were injected with mBSA directly into the knee and 24 h after they were
euthanized. Graphs show the frequency of CD4-gated CD44+CD62L-cells.
Values represent the mean ± SEM. ∗p < 0.05 compared to control C group.
∗∗p < 0.005 compared to control C group. ∗∗∗p < 0.0005.
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Obesity induces gut leakage and elevates serum lipopolysaccharide (LPS), a major cell
wall component of Gram-negative bacteria, through gut translocation. Because Candida
albicans is prominent in human gut but not in mouse, C. albicans, a source of (1→3)-β-
D-glucan (BG) in gut contents, was administered in high-fat diet (HFD)–induced obese
mice at 1 week before sepsis induction by cecal ligation and puncture (CLP). As such,
sepsis in Candida-administered obese mice was more severe than obese mice without
Candida as determined by mortality, organ injury (liver and kidney), serum cytokines,
gut leakage, endotoxemia, serum BG, and fecal Gram-negative bacteria (microbiome
analysis). Mice subjected to CLP and fed a HFD, but not treated with Candida
demonstrated a similar mortality to non-obese mice with more severe gut leakage and
higher serum cytokines. In vitro experiments demonstrated that LPS plus BG (LPS + BG)
induced higher supernatant cytokines from hepatocytes (HepG2) and macrophages
(RAW264.7), compared with the activation by each molecule alone, and were amplified
by palmitic acid, a representative saturated fatty acid. The energy production capacity of
HepG2 cells was also decreased by LPS + BG compared with LPS alone as evaluated
by extracellular flux analysis. However, Lactobacillus rhamnosus L34 (L34) improved
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sepsis, regardless of Candida administration, through the attenuation of gut leakage
and gut dysbiosis. In conclusion, an impact of gut Candida was demonstrated by
Candida pretreatment in obese mice that worsened sepsis through (1) gut dysbiosis–
induced gut leakage and (2) amplified systemic inflammation due to LPS, BG, and
saturated fatty acid.

Keywords: intestinal Candida, obesity, high-fat diet, probiotics, cecal ligation and puncture, dysbiosis, gut
leakage

INTRODUCTION

Both sepsis, a syndrome of imbalance immune responses to
pathogens, and obesity are major healthcare problems worldwide
(1–4). Whereas obesity induces several chronic conditions such
as diabetes, dyslipidemia, and cardiovascular disease (5), sepsis
is a major cause of death in critically ill patients, mostly with
chronic underlying diseases (3). Indeed, obesity is categorized
as a sepsis comorbidity and an independent risk factor for
death of patients in the intensive care unit (6, 7), at least in
part, due to the enhanced inflammation caused by adipocytes
and immune cells (8, 9). In addition, obesity and high-fat
diet (HFD) cause gut dysbiosis, an alteration of bacteria and
fungi in gut (10), that induces gut-permeability defect (gut
leakage) leading to spontaneous endotoxemia (11). The impact
of obesity on sepsis remains a controversy as obesity worsens
sepsis severity through the induction of several metabolic
abnormalities but beneficially restores energy preserve in the
moribund stage of sepsis (12, 13). However, endotoxemia
increased systemic inflammation and enhanced sepsis severity
(14). Although endotoxemia from obesity implies the importance
of intestinal Gram-negative bacteria as a source of intestinal
endotoxin (lipopolysaccharide; LPS), the impact of Candida
albicans which is the second most predominant gut organism
(15) on obesity is still not clear. On the contrary, the impact
of intestinal C. albicans in other models has been mentioned.
For example, increased abundance of C. albicans in alcohol
ingestion model and in patients enhances liver cirrhosis through
direct activation of intestinal (1→3)-β-D-glucan (BG) which is
a major component of fungal cell wall against hepatocytes (16–
18). In addition, intestinal C. albicans is a source of BG in
gut contents. In addition, BG from gut translocation amplifies
the inflammatory property of LPS through the synergy of
Dectin-1 and Toll-like receptor (TLR)-4 which are receptors of
BG and LPS, respectively, in sepsis and several inflammatory
models (19–24).

Interestingly, HFD also increases the abundance of Candida
spp. in mouse feces, but the abundance of fecal fungi in mouse
feces is not high enough to be detectable by culture (10).
Indeed, C. albicans in mouse intestine are lesser than human
intestine (25) as fungi in human stool are easily detectable
by culture in comparison with mouse feces (26). Hence, oral
administration of C. albicans is necessary to increase mouse
fecal fungi. Mouse models with fecal C. albicans more closely
resemble human conditions, at least in part, because of the
interaction between gut organisms (gut dysbiosis) (27). As such,
C. albicans induce gut dysbiosis in sepsis (28) and sepsis with

obesity (29, 30) that might be associated with gut leakage (31). In
addition, gut leakage in obesity (11), and sepsis (14) is attenuated
by probiotics (32–36), including Lactobacillus spp. that could
interfere with Candida growth (37). Moreover, Lactobacillus
spp. attenuated gut dysbiosis in several animal models (27, 38).
Hence, an obesity mouse model was performed with C. albicans
pretreatment before cecal ligation and puncture (CLP) sepsis
with an evaluation on a probiotic. Understanding the influence
of gut fungi in sepsis with obesity might be beneficial in
sepsis treatment.

MATERIALS AND METHODS

Animals and Animal Model
The animal care and use protocol prepared according to the
US National Institutes of Health standards was approved by the
Institutional Animal Care and Use Committee of the Faculty of
Medicine, Chulalongkorn University, Bangkok, Thailand (SST
04/2561). Male, 8-week-old C57BL/6 mice were purchased from
the National Laboratory Animal Center, Nakhorn Pathom,
Thailand. Mice in the regular diet group received standard
laboratory chow containing fat (4.5% w/w), with energy content
calculated at 3.04 kcal/g (Mouse Feed Food No. 082; C.P.
Company, Bangkok, Thailand). Mice in the obese group were fed
for 5 months with HFD containing fat, mostly from lard (60%
w/w), with energy content calculated at 8.64 kcal/g following
a publication (39). Schema of the experiments is demonstrated
in Figure 1. At 3 months of the experiment, Lactobacillus
rhamnosus L34 (L34) (38) at 1 × 109 colony-forming units
(CFU) in 0.5 ml phosphate buffer solution (PBS) or PBS
alone were administered daily for 2 months before Candida
administration. At 1 week before sepsis induction, C. albicans
from American Type Culture Collection (ATCC90028; Fisher
Scientific, Waltham, MA, United States) at 1 × 106 CFU in
0.5 ml PBS or PBS alone were orally administered every 2 days
to induce Candida in gut. At 24 h from the last dose of
Candida or PBS, CLP or sham was performed following a
publication with 10-mm cecal ligation and a 21-gage needle
under isoflurane anesthesia (21). Fentanyl, 0.03 mg/kg in
0.5 ml of normal saline solution (NSS), was subcutaneously
administered at post-operation and at 6 h later. Mice were
sacrificed at 24 h post-surgery under isoflurane anesthesia
with blood and organ collection. Ascending colon 1 cm from
colon–cecal junction was snap frozen in liquid nitrogen and
kept at -80◦C before use. Feces from all parts of colon
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were combined and collected for microbiome analysis and
fecal fungal burdens.

Mouse Blood Sample Analysis and Gut
Leakage Measurement
Several obesity parameters were determined after fasting for
12 h with free access to drinking water. Fasting glucose and
triglyceride were measured by glucose colorimetric assay
(Cayman Chemical, Ann Arbor, MI, United States) and
triglyceride quantification kit (Sigma-Aldrich, St. Louis, MO,
United States), respectively. The lipid profile was evaluated using
assays of total cholesterol quantitation (Sigma-Aldrich), low-
density lipoprotein cholesterol (LDL; Crystal Chem, Downners
Grove, IL, United States), and high-density lipoprotein

cholesterol (HDL; Crystal Chem). Renal injury and liver damage
were determined by QuantiChrom Creatinine Assay (DICT-500;
Bioassay, Hayward, CA, United States) and EnzyChrom Alanine
Transaminase assay (EALT-100; BioAssay), respectively. Serum
cytokine levels were determined by ELISA for mouse cytokines
[tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10]
(Invitrogen, Carlsbad, CA, United States). Gut leakage was
determined by detection of fluorescein isothiocyanate (FITC)–
dextran, a non-absorbable high molecular weight molecule,
in serum after oral administration as mentioned in previous
publications (40). Serum BG was determined by Fungitell
(Associates of Cape Cod, East Falmouth, MA, United States)
and serum endotoxin (LPS) was measured by HEK-Blue LPS
Detection (InvivoGen, San Diego, CA, United States). When
values of BG and LPS at <7.8 and at <0.01 EU/ml, respectively,

FIGURE 1 | Schema of the experimental design is demonstrated.

FIGURE 2 | Characteristics of mice fed with a regular diet and a high-fat diet (HFD) as demonstrated by body weight, peri-renal fat weight, liver weight, and liver
histology score (A; n = 7–8/time point and n = 6–8/group) with representative pictures of peri-renal fat and H&E-stained liver histology (B) together with metabolic
parameters (C; n = 6–8/group) are demonstrated. *p < 0.05; **p < 0.01.
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were beyond the lower range of the standard curve, data
were recorded as 0.

Liver Histology, Intestinal Cytokines,
Fecal Fungal Burden, and Fecal pH
Paraffin-embedded liver sections (4 µm thick) stained by H&E
from 10% formalin-fixed samples were evaluated with a scoring
system of obesity-induced liver damage as the following: steatosis
(0–3), lobular inflammation (0–3), and hepatocellular ballooning
degeneration (0–2) (41). For intestinal cytokine detection,
intestinal tissues were weighed, cut, thoroughly sonicated (15 s
with pulse off 5 s for 5 times; High Intensity Ultrasonic
Processor, Newtown, CT, United States) in 500 µl of ice-
cold PBS containing protease inhibitor Cocktail (I3786; Sigma-
Aldrich) and measured cytokines from the supernatant by ELISA
(Invitrogen). For analysis of fungal burdens in feces, feces
were suspended with PBS at a ratio of 100 µg per 1 µl and
serially diluted before plating onto 0.1% chloramphenicol in

Sabouraud Dextrose Agar (SDA; Thermo Scientific, Waltham,
MA, United States) and aerobically incubated at 35◦C for 72 h
before colony enumeration. For fecal pH evaluation, 1 g of feces
was thoroughly mixed with 2 ml of water before centrifugation
at 4000 rpm for 3 min. Then, the pH of the supernatant
was measured by a pH meter (Orion’4 star, pH Conductivity
Benchtop; Thermo Scientific).

Fecal Microbiome Analysis
Feces from nine mice (0.25 g per mouse) from different cages
in each experimental group were divided into three samples per
group (three mice per sample) before performing microbiota
analysis. Total DNA from feces was extracted by GenUP
gDNA extraction kit (Biotechrabbit, Germany) followed by
16S rDNA amplification for next-generation sequencing (NGS)
with Illumina platform as previously published (42). For data
analysis, the raw data were de-multiplexed by miSeq reporter
software (version 2.6.2.3). Paired-end FASTQ sequences were

FIGURE 3 | Characteristics of mice fed a regular diet or a high-fat diet (HFD) with sham or cecal ligation and puncture (CLP) surgery as determined by survival
analysis (A), kidney and liver injury (B,C), serum cytokines (D–F), gut leakage by FITC–dextran (G), endotoxemia (H), and serum (1→3)-β-D-glucan (I; n = 6–8/group
for B–I) are demonstrated. *p < 0.05; #p < 0.05; ##p < 0.001.
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then analyzed with QIIME2 pipeline (version 2018.8) (43). After
that, joined reads were de-duplicated and clustered with 97%
similarity by VSEARCH (44). Chimeric sequences were filtered

out by UCHIME algorithm (45). The filtered reads were classified
based on 99% operational taxonomic units (OTUs) clustered 16S
Greengene database (2013.8) (46) using vsearch algorithm.

FIGURE 4 | Gut microbiota analysis from feces of mice fed with a regular diet or a high-fat diet (HFD) with sham or cecal ligation and puncture (CLP) surgery by
relative abundance of bacterial diversity at phylum (A) and at genus (B) with the better visualization (C–J) and abundance of total Gram-negative bacteria determined
from phylum (K) are demonstrated. *p < 0.05; #p < 0.05.
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Hepatocyte Cell-Line Experiments
HepG2, a human hepatoma cell line (ATCC HB-8065; Fisher
Scientific), was maintained in Dulbecco’s Modified Eagle
Medium (DMEM) with 10% fetal bovine serum (FBS), 1%
penicillin/streptomycin antibiotics, and 1% sodium pyruvate
in a humidified atmosphere of 5% CO2 at 37◦C. HepG2 at
2× 105 cells/ml in a 96-well plate were incubated with or without
0.5 mM of palmitic acid (PA; Sigma-Aldrich), a saturated free
fatty acid, in DMEM at 37◦C for 48 h before further incubation
with purified LPS (1 µg/ml) from Escherichia coli 026:B6
(Sigma-Aldrich) alone or in combination with CM-Pachyman
(100 µg/ml; Megazyme, Bray, Ireland) as a representative of
BG. After PA incubation for 24 h, intracellular lipid was
determined by 0.3% Oil Red O solution (Sigma-Aldrich) and
evaluated by Image J (NIH, Bethesda, MD, United States) in
10 randomized fields from each well as previously mentioned
(47). Supernatant cytokine were determined using ELISA for
human cytokines (TNF-α, IL-8, and IL-10; R&D Systems,
Minneapolis, MN, United States). In addition, a neutral soluble
glucan, a competitive Dectin-1 binding agent (at 150 µg/ml;
InvivoGen), was incubated simultaneously with BG as a
Dectin-1 inhibitor to explore the impact of Dectin-1, a BG
receptor, on hepatocytes. Moreover, energy metabolism profiles
of hepatocytes activated by PA simultaneously with LPS or
with LPS + BG with glycolysis estimation through extracellular
acidification rate and mitochondrial oxidative phosphorylation
by oxygen consumption rate were performed using Seahorse XFp
Analyzers (Agilent, Santa Clara, CA, United States) upon HepG2
at 1× 104 cells/well (47, 48).

Macrophage Cell-Line Experiments
RAW264.7, a mouse macrophage cell line, at 1 × 105 cells
per well was incubated with 0.2 mM PA (Sigma-Aldrich) alone
or in combination with LPS (1 µg/ml; Sigma-Aldrich) or BG,
CM-Pachyman (100 µg/ml; Megazyme), or LPS + BG, similar
to hepatocyte experiments, for 6 h before determination of
Oil Red O staining. In parallel, supernatant cytokines were
measured by ELISA for mouse cytokines (TNF-α, IL-6, and IL-
10; Invitrogen). In addition, a Dectin-1 inhibitor (150 µg/ml;
InvivoGen) was incubated with BG to explore the impact of
Dectin-1 in macrophages.

Statistical Analysis
Mean ± SE was used for data presentation. The differences
between groups were examined for statistical significance by one-
way ANOVA followed by Tukey’s analysis or Student’s t-test
for comparisons of multiple groups or two groups, respectively.
Survival analysis was performed by log-rank test. All statistical
analyses were performed with SPSS 11.5 software (SPSS, IL,
United States) and GraphPad Prism version 7.0 software (La
Jolla, CA, United States). A p value of < 0.05 was considered
statistically significant.

RESULTS

As expected, HFD-induced obesity in mice led to increased body
weight, peri-renal fat, liver weight, fatty liver score, fasting blood
glucose, and altered lipid profiles (Figure 2).

Sepsis Severity of Obese Mice With and
Without Candida Administration, an
Impact of Gut-Permeability Defect and
Gut Dysbiosis
In mice subjected to CLP and fed a HFD, but not treated
with Candida, sepsis were more severe than regular diet mice
as determined by survival, organ injury (serum creatinine
and alanine transaminase), serum cytokines (TNF-α and IL-
6), gut leakage by FITC–dextran and endotoxemia, but not
serum BG (Figures 3A–I). In mice that were not subjected to
CLP, there were slightly elevated serum endotoxin (Figure 3H)
along with gut dysbiosis in HFD mice compared with
regular diet mice as demonstrated by fecal total Gram-
negative bacteria (Proteobacteria in Halomonas spp.) and
reduced Ruminococcaceae, beneficial cellulolytic Gram-positive
anaerobes (49) (Figure 4). Mice in the HFD-CLP group that
were not treated with Candida demonstrated lower total fecal
Gram-negative bacteria (Desulfovibrionaceae, Bacteroides) with
higher Firmicutes, beneficial Gram-positive anaerobes, and
Clostridiales family, a group of bacteria including mucosal
invasive Clostridium spp. (50), in comparison with mice in the
regular diet–CLP group (Figure 4). On the other hand, Candida
administration did not induce diarrhea (data not shown) and

FIGURE 5 | Characteristics of mice fed with a regular diet or a high-fat diet (HFD) treated with phosphate buffer solution (PBS) or Candida at 5th month of the
experiments as determined by body weight (A), fasting glucose and total cholesterol in blood (B,C; n = 6–8/group) are demonstrated. #p < 0.05.
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did not alter obesity parameters (Figure 5), but it enhanced CLP
mortality in both regular diet and HFD mice (Figure 6A).

In addition, mice in the HFD-CLP group treated with
Candida exhibited more severe sepsis as determined by increased
mortality, liver injury, serum cytokines, colon inflammation, gut

leakage, endotoxemia, and glucanemia, but not serum creatinine
when compared with mice in the HFD-CLP group that were
not treated with Candida (Figures 6A–L). In mice fed a HFD
but not subjected to CLP, Candida did not worsen obesity-
induced liver injury, gut leakage, and serum cytokines, but

FIGURE 6 | Characteristics of mice fed a regular diet that subjected to sham surgery and mice fed a high-fat diet (HFD) treated with phosphate buffer solution (PBS)
or Candida that were subjected to sham or cecal ligation and puncture (CLP) as determined by survival analysis (A), kidney and liver injury (B,C), serum cytokines
(D–F), colon cytokine (G–I), gut leakage by FITC–dextran (J), endotoxemia (K), and serum (1→3)-β-D-glucan (L; n = 6–8/group) are demonstrated. *p < 0.05;
**p < 0.001; #p < 0.05; ##p < 0.001.
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FIGURE 7 | Gut microbiota analysis from feces of mice fed a regular diet that were subjected to sham surgery and mice fed a high-fat diet (HFD) treated with
phosphate buffer solution (PBS) or Candida that were subjected to sham or cecal ligation and puncture (CLP) by relative abundance of bacterial diversity at phylum
(A) and at genus (B) with the better visualization (C–J) and abundance of total Gram-negative bacteria determined from phylum (K) are demonstrated. *p < 0.05;
#p < 0.05.
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FIGURE 8 | Intracellular lipid accumulation by Oil Red O staining with representative pictures and supernatant cytokines in HepG2 cells (hepatocytes) after activation
by palmitic acid (PA), a representative saturated fatty acid, or media control (A,B), supernatant cytokines from PA-activated hepatocytes with endotoxin (LPS),
(1→3)-β-D-glucan (BG), or LPS plus BG (LPS + BG; C–E), supernatant cytokines with or without Dectin-1 inhibitor (F–H), and extracellular flux analysis pattern at
48 h of several activations (I,J) are demonstrated. 2-DG, 2-Deoxy-D-glucose; FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (independent triplicate
experiments were performed). *p < 0.05; **p < 0.01; #p < 0.05.
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it did activate local inflammation (colon TNF-α and IL-6;
Figures 6C–H) without diarrhea when compared with mice in
the HFD group that were not treated with Candida. This implies

healthy mucosal barriers in non-CLP mice. Without sepsis, there
were non-different fecal total Gram-negative bacteria (increased
Bacteroides but decreased Halomonas spp.; Figure 7) and gut

FIGURE 9 | Characteristics of RAW264.7 cells (macrophages) after 6-h incubation of palmitic acid (PA), a representative saturated fatty acid, or media control
together with endotoxin (LPS), (1→3)-β-D-glucan (BG), or LPS plus BG (LPS + BG) as determined by intracellular lipid accumulation by Oil Red O staining with
representative pictures (A), supernatant cytokines (B–D), and supernatant cytokines with or without Dectin-1 inhibitor (E–G) are demonstrated (independent
triplicate experiments were performed). *p < 0.05; #p < 0.05.
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leakage (Figure 6I) when comparing between HFD mice with
versus without Candida.

Of note, mice fed a HFD but not subjected to CLP-induced
dysbiosis were demonstrated by increased total fecal Gram-
negative bacteria (Proteobacteria and Halomonas spp.) with
reduced beneficial Gram-positive anaerobes (Ruminococcaceae)
when compared with mice in the regular diet group that
were not treated with Candida (Figure 7). Mice in the HFD-
CLP group treated with Candida demonstrated no change in
total Gram-negative bacteria with increased Enterobacteriaceae,
pathogenic Gram-negative aerobes (51, 52) in comparison with
mice in the HFD-CLP group that were not treated with Candida
(Figure 7). Only slight alterations in bacterial diversity were
demonstrated between HFD versus regular diet with CLP (non-
Candida) and between HFD with versus without Candida
(Supplementary Figures 1A–F).

Additive Effect Between Endotoxin and
(1→3)-β-D-Glucan Toward Hepatocytes
and Macrophages
To provide mechanistic data for the previously described
phenomena, we studied the interactions of LPS, BG, and
PA on inflammation (53, 54) and mitochondrial function in
hepatocytes (HepG2) and macrophages (RAW264.7 cells) (31).
As such, PA, a representative saturated fatty acid, induced
lipid accumulation, mild cytokine production, and amplified
cytokine responses in HepG2 cells after stimulation with LPS
plus BG (LPS + BG; Figures 8A–E). Supernatant cytokines
of LPS + BG activated hepatocytes were suppressed by
Dectin-1 inhibitor (Figures 8F–H) implying Dectin-1-dependent
signaling. Although BG activation with or without PA induced
only mild cytokine responses, BG was an effective adjuvant for
LPS stimulation as LPS + BG induced higher cytokine production
compared with LPS alone (Figures 8C–E). In addition, the
separated activation by LPS, BG, or PA in HepG2 cells showed
a tendency of reduced mitochondrial respiration compared
with media control, but it did not reach a significant level
(Figures 8I,J). Meanwhile, LPS + BG significantly reduced
glycolysis capacity (glycolysis activity during mitochondrial
cessation) and respiratory capacity (mitochondria activity during
glycolysis blocking) compared with media control (Figures 8I,J).
However, an addition of PA into LPS + BG could not

alter hepatocyte energy metabolism when compared with
LPS + BG (Figures 8I,J). In macrophages, PA enhanced lipid
accumulation and increased supernatant cytokines of LPS or
LPS + BG activation when compared with the conditions
without PA (Figures 9A–D). The activation by PA + LPS + BG
in macrophages demonstrated the most prominent cytokine
responses (Figures 9A–D). Furthermore, Dectin-1 inhibitor
reduced macrophage responses against LPS + BG (Figures 9E–
G). These data support the possible systemic inflammatory effect
of LPS and BG from gut translocation against both hepatocytes
and macrophages.

Probiotic Attenuates Sepsis Severity in
Obese Mice, Regardless of Candida
Administration
Although L34 neither induced diarrhea (data not shown) nor
improved obesity complications (Figure 10), L34 attenuated
CLP severity in HFD mice regardless of Candida administration
as determined by survival, organ injury, serum cytokines,
colon inflammation, gut leakage, and fecal fungal burdens
(Figures 11A–L) partly through amelioration of gut dysbiosis.
Accordingly, in mice fed a HFD-Candida but not subjected
to CLP, L34 reduced fecal fungal burdens (Figure 11M)
and increased Ruminococcaceae bacteria, a beneficial short-
chain fatty acid–producing bacterial group (55, 56), without
an effect on total fecal Gram-negative bacteria (Figure 12).
In the HFD-CLP group that were not treated with Candida,
L34 reduced total Gram-negative bacteria in feces, especially
Proteobacteria in Halomonas spp. (Figure 13). On the other
hand, L34 reduced fecal fungi and Enterobacteriaceae bacteria,
pathogenic Gram-negative aerobe, without an effect on total
fecal Gram-negative bacteria in the HFD-CLP group treated
with Candida (Figure 13). However, L34 did not alter bacterial
diversity index (Supplementary Figures 1G–L). Of note, the
rarefaction curves are demonstrated in the microbiome analysis
data (Supplementary Figure 1M).

DISCUSSION

Because C. albicans in mouse feces are detectable only
by PCR (10), but not by culture (25) and differs from

FIGURE 10 | Characteristics of mice fed a high-fat diet (HFD) treated with phosphate buffer solution (PBS) or Candida with or without Lactobacillus rhamnosus L34
(L34) at 5th month of the experiments (before cecal ligation and puncture operation) as determined by body weight (A), fasting glucose and total cholesterol in blood
(B,C; n = 6–8/group) are demonstrated.
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FIGURE 11 | Characteristics of mice fed a high-fat diet (HFD) treated with phosphate buffer solution (PBS) or Candida with or without Lactobacillus rhamnosus L34
(L34) that were subjected to sham or cecal ligation and puncture (CLP) surgery as determined by survival analysis (A), kidney and liver injury (B,C), serum cytokines
(D–F), gut leakage by FITC–dextran (G), endotoxemia (H), serum (1→3)-β-D-glucan (I), cytokines from ascending colon (J–L), fecal fungal burdens and fecal pH (M,
N; n = 6–8/group for B–N) are demonstrated. #p < 0.05.

the human condition (26), the influence of C. albicans is
evaluated through C. albicans administration. Here, Candida
pretreatment in obese mice worsened sepsis through enhanced

systemic inflammation induced by LPS and BG from gut
translocation which implies the importance of gut fungi toward
sepsis in obesity.
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FIGURE 12 | Gut microbiota analysis from feces of mice fed a high-fat diet (HFD) treated with phosphate buffer solution (PBS) or Candida with or without
Lactobacillus rhamnosus L34 (L34) that were subjected to sham or cecal ligation and puncture (CLP) surgery by relative abundance of bacterial diversity at phylum
(A) and at genus (B) with better visualization (C–J) and abundance of total Gram-negative bacteria determined from phylum (K) are demonstrated. *p < 0.05.
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FIGURE 13 | Gut microbiota analysis from feces of mice fed a high-fat diet (HFD) treated with phosphate buffer solution (PBS) or Candida with or without
Lactobacillus rhamnosus L34 (L34) that were subjected to cecal ligation and puncture (CLP) surgery by relative abundance of bacterial diversity at phylum (A) and at
genus (B) with the better visualization (C–J) and abundance of total Gram-negative bacteria determined from phylum (K) are demonstrated. *p < 0.05; #p < 0.05.
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Impact on Gut Leakage and Gut
Dysbiosis of Candida in Sepsis-Obese
Mice
Endotoxemia (57) in obesity (without sepsis) as a result of HFD
increased fecal Gram-negative bacteria (58, 59) that is enhanced
by sepsis-induced gut leakage has been previously mentioned
(60–62). Here, several patterns of bacterial dysbiosis in obese
mice in comparison with regular-diet mice were demonstrated
including (1) increased total Gram-negative bacteria in mice fed
a HFD without Candida and not subjected to CLP (Figure 4K),
(2) increased Bacteroides, Gram-negative anaerobes in several
pathogenic conditions (63), in mice fed a HFD-Candida but
not subjected to CLP (Figure 7E), (3) increased pathogenic
bacteria (Clostridiales) in HFD-CLP mice that were not treated
with Candida (Figure 4F), and (4) increased mucosal-invasive
pathogenic bacteria, Enterobacteriaceae (49, 52, 64), in HFD-
CLP mice treated with Candida. In addition, CLP also increased

Candida burdens in feces compared with CLP non-Candida
and supported the impact of mucosal-immunity defect in sepsis
(17, 65–67). Although Candida gavage in healthy mice did not
increase fecal fungi, gut Candida induced local gut inflammation
without gut leakage. Hence, intestinal Candida could enhance
gut leakage in obese-sepsis mice from both direct Candida
mucosal damage and indirect injury through Candida-induced
bacterial gut dysbiosis.

Enhanced Inflammatory Responses of
Candida in Sepsis-Obese Mice and Role
of Saturated Fatty Acid
During gut leakage, intestinal Candida increases BG in gut
contents that could be delivered to the liver and lymphatic
system (31). In hepatocytes, an additive inflammatory effect of
LPS was amplified by BG through the activation on Dectin-1,
a receptor for BG, as the amplification was neutralized by a

FIGURE 14 | The proposed hypothesis demonstrates gut leakage in mice fed a high-fat diet (HFD) treated with Candida is more severe than mice fed a HFD that
were not treated with Candida due to prominent gut translocation of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), a major cell wall component of
Gram-negative bacteria and Candida, respectively, that are delivered to liver and systemic circulation (31). Additive effect of LPS with BG (LPS + BG) on hepatocytes
and macrophages is amplified by palmitic acid (PA), a pro-inflammatory saturated fatty acid, resulting in higher inflammatory status that enhances sepsis severity.
Meanwhile, Lactobacilli spp. attenuate gut dysbiosis, gut leakage, systemic inflammation, and sepsis severity (dotted line is gut translocation of LPS and BG).
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Dectin-1 inhibitor. In addition, LPS + BG, but not in separation,
reduced the capacity of glycolysis and mitochondria function
in hepatocytes which might be associated with a significant
hepatocyte injury (68, 69). It is interesting to note that the
property of LPS and BG from different organisms might be
different. This includes the quantity of lipid A, an LPS conserved
lipid region with the pro-inflammatory property (70, 71) and
BG molecular size (72). Here, LPS and BG from E. coli
and Pachyman, respectively, were used as proof-of-concept
experiments which might be different from other representative
molecules. There has been a previous report that LPS E. coli K12
significantly reduce mitochondrial function in HEPG2 cells (73).
Meanwhile, LPS E. coli 026:B6 in our experiments showed only a
tendency of reduction. Despite this limitation, LPS + BG altered
cytokine responses and cell energy metabolism in hepatocytes
enhanced by saturated fatty acid. This supports HFD-induced
metabolic pro-inflammation (53, 54, 74). Saturated fatty acid
alone did not alter cell energy metabolism of hepatocytes.
Moreover, additive effects of BG on LPS that are enhanced by
saturated fatty acids have been also observed in macrophages
in the current study and in other publications (22–24, 75).
However, extracellular flux analysis in macrophages was not
performed here due to well-known LPS-enhanced glycolysis
(76). Our data support that saturated fatty acids, which are
absorbed through portal vein (77), enhances LPS activity in
hepatocytes and macrophages (53, 54) and induced cytokine
production (78). This suggests the inflammatory aggravating
property of dietary saturated fatty acids on LPS + BG in
sepsis with obesity.

Probiotic Treatment in Sepsis, the
Attenuation of Gut Dysbiosis, and Gut
Leakage
Administration of L34 attenuated sepsis severity in obese mice
with and without Candida, at least in part, through the reduced
severity of gut leakage and gut dysbiosis. Here, several patterns
of the attenuation of gut dysbiosis by L34 were demonstrated
including (1) increased Ruminococcaceae which is a beneficial
butyrate (short-chain fatty acid)–producing bacterial group (55,
56), in mice fed a HFD without Candida but not subjected to
CLP; (2) reduced fecal Gram-negative bacteria which are a source
of LPS in gut contents in HFD-CLP mice that were not treated
with Candida; and (3) reduced pathogenic Enterobacteriaceae
(79) and fungi in HFD-CLP mice treated with Candida. In
translation, manipulation of gut leakage and/or fungal burdens
by probiotics should be one interesting strategy against sepsis in
obesity. However, several limitations on the similarity to patient
obesity should be mentioned: (1) ingestion of 60% saturated
fat diet is higher than most of the regular diets in human
(80), (2) oral gavage also induced stress that might different
from obesity in patients (81, 82), and (3) the dose of probiotics
that is equivalent to human weight is 2 × 1012 CFU/dose that
possibly induces some adverse effects (83). More studies in
patients are warranted.

In conclusion, obesity and Candida administration enhanced
sepsis severity through gut dysbiosis–induced gut leakage

and saturated fatty acid–amplified pathogen-associated
molecules induced inflammation which could be attenuated
by probiotics (Figure 14).
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Recent studies have shown that a number of common autoimmune diseases have
perturbations of their intestinal microbiome (dysbiosis). These include: Celiac Disease
(CeD), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Sjogren’s Syndrome (SS), and
Type 1 diabetes (T1D). All of these have intestinal microbiomes that are different from
healthy controls. There have been numerous studies using animal models of single
probiotics (monoclonal) or mixtures of probiotics (polyclonal) and even complete
microbiota transfer (fecal microbial transfer-FMT) to inhibit or delay the onset of
autoimmune diseases such as the aforementioned common ones. However,
proportionally, fewer clinical trials have utilized monoclonal therapies or FMT than
polyclonal therapies for treating autoimmune diseases, even though bacterial mono-
therapies do inhibit the development of autoimmune diseases and/or delay the onset of
autoimmune diseases in rodent models of those autoimmune diseases. In this review
then, we review the previously completed and currently ongoing clinical trials that are
testing bacterial therapies (FMT, monoclonal, and polyclonal) to treat common
autoimmune dseases and discuss the successes in using bacterial monotherapies to
treat rodent models of these common autoimmune diseases.

Keywords: bacterial, monotherapies, autoimmune, microbiome, probiotic, treatment
INTRODUCTION

The definition of autoimmune disease first arose with Dr. Paul Ehrlich, wherein he described the
condition as “horror intoxicus” (1). Currently Medline Plus.gov has the definintion of
autoimmunity as “when the body’s immune system attacks and destroys healthy body tissue by
mistake” (https://medlineplus.gov/ency/article/000816.htm), and the website for the American
Autoimmune Related Diseases Association (AARDA) has over 100 diseases listed as being
autoimmune (https://www.aarda.org/diseaselist/). Many studies have been done where probiotics
have been given to animal models of the less common autoimmune diseases. The most common
autoimmune diseases as listed by Medline Plus.gov are: Addison disease, Celiac Disease,
dermatomyositis, Graves disease, Hashimoto thyroiditis, multiple sclerosis, Myasthenia gravis,
Pernicious anemia, Reactive arthritis, Rheumatoid arthritis, Sjogren syndrome, Systemic lupus
erythematosus, and type 1 diabetes. This review will focus on these common autoimmune diseases,
org October 2020 | Volume 11 | Article 5730791196
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and more specifically, those autoimmune diseases that have had
clinical trials conducted (or are being conducted) to treat
autoimmune patients with bacterial therapies (fecal microbial
transplantation and probiotic) as listed by clinicaltrials.gov. This
therefore excludes Addison disease, dermatomyositis, Graves
disease, Hashimoto Thyroiditis, Myasthenia gravis, Pernicious
anemia, and Systemic Lupus Erythematosus.

The composition of the intestinal microbiome of many
autoimmune diseases, including celiac disease (CeD), multiple
sclerosis (MS), rheumatoid arthritis (RA), Sjogren‘s syndrome
(SS), and type 1 diabetes (T1D) has been characterized
predominantly using 16s rDNA sequencing of stool samples.
Studies have demonstrated that alterations of the fecal intestinal
(colonic) microbiome (dysbiosis) exist in patients that have CeD,
MS, RA, SS, and/or T1D, and that MS patients may have a
uniform decrease in Prevotella (2–14).

One study done with T1D patients demonstrated that there
was also dysbiosis in the small bowel of T1D patients as
compared to controls (15). Additionally, a study with duodenal
biospises of MS patients found dysbiosis in their small intestine
as well (16). In addition, a number of studies found dysbiosis in
the small bowel of CeD patients (6, 7, 17–21). All of these studies
clearly demonstrate that patients with these autoimmune
diseases have dysbiosis in their colonic microbiomes, where the
composition of their fecal microbiome is different from controls
such as first degree relatives or healthy controls. The data for
dysbiosis in the small intestine of CeD is strong, but more
research needs to be done with MS, RA, SS, and T1D.

It has been often assumed microbial therapies work by
normalizing the resident microbiota, and hence, prevent or
treat autoimmune diseases that have associated dysbiosis. How
the change in the composition of the intestinal microbiome due
to microbial therapy would exert changes in the systemic
immune system has been a focus of many rodent model
studies. At least two pathways have been identified. The first is
through Pattern Recognition Receptors (PRRs), such as Toll-Like
Receptors (TLRs), on different cell types that interact with
bacteria in the lumen, and the PRRs would detect and bind to
Microbe Associated Molecular Patterns (MAMPs) expressed by
the bacteria in the intestine (22, 23). Rodent models for MS have
demonstrated a role for TLR2 in controlling and treating disease
(24, 25).

The second pathway would be through the production of
Short Chain Fatty Acids (SCFAs) by the bacteria. The SCFAs
would bind to SCFA receptors expressed by the responsive host
immune cell, resulting in a phenotypic change to being either
regulatory or inflammatory, and deficits in SCFA production
have been identified in multiple sclerosis (5, 26, 27).

However, normality for the human intestinal microbiome is
unclear and varies greatly by geography, diet, and other external
factors (28–31) . Even age affects the composition of the human
intestinal microbiome, such that there are at least four distinct
age groups in which the human intestinal microbiome is different
(infant, pre-adolescent, adult, elderly) (32–35). Genetics play a
crucial role as well, and rodent models have demonstrated that
even the smallest alterations in the genetic background can lead
Frontiers in Immunology | www.frontiersin.org 2197
to changes in the composition of the intestinal microbiome (36–
39). Differences in the composition of the intestinal microbiome
that are due to the effect of age, diet, geography, and host
genetics, could potentially also contribute to different responses
to different bacterial therapies, although the specific differences
as a consequence of these factors, especially age and genetics, in
response to bacterial therapies have not been rigorously
addressed, especially in humans.

Despite the complexity of the effects of probiotic treatment,
the concept of probiotics as being beneficial in helping the
intestine stabilize bacterial content (reach homeostasis) is
currently well known publically. The concept of how much
bacteria and which types of bacteria are needed to achieve
homeostasis is not as well known publically, nor determined in
a truly rigorous scientific manner (Figure 1). The transfer of
complete microbial content, or Fecal Microbial Transplantation
(FMT), interestingly was done as long ago as the fourth century
in China to treat diarrhea, constipation, and abdominal pain
(40). In this type of treatment today, all of the fecal bacteria is
transferred. Currently, the greatest success story of FMT is with
the treatment of patients infected with Clostridium difficile (C.
difficile) (41, 42). Mixes of probiotics, such as in the form of
yogurt, are not a complete mix of the bacteria found in the
digestive tract of humans. And at the opposite spectrum, there
are many studies done with rodents where only one bacteria is
provided to the animal. With autoimmune diseases, FMTs and
probiotics (both mixes and single strains) are being used in
clinical trials for treating patients with autoimmune disease. In
addition, there is a fourth category, that of bioengineered
probiotics/bacteria that secrete proteins to reduce autoimmune
responses. This will be highlighted in the last section on type 1
diabetes, as there is currently an ongoing clinical trial testing
such a product. In order therefore to obtain insight into the
effectiveness of the three main types of intestinal microbial
treatments (complete, restricted mix, and monoclonal) used in
treating autoimmune diseases, this review will systematically
progress through each of the common autoimmune diseases that
have had clinical trials conducted where probiotics (including
FMTs) were given to autoimmune patients to treat their disease
(CeD, MS, RA, SS, and T1D).
AUTOIMMUNE DISEASES

Celiac Disease
There is currently one clinical trial (NCT 04014413) that is
recruiting Celiac patients for conducting FMT. This study is also
determining the efficacy of FMT for a number of other
autoimmune and inflammatory disorders and is still recruiting
patients. No data has been released yet. In contrast, there have
been many randomized, double blind, placebo clinical trials
testing monoclonal and polyclonal bacterial therapies with
Celiac Disease that have been completed and results published,
with at least four (43–46) that are monoclonal and three
polyclonal (47–49), with the earliest results published as far
back as 2013 (46). Bacteria used in the bacterial monotherapies
October 2020 | Volume 11 | Article 573079
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were Bifidobacterium infantis (45, 46), Bifidobacterium breve
(43), and Bifidobacterium longum (44). The rest were mixes of
two or more bacterial strains (47–49). In the clinical trial with B.
breve (43), circulating levels of TNFa present in children on a
GFD were decreased with the administration of B. breve. This
clinical trial was based in part on the following mouse models
(50, 51), wherein B. breve induced regulatory T cells (Tregs) in
mice. With the administration of B. longum to children with CeD
(44) there was a significant reduction in the number of
circulating CD3+ T lymphocytes and a slight reduction in the
level of TNFa. This was based in large part on a previous study
with a rat model of enteropathy, wherein administration of B.
longum to the rats increased IL10 and decreased TNFa (52). With
the administration of B. infantis to adults (46), there was an
improvement in the gastrointestinal rating scale for indigestion,
constipation, and reflux, and a later publication (45) found that B.
longum affected the innate immune system of patients by decreasing
a-defensin 5. Previous studies had shown that the administration of
B. infantis to mouse models of colitis and bacterial inflammation
(53–55) had increased the number of Tregs and downregulated
inflammatory cytokines. In the publication on a polyclonal
treatment by Francavilla et al. (47), five strains of lactic acid
bacteria and bifidobacteria were given to adult Celiac patients
with IBS like symptoms. The administration of the probiotic mix
led to a significant decrease in the gastrointestinal symptom rating
scale, whereas the placebo did not. In the publication on the
administration of two lactobacillus strains (L. plantarum HEAL9
and L. paracasei 8700:2) to children who were tTG IgA positive but
still on a gluten containing diet, a detailed analysis of circulating
lymphocytes was done by flow cytometry (48). The most notable
Frontiers in Immunology | www.frontiersin.org 3198
change was a significantly reduced expansion of CD4+CD25
+CD45RO+ T cells (effector and memory T cells) in the probiotic
group (48). No significant change was observed in the levels of
circulating anti tTG IgA levels (48). With the third clinical trial that
administered a mix of probiotic bacteria, VSL#3 was administered
to adult CeD patients who still had gastrointestinal symptoms,
despite being on a gluten free diet (49). CeD patients who received
the VSL#3 probiotic mix had no improvement in clinical
gastrointestinal symptoms over the placebo group (49). The CeD
patients also did not have significant changes to their gut
microbiome as measured by microscopic and molecular
analysis (49).
Multiple Sclerosis
Three clinical trials have been set up for conducting FMT with MS
patients (NCT03183869), (NCT03975413), and (NCT04150549).
Only 10 patients were recruited for the NCT03183869 study due to
early termination (the primary investigator passed away), and no
significant changes in circulating cytokines were observed (either
inflammatory or anti-inflammatory) in the small number of
patients. NCT04150549 has not started recruiting patients, and
NCT03975413 is still active. Rodent models of FMT to treat EAE
provide mixed results. One study with rats show that transfer of
fecal microbiota of EAE resistant rats (Albino Oxford) to EAE rats
ameliorates the disease in disease prone rats (Dark Agouti) (56). In
contrast, another study observed that the transfer of fecal microbota
from naïve mice to EAEmice did not ameliorate disease (37). It was
only when fecal microbiota was transferred from CD44 knock out
mice that disease was ameliorated (37).
FIGURE 1 | Mechanisms by which probiotic bacterial therapies can affect inflammation at intestinal and extraintestinal sites. Depicted in the intestinal lumen are the
three main categories of bacterial groups currently used in clinical trials, reflecting quantity: complete, restricted mix (Limited#/Polyclonal), and one (monoclonal).
PRR, pattern recognition receptor; MAMP, microbe associated molecular pattern; SCFA, short chain fatty acid; SCFAR, SCFA Receptor.
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No clinical trials with bacterial monotherapies have been
conducted for MS patients. However, in one randomized,
double blind, placebo-controlled study conducted at the
Islamic Azad Medical Center, capsules containing probiotic
bacteria, Lactobacillus acidophilus, Lactobacillus casei,
Bifidobacterium bifidum and Lactobacillus fermentum, were
administered to relapsing remitting MS patients (RRMS) (57).
Patients who received the probiotic mix had significantly
decreased EDSS (expanded disability status scale) and DASS
(depression, anxiety, and stress scale). Another study conducted
at Harvard Medical Center administered a very common and
commercially available probiotic mix, called Visbiome, which
was previously called VSL#3, to MS patients and healthy controls
(58). Since no placebo was tested, this study was not a
randomized double blind placebo trial. The mix contained 8
different strains of bacteria: Lactobacillus paracasei DSM 24734,
Lactobacillus plantarum DSM 24730, Lactobacillus acidophilus
DSM 24735, and Lactobacillus delbruckeii subspecies bulgaricus
DSM 24734) , Bifidobacter ium longum DSM 24736,
Bifidobacteriuminfantis DSM 24737, and Bifidobacterium breve
DSM24732), and Streptococcus thermophilus DSM 24731).
RRMS patients who received Visbiome had changes to their
gut microbiome composition, and healthy controls who received
Visbiome had a decreased alpha diversity.

Rheumatoid Arthritis
One clinical trial (NCT03944096) is currently being conducted
with testing FMT for treating RA patients. Its title is Efficacy and
Safety of Fecal Microbiota Transplantation in Patients With
Rheumatoid Arthritis Refractory to Methotrexate (FARM). No
results have been posted yet though.

Only one group, at the Tehran University of Medical Sciences,
has published results on providing a bacterial monotherapy for
treating RA. They did a randomized, double- blind, placebo-
controlled clinical trial using capsules that contained active L.
casei (59). They obtained similar results with the women with
RA, in that inflammatory cytokines went down and anti-
inflammatory IL-10 went up. The disease scores for tender and
swollen joints for the patients that received the L. casei were also
decreased as compared to the placebo. L. casei was tested
previously for its effectiveness in mouse and rat models of
arthritis to decrease the inflammation of arthritis in those
models (60–62). These studies showed that in the animal
models, the administration of L. casei resulted in decreased
incidence and development of arthritis that was associated
with decreased production of inflammatory cytokines such as
IFNg, IL-17, and TNFa, and a decrease in the production of anti
collagen antibodies. A different randomized, double- blind,
placebo-controlled clinical trial conducted at the Kashan
University of Medical Sciences, RA patients were given L. casei
in addition to Lactobacillus acidophilus and Bifidobacterium
bifidum in a capsule. The disease activity score of 28 joints was
decreased significantly in the probiotic treated group; however,
the tender and swollen joints scores individually were not
decreased (63). A second group gave Lactobacillus rhamnosus
GR-1 and Lactobacillus reuteri RC-14 in capsules to RA patients
in a randomized, double- blind, placebo-controlled clinical trial
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conducted at the St. Joseph’s Health Care in London, Ontario,
Canada (64). They did not observe an overall clinical
improvement in the probiotic arm, but they did find that
blood levels of GMCSF, MIP1a, TNFa, IL-6, IL12p70, IL-15,
and IL-17, as determined by multiplex immunoassay, were
decreased in the probiotic arm.

Thus, although there is only one published clinical trial for
administering a bacterial monotherapy to RA patients, the results do
suggest that such therapies can be effective in reducing
inflammation in RA patients and that this is associated with
increased systemic production in anti inflammatory cytokines
such as IL10 and decreased production of inflammatory cytokines.

Sjogren’s Syndrome
One clinical trial for treating Sjogren’s Syndrome with FMT has
been completed (NCT03926286). No results have been posted
yet though. Results in rodent models of fecal microbiota transfer
to treat SS has been promising though. In one study, the transfer
of fecal microbiota of disease-free mice to a mouse model of SS
did ameliorate the disease (65). A second study using a different
mouse model of SS had similar results in that transfer of fecal
microbiota from disease free mice reverted the disease along with
a decrease in the pathogenic CD4+IFNg+ T cells (66).

No clinical trials for SS using a monoclonal bacterial therapy
have been established yet. However, there is a clinical trial set up to
determine the efficacy of treating oral candidiasis in SS
(NCT03840538) with probiotics, and this has been completed and
results published (67). Here a mix of probiotics was given
(Lactobacillus acidophilus, Lactobacillus bulgaricus, Streptococcus
thermophilus and Bifidobacterium bifidum) to SS patients to
determine if that would decrease candidial load. Results from the
study showed that this mix did provide a statistically significant
decrease in the candidial load from baseline to treatment end, and
the difference was not statistically significant in the placebo group.
There is one publication that showed that administering a probiotic
mix to a mouse model of dry eye, the main symptom of primary SS,
does have a beneficial effect (68). In this study, a mix called IRT5
was used (Bifidobacterium bifidum, Lactobacillus acidophilus, Lacto-
bacillus casei, Lactobacillus reuteri, and Streptococcus thermophilus)
(68). The administration of these bacteria orally by gavage led to
increased levels of CD11c+ and CD11b+ cells in the spleen and
increased levels of IL-10 along with decreased levels of IL1b in the
conjuctiva and cornea of the eye (68).

Type I Diabetes
Currently there is one clinical trial designed to determine the
benefit of FMT for treating T1D (NCT04124211). This is still
recruiting patients, so no results have been posted.

With T1D, only one bacterial monotherapy placebo-
controlled, double blind, randomized clinical trial has been
completed and results published (69). In that study, conducted
at the University Medical Center in Ahvaz, Iran, patients were
administered a synbiotic mixture of Lactobacillus sporogenes and
a corresponding prebiotic, fructooligosaccharide for 8 weeks to
children diagnosed with T1D (69). The synbiotic mix improved
the following glycemic indices in the children as compared to a
placebo control group: FBG, HbA1c, insulin, hs-CRP, and TAC.
October 2020 | Volume 11 | Article 573079

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Marietta et al. Bacterial Therapies for Autoimmune Diseases
This was preceded by a study in an animal model in which
Bifidobactera bifidum and Lactobacillus sporogenes were
administered separately to rats that developed paw edema due
to injection with carrageenan (70). Administration of either
bacterial strain alone to the rats resulted in decreased paw
thickness, and increased physical activity as determined by a
stair climbing assay and motility assay (70). Another clinical trial
is set up to administer a bacterial monotherapy (NCT03961347),
but it is still recruiting patients at the University of Florida. In
this clinical trial, L. johnsonii is being administered to adults with
T1D. This clinical trial was preceded by studies in animal models
as well (71–76). Three other clinical trials have been set up to test
the effect of polymicrobial therapies on T1D, but no publications
on the results have yet emerged (NCT03032354 (77),
NCT03880760, and NCT03423589). The first multiple bacterial
therapy clinical trial (NCT03032354) was set up by Groele et al.
to be conducted at the Medical University of Warsaw, Poland
and the Department of Endocrinology and Diabetology, Children’s
Memorial Health Institute in Warsaw, Poland (77). Children with
T1D were to be recruited and given a mix of L. rhamnosus and B.
lactis Bb12. The second one with multiple bacteria (NCT03880760),
was set up to be conducted at the China Medical University
Hospital in Taichung, Taiwan. It was designed to treat T1D
children with a mix of Lactobacillus salivarius + Lactobacillus
johnsonii + Bifidobacterium lactis. The third multiple bacterial
therapy clinical trial, NCT03423589, was designed to administer
to T1D patients VSL#3 (Visbiome) at the Medical School
of Wisconsin. As described previously, VSL#3 is a mix of 8
bacterial strains. Overall then, only one clinical trial has been
completed and published on the efficacy of administering bacteria
to treat T1D, and this used a bacterial monotherapy and had
promising data.

NCT03751007 is a clinical trial that is utilizing bacteria from
the fourth category, genetically engineered bacterial, Lactococcus
lactis that secretes proinsulin and IL10 (AG019-Precigen Actobio
T1D, LLC), and is currently (as of this publication) being
conducted at 18 sites in the United States and Belgium. This
genetically modified bacterial strain was tested first in NODmice
(76). Administration of the L. lactis secreting proinsulin and IL10
along with anti CD3, substantially decreased hyperglycemia in
the NOD mice (76).
CONCLUSIONS/DISCUSSION

Of the five common autoimmune diseases that had clinical trials
to test bacterial therapies (CeD, MS, RA, SS, and T1D), all five
had FMT being tested. One for Celiac disease, three for MS, one
for RA, one for SS, and one for T1D (7 in total). Only one had
truly completed (NCT03926286), which is the one determining
the efficacy of treating SS with FMT. No results from that clinical
trial have been posted yet. Another one (NCT03183869) for MS
had terminated early, but had posted results on circulating
cytokines. Thus, it is too early to make any predictions on the
efficacy of treating autoimmune diseases with FMT; however,
there is a lot of effort going into answering this question.
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There were 3 clinical trials that use a restricted number of
probiotic bacteria for Celiac Disease, 2 for MS, 3 for RA, 1 for SS,
and 3 for T1D (12 in total). This is about twice as many as the
number of clinical trials to evaluate the efficacy of treating
autoimmune diseases with FMT. These gave mixed results in
that some studies showed improvement in gastrointestinal
symptoms, but others did not. Also too, not all of the studies
evaluated immune responses in a similar way, making it difficult
to determine if there was a common response by the immune
system to these mixes of probiotic bacteria, most especially in
those trials where no beneficial changes were observed to occur
in gastrointestinal symptoms.

For the administration of monoclonal therapies to patients
with autoimmune diseases, there were 4 with celiac disease, 0 for
MS, 1 for RA, 0 for SS, and 2 for T1D (7 total). Results from the
Celiac monoclonal clinical trials had results that showed that
administrating monoclonal therapies decreased levels of sera
TNFa and circulating CD3+ T cells. Also too a-defensin5 of
the innate immune system was decreased. In addition,
gastrointestinal symptoms improved with the administration of
monoclonal bacterial therapy in CeD patients. Similarly in RA
patients, using only L. casei, inflammatory cytokines went down
and anti-inflammatory IL10 went up. Symptoms and disease
scores improved as well. With the one monoclonal therapy on
T1D that was published, glycemic indices were improved with
the administration of L sporogenes. Overall then, there is a deficit
in the data on the outcomes of monoclonal bacterial therapies for
treating autoimmune patients, but the limited data suggests that,
at least with CeD and RA, there is a decrease in systemic
inflammatory cytokines that is associated with an increase in
anti inflammatory cytokines. The rodent models of these diseases
and the administration of these same monoclonal bacteria
support these findings as well as suggest that regulatory T cells
are increased by the administration of these bacteria. It should be
noted though, that the rodent models of autoimmune diseases
treated with the probiotic mixes had similar results as well.

In addition, there are many other rodent models of
monoclonal therapies to treat these common autoimmune
diseases, all of which have similar findings in that regulatory T
cells are increased along with anti inflammatory cytokines and
other regulatory cells. One example is with Prevotella histicola in
a CIA model, in which P. histicola induced IL-10, an anti-
inflammatory cytokine, in the intestines (jejunum) of the
treated mice (78). Serum levels of IL10 also increased after two
weeks of administering P. histicola, as well as levels of regulatory
T cells and a corresponding decrease in levels of Th17 cells (78).
With the EAE model, P. histicola induced the production of IL10
in dendritic cells and macrophages and increased levels of
regulatory T cells (79). Both of these studies demonstrate that
P. histicola has anti-inflammatory properties that lead to the
generation of regulatory T cells. With T1D, there have been a
couple of studies that have shown that bacterial monotherapies
work to decrease the incidence of T1D in NOD mice by
increasing the levels of regulatory T cells (80, 81). In the one
study with Clostridium, the Tregs would be generated in the
intestine and then migrate to the pancreatic lymph nodes (80).
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And with the study with Akkermansia muciniphilia, increased
numbers of Tregs generated by A. muciniphilia were associated
with increased levels of IL10 and TGFb (81). Other rodent
studies that have monoclonal therapies for Celiac Disease
include treatment with P. histicola (82), B. longum (52, 83, 84),
L. rhamnosus (85) and L. casei (86) For MS, there are rodent EAE
models using Lactobacillus reuteri (87) and Lactobacillus
plantarum (88). For RA, there are rodent models using L. casei
(60, 62, 89), Bifidobacterium animalis (90), Lactobacillus
fermentum (91), L. plantarum (92), L. rhamnosus (93, 94). For
T1D, there is another rodent model that uses a monoclonal
therapy, but a different species of Lactobacillus, Lactobacillus
brevis (95). Thus, there is a large number of probiotic
monotherapies for autoimmune diseases that have been tested
in rodent models, but relatively few have been incorporated into
clinical trials.

As to the fourth category of probiotics, that of bioengineered
bacteria that secrete specific disease associated antigens in order
to suppress disease activity, there are three rodent models. There
is the previously mentioned study for T1D (76) that used
Lactococcus lactis that secreted proinsulin and IL10. There is
also one for a mouse model of CeD in which Lactococcus lactis
that secreted a gliadin epitope was used (96). The third is a study
that generated lactobaccili to express EAE antigens and then
administered that to a rat EAE model (97). All three of these
models using recombinant bacteria showed a decrease in disease
activity with the administration of the recombinant bacteria to
the rodent.

In summary, there are almost twice as many clinical trials that
are being, or have been conducted, that use probiotic mixes as
Frontiers in Immunology | www.frontiersin.org 6201
there are that are using monoclonal bacterial therapies or FMTs.
So far, there are few rodent models of FMTs to treat the common
autoimmune diseases, and the results are mixed. FMT to treat SS
in rodents has provided positive results, but FMT to treat EAE in
rodents has provided contrasting results. In contrast, there is a
large number of rodent models of autoimmunity that
demonstrate that monoclonal bacterial therapies are effective in
altering the systemic immune respone in autoimmunity. Many
more clinical trials should be undertaken to conclusively
determine the efficacy of monoclonal bacterial therapies in
treating autoimmune diseases, especially with bacterial strains
that have been tested in rodent models but not yet tested in
clinical trials. Since FMTs are designed to transfer all of the
microbial content to the recipient and there are a number of
currently ongoing clinical trials, there should be enough data in
the next five years to determine the efficacy of FMTs in
treating autoimmunity.
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Increasing evidence shows the essential participation of gut microbiota in human health
and diseases by shaping local and systemic immunity. Despite an accumulating body of
studies showing that chronic kidney disease (CKD) is closely associated with disturbances
in the composition of gut microbiota, it remains unclear the importance of gut microbiota in
the onset and development of CKD. For the purpose of untangling the role of gut
microbiota in CKD, gut microbiota was depleted with a pool of broad-spectrum antibiotics
in mice submitted to unilateral ureteral obstruction (UUO). Depletion of gut microbiota
significantly decreased levels of proinflammatory cytokines and fibrosis markers,
attenuating renal injury. Additionally, to study whether the pathogenic role of gut
microbiota is dependent of microbial-host crosstalk, we generated mice lacking Myd88
(myeloid differentiation primary response gene 8) expression in intestinal epithelial cells
(IECs) and performed UUO. The absence of Myd88 in IECs prevented a bacterial burden in
mesenteric lymph nodes as observed in WTmice after UUO and led to lower expression of
proinflammatory cytokines and chemokines, reducing deposition of type I collagen and,
ultimately, attenuating renal damage. Therefore, our results suggest that the presence of
gut microbiota is crucial for the development of CKD and may be dependent of Myd88
signaling in IECs, which appears to be essential to maturation of immune cells intimately
involved in aggravation of inflammatory scenarios.

Keywords: chronic kidney disease, gut microbiota, Myd88, inflammation, fibrosis
INTRODUCTION

Chronic kidney disease (CKD) has been considered as a global public health problem. In 2017, CKDwas
ranked as the 12th leading cause of death and the number of cases reached almost 700million worldwide
(1). The onset and progression of CKD involve a complex interplay among metabolic, neuroendocrine
and immunologic events, which generates a high risk clinical phenotype (2). In the past decades, other
players have been included in this scenario, including the gut and its indigenous residents so-called the
gut microbiota.
org December 2020 | Volume 11 | Article 5786231205
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Despite the existence of a large variety of causative factors in the
onset and progression of CKD, accumulating evidence has
continuously linked local and systemic outcomes from kidney
damage to dysbiosis. Kidney failure provokes accumulation of
uremic toxins, which, in turn, can impair the integrity of intestinal
barrier and disturb the composition and functionality of gut
microbiota (dysbiosis) enhancing toxin production and
inflammation in CKD. Accumulation of toxins originated from the
gut microbiota in CKD, such as p-cresol sulfate and TMAO, has been
linked to the progression of kidney function (3, 4). Profound
disturbances in gut microbiota may also alter the levels of
microbial metabolites with benefits to the host metabolism, such as
short-chain fatty acids (SCFAs), which participate in the modulation
of inflammatory responses in models of kidney injury (5–7).

Alterations in the microbial composition and functionality can
influence the maintenance of intestinal barrier. In homeostatic
conditions, intestinal epithelial cells (IECs) and immune cells “feel
and react” to microbial stimuli orchestrating a symphony of
immune responses and reinforcing the intestinal barrier to keep a
balance between tolerance and pathogenic immunity. The integrity
of intestinal barrier critically relies on the fitness of IECs, which are
central players of a microbial-dependent strategy for intestinal
repair and homeostasis. IECs sense microbial-associated
molecular patterns (MAMPs), through pattern recognition
receptors (PRRs), including Toll-like receptors (TLRs) and NOD-
like receptors (NLRs), promoting proliferation and differentiation of
epithelial cells, reinforcement of tight junctions (8), and secretion of
IgA and antimicrobial peptides (AMPs) in the lumen (9).

The dysfunction of intestinal barrier has been observed in a
variety of diseases, including type 1 diabetes mellitus, inflammatory
bowel disease and coeliac disease (10). In the context of CKD,
uremia has been strongly associated with disturbances in tight
junction dynamics. Experimental studies observed a pronounced
depletion of components of intestinal epithelial tight junction in
uremic animals (11). Moreover, Varizi et al. observed that in vitro
treatment with urea remarkably reduced the expression of claudin-
1, occludin and ZO-1 in IECs, which was accompanied by lower
transepithelial electrical resistance (12). Impaired intestinal barrier
not only aggravates local inflammation but could also contribute to
systemic inflammation. Indeed, circulating endotoxemia and
bacterial-derived DNA fragments were found in CKD patients
(13, 14). Furthermore, the blood levels of endotoxins seem to be
correlated with CKD stage (14).

Together, evidence points to the importance of gut microbiota
and intestinal barrier fitness in the pathogenesis of CKD. Therefore,
the purpose of this study was to evaluate the role of gut microbiota
in the onset and development of CKD and whether the influence of
gut microbiota was dependent of the microbial-host crosstalk,
specifically of the Myd88 signaling in IECs.
MATERIAL AND METHODS

Mice
All animal procedures described in this study were approved by
the Ethics Committee in Animal Research of the Federal
University of São Paulo (Protocol number: 7562120416) and
Frontiers in Immunology | www.frontiersin.org 2206
all the animal study methods were performed according to the
Ethical Principles in Animal Research. Animals were held under
temperature-controlled conditions on a 12-h light cycle with
access to food and water ad libitum.

Gut microbiota was depleted in 6-week-old C57Bl/6mice by oral
administration of broad-spectrum antibiotics (ABX) [1 g/L
ampicillin, 1 g/L metronidazole, 1 g/L neomycin and 0.5 g/L
vancomycin (Sigma-Aldrich)] via autoclaved drinking water with
1% (wt/vol) glucose for 4 weeks, as previously described (15).
During ABX treatment, bacterial load in the feces was assessed
once in a week. Briefly, fresh fecal pellets were resuspended in sterile
PBS, and an aliquot of the suspension was inoculated in 5 ml of
Luria-Bertani (LB) broth and kept at 37°C for 3 days. Bacteria
concentration in the culture was estimated through the optical
density at 600 nm. After 3 weeks of ABX treatment, irreversible
unilateral ureteral obstruction (UUO) was performed in control and
ABX mice, as previously described (16).

Selective deletion of Myd88 in IECs (Myd88DIEC) was obtained
through the intercross of B6.129P2-MyD88 tm1Defr/J (Myd88fl/fl)
and B6N.Cg-Tg (Vil1-Cre)997Gum/J strains. After confirmation of
Myd88 deletion in isolated IECs, mice were submitted to UUO.
After 7 days of UUO, mice were euthanized, and samples [blood,
colon, liver, mesenteric lymph node (MLN) and kidney] were
collected for further analysis.

Pelvic Biochemical Urinary Parameters
Total protein and creatinine in urine were quantified using
commercial kits according to instructions (Labtest). Urinary
albumin content was estimated using dye-binding technique.
Briefly, under reducing conditions, urine samples were resolved
by 10% SDS-polyacrylamide gel electrophoresis. Gels were stained
with 0.1% Coomassie blue R-250 solution for 2 h and destained
overnight. Albumin concentration was determined according to the
intensity of the bands using a positive loading control (bovine serum
albumin, 0.2 mg/ml) using ImageJ software.

Cytokines Quantification
Serum levels of IL-6 were quantified using available commercial kit
(R&D Systems) according to manufacturer’s instructions.
Quantification of cytokines and chemokines in kidney and colon
samples were performed using Bio-Plex Pro mouse cytokine,
chemokine, and growth factor assay (Bio-Rad) according to
manufacturer’s instructions. Briefly, aliquots of tissue homogenate
were incubated with premixed “color-coded” magnetic beads in a
shaker at room temperature for 30 min. After washing steps,
incubation with biotinylated detection antibody and streptavidin
PE conjugate were performed subsequently, allowing measurement
of a specific cytokine later in the laser detection step. Cytokine
concentrations were determined using standards curves and results
were expressed as pg/mg of total protein.

Immunohistochemistry
Formalin-fixed tissue was embedded in paraffin using standard
procedure and histological sections were immunostained by
standard avidin-biotin-peroxidase methodology (Vectastain
ABC Kit, Vector Laboratories) using diaminobenzidine (DAB)
as the chromogen. Profibrotic and cell proliferation status were
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assessed using antibodies anti-type I collagen (1:200, Abcam),
anti-fibroblast-specific protein 1 (FSP-1) (1:800, Dako) and anti-
KI-67 (1:1,000, Abcam), respectively. Digital microphotographs
of renal cortex were obtained at 40-fold magnification using a
Carl Zeiss Axioskop 40 microscope (Carl Zeiss Microscopy) and
AxioCam MRc5 digital camera (Carl Zeiss Microscopy). The
area stained positive for type I collagen, FSP-1 and KI-67 was
quantified as percentage of total cross-sectional area using
Axiovision software (Carl Zeiss Microscopy).

Fluorescence In Situ Hybridization
Segments of distal colon containing feces were harvested and
fixed in methacarn solution at 4°C for 24 h and embedded in
paraffin using standard procedure. Briefly, deparaffinized
sections were incubated with Eubacteria probe (AF488-
conjugated, Sigma-Aldrich) in a humid chamber at 50°C
overnight. After washing step, sections were incubated with
lectin from Ulex europaeus (TRITC-conjugated, Sigma-
Aldrich) at room temperature for 2 h. After mounting step
with Vectashield (Vector laboratories), images were obtained
using confocal microscope at a magnification of 40×.

Detection of Bacterial DNA in Organ
Samples
DNA from MLN and liver samples (collected in sterile conditions)
was extracted using DNeasy Blood & Tissue Kit (Qiagen) according
to manufacturer’s instructions. All reactions were carried out with
20 ng of DNA through Sybr system using primers designed for
bacterial 16S gene and for mouse genomic DNA (Table 1).
Quantification of bacterial 16S rDNA was normalized using
mouse genomic DNA (pIgR genomic region) as internal control
and calculated using the DDCT-method. Results were expressed
as an n-fold difference in relation to the expression of
matched controls.

Gene Expression
Total RNA from colon and kidney samples were extracted with
Trizol® (Invitrogen), and cDNA was synthesized using High-
Frontiers in Immunology | www.frontiersin.org 3207
Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
Gene expression of proinflammatory cytokines and profibrotic
markers were performed based on Sybr system using designed
primers listed in Table 1. Quantification of target gene expression
was normalized using HPRT or GAPDH as internal controls and
calculated using the DDCT-method. Results were expressed as an n-
fold difference in relation to the expression of matched controls.
Analyses were performed using QuantStudio™ Design & Analysis
Software v1.5.0 (Applied Biosystems).

Western Blotting
Kidney samples were homogenized in ice-cold RIPA buffer
containing protease inhibitors cocktail (Roche Applied Science).
Aliquots of 20 µg of protein were subjected to electrophoresis under
reducing conditions. Proteins transferred to nitrocellulose
membranes were probed overnight with mouse monoclonal anti-
a smooth muscle actin (a-SMA) antibody (1:1,000, Dako), and,
sequentially, incubated with appropriate secondary antibody.
The bands were detected by chemiluminescence (Clarity Western
ECL Substrate, Bio-Rad) according to the manufacturers’
recommendations. Results were normalized relative to a-
tubulin expression.

Statistics
Results were expressed as mean ± SE. Student t test was
performed to compare two groups, and one-way ANOVA with
Tukey’s post hoc test was performed to compare more than three
groups using GraphPad Prism 5.0 (GraphPad Software).
Statistical significance was set at p ≤ 0.05.
RESULTS

Depletion of Gut Microbiota Protects
Against UUO Injury
Treatment with ABXwas effective in lowering gut bacterial load and
in modulating gene expression of some components of intestinal
barrier (Figure S1). Depletion of gut microbiota was followed by
TABLE 1 | Primer sequences used for qPCR.

Gene Forward Reverse

IL-1b GCC ACC TTT TGA CAG TGA TGA TGA TGT GCT GCT GCG AGA TT
IL-4 CCC CAG CTA GTT GTC ATC CTG CAA GTG ATT TTT GTC GCA TCC G
IL-6 TCT CTG CAA GAG ACT TCC ATC C AGA CAG GTC TGT TGG GAG TG
IL-12a AGA CAT CAC ACG GGA CCA AAC CCA GGC AAC TCT CGT TCT TGT
TNF-a GCC CCC AGT CTG TAT CCT TCT AA ACT GTC CCA GCA TCT TGT GTT TC
Csf2
(GM-CSF)

AGG GTC TAC GGG GCA ATT TC GGC AGT ATG TCT GGT AGT AGC TG

Ccl4
(MIP-1b)

TTC CTG CTG TTT CTC TTA CAC CT CTG TCT GCC TCT TTT GGT CAG

Col1a1 CGT ATC ACC AAA CTC AGA AG GAA GCA AAG TTT CCT CCA AG
Fibronectin TAC AAC AAC CGG AAT TAC AC GAT ACA TGA CCC CTT CAT TG
HPRT CTC ATG GAC TGA TTA TGG ACA GGA C GCA GGT CAG CAA AGA ACT TAT AGC C
GAPDH AGG TCG GTG TGA ACG GAT TTG TGT AGA CCA TGT AGT TGA GGT CA
pIgR genomic region TTT GCT CCT GGG CCT CCA AGT T AGC CCG TGA CTG CCA CAA ATC A
16S rDNA
(bacteria)

TGG CTC AGG ACG AAC GCT GGC GGC CCT ACT GCT GCC TCC CGT AGG AGT
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upregulation of occludin and ZO-1, which are considered key
elements of tight junctions. CKD has been implicated in
disruption of intestinal epithelial tight junctions, which has been
associated with local and systemic inflammation (Figure S1). UUO
led to increased gene expression of proinflammatory cytokines, such
as IL-1b and IL-6, in the colon (Figure 1), which was prevented by
depletion of gut microbiota. Systemic inflammatory status was also
greatly influenced by UUO, as indicated by a 7-fold increase of
serum levels of IL-6 in untreated group (Figure 1G), which was
partially prevented by ABX treatment.

The systemic inflammation observed after UUOwas followed by
increased gene expression of proinflammatory cytokines in the
Frontiers in Immunology | www.frontiersin.org 4208
kidney of untreated mice. On the other hand, ABX-treated group
showed strikingly lower expression of cytokines, such as IL-1b, IL-4,
and IL-6, and chemokines (GM-CSF and MIP-1b) after UUO
(Figure 2). In addition to that, depletion of gut microbiota
modulated the expression of markers of tubulointerstitial fibrosis.
Decreased gene expression of profibrotic markers, such as
fibronectin and type I collagen, was observed in the kidney of
ABX-treated mice (Figures 2H, I). We also observed lower protein
expression of indicators of kidney injury, including a-SMA and
type I collagen (Figure 3). In addition, depletion of gut microbiota
affected the expression of markers of cell activation, such as FSP-1
and KI-67. ABX treatment led to lower quantity of FSP-1 positive
A B

D E F

G

C

FIGURE 1 | Impact of depleted gut microbiota on the colon and systemic inflammation in CKD. Gene expression of (A) IL-1b, (B) IL-6, (C) IL-12a, (D) GM-CSF,
(E) MIP-1b, and (F) TNF-a in the colon of Vehicle and ABX-treated mice submitted or not to UUO (N = 4 to 8). (G) Serum levels of IL-6 of Vehicle and ABX-treated
mice submitted or not to UUO (N = 4). *p < 0.05; **p < 0.01; ***p < 0.001.
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cells in the renal intestitium, and decreased number of KI-67
positive cells, including renal tubular cells and interstitial cell
populations (Figure 3B). This protection against UUO injury was
followed by better pelvic urinary parameters. Abx-treated mice
Frontiers in Immunology | www.frontiersin.org 5209
presented lower levels of protein in pelvic urine after UUO
compared with untreated group (Figure 3B). Taken together, our
results indicated that the proinflammatory and profibrotic scenarios
caused by UUO are dependent of the presence of gut microbiota.
A B

D E F
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FIGURE 2 | Impact of depleted gut microbiota on the kidney in CKD. Gene expression of (A) IL-1b, (B) IL-4, (C) IL-6, (D) IL-12a, (E) TNF-a, (F) GM-CSF,
(G) MIP-1b, (H) Col1a1, and (I) fibronectin (FN) in the kidney of Vehicle and ABX-treated mice submitted or not to UUO (N = 4 to 8). *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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Myd88 Signaling in IECs Participates
in UUO Injury
On the next step of the study, we decided to examine whether
this UUO-generated inflammation would be dependent on
Myd88 signaling in IECs. For this purpose, after confirmation
of Myd88 deletion in IEC isolated from intestine (Figure S2),
Myd88DIEC mice were submitted to UUO and expression of
proinflammatory cytokines was evaluated aiming to verify the
participation of IEC-specific Myd88 signaling in local and systemic
inflammation. Analysis of colon samples of Myd88DIEC mice,
similar to untreated WT mice, revealed that UUO led to a
massive bacterial invasion in the mucus layer (Figure 4A).
Surprisingly, a higher bacterial burden was only observed in MLN
of untreated WTmice after UUO (Figure 4B). In addition, the lack
ofMyd88 in IECs decreased levels of IL-1b, IL-12p40, and IL-17A in
the colon after UUO, while levels of TNF-a and colony stimulating
factors, such as GM-CSF and MIP-1b, were unaltered in both
strains (Figure 5). Kidney assessment revealed thatMyd88DIEC mice
submitted to UUO presented lower levels of IL-4, IL-12p40, IL-
17A, GM-CSF, and MIP-1b compared to Myd88fl/fl mice (Figure
6). Besides the attenuation of the proinflammatory scenario,
the selective deletion of Myd88 also influenced the expression
Frontiers in Immunology | www.frontiersin.org 6210
of profibrotic markers. Myd88DIEC mice submitted to UUO
presented lower expression of Col1a1 and fibronectin compared
to Myd88flox mice followed by decreased deposition of type I
collagen (Figure 7). Renal benefits also included the observation
of better pelvic urinary parameters (Figure 7). Low urinary levels
of total protein and albumin were observed in Myd88DIEC mice.
DISCUSSION

In the last decades, important advances have shown the essential
role of gut microbiota in host physiology, including modulation
of host metabolism, central nervous system activity and,
especially, immune system. Several studies have shown that gut
microbiota may dictate how host immune system would respond
to inflammatory hits (17–19). Despite the increasing data
supporting the association of CKD and dysbiosis, little is
known whether alteration in the gut microbiota would
influence the onset and development of CKD. Therefore, in
this study we evaluated the effect of depletion of gut microbiota
and the role of Myd88 signaling in IECs during UUO injury.
A

B

FIGURE 3 | (A) Protein expression of a-SMA in the kidney of Vehicle and ABX-treated mice submitted or not to UUO (N = 3 to 4) by Western blotting.
(B) Representative images and positive area (%) of immunohistochemical staining for type I collagen (Col I), FSP-1 and KI-67 in the kidney of Vehicle and ABX-
treated mice submitted to UUO (N = 7 to 8); concentration of total protein normalized by creatinine in pelvic urine (N = 4 to 7); estimation of albuminuria in pelvic
urine collected from Vehicle and ABX-treated mice submitted to UUO (N = 3 to 4). *p < 0.05; **p < 0.01; ****p < 0.0001.
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A

B C

FIGURE 4 | (A) Fluorescence in situ hybridization (FISH) analysis of the total bacteria in the colon. Visualization of colon fragments containing feces labeled with
probe for Eubacteria (green) and FITC-conjugated lectin (red) for mucus (x40 fold magnification). (B) Quantification of bacterial DNA in the mesenteric lymph node
(MLN) of untreated wild type (WT) and Myd88DIEC mice submitted or not to UUO based on gene expression of 16S rDNA (N = 4). (C) Quantification of bacterial DNA
in the liver of untreated wild type (WT) and Myd88DIEC mice submitted or not to UUO based on gene expression of 16S rDNA (N = 4). *p < 0.05.
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Changes in the gut microbiota induced by ABX treatment were
followed by upregulation of occludin and ZO-1, which are
considered critical components of tight junctions. Substantial
data have correlated the expression of both components with
epithelial barrier properties. Suppression of occludin or ZO-1 in
epithelial monolayer culture alters the dynamic behavior of tight
junction by increasing leak pathway flux (20, 21). Moreover,
overexpression of occludin limited intestinal barrier disruption
in an experimental TNF-induced diarrhea (22). Despite our
results may be an indicative of a pre-reinforcement of tight
junctions, there is not a consensus whether ABX treatment
impairs the intestinal barrier integrity. Tulstrup et al. did not
observe alterations in the gene expression of ZO-1, occludin,
claudin-1 suggesting that ABX effect is dependent on ABX
class (23).

Depletion of gut microbiota abrogated inflammation induced
by UUO in the colon. The presence of gut microbiota seems to be
crucial to trigger local UUO-induced inflammation and
Frontiers in Immunology | www.frontiersin.org 8212
intestinal barrier disruption. Untreated mice showed high
expression of proinflammatory cytokines, such as IL-1b and
IL-6, in the colon along with a massive presence of bacteria in
the mucus layer. This bacterial burden was not limited to the
mucus layer since we detected a higher bacterial load in the
MLN after UUO. In physiological conditions, the intestinal
immune system is taught by the gut microbiota to tolerate
luminal antigens, thus limiting host immune responses.
However, in dysbiosis conditions, such as the one generated
by UUO, a higher trafficking of microbial antigens via
CX3CR1hi mononuclear phagocytes can occur aiming at
compartmentalizing the intestinal immune response to avoid
inflammation (24). Indeed, we did not detect alterations in
bacterial load in the liver after UUO, which supports the idea
of MLN as a key immune inductive site. Taken together, these
observations indicate that depletion of gut microbiota protects
against UUO intestinal injury probably by lowering the load of
bacteria, which could play a pathogenic role when the intestinal
A B

D E F

C

FIGURE 5 | Effect of Myd88 signaling in IECs on the colon in CKD. Concentration of (A) IL-1b, (B) IL-12p40, (C) IL-17A, (D) TNF-a, (E) GM-CSF, and (F) MIP-1b in
the colon of Myd88fl/fl and Myd88DIEC mice submitted or not to UUO determined by multiplex cytokine assay (N = 5 to 7). *p < 0.05.
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barrier is disrupted. This scenario is aggravated by increased
serum levels of IL-6, which support the idea of a sustained
inflammatory status generated by CKD.

Beneficial effects of depleted gut microbiota reach the kidney
reinforcing the importance of kidney-gut axis in CKD. ABX-
treated mice presented lower expression of proinflammatory
cytokines after UUO compared to untreated mice. Moreover,
depletion of gut microbiota downregulated the expression of
several profibrotic markers, such as type I collagen, fibronectin
and a-SMA, alleviating tubulointerstitial fibrosis, which is a
main histological hallmark of CKD. Moreover, ABX treatment
also reduced the expression of cell activation markers, such as
FSP-1 and KI-67. During tubular injury, increased FSP-1
expression allows the tracking of cellular behavior associated
with matrix production, including cell phenotypic transition,
Frontiers in Immunology | www.frontiersin.org 9213
migration, and invasiveness. Evidences indicate that the origin of
kidney fibroblasts includes perivascular and resident fibroblasts,
pericytes (25), bone marrow derived fibrocytes (26), and
transformed epithelial cells (27). Increased expression of KI-67
as observed in untreated mice is an indicative of proliferation of
tubular epithelial cells and fibroblasts. All the aforementioned
renal improvement fostered the preservation of kidney structure
highlighting the idea that, despite the benefits generated by gut
microbiota in physiological conditions, the bacterial community
can feed inflammatory states generated by other hits.

The importance of IECs in maintenance of intestinal barrier is
clearly highlighted in infectious diseases and pathologies with
host immune genetic susceptibility. Of great relevance to
intestinal homeostasis, Myd88 is a crucial player in the
interface between host and microbes and essential to host
A B
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FIGURE 6 | Effect of Myd88 signaling in IECs on the inflammatory profile of the kidney in CKD. Concentration of (A) IL-4, (B) IL-12p40, (C) IL-17A, (D) TNF-a,
(E) GM-CSF, and (F) MIP-1b in the kidney of Myd88fl/fl and Myd88DIEC mice submitted or not to UUO determined by multiplex cytokine assay (N = 5 to 7). *p < 0.05;
***p < 0.001; ****p < 0.0001.
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FIGURE 7 | Effect of Myd88 signaling in IECs on the kidney remodeling in CKD. Gene expression of (A) Col1a1 and (B) fibronectin (FN) in the kidney of Myd88fl/fl

and Myd88DIEC mice submitted or not to UUO (N = 4). (C) Representative images and positive area (%) of immunohistochemical staining for type I collagen (Col I) in
the kidney of Myd88fl/fl (N = 5) and Myd88DIEC mice (N = 4) submitted or not to UUO. (D) Concentration of total protein normalized by creatinine in pelvic urine (N =
4). (E) Estimation of albuminuria in pelvic urine collected from Myd88fl/fl (N = 4) and Myd88DIEC mice (N = 3) submitted to UUO. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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resistance to infection (28, 29). Deletion of Myd88 decreases
AMP secretion, such as RegIIIg (30) and RELMb (28) and
impairs epithelial cell turnover and repair (31) leading to
intestinal barrier dysfunction in experimental infectious colitis.
Therefore, in the next step of the study, we decided to evaluate
the impact of Myd88 signaling in IECs in the onset and
development of CKD. The lack of Myd88 signaling led to
lower levels of cytokines in the colon, such as IL-1b, IL-12p40,
and IL-17A, in the CKD condition. This significant reduction
indicates that, at least locally, Myd88 signaling is essential to the
production of critical cytokines involved in the maintenance of
intestinal barrier, probably by decreased signaling after PAMP
sensing. Unlike in other organs, in the colon IL-1b has a
differential role and appears to influence epithelial proliferation
promoting healing and tissue repair (32). IL-17A also promotes
epithelial barrier integrity by regulating the cellular localization
of occludin (33) and regulates antimicrobial activity at mucosal
surface (34). On the other hand, IL-17-producing cells can be
pathogenic in intestinal diseases, when co-expressed with IL-23,
demonstrating a dual role for this cytokine in gut homeostasis
and disease (35). Despite the downregulation of these critical
cytokines, we did not observe differences in the pattern of
bacterial invasion in the mucus layer between WT and
Myd88DIEC mice. Apparently, activation of myeloid cells via
Myd88 is necessary for the development of chronic intestinal
inflammation, whereas epithelial Myd88 signaling is essential for
host survival (36). This cell-specific role of Myd88 could explain
why we did not observe any evidence of intestinal inflammation
in the scenario of IEC-deletion of Myd88. On the other hand,
unexpectedly, the lack of Myd88 signaling in IECs prevented a
bacterial burden in MLN after UUO, indicating that TLR-
mediated epithelial recognition of luminal bacteria is required
for bacterial trafficking, probably via CX3CR1hi mononuclear
phagocytes, aiming at induction of local immune response to
avoid systemic inflammation (24).

The lack ofMyd88 in IECs also modulated inflammation in the
kidney supporting the importance of kidney-gut axis in CKD.
Myd88DIEC mice presented lower levels of proinflammatory
cytokines including IL-4, IL-12p40, and IL-17A, and reduced
renal concentration of macrophage-stimulating factors, such as
GM-CSF and MIP-1b. GM-CSF has been implicated in the
crosstalk between cell tubular injury and cell immune infiltration
involved in the sustained tubular injury and progressive interstitial
fibrosis at the time of AKI-to-CKD transition (37). Indeed, the lack
of Myd88 in IECs modulated the gene expression of profibrotic
markers and abrogated the increase of type I collagen after UUO,
indicating a substantial prevention of tubulointerstitialfibrosis. The
attenuation of inflammation and fibrosis reflected in urinary
parameters, once we observed lower levels of protein and albumin
in pelvic urine ofMyd88DIEC mice, supporting the idea thatMyd88
signaling in IECs participates in UUO injury. Here, we found that
IEC-specific Myd88 deletion alleviated kidney injury indicating
that, besides gut microbiota, innate signaling plays an important
role in the microbiota-gut-kidney axis in CKD. IECs are capable to
sense the microbial presence through a variety of antigen receptors
expressed on their apical surface, leading to activation of innate and
Frontiers in Immunology | www.frontiersin.org 11215
adaptative immune responses (38).Therefore,we can speculate that
the beneficial effects ofMyd88 deletion afterUUOmay be due to an
attenuation of intestinal inflammation similarly observed in a
model of intestinal injury induced by ischemia/reperfusion.
Mühlbauer et al. reported that impaired epithelial Myd88
signaling decreased neutrophil infiltration, reduced binding of
IgA to neoantingens, as well as diminished complement
activation (39). Myd88 signaling in IECs may affect the
maturation of renal resident macrophages and of bone marrow
monocytes recruited during inflammatory conditions. Indeed,
Emal et al. reported the critical role of gut microbiota in keeping
maturation/supply status of renal macrophages in an ischemia-
reperfusion injury (40), supporting the importance of gut
microbiota-host interaction in modulating the systemic immune
system and ultimately inflammatory conditions. Several studies,
especially using germ-free mice, demonstrated the importance of
microbiota and host interactions in priming immunity (19, 41, 42),
which could have deleterious effects in inflammatory states, such as
kidney injury.

In summary, we showed that depletion of gut microbiota
protects against UUO injury supporting the idea that gut
microbiota and host interactions can be detrimental in
inflammatory pathologies, such as CKD. Moreover, the renal
benefits generated by Myd88 deletion in IECs indicate that the
deleterious effects of gut microbiota in such conditions may be
dependent of host innate signaling.
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The mammalian intestine is the largest immune organ that contains the intestinal stem
cells (ISC), differentiated epithelial cells (enterocytes, Paneth cells, goblet cells, tuft cells,
etc.), and gut resident-immune cells (T cells, B cells, dendritic cells, innate lymphoid cell,
etc.). Inflammatory bowel disease (IBD), a chronic inflammatory disease characterized by
mucosa damage and inflammation, threatens the integrity of the intestine. The continuous
renewal and repair of intestinal mucosal epithelium after injury depend on ISCs. Inflamed
mucosa healing could be a new target for the improvement of clinical symptoms, disease
recurrence, and resection-free survival in IBD treated patients. The knowledge about the
connections between ISC and immune cells is expanding with the development of in vitro
intestinal organoid culture and single-cell RNA sequencing technology. Recent findings
implicate that immune cells such as T cells, ILCs, dendritic cells, and macrophages and
cytokines secreted by these cells are critical in the regeneration of ISCs and intestinal
epithelium. Transplantation of ISC to the inflamed mucosa may be a new therapeutic
approach to reconstruct the epithelial barrier in IBD. Considering the links between ISC
and immune cells, we predict that the integration of biological agents and ISC
transplantation will revolutionize the future therapy of IBD patients.

Keywords: intestinal stem cell, immune cell, inflammatory bowel disease, cytokine, organoids
INTRODUCTION

The mammalian intestinal tract is the main organ for nutrient digestion and absorption in the body.
Moreover, it serves as the first barrier mechanism of the body defense system. In fact, intestinal
health is closely related to the host’s health status, nutrition, environment, psychological state, and
intestinal flora composition (1, 2). Anatomically, the gut is divided into two parts: the small intestine
and colon. As the largest immune organ in the body, the mammalian intestine is known to be
exposed to different antigens from commensal bacteria, diets, and pathogens. There are many
immune cells that differ in frequency and location throughout the whole intestine (3). As a result,
the intestinal epithelium mainly hosts T cells; whereas, the lamina propria contains both the innate
and adaptive immune cells, including B cells, T cells, ILCs, dendritic cells, macrophages, eosinophils,
org January 2021 | Volume 11 | Article 6236911218
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and mast cells (3). Both innate and adaptive immunities are
linked to maintaining intestinal homeostasis. Therefore, any
perturbation in the intestinal homeostasis could potentially
induce multiple intestinal diseases such as IBD, infectious
diseases, diarrhea, and cancer in severe conditions (4).

In mammals, the intestinal epithelium is the most active self-
regenerative tissue (5) and constantly renewed by ISC in the
crypt bottom (6). ISC is capable of differentiating into progenitor
cells, and these newly formed cells proliferate and differentiate
along the crypt-villus axis of the small intestine and colon
(Figure 1A). Leucine-rich repeat-containing G-protein coupled
receptor 5 (Lgr5) is an important marker of active ISC identified
to generate differentiated epithelium cell types over a long period
of time (7). In addition, another population of quiescent
“reserve” ISCs is located at the so-called ‘+4’ position (8),
whereby Bmi1, mTert, Hopx, and Lrig1 have been identified as
markers of +4 ISCs (9–12). Studies have shown that the Lgr5+

ISC is a highly active ISC necessary for intestinal epithelium
renewal (7). On the contrary, the +4 ISCs are activated following
injury, then regenerate Lgr5+ ISC to replenish the stem cell pool
(8). Moreover, active stem cells would possibly have the capacity
to replace lost or damaged quiescent stem cells in certain
conditions (13). There is a balance among rapid-cycling, easy-
to-damage ISC, and quiescent +4 ISC to sustain self-renewal and
protect against flexible damage in the intestinal crypt. In the
small intestine, ISC can differentiate into five major cell types but
only differentiate into three major cell types in the colon.
Although the primary epithelial cells are known to be
absorptive enterocytes in the small intestine, the intestinal
epithelium also contains some secretory cell lineage, including
Paneth cells that support the ISC niche and secrete antimicrobial
peptides, mucus-producing goblet cells, various hormone-
secreting enteroendocrine cells, and M cells and tuft cells (6)
(Figure 1B). It is worth noting that colonic crypts lack Paneth
cells, but there are Paneth-like cells called crypt base goblet cells
Frontiers in Immunology | www.frontiersin.org 2219
(14, 15). Currently, the gene characteristics of crypt base goblet
cells are hypothesized to be between Paneth cell and goblet cell;
however, their functional significance is still unclear. The ISC
niche consists of both a mesenchymal component and an
epithelial component (Paneth cells). The mesenchymal
compartment contains multiple stromal cell populations, such
as fibroblasts, myofibroblasts, and smooth muscle cells, which
secrete multiple growth factors for the maintenance of ISC
function (16). Paneth cells, on the other hand, adjoin ISC and
provide essential niche signals such as Delta-like 1/4, EGF, and
Wnts to support ISC homeostasis in small intestine (17, 18). In
line with the available data, many reviews have discussed the role
of mesenchymal cells and Paneth cells in the ISC niche (5, 19–
21). In recent years, however, new data are now showing that the
interaction between resident immune cells and ISC is crucial for
the regenerative capacity of the intestinal epithelium cells.
Emerging insights from microbiome research reveal that gut
microbiota-derived signals and molecules influence the
development/activity of ISC. A recent long review surveyed
the literature on gut microbiota-host crosstalk, highlighting the
effects of gut microbial metabolites on intestinal stem cells (22).

IBD, one of the most common intestinal diseases, comprises
both Crohn’s disease (CD) and ulcerative colitis (UC), which are the
chronic and immunologically inflammatory disorders in the
gastrointestinal tract (23). Typical clinical symptoms of IBDs
include diarrhea, abdominal pain, and rectal bleeding (24), arising
from immunological dissonance, microbiota disorder, and epithelial
barrier dysfunction in the intestine (25). IBDs are prevalent globally,
especially in western countries (26). To date, the pathogeny and
pathology of IBD are not lucid; however, interactions among genetic
factors, environmental factors, microbiome, and the immune
system are considered to play a key role in the nosogenesis of
IBD (27, 28). Moreover, IBD is mainly induced by immune
dysfunction in the intestinal immune system. Specifically, mucosal
immune cells, such as T cells, macrophages, dendritic cells, and
A B

FIGURE 1 | Intestinal stem cells and differentiated progeny. (A) The intestinal epithelium is covered with a monolayer of epithelial cells. ISC generate TA cells in the
crypts. TA cells migrate upward along the villi-crypt axis and differentiate into various epithelial cells. ISC are located at the bottom of the intestinal crypts. (B) Lgr5+

ISC generate TA cells, which can produce two mature epithelial cell lineages: absorptive type (enterocytes) and secretory type (goblet cells, Paneth cells, tuft cells,
and enteroendocrines). +4 ISC have been proposed as a quiescent stem cell population. ISC, intestinal stem cell; TA, transit-amplifying.
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ILCs, regulate the intestinal homeostasis by secreting multiply
cytokines (29). These cytokines are directly linked to IBD
pathogenesis and known to control intestinal inflammation
associated with IBD (29, 30). The microbiota provides crucial
signals for the development and function of the immune system.
The gut microbiota and their metabolites are not only necessary for
immune homeostasis, they also influence the susceptibility of the
host to many immune-mediated diseases and disorders (31).
Over the last 2 decades, a large number of studies have
shown that gut microbiota and their metabolites play a key role
in the pathogenesis of IBD (32). However, the gut microbiota-
immunity-IBD axis is extremely complicated. The interaction
between gut microbiota and host immunity and these nets in IBD
pathogenesis have been discussed and summarized in many
authoritative reviews.

The development of in vitro intestinal organoid culture and
single-cell RNA sequencing technology proffer improved
techniques to better understand the interaction between ISC
and immune cells (33–35). For example, activated ILC3s produce
IL-22, which acts on ISC to induce intestinal epithelium
regeneration through STAT3 signals (35). A recent study also
demonstrates that ISC fate is modulated by interactions between
ISC and T cells. IL-10 produced by regulatory T (Treg) cells
increased the ISC numbers, while IL-13 and IL-17 produced by T
helper (TH) cells resulted in the expansion of differentiated cells
and depletion of the ISC pool (33). Hence, this review paper
addressed the regulation of immune cells such as T cells, ILCs,
dendritic cells, and macrophages on ISC fate and function within
the scope of future therapeutic approaches in IBD.
INTESTINAL STEM CELL NICHE

The intestinal epithelium constantly renews by sequential
proliferation and differentiation (5), from ISC to progenitor
cells, to special types of epithelial cells for the purpose of
maintaining gut homeostasis (5, 7). The ISC niche provides the
microenvironment required to maintain ISC proliferation and
differentiation. In this niche, multiple cells provide cellular signals
that promote ISC function and also ensure that they have
sufficient turnover to differentiate into a normal epithelial
barrier against the development of tumor cells. Currently, the
use of intestinal organoids helps to advance our understanding the
composition of the ISC niche environment (36). From studies,
both stromal cells and Paneth cells supply complex paracrine
signals, including Wnt, Notch, BMP, and Hedgehog, that mediate
the interactions between ISC proliferation and differentiation (37).
Additional data have proven the implications of immune cells in
gut homeostasis (36). Communication between immune cells and
intestinal epithelial cells serves as the key mediators that preserve
the integrity of the gut system (2, 38, 39). For instance, tissue-
resident immune cells are involved in the regeneration of the
intestinal cells (2, 33, 40). Altogether, further advancements in
the in vitro ISC-immune cell co-culture system will clarify the
complex mechanisms, through which the intrinsic factors of
immune cells regulate ISC fate.
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Intestinal Mesenchymal Cells
Intestinal mesenchymal cells, such as fibroblasts, myofibroblast,
endothelial cells, and smooth muscle cells, have provided both
structural support as well as factors such as Wnt ligands and
BMP antagonists that regulate ISC activities. The depletion of
Foxl1+ mesenchymal cells in a recent experiment caused ISC
dysfunction due to decreased WNT signals that eventually led to
intestinal failure in mice (41). In a similar study, Gli1+

mesenchymal cells are the source of WNT2B and are essential
for the function of ISC (42). A significant characterization of the
ISC niche is the origins of various types of mesenchymal cells
(like WNT2B, R-spondin 1, Gremlin 1, and CD34 +). The
aforementioned studies established the relevance of the
mesenchyme cells for supplying WNT ligands, BMP inhibitors,
and R-spondins.

Besides that, there is a bidirectional relationship between
epithelial-mesenchyme. The intestinal epithelium stimulates
the hedgehog signaling pathway through the activation of the
ligands in the surrounding mesenchyme as a mechanism to
promote the growth of both the mesenchyme and smooth muscle
cells during development in the adult organism (43). Likewise,
other intestinal mesenchymal cells, such as interstitial cells of
Cajal and PDGFRa-positive fibroblast-like cells, exist in the
muscle layer of the gut (44). The two cells and the intestinal
plexus form a network so as to warp the digestive tract as well as
many resident macrophages that fix on the same site. Overall,
there is a call to further investigate the humoral factors that
underlie the connections between these stromal cell groups in the
gastrointestinal muscle layer and ISC in the mucosal layer.

Paneth Cells
The development of ISC-derived intestinal organoid culture
proved the ISC niche could function independently in the
absence of mesenchymal cells (45). In the small intestinal crypt,
Paneth cells are adjacent to ISC and provide the necessary niche
signals in their environment (18). Antimicrobial peptides
secreted by Paneth cells, for example, are integral to the defense
of the ISC niche (46, 47). Moreover, Paneth cells express multiply
signaling molecules such as WNTs and the Notch ligands, which
are essential for the maintenance of the ISC niche (17). The
functions of these signals are explicit; however, the importance of
the Paneth cells in the ISC niche is controversial. Atoh1 (also
known as Math1, Hath1 in mouse and human respectively) is
considered a part of the Notch signaling pathway and regulates
Notch-based ISC fate decisions (48). Previous studies have
reported that the ablation of Paneth cells in Atoh1-/- mice did
not affect ISC proliferation (49, 50). The findings argued that the
presence of EGF and WNT could mediate the Notch signaling
as alternatives to Paneth cells. Unfortunately, Sox9 or Gfli1
gene knockout in mice depletes Paneth cells but results in the
loss of ISC (51–53). In a similar study, the diphtheria-toxin
receptor gene is knocked into the murine Reg4 locus to
eliminate crypt base goblet cells. In the large intestine, Reg4+

crypt base goblet cell acts as the marker of the Paneth cell
functions. Ablation of crypt base goblet cells not only results in
the loss of ISC from colonic crypts but also disrupts colon
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homeostasis and organoid growth (54). Nevertheless, some
researchers opine that gene-knockout mice might not be an
ideal model to justify whether Paneth cells are key to the ISC
niche. On this notion, there is still the need to elucidate whether
Paneth cells are integral to the maintenance of ISC niche
homeostasis in future studies.

Immune Cells
The knowledge about the connections between ISC and immune
cells is expanding with the development of in vitro intestinal
organoid culture and single-cell RNA sequencing technology.
Recent findings implicate immune cells in the regeneration of the
gut (2, 33, 40). Cytokines secreted from immune cells also
participate in ISC regulation (33–35). Thus, this section will
review the functions of immune cells such as T cells, ILCs,
dendritic cells, and macrophages, as well as cytokines secreted by
these cells in the ISC niche (Figure 2) (Table 1).

Immune Cell-Organoid Co-Culture Model Systems
The use of experimental animal models has enhanced our
understandings of the intricacies of many biological processes.
Unfortunately, the complex nature of the physiology of these
models renders it challenging to study the mechanisms that
underlie the interactions between intestinal epithelial cells and
Frontiers in Immunology | www.frontiersin.org 4221
immune cells. As a result, intestinal organoid culture system (45,
65) in vivo models are designed to investigate this research gap
because they are applicable to disease modeling, drug
development, and in vitro (66) studies of cellular differentiation
(Figure 3A). ISC-derived organoids contain all types of
differentiated epithelial cells that allow for proliferation and
differentiation of intestinal epithelium under defined
conditions. Co-culture models of intestinal organoids with
different immune cell types enable in vitro studies of these
complicated interaction networks (Figure 3B).

T Cells
T cells found in the gastrointestinal tract, on the one hand, are
contributing to the immunity of the intestine, and on the other
hand, are promising targets for immune-mediated intestinal
damage therapy. Recent studies demonstrated that both CD4+

and CD8+ T cells had the potential to mediate injury to the ISC
compartment in graft-versus-host disease model. The disease-
causing T cells, after bone marrow transplantation (BMT)-
mediated GI damage, targets the ISC niche as the primary site
in the intestine under three-dimensional imaging examination
(67). In addition, the recruitment of disease-causing T cells to the
crypt base region resulted in the loss of ISC that expresses both
the major histocompatibility complex class (MHC) I and II (67).
FIGURE 2 | The link between the intestinal stem cells and immune cells. The role of immune cells such as T cells and ILCs, as well as cytokines secreted by these
immune cells on the regulation of ISC function. Treg cells (IL-10) promote ISC renewal, while TH1 (IFNg), TH2 (IL-4, IL-13), and TH17 cells (IL-17A) suppress ISC
renewal and promote differentiation; TH1(IFNg) and TH2 (IL-4, IL-13) cells promote specific differentiation toward Paneth cells and tuft cells, respectively; donor T cells
(IFNg) act on ISC by triggering apoptosis in GVHD; MHCII is important for interactions between ISC and T cells. ILC2s (IL-4, IL-13) promote specific differentiation
toward goblet cells and tuft cells; ILC3s (IL-22) promote ISC proliferation through STAT3 signals; protect ISC against genotoxic stress. IL, interleukin; IFNg, interferon
g; ISC, intestinal stem cell; ILC, innate lymphoid cell; TH, T helper; Treg cells, regulatory T cells; GVHD, graft versus host disease, MHCII, major histocompatibility
complex II; STAT3, signal transducer, and activator of transcription 3.
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In a similar report, another study explored the changes in the ISC
niche using T cell-mediated injury in graft-versus-host disease
(GVHD) model in vivo and intestinal organoid-T cell co-culture
in vitro (55). This study showed that both ISC and Paneth cell
numbers per crypt were markedly decreased in mice that
received bone marrows or allogeneic T cells. In comparison,
these mice showed a notable increase in the density of both T
cells associated with lamina propria and intraepithelial in the
crypt region (55).

Recently, scientists have investigated the co-culture of human
and murine intestinal organoid-T cells to understand the
molecular mechanisms that potentially cause the loss of ISC in
disease models. Murine alloreactive T cells significantly reduced
intestinal organoid numbers, whereas human allogeneic CD8+

cytotoxic T cells inhibited the efficiency of intestinal organoids.
Moreover, CD4+ T cell-derived IFNg directly induced ISC
apoptosis through JAK/STAT signaling in the absence of
Paneth cells (55). Altogether, these data broaden our
knowledge on the interaction between immune cells and ISC,
thus presents ISC as direct targets of IFNg produced by T cells in
immune-mediated gut damage. In the future, the inhibition of
JAK/STAT signaling could be a new therapeutic approach to
ameliorate GVHD-induced gut damage when the effects of T
cell-derived IFNg on ISC are taken into account.

Meanwhile, a recent study reported that organoids derived
from fetal intestine were utilized to explore the interactions
between the epithelial cell and immune cell in fetal
development (68). Single-cell RNA sequencing in a recent
report identified a population of CD4+ effector memory T cells
(56). These Tem cells could secrete tumor necrosis factor a
(TNF-a) (56). In line with this idea, Schreurs et al. used human
fetal intestinal organoids-CD4+ Tem cells co-culture model to
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examine the role of TNF-a on epithelial cells. Their results
revealed that through TNF-a mediation, low numbers of fetal
intestinal CD4+ Tem cells enhanced the proliferation of ISC,
while on the contrary, high numbers of fetal intestinal CD4+ Tem
cells impaired ISC function (56). The detrimental effects of a
high dose of TNF-a on ISC development were consistent
with observations in infants suffering from necrotizing
enterocolitis (56).

The interaction between ISC and T helper (TH) cells
contributes to ISC function and intestinal epithelial
remodeling, as reported in a recent publication (33). This
study utilized single-cell RNA sequencing to identify the
subsets of Lgr5+ ISC that could highly express MHCII
molecule. In vitro studies with intestinal organoids
demonstrated that ISC expressing MHCII has the greatest
antigen-presenting ability in intestinal epithelial cells.
Moreover, MHCII mediated the communication between the
TH cells and these ISC, which led to TH cells activation in an
antigen-presenting manner (33). Intestinal organoids were co-
cultured with various TH cell subsets or specific marker cytokines
to observe effects on ISC in order to further elucidate ISC and T
helper (TH) cells interactions. Supplementation with pre-
activated TH2 cells or IL-14 and IL-13 resulted in the depletion
of the ISC pool. Similarly, co-culture with pre-activated TH1 and
TH17 cells, or cytokines secreted by these cells, such as IFNg and
IL-17, led to the decrease in the number of ISC but increase the
number of transit-amplifying cells. On the contrary, co-culture
with regulatory T (Treg) cells or IL-10, however, led to the
expansion of the ISC pool (33). In another report, ISC co-
culture with human T cells resulted in the in vitro maturation
of human pluripotent stem cell-derived intestinal organoids
(hIOs), which identified IL-2 as the key factor that induced the
TABLE 1 | The link between the intestinal stem cells and immune cells.

Immune cell
type

Cytokines Research models Function in ISC Refs

TH1 cells IFNg TH1 cells/IFNg-IOs co-culture
models

Suppress ISC renewal and promote specific differentiation toward Paneth cells (33)

TH2 cells IL-4, IL-13 TH2 cells/IL-4, IL-13-IOs co-culture
models

Suppress ISC renewal and promote specific differentiation toward tuft cells (33)

TH17 cells IL-17A TH17 cells/IL-17A-IOs co-culture
models

Reduce ISC renewal and promote differentiation (33)

Treg cells IL-10 Treg cell/IL-10-IOs co-culture models Promote ISC renewal (33)
T cells IFNg GVHD model in vivo and T cell-IOs

co-culture model in vitro
Act on ISC by triggering apoptosis (55)

Fetal CD4+

Tem cells
TNF-a Fetal Tem cells-IOs co-culture model Low doses of TNF-a promote the proliferation of fetal ISC, high levels of TNF-a

induce fetal ISC apoptosis and reduce ISC populations
(56)

ILC2s IL-4, IL-13 Activated ILC2s-IOs co-culture
model

Promote specific differentiation toward goblet cells and tuft cells (57–
59)

ILC3s IL-22 Activated ILC3s/IL-22-IOs co-culture
models

Promote ISC proliferation through STAT3 signals; protects ISC against genotoxic
stress

(34,
35, 60)

Jurkat T cells IL-2 Jurkat T cells/IL-2-hIOs co-culture
models

Induce the maturation of hIOs through STAT3 signals (61)

Macrophages IL-6, IL-8, IFNg,
and TGFb1

Macrophages-IOs co-culture models Maintain the ISC niche in the small intestine; enhance the maturation of the
intestinal epithelium, and thickening the physical barrier

(62,
63)

DCs IL-1b, IL-6, IL-15,
and IL-17A

Bone marrow-derived DCs-IOs co-
culture models

NF-kB2 signaling in organoids modulates
enterocyte responses to secreted factors from bone marrow-derived DCs

(64)
January 2021 | Volume 11 | Article
IL, interleukin; IFNg, interferon g; ISC, intestinal stem cells; IOs, intestinal organoids; ILCs, innate lymphoid cells; TH, T helper; Treg cells, regulatory T cells; DCs, dendritic cells; GVHD, graft
versus host disease; STAT3, signal transducer and activator of transcription 3; TNF, tumor necrosis factor; Tem, T effector memory; hIOs, Human pluripotent stem cell-derived intestinal
organoids; STAT3, signal transducer and activator of transcription 3.
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maturation via signal transducer and activator of transcription 3
(STAT3) signaling (61). Their additional data also demonstrated
that co-culture with IL-2 could increase the expression levels of
mature intestinal markers as well as the intestine-specific
functional activities in hIOs (61).

The deduction from the above studies suggests that ISC and T
cell interactions directly participated in the regulation of ISC fate.
ISC, in particular, is capable of sensing T cells via MHCII
interactions, which could lead to T cells activation. Therefore,
more studies are required to further clarify the nexus between
intestinal immunity and intestinal epithelial barrier function.

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) act as critical regulators
of intestinal mucosal immunology and are crucial for
maintaining gut homeostasis and epithelium barrier integrity
(69). ILCs are divided into three major groups according to the
cytokines they produce, their phenotype, and their
developmental pathways such as ILC1s, ILC2s, and ILC3s (70).
Several studies have associated ILCs-secreted cytokines with the
fate of ISC activities. Specifically, IL-22 was found to regulate the
maintenance and differentiation of ISC (35, 60, 71, 72) as well as
its protection against DNA damage (34). Many studies have
identified that IL-22 plays a critical role in the repair of the
intestinal epithelium during DSS-induced colitis (73–75). To
date, the mechanisms of IL-22 involvement in the regulation of
Frontiers in Immunology | www.frontiersin.org 6223
ISC fate are still poorly understood; however, it is known that
ISC could express IL-22 receptor (7, 60). IL-22 was associated
with the intestinal epithelial repair of GVHD and BMT, where
allogeneic T cells inhibit ISC functions (35, 60). Mechanistically,
IL-22 could activate the STAT3 signaling pathway in Lgr5+ ISC
and promote the maintenance and differentiation of ISC without
relying on Paneth cells (60). IL-22 improved not only the survival
of ISC but also its proliferation after irradiation, which is
essential to the regeneration of damaged epithelium (35). This
knowledge suggests that the IL-22-STAT3 axis might be a
potential target for the therapy of IBD, and in addition, as a
strategy to protect against the side effects of therapies from high
intestinal toxicity, such as BMT and GVHD. However, one latest
study challenged the perceptions of IL-22 as a beneficial cytokine
in IBD (76). The study described that in colonic epithelial cells,
IL-22 induced endoplasmic reticulum (ER) stress response and
transcriptional program. In CD patients, IL-22-responsive
transcriptional modules and ER stress response modules are
highly expressed in the colon. Blocking IL-22 ameliorated
colonic epithelial ER stress and attenuated the IL-22-
dependent model of chronic colitis in mice (76). This evidence
thus offered new insights that IL-22 acts as a double-edged sword
in chronic intestinal inflammation.

Environmental genotoxic factors can also induce mutations of
ISC, which contribute to cancer development and malignant
transformation (77–79). The DNA damage response (DDR) acts
A

B

FIGURE 3 | Intestinal organoid–immune cell co-culture models. (A) Crypts are isolated from the intestinal tissue and then embedded into Matrigel with culture
medium. Intestinal organoids are formed by crypts. (B) Several intestinal organoids and immune cells and/or cytokines co-culture systems have been established.
Treatment of organoids with cytokines is used to estimate the effect of immune cell-derived cytokines on intestinal epithelial cells (especially ISC). Organoids are
digested to single cells and then co-cultured with immune cells, which is used to assess the interaction of immune cells and epithelial cells. The addition of (activated)
immune cells, such as innate lymphoid cells or T cells, to complete organoids is used to estimate the interactions between epithelial cells and immune cells.
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as an evolutionarily conserved response pathway at the cellular
level to maintain genome integrity in ISC (80). A recent
publication showed that IL-22, mainly produced by ILC3s and
gd T cells in the intestinal mucosa, is a critical conditioner of the
DDR pathway in colon stem cells (CSCs) (34). IL-22 effectively
activated the DDR in CSCs by expressing the IL-22 receptor after
DNA damage. When IL-22 signals were deprived, ISC exposed to
carcinogens exhibited significant mutations that could likely lead
to the development of colon cancer (34). In addition, some
metabolites of glucosinolates were the primary source of
genotoxic stress in the intestinal epithelium, which act as
ligands of the aryl hydrocarbon receptor (AhR) to mediate the
production of IL-22 in ILC3s and gd T cells through AhR-
mediated signaling (34). Moreover, in our previous study, we
established intestinal organoids and lamina propria lymphocytes
(LPLs) co-cultured system to explore the protective effect of
Lactobacillus reuteri on integrity of intestinal mucosa. We
demonstrated that Lactobacillus reuteri metabolite indole-3-
aldehyde stimulated LPLs to secret IL-22 and promoted ISC-
mediated intestinal epithelial regeneration (72).

Group 2 innate lymphoid cells (ILC2s) also affect ISC fate. For
instance, IL-13 produced by ILC2 has been demonstrated to
accelerate the differentiation of goblet cells in the intestinal
organoid model. In addition, IL-33 secreted by intestinal
epithelium was shown to promote IL-13 production by ILC2s
(81). Furthermore, several publications have shown that the
differentiation of tuft cells, which is responsible for type II
immune responses, was regulated by IL-4 and IL-13 in
intestine (57–59). It is quite interesting to investigate the links
between the intestinal immune system and epithelium mediated
by tuft cells. For example, tuft cells function as immune sentinels
that respond to the presence of parasites in the intestine.
Additionally, succinate derived from helminth induced tuft
cells to secrete IL-25 (59, 82). Furthermore, IL-25 recruits
ILC2s in intestinal mucosa thereafter stimulates these cells to
secrete IL-4 and IL-13, resulting in the removal of parasitic
worms through increased mucus production from hyperplastic
goblet cell (59). Even as these studies demonstrated that IL-4 and
IL-13 produced by ILC2s generated more differentiated epithelial
cells such as goblet and tuft cells in the intestine, there is still the
need to explore further direct interaction between ILC2s and ISC
as well as underlying molecular mechanisms.
Other Immune Cells
Macrophages and dendritic cells exist throughout the lamina
propria of the gut and contribute to innate and adaptive
immunity, thus maintaining gut homeostasis. The co-culture of
intestinal organoids with macrophages and dendritic cells has
also been successfully performed to study complex networks
between immune cells and ISC (62–64). Macrophages have been
shown to promote mucosal repair through activation of Wnt-
signaling in a mouse model of IBD (83). A recent study
demonstrated that colony-stimulating factor 1 (CSF1)-
dependent macrophages in the gut wall are essential to
maintain the ISC niche in the small intestine (62). It also
suggested that CSF1 treatment has the potential to restore the
Frontiers in Immunology | www.frontiersin.org 7224
intestinal epithelial barrier following damage caused by
inflammation and chemotherapy. In another study, a human
enteroid-macrophage co-culture model was built to investigate
host gut-pathogen interactions (63). In this study, cytokines
secreted by macrophages such as IL-6, IL-8, IFNg, and TGFb1
might contribute to the potential roles of macrophages in
enhancing the maturation of the intestinal epithelium and the
thickening of the physical barrier (63). Similarly, Jones et al.
demonstrated that cytokines released by bone marrow-derived
dendritic cells could modulate intestinal barrier integrity,
intestinal cell proliferation, and cell death through NF-kB2
signaling (64). Despite the fact that these studies expand our
knowledge about the immune cell-ISC interactions, we must
realize that these networks may be far more complicated than we
currently understand.
CYTOKINE-BASED IMMUNE THERAPY IN
INFLAMMATORY BOWEL DISEASE

As a chronic inflammatory disease, IBD is mainly induced by
immune dysfunction in the intestinal immune system.
Specifically, intestinal immune cells, such as T cells,
macrophages, dendritic cells, and ILCs, regulate the intestinal
homeostasis via producing multiply cytokines (29). In previous
studies, cytokines have direct links with the pathogenesis of IBD
and are implicated in the modulation of intestinal inflammation
and clinical symptoms of IBD (29, 30) (Table 2). IL-2-/- and IL-
10-/- mice developed spontaneous colitis, which highlighted the
critical roles of cytokines in IBD (30). In addition, studies in the
1990s demonstrated that the administration of anti-
inflammatory cytokines could prevent IBD (110), and IL-12 (a
pro-inflammatory cytokine) antibody could be used for the
therapy of colitis (117) in mouse models. In the following
decades, some supporting studies revealed that intestinal
immune cells (such as mucosal effector T cells, Treg cells, ILCs,
and dendritic cells) could produce multiple pro-inflammatory
and anti-inflammatory cytokines in response to environmental
factors in patients with IBD and mouse models of colitis.
Moreover, the development of mucosal inflammation is
regulated by the balance between pro-inflammatory and anti-
inflammatory cytokines in the intestinal mucosa of patients with
IBD (29). As a result, scientists have made great efforts in recent
years to explore the efficacy of anti-inflammatory cytokines and
neutralizing antibodies for pro-inflammatory cytokines in the
clinical therapy of IBD.

The effects of many anti-inflammatory cytokines (such as IL-
10, IL-11, and IFNb) on the treatment of IBD have shown little
promise so far (118–120). However, anti-TNF therapy
(infliximab) poses to improve clinical symptoms and
inflammation of the intestinal mucosa when administered to
patients with CD (121). The introduction of drugs (such as
golimumab, adalimumab, and certolizumab pegol) has
positioned anti-TNF therapies as potent treatments for both
UD and CD (27, 28, 122). Another pro-inflammatory cytokine,
IL-6, is discovered to be participating in IBD pathogenesis.
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Circulating IL-6 and its agonistic IL-6-soluble receptor were
increased in IBD patients (123). Previous studies revealed that
the anti-IL-6 receptor antibody, tocilizumab, and IL-6 antibody,
PF-04236921 yielded high clinical responses in Crohn’s disease
patients (89, 124). On the contrary, neutralization of other pro-
inflammatory cytokines such as IL-17A (with secukinumab) and
IFNg (with fontolizumab) had no beneficial effect on the
treatment of CD (104, 125). In addition, only a subset of
patients was able to record successful clinical outcomes after
anti-cytokine therapies and cytokine signaling inhibitions (126–
128). These studies suggest that the mucosal inflammation in
patients with IBD is regulated by a complex network of cytokines
in the intestinal mucosal community. These cytokine networks
are vulnerable to intrinsic factors such as genetic, microbial, and
immune systems during immune perturbation in IBD patients
(29). Besides that, researchers should also consider the variation
in the underlying mechanisms that could possibly induce
intestinal inflammation among patients with IBD.

Multi-cytokine inhibitors that block multiple pro-
inflammatory cytokine signals such as JAK-STAT signaling
pathways could be used to improve the therapeutic effect in
IBD. For example, JAK inhibitor (tofacitinib) has recently been
demonstrated to be effective against UC but have no effect on CD
in the initial clinical studies (128, 129). Therapeutics strategies
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that could be able to neutralize two or more pro-inflammatory
cytokines have already been used e.g. Ustekinumab, which blocks
IL-12/IL-23 (130). Clinical trials have shown that therapies
targeting IL-23 are effective not only in CD but also in UC (99,
100). Another effective therapy could be personalized treatment
for individual IBD patients as a way to enhance the therapeutic
effect and minimize potential side effects. Nevertheless, detailed
serum markers or cytokines levels of patients need to be tested in
order to accomplish this goal. For example, a recent study used
fluorescent molecular imaging of anti-TNF antibodies to predict
CD response to biological therapy (131). However, more
experimental validations are required before this technique can
be put into clinical practice. Under this condition, new optimized
ways for the delivery of targeted therapeutic drugs to the lesion
region of the inflamed mucosa should be explored. In previous
study trials, for instance, oral delivery of anti-TNF Nanobody
and IL-27-producing lactobacilli attenuated experimentally
induced colitis in mice (132, 133).

Over the last 3 decades, molecular mechanisms of cytokine
biology in IBD have been explored mainly in experimental
animal models and clinical studies, leading to their successful
translation into drug targets. This provides a new possibility for
the control of IBD symptoms and the long-term remission of
IBD. Despite significant advances, cytokine therapies are only at
TABLE 2 | Selected key cytokines in inflammatory bowel disease.

Cytokine The source in
the intestine

Disease Potential function in IBD Therapeutic targets in IBD

IL-1 Macrophages
and
neutrophils

UC, CD Enhances IL-6 production by macrophages, stimulates
ILCs and promotes tumor development

Anti-IL1Ra ameliorates DSS colitis (84);IL1-RA (case study) (85, 86)

IL-6 Macrophages,
fibroblasts,
and T cells

CD Activates T cells, inhibits apoptosis, accelerates
proliferation of epithelial cells, and supports tumor
growth

Anti-IL6R ameliorates TNBS, Il10-/- and T cell transfer colitis (87, 88);
anti-IL6R and anti-IL6 (clinical improvement) (89, 90)

IL-10 T cells CD Inhibits pro-inflammatory cytokine production by APCs
and T cells, induces STAT3 signals in Treg cells

IL-10-producing L. lactis ameliorates Il10-/- and DSS colitis (91);
recombinant IL-10 (no effect) (92) and IL-10-producing L. lactis (safe)
(93)

IL-13 T cells and
iNKT cells

UC Regulates intestinal barrier functions Anti-IL-13 suppresses disease in an oxazolone-induced model of colitis
(94); Anrukinzumab and tralokinumab
(efficacy currently unknown) (95)

IL-12,
IL-23

Macrophages
and DCs

CD Activates mucosal immune cells such as T cells and
ILCs, enhances cytokine production such as TNF-a

Anti-IL-12p40 and anti-IL-23p19 ameliorate Helicobacter hepaticus-
induced innate colitis and Il10-/- colitis (96–98); anti-IL-12p40 and anti-
IL-23p19 (clinical improvement in CD and UC) (99–101)

IL-17A T cells and
ILCs

CD Mediates pro-inflammatory and anti-inflammatory
effects and induces pro-fibrotic functions

Anti-IL-17A aggravates DSS colitis (102) but ameliorates Il17f-/- T cell
transfer colitis (103); anti-IL-17A (104) and anti-IL- 17RA (105) (no
effect)

IL-18 Macrophages,
DC and
epithelial cells

UC,
CD

Enhances the production of pro-inflammatory cytokines
in gut

Anti-IL-18 ameliorates DSS colitis (106); rhIL18BP (case study) (107)

IL-22 gd and ab T
cells, ILCs and
DCs

UC,
CD

Induces production of antimicrobial peptides and
proliferation of epithelial cells, favors tumor
development via STAT3 activation

IL-22 application ameliorates TCRa-/- and DSS colitis (108, 109)

TNF Macrophages,
DCs, and T
cells

UC,
CD

Induces pro-inflammatory cytokine production and
angiogenesis, induces death of intestinal epithelial cells,
mediates T cell resistance against apoptosis

Anti-TNF ameliorates T cell transfer colitis (110); anti-TNF (approved for
UC and CD) (111–113)

IFNa,
IFNb

DCs UC Arguments intestinal epithelial regeneration and induce
IL-10-producing cells

Recombinant IFNb (no effect) (114, 115)

IFNg T cells and
ILCs

CD Activates macrophages, induces death of intestinal
epithelial cells

Anti-IFNg (no effect) (116)
IL, interleukin; IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, Crohn’s disease; DCs, dendritic cells; ILCs, innate lymphoid cells; DSS, dextran sodium sulfate; Treg cells,
regulatory T cells; APCs, antigen-presenting cells; STAT3, signal transducer and activator of transcription 3; TNF, tumor necrosis factor; IFN, interferon; rmIL18RB, recombination
interleukin 18 receptor beta subunit.
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the early stage, which renders it unsafe for human clinical trials.
In other words, more in-depth and systematic researches tailored
to specific disease conditions will be required for making
informed deductions about cytokine dynamics and
mechanisms of actions in order to better understand the
potentials of cytokine therapies for clinical translations.
INTESTINAL STEM CELL THERAPY IN
INFLAMMATORY BOWEL DISEASE

New data showed that inflamed mucosa healing could be a new
target for the improvement of clinical symptoms, disease
recurrence, and resection-free survival in IBD treated patients
(134–136). In line with this idea, TNF-a inhibitor (a biological
agent) gave rise to mucosal healing from a portion of IBD
patients, which signifies tremendous progress in IBD therapy
(137). However, several patients did not respond to these
biological agents—this challenge underlies the need to discover
new approaches for achieving mucosal healing in IBD. For the
case of patients that do not respond to biological agents,
transplantation of ISC to the inflamed mucosa may be a new
therapeutic approach to reconstruct the epithelial barrier in IBD.
Over the past 2 decades, studies have indicated that
mesenchymal stem cells (MSCs) and hematopoietic stem cells
(HSCs) transplantation or transfusion have beneficial effects on
IBD patients. A series of trials have been performed to
demonstrate the effectiveness of MSCs transplantation in the
treatment of the luminal and fistulizing type of CD. Allogeneic
and autologous transfusion of MSCs could improve the
symptoms of luminal CD patients with low risk of adverse
events (138–143). Moreover, a latest clinical trial proved that
allogeneic bone-marrow derived MSC therapy is effective and
safe in luminal CD patients (144). Therefore, MSCs
transplantation seems to be an effective and safe treatment for
a portion of CD patients. In contrast, HSC transplantation
(HSCT) cannot be recommended due to frequent serious
adverse events (145), although some clinical trials using HSCT
showed a certain effect on the treatment of IBD (146–149).
Nevertheless, a latest retrospective study indicated that
autologous HSCT is relatively safe and effective for refractory
CD patients (150). Therefore, whether HSCT can be used
as a good alternative therapy for refractory CD patients
remains controversial.

ISC, which is responsible for intestinal epithelial regeneration,
can be cultured and produced organoids in vitro (45). Organoids
are similar to the intestinal epithelium in vivo, with crypt and
villus domains, including various epithelial cell types derived
from ISC (18). This has made the transplantation of intestinal
organoids into the inflamed mucosa successful, thereby
accelerating the healing of the inflamed mucosa (68, 151).
Further studies showed that organoids derived from the fetal
intestine or the adult small intestine are also able to engraft onto
the damaged epithelium of the colon, but shows the difference in
their ability to adapt to the surrounding environment through a
mechanism of cell plasticity (152). A recent study also
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demonstrated that human intestinal organoids could accelerate
the damaged mucosa healing of immunodeficient mice (153).
Hence, we suppose that ISC transplantation into the inflamed
mucosa provides a new therapeutic approach to reconstruct the
epithelial barrier in IBD (Figure 4). To reduce the risk of
tissue rejection, ISCs can be collected from healthy intestinal
mucosa in IBD patients through the endoscopic biopsy, and then
expanded in vitro by the established organoid culture method.
Moreover, when ISC is harvested endoscopically and enriched in
vitro, genetic mutations associated with colorectal cancer should
be screened because it might increase the risk of malignant
transformation in the intestine after engraftment. After
growing them to a desired number of cells, they can be
transplanted onto the target site through an endoscopic
delivery method. Presumably, considering the links between
ISC and immune cells, we predict that the integration of
biological agents and ISC transplantation will revolutionize the
future therapy of IBD patients.

However, further researches and several technical
developments are required to enable such a treatment. The
development of culture protocol aimed at maximizing ISC
yield has been studied over the past decades in order to
enhance successful regenerative applications (154).
Prostaglandin E2 and CHIR99021 were used as case studies to
promote in vitro proliferation and colonic stem cell expansion
(155, 156). Besides, recent studies demonstrated that immune
cells and cytokines secreted by these cells are tightly involved in
the regulation of ISC fate, which could be applied to advance the
regeneration of ISC, both in vivo and in vitro. Therefore,
additional studies need to verify whether the elements of the
regenerative applications of human ISC are non-toxic to tissues.
Moreover, at the clinical level, we currently do not know exactly
what the best index is to evaluate the clinical effect of organoid
transplantation and which kind of IBD patients may most benefit
from such a treatment.

A large number of clinical trials should be performed to
answer these key questions in the future. Finally, on a large-scale
perspective, the recombinant proteins added to the culture
medium of ISC are too expensive for widespread use in the
clinic. It is essential to make the protocols for culturing human
ISC cost-effective.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Intestinal organoids derived from ISC provide promising models
to investigate the close and complex interactions between
immune cells and intestinal epithelial cells, especially the ISC.
Studies in the past showed that T cells and ILCs have critical
effects on ISC fate and function (33–35, 55–58, 60, 61). Note that
MHC molecules are expressed on the surface of Lgr5+ ISC,
meaning that these cells may consistently contact gut-resident
T cells and act as antigen-presenting cells to activate T cells.
Furthermore, cytokines could directly promote or restrict ISC
proliferation, differentiation, and apoptosis, which makes them
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critical mediators in the maintenance or destruction of the
intestinal epithelial barrier. Overall, the ISC-immune cell axis
provides new insight into the mechanism by which immune cells
regulate ISC to preserve or restore the intestinal homeostasis.
Although current studies largely expand our knowledge about
the immune cell-ISC axis, we must recognize that the interaction
between the ISC and immune cells could be much more complex
than what we understand to date. Such studies in the future will
open up a new research frontier for investigations into the
biology of intestinal inflammatory diseases, such as IBD.

The key objective of IBD therapy is to heal the inflamed
mucosa so as to improve its clinical symptoms, disease
recurrence, and resection-free survival in patients (134–136).
Unfortunately, the cross-talk among intestinal epithelial cells and
immune cells complicates the maintenance and regeneration
(such as mucosal healing) of the epithelial barrier. Despite the
complexity of the underlying mechanisms, the successful
mucosal healing from a portion of IBD patients highlights the
progress made in the biological therapeutic treatment of IBD
(137). For the case of patients that do not respond to biological
agents, transplantation of ISC to the inflamed mucosa may be a
new therapeutic approach to reconstruct the epithelial barrier in
IBD. Finally, considering the links between ISC and immune
cells, we predict that the integration of biological agents and ISC
Frontiers in Immunology | www.frontiersin.org 10227
transplantation will revolutionize the future therapy of
IBD patients.
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FIGURE 4 | Intestinal stem cell therapy strategy in IBD. Intestinal crypts and ISCs can be harvested endoscopically from healthy intestinal mucosa in IBD patients,
and then expanded in vitro by the established organoid culture method. After growing them to a desired number of cells, they can be transplanted onto the target
site through an endoscopic delivery method. ISC, intestinal stem cell; IBD, inflammatory bowel disease.
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The diet represents one environmental risk factor controlling the progression of type 1
diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which
specific nutritional components promote or prevent the development of disease could be
used to make dietary recommendations in prediabetic individuals. In the current study, we
hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is
found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic
(NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon
receptor (AhR), a transcription factor that when systemically activated prevents T1D. In
NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine
but minimal systemic AhR activity. In the absence of this systemic response, the dietary
intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR
activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic
draining lymph nodes. Instead, dietary I3C increased the percentage of
CD4+RORgt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer’s
patches of the small intestine. The immune modulation in the gut was accompanied by
alterations to the intestinal microbiome, with changes in bacterial communities observed
within one week of I3C supplementation. A transkingdom network was generated to
predict host-microbe interactions that were influenced by dietary I3C. Within the phylum
Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified
Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we
validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial
dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data
demonstrate that site of AhR activation and subsequent interactions with the host
microbiome are important considerations in developing AhR-targeted interventions for T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is characterized by uncontrolled
hyperglycemia resulting from autoimmune-mediated
destruction of insulin-producing beta cells. Unlike other
immune-mediated diseases that can be treated by combatting
the underlying inflammatory response, T1D is generally
diagnosed after the majority of beta cells have been destroyed.
Early interventions targeting risk factors that influence T1D
progression could negate the need for life-long insulin
replacement (1). In genetically susceptible individuals, the diet
is among the external factors known to influence the rate of T1D
development (2, 3). The influence of diet on T1D is thought to
reflect modulation of mucosal immune responses, intestinal
permeability, and microbiome diversity (4–7).

One dietary component that has been shown to modulate
autoimmune disease development is ligands that activate the aryl
hydrocarbon receptor (AhR) (8). AhR modulates many aspects
of the autoimmune response and is also becoming known as a
major regulator of gut homeostasis (9). Several studies have
shown that AhR activation by high affinity ligands suppresses
immune-mediated diseases, including T1D (10–14). However,
the immunological outcome of dietary AhR ligand intake could
be unpredictable due to the heterogeneity of ligands, their AhR
affinity, and amount consumed. While a diet rich in AhR ligands
would be predicted to mimic the studies showing the therapeutic
benefit of high affinity ligands in preventing the progression of
T1D, it is possible that consumption of a diet low in AhR ligands
could contribute to T1D progression. This concern arises based
on our recent studies demonstrating that a low level of AhR
activation can lead to the differentiation of Th17 cells instead of
Tregs (15), which could promote, rather than prevent T1D
progression (16–19).

Indole-3-carbinol (I3C), is a dietary AhR ligand precursor
formed as a hydrolysis product of glucobrassicin, a compound
found in cruciferous vegetables such as broccoli, kale, and brussel
sprouts. I3C is further broken down by the acidic environment in
the stomach into dimers, trimers and tetramers, some of which
have high affinity for the AhR (20). Intake of I3C has been
estimated at 0.1–1.6 mg/kg (21); I3C intake would be lower in
individuals who avoid cruciferous vegetables, and higher in those
who consume a cruciferous rich diet or who take widely available
I3C supplements. The impact of dietary I3C on the inflammatory
response has been studied in several C57BL/6 murine models
including DSS-induced colitis (22, 23), Citrobacter rodentium-
induced intestinal inflammation [ (24), Clostridium difficile
infection (25), and food allergy (26)]. Even with the varying
I3C doses used in these studies (ranging from 150–2,000 ppm),
I3C supplementation activated AhR and reduced the associated
immunopathology. In addition to direct effects on the intestinal
immune response, supplementation of the diet with I3C also
strongly shifts the gut microbiome composition (22, 23, 27).
Although dietary I3C led to activation of AhR in each study, the
specific changes in microbiota diversity varied between studies
and occurred by both AhR-dependent and independent
mechanisms. Thus, I3C alters gut health through two
Frontiers in Immunology | www.frontiersin.org 2233
interacting pathways, by modulating the immune response and
the microbiota.

Since both of these pathways can influence T1D progression
(5, 28), in the present study we use the non-obese diabetic
(NOD) mouse model of autoimmune diabetes to study the
effects of dietary supplementation with I3C on gut immune-
microbe interactions, and subsequent development of insulitis.
MATERIAL AND METHODS

Animals
NOD/ShiLtJ (NOD) mice were obtained from The Jackson
Laboratory and maintained in the specific pathogen-free
animal facility at Oregon State University. NOD.AhR-/- mice
were generated by backcrossing B6.129-AHRtm1Bra/J onto the
NOD/LtJ background for more than 13 generations. All
experiments used female littermate-matched mice. All animal
procedures were carried out following protocols approved by the
Institutional Animal Care and Use Committee at Oregon
State University.

Preliminary Oral Gavage Studies
Cl-BBQ (11-chloro-7H-benzimidazo[2,1-a]benzo[de]Iso-
quinolin-7-one; Chembridge) or I3C (Sigma) were dissolved in
DMSO-Cremaphor-Peceol (30%:20%:50%) by sonicating in a 37
degree water bath for 1 h. Female NOD mice were administered
200 ul of Cl-BBQ (45 mg/kg), I3C (250 mg/kg) or the vehicle
control by oral gavage. Mice were sacrificed at 6 and 24 h after
oral gavage to measure AhR activation.

Dietary I3C
NODmice were fed normal chow until 7 weeks of age when they
were transitioned to either a synthetic diet (AIN93M; Research
Diets) alone or supplemented with 2,000 ppm I3C. Mice were
maintained on these diets through the remainder of the study (12
weeks). Food consumption was tracked daily by weighing the
remaining food for the first week of the study and then weekly
from weeks 8 to 12. Body weight was likewise measured daily for
the first week and then once a week for the remainder of the
study. Two independent experiments containing three or four
individual birth cohorts were conducted.

Real-Time PCR and Cyp1a1 Measurement
The liver and small intestine were removed from mice and stored
in RNAlater for immediate stabilization prior to RNA isolation
using RNeasy Mini Kit (Qiagen). cDNA was synthesized using the
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). qPCR reactions were performed on an Agilent
Stratagene Real-Time PCR system (Applied Biosystems) using
SYBRGreen/ROXMaster Mix from SA Biosciences. Cyp1a1 levels
were normalized to Actb using primers from SA Biosciences.

Assessment of Disease Progression
Insulitis was scored on sequential hematoxylin and eosin (H&E)
stained pancreas sections separated by 200 mM with at least 50
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islets scored per pancreas. Islets were scored as no infiltration,
less than 50% infiltration or greater than 50% infiltration.

Cell Isolation and Flow Cytometry
At 12 weeks of age, mice were sacrificed, pancreatic lymph node
(PLN), spleen, and the small intestine were excised. Single cell
suspensions were prepared from the spleen, PLN, and Peyer’s
Patches by mechanical disruption between frosted slides.
Splenoyctes were further processed by hypotonic red blood cell
lysis. Isolation of lamina propria (LP) cells and intraepithelial
lymphocytes (IEL) from the small intestine was performed as
previously described (29). Briefly, Peyer’s patches were excised
and the epithelial layer of the small intestine was isolated through
sequential washes in a 5 mM EDTA and 0.145 mg/ml DTT
solution while stirring at 37°C. LP cells were isolated from the
remaining intestinal tissue by mincing and digesting the tissue
using 0.2 U/ml Liberase TM and 0.05% DNase while shaking at
37°C. The digested tissue was washed three times with a 3% FBS
solution and successively filtered after each wash through two 70
mm filters and one 40 mm filter in preparation for cell staining.

Cells were stained with fixable viability dye (eBioscience), Fc
receptors were blocked with rat IgG (Jackson ImmunoResearch)
and the cells were stained with the following antibodies CD45
(30-F11), CD4 (RM4-4), Nrp1 (3DS304M) from eBioscience,
Lag3 (C9B7W), CD25 (PC61) and CD210 (1B1.3a), CD8 (53-
6.7) from BD Biosciences and Tim3 from Biolegend. For
intracellular staining, cells were fixed and permeabilized using
the Foxp3 Fixation/Permeabilization buffer (eBioscience) and
stained with Tbet (4B10) and Foxp3 (FJK168) from eBioscience,
and RORgt (Q31-378) from BD Biosciences. For cytokine
staining in splenoyctes, cells were stimulated with PMA,
ionomycin, brefeldin A, and monensin (eBioscience) for 4 h in
culture and stained with IFNg (XMG1.2), IL-10 (JES5-16ES), IL-
22 (1H8PWSR) from eBioscience and IL-17 (TC11-18H10) from
BD Biosciences.

Data were acquired on a Cytoflex flow cytometer (Beckman
Coulter). Data were compensated and analyzed using FlowJo
(Treestar) software. Fluorescence minus one (FMO) controls
were used for setting gates for analysis.

16S rRNA Gene Sequencing Analysis
For microbial measurements, fresh stool pellets were collected at 7,
8, and 12 weeks of age and immediately stored at -80°C. To extract
microbial DNA, frozen fecal pellets were resuspended in 1.4 ml
ASL buffer (Qiagen) and homogenized with 2.8 mm ceramic beads
followed by 0.5 mm glass beads using an OMNI Bead Ruptor
(OMNI International). DNA was extracted from the entire
resulting suspension using QiaAmp mini stool kit (Qiagen)
according to manufacturer’s protocol. DNA was quantified
using Qubit broad range DNA assay (LifeTechnologies).

The primers 319F and 806R were used to amplify the V3-V4
domain of the 16S rRNA using a two-step PCR procedure. In
step one of the amplification procedure, both forward and
reverse primers contained an Illumina tag sequence (bold), a
variable length spacer (no spacer, C, TC, or ATC for 319F; no
spacer, G, TG, ATG for 806R) to increase diversity and improve
the quality of the sequencing run, a linker sequence (italicized),
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and the 16S target sequence (underlined). In step two, each
sample was barcoded with a unique forward and reverse barcode
combination using forward primers (AATGATACGG
CGACCACCGAGATCTACACNNNNNNNNTCGTCGG
CAGCGTC) with an Illumina P5 adapter sequence (bold), a
unique 8 nt barcode (N), a partial matching sequence of the
forward adapter used in step one (underlined), and reverse
primers (CAAGCAGAAGACGGCATACGAGATNNNN
NNNNGTCTCGTGGGCTCGG) with an Illumina P7 adapter
sequence (bold), unique 8 nt barcode (N), and a partial matching
sequence of the reverse adapter used in step one (underlined). The
final product was quantified on the Qubit instrument using the
Qubit Broad Range DNA kit (Invitrogen) and individual
amplicons were pooled in equal concentrations. The pooled
library was cleaned utilizing Ampure XP beads (Beckman
Coulter) then the band of interest was further subjected to
isolation via gel electrophoresis on a 1.5% Blue Pippin HT gel
(Sage Science). The library was quantified via qPCR followed by
300-bp paired-end sequencing using an Illumina MiSeq
instrument in the Genome Center DNA Technologies Core,
University of California, Davis. The QIIME 2 (30)
bioinformatics pipeline (v. 2018.8.0) was used to demultiplex
and quality filter the forward-end fastq files. Denoising was
performed using DADA2 (31). The raw data can be accessed at
NCBI Sequence Read Archive (SRA) (Accession #PRJNA679964).

Data Pre-Processing
Host parameters were first normalized by birth cohort. Host
parameters that were analyzed in both independent experiments
were subsequently normalized across the two studies. For
microbial data, after excluding amplicon sequence variant
(ASV) singletons, a threshold of 99.5% cumulative abundance
across all samples in both experiments was used to select the
most abundant ASVs for downstream analysis. Following this,
ASVs were relativized per million and quantile normalized (per
experiment), then log2 transformed for downstream analysis.

Reconstruction of Transkingdom Network
The network analysis has been performed as described in
previous papers (32, 33), except for the minor modifications
outlined below. Spearman rank correlations were conducted for
all experimental groups (Control and I3C for each of the two
experiments) between all pairs of ASVs and host parameters.
Edges that did not demonstrate the same sign of correlation
direction (positive or negative) across all groups and those that
were not compliant with causality principles (34) were removed.
Similarly, those edges that did not contain nodes consistent in
fold change direction across experiments were also removed. The
metacor function of the meta package [v 4.12-0 (35);] in R (v
3.5.1) was used to calculate the fixed effect model p-values based
on Fisher’s Z-Transformation of proportions of the correlations
across the four groups. Prior to calculating FDRs, the
correlations between microbiota and phenotypes were first
filtered for those that had an individual p-value <0.6 across all
groups, with the exception of the PP_RORgt+Foxp3-
<==>ASV21 and IEL_RORgt+Foxp3-<==>ASV290 edges
(FDR = 0.135 for both). These two additional edges were kept
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in the network despite not passing individual p-value thresholds
due to the high biological importance of the RORgt+Foxp3- cell
populations. Therefore, we checked for edges connecting to that
cell population that barely missed making the network. FDR was
then calculated on the correlation p-values for each of the
following groups: (1) between microbes; (2) between microbes
and host parameters; (3) between host parameters. Microbe-host
parameter edges with an FDR < 0.15 were retained in the
network. Edges between microbiota were required to have an
FDR < 0.05 while those between host parameters were required
to have an FDR <0.1.

Network Analysis
Networks were visualized using Cytoscape v3.7.2 (36). Silva IDs
were used in labeling the important microbes (as determined by
their high normalized bipartite betweenness centrality [BiBC]
and degree). The Python module NetworkX v2.2 was used to
calculate BiBC and degree between groups, as well as to
randomly generate the 10,000 networks used in validating the
BiBC and degree results. BiBC values were calculated as
previously described (32), then normalized by the number of
nodes in each group. The 10,000 binomial random (Erdos-
Renyi) networks were generated from the G(m,n) ensemble
with m = 221 (to match the number of edges in the real
network) and n = 109 (the number of nodes). The 2D contour
histogram BiBC-degree distribution was plotted using the online
tool Plotly (https://plot.ly/). Probability density was used as a
measurement of the likelihood of randomly finding a node with
the given BiBC and degree (or higher). A large value (i.e. a dark-
colored space in the contour map) indicates that a node in that
area typically occurs in random networks size-matched to the
network generated from the data.

Statistical Analysis
With the exception of the network analyses, statistical analyses
were performed using Graphpad Prism. For insulitis and host
parameters, data were normalized by birth cohort/littermates.
For comparing two groups, a Student’s t test was performed. For
multiple comparisons, one-way ANOVA with Tukey’s test was
used. P <0.05 was considered statistically significant. All plotted
data points represent an individual mouse.
RESULTS

Dietary I3C Strongly Activates AhR in the
Intestine but Induces Limited Systemic
AhR Activation
Activation of the AhR by I3C supplementation has not been
previously studied in NOD mice. To determine the extent by
which I3C can induce AhR activation, we first measured
activation following oral gavage with I3C as compared to Cl-BBQ,
a high affinity AhR ligand previously shown to suppress T1D in
NODmice (10, 12). In C57BL/6 mice, 250 mg/kg of I3C (or dietary
equivalent) is on the higher range of previously reported doses used
to activate the AhR (22–24, 26, 27, 37) [; higher doses (> 500mg/kg)
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of I3C are associated with neurotoxicity and increased mortality
(20)]. To account for the AhRd allele, which has a ~10 fold lower
sensitivity to AhR ligands (12, 38), a dose 250 mg/kg I3C was
chosen to maximize AhR activation and minimize toxicity.

NOD mice were administered I3C by oral gavage and Cyp1a1
induction was measured in the liver, pancreatic lymph node, and
small intestine (duodenum, jejunum, and ileum). AhR response
elements upstream of Cyp1a1 make it a highly sensitive target of
AhR and, as a result, the induction of Cyp1a1 is a commonly
used biomarker for AhR activation (39). The positive control, Cl-
BBQ, resulted in sustained Cyp1a1 induction in the liver and
pancreatic lymph nodes at 6 and 24 h post-oral gavage. In
contrast, I3C only resulted in transient Cyp1a1 induction,
which was 4- and 20-fold lower in the liver and pancreatic
lymph node, respectively, at 6 h post-oral gavage. By 24 h after
I3C administration, Cyp1a1 was back to baseline (Figure 1A).
Furthermore, I3C did not induce Cyp1a1 in the duodenum,
jejunum, and ileum of the small intestine following oral gavage
(Figure 1B).

In contrast to gavage administration, one week of diet
supplementation with I3C (2,000 ppm, equivalent to 250 mg/
kg/day based on food consumption) was capable of inducing
strong Cyp1a1 in the small intestine (median of ~1,000-fold
increase; Figure 1C). However, as with oral gavage, AhR
activation was likewise limited systemically following dietary
exposure. Given the apparent lack of systemic AhR activation
following dietary I3C supplementation, it was difficult to predict
how it would impact T1D pathogenesis. However, the ability of
I3C to induce Cyp1a1 locally in the intestine (Figure 1D),
provided an unexpected opportunity to determine how AhR
activation in the gut alters the development of T1D.

Dietary I3C Exacerbates Insulitis in
Nonobese Diabetic Mice
To determine if strong AhR activation in the intestine was
sufficient to suppress insulitis, NOD mice were fed a diet
supplemented with 2,000 ppm I3C from seven to twelve weeks
of age, during which time insulitis is known to progress.
Initiating the dietary regimen at this timepont was selected to
correspond to the treatment timing in our previous studies with
Cl-BBQ and TCDD (10). At seven weeks of age, NOD mice were
randomized by litter, cage, and weight then assigned to a control
or I3C-diet fed group (Figure 2A). Mice fed an I3C-
supplemented diet showed no difference in food consumption
or body weight compared to control mice (Figures 2B, C). Mice
averaged 2–2.5 g of food/week resulting in an average exposure of
190–260 mg/kg/day of I3C.

At 12 weeks of age, mice were euthanized and islet infiltration
was scored in the sectioned pancreas. Unexpectedly, mice given
the diet supplemented with I3C had significantly increased
insulitis. The increase in insulitis was primarily a reflection of
the significant increase in the percentage of islets per pancreas that
were heavily infiltrated (50% infiltration, p < 0.05) in mice fed the
I3C-supplemented diet; the percentage of islets with <50%
infiltration was unchanged between treatment groups. This
pattern was observed in two independent experiments (Figure 2D).
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Dietary I3C Increases Th17 Cells in the
Intestine
Th17 cells and Tregs (Foxp3+ and Tr1) are targets of AhR activation
and implicated in promoting and inhibiting the autoimmune
destruction of beta cells, respectively (16, 18, 19, 40–42).
Therefore, alterations in markers representing CD4+ T cell helper
subsets were examined in the spleen, pancreatic lymph node, Peyer’s
patches, the small intestine lamina propria, and the small intestine
intraepithelial cells. Significant increases were found in CD4+Foxp3-

RORgt+ Th17 cells in the lamina propria (2.3-fold increase),
intraepithelial layer (2.7-fold increase), and Peyer’s Patches (1.6-
fold increase; Figures 3A–D). A subset of lamina propria
CD4+Foxp3- cells expressing high levels of RORgt expressed the T
cell activation marker CD25+ and were significantly increased as
well (1.7-fold increase; Figure 3E). Confirming that dietary I3C
increased Th17 cells, LPL cells from a subset of mice were
stimulated with PMA/ionomycin and IL-17 was measured by
flow cytometry (Figure 3F). No significant changes in Tr1 cells,
Th1 cells, and Th17 cells were found in the spleen or pancreatic
lymph nodes, although a trend toward increased Th17 cells was
observed in the PLN (Supplementary Figure 1), consistent with the
minimal AhR activation at these sites. While the majority of
significant changes in immune cell markers were identified in the
intestine, some minor yet significant populations were changed in
the spleen. Significant changes in all analyzed populations are listed
in Figure 3G.

Dietary I3C Alters the Gut Microbiome
Since modulation of immune cell populations in the gut by
dietary I3C can arise from AhR-mediated changes in gut
A B

D
C

FIGURE 1 | Dietary I3C strongly activates AhR in the intestine but not systemically. Cyp1a1 expression was measured in the liver and pancreatic lymph node of
NOD mice following treatment with either I3C (250 mg/kg) or Cl-BBQ (45 mg/kg) at 6 and 24 h post-oral gavage (A) and in the small intestine 6 h post-oral gavage
(B). (C) Cyp1a1 was analyzed after one week of dietary I3C (2,000 ppm) in the indicated organs. (D) Comparison between local (ileum) and systemic (liver) AhR
activation by Cl-BBQ (gavage), I3C (gavage), and dietary I3C.
A
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FIGURE 2 | Dietary I3C exacerbates insulitis in NOD mice. (A) Schematic of
experimental design. From 7 to 12 weeks of age, NOD mice were maintained
on a synthetic AhR ligand-free diet or diet supplemented with 2,000 ppm I3C.
Stool samples were collected at 7, 8, and 12 weeks of age (at the time of
sacrifice). Food consumption (B) and body weight (C) were measured
weekly. (D) In two independent experiments, insulitis was scored as no
infiltration, less than 50%, and greater than 50% of islets infiltrated. Data are
presented as the average from each mouse per group. Experiment 1: n = 9
mice/group; Experiment 2: n = 7–8 mice/group. *p < 0.05.
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microbiota diversity, we examined whether dietary I3C altered
gut microbial composition in NOD mice. Stool samples were
collected prior to the dietary intervention at 7 weeks of age, after
one week of the diet, and at the time of sacrifice at 12 weeks
of age.

Within one week of starting the new diets, there was a strong
shift in the microbial communities of both groups of mice fed
the synthetic control diet or the I3C-supplemented diet (Figures
4A, B). Samples from mice in the control diet group and, to a
greater extent, the I3C-supplemented diet group separated from
the 7 week samples on the PC1 axis, which accounted for 50–58%
of diversity in two independent experiments. Samples collected
from the control diet group separated from the I3C-
supplemented group on the PC2 axis, which accounted for 12–
17% of diversity. Interestingly, changes in microbial diversity
were established within the first week of the synthetic diet
(Figure 4A).

At the phylum level (Figure 4C), the synthetic diet, regardless
of supplementation, reduced the abundance of Tenericutes and
increased Verrucomicrobia. The samples from mice fed the I3C-
supplemented diet diverged from the control-diet group with an
increase in Proteobacteria and Verrucomicrobia. In both NOD
mice and patients with T1D, an increased ratio of Bacteriodetes
Frontiers in Immunology | www.frontiersin.org 6237
to Firmicutes is implicated in the development of T1D (5).
Consistent with dietary I3C increasing insulitis, there was a
significant increase in the ratio of Bacteriodetes : Firmicutes at
12 weeks of age in mice fed the I3C supplemented diet (Figure
4D). This corresponded with a positive trend (p = 0.06) between
the Bacteriodetes : Firmicutes ratio and percentage of islets with
greater than 50% infiltration (Figure 4E).
Transkingdom Network Analysis Identifies
Bacteria in the Genera Intestinimonas,
Ruminoclostridium, and Unclassified
Lachnospiraceae as Key Responders to
Dietary I3C
To begin to identify which ASVs may be implicated in the
immunological changes that arose following dietary I3C, we
constructed a transkingdom network. Transkingdom networks
have been successfully used to tease out causal interactions
between mammalian host phenotypes and their colonizing
microbiota (43). Here, the transkingdom network (Figure 5A)
was constructed by computing correlations between host factors
(hexagons) that significantly changed in mice fed the I3C-
supplemented diet (Figure 3G) and ASVs identified at 12
A
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GC

FIGURE 3 | Dietary I3C increases Th17 cells in the intestine. Representative gating strategy (A) and population frequency of Th17 cells in the small intestine lamina
propria (B, E), Peyer’s patches (C), and intraepithelial layer (D). A subset of lamina propria cells were stimulated with PMA/ionomycin and stained for IL-17 (F). Table
of significant changes in all analyzed populations (G). *p < 0.05; **p < 0.01; ***p < 0.001.
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weeks of age (circles). The network retained 108 nodes (red:
increased and blue: decreased in I3C treated mice) and 221 edges,
of which there were 179 positive correlations (red lines) and 42
negative correlations (blue lines).

The network was then interrogated to predict which host
factors and microbes were most likely to play a role in the
response to dietary I3C. We calculated two properties of the
nodes, degree and bipartite betweenness centrality (BiBC)
(Figure 5B); degree is the number of nodes each individual
node interacts with, and measures the direct impact of one node
has on other parameters in the system; bipartite betweenness
centrality calculates the number of times the node lies in the
shortest path connecting two groups of nodes (host parameters
and ASVs). A node with a high BiBC acts as a bottleneck and
thus is a regulator between processes of the system. Collectively
nodes with high degrees and centrality are predicted to be critical
in defining host-microbe interactions that are involved in the
response to I3C. By plotting bipartite betweenness centrality and
degree, we identified three ASVs, one with a high BiBC
(Intestinimonas) and two with both high BiBC and high degree
(Ruminiclostridium 9 and unclassified Lachnospiraceae) which
likely regulate the abundance of other gut microbes.
Intestinimonas, Ruminiclostridium, and Lachnospiraceae were
decreased in I3C treated mice and are members of phylum
Firmicutes. On the host side, two parameters showed high
BiBC, intraepithelial CD4+RORgt+Foxp3- cells (Figure 3D)
and CD4+CD25+Foxp3-RORgt(high) lamina propria cells
(Figure 3E) and therefore likely influence or are influenced by
microbial interactions.
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The statistical importance of these five nodes was further
validated by randomly generating 10,000 networks and
comparing the degree and BiBC of these specific nodes to
those in a randomly generated model. Indeed, the degrees and
BiBC of the five nodes had a low probability of occurring
randomly (Figure 5C).

While Ruminiclostridium 9, Intestinimonas, and Lachnospiraceae
likely play a role in host interactions, it is unclear if their change in
abundance was due to, or resulted in, changes in the intestinal
immune response after I3C treatment. Therefore, we looked at the
temporal abundance of these microbes (Figures 5D–F). Within one
week of switching from the normal chow diet to the synthetic diet
there was an increase in abundance in both Ruminiclostridium 9 and
Intestinimonas regardless of I3C supplementation. However, the
increase in abundance of Intestinimonas was larger in the control
group in comparison to the I3C-diet group, and this pattern
remained through 12 weeks of age. In contrast, the comparatively
lower abundance of Ruminiclostridium 9 was not significant until 12
weeks of age. The transition from the normal diet to the synthetic
diet did not significantly alter the abundance of the unclassified
Lachnospiraceae ASV, however supplementation with I3C depleted
the abundance of this family at both 8 and 12 weeks of age. The
immediate differential abundance in Intestinimonas and
Lachnospiraceae may reflect a primary response to AhR-mediated
changes in the gut immune system, whereas the delayed reduced
abundance in Ruminiclostridium 9 may be secondary to changes in
microbial composition.

Since I3C could alter colonization with Firmicutes directly or
indirectly of AhR intestinal activation, we verified if the abundance
A B

D E

C

FIGURE 4 | Dietary I3C alters the gut microbial community. (A, B) Principle coordinate analysis of microbiome composition of stool samples collected prior to the
dietary intervention at 7 weeks of age, after one week of the diet (8 weeks, experiment 1 only), and at the time of sacrifice at 12 weeks of age. (C) Phylum
composition in mice fed a control or I3C-supplemented diet. (D) Ratio of Bacteriodetes to Firmicutes. (E) Correlation between severe insulitis and Bacteriodetes to
Firmicutes ratio in control-diet (solid circles) and I3C-diet (open circles) fed mice. *p < 0.05.
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of these bacteria were affected by genetic manipulation of AhR
expression. To ensure relevance of this experimental group for
effect on diabetes, we used NOD AhR knockout mice at 12 weeks
of age when approximately 60% of islets are infiltrated, but prior to
clinical manifestations. Among the three above mentioned
microbes, only Intestinimonas showed lower abundance with
gene dosage. Accordingly, gut colonization by the only member
of the Intestinimonas genus detected in these mice, was found in
33% of wildtype mice and 50% of heterozygous mice were
colonized with Intestinimonas, 80% of their knockout littermates
Frontiers in Immunology | www.frontiersin.org 8239
were colonized (Figures 5G, H). Taken together, Intestinimonas
abundance is negatively regulated by AhR and therefore the
decrease in this genus is likely to be an effect of I3C-mediated
AhR signaling in the intestine.
DISCUSSION

As a molecular switch between opposing immune responses
(regulatory and inflammatory), activation of the AhR can either
A

B
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C

FIGURE 5 | Transkingdom network analysis identifies key host-microbe interactions. (A) Correlation network of ASVs (circles) and phenotypes (hexagons). Node color
indicates the average median fold change (red is increased, blue is decreased) across all experiments. ASV node size indicates the average abundance of the ASV across
both experiments. Edge color represents the average spearman correlation coefficient (red is positive, blue is negative) across all experimental groups. (B) BiBC-degree
distribution of all nodes in the network, the highest of which are marked. Blue are ASVs and orange are phenotypes. (C) 2D-contour histogram of the nodes with highest
BiBC and degree from 10,000 randomly generated networks. Darker areas indicate higher probabilities of randomly finding a node with that degree and BiBC.
(D–F) Temporal abundance of Lachnospiraceae, Ruminiclostridium 9, and Intestinimonas at 7, 8, and 12 weeks of age after treatment of I3C. (G) Abundance of
Intestinimonas in NOD AhR knockout mice at 12 weeks of age. (H) Percentage of mice colonized with Intestinimonas. *p < 0.05; **p < 0.01; ***p < 0.001.
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protect from or promote the development of immune-mediated
diseases. Understanding how immune modulation is impacted
by different AhR ligands, their routes of administration, and their
biodistribution is important for determining if AhR ligands may
act as an environmental risk factor for T1D development, and/or
how AhR can be exploited as a target for T1D treatment. In the
current study we found that gut-localized AhR activation by I3C
increased Th17 cells and exacerbated T1D in NOD mice, in
contrast to our previous findings that systemic AhR activation by
Cl-BBQ and TCDD reduced Th17 cells and prevented the
development of T1D (10, 44). These results suggest that the
site of AhR activation influences the outcome of CD4+ T
cell differentiation.

These contrasting effects on CD4+ T cell differentiation do not
appear to be a consequence of the extent of AhR activation.
Using an alloresponse model, we previously found that if you can
normalize the extent AhR activation, CD4+ T cell differentiation
follows a predictable pattern. Low levels of AhR activation
promote Th17 cells and high levels promote Tr1 cell
differentiation (15). While dietary I3C only led to limited AhR
activation in the periphery in comparison to Cl-BBQ, the
opposite occurred in the small intestine; dietary I3C induced
~2,000-fold higher induction of Cyp1a1 than Cl-BBQ in the
ileum. By strongly activating Cyp1a1 in the small intestine, it is
possible that the AhR activating catabolites of I3C (e.g. ICZ),
were rapidly metabolized, inducing feedback control
that prevented systemic distribution (45). Despite inducing
an environment where I3C led to strong local AhR activation,
Th17 cells were increased in the intestine. The organ site of
AhR activation (intestine vs periphery) with different
microenvironments, cell composition, and architecture may be
a missing variable controlling the outcome of AhR-signaling in
CD4+ T cells.

While systemic Th17 cells are implicated in the development of
T1D (17–19, 41), it is less clear how intestinal Th17 cells impact
disease development. Their role during T1D is further complicated
by studies in which intestinal Th17 are ascribed both
proinflammatory and homeostatic properties. These differing
functionalities may be dependent on how intestinal Th17 cells
develop in concert with the microbiome. Th17 cells appear in
mice at the time of wean corresponding to cecum development and
establishment of the microbiota (46). It is conceivable, therefore,
that initiating dietary I3C at the time of wean, rather than at 7 weeks
of age, could negate the I3C-mediated increase in Th17 cells. One
study in germ-free C57BL/6 mice, showed that Th17 cells do not
develop in the small intestine lamina propria, and fecal transfer
from SPFmice restored IL-17 production. In contrast, a study found
that germ-free NOD mice have both increased Th17 cells and Th1
cells resulting in exacerbated insulitis (47). By comparing diabetes
incidence in multiple housing facilities, it was found that
colonization with segmented-filamentous bacteria (SFB) could
be used to stratify an increase in Th17 cells and reduced T1D
incidence (48). The protective effect of SFB requires a diverse
microbiota, as monocolonization with SFB does not protect from
T1D (49). Of note, AhR regulates SFB colonization (50), although
SFB was not present in our mouse colony during the current
Frontiers in Immunology | www.frontiersin.org 9240
study. A recent paper by Omenetti et al. poses that these
contradictory findings are due to the presence of two different
types of resident Th17 cells, homeostatic (which can be generated
from SFB) and inflammatory (which can be generated from C.
rodentium) (51). The homeostatic Th17 cells play a role in barrier
protection and have a limited metabolic program whereas the
inflammatory Th17 cells produce IFNg and are able to migrate
into the periphery. Therefore, the functionality of Th17 cells
depend on their interaction with specific microbes, and may
explain the conflicting literature on gut Th17 cells and
T1D pathogenesis.

Intestinal Th17 cell differentiation following AhR activation may
proceed through both direct CD4+ T cell signaling and indirectly
through AhR-mediated modulation of the gut microbiome. AhR is
highly expressed in Th17 cells. Under Th17 differentiating
conditions AhR activation, in combination with Stat3, activate
Aiolos, inhibiting IL-2, and promoting Th17 differentiation (52).
Th17 differentiating conditions are present in the intestine
originating from microbial metabolites (including AhR ligands),
microbe-mediated PRR activation, and microbial-secreted ATP,
where binding to purinergic receptors expressed on LP dendritic
cells along with TLR activation increases Th17-skewing IL-6 and
TGF- b production (53, 54) Microbial activation of the NLRP3/IL-
1b signaling pathway can also induce intestinal Th17 polarization
(55), although, interestingly, AhR signaling has been shown to
negatively regulate inflammasome activation (56). Thus, it likely
that a combination of (and sometimes opposing) Th17-promoting
factors could be implicated in the dietary I3C-mediated increase in
intestinal CD4+RORgt+Foxp3- cells in NOD mice.

In our study, dietary I3C strongly skewed the gut microbial
community and increased the Bacteriodetes : Firmicutes ratio. In
mouse studies, this increased ratio is positively correlated with T1D,
and prediabetic children have an increased abundance of
Bacteriodetes (5, 57, 58). However, the utility of using this ratio as
predictive for T1D development is inconsistent, and is further
complicated by the site of bacteria collected for analysis. Fecal
bacteria (as measured in this study), have higher abundance
of Bacteriodetes compared to cecal content (59). Using a
transkingdom network analysis, we identified three genera
belonging to the Firmicutes phylum that are predicted to be
involved in the immune modulation by dietary I3C, Intestinimonas,
Ruminiclostrdium 9 and unclassified Lachnospiraceae. Based on their
network properties and follow up studies in AhR knockout mice, we
predict that Intestinimonas is directly regulated by AhR activation,
whereas Ruminiclostridium 9 and Lachnospiraceae may be altered
indirectly in response to AhR-host-microbe interactions. All three of
the bacteria identified as key contributors to the network are butyrate
producers (60–62); butyrate helps promote intestinal integrity and
increases Tregs. NOD mice fed a diet that increases butyrate
production by the gut microbiota had decreased insulitis (63).
Butyrate-mediated protection from T1D corresponded with
tolerized DCs and an increase in Tregs in the colon but not in the
pancreatic lymph node. The protective role of butyrate is consistent
with the reduction in butyrate-producing bacteria in mice given
dietary I3C. Interestingly, a recent study showed that i.p. injection of
I3C resulted in an increase in butyrate-producing gut bacteria in a
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C57BL/6 mouse model of TNBS-induced colitis (37). I3C-mediated
resolution of disease and increase in butyrate-producing microbes
were dependent on the induction of IL-22. IL-22 has been reported as
one of the main mechanisms by which AhR can regulate the gut
microbiome and immune homeostasis (37, 50, 64–66). However, in
our study with NOD mice, I3C did not alter IL-22 expression in the
small intestine when measured by qPCR or by flow cytometry (data
not shown).

Additional differences between the AhR response in NOD and
C57BL/6 mice are highlighted when comparing our study with
findings in a model of oral tolerance. In NODmice, TCDD and Cl-
BBQ (when administered at a dose-rate to match the activation of
AhR by TCDD) prevent insulitis (10), and I3C exacerbates disease.
Conversely, in the oral tolerance model, I3C promotes oral tolerance
and TCDD breaks oral tolerance (26, 67). Interestingly, in these
C57BL/6 mice, TCDD induced an order of magnitude higher
Cyp1a1 in the small intestine compared to I3C, and led to a
small, but significant increase in Th17 cells in the mesenteric
lymph nodes. Thus, an important unresolved question is why
does I3C lead to immune regulation, expand intestinal Tregs and
promote IL-22 production in other C57BL/6 mouse models, when
the opposite occurs in NOD mice. One clue might come from a
study that looked at the impact of AhR allele on the ability of dietary
broccoli to suppress colitis. Using C57BL/6 mice that express either
the AhRb allele (wildtype, high affinity) or congenic C57BL/6 mice
with the reduced sensitivity AhRd allele (68), it was found that AhR
sensitivity determined disease outcome. In the wild type C57BL/6
mice, dietary broccoli attenuated colitis and reduced Th17 cells,
similar to the effect of I3C in colitis models. In contrast, AhRd mice
fed the broccoli-supplemented diet had a 1.6-fold increase in splenic
Th17 cells. Since NOD mice express the lower affinity AhRd allele,
(12), this genetic difference may represent an additional factor
controlling AhR-mediated CD4+ T cell modulation. The
differences in allele sensitivity may also explain contradictory
findings in regard to IL-22. In NOD mice, pancreatic islets have
defective Il22 expression compared to BALB/c (AhRb) mice despite
having similar concentrations of AhR ligands in their feces and
serum (69). Humans express an AhR with similar ligand sensitivity
to the murine AhRd allele, thus the AhRd model may be more
appropriate for predicting immune modulation in humans in
response to dietary AhR ligands.

The restriction of AhR activation to the intestine following dietary
I3C and the promotion of insulitis was unexpected. However, these
results provided new insights on the role of AhR allele sensitivity,
intestinal Th17 cells and gut microbial composition during the
development of T1D. Additionally, these findings highlight
potential risks associated with dietary I3C supplementation.
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With the epidemic of human obesity, dietary fats have increasingly become a focal point of
biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially
those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health
Examination survey; NHANES ‘What We Eat in America’ report) have multi-organ pro-
inflammatory effects. Experimental studies have confirmed some of these disease
associations, and have begun to elaborate mechanisms of disease induction. However,
many of the observed effects from epidemiological studies appear to be an over-
simplification of the mechanistic complexity that depends on dynamic interactions
between the host, the particular fatty acid, and the rather personalized genetics and
variability of the gut microbiota. Of interest, experimental studies have shown that certain
saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite
effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut
health by unanticipated pathways. Owing to the experimental advantages of laboratory
animals for the study of mechanisms under well-controlled dietary settings, we focus this
review on the current understanding of how dietary fatty acids impact intestinal biology.
We center this discussion on studies from mice and rats, with validation in cell culture
systems or human studies. We provide a scoping overview of the most studied diseases
mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in
rodent models relevant to Crohn’s Disease and Ulcerative Colitis after feeding either high-
fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally,
we provide a general outlook on areas that have been largely or scarcely studied, and
assess the effects of HFDs on acute and chronic forms of intestinal inflammation.

Keywords: fatty acids, inflammatory bowel disease, inflammation, high-fat diet, rodent model, obesity, Crohn's
disease, ulcerative colitis
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INTRODUCTION

Many regions of the world are currently affected by an epidemic
of obesity and chronic inflammatory disease in humans, which
has been, in part, attributed to excessive dietary fat intake (1). In
the United States, a ‘Western’ diet which is characteristically high
in fat, particularly saturated fats, symbolizes the link between
increased availability of fast food diets and public health risk for
inflammatory diseases (1–3). Industrialized countries have
experienced increased incidence and severity of chronic
inflammatory diseases, especially inflammatory bowel disease
(IBD), which is thought to be triggered by complex and dynamic
interactions between diet, lifestyle, host genetics, the immune
system and gut microbiota (4). The IBD subtypes Crohn’s disease
(CD) and ulcerative colitis (UC) are chronic inflammatory
disorders of the gastrointestinal tract for which there is no cure
and which, over time, often require surgical resection of affected
portions of the bowel. In the United States, 1.6 million
Americans are IBD sufferers (5) who believe that diet, chiefly
high-fat diet (HFD) triggers symptoms and flare-ups (6, 7).

Although there are overarching hypotheses linking diet and
inflammation, the specific mechanisms mediating such deleterious
effects (8), and why some individuals experience them while others
do not, are not known. Epidemiological studies have quantified the
relationship between fat intake and IBD etiology (3). For example,
consuming a diet high in animal fat or polyunsaturated fat (PUFA)
has been associated with CD (9), while high intake of
monounsaturated or polyunsaturated fats increases the risk of UC
(6). Further, obesity has been shown to increase the risk of IBD,
while IBD severity (specifically CD) has been found to be greater in
obese people (1, 2). Understanding the mechanisms of disease
processes is important because it enables the development of
strategies to promote human health.

The study of molecular mechanisms of disease in humans is
limited by the technical and ethical difficulties, making
experimental animals critical avenues for examining the
physiological effects of numerous oral and parenteral fatty acid
(FA)-derived nutrition combinations. Laboratory rodents,
namely mice, exhibit close genetic proximity to the human
genome (~90% of mouse genes being homologous to human)
(10), thus offering a specific advantage, where precise genetic
Abbreviations: AA, arachidonic acid; AdipoR1, adiponectin receptor 1; Ahr, aryl
hydrocarbon receptor; ALA, alpha linoleic acid; Akt, Protein kinase B; CD,
Crohn’s disease; Cideb, cell death–inducing DFF45-like effector b; COX,
cyclooxygenase; CLA, conjugated linoleic acid; DHA, docosahexaenoic acid;
DSS, dextran sodium sulfate; DPA, docosapentaenoic acid; EAF, energy as fat;
EPA, eicosapentaenoic acid; ER, endoplasmic reticulum; FA, fatty acid; GSH,
glutathione; GPR120, G protein-coupled receptor 120; HDACS, histone
deacetylase; HFD, high-fat diet; IBD, inflammatory bowel disease; IEL,
intraepithelial lymphocytes; KO, knockout; LA, linoleic acid; LCFA, long-chain
fatty acids; LT, leukotrienes; LPS, lipopolysaccharide; MCFA, medium-chain fatty
acids; MCP1, monocyte chemoattractant protein 1; MCT, medium-chain
triglycerides; MPO, myeloperoxidase activity; MUFA, monounsaturated fatty
acid; NFAT, nuclear factor of activated T-cells; n-3, omega-3; n-6, omega-6;
PPAR, peroxisome proliferator-activated receptor; PGE2, prostaglandin E2;
PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; SCFA, short-
chain fatty acids; Treg, T regulatory; Tconv, conventional T cell; TNBS, 2,4,6-
trinitrobenzenesulfonic acid; TLR, toll-like receptor; UC, ulcerative colitis; VDR,
vitamin D receptor; VLCFA, very long chain fatty acids.
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models of disease can be made. In addition, various rodent
models have an increased susceptibility to chronic intestinal
inflammation, which worsens with HFDs (11, 12), by
immunological mechanisms that also resemble human IBD
pathogenesis (e.g., cytokines IL-1b and TNFa, monocyte
chemoattractant protein-1 (MCP1), and keratinocyte-derived
chemokines) (12). Interestingly, recent evidence now suggests
that IBD prevention could intriguingly be achieved by specific
dietary FAs, for example, omega-3 (13). This review seeks to
summarize proposed mechanisms of disease modulation by
dietary FAs, with the ultimate objective to compile peer-
reviewed evidence on the mechanisms that could trigger
divergent pro- and anti-inflammatory responses.
METHODS OF SEARCH

This study was based on a scoping review of published evidence
conducted by our group to assess the effects of dietary fats on
IBDs in laboratory rodents (rats and mice), and the mechanisms
associated with the observed clinical effects on the animal gut.
Using systematic search of peer-reviewed reports in PubMed, we
identified rodent studies which used a wide array of spontaneous
and chemically-induced models of IBD. The data on the type of
dietary fats and their direct effect on IBD were extracted from
183 relevant articles published since 1970. We performed an
open-term search in PubMed to identify secondary citations.
Separate investigators took part in the search and the
examination of selected final articles. The initial search
assessed all full-text available titles, with the advanced search
inclusion criteria of “dietary fat” plus one of the following:
inflammatory bowel disease, ulcerative colitis, or Crohn’s
disease. The extracted data were assessed for quality and
categorized based on the mechanisms associated with either
prevention or exacerbation of disease in experimental animals.
The data were synthesized for each FA and presented to include
chemical structure, the basic nomenclature, and an overview of
its effect on intestinal inflammation, followed by a section
describing mechanistic principles of modulation.
CHEMICAL STRUCTURE OF FATTY ACIDS

Understanding basic chemical features of dietary fat is
important, considering that the pro- or anti-inflammatory
effects of FAs are largely dependent on the saturation and
length of the FA acyl chains. It is worth emphasizing that any
dietary fat, be it animal- or plant-derived, reflects a complex
combination of FAs and other molecules that vary with
plantation cultivars (e.g., palm tree varieties) and is not always
addressed in studies (14–16).

Fatty acids are carboxylic acids that act as principal
components of fats such as butter and oils. Fatty acids
comprise of a large group of structurally diverse compounds
which allows wide range of FA responses to temperature and
utilization by the body. Fatty acids are comprised of carbon
February 2021 | Volume 11 | Article 604989
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chains that are either saturated (all carbon-hydrogen bonds are
single, thus each carbon is “saturated”) or unsaturated (some
carbon-hydrogen bonds are double bonds, thus leaving some
carbons “unsaturated”, potentially allowing for saturation, or
more hydrogens to be added). Of note, FAs have potent signaling
and transcriptional regulatory activities, including in immune
cells, while microorganisms use fats primarily as structural
components in their cell walls to adapt to environmental
changes. Short and unsaturated FAs have lower melting
points vis-a-vis long and saturated FAs, and microorganisms
adjust to the environmental temperature transitions altering FA
composition and adjusting the unsaturation degree, hydrocarbon
length, phospholipid charge, and headgroup (17).

Traditionally, dietary saturated FAs have been associated with
cardiovascular disease; however, the effect of saturation on
biology depends on the length of the FA carbon chain and the
location and spatial effect of the hydrogen saturation within the
carbon chain. An overview of FAs based on saturation/carbon
chain length is described below and in Figure 1A.

Fatty Acid Length
Fatty acids are divided into four categories based on chain length:
short, medium, long, and very long. Most naturally occurring
FAs have 4–28 carbons. Short chain fatty acids (SCFA; C:2-C:5)
have less than six carbon atoms. These include volatile acetic
(C2:0), propionic (C3:0) and butyric (C4:0) FAs, which are
mainly produced via bacterial fermentation of dietary fiber in
Frontiers in Immunology | www.frontiersin.org 3246
the gut and have been extensively studied. SCFAs are beneficial
in maintaining intestinal health and considered protective
against CD (18). Medium Chain Fatty Acids (MCFAs; C:6-
C:12) are comprised of 6–12 carbons. Foods like coconut and
palm kernel oils are highly enriched with MCFAs (up to 55% of
total fat content). As part of medium-chain triglycerides (MCTs),
MCFAs are excellent sources of energy, metabolized quickly and
can potentially help in weight loss. Long Chain Fatty Acids
(LCFAs; C:13-C:21) are often referred to as free or non-
esterified FAs, i.e. not linked to glycerol backbone. LCFAs are
straight chain FAs containing ≥12 carbon atoms, with carbon
chains of 16 and 18 constituting the majority of FAs in animal
tissues and animal diets. Very Long Chain Fatty Acids (VLCFA;
≥C22:0) contain ≥22 carbons and comprise a minority of FAs in
a cell (19).

The complexity of the effects of FAs on intestinal
inflammation depends on the chemical alterations of the
carbon chain, which includes i) formation of unsaturated fatty
acids by desaturation, i.e. formation of C=C double bonds by the
dehydrogenation, which in turn cause ii) cis or trans
configurations, and iii) the addition of a methyl group branch
(branched FA) (Figures 1B, C). A comprehensive list of FAs
based on carbon chain length (e.g., C1:0), number of saturated
carbons (e.g., C16:4, for four saturated carbons), and the omega
designation (e.g., n-3, for omega-3 FA; FA with presence of at
least one saturation located three carbons away from the methyl
end) is shown in Table 1.
A B

C

FIGURE 1 | Fatty acid structure for saturated molecules. Examples of differences in fatty acid structure due to carbon length, the presence of methyl branch, and
the cis- trans- configuration. (A) Fatty acids differing based on carbon chain length. (B) Fatty acid isomers differing in the addition of methyl branch group. Isoforms
rotated to facilitate visualization. (C) cis- vs. trans- structure of a C18:4 n-3 (omega 3). Chemical designation and 2D structures are from PubChem (https://pubchem.
ncbi.nlm.nih.gov/).
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TABLE 1 | Unsaturated fatty acids and their fatty acid chain lengtha.

SCFA
(≤5 carbons)

MCFA
(6–12 carbons)

LCFA
(13–21 carbons)

VLCFA
(≥22 carbons)

Saturated
no double
bonds
(C#:0)

Formic (C1:0)
Acetic (C2:0)
Propionic (C3:0)
Butyric (C4:0)
Valeric (C5:0)

Caproic (C6:0)
Enanthic (C7:0)
Caprylic (C8:0)
Pelargonic (C9:0)
Capric (C10:0)
Undecylic (C11:0)
Lauric (C12:0)b

Tridecylic (C13:0)
Myristic (C14:0)b

Pentadecylic (C15:0)
Palmitic (C16:0)b,c

Margaric (C17:0)
Stearic (C18:0)b

Nonadecylic (C19:0)
Arachidic (C20:0)
Heneicosylic (C21:0)

Behenic (C22:0)
Tricosylic (C23:0)
Lignoceric (C24:0)
Pentacosylic (C25:0)
Cerotic (C26:0)
Carboceric (C27:0)
Montanic (C28:0)
Nonacosylic (C29:0)
Melissic (C30:0)
Hentriacontylic (C31:0)
Lacceroic (C32:0)
Psyllic (C33:0)
Geddic (C34:0)
Ceroplastic (C35:0)
Hexatriacontylic (C36:0)
Heptatriacontylic (C37:0)
Octatriacontylic (C38:0)
Nonatriacontylic (C39:0)
Tetracontylic (C40:0)

Unsaturateda

Omega n-3
(C#:0, n-3)

– Octenoic (C8:1)
Decenoic (C10:1)
Decadienoic(C10:2)
Lauroleic (C12:1)
Laurolinoleic(C12:2)

Myristovaccenic (C14:1) Myristolinoleic (C14:2) Myristolinolenic (C14:3)
Palmitolinolenic (C16:3)c Palmitidonic (C16:4)c

a-Linolenic (C18:3)b

Stearidonic (C18:4)
Dihomo-a-linolenic (C20:3) Eicosatetraenoic (C20:4)
Eicosapentaenoic (C20:5)b

Clupanodonic (C22:5)
Docosahexaenoic (C22:6)
9,12,15,18,21-
Tetracosapentaenoic (C24:5)
6,9,12,15,18,21-
Tetracosahexaenoic (C24:6)

Omega n-5
(C#:0, n-5)

– – Myristoleic (C14:1)
Palmitovaccenic (C16:1)c

a-Eleostearic (C18:3)
b-Eleostearic (trans-C18:3)
Punicic (C18:3)
7,10,13-Octadecatrienoic (C18:3)
9,12,15-Eicosatrienoic (C20:3)
b-Eicosatetraenoic (C20:4)

–

Omega n-6
(C#:0, n-6)

– – 8-Tetradecenoic (C14:1)
12-Octadecenoic (C18:1)
Linoleic (C18:2)b

Linolelaidic (trans-C18:2)
g-Linolenic (C18:3)
Calendic (C18:3)
Pinolenic (C18:3)
Dihomo-linoleic (C20:2)
Dihomo-g-linolenic (C20:3)
Arachidonic (C20:4)b

Adrenic (C22:4)
Osbond (C22:5)

Omega
n-7
(C#:0 n-7)

– - Palmitoleic (C16:1)b,c

Vaccenic (C18:1)
Rumenic (C18:2)
Paullinic (C20:1)
7,10,13-Eicosatrienoic (C20:3)

-

Omega
n-9
(C#:0, n-9)

– - Oleic (C18:1)b

Elaidic (trans-C18:1)
Gondoic (C20:1)
Erucic (C22:1)
Nervonic (C24:1)
8,11-Eicosadienoic (C20:2)
Mead (C20:3)

-

Omega n-10 – – Sapienic (C16:1) –

Omega n-11 – – Gadoleic (C20:1) –

(Continued)
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Fatty Acid Saturation
Fatty acids that have only single C-C bonds are referred to as
saturated, while FAs that contain one or more double bonds
(C=C) are referred to as unsaturated. The effects on gut health
depend on the degree of fat saturation.

Saturated FAs are derived from animal fats and plant oils,
including butter fat, meat fat, and tropical oils (palm, coconut,
palm kernel). Common dietary saturated FAs include stearic acid
(C18:0; meat, cocoa butter), palmitic acid (C16:0; palm oil, meat),
myristic acid (C14:0, cow’s milk, dairy), and lauric acid (C12:0,
coconut oil, palm kernel oil, breast milk).

Unsaturated FA can be monounsaturated FA (MUFAs), non-
essential FAs that have only one double bond, and
polyunsaturated FA (PUFAs), which have two or more double
bonds. Common MUFAs include palmitoleic (16:1, n-7), cis-
vaccenic (18:1, n-7) and oleic acids (18:1, n-9). Oleic acid [C18:1,
n-9; ~92% of MUFA consumed in the USA (20)] is the main
component of olive oil and macadamia oil. MUFAs are also
found in meat/dairy products, although these contain saturated
fats. PUFAs are long-chain FAs that include omega-3 (n-3;
presence of a double bond in the n-3 position from terminal
methyl group) and omega-6 (n-6; presence of a double bond in
the n-6 position from the terminal methyl group) FAs. Dietary
PUFAs are commonly found in animal and plant-based foods,
such as oily fish (salmon), vegetable oils (avocado), and some
nuts/seeds. n-3-PUFAs include three FA types; alpha-linoleic
acid; ALA (C18:3, n-3; plant oils), eicosapentaenoic (EPA; C20:5,
n-3) and docosahexaenoic acid (DHA; C22:6, n-3), both
common in marine oils. Of the 11 n-6-PUFAS, linoleic acid
(LA; C18:2, n-6) is the shortest-chained and, as with the n-3-
PUFA ALA, is an essential FA that cannot be endogenously
produced by mammals and thus must be obtained from the diet,
namely, plant sources (21, 22) (Figure 2).
METABOLISM OF FATTY ACIDS

Structural differences in FA length lead to differences in
absorption, transport and tissue destination. SCFAs are water
soluble, readily taken up by the cells and mitochondria, and
rapidly metabolized by the liver and other peripheral tissues
since they are direct precursors for acetyl-CoA (acetic FA),
propionyl-CoA (propionate), and butyryl-CoA (butyrate).
These CoA derivatives act as direct energy generating
molecules in the mitochondria. As the result, SCFAs generated
Frontiers in Immunology | www.frontiersin.org 5248
by the bacterial fermentation are present in very low
concentrations due to high metabolism. MCFAs are also
somewhat water-soluble and do not require transporters to
cross the inner mitochondrial membrane and thus are more
efficiently absorbed in the gut than LCFA, and more rapidly
oxidized in the liver. LCFAs absorption and metabolism are
slower since they require special lipoprotein particles
(chylomicrons) which are transported through the lymphatic
system and allow for greater uptake by the adipose tissue.
Biosynthesis of VLCFAs occurs in the endoplasmic reticulum
(ER), and unlike MCFAs and LCFAs, VLCFAs are too long to be
metabolized in mitochondria. Once inside the cell, MCFAs do
not require the carnitine shuttle to move into the mitochondria
and appear to preferentially undergo FA oxidation, whereas
LCFAs depend on the carnitine shuttle to enter the
mitochondria. When long-chain triglycerides are replaced by
MCFAs in the diet, differences in metabolic routes appear to
promote weight control by stimulating satiety and increased
energy expenditure (23).

The metabolism of FAs also depends on saturation. Both
linoleic acid (LA, n-6) and alpha-linoleic acid (ALA, n-3) share a
common metabolic pathway, wherein ALA competes with LA in
delta-6-desaturase binding, which in turn diverts metabolism
toward the n-3 PUFAs EPA, DHA and docosapentaenoic acid
(DPA; C22:5, n-3) rather than that of pro-inflammatory
arachidonic acid (AA; C20:4, n-6) (22). Following this, EPA
and AA compete as substrates for lipoxygenase and
cyclooxygenase (COX) to generate immunoregulatory
eicosanoids including prostaglandins, thromboxanes,
prostacyclins, and leukotrienes (LTs) (24). Oleic acid (C18:1,
n-9) also plays a role in the metabolism of the essential FAs,
serving as a key compound for various metabolic pathways,
which may affect disease risk, and has been suggested to compete
with LA as a substrate for enzymes involved in the linoleate
metabolism (25, 26).

The different activities of AA-derived eicosanoids (pro-
inflammatory) compared to those from EPA (anti-
inflammatory) are one of the most important mechanisms
explaining the anti-inflammatory properties of n-3-PUFAs in
inflammatory disorders. This includes the local conversion of
AA, LA, EPA and DHA by immune cells (macrophages) to
substances known as oxylipins (resolvins, protectins, lipoxins,
maresins) (27), potent anti-inflammatory bioactives that reduce
tissue inflammation and organ injury (28). Of note, AA intake is
associated with IBD development risk (29) and has been shown
TABLE 1 | Continued

SCFA
(≤5 carbons)

MCFA
(6–12 carbons)

LCFA
(13–21 carbons)

VLCFA
(≥22 carbons)

Omega n-12 – – 4-Hexadecenoic (C16:1)c Petroselinic (C18:1)
8-Eicosenoic (C20:1)

–

February 2021
aNote the differences in name designation for each fatty acid once it becomes unsaturated (fatty acids with at least one double bond). Note that there are no short-chain unsaturated FA.
Nomenclature varies with the number of unsaturated carbons.
bMost commonly studied dietary fatty acids.
cExample of a fatty acids with the same number of carbons, but with a different configuration and number of carbon saturation. That is, a fatty acid can be either saturated, unsaturated, or
classified as omega 3, 5, 6, 7, 9, etc., suggesting that the effect of said fatty acid could also vary based on metabolic alterations.
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to accumulate in the IBD colonic mucosa (30), albeit the impact
of AA and PUFA metabolism on the treatment/prevention of
mucosal inflammation remains controversial (31).
OVERALL FATTY ACID EFFECT
ON INFLAMMATION IS VARIABLE

Of interest, MCFAs have been associated with anti-microbial/
anti-inflammatory functions, whereas LCFAs have been linked
to cardiovascular diseases and obesity (17, 32). While the
approach to change diet as an intervention has varied
considerably between studies, most have involved the
replacement or supplementation of a fatty acid/fat (vs.
complete removal from diet) to study the effect on IBD
outcome. Partial or complete replacement of dietary LCFAs by
MCFAs has been shown to decrease incidence of spontaneous
colitis (33), as well confer protection against chemically-induced
gut inflammation, in part, by attenuating pro-inflammatory
cytokines and immune cell oxidative stress (enzyme
myeloperoxidase; MPO) (34, 35). However, the method of
colitis induction can influence outcome; when MCFAs were
combined with dextran sodium sulfate (DSS) to form nano-
vesicles which fused with the colonic membrane, this may have
Frontiers in Immunology | www.frontiersin.org 6249
initiated an inflammatory response, potentially confounding
results (36).

Unsaturated FAs (MUFAs, PUFAs) have been associated with
lower cardiovascular disease risk, fat mass, waist circumference,
blood pressure, and better lipid profiles (higher high-density
lipoproteins and lower triglycerides) (37–39). Saturated FAs are
associated with increased low-density lipoproteins and higher
cardiovascular disease risk, and studies show that, saturated FAs
in combination with lipopolysaccharide (LPS) of gram-negative
bacteria in the gut, stimulate innate immunity (40).

Several encouraging human and rodent studies have shown
that diets rich in n-3-PUFAs can reduce the severity of
inflammation in ileum and colon (41), in part, by reducing
oxidative stress/modifying the gut microbiota/inflammatory
pathways (42–44). Furthermore, studies suggest that partial
replacement of LA (n-6) with long chain n-3-PUFAs (at n-6:n-
3 ratio of 10) (45) or with medium-chain triglycerides improves
experimental colitis (46). Additionally, the ratio of n-3:n-6 plays
an important role in disease outcome, with a ratio of 1:3 n-3:n-6
showing the most benefit (47).

In humans, the protective effect of n-3 FAs has been
correlated with the decreased production of pro-inflammatory
cytokines, through decreased alkaline phosphatase and bile duct
injury. However, clinical trials addressing the benefit of n-3-
A

B

FIGURE 2 | Location of fatty acid saturations. Examples of fatty acids differing in the presence and location of double bond. (A) location of saturations for a C22
acid with a double bond in 3rd last carbon (omega-3, n-3). (B) location of saturations for a C20 and C22 acid with a double bond in 6th last carbon (omega-6, n-6).
Chemical designation and 2D structures are from PubChem (https://pubchem.ncbi.nlm.nih.gov/).
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PUFAs in IBD have yielded mixed results, with benefits differing
based on the source of PUFA, suggesting differences in anti-
inflammatory activity between marine-derived n-3-PUFAS are
superior to that derived from plants (48). Addressing the
effectiveness of n-3-PUFAs has largely focused on marine-
derived fish oils on the notion that they provide EPA and
DHA, whereas plant-derived n-3-PUFAs ALA and stearidonic
acid are inefficiently converted to long-chain bioactive
forms (49).

In mice, n-3-PUFAs have induced a more paradoxical response.
Several studies have shown improved inflammatory scores in n-3-
PUFA supplemented rodents (50–53), whereas others have noted
worsening of intestinal inflammation severity (52, 54). In one study,
attenuation of spontaneous ileitis in SAMP1/Yit mice by n-3 PUFA
was due to inhibition of monocyte recruitment in the inflamed
tissues (55), while two other studies in C57BL/6 mice showed that
n-3-PUFAs exacerbated DSS-colitis due to decrease of adiponectin
expression, one of which noting no change with n-6-PUFA or
cont ro l d i e t s (52 , 54 ) . In ano the r s tudy , 2 , 4 , 6 -
trinitrobenzenesulfonic acid (TNBS)-colitis rats given n-3-PUFA
orally showed inhibition of pro-inflammatory eicosanoids,
prostaglandin E2 (PGE2), and leukotriene, similar to treatment
with 5-aminosalicylic acid (Peroxisome proliferator-activated
receptor gamma; PPARg agonist) (53), whereas others have
suggested a decreasing effect over time, due to T-cell apoptosis/
regrowth (56).
DISCREPANCIES IN TREATMENT EFFECT
BETWEEN ANIMALS TO HUMANS

Discrepancies in treatment effect (benefit or harm) between
animals and humans may reflect failure of animal models to
adequately mimic clinical disease (57, 58). For instance, acute or
chemically-induced rodent models of inflammation (e.g., DSS,
TNBS) produce disease states within several days and may not
reflect a chronic, relapsing disease state. In this regard, adoptive
transfer models may prove better suited to study the chronic
inflammatory responses (particularly T-cell mediated
inflammation), although the lack of B-cells limits direct
translation of results to human clinical disease. By comparison,
genetically engineered KO mouse models (e.g., IL-10-/- mice),
which allow a detailed investigation into mechanistic pathways
of IBD, do not reflect the heterogeneous nature of IBD
susceptibility (though patients with specific mutations do
develop IBD, they are often quite rare) (59). While congenic
mice may thus prove advantageous because inflammation
develops spontaneously and predictably (e.g., SAMP1/YitFc
mouse model), disease pathogenesis is, by definition, a
consequence of several factors, making identification of exact
mechanisms (without further genetic manipulation) challenging.

The ability for HF research diets to adequately mimic human
fat intake is also important to consider given that HFD studies
typically use diets with upwards of 60% fat whereas the typical
‘western’ diet contains ~36-40% fat rendering the fat content of
experimental diets excessive. Shifts in the non-fat components of
Frontiers in Immunology | www.frontiersin.org 7250
the diet to ‘offset’ the increased fat content (e.g., reducing
carbohydrate content), as well as FA profiles which do not
reflect that of a human diet also affect the translatability of
experimental findings to human clinical disease (60–62).
FACTORS THAT ALTER THE EFFECT
OF FATTY ACIDS (PRO VS.
ANTI-INFLAMMATORY)

Numerous rodent studies have investigated how HFD or FAs
mediate inflammation in rodent IBD models. However, these
studies have varied considerably based on i) the IBD mouse
model, including the use of spontaneous, or chemically-induced
or biologically-induced (C.rodentium) injury models, ii) how
other factors (diet compounds, lifestyle, drugs, probiotics) could
interact with the FA to modulate disease, iii) how the feeding trial
duration or FA structure/dose affects disease, iv) how food
sources or processing/manufacturing affect the pro- or anti-
inflammatory activity of a FA, v) how cultivar or FA source
(fish vs. krill) affect outcomes, vi) and the role gut microbiota in
mediating the effect of a FA (Figure 3).

In mice, HFD can induce low-grade inflammation, increasing
intestinal permeability (63, 64) and oxidative stress (4, 64–68),
which is reversible by anti-inflammatory agents, such as 5-
aminosalicylic acid (68), via inhibition of NF-kB activation
(53). These pro-inflammatory changes in response to HFD
often accompany gut microbiota alterations (68–71).

High-fat diets also exacerbate severity of DSS-colitis,
independently of obesity (72–75), by disrupting intestinal
barrier, upregulating pro-inflammatory cytokines (36, 76, 77)
and increasing oxidative stress in colon tissue (78, 79).
Exacerbation of mucosal damage by HFDs, particularly
saturated fats (e.g., palm oil), is also reported in murine
spontaneous ileitis (Mdr1a-/-) (80, 81), and colitis (e.g., Muc2-/-,
TNFare; defective translational control of TNF mRNA) (72).

The inflammatory potential of HFDs can be enhanced or
suppressed by other dietary compounds or lifestyle factors. In
one study, the addition of carrageenan, a popular food additive
used for decades in the food industry, elicited colitis in
unchallenged mice fed a HFD, but not in mice fed standard
chow (82). In another study, the combination of a HFD rich in
saturated-FAs with antibiotic therapy impaired mitochondrial
bioenergetics in the colonic epithelium, triggering gut microbiota
alterations to favor pro-inflammatory Enterobacteriaceae and in
turn, low-grade inflammation (83). By contrast, the addition of
exercise (11, 84), probiotics (85–87), or the partial replacement
and/or supplementation of ‘anti-inflammatory’ dietary fats (e.g.,
n-3 for n-6-PUFA), or other nutraceutical/dietary compounds
(e.g., red kidney beans, oligosaccharides, choline) (45, 87–89)
attenuate the pro-inflammatory effects of a HFD. Studies have
explored the role of lifestyle factors such as exercise on intestinal
inflammation. In one study, mice with HFD-induced obesity
were noted to have less weight gain, improved metabolic
disorders, and less expression of inflammatory mediators
(preventing colonic inflammation) with increased PPARg
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expression in the colon. Given the reversal of this effect by
inhibiting PPARg, the effect seems to be from upregulation of
PPARg (11). In another study, moderate, voluntary exercise was
shown to have a beneficial effect in C57BL/6 mice fed a HFD
(70% EAF with 200 mg/kg cholesterol) compared to sedentary
mice. Exercise significantly decreased TNBS-colitis macroscopic
and microscopic severity, increased colonic blood flow, and
attenuated plasma TNFa, IL-6, MCP-1, IL-1b and leptin levels
in mice fed either a HFD (70% EAF) or a standard regular chow
diet compared to their sedentary counterparts (84).

Differences in the amount and type of FA studied, as well as
the fat content of basal diets also affect outcome. For instance,
one study evaluating diets with varying FA profiles but the same
total fat content, found that a 12% saturated fat diet, similar to
the standard American diet, lead to the greatest insulin
resistance, adiposity, and macrophage infiltration, with 24%
and 6% saturated fat diets having significantly lower rates of
each of these (90). Further, different FAs can exert the same anti-
inflammatory activity via different mechanisms. For instance, in
C.Rodentium-colitis mice, supplementation with either fish or
plant oil (flaxseed, ahiflower or sunflower) attenuated colitis,
however fish oil reduced lipoxin and leukotriene B4 levels,
whereas plant oils increased pro-resolving mediators D, E and
T-series resolvins (48). The FA structure is also pivotal in disease
outcome. In one study, the glycerol backbone position of
palmitate influenced diet effect in Muc2 deficient mice, with
beta-palmitate (palmitic acid bonded to middle position of
glycerol backbone) associated with decreased intestinal
mucosal damage by inducing an immunosuppressive T-cell
response (80). Differences in the absorption/metabolism of
Frontiers in Immunology | www.frontiersin.org 8251
substances between animals to humans may limit the ability to
translate rodent results to humans, especially relating to doses
and duration of studies, with dose-response curves rarely
performed in either rodent or human studies.

Highlighting the importance of dietary background for
supplement bioactivity, in one C.rodentium-colitis study
(C57BL/6 mice) flaxseed oil exacerbated colitis in the setting of
a reduced-fat diet (~12% energy as fat; EAF), but not a HFD
(~36% EAF) (91). Flaxseed (linseed) oil, is a rich source of n-3
ALA (23%), yet also contains lignans, MUFAs (7.5%), PUFAs
(6%), saturated-FAs (3.7%) and soluble/insoluble fibers (92).
Notably, the exacerbating effects of flaxseed on murine colitis
occurred despite increased n-3-PUFAs in intestinal tissues and
increased cecal anti-inflammatory SCFAs (91).

With respect to method of IBD induction and basal diet
composition/FA content, two partly comparable studies
illustrated contrasting effects. Zarepoor et al. (93) found that
ground flaxseed supplementation (10%, 6%, 4%) given to
C57BL/6 mice (from Charles River Laboratories, Portage, MI)
fed a AIN-93G basal diet worsened DSS-colitis and
inflammatory cytokines (colonic tissue and systemically IL-6,
IL-1b) and NF-kB related signaling genes (Nfkb1, Ccl5, Bcl2a1a,
Egfr, Relb, Birc3, and Atf1). Whereas Power et al. (94) showed, in
unchallenged C57BL/6 mice (also from Charles River
Laboratories Portage, MI, USA), that flaxseed supplementation
(10g/100g AIN-93G basal diet) had beneficial effects on gut
barrier integrity (goblet cell density, mucin production, Muc2
expression and cecal SCFA content, as well as enhanced
regenerating islet-derived protein-3-gamma (RegIIIg) and
reduced Muc1 and resistin-like molecule beta (RELMb) mRNA
FIGURE 3 | Factors that alter the effect of fatty acids (pro vs. anti-inflammatory).
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expression indicating that altered microbial defense and injury
repair responses are critical (94). While the effect of laboratory
rodent providers/facilities on animal microbiota composition
have been well documented (95, 96), as a potential
explanation, we hypothesize that such discrepant results could
have occurred due to the confounding (interacting effect) of the
AIN-93G ingredients. That is, in the former study (93), the
soybean oil component of the AIN-93G basal diet was replaced
with corn oil to “avoid potential anti-inflammatory bioactives”
(93), which highlights the important concept of dietary
background when designing diets to test supplement
bioactivity and the need for studies to ascertain the extent to
which various oils, such as soy and corn oil within a basal diet
could affect supplement bioactivity.

Supporting the importance of research diet design/
manufacturing, and mouse genetics, Cohen et al. (97) found
no attenuation of intestinal inflammation in IL-10 mice (129 Sv/
Ev IL-10-/-) fed for 9-weeks (from weaning) a 10% flaxseed oil
AIN-93D basal diet (vs. 10% corn oil) (97). However, in BALB/c
mice fed a high-fat, high-sugar diet, only low-dose ALA
supplementation (150 mg/kg vs. 300 mg/kg) was protective
against TNBS-colitis resulting in significantly lower colonic IL-
1, IFNg, IL-4 and IL-2 cytokine production (97).

It is also important to consider all bioactive compounds
within a ‘complex’ dietary fat/oil. For instance, sesame oil (7-
day supplementation) accelerated healing of colonic
inflammation in TNBS-colitis rats by inhibiting inflammation,
acid mucin and fibrosis (98). While sesame oil contains ~83-90%
MUFAs and PUFAs, mainly linoleic (37%–47%), oleic (35%–
43%), palmitic (9%–11%), and stearic acid (5%–10%), the oil
(like most oils) contains bioactive phytosterols, tocopherols and
a unique class of lignans including sesamin and sesamolin, both
shown, when supplemented alone, to exert anti-inflammatory/
anti-oxidative activity in experimental IBD (99). Comparably,
oleic acid (n-9) sourced from olive oil decreases chronic
inflammation by interfering with AA and NF-kB signaling
pathways (14), whereas olive oil-derived phenolic compounds
protect against oxidative damage in colon cells. Notably, oleic
acid and phenolic compounds appear to confer health benefits
based on their site of action.

Differences in the source of murine oil (e.g., krill vs. fish oil) or
extraction method, including phenolic compounds present
between varieties of a single plant-based oil (e.g., olive oil) can
exert variable inflammatory responses. For example, in
unchallenged C57BL/6 mice, the protective effect of dietary
supplementation with different extra-virgin olive oil cultivars
on DSS-colitis severity in C57BL/6 mice, including reduction of
IL-1b, TGF-b and IL-6 expression levels, was only observed in
mice treated with cultivars Ogliarola, Coratina, or Cima di Mola,
but not for Peranzana cultivar (14). Such differences have also
been noted between krill vs. fish oil, namely differences in
structure and antioxidant profiles, which influence intestinal
absorption, bioavailability and downstream effects (15, 16).
These cultivar studies strikingly illustrate that the effect of a
dietary fat source may have altered irreproducible effects on
animal experiments and/or susceptibility in humans because
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cultivars and geographical factors could alter the overall
molecular composition of the diet ingredients. However,
irrespective of the FA composition, there are well-defined
mechanistic patterns of response that are induced by FAs
which we summarize below.
MECHANISMS OF ACTION

Intestinal Mucosa Toxicity
and Inflammation
Free Fatty Acids, Lipid Droplets, and Cideb
Several studies have reported alteration in free FA levels in
intestinal tissues of animals fed a HFD or FA-enriched diet
(78, 100, 101). Mammalian cells avoid lipotoxicity from
intracellular FAs via their esterification and storage as lipid
droplets (i.e. triglycerides). These lipid droplets are regulated
by lipid-droplet associated proteins (LDPs) such as cell death–
inducing DFF45-like effector b (Cideb) which is abundantly
expressed in the intestinal mucosa and helps maintain lipid
homeostasis (102, 103). In humans, Cideb is a protein-coding
gene associated with specific language impairment, that interacts
with the DFFA/DFFB complex and activates apoptotic DNA
fragmentation. Cideb deficiency appears to interfere with lipid
metabolism and lipid export from enterocytes leading to
excessive lipid accumulation in the mucosa.

In humans, a recent study showed upregulated expression of
Cideb in the colonic mucosa of patients with UC, as well as in both
the protein and messenger RNA Cideb levels of DSS-treated mice
(104). Further, administration of a HFD (60% EAF) was found to
exacerbate the symptoms of DSS-induced colitis (body weight,
histology) observed in Cideb-null mice fed a normal diet (10%
EAF) compared to their wild-type counterparts (104). Additionally,
DSS-treated Cideb-null mice exhibited elevated levels of cytokines
IL-1b, IL-6, and TNFa (serum, colon tissues), higher colonic MPO
activity and other oxidative stress markers, malondialdehyde,
reactive oxygen species (ROS), glutathione (GSH), and superoxide
dismutase activity, as well as lipid accumulation in fecal and colon
tissues compared to wild-type controls, with more significant
increases observed in HFD mice. In vitro studies using polarized
and Cideb-infected Caco-2 cells treated with oleic acid verified the
role of Cideb in lipid metabolism and oxidative stress response of
enterocytes. The study revealed reduced lipid accumulation and
oxidative stress after the overexpression of Cideb in Caco-2 cells,
supporting the protective role of Cideb against colonic tissue injury,
such as in UC (104).

Inflammatory Cytokine Profiles Vary With Fatty
Acid Content
Studies have shown various effects of cytokine pathways which
cannot be easily integrated into a single narrative. However,
elevated expression of inflammatory markers such as TNFa, IL-
6, IL-1b, and IFNg (stimulates macrophages to induce innate/
adaptive immune responses), among others, and their presence
in serum are frequently reported in HFD/FA-enriched rodent
studies with/without induction of experimental colitis (14, 50, 51,
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75, 79, 105, 106). Obesity-induced inflammation caused by a
HFD in mice has also been shown to promote macrophage
polarization toward tumor promotion via increased IL-6 (107).
HFD suppresses IL-10 while inducing TNFa expression via
regulation of NF-kB in innate and adaptive immune cells
(66, 85).

Antimicrobial Peptides
The human and animal genome are composed of gene sets that
have the ability to produce numerous antimicrobial peptides, some
of which have been shown to be modulated by dietary FAs.
Cathelicidin antimicrobial peptides are a family of large molecules
encoded by single genes, and that are produced in multiple species.
Among these, LL-37, FALL-39 (in humans) and mCRAMP (in
mice) are found in macrophages, polymorphonuclear leukocytes,
neutrophils and epithelial cells, and play a critical role in the innate
immune defense against bacterial infection. However, there is also
evidence for their role in obesity, and in a model of HFD-induced
obesity (45% EAF vs. rodent diet 6% EAF) administration of
lentiviral cathelicidin was shown to decrease mesenteric fat and
hepatic steatosis by inhibition of the CD36 receptor which in turn
suppressed lipid accumulation in adipocytes and hepatic steatosis
(108). Lentiviral cathelicidin administration significantly decreased
pro-inflammatory cytokine TNFa mRNA expression and sciatica
nerve aldose reductase, suggesting that cathelicidin also plays a role
in pro-inflammatory gene expression associated with peripheral
neuropathy (108).

Modulation of Pathways
Toll-Like Receptor Activation Varies With Diet
Microbial associated pathways can be influenced by diet, which
could be recognized by immune cells via toll-like receptors (TLR).
Thus, TLRs play a key role in innate immunity by recognizing
microbe-derived pathogen-associated molecular patterns, which
activate immune cell responses. Polymorphisms/mutations in the
TLR-receptor/signaling pathways are involved in the etiology and
treatment of several inflammatory disorders including IBD (109).
Saturated FAs act as ligands of TLR4, and SFA-rich diets have
been shown to cause low-grade inflammation and insulin
resistance (110, 111). Additionally, HFD-induced changes to the
gut microbiota exacerbates inflammation and obesity via TLR4
induction and NF-kB (66). Indeed, HFD-fed TLR4-deficient
C57BL/10ScNJ mice exhibit attenuated colonic inflammation,
reduced pro-inflammatory cytokines (TNFa, IL-1b, IL-6) as
well as plasma/fecal endotoxin levels compared to that of
C567BL/6 control mice (66). Notably, the dietary phytosterol,
b-Sitosterol, which is structurally related to cholesterol and found
in plant cell membranes ameliorates HFD-induced colitis in
C57BL/6 mice by inhibiting LPS binding to TLR4 in the NF-
kB (112).

In one TNBS-colitis model, n-3-PUFA was found to increase
TLR-2 and IL-1A gene expression in rat colon tissue, whereas n-9
increased TLR-4 expression (113). Several studies have shown
that by signaling through the G protein-coupled receptor 120
(GPR120), both EPA and DHA exert potent anti-inflammatory
effects through inhibition of TNFa receptor and TLR4,
inflammatory signaling pathways (114, 115). In adipocytes,
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EPA has been shown to attenuate palmitate-induced increases
in inflammatory gene expression via GPR120 by inhibiting the
TAK1/TAB1 interaction (114). Notably, TLR regulation by diet
also depends on other food ingredients, for instance carrageenan,
a red seaweed-derived food additive pervasively used by the food
industry as an emulsifier. Increased TLR-4 expression was noted
in C57BL/6 mice fed a 5% carrageenan containing HFD (45%
EAF) compared to mice fed a 5% carrageenan low-fat diet (10%
EAF) (82). Studies investigating the effect of dietary n-3-PUFA
on TLR2 have yielded variable results, with some showing TLR2
downregulation by EPA in mouse adipose stem cells (116) and
others reporting no effect from either n-3 or n-9 FA on TLR2 and
TLR4 despite their downregulation of IL-6, TNFa and MCP-1
secretion in human adipose tissue and adipocyte cultures (117).

Peroxisome Proliferator-Activated Receptor (PPAR)
and ABC Transporters
Proliferator-activated receptors (PPARs) are ligand-dependent
nuclear receptors for endogenous lipids with 3 isoforms: a, b,
and g, each differing in function and tissue distribution.

PPARg regulates FA storage and glucose metabolism, and was
recently highlighted for its role in intestinal inflammation (118–
121), with mutations in the PPARg gene associated with IBD
(122, 123). Expressed in adipose tissue and colonic epithelium,
PPARg acts as an antagonist of various transcription factors
interfering with their inflammatory pathways, including nuclear
factor of activated T-cells (NFAT), an important inducer of pro-
inflammatory genes such as IL-4, IL-2 during T-cell activation
(124, 125). In addition, PPARg activity is modulated by dietary
FAs and their metabolites (reviewed elsewhere) (126). The
interaction between dietary fats and PPARg has been well
studied for their role in regulating inflammation. Attenuation
of TNBS-colitis Sprague-Dawley rats administered dietary n−3-
PUFAs (20 mg/day, intragastrically) was associated with
enhanced PPARg expression with a concomitant decrease in
NFAT expression when compared to trans-FA (13 mg/day)
treated rats, indicating that n-3-PUFA inhibits NFAT,
potentially via PPARg activation (50). The protective effect of
conjugated linoleic acid (CLA) against IBD has been shown in
vitro and in vivo to be mediated through PPARg activation (22),
although other n-PUFAs may antagonize the effects of CLA on
PPARg in experimental colitis (22). By contrast, no effect of
dietary ALA-rich oil was seen on PPARg activation in a TNBS-
colitis rat model (127). In vitro induction of PPARg was reported
in enterocyte-like Caco-2 cells in response to IL-1b but not in
HIMEC cells treated with IL-1b, or LPS-treated human dendritic
cells (128, 129). Such discrepancies could be attributed to
differences in cell type or DHA dosage, with lower doses
serving to inhibit TLR4 signaling and induce PPARg while
higher doses increase IkB expression and decrease p38MAPK.
Notably, both dosages inhibit intestinal inflammation. It is worth
noting that understanding the effects of PUFAs will require
better description, owing to the various types of chemical
isoforms (e.g., CLA is a family of 28 structural isomers) and
the effects of their storage. Figure 4 illustrates an example of the
modulation of signaling pathways by PPAR nuclear
receptor activation.
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In vitro studies have shown that pretreatment of bone
marrow-derived dendritic cells with DHA followed by LPS
stimulation (TLR4 ligand) profoundly inhibits members of the
IL-12 family including IL-12p70, IL-23 and IL-27, an effect
mediated by PPARg and NF-kB inhibition (130, 131). Exposure
to DHA also inhibited pro-inflammatory molecule production
(IL-6, TNFa, CCL-4) and anti-inflammatory cytokine IL-10
(130), the latter finding in contrast to the upregulatory effects
by CLA and subsequent inhibition of LPS-induced IL-12 in
murine dendritic cells (132). While the intracellular pathways
of DHA activity are not known, in vitro evidence suggests PPARg,
which is highly expressed in dendritic cells, macrophages, and T
and B-cells, as a possible mediator [reviewed in (133–137)]. Data
obtained from in vitro and in vivo studies also indicate that the
anti-inflammatory effect of DHA on endothelial cells is mediated
by decreased expression of VCAM-1 and VEGFR2 with
concomitant reduction in PGE2 and LTB4 (129). Further,
DHA-enriched fish oil has also been shown to enhance B-cell
activation in vivo which may function to aid pathogen clearance
and upregulation of the resolution phase of inflammation, in turn
reducing total inflammatory response (138).

PPARa is a major regulator of energy homeostasis and
regulation genes involved in beta-oxidation, and is highly
expressed in tissues that rapidly oxidize FAs such as liver,
heart, kidney, and intestine (139). PPARa is primarily
activated via ligand binding by endogenous FAs, including
AA and palmitoleic acid (140), as well as various other
PUFAs and their metabolites, namely members of the 15-
hydroxyeicosatetraenoic AA metabolite family and the LA
metabolite 13-hydroxyoctadecadienoic (141). In mice, PPARa
expression defects have been associated with DSS-induced bile
duct injury, which was reversed following DHA supplementation
(40 mg/day for 5 days) (142).
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PPARd plays an important role in colonic epithelial cell
differentiation (143, 144) and exerts anti-inflammatory activity
by inhibiting NF-kB signaling (144). Ligands for PPARd,
including n-3-PUFAs (145, 146), are anti-inflammatory, and at
high concentrations PPARd activation attenuates experimental
colitis (147) and intestinal inflammation (148), whereas PPARd
null mice have increased sensitivity to DSS-colitis (149). Relevant
evidence highlights the role of PPARd activation in colon
tumorigenesis, however this remains controversial (144,
150–154).

Given that PPARs depend on the entrance/expulsion of FAs
from the cell, their effects could be understood/expulsion by
factors that alter cell membrane transporters (e.g., ABC
transporters). Indeed, Roy et al. (155) demonstrated that EPA-
and AA-enriched diets downregulated ‘inflammatory’ genes
TNF, IL6, S100A8, FGF7 and PTGS2, and upregulated PPARa,
MGLL, MYLK, PPSS23, ABCB4, ABCB1 genes in IL-10-/- mice
(B6.129P2-IL10<tm1Cgn>/J) inoculated with intestinal
microflora and/or pure cultures of Enterococcus faecalis and
E. faecalis background, compared to C57BL/6J control mice
fed AIN-76A diet. Downregulation of the ABC genes such as
ABCB1A and ABCB1B has been reported in both human and
animal studies suggesting the involvement of ABC transporters
during inflammation (156–158). Sundrud et al. (159) recently
showed ABCB1A modulates the cell activation in the ileum
in a bile-dependent manner (ABCB1 deficiency makes certain
T-cell lines prone to bile toxicity) which triggers pro-
inflammatory response.

PI3K/Akt pathway
Protein kinase B (PKB or Akt) plays a role in cell metabolism,
proliferation, growth and survival, and its activation involves
phosphoinositide-3-kinase (PI3K) (160). The PI3K/Akt pathway
FIGURE 4 | Modulation of Signaling Pathways by High-Fat Diets and Fatty Acids.
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is highly conserved and activation of the pathway is known to
inhibit the FOXO3 family. Recent studies have shown that Akt-
regulated FOXO phosphorylation increases cellular oxidative
stress which in turn induces NF-kB and mTOR activation (161).
Additionally, HFD-induced intestinal inflammation was recently
shown to be mediated by changes in the Akt-FOXO3 axis (66).
Specifically, Akt and FOXO3 phosphorylation increased in mice
fed a HFD compared to low-fat diet fed mice, suggesting that NF-
kB activation through the Akt-FOXO3 signaling may be
associated with intestinal inflammation.

Fatty Acids and T-Cell Biology
T-cells that infiltrate or reside in the intestinal mucosa sense and
respond to pathogen-associated antigens presented by mucosal
antigen-presenting cells, most commonly in Peyers patches of
the small intestine or in mesenteric lymph nodes, to execute
protective inflammatory responses. Mucosal homeostasis
requires T-cell tolerance to commensal microbe-derived
antigens. A breakdown in T-cell tolerance toward gut
commensals is a major determinant of IBD.

T-Cell Function
Foxp3+ T regulatory (Treg) cells play critical roles in shaping
immune tolerance. Treg cells can develop via two major
pathways: i) as a separate lineage of CD4+ thymocytes (termed
natural (n)Treg cells); or ii) as mature regulatory cells in the
periphery derived from the TGFb-mediated differentiation from
naïve CD4+ T-cells (termed induced (i)Treg cells) (162). iTreg
differentiation in the large intestine requires host-microbe
interaction with the commensal microbiota, and thus fail to
develop in germ-free mice, whereas germ-free animals colonized
with defined microbial consortia restores intestinal iTreg
development (163–165).

Microbe-derived SCFAs (e.g., butyrate) inhibit histone
deacetylase enzymes (HDACs) and epigenetically stabilize Foxp3
gene expression in developing iTregs (164). Illustratively, butyrate
produced by Faecalibacterium prausnitzii suppresses experimental
colitis via HDAC1 inhibition, increasing colonic iTreg cell
development/function (166). Microbial bile acid metabolism also
modulates gut mucosal iTreg cells. Secondary bile acids, produced
through bacterial metabolism of primary bile acids escaping ileal
reabsorption (167), promote maintenance of colonic iTregs through
the nuclear vitamin D receptor (VDR) (168). Together, bacterial
SCFA and bile acid metabolism locally enforces colonic iTreg
development to ensure that pro-inflammatory responses to
commensal organisms, mediated by IFNу-expressing Th1, IL-4-
producing Th2 and/or IL-17A-secreting Th17 effector cells, are
tempered by iTreg-mediated immune suppression to prevent onset
of chronic T-cell-mediated inflammation.

As an energy source, Tregs prefer FA b-oxidation to generate
ATP (169) and it has been speculated that FA oxidation endow
iTregs in non-lymphoid tissues, including the gut, a fitness
advantage in tissue microenvironments where immune
suppression is typically favored. This metabolic preference of
iTreg cells for FA oxidation suggests that ingested dietary lipids
preferentially regulate intestinal Treg development/function.
Indeed, oleic acid has been implicated in promoting Treg
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function in non-lymphoid tissues, including in visceral adipose
tissue and the central nervous system (170); oleic acid is reduced
in adipose reservoirs of human multiple sclerosis, a relapsing-
remitting autoimmune disorder in which Treg function is
impaired, whereas addition of oleic acid to Tregs isolated ex
vivo from multiple sclerosis patients restores suppressive activity
(170). Molecularly, oleic acid enhances FA oxidation and
mitochondrial respiration, supporting Foxp3 expression, as
well as IL-2/IL-2R/Stat5 signaling, both necessary for Treg
maintenance in vivo (170).

Glycolysis and FAs
In tumor microenvironments, Tregs are more abundant
and have an advantage over T-conventional (Tconv) cells, due
to supplemental energy gained via lipid metabolism (171). In
mouse tumors, Tregs have intracellular lipid accumulation owing
to increased FA synthesis, which is enhanced by increased
glucose uptake. Therein, both oxidative and glycolytic
metabolism contribute to Tregs expansion, which has been
corroborated with increased Treg gene signatures on glycolysis
and lipid synthesis in humans. Data suggest that signals from the
tumor milieu could enable circuitries of glycolysis and FA
synthesis/oxidation that confers advantage to Tregs. Less is
known on gut wall inflammation, but studies on HFD indicate
that certain types of FA result in variable rates of Treg expansion
and prevention of IBD, depending on the mouse line (172).
Recent studies integrating the gut microbiota with T-cells, have
also shown that microbiota-derived SCFAs promote the memory
potential of antigen-activated CD8+ T-cells (173), but less is
known on how diet-derived LCFA modulate such functions.

T lymphocyte function has been extensively studied using
DHA. One study in Smad3-/- colitis-prone mice found that in
dietary DHA enhanced LPS-induced B-cell secretion of IL-6 and
TNFa, and also increased CD40 expression versus controls. Mice
displayed Th2-biasing cytokines as well as cecal IgA, supporting
an increased B-cell function (138). In another study, DHA was as
effective as sulfasalazine treatment in reducing DSS-induced
colitis severity in BALB/c mice, partly by modifying DSS-
responsive genes, namely pro-inflammatory cytokines IL-1b,
CD14 antigen and TNF receptor superfamily member 1b
(Tnfrsf1b), membrane remodeling protein (Mmp-3, -10, and
-13) and acute phase protein (S100a8) (174). Downregulation
of S100a8 was also reported in IL-10 null mice fed an EPA- and
AA-enriched diet compared to control mice fed AIN-76A (155).

Fatty Acid Effect and Modulation Depends
on Gut Microbiota
The gut microbiota is shaped by diet and plays an important role
in IBD etiology and progression. Most importantly, HFD has
been shown to elicit changes in the gut microbiota composition
divergent to that of control diets lower in fat, namely increases in
alpha diversity and in the Firmicutes to Bacteroidetes ratio,
independent of obesity (66, 79, 175–178). The effect of DSS on
gut microbiota composition is also more profound in the setting
of a HFD, and has been shown to abrogate the higher abundance
of Firmicutes to Bacteroidetes while increasing the abundance of
Proteobacteria and Actinobacteria (vs. controls) (79). In a DSS-
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colitis mouse model, a HFD (60% EAF vs. rodent diet, 13% EAF)
was associated with 3 phylotypes belonging to Proteobacteria;
Trabulsiella, Sutterella, and Helicobacteraceae, as well as the
phylotype Atopobioum, belonging to the phyla Actinobacteria
(79). Of these, increased abundance of Trabulsiella and
Atopobioum was also identified in mice fed a HFD without
DSS-colitis suggesting that these taxa may exert a colitogenic
effect under high-fat feeding conditions. Notably, the
administration of colistin (but not vancomycin) ameliorated
DSS-colitis severity in HFD mice, indicating that gram-
negative bacteria, such as Proteobacteria mediate experimental
colitis progression in mice fed a HFD (79).

Power et al. (94) demonstrated that flaxseed supplementation
(10g/100g AIN-93G vs. AIN-93G) for 3 weeks in unchallenged
C57BL/6 mice resulted in a 30-fold reduction in the mucin-
degrading bacterium Akkermansia muciniphila despite the
beneficial effects observed from flaxseed feeding on markers of
gut barrier integrity, including mucin production andMuc2 gene
expression. Similar reductions in A.muciniphila abundance with
increases in Prevotella spp. were reported by Gulhane et al. (64)
following prolonged HFD (46% EAF vs. rodent diet, 11% EAF)
in C57BL/6 mice, which was largely reversed following IL-22
treatment (high dose; 100 ng/g) vs. low dose, 20 ng/g
recombinant IL-22) in mice. In addition, IL-22 treatment
decreased abundance of Escherichia coli in a dose-dependent
manner, which correlated with decreased serum endotoxin
levels. By contrast, Määttänen et al. (91) showed, that the
exacerbating effects of ground flaxseed in context of a reduced-
fat diet (~12% EAF) fed to C.rodentium-colitis C57BL/6 mice
decreased relative abundance of A.muciniphila, as well as
Parabacteroides distasonis (irrespective of % energy from fat), a
bacterium shown in vitro to be dependent on Akkermansia
presence for its growth, and previously reported to be
decreased in inflamed intestinal tissues of IBD patients (179).
Although administration of live P.distasonis (via oral gavage) has
been reported to worsen DSS-colitis (180), its cellular
components have a protective effect against DSS-colitis (181).

Studies suggest that LPS of gram-negative bacteria stimulate
innate immune activity in the presence of saturated FAs (40).
Conversely, increased abundance in Lactobacillus has been
associated with dietary intake of n-3-PUFAs (182), with n-3-
PUFA administration to Caco-2 cells shown to promote both the
growth and adherence of probiotic Lacticaseibacillus casei
(formerly Lactobacillus casei) (183) (Shirota) (184). In this
regard, probiotics have been explored as a method to restore
intestinal homeostasis in inflammatory states. In a study using
Lactobacillus helveticus it was noted that the probiotic has
varying ability to modulate host physiological function,
depending on the diet type, with mice on a western diet
showing less inflammation than on a standard chow diet (185).
One study showed that probiotics corrected inflammation-
driven metabolic dysfunction with strong reduction of the
colonic expression of inflammatory cytokines TNFa, IL-6, and
IFNg, as well as reserved colonic downregulation of PPARg, and
other ligand-activated nuclear receptors in a TNBS-colitis mouse
model (186). Intriguingly, other studies have demonstrated
Frontiers in Immunology | www.frontiersin.org 13256
attenuation of HFD-induced (60% EAF; ~90:10% lard: soybean
oil) colitis following the administration of lactic acid bacteria
(LAB), namely Latilactobacillus sakei (formerly Lactobacillus
sakei) (183) strains (OK67, PK16, S1) (85), as well as in HFD
mice treated with IL-10 (anti-inflammatory cytokine)
expression-inducing bacteria Bifidobacterium adolescentis HP1,
Limosilactobacillus mucosae HP2 (formerly Lactobacillus
mucosae HP2) (183), and Weissella cibaria HP3 (87).
Administration of these bacterial strains appears to attenuate
HFD-induced increases in colonic MPO activity, LPS
production, NF-kB activation and TNFa expression while
enhancing IL-10 expression, in part through inhibition of gut
Proteobacteria (86, 87).

In addition to the ability of diet to modulate the gut
microbiota, several bacterial taxa have demonstrated the ability
to generate FAs. Bacterial end-products have exhibited anti-
inflammatory effects and have been particularly well
characterized in the case of SCFAs. Acetate, propionate, and
butyrate acids are synthesized through cleavage of CoA via
thioesterases, which are ubiquitously found (187, 188). Longer
FAs, such as CLA, can be converted from dietary FAs by several
genera, particularly, lactobacilli and bifidobacteria (189).
Conversely, reduction of SCFAs has been shown to exert a
pro-inflammatory effect. Decreased levels of Roseburia hominis,
a butyrate producer, is frequently associated with IBD (190). As
one might expect, there are also bacteria capable of producing
pro-inflammatory FAs. Though bacterial production of non-
SCFAs is less studied, bacterial taxa do exist that are capable of
synthesizing longer chain FAs. For example, saturated LCFAs
from Prevotella, lactobacilli, and Alistipes increased colitis-
mediated death in rats (191). This mechanism of modulation is
important to consider especially to try to elucidate the emerging
roles of relatively recent gut commensal species such as the
Alistipes genus which has been shown to have variable effects in
humans and animal models (192).

Maternal High-Fat Diet
The maternal diet is well known to be one of the major factors
influencing offspring microbial composition (193), but more
recently, maternal HFD has been shown to modulate
susceptibility to diseases, as well as exacerbate offspring
susceptibility to chemically induced colitis (194–197)
associated with increased IL-1b, IL-6 and IL-17 expression and
upregulated NF-kB signaling (194). However, outcomes directly
reflect type of FA administered, with one study revealing that the
most severe colitis in offspring was from mothers fed (during
gestation and lactation) a diet high in safflower oil (~72% 18:2, n-
6) compared to those fed diets high in canola oil (18:3, n-3) or
high in oleic safflower oil (18:1, n-9) (198).

Maternal HFD has also been shown to result in distinct
microbiota differences in offspring compared to that of
controls. Xie et al. (195) showed that offspring of C57BL/6
mice fed a HFD (60% EAF) during pregnancy and lactation
had distinct differences in bacterial diversity at weaning
compared to control offspring (maternal diet of 10% EAF),
which continued even after consuming a control diet for 5
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weeks after weaning. Furthermore, maternal high fat offspring
exhibited significantly inhibited intestinal development and
disruption of gut barrier function at 3 weeks of age, as well as
accelerated DSS-induced colitis in 8-week-old mice fed a control
diet compared to their control counterparts. Inflammation was
associated with significant differences in microbiota between
offspring groups. Specifically, the maternal HFD offspring had
higher abundance of Echerichia/Shigella, Helicobacter, and
Oscillibacter, with decreased abundance of mucosally beneficial
Mucispirillum and Barnesiella, as well as Anaeroplama and the
SCFA-producing species Lachnospiraeae inserta sedis (195).
Babu et al. (196) demonstrated that alterations in intestinal
microbiota of offspring from breeding mice exposed to a HFD
was associated with increased IL-17, as well as increased
abundance of Firmicutes (primarily Lactococcus) with decrease
in Gammaproteobacteria (primarily Escherichia).

Maternal feeding of EPA and DHA (n-3-PUFAs) has also been
found beneficial for protecting against inflammation in the intestine
of premature pups by regulating eicosanoid and NF-kB related
metabolite expression (199). Further, significantly lower incidence
of necrotizing enterocolitis (NEC)-like colitis has been reported in
pups of n-3-PUFA supplemented mothers (199, 200), associated
with reduced IkBa/b levels and elevated PPARg expression.
Although the underlying mechanisms as to how a maternal HFD
affects long-term inflammatory outcomes in offspring remains
unclear, offspring of mothers exposed to a HFD have been shown
to harbor a unique microbiota. In addition, these offspring have
increased susceptibility to disrupted mucosal barrier function, low-
grade inflammation and experience increased severity of
experimentally induced colitis (195, 196). Specifically, one study
Frontiers in Immunology | www.frontiersin.org 14257
found expansion of the ILC3 population in the lamina propria of
maternal HFD offspring.

Promotion of Oxidative Stress
or Antioxidant Activity
Numerous diets have long been known to possess an antioxidant
effect but in the case of FAs, most of the literature highlights the
opposite. That is, the promotion of oxidative stress pathways as a
mechanism of induction of inflammation or tissue damage;
which is often reported in experimental studies as worsening
of histological scores. Oxidative stress is a process by which
enzymes and chemical compounds participate in the oxidation
and reduction of biological molecules of cell systems. In response
to bacterial overload, immune cells have numerous enzymes to
trigger oxidation/reduction reactions that have been shown to be
modulated by dietary FAs. Figure 5 illustrates how HFD and FAs
can modulate host immunity via alterations in gut barrier
function and gut microbiota composition.

Myeloperoxidase Activity, Glutathione,
and iNOS Expression
Neutrophils are phagocytic cells known as first responders in
inflammatory reactions that play a key role in host immunity
primarily via the release of pro-inflammatory enzymes (e.g.,
MPO), antibacterial molecules (calprotectin, lactoferrin,
lipocalin) and DNA NETs to localize infections. Evidence shows
that PUFAs, specifically n-6-PUFAs sourced from safflower oil
(201), or the n-3-PUFA ALA (127), can elicit changes in
neutrophil function and infiltration (decreased), whereas
minimal response was seen with fish oil (n-3-PUFA), which had
FIGURE 5 | High-Fat Diet and Fatty Acids Modulate Host Immunity via Alterations to Gut Barrier Function and Gut Microbiota Composition.
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been thought to play a role previously (201). In this context,
several rodent studies have shown that HFD, or feeding n-6-
PUFA-enriched diet promotes oxidative stress, including
increased MPO in the gut (45, 82). In one experimental colitis
study, male C57BL/6 mice fed a HFD (60% EAF) for 4 weeks were
shown to induce gp91, a NADPH oxidase subunit, and promote
production of ROS in both colonic epithelial cells and lamina
propria cells compared to their low-fat (10% energy from fat)
counterparts following TNBS induction (78). The increased ROS
production was accompanied by a concomitant induction of the
myosin light chain kinase (MLCK) tight junction pathway as well
as increased gut barrier permeability. Increased ROS production
and activation of the MLCK pathway was observed in vivo, in
HCT116 cells cultured with either palmitic acid or a combination
of palmitic acid and TNFa. However, this effect was markedly
diminished in the presence of a ROS scavenger, suggesting that
experimental colitis and mucosal inflammation is promoted by a
HFD through aggravation of mucosal oxidative stress, which in
turn drives increased gut barrier permeability (78).

Studies have also reported beneficial effects of dietary n-3-
PUFAs on oxidative stress. For example, administration of ALA
(450 mg/kg) in rats showed a beneficial effect on colonic iNOS
expression and GSH concentration and inflammatory stress
(reduced secretion of TNFa and mRNA level) induced by
TNBS-colitis. These protective effects were associated with
reduced NF-kB activation as well as reduced lipid mediator
concentrations, including leukotriene B4 (LTB4) and COX2
(127). In another study, dietary olive oil supplemented with n-
3-PUFA (fish oil) was found to beneficially decrease colonic
iNOS expression and GSH concentration in rat colon tissue
following DSS-colitis (202).

Glutathione Transferase Omega 1 (GST01-1)
Excessive ROS production in the inflammatory response plays a
critical role in tissue damage and the progression of
inflammatory diseases (203). Studies have recently implicated
GSTO1-1 for its TLR4-mediated role in pro-inflammatory
response by macrophages (204, 205). TLR4 and MyD88 both
play prominent roles in supporting low-grade inflammation in
obesity, and deficiency in either protein attenuates obesity
and metabolic alterations caused by a HFD (206, 207).
Specifically, GSTO1-1 deficient cells failed to upregulate
expression of NADPH oxidase 1 and produce ROS following
LPS stimulation (208). GSTO1-1 deficient macrophage cells
stimulated with LPS were also found unable to produce lactate
or dephosphorylate adenosine monophosphate kinase (AMPK;
metabolic stress regulator) (205), nor did they accumulate
succinate or stabilize HIF1a, two responses important in
maintaining pro-inflammatory state of activated macrophages
(205, 209). Notably, GSTO1-1 knockout (KO) mice, which are
resistant to LPS-induced inflammatory shock (vs. wild type
mice), exhibited suppressed pro-inflammatory cytokine
expression and attenuated ROS production compared to wild-
type mice. Intriguingly, GSTO1-KO mice fed a HFD (23% EAF)
for 13 weeks had significantly lower abdominal fat, abdominal
adipose tissue inflammation on histology and steatosis compared
to their wild type counterparts (210).
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Glutathione Peroxidase 4
Glutathione peroxidase 4 (GPX4) protects against oxidation of
biolipids, referred to as lipid peroxidation, that particularly
affects PUFAs with biological membranes. In mice, deletion or
inhibition of GPX4 induces ferroptosis, a distinct form of iron-
dependent cell death which requires AA (n-6-PUFA) membrane
enrichment. In context of the genetic association between GPX4
and CD (211), including evidence of GPX4-restricted AA
oxidation in biological membrane (212, 213), a recent study
revealed that a PUFA-enriched Western diet triggers GPX4-
restricted mucosal inflammation in mice lacking one allele of
GPX4 in intestinal epithelial cells (214).

Visceral Adipose Tissue Derived Exosomes
Exosomes are endosome-derived nanovesicles that have been
recently described as important intracellular communication
mediators, especially via crosstalk between organs, via transfer of
encapsulated cargoes such as bioactive lipids, proteins and mRNAs
and non-coding RNAs (215–218). Released by healthy cells,
exosomes play an important role in the immune system function
and have the potential to activate cellular stress and damage (219).
Using a DSS-colitis mouse model fed either chow or a HFD it was
recently shown that active biogenesis of exosomes occurs in adipose
tissue and that these adipose tissue-derived exosomes preferentially
circulate to the lamina propria, serving as an important adipokine
(220). Further, the HFD-induced obesity altered the miRNA profile
of the adipose exosomes, shifting the exosome from having an anti-
inflammatory phenotype to that of pro-inflammatory. The
intestinal inflammation caused by the circulation of inflammatory
exosomes from the obese adipose tissue to the colon was promoted
via macrophage M1 polarization predominantly via the pro-
inflammatory cargoes. Most intriguingly, it was shown that colitis
could be attenuated by delivering miRNA drugs from the adipose
tissue to the lamina propria via exosomes encapsulating miR-155
inhibitor, suggesting that targeting the exosomal pathway between
obese fat and the intestinal lamina propria could be used to
therapeutically manage colitis (220).

Endoplasmic Reticulum Stress
Endoplasmic reticulum (ER) stress has been found to influence
the pathology of various chronic diseases including IBD (221,
222). Highly secretory cells such as Paneth and goblet cells are
extremely prone to ER stress, which activates the unfolded
protein response and a cascade of cellular transduction events
to restore ER homeostasis (223, 224). Failure of unfolded protein
response (UPR) to maintain cellular viability and homeostasis
can halt cellular protein synthesis and activate inflammatory
signaling and apoptosis. The primary genetic variants within the
UPR (Xbp1, Arg2, Ormdl2) encoded proteins rely on a robust
secretory pathway (e.g., Muc2, Hlab27) and mutations in these
genes lead to intestinal inflammation (225). In mice, missense
mutations in the MUC2 gene (e.g., Winnie and Eeyore mouse
models) result in spontaneous colitis associated with innate and
Th17 immune responses, including ER stress which is
accentuated by the prolonged HFD feeding in Winnie mice
(64). Similarly, prolonged HFD in C57BL/6 mice was shown to
induce expression of colonic genes that are markers of ER stress
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(sXbp1, Grp78, Edem1) and oxidative stress (NOS2), which
corroborated with the increases in ER resident proteins Grp78
and Ire-1B (64).

Specific FAs and cytokines can suppress or exacerbate ER stress
in secretory cells (226). For example, IL-10 and IL-22 has been
shown to reduce/suppress ER stress via their actions on goblet cells
(227) and secretory pancreatic B-cells, respectively (226). By
comparison, non-esterified FAs such as palmitate administered in
vitro to human colonic LS174T cells induced significant oxidative
and ER stress. This resulted in reduced Muc2 secretion (mucin
production), whereas administration of IL-22 suppressed oxidative
and ER stress induced by palmitate (64). Those findings were
consistent with in vivo studies showing a dose-dependent decrease
in ER stress (sXbp1, Grp78, Edem1) in response to IL-22 treatment
in HFD mice (226). Production of IL-22 is controlled by the aryl
hydrocarbon receptor (AhR), an important regulator of
metabolism, immune cell homeostasis, and intestinal immunity,
activated by dietary ligand binding, namely the phytochemical
indole-3-carbinol (228). The AhR regulates IL-22 production via
intestinal epithelial cells, and AhR signaling has been demonstrated
to inhibit inflammation induced by experimental colitis (229),
whereas AhR-deficient mice are highly susceptible to DSS-
induced colitis (230) suggesting that the AhR plays a key role in
resolving intestinal inflammation. Notably, significantly lower AhR
activation following feeding of a purified HFD has been reported in
mice heterozygous for the AhR repressor gene compared to mice
fed a normal, unpurified chow diet (AIN-93G), which contains
phytochemicals and flavonoids (231). Furthermore, AhR is targeted
by pelargonidins, a type of anthocyanidins thought to be beneficial
for overall human health. A synthetic pelargonidin (Mt-P)
transactivates AhR, and has been shown, in HFD-fed C57BL/6J
mice, to attenuate body weight gain, intestinal and liver
inflammation, and ameliorate insulin sensitivity, while worsening
liver steatosis, of which were abrogated by gene ablation of AhR
(232). Another study in DSS-colitis rats explored the effects of the
anthocyanin, pelargonidin 3-glucoside (P3G), on IBD and
metabolic syndrome. Findings revealed that P3G treatment
attenuated DSS-induced IBD symptoms. Likewise, P3G treatment
in rats fed a high-carbohydrate, HFD resulted in attenuation of
metabolic syndrome (reduced systolic blood pressure, ventricular
stiffness, cardiac and liver structure, abdominal fat, and body weight
gain) (233), suggesting that anthocyanidins, specifically
pelargonidins, target AhR, decreasing inflammation to attenuate
symptoms of IBD and metabolic functions in metabolic syndrome.
These findings are relevant considering that diets containing a high
content of phytochemicals are generally rich in fruit and vegetables,
which are typically lacking in a Western diet.

Malondialdehyde
Malondialdehyde is a widely used marker of oxidative lipid injury
that results from lipid peroxidation by ROS of PUFAs (234, 235).
Malondialdehyde is also a prominent product in Thromboxane A2
synthesis secondary to the metabolism of AA by cyclooxygenase-1
(COX1) or cycloxygenase-2 (COX2) to prostaglandin H2 by various
cell types and tissues. Dietary lipid end products from ROS and lipid
peroxidases (oxidative stress) such as malondialdehyde are also
absorbed into circulation and have been shown to activate
Frontiers in Immunology | www.frontiersin.org 16259
inflammatory responses in various tissues, including the gut itself
(236). There is also evidence that malondialdehyde is able to
regulate insulin through the WNT-pathway, in addition to having
mutagenic capability (237).

In TLR4-deficient C57BL/10ScNJ mice, HFD-induced (60%
EAF) intestinal inflammation and increased gut permeability was
accompanied by the increases in MPO activity and lipid
peroxidase levels of malondialdehyde and 4-hydroxy-2-nonenal
compared to control C57BL/6 mice fed a low-fat diet (10% EAF)
(66). Human studies have yielded contradictory results regarding
oxidative stress levels in IBD patients, with some studies
reporting significantly higher malondialdehyde levels in plasma
of CD patients compared to controls and UC patients, and others
showing no difference (238–240).

Intestinal Permeability
Tight Junction Barrier Proteins
Tight junctions are multi-protein junctional complexes which
function to seal the paracellular pathway to prevent leakage or
translocation of intestinal contents and bacteria across the intestinal
epithelium. At least 40 different proteins comprise tight junctions, of
which the 3 major transmembrane proteins include occludin,
claudins, and junction adhesion molecules (JAM) proteins, which
associate with peripheral membrane proteins (e.g., Z0-1) located on
the intracellular side of the plasma membrane.

Many rodent studies have shown HFD with or without
induction of experimental colitis-induced dysregulation in tight
junction barrier protein expression (ZO-1, Claudin, occludin) in
ileal and colonic tissue (66, 79, 241), with concomitant increases
in serum endotoxin (consistent with increased gut permeability)
(64). Notably, there is evidence that excessive dietary fat and/or
the increased luminal bile content, and not genetic obesity, is
responsible for the suppression of tight junction proteins and
subsequent increased permeability associated with high-fat
feeding (242, 243).

However, findings have varied between studies, with some
reporting no dietary differences in tight junction expression
(113). These discrepancies are possibly due to differences in
the amount and type of FAs comprising the diet, duration of diet
administration and rodent genetic line. Significant upregulation
in expression of RhoA, which regulates tight junction assembly
and actin organization, has also been reported following feeding
HFD (79).

Vitamin D has also been shown to influence gut barrier
integrity. Vitamin D is recognized to exert immunomodulatory
effects via the VDR, and has been shown to exert protective
effects in IBD, including amelioration of IBD symptoms in both
human and animal following vitamin D supplementation. In one
study, vitamin D supplementation (10,000 IU/kg of diet) in
C57BL/6N mice fed a HFD (45% energy from fat) attenuated
DSS-colitis compared to their counterpart HFD controls
supplemented with less vitamin D (1000 IU/kg). Vitamin D
supplementation had no effect in the C57BL/6N mice fed a
standard diet (10% energy from fat). However, independent of
the dietary fat content, all vitamin D-supplemented mice
exhibited higher expression of colonic tight junction protein
Cldn1 (P<0.05, but not Ocln and Zo1 mRNA levels P>0.05)
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whereas expression of colonic Cyp27b1 (but not VDR) was
higher in the HFD vitamin D-supplemented mice vs. their
HFD counterparts without supplementation (241).

Intraepithelial and Lamina Propria Lymphocytes
In one study, feeding a HFD (56.7% EAF) to C57BL/6 mice for 3
weeks was recently shown to impair the intestinal immune system
and increase sensitivity to enteric epithelial damage compared to
mice fed a standard diet (13.1% EAF) (244). Specifically, mice fed
the HFD exhibited atrophy of the small intestine, colon and gut-
associated lymphoid tissue (GALT), with reductions in the
number of small intestinal intraepithelial lymphocytes (IEL) and
lamina propria lymphocytes (LPL). The latter was also observed in
mice within one day of receiving a HFD (244). Effects were
independent of changes to the gut microbiota and continued for
2 weeks after returning animals to a standard diet. Intriguingly,
reductions in IEL and LPL were also observed in mice
supplemented with orally administered FAs, however, this was
attenuated upon administration of a lipase inhibitor to reduce
luminal free FAs. This suggests that intestinal damage from a HFD
was due to the diet-derived free FAs, and that this “intestinal
lipotoxicity”may explain, in part, the parallel increase in intestinal
diseases, such as IBD, with consumption of a Westernized
diet (244).

In another study, aggravated experimental colitis caused by
HFD (60% EAF vs. normal fat; 13% EAF) following DSS-colitis
in C57BL/6 mice was accompanied by extensive ulceration and
inflammation with concomitant crypt regeneration (79). Here,
chronic inflammation in high-fat DSS-colitis treated mice was
characterized by a lower proportion of TCRgd T-cells (tissue
repair) among IELS while the proportion of TCRab T-cells was
inversely higher, compared to controls. Both important
lymphoid cells among IELs, TCRgd T-cells and TCRab T-cells
play a critical role in tissue repair (245) and in controlling
intestinal immune responses whose dysregulation is linked to
colitis development (246), respectively. High-fat feeding also led
to significantly lower proportion of CD8a T-cells which play a
unique protective role among IELs (230). Finally, analysis of
myeloid cells revealed a higher proportion of CD11b+
monocytes expressing Ly6C in colonic epithelia of HFD fed
mice compared to controls suggesting new recruitment of
inflammatory monocytes. The concomitant higher proportion
of resident CD11b+F4/80+ macrophages in high-fat fed mouse
colonic epithelia further suggested a unidirectional change in
both myeloid cell subsets (79). There were, however, no
significant differences between diet groups in the proportion of
pro- or anti-inflammatory cells in the lamina propria.

Paneth Cells and Goblet Cells
The intestinal barrier utilizes tightly regulated mechanisms to
control and prevent the translocation of intestinal bacteria across
the mucosal surface. This includes antimicrobial peptides (AMP)
which are produced and secreted by Paneth cells as protective
agents against bacterial pathogens, as well as the dense mucus
layer of mucins which is produced by goblet cells (via Muc2) to
serve as a mechanical barrier to prevent bacterial translocation
across the epithelial wall (223).
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Paneth cell dysfunction (viability and function), reductions in
the number and mucin content of goblet cells and subsequent
dysbiotic changes in gut microbiota composition has been reported
in C57BL/6 mice fed a high-fat (60% EAF vs. control diet of 13%
EAF, 25% protein, 62% carbohydrate) (79). Specifically, high-fat
feeding resulted in significantly reduced Paneth cell area, reduction
of lysozyme content within crypts and decreased expression of
procryptdin (AMP exclusively produced by Paneth cells), as well as
other AMPs produced at the crypt bottom (Defcr1, Defcr4, Defa-
rs1c) (79). Mechanistically, reductions in goblet cells was associated
with mTORC1 activation, Notch activation and a subsequent
downregulation of Muc2 expression. By comparison, DSS-treated
C57BL/6 mice fed a diet rich in extra-virgin olive oil cultivars
(Ogliarola, Coratina, Peranzana) exhibited decreased neutrophil
infiltration, reduced inflammatory infiltrate and epithelial damage
as well as number of dystropohic goblet cells compared to control
mice (14). In another study, disruption on mucosal barrier integrity
caused by long term high-fat feeding corresponded with significant
reduction in Muc2 mRNA potentially explained by concomitant
decrease in the expression of klf4 and Spdef, two transcription
factors involved in goblet cell differentiation (64). Similar reductions
were observed in Tff3mRNA (64), a secreted product of goblet cells
that is key to epithelial restoration after injury (247).

Bile Acids, Prostaglandins, and Resolvins
Bile acids are steroid acids conjugated with taurine or glycine to
generate a total of 8 possible conjugated bile acids, which are
referred to as bile salts. Bile acids are important to facilitate FA
absorption and are synthesized by the liver (primary bile acids)
and by bacterial actions in the colon (secondary bile acids).

Deoxycholic Acid-Mediates Sphingosine-1-
Phosphate Receptor 2
Prolonged exposure to high levels of fecal deoxycholic acid has been
shown to disrupt epithelial integrity (248, 249) and contribute to
IBD development. In two studies investigating the effect of HFD on
bile salts like deoxycholate (known to increase in the colon in
individuals on HFDs), wild type mice supplemented with
deoxycholate developed inflammation (oxidative, angiogenesis,
altered gene expression) (250), whereas Nos2 KO mice seem to be
resistant to these changes (250). More recently, it was shown that
excessive fecal deoxycholic acid levels in the gut caused by a HFD
contribute to colonic inflammation by dose-dependently
upregulating Sphingosine-1-Phosphate Receptor 2 (S1PR2) via
activation of NLRP3 inflammasome as well as pro-inflammatory
cytokine IL-1b production in macrophages (251). Activation of
NLRP3 is achieved through downstream stimulation of
extracellularly regulated protein kinase signaling pathway (ERK)
and subsequent cathepsin B release. In this context, severity of DSS-
colitis intestinal inflammation is significantly worsened in mice
treated with deoxycholic acid enema but is alleviated by the
blockage of S1PR2 as well as inhibition of cathepsin B release, in
turn reducing mature IL-1b production.

Cyclooxygenase-2
Prostaglandin-endoperoxide synthase 2 (PTGS2) also known as
COX2 catalyzes the conversion of AA to pro-inflammatory
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prostaglandin E2 formation. Cyclooxygenase 2, the inducible form
of COX and linked to altered risk of developing IBD (252–254), is
the rate limiting step in conversion of AA to prostanoids, pro-
inflammatory mediators including protacyclins, prostaglandins and
thromboxanes. Both COX2 and COX2-dependent prostaglandin E2
(PGE2) have been associated with maintaining adaptive immune
tolerance to dietary antigens (255, 256), with COX2-total KO and
COX2-myeloid specific KO mice shown to develop severe CD-like
inflammation within the ileo-ceco-colic junctions significantly
increasing intestinal permeability when fed a cholate-containing
HFD (257, 258). Notably, COX2 can also promote the resolution of
inflammation via induction of pro-resolving eicosanoid lipoxin A2
(LXA4) (259, 260).

In fat-1 mice, a transgenic mouse model that can efficiently
convert n-6-PUFAs to n-3-PUFAs allowing controlled studies
without dietary manipulation, the effect of endogenously
synthesized n-3-PUFAs attenuated DSS-induced colonic
inflammation accompanied by significant decreases in PGE2
production and COX2 expression as well as decreases in
colitis-induced pro-inflammatory cytokines, monocyte
chemoattractant proteins (MCP-1, -2, -3) and matrix
metalloproteinase 9 (261). Compared to n-6 and n-9 diets,
administration of n-3-PUFAs (e.g., ALA, DHA, EPA) has been
reported to lower COX2 expression and the production of LTB4
and IL-6 in murine colonic tissue (53, 113, 127), and in
endothelial cells in vitro (129).

Diets enriched in EPA and AA have been shown to
downregulate PTGS2 gene expression in IL-10-/- mice (262)
with concomitant downregulation of IL-6 and TNFa (155),
findings consistent with an earlier study showing n-6-PUFA-
induced (e.g., AA) inhibition of LPS- PTGS2 protein. Previous
studies have shown in vitro that EPA, as well as other
unsaturated FAs, are potent inhibitors of the AA-induced
PTGS2 activity (263). It is possible that AA could also give rise
to anti-inflammatory activity given evidence that prostaglandin
E2 can suppress macrophage and monocyte production of TNFa
and IL-6, as well as inhibit 5-lipoxygenase which in turn
disrupting leukotriene X4 production (264).

Eicosanoids
Eicosanoids are factors that mediate defensive and inflammatory
processes of the gut mucosa and have been shown to increase in
experimental colitis. While eicosanoids are known to be
regulated by neural and hormonal controls, their local
synthesis within the gastrointestinal lumen is influenced by
dietary FA intake (5, 265–267). For instance, n-3-PUFA intake
has been associated with higher production of EPA eicosanoids
(PGE3 and LTC5) and lower AA-derived eicosanoids (6-keto-
PGF1 alpha, PGE2, TXB2, LTB4, and LTC4) by the gastric and
intestinal mucosa in rats (vs. n-6-PUFA intake) (265), whereas
fat-free diets have been shown to reduce eicosanoid production
compared to controls (266). The role of eicosanoids in the
gastrointestinal tract has been recently reviewed (268)

Resolvins, Protectins, and Maresins
Resolvins are anti-inflammatory mediators shown to control and
reduce inflammation in a variety of experimental models of
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inflammatory disorders, mediated, in part, by dendritic cells.
Resolvins are derived from n-3-PUFAs, specifically, EPA derives
the E-series family of resolvins, while DHA derives the family of
D-series resolvins (RvD), protectin D1, and maresins. Both EPA
and DHA-derived resolvins participate in anti-inflammatory and
pro-inflammatory subsistence via signaling pathways including
MAPK, NF-kB, PPARу, PI3K, miRNAs, and apoptosis (269). Of
the E-series, the three subtypes RvE1, RvE2, and RvE3 have been
shown to inhibit leukocyte/neutrophil migration associated with
reduced pro-inflammatory cytokine release and increased
macrophage phagocytic activity (270). These lipid mediators
have been shown to decrease TNFa and IL-6 (271, 272) which
may be due to NF-kB signaling via its specific G protein-coupled
receptor, ChemR23 and leukotriene B4 receptor 1, a receptor of
the pro-inflammatory eicosanoid leukotriene B4 (273, 274).
Notably, COX inhibitors such as 5-acetylsalicylic acid have
been shown to increase formation of AA-derived anti-
inflammatory pro-resolution lipoxins, as well as resolvins from
n-3-PUFAs such as DHA, supporting the potential for
combination therapies using ASA and DHA supplementation
(275). The anti-inflammatory role of lipid mediators in the
gastrointestinal tract has been recently reviewed (269, 270, 276)

Apolipoprotein A-1 (APOA1)
Apolipoprotein A-1 (APOA1) mimetic peptides comprise the main
structural protein of high-density lipoprotein. Two of which, 4F and
transgenic 6F (Tg6F) have been shown protective of inflammatory
diseases, including that 4F, when orally or transgenically
administered to low-density lipoprotein receptor-null mice fed a
Western diet have the ability to lower pro-inflammatory FA
metabolite levels in mouse enterocytes (277). Further, it was
recently shown that COX-2 total KO mice fed a cholate-
containing HFD and orally administered 4F and Tg6F function to
inhibit both LPS and oxidized 1-palmitoyl-2-arachidonoyl-sn-
phosphatidylcholine (oxPAPC) signaling in human macrophages
and intestinal epithelium, as well as promote the clearance of pro-
inflammatory lipids within the gut lumen (278).

Fatty Acid Effect on Adipokines
and Other Hormones
Adipose tissue has been described for its involvement in
endocrine (279), metabolic function and more recently for its
interaction with the immune system via the release of adipokines
namely adiponectin, leptin, and ghrelin from fat tissue (280–
284). Adipose tissue is also a source of cytokines, including
TNFa interleukins (283). Depending on the conditions during
their release, these mediators can have pro-inflammatory, anti-
inflammatory, or appetite-controlling functions (285, 286).
There is also evidence that obesity induces dysregulation of
adipokine circulating levels and that this may contribute to
obesity-related diseases (287). Further, several studies suggest
that adipose tissue-derived mediators, namely increases in
circulating TNFa, adiponectin, ghrelin and resistin, with
decreases in leptin may affect the pathophysiology of IBD.
Discovery of adipokines in fat tissue has led to investigation
into their role in inflammatory disorders such as IBD. The role of
adipokines in IBD is of particular interest given the involvement
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of mesenteric ‘creeping’ fat present around inflamed areas of the
gut in patients with CD (288, 289), and the recent evidence
demonstrating similarities in expression patterns between
mesenteric fat adipocytes obtained from obese patients to that
of CD patients (290). The role of adipokines in inflammation has
been previously reviewed (12, 291).

Adiponectin
Adiponectin is a protein hormone released by adipocytes that is
involved in glucose regulation and FA oxidation. While several
studies have suggested adiponectin to have anti-inflammatory
activity (292), more recent studies have implicated its role in the
pathophysiology of colitis, although its role remains
controversial (293, 294) with some studies reporting an
attenuated effect on colitis while others suggest that decreased
adiponectin in colon subepithelial myofibroblasts exacerbates
colitis (52, 295, 296).

Adiponectin Receptor 1 (AdipoR1)
The Adiponectin receptor 1 (AdipoR1) is an important receptor
in the fat-intestinal axis during the regulation of inflammation of
the colon. Similarities in the expression patterns between
mesenteric fat isolated from obese patients and that from
patients with IBD have been reported, with inflammation and
lipid metabolism pathways showing the greatest overlap (290).
Studies looking at the effect of diet-induced obesity on severity of
TNBS-colitis and cytokine expression in mouse mesenteric fat
suggest that adiponectin receptor 1 aggravates colitis (12). While
obesity alone increases pro-inflammatory IL-1b, TNFa, MCP1,
and keratinocyte-derived chemokine, obesity decreased the
extent to which TNBS-colitis increased IL-2 and IFN-g in
mesenteric adipose and intestinal tissues. In vitro, fat-
conditioned media lowered AdipoR1 in human colonic
epithelial cells (NCM460), while in vivo intracolonic silencing
of AdipoR1 in mice exacerbated TNBS-induced colitis (12). In
another DSS-colitis study, induction of colitis significantly
decreased adiponectin and increased expression in both
AdipoR1 and adiponectin receptor 2 (AdipoR2) (52). Of
interest, findings from McCaskey et al. (297) suggested that the
effects of increased adiposity are dependent on genetic
background and mechanism of colitis induction. In their
SMAD3-/- (129-Smad3tm1Par/J) mouse model, HFD-induced
obesity had no effect on Helicobacter hepaticus, colitis severity,
whereas mice with low caloric intake experience 40% mortality
due to infection (297).

Leptin
Leptin is a satiety hormone that regulates energy balance as a
long-term regulator suppressing food intake preventing obesity.
The role of leptin in IBD has been studied, but the results are
conflicting and further investigation is required (298–300).
Leptin promotes autoimmune diseases and its blockage is
protective (pegylated leptin antagonist mutant L39A/D40A/
F41A; PEG-MLA) (300). Recent studies with IL10-/- mice
showed that the blockage of leptin prevents chronic
spontaneous colonic inflammation (300). Although earlier
studies in IL-10 mice having also a KO mutation in the leptin
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gene showed not to have inflammation prevention, compared to
the single IL-10 KO deficiency (301). However, in IL-10 KO
mice, the deletion of leptin resulted in increased apoptosis of
lymphocytes in the lamina propria (301), which supports the
hypothesis that inflammatory cells benefit and even survive
longer in the presence of leptin ligands, promoting IL-10-
driven chronic inflammation. It is possible that this effect
supports the hypothesis that a feedback loop cycle could locally
exist where a progressive state of intestinal inflammation leads to
accumulated gut-mesenteric fat (creeping fat), which (e.g.,
adipocytes) could produce leptin, positively reinforcing a
vicious inflammatory cycle locally.

Part of the modulating effect of leptin on inflammation has
been supported by the presence of leptin receptors (LR mRNA
gene expression detected) on hematopoietic cells, T-cells and
lymphocytes (300), and in the gastric mucosa, where it can also
be produced. The main producing tissue is the adipose tissue
which increases with obesity. In patients with CD, VAT/FM ratio
was associated with leptin and IL-6 concentrations, and higher in
short-term than in long-term remission (289). Leptin also
increases as a result of positive feedback from TNFa, and it
has been proposed that this mechanism may be relevant in early
inflammatory stages (302, 303).

The mechanism of how dietary fats may modulate
inflammation in IBD could be directly dependent on the
accumulation of adipose tissue, or indirectly/alternatively could
be due to the effect of fats on gastric physiology, because leptin
can be also produced by the gastric mucosa using a seemingly
unique 19KD precursor molecule which is distinct to what
occurs in the adipose tissue (300). In the stomach, leptin
increases its levels according to the feeding regime, which in
turn, modifies systemic circulating levels, which could reach cells
in inflammatory sites to promote inflammation in cells if they are
activated and primed with LR. Fasting and starvation are
associated with high local levels of gastrin; but after a meal,
leptin locally decreases but increases systemically. Additionally, it
has been shown that slow gastric emptying can increase leptin
levels in the stomach. Considering that dietary fats influence
gastric emptying rates, it is possible that slow gastric emptying
caused by a HFD influences leptin levels.

Most recently, differently expressed colonic genes from
C57BL/6 mice in response to a HFD (45% EAF vs. normal
diet, 15% EAF) have been reported. Of the 21 identified leptin-
associated genes found to have an inverse relationship between
the two dietary types (HFD, normal fat) Peli3, Creb1, Enpp2 and
Centg1, four genes previously reported to play a role in obesity
and colon-related diseases, were found to have either a positive
or negative relationship between serum leptin or insulin
concentration and consumption of either HFD or normal
diet (304).

Ghrelin
It is known that bacterial lipopolysaccharides mediate diarrhea
induced by bacterial infection in the gut (305). In ghrelin-treated
mice, this endotoxinemia-induced dysmotility was improved,
mainly via down-regulation of nitric oxide pathways in the gut
(306), decreased production of pro-inflammatory cytokines IL-
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1b and TNFa, with concomitant increase in anti-inflammatory
IL-10 (305, 307). The role of ghrelin in IBD is thought to be
attributed to its antagonistic effect on leptin, although several in
vivo and in vitro studies have described both pro- and anti-
inflammatory effects from ghrelin (305).

In CD-IBD, Zhao et al. (308) reported upregulation of ghrelin
and ghrelin receptor mRNA via NF-kB pathway activation and
induction of IL-8 production in TNBS-colitis mice. By comparison,
Gonzalez-Rey et al. (309) found ghrelin ameliorated severity of
TNBS-colitis and suppressed IL-10 levels. Konturek et al. (310) also
found accelerated colonic lesion healing in ghrelin treated TNBS-
colitis via increased nitric oxide and PGE2 release. In UC-IBD, De
Smet et al. (311) found that a lack of ghrelin delayed neutrophil
infiltration and decreased disease activity index in a model of
chronic DSS-colitis, whereas in C.rodentium-induced colitis (312)
the late stages of infection were associated with increased ghrelin
expression, with in vitro studies showing ghrelin induced marked
proliferation of neurons.

Substance P and Obesity
Intracolonic administration of TNBS-colitis has been shown to
cause severe acute colitis and changes in the mesenteric and
epididymal fat depots arguably described as resemblants of
changes in CD with increased pro-inflammatory mediators in
these fat depots, including substance P (SP) (2, 12, 313, 314). Such
findings indicate that human mesenteric pre-adipocytes contain
functional substance P receptors that are linked to pro-
inflammatory pathways, and that substance P can directly
increase NK-1R expression. Thus, it is possible that mesenteric
fat depots may participate in intestinal inflammatory responses via
substance P-NK-1R-related pathways, as well as other systemic
responses to the presence of an ongoing inflammation of the colon.
DISCUSSION

Herein, we review the evidence on the role of HFDs on the
severity of experimental ileitis and colitis in laboratory rodents to
further advance our mechanistic understanding of the effects of
FAs on intestinal inflammation. While studies conducted
directly in humans provide prevalence, incidence and clinical
estimates, studies using laboratory rodents performed under
controlled conditions allow for mechanistic insights relevant to
IBD. However, our review highlights considerable variability in
findings between studies. Such discrepancies appear to be
dependent on various factors including the rodent model of
IBD used (including colitis induction method), feeding trial
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duration, amount/dosage/source and structural composition of
the FA tested, as well as how other factors such as diet
compounds, lifestyle, drugs, probiotics and the gut microbiota
could interact with the FA to modulate disease. Whereas FA-
mediated regulation of pro- and anti-inflammatory T-cell
responses in vivo remains a largely nascent field, fundamental
questions remain concerning FA uptake, intracellular transport
and regulatory function. Existing studies give cause for optimism
that understanding the molecular interplay between FAs and T-
cells will reveal biologically novel and translationally-relevant
insights toward the treatment of human diseases.

Despite the great advancement, a limitation to note is that
while studies investigating a ‘HFD’ generate relevant data, many
do not report in detail the nutritional composition of the diet,
particularly the FA profile, and other husbandry factors (as
recently discussed) (315), making such studies less
reproducible. This is important considering that not only the
amount by the type and structure of the FA can influence
phenotypic outcomes of disease. In the future it is imperative
to improve reporting and to conduct experiments that correlate
the mechanisms described, the genetics of the host and the
microbiome of the host refining methodological/the designs
and the use of germ-free systems or in vitro/ex vivo organoids
could help further elucidate these mechanisms.
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Few studies reported the relation of intestinal microbiome composition and diversity in
pediatric patients with primary sclerosing cholangitis (PSC) and ulcerative colitis (UC). In this
cross-sectional study, we selected patients younger than 19 years old from the pediatric
gastroenterology and hepatology outpatient clinic of a tertiary hospital to describe the
intestinal microbiome of pediatric patients with PSC associated or not to UC. Patients were
divided in PSC, PSC+UC, and UC diagnosis. A stool sample was collected from each patient
(n=30) and from a healthy relative/neighbor (n=23). The microbiome composition was
assessed using MiSeq (Illumina) platform. Differences in microbial composition were found
between PSC and PSC+UC groups. The relative abundance of Veillonella andMegasphaera
genera were increased depending on patients’ age at diagnosis. Veillonella was also
increased in patients who were in an active status of the disease. Both genera were
positively correlated to total bilirubin and gamma-glutamyl transferase. As a conclusion, the
disease, the age and the disease activity status seem to influence the intestinal microbiome,
highlighting the difference of intestinal microbiome profile for patients depending on age at
diagnosis. We also showed an increase of Veillonella in patients with PSC and PSC+UC, and
a positive correlation of dysbiosis and higher gamma-glutamyl transferase and total bilirubin in
PSC+UC patients. Our findings are promising in the diagnosis, prognosis, and future
therapeutic perspectives for PSC patients.

Keywords: primary sclerosing cholangitis, ulcerative colitis, gut microbiome, 16S rRNA, dysbiosis
INTRODUCTION

Primary sclerosing cholangitis (PSC), a chronic inflammatory disorder that affects the hepatobiliary
system, is characterized by an inflammatory process, leading to progressive fibrosis of intra- and/or
extrahepatic bile ducts (1). Periductular fibrosis (“onion skin fibrosis”) is the hallmark for the diagnosis
of PSC.The diagnosis of PSC is based on endoscopic retrograde cholangiopancreatography ormagnetic
resonance cholangiopancreatography. Clinically, PSC can progress to cholestasis, cholangitis, cirrhosis,
and hepatic failure, with associated complications (2, 3) usually affecting the entire biliary tree (4).
org February 2021 | Volume 11 | Article 5981521273
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Although PSC is more frequently reported in adults (5, 6), it
can start at any age. In pediatric patients, the age at diagnosis is
usually around 10 to 16 years of age (7, 8). The symptoms,
progression and laboratory markers of the disease differ between
pediatric and adults patients, which might explain distinct
outcomes according to the age (4).

There is a strong association between PSC and inflammatory
bowel disease (IBD) (9); recently, Deneau et al. (1) found that
76% of 781 children in the Pediatric PSC consortium had
concomitant IBD, mostly ulcerative colitis (UC) or IBD-
unclassified (83%). Additionally, Lee et al. (10) reported that
71% of children had PSC and IBD, concomitantly.

The etiology and pathogenesis of PSC and the causes of its
association with UC remain unknown. The initial event and the
mechanisms responsible for progressive changes in PSC appear
to be due to an immunologically mediated process (11). In
addition, studies were carried out to explain the peculiar
factors of PSC, mainly the strong association with UC. These
studies suggest that the intestinal microbiota could be a potential
link (9, 12). In this situation, the microbiota would favor
intestinal inflammation and enterohepatic circulation of
bacteria, lymphocytes, or pro-inflammatory molecules derived
from the intestine. Thus, this communication between the
intestine and the liver could lead to portal and biliary
inflammation in genetically predisposed individuals. This
concept forms the basis for the so-called microbiota hypothesis
of PSC (13–15), resulting in tissue destruction concomitant with
an innate immune response to intestinal microbiota antigens,
which activate an abnormal immune response in predisposed
individuals, as well as in UC (12, 16).

To our knowledge, no previous study has reported the intestinal
microbiome composition in patients under 10 years of age
diagnosed with PSC or PSC with concomitant UC. In this study,
we evaluated the intestinal microbiome composition of children
and adolescents diagnosed with PSC, UC, and those with PSC
with concomitant UC, compared to healthy participants.
MATERIALS AND METHODS

Study Population
We performed a prospective study enrolling children aged 3 to
19 years between May 2016 and June 2017, undergoing
Frontiers in Immunology | www.frontiersin.org 2274
evaluation for PSC, UC, or PSC with concomitant UC (PSC
+UC), from the pediatric Hepatology and Gastroenterology
outpatient clinic of Child Institute - Hospital das Clinicas da
Faculdade de Medicina de Sao Paulo (ICR – HCFM),
Brazil. Additionally, healthy controls who were siblings or
close relatives aged 2 to 21 years living in the same house or
nearby were enrolled (Table 1). The diagnosis of PSC was made
based on characteristic bile duct changes with multifocal
structures and segmental dilatation by magnetic resonance
cholangiopancreatography (MRCP), clinical presentation,
cholestatic biochemical profile, and no evidence of secondary
sclerosing cholangitis. Patients with autoimmune sclerosing
cholangitis and small ducts were excluded by clinical and/
or liver biopsy. The diagnosis of UC was made according to
established clinical, biochemical, radiologic, endoscopic,
and histologic criteria using the revised Porto criteria (17).
The disease activity was performed using the Pediatric
Ulcerative Colitis Activity Index (PUCAI) (18) clinical score,
blood tests and endoscopic appearance. This study was
approved by the ethical committee of ICR-HCFM (CAAE
33876620.0.0000.0068), and signed informed consent was
obtained from all subjects who provided specimens and
their parents.

Sample Collection and DNA Isolation
Fecal samples were collected from each child enrolled in this
study. Each participant was instructed to collect one stool
sample at home using a dry and sterile stool collector and
keep it in a freezer (−20°C) until the medical appointment,
some hours later. Samples were transported in an ice-filled
polystyrene container (previously supplied to the patient). At
the hospital, the samples were kept at −80°C, until further
analyses. DNA was obtained from stool samples using the
QIAamp DNA Stool Mini Kit (Qiagen), according to the
manufacturer’s protocol.

16S rRNA Gene Sequence Processing
Amplification of the V4 region of the 16S rRNA gene, library
preparation and sequencing steps were performed, on a single
run, as previously described (19). Raw read files were analyzed
using QIIME software (20). All reads lower than 400 base pairs
were discarded. Chimeric sequences were excluded using
usearch61 (21). Based on 99% similarity, the remaining
sequences were compared against Silva (22) version 128 and
February 2021 | Volume 11 | Article 598152
TABLE 1 | General characteristics from groups.

Ulcerative Colitis (UC) Primary Sclerosing Cholangitis (PSC) PSC+UC

Cases Controls P Cases Controls P Cases Controls P

Age (years)a 12 (3–17) 8 (2–15) 0.036* 14 (9–16) 14 (7–21) 0.92 12 (6–16) 11 (3–17) 0.72
Sex b Male 8 (66.7%) 5 (50%) 0.43 5 (45.5%) 6 (85.7%) 0.11 4 (57.1%) 5 (83.3%) 0.32

Female 4 (33.3%) 5 (50%) 6 (54.5%) 1 (14.3%) 3 (42.9%) 1 (16.7%)
Type of deliveryb Vaginal 7 (58.3%) 4 (40%) 0.39 4 (36.4%) 1 (16.7%) 0.40 4 (57.1%) 4 (66.7%) 0.72

Cesarean 5 (41.7%) 6 (60%) 7 (63.6%) 5 (83.3%) 3 (42.9%) 2 (33.3%)
Breastfeeding timeb > 4 months 10 (83.3%) 10 (100%) 0.99 9 (81.8%) 3 (50%) 0.18 7 (100%) 4 (66.7%) 0.99

< 4 months 2 (16.7%) 0 2 (18.2%) 3 (50%) 0 2 (33.3%)
aMean (minimum-maximum); bnumber (percentage); P values are based on Generalized linear model (GzLM) with alinear distribution and bordinal logistic distribution; *Significant when P ≤ 0.05.
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grouped into operational taxonomic units (OTUs). Nucleic acid
sequences are available at the Sequence Read Archive (SRA)
under accession number PRJNA610934.

Data Analysis
Species richness and alpha diversity were estimated by Chao1
(23), Shannon (24), Simpson (25) and Observed OTUs indices.
Principal coordinate analyses (PCoA) were generated based on
weighted and unweighted UniFrac phylogenetic distance
matrices to observe differences in beta diversity between
groups (26, 27). Bray-Curtis distance was used to calculate the
distances between disease participants and their respective
control participants for “active” or “remission” disease status at
the moment of enrollment. To observe differences related to age
at sample collection/diagnosis, after the microbial analysis of the
disease groups versus controls, we subsampled cases in patients
younger and older than 10 years old.

Statistical Analyses
Statistical analysis was performed in SPSS version 22 and R (R
version 3.4.3, Vienna, Austria), using the phyloSeq (28), vegan (29)
and ggplot2 (30) packages. The generalized linear model (GzLM)
was used to compare the groups to the consecutive controls in
relation to descriptive data and to compare PSC, UC, and PSC+UC
group in relation to clinical data through linear and ordinal logistic
distribution. This model was also used to evaluate the effect of the
independent variables (groups) on the dependent variables (for
alpha diversity indices, using gamma distribution, and for bacterial
phyla and genera relative abundance using linear distribution). To
observe differences in beta diversity between groups,
PERMANOVA was performed using the adonis function for both
weighted and unweightedUniFrac distances. For each variable, 999
permutationsweremade.Mann-Whitney testwas used to compare
the distributions of the distances between disease and control
participants for “active” or “remission” status. The influence of
age on the bacterial relative abundance and diversity was evaluated
by sorting the participants in two groups: under and above 10 years
old, considering the clinical relevance of the early and late onset
diagnosis. One-tailed Pearson’s correlation was used to observe the
correlation between clinical data and bacterial genera. For all
analyses, the level of significance considered was P ≤ 0.05.
Frontiers in Immunology | www.frontiersin.org 3275
RESULTS

General Characteristics and Clinical Data
Thirty patients were included in this study, which were allocated
in the PSC group (n=11), UC group (n=12), and PSC+UC
group (n=7); additionally, 23 healthy children/adolescents
were included to represent the control group. The general
characteristics and clinical data at collection are described in
Tables 1 and 2, respectively. Overall, no differences were found
between groups regarding general and clinical characteristics,
except for the age in the UC group (12 vs 8 years of age in case
and control groups, respectively; Table 1). Values of gamma-
glutamyl transferase (GGT), reactive C protein (RCP), total
bilirubin and albumin from patients were monitored during all
follow-up (Table 2 and Supplementary Table 1). At collection,
GGT values were significantly increased in the PSC+UC group
compared to the UC and PSC groups, and albumin values were
significantly increased in the UC group compared to the PSC
group (Table 2). In addition, most of the UC patients were in
remission of the disease, and most of the PSC+UC patients were
in activity (Table 2). Moreover, only one participant used
antibiotics in the last 12 months prior to collection.

Cases vs Controls
Firmicutes and Bacteroidetes were the predominant phyla found
in all groups (Supplementary Table 2). However, the relative
abundance of Firmicutes was higher in the control, PSC and UC
groups, whereas the relative abundance of Bacteroidetes was
higher in the PSC+UC group. The levels of Proteobacteria
observed in the PSC+UC group were much higher than those
in the other groups (Figure 1A), but none of these results
reached statistical significance. In addition, we observed that
the Firmicutes/Bacteroidetes (F/B) ratio was well diminished in
the PSC+UC group compared to the other groups (Figure 1B).

In general, the most abundant genera observed were
Bacteroides, Prevotella 9, Lachnospiraceae NK4A136 group,
Ruminococcaceae UCG 002, Veillonella, and Megasphaera
(Supplementary Figure l and Supplementary Table 3). The
genus Bacteroides was predominant in all groups, except for the
PSC+UC group, where Prevotella 9 was the most abundant. In
the comparison between cases and controls, Veillonella (P=0.002)
TABLE 2 | Clinical data from disease groups.

Ulcerative Colitis (UC) Primary Sclerosing Cholangitis (PSC) PSC+UC P

Age of diagnosis (years)a 7 (0–12) 10 (0–14) 7 (3–12) 0.14
Reactive C protein (mg/L)b < 0.3 6 (50%) 3 (30%) 2 (28.6%) 0.53

> 0.3 6 (50%) 7 (70%) 5 (71.4%)
Albumin (g/dl)c 4.44 (0.32) 3.97 (0.67) 4.10 (0.35) 0.048*
Gamma-Glutamyl Transferase (U/L)c 15.08 (3.91) 109.63 (155.31) 413.00 (430,90) <0.001*
Total Bilirubin (mg/dl)c 0.54 (0.31) 2.04 (3.62) 0.99 (1.04) 0.26
Leukocytes (×109/L)c 7.63 (2.97) 6.32 (2.04) 6.47 (1.41) 0.32
Disease stateb Active 3 (25%) 4 (36.4%) 5 (71.4%) 0.16

Remission 9 (75%) 7 (63.6%) 2 (28.6%)
February 2021
 | Volume 11 | Article
aMean (minimum-maximum); bnumber (percentage); cmean (standard deviation); P values are based on Generalized linear model (GzLM) with a,clinear distribution and bordinal logistic
distribution; *Significant when P ≤ 0.05.
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was significantly more abundant in the PSC+UC group. Other
genera, such as Eubacterium coprostanoligenes group (P=0.22),
Ruminococcaceae UCG 002 (P=0.06) and Christensenellaceae R7
group (P=0.08), were significantly higher in the control group, but
the results were not maintained in post hoc test. The same
occurred for genera more abundant in the UC group,
Acidaminococcus (P=0.17), and in the PSC group, Streptococcus
(P=0.07) and Megasphaera (P=0.16). There was a positive
correlation between the abundance of Megasphaera and higher
values of GGT (P=0.032) and the abundance of Veillonella and
higher values of bilirubin (P=0.015) in the PSC+UC group
(Supplementary Table 4).

Microbiome Analysis
To verify the hypothesis of different microbial composition in
PSC pediatric patients according to age at the diagnosis, after the
microbial analysis of the diseases groups versus controls, we
subsampled the cases in younger than 10 years (<10 years) and
older than 10 years old (>10 years) at the sample collection and/
or diagnosis.

Microbiome of Children Under 10
Years of Age
Children under 10 years of age were subsampled according to age
at sample collection; therefore, we subsampled them at <10 years
of age at diagnosis - PSC group (n=3), UC group (n=6), PSC+UC
group (n=3), and Control Group (n=11). The predominant phyla
were Firmicutes and Bacteroidetes (Supplementary Table 5),
and Firmicutes was more abundant in the PSC group and
Frontiers in Immunology | www.frontiersin.org 4276
Bacteroidetes was more prevalent in the UC group. The
relative abundances of Proteobacteria and Actinobacteria were
significantly higher in the PSC+UC (P=0.01) and UC (P=0.01)
groups, compared to the control group.

The most abundant bacterial genus found in children <10
years old was Bacteroides (Figure 2A and Supplementary
Table 6), which was more prevalent in the UC group and less
prevalent in the PSC+UC group, but the results were not
statistically significant. Interestingly, the relative abundance of
Bifidobacterium was significantly higher in the UC group than in
controls (P=0.04). The abundance of Streptococcus in the PSC
group was statistically higher than that in the control group
(P=0.001). In addition, the abundance of the genus Veillonella
was significantly greater in the PSC and PSC+UC groups than in
controls (P=0.03 and P=0.01, respectively), and Escherichia-
Shigella showed significantly higher values in the PSC+UC
group than in controls (P=0.04) (Figure 3A).

Microbiome of Children and Adolescents
Over 10 Years of Age
The samples divided in this category were unable to be
subsampled according to age at diagnosis, since the sample size
was too small at this analysis stage. Thus, we subsampled
according to age at collection - PSC group (n=8), UC group
(n=6), PSC+UC group (n=4), and Control Group (n=10). The
predominant phyla in patients over 10 years of age were
Firmicutes and Bacteroidetes (Supplementary Table 7),
Firmicutes more prevalent in the UC group and Bacteroidetes
more prevalent in the PSC+UC group. The predominant genus
A

B

FIGURE 1 | Relative abundance of the main phyla observed in this study. (A) Main phyla in patients according to groups. (B) Barplot of the Firmicutes/Bacteroidetes
ratio for each group. PSC, Primary Sclerosing Cholangitis diagnosed patients; UC, Ulcerative Colitis diagnosed patients.
February 2021 | Volume 11 | Article 598152
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in these patients was Bacteroides (Figure 2B and Supplementary
Table 8), more prevalent in the UC group. We observed a
tendency for higher abundance of Prevotella 9 in the PSC+UC
group compared to the control group (P=0.06), while
Lactobacillus was decreased in the same group. Moreover,
the abundance of the genus Veillonella was significantly higher
in the PSC+UC group than in the control group (P=0.02)
(Figure 3B).

Alpha Diversity
Alpha diversity of children <10 years old showed higher levels of
richness (Chao1), diversity (Shannon) and observed OTUs in the
control group (Figure 4A and Supplementary Table 9), and
Chao1 index was significantly lower in the PSC+UC group
compared to controls (P=0.05). In contrast, the PSC group
presented higher values of Simpson. In patients over 10 years
of age (Figure 4B and Supplementary Table 10), a higher
richness (Chao1) and observed OTUs was identified in
controls, but the results were not statistically significant. In
addition, we observed that the mean values for Shannon and
Simpson were similar in controls and cases in this age group,
differently than children < 10 years of age (Figure 4).

Disease Status—Active vs Remission/
Controlled Disease
To evaluate the influence of active or remission/controlled
disease status on the intestinal microbiome, we explored the
distances between patients and their respective healthy control
according to the disease status (Figures 5A, B). In the PSC+UC
group (Figure 5C), the distances between patients in active
disease status and their respective healthy control were
significantly higher than the distances between patients in
remission disease status from their controls (P=0.048). We
observed a similar tendency for the UC group (Figure 5D);
however, it was not statistically significant (P=0.066).

Subsequent analysis, independent of age and disease groups –
remission/controlled patients (n=18) and patients in activity
(n=12), showed a significant higher relative abundance of
Ruminoclostridium 5 (P=0.02) and Ruminococcaceae UCG 002
(P=0.047) in patients in remission/controlled disease compared
to patients with active disease (Supplementaty Table 11). In
addition, Veillonella was increased in patients with active disease
(P=0.01), and Escherichia-Shigella tended to increase in this
group (P=0.06).
DISCUSSION

The influence of the intestinal microbiome on PSC development
has been described in recent years. Indeed, changes in microbial
composition have been observed in PSC/UC studies with adult
patients (31), suggesting the role of the intestinal microbiome
in the course of the disease and confirming the previous
hypothesis of the “PSC microbiome” (12). In this sense, it is
essential to describe this relationship in either pediatric or
adolescent patients.
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Firmicutes is themajor phyla in human intestinal microbiome,
depicting approximately 60%–65% of microbiome diversity (32).
Bacteroidetes is the second most abundant phylum, comprising
genera involved in degradation of soluble carbohydrates in
Frontiers in Immunology | www.frontiersin.org 6278
intestinal lumen. The Firmicutes/Bacteroidetes ratio has already
been described as a marker of eubiosis/dysbiosis in obese
and diabetic patients (33, 34). The increase in Firmicutes
abundance and decrease in Bacteroidetes abundance was
A B

FIGURE 3 | Barplot of statistically significant bacterial genera, according to age. (A) Patients under than 10 years of age; (B) Patients over than 10 years of age.
PSC, Primary Sclerosing Cholangitis; UC, Ulcerative Colitis; * indicates statistical significance compared to the control group (after Sidak’s post hoc test);
¥ Significance in comparison to the control group was not maintained in post hoc test.
A

B

FIGURE 4 | Richness and alpha diversity values of samples, by groups. (A) Samples from patient and control groups under 10 years of age and (B) over 10 years
of age. The richness and alpha diversity are measured by Observed OTUs, Chao1, Shannon, and Simpson indices. The box-plot is representing the interquartile
range (IQR) and the line inside represents the median. The generalized linear model was performed to compare the values between the groups.
February 2021 | Volume 11 | Article 598152
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related to an imbalance in intestinal microbiome composition
and consequently metabolic disorders. Here, we describe new
abundance profiles for these phyla; there was no difference in the
proportion of these phyla in patients with the association of PSC
and UC. The increases in the abundance of Prevotella 9 and
Bacteroides, members of the Bacteroidetes phylum, in the PSC
+UC group were different than the other groups. In addition to
increased Bacteroidetes abundance, the PSC+UC group showed
the highest levels of Proteobacteria, which might explain the
decrease in Firmicutes abundance.

IBD is a well-characterized intestinal disease (35) associated
with microbiome dysbiosis in both children and adult patients
(36). Montreal classification (37) divided IBD occurrence
between pediatric (<17 years old) and adult disease onset. The
Paris Classification divided the pediatric disease into late onset
(LO, >10 years old) and early onset (EO, <10 years old) based on
age at diagnosis. In this way, very early onset (VEO) was
proposed to define children under 6 years of age at diagnosis.
It is already known that in IBD patients, the severity of the
disease increases with age; however, in VEO patients, there are
more complications in the disease course since it starts
earlier (37).

Iwasawa et al. (38) recently studied the microbiome
composition of saliva from children with PSC and UC,
showing different results in the salivary microbiome between
the PSC group and healthy controls. The definition of pediatric
onset for PSC was proposed by the authors. Here, we propose the
use of early onset for patients younger than 10 years of age and
late onset for those older than 10 years of age, including PSC+UC
Frontiers in Immunology | www.frontiersin.org 7279
diagnosis, since there is a distinct microbiome pattern between
these groups. Intestinal dysbiosis in pediatric patients might be
considered a possible indicator for disease outcomes (38).

PSC patients showed a distinct pattern of fecal microbiome
according to the age of diagnosis/sample collection. The
abundance of Veillonella was significantly increased in the fecal
microbiome of patients with PSC and PSC+UC in both early-
and late-onset patients compared to the control and UC groups.
However, in early-onset patients, the abundance of Veillonella
was remarkably increased, followed by an increase in
Escherichia-Shigella abundance only in PSC+UC patients.
Interestingly, Megasphaera increased in abundance in late-
onset patients only in the PSC group. Several previous studies
reported an increased in the abundance of Megasphaera and
Veillonella in a study of older children (8) and adults (5, 39).
Veillonella and Megasphaera are gram negative anaerobic roads,
belonging to the Veillonellaceae family and Firmicutes Phylum.
They are usually described as members of mouth and gut human
microbiome (40, 41), and rarely described in human infections
(42). Little is known about the role of these genera in human
intestinal microbiome equilibrium.

In our study, we found a positive correlation between the
abundance of Veillonella and higher bilirubin values and the
abundance of Megasphaera and higher GGT values, suggesting
the role of the microbiome in disease severity. We were unable to
correlate these findings to early or late onset due to our small
sample size in each group. Nakamoto et al. recently showed a
cooperative relationship between pathobionts in a PSC-UC
gnotobiotic animal model assay (43). Their findings suggested
A B

DC

FIGURE 5 | Principal Coordinate Analyses plots of Bray-Curtis distance between each patient and the respective control. (A) According to the disease status of
patients in the PSC + UC or (B) UC groups, and according to the active or remission disease status shows significant differences for the PSC + UC group (C), but
not for the UC group (D) by the Mann–Whitney test. UC, Ulcerative Colitis group; PSC + UC, Primary Sclerosing Cholangitis with concomitant Ulcerative Colitis.
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bacterial translocation and an association with increases in the
abundance of Klebsiella and hepatobiliary diseases. They were
not able to detect Veillonella in the studied human cohort;
however, they included adult patients. We could suggest that
Veillonella might be related to PSC outcome in children and
adolescent patients, since this genus was already correlated to the
production of amine oxidases and contributed to the
manifestation of PSC+UC via aberrant lymphocyte tracking
between the bowel and liver (44).

Here, we report a distinct fecal microbiome pattern in PSC
and PSC+UC patients in early onset compared to those in late
onset. Since the abundance of Veillonella in children with
pediatric PSC and PSC+UC was higher, this bacterium might
be related to a biomarker of PSC in younger children associated
with clinical laboratory values, including GGT and bilirubin (1).

Clinically, PSC patients with higher GGT and bilirubin
values, among others, are generally related to worse outcomes
(1). In this transversal pilot study, we showed that PSC associated
with UC is related to intestinal microbiome dysbiosis in younger
children and positively correlated with high GGT and bilirubin
values. Despite our small sample size, the worse outcomes at 6
and 12 months of follow-up were for patients with high values of
GGT and bilirubin at collection (Supplementary Table 1).
However, a longitudinal study is necessary to establish
intestinal dysbiosis and worse outcomes.

Interestingly, Veillonella was also significantly increased in the
intestinal microbiome in patients with active disease at sample
collection. The significant distance between microbial community
structures in both remission and active disease groups and the
evidence of the increased Veillonella in the active disease group
reinforce the evidence of a role of the intestinal microbiome in the
course of the disease, as discussed above.

We note the small sample size of children in each group,
particularly children under 10 years old, as a limitation of the
present study, which weakens the final results. In addition, the
lack of a complete longitudinal follow-up is another limitation.
The inclusion of more participants could increase the strength of
data on microbial abundance variation and bacterial genera and
lead to more significant results. The strengths of this study are
the control group with family members or relatives, avoiding diet
and environmental influences on microbiome results, and the
inclusion of young children with PSC+UC and PSC diagnosis.

In conclusion, we described here the intestinal microbiome of
children and adolescents with PSC and/or associated UC,
highlighting the difference in the intestinal microbiome profile
for early- and late-onset patients. Our work shows the
relationship of microbiota in cases of active disease and
especially dysbiosis in patients with an association of PSC
and UC. This dysbiosis might be related to the different
pathophysiology of the disease in children. To our knowledge,
this is the first study describing the intestinal microbiome in
children under 10 years old with PSC and PSC+UC. Since we
could verify the hypothesis of different microbial compositions in
PSC pediatric patients according to age at diagnosis, we are
proposing the categorization of early and late PSC and PSC+UC
onset according to the age at diagnosis. We also showed an
Frontiers in Immunology | www.frontiersin.org 8280
increase in Veillonella in patients with PSC and PSC+UC and a
positive correlation between higher GGT values and higher
Veillonella abundance, suggesting the potential use of this
bacterial genus as a biomarker of PSC. These findings could
open new possibilities for diagnosis and prognosis and future
therapeutic options in pediatric PSC care.
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COVID-19 is an infectious disease caused by the Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), and according to the World Health Organization (WHO), to
date, SARS-CoV-2 has already infected more than 91.8 million people worldwide with
1,986,871 deaths. This virus affects mainly the respiratory system, but the gastrointestinal
tract (GIT) is also a target, meanwhile SARS-CoV-2 was already detected in oesophagus,
stomach, duodenum, rectum, and in fecal samples from COVID-19 patients. Prolonged
GIT manifestations in COVID-19, mainly the diarrhea, were correlated with decreased
richness and diversity of the gut microbiota, immune deregulation and delayed SARS-
CoV-2 clearance. So, the bidirectional interactions between the respiratory mucosa and
the gut microbiota, known as gut-lung axis, are supposed to be involved in the healthy or
pathologic immune responses to SARS-CoV-2. In accordance, the intestinal dysbiosis is
associated with increased mortality in other respiratory infections, due to an exacerbated
inflammation and decreased regulatory or anti-inflammatory mechanisms in the lungs and
in the gut, pointing to this important relationship between both mucosal compartments.
Therefore, since the mucous membranes from the respiratory and gastrointestinal tracts
are affected, in addition to dysbiosis and inflammation, it is plausible to assume that
adjunctive therapies based on the modulation of the gut microbiota and re-establishment
of eubiosis conditions could be an important therapeutic approach for constraining the
harmful consequences of COVID-19. Then, in this review, we summarized studies
showing the persistence of SARS-CoV-2 in the gastrointestinal system and the related
digestive COVID-19 manifestations, in addition to the literature demonstrating
nasopharyngeal, pulmonary and intestinal dysbiosis in COVID-19 patients. Lastly, we
showed the potential beneficial role of probiotic administration in other respiratory
infections, and discuss the possible role of probiotics as an adjunctive therapy in
SARS-CoV-2 infection.
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INTRODUCTION

The human intestinal microbiota consists of more than a trillion
microorganisms in a complex and dynamic ecosystem, regulating
the immune system and our entire physiology (1). These microbes
play very important functions in the body, including nutritional
metabolism, development and modulation of immunity, as well as
defense against harmful pathogens (2). In the gastrointestinal tract
(GIT), the epithelial barrier protects against the invasion of
pathogenic microorganisms and helps keeping tolerance to food
antigens, while it may also be associated with systemic and
pulmonary immune functions. Once damaged, microorganisms
translocate into the bloodstream or lungs and can induce
septicemia or acute respiratory distress syndrome (3, 4).

Indeed, there is evidence for a crosstalk between the
respiratory tract and the GIT, or more precisely, between the
intestinal microbiota and the lungs (Figure 1), and this
connection is named the gut-lung axis (5). Changes in the
taxonomic composition and decreased diversity and function
of the gut microbiota, known as dysbiosis, can affect the
immunity of the lungs (6). On the other hand, the respiratory
tract has its own microbiota (7) and lung inflammation can lead
to intestinal dysbiosis (8). As an example, patients with
respiratory infections usually have intestinal dysfunctions (9),
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which further strengthens the existence of a gut-lung axis.
Accordingly, the intestinal microbiota-mucosal immune system
interactions and the gut-lung axis have been extensively studied
and reviewed in the scientific literature (10–13).

Recent studies hypothesized that endotoxins, microbiota
metabolites, cytokines, and hormones from the gut could reach
the bloodstream and the lung niche, in a bidirectional gut-lung
axis crosstalk (10, 13, 14). Moreover, growing evidence suggests
an influence of the gut microbiota metabolites in the migration of
bone marrow hematopoietic precursors and inflammation
resolution in the lungs (6, 15). In line with that, the host
immune status is influenced by intestinal microbiota and may
influence the extent of the immunity to viral infections, including
the SARS-CoV-2 (16, 17). Due to its essential role in
development and maturation of the immune system, in
addition to the induction and regulation of immune responses
at mucosal surfaces, it is plausible to assume that the microbiota
and their metabolites play a significant role in SARS-CoV-2
infection (13, 18, 19).

Gastrointestinal Tract Arises as a Target
to SARS-CoV-2
As already widely known, it is clear that SARS-CoV-2 mainly
affects the respiratory system. However, the pathogenicity of the
FIGURE 1 | The connection between lung and gut mucosa in the pathogenesis of COVID-19. The SARS-CoV-2 virus infects preferentially cells from the respiratory
system, but a large body of evidences points to the GIT as another important target for the virus entry and replication. The dysbiosis, together with the barrier
damage and the resulting inflammation may facilitate the disease establishment. The translocated bacteria, leukocytes and the release of inflammatory mediators in
the gut-lung axis may contribute to the COVID-19-associated organ deterioration. Some proposed adjunctive therapies such as prebiotics or probiotics, which are
aimed at re-establishing the eubiosis state through modulation of microbiota could represent an alternative approach to ameliorate or avoid the worst outcomes of
COVID-19.
February 2021 | Volume 12 | Article 635471

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Oliveira et al. Microbiota in COVID-19
infection is not confined exclusively to the lungs; on the contrary,
the virus and the subsequent immune response to it are related to
tissue damage on other vital organs while critically ill patients
have multiple dysfunction syndromes (20, 21).

Several viruses, such as coronavirus, rotavirus and
noroviruses are able to infect the enterocytes from the GIT.
The infection impairs the absorption process causing an
imbalance in the intestinal function or activation of the enteric
nervous system, thus leading to symptoms and important clinical
disease manifestations (22–25). Regarding SARS-CoV-2, the GIT
is also a target of infection and the virus can be detected in the
oesophagus, stomach, duodenum and rectum, besides in the fecal
samples of COVID-19 patients (26–28). The main
gastrointestinal symptoms commonly seen during COVID-19
are lack of appetite, nausea, vomiting, diarrhea, and abdominal
pain (29, 30). In the last months, many researchers have
repeatedly shown that the SARS-Cov-2 can, in fact, infect the
GIT (Figure 1) and there is a high load of replicating viruses,
mainly in the gut epithelial cells, as observed in biopsies of the
small and large intestine of infected patients (31). Besides, the
identification of infectious viruses in fecal samples of COVID-19
patients suggested that the GIT could be a place of viral activity
and replication (32, 33). Accordingly, in a work conducted in
Singapore, 50% of patients positive to SARS-CoV-2 infection had
virus detection in their feces. Still, half of them experienced GIT
manifestations such as diarrhea (34). In another study, the
presence of SARS-CoV-2 was evaluated in both, throat swabs
and fecal samples, through the course of the infection. The feces
and respiratory tract swabs were obtained every 1–2 days until
two consecutive negative results were reached. The results
showed that in that cohort of the patients, fecal samples
persisted positive for approximately 5 weeks after respiratory
samples tested negative for the virus RNA (35). A similar study
reinforced that 80% of a cohort of infected children had positive
viral rectal swabs after respiratory tract testing was negative (36).
Notably, the live SARS-CoV-2 was also detected in fecal samples
from patients who did not have diarrhea, by electron microscopy
(37). Moreover, in a preprint study, the analysis of intestinal
biopsies showed a long-time persistence of SARS-CoV-2 in the
ileum and duodenum of patients after the initial infection (38).
Thus, the presence or persistence of the virus in the GIT and
stools highlights that SARS-Cov-2 is not limited to the lungs and
points to a potential fecal-oral transmission.

Although the specific route through which SARS-CoV-2
infects the GIT is still not fully elucidated, recent reports
indicated some possible pathways involved on it. The crucial
step of the virus entry into the host organism is through the
angiotensin converting enzyme 2 (ACE2) cell receptor (39, 40)
and the successful infection also requires the transmembrane
protease serine 2 (TMPRSS2), in a cleavage step of the viral S-
protein on the host cell membrane, thus allowing efficient viral
fusion (41). Both ACE2 and TMPRSS2 have elevated
coexpression in the oesophageal upper epithelia and gland
cells, besides in the absorptive enterocytes of the ileum and
colon from healthy subjects or COVID-19 patients (42,
43). Furthermore, human intestinal epithelial cells (hIECs) can
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be successfully infected by SARS-CoV-2 and then both intestinal
epithelial cell lines and human colon organoids could be
potential targets for virus replication, thus potentially
contributing to the augmented viremia and spreading of SARS-
CoV-2 infection. Importantly, the authors also found that hIECs
infected with SARS-CoV-2 are able to promote a strong immune
response mainly mediated by type III, but not type I IFNs. The
pretreatment of SARS-CoV-2 infected hIECs, with exogenous
IFNs, leads to a significant reduction of the infected cells, viral
replication, and a sharp decrease in the generation of infectious
virus particles. The crucial role of type III IFN in controlling
SARS-CoV-2 at the intestinal epithelium was also confirmed by a
significant expansion of virus replication after genetic ablation of
its specific receptor (22, 44). Hence, although the main
manifestations of infection by SARS-CoV-2 are directly linked
to the respiratory system, it is necessary to observe GIT
alterations that, although less common, also appear during the
disease (45, 46).

Gastrointestinal Manifestations in COVID-19
The presence of gastrointestinal signs or symptoms during
COVID-19 is relatively common. In a Chinese province named
Zheijiang, it was observed that among 651 patients with a
confirmed diagnosis of COVID-19, from January to February
2020, 11.4% had at least one GI symptom, with diarrhea being
the most common (8.14%), lasting from 1 to 9 days in most cases,
with an average duration of 4 days (28). Though COVID-19 is
less frequent in children (47), the percentage of GIT
manifestations in this group of patients (13.9%) was very
similar to those of adults, according to a study carried out with
244 children in the Chinese city of Wuhan, between January and
March 2020 (48).

Patients with gastrointestinal symptoms have a significantly
higher rate of chronic liver disease than the patients with
COVID-19 but without GIT manifestations (10.81% vs. 2.95%)
(28), as well as the transaminases aspartate aminotransferase
(AST) (16.5% vs. 5%), and alanine aminotransferase (ALT)
enzymes (20.4% vs. 5.9%), that indicate liver damage (30).
These subjects are also more likely to have complications of
acute respiratory distress syndrome (6.76% vs. 2.08%),
progression to the severe and critical forms of COVID-19,
more frequently need to use mechanical ventilation and to be
admitted in intensive care units (ICU) (6.76% vs. 2.08%) (28),
besides prolonged prothrombin time (13.1 vs. 12.5 s) (30). With
regard to clinical parameters, patients with gastrointestinal
symptoms appear to be more susceptible to fever, fatigue,
shortness of breath and headache, which can be caused by
increased electrolyte imbalance (28). In comparison with
patients with COVID-19 and no gastrointestinal symptoms,
those who have these manifestations are also more likely to
receive treatment with antibiotics , interferons and
immunoglobulins (30). On the other hand, patients with
COVID-19 without GIT commitment present a higher
incidence of unilateral pneumonia (28) and are twice as likely
to recover from the disease compared to those who have digestive
symptoms (30.4% vs. 60%) (30).
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As COVID-19 becomes more severe, gastrointestinal
symptoms become more evident (30). Nevertheless, regarding
the markers related to SARS-CoV-2 infection, there is no
significant difference in the amount of procalcitonin, C-
reactive protein (CRP) (28) and coagulation indicators (except
for prothrombin time) between patients with and without
COVID-19 manifestation related to the GIT (30). There is also
no difference in total blood count or kidney function.

The reasons that explain these differences observed in the
course of the disease between patients with and without
gastrointestinal symptoms are not completely clear, but it is
possible that a viral replication in the tract (30) may lead to a
more serious clinical condition. Furthermore, patients presenting
extra pulmonary non-classical symptoms of COVID-19 take
longer to seek medical help, facilitating the increase in the
severity of the disease and making recovery more difficult (30).
Apparently, there is no difference in the gender distribution of
patients with COVID-19 who have gastrointestinal
symptoms (46).

As described before, ACE2 is the gateway to SARS-CoV-2
entry into the host cell (39) and there is high expression of this
receptor in the intestine (49), besides in the oral mucosa and in
the tongue epithelial cells (50), thus reinforcing the idea that the
GIT is also an important target for the virus infection. Indeed,
the oral cavity and digestive tract can serve as an infection route
for SARS-CoV-2 and the expression of ACE2 in the GIT could
explain the presence of gastrointestinal symptoms in patients
with COVID-19 (46). Moreover, ACE2 can control intestinal
inflammation and diarrhea (51); thus, the interaction between
SARS-CoV-2 and ACE2 can lead to a deregulation of this
receptor and the intestinal symptoms (49). In addition, since
ACE2 was associated with the capture of dietary amino acids,
regulation of antimicrobial peptide expression and homeostasis
of the intestinal microbiome, it is feasible to assume that ACE2
can be a regulator of the intestinal microbiome and immunity
(51). Indeed, as SARS-CoV-2 directly infects the GIT, it is able to
generate an inflammatory reaction that can lead to direct and
indirect damage on the digestive system (30).

The use of antibiotics is associated with diarrhea (27) and the
treatment for COVID-19 may involve the use of these medicines
(29), thus generating a change in the composition of the
intestinal microbiota (52, 53). This could be another
explanation for the diarrhea episodes in patients with COVID-
19 and reinforces the hypothesis of the relationship between
SARS-CoV-2 and the gut microbiota (54). Thus, it is important
to maintain vigilance and pay more attention to the GIT
manifestations that appear during COVID-19, as they are less
common than the classic respiratory symptoms. Moreover,
signals such as diarrhea can not be underestimated because of
the risk potential of virus shedding in feces and for early
diagnosis of COVID-19 suspected cases (28).

The Gut-Lung Axis and Dysbiosis
in COVID-19
The impact of the intestinal microbiota on systemic immunity
and the effect on the respiratory infections has been recently
Frontiers in Immunology | www.frontiersin.org 4286
explored in mice and humans (14, 16, 55–59). Studies have
demonstrated the essential role of the commensal microbiota in
antiviral responses in the lung by modulating the immune
responses in homeostatic condition, as well as during the
course of the viral infection (16, 55, 60). Notably, researchers
have reported a fundamental role of the microbiota on antiviral
innate immunity in the respiratory tract, due to its influence on
epithelial cells, alveolar macrophages and dendritic cells, also
modifying cellular and humoral adaptive immune responses
(60, 61).

The intestinal microbiota affects the expression of type I
interferon receptors in respiratory epithelial cells, which
respond promptly to viral infections via IFN-a and IFN-b
secretion, restricting the viral replication (60). Macrophages
and DCs from germ-free mice failed to produce IFN-a, IFN-b,
IL-6, TNF, IL-12, and IL-18 cytokines in response to microbial
ligands or viral infection and the natural killer priming becomes
defective in the absence of gut microbiota and IFN-I signaling
(56). Moreover, using antibiotic-treated mice, it has been showed
that comensal microbiota regulate local and systemic IFN-I
response through IFN-b secretion by colonic immune cells.
More specifically, capsular polysaccharide A derived from
Bacteroides fragilis induces IFN-b in vitro and in colon lamina
propria dendritic cells in mice, suggesting that gut microbiota
might enhances resistance to viral infections (62). In addition,
Ichinohe et al. (16) showed that antibiotic treatment and
depletion of gram positive gut bacteria impair the distribution
or activation of dendritic cells from the respiratory tract and
induce a decrease in migration of DCs from the lung to the
draining lymph nodes. Moreover, the intestinal microbiota is
also involved in the activation of specific CD4+ and CD8+ T
lymphocytes, in the stable expression of pro-IL-1b, pro-IL-18
and NLRP3, while the inflammasome activation favors the
maturation and migration of DCs from the lungs to the
draining lymph nodes, after a viral challenge. Abt et al. (55)
reported a decreased expression of IFN-gRI, MHC-I, CD40, and
CD86 molecules in peritoneal macrophages of antibiotic-treated
mice during an early response to viral infection, suggesting that
signals derived from gut microbiota modulate the innate
immunity prior to viral infection. In experiments with a
MERS-CoV animal model, researchers showed the capacity of
the virus to induce a decrease onMHC-I and MHC-II expression
in macrophages and DCs, impairing the antigenic presentation
and leading to defective T cell activation (63).

Some studies have also reported that signals from the
commensal microbiota exert different effects on the lung
mucosa, such as enhancing the antiviral state in epithelial or
innate immune cells and controlling viral replication at the
beginning of the infection. The improvement of this innate
immunity favors the efficiency of the cellular and humoral
adaptive responses in the late course of the infection (16, 55,
60). So, we can assume that beneficial microbes can positively
influence the mucosal immune system and promote an efficient
response against respiratory viruses (64) (65). The intestinal
dysbiosis is associated with the increased mortality in
respiratory infections, probably due to a deregulated immune
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response, with increased secretion of IFN-g, IL-6, CCL2, and
decreased regulatory T cells in the lung and GIT (66).

Four mechanisms have been proposed to explain the impact
of the intestinal microbiota on respiratory mucosal immunity: 1)
the hypothesis that all mucous tissues are interconnected, that is,
the activation of immune cells in a mucosa can influence and
reach other distant mucous sites. Thus, the migration of immune
cells from the GIT to the mucosa of the respiratory tract may be
related to the beneficial impacts exerted by the intestinal
microbiota in respiratory viral infections (65, 67); 2) cytokines
and growth factors secreted in the GIT mucosa, in response to
commensal microbiota, could reach the systemic circulation and
act on other mucous tissues (14, 65); 3) the microbial-associated
molecular patterns (MAMPs) could be absorbed and conducted
to extra intestinal tissues, where they would activate pattern
recognition receptors in immune cells and influence innate
immune responses (68); 4) the microbiota metabolites
absorbed in the gut mucosa have been related to the
modulation of mucosal immunity, an effect known as
“metabolic reprogramming”. These metabolites, especially
short-chain fatty acids, bind to receptors in immune cells of
the respiratory tract and enhance the antiviral response in the
lung (6, 64).

Regarding COVID-19, it is known that infection of gut
epithelial cells by SARS-CoV-2 can induce dysbiosis, intestinal
inflammation and gastrointestinal symptoms (31, 69).
Furthermore, previous intestinal dysbiosis observed in type 2
diabetes, obesity, hypertension, coronary heart disease, and in
other age-related disorders are involved in the deregulation of
the inflammatory immune response to SARS-CoV-2, favoring
the infection, dissemination and severity in patients with
comorbidities (70). The host unbalanced immune response and
the massive inflammatory cytokine secretion, known as
“cytokine storm” are associated with the disease severity and
the worst prognosis in COVID-19 patients (71, 72). In addition,
an inflammatory dysbiotic milieu and the epithelial damage
induce the expression of ACE2, increasing SARS-CoV-2
replication in the GIT and dissemination to other sites (70).
This is consistent with gastrointestinal symptoms and detection
of SARS-CoV-2 in anal swabs and fecal samples from COVID-19
patients, even in those subjects negative for viral detection in
respiratory swabs or after clearance of respiratory symptoms
(31, 73).

As already mentioned, a number of COVID-19 patients had
gastrointestinal symptoms (74), a finding that could potentially
affect the healthy interactions between the intestinal microbiota
and the mucosal immune system, with consequences on the
immune response against the lung infection. Moreover,
prolonged GIT manifestations, mainly the diarrhea, were
inversely correlated to decreased microbiota richness and
diversity, associated with immune deregulation and delayed
SARS-CoV-2 clearance (75, 76). Studies carried out with
COVID-19 patients are demonstrating that, in addition to
intestinal dysbiosis, patients may have pharyngeal and
pulmonary unbalanced microbiota, reinforcing the hypothesis
that mucous surfaces may be connected, and that everything that
Frontiers in Immunology | www.frontiersin.org 5287
happens in the GIT mucosa may have consequences on other
sites (75, 77–81).

In line with that, in a study carried out in China, Gu et al. (75)
evaluated the intestinal microbiota from 30 COVID-19 subjects,
24 H1N1 patients and 30 healthy controls. Subjects infected with
SARS-CoV-2 had a decrease in the diversity of the intestinal
microbiota when compared to controls, with predominance of
opportunistic genera, such as Actinomyces, Rothia, Streptococcus,
and Veillonella, besides a decrease in the relative abundance of
beneficial microbes, such as Bifidobacterium genera (Figure 2).

Similarly, a pilot study evaluating the intestinal microbiota from
15 hospitalized COVID-19 patients reported significant alterations
during hospitalization, with prevalence of opportunistic
microorganisms and reduction in beneficial microbes. Even after
the disappearance of SARS-CoV-2 and respiratory symptoms’
resolution, the intestinal dysbiosis was still detected. The relative
abundance of Coprobacillus, Clostridium ramosum, and Clostridium
hathewayi at baseline positively correlated to COVID-19 severity. In
addition, the abundance of Faecalibacterium prausnitzii, which
favors an anti-inflammatory microenvironment, was inversely
correlated to COVID-19 severity (Figure 2) (77). During the
hospitalization, the relative abundance of Bacteroides dorei, B.
massiliensis, B. ovatus, and B. thetaiotaomicron that downregulate
the ACE2 expression in mouse intestine (82), was inversely
correlated to the viral load in feces from COVID-19 patients (77).

In an observational pilot study, Zuo et al. (79) investigated
microbiome differences in 15 hospitalized COVID-19 patients
and its correlation with the transcriptional profile of SARS-CoV-
2. In 46.7% of the subjects, viral RNA was detected in feces, even
without GIT manifestations and after clearance of respiratory
infection, suggesting a quiescent SARS-CoV-2 infection in the
gut and the real possibility of the fecal-oral transmission. Patients
with elevated SARS-CoV-2 infectivity demonstrated increased
relative abundance of Collinsella aerofaciens, C. tanakaei,
Morganella morganii, and Streptococcus infantis (Figure 2), in
addition to the increased carbohydrate metabolism (79).
Morganella morganii is an opportunistic microbe associated
with human infection (83). Patients with decreased SARS-
CoV-2 infectivity showed prevalence of Alistipes onderdonkii,
Bacteroides stercoris , Lachnospiraceae bacterium, and
Parabacteroides merdae, suggesting a beneficial role of
commensal microbiota in fighting or competing with SARS-
CoV-2 virus in the gut (79).

In another study from the same group, Zuo et al. (78)
reported an increased inter-individual fecal mycobiome
variation in COVID-19 patients in comparison to healthy
controls. Researchers evaluated 30 fecal samples from COVID-
19 patients during and after hospitalization and compared to 30
controls by shotgun metagenomics. During all time points of
hospitalization, patients with SARS-CoV-2 infection showed
increased opportunistic fungi, including Candida albicans, C.
auris, Aspergillus flavus and A. niger (Figure 2). These last two
respiratory pathogens were detected in fecal samples even after
SARS-CoV-2 clearance and respiratory symptoms’ resolution,
suggesting an unstable intestinal mycobiome and persistent
dysbiosis in some COVID-19 patients (78).
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Concerning the nasopharyngeal microbiota, De Maio et al.
(84) analyzed samples from 18 mild COVID-19 patients
compared to 22 uninfected controls. The nasopharyngeal
microbiota of patients infected with SARS-CoV-2 and controls
was similar, i.e., there were no statistically significant differences
in the richness and diversity of the samples collected from both
groups, suggesting a resilient microbiota in early mild COVID-
19. The main phyla detected in samples were Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria.

In a pre-print work, Budding et al. (80) investigated pharyngeal
microbiota from 46 COVID-19 patients, positive for SARS-CoV-2
detection by PCR, and 89 negative ones, and showed that there are
two different microbiota clustering, a homogenous microbiota
cluster with 75% of the negative samples, and another one, more
heterogeneous with 47% of the positive SARS-CoV-2 samples.
Older patients exhibited decreased microbial diversity and
heterogeneous microbiota, suggesting an age-dependency in
pharyngeal dysbiosis and susceptibility to SARS-CoV-2 infection
(80). Furthermore, the pharyngeal microbiota might influence the
progression of respiratory viral infections through multiple
mechanisms, including direct inhibition of viral adherence and
mucosal immune response’s modulation (85–88). The status of the
pharyngeal microbiota, including the richness and diversity, may
affect the SARS-CoV-2 infection susceptibility, the disease
progression, and the probability of secondary infections by
pathogenic bacteria (80, 89).

The healthy human lungs present decreased density of
microbes, including species of Prevotella, Streptococcus, and
Frontiers in Immunology | www.frontiersin.org 6288
Veillonella (90–92). In an observational study, Fan et al. (81)
evaluated the lung microbiota in biopsies from 20 fatal cases of
COVID-19. Acinetobacter, Brevundimonas, Burkholderia,
Chryseobacterium, Sphingobium species and Enterobacteriaceae
members dominated the lung microbiota in these patients
(Figure 2). The Enterobacteriaceae family, which comprises
species commonly found in the intestinal microbiota and
includes some pathogenic microbes, such as Enterobacter,
Escherichia coli, Klebsiella, and Proteus, was detected in the
lungs of deceased COVID-19 patients (81). Within the
Acinetobacter genus, the A. baumannii is related to multi-
resistant infections and mortality (93). The lung fungal
microbiota in COVID-19 patients was dominated by
Cryptococcus (Figure 2), followed by Aspergillus, Alternaria,
Dipodascus, Mortierella, Naganishia, Diutina, Candida,
Cladosporium, Issatchenkia, and Wallemia (81). Cryptococcus
infect ions were related to high mortal i ty rates in
immunocompromised individuals (94), and the Issatchenkia,
Cladosporium, and Candida represent opportunist species
involved in mycosis in immunosuppressed patients (81).

Given the crucial role of the intestinal microbiota in the
regulation of the immune responses at mucosal surfaces and the
maintenance of the systemic and pulmonary health, we believe
that microbiota studies are further necessary to improve our
knowledge concerning these interactions in context of SARS-
CoV-2 infection. The identification of the mucosal microbial
communities could help to find biomarkers involved in COVID-
19-related dysbiosis, as well as in the determination of potential
FIGURE 2 | The gut and lung dysbiosis in COVID-19. The frequency and diversity of the gut and lung microbiota are altered in COVID-19 patients, with
predominance of the main bacteria and fungi microorganisms depicted in the image. In contrast, a homeostatic environment and the eubiosis state predominate in
healthy conditions.
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therapeutic targets for the development of immunobiotics for the
treatment of these patients. Indeed, some alternatives for the
prevention, diagnosis, prophylaxis and treatment of COVID-19
were already proposed, such as the use of ACE2 receptor
inhibitors (95) and the modulation of the intestinal microbiota
through the use of probiotics, prebiotics, synbiotics, and
postbiotics, alone or in combination, for maintenance of the
intestinal ecological balance, prevent secondary bacterial
infections and also protect the respiratory system (47, 96).
These therapeutic interventions could also improve the
immune response in patients affected by comorbidities, and
possibly ameliorate the immunity against the SARS-CoV-2
after future vaccinations (97).

Experimental Therapies Based on
Microbiota Modulation
There are a growing number of studies evaluating the effect of
probiotic/prebiotics administration in reducing the incidence,
duration and severity of viral respiratory infections in humans.
The potential for probiotic use is supported by experimental
studies, meta-analyses and clinical trials on influenza virus,
rhinovirus, and respiratory syncytial virus (98–102). Although
the mechanisms have not been determined in SARS-CoV-2
infection, some probiotic strains present antiviral properties in
other coronaviruses (103–106).

According to the International Scientific Association for
Probiotics and Prebiotics (2013), probiotics is defined as “live
microorganisms that, when administered in adequate amounts,
confer a health benefit on the host”. Probiotics can be found in
fermented foods and in several supplements, but only well-
defined strains, with scientifically demonstrated benefit can be
used (107). The termed “prebiotic” was coined in 1995 by Gibson
and Roberfroid, and the current definition (2016) is “a substrate
that is selectively utilized by host microorganisms conferring a
health benefit”, i.e., the prebiotic dietary fiber needs to function
as substrate for health-promoting microbes in the intestine (108).
Moreover, synbiotics are defined as a “mixtures of probiotics and
prebiotics that beneficially affect the host” (109). Posbiotics
include functional bioactive substances resulting from the
microbial fermentation processes, including metabolities such
as short chain fatty acids and bacterial cell components, which
confer beneficial impact on the host health (110, 111).

Probiotics may have two different immunomodulatory impacts
on the host and can induce a pro- or anti-inflammatory immune
responses (112, 113). In an immunostimulatory response, there is
an increase in the phagocytic activity of macrophages, dendritic
cells, and neutrophils, in addition to increased NK cell activity,
inflammatory cytokines release and Th1/Th17 polarization in the
gut mucosa (114–117). In an anti-inflammatory response, some
probiotic strains can induce regulatory T cells, via dendritic cell
modulation in the gut mucosa, inducing IL-10, TGF-b, and
enhancing the IgA secretion and gut barrier function (118–120).
Therefore, knowledge of the probiotic strain and experimental
studies are essential to determine the best strain to achieve the
therapeutic objectives. So, once probiotics can modify the dynamic
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equilibrium between inflammatory and regulatory mechanisms and
impact the viral clearance, the immune response and lung damage,
their use might be crucial to dampen the acute respiratory distress
syndrome, and prevent major complications of SARS-CoV-2
infection (102, 121).

In experimental murine models, some probiotic Lactobacillus
strains stimulate the IFN-g, IL-6, IL-4 and IL-10 secretion in the
lungs, and a decrease in S. pneumonia and its dissemination to
the bloodstream (122). Additionally, Lactobacillus casei increases
the phagocytic and killing processes in alveolar macrophages, IFN-g
and TNF-a expression, thus helping fight against the influenza virus
(123). In humans, a randomized clinical trial using Lactobacillus
plantarum DR7 reported suppression of plasma concentrations of
inflammatory cytokines, such as IFN-g and TNF-a, and increased
IL-4 and IL-10 in young adults with upper respiratory infections
(124). Given the cytokine storm observed in COVID-19, this
therapeutic approach could benefit the patients by mechanisms
such as the reestablishment of gut barrier via increased expression of
tight junctions and augmented short-chain fatty acids production,
including butyrate, which have anti-inflammatory effect and could,
theoretically, reduce the SARS-CoV-2 invasion of colonocytes (102).

There are several studies showing the impact of probiotic
supplementation in the prevention of upper and lower
respiratory tract infections in humans. In a meta-analysis
including 12 randomized clinical trials and 3,720 individuals,
the probiotic administration reduced the number and duration
of acute upper respiratory episodes, the antibiotic duration and
disease severity (125). Probiotics have also been used to prevent
bacterial lower respiratory infections in critically ill patients. Two
meta-analysis including almost 2,000 patients showed that
probiotic supplementation decreased the incidence of
ventilator-associated pneumonia (126, 127).

Immune senescence and decreased diversity of the intestinal
microbiota potentially increased the incidence of infections in
the elderly, who are at increasing risk for COVID-19 (128, 129).
So, daily intake of fermented foods, containing probiotics could
improve the performance of the immune system via interaction
with the microbiota of the GIT mucosa. In a double-blinded,
controlled clinical trial, Guillemard et al. (130) evaluated the
effect of dairy product containing Lactobacillus casei in 1,072
individuals, with median age of 76 years, during 3 months, and
showed that probiotics significantly decreased the incidence and
the episodes of upper respiratory infections.

In addition to prevent lower and upper respiratory infections,
probiotics could assist in the treatment of diarrhea associated
with SARS-CoV-2 infection itself or caused by the antibiotics
used to treat secondary pulmonary infections (131, 132). One of
the risk factors associated with SARS-CoV-2 infection is
secondary bacterial pneumonia. In recent works on COVID-
19, the secondary infections were significantly correlated to worst
prognosis, outcomes and death (81). A meta-analysis performed
by Szajewska et al. (133) by using 18 randomized controlled
clinical trials, with 4,208 participants, demonstrated that orally
Lactobacillus rhamnosus GG probiotic administration was
associated with decreased diarrhea duration and reduced
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hospitalizations in inpatients. Antibiotics induce significant
alterations in the intestinal microbiota balance, which may
result in antibiotic-associated diarrhea. Probiotics could
prevent this condition via epithelial barrier reinforcement and
restoring eubiosis. Indeed, a meta-analysis including 33
randomized, controlled clinical trials, with 6,352 subjects,
demonstrated that probiotic supplementation confer a
moderate protective impact on antibiotic-associated diarrhea,
reducing its duration (134).

The improvement of the intestinal microecology and the
eubiosis process by taking probiotics may promote a regulated
immune system and prevent an excessive inflammation or
secondary infections (97, 135–137). In accordance, some
strains of Bifidobacterium, Lactobacillus paracasei, and L.
rhamnosus reduce the occurrence of respiratory infections,
such as H1N1, H3N2, and H5N1 by boosting the vaccine
immune responses (67, 138, 139). This improvement of the
microbiota-mucosal immune system interactions could also
benefit the immune responses to vaccination against SARS-
CoV-2 virus. Nevertheless, though we hypothesize that
dysbiosis or microbiota modulation could potentially affect the
efficacy of COVID-19 vaccines, to date, there are no current
published studies regarding the relationship between the gut-
lung microbiota and vaccination to this infection. In spite of that,
researchers around the world have been continuously working
on the search for vaccines against COVID-19 and some of them
were recently approved for human use (140–142).

In view of the current knowledge, the modulation of microbiota
is being investigated as a possible adjunctive therapy for COVID-19.
D’Ettorre et al. (143) evaluated the impact of probiotics to reduce
disease progression, in 28 patients. The included subjects presented
fever, lung involvement and requested non-invasive oxygen therapy.
Patients received antibiotics, tocilizumab, and hydroxychloroquine,
alone or combined, and the multistrain probiotic administration
(2,400 billion bacteria/day). The probiotic formulation contained
Lactobacillus acidophilus, L. helveticus, L. paracasei, L. plantarum, L.
brevis, Bifidobacterium lactis, and Streptococcus thermophilus. After
3 days of supplementation, all patients in the probiotic group
presented remission of diarrhea and other symptoms resolution,
when compared to 42 healthy controls. After 7 days, the probiotic
group showed a significant decrease in the estimated risk of
respiratory failure, and in hospitalizations in intensive care units
and mortality, pointing to the important role of the gut-lung axis in
the control of the SARS-CoV-2 infection (143). In addition, at the
time we write this review, there are approximately 10 clinical trials
registered on ClinicalTrials.gov and currently in progress to assess
the impact of the use of probiotics and modulators of the gut
microbiota on COVID-19. Table 1 summarizes the main aspects of
these clinical trials in COVID-19 patients.

A prospective case-control, open-label pilot study conducted
in Hospital Universitario del Vinalopó, Spain, aims to evaluate
the effect of daily oral administration of a probiotic mixture,
during 30 days, in symptoms ’ improvement, days of
hospitalization, and virus clearance in 40 COVID-19 patients
(NCT04390477). A randomized single-blinded clinical trial in
Canada, at Centre hospitalier de l’Université de Montréal, is
Frontiers in Immunology | www.frontiersin.org 8290
planning to examine the impact of twice-daily intranasal
administration with Lactococcus lactis W136, during 14 days,
in 40 non-hospitalized COVID-19 patients (NCT04458519).
Moreover, a multicenter randomized, quadruple-blinded
clinical trial will investigate the preventive effect of oral
administration of Lactobacillus Coryniformis K8 (3 x 109 CFU/
day) on 314 health professionals exposed to COVID-19 during 2
months (NCT04366180).

At the Hospital General Dr. Manuel Gea Gonzalez, Mexico, a
randomized controlled clinical trial will evaluate the safety and
efficacy of oral daily supplementation with some strains of
Lactobacillus plantarum and Pediococcus acidilactici CECT
7483, during 30 days, in 300 mild COVID-19 patients. The
aims of this study are to evaluate the risk of progression to
moderate/severe disease or death, in addition to investigate the
frequency and severity of gastrointestinal symptoms, pulmonary
involvement, viral load, and the modulation of the fecal
microbiota in correlation to clinical improvements
(NCT04517422). In Austria, at Medical University of Graz, a
randomized quadruple-blinded, placebo-controlled study will
investigate the effects of synbiotic oral treatment with
Bifidobacterium bifidum, B. lactis, Enterococcus faecium,
Lactobacillus acidophilus, L. paracasei, L. plantarum, L.
rhamnosus, L. salivarius, inulin, and fructooligosaccharide
(FOS) in 108 volunteers during 30 days. Researchers
hypothesized that synbiotic therapy could decrease the
diarrhea duration, improve the stool consistency, intestinal
inflammation, dysbiosis, and the gastrointestinal symptoms of
COVID-19 (NCT04420676). In the United States, a randomized,
triple-blinded, placebo-controlled study is being conducted at
Duke University to evaluate the effect of oral daily intake of
capsules containing Lactobacillus rhamnosus GG on the gut
microbiota in 1,000 exposed household contacts of COVID-19
patients, during 28 days (NCT04399252).

The role of probiotics and other strategies aiming to modulate
the intestinal microbiota in COVID-19 need further
investigations, especially randomized, double-blinded,
controlled clinical trials, including larger cohorts in different
ages and disease courses (64). Not all probiotics should be used
to constrain respiratory infections, and the studies’ variations
include differences in specific strains, supplementation duration,
administration forms, doses and follow-up times (64, 102).
Finally, since COVID-19 is essentially an inflammatory disease,
the shaping of lung-gut microbiota by the use of probiotics
(Figure 1) could represent an important adjunctive tool to the
control of the excessive inflammation that usually culminate in
the worst disease prognosis.
CONCLUSIONS

The mucosal surfaces such as in the lungs and gut play an
essential role in the modulation of the immune responses, by
combating pathogenic microorganisms and avoiding excessive
inflammation or tissue damage. This fine tuning of the local
immunity is also dependent on the equilibrium of the local
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TABLE 1 | Ongoing clinical trials testing the effectiveness of gut microbiota modulation in patients with COVID-19 (ClinicalTrials.gov).

n Administration
route

Duration Participants
(number)

Intranasal
(twice-daily)

14 days 40

Orally
(daily capsule)

30 days 40

Orally
(daily capsule)

2 months 314

ici CECT 7483

Orally
(daily capsule)

30 days 300

idophilus DSM 32241,
asei DSM 32243, L.
SM 27961

Orally
(six sachets/
twice-daily)

7 days 152

Orally 4 days 500

Orally
(two capsules/
day)

28 days 1,000

Orally
(two capsules/
day)

6 days 240

0 mg Orally
(two capsules/
day)

14 days 140

sed fixed-combination Orally
(4 times-daily)

28 days 100
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Registration Country Study design Evaluation Target subjects Interventio

NCT04458519 Canada Randomized single-
blind, prospective
clinical trial

Influence on severity of
symptoms

Mild–moderate
non-hospitalized
COVID-19 patients
(18–59 years)

Lactococcus lactis W136,
(2.4 x 109 CFU)

NCT04390477 Spain Randomized open-
label, prospective
case-control clinical
trial

Influence on symptoms,
hospitalization duration, and
virus clearance

Moderate–severe
hospitalized COVID-19
patients
(≥ 18 years)

Probiotic strain not informed,
(1 x 109 CFU)

NCT04366180 Spain Randomized
quadruple-blinded,
multicentric clinical trial

Influence on the incidence and
severity of COVID-19

Health workers
exposed to the virus
(≥ 20 years)

Lactobacillus K8 strain
(3 x 109 CFU)

NCT04517422 Mexico Randomized
quadruple-blinded,
controlled
clinical trial

Influence on disease
progression, GIT symptoms,
microbiota, viral load, IgG/IgM

Mild-symptomatic
COVID-19 patients,
SpO2 > 90%
(18–60 years)

L. plantarum CECT7481,
CECT 7484,
CECT 7485, Pediococcus acidilac

NCT04366089 Italy Randomized
single-blind,
prospective clinical
trial

Influence on disease
progression,
hospitalization in intensive care
units

Hospitalized COVID-19
patients
(≥ 18 years)

Oxygen ozone therapy plus
B. lactis DSM 32246, 32247, L. a
L. helveticus DSM 32242, L. para
plantarum DSM 32244, L. brevis D
(2 x 109 CFU)

NCT04462627 Belgium Non-randomized,
open label
clinical trial

Influence on COVID-19
transmission to health care
professionals

COVID-19 positive
patients and healthy
volunteers
(≥ 18 years)

L. acidophilus NCFM
B. lactis Bi-07
(12.5 x 109 CFU)

NCT04399252 United
States of
America

Randomized double-
blind placebo-
controlled clinical trial

Influence on the gut
microbiome

Exposed household
contacts of COVID-19
patients
(≥ 1 year)

Lactobacillus rhamnosus GG

NCT04507867 Mexico Randomized single-
blind
controlled- clinical trial

Influence on disease
progression,
reduction of
comorbidities’
complications

Hospitalized COVID-19
patients

Nutritional support system
(NSS) plus
Saccharomyces bourllardii
(250 mg)

NCT04403646 Argentina Randomized triple-
blind
controlled- clinical trial

Influence on gut microbiota
modulation

Hospitalized
COVID-19 positive
patients
(≥ 18 years)

Dry extract polyphenols (tannins)2
B12 vitamin 0.72 µg

NCT04540406 United
States of
America

Randomized open-
label, controlled
clinical trial

Influence on gut microbiota,
early treatment of suspected or
confirmed COVID-19 in
prediabetes or T2D patients

Mild-moderate COVID-
19 patients,
prediabetes or T2D
patients
(18–69 years)

NBT-NM108, a novel botanical-ba
drug (30 g)

COVID-19, Coronavirus disease; CFU, colony forming unit; GIT, gastrointestinal tract; T2D, type 2 diabetes; SpO2, oxygen saturation.
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microbiota, while a breakdown in the mucosal tolerance together
with a dysbiotic condition may favour the establishment and
progression of infections, such as that caused by SARS-CoV-2
virus. Furthermore, since in COVID-19 both respiratory and
gastrointestinal mucosas are affected, together with relevant
alterations in local microbiota and inflammation, it is plausible
to assume that adjunctive therapies based on the modulation of
the gut-lung axis and re-establishment of eubiosis could be an
important therapeutic approach for constraining the harmful
consequences of COVID-19. However, further studies are still
necessary to unravel the efficacy of these microbial-based
interventions, especially in severe cases of COVID-19.
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Hosting millions of microorganisms, the digestive tract is the primary and most important part
of bacterial colonization. On one side, in cases of opportunistic invasion, the abundant
bacterial population inside intestinal tissues may face potential health problems such as
inflammation and infections. Therefore, the immune system has evolved to sustain the host–
microbiota symbiotic relationship. On the other hand, to maintain host immune homeostasis,
the intestinal microflora often exerts an immunoregulatory function that cannot be ignored. A
field of great interest is the association of either microbiota or probiotics with the immune
system concerning clinical uses. This microbial community regulates some of the host’s
metabolic and physiological functions and drives early-life immune system maturation,
contributing to their homeostasis throughout life. Changes in gut microbiota can occur
through modification in function, composition (dysbiosis), or microbiota–host
interplays. Studies on animals and humans show that probiotics can have a pivotal effect
on the modulation of immune and inflammatory mechanisms; however, the precise
mechanisms have not yet been well defined. Diet, age, BMI (body mass index),
medications, and stress may confound the benefits of probiotic intake. In addition to host
gut functions (permeability and physiology), all these agents have profound implications for the
gut microbiome composition. The use of probiotics could improve the gut microbial
population, increase mucus-secretion, and prevent the destruction of tight junction proteins
by decreasing the number of lipopolysaccharides (LPSs). When LPS binds endothelial cells to
toll-like receptors (TLR 2, 4), dendritic cells and macrophage cells are activated, and
inflammatory markers are increased. Furthermore, a decrease in gut dysbiosis and
intestinal leakage after probiotic therapy may minimize the development of inflammatory
biomarkers and blunt unnecessary activation of the immune system. In turn, probiotics
improve the differentiation of T-cells against Th2 and development of Th2 cytokines such
as IL-4 and IL-10. The present narrative review explores the interactions between gut
microflora/probiotics and the immune system starting from the general perspective of a
biological plausibility to get to the in vitro and in vivo demonstrations of a probiotic-based
approach up to the possible uses for novel therapeutic strategies.

Keywords: probiotics, microbiota, inflammation, celiac disease, inflammatory bowel disease, irritable bowel
syndrome, obesity, autism spectrum disorders
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INTRODUCTION

On 23 February 2004, Time Magazine dedicated the cover to
chronic inflammation with a provocative title: The Secret Killer.
The hypothesis is that, if we think of inflammation from an
evolutionary point of view, we are now the victims of our own
success. We developed as a species because of our capacity to
eliminate dangerous microbial species, but the survival tactics
used by our immune system, that was necessary at a time when
there were no antibiotics or drainage systems, turned against us.
An excess of inflammation and the inability to stop this system
can do more harm than good. Chronic inflammation occurs at
varying degrees with advanced age in all mammals, regardless of
infection and progresses gradually. This is, in part, the cause of
many inflammatory chronic diseases (ICDs) and poses a
significant threat to human health and longevity. Chronic
inflammation follows the failure of the immune system to shut
down its reaction to a real or alleged attack. The inability of the
body to eliminate an inflammation-inducing agent is the cause of
a pro-inflammatory state that can spread all over the body. The
health status in our industrialized population is endangered by a
plethora of ICD characterized by a widespread and latent low-
grade inflammation. These include allergy, certain autoimmune
diseases such as Celiac Disease (CeD), Inflammatory Bowel
Disease (IBD), Irritable Bowel Syndrome (IBS), obesity and
autism spectrum disorders (ASDs), which often tend to share
similar environmental risk factors (1) and genetic risk alleles (2).
MICROBIAL ECOLOGY, HUMAN
EVOLUTION, IMMUNE SYSTEM
AND INFLAMMATION

People living in today’s urban environments have access to
calorie-dense food, minimal physical activity, and high energy
balance; moreover, hygiene regimens have decreased, by large,
the extent and severity of microbial exposition (3, 4). Certain
Abbreviations: 5-FU, 5-Fluorouracil; 5-ASA, 5-Aminosalicylic acid; ASDs,
Autism Spectrum Disorders; EAE, Autoimmune Encephalomyelitis; B., Bacillus
BB., Bifidobacterium BMI, Body Mass Index; BMDCs, Bone Marrow-Derived
Dendritic Cells; CS, Cesarean Section; CeD, Celiac Disease CFS, Cells Free
Supernatant; C., Clostridium; CFU, Colony Forming Unit; CD, Crohn’s disease;
COX-2, Cyclooxygenase 2; DCs, Dendritic Cells; EcN, Escherichia coli strain Nissle
1917; E., Escherichia; GFD, Gluten-Free Diet; IgA, Immunoglobulin A; IPA, Indole
3-Propionic Acid; IBD, Inflammatory Bowel Disease; ICD, Inflammatory Chronic
Disease; IFN, Interferon; IL, Interleukin; IBS, Irritable Bowel Syndrome; K.,
Kluyveromyces; LAB, Lactic Acid Bacteria; L., Lactobacillus ; LPS,
Lipopolysaccharides; MAPKs, Mitogen-Activated Protein Kinases; MCP-1,
Monocyte chemotactic protein-1; NK, Natural Killer; NEC, Necrotizing
Enterocolitis; NOS, Nitric Oxide Synthase; NF-kb, Nuclear Factor kappa-light-
chain-enhancer of activated B cells Pathway; PD, Parkinson’s Disease; PRRs,
Pattern Recognition Receptors; PBMCs, Peripheral Blood Mononuclear Cells;
PSA, Polysaccharide A; PB, Postbiotic; RCT, Randomized Clinical Trial; Breg,
Regulatory B Cells; Treg, Regulatory T Cells; S., Saccharomyces; SFAs, Saturated
Fatty Acids; SCFA, Short-Chain Fatty Acid; sVCAM-1, Soluble Vascular Cell
Adhesion Molecule 1; Th cells, T helper cells; TLRs, Tool Like Receptors; TNBS,
Trinitrobenzoate; TMAO, Trimethylamine N-oxide; TGF, Tumor growth factor;
TNF, Tumor Necrosis Factor; UC, Ulcerative colitis; VCAM-1, Vascular Cell
Adhesion Molecule 1; WDS, Western-Type Diets.
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bacteria, called “old-friends” such as lactobacilli, have been a
species of microorganisms that have become part of the human
ecosystem for centuries and are usually regarded as harmless to
their hosts and in the last decades we are losing our “old-friends”.
The immune system evolves and operates in an ecosystem that is
an integral part of its natural environment (5, 6) and a dramatic
shift of this environment, such as that we are experiencing today,
may alter a millennial balance of co-evolution causing a
mismatch responsible of an increase of a disease state.

We have evolved in condition with suboptimal nutritional
status and significant levels of microbial contact, while today, we
are an over-nourished, under-infected industrial population (6–
8). Given the crucial significance of new environments in shaping
the development and functioning of the human immune system,
the make-up of the intestinal microbiota plays a significant role
in its training. Emerging literature indicates significant variability
in human immune growth and function, and the process of
microbial colonization starting at birth and consolidated in the
first thousand days is an essential determinant of individual
immune responses.

The hygiene hypothesis supports a negative correlation
between infancy microbial exposures and inflammation in
adults: low rates of microbial contact soon in life, appear to
contribute to the dysregulation of immune function and
regulatory processes that raise the risk of ICD later in life (9–
11). Frequent yet temporary interactions with bacteria can be
significant in this process, such as local environment can affect
the make-up of resident bacterial populations in the human
intestine that have long-lasting effects on immunity (12).
Mechanisms behind these adaptations are not simple and
include the regulation of T cells and the balance between pro-
and anti-inflammatory cytokine composition (10, 13).

Conceptually, microbial exposures play a significant role in
developing successful regulatory networks in vulnerable periods of
childhood immune shaping. Less hygienic conditions increase the
incidence and abundance of bacterial sources, resulting in an
increased ability to control inflammation. Differently, extra hygienic
conditions reduce the extent and severity of bacterial contact in
children, restrict incentives for turning on and off of inflammatory
processes during crucial phases of immune shaping. The effect is a
pro-inflammatory phenotype. Later in life, when inflammatory
processes are activated, there is an inadequate anti-inflammatory
regulation resulting in a persistent chronic state of activation.

Early life dietary and bacterial exposures, facilitate the growth
of more effective immune defenses and its ability to hone the
inflammatory regulation mechanisms encouraging the emergence
of an effective adaptive immune system. These findings underscore
the function of infant environments in influencing several facets
of an immune-phenotype and point to the significance of
bacterial exposures.
IMMUNE SYSTEM AND GUT BACTERIA

We lived in a bacteria world and developed a symbiotic state with
our bacteria that may raise safety issues. The large bacterial
population in the lower intestine are in close contact with human
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structures, and to separate the inside from the outside, there is
just a single cell layer on a vast surface. This close contact with
bacteria, if not controlled, can give rise to threatening health
complications. Therefore, the immune system has put in place
mechanisms to maintain a symbiotic bond between its guests.
The need to maintain a homeostatic relationship with the
microbiota has been a driving factor force in the evolution of
the human immune system and to keep the gut microbiota for its
essential role in host metabolism and functions (14).

This alliance was reached by a fine-tuned contact
modulation between gut bacteria and intestinal epithelial cells
and by limiting the possible entrance of bacteria trough the
mucosal layer. In case of an occasional breach in the gut barrier,
microorganisms can infiltrate the intestinal epithelial cell and
evoke an immune response guided by mucosal dendritic cells
(DCs) able to induce a defensive secretory Immunoglobulin A
(IgA) response (15).

Studies in germ-free and colonized mice showed how
significant is the impact of the gut bacteria on the shaping of
the immune system. It has recently become clear that human
commensal organisms have an impact on the structure of gut T
lymphocyte function. The healthy balance in the intestinal
district is preserved by the circuitry of monitoring mechanisms
between potentially pro-inflammatory cell [T helper (Th) cells
secreting interferon (IFN)-g, Th17 cells that secrete interleukin
(IL)-17, and IL-22], and anti-inflammatory Foxp3+ receptor T-
cells [Regulatory T (Treg) Cells)]. Many bacteria can stimulate
the anti-inflammatory fork of the adaptive immune system by
controlling Treg maturation or by driving IL-10 production. In
instance, Atarashi K et al. have demonstrated that a mix of 46
strains of Clostridia clusters IV and XIVa, colonizing gnotobiotic
mice can induce a local and systemic Treg cell response (16).
Besides, Bacteroides fragilis polysaccharide A (PSA) elicit an IL-
10 response in gut T cells that prevent the spread of TH17 cells
responsible for derangement of the intestinal wall (17). On the
other hand, mutant Bacteroides fragilis without PSA has an
opposite inflammatory behavior and does not induce IL-10. It
has become clear that the impact of gut bacteria and T cell co-
operation goes beyond the intestinal site and can have an effect
on systemic in areas far from the gut (18). The type of microbial
establishment is the driving force in numerous mouse models of
autoimmune conditions such as arthritis and experimental
autoimmune encephalomyelitis (EAE) in which the disease
state of activation is dependent on gut microbiota composition.
Lee YK and Wu HJ et al. in a model of Th17 cell-dependent
arthritis and EAE, have demonstrated that colonization with
segmented filamentous bacteria is able to set off the disorder (19–
21) indicating that the gut bacteria have a systemic immune effect
that extends far from the mucosal site.

Under normal conditions, careful regulation restricts
excessive inflammation and maintains an immune balance
(22–25) that if lost increases the susceptibility for ICDs (26–
28). The disruption of nutrition–microbiome–host–metabolism
interrelationships is commonly functionally described as
“dysbiosis” that is a is a recurring element of various ICDs
(23, 25).
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ESTABLISHMENT OF THE HUMAN
GUT MICROBIOTA

The human gut microbiota develops in composition and
function in the first years of life (29) reaching a firm microbial
population by the second year and an adult-like profile by the
time of 4 years (30). This steady-state is driven by a complex
interplay between climate, food, microbes, and host factors (31,
32). Babies born by cesarean section (CS) develop a microbiota
that resembles that of the skin of the mother. Conversely, the
microbiota of a vaginally delivered baby is close to its mother’s
vagina and characterized by lactobacilli and bifidobacteria (33).
The capacity of cross-talking between microbes and the immune
system is mandatory to allow bacterial priming and maturation
of the immune system, considering that 70% of immune cells are
resident in the gut. In addition to CS (34–36) antibiotics (31),
breastfeeding (34, 36), and solid food introduction (29), guide
the development of gut microbiota. Infants born with CS are
more likely to have respiratory disease (37) and are at increased
risk for atopy/asthma (38), obesity (39), and type-1 diabetes (40).
WESTERN LIFESTYLE, DIET AND
CHRONIC INFLAMMATION

Western lifestyle can trigger an aberrant innate immune activation
and disease pathogenesis; recent data suggest that the western
lifestyle can set off a systemic inflammatory arrangement leading
to health issues typical of industrialized countries.

Among western lifestyle, the main contribution is the
adherence to western-type diets (WDs) progressively expanded
to low-income nations, with a concurrent increase in ICDs in
areas of the planet where these diseases were rare (41, 42). The
habitual consumption of WDs can impact on host metabolism
and fitness by favoring weight increase, alteration of lipid profile,
energy metabolism, and immune activation and promoting
several chronic metabolic disorders (obesity, type-2 diabetes
mellitus, cardiovascular diseases, and neurodegenerative and
autoimmune diseases).

WDs are high in simple sugars, white flour, salt, processed
meats, animal fats and food additives, and poor offiber, minerals,
vitamins, or antioxidants (43, 44). The immediate consequence is
a rapid weight gain (45). A quick look to the ingredients of WDs
allows identifying the components able to elicit an inflammatory
response: cholesterol, refined sugars, dairy products, and
saturated fatty acids (SFAs) (46). The composition of gut
bacteria under the pressure of WD undergoes a profound
modification that results in derangement of the eubiotic state.
This new microbial balance is responsible for the secretion of
microbial metabolites that can reach the systemic circulation, can
cause derangement of intestinal permeability that can potentially
induce endotoxemia and systemic inflammatory (47). Tanoue T.
et al. have demonstrated that mice fed with WD develop a
profound dysbiosis leading to immune dysfunction resulting in:
a) decrease in mucous secretion, b) loss of secretive IgA function,
February 2021 | Volume 12 | Article 578386

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cristofori et al. Anti-Inflammatory and Immunomodulatory Effects of Probiotics
c) inhibition of Treg cells producing IL-10, d) impaired barrier
integrity, e) loss of immune homeostasis, that is the premise for
the future onset of ICD (autoimmune and allergy) (48).

Red meat, eggs, and milk-based products coupled with a low
intake of fruits and veggies are connected with changes in the
intestinal microbial composition, gut inflammation (49). Dietary
L-carnitine is metabolized into a metabolic product known as
trimethylamine N-oxide (TMAO). The production of this
metabolite is dependent on a microbial fermentation occurring
in anaerobiosis (49). TMAO is able to activate macrophage and
platelet inflammatory response causing endothelial dysfunction,
vascular inflammation, and ultimately increasing the risk of
cardiovascular disease (50). Caesar et al. demonstrated that
WD, particularly saturated fats, influences gut microbiota and
causes the inflammation of adipose tissue; conversely,
unsaturated fats protect animals from this complication.
Interestingly, the authors show that the health-promoting effect
is mediated by the microbiota since the transfer of gut microbes
from unsaturated to saturated fat-fed mice reduces white adipose
tissue inflammation (51).

Is it possible to compensate for the loss of the optimal
microbiota with the use of probiotics? The answer is “we still
do not know,” but emerging data show that in a not too distant
future, selected strains of probiotics may be used to direct the
immune response towards the path we need.
GUT DYSBIOSIS

The gut microbiota is a microbial ecosystem that has a dramatic
role in human health, and it is particularly challenging to define a
healthy microbiota; however, this is of great importance if we
aim to prevent/correct the alterations of its composition that can
impact on our health. There is no “one normal microbiota” since
the degree of variability makes it impossible to define what is
normal; however, there are some characteristics that can help us
to determine a microbiota as healthy: increased diversity, gene
richness, amount of butyrate-producing species and resilience.

Resilience is the ability of an ecosystem to withstand
alteration under stress or to promptly and thoroughly bounce
back from the interference. Therefore, a healthy microbiota is
able to recover and go back to baseline after a perturbation (such
as an antibiotic treatment) as a result of its resilience avoiding the
institution of a new balance and a shift into dysbiosis, with a
negative effect on human health (52). As we live, our gut
microbiota encounters several perturbators (unhealthy diet,
antibiotics, drugs, alcohol, intensive exercise, and pathogenic
bacteria). If it is not able to oppose to these attacks, a permanent
change occurs leading to a new balance which might not be
healthy: this is what we call dysbiosis.

Gut dysbiosis relates to differences in the composition and
activity of the gut microbiota that, through qualitative and
quantitative shifts in the gut bacteria itself, changes in its
metabolic activities and/or changes in its local distribution, have
detrimental effects on host health (53). Certain commensal
bacteria inhibit the growth of opportunistic pathogens. For
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instance, during lactose fermentation, Bifidobacterium decreases
intestinal pH, hence preventing colonization by pathogenic
Escherichia (E.) coli. The metabolites of commensal bacteria also
directly inhibit the pathogens’ virulence genes. If antibiotic
treatment subsequently disrupts the resident microbial
populations, it may cause inflammation. For example, in colitis
mouse model induced by dextran sulfate sodium (DSS), antibiotic
increases the abundance of E. coli, encouraging the pathogen’s
systemic circulation, thus inflammasome activation (54).

Analyzing the importance of dysbiosis-driven diseases in
humans, the immune system–gut microbiota crosstalk is of
supreme significance. By enhancing the mucosal barrier and
fostering innate immune system, commensal bacteria avoid
pathogen invasion and infection. It is well-known that the gut
microbiota activates the growth and development of the immune
response and plays a vital role in immune cell maturation, too.
Gut microbial diversity and abundance have been recognized as
powerful determinants of host wellbeing, and variations in
diversity have been correlated with several human disorders.
However, several studies have shown that intestinal microbiota,
through complex interactions between intestinal microbiota,
host metabolism, and immune systems, directly contribute to
the pathophysiology of specific diseases (55). The relationship
between gut dysbiosis and inflammation of the mucosa is either a
cause or a consequence of dysbiosis, or a combination of both,
with one study indicating that intestinal microbiota is necessary
for the initiation and progression of inflammation of the mucosa
in germ-free mice.

The mucosal barrier formed by intestinal epithelial cells
serves as a defense measure, isolating bacteria from host
immune cells. Altering the epithelial membrane raises the
sensitivity to infection and the delivery of microbial
metabolites to the host. Gut dysbiosis not only decreases the
stability of the mucosal barrier but also disrupts the immune
system, inducing oxidative stress and inflammation. Over time,
chronic intestinal dysbiosis and bacterial translocation of
bacteria can increase the prevalence of a variety of diseases.
Below, we illustrate conditions with detailed research and clinical
models relating the mucosal immune system and inflammation,
the occurrence of disease and severity.
PROBIOTICS AND INFLAMMATION

Several strains of probiotics have been shown to exert multiple
and varied effects on the host and its immune system (56). Their
essential role in inflammatory regulation has been well
elucidated in several in vitro and ex vivo models and in germ-
free mice showing the failure of the systemic immune regulatory
networks, which triggers a cascade of events leading to an
inflammatory response.

Specific bacterial strains can act on the gut luminal
environment, intestinal mucosal barrier, and they can regulate
the mucosal immune system. Probiotics may affect different cells
involved in the innate and acquired immunity, for instance, DCs,
monocytes, Natural Killer (NK) cells, macrophages, lymphocytes
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and epithelial cells (see Figure 1). In particular, they may activate
the pattern recognition receptors (PRRs) expressed on immune
(i.e. M cells in Peyer’s patches) and non-immune cells (i.e.
intestinal epithelial cells). Among PRRs, TLRs are the most
studied which can activate signaling cascades that lead to cell
proliferation and cytokine releasing in order to modulate the
immune system (57). Moreover, some specific strains secrete
substances that may induce the activation of immune cells. In
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particular, M cells phagocytize or internalize the probiotic and
the antigenic components derived from its metabolites, to
form endosomes.

Specific probiotic strains can activate DCs, which transport
the antigens to local lymph nodes with the following release of
IL-10 and IL-12. Here, DCs induce the differentiation of naive T
and B cells into their subpopulations, deploying their arsenal of
cytokines. In details, naïve Th cells can differentiate into Treg,
FIGURE 1 | Main probiotic immune-modulatory pathways in the gut. (A) T cells are considered the masters of inflammation in that they can differentiate into different
pathways promoting or suppressing inflammatory response. However, their fate requires interaction with other cells: for instance, dendritic cells. Probiotics can
influence these communications through membrane receptors e.g. PRRs. In particular, TLR-6 and TLR-2, a member of PRRs, expressed on sentinel cells such as
macrophages and dendritic cells, might be able to decrease the Th17 polarization and skew T-cells toward Treg subpopulation and production of high levels of IL-10
and lower levels of TNF-a, reducing the inflammatory state which could be one of the mechanisms involved in the immune modulatory effect of probiotics in
inflammatory intestinal diseases. Probiotics seem to redirect the Th2 response, characteristic of atopic patients, towards a Th1 type through increased secretion of
IFN-g and a decrease in the IL-4, IL-13, and IgE production with improvement of allergic predisposition and reactions. In the gut, probiotics may activate B cells in
the lamina propria that become IgA-producing plasma cells. The IgA, a major functional component of the humoral adaptive immune system specialized in mucosal
protection and a first line of defense against gastrointestinal infections, is transported across the epithelial cells and once it is secreted in the gut lumen it can bind to
the mucus layer covering them. (B) NK cells are intermediate cells between innate and adapted immunity. They seem to act in different ways through an interplay
with intestinal epithelial cells, DCs and T cells. Probiotics can modulate their behavior for instance through the secretion of IFN-g. (C) Finally, probiotics exert their
functions by altering intracellular pathways of immune cells (e.g. macrophage) through kinases (such as MAP kinase cascade) which in the end activate or suppress
transcription factors: STAT, NF-kB, Jun-1, Fos. On the other hand, probiotics may act on the same pathway through the metabolism of histamine acting on H2-
receptors of antigen presenting cells and inducing a reduction of pro-inflammatory cytokines like TNF-a, IL-12 and monocyte chemotactic protein-1.
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Th1, and Th2 immune cells, and B cells may shift in plasma cells,
playing an active role in humoral responses, or regulatory B
(Breg) cells, involved in the production of tumor growth factor
(TGF)-b or IL-10 (58). Furthermore, DCs may stimulate the
activation of NK cells through the production of cytokines such
as IL-12 and IL-15. Other probiotic microorganisms, in
particular several Lactic Acid Bacteria (LAB), may promote
IFN-g production by NK cells via DCs (59).

Studies have demonstrated that the immune modulation
deriving from probiotic bacteria may be due to the release of the
anti-inflammatory cytokine in the gut. Nonetheless, the
specific molecular interactions between probiotics and host
are not well defined (60–62). The most used probiotics in
human belong to Lactobacillus (L.), Bacillus (B.), and
Bifidobacterium (BB.), but also the genus Saccharomyces (S.)
is widely adopted in commercial products. Specific strains
of Lactobacillus may modulate the cytokine production
by immune cells, and Bifidobacterium induces tolerance
acquisition (63). Such different regulatory activities by each
probiotic strain are linked to their structure, to the spectrum of
mediators released, and to the various pathways that are
simultaneously activated (64, 65).

The anti-inflammatory effects of probiotics have been studied
in vitro, ex vivo and in animal experiments to evaluate cytokine
production and immune cell proliferation. In the following
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sections, we report the recently published evidence of the anti-
inflammatory effect of several probiotic strains.
In Vitro and Ex Vivo Studies
The interplay mechanisms between probiotics, intestinal cells,
and immune system are summarized in Table 1; we report the in
vitro and the ex vivo studies published in the last five years. The
complex interplay between gut microbiota and immune
system, shaped by millions of years of evolution, needs to be
deeply explored, in consideration of the rapid technological
development, which allows the use of increasingly refined
techniques. It is important to underline that these methods are
basically used as screening tools. The results of in vitro and
animal studies are not definitive requiring further confirmation
by double blind placebo controlled clinical trials.

Cytokine and Immune Cell Modulation
In this section, we present in vivo and in vitro studies conducted
to highlight the immunomodulatory functions of probiotics and
the mode of action.

One of the most known effects of probiotics is that of
promoting a shift from Th2 to Th1 cells, to decrease allergic
reactions. Human peripheral blood lymphocytes and peripheral
blood mononuclear cells (PBMCs), in the presence of LAB, are
TABLE 1 | In vitro and ex vivo studies of different probiotic strains effects in modulating inflammation.

Reference Probiotic strains Doses/different concentrations of probiotic suspensions Studied
model

Effect on cytokine patterns and
inflammatory mediators

B. K. Thakur et
al. (66)

L. casei Lbs2 1 × 109

CFU/ml
In vitro ↑ IL-10 and TGF-b

S. Eslami et al.
(67)

L. crispatus SJ-3C-US 200 µg/ml In vitro ↑ IL-10 and TGF-b

Y. Haileselassie
et al. (68)

L. reuteri 17938 5% CFS In vitro ↑ FOXp3 and IL-10

M.A Johansson
et al. (69)

L. rhamnosus GG
L. reuteri DSM 17938

2.5% CFS In vitro ↓ INF-g
Inhibited T cells and NK cell activation

I. M. Smith et al.
(70)

K. marxianus
S. boulardii

1 × 107 cells/µl In vitro Both: ↑ IL-12, IL-1b, IL-6, IL-10
S. boulardii: ↑ INF-g

C. Ren (71) L. plantarum CCFM634
L. plantarum CCFM734
L. fermentum CCFM381
L. acidophilus CCFM137
S. thermophilus CCFM218

Cells to bacteria ratios of 1:10
1:20
1:40

In vitro Stimulated TLR2/TLR6 heterodimer
receptor

D. Compare (72) L. casei DG 1 × 157 CFU Ex vivo ↓ IL-1a, IL-6, IL-8
Increased TLR4 expression

S. De Marco et
al. (73)

L. acidophilus ATCC 4356 L.
casei ATCC 334

1 × 108 CFU/ml
Cells treated CFS (10%v/v)

In vitro Both: ↓ TNF-a ↑IL-10
L. casei: ↓ IL-1b

M. Sichetti et al.
(74)

L. rhamnosus
BB. lactis
BB. longum (Serobioma)

2 × 106 PBMC: 2 × 105 CFU), (2 × 106 PBMC: 2 × 106 CFU),
(2 × 106 PBMC: 2 × 107 CFU) *

In vitro ↑ IL-10
↓ IL-1b and IL-6

M. Kawano et
al. (18)

L. helveticus LH2171 10 µg/ml In vitro ↓ IL-6 and IL-1b
Inhibited NF-kB/MAPKs

S.C. Li et al. (75) L. acidophilus and
BB. animalis subsp. lactis

Cells to bacteria ratios
of 1:1, 1:10

In vitro ↓ IL-8
Inhibited p-p65 NF-kB, p-p38 MAPK,
VCAM-1 and COX-2
Increased TLR2 expression

V. Sagheddu et
al. (76)

L. reuteri LMG P-2748 1 × 108 CFU/ml In vitro ↑ IL-10
Febr
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able to increase the IFN-g production by T and NK cells (77, 78).
These results are in agreement with an in vitro experiment
showing that lactobacilli found in fermented food strongly
induced pro-IFN-g monokine IL-12 and IL-18 production by
human or murine leukocytes (79, 80). The ability to shift toward
a Th2 response might be used in atopy as in other types of Th2
based inflammatory diseases.

Cytokine IL-8 is crucial for the recruitment of immune cells
during an inflammatory response. Luerce et al., in a model of
colitis-recurrence in CACO-2 cells, demonstrated the ability of L.
lactis NCDO 2118 to reduce the IL-8 secretion induced by IL-1b
(81). In reality, also BB. animalis subsp. lactis and L. acidophilus
may decrease IL-8 production and the expressions of pro-
inflammatory mediators and increase TLR2 expression in vitro
model. This anti-inflammatory action is attained through the
modulation of TLR2-mediated Nuclear Factor kappa-light-
chain-enhancer of activated B cells (NF-kB) and mitogen-
activated protein kinase (MAPK) signaling pathways in
inflammatory intestinal epithelial cells (75). Furthermore, Ren
et al. showed that several strains such as L. plantarum CCFM634,
L. plantarum CCFM734, L. acidophilus CCFM137, Streptococcus
thermophilus CCFM218 and L. fermentum CCFM381 enhanced
TLR2/TLR6 heterodimer receptor in a strain-specific way; this
activity is the initiator of an intracellular signaling network with
immune-modulating effects (71). In an ex vivo study based on
lipopolysaccharide (LPS) stimulation in colonic mucosa from
post-infectious IBD, L. casei DG and one of its postbiotics
suppress pro-inflammatory IL-8, IL-1a, IL-6 and TLR-4
expression levels parallel to an increase of IL-10 (72). The use
of probiotics has also been studied in necrotizing enterocolitis
(NEC) that is one of the leading causes of death in premature
newborns. In particular, L. rhamnosus HN001 was studied ex
vivo on human intestinal cells from ileus of NEC infants; the
authors have shown that this probiotic (both alive or UV-killed)
interacts with TLR-9 and suppresses NF-kB inflammatory
pathway via TLR-4 inhibition (82).

Among the other immunological players, Treg cells are the
masters of immune modulation and tolerance. L. reuteri and L.
casei exert an anti-inflammatory action, upregulating Treg cell
activation and IL-10 levels (probably by DC-SIGN receptor on
bone marrow-derived dendritic cells (BMDCs). The overall effect
is a significant downregulation of pro-inflammatory cascade with
inhibition of bystander T cell proliferation. These strains have
been used in in vivo studies in inflammatory diseases, including
Crohn’s disease (CD) and atopic dermatitis (64). This activity on
Treg cells has also been demonstrated for a mix of probiotics (BB.
Bifidium, L. casei, L. reuteri, L. acidophilus, and Streptococcus
thermophiles) able to downregulate B and T cell responses with a
net production of inhibitory cytokines (83).

Mouse BMDC co-cultured with VSL#3 (a probiotic
combination of four Lactobacillus strains, three Bifidobacterium
species, and one Streptococcus strain) produced high
concentrations in IL-12p70, IL-23, and IL-10 (84). A
multistrain mixture of L. rhamnosus, BB. lactis and BB. longum
induced an increase of the level of an IL-10 and a reduction of
pro-inflammatory IL-1 and IL-6 by 70 and 80% respectively in
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the human macrophage cell line derived from acute monocytic
leukemia patients and macrophages derived from ex vivo human
PBMC (74). Thakur et al. demonstrated that in BMDCs grown
with both live and heat-killed Lactobacilli (L. casei Lbs2), TLR-2
receptors were triggered on DCs which led to the differentiation
of naive Th cells toward Treg cells and production of IL-10 and
TGF-b (66). Similar results were obtained when human PBMCs
were cultured in the presence of L. crispatus SJ-3C-US (which is
found in vaginal microbiota from healthy females and seems to
be protective against vaginitis and Pelvic Inflammatory Disease)
(67, 85).

Attention has also been focused on the primers of
immunomodulation, i.e. innate immunity.

L. reuteri ATCC PTA 6475 can suppress Tumor Necrosis
Factor (TNF)-a production induced by LPS through the
inhibition of MAPK regulated c-Jun and activator protein-1
pathway (86). A probiotic mixture engagement with regulatory
CD11+ DC enhances Treg cells rising the levels of TGF-b, IL-10,
cyclooxygenase-2 (COX-2) and suppress the production of pro-
inflammatory IL-17, IFN-g, and TNF-a (83). L. reuteri LMG P-
27481 is a new strain discovered and studied by Sagheddu et al.
This strain is able to induce a significant secretion of IL-10 when
exposed to human immature DCs. If compared to other L.
reuteri strains, it shows higher anti-inflammatory effect. In in
vitro co-cultures, L. reuteri LMG P-27481 was able to control the
growth of Escherichia (E.) coli, Salmonella and Rotavirus;
however, only this strain was able to hinder the growth of
Clostridium (C.) difficile. Another excellent property correlated
to the genetic background of this probiotic is the ability to
metabolize lactose which can be of great importance in case of
diarrhea (76). Griet et al., in an in vitro assay on murine
macrophages (model of acute lung injury) stimulated with LPS,
demonstrated that L. reuteri CRL1098 decreased the production
of a) pro-inflammatory mediator such as COX-2, b) nitric oxide
synthase (NOS) and c) pro-inflammatory cytokines (TNF-a and
IL-6) (87). Moreover, soluble factors produced by L. reuteri
CRL1098 were also to inhibit TNF-a production by human
PBMC (88)

Specific probiotics strains can negatively or positively
stimulate NK cells: L. rhamnosus GG and L. reuteri DSM
17938 inhibit the activation of T cells and NK cells and the
release of IFN-g from Staphylococcus-aureus-cultured PBMCs
(69). On the contrary, heat-killed L. casei Shirota, L. acidophilus
ATCC 4356, and BB. breve ATCC 15700NK increase NK cell
activity and enhance their activation (62). The different interplay
between probiotic, DCs and NK cells clearly reveals how each
strain can differently modulate the immune system and the
inflammatory responses; the NK/DC balance is a complex and
probiotics may be used to exert beneficial effects (57).

Probiotics were also chosen among other microbiota
components such as yeasts. It has been recently demonstrated
that Kluyveromyces (K.) marxianus and S. boulardii stimulate
DC production of IL-12, IL- 1b, IL-6, and IL-10. Moreover, b-
glucan, a polysaccharide derived from their cell wall, could
positively interact with DC-receptor Dectin-1 leading to the
release of IL-1b, IL-6, and IL-10, but not IL-12. When naïve
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T cells were cultured with DC in the presence of these probiotics,
each strain has its own effect: K. marxianus promotes Treg cells
and secretion of IL-10, while S. boulardii induces a Th1 type
response with the production of IFN-g (70). Thomas et al.
observed that when S. boulardii was grown with bone marrow-
derived DCs from CD or ulcerative colitis (UC) patients, there
was a reduced concentration of TNF-a and an increase of IL-6
and IL-8 resulting in a negative immune modulation and
increased levels of TGF-b which could help in epithelial barrier
restoration (89). The challenge of S. boulardii on DCs derived
from PBMCs was followed by a reduction of TNF-a and IL-6
and an increase of IL-10, thus blocking T cell activation and
promoting the polarization of naive T cells towards Treg
cells (90).

Anti-Inflammatory Effect of Probiotics
Metabolites (Postbiotics)
Specific molecules produced by probiotics can contribute to the
improvement of host health by promoting specific physiological
functions, in the same manner of live probiotics, although the
precise mechanisms are not completely elucidated.

Postbiotic supernatant collected from probiotic bacterial
cultures could be used to achieve an immune modulation
without the possible risks related to living microorganisms
such as infections in immune-deficient patients. It is well
known that the effect of probiotics can be mediated by their
metabolites, such as short-chain fatty acid (SCFA) in particular
propionate, acetate, and butyrate that may exercise anti-
inflammatory effects. SCFAs are produced by bifidobacilli,
lactobacilli, and several commensal bacteria. These postbiotics
exert their action by binding to specific receptors on intestinal
epithelial cells. In this way, the NF-kB pathway, Treg cell
suppression, and pro-inflammatory cytokine production by
neutrophils and macrophages are inhibited; consequently, the
inflammation state is prevented, and an anti-inflammatory effect
is produced (91, 92). Butyrate may exert a beneficial effect in
controlling gut inflammation through the induction of Treg cell
differentiation (93). For instance, L. acidophilus CRL 1014,
recently studied in the Simulator of Human Microbial
Ecosystem reactor, has shown to produce SCFAs (94) while
BB. longum SP 07/03 and BB. bifidumMF 20/5 can produce only
propionate and acetate (95).

Additionally, an anti-inflammatory effect may be obtained by
the interaction with tryptophan (deriving from diet) and indolic
acid derivatives (produced by probiotics or intestinal bacteria)
with specific receptors expressed on immune cells. All of these
molecules have a role in gut homeostasis; in particular, indole-3-
propionic acid (IPA) significantly promotes IL-10 production
with anti-inflammatory activity and decreases TNF-a release.
Both in vitro and in vivo murine studies have shown how C.
sporogenes can convert tryptophan into IPA, resulting in a
protective effect against dextran sulfate sodium-induced acute
UC (96).

In other studies, the whole supernatants from probiotic
cultures were collected, looking for the sets of regulatory
molecules that might induce in immune cells. L. reuteri 17938
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is widely used as an adjuvant in infection-associated diarrhea,
NEC, and IBD. L. reuteri derived supernatant mixed with
PBMCs induced CCR7 on DC membranes as well as the
production of FOXp3 and IL-10 in Treg cells (68). De Marco
et al. found that L. acidophilus and L. casei supernatant may
reduce the TNF-a release and stimulate IL-10 secretion.
Furthermore, L. casei supernatants may inhibit LPS-induced
IL-1b activation, which could explain its positive action in
IBD (73).

Animal Studies
A plethora of studies on the role of probiotics on inflammation
has been performed in animals and most of these in colitis-
induced murine models.

Based on the in vitro studies, L. reuteri LMG P-27481 was
orally administered in mice with C. difficile induced colitis. This
strain obtained brilliant results in reducing C. difficile
colonization and toxin load; it was able to induce an anti-
inflammatory response and the restoration of mucosal barrier
function resulting in a general improvement of the histologic
lesions. The authors speculate that the distinctive features of this
strain might be due to the production of bioactive molecules such
as exopolysaccharide and peptidoglycan hydrolases. L. reuteri
LMG P-27481 might be useful as an adjuvant in C. difficile
infection and other inflammatory diseases; however, further
studies are needed to support its use in clinical practice (76).
Park et al. showed that, in a dextran sulfate sodium-induced
colitis, mice fed with L. acidophilus showed an increase in Treg
cells and splenic IL-10 coupled with a reduction of splenic IL-17
and colonic IL-6, TNF-b, IL-1b, and IL-17 (97). In a recent study,
the administration of L. fermentum CQPC04 significantly
inhibited pro-inflammatory cytokines production (IFN-g, IL-
1b, TNF-a, IL-6, and IL-12), and promoted the release of IL-
10 in serum ameliorating the colonic damage (98). Choi et al.
demonstrated that the oral administration of L. plantarum strain
CAU1055 significantly decreased the levels of inducible NOS,
COX-2, TNF-a, and IL-6 (99). At the intracellular level,
decreased phosphorylation of STAT3, leading to suppression of
IL-17 and TNF-a and, consequently, of IL-23/Th17 axis, was
demonstrated following administration of L. acidophilus to mice
with UC (100). In a study on the trinitrobenzene (TNBS) model
of colitis, L. reuteri ATCC PTA6475 was able to reduce
inflammation through the histamine H2-receptor signaling
(101). Besides, in research on colitis mice, Qiu et al. (102),
Rodrıǵuez-Nogales et al. (103), and Kanda et al. (104) showed
that probiotics enhanced Th0 cell differentiation to Treg cell and
up-regulated IL-10 secretion. L. rhamnosus RC007 was studied
both in healthy and in TNBS-induced-colitis mice. In the first
there was an improvement in the phagocytic activity of
peritoneal macrophages. At the same time, in the latter there
was a reduction of body weight loss and an improvement of
macroscopic and microscopic colonic injury. In both cases, an
increase in IL-10/TNFa ratio in the intestinal fluids was found
(105). Thakur at al. found that L. casei Lbs2 was able to stimulate
Treg cells in an experimental mouse model of colitis with an
improvement of the severity of the disease (66). A specific strain
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of L. plantarum C88 seems to exert a protective mechanism on
liver injury in mice: it down-regulates the levels of IL-8, IL-1b,
IL-6, IFN-g and TNF-a and inhibits the NF-kB signaling
pathways reducing TLR2 and TLR4 expression (106).

Yang et al. studied the effect of a probiotic mixture (BB. breve
DM8310, Streptococcus thermophiles DM8309, L. casei DM8121,
and L. acidophilus DM8302) on the 5-fluorouracil (5-FU)
induced enteropathy. The authors report a positive effect of
this mixture and speculate that the possible mechanism could
be related to the alteration of the TLR2/TLR4 signaling pathways
and the restoration of gut homeostasis. This study shed light on
the potential mechanism behind their action in chemotherapy-
induced intestinal mucositis (107).

In mice with colorectal cancer induced by dimethylhydrazine,
treatment with oral BB. infantis suppresses CD4+IL-17+ cells
and the secretion of IFN-g, IL-12, and IL-2 from Th17 and Th1
cells, improving mucositis induced by chemotherapy (108).

Good et al. studied L. rhamnosus HN001 in NEC-induced
mice showing the following positive results: a) when
administered this probiotic was not responsible for sepsis (a
concern in premature newborns); b) its use, alive or UV-killed,
resulted in an improvement in the gross aspect of the gut, lower
histology score and attenuation of mucosal cytokine levels with
the production of inducible NOS (82). In a different murine
model of colitis, the administration of L. reuteri 100-23
associated with a diet enriched in tryptophan was able to
repolarize gut intraepithelial CD4+ T cells- into Treg cells
enhancing immunotolerance (109).

A summary of the mechanisms of probiotics on in-animal
models is displayed in Table 2.
Examples of Anti-Inflammatory Effects of
Probiotics In Vivo: From Celiac Disease to
Parkinson’s Disease
The anti-inflammatory effect of different strains of probiotics,
shown in in vitro and animal studies, must pass the test of “the
real-life condition” to assess their potential use in clinical trials. In
the following section, we exploit the potential favorable effects of
specific probiotic strains as adjuvants in the treatments of ICD,
such as CeD, IBD, IBS, obesity, autism, and Parkinson’s Disease
(PD) among others.
Celiac Disease
CeD is an autoimmune enteropathy that occurs in genetically
predisposed individuals after gluten ingestion (110). Although
gluten is the only well-established trigger in CeD, a dysbiosis
mainly characterized by a rise of Bacteroides spp. and a decrease
of Bifidobacterium spp (111). has been associated with CeD in
several studies. The intestinal microbiota in this condition has been
hypothesized to have a role in CeD onset, and an international
research (the “Celiac Disease Genetic, Environmental, Microbiome,
and Metabolomic Analysis”) is underway to examine its possible
contribution. This study is a prospective, longitudinal observational
cohort study of newborns born in a family in which at least one
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member is affected by CeD, planned to elucidate whether
microbiota composition, time of gluten assumption, and genetic
asset are implicated in CeD pathogenesis (112).

The only proven effective treatment for CeD is long-life
Gluten-Free Diet (GFD). However, despite strict dietetic
adherence, patients often continue to experience gastrointestinal
symptoms. The effect of probiotics has been studied as an adjuvant
treatment due to its ability to hydrolyze gluten peptides thus
reducing their immunogenicity (113) restore gut microbiota,
modulate the immune response, and/or reducing the low-grade
inflammation, which often does not completely subside after GFD
(114). The effects of probiotics in the modulation of immunity
(innate and adaptive), and reduction of gliadin-induced
inflammation in CeD are mainly demonstrated by animal
models (115–119) and, recently, also in several human studies.

In a recent research, it has been demonstrated that treatment
with L. plantarum HEAL9 and L. paracasei 8700:2 (1010 CFU/day
for six months) can suppress CeD autoimmunity prior to
diagnosis and GFD. In this study, the authors showed a different
T cell modulation between the control group and the probiotic
group, associated with a lower titers of anti-tissue
transglutaminase-IgA in the probiotic group (p = 0.013) (120).
Klemenak et al. randomized 49 CeD pediatric patients on GFD, to
receive either BB. breve strains BR03 and B632 (2 × 109 CFU/day)
or placebo and demonstrated that three months administration of
probiotic leads to lower levels of TNF-a; however, TNF-a levels
increased again three months after completion of the intervention
(121). The same effect on TNF-a level has been confirmed by
Primec et al. who studied the impact of a combination of two BB.
breve strains for three months (daily dose: 2 g of DSM 16604 and
DSM 24706 in a 1:1 ratio) in 40 CeD patients. Besides the positive
effect of TNF-a, the probiotic combination was followed by a
restoration of the Firmicutes/Bacteroidetes ratio (122). Similarly,
BB. longum CECT 7347 (109 CFU for ninety days along with
GFD) has a positive effect on TNF-a levels in CeD patients. This
strain determined a reduction of activated T lymphocytes, a
decrease of Bacteroides fragilis and secretive IgA content in
stools as compared to placebo (123). The same group studied
the efficacy of this strain in rats weaned with gliadins. The authors
showed that the treatment with BB. longumCECT 7347 (6.0× 107–
8.2 × 108 CFU/day) partially counteracted the gliadin-induced
changes and improved the inflammation as compared with
animals fed gliadin alone. In the same study, the effect was less
marked when the animals were sensitized with IFN-g, probably
because of worst gut damage (124).

Our group recently conducted a clinical trial in 109 CeD
patients strictly adherent to the diet with IBS-like symptoms
randomizing to receive either a mixture of five strains of
lactobacilli and bifidobacteria [L. casei LMG 101/37 P-17504
(5 × 109 CFU/sachet), L. plantarum CECT 4528 (5 × 109 CFU/
sachet), BB. animalis subsp. lactis Bi1 LMG P-17502 (10 × 109

CFU/sachet), BB. breve Bbr8 LMG P-17501 (10 × 109 CFU/
sachet), BB. breve Bl10 LMG P-17500 (10 × 109 CFU/sachet)] or
placebo for six weeks. We were able to demonstrate that this
probiotic combination was effective to reduce the severity of IBS
symptoms and to modulate microbiota with increased
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bifidobacteria (125). The ability of the same probiotic
combination to hydrolyze gluten has been recently tested in a
model of simulated gastrointestinal gliadin digestion. The
authors, using CACO-2 cells, showed that physiological-
digested gliadin could be further hydrolyzed into lower
molecular weight peptides by probiotic bacteria. As compared
to physiological-digested gliadin, able to induce the synthesis,
up-regulation and dissemination of zonulin and occludin by IL-
6, the probiotic digested peptides did not show this negative
activity (126).

At present GFD is the only proven therapy for CeD and
probiotics, with their ability to modulate intestinal permeability
and decrease inflammatory responses, are a safe and promising
additional treatment in CeD. In contrast, the possibility of
increasing gluten threshold by the concomitant probiotic use,
even if attractive, is not yet applicable.

Inflammatory Bowel Diseases
A theoretical basis for using microbiota driven strategies in IBD
was the recognition that a misdirected immune system has a
Frontiers in Immunology | www.frontiersin.org 10306
fundamental role in IBD; gut microbiota with its specific genetic
makeup and environmental factors have significant
contributions in IBD pathogenesis (127, 128). Several findings,
both on human and animal models, demonstrated the
importance of the microbiota–host interaction in both CD and
UC. Indeed most IBD patients compared with healthy subjects
present a deep dysbiosis with lower diversity, a decrease of anti-
inflammatory taxa, increased Proteobacteria (such as E. coli and
Klebsiella), Ruminococcus gnavus, Pasteurellaceae, Fusobacteria,
Candida tropicalis and Veillonellaceae and reduced amount of
Firmicutes (especially the potentially protective Faecalibacterium
prausnitzii), Bifidobacterium, Ruminococci, and Clostridium
(129–131). The increased gut permeability, typical of IBD
patients, facilitates translocation of different bacteria through
the intestinal layer (132). The interplay between microbiota and
receptors on epithelial cells leads to a chronic inflammation
responsible for worsening of the disease (133).

UC is a colonic inflammatory disease with an incidence of 10–
20 per 100,000 people (134) characterized by a diffuse
inflammation, limited to the colon which starts at the rectum
TABLE 2 | Animal studies of different probiotic strains effects in modulating inflammation.

Reference Probiotic strain Doses Studied model Effect on cytokine patterns and
inflammatory mediators

L. Chen et al. (100) L. acidophilus 1 × 104,
1 × 105,
1 × 106,
1 × 107

1 × 108 CFU/10 g body
weight/day

DSS-induced colitis in mice ↓ IL-17, IL-23, TGFb1 and TNF-a

C. Gao et al. (101) L. reuteri ATCC
PTA6495

5 × 109 CFU/day TNBS-induced colitis in mice ↓ IL-1b, IL-6
Activation histamine H2-receptor

T. Kanda et al.
(104)

E. durans TN-3 10 mg/day DSS-induced colitis in mice ↑ Treg and IL-10
↓ IL-1b, IL-6, IL-17A and IFN-g

C. dogi et al. (105) L. rhamnosus RC007 1 × 107 cells/day TNBS- induced colitis in mice ↑ IL-10/TNF-a ratio
B. K. Thakur et al.
(66)

L. casei Lbs2 1 × 109 CFU/day TNBS-colitis-induced in mice ↑ Treg

A. Rodrıǵuez-
Nogales
et al. (103)

L. fermentum
CECT5716
L. salivarius
CECT5713

5 × 108 CFU/day DSS-induced colitis in mice ↓ IL-1b, IL-12 and TGF-b
↓ NOS

H. Mi et al. (108) BB. Infantis 1 × 109 CFU/day colorectal cancer induced by dimethylhydrazine
in mice

↓ IL-2, IL-12, and IFN-g

Y. Tang et al. (107) B. breve DM8310
L. acidophilus
DM8302
L. casei DM8121
S. thermophilus
DM8309

1 × 108

1 × 109 CFU/Kg/day
5-FU-induced mucositis in mice ↓ IL-6 and TNF-a

J. S. ParK et al. (97) L. acidophilus 8 × 108 CFU/Kg/day DSS-induced colitis in mice ↑ Treg and IL-10
↓ IL-17

CFU/10 g body
X. Zhou et al. (98) L. fermentum

CQPC04
1.5 × 109

5 × 1010 CFU/Kg/day
DSS-induced colitis in mice ↑ IL-10

↓ TNF-a, IFN-g, IL-1b, IL-6, and IL-12
Inhibited NF-kBp65, COX-2

S. H. Choi et al.
(99)

L. plantarum
CAU1055

8 × 109 CFU/day DSS-induced colitis in mice ↓ TNF-a and IL-6
↓ NOS and COX-2

L. Huang et al.
(106)

L. plantarum C88 4 × 1010 CFU/Kg/day aflatoxin B1-induced liver injury in mice ↓ IL-1b, IL-6, IL-8, TNF-a and IFN-g
Inhibited NF-kB

M. Liu et al. (2019) L. lactis ML2018 1 × 108 CFU/day DSS-induced colitis in mice ↓ NF-kB and MAPK
V. Sagheddu et al.
(76)

L. reuteri LMG P-
2748

1 × 109 CFU/day C. difficile induced colitis in mice ↑ IL-10
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and spreads proximally. UC pathogenesis is multifactorial and
includes a strong genetic predisposition, mucosal immunity and
epithelial barrier dysregulation as well as dysbiosis (135).

A recent Cochrane meta-analysis, including 14 studies (865
randomized participants; 12 adults and two pediatric studies)
explored the role of probiotics in inducing remission in people
with UC. A single strain probiotic was tested in half of the
included studies; among those, we found Escherichia coli strain
Nissle 1917 (EcN) (136), L. reuteri ATCC 55730 (137) and BB.
536 (138). The other seven trials tested multiple strain
combinations. The authors concluded that: 1) probiotics might
improve the induction of clinical remission if compared to
placebo; 2) there is no difference in remission inducing
between probiotics and 5-aminosalicylic acid (5-ASA) (139). In
the maintenance of UC remission L. rhamnosus GG (140), EcN
(141, 142), the yeast strain S. boulardii (143) and VSL#3 (144,
145) are the most studied strains compared to 5-ASA. Souza et al.
evaluated the role of EcN in mice with colitis: their results
showed downregulation of inflammation, lower levels of
neutrophils, eosinophils, chemokines, and cytokines. The
authors demonstrated an increase of Treg in Peyer’s patches
associated with an improvement in clinical and histological
disease scores. In the same study, germ-free mice transplanted
with feces from mice treated with EcN were protected from DSS-
induced colitis (146). A large trial performed by Kruis et al. in
2004 evaluated the efficacy of EcN administration in 327 adults
with UC in remission. One hundred sixty-two patients received
the probiotic (200 mg once daily), while 165 were treated with
Mesalazine (1,500 mg per day for 12 months). No difference was
found in the relapse of patients treated with EcN as compared to
those treated with mesalazine (33.9 vs. 36.4%) (147). The results
of a recently published Cochrane metanalysis are less
encouraging. The authors included 12 studies (1,473
randomized participants, mostly adults) aimed to compare
probiotics vs. placebo, probiotics vs. 5-ASA and a probiotics
mixture plus 5-ASA vs. 5-ASA alone. Seven studies focused on a
single bacterial strain and five studies on multiple strains. The
conclusion was that at present, it is not possible to state if
probiotics are able to maintain clinical remission in any of the
associations studied (148).

Pouchitis is defined as inflammation within the ileal reservoir
and is present in up to 60% of UC patients who undergo an ileal-
pouch anal anastomosis. One of the most relevant effects of
probiotics in IBD has been obtained in patients with this
condition. Forty patients were randomized to receive either 6
g/day of VSL#3 or placebo immediately after an ileal-pouch anal
anastomosis and were then followed-up for one year: only 10% of
VSL#3 patients vs 40% of placebo developed acute pouchitis. The
conclusion was that VSL#3 is effective in pouchitis prevention
(149). Moreover, two RCTs have demonstrated that VSL#3 is
also useful in patients with acute pouchitis for maintaining
remission. Patients on VSL#3 had no relapse as compared to
6% in patients treated with placebo (150, 151). Git VSL#3
treatment led to a decrease in pro-inflammatory cytokines,
increase in Treg cells (152), reduced permeability, and gut
microbiota modulation (153).
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CD is a chronic inflammatory disease that can occur in any
segment of the gastrointestinal tract characterized by massive
inflammation that is typically segmental, asymmetrical, and
transmural. The possible beneficial effect of probiotics arises
from the different possible mechanisms of action: 1) balance in
the composition of the gut microbiota, 2) inhibition of enteric
pathogens, 3) degradation of bacterial antigens, 4) blockade of
inflammatory mediators, and 5) stimulation of local immunity.
Compared to UC, in CD gut microbiota is unstable with a
decrease of butyrate-producing bacteria species such as
Faecalibacterium, Methanobrevibacter, Christensenellaceae,
and Oscillospira. Manichanh et al. demonstrated, in CD
patients, an increase in Bacteroidetes and Firmicutes ratio
compared to the general population (154). The composition of
gut microbiota seems to be influenced by the inflammation site:
patients with colitis presented an increase in Firmicutes, while
those with ileitis presented a lower diversity (155). One-third of
CD patients presented an increased number of mucosa-
associated adherent-invasive E. coli; these strains can cross the
mucosal layer causing high amounts of TNF-a production (156,
157). Several meta-analyses report few or no effect of probiotics
with exception limited to the prevention/treatment of paucities
(158, 159).

Because of the limited-certainty evidence it is not possible to
draw firm conclusions on the potential effect of any specific
probiotic strain (or combinations) in reducing clinical relapse or
inducing remission in IBD patients. The lack of evidence of
probiotic efficacy in IBD could be related to the failure in
identifying the ideal strain (or combinations), to possible
protocol of treatment bias or because the intervention is started
too late in the course of the disease when the ‘pathogenic’
microbiota is already established.

Irritable Bowel Syndrome
IBS is one of the most frequent functional gastrointestinal
disorders, with an estimated prevalence of approximately 11%
in adults and from 1 to 5% in children. Recurrent abdominal
pain, changes in bowel habits, abdominal distention (160, 161)
are the most frequent symptoms of IBS. The etiology is still
poorly understood but seems to be multifactorial and includes
altered intestinal motility, visceral hypersensitivity, abnormal
gut–brain interaction, dysbiosis, and low-grade inflammation.
In IBS, gastrointestinal dysbiosis has been linked to an increased
mucosal permeability interfering with intestinal homeostasis and
thereby increasing low-grade gut inflammation and stimulating
cellular and mucosal immune activation (162). It has also been
speculated that microbiota alteration can affect gut motility and
lead to enteric nervous system dysregulation (163). Even though
gut microbiota alterations seem to be crucial in IBS, no uniform
gut microbiota pattern has yet been demonstrated. The existing
inconsistencies among currently available data may be attributed
to several factors, including heterogeneity of gut microbiota
study methods and individual microbiota variability.

Recently, Tap J et al. have proposed a microbiota signature
related to IBS severity in adults, characterized by low microbial
richness, lack of Methanobacteriales and Prevotella and increase
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Bacteroides (164). A meta-analysis performed on 13 studies
involving 360 IBS patients and 268 healthy controls
demonstrated a decrease in the abundances of Lactobacillus,
Bifidobacterium, and Faecalibacterium prausnitzii (165). In a
recent systematic review of 22 articles, Lactobacillaceae,
Enterobacteriaceae, and Bacteroides were more abundant while,
uncultivated Faecalibacterium, Clostridiales, and Bifidobacterium
were reduced in IBS patients (166).

Studies performed on intestinal biopsies of subjects with post-
infective IBS have demonstrated an increase in lymphocytes,
mast cells, and inflammatory cytokine possibly related to a
dysbiotic microbiota (167, 168). Recently Kim et al. studied the
effect of a probiotic multistrain mixture (5 × 109 viable cells
Bifidobacterium longum BORI, Bifidobacterium bifidum BGN4,
Bifidobacterium lactis AD011, Bifidobacterium infantis IBS007,
and Lactobacillus acidophilus AD031 three times per day for
eight weeks) in patients with diarrhea-predominant IBS, using a
metabolomic approach. The authors were able to demonstrate
that this probiotic mixture improves IBS symptoms and modifies
the levels of urinary metabolites related to gut inflammation
(169). O’Mahony et al. performed a clinical trial in 77 IBS
patients reporting an abnormal IL-10/IL-12 ratio at baseline,
suggestive of a pro-inflammatory state. The patients were
randomized to receive, for eight weeks, a malted milk drink
added either with L. salivarius UCC4331 or with BB. infantis
35624 (1010 live bacterial cells each) or with placebo. Only the
treatment with BB. infantis 35624 resulted in symptom
improvement and normalization of the IL-10/IL-12 ratio (170).
Finally, a multispecies probiotic combination (25 billion active
bacteria L rhamnosus LR5 3 × 109 CFU; L. casei LC5 2 × 109

CFU; L. paracasei LPC5 1 × 109 CFU; L. plantarum LP3 1 ×
109 CFU; L. acidophilus LA1 5 × 109 CFU; BB. bifidum BF3 4 ×
109 CFU; BB. longum BG7 1 × 109 CFU; BB. breve BR3 2 × 109

CFU; BB. infantis BT1 1 × 109 CFU; S. thermophilus ST3 2 × 109

CFU; L. bulgaricus LG1; and Lactococcus lactis SL6 3 × 109 CFU)
was used to test the possibility to reduce inflammation in IBS
patients. One-hundred-seven patients were randomized to the
probiotic mixtures (two times a day) or placebo: after eight weeks
of treatment, no difference was found in IBS symptoms score, in
fecal calprotectin level and high sensitivity C reactive protein
between the two groups (171).

Several meta-analyses demonstrate the positive effect of
probiotics (single strains and multistrain) in the management
of IBS (172, 173) although a single strain or combination has not
been definitively identified. The beneficial effect is related to the
immune-modulating effect of probiotics on the regulation of
anti-inflammatory/pro-inflammatory cytokines that cannot be
exclusive of a particular species (170, 174–176).

We recently reviewed the guidelines published by several
scientific societies on probiotics in IBS and concluded that in
adults, taken as a group, probiotics could ameliorate global
symptoms; however, at present no recommendations regarding
individual species, preparations, or strains can be made because
of limited and conflicting data. In pediatric IBS, current evidence
shows efficacy of L. rhamnosus GG, L. reuteri 17938 and VSL#3,
thus supporting their use (177).
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Obesity
Obesity is defined as excessive/abnormal fat accumulation with
adverse health consequences. Obesity and its metabolic
complications represent a relevant health problem all over the
world. The prevalence of obesity is three times higher since 1975,
and more than 13% of the world’s population is obese at present
(178). The pathogenesis of obesity is multifactorial and includes
hormonal, genetic, and environmental factors. However,
growing evidence shows that microbiome influences the energy
balance contributing to obesity pathogenesis and its associated
complications (179).

Gut microbiota is involved in energy homeostasis by
extracting energy from foods through fermentation processes.
It has been speculated that the increased energy extraction
(especially for plant-derived complex carbohydrates) could
have been an advantage in conditions of limited food
availability. However, nowadays the increased availability of
food and the changes in the proportion of diet components
(increased intake of fat and sugar and reduction of plant-derived
carbohydrates) can be responsible for a negative effect of our
microbiota on human health (180).

It has been reported that the Firmicutes to Bacteroidetes ratio
is altered in obese people, and this seems to promote the energy
extraction from foods and storage (181). Changes in the
intestinal microbiota in response to weight-reducing diets have
also been documented (182). On the contrary, gut microbiota
alterations can be associated with increased obesity risk (183). A
meta-analysis showed that a reduced count of Bifidobacterium
during early infancy is more often found in obese children as
compared to normal weight controls (184).

A developing term in the field of innate immunology is that of
metabolic endotoxemia. Metabolic endotoxemia is described as a
subclinical increase in circulating endotoxin levels that although
not noticeable in clinical settings, plays a significant role in the
etiology for many chronic diseases. Several studies have shown
an alteration of the intestinal permeability that may potentially
trigger the metabolic endotoxemia. Once in the circulation LPS
bind to LPS-binding protein promoting the activation of
inflammatory pathways, including NF-kB and subsequent
cytokine release such as IL-6 and TNF-a, that in turn lead
insulin resistance in several tissues (185). It has been
hypothesized that targeted microbiota interventions might be
used for the prevention and treatment of obesity and associated
metabolic conditions (186). The demonstrated effect of
probiotics in the regulation of intestinal permeability is an
attractive option and worth considering further, especially at
the light of data from animal studies where probiotics have
shown the ability to improve intestinal permeability and
metabolic and inflammatory status (187, 188).

Different authors have shown that some strains of
Bifidobacterium and Lactobacillus can prevent obesity across
several studies in animals and human, including L. rhamnosus,
L. casei, L. plantarum, L. gasseri, BB. infantis, BB. longum, and
BB. breve (189). The administration of L. plantarum TN8 can
induce an increase of anti-inflammatory IL-10 levels as well as a
decrease in pro-inflammatory IL-12, IFN-g, and TNF-a in diet-
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induced obese mice (190). Miyoshi et al. performed a study in
mice evaluating the effect of L. gasseri SBT2055; they showed that
L. gasseri significantly influenced fat accumulation, reduced
weight gain, and modulated adipose tissue pro-inflammatory
cytokines (191).

Park et al. performed a study in diet-induced obese mice on the
effect L. curvatus HY7601 and L. plantarum KY1032 (5 ×
109 CFU/day for more than two months): probiotics decreased
fat accumulation and reduced BMI. Moreover, the authors
observed that, in mice receiving probiotic treatment, pro-
inflammatory genes in the adipose tissue (IL1b, TNF-a, IL6,
and monocyte chemotactic protein-1) were downregulated. In
contrast, fatty acid oxidation-related genes were upregulated in the
liver (192). One month administration of S. boulardii in obese and
type 2 diabetic mice has been shown to reduce obesity, hepatic
steatosis, fat mass, and inflammation with a concomitant effect on
gut microbiota composition (increased in Bacteroidetes and a
decreased in Firmicutes, Proteobacteria, and Tenericutes) (193).

Bernini et al. showed that BB. lactis HN019 (80 ml of the
probiotic milk containing on average 3.4 × 108 CFU/ml) in
patients with metabolic syndrome led to reduced weight gain
and modulation of cytokines such as IL-6 and TNF-a (194). The
supplementation with L. reuteri V3401 (5 × 109 CFU for three
months) in patients with metabolic syndrome resulted in IL-6 and
soluble vascular cell adhesion molecule 1 (sVCAM-1) decrease
associated with a rise in the proportion of Verrucomicrobia (195).

Several systematic reviews and meta-analyses evaluating the
role of probiotics in obesity have been published, and most of
them have shown a BMI decrease in enrolled patients who were
supplemented with several probiotics strains (196, 197); however,
other trials failed to demonstrate this effect. Recently the effects of
prophylactic BB. lactis BS01 and L. acidophilus LA02
supplementation (2 × 109 CFU for six weeks) were studied. On
anthropometric measures in healthy, young females: no significant
effects were found on all anthropometric measurements (198).

Given the current epidemic of obesity plaguing Western
society, a call is necessary for feasible, available, and safe
treatments to prevent and fight against it. Even though obesity
pathogenesis is multifactorial and highly complicated, recent
literature suggests microbiota alterations as the primary
contributor to its development and associated metabolic and
inflammatory abnormalities. Consequently, gut microbiome
modulation to preserve a stable, consistent metabolic
environment may be helpful in preventing and as additional
treatment in obese people.

Autism
ASDs are a variety of developmental disabilities that usually
appear in the first few years of life and manifest in several ways
with different grades of severity from mild impairment to
complete inability to live an adequate social and personal life.
The incidence of ASD is increasing, although it is still unknown if
this is secondary to an increase in social awareness and earlier
diagnosis or to a real rise in prevalence secondary to modified
environmental conditions (199). The etiology is still unknown:
genetic, epigenetic, environmental, and infectious factors have
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been identified as possible cofactors that enter in the
pathogenesis of this multifactorial disorder. It is well
established that there is a strong connection between the brain
and gut: the so-called brain–gut axis. This connection implies
that these two organs, although so different, influence each
other’s development and function. In particular intestinal
microbiota is able to send signals to the central nervous
system via intestinal epithelial, bowel neuronal and immune
cells. Germ-free mice develop different alterations of
neurotransmitter turnover, neuroinflammation, neurogenesis,
and neuronal morphology (200). In ASD patients, the
intestinal microbiota is altered: as compared to healthy peers
higher concentrations of pathogenic Clostridium bacteria (201),
a decreased Bacteroides/Firmicutes ratio, and increased
Lactobacillus and Desulfovibrio species (202, 203) have been
shown. This altered microbiota creates an inflammatory
environment with the release of cytokines leading to a
disruption of the mucosal barrier functions.

It has been reported that alterations in cytokine levels and
immune dysregulation are frequent in ASD patients. IL-6,
macrophage chemoattractant protein-1 and TNF-a play a role
in cerebral inflammation (204) and a higher concentrations of
these chemokines along with IFN-g, IL-1b, are present in ASD
patients (205). In a murine model of ASD, de Theije C et al.
investigated the relationship between gut microbiota and autism-
like behavior in mice in utero exposed to valproic acid. As
expected, the authors demonstrated a change in the Firmicutes
and Bacteroidetes phyla in the offspring supporting that an
intestinal phenotype is associated with autism-like behavior
with preponderance in male offspring and associated with
boosted levels of cecal butyrate and ileal neutrophil infiltration
and inversely correlated with serotonin gut levels (206).

In a recent study performed in an animal model of obsessive-
compulsive disorder, the effects ofL. casei Shirota consumption has
been studied. Behavioral tests demonstrated the reduction of
obsessive-compulsive disorder symptoms in mice after L. casei
Shirota treatment, and the authors demonstrated that this is
secondary to the regulation of serotonin-related genes expression
(207). In a randomized placebo-controlled double-blind study,
ASD children were treated with L. plantarum WCSF1 for three
months. An increase in enterococci and lactobacilli and a reduction
inClostridiumclusterXIVawere found.This resultednotonly inan
improvement of the intestinal symptoms but, more importantly, in
an increase in behavioral scores (208). By treating ASD children,
their siblings andneurotypical childrenwith amixture of probiotics
(Lactobacillus, Bifidobacterium and Streptococcus strains) for four
months, Tomova et al. found a decrease in TNF-a levels, a primary
inflammatory cytokine, reduced Bifidobacterium andDesulfovibrio
spp., and also reestablished the Bacteroidetes/Firmicutes
ratio (203).

De Angelis et al. address the issue using the metabolomic
approach. In particular, they found that ASD patients have: 1) an
increase in fecal free amino acids which correlates with an
increase in the gut colonization of proteolytic bacteria such as
Clostridia (except for C. Barletti) and Bacteroides, 2) an
alteration in fecal volatile organic compounds suggestive of
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intestinal dysbiosis, 3) the presence of peptides (indoles and
phenols compounds) that play as pseudo-neurotransmitters and
neuromodulators, responsible for a reduction in neuroplasticity
development and 4) a reduction of SCFAs (such as butyric acid)
able to influence neuronal activity and contributing to the so-
called “leaky gut” already demonstrated in these patients. The
authors also noted an association between the variability of the
alterations found and the degree of disease severity: gut dysbiosis
is more pronounced in ASD children with significant deficits as
compared to pervasive developmental disorder not otherwise
specified (209, 210).

ASD involve multiple disabilities with multifactorial
etiologies which implies that it must be treated with a holistic
approach by a multidisciplinary team. A better understanding of
the gut-brain axis in ASD may help clinicians in treating
gastrointestinal dysbiosis as soon as possible because this may
improve behavioral and cognitive skills. Of course, further
studies are needed to understand which specific probiotic or
evidence-based nutritional advice should be used according to
the patient’s intestinal condition.

Parkinson’s Disease
PD is a common degenerative neuromotor disorder affecting 1–2
per 1,000 people worldwide (211). The pathogenesis is
multifactorial, and the pathological hallmarks in PD are Lewy
body, presence of intraneuronal aggregated alpha-synuclein, and
progressive loss of dopaminergic neurons in the substantia nigra
compacta. The typical clinical symptoms include bradykinesia,
postural instability, and tremor but also gastrointestinal symptoms
tract such as constipation and bloating. Moreover, in PD patients,
evidence of inflammatory changes has been reported in the brain
parenchyma (increased levels of pro-inflammatory cytokines and
T cell infiltration) and enteric nervous system.

The gut involvement in PD including increased gut permeability
(212) and the presence of gastrointestinal symptoms and
inflammation (213) have led to the hypothesis that gut microbiota
may have an influence in PD pathogenesis such as in alpha-synuclein
aggregation. Recently, an increase in opportunistic pathogens and
SCFA-producing bacteria and a decrease in carbohydrate-
metabolizing bacteria in PD patients has been demonstrated. The
most consistent microbiota changes that can constitute a specific
microbial signature of PD are: 1) decrease of Prevotellaceae,
2) increase of Verrucomicrobiaceae and Akkermansia, 3) increased
abundance of Bifidobacteria and 4) decreased abundance in
Lachnospiraceae (214). Several studies in vitro and animal models
demonstrated the efficacy of specific probiotic strains in modulating
the inflammation in PD.

Magistrelli et al. demonstrated, in an in vitro model using PD
patients’ PBMCs co-cultured with a selection of probiotic
microorganisms belonging to the Lactobacillus and Bifidobacterium
genus, that expression of the pro-inflammatory cytokines IL-1, IL-8,
and TNF-a was reduced. In contrast, the expression of the anti-
inflammatory regulators TNF-b was increased (215). The
administration of a probiotic mixture (Lactobacillus and
Bifidobacterium) in two toxin-induced mouse models of PD
improved the degeneration of substantia nigra dopaminergic cells
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and reduced the motor decline by increasing butyrate production,
which inhibited nigral inflammation (216).

The main clinical trial on the use of probiotics in PD has been
conducted by Tamtaji et al. The authors randomized 60 PD patients
to receive either amultistrain probiotic (containing Lactobacillus and
Bifidobacterium) or placebo and demonstrated an improvement in
motor signs and symptoms in the probiotic treated group. The
clinical effect was associated with higher levels of the antioxidant
glutathione and reduced serum levels of C-reactive protein (217).

Pharmacotherapy options for PD are limited at present, and safe
non-invasive therapeutic options are needed; this is the reason why
probiotics represent an attractive option. However, no solid clinical
data are yet available on the real efficacy of this new therapeutic
option on motor symptoms and the progression of PD.
CONCLUSION

Recently, extensive pieces of evidence are available on local
intestinal and systemic immune responses, describing the
complicated relationship between foods, bacteria, derived
metabolites, and the immune system. The intestinal
microbiota, as stated in this review, seems to be primarily
involved in the pathogenesis of various ICD characterized by a
robust gene–environment interaction. Several bacterial species
within the gut are identified as talented players for the onset or
maintenance of these conditions. A new approach to ICD will
focus on the plethora of factors that may play a role in the vast
and still undiscovered world of chronic inflammation that stems
from an imbalance of intestinal microbiota: the gut as a door to
the body. Restoring what Nature has created and shaped during
human evolution and men have changed so dramatically in a
couple of centuries is a utopic task. We are now just at the
beginning of the understanding of the intimate mechanisms
regulating the coevolution of men and microbes. After more
than twenty years of research it has appeared clear that each
probiotic strain even from the same probiotic species can behave
differently according to its specific metabolic pathways, the
amount of administered probiotic, the interaction between
probiotics and the host, the host itself and its microbiota, the
diet, duration of the treatment and all other possible variables.
Unfortunately, to have real clinical data that can be replicated
and verified, everything needs to be standardized, which is a
titanic feat.

Medicine is going toward individualization, and this is also
the case of probiotics. In the future, each probiotic treatment will
be adapted to the specific patient in that particular clinical
situation. Further studies are needed regarding every single
aspect of the probiotic therapy, and hopefully, we will reach a
robust, patient-tailored biological treatment.
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Triggering receptor expressed on myeloid cell-1 (TREM-1) signaling is expressed on

neutrophils and monocytes that is necessary for the successful antimicrobial response

and resolution of inflammation in the gut. In this study, we determined the effect of

an anti-TREM-1 agonistic antibody (α-TREM-1) on colitis and identify its underlying

mechanism of action. Administration of α-TREM-1 alleviated colitis in mice and resolved

dysbiosis, which required TLR4/Myd88 signaling. α-TREM-1 increased the production

of neutrophil extracellular traps and interleukin-22 by CD177+ neutrophils, which led to

pathogen clearance and protection of the intestinal barrier. TREM-1 activation using an

α-TREM-1 antibody protects against colitis by rebalancing the microbiota and protecting

the epithelium against the immune response as well as modulates the function of

neutrophils and macrophages. These results highlight the importance of the TREM-1

pathway in intestinal homeostasis and suggest that α-TREM-1 treatment may be an

effective therapeutic strategy for inflammatory bowel disease.

Keywords: CD177, inflammatory bowel disease, neutrophil, macrophage, triggering receptor expressed on

myeloid cell

INTRODUCTION

The gut is constantly exposed tomicrobes. Unresolved pathogen clearance due to aberrant immune
responses and compromised mucosal healing perpetuate inflammation and tissue injury in the gut.
One factor determining the balance between bacterial clearance and tissue damage is the timely
induction of anti-inflammatory and mucosal healing molecules. Inflammatory bowel diseases
(IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic inflammatory
disorders related to dysregulated immune responses, genetic susceptibility, and environmental
factors (1, 2). Recent studies have shown the importance of aberrant innate immune responses
to microbes in IBD pathogenesis (3). Myeloid cells, such as neutrophils, monocytes/macrophages,
and dendritic cells, primarily mediate this innate response (4). Excessive inflammation due to
unresolved infection, however, leads to prolonged inflammation and tissue damage.

Triggering receptor expressed on myeloid cells-1 (TREM-1) is expressed mainly primarily
on myeloid cells, such as including neutrophils, monocytes, and tissue macrophages (5), and is
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dramatically induced on neutrophils and monocytes in
response to microbes, playing a critical role in modulating
infection-induced inflammation (6). TREM-1 downstream
signaling is linked with the phosphorylated DNAX activation
protein 12 (DAP12), phosphatidylinositol-3 kinase (PI3K),
and extracellular-signal-regulated kinase (ERK) in order to
amplify Toll-like receptors (TLRs). TREM-1 amplifies TLR
signaling, an important link between microbial populations and
inflammation (6). Although the exact ligand for TREM-1 is
unknown, cross-linking with an agonist antibody (α-TREM-1)
induces TREM-1-dependent responses, including increased
cytokine production, bactericidal activity, and phagocytosis in
monocytes, and promotion of degranulation and antimicrobial
function in neutrophils (6). Modulation of the TREM-1 pathway
has been shown to alter outcomes in several animal models
of inflammation (7, 8). Moreover, in a preclinical trial of
anti-TREM-1 therapy, the secretion of several proinflammatory
cytokines was suppressed in the inflamed intestinal tissues of
IBD patients (9). However, it has also been reported that a
TREM-1-antagonizing peptide attenuates colitis in mice (10).
Thus, the exact role of TREM-1 in driving chronic inflammation
in IBD is poorly understood.

We aimed to determine the effect of α-TREM-1 on intestinal
inflammation and explored its underlying mechanism of
action. We showed that TREM-1 is indispensable for
the innate immune response and barrier function in
colitis. Furthermore, we showed that α-TREM-1 induced
CD177+ neutrophils and promoted wound healing
through interactions with macrophages and intestinal
epithelial cells (IEC).

MATERIALS AND METHODS

Colitis and Animal Models
TLR4-deficient BALB/c and Myd88-deficient C57BL/6 mice
were provided by the Korea Research Institute of Bioscience
and Biotechnology (Daejeon, South Korea). dextran sodium
sulfate (DSS) (MP Biomedicals, Solon, OH, USA) or 2,4,6-
trinitrobenzene sulfonic acid (TNBS) (Thermo Fisher Scientific,
Waltham, MA, USA) were used to induce colitis and analysis
was performed as previously described (11). At the time
of DSS or TNBS treatment (day 0), we administrated an
isotype control (IgG; R&D Systems, Minneapolis, MN, USA);
three different α-TREM-1 (4 or 20 µg/mouse based on a
previous study) (7); MAB1187 (R&D Systems) for experiments
in C57BL/6 mice (Figure 1); AF1187 (R&D Systems) for all
experiments, except those in Figure 2; or sc-19312 (Santa Cruz
Biotechnology, Dallas, TX, USA) for the indicated experiments
in BALB/c mice in Figure 2. All experiments using animals
were approved by the Institutional Animal Care and Use
Committee of Yonsei University Severance Hospital, Seoul,
Korea (Approval No: 2014-0299).

The detailed methods for disease activity index (DAI)
evaluation, histological analysis and immunohistochemistry,
depletion or transfer experiments of microbiota, and
metagenome analysis of microbiota are described in
Supporting Information.

Cell Culture, Treatment, and Transfection
Cells were maintained at 37◦C in RPMI1640 supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Life
Technologies, Gaithersburg, MD, USA) and 1% antibiotics in
a humidified atmosphere of 5% CO2. RAW264.7 macrophage
cells (Korean Cell Line Bank, Seoul, Korea), THP-1 cells, and
HL-60 cells (ATCC, Manassas, VA, USA) were used. Cells
were stimulated with IgG or α-TREM-1 at 0.4–0.8µg/mL,
with or without TLR ligands, including LPS (Sigma-Aldrich,
St Louis, MO, USA), flagellin (FLA-ST; InvivoGen, San Diego,
CA, USA), Pam3CSK4 (PAM3; InvivoGen), peptidoglycan
(PGN-BS; InvivoGen), muramyl dipeptide (MDP; InvivoGen),
and Salmonella enterica serovar typhimurium expressing green
fluorescent protein (GFP; ATCC14028GFP). S. typhimurium
expressing GFP was inoculated into 10mL of Luria-Bertani broth
at 37◦C, shaken at 250 rpm overnight, and then sub cultured into
50mL of LB broth, until mid-logarithmic growth was reached
(OD600: 0.5) as previously described (12). S. typhimurium was
then diluted in antibiotic-free medium.

Knockdown of the Trem1 gene was achieved through a 12-h
transfection of siRNA or non-targeting control siRNA (40µM;
AccuTarget, Bioneer, Daejeon, South Korea) into RAW264.7
cells using Lipofectamine 2000 (Life Technologies). To assess
the inflammatory response, treatment was performed 24 h
after transfection. Transfection experiments were performed
in duplicate on three independent occasions and the results
were averaged.

The detailed methods of bone marrow–derived
neutrophil and macrophage preparation are described in
the Supporting Information.

Phagolysosomal Acidification, Autophagy,
and Neutrophil Extracellular Trap Assay
Macrophages and neutrophils were cultured on poly-L-lysine-
coated confocal dishes and incubated with LPS (200 ng/mL)
or α-TREM-1 (0.8µg/mL) for 2 or 3 h, respectively. For the
phagolysosomal acidification assay, live cells were treated with
100 nM LysoTracker Red DND-99 (Thermo Fisher Scientific)
for 30min, washed with PBS, and stained with Hoechst 33342
(8 nmol/L, Thermo Fisher Scientific). For autophagosome
evaluation, cells were permeabilized with 0.1% Triton X-100
for 10min, washed with PBS, and incubated with an anti-
LC3B antibody (1:2,000; Abcam, Cambridge, UK) overnight.
An Alexa488-conjugated rabbit anti-mouse secondary antibody
(1:500, Thermo Fisher Scientific) was then added for 30min,
after which cells were fixed in 4% paraformaldehyde and stained
with DAPI or Hoechst 33342. For the neutrophil extracellular
trap assay, neutrophils were treated with 5 µM SYTOX orange
(Thermo Fisher Scientific) for 30min. All cells were visualized
using a fluorescence microscopy (Olympus BX41) or Carl Zeiss
LSM 700 laser-scanning microscope (Oberkochen, Germany). At
least 100 cells were counted in 10 high-powered fields.

The detailed methods of culture, knockdown, transfection,
neutrophil isolation, flow cytometric analysis, reactive
oxygen species measurement, RT-PCR, Western blotting,
wound healing assay, and immunostaining are described in
Supporting Information. Supplementary Table 1 summarizes
the patient characteristics. qPCR primers are listed in
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FIGURE 1 | α-TREM-1 prevents colitis and modulates the microbiota in mice. (A–F) Systemic administration of α-TREM-1 in DSS-treated mice. DSS was supplied in

drinking water and IgG or α-TREM-1 was intraperitoneally injected (4 or 20 µg/mouse) into BALB/c mice. (G–N) The antibiotic (Abx) cocktail was supplied in drinking

water 6 days before DSS administration (day 0) and IgG or α-TREM-1 (arrow: 20 µg/mouse) was intraperitoneally injected into BALB/c mice on day 0 (n = 8/groups).

(A,G) Experimental design. (B,H) Body weight change. (C,I) Disease activity index. (D,J) Representative sections of periodic acid-Schiff stain. Scale bar, 100µm.

(E,K) Histological score. (F) PAS stain intensity. (L) Goblet cell score. (M) Bacterial load. Bacterial load in colon was assessed by 16S rRNA gene amplification. (N)

Microbiota profiles (phylum level) in colonic tissues. Data are expressed as means ± S.E.M. (n = 4–8/groups). Statistical significance was assessed using one-way

ANOVA followed by Tukey post-test. *P < 0.05, **P < 0.01, ***P < 0.005 (or vs. DSS+IgG). α-T, treated with α-TREM-1; IgG, treated with control antibody; Water,

supplied with normal drinking water.

Supplementary Table 2. This study was approved by the
Institutional Review Board of Severance Hospital, Yonsei
University (approval number 4-2012-0302). All patients and
controls provided written informed consent and all methods
were performed in accordance with the relevant guidelines
and regulations.

Statistical Analysis
Prism 5.0 software (GraphPad Inc., San Diego, CA, USA) was
used for statistical analyses. A two-tailed Student’s t-test was used
to compare two datasets and analysis of variance (ANOVA) was
used for multiple comparisons. Significance was accepted at P <

0.05. Results are expressed as mean± S.E.M.

RESULTS

Intrarectal and Intraperitoneal
Administration of α-TREM-1 Protects Mice
From Colitis
We examined the effect of TREM-1 agonism by direct
intrarectal administration of α-TREM-1 agonist at the

time of TNBS treatment (day 0) into C57BL/6 mice
(Supplementary Figure 1A). Unexpectedly, we found that
α-TREM-1 induced body weight recovery, lowered DAI values,
and attenuated colon length shortening in a dose-dependent
manner (Supplementary Figures 1B–D). α-TREM-1 alleviated
histopathological changes (Supplementary Figures 1E–G),
suggesting that α-TREM-1 can directly impact mucosal
immunity through rectal administration. The TNBS-induced
colitis model that haptenates to the host immune system in the
intestine has been considered as a Th1-mediated CD-like colitis
model, and the DSS-induced colitis model that causes massive
colonic barrier loss has been considered a model of UC-like
disease (13, 14). To test whether α-TREM-1 had systemic effects,
we intraperitoneally administered α-TREM-1 at the time of
DSS treatment (day 0) to mice (Figure 1A). Like intrarectal
administration, α-TREM-1 dose-dependently attenuated
colitis (Figures 1B,C, Supplementary Figure 2A). Histological
evaluation of colons from α-TREM-1-treated mice revealed a
markedly decreased inflammation score (Figures 1D–F) and
showed near complete goblet cell restoration (Figures 1D,F).
To ensure these results were TREM-1 specific, we used three
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FIGURE 2 | TLR4 signaling is required for the anticolitic effects of α-TREM-1. Wild-type (WT) and Tlr4-knockout (Tlr4−/−) BALB/c mice were subjected to a colitis and

healing model with 3.5% DSS treatment for 7 days and normal drinking water for 2 days (n = 7/groups). The arrow indicates the point at which IgG- or α-TREM-1

(α-T) was administered (20 µg/mouse). (A) Experimental design. (B) Body weight change. (C) Disease activity index. (D) Representative sections of PAS stain. Scale

bar, 100µm. (E) Histological score. (F) Goblet cell score. (G) Total number of bacterial OTUs (left), richness predicted by the Chao1 index (middle), and diversity by the

Shannon index (right) in the colon. (H) Microbiota profiles in the colon at the phylum level. Statistical significance was assessed using one-way ANOVA followed by

Tukey post-test. *P < 0.05, **P < 0.01, ***P < 0.005. PBS administered phosphate-buffered saline; Water, supplied with normal drinking water.

different α-TREM-1 agonists with different epitopes (described
in the Methods section). The anti-colitic effects of α-TREM-
1 were not affected by the type of antibody. These results
confirmed that α-TREM-1 specifically activated TREM-1
signaling and induced anticolitic effects through intrarectal and
intraperitoneal administration, suggesting the involvement of
systemic modulators, such as neutrophils and macrophages, in
addition to mucosal immunity.

α-TREM-1 Promotes Bacterial Clearance
and Modulates Microbiota in Colitis
To further examine the involvement of bacterial modulation of
the anticolitic effects of α-TREM-1, we depleted endogenous
intestinal bacteria with broad-spectrum antibiotic (Abx)
treatment (Supplementary Figure 3A) and intraperitoneally
administered IgG or α-TREM-1 at the time of DSS treatment
(Figure 2G). Here, we used BALB/c mice to investigate the
effects of the mouse genetic background. Like α-TREM-1

treatment, Abx treatment alleviated colitis (Figures 1H–L,
Supplementary Figure 3B) in DSS-treated mice. Notably,
α-TREM-1 yielded stronger anticolitic effects when co-
administered with antibiotics. Next, we investigated bacterial
burden in colonic tissues. Bacterial load was significantly
reduced in the DSS+α-TREM-1, DSS+Abx+α-TREM-1,
and DSS+Abx groups compared to the DSS+IgG group
(Figure 1M). Correspondingly, we found that α-TREM-1 also
reduced colonic bacterial load in mice with TNBS-induced colitis
(Supplementary Figure 1H).

We evaluated changes in fecal and colonic microbiota
using 16S pyrosequencing. Feces from the Abx-treated
group showed compositional shifts to Bacteroidetes
(Supplementary Figures 3C,D), which is supposed to be due to
Abx treatment. Colon samples from α-TREM-1- and Abx-treated
mice revealed a different taxa composition compared to those
of IgG-treated mice, with a drastic decrease in Proteobacteria
and an increase in Firmicutes in DSS-treated mice (Figure 1N,
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Supplementary Figure 3E). Similar results were found in the
TNBS-treated mice (Supplementary Figures 1I–L), although
Bacteroidetes displayed slightly different profiles between the
DSS and TNBS models. These results indicate that α-TREM-1-
mediated attenuation of colitis was associated with restricted
dissemination of pathogenic bacteria and a change toward
non-pathogenic compositions in the early stage of inflammation.

TLR4 Signaling Is Required for Anticolitic
Effects of α-TREM-1
Because the interaction between TREM-1 and TLR4 is crucial for
antimicrobial and anti-inflammatory functions, we investigated
the therapeutic effects of α-TREM administration in Tlr4- and
Myd88-knockout (KO) BALB/c mice through intraperitoneal
administration of α-TREM-1 2 days after DSS treatment
(Figure 2A, Supplementary Figure 5A). As seen in C57BL/6
mice, α-TREM-1 markedly attenuated colitis in wild type
(WT) BALB/c mice. However, α-TREM-1 treatment did not
alleviate colitis in Tlr4- and Myd88-KO mice (Figures 2B,C,
Supplementary Figures 4, 5). It was also unable to restore goblet
cells or improve histopathology in Tlr4-KO mice (Figures 2D,E)
and Myd88-KO mice (Supplementary Figure 5E). Additionally,
α-TREM-1-treated WT mice showed an increase in microbiota
diversity (Figure 2G, Supplementary Figure 4C). This
therapeutic model also showed a shift to Firmicutes in the
colonic tissue of α-TREM-1-treated WT mice, but significant
suppression of pathogenic Proteobacteria in DSS-treated
mice. This shift was absent in Tlr4- or Myd88-KO mice
(Figure 2H, Supplementary Figures 4D, 5F). α-TREM-1
treatment drastically increased expression levels of genes related
to bacterial clearance, such as Inos and Il1b, in the affected colon
ofWTmice compared to untreated mice. In addition, α-TREM-1
treatment resulted in a trend toward increased Il22 expression
(Supplementary Figure 4E). On the other hand, α-TREM-1
treatment did not affect Inos, Il1b, or Il22 expression in Tlr4-KO
mice. These results suggest that TLR4 signaling is associated
with the anticolitic effects of α-TREM-1 through the control of
gut microbiota.

To assess whether the nullified anticolitic effects of α-
TREM-1 in Tlr4-KO mice were due to gut microbiota
changes, we cohoused Tlr4-KO mice with WT mice that
were intraperitoneally treated with IgG- and α-TREM-1
6 times weekly to facilitate the exchange of microbiota
(Supplementary Figure 6A). Body weight recovered until
day 8 of DSS-treatment in α-TREM-1-treated mice, but
this effect disappeared at the end of the observation
period (Supplementary Figure 6B). Cohousing did not
improve DAI values, colon length, or histopathology
(Supplementary Figures 6C–G), and there was no induction
of IL-22-producing neutrophils or M2 macrophages in α-
TREM-1-treated mice (Supplementary Figures 6H,I). Next, we
performed daily oral fecal microbiota transplantation (FMT) to
DSS-treated mice for 9 days using feces obtained from cohousing
experiments (Figure 3A). FMT from IgG- and α-TREM-1-
treated mice alleviated body weight loss until day 8, but Tlr4-KO
mice rapidly became debilitated when FMT ceased (Figure 3B).

FIGURE 3 | Fecal microbiota transplantation. WT mice were intraperitoneally

treated with IgG- and α-TREM-1 6 times weekly and mouse feces were

collected daily. Tlr4-knockout mice were orally administered fecal microbiota

(FM) from the treated mice daily for 8 days after 3% DSS treatment, and DSS

was changed with drinking water for 2 days until the endpoint of the

experiment (n = 5/groups). The arrow indicates the point at which FM was

administered. (A) Experimental design. (B) Body weight change. (C) Disease

activity index. (D) Representative sections of PAS stain. Scale bar, 100µm. (E)

Histological score. (F) Goblet cell score. Statistical significance was assessed

using one-way ANOVA followed by Tukey post-test. *P < 0.05, **P < 0.01,

***P < 0.005. PBS administered phosphate-buffered saline; Water, supplied

with normal drinking water.

In addition, DAI values and colon length were similar between
all DSS-treated groups (Figure 3C, Supplementary Figure 7A),
despite a slight restoration of goblet cells and histology in the
colons of α-TREM-1-treated Tlr4-KO mice (Figures 3D–F).
FMT of WT mice treated with α-TREM-1 to DSS-treated
Myd88-KO mice yielded similar observations to that of Tlr4-KO
mice (Supplementary Figures 7B–H). Overall, fecal microbiota
appeared to have a temporary effect on α-TREM-1, suggesting
that other basic host elements are critical in the anti-colitic effect
of α-TREM-1.

Anticolitic Effects of α-TREM-1 Are
Mediated by Neutrophils and Macrophages
TREM-1 is primarily expressed in cells of myeloid origin, such
as neutrophils and macrophages (4). Therefore, we depleted
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neutrophils or macrophages with Ly6G antibody or clodronate
liposome treatment, respectively, and assessed whether α-TREM-
1-treated mice were still susceptible to DSS-induced colitis
(Figure 4A, Supplementary Figure 8D). Colitis worsened in
Ly6G- and clodronate-treated mice (Figures 4B–D). Moreover,
histopathological scores and goblet cells were significantly
different between α-TREM-1-treated mice treated with vehicle
and those treated with Ly6G (Figures 4C–E), demonstrating that
neutrophils and macrophages were required for the protective
effect of α-TREM-1. However, clodronate treatment was not
sufficient to block α-TREM-1 effects and induce IL-22-producing
CD177+ neutrophils (Figure 4F). Of note, the increase in
iNos expression induced by α-TREM-1 was abolished by Ly6G
treatment (Figure 4G). This suggests that the presence of
macrophages was insufficient to mediate the anticolitic effects of
α-TREM-1, but the presence of neutrophils was critical.

α-TREM-1 Promotes Bacterial Clearance
by Modulating Neutrophil and Macrophage
Function
Since IBD is associated with many genetic variants that
affect bacterial clearance, such as NOD2, and autophagy,
such as ATG16L1 (15), we assumed that increased bacterial
clearance after α-TREM-1 treatment resulted from increased
autophagy. To assess the effect of α-TREM-1 on bacterial
clearance in macrophages, we infected RAW264.7 cells with
live GFP-expressing S. typhimurium, an invasive intestinal
pathogen. Intracellular bacteria were detected as GFP (live)
and Hoechst (dead) signals as previously described (15). α-
TREM-1 treatment significantly increased the percentage of dead
bacteria (Figures 5A,B, Supplementary Figures 9A–C). Since S.
typhimurium lipopolysaccharide (LPS), a TLR4 ligand, induces
autophagy in RAW264.7 cells, we stained lysosomes and LC3B
using a lysotracker probe (or anti-LAMP-1) and an anti-LC3B
antibody, respectively. We observed significantly increased
GFP signal localized to lysosomes in α-TREM-1-treated
cells (Figure 5B, Supplementary Figures 9B,C), indicating
increased fusion of S. typhimurium-containing phagosomes
with lysosomes and confirming decreased bacterial survival
after α-TREM-1 treatment. We found an increase in LC3-II
level and endogenous processing of lysosomes in α-TREM-
1-treated cells using immunostaining and western blotting,
respectively (Supplementary Figures 9D–F). Short interfering
RNA (siRNA) was used to knock down Trem1. α-TREM-1-
treated RAW264.7 cells showed increased lysotracker levels,
but not in Trem1-knockdown cells (Figure 5C). Collectively,
these results show that α-TREM-1 further activates phagocytosis
by macrophages.

Induction of CD177+ Neutrophils by
α-TREM-1 Promotes Wound Healing and
Colitis
Recently, it was demonstrated that CD177+ neutrophils are
functionally activated and negatively regulate IBD through IL-
22 production (16). In agreement, we found that CD177 and

IL-22 were markedly increased in the colons of α-TREM-1-
treated mice (Figure 6A, Supplementary Figures 2B,C). After
co-stimulation with LPS and α-TREM-1, we also observed an
increase in CD177 and IL-22 expression in bone marrow-
derived neutrophils (BMDNs) from WT mice as mouse primary
neutrophil cells and in HL-60 cells as human neutrophil
cells, but not in BMDNs from Tlr4-KO mice (Figure 6B,
Supplementary Figure 10A) or in TREM1-knockdown HL-60
cells (Figure 6C, Supplementary Figure 10B). An additional
pathogen-elimination mechanism was found for neutrophils in
which they form neutrophil extracellular traps (NETs) (17).
α-TREM-1-treated control HL-60 cells dramatically increased
NET formation after LPS treatment, which was inhibited
by TREM1 knockdown (Figure 6D). Furthermore, α-TREM-
1 treatment increased autophagy in HL-60 cells and BMDNs
(Supplementary Figures 10C,D). To confirm that α-TREM-
1 promotes CD177+ neutrophil differentiation in IBD, we
examined the CD177+IL-22+ population after α-TREM-1
treatment of neutrophils from healthy controls and IBD patients,
with or without LPS and IL-23. CD177+IL-22+ populations in
neutrophils were significantly increased by α-TREM-1 treatment
in both healthy controls and IBD patients (Figure 6E). Likewise,
α-TREM-1 increased ROS production (Figure 6F) and LPS-
induced CD177, IL22, and TNFA expression in neutrophils from
IBD patients (Supplementary Figure 10E).

Next, we evaluated the role of α-TREM-1-treated neutrophils
in intestinal barrier regulation, investigating whether increased
wound healing occurs through IL-22 released by CD177+

neutrophils. Scraped colonic epithelial HT-29 cells were cultured
in conditioned media from HL-60 cells treated with IgG or
α-TREM-1 and various TLR ligands. HT-29 cells grown in
media containing α-TREM-1-treated HL-60 cells and LPS+IL-
23 showed greater wound closure than those grown in media
containing Ig-G-treated HL-60 cells with LPS+IL-23 or LPS
(Figure 6G, Supplementary Figure 10F). Like HL-60 cells, α-
TREM-1-treated neutrophils from IBD patients promoted
wound closure (Figure 6H, Supplementary Figure 10H).

We intraperitoneally injected α-TREM-1 (Figure 7A)
and investigated changes in IECs and gene expression in
colon tissues. α-TREM-1 administration markedly increased
goblet cell numbers (Figure 7B) and expression of genes
related to CD177+ neutrophils, macrophages, phagocytosis,
and Tlr4 (Figures 7C,D, Supplementary Figures 11A–D).
M2 macrophage marker levels also increased in LPMCs
after α-TREM-1 treatment (Figure 7E). To further confirm
the role of CD177+ neutrophils in the anticolitic effects
of α-TREM-1, we identified the differentiation of CD177+

BMDNs by α-TREM-1. We then prepared CD177+

and CD177− BMDNs 1 day after α-TREM-1 treatment
(Supplementary Figure 11E) and performed neutrophil
transfer into mice on day 2 of DSS treatment (Figure 7F,
Supplementary Figure 11E). CD177+ BMDN transfer
markedly attenuated colitis and restored goblet cell numbers
(Figures 7G–K, Supplementary Figure 11F). Flow cytometric
analysis indicated that transferred CD177+ neutrophils migrated
to the colon (Supplementary Figure 11G). These results
highlight the importance of the TREM-1 pathway in CD177+
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FIGURE 4 | Neutrophils and macrophages mediate α-TREM-1-induced anti-colitic effects. BALB/c mice were intraperitoneally given an anti-Gr1 antibody (Ly6G) twice

to deplete neutrophils or clodronate (Clo) twice to deplete macrophages. Both these groups were then injected once with IgG or α-TREM-1 (20 µg/mouse) at day 2.

After DSS treatment for 8 days, DSS was exchanged for drinking water for 2 days (n = 4–6/groups). (A) Experimental design. (B) Disease activity index. (C)

Representative sections of a periodic acid-Schiff stain. Scale bar, 100µm. (D) Histological score. (E) Densitometry analysis of periodic acid-Schiff stain. (F) Flow

cytometric analysis of macrophages and CD177+ neutrophils in lamina propria mononuclear cells. (G) qRT-PCR analysis of Inos expression profiles in colons. Each

data represents the mean of duplicate real-time RT-PCR (n = 3–4). Data are expressed as means ± S.E.M. Statistical significance was assessed using one-way

ANOVA followed by Tukey post-test (B,G) or Student t-test (D,E). *P < 0.05, **P < 0.01, ***P < 0.005. α-T, treated with α-TREM-1; IgG, treated with control

antibody; Water, supplied with normal drinking water.

neutrophils, which leads to pathogen clearance and protection of
the intestinal barrier in colitis.

DISCUSSION

IBD features neutrophil infiltration of the intestinal mucosa and
repeated epithelial injury (1). However, neutrophils play essential
roles in the innate immune response, resolution of inflammation,
and healing processes in colitis (16, 18, 19). Indeed, a variety of
defects in neutrophil function have been described in CD patients
(20, 21). They play a critical bactericidal role as the first line using
ROS/RNS intermediates, antimicrobial peptides, or NETs (22).
In addition, the limited antimicrobial capacity of macrophages
can be supplemented through the acquisition of neutrophilic
microbicidal molecules or directly by neutrophil products,
including released granule molecules (19, 23). Neutrophils
from TREM-1-deficient mice have reduced ROS production,
poor neutrophil recruitment, impaired pathogen clearance, and
increased bacterial translocation and tissue damage in the

intestine (8). In addition, CD177+ neutrophils have bactericidal
activity and produce high levels of ROS, NET, IL-22, and
antimicrobial peptides, and low levels of proinflammatory
cytokines (16). These cells have an indispensable protective role
in IBD (16), which is consistent with our data. Interestingly,
CD177 is also an endogenous TREM-1 ligand (24), and CD177-
deficiency leads to neutrophil death (25). Neutrophils can
also enhance intestinal mucosal wound healing and barrier
function through interactions with IECs (26). We showed
that α-TREM-1 induced CD177+ neutrophils in the blood of
IBD patients and healthy controls, and that α-TREM-1-driven
CD177+ neutrophils ameliorate mouse colitis. These results
suggest that CD177+ neutrophils limit inflammation through
bactericidal activity and promote wound repair induced by IL-
22 production, although our neutrophil depletion model can also
induce opsonization and phagocytosis of targeted cells (27).

Pathogens stimulate pattern recognition receptors (PRR)
via their pathogen-associated or damage-associated molecular
patterns and induce proinflammatory mediators including TNF
and IL-1β through NF-κB activation. This situation may mediate
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FIGURE 5 | α-TREM-1 promotes bacterial clearance through increased macrophage autophagy. (A,B) RAW264.7 cells were pre-treated with IgG or α-TREM-1 and

infected with S. typhimurium expressing green-fluorescent protein (A, multiplicity of infection MOI = 10; B, MOI = 100) for 1 h. (A) Representative images of S.

typhimurium-GFP-infected macrophages and quantification of the total number of bacteria per macrophage (right). Scale bar, 20µm. (B) Representative images of

lysotracker (Lyso)-stained macrophages and the percentage of S. typhimurium-GFP in autophagic degradation (GFP co-localization with lysosomes). GFP+Lyso+

area was calculated by subtracting pure green GFP signal from total GFP signal. Scale bar, 20µm. Hoechst (Hoec) staining of nuclei. (C) Representative images of

lysotracker-stained macrophages. Scale bar, 40µm. RAW264.7 cells transfected with scrambled (SCR) or TREM1-specific (siT) siRNA were stimulated with LPS for

4 h after pre-treatment with α-TREM-1. Data are expressed as means ± S.E.M. of at least three independent experiments. Statistical significance was assessed using

Student t-test. *P < 0.05, ***P < 0.005. α-T, treated with α-TREM-1; DIC, differential interference contrast; IgG, treated with control antibody; Sal, infected with S.

typhimurium-GFP; Veh, treated with vehicle.

inflammation and help maintain gut barrier functions as a
host defense mechanism (6, 15, 28). In contrast to studies
on the deleterious roles of TREM-1 which had focused on
blocking signaling (10), a large body of evidence suggests a
beneficial role of TREM-1 agonists in bacterial clearance and
infection resolution (7, 8, 29). Likewise, we found that co-
administration of antibiotics with α-TREM-1 further reduced
pathogenic bacterial load and markedly ameliorated colitis by
significantly decreasing the proportion of Proteobacteria, which
are Gram-negative bacteria that can induce colitis. Cohousing
and FMT between α-TREM-1-treated mice and Tlr4-KO mice
temporarily suppressed gut inflammation, suggesting that host
immune response through TLR4 signaling is required for
sustained effects. TLRs lead to important bactericidal activity

through ROS generation (6), cytokine production, and IL-22
production in the colon (30). Consistently, Tlr4- andMyd88-KO
mice are more susceptible to infection and colitis than WT
mice due to increased bacterial translocation (31, 32) and
decreased AMP expression (31). Likewise, we observed an
increase in bacterial invasion and a decrease in the anticolitic
effect of α-TREM-1 in Tlr4- and Myd88-KO mice, as well
as high expression of inducible nitric oxide synthase (iNOS)
and neutrophil ROS production in the colons of α-TREM-1-
treated mice. Defects involving microbial sensing and bacterial
handling pathways, including ROS production and antimicrobial
autophagy, are also associated with enhanced risk of IBD
(15). TREM-1 also cooperates with other PRRs and has
synergistic effects on proinflammatory cytokine production (33);
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FIGURE 6 | α-TREM-1 facilitates the cooperation of CD177+ neutrophils with intestinal epithelial cells and macrophages. (A) Representative images of CD177

immunostaining in colon tissues. Scale bar, 20µm. (B) Cd177 expression in mouse bone marrow-derived neutrophils (BMDNs) from wild-type and Tlr4-KO mice.

BMDNs and HL-60 cells pre-treated with α-TREM-1 (0.8µg/mL) were treated with lipopolysaccharide (LPS, 200 ng/mL) for 4 h for qRT-PCR analysis. Each data

represents the mean of duplicate real-time RT-PCR (n = 3). (C,D) HL-60 cells transfected with scrambled (SCR) or TREM1-specific (siT) siRNA were pre-treated with

α-TREM-1 and stimulated with LPS for 1 h. (C) CD177 expression in human neutrophils treated with α-TREM-1. Each data represents the mean of duplicate real-time

RT-PCR (n = 3). (D) Representative images from the neutrophil extracellular trap assay. Data are from one experiment representative of three independent

experiments. Scale bar, 40µm. (E) Modulation of CD177+ IL-22+ neutrophils in the blood of inflammatory bowel disease (IBD) patients by α-TREM-1. Flow cytometric

analysis was performed to evaluate the CD177+ IL-22+ cells in neutrophil populations extracted from ulcerative colitis (UC) and Crohn’s disease (CD) patients and

healthy subjects (n = 5). Numbers indicate CD177+ IL-22+ cell frequencies among neutrophils. (F) Reactive oxygen species (ROS) production in neutrophils of IBD

patients. (G,H) Wound healing assay. HT-29 cells were cultured in conditioned media from HL-60 cells (G) or blood neutrophils of UC patients (H) after α-TREM-1

treatment and wound healing assays were performed. Data represent the average of four independent experiments. Statistical significance was assessed using

one-way ANOVA followed by Tukey post-test. * and #P < 0.05, **P < 0.01, *** and ###P < 0.005 vs. vehicle (Veh). Data are expressed as means ± S.E.M. (n =

4–5). α-T, treated with α-TREM-, treated with control antibody; Water, supplied with normal drinking water.

we have obtained corresponding results in vitro. However, our
data showed that TLR4 signaling mainly mediates the anti-
inflammatory effects of α-TREM-1. Intriguingly, a NOD2 ligand
(MDP) and peptidoglycan (PGN) did not increase TREM-
1 expression and LPS co-stimulation with a TLR1/2 agonist
(PAM3CSK4) showed suppressive effects on iNOS, COX-2, and
TREM-1 expression (Supplementary Figure 9G). Furthermore,
suppression of TREM-1 by other TLR ligands such as FLG or
PAM3 may be responsible for the suppression of wound healing
(Supplementary Figure 10G). These data indicate that TREM-
1 may selectively sense microbiota and respond accordingly,
and thus may explain how NOD2 mutation influences bacterial
handling in CD (15). Taken together, our data suggest that TLR4
signaling mediates the anti-inflammatory effects of α-TREM-1,
and is an important TLR for pathogen control in IBD (34).

The innate immune response is pivotal as a primary defense
against intestinal microbiota and provides initial resistance
to invading pathogens (34). In this context, we showed that
bacterial clearance with antibiotic pre-treatment alleviated colitis,
suggesting that bacterial handling at the early stage is important

for control of gut inflammation and microbiota modulation. We
postulate that α-TREM-1 can control pathogens at the early
stage of gut inflammation. Here, we also showed that α-TREM-
1 enhanced phagocytosis and autophagy in macrophages and
neutrophils, as reported in previous studies (35, 36).Macrophagic
engulfment of apoptotic neutrophils is required for wound
healing and ROS production (15, 37). Moreover, autophagy is
required for the NETosis pathway in neutrophils (38), suggesting
that autophagy is important for preventing bacterial spread.
Recently, autophagy induction was suggested as a therapeutic
strategy for IBD (39, 40). Contradictory to our results, a few
studies using Trem1-KOmice reported the following: (1) TREM-
1 deficiency can attenuate disease severity without affecting
parasitic and viral infections; (2) TREM-1 deletion restores
impaired autophagy (41); and (3) TREM-1 inhibition using LR12
peptide attenuates experimental colitis by restoring impaired
autophagy (42). However, we cannot fully exclude the possibility
of different mechanisms between TREM-1 deficiency and α-
TREM-1. For example, we found that Trem1-KO mice had
higher DAI values in normal condition without colitis (42).
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FIGURE 7 | α-TREM-1-induced CD177+ neutrophils confer anticolitic effects. (A–E) α-TREM-1 was intraperitoneally injected to C57BL/6 mice and the next day,

colons were isolated for analysis. (A) Experimental diagram. The arrow indicates the point at which IgG- or α-TREM-1 was administered (20 µg/mouse). (B) Goblet

cell score. (C,D) Expression of Cd177+ neutrophil- (C: Cd177, Il22, and Inos) and macrophage-specific (D: Mip2 and Il10rb2) genes in the colon. Each data

represents the mean of duplicate real-time RT-PCR (n = 4). (E) Flow cytometric analysis of M2 (CD206+) in macrophage (F4/80+Cd11b+) populations among lamina

propria mononuclear cells. (F–J) Bone marrow-derived neutrophils were isolated, treated with IgG or α-TREM-1 for 24 h, and sorted by FACS into CD177+ and

CD177−, which were then intraperitoneally injected (1 × 106 cells, arrow) into recipient mice 2 days after DSS treatment. (F) Experimental design for neutrophil

transfer. (G) Body weight change. (H) Disease activity index. (I) Representative sections of periodic acid-Schiff staining. Scale bar, 200µm. (J) Histological score. (K)

Goblet cell score. (L) Schematic representation of anticolitic effects of α-TREM-1. Data are expressed as means ± S.E.M. (n = 4/groups). α-T, treated with α-TREM-1;

AMP, antimicrobial peptides; IgG, treated with control antibody; HBSS, injected with Hank’s balanced salt solution; IEC, intestinal epithelial cell; IgG, treated with

control antibody; M8, macrophage; Neu, neutrophil; RNS, reactive nitrogen species; ROS, reactive oxygen species. Statistical significance was assessed using

Student t-test (B–D) or one-way ANOVA followed by Tukey post-test (G,H,J,K). *P < 0.05, **P < 0.01, ***P < 0.005.

These contradictory results should be interpreted cautiously
because agonists and antagonists may have different effects due
to subtly different modes of action. Consistently, a recent study
that TREM-1 loss exacerbates colitis in several mouse models
solidifies our results (43).

As depicted in Figure 7L, α-TREM-1 modulated the
bacterial clearance activity of macrophages and neutrophils
and promoted the differentiation of neutrophils into
CD177+ cells, leading to enhanced protection against both
microbes and tissue damage. We speculate that the intrinsic
modulatory mechanism of anti-TREM-1 antibody, including
the alteration of macrophage function, is at least in part
related with CD177+ neutrophils, although the mechanism
of the anticolitic effect of α-TREM-1 is probably multi-
factorial. Additionally, we can postulate that the upregulated
TREM-1 levels in IBD may be due to impaired neutrophil
function (19, 44), neutrophil recruitment (36, 45), or TLR

signaling (46), but this requires further elucidation of the
mechanisms by which α-TREM-1 alleviates colitis as well
as its role in IBD pathogenesis. Moreover, we need further
information on whether the function and differentiation of
CD177+ neutrophils can be affected by genetic variations
in patients with IBD and their effects on the function of
macrophages, such as autophagic capability, ROS production,
and M2 polarization.

This is the first study to demonstrate that stimulation of
TREM-1 signaling using α-TREM-1 is effective at attenuating
colitis. We showed that α-TREM-1 augmented bactericidal
activity via reciprocal interactions between TLR4 and TREM-
1, and improved wound healing via the interaction of
macrophages, neutrophils, and the intestinal epithelial barrier.
Furthermore, we identified α-TREM-1 as a candidate regulator
of CD177+ neutrophils, which are pivotal players in achieving
a balance between microbe control and tissue repair in the
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gut. Although immune-suppressive therapies such as anti-
TNF agents are effective at ameliorating symptoms in some
IBD patients, continued treatment increases susceptibility to
infection (47). Further insights into the role of α-TREM-1
in IBD pathogenesis may provide a new therapeutic target
for IBD.
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