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Editorial on the Research Topic

Bio-Inspired Physiological Signal(s) andMedical Image(s) Neural Processing Systems Based on

Deep Learning andMathematicalModeling for Implementing Bio-EngineeringApplications in

Medical and Industrial Fields

This Research Topic gathers different contributions highlighting novel types of bio-inspired
mathematical models with neuroimaging and physio-signal data, mainly applied in medical and
industrial field. The target of this Research Topic was to collect scientific contributions which
were able to highlight the undoubted advantages that modern techniques of Deep Learning
and Bio-inspired Neural computing can offer in addressing the main issues in the medical and
industrial field. The correlated target of the Research Topic was also to highlight the significant
contribution of multimodal data analysis (signals and images) in the medical and industrial field.
The collected accepted articles contribute significantly to the achievement of the Research Topic
target, confirming, as below detailed, the capabilities of the combined approach of bio-inspired
mathematical models and multimodal data analysis.

The first accepted article of this Research Topic (Folego et al.) proposed an early detection
method of Alzheimer’s disease (AD) by means of a 3D Convolutional Deep Network applied
to MRI imaging of the analyzed subjects. It is well-known that early diagnosis is paramount
to the development and success of interventions, and neuroimaging represents one of the most
promising areas for early detection of AD. Through the neuroimaging deep analysis the authors
investigated the implementation of such biomarkers suitable to classify brain images into AD, mild
cognitive impairment (MCI), and cognitively normal (CN) groups. Their deep network solution
embedded domain adaptation to improve the performance in neuro-imaging classification. The
performance of the proposed solution shows promising results for CN discrimination (67.3% with
TPF metric) against lower performance for MCI and AD early detection. Anyway, the collected
results outperformed the compared similar pipelines.

Still in the medical field, the contribution proposed by Zhen et al. is of considerable interest.
The authors proposed a deep learning-based pipeline for accurate diagnosis of a Liver cancer

5
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based on the analysis of multimodal data i.e., MRI imaging
combined with such clinical data of the analyzed patients.
Several scientific contributions confirmed that early-stage
diagnosis and treatment of liver cancer can improve survival
rates. Dynamic contrast-enhanced MRI provides the most
comprehensive information for differential diagnosis of liver
tumors. However, MRI-based diagnosis is affected by subjective
physicians experience in addition to the difficulties implicit in
the method (limited spatial resolution). The authors showed that
deep learning solutions they implemented may supply to these
limitations. To improve the performance of the developed deep
architecture, the authors processed MRI images combined with
clinical data. They analyzed a dataset of 1,210 patients with
liver tumors (N = 31,608 images) used as training set while
the learned model were validated in an external independent
extended cohort of 201 patients (N = 6,816 images).Using only
unenhanced images, the proposed deep classifier performs well
in distinguishing malignant from benign liver tumors (AUC,
0.946; 95% CI 0.914–0.979 vs. 0.951; 0.919–0.982, P = 0.664).
The authors tried to combine unenhanced MRI images with
clinical data. This setup improved significantly the performance
of classifying malignancies as hepatocellular carcinoma (AUC,
0.985; 95% CI 0.960–1.000), metastatic tumors (0.998; 0.989–
1.000), and other primary malignancies (0.963; 0.896–1.000).
The very promising results confirmed that multimodal data
processing through ad-hoc deep classifier can be considered as
valuable tool for robust differential diagnosis of liver cancer.

In Henriques-Pons et al. the authors proposed an interesting
mathematical analysis to the flow cytometry labeling.
Conventional flow cytometry analysis relies on the creation
of dot plot sequences, based on two fluorescence parameters
at a time, to evidence phenotypically distinct populations.
Anyway, results of such classical approach is not always
robust. The authors proposed an interesting mathematical
analysis named MCTA (Multiparametric Color Tendency
Analysis) which considers multiple labelings simultaneously,
extending and complementing conventional analysis. The
MCTA method executes the background fluorescence exclusion,
spillover compensation, and a user-defined gating strategy
for subpopulation analysis. The performance showed are
very promising and then the MCTA it deserves to be further
investigated for applications in the biomolecular field.

Still in medical oncology field, an interesting literature
review was proposed by Sa et al. in which the Fluoro-
Deoxyglucose Positron Emission Tomography/Computed
Tomography (PET/CT) imaging method was analyzed for
Pediatric Rhabdomyosarcoma (RMS) staging and prognosis
estimation. Thirteen consecutive patients with pathologically
confirmed RMS underwent PET/CT scan for evaluation of
therapy response. About the baseline PET/CT, most RMSs are
located in the pelvic cavity, and upper arms ranked second.
About evaluation of the disease spread, lymph node metastases
were seen in eight patients, and eight patients showed distant
metastasis to the lung, liver, and bone. The median SUVmax,
SUVmean, and SUVpeak of primary sites were 7.1, 4.0, and
5.9, respectively. The scientific paper confirmed that PET/CT
scan methodology could be a valid tool for RMS assessing as

this kind of cancer demonstrates increased glycolytic activity.
Again, ad-hoc mathematical analysis of imaging data showed
very promising results in medical field.

A very interesting approach in the field of neurology was
proposed by Li et al. in which the authors implemented
a mathematical approach for distinguishing Epileptiform
Discharges (ED) from normal electroencephalograms (EEG).
It is well-known that EDs are of fundamental importance in
understanding the physiology of epilepsy. To aid in the clinical
diagnosis, classification, prognosis, and treatment of epilepsy,
it is important to implement robust solutions to distinguish
epileptiform discharges from normal electroencephalogram
(EEG). This is a challenging task. To take on this challenge,
they proposed to use a multiscale complexity measure, the
scale-dependent Lyapunov exponent (SDLE). The authors
analyzed 640 multi-channel EEG segments, each 4 s long.
Among these segments, 540 are short epileptiform discharges,
and 100 are from healthy controls. They noticed that such
SDLE features can be effective in distinguishing epileptiform
discharges from normal EEG. They tested different machine
learning classifier such as Random Forest Classifier (RF) and
Support Vector Machines (SVM), obtaining an accuracy around
99% in distinguishing ED from normal EEG. The confirmed
robustness of the approach based on SDLE analysis suggest
further investigation of the approach with the target to use that
widely in a clinical setting.

Another promising pipeline based on multimodal data
analysis for applications in the medical field can be found in the
contribution (Bartoletti et al.) in which the authors correlated
such clinical data of the patients with Bioelectric Impedance
Analysis (BIA) in order to select the patients candidate to
prostate biopsy. The authors analyzed a cohort of one-hundred
40 consecutive candidates to prostate biopsy and 40 healthy
volunteers. For each recruited subject the following clinical
data have been collected: PSA and PSA density determinations
(PSAD), Digital Rectal Examination (DRE), and the novel BIA
test. The targets of the proposed investigation were to determine
accuracy of BIA test in comparison to PSA, PSAD levels andMRI
and obtain Prostate Cancer (PCa) prediction by BIA test. The
authors performed a lot of experimental results which confirmed
what follow: Combined PSA, PSAD, DRE, and trans rectal
ultrasound test failed to discern patients with PCa from those
with benign disease (62.86% accuracy; sensitivity of 83% and a
specificity of 59%). The accuracy in discerning PCa increased up
to 75% by BIA test (sensitivity 63.33% and specificity 83.75%)
confirming the effectiveness of the proposed approach.

Another field of application of the analyzed Research Topic
was the investigation of bio-inspired models and solutions.
This includes the study proposed by Jia et al. which analyzed
the impact of some Neuron Dendritic Spine Patterns. Some
pattern abnormalities of dendritic spine, seems to be correlated
to multiple nervous system diseases, such as Parkinson’s disease
and schizophrenia. The analysis of these spine patterns can help
to bring-up a valid model of the pathogenesis of these diseases.
The authors investigated the application of the bio-inspired
reaction-diffusion model to simulate the formation patterns
dynamic of dendritic spine. The authors also investigated
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the deep regulation mechanisms of dendritic spine. The
authors was able to define a robust mathematic model-based
pathogenesis research for neuron diseases correlated to the
dendritic spine pattern abnormalities analysis. With this bio-
inspiredmodel, it will be possible to better study the pathogenesis
of certain neurodegenerative diseases in order to identify an
effective treatment.

The field of medical oncology has been significantly explored
in the Research Topic. The authors of the contribution reported
in Gao et al. have invested the application of modern machine
learning methods to the assessment of the tumor grading and
such bio-marker (Ki67, GFAP expression level, S100 expression
level, etc.) of such type of brain cancer (Gliomas). The grading
and pathologic biomarkers play a key role in the diagnosis and
treatment of the Glioma. The authors proposed a pipeline aimed
to use conventional machine learning algorithms to predict the
tumor grades and pathologic biomarkers based on the analysis of
magnetic resonance imaging (MRI) data. The authors analyzed
a dataset of 367 glioma patients, who had pathological reports
and underwent MRI imaging scans. The extracted MRI image
features was processed by several type of machine learning
based classifier such as Logistic Regression based classifier (LR),
Support Vector Machine (SVM), and Random Forests (RF). The
RF algorithm outperformed the compared classifiers i.e., Logistic
Regression and SVM. The RF classifier on glioma grades achieved
a predictive performance (AUC: 0.79, accuracy: 0.81) and a
predictive performance of AUC: 0.85, accuracy: 0.80 for the Ki67
expression AUC: 0.72 and accuracy: 0.81 for the GFAP and AUC:
0.60 accuracy: 0.91 for the S100 expression level. The robustness
of this results encourages further investigation in this area.

In the field of neurovascular diagnostics, multimodal data
analysis showed significant contribution. The authors of the
contribution (Zhang et al.) investigated the application of PLA-
combined ferroferric graphene oxide aspirin (Fe3O4-GO-ASA)
multifunctional nanobubbles in the prevention and treatment of
thrombotic events in a preclinical study. The experimental results
confirmed that PLA-combined Fe3O4-GO-ASA nanobubbles
treatment has significantly inhibit thrombosis (concentration of
80 mg·mL−1 interacted with the rabbit blood). The proposed
approach also showed a relevant ultrasonic imaging effect and
a good magnetic targeting for an efficient diagnostic of the
vascular disease.

The multi-modal bio-medical data analysis also involved the
study of the motility and shape of the tumor cells of a subject
to characterize the biology of the tumor and the selection of the
most appropriate treatment. The authors of the study reported
in D’Orazio et al. analyzed motility and such shape features of
cancer cells in vitro in order to assess diagnosis and treatment.
They combined fluorescence time-lapse microscopy (TLM) and
label-free imaging, with cell tracking, quantitative representation
of cell trajectories, and a recent machine learning (ML) strategies
based on peer prediction algorithm. The implemented ad-hoc
cooperative learning approaches in order to discriminate with
high accuracy non-cancer vs. cancer cells of high vs. low
malignancy. They investigated the performance of the proposed
solution in the treatment of prostate cancer. Comparison

with standard classification methods validated their promising
proposed approach.

Still with reference to prostate cancer, a pre-clinical study
reported in Merisaari et al. analyzed the impact of the
mathematical modeling of MRI-DWI (Diffusion Weighted
Imaging) sequences in prostate cancer assessment. Classical
approaches assess the tumor growth by weekly examination of
the DWI imaging by using a 7T MRI scanner. The authors
implemented ad-hoc mathematical models for performing
additional DWI examination. They observed significant changes
in their DWI data mathematical features (stretched exponential
and kurtosis) during the tumor growth confirming that the
proposed approach shows promising performance as a robust
tool for the prostate cancer follow-up.

In the field of medical neurology, an interesting multi-modal
approach was presented by the authors of the contribution
reported in Chen et al. They investigated the performance of such
machine learnings approaches for seizure prediction based on
the analysis of EEG data. They implemented a multi-dimensional
enhanced seizure prediction framework, which embedded a
graph state encoder, and a space-time predictor. The input data
was the multi-channels EEG. Their proposed model analyzed the
space-time relationship of the input data with the seizure event
in epileptic subject. The authors validated their approach on a
public dataset retrieving a sensitivity of 98.61%, confirming the
effectiveness of the proposed solution.

Unfortunately, to date, there are particularly aggressive
tumors that unfortunately denote an high rate of mortality.
Among these it is worth mentioning the pancreatic cancer
which in some forms is particularly lethal. The authors
of the contribution reported in Han et al. investigated
the reliability of radiomics pipeline applied to contrast-
enhanced CT scan imaging data for discriminating pancreatic
cystadenomas from pancreatic neuroendocrine tumors (PNETs).
They implemented effective machine-learning pipelines to
perform this discrimination. They retrospectively analyzed 120
patients, including 66 pancreatic cystadenomas patients and 54
PNETs patients. They identified 48 had-crafted radiomic features
from contrast-enhanced CT images to be classified by classical
machine learning methods such as linear discriminant analysis
(LDA), Random Forest, Adaboost, support vector machine
(SVM), k-nearest neighbor (KNN), logistic regression (LR),
and so on. The proposed deep classifier shows promising
ability of differentiating pancreatic cystadenomas from PNETs.
Specifically, the RF-based classifier, as well as Xgboost+RF,
demonstrated the best discriminative ability, with the highest
AUC of 0.997 in the testing group.

In the context of the bio-inspired models’ study (one of
the main target of the Research Topics), the contribution
reported in Quan et al. shows considerable interest. The authors
proposed FusionNet a novel deep fully residual convolutional
neural network for image segmentation in connectomics. Neuro-
connectomics tries to generate comprehensive brain connectivity
maps using high-throughput, nano-scale electron microscopy.
Deep learning showed very promising performance in image
processing and computer vision, leading to a recent explosion
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in popularity. For these reasons the author implemented ad-
hoc deep architecture named FusionNet to perform automatic
segmentation of neuronal structures in connectomics data.
FusionNet is a fully convolutional deep architecture which
embeds semantic segmentation ability combined with residual
layers which improve the overall segmentation capability. The
authors successfully validated their deep backbone providing
robust comparison with other popular electron microscopy
and confirming the very promising performance of the
proposed architecture.

The analyzed scientific contributions confirmed that the
convolutional architectures show remarkable skills in image
processing and computer vision tasks in medical and industrial
fields. In the contribution reported in Tang et al. the authors
investigated the use of specific convolutional architecture for the
diagnosis of Intramucosal Gastric Cancer. A deep convolutional
neural network was implemented to learn a retrospectively
collected 3,407 endoscopic images from 666 gastric cancer
patients. The deep network performance was validated over a
test-set composed by 228 images from 62 independent patients.
The implemented deep architecture was able to discriminate
intramucosal Gastric Cancer from advanced Gastric Cancer with
an AUC of 0.942, a sensitivity of 90.5%, and a specificity of 85.3%
in the testing dataset. The reported results confirmed that deep
learning can be effectively used to improve diagnostic accuracy
in medical oncology.

Medical branch related to oncology is certainly pathological
anatomy. Also in this context, multimodal analysis together
with machine learning methods can significantly improve
the histopathological characterization of tumors. More in
detail, in the article reported in Hao et al. the authors
proposed a low dimensional three-channel features based breast
cancer histopathological images classification approach suitable
to discriminate benign breast cancer from malignant ones.
Several hand-crafted image descriptors including gray level co-
occurrence matrix on different directions, average pixel value of
each channel, Hu invariant moment (HIM), wavelet features, and
son on, are defined as input of Support Vector Machine classifier.
Experiments on specific dataset showed that the proposed
pipeline achieved an accuracy of 90.2–94.97% at the image level
and 89.18–94.24% at the patient level, which outperforms many
state-of-the-art methods.

As the analyzed Research Topic covered applications in the
industrial field, it is of particular interest to include among
the publications of this scientific issues, the contribution
reported in Rundo et al. The authors investigated the
usage of such neuro-physiological signals (specifically the
PhotoPlethysmoGraphy) in the automotive field. With the
aim to develop an intelligent driving assistance system, the
authors implemented a complex system (both hardware and

software) which embeds different deep architectures with
innovative attention mechanisms. Specifically, the proposed
system detects and tracks the car driver attention level from
analysis of correlated PhotoPlethysmoGraphy sampled from a
bio-sensor embedded in the car steering. This retrieved attention
assessment was correlated to driving scenario risk evaluation
made by another deep architecture which embeds modern self-
attention mechanisms. A combined intelligent monitor evaluates
the congruence between the driver’s level of attention as above
determined with the driving scenario risk level, generating such
alerts if there is an inconsistency between the two assessments.
The approach was applied in a specific automotive use-case,
namely the tracking of pedestrians in a common driving
scenario. In addition, further computer vision systems will
assist the driver’s attention assessment. The high accuracy
of the proposed driver’s attention detection system based on
physiological analysis (more than 95%) as well as of the parallel
driving risk assessment systems confirmed the effectiveness of
the proposed method and of the underlying hardware platform.
Therefore, also in industrial (automotive) field, the multimodal
data analysis combined with bio-inspired deep processing
showed high capability in addressing typical issues.

In conclusion of this scientific review, the authors hope
that the reader will find in this Research Topic a useful
reference for the state of the art in the emerging field
of bio-inspired deep models and multimodal data analysis
for addressing issues and problems in the medical and
industrial field.
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Background: Early-stage diagnosis and treatment can improve survival rates of liver

cancer patients. Dynamic contrast-enhanced MRI provides the most comprehensive

information for differential diagnosis of liver tumors. However, MRI diagnosis is affected

by subjective experience, so deep learning may supply a new diagnostic strategy. We

used convolutional neural networks (CNNs) to develop a deep learning system (DLS)

to classify liver tumors based on enhanced MR images, unenhanced MR images, and

clinical data including text and laboratory test results.

Methods: Using data from 1,210 patients with liver tumors (N = 31,608 images), we

trained CNNs to get seven-way classifiers, binary classifiers, and three-way malignancy-

classifiers (Model A-Model G). Models were validated in an external independent

extended cohort of 201 patients (N = 6,816 images). The area under receiver operating

characteristic (ROC) curve (AUC) were compared across different models. We also

compared the sensitivity and specificity of models with the performance of three

experienced radiologists.

Results: Deep learning achieves a performance on par with three experienced

radiologists on classifying liver tumors in seven categories. Using only unenhanced

images, CNN performs well in distinguishing malignant from benign liver tumors

(AUC, 0.946; 95% CI 0.914–0.979 vs. 0.951; 0.919–0.982, P = 0.664). New CNN

combining unenhanced images with clinical data greatly improved the performance

of classifying malignancies as hepatocellular carcinoma (AUC, 0.985; 95% CI 0.960–

1.000), metastatic tumors (0.998; 0.989–1.000), and other primary malignancies

(0.963; 0.896–1.000), and the agreement with pathology was 91.9%.These models

mined diagnostic information in unenhanced images and clinical data by deep-

neural-network, which were different to previous methods that utilized enhanced

images. The sensitivity and specificity of almost every category in these models

reached the same high level compared to three experienced radiologists.
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Conclusion: Trained with data in various acquisition conditions, DLS that integrated

thesemodels could be used as an accurate and time-saving assisted-diagnostic strategy

for liver tumors in clinical settings, even in the absence of contrast agents. DLS therefore

has the potential to avoid contrast-related side effects and reduce economic costs

associated with current standard MRI inspection practices for liver tumor patients.

Keywords: liver cancer, liver mass, deep learning, diagnosis, artificial intelligence, MRI

INTRODUCTION

Liver cancer is the second leading cause of cancer-related
deaths worldwide (1) and the incidence rate has been growing
on a global scale (2), which is in contrast to the stable
incidence or declining trends formost cancers (3). Hepatocellular
carcinoma (HCC) accounts for 90% of primary liver cancers,
and could result in a major global health problem. Early-
stage HCC detection and diagnosis can allow the patients to
receive the treatment earlier and achieve better survival rates
(1). All the continental and national liver disease societies have
recommended that surveillance should be carried out for high-
risk patients with cirrhosis (4). Ultrasonography as the preferred
test for surveillance is unsatisfactory because of the limitations
of ultrasound operator dependency and its low sensitivity to
small liver cancers (5). Dynamic contrast-enhanced imaging is
recommended as the first-line diagnostic tool for HCC when the
screening test result is abnormal (6). Undoubtedly, compared
with computed tomography (CT), enhanced MRI is the better
choice because of its various tissue contrast mechanisms and it
being only way to assess all major and auxiliary imaging features
(7). However, enhanced MRI could not be used widely like
ultrasonography in screening and surveillance owing to its high
cost and the risk of contrast- related side effects (8–12).

Actually, even with enhanced MRI, it still remains challenging
to diagnose, owing to liver tumor diversity and complex imaging
features. In addition to HCC, primary malignant tumors in
the liver include intrahepatic cholangiocarcinoma (ICC), mixed
hepatocellular-cholangiocarcinoma (HCC-CC), and other rare
tumors (13, 14). The liver is also the target of metastasis
for many malignant tumors, such as colorectal, pancreatic,
neuroendocrine, breast cancer, etc. Moreover, there are several
types of benign tumors in the liver, such as cyst, hemangioma,
focal nodular hyperplasia (FNH), adenomas, high-risk cirrhotic
nodules [regenerative nodules (RN), and dysplastic nodules
(DN)] (14). The evaluations of images are generally subjective
and are possibly affected by radiologists’ experience (15, 16).

Unlike traditional image-dependent “semantic” features
evaluation from human experts, deep learning can automatically
learn feature representations from sample images with
convolutional neural networks (CNNs) (17, 18). It has shown to
match or even surpass human performance in the application
of specific tasks and may even discover additional differential
features not yet identified in current radiological practice (19).
CNNs have been achieving good performances in medical
imaging for several tumor types (20–22), but for liver tumors
only a few exploratory studies have been reported (16, 23–25).

These studies trained models based on enhanced images from
contrast-enhanced CT/MRI in small-scale (<500 patients)
datasets, however, they only considered specific liver tumor
categories and did not simulate clinical practice conditions,
which restricted their utility in the diagnostic decision-making
phases of the workflow. In addition, the potential diagnostic
value of clinical information and unenhanced sequences,
including T1 pre-contrast, T2, and diffusion sequences, were not
evaluated in deep-learning models. Here, we report the results of
a large study of liver tumors, which covered all types of hepatic
local lesions except for inflammatory masses. There were two
aims of this study: First, we developed CNNs that implemented
assisted diagnosis for liver tumors by classifying them in
seven categories. Second, we developed a CNN that utilized
unenhanced sequences to distinguish malignant from benign
tumors, then, our modified CNN that combines unenhanced
images with clinical data achieved end-to-end output for
precise classification of malignant tumors. These models were
integrated into the DLS. In an external independent cohort, their
performance was compared with experienced radiologists that
had read all sequences and clinical information.

MATERIALS AND METHODS

Patients
This study was approved by the independent institutional review
boards of Sir Run Run Shaw Hospital and performed according
to the Helsinki declaration. In this study, a sample size was not
prespecified. Instead, we included the largest possible number of
patients with liver tumors to ensure that deep learning models
were trained as fully as possible. The inclusion criteria were as
follows: (1) participants had liver tumors, and (2) participants
accepted enhanced MRI inspection. The exclusion criteria were
as follows: (1) those who had accepted treatment related to the
lesion before MRI inspection, including surgery, transcatheter
arterial chemoembolization (TACE), radiofrequency ablation,
chemotherapy, radiotherapy, targeted drug therapy, etc.; (2)
those with inflammatory lesions; (3) those with a clinically
diagnosed malignancy (without pathology confirmed); (4) any
missing important medical records or laboratory results of the
malignancy individuals; and (5) unqualified image quality. Only
patients who had malignancies confirmed by biopsy or post-
surgical histopathology were enrolled. The diagnosis of some
benign lesions was supported by histopathology, but the labels
of other benign lesions without surgery provided by the imaging
diagnosis report were considered as our gold standard. For
these liver masses diagnosed with a combination of clinical
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information and imaging criteria, the follow-up time was 6–10
months. Those labels were the result of a consensus as explained
by the radiology department: The report was firstly given by the
doctor who read the images. Then, the report was reviewed by the
senior doctor. In case of a disagreement, the final decision was
confirmed by a department conference. The test set consists of
liver focal lesions enhanced by MRI in the same hospital between
July 2018 to December 2018 according to the include and exclude
criteria above (Figure S1). In addition, general demographics for
all patients, pathology reports (if any), and malignant patients’
related medical history, liver-related symptoms, and laboratory
test results were documented.

Taxonomy
Three groups of models were trained. The first task was to
classify the liver focal lesions of the training set into seven
categories: 0. cyst, 1. hemangioma, 2. focal liver lesion (FNH),
3. other benign nodules (cirrhotic nodules, RN, DN, rare benign
tumors), 4. HCC, 5. metastatic malignant tumors from other
sites (colorectal, breast, lung, pancreas, etc.), 6. primary hepatic
malignancy other than HCC (intrahepatic cholangiocarcinoma,
adenocarcinoma, etc.). The second task was to divide all the
tumors into two categories: a. benign (include 0, 1, 2, 3 above),
b. malignant (include 4, 5, and 6). In the third task, malignant
tumors were divided into three categories the same as category
4, 5, and 6 in the seven-category method above. The test
set was also classified as described above and labeled. Those
classification models included all liver mass-like lesions (except
for inflammatory lesions). In category 3, 5, and 6, several different
specific tumor types were all mixed in the training and test set.
Three experienced radiologists independently read and labeled
the MRI of the validation set following this standard and they
could refer to additional information such as medical history,
laboratory test results, etc. according to daily clinical work habits.

MRI Acquisition Protocol
Abdominal MRIs were performed in a supine position with
1.5-T, 3-T, and 750W MR scanners, including GE MR Singna
HDX 3.0T, GE MR Singna HD Excite scanners 1.5T, Simen MR
Skyra 3.0T, Simen magnetom avanto Dot1.5T, and GE discovery
MR 750 scanners. T2-weighted sequence, diffusion-weighted
sequence (b-values: 800 s/mm2) from standard institutional
liver MR imaging protocols were performed with acquisition
times of 2–2.5 and 2–2.5min. Contrast-enhanced T1 sequences
were used with acquisition times of 12–18 s. Two different
contrast agents were used, i.e., Gadopentetate dimeglumine and
Gadoxetic Acid Disodium (Primovist) at doses of 0.2 and 0.1
mmol/kg, respectively. Except for pre-contrast T1, T2, and
diffusion images, post- contrast images were analyzed, including
late arterial phase (∼15 s post-injection), portal venous phase
(∼60 s post-injection), and equilibrium phase (∼3min post-
injection). Imaging parameters varied across different scanners
and time frames (Table S4).

Image Processing
Eligible MRI images were downloaded from the Picture
Archiving and Communication Systems (PACS) and stored as
Digital Imaging and Communications in Medicine (DICOM)

files. Six sequences were selected and the region of interest (ROI)
on T2 sequence was annotated. All the sequences were resampled
to a resolution of 0.7 × 0.7 × 7mm. Then the annotations
of the other five sequences were generated according to the
origin and spacing information of sequences, which were checked
manually. Software was developed to correct cases that were not
matched. SimpleITK was used to read DICOM images. After
preprocessing, resampling, and configuration, the DICOM files
were converted to images in preparation for the training. Some
common augmentation methods were performed on the images
such as rotation, flipping, scaling, shifting, and shearing.

Deep Learning Model Development
Deep CNNs have achieved good results in medical image
classification in recent years. The most straightforward way to
improve the performance of deep CNNs is to increase their
depth and width. Szegedy et al. (26) proposed a deep CNN
architecture codenamed Inception that increased the width of
each stage. Multiple versions of Inception-Net have been widely
used in classification tasks. Residual connections introduced
by He et al. (27) make it easy to train very deep networks.
Inception- ResNet, which combines both ideas, outperforms the
previous networks. We utilized a Google Inception-ResNet V2
CNN architecture (28) that was pre- trained on approximately
1.28 million images (1,000 object categories) from the 2014
ImageNet Large Scale Visual Recognition Challenge (29), then
we removed the final classification layer from the network and
retrained it with our dataset, fine-tuning the parameters across
all layers (30). Our CNN was trained using backpropagation. The
loss function was defined as categorical cross entropy between
predicted probability and the true class labels in multi-class
classification problems. We used stochastic gradient descent
(SGD) optimization, with the same global learning rate of 0.1,
a decay factor of 0.5 every 20 epochs, a momentum of 0.9, and
batch size of 16 for training the weights. The TensorFlow (31)
deep learning framework was used to train, validate, and test
our network. We resized each image to 299 × 299 pixels in
order to make it compatible with the original dimensions of
the Inception-ResNet V2 network architecture. During training,
images were augmented. Each image was rotated randomly
between −40◦ and 40◦ and flipped vertically and horizontally
with a probability of 0.5. Five-fold cross-validation was used in
training CNN, and the parameters of the model with the highest
average accuracy on the cross-validation sets were used to train
CNN on the whole training set so as to get the final model.

For our dataset, either six (T1, T2 diffusion, late arterial,
portal venous, and equilibrium) or three (T1, T2 and diffusion)
sequences and clinical data were applied as inputs of our
model. Each group of images from six or three sequences can
be input to the network through different channels. For the
three-way classification model, we modified the network to
receive the image and clinical data as inputs simultaneously. The
convolution layers were used to extract features from images, and
then these features together with encoded clinical data were input
to the fully connected layer for classifying liver tumors. Our deep
learning model can accept clinical data as input. Clinical data
was encoded using one-hot encoding. For example, gender can
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be encoded as [0,1] for male and [1,0] for female. The output of
network is a one-dimensional vector about the predicted value
for each group of images, which is expressed as [P1, P2,..., Pi],
i represents i-category classification, Pi represents the predicted
value for the i-th category. To calculate the individual-level
predicted value, the predicted vector for each image-group of one
patient was summed up, then the category with the largest value
was used as the final diagnosis of this patient.

Statistical Analysis
Upon finishing the training phase, the performance was
evaluated using the validation set, which is composed of images
from patients of an external independent dataset not used during
the training. Then the predicted probability of each patient
was obtained by aggregating the predicted probability values
of each group of images. For classification purposes, the ROC
curve was used to show the diagnostic ability of the deep
learning model in discriminating specific class from others.
The ROC curve and the corresponding area under ROC curve
(AUC) for each class were calculated in each model using the
python library sklearn (32). Differences between various AUCs
were compared by using a Delong test. Average sensitivity and
specificity of radiologists were displayed in ROC charts, then
the sensitivity and specificity of radiologists’ consensus were
used to compare with the models (see in Tables). Ninety-five
percentage CIs for sensitivity, specificity, and accuracy were
calculated with the Clopped-Pearson method (33). P-values for
sensitivity and specificity comparisons were computed using
McNemar’s test (binomial distribution for exact probabilistic
method). In addition, the agreements between the predicted
results with pathological/formal report were compared using the
Cohen’s Kappa statistic (34, 35) and P-values were estimated by a
two-sample two-tailed z-test score. All tests were two-tailed, and
p≤ 0.05 was considered to be indicative of statistical significance.

Confusion matrixes demonstrated the mis-classification
similarity between the CNNs and human experts. Element (i, j)
of each confusion matrix represented the empirical probability to
predict class j given that the ground truth was class i.

To analyze the internal features learned by the CNNs
of validation sets, the Barnes- Hit implementation of the t-
SNE technique (t-distributed Stochastic Neighbor Embedding)
(36) was used to reduce the dimensionality and facilitate the
visualization of the classes. The values associated with the last
fully hidden connected layer were used as an input, and theta was
set to 0.5, perplexity to 50, and 10,000 iterations. Colored point
clouds represented the different disease categories, representing
how the algorithm clusters the diseases.

Saliency Map
To gain further intuition into how the network made its
decisions, saliency maps (37), that can visualize the pixels that a
network is fixating on for its prediction, are increasingly being
used (20, 38). Back-propagation is an application of the chain
rule of calculus to compute loss gradients for all weights in
the network. The loss gradient can also be back-propagated to
the input data layer. By taking the L1 norm of this input layer
loss gradient across the RGB channels, the resulting heat map

intuitively represents the importance of each pixel for diagnosis.
We generated saliency maps about seven categories and typical
individual examples to visualize areas on the images that were
deemed important for the classification results. All saliency maps
were produced using Keras 2.2.0.

RESULTS

Training and Validation Cohort
Between January 1, 2014 to June 30, 2018, MRI images were
obtained for the training set from the hepatic focal lesions
database in Sir Run Run Shaw Hospital affiliated to Medicine
School, Zhejiang University. According to the inclusion and
exclusion criteria (Figure S1), the complete training set consisted
of 31608 MRI images from 1,210 individuals, including 5,268
groups, and each group included six images from different
scan sequences (T2, diffusion, Pre-contrast T1, late arterial,
portal venous, equilibrium phase). Between July 1, 2018 to
December 31, 2018, 6,816 images from 201 individuals for the
validation set were obtained from Sir Run Run Shaw Hospital
according to strict enrollment criteria to minimize selective bias
(Figure S1), which ensured that the validation set could reflect
the disease composition and distribution waiting to be diagnosed
in real-world clinical scenarios. Only malignancies that had
been confirmed by biopsy or post-surgical histopathology were
enrolled. The diagnosis of some benign lesions was supported
by histopathology, but the labels of other benign lesions without
surgery provided by formal imaging diagnosis reports were
considered as our gold standard. The study classified hepatic
local lesions into seven categories: 0. cyst, 1. hemangioma, 2.
focal liver lesion (FNH), 3. other benign nodules [cirrhotic
nodules, regenerative nodules(RN), dysplastic nodules(DN), rare
benign tumors], 4. HCC, 5. metastatic malignant tumors from
other sites (colorectal, breast, lung, pancreas, etc.), and 6.
primary hepatic malignancy other than HCC (adenocarcinoma,
Intrahepatic cholangiocarcinoma, etc.). 0, 1, 2, and 3 above
belonged to benign, 4, 5, and 6 belonged to malignant (see
Methods, Taxonomy in details). Baseline characteristics of the
training set and validation set are shown in Table S1. The disease
composition and distribution of the validation set were not
exactly the same as the training set (Table S2). According to
TRIPOD statement (39), this validation set can be regarded as
an external independent set. The training dataset in the current
study is the largest published liver-enhanced MRI dataset with
the most types of liver tumors (non- inflammatory lesion).

Deep-Learning Frameworks for Liver
Tumor Classification
Our CNN computational strategy is demonstrated in Figure 1.
In the training set, liver tumors were marked in T2 sequences by
trained senior abdominal radiologists based on formal diagnostic
reports. Then, six images from six sequences (T2, diffusion, Pre-
contrast T1, late arterial, portal venous, and equilibrium phase)
were obtained for each cross section of the lesion by processing
the images. The medical history and laboratory test results
of individuals with malignant tumors were searched from the
medical record system and encoded by the auto encoder to obtain
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FIGURE 1 | Data and strategy. (A), Number of patients and images per category. (B), Strategy for development and validation. (B, i), Magnetic resonance images of

patients in training set were first downloaded from the PACS; Liver tumors was outlined in related images of T2-weighted sequences as Regions of interest (ROI) by

ITK-SNAP software; pre-processed images and obtained six different scan sequences pictures for each cross section of the lesion (T2, diffusion,T1 pre-contrast, late

arterial phase, portal venous phase, equilibrium phase); (B, ii), six sequences of each cross section input to CNN as a whole-image from six channels, encoded clinical

data was input to CNN; (B, iii), the Inception-ResNetV2 architecture was used and fully trained using the training set or partly retrained using the new-training set with

clinical data; (B, iv), classifications were performed on images from an independent validation set, and the values were finally aggregated per patient to extract the

T-SNE and the statistics; (B, v), Clinical data was encoded using one-hot encoding as preparation for three-way malignancy classifier. HH, Hepatic hemangioma;

Nodules, other benign nodules; Metastatic, Metastatic malignancy from other sites; Primary, Primary malignancy except HCC.

clinical data, including age, gender, cirrhosis-related history,
other cancers, tumor marker(AFP, CEA,CA-125,CA19-9, PSA,
Ferritin), and liver function (albumin, total bilirubin, prolonged
prothrombin time, hepatic encephalopathy, ascites). The coding
table is in Table S3. The images and clinical information can be
used as direct input to the neural networks according to different
tasks (Figure 1). Based on the computational strategy outlined
in Figure 1, three group models were trained. First, CNNs were
developed to classify images into seven categories. Model A and
B used six sequences and three un enhanced sequences (T2,
diffusion, Pre-contrast T1) to train CNN, respectively. Second,
six sequences (Model C) and three unenhanced sequences
(Model D) were utilized to train CNNs for binary classification
of benign and malignant. Third, malignant cases with complete
clinical data in the training set were selected as a new training set
and the integral computational pipeline (Figure 1) was applied

to train new models in order to classify malignant tumors in
to three categories. Model F and Model G, respectively, utilized
six and three sequences alongside clinical data as the direct
input, while Model E utilized only six imaging sequences as
input. The 5-fold cross-validation results during training were
reported in Supplementary Materials-Data File S1. Then three
experienced radiologists were asked to independently classify
MRI images in the validation set through the Picture Archiving
and Communication Systems (PACS). They could refer to
other information about patients such as their medical history,
laboratory tests, and so on. This design could better reflect the
true level of doctors in daily clinical situation than previous
works (16, 23–25) that asked doctors to make judgements only
based on images. When the results of the three radiologists
were inconsistent, then they discussed together in order to get
a diagnoses referred to as reader consensus.
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FIGURE 2 | Performance of CNN models and radiologists in external validation set. (A–C) Receiver operating characteristic (ROC) curves in the validation set (n =

201 patients). (A) Model A: seven-way classifier with six sequences. (B) Model B: seven-way classifier with three unenhanced sequences. (C) Model C,D: binary

classifier for benign and malignancy with six sequences and three unenhanced sequences. (D–F) ROC curves in the new validation set of malignant tumors (n = 99

patients). (D–F), (D) Model E: three-way classifier with six sequences. (E) Model F: three-way classifier with six sequences and clinical data. (F) Model G: three-way

classifier with three sequences and clinical data. The crosses indicate the performance of average radiologists for each category, the length of the cross represents the

confidence Interval (CI).

Deep-Learning Models in Seven-Way
Classification Diagnosis
Using the computational pipeline of Figure 1, Inception-ResNet
V2 was first trained to classify liver tumors in to seven
categories according to clinical practical criterion and tested in
the validation cohort. Model A with six sequences achieved a
high performance in seven-way classification in the validation
set (Figure 2A), with AUC values for each category ranging
from 0.897 (95% CI 0.828–0.966, metastatic malignancy) to
0.987 (95% CI 0.934–1.000, FNH), which was better than
Model B with three unenhanced sequences (Figure 2B), although
no significant difference existed (Table 1). Compared with the
average level of readers, Model A achieved a competitive level
for most categories, but for metastatic malignancy, the average
reader seemed to perform better than Model A (Figure 2A).
The performance between the model and reader consensus was
further compared (Table 1). The model sensitivity for seven
categories ranged from 53.3% (95%CI 26.6–78.7%, other primary
malignancy) to 100% (95% CI 66.4–100%, FNH). The sensitivity
of reader consensus for seven categories ranged from 55.6%

(95% CI 21.2–86.3%, benign nodules) to 94.7% (95% CI 82.3–
99.4%, FNH). There was no significant difference (p > 0.05) in
the sensitivity for each category between Model A and reader
consensus, except for metastatic malignancy (P = 0.003). In this
category, reader consensus had a better performance than Model
A because doctors could refer to clinical information including
related medical history and laboratory test results, which are of
great value for the diagnosis of metastatic tumors. For seven
categories, the specificity of model A and reader consensus
ranged from 91.6% (95% CI 86.0–95.4%, HCC) to 99.5% (95%
CI 97.1–100%, benign nodules) and 94.8% (95% CI 90.0–
97.7%, HCC) to 100% (95% CI 98.1–100%, FNH), respectively.
Among all categories, only the specificity of FNH demonstrated

a significant difference (P = 0.008) between Model A and

reader consensus. Model A showed a higher sensitivity of 77.8%

(95% CI 40.0–97.2%) and specificity of 99.5% (95% CI 97.1–
100%) than reader consensus for benign nodules. For benign

nodules, the number of patients with an accurate diagnosis by

models was more than every experienced radiologist (Figure S2

for confusion matrix). Seven cases of cirrhosis nodules were
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TABLE 1 | Diagnostic performance of seven-way classifiers and radiologists in the validation set.

Value (95%CI) McNemar’s P-valuea Delong P-value

Model A Model B Reader consensus Model A vs. Reader Model A vs. Model B

Cyst

AUC 0.986 (0.960, 1.000) 0.970 (0.932, 1.000) 0.147

Sensitivity, % 89.5 (75.2, 97.1) 89.5 (75.2, 97.1) 94.7 (82.3, 99.4) 0.688

Specificity, % 96.9 (93.0, 99.0) 96.9 (93.0, 99.0) 98.2 (94.7, 99.6) 0.727

Hemangioma

AUC 0.944 (0.897, 0.991) 0.936 (0.886, 0.986) 0.66

Sensitivity, % 82.6 (68.6, 92.2) 87.0 (73.7, 95.1) 89.1 (76.4, 96.4) 0.508

Specificity, % 95.5 (90.9, 98.2) 93.6 (88.5, 96.9) 98.1 (94.5, 99.6) 0.344

FNH

AUC 0.987 (0.934, 1.000) 0.936 (0.824, 1) 0.102

Sensitivity, % 100 (66.4, 100) 66.7 (29.9, 92.5) 88.9 (51.8, 99.7) 1.000

Specificity, % 95.8 (92.0, 98.2) 94.8 (90.63, 97.5) 100 (98.1, 100) 0.008

Benign nodules

AUC 0.914 (0.787, 1.000) 0.865 (0.711, 1.000) 0.139

Sensitivity, % 77.8 (40.0, 97.2) 66.7 (29.9, 92.5) 55.6 (21.2, 86.3) 0.500

Specificity, % 99.5 (97.1, 100) 99.5 (97.1, 100) 98.4 (95.5, 99.7) 0.625

HCC

AUC 0.925 (0.871, 0.978) 0.879 (0.813, 0.9452) 0.137

Sensitivity, % 87.2 (74.3, 95.2) 74.5 (59.7, 86.1) 87.2 (74.3, 95.2) 1.000

Specificity, % 91.6 (86.0, 95.4) 86.4 (79.9, 91.4) 94.8 (90.0, 97.7) 0.267

Metastatic malignancy

AUC 0.897 (0.828, 0.966) 0.841 (0.758, 0.923) 0.039

Sensitivity, % 59.6 (42.1, 75.3) 40.5 (24.8, 57.9) 89.2 (74.6, 97.0) 0.003

Specificity, % 97.6 (93.9, 99.3) 97.0 (93.0, 99.0) 97.6 (93.9, 99.3) 1.000

Primary malignancy except HCC

AUC 0.899 (0.793, 1.000) 0.892 (0.783, 1.000) 0.844

Sensitivity, % 53.3 (26.6, 78.7) 46.7 (21.3, 73.4) 60.0 (32.3, 83.7) 0.688

Specificity, % 97.9 (94.6, 99.4) 96.8 (93.1, 98.8) 96.2 (92.4, 98.5) 0.727

aP-value was calculated between Model A (seven-classification) vs. Reader consensus using the McNemar’s test.

all predicted correctly, indicating that the network performs
well in differentiating high-risk cirrhosis nodules from HCC.
Two wrongly predicted cases of benign nodules were confirmed
as bile duct adenoma (predicted HCC) and angiomyolipoma
(predicted HCC), respectively (Figure S3). HCC false negative
cases possessed some common features, such as small tumor
sizes or being highly differentiated (Figure S4). Those wrongly
predicted cases were associated with a lack of enough similar
cases in the training set, which may mean the network was not
fully trained.

The internal features learned by the CNN using t-SNE (t-
distributed Stochastic Neighbor Embedding) (36) were examined
(Figure 3). Each point represents a group of liver tumor
images from six different sequences projected from the 2048-
dimensional output of the CNN’s last hidden layer into two
dimensions. For benign tumors, we observe clusters of points
of the same clinical category clustered together (Figure 3A),
whereas the point distributions of three categories of malignant
tumors were not very clearly separated, which is consistent
with the observation in the statistical indicators. Figure 4 shows

saliency maps that identify the pixels on which the Inception-
ResNet V2 model was fixating its attention on for prediction.
As is seen, the network fixates most of its attention on the liver
lesions themselves and ignores the background, which is in line
with the clinical implication that the lesion and nearby region
are more informative of diagnosis. However, the patterns are
not specific enough to extract traditional radiologic features,
and overall, the saliency map suggests that the deep learning
model considered the most important regions when making the
prediction, as presented in Figure 4.

Deep-Learning Models in Malignancy
Diagnosis
Model D was trained on the more challenging task of
distinguishing benign and malignant tumors using only using
three unenhanced sequences, which exhibited comparable
performance to Model C with six sequences. Validated in the
independent set, the AUC value was 0.946 (95% CI 0.914–
0.979) for Model D and 0.951(95% CI 0.919–0.982) for Model
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FIGURE 3 | Illustration of classifiers learned by deep-learning projected to 2 dimensions for visualization via the t-SNE algorithm using values of the last fully

connected layer in the CNNs of the validation set. (A–C), Scatterplots where each point represents an image of lesions and the color represents the true category,

show how the algorithm clusters. (A), Model A: seven-way classifier with six sequences images, shows that seven clusters of the same clinical classes, and we can

see benign tumor clusters are better than that of three malignant tumors. The purple point clouds(benign nodules) are effectively divided from red point clouds (HCC).

(B), Model E: three-way classifier with six sequences images for malignant tumors. (C), Model G: three-way classifier with three sequences images and clinical data

for malignant tumors, shows that three different color point clouds are more effectively clustered than Model E. (D) Insets of T2 images show some categories. (i),

Hepatocellular carcinoma (ii), Metastatic malignant tumors from pancreas (iii), Intrahepatic cholangiocarcinoma (iv) DN that are difficult to identify with HCC. (v)

malignant fibrous histiocytoma represented by outlier point clouds of c(d,v).

C, but two ROC curves exhibited no significant difference in
Delong’s test (P = 0.664), which demonstrated that Model
C and Model D have similar performances (Figure 2C). The
sensitivity of Model C and Model D was 91.9% (95% CI
84.7–96.5%) and 90.9% (95% CI 83.4–95.8%), respectively,
which were slightly lower than 99.0% (95% CI 94.5–100%) of
reader consensus, but did not reach statistical significance (P
= 0.375 and 0.219, respectively, estimated by the McNemar’s
test using binomial distribution). Specificity of Model C and
Model D also had no significant difference compared with
consensus (P = 0.549 and 0.754, respectively) (Table 2). In
Model D, 93.6% (44/47) of HCC was correctly predicted as
a malignancy, while the whole seven individuals of RN/DN
nodules were all correctly predicted as benign. It showed that
the network without enhanced images can effectively differentiate
malignant from benign tumors, even for HCC and high-risk
cirrhosis nodules that are difficult to distinguish in traditional
HCC diagnostic imaging frameworks, such as LI-RADS, in the
absence of contrast agents. As for atypical HCC that were
wrongly predicted (very small lesions, benign tumors with
carcinogenesis, highly differentiated, etc.), more cases for training
are needed.

Deep-Learning Models in Three-Way
Classification Diagnosis for Malignancy
An approach that joined clinical data to CNN resulted in a much

higher performance in Model F and Model G (Figures 2E,F,

Table 3). The AUCs of Model G improved to 0.985 (95%
CI 0.960–1.000, HCC), 0.998 (95% CI 0.989–1.000, metastatic

malignancy), and 0.963 (95% CI 0.896–1.000, other primary

malignancy), which were significantly better than those of 0.881

(95% CI 0.810–0.951), 0.833 (95% CI 0.745–0.922) and 0.780

(95% CI 0.636–0.925) in Model E (Figure 2D) with six sequences

(P-values of 0.002, 0.0002, and 0.008, respectively). However, no

statistical significance was observed in each category between

Model F and Model G (P-values of 0.002, 0.0002, and 0.008,

respectively), which demonstrated that after adding clinical data,

classifiers with six sequences and three sequences had similar

performances. Sensitivity and specificity of each category in

Model G had no statistical significance compared with those

of reader consensus (Table 3). Among three categories, the

latter two included many specific tumors from different sites

and histopathological sources (Table S2). The CNN network

with the new approach is highly inclusive with the tumor type
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FIGURE 4 | Saliency map for example images from seven categories of the validation set and a special case which not appeared in training set. These maps reveal

the pixels that most influence a CNN’s prediction. Saliency maps show the pixel gradients with relative to the CNN loss function. Darker pixels represent pixels with

greater influence. Clear correlation between lesions and saliency maps are revealed. We selected T2 image as the original control, the middle is reconstructed image

of three sequences (the left column is from three plain scan sequences, the right column is from three enhanced sequences), the right is a corresponding saliency

map. (A) cyst, (B) FNH, (C) hemangioma, (D) benign nodule, (E) HCC, (F) primary adenocarcinoma, (G) metastatic malignancy originating from pancreas, (H)

malignant fibrous histiocytoma, which still gains a good display although this rare type did not appear in the training set.

complexity. From t-SNE visualization of the last hidden layer
representations of Model G andModel E (Figures 3B,C), clusters
of points which belonged to the same clinical category were
better gathered together in Model G than Model E, therefore,
this also demonstrated that the modified end-to-end CNN with
unenhanced images and clinical data as collaborative inputs
achieves better classification performances than the network
using enhanced images.

Consistency Evaluation Between
Models/Radiologists and Gold Standard
The agreement was then measured comparing deep-learning
models, and the radiologists’ consensus with the

pathological/formal reports using Cohen’s Kappa statistic

(Table 4). It was observed that the agreement of all deep-learning

models and radiologists with pathological/formal reports reached

statistical significance (P < 0.01, estimated by the two-sample

two-tailed z-test score), indicating the consistency between

them. According to the interpretation Cohen suggested about

the Kappa results (34), Model A had substantial consistency
(kappa > 0.6), while Model C, Model D, Model E, and Model
F had almost perfect consistency compared with the gold
standard(kappa > 0.8). Regarding time spent, it can take
a radiologist several minutes to analyze a patient’s imaging
depending on the difficulty of each individual, but deep-learning
models just need a few seconds.
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TABLE 2 | Diagnostic performance of binary classifiers and radiologists in the validation set.

Value (95%CI) McNemar’s P-value Delong P-value

Model C Model D Reader consensus Model C vs. Reader Model D vs. Reader Model C vs. Model D

AUC 0.951 (0.919, 0.982) 0.9416 (0.914, 0.979) 0.664

Sensitivity, % 91.9 (84.7, 96.5) 90.9 (83.4, 95.8) 89.1 (76.4, 96.4) 0.375 0.219

Specificity, % 94.1 (87.6, 97.8) 94.1 (87.6, 97.8) 90.4 (79.0, 96.8) 0.549 0.754

TABLE 3 | Diagnostic performance of three-way classifiers and radiologists in the malignancy validation set.

Value (95%CI) McNemar’s P-Valuea Delong P-Value

Model E Model F Model G Reader

consensus

Model G vs.

Reader

Model E vs.

Model G

Model F vs.

Model G

HCC

AUC 0.879 (0.808, 0.949) 0.972 (0.938, 1.000) 0.951 (0.906, 0.997) 0.002 0.792

Sensitivity, % 93.6 (82.5, 98.7) 95.7 (85.5, 99.5) 95.7 (85.5, 99.5) 89.1 (76.4, 96.4) 0.289

Specificity, % 67.3 (52.9, 79.7) 96.2 (86.8, 99.5) 90.4 (79.0, 96.8) 90.4 (79.0, 96.8) 0.063

Metastatic malignancy

AUC 0.814 (0.722, 0.907) 0.980 (0.947, 1.000) 0.985 (0.958, 1.000) 0.0002 0.403

Sensitivity, % 59.5 (42.1, 75.3) 100 (90.5, 100) 94.6 (81.8, 99.3) 89.2 (74.6, 97.0) 0.688

Specificity, % 93.6 (84.3, 98.2) 96.8 (88.8, 99.6) 100 (94.2, 100) 95.1 (86.3, 99.0) 1.000

Primary malignancy except HCC

AUC 0.761 (0.613, 0.909) 0.989 (0.951, 1.000) 0.905 (0.801, 1.000) 0.008 0.081

Sensitivity, % 53.3 (26.6, 78.7) 86.7 (59.5, 98.3) 73.3 (44.,9 92.2) 60.0 (32.3, 83.7) 0.688

Specificity, % 95.2 (88.3, 98.7) 100 (95.7, 100) 96.4 (89.9, 99.3) 91.6 (83.4, 96.5) 0.250

aP value was calculated between Model G (three-sequence images + clinical data) vs. Reader consensus using the McNemar’s test.

TABLE 4 | Consistency analysis of models and radiologists compared with

pathological or formal report.

Accuracy Kappa Z score P-Value

Model A 79.1 (72.8, 84.5) 0.744 22.9 <0.01

Model B 71.1 (64.4, 77.3) 0.649 20.0 <0.01

Model C 93.5 (89,2, 96.5) 0.861 12.2 <0.01

Model D 93.0 (88.6, 96.1) 0.851 12.1 <0.01

Model E 72.7 (62.9, 81.2) 0.541 7.31 <0.01

Model F 93.9 (87.3, 97.7) 0.901 11.8 <0.01

Model G 91.9 (84.7, 96.5) 0.867 11.4 <0.01

Reader 1 88.1 (82.8, 92.2) 0.853 25.7 <0.01

Reader 2 77.1 (70.7, 82.7) 0.723 22.8 <0.01

Reader 3 84.6 (78.8, 89.3) 0.810 24.4 <0.01

Reader consensus 86.1 (80.5, 90.5) 0.829 25.1 <0.01

DISCUSSION

The findings of the current study show the feasibility and
potential superiority of the integrated DLS in liver tumor
MRI diagnosis in clinical situations. Deep learning achieves a
performance on par with experienced radiologists in classifying

liver tumors to seven categories. Utilizing unenhanced sequences,
DLS can distinguish malignant from benign tumors, and then
by combining medical texts and laboratory test results lead
to a precise diagnosis for malignant tumors, even better
than three experienced radiologists who have considered
enhanced sequences. To the best of our knowledge, this is
the largest study in the field of deep-learning-guided liver
tumor diagnosis based on MR images worldwide, which has
the most variable types of focal liver lesions (only inflammatory
lesions excluded).

Evaluations of MR images by radiologists are generally
subjective and are possibly influenced by their experience to
an extent (40), even in LI-RADS which is majorly applicable
to patients at high risk for HCC. Deep learning models
have advantages in overcoming these problems. CNNs learning
feature representations with an automated procedure and the
interpretation maintains consistency and, therefore, diagnostic
reproducibility. Thus, for developing countries such as China
or other undeveloped countries, where there is an unbalanced
distribution of medical resources between urban and rural
areas, the deep-learning models could help in bridging the
diagnosis gap of MRI between national hospitals and primary
care hospitals, which can also be served as a quick and
reliable opinion for junior radiologists in the diagnosis of
hepatic lesions.
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The confusion matrix (Figure S2) shows that both the
seven-way classifier and doctors have poor performances in
malignant classification, especially with HCC and other primary
malignancies that are difficult to distinguish from each other,
which may be because that intrahepatic cholangiocarcinoma
have some similar imaging manifestations with HCC. It is
worth noting that some rare types, such as malignant fibrous
histiocytoma which belongs to other primary malignancies, have
not been fully studied in the training set due to a lack of sufficient
cases. The same situation exists with metastatic tumors with
different origins such as pancreatic neuroendocrine cancer, lung
squamous cell carcinoma, and so on. The inclusion of these
individuals to the study reduced the diagnosis efficacy of the
model, however, considering the clinical application scenarios,
we did not exclude these individuals. After adding clinical data,
the performance of three-way CNNs are greatly accelerated
with an accuracy over 90%, which is better than radiologists,
even in the model utilizing unenhanced sequences. Moreover,
the binary CNN with unenhanced images exhibits almost the
same performance with that using enhanced sequences and the
prediction accuracy for seven RN/DN and HCC achieved 100%
and over 90%, respectively. These results indicated that deep
learning can mine more information in unenhanced sequences
and clinical data to make judgments than human experts.
Therefore, CNN has the potential ability to use non-contrast MRI
to make diagnoses of liver tumors, even for high-risk cirrhotic
nodules. This advantage could protect patients from potential
gadolinium unsafety, especially for those allergic to contrast
agents or those who cannot tolerate it with liver or kidney
failure. Considering the high expenditure of gadolinium and
hepatobiliary contrast agents, non-contrast MRI could be served
as a potential cost-effective screening and surveillance tool (12)
for high-risk patients under the assistance of DLS. More patients
with cirrhotic nodules and small HCCs will be included in future
multi-center prospective collaborative research and the DLS will
be further validated.

In addition, two false negative cases in puncture biopsies were
selected to be validated separately, which were not included in the
training or test set. Combined with the patient’s medical history
and blood test results, they were still considered as malignant and
were verified in subsequent treatment (Figure S5). But the seven-
way CNNs and binary CNNs suggested they were malignant.
Image-based features represent the phenotype of the entire tumor
in three dimensions and not just the portion that was punctured
for pathological testing (11, 17), and thereby can assess the
condition of the entire lesion and yield more comprehensive and
accurate results (41), which is another advantage of CNN-based
image recognition.

Many previous studies have gained impressive achievements
in medical image classification using deep neural networks,
such as in the classification of skin cancer (20), lung cancer
screening (21), diabetic retinopathy examination (22), liver
fibrosis assessment (42–44), etc. However, owing to the diversity
and complexity of liver masses, there are only a few studies
(16) that applied deep learning for multi-classification of liver
tumors using CT (23) and MRI (16, 24, 25). Hamm et al. (16)
selected six common specific hepatic lesion types (n = 494

patients) and utilized enhanced sequences to train the model.
The model was not validated in an independent set. The study
of Yamashita et al. (25) was also based on enhanced sequences
in a small dataset. Whereas, our study evaluated the value of
non-enhanced sequences (T2, diffusion, T1 pre-contrast) and
achieved good performances in a binary model, which has the
potential to reduce high costs and the risk of contrast-related
side effects. Moreover, different from all previous studies, we
modified the input layer to receive a variety of data input and
used the concatenate operation to combine image features with
clinical data features, and then classified liver tumors through
a fully connected layer. This end-to-end deep learning model
with clinical data and images can fully utilize comprehensive
information to improve diagnostic performance.

The DLS is applicable for patients with all types of liver
tumors, except inflammatory lesions. The MR images used in the
study were gained from different MRI scanners and acquisition
protocols, which contributed to increased data diversity and
heterogeneousness in training the algorithm and demonstrated
the robustness of models. Therefore, once the DLS is established,
radiologists just need to perform a standardized selection of
ROI for liver tumors on a T2 sequence in the daily workflow
of MRI reading to conduct such analysis, which is extremely
convenient and timesaving for clinical applications. We are
working on constructing a cloud-based multi-institutional
artificial intelligence platform and a user-friendly website to
provide freely accessible telemedical assistance for clinicians to
accelerate the interpretation of MR images, meanwhile, to collect
the related follow-up pathological information and feed it back to
DLS so as to continuously improve its performance.

Our study has several limitations, which should be
acknowledged. First, the study is a single-center retrospective
study, although the validation set has maximally simulated the
scenario of a clinical practice, multicenter prospective research is
still necessary to evaluate performance in a real-world, clinical
setting. Second, more patients with some specific types of focal
liver diseases (RN, DN, small HCC, HCC without pathology,
inflammation, etc.) need to be included in future training, in
order to be applicable across the full distribution and spectrum
of lesions encountered in a clinical practice. Third is a potential
problem for medical applications about the interpretability of
“black box” algorithms (45). In the current study, darker pixel
regions in the saliency map and clusters of point clouds in t-SNE
revealed that CNN prediction at least follows some aspects of
human expert knowledge, which can be seen as an application
of interpretable deep-learning on multimodal medical data,
in addition, research into explainable AI and evaluation of
interpretability is occurring at a rapid pace (46, 47).

In the future, we would ideally include some types of
less common liver masses, such as abscesses, adenomas, rare
malignancies, etc. Importantly, further high-quality, prospective,
multicenter studies will also be performed, especially for high-
risk patients with cirrhosis. For these patients, the main
differentials for small HCC are benign regenerative/ dysplastic
nodules and pre-malignant nodules. These are quite challenging
clinically. This is an inherent problem in retrospective liver
nodule research as most of these will not be confirmed
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histologically, however many of these nodules when followed
turn out to have been early malignancy. Therefore, early
diagnosis of these premalignant nodules may be the most
important value that deep learning networks can offer over
human experts, which would have to be explored by a rigorously
designed prospective study. On the other hand, we will explore
the utilization of more ideal data visualization tools (46–48) to
allow further degrees of visual understanding of how algorithms
make decisions, through identifying relevant imaging features
and showing where these features are found on an image, so as
to make the “black box” more transparent.

CONCLUSIONS

In summary, we have developed a deep learning-based system
which can supply a reliable and timesaving assisted diagnosis
in a clinical setting by classifying liver tumors on MRI to
seven categories with high accuracy. Meanwhile, it can use non-
enhanced MRI to distinguish malignant tumors from benign
tumors, and, after adding clinical data, it can provide accurate
classification and diagnosis for malignant tumors, which could
avoid contrast-related side effects and reduce costs. The DLS was
trained with data in a various acquisition condition, and this
classification system covers most types of liver tumors, which is
unprecedented. All of these suggested a good potential of DLS for
clinical generalization. Further prospective multicenter studies
in larger patient populations and high-risk cirrhosis patients are
still needed.
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Figure S1 | Flowchart of the procedures in the selection of training and validation

set.∗Lesion-related treatment included surgery, transcatheter arterial

chemoembolization, radiofrequency ablation, chemotherapy, radiotherapy,

targeted drug therapy, etc. Number of patients with typical malignant imaging

performance and in advanced stages without surgical indications, usually received

therapy directly without biopsy. Reasons for exclusion included a unified method

for preprocessing resulted in some images not being of a good enough quality

owing to different parameters in multiple sequences of multiple machines from

different manufacturers. For patients in the follow-up, 82 individuals were reviewed

by ultrasound or radiology inspection in the following 6–10 months from the

current examination date, and the diagnosis remains consistency.

Figure S2 | Confusion matrix comparison between CNNs and radiologists. These

show the number of patients for each class of gold standard and predicted class.

The number of patients who were correctly predicted are found on the diagonal.

(A) Confusion matrices for Model A and radiologists for the seven-way

classification task in the validation set reveal similarities in misclassification

between human experts and the CNN; confusion matrices for Model B, which

performance is inferior to Model A. (B) Confusion matrices for Model E,F,G and

radiologists for the three-way classification task in new validation set reveal the

CNN with clinical data achieve higher performance than experienced experts.

Figure S3 | Example HCC false positive cases. (i), Epithelioid angiomyolipoma. (ii),

Bile duct adenoma. (A) T2WI (B) DWI (C) Precontrast-T1WI (D) late arterial phase

(E) portal venous phase (F) equilibrium phase.

Figure S4 | Example HCC false negative cases. (i). Hepatocellular adenoma with

carcinogenesis. (ii), small hepatocellular carcinoma. (A) T2WI (B) DWI (C)

Precontrast-T1WI (D) late arterial phase (E) portal venous phase (F)

equilibrium phase.

Figure S5 | Example false negative case in puncture biopsy report, actually

positive in clinical assessment and verified in subsequent treatment. (A–E)

T2-Weighted image of a lesion in the same section (A) Jan 14, 2017,

histopathology report after biopsy showed: Nodular cirrhosis. But combined with

history and tumor indicators, it was still considered that the risk of malignancy was

extremely high and TACE was given. (B,C),The second and third TACE were given

in Feb 23, 2017 and May 18, 2017, the lesion shrunk enough to almost disappear.

(D,E), The lesion enlarged by the follow-up on Nov 21,2017 and Jan 18, 2018,

which suggested it was a malignant tumor. (F,G) T2-Weighted image of the lesion

of another case. Histopathology report after biopsy showed: Fibrous tissue

hyperplasia, a small amount of shed atypical cells were seen. MRI report showed:
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Liver cancer with intrahepatic metastasis, left and right intrahepatic portal vein

tumor thrombus. With comprehensive consideration, this case is a malignant

tumor, but the local biopsy leads to a negative result because of partial necrosis of

the lesion.

Table S1 | Baseline characteristics of the training and validation set.

Table S2 | Disease distribution of each category in the training and

validation cohort.

Table S3 | Medical text and laboratory data coding table.

Table S4 | Imaging parameters in various sequences of magnetic

resonance imaging.
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Background: The role of [18F] fluoro-deoxyglucose [[18F] FDG] positron emission

tomography (PET)/computed tomography (CT) in pediatric rhabdomyosarcoma (RMS) is

not well-established. This manuscript explores the role of staging and therapy response

evaluation of PET/CT in a series of patients with RMS.

Methods: Thirteen consecutive patients with pathologically proven RMS underwent

baseline PET/CT scan and a second PET/CT for evaluation of therapy response.

Maximum standardized uptake value (SUVmax), mean standardized uptake value

(SUVmean), highest standardized uptake peak value (SUVpeak), metabolic tumor volume

(MTV), and total lesion glycolysis (TLG) were obtained from baseline PET/CT and were

used as potential predictors for evaluation of metabolic treatment response.

Results: On baseline PET/CT, most RMSs are located in the pelvic cavity, and upper

arms ranked second. The primary lesions were large and showed invasion to the

surrounding tissues. Lymph node metastases were seen in eight patients, and eight

patients showed distant metastasis to the lung, liver, and bone. The median SUVmax,

SUVmean, and SUVpeak of primary sites were 7.1, 4.0, and 5.9, respectively. The median

MTV and TLG were 196.6 cm3 and 780.2, respectively. After therapy, six patients

received complete metabolic response (CMR) and non-CMR occurred in seven patients

on the second PET/CT. SUVmax, SUVpeak, MTV, and TLG in patients with CMR were

significantly lower than those in patients with non-CMR.

Conclusions: Primary sites and metastatic lesions of RMS demonstrate increased

glycolytic activity, which may allow them to be imaged using [18F] FDG PET/CT. Metabolic

parameters derived from the baseline PET/CT have potential value for predicting CMR

to therapy in pediatric RMS.

Keywords: PET/CT, rhabdomyosarcoma, standardized uptake value (SUV), metabolic tumor volume (MTV), total

lesion glycolysis (TLG)
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INTRODUCTION

Rhabdomyosarcoma (RMS) is the most common soft tissue
sarcoma in children and adolescents, but the disease is still
rare, with about 400 newly diagnosed cases each year in Europe
and a similar incidence in the USA (1). RMS is a high-grade,
malignant neoplasm in which the current therapy strategies for
RMS are multimodal approach, comprising surgical resection,
chemotherapy, and/or radiation therapy in order to control the
primary tumor to the utmost (2). The chance of cure with
widely metastatic and recurrent disease of RMS is very low, and
patients experience months of intensive, multifaceted therapies
that can bring life-threatening acute toxicities and, in some cases,
life-changing late effects (3).

The potential factors which are associated with ultimate
outcome of RMS are controversial (4, 5). Nevertheless, it is
well-accepted that the favorable status at the end of therapy
is crucial to promising outcome of RMS. By contrast, residual
mass in patients with RMS at the end of therapy had a
significant impact on failure-free survival (6). Thus, identifying
predictors that can select therapy-sensitive tumors is considered
as an important step to manage treatment strategies to avoid
poor outcome. [18F] fluoro-deoxyglucose [[18F] FDG] positron
emission tomography (PET)/computed tomography (CT) is one
of the most advanced multimodal techniques available. [18F]
FDG PET/CT can accurately detect the extent and metabolic
activity of tumor lesions in patients with malignant tumors,
aiding staging and evaluation of therapy response in many
malignant tumors. However, to date, only several retrospective
studies qualitatively interpreted the images to demonstrate the
potential role of [18F] FDG PET/CT in RMS but failed to include
volumetric [18F] FDG uptake measurements such as metabolic
volume and lesion glycolysis. Therefore, the aim of this study was
to demonstrate the utility of metabolic parameters derived from
baseline PET/CT in staging and evaluation of therapy response
of RMS.

PATIENTS AND METHODS

Patients
We enrolled the patients with the following inclusion criteria:
histopathologically confirmed RMS from January 2008 to
November 2018; under age of 18 years old. Those with other
malignant tumors beyond RMS were excluded.

[18F] Fluoro-deoxyglucose PET/CT
Baseline PET/CT was performed before therapies, and the
second PET/CT for evaluating therapy response was performed
within 4 weeks after antitumor therapy. PET/CT scans including
semiquantitative and metabolic volumes measurement were
reviewed by two nuclear physicians who were unaware of
the results of any other imaging tests and the clinical data
by consensus.

Patients were asked to fast for 6 h. [18F] FDG (4.07 MBq/kg)
with a radiochemical purity of >95% (Sumitomo Corporation,
Japan) was given through intravenous injection, and the patients
were asked to rest for approximately 60min after the injection.

Four children (age≤3 years old) who could not give collaboration
during the tests were sedated after injection of [18F] FDG
immediately prior to commencement of imaging. The PET/CT
scan was performed using a hybrid PET/CT scanner (Biograph
16HR; Siemens, Germany). Here, all [18F] FDG PET/CTs
were performed with a standard acquisition and reconstruction
protocol. Quality assurance and quality control procedures for
the PET system were carried out accurately on a daily basis. The
scan range was from the skull to the upper part of mid-thigh or
feet. A low-dose CT protocol (100 mAs, 140 kV, tube rotation
time of 0.5 per rotation, pitch of 6, slice thickness of 5mm, and
shallow breathing) was first applied and followed by the PET scan
(3-min emission scan per table position).

In each examination, the representative lesion was defined as
a single lesion with the highest FDG uptake, even though patients
had multiple active lesions. A region of interest (ROI) was
drawn around the representative lesion with boundaries drawn
to include the lesion in transaxial, coronal, and sagittal views.
Maximum standardized uptake value (SUVmax) was calculated
from a single voxel exhibiting the SUVmax within a representative
lesion. Mean standardized uptake value (SUVmean) was the mean
value of voxels within the ROI. Highest standardized uptake peak
value (SUVpeak) was the SUVmean of a 1-cm3 three-dimensional
ROI showing the highest value in the representative lesion. They
were obtained in the same area as the pretreatment lesion in
case of no abnormal uptake after treatment. Metabolic tumor
volume (MTV) and total lesion glycolysis (TLG) were calculated
as volumetric parameters in the representative lesion as well as
in whole-body lesions. MTV was defined as the volume showing
abnormal FDG uptake greater than any parts of the liver in this
study. TLG was calculated as the product of MTV multiplied
by the SUVmean. The metabolic parameters were measured on
the SiemensMIWPworkstation (SyngoMIWP; SiemensMedical
Solutions, Erlangen, Germany).

Therapy Response Assessment
The SUVmax, SUVmean, SUVpeak, total MTV, and total TLG were
determined as metabolic PET parameters for each patient. The
second PET/CT scans were used to classify therapy response
into four categories according to the European Organization for
Research and Treatment of Cancer (EORTC) criteria: complete
metabolic response (CMR, no FDG uptake within the tumor
volume), partial metabolic response (PMR, SUVmax reduction
>25% after treatment), stable metabolic disease (SMD, SUVmax

increase or decrease<25%), progressivemetabolic disease (PMD,
SUVmax increase >25% or increase in the extension of tumor
uptake >20% in the longest dimension or the appearance of new
FDG uptake) (7). Patients with PMR, SMD, and PMD were then
grouped as non-complete metabolic responders (non-CMR).

Statistical Analysis
Statistical analysis was performed using SPSS software (version
22; IBM). The continuous variables with non-normal distribution
are presented as median (range). The categorical variables are
reported as number (percentage). The factors that may have
affected CMR in RMS were analyzed. Fisher exact tests and χ

2

tests were used to test the significance of categorical data such
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as gender (male or female), tumor size (<5.0 cm or ≥5.0 cm),
tumor margin (T1, confined to anatomic site of origin, or T2,
extension and/or fixative to surrounding tissue), lymph node
metastases (yes or no), distant metastases (yes or no), and
therapy (chemotherapy only or surgery/RT+ chemotherapy).
The non-parametric Mann–WhitneyU-test was used to compare
quantitative data when it was not normally distributed including
age, SUVmax, SUVmean, SUVpeak, MTV, and TLG. All p-values
were two-sided, and p < 0.05 was considered statistically
significant in all analyses.

Literature Search
We performed a PubMed/Medline search by using MeSH terms
focusing on articles on RMS-related and RMS-specific infections
and on use of nuclear imaging with [18F] FDG PET/CT scans.
Basic information was collected, including author, journal, year
published, and number of patients. Specific data were collected,
including the study purpose, recorded parameters, and main
findings of PET or PET/CT.

RESULTS

Thirteen consecutive patients with newly diagnosed RMS in
our department were enrolled. Clinical characteristics, therapy
regimen, treatment response, and outcome of all patients with
RMS are shown in Table 1. The findings of baseline [18F] FDG
PET/CT are shown in Table 2.

The age of the 13 patients ranged from 2 months (case
3) to 13 years (case 9), and six of them were female. The
diagnosis was established by ultrasonography (US)-guided fine-
needle aspiration in all patients before baseline PET/CT. Only
one patient (case 9) was histologically confirmed as alveolar
RMS (ARMS).

On baseline PET/CT, RMS was most commonly located in
the pelvic cavity, while upper arms ranked second. The primary
lesions in the majority of patients (except cases 4, 6, and 7) were
large, in which the diameter were larger than 5 cm. Primary sites
in three patients (cases 2, 4, and 6) were confined to the anatomic
site of origin, while primary sites in other patients demonstrated
invasion to the surrounding tissues. Lymph nodemetastases were
seen in eight patients (cases 1 and 7–13) while cases 1, 3, 5,
and 7–11 showed distant metastasis to the lung, liver, and bone.
The median SUVmax, SUVmean, and SUVpeak of target lesions
were 7.1 (3.9–15.0), 4.0 (2.4–7.3), and 5.9 (3.4–9.1), and the
median MTV and TLG were 196.6 (13.7–824.8) cm3 and 780.2
(42.6.1–4,023.3), respectively.

Five patients received surgery before the chemotherapy,
while six patients received radiation therapy (RT) before the
chemotherapy. After the therapy, all patients received the second
PET/CT for evaluation of metabolic treatment response, in
which six patients achieved CMR, and non-CMR occurred in
seven patients (PMR in three patients, SMD in two patients,
and PMD in two patients) on the second PET/CT. All patients
with CMR and two patients with PMR on the PET/CT turned
to observation, and other patients prolonged or changed the
therapy. The median follow-up time was 9.0 months, and two

patients (cases 3 and 11) died. The results of [18F] FDG PET/CT
of cases 1 and 9 are shown in Figures 1, 2, which were confirmed
as CMR and PMR at the second PET/CT, which were performed
for evaluation of therapy response, while the two patients
received the third PET/CT during the follow-up while case 1
obtained CMR and case 9 suffered from PMD.

Comparisons of the clinical characteristics and metabolic
parameters derived from baseline PET in RMS patients
regarding therapy response (CMR and non-CMR) are shown
in Table 3. SUVmax, SUVpeak, MTV, and TLG in patients
with CMR were significantly lower than those in patients
with non-CMR.

DISCUSSION

To the best of our knowledge, this is the first study to
distinguish CMR from non-CMR in therapy of RMS by testing
various metabolic parameters derived from the baseline PET,
including SUVmax, SUVmean, SUVpeak, MTV, and TLG, which
would assist the management of treatment and avoid poor
outcome. In the current literature, we found several studies
have only focused on SUVmax to reveal the role of [18F] FDG
PET/CT in the field of diagnosis, initial staging, and predicting
prognosis of RMS. The findings of these studies are summarized
in Table 4.

With regard to the staging and restaging, [18F] FDG PET/CT
was consistently somewhat better than conventional imaging
at identifying unknown primary sites, nodal involvement, and
distant metastases, especially bone metastases in RMS (8–
12). The primary sites of the RMS are distributed in the
whole body, from head to limbs, with relatively large size at
diagnosis and poor borders with surrounding tissue, which is
not amenable to up-front complete surgical resection of the
primary tumor and results in gross residual disease at the
initiation of chemotherapy. In our study, the primary lesions only
in three patients were limited to the primary sites, and other
patients suffered from lymph nodes and/or distant metastases.
Lymph node metastases were seen in eight patients in our
study, mainly distributing to the neck, mediastinum, hilum,
abdomen, and pelvis. In the previous study, approximately 15%
of patients with RMS have distant metastases at diagnosis (13),
and the molecular hallmark of which is paired box 3 (PAX3)
or PAX7 gene fusion with forkhead box protein O1 (FOXO1)
(4). According to our study, bone was the most common
involved sites in metastatic RMS, and the lung ranked second.
One patient (case 1) showed liver metastases in our study, and
breast (14, 15) and small bowel metastasis (16) were seen in
previous studies.

Complete response at the end of therapy means favorable
outcome for malignant tumors. By contrast, patients with
non-complete response at the end of therapy predicts poor
outcome. Evaluation of therapy response in terms of FDG
activity is superior to that based on the radiological performance,
which may ignore the activity of tumor. Residual masses at
the end of therapy may be reactive scar tissue, mature RMS
that occurs as a result of differentiation of RMS cells during
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TABLE 1 | Clinical characteristics, treatment response, and outcome in the 13 patients with rhabdomyosarcoma.

No. Age Gender

(F/M)

Pathological

type

Clinical

symptom

Therapy Therapy

response

Follow up

time

Outcome after

the second

PET/CT

1 11 y F ERMS Chest pain RT,

chemotherapy

CMR 3.4 y Observation

2 1 y M ERMS Arm pain Surgery,

chemotherapy

CMR 1.5 y Observation

3 2 mo F ERMS Facial mass RT,

chemotherapy

SMD 13 mo Therapy changed,

but the patient

died

4 7 y M ERMS Abdomen pain Surgery,

chemotherapy

CMR 9 mo Observation

5 3 y M ERMS Abdomen pain Chemotherapy CMR 17mo Observation

6 3 y M ERMS Mass in hips Surgery,

chemotherapy

CMR 21 mo Observation

7 12 y F ERMS Mass in toe RT,

chemotherapy

PMR 13 mo Observation

8 8 y F ERMS Abdomen pain RT,

chemotherapy

PMR 6 mo Therapy prolonged

9 13 y M ARMS Arm pain Chemotherapy PMR 7.2 mo Observation

10 4 y M ERMS Abdomen pain RT,

chemotherapy

PMD 5.5 mo Therapy changed

11 4 y F ERMS Abdomen pain RT,

chemotherapy

PMD 6.5 mo Therapy changed,

but the patient

died

12 5 y F ERMS Axillary mass Surgery,

chemotherapy

CMR 7.4 mo Observation

13 11 y M ERMS Mass in hips Surgery,

chemotherapy

SMD 6 mo Therapy prolonged

y, year; mo, month; F, female; M, male; ARMS, alveolar rhabdomyosarcoma; ERMS, embryonal rhabdomyosarcoma; RT, radiation therapy; CMR, complete metabolic response; PMD,

progressive metabolic disease; SMD, stable metabolic disease; PMR, partial metabolic response.

TABLE 2 | Findings of baseline PET/CT in the 13 patients with rhabdomyosarcoma.

No. Primary site Size SUVmax SUVmean SUVpeak MTV (cm3) TLG T Lymph node metastases Distant metastases

1 Mediastinum b 4.9 3.4 4.1 77.2 229.4 T2 Neck, mediastinum, hilum Liver, sternum

2 Upper arm b 5.4 3.8 3.4 37.9 112.3 T1 - -

3 Maxillofacial b 7.1 4.3 6.2 25.0 114.1 T2 - Ilium

4 Intraperitoneal a 7.2 4.6 5.6 196.6 780.2 T1 - -

5 Pelvic b 7.1 4.0 5.9 40.8 160.8 T2 - Lung

6 Hips a 4.3 2.6 3.7 13.7 42.6 T1 - -

7 Toes a 6.4 3.7 5.9 824.8 2969.3 T2 Neck, mediastinum, hilum, abdomen, pelvic Rib, ilium

8 Pelvic b 9.0 4.9 6.4 556.4 3115.8 T2 Neck, mediastinum, abdomen, pelvic Lung

9 Upper arm b 9.2 4.3 6.9 264.6 1202.5 T2 Neck, mediastinum, axillary, elbow, hilum Humerus

10 Pelvic b 15.0 7.3 9.1 496.7 4023.3 T2 Mediastinum, abdomen, pelvic Rib, spine, ilium

11 Pelvic b 12.9 6.9 7.6 319.3 2362.8 T2 Abdomen, pelvic Lung

12 Axillary b 3.9 2.4 3.4 46.1 121.4 T2 Axillary -

13 Hips b 7.0 3.4 5.5 402.9 1814.1 T2 Pelvic, inguen -

Size: a, < 5 cm in diameter; b, ≥ 5 cm in diameter; T, tumor; T1, confined to anatomic site of origin; T2, extension and or/fixative to surrounding tissue; -, no metastatic lesions.

SUVmax , maximum standardized uptake value; SUVmean, mean standardized uptake value; SUVpeak , standardized uptake peak value; MTV, metabolic tumor volume; TLG, total

lesion glycolysis.

therapy, or residual viable tumor (6). Either scar tissue or
mature RMS is non-malignant without and malignant behavior,
which would not need additional therapy immediately. The

data referring to the role of [18F] FDG PET/CT evaluation
of therapy response in RMS are limited (17, 18); worse, the
roles of volume-based and intensity-based PET parameters
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FIGURE 1 | A representative case of an 11-year-old female with rhabdomyosarcoma. Baseline maximum intensity projection (MIP, a), showing hypermetabolic

disease in laterocervical, mediastinal, and hilar lymph nodes, liver, and sternum [maximum standardized uptake volume (SUVmax): 4.9, SUVmean: 3.4, SUVpeak: 4.1,

metabolic tumor volume (MTV): 77.2 cm3, total lesion glycolysis (TLG): 229.4]. PET/CT (b) after therapy showing a complete metabolic response with no

fluoro-deoxyglucose (FDG) uptake in the previous sites. PET/CT (c) for follow-up revealed no FDG uptake lesions.

FIGURE 2 | A representative case of a 13-year-old male with rhabdomyosarcoma. Baseline maximum intensity projection (MIP, a), showing hypermetabolic disease in

laterocervical, mediastinal, axillary, elbow, and hilar lymph nodes and humerus [maximum standardized uptake volume (SUVmax): 9.2, SUVmean: 4.3, SUVpeak: 6.9,

metabolic tumor volume (MTV): 264.6 cm3, total lesion glycolysis (TLG): 1,202.5]. PET/CT (b) after therapy showing a partial metabolic response with

fluoro-deoxyglucose (FDG) uptake lymph nodes in the axillary. PET/CT (c) for follow-up showing metabolic progression of disease with appearance of new lesions.
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TABLE 3 | Comparison of clinical characteristics and metabolic parameters

derived from baseline PET in rhabdomyosarcoma patients regarding to the

therapy response (N = 13).

Patients Therapy response Z/x2 value p

CMR

(n = 6)

Non-CMR

(n = 7)

Age-median

(range)

4 (1–11 y) 8 (2.0

mo−13 y)

−1.076 0.282

Gender-n (%) 0.737 0.592

F 2 (33.3%) 4 (57.1%)

M 4 (66.7%) 3 (42.9%)

Size-n (%) 0.660 0.559

<5.0 cm 2 (33.3%) 1 (14.3%)

≥5.0 cm 4 (66.7%) 6 (85.7%)

SUVmax-

median

(range)

5.2

(3.9–7.2)

9.0

(6.4–15.0)

−2.217 0.027

SUVmean-

median

(range)

3.6

(2.4–4.6)

4.3

(3.4–7.3)

−1.791 0.073

SUVpeak-

median

(range)

3.9

(3.4–5.9)

6.4

(5.5–9.1)

−2.650 0.008

MTV-median

(range, cm3 )

43.5 (13.7–

196.6)

402.9

(25.0–

824.8)

−2.286 0.022

TLG-median

(range)

141.1

(42.6–

780.2)

2362.8

(114.1–

4023.3)

−2.429 0.015

T –n (%) 4.550 0.070

T1 3 (50.0%) 0 (0%)

T2 3 (50.0%) 7 (100%)

Lymph node metastases-n (%) 3.745 0.103

Yes 2 (33.3%) 6 (85.7%)

No 4 (66.7%) 1 (14.3%)

Distant metastases-n (%) 3.745 0.103

Yes 2 (33.3%) 6 (85.7%)

No 4 (66.7%) 1 (14.3%)

Therapy 0.014 0.906

Chemotherapy

only

1 (16.7%) 1 (14.3%)

Surgery/RT+

chemotherapy

5 (83.3%) 6 (85.7%)

T1, confined to anatomic site of origin; T2, extension and or/fixative to surrounding tissue.

F, female; M, male; T, tumor; T1, confined to anatomic site of origin; T2, extension

and or/fixative to surrounding tissue; SUVmax , maximum standardized uptake; SUVmean,

mean standardized uptake value; SUVpeak , standardized uptake peak value; MTV,

metabolic tumor volume; TLG, total lesion glycolysis; RT, radiation; CMR, complete

metabolic response.

including MTV and TLG were not available for the evaluation of
therapy response.

In our study, we observed an inspiring phenomenon that
some patients even diagnosed as RMS with multiple lymph nodes
and distant metastases would experience a complete response
by the end of therapy. By analyses, the clinical characteristics
including age, gender, TNM stage, therapy approaches, and

SUVmean level were not associated with the therapy response at
the end of therapy. SUVmax, SUVpeak, MTV, and TLG on baseline
PET were significant predictors for differentiating CMR from
non-CMR. Lower SUVmax, SUVpeak, MTV, and TLG derived
from the baseline PET were more likely to receive CMR after
therapy (Table 3). SUVmax of primary sites of RMS was quite
different in previous studies, in which it ranged from 0 to 32
(9, 11, 17–22, 24). High SUVmax was more prevalent among
patients with less favorable clinical and pathological features
including unfavorable primary site, alveolar pathology, presence
of regional or distant metastasis, and high-risk group, relating
to worse prognosis (23). However, there exists criticism in
using SUV to evaluate therapy response, since it is calculated
only from one voxel of the ROI. SUVmax only represents the
highest metabolic activity within tumor lesions and easily affected
by noise. SUVmean is calculated from the average SUV value
of the entire tumor, and SUVpeak is the mean SUV of a 1-

cm3 three-dimensional ROI showing the highest value in the
representative lesion. These factors hardly reflect the internal
metabolic characteristics of tumor. MTV refers to the volume
of tumor tissue, and TLG represents the metabolic activity and
metabolic volume of the tumor tissue. Thus, compared to SUV,
MTV and TLG have advantages in reflecting the tumormetabolic
burden, which could provide a more accurate evaluation of
treatment response.

Metabolic parameters derived from baseline PET, such as SUV,
MTV, and TLG, are known to be applicable for evaluating therapy
response in many malignant tumors. In advanced non-small-
cell lung carcinoma, patients with higher values of MTV and
TLG had higher probability of disease progression compared
to those patients presenting with lower values, while SUVmax

did not show a correlation with progressive disease (PD) status.
MTV also resulted in being significantly different among partial
response (PR), stable disease (SD), and PD groups, while SUVmax

was confirmed to not be associated with response to therapy
(25). Besides, some papers have correlated metabolic parameters
derived from the baseline PET to metabolic therapy response. In
locally advanced cervical cancer, patients with higher values of
MTV and TLG had a higher probability of non-CMR compared
to those patients presenting with lower values, while SUVmax

was confirmed to not be associated with response to therapy
(26). Similar findings were available in the mantle cell lymphoma
(27). However, Voglimacci et al. (28) found that higher cervical
SUVmax and TLG were significantly associated with poor
response to chemoradiotherapy. Nakajo et al. (29) reported that
the positive and negative predictive values for non-responders
in esophageal cancer treated by chemoradiotherapy were 77 and
69% in MTV and 76 and 100% in TLG, respectively. On balance,
SUV and other PET/CT metabolic parameters require further
prospective investigation to help tailoring of treatment.

Our study has some limitations: first, the major limitation of
our study is the small sample size, including only 13 patients,
which limits the statistical power of our data for a definite
conclusion and hardly provides cutoff value of differentiating
CMR from non-CMR. Therefore, in the future, if enough cases
of RMS are available, it would be given. Second, patients in
our study did not receive the same treatment approaches, which
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TABLE 4 | Overview of published studies on pediatric rhabdomyosarcoma and [18F] FDG PET/CT.

Study Journal Year Image Patients

number

Purpose Method SUVmax of

primary

sites

Findings

Ben Arush

MW et al.

(10); Ricard

et al. (11);

Dong et al.

(19)

J Pediatr Hematol

Oncol

Clin Nucl Med; Q J

Nucl Med

Mol Imaging

2006;

2011;

2012

PET or

PET/CT

3 cases;

13 cases;

28 cases

Staging

and

restaging

SUVmax -; 3.7

(range,2.0–

6.9); 6.0

(range,

1.4–22.6)

PET/CT can be useful in staging and

restaging pediatric RMS, especially for

assessing lymph nodes and bone

involvement, and for detecting unknown

primary sites of RMS, with potential

therapeutic strategy alteration.

Klem et al.

(20)

J Pediatr Hematol

Oncol

2007 PET/CT 31 cases Staging Comparison

with CIMs;

SUVmax

6.4 (range,

2.4–12.7)

CIMs was equivocal with PET for the

detection of regional or distant spread.

Comparing to the final clinical

determination of disease, PET was 77%

sensitive and 95% specific.

Federico et al.

(9); Eugene

et al. (17);

Tateishi et al.

(12); Völker

et al. (21)

Pediatr Blood

Cancer; Nucl

Med Commun;

Ann Nucl Med;J

Clin Oncol

2013;

2012;

2009;2007

PET/CT;

PET

17 cases;

13 cases;

35 cases;

12 cases

Staging Comparison

with CIMs;

SUVmax

7.2 (range,

2.5–19.2); 6.2

± 3.8 (range,

2.7–15.4); –;

7.0 ± 3.4

PET/CT performed better than CIM in

identifying nodal, bone, bone marrow, and

soft tissue disease in children with RMS.

CIM remains essential for detection of

pulmonary nodules.

Dharmarajan

KV et al. (18)

Int J Radiat Oncol

Biol Phys

2012 PET 97 cases Predicting

local

control

SUVmax 7.0 (range,

0–31)

Negative postradiation PET predicted

improved LRFS. Negative baseline and

preradiation PET findings suggested

statistically insignificant trends toward

improved LRFS.

Casey DL

et al. (22)

Int J Radiat Oncol

Biol Phys

2014 PET 107 cases Predicting

outcome

SUVmax 8.1 (range,

0–22)

The baseline SUVmax (<9.5 vs. ≥9.5) was

predictive of PFS and OS, but not LC. The

SUVmax after induction chemotherapy

(<1.5 vs. ≥1.5) was similarly predictive of

PFS and was associated with LC and OS.

A positive PET after local therapy was

predictive of worse PFS, LC, and OS.

El-Kholy et al.

(23); Baum

et al. (24)

Nucl Med

Commun; J Nucl

Med

2019;

2011

PET/CT 98 cases;

41 cases

Predicting

outcome

Visual

analysis;

SUVmax;

SUVmax/SUVliver

- High SUVmax was more prevalent among

patients with less favorable clinical and

pathological features including unfavorable

primary site, alveolar pathology, presence

of regional or distant metastasis, and

high-risk group. Higher SUVmax was

significantly related to the presence of

regional or distant metastasis with worse

prognosis.

-, not provided.

SUVmax , maximum standardized uptake; RMS, rhabdomyosarcoma; ARMS, alveolar rhabdomyosarcoma; CIMs, conventional imaging modalities; OS, overall survival; PFS,

progression-free survival; LC, local control; LRFS, local relapse-free survival.

would influence the final findings of this study. Third, the present
study would not be able to provide the relationship of initial FDG
uptake and survival because the follow-up periods were too short
to reliably assess survival.

In summary, [18F] FDG PET/CT seems to be useful in staging
RMS patients, and metabolic parameters extracted from baseline
PET/CT have potential value in distinguishing CMR from
non-CMR, which is worth to select therapy-sensitive patients.
Additional prospective validation studies in a multicenter cohort
are required for further understanding of the role of metabolic
parameters extracted from baseline PET/CT in RMS.
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Epileptiform discharges are of fundamental importance in understanding the physiology

of epilepsy. To aid in the clinical diagnosis, classification, prognosis, and treatment

of epilepsy, it is important to develop automated computer programs to distinguish

epileptiform discharges from normal electroencephalogram (EEG). This is a challenging

task as clinically used scalp EEG often contains a lot of noise and motion artifacts.

The challenge is even greater if one wishes to develop explainable rather than

black-box based approaches. To take on this challenge, we propose to use a multiscale

complexity measure, the scale-dependent Lyapunov exponent (SDLE). We analyzed

640 multi-channel EEG segments, each 4 s long. Among these segments, 540 are

short epileptiform discharges, and 100 are from healthy controls. We found that

features from SDLE were very effective in distinguishing epileptiform discharges from

normal EEG. Using Random Forest Classifier (RF) and Support Vector Machines (SVM),

the proposed approach with different features from SDLE robustly achieves an accuracy

exceeding 99% in distinguishing epileptiform discharges from normal control ones. A

single parameter, which is the ratio of the spectral energy of EEG signals and the

SDLE and quantifies the regularity or predictability of the EEG signals, is introduced to

better understand the high accuracy in the classification. It is found that this regularity is

considerably greater for epileptiform discharges than for normal controls. Robustly having

high accuracy in distinguishing epileptiform discharges from normal controls irrespective

of which classification scheme being used, the proposed approach has the potential to

be used widely in a clinical setting.

Keywords: EEG, epileptiform discharges, power spectral density (PSD), scale-dependent Lyapunov exponent

(SDLE), random forest classifier, support vector machine (SVM)
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1. INTRODUCTION

Epilepsy is a common disorder of the brain (Li et al., 2019).
Approximately 8–10% of people would experience an epileptic
seizure during their lifetime (Gavvala and Schuele, 2016). In
adults, the risk of the recurrence of seizure within the 5 years
following a new-onset or a second seizure is 35 and 75%,
respectively (Gavvala and Schuele, 2016). These percentages are
even higher in children, with 50% of the recurrence within the
5 years following a single unprovoked seizure, and 80% after
two unprovoked seizures (Camfield and Camfield, 2015). In the
United States in 2011, about 1.6 million seizure patients made
emergency department visits; approximately 25% of these visits
were for new-onset seizures (Gavvala and Schuele, 2016). The
exact incidence of epileptic seizures in low-income and middle-
income countries is unknown, however it is speculated to exceed
that in high-income countries (Ba-Diop et al., 2014).

Electroencephalography (EEG) provides a continuous
measure of cortical function with excellent time resolution,
and thus remains the primary diagnostic test of brain
function, especially in those with epileptic seizures, even
though new functional imaging procedures such as functional
MRI (fMRI), single-photon emission computed tomography
(SPECT), and positron emission tomography (PET) have
been increasingly used for assessing anatomical changes in
the brain. EEG is especially valuable in investigating patients
with known or suspected seizures or encephalopathy. Seizures
are however infrequent events in the majority of patients
in an outpatient setting, making recording of ictal EEG
time-consuming and labor intensive. So far, the mainstay of
diagnosis remains to detect interictal (i.e., between seizures)
epileptiform discharges. Therefore, epileptiform discharges are
of fundamental importance in understanding the physiology of
epilepsy. To aid in the clinical diagnosis, classification, prognosis,
and treatment of epilepsy, it is critical to develop automated
computer programs to distinguish epileptiform discharges from
normal EEG.

Many methods have been developed to study EEG. Simple
but important features of EEG include the amplitude values
(Toet et al., 2005) and the Power Spectral Density (PSD)
(Gao et al., 2007). Using wavelet transform is also a popular
approach (Adeli et al., 2003; Subasi, 2007; Faust et al.,
2015; Chen et al., 2017). Clinically, however, neurologists
still rely heavily to visually examine the long continuous
EEG signals. Unfortunately, this approach is time-consuming
and prone to error due to human fatigue. This issue has
motivated much effort to develop automated algorithms to
detect epileptiform discharges or other features from EEG
(Sharmila and Geethanjali, 2019). Among the notable works
along this line are to use entropy (Nicolaou and Georgiou,
2012; Arunkumar et al., 2016, 2017) and complexity measures
(Gao et al., 2011, 2012b; Martis et al., 2015; Medvedeva
et al., 2016; Pratiher et al., 2016; Sikdar et al., 2018).
The majority of the works published are however based on
electrocorticogram (ECoG), which is invasively obtained by
directly attaching electrodes to the cerebral cortex (Wang
et al., 2019). Clinically, the more widely available form of

EEG is the non-invasive scalp EEG. Compared with ECoG,
scalp EEG signals are much poorer in terms of signal-to-noise
ratios (Haufe et al., 2018). Scalp EEG recordings also contain
various kinds of artifacts (Islam et al., 2016; Brienza et al.,
2019), including eye movements (e.g., blinks), muscle activities
(e.g., swallowing, head movements), and the heartbeat (Kappel
et al., 2017). These noise and artifacts exacerbates greatly the
difficulty in automatically detecting epileptiform discharges from
normal controls. Although machine learning based approaches
(Mirowski et al., 2008; Shen et al., 2009; Antoniades et al.,
2016; Kuswanto et al., 2017; Ullah et al., 2018; van Putten
et al., 2018; Subasi et al., 2019) can partly solve some of these
problems, overall, the problem remains largely open, especially
with regard to the development of explainable non-black-box
based approaches.

In this paper, we propose to use scale-dependent Lyapunov
exponent (SDLE) to develop a readily explainable approach
to automatically detect epileptiform discharges from normal
controls. SDLE is a multiscale complexity measure developed
to unambiguously distinguish chaos from noise, and more
fundamentally to automatically characterize the defining
parameters/properties of complex data (Gao et al., 2006, 2007).
SDLE stems from two important concepts, the time-dependent
exponent curves (Gao and Zheng, 1993, 1994a,b; Gao, 1997)
and the finite size Lyapunov exponent (Torcini et al., 1995;
Aurell et al., 1996, 1997). SDLE was first introduced in Gao
et al. (2006, 2007), and has been further developed in Gao
et al. (2009, 2012a) and applied to characterize ECoG (Gao
et al., 2011), HRV (Hu et al., 2009, 2010), financial time series
(Gao et al., 2013), Earth’s geodynamo (Ryan and Sarson, 2008),
precipitation dynamics (Fan et al., 2013), sea clutter (Hu and
Gao, 2013), THz imagery (Blasch et al., 2012), and randomness
(Li et al., 2016). We will show that the proposed approach is
very accurate in distinguishing epileptiform discharges from
normal controls.

The remainder of the paper is organized as follows. In
section 2, we briefly describe the EEG data and analysis methods.
In section 3, we present analysis results. In section 4, we
summarize our findings.

2. MATERIALS AND METHODS

2.1. Data
The scalp EEG data analyzed here were clinically obtained at
the First Affiliated Hospital to Guangxi Medical University.
The studies involving human participants were reviewed and
approved by the ethics committee of the First Affiliated Hospital
to Guangxi Medical University. The participants provided their
written informed consent to participate in this study. Fifty-nine
epilepsy patients underwent a 3-h video-EEG monitoring with
19-channel EEG recording with electrodes placed on the scalp
under the international 10–20 system at 256 Hz sampling rate.
The electrode impedances were kept below 10K�. The 19 scalp
electroencephalographic electrodes were arranged according to
the names Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1, and O2. Since the information yielded by an EEG
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channel is essentially the difference of electrical activity between
two electrodes in the time-domain (Pardey et al., 1996; Lopez
et al., 2016), the amplitude, frequency, and synchronization of
the brain waves and background will change (Seeck et al., 2017;
Vanherpe and Schrooten, 2017), depending on which montage
is chosen (e.g., earlobe reference, averaged reference, or bipolar;
Christodoulakis et al., 2013; Geier and Lehnertz, 2017; Rana et al.,
2017; Acharya and Acharya, 2019; Rios et al., 2019). In this work,
we choose the widely used earlobe reference.

All epileptiform discharges were annotated by an experienced
clinical neurophysiologist based on the average montage with an
analog bandwidth of 0.1∼70 Hz and a notch filter of 50 Hz. EEG
signals were segmented into 4 s epochs, with each epoch assigned
a random number. The collected epochs were transformed into
European Data Format (EDF) for further analysis. In total, there
were 532 EEG recordings of epileptiform discharges and 100
healthy controls, each 4 s long, from all the participants. Among
the 532 short epileptic discharges, there were 69 spike waves,
82 sharp waves, 174 spike and slow wave complexes, 72 sharp
and slow wave complexes, 64 polyspike complexes, 77 polyspike,
and slow wave complexes and 2 spike rhythmic discharges. Note
the numbers for these seven epileptiform discharges sum up
to 540, which is slightly larger than 532. The reason is a few
discharges were considered to simultaneously belong to more
than 1 of the 7 different epileptiform discharges. For convenience
of referencing, the definitions for these 7 epileptiform discharges
are given below, together with the number of cases analyzed for
each type indicated in the parentheses immediately following
each terminology. Examples of their waveforms are shown in
Figure 1.

• Spike wave (69): the most basic paroxysmal EEG activity, with
a duration of 20∼70ms; amplitude varies but typically>50 uV
(Kane et al., 2017).

• Sharp wave (82): a transient wave similar to the spike and
clearly distinguishable from background activity; its time limit
is 70∼200 ms (5∼14 Hz), amplitude is between 100 and 200
uV , and the phase is usually negative.

• Spike and slow wave complex (174): pattern consisting of a
spike followed by a slow wave (classically the slow wave being
of higher amplitude than the spike); may be single or multiple
(Kane et al., 2017).

• Sharp and slow wave complex (72): pattern consisting of a
sharp followed by a slow wave (classically the slow wave being
of higher amplitude than the sharp); may be single or multiple
(Kane et al., 2017).

• Polyspike complex (64): a sequence of two or more spikes.
• Polyspike and slow wave complex (77): pattern with two or

more spikes associated with one or more slow waves.
• Spike rhythm (2): a rare pattern of widespread 10∼25Hz spike

rhythm outbreak, with an amplitude of 100∼200 uV and the
highest voltage in the frontal area, lasting more than 1 s.

Recall that a few epileptiform discharge waveforms were
considered to simultaneously belong to more than 1 of these
7 different epileptiform discharges. Because of this, we will not
pursue the issue of further characterizing the differences among
the 7 epileptiform discharges here.

FIGURE 1 | Typical waveforms of the 7 major epileptiform EEG, where (A-G),

denotes spike wave, spike and slow wave complex, sharp wave, sharp and

slow wave complex, polyspike complex, polyspike and slow wave complex,

spike rhythm discharges, respectively.

2.2. Computation of Power Spectral
Density (PSD)
PSD of EEG can be readily obtained by taking Fourier transform
of the EEG signal, computing the square of the amplitude of the
transform to obtain the power, and finally plotting the power
against the frequency. In clinical applications, brain waves are
often categorized into five bands: delta (0.5∼ 3Hz), theta (4∼7
Hz), alpha (8∼13 Hz), beta (14∼30 Hz), and gamma (>30 Hz),
respectively. To obtain the energy of these waves, one only needs
to integrate the PSD curve over the respective wave band. In this
work, we integrate the PSD curve for frequencies between 0.5 and
25 Hz for the 10 electrodes with the strongest signals, and then
take the average.

2.3. Computation of the SDLE
As with the estimation of PSD, for each subject, we picked up 10
strongest EEG signals from 19 electrodes, computed SDLE from
each one of the 10 EEG signals, and took the average.

To compute SDLE, we first need to reconstruct a phase space
from the EEG signals. Denote the signal as x(i), i = 1, · · · , n, we
construct vectors

Vi = [x(i), x(i+ L), ..., x(i+ (m− 1)L)], (1)
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where m is called the embedding dimension and L the delay
time. In practice, m and L have to be chosen properly. This
is the issue of optimal embedding. For example, to reconstruct
the phase plane of a harmonic oscillator from a sinusoidal
signal, the optimal delay time is 1/4 of the period (Gao et al.,
2007). Extensive works have been done to optimally determine
m and L. Two of the most systematic and most extensively
tested approaches are a statistical method called the false nearest
neighbor method (Kennel et al., 1992) and a dynamical method
based on time-dependent exponent curves developed by Gao
and Zheng (1993, 1994a,b). The basic idea of the latter is to
choose L in such a way that the motion in the reconstructed
phase space is as uniform as possible (in the case of a harmonic
oscillator, the reconstructed phase plane is an ellipse, which
becomes a circle when L is 1/4 of the period; motion on the circle
is the most uniform when compared with motions on ellipses).
This is achieved by requiring divergence characterized by time-
dependent exponent curves be a minimum when L is varied, and
the divergence does not become much larger when m is further
increased. This is the method that is employed here. For the
EEG signals analyzed in this work, which was sampled with a
sampling frequency of 256 Hz, we found L = 1 is optimal. With
larger sampling frequency, L also has to be larger. For example,
when the sampling frequency is 1,024 Hz, L then needs to be
4. As our EEG signal is not that long (4 s, or 1,024 points),
we also found that m = 2 worked very well. After the phase
space is reconstructed, we consider an ensemble of trajectories.
We denote the initial separation between two nearby trajectories
by ǫ0, and their average separation at time t and t + 1t by ǫt

and ǫt+1t , respectively. The trajectory separation is schematically
shown in Figure 2. Note ǫt+1t is not necessarily larger than ǫt .
We then examine the relation between ǫt and ǫt+1t , where 1t is
small. When 1t → 0, we have,

ǫt+1t = ǫte
λ(ǫt)1t , (2)

where λ(ǫt) is the SDLE given by

λ(ǫt) =
ln ǫt+1t − ln ǫt

1t
. (3)

With the above definition, we can readily compute SDLE using
the vectors defined by Equation (1). Specifically, we check
whether pairs of vectors (Vi,Vj) satisfy the following Inequality:

ǫi ≤ ‖Vi − Vj‖ ≤ ǫi + 1ǫi, i = 1, 2, 3, · · · , (4)

where ǫi and 1ǫi are prescribed small distances. Geometrically,
a pair of ǫi and 1ǫi defines a shell, with the former being the
diameter of the shell and the latter the thickness of the shell
(which reduces to a ball with radius 1ǫk when ǫk = 0; in a 2-
D plane employed here, a ball is a circle described by (xi − a)2 +
(xi+1−b)2 = r2, where (a, b) is the center of the circle, and r is the
radius). We then monitor the evolution of all such vector pairs
(Vi,Vj) within a shell and take the ensemble average over the

FIGURE 2 | A schematic showing two arbitrary trajectories in a general

high-dimensional space, with the distance between them at time 0, t, and

t+ δt being ǫ0, ǫt, and ǫt+δt, respectively.

indices i, j. Since we are most interested in exponential or power-
law functions, we assume that taking logarithm and averaging can
be exchanged, then Equation (3) can be written as

λ(ǫt) =
ln

〈

‖Vi+t+1t − Vj+t+1t‖

〉

− ln
〈

‖Vi+t − Vj+t‖

〉

1t

≈

〈

ln ‖Vi+t+1t − Vj+t+1t‖ − ln ‖Vi+t − Vj+t‖

〉

1t
(5)

where t and 1t are integers in units of the sampling time, the
angle brackets denote the average over indices i, j within a shell.

Note
〈

‖Vi+t+1t−Vj+t+1t‖

〉

and
〈

‖Vi+t−Vj+t‖

〉

amount to ǫt+1t

and ǫt , respectively. For EEG signals, the most relevant scaling
law for SDLE is

λ(ǫ) ∼ −γ ln ǫ, (6)

where γ determines the speed of loss of information.
To make the computation of SDLE readily repeated by

other researchers, and more importantly, to enable different
researchers to readily compare their results, we recommend to
use the size of the first shell by 1/

√
10 of the standard deviation of

the EEG signal, and successive shells shrink by a factor of 1/
√
2.

Altogether, we used four shells, and then took the average of the
four SDLE curves.

2.4. Random Forest Classifier (RF)
Random forest (RF) is a learning technique for classification
based on ensembles (Cutler et al., 2012). It is not affected by
overtraining, does not require normalization of the input data,
and has high accuracy. It uses many separate classification trees.
Each tree is obtained through a separate bootstrap sample from
the data set and classifies the data. A majority vote among the
trees provides the final result.
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The objective of the RF classifier used here is to classify
which of the two classes an EEG signal belongs to: normal or
epileptiform discharges. The inputs to the RF classifier are the
PSD and a feature extracted from the SDLE curve. Following
usual practice, we have randomly taken one-third of the total data
as testing data and two-thirds of the data for training the model
in this paper.

2.5. Support Vector Machine (SVM)
Support Vector Machine (SVM) is a popular machine learning
method for pattern classification (Cristianini and Shawe-Taylor,
2000). It has been widely used in biomedical applications. It aims
to find a hyperplane in an N-dimensional space (N, the number
of features) that maximizes the distance between two classes of
points. Hyperplanes are decision boundaries that help classify the
data points. Data points falling on either side of the hyperplane
can be attributed to the two different classes. The dimension
of the hyperplane depends upon the number of features. If the
number of input features is 2, then the hyperplane is just a line.
If the number of input features is 3, then the hyperplane is a
two-dimensional plane. When the number of features exceeds
3, it becomes difficult to imagine the shape of the hyperplane,
nevertheless, it can be readily computed.

2.6. Evaluation of Performance
The consistency between the diagnosis by the neurologists
and machine classification needs to be quantified. This can be
accomplished by computing the receiver operating characteristic
(ROC) curve and many statistics derived from the ROC curve.
A good understanding of these metrics can be based on the
confusion matrix, which is a table with two rows and two
columns that reports the number of false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN).
From them we can define three major metrics:

sensitivity =
TP

TP + FN
(7)

specificity =
TN

TN + FP
(8)

accuracy =
TP + TN

TP + FP + TN + FN
(9)

Note that the sensitivity is also called true positive rate (TPR) and
1− specificity is also called false positive rate (FPR).

The ROC is a plot of TPR vs. FPR using different threshold
values as a sweeping variable. The ROC is a good way to
characterize imbalanced data sets, as it does not suffer from
class imbalance. The area below the ROC is called area under
curve (AUC). Its value takes from 0 to 1. A value of AUC being
0.5 means the classification model has no predictive ability at
all. On the other hand, when the value of AUC reaches 1, the
prediction ability is 100%. This is equivalent to the ROC being
a unit step function.

3. RESULT

We mentioned that for each subject, to compute the SDLE
curves, we chose from the 19 electrodes 10 strongest EEG signals,

computed the SDLE curves from each EEG signal, then took
the average. For each EEG signal, we reconstructed a phase
space with m = 2, L = 1, then computed 4 ln ǫt vs. t curves
corresponding to 4 shells, with the diameter of the largest shell
being 1/

√
10 of the standard deviation of the EEG signal, and

successive shells shrinking by a factor of 1/
√
2. Eight typical

ln εt vs. t curves for epileptiform discharges and normal EEG
corresponding to these four shells were shown in Figure 3. For
simplicity, we call these error growth curves. Note the classic
algorithm of computing the Lyapunov exponent amounts to
assuming ǫt ∼ ǫ0e

λ1t , where λ1 is the largest positive Lyapunov
exponent, and estimating λ1 by (ln ǫt−ln ǫ0)/t (Wolf et al., 1985).
This clearly is inappropriate here since ln ǫt does not increase
with t linearly. In other words, small variations in EEG signals did
not really grow exponentially. This difficulty is readily overcome
with SDLE, since the latter is the local slopes of such error
growth curves, which are always well-defined. The SDLE curves
corresponding to the error growth curves of Figure 3were shown
in Figure 4. There are 4 SDLE curves here, corresponding to 4
shells chosen. The left-most curve corresponds to the smallest
shell, while the right-most curve corresponds to the largest shell
(they often are indistinguishable on larger scales). The most
salient feature of these SDLE curves is the scaling behavior
described by Equation (6).

It would be desirable to combine the 4 SDLE curves into
a single curve. The most rigorous way to estimate the SDLE
at a specific scale ǫ∗ is to first interpolate each SDLE curve
to that scale so that it has a value there, then average the 4
SDLE curves at ǫ∗ using the number of pairs of vectors in each
shell as the weights. For simplicity, one could also first align
the 4 SDLE curves with the left-most curve, and then simply
take the arithmetic average (in cases where the 4 curves are
indistinguishable, then this alignment operation is unnecessary).
To make the proposed method easier to reproduce, we adopted
this simplified approach here. For the purpose of distinguishing
epileptiform discharges from normal controls, we focused on
three SDLEs λ(ǫ1), λ(ǫ2), and λ(ǫ3) at three specific scales ǫ1, ǫ2,
and ǫ3, and their average, which was denoted as λ(ǫ). The three
scales ǫ1, ǫ2, and ǫ3 were specifically indicated in Figures 3A, 4A.
These scales correspond to the smallest, intermediate, and
boundary scales where the scaling law of Equation (6) holds.

To appreciate how well SDLEs can be used to distinguish
epileptiform discharges from normal controls, we formed scatter
plots with PSD and SDLEs, where PSD was obtained using
Fourier transform, as we explained earlier. The scatter plots with
PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD and λ(ǫ) were shown
in Figures 5–7, respectively. We observe that in all these three
cases, the separation between all seven types of epileptiform
discharges and the normal control was excellent. Therefore, we
can expect that the classification accuracy will be very high.
Below, we specifically evaluate the performance of these three
algorithms, which use PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD
and λ(ǫ), respectively.

To compute the classification accuracy, we employed RF and
SVM. We randomly took two-thirds of the data as the training
data and the remaining one-third of the total data as the testing
data. The class distribution of the samples in the training and
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FIGURE 3 | Typical ln εt vs. t curves for epileptiform discharges and normal EEG, where the four curves correspond to four different shells, with the diameter of the

largest shell being 1/

√

10 of the standard deviation of the EEG signal, and successive shells shrinking by a factor of 1/

√

2. (A–H) illustrates the different between the

seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and

slow wave complex, spike rhythm discharges) and normal EEG.

testing data set is summarized in Table 1. The test performance
of the classifier can be determined by computing the metrics
defined in section 2.6. The confusion matrix in Table 2 for
Algorithm 1, which used PSD and λ(ǫ1), showed that 1 out of 34
normal subjects was classified incorrectly by the two classification
algorithms RF and SVM as the epileptiform discharge, and 1 out
of 180 epileptiform discharges was classified incorrectly as the
normal subject by RF and SVM. Algorithm 2, which used PSD

and λ(ǫ2), was even better, which only misclassified 1 out of 180
epileptiform discharges as a normal subject by the RF, but without
any other errors (the classification accuracy remained the same
as that for Algorithm 1 when SVM is used). Algorithm 3, which
used PSD and λ(ǫ), was also excellent, which only misclassified
1 out of 34 normal subjects as an epileptiform discharge, but
without any other errors for both RF and SVM. These were
also summarized in Table 2. With these confusion matrices, we
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FIGURE 4 | Typical λ(ǫ) vs. ln ǫ curves for epileptiform discharges and normal EEG. The four curves represented in four different colors correspond to the error growth

curves shown in Figure 3. (A–H) illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave,

sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG.

computed Sensitivity, Specificity, and Accuracy of these three
algorithms. They were listed in Table 3. We find that all the three
algorithms are excellent, with their accuracy all exceeding 99%,
for both classification schemes RF and SVM.

The amazing performance of these methods can be further
corroborated by the unit step function like ROC curves shown
in Figure 8. To facilitate comparison of our algorithms with that
of Anh-Dao et al. (2018), which achieved a high AUC of 0.945,
we also listed the AUC for the three algorithms proposed here in
Table 3. The AUC of the three algorithms proposed here ranges

from 0.9727 to 0.9980, and therefore, are all considerably better
than that of Anh-Dao et al. (2018).

4. CONCLUSION AND DISCUSSION

In this paper, we have proposed to employ SDLE for
distinguishing epileptiform discharges from normal EEGs, with
the aim of being able to use them conveniently in a clinical
setting. We found that SDLE computed from scalp EEG
signals was mainly characterized by a scaling law described by
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FIGURE 5 | Scatter plots with PSD and λ(e1), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

Equation (6). When the scale parameters were confined to where
this scaling law held, SDLE was very effective in distinguishing
epileptiform discharges from normal EEG. Using RF and SVM,
the proposed approach with different features from SDLE
was found to robustly achieve an accuracy exceeding 99% in
distinguishing epileptiform discharges from normal control ones.

What is the reason that the choice of concrete classification
schemes such as RF or SVM is not critical for the proposed
approach to have high accuracy in distinguishing epileptiform

discharges from normal control ones? It has to be because
of the excellent separations revealed by the scatter plots
shown in Figures 5–7. To better understand the explainability
of the proposed approach, we need to understand better
the meaning of the SDLE. The definition of SDLE is
equivalent to

ln ǫt = ln ǫ0 +

∫ t

0
λ(ǫt)dt. (10)
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FIGURE 6 | Scatter plots with PSD and λ(e2), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

Letting ǫTdb = 2ǫ0, we find the error doubling time Tdb given by

ln 2 =

∫ Tdb

0
λ(ǫt)dt. (11)

As the first approximation, we may consider 1/λ(ǫ) to
be proportional to the error doubling time (Gao et al.,
2009). This understanding motivates us to combine the two
parameters PSD and SDLE into a single parameter such as

PSD/λ(ǫ1). Since on average PSD is larger but λ(ǫ1) (as
well as λ(ǫ2) and λ(ǫ), as shown in Figures 5–7 is smaller
for epileptiform discharges than for normal control ones,
we can expect that this ratio will be on average larger for
epileptiform discharges. In fact, this ratio can be regarded as a
measure of the regularity or predictability of EEG signals, since
large PSD stems from synchronized firing of neurons, while small
SDLE highlights slow divergence and thus considerable regularity
and predictability.
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FIGURE 7 | Scatter plots with PSD and λ(ǫ), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

TABLE 1 | Class distribution of the samples in the training and testing data sets.

Classes Training set Testing set Total

Normal controls 66 34 100

Epileptiform discharges 360 180 540

Total 426 214 640

Now the question is whether such a single parameter can
effectively distinguish normal control ones from epileptiform
discharges. For this purpose, we have computed the probability

density distribution (PDF) for PSD/λ(ǫ1) of the epileptiform
discharges and the normal control ones. The results are shown
in Figure 9 as the blue and the red curves, respectively. The
overlapping of the blue and the red curves defines a right and
a left tail for the blue and the red curves; the corresponding
probabilities for them are 1.39 and 4.19%, as indicated in the
plot. They correspond to the probability that a normal control
one may be misclassified as an epileptiform discharge and vice
versa. As the classification accuracy with the scheme based on
a single parameter will not be higher than that based on two
parameters, we can readily understand that the probabilities of
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1.39 and 4.19% are the lower bounds that a normal control may
be misclassified as epileptiform discharges, and vice verse. This is
surely consistent with the probabilities shown inTable 3 (the case
for Algorithm 1). As these misclassification probabilities are very
low, we thus can be confident that the proposed approach will
always be very accurate in distinguishing epileptiform discharges

TABLE 2 | Confusion Matrix for the testing data of 180 epileptiform discharges

and 34 normal controls: Algorithms 1, 2, 3 use PSD and λ(ǫ1), PSD and λ(ǫ2),

PSD and λ(ǫ), respectively.

Classifier Algorithms Result Epileptiform

discharges

Healthy

controls

RF Algorithm 1 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 2 Epileptiform discharges 179 1

Healthy controls 0 34

Algorithm 3 Epileptiform discharges 180 0

Healthy controls 1 33

SVM Algorithm 1 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 2 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 3 Epileptiform discharges 180 0

Healthy controls 1 33

TABLE 3 | Classification performance measures.

Classifier Algorithms Sensitivity (%) Specificity

(%)

Accuracy

(%)

AUC

RF Algorithm 1 99.44 97.06 99.07 0.9784

Algorithm 2 99.44 100.00 99.53 0.9980

Algorithm 3 100.00 97.06 99.53 0.9953

SVM Algorithm 1 99.44 97.06 99.07 0.9766

Algorithm 2 99.44 97.06 99.07 0.9727

Algorithm 3 100.00 97.06 99.53 0.9953

from normal control ones, no matter what classification schemes
are used for classification.

It is interesting to note that if we choose SDLE corresponding
to larger scales, such as ǫ3 indicated in Figures 3A, 4A, an
algorithm based on PSD and λ(ǫ3) would be slightly worse
than the three algorithms discussed here, but still slightly
better than that of Anh-Dao et al. (2018). This suggests
the importance of properly selecting the scale for analysis.
On the other end, if we use a three parameter method,
for example, using PSD, λ(ǫ), and ǫ∞ (which characterizes
the size of an attractor and amounts to the largest scale
in Figure 3), then the accuracy in distinguishing epileptiform
discharges from normal controls can be further improved to
100%. The reason is that ǫ∞ contains information independent
of PSD and SDLE. However, we had not further pursed
the issue of improving the accuracy here, since the high
accuracy achieved by the easily explainable algorithms presented
is already more than satisfying. Overall, our analysis highly

FIGURE 9 | The probability density distribution (PDF) for the ratio PSD/λ(ǫ1) of

the epileptiform discharges (red curve) and normal control ones (blue curve).

The overlapping of the blue and the red curves defines a right and left tail for

the blue and red curves, respectively; the corresponding probabilities for them

are 1.39 and 4.19%, as indicated in the plot.

FIGURE 8 | The ROC curves for the testing data: (A–C) are for algorithms using PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD and λ(ǫ), respectively.
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suggests that the proposed approach is very promising to be
used clinically.

It is worth noting that the epileptiform discharges analyzed
here were provided by our collaborators at Guangxi Medical
University in two batches: in the first batch, which was about
2/3 of the data analyzed here, the accuracy was similar to that
reported here. Then another 1/3 of the data were given to us to
further examine whether the accuracy remained as high. It was
yes. Nevertheless, the data analyzed here were still quite limited.
It would be interesting and important to further validate the
proposed approaches with more data in different clinical sets.

Brain activities involve spatial-temporal coordinated
dynamics of numerous neurons in different regions of the brain,
i.e., involve numerous functional brain networks. To better
characterize the synergistic effects among the brain networks, it
is important to construct brain networks based on multi-channel
EEG signals. Closely related to this network issue is to infer
the localization of each type of epileptiform discharges, which
is of great clinical importance. These issues have not been
pursued in this work, which is obviously a serious limitation
of the current study. In the near future, we will examine
these issues systematically, especially from the viewpoint of
synthesizing network analysis with nonlinear analysis based on
complexity science.
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Background: The grading and pathologic biomarkers of glioma has important guiding
significance for the individual treatment. In clinical, it is often necessary to obtain tumor
samples through invasive operation for pathological diagnosis. The present study aimed
to use conventional machine learning algorithms to predict the tumor grades and
pathologic biomarkers on magnetic resonance imaging (MRI) data.

Methods: The present study retrospectively collected a dataset of 367 glioma patients,
who had pathological reports and underwent MRI scans between October 2013 and
March 2019. The radiomic features were extracted from enhanced MRI images, and
three frequently-used machine-learning models of LC, Support Vector Machine (SVM),
and Random Forests (RF) were built for four predictive tasks: (1) glioma grades, (2) Ki67
expression level, (3) GFAP expression level, and (4) S100 expression level in gliomas.
Each sub dataset was split into training and testing sets at a ratio of 4:1. The training
sets were used for training and tuning models. The testing sets were used for evaluating
models. According to the area under curve (AUC) and accuracy, the best classifier was
chosen for each task.

Results: The RF algorithm was found to be stable and consistently performed better
than Logistic Regression and SVM for all the tasks. The RF classifier on glioma grades
achieved a predictive performance (AUC: 0.79, accuracy: 0.81). The RF classifier also
achieved a predictive performance on the Ki67 expression (AUC: 0.85, accuracy: 0.80).
The AUC and accuracy score for the GFAP classifier were 0.72 and 0.81. The AUC and
accuracy score for S100 expression levels are 0.60 and 0.91.

Conclusion: The machine-learning based radiomics approach can provide a non-
invasive method for the prediction of glioma grades and expression levels of multiple
pathologic biomarkers, preoperatively, with favorable predictive accuracy and stability.
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INTRODUCTION

Gliomas are the most common brain tumors and are often
classified as World Health Organization (WHO) grades I-IV,
depending on the different tumor cells, and the degree of
abnormality (1, 2). As a tumor’s grade increases, gliomas
process more aggressively (3). Treatment options and responses
differ from glioma grades (4). Pathological findings are the
premise of rational treatment. Usually, glioma grades are
confirmed by pathological examination during surgery or
biopsy (5). Then, a following immunohistochemistry (IHC) test
determines the molecular biomarkers of tumor tissues at the
microscopic level. These pathologic biomarkers, typical proteins,
are useful indicators for diagnosis, prognosis, or treatment
response (6). However, obtaining such information for gliomas
requires invasive approaches. The surgical decision making
could be difficult and time-consuming for many patients. Those
patients who are not eligible for a surgery or seek non-
surgical treatment may have limited treatment options without
pathological guidance. Therefore, presurgical glioma grades and
the expression of biomarkers are valued and preferred with
non-invasive approaches.

At present, the medical imaging can differentiate the tumor
phenotype and intra-tumor heterogeneity (7). Conventional
magnetic resonance imaging (MRI) is routinely used in the
diagnosis and management of glioma patients. T1-weighted
contrast-enhanced MRI (T1C) is the current standard for
initial brain tumor imaging (8). Radiomics can generate image
features with high dimensional data from the intensity histogram,
geometry and texture analyses on the entire tumor volume (9).
With the emergence of Artificial Intelligence (AI) technologies,
advanced informatics tools have become accessible to facilitate
machine learning (ML) based radiomics applications using image
features as the data source (10). Radiomics is gaining ground in
oncology and have the potential to accurately classify or predict
tumor characteristics.

Radiomics approaches have been applied for the predictions
of glioma grades or differential diagnoses (11, 12). Several studies
have reached a prediction accuracy of above 80% using popular
ML models. The commonly and frequently used ML algorithms
in radiomics include Logistic Regression (LR), Random Forests
(RF), Support Vector Machine (SVM), and etc. Each ML
method has their own advantages in the classification. For
example, LR fits the variables coefficients and predicts a logit
transformation of the probability of being one class or the other.
SVM separates the classes by finding an optimal hyperplane.
RF uses bootstrap aggregating to decision trees and improves
classification performance.

When compared to tumor grading, to make predictions at a
molecular level is more challenging. Kickingereder et al. reported
the association between established MRI features and cancer
gene variations (EGFR amplification and CDKN2A loss), but
failed to build a sufficient ML model to predict the molecular
characteristics (13). In clinic, pathologic biomarkers are more
frequently tested for than genetic testing. IDH1 is one important
glioma biomarker and IDH1 mutation along with 1p/19q is
a part of the molecular diagnosis in the updated 2016 WHO

classification (14). Ki67, S100, and GFAP are also the common
protein targets for gliomas. IDH1, Ki67, and GFAP were once
considered as the golden triad of glioma IHC (15) Ki67 is
highly correlated to proliferation that may indicate the tumor
grades and prognosis (16–18). S100 has been implicated in the
regulation of cellular activities, such as metabolism, motility, and
proliferation. Under the pathological conditions of tumor and
inflammation, the concentration of the S100 protein increases to
the micromole level, which stimulates microglia and astrocytes,
and increases the expression of pro-inflammatory cytokines
(19–23). GFAP is the most widely used markers of astrocytes
(24). Under the condition of injury (trauma or disease), the
expression of GFAP in astrocytes rapidly increases (25). GFAP
is often used to reveal the astrocytic lineage of glial cells
and glial tumor cells, and plays a more significant role in
tumor pathology, when compared to the differential diagnosis
of astrocytoma. Ki67, S100, or GFAP may not be a reliable
diagnostic biomarker for gliomas, because their roles in gliomas
are still under investigations, while controversies have been
observed in experiments (26). However, there is no doubt that
these proteins can provide some insights into the tumor intra-
microenvironment.

So far, it is not surprising to know that most radiomics
studies favor the prediction of the IDH expression for molecular
diagnosis (11, 27), with a few reports on Ki67 (28). In order
to expand predictive effects of radiomics, the investigators
aimed to assess the prediction feasibility of glioma grades
and the pathologic biomarkers of Ki67, S100, and GFAP in
gliomas. The investigators believed that the combination of
multiple biomarkers can increase the predictive power, and the
information obtained can help in understanding the underlying
pathologic process in gliomas. The investigators designed the
present retrospective study and extracted hundreds of radiomic
features from the T1C images of 367 glioma patients. Three
machine-learning-based models (LR, SVM, and RF) were built
to perform the tasks: (1) classify the glioma grades, and (2)
predict the expression levels of Ki67, S100, and GFAP. This
study demonstrated that multiple pathologic biomarkers in
gliomas can be estimated to the certainty levels of clinical
using common ML models on conventional MRI data and
pathological records.

MATERIALS AND METHODS

Study Cohort
The investigators retrospectively collected a data set of 420 glioma
patients, who had pathological reports and MRI scans performed
between October 2013 and March 2019, from the Second Xiangya
Hospital of Central South University. The patients who met
the following criteria were included: (i) a histopathological
diagnosis of primary glioma based on the WHO classification,
(ii) the availability of IHC profiles of biomarkers (S100, GFAP,
and Ki67), (iii) preoperative MRI data of post-contrast axial
T1-weighted (T1C), and (iv) age > 18 years old. Patients
were excluded due to the following: (i) secondary gliomas or
postoperative recurrence of gliomas, (ii) obvious artifacts in
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MRI. Ethics approval was obtained for the present study from
the Ethics Committee of the Second Xiangya Hospital, Central
South University.

Pathological Evaluation
Patient demographics (age and gender), and histopathologic
diagnosis and IHC results were obtained from a surgical
pathology report. On these reports, the diagnosis included
a specific glioma type by cells (e.g., astrocytoma and
oligodendrogliomas) and a given WHO grade (I–IV). The
IHC results were presented in the list of glioma biomarkers (e.g.,
S100, GFAP, or Ki67) and their own expression profile in tumor
cells. It is noteworthy that the list was not standard and varied
upon the request or availability of the biomarkers at that time.
For example, few patients received an IDH1 test before 2017, but
after 2016, the WHO classification standard was published, and
IDH1 tests became common. So, a patient might have a different
set of tested biomarkers, and the number of cases can differ for
each biomarker. Their IHC results depended on the scoring
system used. The expression levels were usually evaluated by the
staining intensity of positive cells, and points were assigned to
describe these positive cells by count (e.g., 0 points as negative
(−), 1 point as positive (+), 2 points as medium positive, and 3
points as high positive), percentage (e.g., 0 points as none, 1 point
less than 5%, 2 points approximately 5–25%, and 3 points above
25%), or the appearance of a clear brown color (e.g., 1 point for
light yellow). In the study, the glioma grades were classified as
low-grade (WHO I–II, benign) and high-grade (WHO III–IV,
malignant), and expression levels of biomarkers were divided
into two categories: a low expression scored less than 2 points
and a high expression scored 2 points or above.

Imaging Post-processing and Radiomics
Features Extraction
Magnetic resonance imaging scans were acquired from different
scanners over time. The Picture Archiving and Communication
System (PACS) exported the selected DICOM images to a local
computer using the RadiAnt DICOM Viewer (Medixant, PL). In
order to reduce the influence of different scanning parameters,
post-processing and image registration were applied using the
Advanced Normalization Tools (ANTS 2.1, PA). Then, the
DICOM images were loaded into ITK-SNAP for segmentation
and standardization (29). Two neuroradiologists (5 years of
experience) drew the region of interest (ROI) around the
tumor boundary on the T1C images. The neuroradiologists were
blinded to the patient identification and diagnosis. After a joint
effort, disagreements with the boundary were solved. The ROI
segmentations were resampled to match the dimensions of the
original images, and both images were saved in.narrd as the input
for feature extraction.

The Pyradiomics extractor was customized to calculate
and extract the features (10). All built-in filters [wavelet,
Laplacian of Gaussian (LoG), square, square root, logarithm, and
exponential] were enabled on five image feature classes [first
order statistics, shape descriptors, and texture features on the
gray-level co-occurrence matrix (GLCM), gray-level run length

matrix (GLRLM), and gray-level size zone matrix (GLSZM)].
Feature definitions and calculation algorithms were available in
the PyRadiomics documentation1.

Machine Learning
The feature importance and the following predictive ML methods
were implemented using Python (version 3.7.0) with machine-
learning library scikit-learn (version 23.0) (30). All features were
standardized through Min-Max scaling. Features with all zero
scores were removed. Clinical data (age and gender) were added
in constructing the final prediction models.

Feature Importance
The feature importance helped in understanding the importance
of the features, since a large number radiomics features with
high-dimensional data are difficult to interpret. Three technique
approaches were used to identify the important features.
First, chi-squared (chi2) tests were applied in the scikit-learn
SelectKBest class to obtain a list of the top 15 best features.
Second, the heatmap of correlated features was plotted to identify
features highly correlated to predicting targets (glioma grade and
biomarker expression) using the seaborn library. Third, a RF
classifier was initiated and the in-build feature importance was
used to extract the top features.

Predictive Machine Learning Models
Three frequently-used machine-learning based models of LR,
SVM, and RF were built for four predictive tasks: (1) glioma
grades, (2) Ki67 expression level, (3) GFAP expression level,
and (4) S100 expression level in gliomas. Each sub dataset
was divided into training and testing sets at a ratio of 4:1
(train_size = 0.8, test_size = 0.2). Principal Component Analysis
(PCA) was applied for high-dimension reduction that maps
n-dimensional features to k-dimensional features (n > k),
resulting in brand new orthogonal features. For the unbalanced
data in different classes, the synthetic minority over-sampling
technique (SMOTE) algorithm was used to oversample the
minority class (31). On training set, the grid search with cross-
validation was applied for hyper parameters tuning (RF and
SVM), and k fold validation was used for LR. The accuracy
score was compared with the result from their base models
(default settings in scikit-learn) for model selection. The testing
set was used for final model evaluation. The performance of the
models was evaluated according to accuracy, the area under curve
(AUC) of the receiver operating characteristic (ROC), sensitivity,
specificity, the positive prediction value (PPV), and the negative
predictive value (NPV). According to the AUC and accuracy, the
best classifier was chosen for each task.

Statistics
One way-ANOVA or simple t-test was applied to test the
differences among gender, age, glioma grade, and the expression
levels of the biomarkers. Descriptive statistics was used to
summarize the important features through filters and feature
classes. All significant levels were tested at 0.05.

1https://pyradiomics.readthedocs.io/en/latest/features.html
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RESULTS

Subjects and Pathologic Biomarkers
A data set of preoperative MRI and surgical pathologic reports of
420 glioma patients were collected. A total of 51 patients were
excluded for not meeting the inclusion criteria. Among these
patients, 40 patients were under 18 years old, seven patients
had quality issues on their MRI data, and four patients did
not have an assigned WHO classification level in their records.
The age of the enrolled 369 patients ranged within 18–75 years
old (mean age: 45.63 ± 13.22 years old), and consisted of 210
males (age: 46.99 ± 13.24 years old), and 159 females (age:
43.84 ± 13.03 years old). The clinical characteristics of patients
and the distribution of the selected biomarkers across glioma
grades are presented in Table 1.

The expression of GFAP, Ki67, and S100 was reported as
follows: 367 patients had GFAP results with four negatives (0
point), 323 positives (1 point), and 35 medium (2 points), or
5 high positives (3 points); 348 patients underwent Ki67 tests,
including 96 negatives or low positives (≤5% in tumor cells), and
252 strong positives (>5%); 338 patients underwent S100 tests,
which included eight negatives (0 points), 315 positives (1 point),
and 15 medium positives (2 points).

There was a significant age difference among male and
female patients, as determined by one-way ANOVA [F (1,
367) = 5.17, P < 0.05]. Furthermore, there were significant
differences in age, gender and tumor volume among glioma
grades (WHO I–IV). Moreover, there were significant differences
in glioma grade, tumor size, age and gender for the Ki67
expression. However, there were no significant differences in age,
gender and glioma grade for S100 and GFAP expression. The
t-test and one-way ANOVA results are shown in Table 2.

TABLE 1 | Distribution of clinical characteristics and expression levels of IHC
biomarkers grouped by glioma WHO grades.

WHO I WHO II WHO III WHO IV

Total number 5 142 116 106

Mean age (s.d.) 35.4(7.64) 40.65(11.69) 48.29(13.82) 49.87(12.4)

Gender

Male 2 72 68 68

Female 3 70 48 38

Tumor volume av a
(cm3)

30.8 38.34 46.47 53.81

Ki67 expression level

0 4 73 15 4

1 0 57 97 98

GFAP expression level

0 0 1 1 2

1 5 126 98 94

2 0 13 13 9

3 0 2 2 1

S100 expression level

0 0 3 0 5

1 5 120 104 86

2 0 6 5 4

TABLE 2 | Clinical characteristics vs. glioma grade and expression levels
of IHC biomarkers.

Age Gender Tumor
volume

Grade

Grade t = 6.1602
df = 367
p = 1.91e-09

t = −2.2766
df = 367
p = 0.02339

t = 2.5027
df = 355
p = 0.01277

Ki67 t = 5.6168
df = 346
p = 4.001e-08

F (1,346) = 0.53
p = 0.467

t = 1.5089
df = 336
p = 0.1323

F (1,346) = 124.7
p < 0.05

GFAP t = −0.30242
df = 365
p = 0.7625

F (1,365) = 0.569
p = 0.451

t = −1.1268
df = 354
p = 0.2606

F (1,365) = 0.089
p = 0.77

S100 t = −0.307
df = 336
p = 0.759

F (1,336) = 0.186
p = 0.667

t = 1.639
df = 326
p = 0.1022

F (1,336) = 0.59
p = 0.44

MRI Data Processing and Feature
Extraction
A total of 369 original T1C images and their paired segmentation
images underwent the feature extraction process using
Pyradiomics. The investigators extracted 1,421 radiomics
features (14 shape features, 27 first-order intensity statistics
features, 68 texture features, 96 square features, 96 square root
features, 96 logarithm features, 96 exponential features, 172
LoG features, and 766 wavelet features). After data cleaning,
1,372 features reminded. The data set was normalized by the
SKlearn MinMaxScaler.

Features Importance
The investigators obtained the list of the top 15 important
features based on the scores obtained from the chi-squared stats
between each non-negative feature and the glioma grade, and
S100, GFAP, and Ki 67 expression levels. The features and their
scores are shown in Table 3. The scores ranged within 3.67–44.04.
The mean score of the top important features was 9.30, with a
standard deviation of 5.83. The frequent top features within the
image type were exponential (23), wavelet (22), square (6), square
root (3), original (3), gradian (2), and ihp-2D (1). For the feature
classes, the frequent top features were divided as follows: glszm
(27), glcm (9), glrlm (8), gldm (7), first order (7), and ngtdm
(2). The heatmaps of the correlated features for glioma grade
and the biomarkers of Ki67, GFAP, and S100 are presented in
Figure 1. The RF model built-in feature importance is presented
in Figure 2.

Prediction Machine Learning Models
The performance of the 12 predictive models is presented
in Table 4. The RF models performed slightly better, when
compared to the other models. The comparisons with accuracy
and the results are presented below. Figure 3 shows the
AUC_ROC for the RF classifier in sub test sets.

Glioma Grades
The sub data set was randomly split into the training set
of 276 cases and the test set of 93 cases. With a PCA
retention of 0.95, the PCA process reduced the dimensions
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TABLE 3 | Feature importance by chi-square scores.

Prediction Top pyradiomics imaging feature Score Filter Class

GRADE Exponential_ngtdm_Coarseness 44.04 Exponential ngtdm

Exponential_glszm_LowGrayLevelZoneEmphasis 19.79 Exponential glszm

Exponential_glszm_SizeZoneNonUniformityNormalized 16.93 Exponential glszm

Exponential_glszm_ZoneEntropy 13.68 Exponential glszm

Exponential_glcm_MCC 12.09 Exponential glcm

Exponential_glcm_Correlation 11.30 Exponential glcm

Exponential_glszm_GrayLevelNonUniformity 10.92 Exponential glszm

Exponential_glszm_SmallAreaEmphasis 10.60 Exponential glszm

Exponential_glcm_InverseVariance 10.52 Exponential glcm

Square_glszm_ZonePercentage 9.80 Square glszm

Wavelet-LHL_firstorder_TotalEnergy 9.64 Wavelet-LHL firstorder

Exponential_glcm_Imc2 9.59 Exponential glcm

Exponential_glszm_GrayLevelNonUniformityNormalized 9.46 Exponential glszm

Gradient_firstorder_TotalEnergy 9.03 Gradient firstorder

Wavelet-HHL_firstorder_TotalEnergy 8.48 Wavelet-HHL firstorder

GFAP Lbp-2D_firstorder_10Percentile 12.38 Lbp-2D firstorder

Wavelet-HLH_glrlm_LowGrayLevelRunEmphasis 12.25 Wavelet-HLH glrlm

Wavelet-HLH_gldm_LowGrayLevelEmphasis 12.13 Wavelet-HLH gldm

Wavelet-HLH_glszm_LowGrayLevelZoneEmphasis 11.79 Wavelet-HLH glszm

Wavelet-HHH_gldm_LowGrayLevelEmphasis 11.19 Wavelet-HHH gldm

Wavelet-HHH_glrlm_LowGrayLevelRunEmphasis 11.18 Wavelet-HHH glrlm

Wavelet-HHL_gldm_LowGrayLevelEmphasis 11.12 Wavelet-HHL gldm

Wavelet-HHL_glrlm_LowGrayLevelRunEmphasis 11.08 Wavelet-HHL glrlm

Wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis 10.77 Wavelet-HLH gldm

Wavelet-HHH_gldm_LargeDependenceLowGrayLevelEmphasis 10.64 Wavelet-HHH gldm

Wavelet-HHH_glrlm_LongRunLowGrayLevelEmphasis 9.99 Wavelet-HHH glrlm

Wavelet-HHL_gldm_LargeDependenceLowGrayLevelEmphasis 9.89 Wavelet-HHL gldm

Wavelet-HLH_glrlm_ShortRunLowGrayLevelEmphasis 9.30 Wavelet-HLH glrlm

Wavelet-HHL_glrlm_LongRunLowGrayLevelEmphasis 8.98 Wavelet-HHL glrlm

Wavelet-HHH_glrlm_ShortRunLowGrayLevelEmphasis 8.51 Wavelet-HHH glrlm

S100 Wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis 13.65 Wavelet-LLH glszm

Wavelet-LLL_glszm_LargeAreaHighGrayLevelEmphasis 10.53 Wavelet-LLL glszm

Original_glszm_LargeAreaHighGrayLevelEmphasis 10.45 Original glszm

Squareroot_glszm_LargeAreaHighGrayLevelEmphasis 8.44 Squareroot glszm

Original_glszm_ZoneVariance 8.08 Original glszm

Exponential_firstorder_Energy 7.89 Exponential firstorder

Original_glszm_LargeAreaEmphasis 7.87 Original glszm

Squareroot_glszm_ZoneVariance 5.93 Squareroot glszm

Squareroot_glszm_LargeAreaEmphasis 5.83 Squareroot glszm

Exponential_firstorder_TotalEnergy 5.72 Exponential firstorder

Wavelet-LHH_glszm_LargeAreaLowGrayLevelEmphasis 5.65 Wavelet-LHH glszm

Wavelet-LLH_glszm_ZoneVariance 5.49 Wavelet-LLH glszm

Wavelet-LLH_glszm_LargeAreaEmphasis 5.39 Wavelet-LLH glszm

Gradient_glszm_LargeAreaLowGrayLevelEmphasis 5.23 Gradient glszm

Wavelet-LHL_glszm_LargeAreaHighGrayLevelEmphasis 4.98 Wavelet-LHL glszm

Ki67 Exponential_ngtdm_Coarseness 18.37 Exponential ngtdm

Exponential_glszm_LowGrayLevelZoneEmphasis 8.44 Exponential glszm

Exponential_glszm_SizeZoneNonUniformityNormalized 7.75 Exponential glszm

Exponential_glszm_ZoneEntropy 6.12 Exponential glszm

Exponential_glszm_GrayLevelNonUniformity 4.64 Exponential glszm

Exponential_glcm_MCC 4.36 Exponential glcm

Square_glszm_SmallAreaLowGrayLevelEmphasis 4.20 Square glszm

(Continued)
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TABLE 3 | Continued

Prediction Top pyradiomics imaging feature Score Filter Class

Square_gldm_LowGrayLevelEmphasis 4.12 Square gldm

Exponential_glcm_Imc2 4.12 Exponential glcm

Square_glrlm_LowGrayLevelRunEmphasis 4.09 Square glrlm

Exponential_glcm_InverseVariance 4.02 Exponential glcm

Exponential_glszm_GrayLevelNonUniformityNormalized 3.95 Exponential glszm

Exponential_glcm_Correlation 3.89 Exponential glcm

Square_firstorder_Uniformity 3.69 Square firstorder

Square_glcm_MaximumProbability 3.67 Square glcm

to 37 components, and these remained in the final prediction
model of glioma grading. There was a 96:252 class distribution.
After SMOTE oversampling, the number of train samples
increased to 318. After grid search with cross validation
(cv = 5) or K fold validation (n_splits = 5), the selected
classifier included: (1) LR (penalty = “l2,” C = 1.0), (2)
SVM (C = 10, kernel = “rbf,” and gamma = 0.1), and
(3) RF (min_samples_leaf = 1,min_samples_split = 2, and
n_estimators = 100). The RF classifier achieved a satisfying
predictive performance (AUC: 0.79, accuracy: 0.81). The average
accuracy, sensitivity, specificity and f1 score was 0.81, 0.63, 0.89,
and 0.67, respectively.

Ki67 Expression
A total of 348 patients had Ki67 test results, which included
252 low expression levels and 96 high expression levels. There
was a 96:252 class distribution. The training set and test
set were split into 278 and 70 cases, respectively. After the
SMOTE oversampling, the number of train samples increased
to 415. With a PCA retention of 0.95, the PCA process
reduced the dimensions to 37 components, and there were
used for the final prediction model for the Ki_67 expression.
After grid search with cross validation (cv = 5) or K fold
validation (n_splits = 5), the selected classifier included:
(1) LR (penalty = “l2,” C = 1.0), (2) SVM (C = 10,
kernel = “rbf,” and gamma = 0.1), and (3) RF (max_depth = 80,
max_features = 3, min_samples_leaf = 4,min_samples_split = 8,
and n_estimators = 100). Among these three classifiers, the
RF classifier achieved the best predictive performance on the
Ki67 expression based on the AUC (0.85), accuracy (0.80),
sensitivity (0.91), specificity (0.80), and f1 score (0.85) for the
Ki67 high expression.

S100 Expression
A total of 338 patients had S100 test results, which included
323 low expression levels (<2 points) and 15 high expression
levels (≥2 points). The class distribution was 323:15. The training
set and test set were split into 270 and 68, respectively. After
the SMOTE oversampling, the resampled number increased to
518. With a PCA retention of 0.95, the PCA process reduced
the dimensions to 38 components, and these were used for the
final prediction model for the S100 expression. After grid search
with cross validation (cv = 5) or K fold validation (n_splits = 5),
the selected classifier included: (1) LR (penalty = “l2,” C = 1.0),

(2) SVM (C = 1, kernel = “rbf,” and gamma = “auto”), and
(3) RF (min_samples_leaf = 1,min_samples_split = 2, and
n_estimators = 100). Among these classifiers, the RF classifier
achieved the best prediction performance on the S100 expression,
based on the measurements (AUC: 0.60, accuracy: 0.91, average-
weighted sensitivity: 0.88 specificity: 0.91, and f1 score: 0.90). It is
noteworthy that the average-weight computes f1 for each class,
and returns the average while considering the proportion for
each class in the dataset. For S100 low expression levels: accuracy
(0.95), sensitivity (0.94), specificity (0.97), and f1 (0.95). For high
expression levels: none of the four high expression cases was
correctly predicted.

GFAP Expression
A total of 367 patients had a GFAP test. Among these
patients, there were 327 low expression levels and 40 high
expression levels. The class distribution ratio was 327:40.
The training set and test set were split into 293 and 74,
respectively. After the SMOTE oversampling, the number of
samples increased to 532. With a PCA retention of 0.95,
the PCA process reduced the dimensions to 38 components,
and those that remained were used for the final prediction
model for the GFAP expression. After grid search with cross
validation (cv = 5) or K fold validation (n_splits = 5), the
selected classifier included: (1) LR (penalty = “l2,” C = 1.0),
(2) SVM (C = 1, kernel = “rbf,” and gamma = “auto”),
and (3) RF (min_samples_leaf = 1,min_samples_split = 2,
and n_estimators = 100). Among these three classifiers, the
RF classifier achieved the best predictive performance on the
GFAP expression measured, as follows: AUC (0.72), accuracy
(0.81), average-weighted sensitivity (0.74), specificity (0.81), and
f1 score (0.76).

DISCUSSION

The machine-learning based radiomics approach was applied to
predict glioma grades and the expression levels of pathologic
biomarkers Ki67, GFAP, and S100 in low or high. The overall
performance of the ML models was satisfactory. The RF
algorithm was found to be stable and consistently performed
better than LR and SVM. Feature importance varies on
predictive tasks, glioma grade or specific protein expression. The
most frequent important feature classes were textual and first
order statistics.
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FIGURE 1 | The heatmaps of corelated features for glioma grade and biomarkers of Ki67, GFAP, and S100.
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FIGURE 2 | RF model inbuild feature importance for predicting glioma grades and biomarkers of Ki67, GFAP, and S100.

TABLE 4 | The performance of predictive models.

Models Error rate True positive rate True negative rate AUC Score (mean accuracy)

Logistic_Ki67 0.22857 0.787234 0.73913 0.799 0.771429

SVM_Ki67 0.25714 0.851064 0.521739 0.748 0.742857

Random Forest_Ki67 0.2 0.914894 0.565217 0.849 0.8

Logistic_GFAP 0.24324 0.615385 0.786885 0.774 0.756757

SVM_GFAP 0.21622 0.153846 0.918033 0.613 0.783784

Random Forest_GFAP 0.18919 0.076923 0.967213 0.718 0.810811

Logistic_S100 0.19118 0 0.859375 0.164 0.808824

SVM_S100 0.11765 0 0.9375 0.48 0.882353

Random Forest_S100 0.08824 0 0.96875 0.604 0.911765

We selected LR, SVM, and RF as classifiers mainly for their
popularity. LR, SVM, and RF classifiers can work on non-text
data set less than 100K. Whether the data is linearly divisible or
not, the linearly separable models (LR, SVM), and the non-linear
separable model (RF) are helpful to view the effect and avoid the
impact due to poor data. LR shows a higher AUC, in GFAP’s
prediction model, but performs worst in S100’s prediction.
Comparing the overall results from three biomarker prediction
models, the combination of PCA reduction and RF classification
consistently performed best. It suggests a common ML pipeline
that may be helpful in standardizing the prediction process of
multiple protein expressions.

Also more recently, researchers have demonstrated
achievements of deep learning (DL) in the image segmentation
and glioma grades prediction (32–37). Convolutional neural
networks (CNNs) started outperforming other methods on
several high-profile image analysis projects. DL has advantages
in computation, as high-performance graphics processing unit

(GPU) supports fast computing and less time on modeling. Like
a kind of end-to-end learning, DL can automatically extract
relevant functions from images, and tasks such as raw data
processing and classification can be completed automatically.
However, DL is complex and requires thousands of images to
start with, otherwise due to a relatively small collection of images
like ours, overfitting is more likely. The classic ML methods
met our needs and suited the data. RF models performed
well for predicting glioma grades and pathologic biomarkers
S100, Ki67, and GFAP.

As it is known, the roles of these biomarkers can be
complicated and controversial in laboratory experiments (26).
In addition to the abilities of predicting tumor phenotypes,
radiomics might offer a new approach to evaluate biomarkers,
since their differentiation can be identified through the analysis
of imaging features. The expression level of Ki67 was significantly
correlated with the tumor grade and tumor volume, as well as the
patient age and gender. A study once reported that the high level
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FIGURE 3 | AUC_ROC for the RF classifier.

of Ki-67 expression was correlated to poor overall survival (OS)
and progression free survival (PFS) (16). The accurate prediction
of high level Ki67 is more meaningful than its low level expression
to indicate poor prognosis for glioma patients.

The GFAP has been widely expressed in gliomas. Merely four
patients presented as GFAP negative. The majority of the patients
(323 of 367, 88%) had GFAP positive (+), and 327 patients with
low expression GFAP (90%), combined with four that scored
(−), were distributed all over the gliomas grades, including low

grade (132, 40%), and high grade (195, 60%). The minority of
the patients (40 of 367, 12%) had GFAP medium positive (++)
or high positive (+++) distributed in low grade (15, 37.5%) and
high grade (25, 62.5%). In the literature, a high GFAP expression
is likely to be found in low grade gliomas. The present result was
confusing, that is, the high and low expression levels of GFAP
were more correlated to high grade gliomas. This result may
echo that GFAP is not a direct predictor of low grade gliomas
(15, 26). On the classification report of the RF_GFAP model,
the accuracy score of predicting a GFAP low expression was
up to, while that of predicting high expression levels of GFAP
was much lower. The overall prediction performance might
not be meaningful, since GFAP was lowly expressed in 90% of
patients, and the model could always answer 90% correctly. The
same problem was found in the predictive model of S100. It
required the rethinking of these two models. There was a need
to determine which expression class is more valued. And then,
as one solution, the ROC thresholds can tuned, increasing the
sensitivity of the favored class.

The interpretation of the predicted results is complex, but may
be helpful to understand the molecular mechanisms it underlies.
In addition, the investigators selected CE MRI from several
typical cases for demonstration, in which the different expression
levels of biomarkers exhibited different imaging characteristics
(Figure 4). For the high expression of S100 case (Figure 4A),
the tumor exhibited an obvious rosette enhancement, no
enhancement of internal necrotic components, and a few edema
zones around it, and was diagnosed as glioblastoma (WHO IV
grade). In the image of the tumor with a low expression of S100
(Figure 4B), the tumor mass effect was obvious, but there was
no obvious enhancement, and the surrounding edema was not
obvious, which was diagnosed as astrocytoma (WHO II grade).

FIGURE 4 | T1-weighted contrast-enhanced MR images. (A) A 23-year-old female patient with a grade IV glioma in left thalamus. The expression of S100β is
strongly positive (S100β+++). (B) A 23-year-old male patient with a grade II glioma in left frontal lobe. The expression of S100β is weakly positive (S100β+). (C) A
27-year-old male patient with a grade II glioma in left frontal lobe. The expression of GFAP is strongly positive (GFAP+++). (D) A 27-year-old female patient with a
grade IV glioma in left frontotemporal lobe. The expression of GFAP is weakly positive (GFAP+). (E) A 64-year-old male patient with a grade IV glioma in left
frontotemporal lobe. The Ki67 index is 80%. (F) A 44-year-old male patient with a grade II glioma in right frontal lobe. The Ki67 index is 80%. (G) A 31-year-old
female patient with a grade II glioma in left frontal lobe. Genetic test showed that IDH1 was mutant type. (H) A 50-year-old male patient with a grade IV glioma in left
parietal-occipital lobe. Genetic test showed that IDH1 was wild type.
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In this case, the positive correlation appeared as both the S100
and glioma grade moved in the same direction that was contrary
to many observations. The study conducted by Wang et al. has
proven that S100 is expressed in most gliomas, and that this is
an important inducer of CCL2 (19). CCL2 participates in the
transport of tumor-associated macrophages (TAM) in gliomas,
which affects angiogenesis, invasion, local tumor recurrence and
immunosuppression. This may explain the relationship between
the degree of tumor enhancement and the expression of S100 in
the present cases.

There are some limitations in our study. First, we only
used conventional MRI sequences with a default set of tumor
features extracted by Pyradiomics. Advanced MRI sequences
(e.g., DWI, DKI, MRS, ASL, et al.) can reflect the microstructure
and metabolic information of tumors. In future study, we will
further investigate the molecular phenotype of gliomas using
a multimode magnetic resonance scheme. Second, we only
selected 3 common pathologic biomarkers for gliomas from
a wide range of biomarkers either current available or under
investigation. We have to develop an evaluation plan for other
glioma biomarkers and find candidates that can be benefit from
radiomics applications. Third, imbalance classes did not reflect
the incidences of glioma in real world, where glioblastoma is
the most common subtype, and grade I glioma is relatively
rare in adults. We used the SMOTE algorithm to balance data,
oversampling the minority class, but the differences in data
distribution cannot be ignored. In our experiments, before and
after the use of SMOTE, AUC was only changed slightly. A larger
dataset from multiple sites is expected to complement predictive
effects, and the resulting classifiers can be more accurate and
stable. Fourth, after PCA reducing feature dimensions, a new
set of features was less remained but difficult to interpret.
A combination of hierarchical clustering on PCA may help us to
select feature more efficiently. At the current stage, a real-world
application is out of our scope, but further prospective assessment
is warranted. Based on the results we obtained as a reference,
we will extend the study to identify the best classifier algorithm
and the best set of features to simplify the classification tasks.
The standardized computation methods would greatly enhance
the reproducibility of radiomics studies, and it may also lead to
standardized software solutions available in clinical practice.

In conclusion, the machine-learning based radiomics
application provided a non-invasive approach for the prediction

of glioma grades and expression levels of multiple pathologic
biomarkers, with favorable predictive accuracy and stability.
The study also demonstrated the potential of radiomics for
pathological assessment and individualized cancer treatment.
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Despite the remarkable evolution of flow cytometers, fluorescent probes, and flow
cytometry analysis software, most users still follow the same ways for data analysis.
Conventional flow cytometry analysis relies on the creation of dot plot sequences,
based on two fluorescence parameters at a time, to evidence phenotypically
distinct populations. Thus, reaching conclusions about the biological characteristics
of the samples is a fragmented and challenging process. We present here the
MCTA (Multiparametric Color Tendency Analysis), a method for data analysis that
considers multiple labelings simultaneously, extending and complementing conventional
analysis. The MCTA method executes the background fluorescence exclusion, spillover
compensation, and a user-defined gating strategy for subpopulation analysis. The
results are then presented in conventional FSC x SSC dot plots with statistical data.
For each event, the method converts each of the multiple fluorescence colors under
analysis into a vector, with longer vectors being attributed to more intense labelings.
Then, the MCTA generates a resultant vector, which is therefore mostly influenced
by predominant labelings. The radial position of this resultant vector corresponds to
a resultant color, making it easy to visualize phenotypic modulations among cellular
subpopulations. Besides, it is a deterministic method that quickly assigns a resulting
color to all events that obey the gating strategy, with no polymeric regions defined by
the user or downsampling. The MCTA application generates a single dot plot showing
all events in the FCS file, but a resultant color is attributed only to those that obey
the gating strategy. Therefore, it can also help to evidence rare events or unpredicted
subpopulations naturally excluded from the regions defined by the user. We believe
that the MCTA method adds a new perspective over multiparametric flow cytometry
analysis while evidencing modulations of molecular labeling profiles based on multiple
fluorescences. Availability and implementation: The instructions for the MCTA application
is freely available at https://github.com/flowcytometry/MCTA.
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INTRODUCTION

The flow cytometry technique offers quantitative fluorescence-
based data, usually regarding cellular characteristics, at a
rate of hundreds of events per second (Shapiro, 2004).
Modern flow cytometers detect more than 15 parameters of
fluorescence per event, evaluating cellular phenotype, viability,
and proliferation; Ca++ levels; organelles activity; and much
more. All technological advances of flow cytometry resulted
in an enormous development in biology and medicine. Still,
for reproducible results, all preliminary steps must be carefully
planned, considering data generation, data pre-processing and
quality control, visualization of results, and final data analysis
(Saeys et al., 2016).

Despite the increasing complexity and evolution of
multiparametric flow cytometry, conventional data analysis
is still based on the evaluation of up to two fluorescence
parameters at a time, relying on the creation of multiple dot
plots (Mair et al., 2016). The gating strategy also obeys a logical
hierarchical sequence of regions drawn manually, and users must
reach an experimental conclusion after a fragmented analysis
(de Oliveira et al., 2007; Cascabulho et al., 2016). Although
flow cytometrists are used to this method, some disadvantages
are the manual and imprecise definition of regions (gates), the
underestimation and low visibility of rare events, and the fact
that minor subpopulations outside the user-defined regions are
not considered in the analysis.

To address the lack of exploratory analysis of flow cytometry
data and the issues with reproducibility, several algorithms
and computational tools have been developed (Pedreira et al.,
2019). For instance, some dimensionality reduction algorithms
used in flow cytomety data analysis are t-distributed stochastic
neighbor embedding (t-SNE) (Toghi Eshghi et al., 2019)
and Uniform Manifold Approximation (UMAP)1. Both are
dimension reduction algorithms that favor the preservation of
local distances over global distance. Other methods use clustering
algorithms that show spanning trees as a result, like in Spanning-
tree Progression Analysis of Density-normalized Events (SPADE)
(Mair et al., 2016) and FlowSOM (Van Gassen et al., 2015). In
these methods, the cells are represented by nodes connected
with the neighbors in the high dimensional data. Therefore, the
interconnected nodes are related to phenotypically similar cells,
as shown by the CITRUS algorithm (Bruggner et al., 2014).
Moreover, subpopulation detection in high-dimensional data can
be analyzed using PhenoGraph (Levine et al., 2015). An excellent
review of these and other complementary strategies can be found
in Weber and Robinson (2016).

Typical workflows in computational tools include data
transformation, normalization, filtering, manual or semi-
automatic gating, and automatic clustering (Montante
and Brinkman, 2019). However, only advanced users with
programming skills will be able to go through the analysis
process. For regular users, manual efforts remain standard
practice, which has been mostly the same for decades, regardless
of the commercial analysis software used. To address these

1https://arxiv.org/abs/1802.03426

issues, we present the MCTA (Multiparametric Color Tendency
Analysis). This is an alternative exploratory method that
analyzes multiple phenotypic markers simultaneously and
evidences complex cellular profiles, different from the multi-step
conventional analysis. The method excludes the background
range of each channel for each event, according to negative
controls, and spillover fluorescence is compensated. Moreover,
the gating procedure for subpopulation analysis is done in a
single step, including and excluding multiple chosen cellular
markers according to the user rationale for cellular identification.
Then, to show the phenotypic result, the algorithm attributes a
base vector directly proportional to the labeling intensity of each
fluorescence parameter to be analyzed, and a resultant vector
is calculated for each event. According to the radial position of
the resultant vector, a different resultant color is attributed to
each event. Therefore, the resultant color is determined by the
predominant labeling or labelings under analysis. In the MCTA
analysis, biological modulations of experimental target molecules
are easily visualized by different resultant colors, and the results
are backed up by statistical analysis for data interpretation.
Moreover, the MCTA method maps predominant phenotypic
profiles on conventional morphology FSC-A vs. SSC-A dot plots,
an option that standard multivariate algorithms do not offer.

COMPUTATIONAL METHOD

Color Representation in the MCTA
Method
The color assignment adopted in this work is based on the
HSL representation (Hu et al., 2014) (Figure 1A). HSL stands
for hue, saturation, and lightness (or luminosity) and consists
of a cylindrical-coordinate representation of points in an RGB
(red, green, blue) color model. In this representation, the RGB
coordinates are geometrically arranged in an attempt to be more
intuitive (Figure 1A). Developed in the 1970s for computer
graphics applications, the HSL is used today in color pickers,
image-editing software, and less commonly in image analysis and
computer vision (Tsai and Tseng, 2012).

In the general HSL representation, each color is a dot in a
cylinder, the angle around the central vertical axis corresponds to
"hue," the distance from the axis corresponds to "saturation," and
the distance along the axis corresponds to "lightness" (Figure 1A).
For flow cytometry, the HSL was chosen to represent fluorescence
data because each color can be represented as an individual
vector with a corresponding angular value. The proportional
intensity of each labeling (fluorescence parameter) is represented
by the saturation, with longer vectors representing more intense
fluorescence labelings. For a bi-dimensional representation, we
considered lightness as a constant factor (Figures 1A,B). Then,
the spectrum was represented as a linear rule with the hue values
(fluorescence colors) ranging from 0 to 360◦ or 0 rad to 2π rad
(Figure 1C).

Once the MCTA method uses all labeling colors determined
by the user simultaneously, each fluorescence parameter must be
identified for the vectorial representation per event. For this, our
method uses the maximal emission value of each fluorochrome
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FIGURE 1 | The HSL (hue, saturation, lightness) representation and the basis for data analysis. The conventional HSL representation is a cylinder (A), but for flow
cytometry analysis, we considered lightness as a constant factor for a bi-dimensional diagram (B). For the representation next to the dot plots, a linear version of the
bidimensional HSL was produced with reference degrees indicated (C). For the analysis, each fluorochrome is indicated by its maximal emission of fluorescence,
and the background (negative range) is required (D). When each fluorochrome is represented in a circular bidimensional HSL diagram, different parameters with
similar maximal emissions are closely indicated (E). To avoid this overlapping color representation, our method automatically divides the HSL into equal parts (F).

used (Figure 1D) and projects a correspondent vector over
the bi-dimensional HSL representation (Figure 1E). As many
fluorochromes have similar or even the same maximal emission
value, the MCTA method divides the spectrum (360◦) into equal
parts automatically (Figure 1F). Therefore, in the MCTA method,
the color attributed to each fluorescence parameter does not
correspond to the real emission of the fluorochrome (Figure 1F).

Event Representation in the MCTA
Method
The MCTA method computes a resultant vector to each event,
using all labeling colors chosen at the same time. This resultant

vector determines a resultant color observed in the HSL
representation and will be most affected by the predominant
labeling(s). This analysis, therefore, aims to show the tendency
of labeling(s) with higher median fluorescence intensity (MFI)
in each event. When comparing different experimental groups,
such as uninfected and pathogen-infected mice, for example,
this analysis will quickly show if there was a difference in
the repertoire of mostly expressed molecules between samples,
showing the cellular profile.

In Figure 2A, we illustrate the generation of the resultant
vector using an event that was labeled with different
fluorochromes, but only two of these parameters were used
to generate the resultant vector. Therefore, the spectrum
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FIGURE 2 | The calculation of a resultant vector using the HSL representation
in flow cytometry analysis. The diagrams show one event with two labelings
(maximal emissions are 675 and 774 nm) (A), and with three labelings
(maximal emissions of 575, 660, and 675 nm) (B) used for the resultant vector
calculation. Black arrows indicate fluorescence labeling colors, and the length
of these arrows is directly proportional to the intensity of each labeling. These
vectors project segments over the X- and Y-axis, indicated by letters, and the
resultant vector indicating the resultant color is calculated using all segments
for each event. The resultant segments are indicated as Rx and Ry.

was divided into equal parts according to the number of
fluorescences, but only two vectors were accounted for the
resultant color. In this case, we represented the PerCP (maximal
emission of 675 nm) and APC Cy7 (774 nm) (Figure 1D)
labelings. The intensity of each labeling was proportionally
represented by the length of each vector (represented in black)
(Figure 2A). These vectors project segments over the axes X

and Y, which are “b” and “a” for the fluorochrome 675 nm and
“d” and “c” for the fluorochrome 774 nm (Figure 2A). The
resultant vector was produced by the segment “d” minus “b”
projected over the X-axis Rx (as the segment b is below zero)
(Rx) and by the summon of the segments “a” and “c” projected
over the Y-axis (Ry) (Figure 2A). The calculated segments Rx
and Ry determined the resultant vector, indicating the color to
be attributed to the event (Figure 2A). In another analysis, we
illustrate the generation of the resultant vector using three of
the experimental labelings (Figure 2B), which were 575, 660,
and 675 nm (Figure 1D). In this case, the resultant vector was
generated by the projection of the segments “e,” “h,” and “j”
over the X-axis (Rx) and by the segments “f,” “g,” and “i” over
the Y-axis (Ry). In Figure 2 we show that the resultant vector
for each event was obtained as a function of the angle (hue) of
each fluorescence vector and the intensity of individual color
labelings.

Formally, for each wavelength Lj we associate one hue value
hj, which is a degree on the color wheel and is directly related to
the vector’s Evj angle. The j-th unit vector is given by:

∧
vj = cos(hj)

∧
x + sin (hj)

∧
y (1)

The resultant color is calculated considering all fluorescence
channels that were chosen and their intensities (saturation) as
bi-dimensional vectors. The final color of the event will be the
vectorial sum of all fluorescence colors chosen, with the intensity
of the fluorescence channel for each event Ij being taken into
account. The resultant vector of the i-th event is given by:

Eti =
∑nc

j=1
Ij
∧
vj (2)

where the Ij is the intensity (saturation) of the j-th channel of the

event, nc is the number of channels and
∧
vj is the filter unit vector.

Configuration File
The MCTA method follows required steps for any flow cytometry
analysis, which are the compensation of spillover fluorescence
(illustrated in Box 1) and the definition of fluorescence intensity
thresholds (background) (Figure 1D). Here we present the
MCTA analysis using two sources of FCS files. We used a simple
five-color labeling experiment uploaded to the Github repository2

for a detailed description of the method. Then, to demonstrate
the application of the algorithm, we used flow cytometry FCS files
available in a public repository3. For the results section, we used
data that evaluated T lymphocyte response after Staphylococcal
enterotoxin B (SEB) stimulation (repository ID FR-FCM-ZZEC,
15 colors) and a panel that identifies human adaptive natural
killer (NK) cells (repository ID FR-FCM-ZYY6, 13 colors). It is
important to highlight that, for each flow cytometry analysis in
the MCTA method, a configuration file is created by the user,
applying specific logical and syntax rules depicted in Figure 3.
This example details the in.dat file containing all required

2https://github.com/flowcytometry/MCTA
3https://flowrepository.org/public_experiment_representations
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BOX 1 | Compensation factors for spillover fluorescences
(https://github.com/flowcytometry/MCTA).

FITC PE PerCP APC APC Cy7

FITC 100.00 1.40 0.00 0.00 0.00

PE 18.22 100.00 0.00 0.00 0.00

PerCP 2.80 15.42 100.0 0.00 0.00

APC 0.00 0.41 6.86 100.00 14.49

APC Cy7 0.00 0.00 0.00 6.54 100.00

parameters, considering original columns of the acquired FCS
file (Figure 3A – FCS file) and the fluorescence parameters
that must be renumbered to feed the algorithm (Figure 3A –
column identification).

The first step is the identification of the FCS file under
analysis (file name), which is SampleSEB.FCS, in this example
(Figure 3B). Then, the user enters the total number of parameters
of the FCS file and the ones that will be used in the MCTA
method. In the example used in Figure 3B for lymphoid cells
response against SEB, the FCS file had 23 columns (Figure 3A);
however, only 18 columns were considered. Five columns
(identified in red) were not used (time, FCS H, SSC H, and two
empty channels) (Figure 3B). The next step is the definition of
the total number of fluorescence parameters employed by the
MCTA method. In this case, we used 15 (Figure 3B), which are
the renumbered fluorescence parameters shown in the “column
identification” (Figure 3A). The individual identification of what
columns will be used is then entered. Note that the parameters
that are shown in red (Figure 3A) were not included (columns
2, 4, 6, 17, and 21) (Figure 3B). As indicated before, the values
of maximal emission of fluorochromes, background (negative
range of fluorescence intensity per channel), and compensation
factors are used in the MCTA method (Figure 3B). These values
can be obtained from any flow cytometry analysis software and,
in this case, were obtained using FlowJo version 10. Finally, in
Figure 3A, we see that the renumbered fluorescence channels
identified in the column “column identification” represent
the labeling of the cellular markers identified in the column
“molecule labeled.”

One essential step for any flow cytometry analysis is the
gating process, which is the definition of cellular subpopulations
of interest. The gating procedure in the MCTA method is
done including and excluding events that are positive for
given cellular markers, and this process is illustrated in
Figure 3B – resultant definition; gating strategy, Figure 4; and
Supplementary Figure 1. In the example shown in Figures 3B, 4,
the analysis was done only in the events that were positive for
CD3, CD4, CCR7, and CD154 (parameters 5, 6, 9, and 15),
illustrating that the analysis was done in activated CD4+ T
lymphocytes (Figure 4). The indication of exclusion parameters
means that the MCTA method will not calculate the resultant
color in any of the events that are positive for any of the
exclusion parameters. In this case, there will be no resultant
vector calculation for events identified as monocytes (CD14+,
parameter 4), dead cells (positive events for Live Dead labeling,

also parameter 4), naïve T cells (CD45RA+, parameter 11),
NK or NKT cells (CD56+, parameter 7), CD8+ T lymphocytes
(parameter 8), or T cells expressing IL-4 or IL-21 (parameters
2 and 10, respectively). In this example, although CXCR5
(parameter 13) and PD-1 (parameter 14) are molecules associated
with T lymphocyte activation, very few events were expressing
either molecule, and we decided to exclude both. In the
MCTA method, the exclusion parameters are indicated by the
minus sign (Figure 3B – resultant definition, gating strategy),
and the events that are labeled with any of the exclusion
parameters will be represented in black. Finally, after the gating
procedure, the syntax to represent the parameter(s) used for
the generation of the resultant color is “zero” (Figure 3B
asterisk – resultant definition). In this particular case, IFN-
γ, IL-2, and TNF-α were the parameters used for the MCTA
analysis, indicated in the “column identification” as parameter
3, 12, and 1 (Figures 3A, 4). However, in the configuration
file, all three parameters are represented as zeros (Figure 3B –
resultant definition; asterisk). In biological terms, this analysis
targets the identification of Th1-responding activated CD4+ T
lymphocytes.

RESULTS

The MCTA Analysis
In Figure 5, we show the final result of the MCTA analysis, where
SEB-activated CD4+ T lymphocytes, according to the gating
strategy, are represented as colored events in the FSC x SSC
dot plot. The color of each event in Figure 5A was attributed
according to predominant labeling(s) of the Th1 cytokines
selected for the analysis (Figure 4). When the configuration
file was set up to evaluate Th2 (IL-4-producing) CD4+ T
lymphocytes (Figure 5B), the analysis considered the inclusion
and exclusion parameters shown in Supplementary Figure 1, and
we observed no colored events. This result means that there were
no stimulated CD4+ T cells positive for IL-4 labeling.

At this point, it was clear that the MCTA method was
feasible and able to evidence a different pattern of results,
showing the combination of multiple labelings for a phenotypic
profile of gated subpopulations. However, it was still necessary
to identify what parameters mostly influenced the resultant
color observed and, for this, we added the statistical analysis.
We then illustrated in Figure 5C, the statistical analysis of
the data shown in Figure 5A. The MCTA method calculates
conventional statistics that are most useful in flow cytometry
analysis. It indicates the total number of events in the file
and, regarding the colored events, the number of events that
met the gating strategy, geometric mean, geometric standard
deviation, and median (Figure 5C). The statistical analysis
in the MCTA method is not based on the original data of
the FCS file; it uses the processed data matrix created after
the subtraction of the background and spillover compensation.
Therefore, the user can visualize if only one or more
fluorescence parameters were predominantly labeled, and what
parameter(s) mostly influenced the resultant vector (the resultant
color) (Figure 5C).
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FIGURE 3 | Logical and syntax rules for the configuration files. All flow cytometry files were organized in columns indicated here as “column number” and “column
content” under “FCS file” (A). All parameters shown in red were not used in the example depicted. For the production of the configuration file, the original parameters
were renumbered, considering only the fluorescence colors, and all other parameters must be entered as indicated (B). In the line identified as "resultant definition,"
each inclusion and exclusion parameter is indicated, and the parameters used for the MCTA’s resultant vector are identified as zeros (B, asterisk).

When we analyzed activated CD8+ T lymphocytes (Figure 6),
we observed resultant color calculations only for cells producing
Th1 cytokines (Figure 6A), and no cells produced IL-4
(Figure 6B). Moreover, when we analyzed the files obtained from
the public repository corresponding to control cells incubated
with DMSO, we observed no CD4 or CD8 T cells expressing
any of the cytokines tested, as no resultant colors were generated
(Supplementary Figure 2).

Analysis of Rare Populations in the
MCTA Method
The MCTA method has important advantages over conventional
analysis and other computational tools, such as the quick analysis

of many fluorescence parameters simultaneously. Moreover, the
resultant vector (color) is shown per event on conventional
morphology dot plots, familiar to all flow cytometry users, and
the gating strategy is not influenced by regions defined by
the user. One advantage is especially important in the MCTA
method, which is the fact that all events are shown in the dot
plot, colored or not. In conventional flow cytometry analysis,
a sequence of manual regions defines the events that will
be analyzed. Therefore, minor or unpredicted subpopulations
outside the gates defined by the user are automatically excluded
from the analysis. In the MCTA method, however, this is not
an issue, as all events that obey the gating strategy are shown
as colored events, including the ones that would not be in
expected drawn regions.
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FIGURE 4 | The gating procedure in the MCTA method. The gating process in
the MCTA method is based on the definition of inclusion parameters
numerically identified in “parameter identification.” In this case, only events
positively labeled for CD3, CD4, CCR7, and CD154, identified as parameters
5, 15, 9, and 6 indicated under “cellular subpopulation” and “labeling” will be
used in the gating strategy. The exclusion parameters used in this example
were identified as –4, –11, –7, –8, to exclude cellular subpopulations and
naúve T cells, –2 and –10, to exclude Th2 and Th17 cells, and –13 and –14 as
activation T cell markers expressed on few events. The resultant vector was
calculated using only the parameters 3, 12, and 1.

Although the MCTA method can identify rare events, it can
be challenging to visualize these few colored events in files that
have many events; then, we created one interactive dot plot as
an additional tool. In this case, the user can determine a narrow
range of degrees to observe only the events displayed in that
range of resultant colors. This dot plot was named Resultant
Plot With Filter, and it excludes uncolored events and events
outside the range selected (Figures 7A–C). Then, the statistical
analysis corresponds only to those events that were included
in the range defined (Figure 7). In this example, the ranges
corresponded to 10 degrees, but the user delimitates the range
according to individual results. It is important to highlight that
for rare events identification, as in any flow cytometry analysis
method, the number of acquired events will be critical for
data visualization.

We further challenged the MCTA method using other files
downloaded from the repository, and the next experiment
evaluated the phenotype of adaptive and conventional NK cells
(Figure 8). For this analysis, we arranged the fluorescence colors
(parameters) as indicated in the Supplementary Figures 3A–
C, and it shows that the original FCS file had 17 parameters
(Supplementary Figure 3B). For the analysis of adaptive
NK cells, we defined as exclusion parameters the events
corresponding to dead cells, monocytes (CD14+) and B

lymphocytes (CD19+) (all in parameter 4), T lymphocytes
(CD3+ events, parameter 12), and events positive for an
adaptive NK cells marker that labeled few events (CD57+
events, parameter 5) (Supplementary Figure 3B). The inclusion
parameter corresponded to the expression of only NKG2C
(adaptive NK cells, parameter 10) (Supplementary Figure 3B –
indicated by the box “Resultant definition for adaptive NK
cells”) and for the MCTA analysis, we used a different proposal
than the one used by the authors. For the resultant color
calculation, we selected the channels that corresponded to
two available columns and the expression of CD2, NKp30,
CD7, ILT2, Siglec-7, CD56, and NKG2A (parameters 1, 8,
2, 3, 6, 7, 8, 9, 11, and 13, respectively) (Supplementary
Figures 3A,B). Although we included the available parameters
1 and 8 in the analysis, these variables do not affect the
resultant color, as predominant labelings mostly influence
the result.

As a result of adaptive NK cells, we observed most events as
orange cells (Figure 8A) and the statistical analysis, considering
geometric mean and median, showed that parameter 6 (CD7
labeling) was the single predominant labeling that accounted for
the resultant color in the MCTA analysis (Figure 8B).

For conventional NK cells, we used the exclusion parameters
shown in Supplementary Figure 3C (parameters 4, 12, and 5),
and the inclusion parameter was parameter 13 (NKG2A). The
MCTA analysis revealed different subpopulations of NKG2A+
cells, with orange, green, and violet as resultant colors
(Figure 8C). This means that subpopulations of NKG2A+ cells
had different predominant markers, which would be difficult to
observe in conventional analysis. In this particular case, despite
the heterogeneous subpopulations (Figure 8C), the statistical
analysis showed the parameter (channel) 6 as the predominant
labeling channel (Figure 8D). It happens because the MCTA
analysis is done at the event level, and the statistics give
populational results, as any flow cytometry analysis. To find the
predominant labeling(s) that generated the different resultant
colors (subpopulations), the Resultant Plot With Filter is once
more the solution. In this case, the user determines a range
of degrees that selects only the events shown in a given color,
either orange, green, or violet. Therefore, the statistics will show
the predominant labeling(s) for each subpopulation of cells. As
shown in Figure 7, the statistics will be restricted to each range
of degrees for each subpopulation, and the user will be able to
identify what molecule or molecules mostly contributed to each
resultant color.

DISCUSSION

During the past few decades, we witnessed the development
of new software and tools for the analysis of increasingly
complex results obtained by flow cytometry. However, most users
still follow the same analysis strategies, typically based on the
definition of sequences of manual gates on multiple dot plots
that show two parameters at a time. Although cytometrists are
familiar with this fragmented process, it has many disadvantages
that affect data reproducibility and accuracy.
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FIGURE 5 | The MCTA application and resultant dot plots: the MCTA analysis was done in Th1 (A) and Th2 (B) CD4+ T lymphocytes obtained from healthy human
donors and stimulated in vitro with Staphylococcal enterotoxin B (SEB). The MCTA gating strategy considered the events positive for CD3, CD4, CCR7, and CD154
labeling, and colored events correspond to the calculation of a resultant vector (or color) based on the labeling of IFN-γ, IL-2, and TNF-α (A) or IL-4 (B). The MCTA
statistical analysis is shown (C) for the file represented in (A). These FCS files were obtained from the repository (https://flowrepository.org/public_experiment_
representations) ID FR-FCM-ZZEC.

FIGURE 6 | The MCTA application for the analysis of CD8+ T lymphocytes stimulated by SEB. The MCTA analysis was done in Th1 (A) or IL-4+ (B) CD8+

T lymphocytes obtained from healthy human donors and stimulated in vitro with Staphylococcal enterotoxin B (SEB). Colored events correspond to the calculation of
a resultant vector (or color) based on the labeling of IFN-γ, IL-2, and TNF-α (A) or IL-4 (B) only in the events that are positive for CD3, CD8, CCR7, and CD154.
These FCS files were obtained from the repository (https://flowrepository.org/public_experiment_representations) ID FR-FCM-ZZEC.

Here we propose an automated strategy to explore the
diversity of cells in flow cytometry data. To the best of our
knowledge, the MCTA method is the first algorithm that analyzes
multiple labelings simultaneously and maps the results in FSC-
A x SSC-A morphology gates, extending the conventional
analysis. The process is accessible for average users and can

quickly show the resultant color based on multiple fluorescence
labelings per sample. However, at this point, we present the
rationale of the MCTA method, which is intended to be
included in software or packages for flow cytometry analysis
in user-friendly interfaces. It is our primary goal to offer
users a different perspective on the complexity of their results.
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FIGURE 7 | Resultant Plot With Filter: for the Resultant Plot With Filter, the user must define a range of degrees to apply to the MCTA analysis, and these ranges are
graphically represented here as block boxes over the degree scale. The analysis was done in Th1 CD4+ T lymphocyte obtained from healthy human donors and
stimulated in vitro with Staphylococcal enterotoxin B (SEB). The gating strategy considered the events positive for CD3, CD4, CCR7, and CD154 labeling. The
resultant vector was calculated based on the labeling of IFN-γ, IL-2, and TNF-α, and the statistical analysis of each range is shown. The examples considered only
events with resultant colors in the range of 235 to 245◦ (A, the color range of IL-2), 331 to 341◦ (B, the color range of IFN-γ), and 283 to 293◦ (C, the color range of
TNF-α). These FCS files were obtained from the repository (https://flowrepository.org/public_experiment_representations) ID FR-FCM-ZZEC.

This method allows the observation of biological phenomena
that could not be identified if any other tool were used. In
this way, the application of the MCTA method can guide
subsequent analysis choices, allowing as much information as
possible to be extracted from biological samples. Moreover,
the results are reproducible among collaborators, as long as
using the same files and applying the same background and
compensation values.

Here, we used FCS files downloaded from a public repository
and challenged the method using two sets of data. These

experiments employed 13 and 15 fluorescence parameters that
were used for the gating strategy and the calculation of the
resultant color. In these examples, the resultant color was
obtained based on single labeling (IL-4), three labeling colors,
or nine colors. Even if the number of parameters used to
generate the resultant vector exceeds nine colors, this does not
impose a limitation on the MCTA application. Because of the
statistical analysis, the users will always identify what marker
or markers mainly influenced the resultant vector generated for
data interpretation. The Resultant Plot With Filter is another tool
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FIGURE 8 | Adaptive and conventional NK cells analysis using the MCTA method. The expression of NKG2C was the inclusion parameter for the analysis of
adaptive NK cells (A), and the expression of NKG2A (C) was used for the study of conventional NK cells. Statistical analysis for adaptive NK cells is shown in (B) and
for conventional cells is shown in (D). These FCS files were obtained from the repository (https://flowrepository.org/public_experiment_representations) repository ID
FR-FCM-ZYY6.

developed to help the users in the interpretation of the results,
which is never exclusively based on the visual identification of
the color of the events.

One essential aspect of the MCTA method is its determinism.
Several flow cytometry methods for data analysis use stochastic
algorithms for dimensionality reduction, which may require great
processing capacity. To address this problem, it is common
to reduce the number of events analyzed to keep running
times acceptable (Saeys et al., 2016). Moreover, stochastic
methods like t-SNE or UMAP produce different results for
each run on the same dataset; therefore, the users should
run the algorithm multiple times using the same data to
analyze variability and prevailing trends. Furthermore, stochastic

methods are typically able to process only a few tens of
thousands of events per run, even when implementing additional
techniques such as downsampling, hierarchical clustering, or
dimensionality reduction. Another obstacle in the use of more
complex dimensionality reduction techniques is the setting of
the parameters to run the algorithms. Frequently, this inherent
complexity leads the users to employ default settings to run
their analysis due to the lack of knowledge to change these
parameters. In the case of t-SNE for example, the user has to
choose values for the perplexity parameter, whose typical values
vary between 5 and 50. As a stochastic method, even when using
the same perplexity parameter value, the result will variate when
comparing different runs. Moreover, it was recently published

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 September 2020 | Volume 8 | Article 52681465

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-526814 September 15, 2020 Time: 19:13 # 11

Henriques-Pons et al. Multiparametric Combined Analysis

that t-SNE can erroneously indicate clusters for homogeneously
distributed data, suggesting the wrong number of subgroups or
projecting data points that belong to the same subset, as if they
belong to different subgroups (Lötsch and Ultsch, 2019).

A deterministic method, like the MCTA algorithm, requires
only one run on a dataset and does not demand additional
aggregation steps. Furthermore, the complexity of the algorithm
described in this work is O(N.nc), where N is the number of
events, and nc is the number of channels. Typically nc is fixed
(for a specific flow cytometer) and nc < < N; therefore, the
complexity can be approximated by O(N).

Our method can also be easily adapted to explore multiple
cores/nodes in parallel, taking full advantage of modern multi-
core processors in highly scalable implementations. Indeed,
the method proposed here is very efficient computationally,
considering both execution time and memory requirements.
When we compared the processing times of MCTA vs. t-SNE
to generate Figure 8 using all events, we observed that MCTA
spent up to half a minute processing the whole data set. In
contrast, the t-SNE analysis required more than 6 h using
an average computer (Mac Book pro, 16gb RAM, 2.3 GHz
Intel Core i5) and up to 2.5 h in a computational cluster.
All these characteristics make the MCTA an ideal method
to rapidly evaluate specific questions about cellular phenotype
or function. Using the same computer mentioned, it was
impossible to run a UMAP dimension reduction technique due
to computational restrictions. To date, when we performed a
downsample of 15,000 events, we noted a dramatic reduction in
the events gated in the MCTA analysis, showing the importance
of analyzing the whole set of data. Although downsampling
strategies are frequently applied to the data before using
dimensional reduction techniques, our observation suggests that
data might be lost during downsampling to run t-SNE or UMAP
algorithms. Therefore, the identification of rare populations
can be impossible.

Although the MCTA method is based on the calculation of
a resultant vector according to multiple labelings, events with
extreme artifactual fluorescent signals (very high or very low
MFI), will not alter the tendency result of the population under
analysis. This is true because the MCTA method calculates
a resultant color for each event, and extreme artefactual
signals will affect only the event itself, not the population
under analysis. Moreover, the MCTA method is not indicated
to substitute conventional analysis; it is proposed as a new
way to show complex phenotypic profiles, complementing and
extending conventional analysis. We believe that conventional
flow cytometry data analysis, combined with other appropriate
computational tools and methods, will help to identify and
better describe biological phenomena, leading to more accurate,
complete, and reproducible data.

We consider that the MCTA analysis offers results that
are not directly comparable with traditional dimensionality
reduction techniques as t-SNE and UMAP. In the MCTA method,
the analysis is oriented to a specific set of data through the
inclusion and exclusion of markers in the gating strategy. On
the other hand, t-SNE and UMAP generally use the whole set of
fluorochromes available in the data set.

Finally, we believe that the MCTA method can be integrated
as a new functionality into flow cytometry analysis software,
allowing complementary views and comparisons with well-
established methods like t-SNE and UMAP and conventional
fragmented analysis.
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Cell motility varies according to intrinsic features and microenvironmental stimuli, being

a signature of underlying biological phenomena. The heterogeneity in cell response, due

to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying

the biological scenario from cell trajectories. We propose here a novel peer prediction

strategy among cell trajectories, deciphering cell state (tumor vs. nontumor), tumor stage,

and response to the anticancer drug etoposide, based on morphology and motility

features, solving the strong heterogeneity of individual cell properties. The proposed

approach first barcodes cell trajectories, then automatically selects the good ones for

optimal model construction (good teacher and test sample selection), and finally extracts

a collective response from the heterogeneous populations via cooperative learning

approaches, discriminating with high accuracy prostate noncancer vs. cancer cells of

high vs. low malignancy. Comparison with standard classification methods validates our

approach, which therefore represents a promising tool for addressing clinically relevant

issues in cancer diagnosis and therapy, e.g., detection of potentially metastatic cells and

anticancer drug screening.

Keywords: machine learning, cell motility, peer prediction, dynamic feature selection, cancer heterogeneity,

metastatic cancer cell detection, drug screening

INTRODUCTION

The ability of cells to coordinately move is indispensable in many biological processes, such as
tissue morphogenesis and repair, cancer progression, and invasion (i.e., metastasis spreading) (1).
Cell movements vary according to intrinsic features and microenvironmental conditions, possibly
being a signature of underlying biological phenomena. A straightforward simplification is that,
for instance, healthy cells move differently from tumor cells, especially when they undergo the
epigenetic changes leading to epithelial-to-mesenchymal transition, a phenomenon that provides
new motility ability to cancer cells allowing metastatic spreading (2). Motility is hardly described
by mere molecular markers, and therefore this important issue requires different approaches to be
properly addressed.
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Classifying cells according to their behavior in terms
of coordinated motility needs facing the problem of cell
heterogeneity; cells apparently identical bymorphological criteria
may behave differently because of fundamental differences
in genetic or epigenetic asset, the stage of cell cycle or
differentiation, in cell–cell or cell–environment interaction,
etc., parameters that, although assessable by single molecular
labeling, continuously change in time and combinations, being
thus impossible to describe in classical molecular terms.
Heterogeneity in cell response thus represents a big limitation
to identify the underlying biological scenario from cell motility;
nevertheless, such heterogeneity allows extracting behavioral
rules to finalize the automatic understanding, for example, of cell
state (e.g., tumor vs. nontumor), tumor stage (e.g., metastatic
vs. nonmetastatic), response to anticancer drugs, etc. To
this purpose, label-free (3) fluorescence time-lapse microscopy
(TLM) and special purpose video data analysis tools (4–7) are
providing promising novel, nonmolecular, dynamic approaches.

We present here a novel methodology to conduct massive
analysis of cell motility in different in vitro–controlled conditions
that combines TLM and label-free imaging, with cell tracking,
quantitative representation of trajectories, and novel machine
learning (ML) strategies within peer prediction framework.
Peer prediction strategies acquired much interest in many
contexts such as assignments in massive open online courses
and in collecting feedback about a new service (8). Such
algorithms use reports from multiple participants to score their
contributions in settings in which there is no way to verify the
quality of response (9). Cell systems, where a unique correct
response for cell behavior is not expected, represent therefore an
unconventional and challenging environment for peer prediction
paradigm extension.

Optimization of ML strategies and adaptation to cell motility
investigation need the identification of the correct learning
examples. Differently from other social contexts (10, 11), none
of the cells and related trajectories can be judged by experts,
both because it cannot be practically done and because the
heterogeneity of cell behavior and the massive number of cells
make it impossible to extract the “truth” at sight. Because
the acquired samples (cells) are not labeled by experts, cell
trajectories would directly inherit the same label assigned to
the entire experiment, i.e., cells moving in a control experiment
would be assumed to behave in a unique, similar way.
However, this assumption is generally invalid. The intrinsic data
heterogeneity forbids the direct assignment of a unique label to
all the cells, impeding to represent a cell population as a unique
behavioral entity. Hence, the selection of samples for model
construction becomes the core of the ML problem.

In the present work, we address the problem of learning a
classification model from cell trajectories and related descriptors
(peers) using a novel strategy. First, inspired by a previous
approach (12), all cell trajectories are “barcoded” during model
construction; however, only some of the barcoded trajectories
are assigned the role of trainers (hereafter denoted as “the good
teachers”) because only a certain number of cell trajectories
can be used to construct the good model. Second, not all cell
trajectories in the test set are used for testing because not all

of them represent the global target (e.g., a unique behavior for
the same cell line or the same reaction to a given stimulus).
The presence of a collective response phenomenon forces the
approach to automatically identify peers in the test set, with
high agreement in terms of the same descriptors selected in the
training step.

Regarding the descriptors selection, only some features
extracted from each cell trajectory can be assigned a
“discriminatory role” because not all features are likely to
be simultaneously relevant for all groups of cells. As an example,
in a group of cells moving toward a target cell, e.g., immune–
cancer cross-talk (13, 14), speed and directional persistence are
needed to model their collective motion; on the other hand,
in a group of cells interacting with a target cell, e.g., immune
cells killing a cancer cell (15, 16), mean interaction time and
track curvature have proved to be specifically tailored for
the phenomenon quantification. In particular, in this work,
we extended and applied a dynamic feature selection (DFS)
procedure (17, 18), selecting, in an unsupervised way, the
optimal feature set extracted from the training set for each new
test sample; this will be used to build a classifier for the test
label prediction.

Of importance, in addition to the model construction, in
our approach the novelty includes the decision-making step.
In in vitro experiments, cells naturally cluster before reaching
the confluence; consensus strategies can be exploited to acquire
a unique decision for the cluster. In this regard, we applied
two distinct cooperative learning criteria, inspired by collective
phenomena and peer influence studies (11); on the one hand, we
applied a majority voting procedure to all the labels assigned by
the classifier to the cell trajectories selected for that cluster; on the
other, we summed up all the scores assigned to each category of
the cells belonging to the same cluster and assigned the class with
the largest total score to the cluster. We refer to the two criteria
as majority voting criterion (maj-vot) and maximum trustiness
criterion (max-trust).

MATERIALS AND METHODS

Video Acquisition Details
The videos were acquired with a custom small-scale inverted
microscope (19). In order to have control on acquisition
methods and light exposure, a custom firmware was developed in
MATLAB 2017a R©. We acquired images at one frame per minute
with 6 h of total experimental time (12 h in the LNCaP case). The
images have a field of view of 1.2-mm width by 1.0-mm height
and a theoretical spatial resolution of 0.33 µm/px.

We recorded two videos per treatment condition in RWPE-
1 and PC-3 prostate cell experiments and four videos for the
control case in the LNCaP cells.

Cell Culture Details
Human prostate cancer cells, PC-3 and LNCaP cell lines
(ATCC, Rockville, MD), were grown in RPMI 1640
medium, supplemented with 10% fetal bovine serum, 1%
L-glutamine (2 mg/mL), and 1% penicillin/streptomycin (100
IU/mL) (Euroclone).
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Nonneoplastic, immortalized human prostatic epithelial
cells, RWPE-1 (ATCC, Rockville, MD) were grown in
keratinocyte serum-free medium (K-SFM), supplemented
with 1% penicillin/streptomycin (100 IU/mL), 50µg/mL bovine
pituitary extract, and 5 ng/mL epidermal growth factor (Life
Technologies, Barcelona, Spain).

Cells were grown at 37◦C in a humidified atmosphere of 5%
CO2 in air. In each experiment 40,000 cells/mLwere seeded in 35-
mm Petri dishes (Jetbiofil). Seventy-two hours postseeding, cells
were treated with the chemotherapeutic drug etoposide (Sigma-
Aldrich), a topoisomerase II inhibitor, at the final concentrations
of 0.5, 1, or 5µM and immediately analyzed with TLM.

Method for Automatic Cell Behavior
Classification
Step 1. Cell Localization and Tracking
The method is focused on the use of a previously validated cell
tracking tool, Cell-Hunter, which has been tested in prostate
cancer cell automatic tracking (12, 19), immune–cancer cell
crosstalk studies (16), and recently in red blood cell plasticity
analysis (20). The software automatically locates cells with a
radius within a given range provided by the user and tracks them
providing a predetermined maximum displacement allowed.

Step 2. Automatic Cell Clustering Identification
Cells naturally cluster when they are put in in vitro culture, a
primitive status before moving toward confluence. Cells move
according to the cluster they belong, promoting different roles
according to the cell stage, age, drug absorption, etc. The
automatic identification of the clusters each cell belongs to is
performed through image analysis algorithms involving image
binarization and morphological operators (12). The technique
is based on the localization of individual cells by performing
the segmentation of circular objects using the Circular Hough
Transform (CHT) (21) set according to the mean estimated
radius of cells involved. Each detected cell is represented as
a white circular object. By using an accumulation criterion,
consisting of the overlapping of the cell nuclei detected along
all the frames and normalizing by the maximum value, a gray-
scale map is obtained, in which higher intensity values locate cells
with limited motility frame by frame and thus higher probability
to stay in that position during movement. By applying pixel
intensity thresholding using the Otsu criterion (21) and then
morphological operators refining (21), a rough binary (black
and white) image representation of each cluster is obtained.
The boundary extraction of the detected regions represents
cluster contours.

Step 3. Feature Extraction
Each cell is characterized in terms of its kinematics and
shape dynamics. To do this, we identified some quantitative
descriptors to characterize the dynamics of cell movement. In
addition, shape descriptors are also considered to characterize
the morphodynamics during movement. Further mathematical
details of the two sets of descriptors can be found in the
following subparagraph.

Cell morphology feature extraction
The shape extraction process is described in
Supplementary Figure 1. We used the position of the cell
trajectory to correctly focus the window containing the cell
under study for every frame (Supplementary Figure 1A). We
obtained an initial contour applying a CHT (22, 23) with a
high sensitivity and a maximum radius smaller than the radius
expected from the first object found (Supplementary Figure 1B).
We took the perimeter of the smallest convex polygon
(convex hull) containing the union of all the found circles
(Supplementary Figure 1C) as starting contour for an
active contours algorithm (24) that gave us the final result
(Supplementary Figure 1D).

Looking at time-lapse videos, we observed that cells in
their motion change eccentricity, perimeter, and area. They
also change solidity when making pseudopodia. Furthermore,
nonneoplastic cells (RWPE-1) are smaller than the others, and
the milder neoplastic cells (LNCaP) have a higher eccentricity
on average. These considerations led us to consider as significant
features eccentricity, area, perimeter, and solidity (25).
(a) Eccentricity is defined as

eccentricity =
df

DM
(1)

where df is the distance between the foci, and DM is the major
axis length;
(b) Area is defined as

area =
∑

i

∑

j

f
(

i, j
)

(2)

where f
(

i, j
)

is 1 for
(

i, j
)

in the region of interest and
zero elsewhere;
(c) Perimeter

perimeter =
∑

i

∑

j

g
(

i, j
)

(3)

where g
(

i, j
)

is 1 over the pixels that have at least one neighbor
(in 8-connection) with zero value and zero elsewhere;
(d) Solidity (26) is defined as

solidity =
area

area convex hull
(4)

where the convex hull is the smallest convex polygon that contain
the region.

To exploit the dynamic of these descriptors for each
cell over time, we performed the following statistics: mean,
standard deviation, skewness, kurtosis, Shannon entropy, and
signal entropy.

Cell motility feature extraction
In order to have statistical significance of the extracted features,
we discarded all the trajectories, which lasted <50min (50 time
points). Cell position at each time point is affected by errors:
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discretization error, which is linked to the dimension of each pixel
(0.66 µm/px) and the optical resolution (R ∼= 0.8 µm). Another
source of error occurs when the algorithm does not find the
cell, assigning the previous position to the cell, thus resulting in
jumps in the trajectories. We reduced this error with a smoothing
spline approximation (27). On the new set of coordinates,
(xs (tk) , ys (tk)), we computed the following parameters for their
already proven informative content (19):
(i) Tangential speed norm

v (tk) =

√

√

√

√

(

xs
(

tk+1

)

− xs (tk)
(

tk+1 − tk
)

)2

+

(

ys
(

tk+1

)

− ys (tk)
(

tk+1 − tk
)

)2

(5)

(ii) Track curvature χ (tk )

χ (tk) =

∣

∣xs
′ys

′′
− ys

′xs
′′
∣

∣

[

(xs′)
2
+
(

ys′
)2
]
3
2

(6)

(iii) Turning angle ϑ (tk )

ϑ (tk) = tan−1

(

vx

vy

)

(7)

(iv) Angular velocity, computed as the ratio between the
magnitude of the velocity and the distance from the center of
the trajectory.

ω (tk) =
v (tk)

R (tk)
(8)

where R (tk) =
2

√

(xs (tk) − xc)
2
+
(

ys (tk) − yc
)2
,

xc =
1
N

∑N
k=1 xs (tk) and yc =

1
N

∑N
k=1 ys (tk ).

(v) Diffusion coefficient

D = 4−1
· ey0 (9)

where y0 is the y-axis intercept estimated form a linear fit in log
space of the mean square displacement (28).
(vi) Directional persistence, defined as the ratio between the
initial and the final point and the real length of the track.

p =

∥

∥xs
(

tf
)

− xs (ti)
∥

∥

L
(10)

where L =
∑

k

∥

∥xs (tk) − xs
(

tk−1

)
∥

∥.
From each time-varying feature, we extracted the following

high-level statistical descriptors: mean, standard deviation,
skewness, kurtosis, and signal Shannon entropy. In conclusion,
we collected 24 shape descriptors and 39 motility features.

Kinematics and shape features allow excluding some
trajectories from the whole analysis through unsupervised
outlier detection. Such step is required because of some false
tracks extracted by the cell tracking software. Misdetected
trajectories may be related to false cells localization (for example,
out-of-focus cells) or to tracks that exit the field of view and are
linked to new cells entering the scene.

It is straightforward to note that optimal descriptors depend
not only on the task, but also on the training and testing
samples. For this reason, we selected a wide set of descriptors
commonly used for evaluating cell behavior from motility and
shape analysis. The assumption underlying the selection needs to
be able to monitor different aspects of cell motility, such as speed,
curvature, turning angle, persistence, etc., as well as synthetic
descriptors of shape dynamics along time.

Step 4. Good Teacher Selection

Let us consider a set of training samples, F =

∣

∣

∣

∣

∣

∣

∣

f1
...
fT

∣

∣

∣

∣

∣

∣

∣

, with T as

the number of training samples, and f jk =
{

f
j

k1
, f

j

k2
, . . . , f

j

kM

}

the

subarray of descriptors for the kth cell in the jth cluster Cj, j =
1, . . .NC withNC being the number of clusters in the training set.

First, the algorithm automatically selects a subset of

descriptors, F̃ ⊂ F, with T rows and M
′

< M columns
(descriptors) such that a maximum value is obtained for a given
criterion 91 applied to the set F̃. The suboptimal criterion 91

used here is the maximum area under the curve (AUC) values
(29) obtained in all the associated binary problems in a multiclass
context (in an all-vs.-all classification strategy validated on the
training set). The AUC is a metric of separability for a given
descriptor with respect to the output label of different classes.
The higher the AUC value (bounded in [0,1]), the higher the
discrimination capability of the descriptor.

Then, a subset of training samples, namely, F′ ⊂ F̃ with

T
′

< T rows and M
′

columns, is extracted by taking the
training samples whose descriptors fall within a tuned range
(i.e., percentile [th1, th2]) independently calculated in each video.
Formally, [th1, th2] allows keeping all the observations whose
cumulative distribution function is between th1 and th2.

The threshold values set in each experiment are listed in
Table 1, rows 1 and 2.

Step 5. Test Sample Selection
By using the same descriptors selected in Step 4, a similar refining
procedure is applied to the test cell trajectories, by using an
independent range of elimination, namely [th3, th4], leading
to test samples indicated with H. Table 1, rows 3 and 4, lists
the values for percentiles th3 and th4. Good teacher and test
sample selection procedures represent the forerunner of the peer
prediction paradigm.

Step 6. Dynamic Feature Selection
After training and test data have been collected, namely, G and
H, descriptors are finely selected by using a DFS procedure.
DFS applies three distinct criteria. The first supervised criterion,
Fisher criterion in Figure 1, selects features that correlate with
the output in training set, according to a limit value th1dfs. The
second and third criteria are unsupervised and use two distinct
approaches. In the second, the Mahalanobis criterion (Figure 1),
features in the test set whose Mahalanobis distance from features
in the training set is under a given limit threshold th2dfs are
selected. In the third criterion (Figure 1), themaximumposterior
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TABLE 1 | List of algorithm parameters setting used in the experiments for

performance assessment.

Algorithm parameters setting

Symbol Description Shape

features

Motility

features

th1 Lower bound percentile good teacher selection 0.2 0.2

th2 Upper bound percentile good teacher selection 0.8 0.8

th3 Lower bound percentile test sample selection 0.1 0.1

th4 Upper bound percentile test sample selection 0.9 0.9

th1dfs DFS Fisher criterion threshold 1.0 0.9

th2dfs DFS minimum Mahalanobis criterion threshold 0.1 0.1

th3dfs DFS maximum probability criterion threshold 1.0 0.2

p Confidence value for stepwise feature selection 0.3 0.3

A brief description of each parameter is also included.

probability of feature values in test to belong to the distribution
of values in training set over all the classes is calculated; features
with probability values higher than a given threshold th3dfs are
kept. Further mathematical details can be found in Mosciano
et al. (18). Features that satisfied all the three criteria are then
selected. The extension we propose here with respect to the
standard DFS (18, 30) is the inclusion of a preliminary supervised
selection performed at the beginning of the model construction
based on stepwise feature selection procedure (31) applied on the
training samples. The fact that motion models may vary within
the same experiment (12) implies the necessity to extract many
kinematics descriptors. The modification to standard DFS allows
limiting the initial set of descriptors to a maximum effective
set. The p-value of the F test (32) used for the acceptation of a
feature in the selection process, indicated with p, is an algorithm
parameter. Values of th1dfs, th2dfs, th3dfs, and p are listed in
Table 1, rows 5–8.

Finally, we may indicate with G and H the refined sets for
model construction and automatic classification.

Step 7. Classification Model
Model construction is performed considering three distinct
classification models: linear discriminant analysis (LDA) (33),
support vector machine (SVM) (34), and K-nearest neighbor
(KNN) (35).

LDA finds a linear combination of features (input data) to
separate two or more classes of objects or events. In this work,
LDA naturally produces as an outcome not only the class label
but also an associated posterior probability to belong to the class.
According to this, given a test set H, the LDA model provides
for each class cH a score value yH . Such values are used in the
cooperative strategies as shown below.

SVM presents one of the most robust prediction methods,
based on the statistical learning framework. An SVM model is
a representation of the examples as points in new prediction
space, mapped so that the examples of the separate categories
are divided by a clear gap that is as wide as possible.
New examples are then mapped into that same space and

predicted to belong to a category based on the side of
the gap on which they fall. The SVM algorithm may be
turned into nonlinear classification model by using a nonlinear
kernel, commonly radial basis function. In this work, we used
SVM with linear kernel for harmonization with the LDA
competitive method.

KNN is a nonparametric method in which the input consists
of the K-closest training examples (K = 5 in this work) in
the feature space (input data), whereas the output is a class
membership. An object is assigned to the class most common
among that of its KNN training samples. A standard metric for
representing neighborhood is the Euclidean distance, which is
used in our work.

Step 8. Cooperative Learning
In the test set, all the cell trajectories associated to a cluster are
individually scored through yH and labeled through cH . Under
the need to provide a unique decision, i.e., a unique proof of
concept to the underlying biological hypothesis, the approach
allows aggregating the labels and the scores of the trajectories
belonging to the same cluster, using cooperative decision-making
strategies. In details, we considered two distinct independent
criteria that are used as alternatives. On the one hand, counting
of labels cH assigned to each class in the cluster is applied, and
the class with the majority of labels is finally assigned to the
cluster, the majority voting criterion. On the other hand, the sum
of scores yH assigned to each class computed over the cluster
is used to assign the class with the highest score, the maximum
trustiness criterion.

The two criteria are inspired by two different considerations.
First, maj-vot represents the logic of consensus based on the
agreement among artificial labelers (cell trajectories in test). This
is in line with the assumption of a unique collective underlying
phenomenon in a given experiment. On the other hand, the
max-trust criterion considers all the scores assigned to the
entire cluster giving strength not only to artificial labelers in
agreement (majority voting paradigm) but rather to all labelers
in the cluster, even those not in agreement. In other words,
the latter criterion applied a more democratic principle, giving
voice also to minority cell behavior with high scores. Cooperative
learning approaches represent the final step of the peer prediction
paradigm, in which final decision is taken among peers,
after the elimination of abnormal or deviated responders (test
samples rejected).

Experimental Setup
Three prostate cell lines were chosen to test the validity
of the proposed methodology: RWPE-1 (nonneoplastic cells),
LNCaP (neoplastic cells), and PC3 (metastatic neoplastic cells),
representing healthy, tumor, and highly aggressive tumor cell
phenotypes, respectively. RWPE-1 and PC3 were treated with
the chemotherapy agent etoposide at different concentrations
(0.5 and 5µM for RWPE-1, 1 and 5µM for PC3). RWPE-
1 and PC3 were also acquired in control conditions (i.e., no
drug). Therefore, for RWPE-1 and PC3, we collected six videos
(two ones for each condition), and for LNCaP, we collected four
replicated experiments in control condition (globally 16 videos).
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FIGURE 1 | A sketch of the whole approach. (1) Cell localization and tracking, (2) cluster identification, (3) features extraction, (4) good teachers selection, (5) test

samples selection, (6) dynamic feature selection, (7) classification model, and (8) cooperative learning.

In order to demonstrate the effectiveness and the general
validity of the approach, we ran a leave-one-experiment-out
validation procedure, holding out an experiment at a time
for testing and using the remaining for training the method.
Despite the low number of available experiments, results are very
promising, in relation to the challenging identified setup. On the
other hand, under the assumption of the intrinsic heterogeneity
of the cell behavior in a given group of nominally identical cells,
we performed cooperative learning by maj-vot and max-trust
criteria applied at cluster level.

An example of clustered cells for the three cell lines is
shown in Supplementary Figure 2. The color bar indicates the
time varying cross the trajectory. Four distinct cell shapes
and positions along the corresponding trajectories are also
shown. As immediately observed, cell appearance is very
heterogeneous, both among the same cell line and along
the trajectory of the same cell. This fact demonstrates the
difficulty to extract synthetic descriptors from trajectories and

construct a model on them for recognizing changes in the
cell behavior.

Quantification and Statistical Analysis
To evaluate the performances of all the classification models, a
cross validation procedure has been applied.

RESULTS

Setting of the Proposed Approach
In this work, we present a general method to analyze and
discriminate cell behavior in controlled in vitro–cultured
environments. The proposed approach can be divided into eight
key steps: (1) cell localization and tracking, (2) automatic cell
clustering identification, (3) cell morphology andmotility feature
extraction, (4) good teacher selection, (5) test samples selection,
(6) DFS, (7) classification model, and finally (8) cooperative
learning. A schematic representation of the whole approach is
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reported in Figure 1. Briefly, the method exploited a previously
validated cell tracking tool (Cell-Hunter) to automatically locate
and track cells. Each cell is then identified as a member of a
cell cluster by image analysis algorithms (12) and characterized
in terms of kinematics and shape descriptors. To this aim,
quantitative descriptors to characterize cell morphology and
motility over time were extracted. Good teacher and test
sample selection procedures were then applied to retain only
those cell trajectories considered as good trainers and good
samples, respectively, to construct the model. After training
and data collection, DFS further finely selected only those
features satisfying the Fisher criterion, Mahalanobis criterion,
and the maximum posterior probability, excluding all abnormal
behaviors. Model construction was then performed, and two
cooperative learning techniques, i.e., the maj-vot and the max-
trust, were implemented to ultimately extract a unique collective
cell response. Further details on the proposed method for
automatic cell behavior classification are reported in Materials
and Methods.

Three prostate cell lines were chosen to test the validity
of the proposed methodology: RWPE-1 (nonneoplastic cells),
LNCaP (neoplastic cells), and PC3 (metastatic neoplastic cells),
representing healthy, tumor, and highly aggressive tumor
cell phenotypes, respectively, treated with increasing doses of
the chemotherapy agent etoposide. Among chemotherapeutics,
etoposide was selected because of its well-known effect on both
cell shape (Figure 2) and motility (19); i.e., it affects the features
extracted for the classification method.

Setting of Algorithm Parameters
Quantitative results of the test have been assessed using different
indices; balanced accuracy and unbalanced accuracy (ACCb and
ACC, respectively) were computed over the confusion matrix
related to the classification results. We reported the results
computed over each single-cell trajectory tested (single-cell
result) and the results achieved using the cooperative learning
strategies. In particular, we show results referred to the maj-
vot and to the max-trust criteria. Furthermore, the results
were compared with those obtained using standard classification
strategies or with the elimination of specific algorithms blocks,
such as data test and good teacher (training and/or test)
selection. In this way, we demonstrated the validity not only of
the whole approach, but also the improvement introduced by
each sub-block.

Table 1 lists the parameters values for each test performed for
system performance assessment. The values have been estimated
by an optimization procedure run on a repeated subsampling of
the training set.

Classification Results: The Proposed
Method Reached Accuracy Values of 95%
We validated the approach on the automatic recognition of the
three different prostate cell lines tested (RWPE-1, LNCaP, and
PC3). We separated the results obtained using only shape or
motility features, in order to appreciate the relevance of the two
groups of descriptors for the task.

FIGURE 2 | Variation over time of PC3 cell morphology after treatment with

etoposide assessed by flow cytometry. Overlays of the forward scatter (FSC)

and the side scatter (SSC) of PC3 cells, before and after treatment with

etoposide (1 or 5µM) for 12 h, are reported; the two parameters relate to cell

size and granularity, respectively.

In Figure 3, we included the confusion matrices using the
SVM classifier related to (A, D) single-cell result, (B, E) maj-
vot result performed at cluster level, and (C, F) max-trust result
performed at cluster level, for shape (A–C) and motility (D–F)
features, respectively.

In detail, by using shape descriptors, we obtained accuracy
values, ACC (ACCb), equal to 94.4% (91.8%) for the single-cell
result, 95.1% (93.4%) for the maj-vot result, and 94.6% (92.6%)
for max-trust result. The highest accuracy values are obtained for
RWPE-1 and LNCaP cells. PC3 cells, instead, are misclassified
in more than 10% of cases. Nevertheless, the classification error
always occurs in the LNCaP class and never in that of the
RWPE-1, underlying the great validity of the novel approach that
when it fails, it misclassifies only between the two tumor classes
(metastatic vs. nonmetastatic tumor cells), in accordance with the
heterogeneity-characterizing tumors.

By using only motility features, instead, we obtained lower
(although still very promising) accuracy values, ACC (ACCb),
equal to 86.7% (83.5%) for the single-cell result, 91.6% (89.0%)
for the maj-vot result, and 91.4% (88.8%) for max-trust result.

The use of shape descriptors therefore improves the global
recognition accuracy with respect to motility features. This is a
further demonstration of the potential of video analysis in TLM
toward the possibility to combine spatiotemporal properties in
morphokinetic studies.
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FIGURE 3 | Classification results: RWPE1, LNCaP, and PC3 cell lines. Shape features in (A–C) and motility features (D–F). (A,D) Single-cell result, (B,E) maj-vot

cluster-level result, (C,F) max-trust cluster-level result. In (A,D), numbers indicate the cells tested, whereas in (B,C,E,F), numbers indicate the number of clusters.

Green accuracy values represent the true-positive results for each class, whereas the values in the pink boxes indicate the number of false positives (upper triangular

part of the confusion matrix) and false negatives (the lower triangular part of the matrix). The values in the gray box represent the total accuracy.

The Crucial Role of the Good Teacher and
Test Sample Selection to Maximize the
Classification Performance
In this section, we evaluated the results of the proposed approach
based on the three distinct classification models: LDA, SVM,
and KNN.

Classification results are shown in Table 2. As it can be noted,
the three classifiers produced similar results (above all LDA and
SVM); cell classification according to the phenotype is effectively
solved by the proposed synergic approach. In light of this,
LDA remains the simplest model achieving almost the highest
performance, to the advantage of an increased architecture and
easier interpretation of the results.

In order to demonstrate the crucial role of the good teacher
and test sample selection, we conducted two specific tests. First,
we totally removed the good teacher selection procedure (Step
4) from the strategies and reported the results of a model
constructed on the entire training dataset and the test conducted

on all the samples in each cluster. Second, we removed the test
sample selection (Step 5); namely, we only selected good trainers

but not good samples for testing the results. Numerical results are

shown in Table 2, columns D and E.
First, we observed that using shape descriptors, performance

is higher. This is due to the fact that although cell shape changes

during movement, as observed from Supplementary Figure 2,

and that etoposide administration deeply affects cell shape, this
variation is smaller than that existing among distinct cell lines.

Therefore, the impact of data selection is strong, but not crucial

(we obtained even accuracy values of 88 and 92% without
the application of the novel strategies). Data selection, instead,

acquires a primary role in the case of motility descriptors; indeed,

it increases the accuracy values even by more than 10%.
To classify cell types based on motility features, selection

of appropriate cell trajectories results pivotal; indeed, some
aspects of cell behavior can be relevant for identifying a certain
phenomenon, but less important for a different task. In light
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TABLE 2 | Comparative results in terms of balanced accuracy (ACCb) and accuracy (ACC) of classification.

(A) (B) (C) (D) (E)

Shape features Proposed approach SVM KNN No good teacher selection No data test selection

ACCb Single-cell 91.94% 92.19% 88.51% 77.19% 85.15%

ACC 94.31% 93.63% 90.10% 79.84% 87.43%

ACCb Maj-vote 93.36% 93.15% 92.53% 84.29% 89.95%

ACC 95.09% 95.09% 94.64% 87.53% 91.40%

ACCb Max-trust 93.52% 92.55% 92.57% 86.02% 90.26%

ACC 95.31% 94.64% 94.64% 88.36% 91.61%

Motility features Proposed approach SVM KNN No good teacher selection No data test selection

ACCb Single-cell 83.51% 85.84% 80.20% 70.15% 69.70%

ACC 86.69% 88.74% 86.06% 74.62% 74.30%

ACCb Maj-vote 89.04% 90.54% 86.21% 77.91% 76.56%

ACC 91.61% 92.52% 89.57% 83.43% 81.21%

ACCb Max-trust 88.74% 90.10% 88.47% 80.61% 80.20%

ACC 91.38% 92.06% 91.16% 85.25% 83.64%

Top part shows shape features, and bottom part shows motility features. The results of the proposed approach using LDA (A) are compared with the use of (B) support vector machine

(SVM) with linear kernel, (C) K-nearest neighbor (KNN) with K = 5, and the cases (D) with no data selection and (E) that in which the good data selection was not applied to the test set.

of this, Figure 4 shows some examples of clusters and related
trajectories for the three cell lines. Using different colors for
cell candidates, we could discriminate among cell trajectories
extracted through the Cell-Hunter software (cyan) and tracks
extracted using the test sample selection approach (green). As can
be observed, in most cases, cell trajectories selected for the scope
of classification as good test samples lie at the boundary of the
cluster (this is particularly evident for RWPE-1 and PC3 cells),
suggesting that the behavior of cells within the cluster has a less
discriminative role in this case study.

DISCUSSION

In this work, we present a novel methodology combining TLM
with cell tracking, providing a quantitative representation of
trajectories and novel ML strategies, within peer prediction
paradigm. This allows classifying cells in the categories of
nontumor, tumor with no metastatic power, and tumor with
high metastatic power, on the basis of cell behavior in terms of
variations over time of cell morphology and motility.

As any methodology based on ML, we had to consider
that such investigations need the identification of the correct
learning examples (8). This is a hard task because of the dramatic
heterogeneity of cell response, even among apparently similar
cells, because of intrinsic different genetic and/or epigenetic
assets and extrinsic environmental conditionings. Peer prediction
protocol was implemented here to solve the strong heterogeneity
of individual cell properties and activity, which renders difficult
to represent a cell population as a unique behavioral entity.

To this purpose, during model construction, good teacher
selection (12) was applied to cell trajectories; i.e., only those
cell trajectories considered as good trainers were selected to
construct the good model. The good teacher selection strategy

acts therefore as a sort of candidate selection and can be used
to visually investigate the role of each selected cell within
any cell cluster. Selection was performed again in the testing
phase: the test sample selection, indeed, allows excluding cell
trajectories not complying with the representative behavior of the
examined population, excluding the “noncanonical” behaviors
to maximize the classification performances. Importantly, this
methodology paves the way to future studies including those
cells that behave differently, which could, nonetheless, represent
second, third, etc., subpopulations in a heterogeneous mixture.
The analysis of the currently labeled but excluded peers,
in fact, would be crucial, for example, to investigate the
heterogeneous genetic and epigenetic nature of cells within real
biological systems, distinguishing between subpopulations. This
is especially important in tumors, known to be composed of
different cancer cell subpopulations. This is a paramount issue,
because cancer cell heterogeneity is a main reason why therapies
fail. Importantly, there are presently no straightforward ways to
point out diversity. Therefore, the development and validation of
the present tool, providing a mean to “barcoding” the different
cancer populations, would find immediate application in clinics,
with important diagnostic improvements.

To build the classifier for the test label prediction, we then
combined the good teacher–good test sample selection strategies
to a novel use of the DFS approach (17, 18); extracted features are
dynamically selected according to the testing set characteristics.
This is allowed by the novel paradigm of autonomy, in which
good test samples suggest the optimal descriptors to teachers for
optimal working. In line with a social peer prediction paradigm,
it is the responders, and not the masters of service, who decide
which aspects to judge in service quality assessment.

Through the combination of a novel good teacher–good
test sample selection strategies and dynamic features selection
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FIGURE 4 | Visual example of selected cell trajectories. RWPE1 (A,B), LNCaP (C,D), PC3 at drug concentration of 1µM (E,F). The cyan trajectories are those

extracted by the cell-tracking software for all the cells in the experiment. The green trajectories are those selected in the good sample selection.

approach for optimal model construction, we were thus able
to automatically select cell trajectories for both learning and
testing, by excluding cells with noncanonical behavior. The
implementation of two cooperative learning techniques based
on distinct peer agreement rules ultimately demonstrated the
existence of a collective response rather than a collection of
individual responses, finally allowing our classifier to get accuracy
values of even 95% for shape descriptors.

In this regard, the use of shape together with kinematic
descriptors represents a further novelty of the proposed
approach. Investigation of cell morphology lost importance over
time because of its impossibility of being quantifiable, therefore
being not objective and not objectified. In the present work,
instead, we demonstrated that the use of shape descriptors
improves the global recognition accuracy of the model with
respect to only motility features, thus combining spatiotemporal
properties in morphokinetics studies.

The promising results achieved strongly suggest that after
implementation, for example, extending the study on a larger
sample of tumor cell lines, the proposed model could represent a
novel tool in understanding cancer, thereby facilitating diagnosis
and therapy. Indeed, the proposed predictive system may be
employed in diagnostics as a fast method to identify cancer
cells possessing a potential metastatic behavior and classify
the type, stage, and aggressiveness of a tumor, in addition
to the traditional diagnostic biomarkers screened after biopsy.
To this purpose, several chemotherapeutics may be rapidly
tested on patients’ tumor cells, to gain information from the
therapy-promoted behavioral changes; this may allow classifying
patients’ cells according to their aggressiveness, i.e., identifying
cells metastatic potential. Noteworthy, our approach accurately
correlating cell physical aspects (such as morphology and
motility) to cell phenotypes may also be employed to associate
different cell motilities to corresponding diverse cancer driver

mutations, thus not only predicting cancer cell predisposition to

therapies, but also inferring information on oncogenes and/or
tumor suppressors role in cancer genesis and progression.

As far as therapy is concerned, instead, the predictive model
may be used as an innovative drug screening platform, to identify
effective anticancer biomodulating agents (36). Indeed, sets of
chemotherapeutics may be tested on aggressive tumor cells,
allowing selecting those able to remodulate cell behavior, e.g.,
shifting cancer cells in a less malignant or even in the nontumor
category (phenotypic reversion). The proposed model would
therefore allow identifying those drugs able to matter-of-factually
“normalize” cancer cell behavior, even allowing case-by-case
analyses for personalized therapy.
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The projected burden of dementia by Alzheimer’s disease (AD) represents a looming

healthcare crisis as the population of most countries grows older. Although there

is currently no cure, it is possible to treat symptoms of dementia. Early diagnosis

is paramount to the development and success of interventions, and neuroimaging

represents one of the most promising areas for early detection of AD. We aimed to

deploy advanced deep learning methods to determine whether they can extract useful

AD biomarkers from structural magnetic resonance imaging (sMRI) and classify brain

images into AD, mild cognitive impairment (MCI), and cognitively normal (CN) groups. We

tailored and trained Convolutional Neural Networks (CNNs) on sMRIs of the brain from

datasets available in online databases. Our proposed method, ADNet, was evaluated on

the CADDementia challenge and outperformed several approaches in the prior art. The

method’s configuration with machine-learning domain adaptation, ADNet-DA, reached

52.3% accuracy. Contributions of our study include devising a deep learning system that

is entirely automatic and comparatively fast, presenting competitive results without using

any patient’s domain-specific knowledge about the disease. We were able to implement

an end-to-end CNN system to classify subjects into AD, MCI, or CN groups, reflecting

the identification of distinctive elements in brain images. In this context, our system

represents a promising tool in finding biomarkers to help with the diagnosis of AD and,

eventually, many other diseases.

Keywords: Alzheimer’s disease, computer aided diagnosis, artificial intelligence, computer vision, deep learning,

convolutional neural networks, image classification, magnetic resonance imaging

1. INTRODUCTION

Dementia by Alzheimer’s disease (AD) is characterized by multiple cognitive problems, including
difficulties in memory, executive functions, language, and visuospatial skills. The most significant
risk for AD is aging—there is almost a 15-fold increase in the prevalence of dementia between the
ages of 60 and 85 years (Evans et al., 1989). The projected burden of the disease represents a looming
healthcare crisis as the population of most industrialized countries continues to grow older.
Although there is still no cure, it is possible to treat both cognitive and behavioral symptoms of AD.

The early diagnosis of the disease is paramount for interventions, and clinical trials in AD tend
to enroll subjects at earlier time-points before neuronal degeneration has achieved a particular stage
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and treatment is often more effective. In this context,
neuroimaging is one of the most promising areas of research
for early detection of AD, as the progressive degeneration of
brain structures can be seen as a dramatic cerebral shrinkage in
structural magnetic resonance imaging (sMRI).

Thus far, works in this area have recurrently considered only a
small number of subjects and images, often with curated data (i.e.,
reviewed, prepared, and organized by experts), such as ADNI’s
Standardized MRI Data Sets (Wyman et al., 2013). Additionally,
with the lack of a standard evaluation protocol, each study
employed its criteria, with its own random data split. The lack of
standardization limits the comparison between differentmethods
and usually overestimates performance in a real-world scenario.
When data is not readily preprocessed and comes from different
sources, this situation is even more problematic.

A recent and extensive review (Wen et al., 2020) indicated
that a reasonable number of studies using convolutional neural
networks (CNNs) for AD either present evident data leakage
problems, or offer scarce explanation for the validation method
to ensure that data leakage has not occurred. Data leakage
possibilities only emphasize the need for an independent set of
images for evaluation. In addition to this review, Wen et al.
(2020) proposed a standard framework for rigorous performance
assessment, using data from ADNI, AIBL (Ellis et al., 2009), and
OASIS (Marcus et al., 2007, 2009).

For fair comparisons between different methods, a few
challenges with standard protocols and hidden test labels were
launched, such as the CADDementia challenge (Bron et al.,
2015). Although presenting a good classifier—63.0% accuracy
in classifying MRI images into cognitively normal (CN), mild
cognitive impairment (MCI), and AD patients—, the winning
method (Sørensen et al., 2017) used transductive inference to
calculate hippocampal shape scores, requiring the CADDementia
test data to be calculated, which deviates from the original
proposal of applying the algorithm in the clinical setting.
Additionally, their pipeline failed to process three scans from
the CADDementia test set, requiring manual intervention. The
analysis of each subject took 19 h of computation time. The
second-best team (Wachinger and Reuter, 2016) employed a
domain-adaptation approach, and optimization was done on the
union of ADNI and CADDementia training sets, with equal
weights for each sample. The analysis of each subject took 17.4
h of computation time.

Among the available machine learning methods, CNNs
have been increasingly used in the Alzheimer’s biomarker
identification task, given its power to learn discriminative
representations hierarchically in an automated fashion. Most
studies employing CNNs in the context of AD used 2D
inputs, whereas studies that used 3D inputs focused basically
on binary classifications. The few works that trained a 3D
CNN for the multiclass CN/MCI/AD classification evaluated
their performances with cross-validation on ADNI data and
considered only networks comparable to our smallest proposed
architecture. All of this context highlights the novelty in our
research, as we optimized very deep 3D CNNs, with up to
22 layers, for the multiclass diagnosis task, and evaluated our
performance on the CADDementia challenge, with unknown

labels, making our results much more reliably applicable in a
real-world setting.

A previous work that employed the deep learning approach in
the context of AD (Korolev et al., 2017) designed 3D CNNs based
on smaller versions of VGG (Simonyan and Zisserman, 2014)
and ResNet (He et al., 2016) architectures. However, only binary
classification tasks were considered, which were evaluated using
cross-validation onADNI. The first group to successfully propose
a deep-learning approach to the CADDementia challenge (Dolph
et al., 2017) extracted features such as cortical thickness, surface
area, volumetric measurements, and texture. These values were
used to greedily layer-wise train a stacked auto-encoder with
three hidden layers, achieving competitive results. Using the
whole brain as input, Hosseini-Asl et al. (2018) employed a
small stack of unsupervised 3D convolutional auto-encoders
(3D-CAE), evaluating with cross-validation on ADNI. One of the
works more closely related to ours (Esmaeilzadeh et al., 2018)
optimized small 3D CNNs, similar to our most basic model,
and considered the multiclass classification task. However,
the performance was measured using ADNI cross-validation,
hindering better comparisons with ourmethod. It is worth noting
that they reported a classification accuracy of 61.1%, but observed
overfitting in training data.

In more recent work, Abrol et al. (2020) developed 3D CNNs
based on the ResNet architecture and experimented with several
binary and multiclass tasks. They used the ADNI data to create a
training set, used for cross-validation, and a small test set. Even
though their results were promising, no further comparisons with
different datasets or standardized evaluation frameworks were
made. Interestingly, their experiments also presented overfitting
in training data. Also recently,Mehmood et al. (2020) adapted the
VGG architecture to create a 2D siamese CNN. They evaluated
their model using training and test split in the OASIS dataset,
presenting compelling results. However, given their proposed
data flow chart, it is possible that their data augmentation
technique also introduced data leakage.

In our research, we relied upon a 3D CNNwith data primarily
provided by ADNI (Mueller et al., 2005) and evaluated on the
CADDementia challenge (Bron et al., 2015). Our solution also
includes an accountable mechanism to allow us to understand its
decisions. Our experiments were conducted in a scenario similar
to real-world conditions, in which a CAD system is used on a
dataset that is different from the one used for training.

The main challenges and contributions of our research
included devising a deep-learning solution completely automatic
and comparatively fast, while also presenting competitive
results without using any domain-specific knowledge. Our
method, named ADNet, yields considerable gains in accuracy,
outperforming several other systems in the prior art, all of which
require prior knowledge of the disease, such as specific regions
of interest from input images. Alternatively, our system does
not require any manual intervention, clinical information, or
a priori selected brain regions. The main reason for not using
any information from the disease is to empower the system to
automatically learn and extract relevant patterns from regions of
the brain, and eventually enable it to support current diagnosis
standards for known or new diseases. In addition, it runs 80
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FIGURE 1 | Overview of our proposed pipeline, with brain extraction and normalization (A), 3D CNN processing (B), and domain adaptation (C) steps, in this order.

times faster than the state of the art (Sørensen et al., 2017),
on average.

Our generated ADNet and ADNet-DA models, as well as
supporting code, are publicly available1 to be used or trained
on new data. With this work, we are releasing one of the first
models ready to use, encouraging open science and reproducible
research, while also setting a starting point for researchers
working with 3D MRIs.

2. METHODOLOGY

In this work, we propose an end-to-end deep 3D CNN for
the multiclass AD biomarker identification task, using the
whole image volume as input. Our pipeline, displayed in
Figure 1, is composed of three main steps: brain extraction and
normalization (Figure 1A), 3D CNN processing (Figure 1B),
and domain adaptation (Figure 1C). This section provides
details of our pipeline, including image preprocessing, CNN
architectures, and optimization techniques.

2.1. Brain Extraction and Normalization
Optimizing deep-learning systems using sMRIs in their original
space requires the systems to learn discriminative patterns
invariant to several transformations, demanding larger models
and an even larger number of samples, with all expected
variations. By registering our images to a standard template, we
can expect similar structures to be roughly in the same spatial
location, allowing us to handle the entire image at once and
automatically determine the most important regions of interest.

We used the Advanced Normalization Tools (ANTs; Avants
et al., 2009) to extract and normalize brain images. Our

1https://github.com/gfolego/alzheimers

pipeline was based on previously defined scripts2 (Avants et al.,
2011; Tustison and Avants, 2013), and we made use of the
provided default parameters, including transformation types,
sequence, and metrics. Essentially, our brain extraction and
normalization pipeline comprised the following steps: image
intensity winsorizing, bias field correction, another winsorizing
step, translation alignment, rigid transform, affine transform,
deformable symmetric normalization (SyN), application of brain
mask from the atlas, and range normalization.

As we used registered brains in our research, we opted for
a less rigid and less linear atlas, allowing for some degree of
variation during the registration process. This atlas also had a
high spatial resolution, so finer details would not be lost in the
process. As such, the Montreal Neurological Institute (MNI)
152 International Consortium for Brain Mapping (ICBM) 2009c
Nonlinear Asymmetric 1×1×1mm3 (Collins et al., 1999; Fonov
et al., 2009, 2011) atlas was chosen.

After the brain extraction and normalization process, the
output image has the same dimensions as the atlas (i.e., 193 ×

229 × 193). From all of these 8, 530, 021 voxels, only 1, 886, 574
(22%) of them are not zero. Since the brain is enclosed in
a smaller region inside the image, we removed the border
dimensions that contained no information, resulting in a final
image of 145× 182× 155. This new space represents 48% of the
original volume, reducing sparsity from 78 to 54%. Finally, we
used the training set to compute mean and variance, then used
them across all sets to normalize the data to zero mean and unit
variance. Given that the used datasets did not fit inmainmemory,
we adopted a single-pass online mean and estimated variance
algorithm (Welford, 1962).

2Specifically, scripts antsBrainExtraction.sh and antsRegistrationSyNQuick.sh of

version 2.1.0.
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TABLE 1 | CNN architectures evaluated in this study.

Architecture Layers
Parameters
(in millions)

LeNet-5 7 0.3

VGG 2048 11 89.8

VGG 512 11 26.8

GoogLeNet 22 14.6

ResNet A 18 33.0

ResNet B 18 33.2

Our main challenge was putting together a registration
pipeline, including the adopted atlas, that provided useful and
meaningful results in a reasonable time, while maintaining high
resolution images.

2.2. Convolutional Neural Network
We describe here the convolutional neural network architectures
we adopted and the modifications we performed to each. These
networks were initially designed for 2D color images, and we
are dealing with 3D grayscale MRIs. Thus, the most natural
adaptation was to convert all 2D operations, such as convolution
or pooling, to 3D. Given these adaptations, we were unable to
employ a transfer learning approach (Sharif Razavian et al., 2014)
with the original networks directly.

A common attribute to all considered architectures is that
spatial dimension is reduced as information flows to deeper
layers. Spatial dimensionality reduction is usually achieved
with max-pooling layers, or with more substantial strides in
convolutional layers. To accommodate different data shapes
that were not necessarily divisible by two, we adopted an ad-
hoc approach by zero-padding each layer as needed, so no
information was lost. We also added batch normalization (Ioffe
and Szegedy, 2015) to every convolutional and fully-connected
layers. All activation functions were rectified linear units
(ReLU; Nair and Hinton, 2010), except for the classification
output, which was a softmax function. Finally, the number of
layers varied according to the adopted network standard. Table 1
shows the CNN architectures evaluated, taking into account the
original approach for layer counting in each network.

We started with a small network, based on the LeNet-5
architecture (LeCun et al., 1989; Lecun et al., 1998). Because
this network is significantly older than the others, it required
the largest modifications. This network was composed of
the following layers: convolution, subsampling, convolution,
subsampling, fully connected (originally implemented as
convolutional), fully connected, and output. As subsampling
layers had learnable parameters, we converted them to
convolutions, with filter (kernel) size and stride equal to 2×2×2,
thus keeping the subsampling behavior. The main difference
was in the connection between the first subsampling and second
convolutional layers, for which the particular arrangement in the
original work was converted to a dropout layer with a probability
of 40%. Similar to the original architecture, if we had adapted
the last convolutional layer to match the previous layer’s output

size, it would have had 120 feature maps with a kernel size of
34 × 43 × 36, seriously increasing the number of parameters.
To mitigate these issues, we adapted those kernels to 5 × 5 × 5
and added a global average pooling layer immediately following,
similar to GoogLeNet (Szegedy et al., 2015) and ResNet (He
et al., 2016). Naturally, the last layer contained three units (one
for each class), with a softmax function activation.

The Visual Geometry Group (VGG) proposed deep CNN
architectures, achieving second place in the classification task at
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2014 (Simonyan and Zisserman, 2014). They designed very
uniform architectures ranging from 11 (configuration A) to
19 (configuration E) weight layers, i.e., considering only
convolutional and fully-connected layers. Due to its uniformity,
mostly with filters of size 3 × 3, the VGG architecture is
considerably large. The first layers, with the original input
dimensions, consumed a large GPU memory, while the last
layers, with dense connections, generated several parameters.
Since our input data were already quite large when compared
to traditional 2D images, we adapted the VGG network
configuration A by halving all numbers of filters in convolutional
layers, and all numbers of units in fully-connected layers, while
keeping filters sizes of 3 × 3 × 3 and dropout rate at 50%. Even
after reducing the network size, the first fully-connected layer of
our adapted VGG-A, with 2,048 units, accounted for 78, 643, 200
(88%) parameters. For comparison, Table 1 also includes our
VGG-A with 512 units in the fully-connected layers.

While VGG achieved second place in ILSVRC-2014,
GoogLeNet secured first place in the classification task (Szegedy
et al., 2015), proposing an architecture named Inception. The
basic idea was to increase both depth and width while keeping
computational requirements constrained. This approach led to
a deeper model with fewer parameters and better performance.
We adapted directly from their GoogLeNet architecture, i.e.,
only discarding the local response normalization (Krizhevsky
et al., 2012) layer and the auxiliary networks. We also adjusted
the last average pooling layer, following the output shape of
the previous layer, and kept the dropout rate at 40%. In this
architecture, the number of layers came from depth, where single
convolutional or fully-connected layers counted as one, while
inception modules counted as two. However, each inception
module had six individual internal convolutional layers.

In ILSVRC-2015, Residual Network (He et al., 2016) won
first place in classification, localization, and detection tasks.
These researchers wanted to understand whether learning
better networks meant simply stacking more layers. With this
study, they found the degradation problem, where traditional
models similar to VGG stopped improving performance after
a certain number of layers, and even started getting worse
afterwards. To overcome this problem, they proposed the
residual function, which is the basic building block of a
Residual Network (ResNet). We adapted ResNet directly from
the non-bottleneck 18-layer architecture, in which shortcuts with
increasing dimensions were either (A) identity shortcuts, i.e.,
padding with zero, or (B) projection shortcuts, i.e., convolutions
with 1 × 1 × 1 filter (kernel) size. Similarly to VGG, the
number of layers came from convolutional and fully-connected
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layers, with projection convolutions not considered in the
layer count.

In summary, we adopted four CNN architecture designs,
namely, LeNet-5, VGG, GoogLeNet, and ResNet. LeNet-5
is considerably older and smaller, so it shall have a lower
probability of overfitting. The VGG network is known for its
uniformity, which makes it relatively simple to adapt, inspect,
and use for many different tasks; however, this characteristic
also makes it significant in the number of parameters and in
hardware requirements. These drawbacks were addressed in
both GoogLeNet and ResNet architectures, which also adopted
very specific building blocks, making it possible to extract more
complex patterns from data, while also increasing the number of
layers and reducing the number of parameters. The idea was to
explore different architectures and understand how they would
behave in the AD task.

To avoid overfitting, we adopted regularization with L1 and
L2 norms. In L1, this effect is achieved by minimizing the
absolute values of the weights, while in L2 this is done with their
squared values. In principle, L2 norm tends to produce diffuse
and small numbers, while L1 tends to produce sparse numbers.
This property makes L1 particularly well-suited to handle noisy
data, acting as a feature selection algorithm, which could help us
better visualize and explain what the CNN has learned. However,
in general, L2 can be expected to provide superior results over L1.

All network architectures and their optimization were
implemented using upstream (i.e., the latest version from the
code repository) Lasagne (Dieleman et al., 2015), which is a deep
learning framework based on Theano (Al-Rfou et al., 2016). At
the time this research was carried out, we used a development
version of Lasagne 0.2, and a development version of Theano
0.9.0, with Python 2.7.6, CUDA 7.5, and CuDNN 5. Additionally,
we used SciKit-learn 0.18.1 (Pedregosa et al., 2011) and NumPy
1.11.3 (van der Walt et al., 2011).

2.3. Domain Adaptation
In addition to brain processing and CNN pipelines, we
considered a domain adaptation approach. In our method,
we trained a system using one dataset and evaluated it on a
different dataset (i.e., CADDementia). Even though they are
related, such differences mean that the source data distribution
could be different from the target data distribution. Thus, it
should be possible to further improve the results by adapting the
previously-trained system to the new dataset, even if using only a
small number of samples from this target domain. This scenario,
also known as cross dataset validation, is more closely related to
a real-world scenario, in which data sources will most likely be
different between training and actual usage. Additionally, this is
a more reliable way of assessing generalization capabilities of a
machine learning algorithm.

In our domain adaptation approach, we started by using our
previously-optimized CNN to extract features from the complete
target dataset (i.e., CADDementia), in one of the last CNN
layers. After, we normalized these features to zero mean and
unit variance, using only the target training set to compute the
parameters. With the normalized data, we optimized a one-vs.-
rest logistic regression (McCullagh, 1984) on the complete target

TABLE 2 | Datasets considered in this study.

Dataset Number of MRI

images

References

ADNI
18,303

Mueller et al., 2005;

(ADNI1, ADNIGO, ADNI2) Beckett et al., 2015

AIBL 1,098 Ellis et al., 2009

CADDementia 384 Bron et al., 2015

MIRIAD 708 Malone et al., 2013

OASIS 3,056 Marcus et al., 2007, 2009

training set. In order to find the best parameters for this classifier,
we used grid search with leave-one-out cross-validation. Then,
we finally had a system that was enhanced for the target domain,
making it possible to output improved classification probabilities
for each sample in the target domain. This pipeline is similar to a
transfer-learning approach (Sharif Razavian et al., 2014).

3. EXPERIMENTAL SETUP

Given that training a CNN from scratch usually requires massive
amounts of data, we gathered as many different imaging sources
as possible. We collected an AD sMRI dataset comprising 23,165
images. Below, we describe our optimization approach, including
associated parameters.

3.1. Data
In our data collection process, we considered the datasets
indicated in Table 2. ADNI1 originally included three participant
groups: CN, MCI, and AD. Starting in ADNIGO, the MCI stage
was split into early MCI (eMCI) and late MCI (lMCI). Later,
in ADNI2, a subjective memory complaint (SMC) group was
added (Beckett et al., 2015). Similarly to ADNI1, both AIBL
and CADDementia sets were composed of CN, MCI, and AD
stages, whereas both MIRIAD and OASIS sets contained only
CN and AD.

Since one of our main goals for this research was achieving
a good result in the CADDementia challenge, we adopted only
equivalent diagnoses. As such, eMCI and lMCI stages were
grouped along with MCI, and SMC was not considered. From
these datasets, we downloaded all available raw T1-weighted
sMRI scans associated with Alzheimer’s, i.e., we did not consider
any pre- or post-processed image.

To isolate possible confounding factors, we made a distinction
between MP-RAGE and IR-SPGR/IR-FSPGR sequences (Lin
et al., 2006; Jack et al., 2008), and aggregated different data
sources and sequence techniques in steps. While all ADNI
sets had both MP-RAGE and IR-SPGR/IR-FSPGR, AIBL and
OASIS had only MP-RAGE, and MIRIAD had only IR-FSPGR.
The resulting datasets are described in Table 3, and detailed
in Table 4.

For each dataset, we created training, validation, and test
splits. In Dataset 1, we randomly split the corresponding subjects,
trying to keep the original age, sex, and diagnostic stratification
across each set, with 70% of subjects for training, 10% for
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TABLE 3 | Datasets assembled in this study.

Resulting

dataset

Overarching

sets

MP-RAGE only Final number of

MRI images

Dataset 1 ADNI1 Yes 9,149

Dataset 2 All ADNI Yes 15,885

Dataset 3 All ADNI No 18,303

Dataset 4 All No 23,165

validation, and 20% for testing. In each subsequent dataset, we
first assigned images from previous subjects to the respective set,
then we proceeded with the stratified random split considering
only new subjects.

3.2. Metrics and Optimization
The primary evaluation measure we considered herein was
classification accuracy, which is the number of correctly classified
samples divided by the number of all samples. Even though
this performance value does not take into account class priors,
the challenge organization deemed class sizes insignificantly
different, therefore regarding this metric as a better approach
for overall classification accuracy. Additionally, the receiver
operating characteristic (ROC) curve and the respective area
under the curve (AUC) were also considered, as they provide
metrics that are independent of the threshold chosen for
classification. Also, since AUC does not traditionally depend on
class sizes, we adopted an AUC measure that does not rely on
class priors. Finally, the true positive fraction (TPF), the number
of correctly classified samples of a given class divided by the
number of all samples from that class, was calculated for each
class. According to the authors, TPFs for diseases (AD and MCI)
can be interpreted as the two-class sensitivity, while TPF for CN
corresponds to the two-class specificity.

As we optimized and trained our networks, we compared
them and selected the best ones using the average of TPFs, since
it more closely relates to the accuracy and does not depend on
class priors. To perform the training process, we used Adam
optimizer (Kingma and Ba, 2014) with default parameters (i.e.,
β1 = 0.9, β2 = 0.999, and ǫ = 10−8). With a small sample
of images, we empirically decided to begin with a learning rate
of α = 10−4, and settled to a batch size of three (for VGG
architectures) or nine (for all the others), mainly due to GPU
memory limitations, even though we only used GPUs with 12
GB of dedicated memory. Finally, we adopted Glorot uniform
initialization (Glorot and Bengio, 2010) with scaling factor of

√
2.

4. RESULTS AND DISCUSSIONS

Fairness, accountability, and transparency (FAT) have become
increasingly essential aspects of machine learning (Goodman
and Flaxman, 2016). For example, laudable efforts include
explaining algorithmic decisions, making an effort to understand
sources of error and uncertainty, and creating auditable
systems (Diakopoulos et al., 2017).

Given the expectations described above, we will now discuss
further details of our study. We better describe our optimization
process, specifying the steps to handle overfitting problems.
Then, we report performance results, including previously
described metrics, along with efficiency measurements. Finally,
we discuss our best CNN model, providing further insights into
its functionality, and how it processes data to make predictions.

4.1. Optimization
As stated earlier, we determined the initial learning rate of α =

10−4, and varied some configurations in each architecture to
achieve the best accuracy in the CADDementia training set.
These options included regularization with L1 and L2 norms,
regularization strength λ, number of units in fully-connected
layers, dropout rates, batch size, and multi-class hinge loss
(instead of the traditional categorical cross-entropy loss).

The parameters for regularization strength, number of units,
and dropout rates were also used for regularization, acting as
trade-offs between model complexity and bias, thus managing
the probability to overfit. Overfitting was a significant concern
for us due to the large size of our networks and a relatively small
amount of data. The different batch size was an experiment to
compare the behavior of all networks with the same batch size
of three. Given that support vector machine (SVM; Cortes and
Vapnik, 1995) classifiers usually present reasonable results, and
have successfully been used to identify Alzheimer’s biomarker
previously (Magnin et al., 2009), we also experimented with the
multi-class hinge loss.

In general, we varied regularization strength λ in powers of
10, between 10−5 and 102, number of units in fully-connected
layers in powers of 2, between 32 and 2, 048, and dropout
rate with steps of 10 percentage points, between 40 and 90%,
including 95, 99, and 99.9%. Note that some networks had
specific parameters, i.e., these variations did not apply to all
evaluated architectures. We followed a greedy approach, by first
tuning regularization strength with L2 norm, followed by several
units, and then dropout rates. Next, we evaluated batches of
size three for all networks, L1 norm, multi-class hinge loss, and,
finally, larger datasets.

To form a balanced batch, the same number of samples was
consistently selected from each class. In each epoch, we randomly
sampled each class, limited by the class with fewer images. We
worked with a total batch size of either three or nine samples,
depending on the network architecture.

We observed that, at some point, most networks underfit or
overfit, presenting erratic metrics, with high variations between
epochs. To overcome this issue, we applied the early stopping
to interrupt the optimization before the model began to overfit.
After 50 epochs without further improvement in average TPF
over the validation set, the training was stopped. The model was
optimized for up to 200 epochs.

4.2. Performance
We first analyzed the efficiency of our processing pipeline,
divided into brain image, CNN, and domain adaptation stages.

Figure 2 shows a histogram and a kernel density estimation
of the execution time of brain extraction and normalization steps
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TABLE 4 | Datasets summaries: number of subjects, number of images, descriptive age statistics, image-wise percentage of females (vs. males) and image-wise

percentage of 1.5 T field strength (vs. 3.0 T).

Dataset Subjs. Group Images
Age (years)

Female (%) 1.5 T (%)

Med Avg ± Std Min Max

Dset.
1 845

All 9,149 76.6 76.3± 6.9 54.6 93.0 42.2 82.2

CN 2,701 76.7 77.2± 5.1 60.0 92.8 50.2 80.5

MCI 4,845 76.5 76.0± 7.4 54.6 90.9 35.3 83.0

AD 1,603 76.5 76.1± 7.9 55.2 93.0 49.5 82.5

Dset.
1

Train.
591

All 6,314 76.5 76.2± 6.9 54.6 93.0 43.4 82.6

CN 1,809 77.2 77.3± 4.9 60.0 90.8 49.5 81.3

MCI 3,399 76.1 75.7± 7.3 54.6 90.9 36.3 83.0

AD 1,106 75.9 76.1± 7.9 55.2 93.0 55.3 83.5

Dset.
1
Val.

84

All 951 76.4 75.8± 6.8 56.2 89.2 40.5 82.8

CN 301 75.7 76.5± 4.8 65.2 88.6 58.5 79.7

MCI 501 78.2 76.7± 6.7 56.2 89.2 28.5 83.8

AD 149 72.0 71.2± 8.6 56.5 85.0 44.3 85.2

Dset.
1

Test
170

All 1,884 77.2 77.0± 6.9 56.7 92.8 38.7 80.4

CN 591 76.2 77.2± 5.6 63.3 92.8 47.9 78.5

MCI 945 77.7 76.5± 7.8 56.7 90.9 35.1 82.4

AD 348 79.7 78.0± 6.3 63.1 87.7 33.0 78.2

Dset.
2 1 503

All 15,885 75.8 75.4± 7.3 54.6 95.8 44.0 53.3

CN 4,646 76.8 76.9± 5.8 56.3 95.8 50.0 56.5

MCI 8,940 75.0 74.6± 7.7 54.6 93.5 40.0 50.5

AD 2,299 76.4 75.8± 7.8 55.2 93.0 47.5 57.5

Dset.
3 1 715

All 18,303 75.8 75.5± 7.4 54.6 95.8 43.5 48.2

CN 5,361 76.7 76.9± 6.0 56.3 95.8 50.0 52.5

MCI 10,306 75.0 74.6± 7.7 54.6 93.6 39.5 45.5

AD 2,636 76.2 75.8± 7.9 55.2 93.0 45.9 50.2

Dset.
4 2 984

All 23,165 75.0 73.5± 11.7 18.0 98.0 46.5 55.5

CN 8,462 75.0 71.3± 16.1 18.0 97.0 53.9 62.8

MCI 10,460 75.0 74.7± 7.7 54.6 96.0 39.6 45.1

AD 4,243 75.4 75.3± 7.9 55.0 98.0 48.4 66.3

CADD.
Train. 30

All 30 65.0 65.2± 6.9 54.0 80.0 43.3 0.0

CN 12 62.0 62.3± 6.1 55.0 79.0 25.0 0.0

MCI 9 68.0 68.0± 8.2 54.0 80.0 44.4 0.0

AD 9 67.0 66.1± 5.0 57.0 75.0 66.7 0.0

CADD.
Test 354 All 354 65.0 65.1± 7.8 46.0 88.0 39.8 0.0

AD, Alzheimer’s disease; Avg, average; CADD., CADDementia; CN, cognitively normal; Dset., dataset; Max, maximum; Med, median; MCI, mild cognitive impairment; Min, minimum;

Std, standard deviation; Subjs., subjects; Train., training; Val., validation.

for Dataset 4, which is our largest, containing 23,165 volumes.
Interestingly, only 151 images (0.7%) took longer than 25 min
to process. Each process used two cores in a shared cluster of
commodity hardware, such as Intel R© Xeon R© CPU E5645 at 2.40
GHz, and around 2 GB of RAM.

To train our CNNs, we used three differentmodels of NVIDIA
GPUs: GeForce GTX TITAN X (Maxwell microarchitecture),

Tesla K40c, and Tesla K80. Training usually lasted for about
100 epochs, taking around 4 days to complete. We performed
a total of 121 experiments. Inference time for our best network
(VGG 512) was <1 s. The grid search for domain adaptation
was completed in under one minute, and the classification of all
354 samples from CADDementia test set was accomplished in
about 1 ms.
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FIGURE 2 | Histogram and kernel density estimation plots of brain extraction

and normalization times for Dataset 4, in minutes. Dataset 4 is our largest,

composed of ADNI1, ADNIGO, ADNI2, AIBL, MIRIAD, and OASIS datasets,

with a total of 23,165 volumes. These plots show that the processing times

ranged mostly between 7 and 15 min, with an average of about 12 min,

indicating that our method is fast.

TABLE 5 | Performance results (average true positive fraction, labeled avgTPF) of

our best CNN architectures and respective configurations found in

optimization experiments.

Architecture avgTPF (%) Norm λ Dropout (%)

LeNet-5 56.5 L2 10−2 40

VGG 512 75.9 L2 10−4 50

GoogLeNet 58.3 L1 10−3 80

ResNet B 60.2 L2 10−2
−

In summary, our method is expected to provide a response
in <15 min, with extreme cases taking a little longer than
2 h. This processing time contrasts with the current best
method in CADDementia challenge, which requires 19 h of
computation (Sørensen et al., 2017). In other words, our method
is nearly 10× faster, considering the worst-case scenario, or
almost 80× faster, on average.

Regarding performance metrics in terms of results, we
present our best configuration for each network architecture in
Table 5. The best VGG had 512 units in each fully-connected
layer, and the best ResNet used the projection shortcut (B).
We also included our main optimization metric—average TPF
(avgTPF)—for the training set of CADDementia, in which the
top value was 75.9%, translating to 76.7% in accuracy. All of these
results were found while optimizing the networks with Dataset 1.

As initially expected, L2 norm provided the best results for
almost all architectures. The best GoogLeNet using L2 achieved
57.4% average TPF, close to the one using L1 (58.3%), while the
L1 norm performed considerably worse for the other networks.
ResNet with identity shortcuts (A) achieved 57.4%, which is
slightly inferior to the projection shortcut (B), with 60.2%, a
similar difference found in the original work (He et al., 2016). We
hypothesize that deeper architectures did not achieve the highest
scores because they tend to do better in more massive datasets,
which we did not have.

A batch size of three (instead of nine) only produced
significantly worse results, indicating that our best VGG model
could potentially achieve even better results if we used GPUs

TABLE 6 | Multiple performance results of our best CNN, in percentage.

Model Dataset Split Accuracy
TPF AUC

CN MCI AD All CN MCI AD

ADNet
Dataset

1

Train. 60.6 89.6 36.7 86.8 87.9 90.3 80.6 88.8

Val. 44.1 71.1 22.4 62.4 68.9 72.2 56.9 72.5

Test 43.6 67.3 21.1 64.7 68.0 73.9 57.0 68.9

ADNet CADD
Train. 76.7 83.3 55.6 88.9 90.3 92.1 83.1 96.3

Test 51.4 77.5 27.9 46.6 68.5 70.5 61.2 73.6

ADNet
-DA CADD

Train.* 76.7 75.0 55.6 100.0 88.5 90.7 79.4 95.8

Train. 90.0 83.3 88.9 100.0 98.0 95.8 97.9 100.0

Test 52.3 68.2 37.7 49.5 70.9 72.8 60.5 79.0

AD, Alzheimer’s disease; AUC, area under the receiver operating characteristic curve; CN,

cognitively normal; CADD, CADDementia; CNN, convolutional neural network; MCI, mild

cognitive impairment; Train., training; TPF, true-positive fraction; Val., validation; Train.*,

leave-one-out cross-validation results.

with larger memory or a multi-GPU framework implementation.
Similarly, multi-class hinge loss did not improve our results.
Most surprisingly, Dataset 1, our smallest, presented the best
performances, and Dataset 2 achieved an average TPF as high
as 72.2%. We hypothesize that this happened due to the higher
diversity of data sources and conditions in more massive sets,
indicating that a smaller but more cohesive dataset should be
sufficient for optimization.

VGG 512 was our best network model, and the respective
performance metrics are shown in Table 6. We named our
CNN approach ADNet (Alzheimer’s Disease Network), with
the domain adaptation method ADNet-DA, and submitted our
prediction scores to the CADDementia challenge. Currently,
there are 48 different submissions, ours included3. Similar to
previous results (Esmaeilzadeh et al., 2018; Abrol et al., 2020),
we also observed some overfitting in the training data. However,
the performance differences in Dataset 1 between validation and
test sets were small, indicating that we appropriately mitigated
this problem.

In general, ADNet presented promising results in the
CADDementia training set. The low TPF in the MCI group was
expected, since classifying MCI subjects solely on their sMRI
represents a challenge (Albert et al., 2011), also observed in a
number results of CADDementia submissions (Bron et al., 2015).
However, the decrease in MCI and AD TPFs between training
and test sets was higher than expected. As such, this method
achieved an interesting two-class specificity, with a modest two-
class sensitivity, meaning it is better suited for determining
healthy patients. Regarding accuracy in the test set, ADNet
ranked 25th, tied with two other systems, outperforming 22
submissions. Besides, this result was only statistically different,
with a 95% confidence interval from the first and the last
three systems. Considering that we were the first group that
did not use any domain-specific information for this task, we

3https://caddementia.grand-challenge.org/results_all/ [Online; accessed

2020-05-14].
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FIGURE 3 | Receiver operating characteristic (ROC) curve for ADNet-DA,

provided by CADDementia. AD, Alzheimer’s disease; AUC, area under the

receiver operating characteristic curve; CN, cognitively normal; MCI, mild

cognitive impairment.

can claim that our CNN method was able to learn meaningful
patterns automatically.

As for the domain adaptation approach, we extracted 512
features from the second-to-last layer of ADNet, and then we
performed a grid search on the parameters of a logistic regression
classifier. Using the best parameters found (most importantly,
C = 0.001), we optimized this classifier on the complete
training set and applied it to output classification probabilities
for each sample from the challenge. We also submitted these
predictions to CADDementia, naming it ADNet-DA (ADNet
with domain adaption). The corresponding results are also
indicated in Table 6. This method ranked 21st, outperforming 27
submissions, with a statistical difference from the first and the last
four systems.

Considering this approach, we reported the leave-one-out
cross-validation results in the training set while performing a
grid search, and also the results in this same set after the last
optimization with all training samples. As expected, developing
and evaluating a system on the same data overestimated its
generalization performance; however, even our cross-validation
attempt did not significantly improve our estimations for the
test set. In comparison with ADNet, ADNet-DA improved both
MCI and AD TPFs, while decreasing CN TPF, with an overall
improvement of almost one percentage point in accuracy. These
results indicate that domain adaptation was indeed an important
technique. The corresponding ROC for CADDementia test set
is displayed in Figure 3, and the respective confusion matrix is
in Table 7.

Though Dolph et al. (2017) pioneered deep learning on
this challenge, we are the first (to our knowledge) to propose
an end-to-end training deep 3D CNN for the multiclass AD
biomarker identification task in CADDementia. One of their
systems ranked 7th, with 56.8% accuracy, while the other
ranked 25th, tied with ADNet on 51.4%. Our ADNet-DA
method was able to outperform a deep-learning system that

TABLE 7 | Confusion matrix (in percentage) for ADNet-DA, provided by

CADDementia.

Prediction

CN MCI AD

A
c
tu
a
l CN 68.2 25.6 6.2

MCI 51.6 37.7 10.7

AD 29.1 21.4 49.5

Values are adjusted relative to the actual class, i.e., divided by the row sum. This way, the

main diagonal represents the true positive fraction (TPF) for each class. AD, Alzheimer’s

disease; CN, cognitively normal; MCI, mild cognitive impairment.

uses domain-specific information, which demonstrates the
effectiveness of the approach proposed in this work.

4.3. Accountability
Understanding the decision-making process of a machine-
learning algorithm has become crucial lately, especially in
medicine. For practical application, an algorithm must present
good performance results and also demonstrate how predictions
are generated. The explicability requirement has become even
more critical in recent years with rules such as the General Data
Protection Regulation (GDPR), which also brought explainable
artificial intelligence (XAI) to the spotlight (Goodman and
Flaxman, 2016).

Explaining what and how a neural network has learned is
an open problem, with a rapidly evolving research field. In
order to better understand what our model is analyzing in brain
images and how it is done, we experimented with a number of
visualization approaches, considering the most used techniques
in accountable machine learning for neural networks. Some of
these approaches were also recently explored by Rieke et al.
(2018).

Similarly to Krizhevsky et al. (2012), we analyzed the filters
from our first convolutional layer. While their kernels were of
size 11×11×3, presenting some interesting smooth and colorful
patterns, our kernels are 3 × 3 × 3 in grayscale, producing less
than ideal images for visualization.

Another traditional approach for visualization is to show
outputs of activation functions from the network, after
processing an input. Activation is simply the result of a
mathematical function. These outputs represent some of the
initial patterns that the network learned to be the most
relevant for this task. These outputs are then non-linearly
combined with additional and more complex patterns before the
final classification.

Occlusion is a technique to visualize how and where the input
image affects the result of the network. The basic idea is to
systematically hide (occlude) some regions of the input image,
preventing the network from becoming activated in these specific
regions, and then storing the probabilities output. Given a class of
interest, for instance AD, it is possible to create a heatmap with
the corresponding prediction for each occluded region, where
most important regions will present highest impact (with low
probability), due to the occlusion. This technique was initially
proposed by Zeiler and Fergus (2014).
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There are different ways to hide a region of the input image
and avoid activations in a network. The most straightforward
and most direct would be to set input values to their respective
averages, which, in our case, is zero. Considering images in a
range from zero to 255, it is possible to occlude with the average
value (gray), with zero (black), with 255 (white), and even more
sophisticated approaches, such as different forms of noise.

Finally, we investigated an approach that more closely related
to the actual output decision of the network. For that, we
calculated the gradient of the network concerning the input,
which is used to update the network’s internal parameters. These
gradients may also be plotted and interpreted as how much
the output is affected by changes in input values; however,
this simple approach produces rather noisy visualizations.
An improvement to this technique, called deconvolution, was
proposed (Zeiler and Fergus, 2014) and can be interpreted as
reversing the operations performed by the network. Even though
this is an interesting approach, the guided backpropagation
method (Springenberg et al., 2014) produces even sharper
visualizations. Interestingly, guided backpropagation combines
calculations from both backpropagation and deconvolution,
resulting in more detailed images.

Figure 4 illustrates activated areas for each group, where
brighter regions mean a larger effect on the prediction output.
For the CN group, we can see activations distributed in a
diffuse pattern, but mainly restricted to the cortex in the right
temporal lobe (predominantly in the medial temporal gyrus and
the parahippocampal gyrus), the central portion of the occipital
lobe, the posterior cingulum, and the posterior parietal cortex.
ForMCI, activations occurredmainly in the left posterior parietal
cortex, the right anterior cingulum, and the right dorsolateral
prefrontal cortex. For AD, more significant activations were
detected in the left posterior parietal cortex, right temporal pole,
cerebellum, and more diffusively in the spherical surface of
the brain.

The diffuse pattern of activations in all groups (mainly in
temporal and posterior regions of the brain) can be interpreted
in the context of neuroimaging findings in the field of AD.
Although no single structure can differentiate AD patients
from CN subjects, atrophy in temporal regions seems to be
an inevitable process in the disease. The medial temporal
lobe regions might be the first affected in the course of the
disease, presenting very early signs of neurodegeneration (Karas
et al., 2004), which correlate with clinical symptoms even in
the prodromal stage, i.e., MCI (Frisoni et al., 2010). As in
pathophysiological aspects, the temporal regions mainly present
intracellular aggregates of hyperphosphorylated tau protein,
which are associated with reduced graymatter density (Thomann
et al., 2009). Another signature of AD, extracellular amyloid
β-protein (Aβ) deposition in the form of plaques, is mainly
observed in the midline regions (posterior cingulate and medial
prefrontal cortices), and parietal areas. Longitudinal studies
have shown that these areas not only atrophy at the mild
stage of AD (Weiler et al., 2015), but they continue to
degenerate at a rate of about 2–4% per year (Thompson et al.,
2003; Leow et al., 2009). Thus, we were not surprised to
find larger activations in those regions classically affected by
the disease.

For our last visualization technique, our motivation was to
understand how our data samples were spatially distributed
within internal feature representations of our network, in order
to determine whether these representations were really helpful to
discriminate between each class. To plot our data from this high-
dimensional space, we first projected them into two dimensions
using the t-distributed stochastic neighbor embedding (t-
SNE; Maaten and Hinton, 2008), with principal component
analysis (PCA) initialization. Considering the outputs from a
specific layer of our network, we generated an embedding
with all training and test data in CADDementia, and then
colored training samples according to each respective class. It
is important to remark that this projection did not use label
information from training data, which was used solely to color
our plots.

First, we extracted features from the second-to-last layer of
our network, traditionally used to transfer learning and domain
adaptation, with 512 dimensions. Then, we considered the
final layer from ADNet that outputs classification probabilities,
with 3 dimensions, and the probability outputs from ADNet-
DA. Resulting embeddings are present in Figure 5. Considering
ADNet, even though t-SNE (Maaten and Hinton, 2008) did
not use any label information, training data points were better
grouped in an internal feature representation space rather than in
the probability output space, indicating that the softmax classifier
used in the network did not perform as well as it could. From
these plots, we can also see that probabilities from ADNet-DA
are better distributed in comparison with ADNet, especially for
the AD group, while there was a smaller confusion for MCI.

5. CONCLUSIONS

Using data from ADNI, we optimized a 3D CNN with the whole
brain image as input and achieved the best accuracy with a
network architecture based on VGG (Simonyan and Zisserman,
2014). Our method, named ADNet, outperformed several other
systems in the prior art. Additionally, our method with domain
adaptation, called ADNet-DA, reached 52.3% in accuracy on
the CADDementia challenge test set, outperforming most of
the submissions to this challenge. Our approach is completely
automatic (i.e., does not require additional information input and
manual intervention), and is considerably fast (around 80 times
faster than CADDementia winning methods).

Importantly, whereas all other submissions used prior
information from the disease (e.g., hippocampal volume,
demographic information), our method did not use any domain-
specific knowledge from AD. For that reason, we believe it
could be applied to other disorders that could benefit from
the CAD system using sMRI as input data. We understand
that our approach can be used to find meaningful patterns
within data, corroborate previous findings by specialists, assist
in diagnosis scenarios, and eventually help identify patterns
for diseases other than AD. Our conclusions are supported by
our explainable artificial intelligence (XAI) techniques, including
accountability visualizations.

Future work could investigate XAI techniques to understand
brain regions involved in the decision-making process, and cross-
match highlighted regions with specialists knowledge, to see how
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FIGURE 4 | Activated regions from the guided backpropagation method for each group. Activations are displayed in hot colormap overlaid onto the MNI template.

Hotter regions mean a more significant effect on the prediction output. Colors only represent the relative importance of each voxel, having no direct meaning

associated to their absolute values.
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FIGURE 5 | Features and probabilities visualizations with 2D t-SNE projections. AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; Unk,

unknown. (A) Visualization with 2D t-SNE projections using 512-dimensional features extracted from the second-to-last layer. (B) Visualization with 2D t-SNE

projections using the 3-dimensional ADNet probabilities. (C) Visualization with 2D t-SNE projections using the 3-dimensional ADNet-DA probabilities.

one can complement the other in refining the technique. Finally,
it would be interesting to incorporate patients’ history data to
enrich the information present in MRIs, to drive the decision
process and to tie it with patients’ backgrounds.
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A Novel Model Based on Deep
Convolutional Neural Network
Improves Diagnostic Accuracy
of Intramucosal Gastric Cancer
(With Video)
Dehua Tang1†, Jie Zhou2,3,4†, Lei Wang1†, Muhan Ni1, Min Chen1, Shahzeb Hassan5,
Renquan Luo2,3,4, Xi Chen2,3,4, Xinqi He2,3,4, Lihui Zhang2,3,4, Xiwei Ding1,
Honggang Yu2,3,4*, Guifang Xu1* and Xiaoping Zou1*

1 Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing
University, Nanjing, China, 2 Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China, 3 Key
Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China, 4 Hubei
Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University,
Wuhan, China, 5 Northwestern University Feinberg School of Medicine, Chicago, IL, United States

Background and Aims: Prediction of intramucosal gastric cancer (GC) is a big
challenge. It is not clear whether artificial intelligence could assist endoscopists in
the diagnosis.

Methods: A deep convolutional neural networks (DCNN) model was developed via
retrospectively collected 3407 endoscopic images from 666 gastric cancer patients from
two Endoscopy Centers (training dataset). The DCNN model’s performance was tested
with 228 images from 62 independent patients (testing dataset). The endoscopists
evaluated the image and video testing dataset with or without the DCNN model’s
assistance, respectively. Endoscopists’ diagnostic performance was compared with or
without the DCNN model’s assistance and investigated the effects of assistance using
correlations and linear regression analyses.

Results: The DCNN model discriminated intramucosal GC from advanced GC with an
AUC of 0.942 (95% CI, 0.915–0.970), a sensitivity of 90.5% (95% CI, 84.1%–95.4%), and
a specificity of 85.3% (95% CI, 77.1%–90.9%) in the testing dataset. The diagnostic
performance of novice endoscopists was comparable to those of expert endoscopists
with the DCNN model’s assistance (accuracy: 84.6% vs. 85.5%, sensitivity: 85.7% vs.
87.4%, specificity: 83.3% vs. 83.0%). The mean pairwise kappa value of endoscopists
was increased significantly with the DCNN model’s assistance (0.430–0.629 vs. 0.660–
0.861). The diagnostic duration reduced considerably with the assistance of the DCNN
model from 4.35s to 3.01s. The correlation between the perseverance of effort and
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diagnostic accuracy of endoscopists was diminished using the DCNN model (r: 0.470
vs. 0.076).

Conclusions: An AI-assisted system was established and found useful for novice
endoscopists to achieve comparable diagnostic performance with experts.
Keywords: artificial intelligence, deep convolutional neural network, depth of invasion, gastric cancer,
endoscopic resection
INTRODUCTION

Gastric cancer (GC) patients are mostly diagnosed at an
advanced stage and are ineligible for curative resection, making
it the third leading cause of cancer deaths worldwide (1). But if
GC can be diagnosed and then curatively resected at an early
stage, the 5-year survival rate of this malignancy exceeds 95% (2).
Various studies have validated that endoscopic submucosal
dissection (ESD) can be available to treat early gastric cancer
(3–6). According to the Japanese Gastric Cancer Treatment
Guidelines 2018, the absolute indications for ESD of early
gastric cancer include differentiated intramucosal cancer
without ulceration and differentiated intramucosal cancer with
ulceration and tumor size of ≤ 3 cm (7). Previous studies
demonstrated that the incidence of lymph node metastasis
(LNM) of these intramucosal gastric cancer lesions is negligible
(8, 9). Therefore, it is of great essence to determine whether there
is deep submucosal invasion before gastric ESD. However, it
remains a challenge to distinguish intramucosal gastric cancer
lesions from submucosal lesions correctly.

In clinical practice, invasion depth of gastric cancer is often
determined by assessing the macroscopic features using
conventional white-light imaging (C-WLI) endoscopy or
evaluating the linings and walls using endoscopic ultrasonography
(EUS). However, various studies have demonstrated that the
diagnostic performance of macroscopic features using C-WLI and
linings and walls with EUS in invasion depth was comparable, with
a limited accuracy of only 70–85% (10, 11). More than 15% of
gastric cancer lesions have been underestimated or overestimated
using both methodologies. Although enhanced imaging
technologies like magnifying endoscopy (ME), narrow-band
imaging (NBI), and blue laser imaging (BLI) have also been
employed in the determination of intramucosal GC, the clinical
value of these techniques largely depends on the experience of
operators (12, 13). Moreover, the accuracy and concordance of all
the methodologies were reported to vary wildly in different studies,
even amongst the expertized endoscopists (10, 14, 15). Therefore, it
would be very advantageous to develop efficient assistance tools to
help endoscopists make robust, reproducible, and accurate
diagnoses of intramucosal GC under C-WLI.
LI, White light imaging; NBI, Narrow
lue; NPV, Negative predictive value;
DCNN, Deep convolutional neural
h node metastasis; EUS, Endoscopic
BI, Narrow-band imaging; BLI, Blue
-light imaging.
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With recent technological advances, artificial intelligence (AI)
has shown excellent efficacy in analyzing medical images (16).
Several preclinical studies reported that AI could be used with
high accuracy for detection, localization, and classification of GC
(17–19). Three preliminary studies have applied AI to predict the
invasion depth of GC with acceptable specificity or sensitivity
(18, 20, 21). However, these studies only focused on evaluating
AI’s performance in predicting invasion depth instead of
verifying AI’s assistance in helping endoscopists make the final
diagnosis. The latter is even more important than the former
since endoscopists are required to make the final diagnosis due to
safety and accountability.

This study aimed to develop an AI-assisted diagnostic model
based on the deep convolutional neural networks (DCNN) to
detect intramucosal GC from advanced lesions in real-time. We
then evaluated the accuracy, concordance, and diagnostic
duration of the DCNN model’s assistance in helping
endoscopists establish the final diagnosis.
METHODS

Study Design
This retrospective comparative study was performed at two
institutions in China: Endoscopy Center of Nanjing University
Medical School Affiliated Drum Tower Hospital (NJDTH) and
Endoscopy Center of Renmin Hospital of Wuhan University
(RHWU). We first trained our DCNN model to distinguish
intramucosal gastric cancer lesions from submucosal lesions.
Then, we assessed the performance of DCNN and evaluated the
performance of endoscopists before (Test 1) and after referring
to the DCNN-processed results (Test 2) with endoscopic images
and videos. The study design was reviewed and approved by the
Medical Ethics Committee at each institution (NJDTH, IRB no.
2020-026-01; RHWU, WDRY2019-K091). Informed consent
was waived given the use of only retrospectively deidentified
endoscopic images.
Data Preparation and Image
Quality Control
A total of 870 patients who underwent endoscopic submucosal
dissection (ESD) or gastrectomy with histologically proven
malignancies (700 patients from NJDTH and 170 patients
from RHWU) between Jan 2017 and June 2019 were
retrospectively included in this study. After excluding patients
with multiple synchronous lesions, gastric stump cancer, and
April 2021 | Volume 11 | Article 622827
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missing data, 3829 endoscopic images from 728 patients were
obtained retrospectively from the imaging database of the two
hospitals. A total of 194 endoscopic images were excluded from
the study due to low quality (e.g., less insufflation of air, halation,
defocus, blurs, bubble, sliding, fuzzy, and bleeding). The rest of
the 3635 endoscopic images (from 728 patients) were used to
develop and validate the AI model (Table S1). Moreover, 54
videos with single GC lesions of another 54 patients from
NJDTH between Jan 2019 and June 2019, which were
independent of 700 patients, were retrospectively collected in
this study and used to test the AI’s performance model and
endoscopists. All the endoscopic images and videos were
recorded with Olympus endoscopes (GIF-H260, GIF-H260Z,
GIF-HQ290, GIF-H290Z, Olympus Medical Systems, Co., Ltd.,
Tokyo, Japan) with video processors (EVIS LUCERA CV260/
CLV260SL, EVIS LUCERA ELITE CV290/CLV290SL, Olympus
Medical Systems, Co., Ltd., Tokyo, Japan).

Two board-certificated pathologists determined the invasion
depth of GC according to WHO Classification of Tumors 5th
edition in cooperation. We defined D0 as a tumor invasion depth
restricted to the mucosa and defined D1 as a tumor invasion
depth deeper than mucosa. All the selected images were
categorized into D0 (1924 images from 458 patients) and D1
(1711 images from 270 patients) based on the pathologic
diagnosis of the resected tissues. These images were then
labeled with D0 or D1 and marked with rectangular frames on
the lesions by five experienced endoscopists from NJDTH (each
of whom had more than 5 years of experience and had performed
at least 5000 endoscopic examinations). For the D0 lesions, the
whole area of the lesion was marked. But for the D1 lesions, only
the region, based on pathological results that potentially invaded
deeper than mucosa, was marked. The image marks were
finalized only when more than four endoscopists reached a
consensus to avoid individual bias. A total of 54 videos that
lasted for 10s each were classified into the intramucosal category
(M) and the submucosal category (SM) based on the final
pathological results.

The whole dataset (3635 images from 728 patients) was
divided into training and testing datasets, using random
sampling based on patients. The training and testing datasets
were as follows: 1) Training dataset: D0: 1798 images from 421
patients, D1: 1609 images from 245 patients, between Jan 2017
and June 2019; 2) Image testing dataset: D0: 126 images from 37
patients, D1: 102 images from 25 patients, between Jan 2017 and
June 2019; and 3) Video testing dataset: M: 44 videos of
intramucosal lesions from 44 patients, SM: 10 videos of
submucosal lesions from 10 patients (Figure S1).

Development and Validation of
DCNN Model
In this study, an architecture called Resnet-50 was employed to
learn the features of the endoscopy images (22). For most DCNN
frameworks, the network layers and the learning ability of the
whole network are limited. This limitation is called the
Vanishing Gradient problem of DCNN. The Shotcut
connection structure enables the DCNN framework to contain
Frontiers in Oncology | www.frontiersin.org 395
more layers, thus effectively alleviating the Vanishing Gradient
problem of DCNN. Resnet-50 is a classical framework and most
widely employed in the Resnet family to solve complex image
classification tasks (Figure S2). During the DCNN training
process, the parameters of the neurons in the network were
initially set to random values. For each input annotated image,
the output was computed by the DCNN and compared with the
annotation. The parameters of this mathematical function were
then modified slightly to decrease the error of the output. The
same process was then repeated multiple times for every image in
the training set.

Evaluation of DCNN Model and Comparing
With the Endoscopists
Firstly, we evaluated our DCNN model’s performance to
diagnose intramucosal GC in the testing datasets described
above. Then, 20 endoscopists participated in the following
assessment in two groups: (1) novices: 14 novice endoscopists
with less than 2 years of endoscopic experience and no more than
3,000 endoscopic examinations; (2) experts: 6 experienced
endoscopists with more than 10 years of endoscopic expertise
and at least 8,000 endoscopic examinations (acknowledgments:
YW, HMG, TY, 7NNZ; co-authors: MC, GFX). None of the
endoscopists participated in the selection and labeling of the
image datasets. Two-stage tests were conducted to further
evaluate the DCNN model’s assistance with the image and
video testing datasets in our testing platform (Figure S3). The
testing images and videos were all anonymized and randomly
mixed before the assessments of endoscopists. For testing 1, each
endoscopist was asked to diagnose the testing images and videos
independently. A week later, these endoscopists conducted
testing independently with the presentation of the DCNN-
processed diagnosis. After testing 2, a Grit scale was used to
assess the individual personality characteristics with 12 items.
These items can be divided into two parts: consistency of interest
and perseverance of effort. Each item was scored on a 5-point
scale (from 1 to 5). The final score was the summed score divided
by 12. Grit scale tests were conducted with a free platform
(Document Star, https://www.wjx.cn).

Statistical Analyses
The primary outcome of this study was to evaluate the assistance
of AI in improving the diagnostic performance of endoscopists.
The area under the ROC curve (AUC) was calculated to assess
the diagnostic ability of the DCNN model and endoscopists. The
diagnostic performance of endoscopists with or without the
DCNN model’s assistance was evaluated and compared with
the McNemar test. The diagnostic time was analyzed with
Wilcoxon rank tests between groups with or without the
DCNN model’s assistance. The Grit scale scores were analyzed
using correlations and linear regression analyses. For all the tests
mentioned, a p-value of 0.05 was regarded as statistically
significant. All statistical analysis and plotting were conducted
with R software (version 4.0.2, R Foundation for Statistical
Computing, Vienna, Austria) in R studio (version 1.3.959, R
Studio Co., Boston, MA, USA).
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RESULTS

Performance of DCNN Model in Image
Testing Dataset
In the testing dataset, the DCNN model could make a diagnosis
of D0 from D1 with an AUC of 0.942 [95% confidence interval
(CI), 0.915–0.970], a sensitivity of 90.5% (95% CI, 84.1%–95.4%),
and a specificity of 85.3% (95% CI, 77.1%–90.9%) (Table 1 and
Figure 1). The overall accuracy of our DCNN model was 88.2%
(95% CI, 83.3%–91.7%), with a positive predictive value of
88.37% (95% CI, 81.7%–92.8%) and a negative predictive value
of 87.88% (95% CI, 81.7%–92.8%) (Table 1).
Performance of Endoscopists Without AI
Assistance (Test1) and With AI Assistance
(Test2) in Image Testing Dataset
In test 1, the diagnostic performance of the DCNN model was
better compared with those of endoscopists in both novice and
expert groups (Figure 2A). All the endoscopists involved in this
study exhibited a lower diagnostic accuracy than the DCNN
model (69.7%–82.1% vs. 88.2%, P < 0.05) (Table 2). For
diagnostic concordance, the mean pairwise kappa of the
DCNN model was 0.527 (Figure S4C). The mean pairwise
kappa value of endoscopists varied from 0.430 to 0.629
(Table S2).
Frontiers in Oncology | www.frontiersin.org 496
In test 2, the performance of endoscopists was improved
significantly with the DCNN model’s assistance (Figure 2B).
However, the increase of diagnostic accuracy varied between
groups (Table 2). All the fourteen novice endoscopists showed
significantly increased diagnostic accuracy with the use of
the DCNN model (69.7%–77.2% vs. 80.7%–87.3%, P < 0.05),
while two of six expert endoscopists yielded statistically
improved accuracy with the assistance (P < 0.05). Notably,
none of the enrolled endoscopists achieved higher accuracy
than the DCNN model (Figure 2C). The diagnostic
accuracy of novice endoscopists was significantly lower than
that of expert endoscopists without the DCNN model’s
assistance (P < 0.01) (Figure 2C). Using the DCNN model, the
accuracy of the novice group was comparable to that of the
expert group (Figure 2C, P = 0.95). For sensitivity, three novices
and two experts achieved significantly higher sensitivity with the
DCNN model’s assistance (Table S3 and Figure S4A). For
specificity, 10 novices and two experts showed significantly
increased specificity using the DCNN model (Table S3 and
Figure S4B). For expert group, the diagnostic accuracy,
sensitivity and specificity were increased significantly with the
DCNN model’s assistance (accuracy, 79.8% vs 85.5%, P < 0.001,
Figure 2C; sensitivity, 84.3% vs 87.4%, P = 0.018; specificity,
74.2% vs 83.0%, P < 0.001; Table S4). For the novice group, the
diagnostic accuracy, sensitivity and specificity also were elevated
remarkably with the DCNN model’s assistance (accuracy, 74.0%
A B

DC

FIGURE 1 | Representative images of intramucosal and advanced gastric cancer. (A, B) Intramucosal gastric cancer, original c-WLI (left), and visual representation
of the heatmap (right). (C, D) Advanced gastric cancer, original c-WLI (left), and visual representation of heatmap (right).
TABLE 1 | Performance of the DCNN Model for Diagnosis of Gastric Mucosal Cancer.

Accuracy, n (%) Sensitivity, n (%) Specificity, n (%) Positive predictive value, n (%) Negative predictive value, n (%) Diagnostic time (s)

DCNN-
model

88.16 (201/228) 90.48 (114/126) 85.29 (87/102) 88.37 (114/129) 87.88 (87/99) 0.15
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vs 84.6%, P < 0.001, Figure 2C; sensitivity, 81.1% vs 85.7%,
P = 0.018; specificity, 65.2% vs 83.3%, P < 0.001; Table S4). As to
concordance, the mean pairwise kappa of the DCNN model was
0.861 (Figure S4D). The mean pairwise kappa value of
Frontiers in Oncology | www.frontiersin.org 597
endoscopists increased significantly using the DCNN model
and varied from 0.660 to 0.861 (Table S5).

The diagnostic time of the DCNN model was 0.15 seconds per
image, which was much shorter than those of endoscopists (Table 3).
A B

D E F

C

FIGURE 2 | Receiver operating characteristic curves and scatter plots illustrate the DCNN model’s ability and endoscopists in discriminating intramucosal GC.
(A) Diagnostic performance of DCNN model and endoscopists without the assistance of DCNN model in the image testing datasets; (B) Diagnostic performance of
DCNN model and endoscopists with the assistance of DCNN model in the image testing datasets; (C) Diagnostic accuracy of endoscopists in the subgroup with or
without the assistance of DCNN model in the image testing datasets; (D) Diagnostic performance of DCNN model and endoscopists without the assistance of
DCNN model in the video testing datasets; (E) Diagnostic performance of DCNN model and endoscopists with the assistance of DCNN model in the video testing
datasets; (F) Diagnostic accuracy of endoscopists in the subgroup with or without the assistance of DCNN model in the video testing datasets.
TABLE 2 | Diagnostic Accuracy of Endoscopists with or without the Assistance of DCNN Model.

Endoscopists No-assistance (Test1) AI-assistance (Test2) Test1 vs. Test2

Accuracy Accuracy

n percent 95% CI n percent 95% CI

Novice (N=14)
1 166/228 72.8 (66.9–78.7) 195/228 85.5 (81.6–89.4) < 0.001
2 169/228 74.1 (68.2–80.0) 198/228 86.8 (82.9–90.7) < 0.001
3 170/228 74.6 (68.7–80.5) 194/228 85.1 (81.2–89.0) 0.001
4 176/228 77.2 (71.3–83.1) 199/228 87.3 (83.4–91.2) 0.001
5 168/228 73.7 (67.8–79.6) 189/228 82.9 (79.0–86.8) 0.007
6 159/228 69.7 (63.8–75.6) 193/228 84.6 (80.8–88.6) < 0.001
7 170/228 74.6 (68.7–80.5) 198/228 86.8 (82.9–90.7) < 0.001
8 175/228 76.8 (70.9–82.7) 198/228 86.8 (82.9–90.7) 0.004
9 171/228 75.0 (69.1–80.9) 186/228 81.6 (75.7–87.5) 0.015
10 170/228 74.6 (68.7–80.5) 198/228 86.8 (82.9–90.7) < 0.001
11 170/228 74.6 (68.7–80.5) 188/228 82.5 (76.6–88.4) 0.021
12 168/228 73.7 (67.8–79.6) 196/228 86.0 (82.1–89.9) < 0.001
13 170/228 74.6 (68.7–80.5) 184/228 80.7 (74.8–86.6) 0.022
14 160/228 70.2 (64.3–76.1) 185/228 81.1 (75.2–87.0) < 0.001
Expert endoscopists (N=6)
1 186/228 81.6 (75.7–87.5) 194/228 85.1 (81.2–89.0) 0.153
2 181/228 79.4 (73.5–85.3) 194/228 85.1 (73.9–85.7) 0.061
3 187/228 82.0 (76.2–88.0) 192/228 84.2 (80.3–88.1) 0.473
4 174/228 76.3 (70.4–82.2) 198/228 86.8 (82.9–90.7) < 0.001
5 185/228 81.1 (75.2–87.0) 192/228 84.2 (80.3–88.1) 0.248
6 178/228 78.1 (72.2–84.0) 199/228 87.3 (83.4–91.2) 0.005
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With the DCNN model’s assistance, the overall diagnostic time
of endoscopists shortened significantly (4.35 vs. 3.01, P = 0.03).
Notably, the diagnostic time of endoscopists was reduced
statistically in the novice group (5.09 vs. 3.12, P = 0.02) with
the DCNN model’s assistance. However, the diagnostic time of
experts was marginally increased with the DCNNmodel (2.62 vs.
2.76, P =0.64).

Performance of Endoscopists Without AI
Assistance (Test1) and With AI Assistance
(Test2) in Video Testing Dataset
To further explore the assistance of the DCNN model in a real-
time clinical setting, we evaluated the performance of
endoscopists with or without the DCNN model’s assistance
with 54 endoscopic videos (Figures 2D, E). The DCNN model
showed a better performance in the video datasets with a
sensitivity of 93.2%, a specificity of 100.0%, and an accuracy of
94.4% (Table S6). For expert endoscopists, the diagnostic
accuracy and sensitivity increased significantly with the
assistance of the DCNN model (accuracy, 86.7% vs 93.2%, P =
0.001, Figure 2F; sensitivity, 85.2% vs 92.4%, P = 0.002,
Table S6). But the specificity showed marginal improvement
(93.3% vs. 96.7%, P = 0.617, Table S6). For novice endoscopists,
the diagnostic accuracy, sensitivity and specificity increased
remarkably with the assistance of the DCNN model (accuracy,
70.4% vs 89.3%, P < 0.001, Figure 2F; sensitivity, 67.7% vs 88.6%,
P < 0.001; specificity, 82.1% vs 92.1%, P = 0.008; Table S6).

Personality Traits and Performance
of Endoscopists
Grit scale reflects the ability of individuals to maintain focus
(consistency of interest) and persevering for long-term goals
(perseverance of effort) (23). The correlation between the
personality traits and the diagnostic accuracy was analyzed
with or without the DCNN model’s assistance. As is shown
here, the correlation between grit score and diagnostic accuracy
was marginal with or without the assistance of DCNN (r = 0.178,
Frontiers in Oncology | www.frontiersin.org 698
P = 0.452 vs. r = 0.145, P = 0.541, Table 4 and Figure S5). The
correlation between the scores for the consistency of interest and
the diagnostic accuracy was also not significant with or without
the assistance of DCNN (r = -0.122, P = 0.609 vs. r = 0.145, P =
0.541, Table 4 and Figure S5). Intestinally, the results showed
that a moderate correlation between the scores for perseverance
of effort and the diagnostic accuracy existed when endoscopists
made the diagnosis without the DCNN’s assistance (r = 0.470,
P = 0.037, Table 4 and Figure 3). Notably, there was no
significant correlation between the scores for the perseverance
of effort and diagnostic accuracy when the endoscopists were
assisted with the DCNN (r = 0.076, P = 0.750, Table 4 and
Figure 3).
DISCUSSION

In this study, we developed a DCNNmodel to assist endoscopists
in making accurate intramucosal GC diagnoses. The DCNN
model showed satisfactory diagnostic performance in
discriminating intramucosal GC from advanced lesions. We
investigated the assistance of the DCNN model on the
improvement of diagnostic performance of endoscopists. With
the DCNN model’s assistance, the diagnostic accuracy of
endoscopists increased statistically in both novice and expert
groups. The diagnostic agreement among endoscopists also
increased from a moderate level to a substantial level with the
DCNN model. The diagnostic time was significantly shortened
with the DCNN model ’s assistance, especially in the
novice group.

Operational resection is the only curative therapy for GC, but
this therapy can only be adopted in GC patients at an early stage.
However, most patients are diagnosed at an advanced stage and
are ineligible for curative resection. Previous studies reported
that while the 5-year survival rate of advanced GC remained less
than 25%, the 5-year survival rate of intramucosal GC exceeded
95% (4, 5). Therefore, it is exceptionally crucial to accurately
TABLE 3 | Diagnostic time of Endoscopists with or without the Assistance of AI.

Diagnostic time (s) No-assistance (Test1) AI-assistance (Test2) P-value

DCNN model 0.15 0.15 –

Overall 4.35 ± 3.02 3.01 ± 1.66 0.03
Novice 5.09 ± 3.33 3.12 ± 1.90 0.02
Expert 2.62 ± 0.77 2.76 ± 0.99 0.64
April 2021 | Volume 11 | Article
TABLE 4 | Correlation between Grit Score and Diagnostic Accuracy.

Score Diagnostic accuracy

No-assistance (Test1) AI-assistance (Test2)

Mean ± sd IQR Correlation, r P-value Correlation, r P-value

Grit score 3.546 ± 0.479 3.083–3.917 0.178 0.452 0.145 0.541
Consistency of interest 3.458 ± 0.677 3.167–3.833 -0.122 0.609 0.145 0.541
Perseverance of effort 3.633 ± 0.540 3.292–4.000 0.470 0.037 0.076 0.750
Sd, standard deviation; IQR, interquartile range.
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differentiate intramucosal GC from advanced lesions for
preoperative evaluation and determining the optimal
treatment (8).

C-WLI was the main-used modality to predict intramucosal
GC, with its accuracy ranging from 70% to 85%. Although the
diagnostic performance was comparable to other modalities like
EUS or ME-NBI, 15% of cases would be underestimated or
overestimated (10, 12, 14, 15). Moreover, since endoscopic
examinations were relatively subjective, the interobserver
agreement varied significantly amongst endoscopists with
different expertise (24). AI-assisted diagnostic devices may help
improve the relatively low accuracy and interobserver agreement
and reduce the time and effort required to master these
methodologies. Three preliminary studies have reported that
AI showed a better performance in the diagnosis of
intramucosal GC than C-WLI, with the accuracy ranging from
73.0% to 94.5% (18, 20, 21). Here, we developed a DCNN model
with a robust performance in discriminating intramucosal GC
from advanced lesions with an AUC value of 0.942. The
accuracy, sensitivity, and specificity of the DCNN model were
88.2%, 90.5%, and 85.3%, respectively. Consistent with the
previously reported DCNN systems, our model showed
satisfactory diagnostic performance. However, these
preliminary studies mainly focused on developing and
validating AI models to diagnose intramucosal GC. Rare
studies were conducted to evaluate the assistance of AI models
in improving the diagnostic performance of endoscopists. This is
extremely important since AI models cannot make the final
diagnosis considering safety, accountability, and ethics despite
having higher diagnostic accuracy, sensitivity, and specificity
than expert endoscopists. Therefore, we further evaluated the
assistant role of the DCNNmodel on the diagnostic performance
of endoscopists.

This study showed that endoscopists could benefit
significantly from AI assistance in three areas. Firstly, novices
achieved considerable improvement in diagnostic performance,
which was approximately the same as experts with AI assistance.
This improvement significantly reduced the threshold for
Frontiers in Oncology | www.frontiersin.org 799
novices predicting intramucosal GC, which may help these
novice endoscopists predict more intramucosal GC during
endoscopic examinations. Technologies of visualization were
used to locate the intramucosal GC lesions in the images,
enabling endoscopists to understand these lesions (Video 1)
intuitively. Moreover, consistent with previous studies, the
diagnostic specificity of intramucosal GC in inexperienced
endoscopists was relatively low without effective training (10,
14). Notably, low specificity can be catastrophic since it indicates
too many advanced GC lesions being underestimated as
intramucosal GC. Therefore, improvement in specificity is
essential for optimizing the benefit for patients. Herein, we
noticed a significant increase of specificity in novice
endoscopists with AI assistance, which may reduce the under-
diagnosis rate in clinical practice. Secondly, the interobserver
agreement among endoscopists was elevated significantly with
the DCNN model’s assistance. Several studies have reported
relatively low interobserver agreement of novice endoscopists
in diagnosing gastric lesions during endoscopic examinations
(25). In this study, we noticed that the interobserver agreement
of novice endoscopists was comparable with that of experienced
endoscopists with AI assistance. The high agreement reduced the
discrepancy in diagnosis and promoted homogenization of
diagnostic performance, thus alleviating the diagnostic disputes
observed in China. Thirdly, diagnostic duration was statistically
reduced in the novice group. This indicates that the DCNN
model may help endoscopists with limited training increase their
diagnostic efficiency. However, we noticed a slightly longer
diagnostic time in expert endoscopists. This may be induced
by time lags arising from the inconsistencies between the
diagnoses made by the DCNN model and the experts. While
novice endoscopists tend to accept the diagnosis of the DCNN
model, the experts tend to think it over when they encounter
inconsistent diagnoses made by the DCNN.

To gain competence in endoscopic procedures, endoscopists
need to practice a substantial amount to reach the threshold
number (26). With AI assistance, novice endoscopists achieved
comparable diagnostic performance with experts without much
A B

FIGURE 3 | Correlation of perseverance of effort and diagnostic accuracy of endoscopists with (B) or without (A) the DCNN model’s assistance.
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additional effort. Additionally, several studies have used Grit
Scale tests to evaluate the perseverance and interest for long-time
goals (23, 27, 28). Higher grit scores were associated with better
performance in multiple settings, including medical school and
residency training (27, 28). A previous study indicated that
higher grit, significantly higher consistency of interest, was
associated with the flexible acceptance of AI assistance (29).
However, we noticed that a higher score of effort was correlated
with diagnostic accuracy without AI assistance. With AI
assistance, the correlation between the perseverance of effort
and diagnostic accuracy was diminished. This indicates that AI
assistance may reduce the threshold number of procedures
required by endoscopists to gain competence. However, this
also brings up the point that the novices may begin to rely too
much on AI assistance, reducing their ability to make
independent diagnoses. Therefore, further investigations are
required to evaluate the effect of AI assistance on independent
diagnosis ability in endoscopists.

This study has several limitations. Firstly, the DCNN model
cannot be applied to poor-quality images, and we excluded these
poor-quality images, including images with less insufflation of
air, halation, defocus, blurs. We are collecting these poor-quality
images and developing an AI classification model to discriminate
between poor-quality and high-quality images to solve this issue.
Secondly, the training and testing datasets are from one
retrospective dataset, which cannot rule out selection bias. As
the testing dataset was randomly selected from the retrospective
dataset, the excellent performance of the DCNN model in this
independent dataset partly demonstrated the potential of this
DCNN model. However, the performance and generalizability
remained to be evaluated in other prospective datasets. Thirdly,
this is a retrospective study, and the excellent performance of the
DCNN system may not reflect the clinical application in the real
world. Here, we used 54 videos to assess the real-time
performance of AI and evaluate the AI assistance on
endoscopists to imitate the actual clinical settings. This may
partly demonstrate a good result of AI assistance on the
performance of endoscopists. But prospective randomized
controlled trials are needed to validate the results in actual
clinical settings. Fourth, we only included images with
histologically proven malignancy, indicating the system could
not be used to differentiate malignant lesions from non-cancer
mucosa. We have established an AI system in detecting early
gastric cancer from non-cancer mucosa in our previous report
(30). The two systems can be used together to detect early gastric
cancer lesions from non-cancer mucosa first and then
differentiate intramucosal GC from advanced lesions, thus may
facilitate the endoscopic treatment of GC.
CONCLUSION

In conclusion, we developed and validated an AI-assisted system
that could predict intramucosal GC with high accuracy and short
duration. We found that AI assistance helped novice
endoscopists achieve comparable diagnostic accuracy and
duration with expert endoscopists with minimal training or
Frontiers in Oncology | www.frontiersin.org 8100
effort. In the future, more studies are needed to examine the
effect of AI-assisted systems on the ability of novice endoscopists
to establish independent diagnoses.
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PLA-combined ferroferric oxide–graphene oxide–aspirin (Fe3O4-GO-ASA)

multifunctional nanobubbles were prepared using the double emulsion-solvent

evaporation method. The obtained composite nanobubbles had a regular spherical

shape, Zeta potential of (−36.5 ± 10.0) mV, and particle size distribution range of

200–700 nm. The experimental results showed that PLA-combined Fe3O4-GO-ASA

nanobubbles could effectively improve the antithrombin parameters of PT, TT, APTT,

and INR, and significantly inhibit thrombosis when the composite nanobubbles with a

concentration of 80 mg·mL−1 interacted with the rabbit blood. The prepared composite

nanobubbles could reach a significant ultrasonic imaging effect and good magnetic

targeting under the magnetic field when the nanobubbles’ concentration was only

60 mg·mL−1.

Keywords: graphene oxide, multifunctional nanobubbles, magnetic target, thrombosis, nanobubbles

INTRODUCTION

At present, ultrasound contrast agents with the functions of targeted diagnosis, interventional
therapy, and molecular imaging have become a popular research focus (1). The multifunctional
ultrasonic contrast agent nanobubbles can not only improve the contrast and clarity of ultrasound
images, but can also have other auxiliary effects by combining with other biomedical nanomaterials
such as magnetic nanoparticles, drugs, and genes (2–4).

Timely diagnosis and treatment of thrombotic diseases are important for the prognosis and
outcome of treatment. At present, the commonly targeted thrombolytic nanoparticles can be
roughly divided into three types (5): magnetic nanoparticles loaded with the thrombolytic drugs
(6, 7), a polylactic acid polymer material with the thrombolytic drugs (8, 9) and liposomes
with thrombolytic drugs (10, 11). Ultrasonic imaging, as a medical diagnostic technology, has
advantages such as being non-invasive, having low adverse reactions, and no radiation, as well as a
convenient operation and real-time imaging, which means it shows great potential in the diagnosis
of thrombotic diseases (12, 13). Ultrasound imaging can not only be used to detect thrombosis
symptoms, but also to dissolve blood clots (14). Studies have shown that ultrasound imaging can
effectively dissolve the thrombus of the coronary arteries, cerebral aorta, and peripheral arteries,
which results from the mechanical and cavitation effect during the ultrasound (15, 16). Platelet
is the central link in thrombosis and plays a key role in thrombosis, particularly in arterial and
microvascular thrombosis (17, 18). Aspirin (ASA) is one of the most widely used antiplatelet drugs
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and is commonly used for the primary and secondary prevention
and treatment of thrombocytosis or thrombosis.

Graphene oxide (GO) has good water solubility and
biocompatibility (19, 20) due to the plentiful oxygen functional
groups (such as -OH and -COOH) on its surface. GO can also
load drugs with the benzene ring structure through the π-π
conjugation effect. These properties have made GO the focus in
a wide range of research, such as in biosensor, bone material,
targeted delivermedication, and other biomedical fields (21). As a
kind of magnetic substance, nano-iron tetroxide (Fe3O4) particle
has various applications in magnetic targeting delivery systems.
This is due to the fact that Fe3O4 particle is non-toxic to cells, has
good biocompatibility and excellent magnetic properties, and can
be excreted from the body through degradation (22). Magnetic
GO is also used in many applications; GO modified with Fe3O4

nanoparticles was used for the nanocarrier of doxorubicin,
which increased the targeted release effect of drugs (23). The
magnetic GO functionalized with PEG could be used for localized
photothermal ablation in vitro for cancer cells (24). In addition,
magnetic GO is widely used for magnetic resonance imaging,
molecular imaging probing, and other tasks.

In this study, GO was used as the carrier. Fe3O4 nanoparticles
as the magnetic targeting factor grew on its surface in-situ,
and the GO-Fe3O4 magnetic targeting complex was obtained.
Then acetyl salicylic acid (ASA) was loaded on the surface
of GO-Fe3O4 complex by π-π function. A PLA complexed
with Fe3O4-GO-ASA multifunctional nanobubble was designed
and prepared, and this composite nanobubble could perform
magnetically targeted ultrasonic imaging on the thrombus site
and simultaneously inhibit the thrombosis formation caused by
platelet aggregation. This study hoped to provide a new avenue
for the research and development of an ultrasonic contrast agent
in the thrombosis field.

MATERIALS AND METHODS

Materials
FeCl2 and FeCl3 was obtained from Beichen Founder Reagent
Factory, Tianjin, China. Acetylsalicylic acid was obtained from
ASA, McLean Co., Ltd., Shanghai, China and polylactic acid was
supplied by PLA, Kemio Chemical Reagent Co., Ltd., Tianjin,
China. Polyethylene glycol (PEG), polyvinyl alcohol (PVA),
methylene chloride, isopropanol, and anhydrous ethanol were
obtained from Kaitong Chemical Reagent Co., Ltd., Tianjin,
China, while New Zealand white rabbits and Kunming mice were
provided by Jiamusi University Animal Experimental Center,
Heilongjiang, China.

Characterization
The average particle size and Zeta potential of the nanobubbles
were measured by laser particle size tester (DLS). The loading
rate of ASA in Fe3O4-GO-ASA complex was determined
by UV-visible spectrophotometer (UV-vis), and the chemical
composition of GO-ASA complex was determined by Fourier
transform infrared spectroscopy (FT-IR). Scanning electron
microscope (SEM) and Transmission electron microscopy
(TEM) were used to observe the microscopic morphology

of PLA-combined Fe3O4-GO-ASA nanobubbles. The magnetic
properties of Fe3O4 nanoparticles, Fe3O4-GO complex, and PLA-
combined Fe3O4-GO-ASA nanobubbles were determined by
sample vibration magnetometer (VSM).

Preparation of Fe3O4-GO Complex
First, GO was prepared by an improved Hummers method
(25). Fe3O4-GO complex was synthesized by in-situ growth
method. FeCl2 of 0.23g and FeCl3 of 0.47g were dissolved in
the dual-distilled water and placed in a round-bottomed flask.
Polyethylene glycol (PEG, Mw =1,000) was added under stirring
at 60◦C. GO of 0.15g was dispersed in dual-distilled water and
added into the above system. Meanwhile, the pH of this system
was kept at 10–11 by the drop wise addition of NaOH solution
and the reaction wasmaintained for 20min. Then, the systemwas
heated to 80◦C and aged for 30min. The resulting precipitation
was repeatedly washed with the dual-distilled water to neutral,
and Fe3O4-GO complex was obtained by vacuum freeze drying.

Preparation of Fe3O4-GO-ASA Complex
Of the Fe3O4-GO complex, 0.1 g was added to an appropriate
amount of anhydrous ethanol for ultrasonic dispersion. Then
ASA of 0.2 g was added into the dispersion system of Fe3O4-
GO complex and this mixture system was stirred at 25◦C for
2 h. Finally, the precipitation was repeatedly washed by the
anhydrous ethanol and treated by vacuum freeze drying to obtain
the Fe3O4-GO-ASA complex.

Preparation of PLA-Combined

Fe3O4-GO-ASA Nanobubbles
PLA-combined Fe3O4-GO-ASA nanobubbles were prepared
by the double emulsion-solvent evaporation method. PLA of
0.6 g was dissolved in the methylene dichloride and a certain
amount of the dispersion liquid of Fe3O4-GO-ASA complex
was added, with ultrasonic emulsification under nitrogen for
5min. The primary emulsion of W/O was obtained this way.
Then primary emulsion of W/O was added into the aqueous
solution of polyvinylalcohol (PVA) and ultrasonic emulsification
was again performed to get the multiple emulsion of W/O/W.
Multiple emulsion of W/O/W was added into aqueous solution
of isopropyl alcohol. The mixed system was stirred for 6 h
and washed with the centrifugal machine three times, and the
obtained supernatant was retained for later use. The obtained
precipitation was freeze-dried to obtain PLA-combined Fe3O4-
GO-ASA nanobubbles.

Ultrasonic Imaging Experiment
Of the four New Zealand rabbits, one was injected with 2mL
physiological saline, and the other three were, respectively,
injected with 2mL PLA-combined Fe3O4-GO-ASA nanobubbles
with concentrations of 20, 60, and 100 mg·mL−1 physiological
saline solution through the auricular vein. The abdominal cavity
was opened at the lower abdomen cut of the rabbit xiphoid and
the abdominal aorta shell was stripped off. After the abdominal
aorta was exposed, this segment of blood vessel was applied
with the filter paper that was soaked in FeCl3 solution. After
15min, the filter paper was removed and the abdomen was
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stitched. The composite nanobubbles suspension liquid was
injected through the rabbit ear vein and the ultrasonic test (3.5
MHz) on the abdominal aorta was carried out with and without
external magnetic field. This present study received protocol
approval from the university’s Institutional Animal Care and Use
Committee (IACUC).

Anti-thrombotic Experiment in vitro
A certain amount of PLA-combined Fe3O4-GO-ASA
nanobubbles were ultrasonically broken in normal saline
for 2 h. The broken solution was, respectively, diluted to 20,
40, 60, 80, and 100 mg·mL−1. Some blood was collected from
the ear vein of rabbit. 0.1mL broken solution with the different
concentrations interacted with 2mL of rabbit blood. Then,
the obtained blood sample was added into a small test tube
containing No.1 surgical line, and the test tube was kept in a
water bath of 37◦C for 1.5 h. Finally, the formed blood clot was
taken, and the wet weight and dry weight were weighed and
compared (26).

Another broken solution with different concentrations
interacted with 2mL of rabbit blood for 1 h, and PT, TT, APTT,
and INR values of blood samples were, respectively, measured by
semi-automatic blood coagulation analyzer (URJT-600, Uritest,
Guilin, China).

Biocompatibility
Kunming mice of 23∼25 g were divided into five groups, with
three mice in each group. Mice were prostrated and fixed on the
experimental table. 0.2mL of PLA-combined Fe3O4-GO-ASA
nanobubbles (150 mg· mL−1) were subcutaneously injected into
the back of mice. The control group was injected with 0.2mL of
normal saline. Mice in the control group were sacrificed at 1 day
and those of the composite nanobubbles group were, respectively,
sacrificed at 1, 3, 9, and 21 days after injection, and the local tissue
of the injection site was observed. At the same time, the muscle
at the injection site was taken and fixed in 10%formalin solution
for preservation. The samples were conventionally dehydrated
and embedded with the paraffin. After HE staining, samples were
observed with the light microscope (27).

FIGURE 1 | SEM of Fe3O4-GO complex.

RESULTS

Figure 1 shows SEM of Fe3O4-GO complex. It can be seen from
Figure 1 that there were some nanoparticles on GO nanosheet,
which was due to the deposition of Fe3O4 nanoparticles on the
GO by the in-situ growth method. Figure 2 shows the infrared
spectra of ASA, GO, and GO-ASA complex. In Figure 2a, the
absorption peak near 3,000 cm−1 was the -COOH characteristic
peak, the absorption peak near 1,600 cm−1 was the stretching
vibration peak of benzene ring skeleton, the absorption peaks at
1,224 and 1,110 cm−1 were caused by C-O stretching vibration,
and the absorption peak at 750 cm−1 was attributed to the vicinal
substitution of benzene ring. These peaks were the most obvious
characteristics of aspirin. It can be seen from Figure 2b that the
absorption peak near 3,430 cm−1 was attributed to the stretching
vibration peak of –OH in –COOH, the absorption peak at 1,643
cm−1 was caused by the bending vibration of –COOH on the
edge of GO, and the absorption peak near 1,310 cm−1 was the
C-O stretching vibration peak. The presence of these oxygen-
containing groups indicated that graphite was oxidized. From
Figure 2c, the absorption peak at 3,430, 1,643, and 1,310 cm−1

belonged to the GO characteristic peak. The absorption peak at
1,110 cm−1 was the stretching vibration peak of C-O in ASA.
The absorption peak of benzene ring appeared near 740 cm−1

and moved toward the low wave number, which was caused by
the formed π-hydrogen bond between ASA and GO (28). As a
result, ASA was loaded on GO by π-π conjugation in the study.

Figures 3–5, respectively, show the SEM, particle size
distribution, and Zeta potential of PLA-combined Fe3O4-GO-
ASA nanobubbles. It can be seen from Figures 3, 4 that
the obtained composite nanobubbles had a smooth surface,
clear boundary, and uniform size, and the particle size of
the nanobubbles was 200–700 nm, which met the clinical
requirements of ultrasound contrast agent. Among them, the
composite nanobubbles presented the irregular spheres shown

FIGURE 2 | Infrared spectra of different samples (a) ASA (b) GO (c) GO-ASA.
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FIGURE 3 | SEM of PLA combined Fe3O4-GO-ASA nanobubbles.

FIGURE 4 | Particle size distribution of PLA combined Fe3O4-GO-ASA

nanobubbles.

FIGURE 5 | Zeta potential of PLA combined Fe3O4-GO-ASA nanobubbles.

in Figure 3, resulting from the freeze drying process of the
composite nanobubbles. According to Figure 5, Zeta potential
of the composite nanobubbles was (−36.5 ± 10.0) mV, which
proved that aqueous solution of the composite nanobubbles had
good dispersion stability.

Figures 6, 7, respectively, show the preparation process
and TEM of PLA-combined Fe3O4-GO-ASA nanobubbles. In
the preparation process, Fe3O4 was firstly grown on the GO
surface by an in-situ growth method and ASA was loaded on
Fe3O4-GO by π-π conjugation effect to obtain Fe3O4-GO-
ASA complex. Then, Fe3O4-GO-ASA complex was encapsulated
in PLA nanobubbles by double emulsion-solvent evaporation
method. During the first ultrasonic emulsification, PLA solution
was destroyed into some small droplet wrapping Fe3O4-GO-ASA
complex in the inner water phase. Due to the continuous N2 that
was imported in the process of ultrasonic breaking, small bubbles

also contained N2. At this moment, the obtained W/O phase was
transferred to the PVA solution and evenly stirred, and the second
ultrasonic emulsification was performed. As a result, PVA would
coat on the surface of PLA nanobubbles by hydrogen bonding to
form a hard shell (29). After the vacuum freeze drying, the water
in the nanobubbles disappeared, and Fe3O4-GO-ASA complex
would gather at the inner side of the nanobubble or embed in the
film of the nanobubble due to the surface tension. As shown in
Figure 7, the film and inner side of the nanobubble presented a
black shadow.

Figure 8 shows the hysteresis curves of Fe3O4, Fe3O4-GO
complex, and PLA-combined Fe3O4-GO-ASA nanobubbles (30,
31). As can be seen from Figure 8, the hysteresis curves of
Fe3O4, Fe3O4-GO complex, and PLA-combined Fe3O4-GO-ASA
nanobubbles presented a similar pattern, meaning that their
magnetic behaviors were similar. There was no coercive field
nor residual magnetism at the zero point, which indicated that
three samples had paramagnetic characteristics and could gather
under external magnetic field conditions (32). In addition, the
specific saturation magnetization intensity of Fe3O4, Fe3O4-
GO complex and PLA-combined Fe3O4-GO-ASA nanobubbles
decreased orderly; this was because the Fe3O4 content in
the three samples of the same mass decreased in sequence,
indicating that the magnetism of the Fe3O4-GO complex and
PLA-combined Fe3O4-GO-ASA nanobubbles were derived from
Fe3O4.

Figure 9 is the ultrasonic imaging of rabbit abdominal aorta
of PLA-combined Fe3O4-GO-ASA nanobubbles with different
concentrations. As can be seen from Figure 9A, when PLA-
combined Fe3O4-GO-ASA nanobubbles were not injected, the
ultrasonic imaging of rabbit abdominal aorta was dark and very
fuzzy. When the concentration of PLA-combined Fe3O4-GO-
ASA nanobubbles were 20 mg·mL−1 (Figure 9B), the ultrasonic
signal was enhanced, and the contrast and identification of the
image was significantly improved. When the concentration of
PLA-combined Fe3O4-GO-ASA nanobubbles was>60mg·mL−1

(Figures 9C,D), the effect of ultrasound imaging for the
abdominal aorta was significantly improved, while the contrast
of the image did not significantly change with the increase of
PLA-combined Fe3O4-GO-ASA nanobubbles concentration. As
a result, the ultrasonic effect had reached the requirements of
ultrasound imaging when the concentration of PLA-combined
Fe3O4-GO-ASA nanobubbles was 60 mg·mL−1.

PLA-combined Fe3O4-GO-ASA nanobubbles were injected
into the model rabbit with abdominal aortic thrombus, and
ultrasonic imaging photos of rabbit abdominal aorta with
and without magnetic field are shown in Figure 10. From
Figure 10A, a strong and distinct blue signal appeared in
the right side of the thrombus, indicating the reflux blood
presented at the thrombus obstruction site. At the same time,
the composite nanobubbles were carried by blood and would
flow throughout the body, and the ultrasonic signals could
present in the tissues or organs where the composite nanobubbles
passed through. As a result, a weak and large dark blue signal
also appeared below the abdominal aorta of the rabbit. It can
be seen from Figure 10B that when the magnetic field was
added in the abdominal aorta region, the intensity of ultrasonic
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FIGURE 6 | Preparation process of PLA combined Fe3O4-GO-ASA nanobubbles.

FIGURE 7 | TEM of PLA combined Fe3O4-GO-ASA nanobubbles.

signal in this region was significantly enhanced, while the
signal intensity in other regions was significantly weakened,
indicating that PLA-combined Fe3O4-GO-ASA nanobubbles
could effectively enrich in the magnetic field region. Thus,
the obtained PLA-combined Fe3O4-GO-ASA nanobubbles had
a magnetic targeting effect under the action of an external
magnetic field, which could significantly enhance the image
clarity of the observed site without increasing the dosage of the
composite nanobubbles.

FIGURE 8 | Hysteresis curves of different samples (a) Fe3O4 (b) Fe3O4-GO

complex (c) PLA combined Fe3O4-GO-ASA nanobubbles (30, 31).

Table 1 shows the wet weight and dry weight of the
obtained coagulated blood clot due to the interaction between
PLA-combined Fe3O4-GO-ASA nanobubbles with different
concentrations and blood samples. It can be seen from Table 1

that the wet weight of the normal saline control group was 95.10
± 0.22mg, while the wet weights for the composite nanobubbles
with the concentrations of 20, 40, 60, 80, and 100 mg·mL−1

were, respectively, 87.27 ± 0.16mg, 75.73 ± 0.47mg, 56.57 ±

0.32mg, 44.80 ± 0.16mg, and 36.03 ± 0.22mg, showing the
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FIGURE 9 | Ultrasonic imaging of rabbit abdominal aorta of rabbits injected with PLA combined Fe3O4-GO-ASA nanobubbles of the different concentrations (A) 0

mg·mL−1 (B) 20 mg·mL−1 (C) 60 mg·mL−1 (D) 100 mg·mL−1.

FIGURE 10 | Ultrasonic imaging of rabbit abdominal aorta of rabbits injected with PLA combined Fe3O4-GO-ASA nanobubbles (A) without the magnetic field (B) with

the additional magnetic field in the thrombus area.

composite nanobubbles were very significantly different from the
control group (P < 0.01). The dry weight of the normal saline
control group was 52.03 ± 0.35mg and the dry weight of the
composite nanobubble with the concentration of 20 mg·mL−1

was 50.17 ± 0.35mg; it was significantly different from the
control group (0.01<P<0.05). When the composite nanobubble
concentration was 40, 60, 80, and 100mg·mL−1, their dry weights
were, respectively, 44.83 ± 0.36mg, 36.67 ± 0.50mg, 33.03 ±

0.75mg, and 27.57± 0.60mg and had very significant differences
in comparison with the control group (P < 0.01). We could see
that the wet weight and dry weight of clots significantly decreased
with the concentration increase of the composite nanobubbles.

This was because the ASA content in the composite
nanobubbles increased with the increase of the composite
nanobubbles concentration, and ASA had an inhibitory effect on
the thrombosis (33). The antithrombotic effect of ASA is mainly
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realized by inhibiting the activity of the platelet cyclooxygenase
and preventing the synthesis and release of prostaglandins and
thromboxane (34). Moreover, we could conclude from Table 1

that the ratio of wet weight and dry weight of clots decreased
with the increase of the composite nanobubbles concentration.
For the formation of thrombus, the ratio of wet weight and dry
weight ratio is smaller and the dissociation of thrombus factor
in the blood is stronger, thus the speed of thrombosis caused by
factors becomes slow. The ratio of wet weight and dry weight
is lower, indicating that the risk of thrombosis is smaller. It
can be seen that the anti-thrombotic ability of PLA-combined

TABLE 1 | Wet weight and dry weight of the coagulated blood clot.

Concentration (mg·mL−1) Wet weight (mg) Dry weight (mg)

0 95.10 ± 0.22 52.03 ± 0.35

20 87.27 ± 0.16** 50.17 ± 0.35*

40 75.73 ± 0.47** 44.83 ± 0.36**

60 56.57 ± 0.32** 36.67 ± 0.50**

80 44.80 ± 0.16** 33.03 ± 0.75**

100 36.03 ± 0.22** 27.57 ± 0.60**

*P < 0.05, **P < 0.01.

TABLE 2 | Effects of PLA combined Fe3O4-GO-ASA nanobubbles with the

different concentrations on the coagulation blood parameters.

Concentration (mg·mL−1) PT(s) TT(s) APTT(s) INR(s)

0 13.2 14.0 29.6 1.09

10 13.5 14.5 29.7 1.11

20 13.7 15.7 30.1 1.16

40 15.3 16.4 30.9 1.23

80 17.2 18.0 32.8 1.45

160 18.8 20.1 33.6 1.56

Fe3O4-GO-ASA nanobubbles increased with the increase of
its concentration.

Table 2 shows the changes of the coagulated blood parameters
due to the interaction between PLA-combined Fe3O4-GO-ASA
nanobubbles of different concentrations and blood samples. As
can be seen from Table 2, the values of PT, TT, APTT, and INR
in blood samples showed an increasing trend with the increase
of the composite nanobubbles concentration. Specifically, APTT
value significantly increased when the composite nanobubbles
concentration was 20 mg·mL−1, PT and TT values significantly
increased at the concentration of 40 mg·mL−1, and INR value
significantly increased at the concentration of 80 mg·mL−1.
It can be seen that when the concentration of the composite
nanobubbles was above 80 mg·mL−1, they could effectively
promote the synthesis of cAMP in platelet and interdict the
platelet membrane glycoproteins receptors, which reduced the
concentrations of thromboxane A and phosphodiesterase in
plasma and eventually inhibited the formation process of
thrombosis. So, PLA-combined Fe3O4-GO-ASA nanobubbles
could effectively inhibit thrombosis and achieve the purpose of
adjuvant therapy.

Figure 11 is the HE staining pictures of mouse muscle
after the subcutaneous injection of normal saline and PLA-
combined Fe3O4-GO-ASA nanobubbles at different times. As
shown in Figure 11A, mouse muscle tissue had an intact
structure and the histopathological change was not observed
for the normal saline group. For PLA-combined Fe3O4-GO-
ASA nanobubbles, the injection site of 1 day formed a cyst
by the experimental observation, while the cyst had a thin
wall and it contained the nanobubbles injection solution and
interstitial fluid. As shown in Figure 11B, compared with the
saline group, there was a slight inflammatory cell infiltration
at the injection site. After PLA-combined Fe3O4-GO-ASA
nanobubbles were injected for 3 days, the formed cyst at the

FIGURE 11 | HE staining pictures of mouse muscle after the subcutaneous injection of saline at 1 day (A) and the composite nanobubbles at 1 day (B), 3 days (C), 9

days (D), and 21 days (E).
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injection site significantly reduced, and the inflammatory cell
infiltration was weakened as shown in Figure 11C, however,
the infiltration phenomenon did not disappear because the
degradation products of the composite nanobubbles were
not eliminated or absorbed in a timely manner. At 9 days
after injection, the local cyst basically disappeared, and the
inflammatory cell infiltration significantly reduced (Figure 11D).
At 21 days after injection, the inflammatory cell infiltration
disappeared (Figure 11E), and there was no obvious change in
the deepmuscle tissue. Therefore, the injection of PLA-combined
Fe3O4-GO-ASA nanobubbles only caused a slight inflammatory
response, and the accumulation of tissue penetrating fluid or
obvious proliferation of vascular or fibers was not observed,
indicating that PLA-combined Fe3O4-GO-ASA nanobubbles
have good biocompatibility.

CONCLUSIONS

In this study, the nanobubbles were prepared in three steps.
Firstly, Fe3O4 nanoparticles were deposited on GO using an in-
situ growth method. Then, ASA was adsorbed on the Fe3O4- GO
composite through π-π effect. Finally, the newly formed Fe3O4-
GO-ASA composite was combined into the PLA nanobubbles by
the double emulsion-solvent evaporation method.

The obtained PLA-combined Fe3O4-GO-ASA nanobubbles
can inhibit thrombosis and effectively enrich the target area
under the action of a magnetic field to achieve the targeted
imaging effect. Moreover, if the ultrasonic power was increased,
the composite nanobubbles could be broken and the controlled
drug release achieved, indicating that PLA-combined Fe3O4-
GO-ASA nanobubbles could realize the dual functions of
targeted drug delivery and controlled release. However, the
antithrombotic performance of PLA-combined Fe3O4-GO-ASA
nanobubbles in vivo will need further study. This study lays
a foundation for the development and application of magnetic
targeted ultrasound contrast agents.
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Cellular-resolution connectomics is an ambitious research direction with the goal of
generating comprehensive brain connectivity maps using high-throughput, nano-scale
electron microscopy. One of the main challenges in connectomics research is developing
scalable image analysis algorithms that require minimal user intervention. Deep learning
has provided exceptional performance in image classification tasks in computer vision,
leading to a recent explosion in popularity. Similarly, its application to connectomic
analyses holds great promise. Here, we introduce a deep neural network architecture,
FusionNet, with a focus on its application to accomplish automatic segmentation of
neuronal structures in connectomics data. FusionNet combines recent advances in
machine learning, such as semantic segmentation and residual neural networks, with
summation-based skip connections. This results in a much deeper network architecture
and improves segmentation accuracy. We demonstrate the performance of the proposed
method by comparing it with several other popular electron microscopy segmentation
methods. We further illustrate its flexibility through segmentation results for two different
tasks: cell membrane segmentation and cell nucleus segmentation.

Keywords: connectomic analysis, image segementation, deep learning, refinement, skip connection

1 INTRODUCTION

The brain is considered the most complex organ in the human body. Despite decades of intense
research, our understanding of how its structure relates to its function remains limited (Lichtman and
Denk, 2011). Connectomics research seeks to disentangle the complicated neuronal circuits embedded
within the brain. This field has gained substantial attention recently thanks to the advent of new serial-
section electron microscopy (EM) technologies (Briggman and Bock, 2012; Hayworth et al., 2014;
Eberle and Zeidler, 2018; Zheng et al., 2018; Graham et al., 2019). The resolution afforded by EM is
sufficient for resolving tiny but important neuronal structures that are often densely packed together,
such as dendritic spine necks and synaptic vesicles. These structures are often only tens of nanometers
in diameter (Helmstaedter, 2013). Figure 1 shows an example of such an EM image and its cell
membrane segmentation. Such high-resolution imaging results in enormous datasets, approaching one
petabyte for only the relatively small tissue volume of one cubic millimeter. Therefore, handling and
analyzing EM datasets is one of the most challenging problems in connectomics.

Early connectomics research focused on the sparse reconstruction of neuronal circuits (Bock et al.,
2011; Briggman et al., 2011), meaning they focused reconstruction efforts on a subset of neurons in
the data using manual or semi-automatic tools (Jeong et al., 2010; Sommer et al., 2011; Cardona et al.,
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2012). Unfortunately, this approach requires too much human
interaction to scale well over the vast amount of EM data that can
be collected with new technologies. Therefore, developing
scalable and automatic image analysis algorithms is an
important and active research direction in the field of
connectomics.

Although some EM image processing pipelines use
conventional, light-weight pixel classifiers [e.g., RhoANA
(Kaynig et al., 2015)], the majority of automatic image
segmentation algorithms for connectomics rely on deep
learning. Earlier automatic segmentation work using deep
learning mainly focused on patch-based pixel-wise
classification based on a convolutional neural network
(CNN) for affinity map generation (Turaga et al., 2010) and
cell membrane probability estimation (Ciresan et al., 2012).
However, one limitation of applying a conventional CNN to EM
image segmentation is that per-pixel network deployment
scaling becomes prohibitively expensive considering the tera-
scale to peta-scale EM data size. For this reason, more efficient
and scalable deep neural networks are important for image
segmentation of the large datasets that can now be produced.
One approach is to extend a fully convolutional neural network
(FCN) (Long et al., 2015), which uses encoding and decoding
phases similar to an autoencoder for the end-to-end semantic
segmentation problem (Ronneberger et al., 2015; Chen et al.,
2016a).

The motivation of the proposed work stems from our recent
research effort to develop a deeper neural network for end-to-end
cell segmentation with higher accuracy. We observed that, like
conventional CNNs, a popular deep neural network for end-to-end
segmentation known as U-net (Ronneberger et al., 2015) is limited
by gradient vanishing with increasing network depth. To address
this problem, we propose two extensions of U-net: using residual
layers in each level of the network and introducing summation-
based skip connections to make the entire network much deeper.
Our segmentation method produces an accurate result that is

competitive with similar EM segmentation methods. The main
contribution of this study can be summarized as follows:

• We introduce an end-to-end automatic EM image
segmentation method using deep learning. The proposed
method combines a variant of U-net and residual CNN
with novel summation-based skip connections to make the
proposed architecture, a fully residual deep CNN. This new
architecture directly employs residual properties within and
across levels, thus providing a deeper network with higher
accuracy.

• We demonstrate the performance of the proposed deep
learning architecture by comparing it with several EM
segmentation methods listed in the leader board of the
ISBI 2012 EM segmentation challenge (Arganda-Carreras
et al., 2015). Our method outperformed many of the top-
ranked methods in terms of segmentation accuracy.

• We introduce a data enrichment method specifically built
for EM data by collecting all the orientation variants of the
input images (eight in the 2D case, including all
combinations of flipping and rotation). We used the
same augmentation process for deployment: the final
output is a combination of eight different probability
values, which increases the accuracy of the method.

• We demonstrate the flexibility of the proposed method on
two different EM segmentation tasks. The first involves cell
membrane segmentation on a fruit fly (Drosophila) EM
dataset (Arganda-Carreras et al., 2015). The second involves
cell nucleus feature segmentation on a whole-brain larval
zebrafish EM dataset (Hildebrand et al., 2017).

2 RELATED WORK

Deep neural networks (LeCun et al., 2015) have surpassed human
performance in solving many complex visual recognition

FIGURE 1 | An example EM image (left) and its manually extracted cellular membrane segmentation result (right) from the ISBI 2012 EM segmentation challenge
(Arganda-Carreras et al., 2015). Scale bar (green): 500 nm.
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problems. Systems using this method can flexibly learn to
recognize patterns such as handwritten digits (Krizhevsky
et al., 2012) in images with increasing layers hierarchically
corresponding to increasing feature complexity (Zeiler and
Fergus, 2014). A major drawback of using deep neural
networks is that they often require a huge amount of training
data. In order to overcome this issue, researchers have started to
collect large databases containing millions of images that span
hundreds of categories (Russakovsky et al., 2015). Largely
thanks to such training datasets, many advanced architectures
have been introduced, including VGG (Simonyan and Zisserman,
2014) and GoogleNet (Szegedy et al., 2015). With these
architectures, computers are now able to perform even more
complex tasks, such as transferring artistic styles from a source
image to an unrelated target (Gatys et al., 2016). To leverage these
new capabilities, researchers are actively working to extend deep
learningmethods for analyzing biomedical image data (Cicek et al.,
2016). Developing such methods for automatic classification and
segmentation of different biomedical image modalities, such as CT
(Zheng et al., 2015) and MRI (Isin et al., 2016), is leading to faster
and more accurate decision-making processes in laboratory and
clinical settings.

Similarly, deep learning has been quickly adopted by
connectomics researchers to enhance automatic EM image
segmentation. One of the earliest applications to EM
segmentation involved the straightforward application of a
convolutional neural network (CNN) for pixel-wise membrane
probability estimation (Ciresan et al., 2012), an approach that
won the ISBI 2012 EM segmentation challenge (Arganda-
Carreras et al., 2015). As more deep learning methods are
introduced, automatic EM segmentation techniques evolve and
new groups overtake the title of state-of-the-art performance in
such challenges. One notable recent advancement was the
introduction of a fully convolutional neural network (FCN)
(Long et al., 2015) for end-to-end semantic segmentation.
Inspired by this work, several modified FCNs have been
proposed for EM image segmentation. One variant combined
multi-level upscaling layers to produce a final segmentation
(Chen et al., 2016a). Additional post-processing steps such as
lifted multi-cut (Beier et al., 2016; Pape et al., 2019) further
refined this segmentation result.

Another approach added skip connections for
concatenating feature maps into a “U-net” architecture
(Ronneberger et al., 2015). While U-net and its variants can
learn multi-contextual information from input data, they are
limited in the depth of the network they can construct because
of the vanishing gradient problem. On the other hand, the
addition of shortcut connections and direction summations
(He et al., 2016) allows gradients to flow across multiple layers
during the training phase. This creates a fully residual CNN
where the architecture is a fusion of the U-net design and
networks with summation-based skip connections, similar to
Fully Convolutional Residual Networks (FC-ResNets)
(Drozdzal et al., 2016) and Residual Deconvolutional
Networks (RDN) (Fakhry et al., 2017). These related studies
inspired us to propose a fully residual CNN for analyzing
connectomics data.

FIGURE 2 | The proposed FusionNet architecture. An illustration of the
encoding path (top to middle) and the decoding path (middle to bottom).
Each intermediate residual block contains a residual skip connection within
the same path, while the nested residual skip connections connect two
different paths.
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Work that leverages recurrent neural network (RNN)
architectures can also accomplish this segmentation task
(Stollenga et al., 2015). Instead of simultaneously
considering all surrounding pixels and computing responses
for the feature maps, RNN-based networks treat the pixels as a
list or sequence with various routing rules and recurrently
update each feature pixel. In fact, RNN-based membrane
segmentation approaches are crucial for connected
component labeling steps that can resolve false splits and
merges during the post-processing of probability maps
(Ensafi et al., 2014; Parag et al., 2015).

3 METHODS

3.1 Network Architecture
Our proposed network, FusionNet, is based on the architecture of
a convolutional autoencoder and is illustrated in Figure 2. It
consists of an encoding path (upper half, from 640 × 640 to 40 ×
40) that retrieves features of interest and a symmetric decoding
path (lower half, from 40 × 40 to 640 × 640) that accumulates the
feature maps from different scales to form the segmentation. Both
the encoding and decoding paths consist of multiple levels
(i.e., resolutions). Four basic building blocks are used to
construct the proposed network. Each green block is a regular
convolutional layer followed by rectified linear unit activation
and batch normalization (omitted from the figure for simplicity).
Each violet block is a residual layer that consists of three
convolutional blocks and a residual skip connection. Each blue
block is a maxpooling layer located between levels only in the
encoding path to perform downsampling for feature
compression. Each red block is a deconvolutional layer located
between levels only in the decoding path to upsample the input

data using learnable interpolations. A detailed specification of
FusionNet, including the number of feature maps and their sizes,
is provided in Table 1.

One major difference between the FusionNet and U-net
architectures is the way in which skip connections are used
(Figure 3). In FusionNet, each level in the decoding path begins
with a deconvolutional block (red) that un-pools the feature
map from a coarser level (i.e., resolution), then merges it by
pixel-wise addition with the feature map from the
corresponding level in the encoding path by a long skip
connection. There is also a short skip connection contained
in each residual block (violet) that serves as a direct connection
from the previous layer within the same encoding or decoding
path. In contrast, U-net concatenates feature maps using only
long skip connections. Additionally, by replacing concatenation
with addition, FusionNet becomes a fully residual network,
which resolves some common issues in deep networks

TABLE 1 | Architecture of the proposed network.

Block type Ingredients Size of feature maps

input 640 × 640 × 1

down 1 conv + res + conv 640 × 640 × 64
+ maxpooling 320 × 320 × 64

down 2 conv + res + conv 320 × 320 × 128
+ maxpooling 160 × 160 × 128

down 3 conv + res + conv 160 × 160 × 256
+ maxpooling 80 × 80 × 256

down 4 conv + res + conv 80 × 80 × 512
+ maxpooling 40 × 40 × 512

bridge conv + res + conv 40 × 40 × 1024

up 4 deconv + merge + 80 × 80 × 512
conv + res + conv 80 × 80 × 512

up 3 deconv + merge + 160 × 160 × 256
conv + res + conv 160 × 160 × 256

up 2 deconv + merge + 320 × 320 × 128
conv + res + conv 320 × 320 × 128

up 1 deconv + merge + 640 × 640 × 64
conv + res + conv 640 × 640 × 64

output conv 640 × 640 × 1

FIGURE 3 | Difference between the core connections of U-net
(Ronneberger et al., 2015) (left) and FusionNet (right). Note that FusionNet is
a fully residual network due to the summation-based skip connections and is a
much deeper network.
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(i.e., gradient vanishing). Furthermore, the nested short and
long skip connections in FusionNet permit information flow
within and across levels.

In the FusionNet encoding path, the number of feature
maps doubles whenever downsampling is performed. After
passing through the encoding path, the bridge level (i.e., 40 ×
40 layer) residual block starts to expand feature maps into the
following decoding path. In the decoding path, the number of
feature maps is halved at every level, which maintains network
symmetry. Note that there are convolutional layers both before and
after each residual block. These convolutional layers serve as portal
gateways that effectively adjust the amount of feature maps before
and after residual blocks to the appropriate numbers. The
placement of these convolutional layers on either side of the
residual block leads the entire network to be perfectly
symmetric (see Figure 2).

FusionNet performs end-to-end segmentation from the input
EM data to the output segmentation label prediction. We train the
network with pairs of EM images and their corresponding
manually segmented label images as input. The training process
involves comparing the output prediction with the input target
labels using a mean-absolute-error (MAE) loss function to back-
propagate adjustments to the connection weights. We considered
the network sufficiently trained when its loss function values
plateaued over several hundred epochs.

3.2 Data Augmentation
Our system involves data augmentation in multiple stages during
both the training and deployment phases.

For training:

• The order of the image and label pairs are shuffled and
organized with three-fold cross-validation to improve the
generalization of our method.

• Offline, all training images and labels are reoriented to first
produce an enriched dataset.

• Online, elastic field deformation is applied to both images and
corresponding labels, followed by noise addition to only the
images.

For prediction:

• Offline, input images are reoriented as for training.
• Inference is performed on all reoriented images separately,

then each intermediate result is reverted to the original
orientation, and all intermediate results are averaged to
produce the final prediction.

Boundary extension is performed for all input images and
labels. We describe each augmentation step in more detail in the
following subsections.

Reorienation enrichment: Different EM images typically
share similar orientation-independent textures in structures such
as mitochondria, axons, and synapses. We reasoned that it should
therefore be possible to enrich our input data with seven additional
image and label pairs by reorienting the EM images, and in the case
of training, their corresponding labels. Figure 4 shows all eight
orientations resulting from a single EM image after performing this
data enrichment, with an overlaid letter “g” in each panel to
provide a simpler view of the generated orientation. To generate
these permutations, we rotated each EM image (and corresponding
label) by 90°, 180°, and 270°. We then vertically reflected the
original and rotated images. For training, each orientation was
added as a new image and label pair. For prediction, inference was
performed on each of these data orientations separately, then each
prediction result was reverted to the original orientation before
averaging to produce the final accumulation. Our intuition here is
that, based on the equivariance of isotropic data, each orientation
will contribute equally toward the final prediction result. Note that
because the image and label pairs are enriched eight times by this
process, other on-the-fly linear data augmentation techniques such
as random rotation, flipping, or transposition are unnecessary.

FIGURE 4 | Eight reoriented versions of the same EM image. The original image is outlined in blue. By adding these reoriented images, the input data size is
increased by eight times.
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FIGURE 5 | Elastic field deformation example. A randomly sparse vector field (A) is generated for each training image and label pair. This sparse vector field is then
used to warp both the original image data (B, left) and its corresponding label (C, left) to form an augmentation pair consisting of warped image data (B, middle) and
warped label (C, middle). The difference between the original and warped images (B, right) and labels (C, right) show the effect of deformation.

FIGURE 6 | FusionNetW4, a chain of four concatenated FusionNet units.
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Elastic field deformation: To avoid overfitting (i.e., network
remembering the training data), elastic deformation was performed
on the entire enriched image dataset for every training epoch. This
strategy is common inmachine learning, especially for deep networks,
to overcome limitations associated with small training dataset sizes.
This procedure is illustrated in Figure 5. We first initialized a random
sparse 12 × 12 vector field whose amplitudes at the image border
boundaries vanish to zero. This fieldwas then interpolated to the input
size and used to warp both EM images and corresponding labels. The
flow map was randomly generated for each epoch. No elastic field
deformation was performed during deployment.

Random noise addition: During only the training phase, we
randomly added Gaussian noise (mean µ � 0, variance σ � 0.1) to
each EM input image but not its corresponding label.

Boundary extension: FusionNet accepts an input image size of
512 × 512. Each input image, and in the case of training its

corresponding label, was automatically padded with the mirror
reflections of itself across the image border boundary (radius �
64 px) to maintain similar statistics for pixels that are near the
edges. This padding is the reason why FusionNet starts with a 640×
640 image, which is 128 px larger along each edge than the original
input. However, we performed convolution with 3 × 3 kernel size
and “SAME”mode, which leads the final segmentation to have the
same padded size. To account for this, the final output prediction
was cropped to eliminate the padded regions.

3.3 Experimental Setup
FusionNet was implemented using the Keras open-source deep
learning library (Chollet, 2015). This library provides an easy-to-
use, high-level programming API written in Python, with Theano
or TensorFlow as a back-end engine. The model was trained with
the Adam optimizer with a decaying learning rate of 2e−4 for over
50,000 epochs to harness the benefits of heavy elastic deformation
on the small annotated datasets. FusionNet has also been
translated to PyTorch and pure TensorFlow for other
applications, such as Image-to-Image translation (Lee et al.,
2018) and MRI reconstruction (Quan et al., 2018). All training
and deployment presented here was conducted on a system with
an Intel i7 CPU, 32 GB RAM, and a NVIDIA GTX GeForce
1080 GPU.

3.4 Network Chaining
FusionNet by itself performs end-to-end segmentation from the
EM data input to the final prediction output. In typical real world
applications of end-to-end segmentation approaches, however,
manual proofreading by human experts is usually performed in
an attempt to “correct” any mistakes in the output labels. We
therefore reasoned that concatenating a chain of several
FusionNet units could serve as a form of built-in refinement
similar to proofreading that could resolve ambiguities in the
initial predictions. Figure 6 shows an example case with four
chained FusionNet units (FusionNetW4). To impose a target-
driven approach across the chained network during training, we
calculate the loss between the output of each separate unit and the
training labels. As a result, chained FusionNet architectures have
a single input and multiple outputs, where the end of each

FIGURE 7 | Example results of cellular membrane segmentation on test data from the ISBI 2012 EM segmentation challenge (slice 22/30) illustrating an input EM
image (left), the probability prediction from FusionNetW2

64 (middle), and the thinned probability prediction after applying LMC (Beier et al., 2017) post-processing
(right). Pink boxes highlight uncertain regions that are ambiguous because of membrane smearing, likely due to anisotropy in the data.

TABLE 2 | Accuracy of various segmentation methods on the Drosophila EM
dataset (ISBI 2012 EM segmentation challenge leaderboard, June 2020). Bold
values correspond to the method presented here.

Methods Vrand Vinfo

**Human values** 0.997847778 0.998997659
PatchPerPix Hirsch et al. (2020) 0.988290649 0.991641507
IAL MutexWS Wolf et al. (2019) 0.987922250 0.991833594
CASIA MIRA Xiao et al. (2018) 0.987877739 0.990920188
IAL - SFCNN Weiler et al. (2017) 0.986800916 0.991438892
ACE-net Zhu et al. (2019) 0.985032746 0.989490497
M2FCN-MFA Shen et al. (2017) 0.983651122 0.991303595
FusionNetW2

64 LMC 0.983651122 0.991303595
IAL MC/LMC Beier et al. (2017) 0.982616131 0.989461939
IAL LMC Beier et al. (2016) 0.982240005 0.988448278
FusionNetW2

64 0.981586186 0.990099898
PolyMtl Drozdzal et al. (2016) 0.980582825 0.988163049
KUnet Chen et al. (2016b) 0.980222514 0.988967601
FusionNetW1

64 0.978042575 0.989945379
IAL IC Lin et al. (2014) 0.977345721 0.989240736
Masters Wiehman and Villiers (2016) 0.977141154 0.987534429
CUMedVision Chen et al. (2016a) 0.976824580 0.988645822
ICNN Wu (2015) 0.976546913 0.988341665
DIVE-SCI Fakhry et al. (2016) 0.976229111 0.987392123
LSTM Stollenga et al. (2015) 0.975366444 0.987425430
U-net Ronneberger et al. (2015) 0.972760748 0.986616590
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decoding path serves as a checkpoint between units attempting to
produce better and better segmentation results.

Since the architecture of each individual unit is the same, the
chained FusionNet model can be thought of as similar to an
unfolded Recurrent Neural Network (RNN) with each FusionNet
unit akin to a single feedback cycle but with weights that are not
shared across cycles. Each FusionNet can be considered as a
V-cycle in the multigrid method (Shapira, 2008) commonly used
in numerical analysis, where the contraction in the encoding path
is similar to restriction from a fine to a coarse grid, the expansion
in the decoding is similar to the prolongation toward the final
segmentation, and the skip connections play a role similar to
relaxation. The simplest chain of two V-cycle units forms a W
shape, so we refer to FusionNet chains using a “FusionNetW”
terminology. To differentiate various configurations, we use the
superscript to indicate how many FusionNet units are chained
and the subscript to show the initial number of feature maps in
the original resolution. For example, FusionNetW4

64 would signify
a network that chains four FusionNet units, each of them with the
base number of convolution kernels (in Keras, nb_filters
parameter) set to 64. We chose this specific 4-chain example
case as the maximum chain length used here ad hoc to roughly
match the memory available on our GPU. We also used 64 for the
base number of convolution kernels in every case to match the
backbone architecture of U-net. During training, the weights of
each FusionNet unit (θk[i]) are updated independently, as
opposed to the RNN strategy of averaging the gradients from
shared weights. For the example FusionNetW4 case, we trained
with the input images S and corresponding manual labels L. Each
FusionNet unit in FusionNetW4, which can be indexed as
FusionNetW4[i] where i � 1, 2, 3 or 4, generates the prediction
P[i] by minimizing the MAE loss between its prediction values and
the target labels L. For each epoch, we incrementally train

FusionNetW4[i] and fix its weights before training
FusionNetW4[i + 1]. This procedure can be summarized as follows:

min
θ4[1]

MAE(P[1], L) s.t. P[1] � FusionNet4[1](S)
min
θ4[2]

MAE(P[2], L) s.t. P[2] � FusionNet4[2](P[1])
min
θ4[3]

MAE(P[3], L) s.t. P[3] � FusionNet4[3](P[2])
min
θ4[4]

MAE(P[4], L) s.t. P[4] � FusionNet4[4](P[3])

(1)

The loss training curves decrease as i increases, eventually
converging as the number of training epochs increases.

4 RESULTS

4.1 Fruit Fly Data
The fruit fly (Drosophila) ventral nerve cord EM data used here
was captured from a first instar larva (Cardona et al., 2010).
Training and test datasets were provided as part of the ISBI 2012
EM segmentation challenge1 (Arganda-Carreras et al., 2015).
Each dataset consisted of a 512 × 512 × 30 volume acquired
at anisotropic 4 × 4 × ∼ 50 nm3 vx−1 resolution with
transmission EM. These datasets were originally chosen in
part because they contained noise and small image alignment
errors that frequently occur in serial-section EM. For training, the
provided dataset included EM image data and publicly available
manual segmentation labels. The first 20 of 30 slices of the
training volume were used for training and the last 10 slices
were used for validation. For testing, the provided dataset
included only EM image data, while segmentation labels were
kept private for the assessment of segmentation accuracy
(Arganda-Carreras et al., 2015). Test segmentations were
produced for all 30 slices of the test volume and were then
uploaded for comparison to the hidden ISBI Challenge
segmentation labels.

Figure 7 illustrates the FusionNetW2
64 probability map

extraction results from test data without any post-processing
steps (middle) and with lifted multi-cut (LMC) algorithm post-
processing (right) (Beier et al., 2017), which resulted in thinning

FIGURE 8 | Visual comparison of the larval zebrafish EM volume segmentation. (A) Input serial-section EM volume. (B) Manual segmentation (ground truth). (C)
U-net (Ronneberger et al., 2015) result. (D) RDN (Fakhry et al., 2017) result. (E) FusionNetW4

16 result. Red arrows indicate errors.

TABLE 3 | Segmentation accuracy on a test volume from the zebrafish EM
dataset. Bold values correspond to the method presented here.

Methods FusionNetW2
64 RDN Fakhry et al.

(2017)
U-net Ronneberger et al.

(2015)

Vrand 0.998648782 0.991844302 0.987366177
Vinfo 0.996929124 0.994208722 0.992482059
Vdice 0.963047248 0.946099985 0.908491647

1http://brainiac2.mit.edu/isbi_challenge/
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of the probability map. As this shows, our chained FusionNet
method is able to remove extraneous structures belonging to
mitochondria (appearing as dark shaded textures) and vesicles
(appearing as small circles). Uncertain regions in the prediction
results without post-processing appear as blurry gray smears
(highlighted by pink boxes). In cases like this, FusionNetW2

64
must decide whether or not the highlighted pixels should be
segmented as membrane, but the region is ambiguous because of
membrane smearing, likely due to anisotropy in the data.

FusionNet approaches outperformed several other methods in
segmenting the ISBI 2012 EM challenge data by several standard
metrics. These metrics include foreground-restricted Rand scoring
after border thinning (Vrand) and foreground-restricted
information-theoretic scoring after border thinning (Vinfo)
(Arganda-Carreras et al., 2015). Quantitative comparisons with
other methods are summarized in Table 2. Even using a single
FusionNet unit (FusionNetW1

64), we achieved better results
compared to many well-known methods, such as U-net
(Ronneberger et al., 2015), network-in-network (Lin et al.,
2014), fused-architecture (Chen et al., 2016a), and long short-
term memory (LSTM) (Stollenga et al., 2015) approaches. Using a
chained FusionNet with two modules (FusionNetW2

64) performed
even better, surpassing the performance of many previous state-of-
the-art deep learning methods (Chen et al., 2016b; Drozdzal et al.,
2016). These results confirm that chaining a deeper architecture
with a residual bottleneck helps to increase the accuracy of the EM
segmentation task. Both with and without LMC post-processing,
FusionNetW2

64 ranks among the top 10 in the ISBI 2012 EM
segmentation challenge leaderboard (as of June 2020).

4.2 Zebrafish Data
The zebrafish EM data used here was taken from a publicly
available database2. It was captured from a 5.5 days post-
fertilization larval specimen. This specimen was cut into
∼18,000 serial sections and collected onto a tape substrate
with an automated tape-collecting ultramicrotome (ATUM)
(Hayworth et al., 2014). A series of images spanning the
anterior quarter of the larval zebrafish was acquired at 56.4 ×
56.4 × ∼ 60 nm3 vx−1 resolution from 16,000 sections using
scanning EM (Hildebrand, 2015; Hildebrand et al., 2017).
All 2D images were then co-registered into a 3D volume
using an FFT signal whitening approach (Wetzel et al.,
2016). For training, two small sub-volume crops were
extracted from a near-final iteration of the full volume
alignment in order to avoid deploying later segmentation
runs on training data. Two training volumes that contained
different tissue features were chosen. One volume was 512 ×
512 × 512 and the other was 512 × 512 × 256. The blob-like
features of interest—neuronal nuclei—were manually
segmented as area-lists in each training volume using the
Fiji (Schindelin et al., 2012) TrakEM2 plug-in (Cardona
et al., 2012). From each of these two training volumes, three

FIGURE 9 | Cell nucleus segmentation results overlaid onto zebrafish
EM volume cross-sections through the transverse (top, blue to red color map
varies with cell sphericity) and horizontal (bottom) planes.

2http://zebrafish.link/hildebrand16/
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quarters were used for training and one quarter was used for
validation. These area-lists were exported as binary masks for
use in the training procedure. For accuracy assessments, an
additional non-overlapping 512 × 512 × 512 testing sub-
volume and corresponding manual segmentation labels
were used.

To assess the performance of FusionNetW4
16 on this

segmentation task, we first deployed it on 512 × 512 × 512
test volume alongside the U-net (Ronneberger et al., 2015) and
RDN (Fakhry et al., 2017) methods. Figure 8 displays volume
renderings of the zebrafish test set EM data, its manual cell
nucleus segmentation, and segmentation results from U-net,
RDN, and FusionNetW4

16. As this shows, FusionNetW4
16

introduced less false predictions compared to U-net and RDN.
Table 3 compares U-net, RDN, and FusionNetW4

16 using three
quality metrics: foreground-restricted Rand scoring after border
thinning (Vrand), foreground-restricted information theoretic
scoring after border thinning (Vinfo), and the Dice coefficient
(Vdice). By all of these metrics, FusionNetW4

16 produced more
accurate segmentation results.

We also deployed the trained network to the complete set of
16,000 sections of the larval zebrafish brain imaged at 56.4 ×
56.4 × ∼ 60 nm3 vx−1 resolution, which is about 1.2 terabytes in
data size. Figure 9 shows EM dataset cross-sections in the
transverse (top, x-y) and horizontal (bottom, x-z) planes of the
larval zebrafish overlaid with the cell nucleus segmentation
results. The transverse view overlay also shows the sphericity
of each segmented cell nucleus in a blue to red color map, which
can help to visually identify the location of false positives.

5 CONCLUSIONS

In this paper, we introduced a deep neural network architecture
for image segmentation with a focus on connectomics EM image
analysis. The proposed architecture, FusionNet, extends the
U-net and residual CNN architectures to develop a deeper
network for a more accurate end-to-end segmentation. We
demonstrated the flexibility and performance of FusionNet in
membrane- and blob-type EM segmentation tasks.

Several other approaches share similarities with FusionNet,
particularly in concatenated chain forms. Chen et al. proposed
concatenating multiple FCNs to build a RNN that extracts inter-
slice contexts (Chen et al., 2016b). Unlike FusionNet, this

approach takes as input multiple different resolutions of the
raw image to produce a single segmentation output and uses a
single loss function. Wu proposed iteratively applying a pixel-
wise CNN (ICNN) to refine membrane detection probability
maps (MDPM) (Wu, 2015). In this method, a regular CNN for
generating MDPM from the raw input images and an iterative
CNN for refining MDPM are trained independently. In
contrast, FusionNet is trained as a single chained network.
Additionally, FusionNet can refine errors in MDPM more
completely using a chained network (i.e., by correcting errors
in the error-corrected results) and scales better to larger image
sizes due to the end-to-end nature of the network. More in-
depth analyses into why chaining approaches are beneficial to
improve the prediction accuracy of such deep networks will be
an important goal for future work.
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Purpose: To evaluate fitting quality and repeatability of four mathematical models for
diffusion weighted imaging (DWI) during tumor progression in mouse xenograft model of
prostate cancer.

Methods: Human prostate cancer cells (PC-3) were implanted subcutaneously in right hind
limbs of 11 immunodeficientmice. Tumor growth was followed byweekly DWI examinations
using a 7T MR scanner. Additional DWI examination was performed after repositioning
following the fourth DWI examination to evaluate short term repeatability. DWI was
performed using 15 and 12 b-values in the ranges of 0-500 and 0-2000 s/mm2,
respectively. Corrected Akaike information criteria and F-ratio were used to evaluate fitting
qualityofeachmodel (mono-exponential,stretchedexponential,kurtosis,andbi-exponential).

Results: Significant changes were observed in DWI data during the tumor growth,
indicated by ADCm, ADCs, and ADCk. Similar results were obtained using low as well as
high b-values. No marked changes in model preference were present between the weeks
1−4. The parameters of the mono-exponential, stretched exponential, and kurtosis
models had smaller confidence interval and coefficient of repeatability values than the
parameters of the bi-exponential model.

Conclusion: Stretched exponential and kurtosis models showed better fit to DWI data
than the mono-exponential model and presented with good repeatability.

Keywords: diffusion weighted imaging, PC-3 xenograft prostate tumors, prostate cancer mouse model,
repeatability, Akaike information criteria (AIC), F-ratio
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Merisaari et al. Diffusion Weighted Imaging of Prostate Cancer
INTRODUCTION

Diffusion weighed imaging (DWI) has extensively been used for
cancer characterization in both pre-clinical (1, 2) and clinical
settings (3) during the last decade. Furthermore, DWI is
increasingly being used for monitoring cancer therapy
responses (4). In biological tissue, DWI contrast is
predominantly affected by microscopic motion of water
molecules and water interactions with surroundings. The most
recognized DWI imaging acquisition method is the Stejskal–
Tanner pulsed field gradient method. With this method, motion
caused by self diffusion of a proton is acquired by applying a pair
of motion-encoding gradients. The first gradient dephases and
second one rephrases stationary protons, while moving water
protons stays dephased resulting to decreased signal intensity.
The signal attenuation depends on water diffusion coefficient
(D [mm2/s]) as well as direction of the self diffusion of water (5).

Several different mathematical models have been proposed to
describe the DWI signal decay. The mono-exponential model is
the simplest and widely used, in which one parameter D (or often
the apparent diffusion coefficient, ADC) describes the diffusion.
This model fits well to DWI data measured from pure water
without any restrictions. At low b-values DWI signal decay
deviates from the mono-exponential function due to presence
of intra-voxel incoherent motion (IVIM), as originally proposed
by Le Bihan and co-workers (6, 7). The search for new non-
invasive imaging markers has led to increased interests in IVIM-
derived parameters, which have demonstrated correlation with
microvessel density in colorectal cancer (HT29) model (8).
Nevertheless, IVIM-derived parameters are not directly related
to tissue perfusion (6, 7), but perfusion and IVIM-derived
parameters are rather related to the capillary structure (9, 10).
Similarly to low b-values, DWI signal decay at high b-values
deviates from the mono-exponential function, and it is better
described by non-Gaussian mathematical models (11–14).

In general, a single mono-exponential decay provides
oversimplified description of the complicated water motion in
the tissue. However, the modeling with several free parameters
could lead to “over-fitting” of data, and poor repeatability of the
fitted parameters. Optimal model would have the highest
information content and provides independent parameters,
which are related to physical quantities (e.g. cell and/or vessel
density) while still retain high repeatability/reliability of
fitted parameters.

The Akaike information criteria (AIC) has been widely used
for model selection in previous studies (15–17). A model with
smaller AIC value would be a preferred model due to less
information loss as compared with a model presenting with
higher AIC. Similarly to AIC, F-ratio is commonly being applied
for model selection (18). Model selection based on F-ratio tends
to prefer a more simplified model (19) in contrast to AIC.

In the current study, we evaluated four different mathematical
models for DWI within a study applying PC-3 prostate cancer cells
grown in immunodeficient mice using both low (0-500 s/mm2)
and high b-values (0-2000 s/mm2). The tumor growth was
followed for four weeks with repeated MR examinations
performed once a week. Corrected Akaike information criteria
Frontiers in Oncology | www.frontiersin.org 2124
(AICc) and F-ratio were used to evaluate information content of
the models. Non-Gaussian DWI models provided better fit to
DWI data obtained using both low and high b-values. However,
non-Gaussian DWI models were not clearly preferred over the
mono-exponential model for DWI data obtained using low b-
values in contrast to DWI data obtained using high b-values.
Furthermore, DWI fitted parameters changed significantly during
tumor progression.
MATERIAL AND METHODS

Animal Tumor Model
One million PC-3 (Anticancer Inc., USA) human prostate cancer
cells were inoculated subcutaneously in immunodeficient mice
(n=11, HSD: Athymic Nude Foxn 1nu, Harlan Laboratories,
Indianapolis, IN, USA). The cells also expressed red florescent
protein, while this property was not applied in the present study.
Mice were housed in individually ventilated cages under
controlled conditions of light (12h light/12h dark),
temperature (21 ± 3°C), and humidity (55% ± 15%) in specific
pathogen-free conditions at the Central Animal Laboratory,
University of Turku for the first 5 days, and thereafter in
similar conditions at the University of Eastern Finland Kuopio
campus. Mice were provided with irradiated soy-free natural-
ingredient feed (RM3 (E), Special Diets Services, Essex, UK) and
autoclaved tap water ad libitum, and were housed complying
with international guidelines on the care and use of laboratory
animals. All animal handling was conducted in accordance with
the Finnish Committee for the use and care of laboratory animals
and the institutional animal care policies, which fully meet the
requirements as defined in the U.S. National Institutes of Health
guidelines on animal experimentation.

MR Imaging
The first MR examination was performed 8 days after cell
implantation. Tumor growth was followed for four weeks with
repeated MR examinations once a week. Immediately following
the fourth MR examination, six and seven mice had repeated
DWI scan performed using low and high b-values, respectively.
The second repetition was performed following animal and coil
repositioning approximately 60 minutes after the first set of
DWI. The repeated DWI examinations were used to evaluate
short term repeatability of the measured parameters. The
anesthetized mice (1.5% isoflurane in 70%N2/30%O2) were
imaged using a 7T animal MR scanner (7T Pharmascan, Bruker
GmbH, Ettlingen, Germany) with 72 mm volume transmitter
(Bruker GmbH) and 10 mm surface receiver coil (Bruker GmbH).
Multislice T2-weighted anatomical images covering the whole
tumor area were obtained (TR/TE 2500 ms/33 ms, field of view
(FOV) = 30 × 30 mm2, matrix size 256 × 256, 15 slices) to localize
a slice with maximum tumor diameter for DWI measurements.
Diffusion weighted single shot spin-echo echo planar imaging was
applied with the parameters: TR/TE 3750/25.3 (low b-value set)
3000/30 ms (high b-value set), FOV 3 × 1.5 cm2, matrix 128 ×64,
slice thickness 1 mm, three orthogonal diffusion directions, and
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two different sets of b-values: low b-value set (15 b-values in total):
0, 2, 4, 6, 9, 12, 14, 18, 23, 25, 28, 50, 100, 300, 500 s/mm2, and high
b-value set (12 b-values in total): 0, 100, 300, 500, 700, 900, 1100,
1300, 1500, 1700, 1900, 2000 s/mm2. For further analysis, the
mean value of the signal from three directions was calculated.

Data Modeling
The following four mathematical models were applied to the
DWI signal obtained using low and high b-values:

1. Mono-exponential model:

S(b) = S(0)e−bADCm ½1�

where b is the b-value, S(0) is the signal intensity at b-value of 0 s/
mm2, and ADCm is the apparent diffusion coefficient calculated
using the mono-exponential model.

2. Stretched exponential model also known as Kohlrausch-
Williams-Watts model (20):

S(b) = S(0)e−(bADCs)
a ½2�

where ADCs is the apparent diffusion coefficient calculated using
the stretched exponential model, and a is the heterogeneity
index. The dimensionless a parameter varies from 0 to 1.
During the fitting procedure, a parameter was constrained to
be in the range of 0 to 1.

3. Kurtosis model:

S(b) = S(0)e(−bADCk+
1
6b

2ADC2
kK) ½3�

where ADCk is the apparent diffusion coefficient calculated using
the kurtosis model, and K is the kurtosis. Jensen at al. (21)
originally developed the kurtosis model to fit deviation of
diffusion tensor signal from the mono-exponential function.
The dimensionless positive K parameter characterizes the
deviation from the mono-exponential signal decay.

4a. Bi-exponential model for low b-values:

S(b) = S(0)(1 − fp)e
−bDf + fpe

−bDp ½4�

where fp is the “pseudodiffusion” fraction, Df is the fast diffusion
coefficient, and Dp is the “pseudodiffusion” coefficient. The
intravoxel incoherent motion (IVIM) theory is an advanced
method to separate diffusion and perfusion effects using DWI
(6) at low b-values. According to the IVIM theory, the blood flow
in the capillaries causes a dephasing of the magnetization when
motion-encoding gradients are applied. This means that the
motion of water molecules due to microcirculation of blood in
the capillaries has a similar effect on the resulting DWI signal as
their motion due to molecular diffusion.

4b. Bi-exponential model for high b-values:

S(b) = S(0)(1 − ff )e
−bDs + ff e

−bDf ½5�

where ff is the fraction of fast diffusion, Df is the fast diffusion
coefficient, and Ds is the slow diffusion coefficient.
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The DWI signal decay of each individual voxel has been fitted
using four mathematical models, as described above, to generate
parametric maps of the parameters. The fitting procedure has
been performed using in-house written C++ code utilizing
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (22) in
dlib library (23).

Following multiple initializations values were used to prevent
local minima in the fitting procedure in order to avoid local
minima in the fitting procedure (initializations values for high b-
values data are in brackets):

1. Mono-exponential:
ADCm –  from 0:001 (0:001) to 0:003 (0:003) with the step 

size of  0:0005 (0:0005)
2. Stretched exponential:
ADCs –  from 0:001 (0:001) to 0:003 (0:003) with the step size

 of  0:0005 (0:0005)
a – from 0:1 (0:1) to 1:0 (1:0) with the step size of  0:15 (0:15)
3. Kurtosis:
ADCk –  from 0:001 to 0:003 with the step size of  0:0003
K – from 0:0001 (0:0001) to 4:0 (2:0) with the step size of  

0:05 (0:02)
4a (b). Biexponential:

fp(ff ) – from 0:0 (0:5) to 1:0 (1:0) with the step size of   0:1 (0:1)
Dp(Df ) – from 0:0001 (0:0001) to 0:04 (0:003) with the step 

size of   0:0005 (0:0003)
Df (Ds) – from 0:0001 (0:00002) to 0:003 (0:001) with the step

 size of   0:0003 (0:00005)
Image Analysis
The tumor area was manually delineated on T2-weighted
anatomical images and the regions of interest (ROIs) were
defined to the corresponding parametric images. Voxels with
ADCm values higher than 8.0^10-3 s2/mm were discarded as
those voxels were considered to represent necrosis. Median
values of the fitted parameters of each ROI between repeated
scans were compared using one-way analysis of variance with
Bonferroni test (p<0.05 statistically significant).
EVALUATION OF FITTING QUALITY

Corrected Akaike information criteria difference (DAICc) (15)
was used to evaluate model fit to DWI data of each individual
voxel:

DAICc = N ln (
SSB
N

) − ln
SSA
N

� �� �
+ 2(PB − PA)

+ 2
PB(PB + 1)
N − PB − 1

−
PA(PA + 1)
N − PA − 1

� �
½6�

where N is the sample size, P is the number of parameters, SS is
the sum of squares between data points and fitted curve,
May 2021 | Volume 11 | Article 583921

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Merisaari et al. Diffusion Weighted Imaging of Prostate Cancer
A subscript represents the simpler model, B subscripts represents
the more complex model.

In addition to DAICc, F-ratio (F) with 1% level of significance
was used to evaluate model fit to data:

F =
(SSA − SSB)=SSB
(DFA − DFB)=DFB

½7�

where DF (= number of data points − number of parameters) is
the degree of freedom, A subscript represents the simpler model,
B subscripts represents the more complex model.
REPEATABILITY OF THE FITTED
PARAMETERS

Repeatability of the fitted parameters was evaluated using the
same methodology as in a previous human DWI drug
intervention study (24). The difference (d) in median values
per ROI between two repeated scans performed 4 weeks after the
initial scan was calculated for a subset of mice (six mice for low
b-values and seven for high b-values). Mean squared difference
(msd) was calculated as follows:

msd =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
d2 � n − 1ð Þ−1

s
½8�

where d is the difference between two repeated scans, n is the
number of mice with repeated scan. Subsequently, 95% confidence
interval (CI) for changes in the study cohort was calculated:

CI = ±1:96 �msd=
ffiffiffi
n

p ½9�
where msd is the mean squared difference, n is the number of
mice with repeated scan.Finally, coefficient of repeatability (r)
was calculated as follows:

r = 1:96 �msd ½10�
RESULTS

PC-3 cancer cell growth was followed for 4 weeks with repeated
MR examinations performed once a week. The changes in
diffusion parameters are visualized in parametric maps on top
of T2-weighted images for a representative case (Figures 1 and 2)
while the rest of data are shown in Supplementary material
(Figures S1–S20). Median signal intensity of tumor ROI and the
correcting fitted curves of week 1 and week 4 are shown in Figure 3.
The data is shown for the same representative tumor as shown in
Figure 1.

Median values of the fitted parameters ADCm, ADCs, ADCk,
and Ds between week 1 and those measured at weeks 2, 3 and 4
differed significantly while the differences between weeks 2, 3 and
4 were not significant using the low b-value data. Similarly,
median values of K parameter increased significantly between
Frontiers in Oncology | www.frontiersin.org 4126
week 1 and week 3 and 4. In contrast, no significant differences
were present between median values of different weeks for a, Dp,
and ff parameters (Figure 4). Using high b-values, significant
changes were present in median values of ADCm, ADCs, a, and
ADCk between week 1 and weeks 2, 3 and 4, while differences
between week 2, 3 and 4 were not significant. The changes in K
parameter were significant only between week 1 and week 4,
while differences between week 1 and weeks 3 and 4 were
significant for Df and Ds parameters (Figure 5).

Model Selection
In general, DWI data obtained using low b-values fitted better by
the stretched exponential model as compared with mono-
exponential, kurtosis and bi-exponential models based on AICc

and F-ratio. In more than 50% of voxels the kurtosis model had
lower AICc values than the mono-exponential model. However,
the kurtosis model did not provide significantly better fit to data
than the mono-exponential model in more than 50% of voxels
(averaged medians of 11 mice) based on F-test. Similarly, the bi-
exponential model was not preferred over mono-exponential in
more than 50% of voxels (averaged medians of 11 mice). No
dramatic changes in model preference were present between
different time points (Tables 1 and 2).

In contrast to low b-values, in vast majority of voxels
stretched exponential, kurtosis and bi-exponential models
fitted DWI data obtained using high b-values better than the
mono-exponential model based on AICc and F-test. The kurtosis
model was preferred over the stretched exponential model in
average in ~75% of voxels based on AICc. The bi-exponential
models still provided significantly better fit to data than the
stretched exponential and kurtosis models based on F-test.

Repeatability of the Fitted Parameters
The parameters of mono-exponential, stretched exponential and
kurtosis models had confidence interval values smaller than 25%
of the corresponding averaged median values (Table 3) for DWI
data obtained using both low as well as high b-values. Similarly,
coefficients of repeatability were smaller than 45% of the
corresponding averaged median values (Table 3), with the
exception of K parameter for low b-value DWI data (r%
59.7%). In contrast, the parameters of the bi-exponential
model had much larger confidence interval and coefficient of
repeatability values, especially for low b-value DWI data. Large
confidence interval and coefficient of repeatability values for the
parameters of bi-exponential model implicate poor
measurement repeatability. Confidence interval and coefficient
of repeatability values for mono-exponential, stretched
exponential and kurtosis models we similar for DWI data
acquired using low and high b-values. However, K parameter
of kurtosis models had approximately 2-times higher relative
coefficient of repeatability values than the ADCm, ADCs, ADCk

parameters for low as well as high b-values.
Signal intensities at the second repeated DWI examination

differed systematically from those measured at the first DWI
examination, and the median values of ADCm, ADCs, and ADCk

parameters were lower in the repeated DWI in all mice.
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DISCUSSION

The use of DWI for cancer detection, characterization and cancer
therapy response monitoring continues to increase in both pre-
clinical and clinical settings. Despite wide use of DWI, accurate
and robust modeling of DWI signal decay remains a challenge. In
the current study, we have evaluated four different mathematical
models for DWI data (low and high b-values) of PC-3-cell
derived human prostate cancer xenografts in mice, in terms of
fitting quality and repeatability. Significant changes were
observed in median values of ADC parameters detected
between week 1 and those measured 1-3 weeks later, while the
difference between the values obtained at weeks 2-4 were not
significant. In previous studies cell density was shown to
correlate with ADCm parameter (25, 26). In the light of these
previous studies, our findings indicated lower cell density of the
tumors at the first time point measured.

According to our finding, non-Gaussian DWI models
provided better fit to DWI data than the most commonly
Frontiers in Oncology | www.frontiersin.org 5127
applied mono-exponential model, which is in line with
previous findings (6, 16, 21, 27). The use of high b-values and
non-Gaussian DWI models for early therapy response evaluation
has demonstrated promising results in human brain tumor (28),
colon cancer mouse model (29), and glioma mouse model (30).
In a study by Hoff and co-workers (30), fast diffusion component
of the bi-exponential model had the largest percent change from
baseline in glioma mouse model, suggesting a role of non-
Gaussian DWI models for prediction of early therapy response.

Several recent pre-clinical (31–33) and clinical (34–36) studies
demonstrated promising results for IVIM derived parameters
especially in organs with high perfusion, such as liver or kidney.
In these organs the intravoxel incoherent motion present with
relatively larger contribution to signal decay. The perfusion
fraction was shown to be in the range of > 20-30%, being
substantially more than that observed in brain, for example
(37). In the current study, the averaged median perfusion
fraction value was 9%, thus, being similar to human brain. Due
to relatively low contribution of the intravoxel incoherent motion
FIGURE 1 | Low b-value DWI data of a representative tumor: T2-weighted image fused with parametric maps for ADCm, ADCs, a, ADCk, K, fp, Dp, and Df

parameters are shown, and represent different degree of tumor homogeneity between week 1 (column 1), week 2 (column 2), week 3 (column 4) and week 4
(column 1). Furthermore, the second repeated imaging on week 4 is shown (column 5). The parametric maps are scaled as follows: ADCm, min−max: 0−2.0 µm2/ms;
ADCs, min−max: 0−1.5 µm2/ms; a, min−max: 0.6−1.0; ADCk, min−max: 0−2.0 µm2/ms; K, min−max: 0−3.0; fp, min−max: 0−0.4; Dp, min−max: 0−40.0 µm2/ms;
Df, min−max: 0−2.0 µm2/ms.
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fraction to the measured signal, it is questionable how accurately a
least square fitting procedure performed independently for each
voxel (in a presence of measurement and physiological noise) can
evaluated such small exponential component of the bi-
exponential model. Despite preventing local minima in the
fitting procedure, the repeatability of IVIM derived parameters
(bi-exponential model for low b-values) was low. Coefficient of
repeatability (expressed in % of averaged median values) for fp, Dp

and Df were 491.8%, 399.1% and 163.2%, respectively. Similar to
our study, IVIM derived parameters using least square fitting have
shown low reproducibility in human liver (38). The small
contribution of “pseudodiffusion” component (fp, Dp) to the
final fitting residuals during least square fitting procedure, calls
into question the validity of IVIM parameters that are estimated
using least square fitting procedure for organs with small
“pseudodiffusion” component (39–41). Efforts to increase fitting
robustness of the bi-exponential model resulted into wider use of
“segmented analysis” (32, 42) where each exponential component
is being fitted individually in subsequent fashion. However, it
Frontiers in Oncology | www.frontiersin.org 6128
should be noted that the resulting fitting residual is likely to be
higher for “segmented analysis” than for “simultaneous” least
square fitting of the bi-exponential model. Information content
and bias of “segmented analysis” in comparison with other
mathematical models remains to be established. Orton and the
co-workers (43) have proposed the use of a Bayesian approach for
improved estimation accuracy of IVIM parameters. Bayesian
approach shrinks the distribution of parameters and “moves”
outliers closer to the central distribution. Despite very promising
results (36), this approach might not be applicable for cases with
limited number of fitting voxels with large physiological voxel
heterogeneity. Bayesian approach is a balance between improving
quality of parametric maps and suppressing heterogeneity. Other
possible approach is the use of neighborhood information during
the fitting procedure (44).

Deviation of the DWI signal from mono-exponential decay at
low b-values is, according to IVIM theory (6), due to intravoxel
incoherent motion associated with capillary perfusion.
“Perfusion fraction” (fp in eq. 4) was proposed to reflex
FIGURE 2 | High b-value DWI data of a representative tumor: T2-weighted image fused with parametric maps for ADCm, ADCs, a, ADCk, K, ff, Df, and Ds

parameters are shown, and represent different degree of tumor homogeneity between week 1 (column 1), week 2 (column 2), week 3 (column 3), week 4 (column 4).
Furthermore, the second repetition done on week 4 is shown (column 5). The parametric maps are scaled as follows: ADCm (A1−5) min−max: 0−2.0 µm2/ms,
ADCs (B1−5) min−max: 0−1.5 µm2/ms, a (C1-5) min−max: 0.6−1.0, ADCk (D1−5) min−max: 0−2.0 µm2/ms, K (E1−5), min−max: 0−1.5, ff (F1−5), min−max: 0−1.0,
Df (G1−5) min−max: 0−5.0 µm2/ms, Ds (H1−5) min−max: 0−0.9 µm2/ms.
May 2021 | Volume 11 | Article 583921

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Merisaari et al. Diffusion Weighted Imaging of Prostate Cancer
fractional volume (%) of capillary blood flow while
“pseudodiffusion” (Dp in eq. 4) probably relates to blood
velocity. Biological reasons for non-Gaussian DWI signal decay
at high b-values remains open despite several proposed theories
(7, 27, 45, 46). In the current study, the highest used b-value was
2000 s/mm2, which could have resulted in a less accurate
estimation of slow diffusion component. Nevertheless, in vast
majority of voxels non-Gaussian models provided better fit to
DWI obtained using b-values up to 2000 s/mm2. As shown in
prior studies (47, 48) of DWI models functions for PCa, that
Frontiers in Oncology | www.frontiersin.org 7129
b-value distribution and DWI acquisition parameters may
contribute to the fitting performance, and exploration of these
factors is left for future studies.

Our study is limited by relatively small sample size.
Furthermore, no attempts to histologically validate our findings
with cell density have been made. Thus, further studies are needed
to better investigate correlation of parameters derived from non-
Gaussian DWI models with histopathological markers. Signal
intensities differed systematically in the second DWI
examination of the same tumor performed approximately 60
A B

DC

FIGURE 3 | Mean signal intensity as a function of b-values (x-axis) fitted using all four models. The data is shown for the same representative tumor as shown in
Figures 1 and 2. (A); week 1, low b-value DWI data. (B); week 1, high b-value DWI data. (C); week 4, low b-value DWI data. (D); week 4 high b-value DWI data.
Bi-exponential, kurtosis and stretched exponential models provide better fit to the DWI decay curve than the mono-exponential model especially at high b-value
DWI data.
A B D

E F G H

C

FIGURE 4 | Median values of regions of interest (n=11) derived from DWI data obtained using low b-values. Significant changes (p<0.05) were present in ADCm

(part A), ADCs (part B), ADCk (part D), and Df (part H) values between week 1 and those from the weeks 2, 3 and 4. K (part E) parameter differed significantly
(p<0.05) between week 1 and weeks 3 and 4. The differences between weeks 2, 3 and 4 were not significant. The remaining differences in the fitted values (alpha,
part C; Fp, part F; Dp part G) between weeks did not reach the level of statistical significance. The box extends from the 25th to 75th percentiles while the error bars
extend from minimal to maximal values.
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minutes after the first examination. This systematic bias in
repeated DWI examinations has an effect on the estimation of
repeatability. The confidence interval and coefficient of
repeatability values between the repeated DWI examinations
Frontiers in Oncology | www.frontiersin.org 8130
performed on week 4 are likely worse than those between weeks
1−4. Thus, the presented repeatability values should be regarded as
the worst estimates due to systematic bias caused by DWI signal
differences between the repeated DWI examinations. A potential
May 2021 | Volume 11 | Article 583921
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FIGURE 5 | Median values of regions of interest (n=11) derived from DWI data obtained using high b-values. Significant changes (p<0.05) were present in ADCm

(part A), ADCs (part B), alpha (part C), and ADCk (part D) values between week 1 and weeks 2, 3 and 4. K (part E) parameter differed significantly (p<0.05) between
week 1 and week 4. The differences between weeks 2, 3 and 4 were not significant. Values of Df (part G) and Ds (part H) parameters differed significantly between
week 1 and weeks 3 and 4. The remaining differences in the fitted values between weeks did not reach the level of statistical significance (Ff, part F). The box
extends from the 25th to 75th percentiles while the error bars extend from minimal to maximal values.
TABLE 1 | Mean ± standard deviation of median percentage values per mouse described better by the first model of the comparison is shown in the table for DWI data
obtained using low b-values.

Low b-values week 1* week 2 week 3 week 4

AICc stretched vs. mono-ex 81 ± 29% 69 ± 32% 71 ± 30% 78 ± 28%
kurtosis vs. mono-ex 79 ± 30% 59 ± 38% 62 ± 36% 51 ± 33%
bi-ex vs. mono-ex 75 ± 33% 56 ± 41% 53 ± 38% 69 ± 31%

kurtosis vs. stretched 12 ± 16% 15 ± 28% 19 ± 24% 9 ± 15%
bi-ex vs. stretched 23 ± 31% 15 ± 18% 10 ± 23% 29 ± 35%
bi-ex vs. kurtosis 61 ± 33% 49 ± 37% 41 ± 38% 63 ± 35%

F-ratio stretched vs. mono-ex 70 ± 34% 45 ± 44% 38 ± 39% 36 ± 30%
kurtosis vs. mono-ex 45 ± 35% 28 ± 40% 19 ± 26% 8 ± 19%
bi-ex vs. mono-ex 64 ± 34% 39 ± 40% 35 ± 35% 16 ± 16%
biex vs. stretched 6 ± 12% 2 ± 5% 0 ± 0% 12 ± 30%
bi-ex vs. kurtosis 42 ± 32% 23 ± 28% 13 ± 17% 26 ± 35%
AICc, Corrected Akaike information criteria; mono-ex, mono-exponential; bi-ex, bi-exponential; *tumor growth after subcutaneous inoculation of PC-3 prostate cancer cells in mice.
TABLE 2 | Mean ± standard deviation of median percentage values per mouse described better by the first model of the comparison is shown in the table for DWI data
obtained using high b-values.

High b-values week 1* week 2 week 3 week 4

AICc stretched vs. mono-ex 99 ± 4% 100 ± 1% 100 ± 1% 99 ± 2%
kurtosis vs. mono-ex 99 ± 4% 100 ± 1% 100 ± 1% 100 ± 1%
bi-ex vs. mono-ex 98 ± 8% 100 ± 2% 100 ± 1% 99 ± 2%

kurtosis vs. stretched 69 ± 36% 81 ± 31% 71 ± 39% 78 ± 24%
bi-ex vs. stretched 66 ± 38% 76 ± 27% 59 ± 39% 62 ± 31%
bi-ex vs. kurtosis 36 ± 27% 33 ± 34% 18 ± 23% 16 ± 19%

F-ratio stretched vs. mono-ex 96 ± 14% 95 ± 16% 94 ± 19% 94 ± 12%
kurtosis vs. mono-ex 97 ± 10% 99 ± 3% 99 ± 2% 97 ± 4%
bi-ex vs. mono-ex 100 ± 0% 100 ± 0% 100 ± 0% 100 ± 0%
bi-ex vs. stretched 82 ± 32% 95 ± 8% 85 ± 27% 89 ± 18%
bi-ex vs. kurtosis 92 ± 10% 92 ± 9% 93 ± 9% 94 ± 6%
AICc, Corrected Akaike information criteria; mono-ex, mono-exponential; bi-ex, bi-exponential: *tumor growth after subcutaneous inoculation of PC-3 prostate cancer cells in mice.
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cause of the bias is a temperature drop of the tumor (not mouse
core temperature) in the second repeated DWI examination.
Nevertheless, it is beyond the scope of the current study to fully
explore an effect of temperature and anesthesia (26) onDWI decay
curve derived parameters.

In conclusion, we have evaluated four different mathematical
models for DWI of PC-3 prostate cancer cell derived xenografts in
mice. Significant changes in the fitted parameters were present
during tumor progression potentially due to increased cell density
in later stages. The “pseudodiffusion” component in the analyzed
tumors was shown to be less than 10% of the bi-exponential model.
Due to low repeatability of the bi-exponential model parameters
derived from low and high b-values DWI data using independent
least square fitting on a voxel level, a degree of caution should be
applied if these parameters are used for cancer characterization and
therapy response monitoring. On the other hand, mono-
exponential, stretched exponential, and kurtosis models shown
high information content and robust repeatability.
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The pattern abnormalities of dendritic spine, tiny protrusions on neuron dendrites, have

been found related to multiple nervous system diseases, such as Parkinson’s disease

and schizophrenia. The determination of the factors affecting spine patterns is of vital

importance to explore the pathogenesis of these diseases, and further, search the

treatment method for them. Although the study of dendritic spines is a hot topic in

neuroscience in recent years, there is still a lack of systematic study on the formation

mechanism of its pattern. This paper provided a reinterpretation of reaction-diffusion

model to simulate the formation process of dendritic spine, and further, study the

factors affecting spine patterns. First, all four classic shapes of spines, mushroom-type,

stubby-type, thin-type, and branched-type were reproduced using the model. We found

that the consumption rate of substrates by the cytoskeleton is a key factor to regulate

spine shape. Moreover, we found that the density of spines can be regulated by

the amount of an exogenous activator and inhibitor, which is in accordance with the

anatomical results found in hippocampal CA1 in SD rats with glioma. Further, we analyzed

the inner mechanism of the above model parameters regulating the dendritic spine

pattern through Turing instability analysis and drew a conclusion that an exogenous

inhibitor and activator changes Turing wavelength through which to regulate spine

densities. Finally, we discussed the deep regulation mechanisms of several reported

regulators of dendritic spine shape and densities based on our simulation results. Our

work might evoke attention to the mathematic model-based pathogenesis research for

neuron diseases which are related to the dendritic spine pattern abnormalities and spark

inspiration in the treatment research for these diseases.

Keywords: dendritic spine, Turing instability, reaction-diffusion model, branching morphogenesis, glioma

INTRODUCTION

Dendritic spines are tiny protrusions on neuron dendrites which widely exist in the dendrites
of higher animals and play an important role in the formation of most excitatory axodendritic
synapses (Harris and Kater, 1994). The function of a spine is related to its shape (Kasai et al.,
2003; Bourne and Harris, 2007). Traditionally, there are four basic shapes for dendritic spines:
thin-type, stubby-type, mushroom-type, and branched-type (González-Tapia et al., 2016; Luczynski
et al., 2016). Among them, thin dendritic spines show high plasticity and are related to learning,
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while mushroom dendritic spines show weak plasticity and are
related to memory function. In addition, the density of spines
directly influences the density of synapses. Researchers have
found that pattern abnormalities of dendritic spine, especially
the abnormal proportion of various types of dendritic spines and
density variation of dendritic spines, were related to multiple
nervous system diseases. For example, Pyronneau et al. reported
an overabundance of thin-type spines, a kind of immature
dendritic spines, in the somatosensory cortex of Fragile X
syndrome model mice (Pyronneau et al., 2017). It has been
reported that there are striatal dendrites with few dendritic spines
in Parkinson’s disease (McNeill et al., 1988). It was also been
found that reduced dendritic spine density in individuals with
schizophrenia (Glantz and Lewis, 2000; Sweet et al., 2008) and
Huntington’s disease (Richards et al., 2011). Also, it is recognized
that dendritic spine loss is an early feature of Alzheimer’s
disease (Kommaddi et al., 2018; O’Neal et al., 2018). Thus, the
exploration of shape and density factors of dendritic spines is of
vital importance to understand the pathogenesis of these diseases,
and further, search the treatment method for them.

The current research on dendritic spines pattern is mainly
performed by statically observing the cerebral cortex in animals
(Kommaddi et al., 2018; Ratliff et al., 2019). It has been confirmed
that the pattern of dendritic spines is influenced by neuron
activity (Portera-Cailliau et al., 2003; González-Tapia et al.,
2016) and some substances, such as drebrin (Hayashi et al.,
1996), Rho GTPase Rac1 (Pyronneau et al., 2017) and F-actin
(Kommaddi et al., 2018). The above researches usually only
proposed one factor of dendritic spine patterns once while
the pattern formation of dendritic spines is a dynamic process
involving a variety of chemical reactions that are regulated by
multiple factors. In summary, there is still a lack of systematic
study on the mechanism of pattern formation showing influences
of multiple factors on the formed pattern of dendritic spines.

Mathematic modeling on dendritic spines development has
become an important tool to study the structure and plasticity
of dendritic spines in recent years. For example, Kasai et al.
used the volume of dendritic spines as an index to measure the
structure of dendritic spines and applied the Brownian motion
model to simulate the volume of dendritic spines, exploring the
close relationship between spine structure and function (Kasai
et al., 2010). The Brownian motion model describes a random
phenomenon, but the pattern formation of dendritic spines
is a process regulated by gene and environment instead of a
random process, making that model unsuitable for simulating
the pattern formation. Besides, Miermans et al. simulated
dendritic spine membranes during shape alternation using the
Canham-Helfrich energy functional, which is used to describe
the relationship between the bending rigidity of the membrane
and the force generated by the cytoskeleton (Miermans et al.,
2017). Their results demonstrate that the cytoskeleton is a key
factor in determining the shape of dendritic spines, but this
model lacks an explanation for the change in cytoskeletons, and
their hypothesis about the approximate rotational symmetry of
dendritic spines seems inapplicable to branched-type dendritic
spines. Varner et al. explained the process of epithelial cell
formation patterns using four mechanisms: cell division, cell

insertion, cell deformation, andmedia filling (Varner andNelson,
2014). However, these explanations cannot be applied in the
study of sub-cellular structures such as dendritic spines.

In Turing theory, if the chemical substances involved in the
interaction have diffusion, the original equilibrium state will
be broken, which is called Turing instability (Turing, 1952).
The reaction-diffusion model (Gierer and Meinhardt, 1972;
Meinhardt, 1976), based on Turing’s theory, illuminates the
reactions between chemical substances in developing biological
systems. It has been utilized to simulate Pomacanthus skin stripe
patterns (Kondo and Asai, 1995), vascular mesenchymal cells
patterns (Garfinkel et al., 2004), mouse limb development (Miura
et al., 2006), lung branching patterns (Guo et al., 2014a; Hagiwara
et al., 2015), and self-organizing morphogenesis (Okuda et al.,
2018; Landge et al., 2020). In our previous work, side branching
and tip branching of the lung were investigated using the
reaction-diffusion model, which was verified by spatiotemporal
parameters (Guo et al., 2014a). However, the patterns developed
in previous work were not enough to describe the complex
patterns in dendritic spines. Because different from the obtained
side branches which were equally spaced, the dendritic spines
studied in this paper are usually uneven. In spite of its potential
use in simulate branching patterns, the strong non-linearity of
the reaction-diffusion model makes it difficult to intuitively draw
the relationship between parameter values and simulation results,
which is inconvenient for the analysis of the inner mechanism
of the model. Addressing this problem, dispersion relation was
used to analyze Turing instability (Guo et al., 2014b; Saleem
and Ali, 2018) to prove the mathematical mechanism of the
simulation results. In previous research, we have investigated
the mathematic mechanism through Turing instability analysis
and found that different Turing wavelengths are underlying the
different patterns in a lung (Xu et al., 2017). However, the
relationship between Turing wavelength and branch density has
not been investigated yet.

This paper reinterpreted the traditional reaction-diffusion
model through the introduction of exogenous activator term and
exogenous inhibitor term to simulate the formation process of
dendritic spine, and further, study the factors affecting spine
patterns. All four spine shapes, mushroom-type, stubby-type,
thin-type, and branched-type, were reproduced using the model.
Further, we found that the consumption rate of substrates by
the cytoskeleton regulates the shape. Secondly, we found that the
addition of an exogenous activator causes the spines to become
denser, while the addition of an exogenous inhibitor causes the
spines to become sparser, which provided a potential explanation
for the anatomical results that spine decrease in hippocampal
CA1 in SD rats with glioma. Finally, through Turing instability
analysis, we found that Turing wavelength variation is the deep
mathematical mechanism behind above parameters regulating
spine density. Namely, the addition of an exogenous activator
decreases the Turing wavelength, causing the density of the
dendritic spines to increase, while the addition of an exogenous
inhibitor increases the Turing wavelength, causing the density
of the dendritic spines to decrease. Finally, the deep regulation
mechanisms of several regulators of dendritic spine shape and
density reported in other references were discussed based on our
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FIGURE 1 | Schematic of the development process. The neuron expresses activators and inhibitors. Activators gather at the tip, while inhibitors diffuse into the

surrounding area due to a higher diffusion rate, making only the tip develops. This mechanism makes dendritic spines grow in a certain direction instead of exhibiting

isotropous growth.

simulation results. We hope that our work could evoke attention
to the mathematic model-based research for neuron diseases
related to the dendritic spine pattern abnormalities and spark
inspiration in the treatment research for these diseases.

MATERIALS AND METHODS

Reaction-Diffusion Model
The reaction-diffusion model is defined by Equation (1)
(Meinhardt, 1976). It is a group of partial differential equations
describing the reactions between activator A, inhibitor H,
substrate S, and cytoskeleton Y.



















∂A
∂t =

cA2S
H − µA+ ρAY + DA∇

2A
∂H
∂t = cA2S− υH + ρHY + DH∇

2H
∂S
∂t = c0 − γS− εYS+ DS∇

2S
∂Y
∂t = dA− eY +

Y2

1+fY2

. (1)

The reaction-diffusion model illuminates the reactions between
chemical substances in developing biological systems. According
to this model, neurons express activators (at a rate ρA) and
inhibitors (at a rate ρH). Activators behave with self-catalysis (at a

rate c) and catalyze inhibitors (at a rate c), while inhibitors inhibit
activators. Simultaneously, activators and inhibitors behave with
degradation and diffusion (activators degrade at a rate µ and
diffuse at a rate DA, whereas inhibitors degrade at a rate υ and
diffuse at a rate DH). High concentrations of activator accelerate
the polymerization of cytoskeletons, inducing the development of
dendritic spines. Because the diffusion rate of inhibitors is higher
than that of activator, the polymerization of the cytoskeleton in
the growth center is accelerated, and the polymerization of the
cytoskeleton outside the growing center is inhibited. Thus, the
dendritic spine grows in a certain direction, instead of displaying
isotropous growth. The neuron creates substrate (at a rate c0),
while the cytoskeleton consumes substrate (at a rate ε). Substrate
accelerates the catalysis of the activator. Similarly, the substrate
behaves via degradation and diffusion (degrades at a rate γ

and diffuses at a rate DS), as well. Because the synthesis of the
cytoskeleton consumes substrate, the peak concentration areas of
activators and inhibitors, as well as the cytoskeleton, move in the
direction of high substrate concentrations (Figure 1).

The development patterns of dendritic spines are determined
by the neuron activity (Bloodgood and Sabatini, 2005) and
the exogenous substances. The neuron activity is described by
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FIGURE 2 | The original state of the spine simulation and the dendrite simulation. (A) The original state of the spine simulation is used to simulate a single spine in

different conditions. Simulations were performed on a 100×100 grid. The grid size of space is 0.3. Fixed parameters in Equation (2): c = 0.002, µ = 0.16, υ = 0.04,

ρA = 0.01, ρH = 0.00005, c0 = 0.02, γ = 0.02, DA = 0.02, DH = 0.26, DS = 0.06, d = 0.0035, e = 0.1, and f = 10. (B) The first step in the dendrite simulation is

used to simulate the dendrite trunk. Simulations were performed on a 150×200 grid. The grid size of the space is 0.3. Parameters in Equation (2): c = 0.002, µ =

0.16, υ = 0.04, ρA = 0.03, ρH = 0.0001, δA = 0, δH = 0, c0 = 0.02, ε = 0.017, γ = 0.02, DA = 0.02, DH = 0.26, DS = 0.06, d = 0.0035, e = 0.1, and f = 10. (C)

The second step in the dendrite simulation grows from (A) and is used to simulate spines in different conditions. Fixed parameters in Equation (2): c = 0.002, µ =

0.16, υ = 0.04, ρA = 0.02, ρH = 0.00005, c0 = 0.05, γ = 0.02, DA = 0.02, DH = 0.26, DS = 0.06, d = 0.0035, e = 0.1, and f = 10. In (A,B), black regions (A = 2, H

= 0.02, S = 1, Y = 1) represent a part of a neuron, and white regions (A = 0.001, H = 0.001, S = 1, Y = 0) represent the environment surrounding the neuron.

the rate of substrate consumed by the cytoskeleton (ε) in our
model. Exogenous substances include exogenous activators and
exogenous inhibitors (Kommaddi et al., 2018). To describe the
influence of exogenous substances, we added the exogenous
activator term (δA) and the exogenous inhibitor term (δH) into
the reaction-diffusion model:



















∂A
∂t =

cA2S
H − µA+ (ρA + δA)Y + DA∇

2A
∂H
∂t = cA2S− υH + (ρH + δH)Y + DH∇

2H
∂S
∂t = c0 − γS− εYS+ DS∇

2S
∂Y
∂t = dA− eY +

Y2

1+fY2

. (2)

The new model includes 16 parameters, most of which are fixed
parameters, such as reaction-term parameter c, degradation-term
parameters µ, υ , and γ , diffusion-term parameters DA, DH,
and DS, and growth-term parameters d, e, and f. The values of
fixed parameters are decided by the chemical characteristics of
substances or cells, and the model has been proven to be robust
to perturbations of fixed parameters (Murray, 1982). The other
parameters are variable (ρA, δA, ρH, δH, c0, and ε), whose values
depend on the condition of the development system. In this work,
we studied the effect of the neuron activity and the exogenous
substances on dendritic spines. Thus, we set parameters δA, δH,
and ε in Equation (2) as variable parameters.

The values of parameters were set according to previous
research in lung branching patterns. In previous work, we set
the values of parameters as: c = 0.002, µ = 0.18, υ = 0.04, ρA

= 0.063, ρH = 0.00005, c0 = 0.02, γ = 0.02, ε = 0.045, DA =

0.02, DH = 0.32, DS = 0.06, d = 0.0033, e = 0.1, and f = 10. We
verified the consistency of the mathematical model under certain
parameters with the actual biological process by converting the
time and space in the numerical simulation and comparing them
with the spatiotemporal scale of real lung development (Guo

et al., 2014a). The values of fixed parameters and the value ranges
of variable parameters in the lung branching model provide
references in our new model.

Numerical Simulation
In this work, we investigated the factors of shape and density
of spines using a reaction-diffusion model on different spatial
scales. First, we simulated a spine to explore the influence of
model parameters on the shape of the spine (Figure 2A). This
simulation was performed on a 100×100 grid, and the original
state was a 10×5 pixels rectangular area. Second, we simulated a
dendrite with spines to explore the influence of model parameters
on the density of spines (Figures 2B,C). This simulation was
performed on a 150×200 grid, and the original state was a 5×10
pixels rectangular area (Figure 2B). Then, a dendrite developed
under certain conditions (Figure 2C).

Turing Instability Analysis Method
To verify the simulation results with mathematics, we explored
Turing patterns underlying dendritic spine patterns with our
previously developed decouplingmethod (Guo et al., 2014b). The
substrate and cytoskeleton are considered dependent variables of
time and space, written as S(x, y, t) and Y(x, y, t). Then, we put
these variables into Equation (2) as parameters and obtained the
model of an activator-inhibitor system as:

{

∂A
∂t =

cA2S(x,y,t)
H − µA+ (ρA + δA)Y

(

x, y, t
)

+ DA∇
2A

∂H
∂t = cA2S

(

x, y, t
)

− υH + (ρH + δH)Y
(

x, y, t
)

+ DH∇
2H

. (3)

Branching is a system that can grow and form stable mode, which
corresponds to the damped oscillation system of mathematical
model. Some points in S-Y space correspond to damped
oscillatory systems. The set of these points is called Turing
instability space, and the wavelength of damped oscillation
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system is called Turing wavelength (Turing, 1952). According to
its definition, the mathematical expression of Turing space can
be calculated. The detailed derivation process is in our previous
work (Xu et al., 2017).

To explore dendritic spine development patterns according
to Turing instability, a scheme was performed according to the
following steps.

• Choose an interesting point (the branching point in the
branched spine or a random point on the central axis in others)
in a simulation result and plot the S-Y curve of this point.

• Calculate the Turing instability space using Equation (3).
• Find the intersection of the S-Y curve and Turing

instability space.
• According to the form of the solution of Equation (2), we have

w (r, t) ∼
∑

k

cke
λktWk (r), (4)

and calculate the dispersion relation:

λ = λ
(

k
)

. (5)

• Record the maximum of the real part of the eigenvalue (λm)
and corresponding wavenumbers (k m).

• Calculate Turing wavelength (3) of the point in Step 1:

3 =
2π

km
. (6)

We used Turing instability analysis to explore the difference of
mathematical mechanism behind different patterns of dendritic
spines in section Turing Instability Underlying Dendritic Spines.

Anatomy of Hippocampal CA1 in SD Rat
In this study, images from Golgi-Cox-stained brain slices from
SD rats were compared with simulation results. Golgi-Cox
staining was carried out with a commercial Golgi staining kit
(Keyijiaxin, Tianjin, China). As soon as they were taken from the
skulls, the brains were stored in Golgi-Cox staining solution in a
dark place for 2 weeks, and the solution was replaced at intervals
of 48 h. Then, brain slices were produced using a vibratome (VT
1000S, Leica, Germany) with a thickness of 150µm. The slices
were placed on slides covered with 2% gelatine. Next, the slices
were dyed with ammonia for 60min; washed with water three
times; fixed with Kodak film for 30min; and then washed with
water, dehydrated, cleared, and mounted. Later, dendritic spines
in the CA1 region of the hippocampus were imaged under the
100× objective lens with a digital camera. Dendritic trees were
detected along CA1 tertiary dendrites derived from secondary
dendrites, which started at their point on the primary dendrite.
All animal experiments were approved by the Animal Research
Ethics Committee, School of Medicine, Nankai University and
were performed in accordance with the Animal Management
Rules of the Ministry of Health of the People’s Republic of China.

RESULTS

Dendritic Spine Shape Factors Research

Based on Reaction-Diffusion Model
There are four traditional types of dendritic spines: mushroom-
type, stubby-type, thin-type, and branched-type (González-Tapia
et al., 2016; Luczynski et al., 2016). In order to research the factors
of dendritic spine shape, we firstly proposed a classification
method of spine shape based on real spine microimages.
Then, we classified a spine simulated by our reaction-diffusion
model and found the change rule of dendritic spine shape in
different conditions.

Classification Method of Dendritic Spine Shape
At present, the classification methods of dendritic spines shape
are qualitative, expert experience-required. To study the shape
of dendritic spines quantitatively, metrics to classify dendritic
spines need to be determined. Given a branched-type dendritic
spine is easy to identify, here we only propose a classification
method for the three types of non-branched spines. First, we
measured three geometric qualities of a dendritic spine, namely,
the height (h), the extreme width of the head (whead), and the
extreme width of the neck (wneck), as shown in Figures 3A–D.
Then, based on these three values, we constructed two following
dimensionless metrics:

• Relative average width (RAW) measures the overall thickness
of spines, defined as

RAW =
(whead + wneck)

2h
. (7)

• Relative constriction width (RCW) measures the difference
between the head width and the neck width, defined as

RCW =
(whead − wneck)

h
. (8)

We calculated the RAWs and RCWs of eight dendritic spines
(including three mushroom-type spines, three stubby-type
spines, and two thin-type spines, shown in Figure 3E). Thin-type
spines have a thin head and neck, so the value of RAW is small.
Both the head and neck of stubby-type spines are thick, and the
head is thinner or slightly thicker than the neck, so for them, the
value of RAW is usually large, and the value of RCW is small
or even negative. For the mushroom-type spines, usually have
a large head and a thin neck, their values of RAW and RCW
are both large. Based on the above analysis, we set the metrics
for three types of dendritic spines. As shown in Figure 3F, the
shape differences among the three types of spines are obvious.
We chose RAW= 0.4 and RCW= 0.25 as two criteria to classify
the three types.

Finally, we presented a flow chart to distinguish the shapes of
dendritic spines (Figure 3G). First, if the dendritic spine has a
branching structure, it is recognized as a branched-type spine.
Second, if the RAW value is lower than 0.4, it is regarded as a
thin-type spine. Finally, if the RCW value is lower than 0.25, it is
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FIGURE 3 | Metrics of dendritic spine shape. (A–D) Three geometric qualities of dendritic spines, namely, the height (h), the extreme width of the head (whead), and the

extreme width of the neck (wneck ). (A) is a mushroom-type spine, (B) is a stubby-type spine, (C) is a thin-type spine, and (D) is a branched-type spine. For a

branched-type spine, the extreme width of the head is meaningless. (E) Top: Golgi-Cox staining of brain slices from SD rat hippocampal CA1. Four types of spines

emerge in the images. Bottom: We found nine dendritic spines (including three mushroom-type spines, three stubby-type spines, two thin-type spines, and one

branched-type spine) in the above images. (F) Two-metrics distribution of mushroom-type, stubby-type, and thin-type spines. Three types can be classified by the

criteria RAW = 0.4 and RCW = 0.25. (G) Flow chart of the classification method of dendritic spine shape.

identified as a stubby-type spine. Otherwise, it is recognized as a
mushroom-type spine.

Consumption Rate of Substrate Dominates the Spine

Shape Based on the Reaction-Diffusion Model
In our previous simulation, the rate that substrates are consumed
by cells has been shown to play an important role in the
branching pattern (Xu et al., 2017). Thus, we assumed that the

consumption rate of substrates, namely, the neuron activity, has
an effect on the spine shape. To verify this assumption, we
performed the following single-spine simulations.

First, to investigate the influence of the consumption rate
of substrates (ε) on the shape of dendritic spine, we adjusted
the value of parameter ε in Equation (2). We varied the value
of ε from 0.01 to 0.9, and part of the obtained results are
shown in Figure 4A (with different amplification factors) (also
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FIGURE 4 | Influence of parameters on the shape of dendritic spines. (A) Some of the results of spine simulations for the condition of δA = 0.01, δH = 0.00005, 0.01

≤ ε ≤ 0.9 (with different amplification factors). Arrows mark the newborn parts of spines growing from the original state in Figure 2C. With the enhancement of

neuron activity, the values of RAW and RCW decrease, and all four shapes are obtained. The shape can be mushroom (0 < ε ≤ 0.02), stubby (0.02 < ε ≤ 0.04), thin

(0.04 < ε ≤ 0.7) or branched (0.7 < ε ≤ 0.9) types. (B) The results of spine simulation in the condition of δA = 0, 0.005, 0.01, 0.015, and 0.02, δH = 0.00005, ε =

0.03, 0.05, 0.7, and 0.9. With the addition of an exogenous activator, the stubby-type spine becomes mushroom-type, and the thin-type spine becomes stubby-type.

(C) The results of spine simulation in the condition of δA = 0.01, δH = 0, 0.000025, 0.00005, 0.000075, and 0.0001, ε = 0.01, 0.03, 0.07, and 0.7. With the addition

of an exogenous inhibitors, the branched-type spine becomes thin-type. In (A–C), fixed parameters in Equation (2): c = 0.002, µ = 0.16, υ = 0.04, ρA = 0.01, ρH =

0.00005, c0 = 0.02, γ = 0.02, DA = 0.02, DH = 0.26, DS = 0.06, d = 0.0035, e = 0.1, and f = 10.

see Supplementary Videos 1–4, respectively). As the value of ε

increases, both RAWand RCWvalues decrease, and the dendritic
spine shapes sequentially undergoes mushroom (0 < ε ≤ 0.02),
stubby (0.02 < ε ≤ 0.04), thin (0.04 < ε ≤ 0.7), and branched
(0.7 < ε ≤ 0.9) forms. All four dendritic spine shapes can be
obtained with an increase in the consumption rate of substrates.
This result indicated that neuron activity regulates the shape of
dendritic spine.

In addition, to investigate the influence of exogenous activator
(δA) and exogenous inhibitor (δH) on the shape of dendritic
spine, we adjusted the value of parameter δA and δH in Equation
(2), respectively. We varied the values of δA under the conditions
of ε = 0.03, 0.05, 0.7, and 0.9 and the values of δH under the
conditions of ε = 0.01, 0.03, 0.07, and 0.7, and the results are
shown in Figures 4B,C (also see Supplementary Figures 3, 4,
respectively). According to the results, we found that a stubby-
type spine transforms to mushroom-type and a thin-type spine
transforms to stubby-type with an increase in δA; additionally,
a branched-type spine becomes thin-type with an increase in
δH. However, there is no effect of δA on branched-type spines

and no effect of δH on mushroom-type and stubby-type spines.
These results indicated that both δA and δH also regulate the
spine shape but they are not dominating factors compared to the
consumption rate of substrates.

Therefore, dendritic spines sequentially undergo in-turn
transformation of mushroom-type, stubby-type, thin-type, and
branched-type, with an increase in the consumption rate of
substrates. In contrast, exogenous activators affect non-branched
dendritic spines, and exogenous inhibitors affect branched
dendritic spines. Thus, the consumption rate of substrates
(neuron activity) determines the shape of dendritic spines.

Dendritic Spine Densities Factors

Research Based on Reaction-Diffusion

Model
Dendritic spines participate in the formation of most excitatory
axodendritic synapses, so the density of spines directly influences
the density of synapses. In order to research the factors of
dendritic spine density, we simulated a dendrite with spines using
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FIGURE 5 | Influence of parameters on the density of dendritic spines. (A) The results of dendrite simulation under the conditions of δA = 0, 0.01, 0.02, 0.03, and

0.04, δH = 0.00005, ε = 1. With the addition of an exogenous activator, the number of dendritic spines increases dramatically. (B) The results of dendrite simulation

under the conditions of δA = 0.01, δH = 0, 0.00005, 0.0001, 0.00015, and 0.0002, ε = 1. With the addition of an exogenous inhibitor, the number of dendritic spines

decreases dramatically. (C) The results of dendrite simulation under the conditions of δA = 0.01, δH = 0.00005, ε = 0.5, 1, 1.5, 2, and 2.5. With increased neuron

activity, the shape varies from non-branched-dominant to branched-dominant. Branched-type spines take up more space; thus, the growth of surrounding spines is

inhibited. In addition, the parameter ε has no effect on the density; for example, the densities are the same under the conditions of ε = 2 and ε = 2.5. In (A–C), fixed

parameters in Equation (2): c = 0.002, µ = 0.16, υ = 0.04, ρA = 0.02, ρH = 0.00005, c0 = 0.05, γ = 0.02, DA = 0.02, DH = 0.26, DS = 0.06, d = 0.0035, e = 0.1,

and f = 10.

the reaction-diffusion model and found the relationship between
dendritic spine density and key factors. Moreover, we observed
the decrease of spine density in the hippocampal CA1 in rats with
glioma and proposed a potential reason for this phenomenon
by comparing the simulation results and observation results.
Further, we used Turing instability to explain the mathematical
mechanism behind the above parameters regulating spine density
and found that an exogenous inhibitor and activator changes
Turing wavelength through which to regulate spine densities.

Exogenous Substances Regulate Spine Density
To investigate the factors of dendritic spine density, we next
simulated different spine densities which seen across multiple
spines through dendrite simulations. In our previous research,
we found that the rates of activator and inhibitor secretion from
cells have been shown to play an important role in the density of
side branching (Guo et al., 2014a). Similarly, it is reasonable for
us to assume that exogenous activator and inhibitor are two key
factors influencing the density of dendritic spines.

Firstly, in order to find out the effect of exogenous activator
and inhibitor on the spine density, we adjusted the values of
the two parameters δA and δH based on standard values of δA

= 0.01, δH = 0.00005, and ε = 1, and we obtained two groups
of results (Figures 5A,B). The results showed the density of

dendritic spines is positively correlated with δA and negatively
correlated with δH.

Next, we adjusted the values of the parameter ε to find
whether the consumption rate of substrates is another factor
of density, and the results are shown in Figure 5C (also see
Supplementary Figures 1, 2, respectively). We noticed that the
spine shape varied from non-branched-dominant to branched-
dominant when ε varies from 0.5 to 2.0. Meanwhile, the
spine densities have not significant changes when ε varies; for
example, the densities are the same under the conditions of ε =

2 and ε = 2.5.
Through dendrite simulations, we found that exogenous

activators increase the density of spines, while exogenous
inhibitors have the opposite effect. In comparison to exogenous
substances, neuron activity has no significant effect on
the density.

Application in the Hippocampal CA1 of Rats
The hippocampus plays an important role in memory function
and cognitive abilities (Muller et al., 1996). Certain diseases,
such as glioma, affect the developmental patterns of dendritic
spines on hippocampal neurons. It has also been reported
that the impairment of neurocognitive function is a common
consequence of glioma, in both glioma patients (Wefel et al.,
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FIGURE 6 | Exogenous inhibitor decreases the spine density in hippocampal

CA1 in SD rats with glioma. (A) A microscopic image of dendritic spines in the

brain of a rat in the sham group. There are dense spines in this image, similar

to those in our dendrite simulation results under the condition of δA = 0.01, δH

= 0, ε = 1. (B) A microscopic image of dendritic spines in the brain of a rat in

the glioma group. There are sparse spines in this image, similar to those in our

dendrite simulation results under the condition of δA = 0.01, δH = 0.0001, ε =

1. In (A,B), fixed parameters in Equation (2): c = 0.002, µ = 0.16, υ = 0.04,

ρA = 0.02, ρH = 0.00005, c0 = 0.05, γ = 0.02, DA = 0.02, DH = 0.26, DS =

0.06, d = 0.0035, e = 0.1, and f = 10.

2016; Van Kessel et al., 2017) and glioma animal models
(Wang et al., 2010; Hao et al., 2018). Through anatomy and
neuron microimaging (see section Anatomy of Hippocampal
CA1 in SD Rat for detail), we found that dendritic spines
in rats with glioma were less dense (Figures 6A,B, also see
Supplementary Videos 5, 6, respectively).

To study the reasons for various densities in the rat
hippocampal CA1, we compared the microscopic images of
neurons with our simulation results. It seems that the spine
patterns in the brains of the rat sham group were similar to those
in the simulation results under the condition of δA = 0.01, δH =

0, ε = 1, while the spine patterns in the brains of the rat glioma
group were similar to those in the simulation results under the
condition of δA = 0.01, δH = 0.0001, ε = 1 (Figure 5B). Thus,
we considered that the addition of exogenous inhibitors is a
potential reason for the decrease of dendritic spine density caused
by glioma.

Turing Instability Underlying Dendritic Spines
Turing pointed out that the diffusion of chemical substances will
break the original equilibrium state of substance concentration,
which is called Turing instability (Turing, 1952). Branching
patterns can only be generated from models with Turing
instability. In order to qualitatively analyze the Turing instability,
equilibrium position, and periodicity of the model solution,
we have proposed a Turing instability analysis method using
dispersion relation in previous research (Guo et al., 2014b) and
found that the Turing wavelength is the internal factor causing

the change of branching pattern of a lung (Xu et al., 2017) (see
section Turing Instability Analysis Method for more details).

Exogenous substances have an effect on the Turing instability
space in which a stable pattern can appear, and have no effect
on the S-Y curve that shows the concentration relationship
between substrate and cytoskeleton during development, which
can be derived from Equation (3). We adjusted the values
of the parameters δA from 0 to 0.2 and then drew an S-Y
curve and Turing instability space in the S-Y space (Figure 7A).
Three intersection points of Turing instability spaces and the
corresponding S-Y curves were marked with black points.
These points were substituted into the Equations (4–6) in
order to calculate the Turing wavelengths (Figure 7B). An
increase in parameter δA decreases the Turing wavelength.
Similarly, we found the intersection points and calculated Turing
wavelength under the conditions of δH = 0, 0.00005, and 0.0001
(Figures 7C,D). An increase in parameter δH increases the
Turing wavelength.

As the Turing wavelength implies the spatial periodicity
of spines, it is negatively correlated to the density of
dendritic spines. In conclusion, exogenous activators make the
Turing wavelength smaller and cause an increase in density
of dendritic spines, while exogenous inhibitors increase the
Turing wavelength and cause a decrease in the density of
dendritic spines.

DISCUSSION

In recent years, various chemicals have been reported to be
capable of regulating the process of dendritic spine development.
Our research may explore their regulation mechanism in a
mathematical view. For example, the actin filaments (F-actin)
were considered to be key in regulating the shape of dendritic
spines (Miermans et al., 2017). We found the cytoskeleton
was one key factor to regulate cell morphology. Hence, F-
actin might be considered as the cytoskeleton (Y) in our
model. It has been found that drebrin is an actin-binding
protein in the dendritic spine, and its overexpression causes
spine elongation (Hayashi and Shirao, 1999; Koganezawa et al.,
2017; Hanamura et al., 2018). Bernstein reported that cofilin
severs F-actin, contributing to actin dynamics (Bernstein and
Bamburg, 2010). In addition, Calabrese suggested that dendritic
spine growth correlates with decreased cofilin activity (Calabrese
et al., 2014). According to our simulation results, drebrin
and cofilin are similar to the functions of the activator (A)
and the inhibitor (H) in our model respectively. Adenosine-
triphosphate (ATP) is closely related to F-actin polymerization
and depolymerization (Katkar et al., 2018; Merino et al., 2018),
which implies that ATP may correspond to the substrate (S)
in our model. Based on these hypotheses, we described our
inferences as follows: (1) the overexpression of drebrin promotes
the binding of F-actin and increases the density of dendritic
spines, (2) the overexpression of cofilin hinders the binding of
F-actin and decreases the density of dendritic spines, (3) the
increase in ATP consumption during the process of creating F-
actin results in a different F-actin pattern and causes spines to
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FIGURE 7 | Exogenous substances regulate dendritic spine density through Turing wavelength. (A) The S-Y curve and Turing instability space in three conditions of

parameter δA (δH = 0.00005, ε = 1). The yellow, orange, and red regions represent Turing instability spaces in the conditions of δA = 0, 0.01, and 0.02, respectively.

The cyan lines represent S-Y curves, and the black points represent the intersections. An exogenous activator affects the size and location of the Turing instability

space, rather than the S-Y curves (artificial errors in choosing intersections result in non-coincidence). (B) The dispersion relationship curves in the conditions of δA =

0, 0.01, and 0.02 (δH = 0.00005, ε = 1). Adding an exogenous activator decreases the Turing wavelength. (C) The S-Y curve and Turing instability space in three

conditions of parameter δH (δA = 0.01, ε = 1). The yellow, orange, and red regions represent Turing instability spaces in the conditions of δH = 0, 0.00005, and

0.0001, respectively. The cyan lines represent S-Y curves, and the black points represent the intersections. An exogenous inhibitor affects the size and location of the

Turing instability space, rather than the S-Y curves (artificial errors in choosing intersections result in non-coincidence). (D) The dispersion relationship curves in the

conditions of δH = 0, 0.00005, and 0.0001 (δA = 0.01, ε = 1). Adding an exogenous inhibitor increases the Turing wavelength.

become mushroom-type, stubby-type, thin-type and branched-
type, in turn.

The verification experiments of morphogens is helpful to
the correction of model parameters and the support of the
conclusion in this work. Here, we proposed two ideas to
verify the morphogens mentioned above: (1) research on
the quantitative relationship between spine density and the

addition of a substance that influences the expression of drebrin
or cofilin, and (2) research on the quantitative relationship
between spine shape distribution and ATP consumption
during the process of creating F-actin. Moreover, in order to
compare the spatiotemporal parameters between simulations
and verification experiments quantitatively, 3D simulation
is necessary.
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With our method, certain diseases could be systematically
investigated at the level of chemical reactions. For example, the
anomalous rise of rho GTPase Rac1 activity inhibited cofilin
in mice with Fragile X syndrome because of a trinucleotide
expansion in the FMR1 gene on the X chromosome (Pyronneau
et al., 2017). In our model, the decrease in δH decreases the
concentration of the inhibitor (H), which results in dense
dendritic spines. In another study, the intrathecal administration
of latrunculin A, an actin-depolymerizing agent, in mice
resulted in a decrease in F-actin levels and symptoms of
Alzheimer’s disease. Conversely, the intrathecal administration of
jasplakinolide, a molecule that stabilizes F-actin, in mice restored
F-actin levels and improved symptoms (Kommaddi et al., 2018).
The effects of latrunculin A and jasplakinolide are similar to
those of exogenous inhibitors and exogenous activators in this
model, respectively. Exogenous activators promote the synthesis
of the cytoskeleton, while exogenous inhibitors promote the
decomposition of the cytoskeleton.

In conclusion, we were devoted to revealing the mechanism
of the development patterns of dendritic spines. The results
show that the consumption rate of substrate dominates the
shape, while the addition of exogenous activators and exogenous
inhibitors dominates the density. Our work provided a potential
explanation for the phenomenon that sparser spines in the
brains of SD rats with glioma and maybe also explain some
diseases reported in the literature, such as Fragile X syndrome
and Alzheimer’s disease. Our research provides novel and fresh
insight into the development patterns of dendritic spines, helping
search treatment methods for related diseases.
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Breast cancer (BC) is the primary threat to women’s health, and early diagnosis of breast
cancer is imperative. Although there are many ways to diagnose breast cancer, the gold
standard is still pathological examination. In this paper, a low dimensional three-channel
features based breast cancer histopathological images recognition method is proposed to
achieve fast and accurate breast cancer benign and malignant recognition. Three-channel
features of 10 descriptors were extracted, which are gray level co-occurrence matrix on
one direction (GLCM1), gray level co-occurrence matrix on four directions (GLCM4),
average pixel value of each channel (APVEC), Hu invariant moment (HIM), wavelet
features, Tamura, completed local binary pattern (CLBP), local binary pattern (LBP),
Gabor, histogram of oriented gradient (Hog), respectively. Then support vector machine
(SVM) was used to assess their performance. Experiments on BreaKHis dataset show
that GLCM1, GLCM4 and APVEC achieved the recognition accuracy of 90.2%-94.97% at
the image level and 89.18%-94.24% at the patient level, which is better than many state-
of-the-art methods, including many deep learning frameworks. The experimental results
show that the breast cancer recognition based on high dimensional features will increase
the recognition time, but the recognition accuracy is not greatly improved. Three-channel
features will enhance the recognizability of the image, so as to achieve higher recognition
accuracy than gray-level features.

Keywords: breast cancer, histopathological images recognition, feature extraction, low dimensional features,
three-channel features
INTRODUCTION

Cancer has become one of the major public health problems that seriously threaten the health of
people. The incidence and mortality of breast cancer have been rising continuously in recent years.
Early accurate diagnosis is the key to improve the survival rate of patients. Mammogram is the first
step of early diagnosis, but it is difficult to detect cancer in the dense breast of adolescent women,
and the X-ray radiation poses a threat to the health of patients and radiologists. Computed
tomography (CT) is a localized examination, which can not be used to judge that a patient is
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suffering from breast cancer according to the observed
abnormalities. The gold standard for breast cancer diagnosis is
still pathological examination. Pathological examinations usually
obtain tumor specimens through puncture, excision, etc. And
then stain them with hematoxylin and eosin (H&E) stains.
Hematoxylin binds deoxyribonucleic acid (DNA) to highlight
the nucleus, while eosin binds proteins and highlights other
structures. Accurate diagnosis of breast cancer requires
experienced histopathologists, and it requires a lot of time and
effort to complete this task. In addition, the diagnosis results of
different histopathologists are not the same, which strongly
depends on the prior knowledge of histopathologists. It
resulting in lower diagnosis consistency, and the average
diagnosis accuracy is only 75% (1).

Currently, breast cancer diagnosis based on histopathological
images is facing three major challenges. Firstly, there is a
shortage of experienced histopathologists around the world,
especially in some underdeveloped areas and small hospitals.
Secondly, the diagnosis of histopathologist is subjective and there
is no objective evaluation basis. Whether the diagnosis is correct
or not depends entirely on the histopathologists’ prior
knowledge. Thirdly, the diagnosis of breast cancer based on
histopathological images is very complicated, time-consuming
and labor-intensive, which is inefficient in the era of big data. In
face of these problems, an efficient and objective breast cancer
diagnosis method is urgently needed to alleviate the workload
of histopathologists.

With the rapid development of computer-aided diagnosis
(CAD), it has been gradually applied to the clinical field. The
CAD system cannot completely replace the doctor, but it can be
used as a “second reader” to assist doctors in diagnosing diseases.
However, there are many false positive areas detected by the
computer, which will take a lot of time of doctors to re-evaluate
the results prompted by the computer, resulting in a decrease in
the accuracy and efficiency. Therefore, how to improve the
sensitivity of computer-aided tumor detection method, while
greatly reducing the false positive detection rate, improve the
overall performance of the detection method is a subject to
be studied.

In recent years, machine learning has been successfully
applied to image recognition, object recognition, and text
classification. With the advancement of computer-aided
diagnosis technology, machine learning has also been
successfully applied to breast cancer diagnosis (2–8). There are
two common methods, histopathological images classification
based on artificial feature extraction and traditional machine
learning methods, and histopathological images classification
based on deep learning methods. Histopathological images
classification based on artificial feature extraction and
traditional machine learning methods needs manual design of
features, but it does not require equipment with high
performance and has advantages in computing time. However,
histopathological images classification based on deep learning,
especially convolutional neural network (CNN), often requires a
large number of labeled training samples, while the labeled data
is difficult to obtain. The labeling of lesions is a time-consuming
Frontiers in Oncology | www.frontiersin.org 2147
and laborious work, which takes a lot of time even for very
experienced histopathologists.

The key of traditional histopathological images classification is
feature extraction. The common features include color features,
morphological features, texture features, statistical features etc.
Spanhol et al. (9) introduced a publicly available breast cancer
histopathology dataset (BreaKHis), and they extracted LBP, CLBP,
gray level co-occurrence matrix (GLCM), Local phase quantization
(LPQ), parameter-free threshold adjacency statistics (PFTAS) and
one keypoint descriptor named ORB features, and 1-nearest
neighbor (1-NN), quadratic linear analysis (QDA), support vector
machines (SVMs), and random forests (RF) were used to assess the
aforementioned features, with an accuracy range from 80% to 85%.
Pendar et al. (10) introduced a representation learning-based
unsupervised domain adaptation on the basis of (9) and
compared it with the results of CNN. Anuranjeeta et al. (11)
proposed a breast cancer recognition method based on
morphological features. 16 morphological features were extracted,
and 8 classifiers were used for recognition, the accuracy is about
80%. The authors in (12–14) proposed breast cancer recognition
methods based on texture features. Particularly, Carvalho et al. (14)
used phylogenetic diversity indexes to characterize the types of
breast cancer. Sudharshan et al. (15) compared 12 multi-instance
learning methods based on PFTAS and verified that multi-instance
learning is more effective than single-instance learning. But none of
them considered the color channel of the image. Fang et al. (16)
proposed a framework called Local Receptive Field based Extreme
Learning Machine with Three Channels (3C-LRF-ELM), which can
automatically extract histopathological features to diagnose whether
there is inflammation. In addition, in order to reduce the
recognition time and the complexity of the algorithms, this paper
is committed to achieving high recognition accuracy with low
dimensional features.

Deep learning methods, especially CNN, can achieve more
accurate cancer recognition (17–25) for it’s ability to extract
powerful high-level features compared with traditional image
recognition methods. For example, Spanhol et al. (17) used the
existing AlexNet to test the BreaKHis dataset, and its recognition
accuracy was significantly higher than their previous work (9).
The authors in (18–21, 25) used different CNN frameworks and
obtained the recognition accuracy of more than 90% on the two-
class problem of the BreaKHis dataset. Benhammou et al. (22)
comprehensively surveyed the researches based on BreaKHis
datasets from the magnification-specific binary, magnification
independent binary, magnification specific multi-category and
magnification independent multi-category four aspects, and
proposed a magnification independent multi-category method
based on CNN, which is rarely considered in previous studies.
The works (23–26) also achieved good performance on the
Bioimaging 2015 dataset. Both the BreaKHis and Bioimaging
2015 are the challenging datases for breast cancer detection. Due
to the drawbacks of model training, most researchers’ research
were based on models that have been well trained through other
datasets and verified by histopathological images. Few people
trained a complete model with histopathological images for the
lack of labeled data.
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In order to reduce the workload of histopathologists and
allow them to spend more time on the diagnosis of more
complex diseases, efficient and fast computer-aided diagnosis
methods are of urgent need. This paper proposed a breast cancer
histopathological images recognition method based on low
dimensional three-channel features. The features of the three
channels of the image were extracted respectively, then the three-
channel features were fused to realize better breast cancer
histopathological images recognition for the image level and
the patient level. The framework is shown in Figure 1.

The contributions of this paper are as follows:

1) proposed a histopathological images recognition method
based on three-channel features,

2) proposed a histopathological images recognition method
based on low dimensional features,

3) it is a method with high accuracy and fast recognition speed,

4) it is a method easy to implement.

The rest of the paper is organized as follows: in Section 2 the
feature extraction methods are introduced, the experiments
Frontiers in Oncology | www.frontiersin.org 3148
and results analysis are given in Section 3, and Section 4
concludes the work.
FEATURE EXTRACTION

Gray Level Co-Occurrence Matrix
Gray level co-occurrence matrix is a commonmethod to describe
the texture of an image by studying its spatial correlation
characteristics. In 1973, Haralick et al. first used GLCM to
describe texture features (27). In our experiments, we
calculated the GLCM of 256 gray levels in one direction 0° and
four directions 0°, 45°, 90°, 135°, respectively. Then, according to
the GLCM, 22 related features were calculated: autocorrelation,
contrast, 2 correlation, cluster probability, cluster shade,
dissimilarity, energy, entropy, 2 homogeneity, maximum
probability, sum of squares, sum average, sum variance, sum
entropy, difference variance, difference entropy, 2 information
measures of correlation, inverse difference, inverse difference
moment (27–29).
FIGURE 1 | Proposed framework for histopathological image classification.
June 2021 | Volume 11 | Article 657560
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Average Pixel Value of Each Channel
The average value reflects the centralized tendency of the data
and is an important amplitude feature of images. For an image,
the average pixel value of each color channel is expressed as

fmean =
1

MN o
M

xc=1
o
N

yc=1
f (xc, yc), (1)

where f (xc, yc ) represents the pixel value of (xc, yc ).

Hu Invariant Moment
Geometric moments were proposed by Hu.M.K (30) in 1962.
They constructed seven invariant moments according to second-
order and third-order normalized central moments, and proved
that they are invariant to rotation, scaling and translation. Hu
invariant moment is a region-based image shape descriptor. In
the construction of Hu invariant moments, the central moment
is used to eliminate the influence of image translation, the
normalization eliminates the influence of image scaling, and
the polynomial is constructed to realize the invariant
characteristics of rotation. Different order moments reflect
different characteristics, the low order reflects the basic shape
of the target, and the high order reflects the details
and complexity.

Wavelet Features
The result of two-dimensional wavelet decomposition reflects the
frequency changes in different directions and the texture
characteristics of the image. Since the detail subgraph is the
high-frequency component of the original image and contains
the main texture information, the energy of the individual detail
subgraph is taken as the texture feature, which reflects the energy
distribution along the frequency axis with respect to the scale and
direction. In this paper, 5-layer wavelet decomposition was
carried out, and the energy of high-frequency components in
each layer was taken as the feature vector.

Tamura
Tamura et al. (31) proposed a texture feature description method
based on the psychological research of texture visual perception,
and defined six characteristics to describe texture. Namely,
coarseness, contrast, directionality, line likeness, regu larity,
and roughness. Coarseness reflects the change intensity of
image gray level. The larger the texture granularity is, the
coarser the texture image is. Contrast reflects the lightest and
darkest gray levels in a gray image, and the range of differences
determines the contrast. Directionality reflects the intensity of
image texture concentration along a certain direction. Lineality
reflects whether the image texture has a linear structure.
Regulation reflects the consistency of texture features between
a local region and the whole image. Roughness is the sum of
roughness and contrast.

Local Binary Pattern
Local Binary Pattern (32) is an operator used to describe local
texture features of an image. It has significant advantages such as
rotation invariance and gray level invariance. The original LBP
Frontiers in Oncology | www.frontiersin.org 4149
operator is defined as comparing the gray values of eight adjacent
pixels with the threshold value namely the center pixel in a 3×3
window. If the value of the adjacent pixel is greater than or equal
to the value of the center pixel, the position of the pixel is marked
as 1, otherwise it is 0. That is, for a pixel (xc, yc) on the image

LBPP,R (xc, yc) = o
P−1

p=0
s(gp − gc)2

p, s(x) =
1, x ≥ 0

0, x < 0

(
(2)

Where P is the number of sampling points in the
neighborhood of the center pixel, R is the radius of
the neighborhood, gc is the gray value of the center pixel; gp is
the gray value of the pixel adjacent to the center pixel.

In this way, 8 points in the neighborhood can be compared to
generate a total of 256 8-bit binary numbers, that is, the LBP
value of the center pixel of the 3×3 window is obtained, and this
value is used to reflect the texture information of the region.

Completed Local Binary Pattern
Completed local binary pattern (33) is a variant of LBP. The local
area of the CLBP operator is represented by its center pixel and
local differential sign magnitude transformation. After the center
pixel is globally thresholded, it is coded with a binary string as
CLBP_Center (CLBP_C). At the same time, the local difference
sign magnitude transformation is decomposed into two
complementary structural components: difference sign CLBP-
Sign (CLBP_S) and difference magnitude CLBP-Magnitude
(CLBP_M). For a certain pixel (xc, yc) on the image, the
components are expressed as:

CLBP _CP,R(xc, yc) = s(gc − gN)

CLBP _ SP,R(xc, yc) = o
P−1

p=0
s(gp − gc)2

p  s(x) =
1, x ≥ 0

0, x < 0

(

CLBP _MP,R xc, ycð Þ = o
P−1

p=0
s(Dp − Dc)2

p

:

8>>>>>>><
>>>>>>>:

(3)

Where, N is the number of windows, gN = 1
N o

N−1

n=0
gnrepresents

the mean gray value about gc when the center point is constantly

moving, andDp = jgp − gcj,Dc =
1
P o
P−1

p=0
jgp − gcjrepresents the mean

magnitude. CLBP_SP,R (xc, yc) is equivalent to the traditional LBP
operator, which describes the difference sign characteristics of
the local window. CLBP_MP,R (xc, yc) describes the difference
magnitude characteristics of the local window. CLBP_CP,R (xc, yc)
is the gray level information reflected by the pixel at the center. In
our experiments, we worked with rotation-invariant uniform
patterns, with a standard value of P = 8, R = 1, yielding a 20-D
feature vector for each channel.

Gabor
Gabor feature is a kind of feature that can be used to describe the
texture information of image. The frequency and direction of
Gabor filter are similar to human visual system, and it
is particularly suitable for texture representation and
June 2021 | Volume 11 | Article 657560
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discrimination. Gabor features mainly rely on Gabor kernel to
window the signal in frequency domain, so as to describe the
local frequency information of the signal. Different textures
generally have different center frequencies and bandwidths.
According to these frequencies and bandwidths, a set of Gabor
filters can be designed to filter texture images. Each Gabor filter
only allows the texture corresponding to its frequency to pass
smoothly, while the energy of other textures is suppressed.
Texture features are analyzed and extracted from the output
results of each filter for subsequent classification tasks. we used
the Gabor filters with five scales and eight orientations, the size of
the filter bank is 39×39, the block size is 46×70, yielding a 4000-D
feature vector for each channel.

Histogram of Oriented Gradient
Histogram of Oriented Gradient (34) is a feature descriptor used
for object detection in computer vision and image processing. It
constructs features by calculating and counting the histogram of
the gradient direction in the local area of the image. The use of
gradient information can well reflect the edge information of the
target, the local appearance and shape of the image can be
characterized by the size of the local gradient. It is generally
used in pedestrian detection, face recognition and other fields,
but it does not perform well on images with complex texture
information. It is introduced as a comparison in this paper.
EXPERIMENTS AND RESULTS

Dataset
The BreaKHis dataset (9) contains biopsy images of benign and
malignant breast tumors, which were collected through clinical
studies from January 2014 to December 2014. During the period,
all patients with clinical symptoms of BC were invited to the
Frontiers in Oncology | www.frontiersin.org 5150
Brazilian P&D laboratory to participate in the study. Samples
were collected by surgical open biopsy (SOB) and stained with
hematoxylin and eosin. Hematoxylin is alkaline, mainly making
the chromatin in the nucleus and nucleic acid in the cytoplasm
stained blue-purple. eosin is acidic, mainly making the
components in the cytoplasm and extracellular matrix stained
pink. These images can be used for histological studies and
marked by pathologists in the P&D laboratory. The BreaKHis
dataset consists of 7909 breast tumor tissue microscopic images
of 82 patients, divided into benign and malignant tumors,
including 2480 benign (24 patients) and 5429 malignant (58
patients). The image is obtained in a three-channel RGB (red-
green-blue) true color space with magnification factors of 40X,
100X, 200X, 400X, and the size of each image is 700×460.
Tables 1 and 2 summarize the image distribution. And Figure 2
shows the representative examples of BreaKHis dataset.

Protocol
All of the experiments were conducted on a platform with an
Intel Core i7-5820K CPU and 16G memory. The BreaKHis
dataset has been randomly divided into a training set (70%, 56
patients) and a testing set (30%, 26 patients). We guarantee that
patients use to build the training set are not used for the testing
set. The results presented in this work are the average of
five trials.

All the images we used were without any preprocessing before
feature extraction. For the SVM, we chose the RBF kernel. The
best penalty factor c=2 and kernel function parameter g=1 were
obtained by cross validation. For wavelet function, we selected
coif5 wavelet function, which has better symmetry than dbN, has
the same support length as db3N and sym3N, and has the same
number of vanishing moments as db2N and sym2N.

Here, we report the recognition accuracy at both the image
level and the patient level. For the image level, let Nrec_I be the
TABLE 2 | Image distribution by magnification factor and subclass.

Class Sub-class Magnification

40X 100X 200X 400X

Benign Adenosis (A) 114 113 111 106
Fibroadenoma(F) 253 260 264 237
Phyllodes_tumor(PT) 109 121 108 115
Tubular_adenoma(TA) 149 150 140 130

Malignant Ductal_carcinoma(DC) 864 903 896 788
Lobular_carcinoma(LC) 156 170 163 137
Mucinous_carcinoma(MC) 205 222 196 169
Papillary_carcinoma(PC) 145 142 135 138
June 20
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TABLE 1 | Image distribution by magnification factor and class.

Magnification Benign Malignant Total

40X 625 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total 2480 5429 7909
Patients 24 58 82
7560
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number of images correctly classified, N represents all the test
samples, then the recognition accuracy of the image level can be
defined as

Image _ accuracy =
Nrec _ I

N
: (4)

For the patient level, we followed the definition of (9). Let NP

be the image of patient P, S is the total number of patients, and
Nrec_P images of patient P were correctly classified, then the
patient score can be defined as

Patient score =
Nrec _P

NP
, (5)

and define the recognition accuracy of the patient level as

Patient _ accuracy = oPatient score

S
: (6)

To further assess the performance of the proposed
framework, sensitivity (Se), precision (Pr) and F1-score metrics
were used and the formulations of the metrics are described as

Se =
TP

TP + FN
, (7)

Pr =
TP

TP + FP
, (8)

F1� score =
2� TP

2� TP + FP + FN
, (9)

where true positive (TP) represents the number of malignant
samples classified as malignant, whereas true negative (TN)
represents the number of benign samples classified as benign.
Also, false positive (FP) represents the number of benign samples
Frontiers in Oncology | www.frontiersin.org 6151
incorrectly classified as malignant while false negative (FN)
represents the number of malignant samples misclassified
as benign.

Experiment Results
Table 3 reports the performance of all descriptors we have
assessed. The image level recognition accuracy, the patient
level recognition accuracy, sensitivity, precision and F1-score
of 10 different three-channel descriptors under 4 magnifications
were compared. The descriptors are GLCM1, GLCM4, APVEC,
HIM, wavelet feature, Tamura, CLBP. In order to show the
effectiveness of low dimensional features, LBP, Gabor, and Hog
were introduced for comparison.

For images at 40X magnification, GLCM1 achieved the
highest recognition accuracy of 94.12 ± 2.19% at the image
level and 93.48 ± 2.7% at the patient level, as well as the highest
precision and F1_score. The second was GLCM4 with which the
image_accuracy and the patient_accuracy were 93.4 ± 3.54% and
92.95 ± 4.02, respectively. Followed by APVEC achieving the
image_accuracy of 92.12 ± 1.09%, and the patient_accuracy of
90.55 ± 0.84%. The same conclusion was drawn for 100X. The
image level recognition accuracy and the patient level recognition
accuracy of GLCM1, GLCM4, and APVEC were 92.65 ± 3.08%,
91.74 ± 3.89%, 91.98 ± 3.79%, 91.16 ± 3.88%, 90.2 ± 2.33%, 89.18 ±
3.45%, respectively. However, for 200X, APVEC achieved the
highest image level recognition accuracy of 94.97 ± 1.35%,
followed by GLCM1 and GLCM4. GLCM1 performed best at the
patient level with an accuracy of 94.24 ± 2.86%, which is 0.3%
higher than APVEC. As for 400X, APVEC performed best at both
the image level (92.78 ± 3.14%) and the patient level (93.3 ± 3.25%)
followed by GLCM1 and GLCM4. On the whole, GLCM1, GLCM4
and APVEC performed well at both the image level and the patient
level, followed by HIM. The four descriptors all get the highest
recognition accuracy at 200X, and all descriptors except Gabor and
FIGURE 2 | Representative examples of BreaKHis dataset.
June 2021 | Volume 11 | Article 657560
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Hog obtain the worst performance at 400X, which is same as the
conclusion of (18, 35). Although the recognition accuracy of LBP
and Gabor is above 82%, which is also acceptable, it also needs more
recognition time due to the high feature dimension, as shown in
Table 4. Tamura and Hog performed slightly worse compared to
other descriptors.
Frontiers in Oncology | www.frontiersin.org 7152
The reason for the above results is that the distributions of
features extracted by different feature descriptors are different.
The high dispersion of feature distribution will increase the
difficulty of image recognition, and the feature with more
concentrated distribution will achieve better recognition
performance. Figure 3 is the best illustration of the results.
TABLE 4 | Running time for feature extraction of each image and classification of different descriptors.

Methods Feature dimensions Running time for feature extraction of each image (s) Running time for classification (s)

GLCM1 22×3-D 0.26 0.30
GLCM4 88×3-D 0.05 1.34
APVEC 1×3-D 10.29 0.05
HIM 7×3-D 0.19 0.12
Wavelet 5×3-D 0.41 0.10
Tamura 6×3-D 59.17 0.55
CLBP 20×3-D 0.61 0.19
LBP 256×3-D 0.47 3.09
Gabor 4000×3-D 12.48 66.80
Hog 288×3-D 0.21 4.10
Jun
TABLE 3 | Classification performance of different descriptors based on three-channel features.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1 40X 94.12 ± 2.19 93.48 ± 2.70 94.99 ± 1.53 97.01 ± 2.31 95.98 ± 1.73
100X 92.65 ± 3.08 91.74 ± 3.89 95.61 ± 4.81 94.53 ± 1.56 95.01 ± 2.47
200X 94.67 ± 2.02 94.24 ± 2.86 97.17 ± 3.49 95.81 ± 2.01 96.44 ± 1.54
400X 90.98 ± 2.17 91.43 ± 2.19 91.80 ± 4.09 95.76 ± 3.01 93.66 ± 1.81

GLCM4 40X 93.42 ± 3.54 92.95 ± 4.02 94.72 ± 3.94 96.26 ± 2.22 95.46 ± 2.83
100X 91.98 ± 3.79 91.16 ± 3.88 96.57 ± 3.62 92.85 ± 2.76 94.65 ± 2.86
200X 93.53 ± 3.50 92.81 ± 4.72 96.14 ± 3.98 95.36 ± 2.75 95.70 ± 2.37
400X 90.65 ± 2.93 90.76 ± 3.28 93.54 ± 3.49 93.72 ± 3.76 93.56 ± 2.20

APVEC 40X 92.12 ± 1.09 90.55 ± 0.84 94.67 ± 2.04 94.83 ± 1.31 94.72 ± 0.66
100X 90.20 ± 2.33 89.18 ± 3.45 94.05 ± 2.36 93.16 ± 4.15 93.52 ± 1.40
200X 94.97 ± 1.35 94.21 ± 2.37 98.30 ± 0.73 95.21 ± 1.79 96.72 ± 0.84
400X 92.78 ± 3.14 93.30 ± 3.25 94.07 ± 4.91 96.04 ± 2.54 94.96 ± 2.35

HIM 40X 89.21 ± 1.59 86.44 ± 3.46 93.96 ± 2.36 91.81 ± 2.46 92.85 ± 2.31
100X 88.99 ± 2.45 87.67 ± 3.14 94.17 ± 3.38 91.62 ± 3.84 92.78 ± 1.48
200X 92.93 ± 1.89 92.19 ± 2.87 95.06 ± 2.28 95.59 ± 1.60 95.30 ± 1.20
400X 88.64 ± 3.97 88.61 ± 4.94 91.77 ± 6.21 92.73 ± 2.11 92.14 ± 3.03

Wavelet 40X 80.98 ± 4.23 80.03 ± 7.16 97.66 ± 4.23 80.78 ± 8.00 88.38 ± 4.81
100X 80.36 ± 3.66 80.24 ± 1.03 97.02 ± 4.62 80.82 ± 4.39 88.04 ± 2.53
200X 78.99 ± 4.47 76.50 ± 3.33 97.37 ± 3.63 79.46 ± 4.22 87.43 ± 2.86
400X 76.08 ± 2.22 76.79 ± 1.45 89.65 ± 4.31 80.27 ± 3.99 84.56 ± 1.74

Tamura 40X 78.91 ± 3.30 78.62 ± 1.27 97.23 ± 3.93 79.30 ± 6.16 87.31 ± 2.17
100X 78.68 ± 4.03 78.09 ± 1.17 99.27 ± 0.43 78.18 ± 4.08 87.43 ± 2.66
200X 77.37 ± 1.89 76.00 ± 2.09 94.43 ± 3.02 79.41 ± 2.38 86.23 ± 1.59
400X 75.88 ± 2.86 75.66 ± 1.72 94.04 ± 2.18 77.68 ± 2.64 85.06 ± 2.18

LBP 40X 84.38 ± 2.32 86.51 ± 2.43 93.23 ± 2.92 87.07 ± 3.48 89.87 ± 2.37
100X 83.91 ± 4.84 85.20 ± 3.78 95.95 ± 2.63 84.66 ± 5.15 89.89 ± 3.33
200X 83.26 ± 4.04 84.05 ± 3.27 92.24 ± 4.23 86.39 ± 4.03 89.15 ± 3.13
400X 82.35 ± 5.56 82.76 ± 4.84 91.64 ± 4.12 85.57 ± 6.45 88.35 ± 3.81

CLBP 40X 82.63 ± 3.54 83.18 ± 3.68 93.29 ± 3.77 85.03 ± 6.84 88.89 ± 2.95
100X 82.64 ± 4.69 84.31 ± 3.66 95.46 ± 3.93 83.83 ± 5.31 89.14 ± 3.10
200X 78.72 ± 2.61 78.20 ± 2.36 95.65 ± 4.81 80.13 ± 3.58 87.08 ± 1.91
400X 75.26 ± 4.01 75.97 ± 2.28 94.39 ± 5.78 77.40 ± 5.36 84.81 ± 2.42

Gabor 40X 86.11 ± 4.46 84.87 ± 4.85 97.00 ± 1.34 86.45 ± 6.92 91.29 ± 3.20
100X 89.98 ± 2.15 89.79 ± 2.74 93.45 ± 2.87 93.37 ± 3.78 93.33 ± 1.39
200X 91.04 ± 2.66 89.65 ± 3.97 97.14 ± 1.86 91.58 ± 3.78 94.23 ± 1.72
400X 88.94 ± 2.87 87.84 ± 2.69 96.96 ± 1.74 88.94 ± 3.07 92.75 ± 1.99

Hog 40X 76.59 ± 4.42 76.82 ± 7.21 95.42 ± 2.97 78.68 ± 10.21 85.94 ± 4.74
100X 76.06 ± 4.00 75.54 ± 2.64 95.13 ± 5.36 78.21 ± 5.80 85.59 ± 2.50
200X 76.83 ± 3.35 76.28 ± 2.18 93.32 ± 3.38 79.60 ± 4.38 85.81 ± 2.30
400X 77.88 ± 3.23 78.20 ± 1.72 89.69 ± 4.25 82.28 ± 5.96 85.59 ± 1.94
e 2021 | Volume 11 |
The bold values indicate the best value of each metric.
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FIGURE 3 | Visualization of feature distribution. (A) Feature distribution of 40X, 100X, 200X, (B) feature distribution of 400X.
Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 6575608153

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hao et al. Breast Cancer Histopathological Image Recognition
Figure 3 is the visualization of feature distribution. The
ordinate represents the feature values. Since the feature values
of 40X, 100X, and 200X are relatively small, while the feature
values of 400X are relatively large, the feature distribution cannot
be displayed in the same figure at the same time. Here are two
figures showing the data distribution, Figure 3(A) shows the
feature distribution of 40X, 100X, 200X, and Figure 3(B) shows
the feature distribution of 400X. It can be seen from Figure 3 that
for 40X, 100X, 200X, the outliers of GLCM1, GLCM4, APVEC,
and HIM are much less than other feature descriptors, indicating
that the distributions of these four features are relatively
concentrated, which is beneficial for breast cancer
identification. In addition, comparing the feature distributions
of benign and malignant samples under different magnifications,
it can be found that the data distribution of benign and
malignant samples of Hog are very similar, indicating the weak
ability to discriminate between benign and malignant, which is
also the reason for its poor performance. The outliers of GLCM1
Frontiers in Oncology | www.frontiersin.org 9154
and GLCM4 under 400X are obviously more compared to other
magnifications, and the similarity of the benign and malignant
feature distributions of all descriptors is relatively high, resulting
in the poor performance of 400X.

Compared with RGB images, grayscale images only retain the
brightness information of the images, but lose the chroma and
saturation information of the images. Three-channel features can
make up for the lost information of single-channel features,
increasing the recognition capability of features, so as to achieve
better recognition performance. To further illustrate the
advantages of three-channel features, Table 5 shows the
performance of different descriptors of gray-level features.

Comparing Table 3 and Table 5, it can be seen that the
performance of the three-channel features is much better than
that of gray-level features, especially GLCM1, GLCM4, APVEC,
HIM and Gabor. The accuracy for most of them has increased by
more than 10% for both the image level and the patient level.
Figure 4 shows the average recognition accuracy of three-
TABLE 5 | Classification performance of different gray-level features.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1 40X 82.88 ± 5.27 83.48 ± 3.65 97.39 ± 4.75 83.08 ± 6.41 89.47 ± 2.98
100X 83.71 ± 4.66 85.07 ± 2.69 99.45 ± 0.69 82.53 ± 4.93 90.12 ± 2.87
200X 77.56 ± 4.64 76.44 ± 4.02 99.31 ± 0.83 77.44 ± 4.35 86.95 ± 2.54
400X 78.51 ± 6.32 80.02 ± 4.46 96.45 ± 2.45 79.42 ± 5.33 86.86 ± 3.22

GLCM4 40X 82.06 ± 4.14 82.71 ± 4.75 98.61 ± 0.94 81.48 ± 3.75 89.14 ± 2.20
100X 82.78 ± 4.69 83.58 ± 3.50 99.66 ± 1.17 81.56 ± 4.02 89.64 ± 2.42
200X 77.38 ± 5.02 76.35 ± 3.46 99.18 ± 1.12 77.38 ± 3.95 86.85 ± 2.30
400X 80.93 ± 6.43 82.37 ± 6.44 93.09 ± 3.70 83.28 ± 4.88 87.75 ± 3.46

APVEC 40X 74.83 ± 3.31 73.06 ± 4.12 99.86 ± 0.30 74.88 ± 5.58 85.56 ± 3.51
100X 75.41 ± 3.78 73.73 ± 3.22 99.5 ± 0.66 75.51 ± 5.37 85.81 ± 3.33
200X 75.39 ± 3.11 73.27 ± 0.49 99.86 ± 0.98 75.42 ± 3.51 85.91 ± 2.04
400X 75.17 ± 3.62 75.58 ± 2.52 99.16 ± 1.43 75.06 ± 4.69 85.40 ± 2.60

HIM 40X 74.89 ± 3.27 73.17 ± 2.05 100.00 ± 1.83 74.88 ± 5.01 85.60 ± 2.54
100X 76.06 ± 4.60 74.70 ± 2.91 99.06 ± 1.19 76.31 ± 5.51 86.11 ± 3.10
200X 75.36 ± 3.08 73.27 ± 0.33 99.54 ± 0.94 75.51 ± 2.95 85.85 ± 2.03
400X 73.97 ± 3.31 74.03 ± 1.41 99.48 ± 1.63 74.00 ± 4.42 84.83 ± 2.36

Wavelet 40X 81.47 ± 4.95 81.38 ± 1.56 99.41 ± 0.74 80.50 ± 3.77 88.90 ± 2.58
100X 80.54 ± 3.78 80.51 ± 1.16 99.80 ± 0.16 79.50 ± 3.66 88.45 ± 2.27
200X 77.50 ± 4.04 76.55 ± 0.73 99.09 ± 2.14 77.41 ± 4.10 86.87 ± 1.90
400X 74.82 ± 3.87 74.77 ± 2.90 98.15 ± 1.54 75.15 ± 5.11 85.08 ± 2.90

Tamura 40X 78.55 ± 4.12 77.83 ± 1.05 99.08 ± 1.75 78.16 ± 3.94 87.33 ± 2.17
100X 79.45 ± 4.07 79.16 ± 1.61 99.27 ± 1.28 78.85 ± 4.40 87.83 ± 2.41
200X 76.54 ± 2.14 75.33 ± 2.56 98.60 ± 1.59 76.81 ± 2.50 86.33 ± 1.53
400X 73.30 ± 2.98 73.08 ± 2.16 100.00 ± 0.64 73.30 ± 4.24 84.57 ± 2.58

LBP 40X 84.97 ± 3.54 87.04 ± 3.96 94.61 ± 4.40 86.51 ± 1.54 90.31 ± 2.79
100X 84.31 ± 4.98 86.05 ± 3.24 97.31 ± 1.54 84.31 ± 4.31 90.25 ± 3.03
200X 83.12 ± 4.99 84.17 ± 5.72 92.48 ± 4.47 86.04 ± 2.53 89.09 ± 3.39
400X 80.05 ± 5.54 80.72 ± 4.94 91.65 ± 4.58 82.93 ± 4.95 86.99 ± 3.97

CLBP 40X 83.19 ± 5.15 84.63 ± 3.17 96.40 ± 1.73 83.89 ± 6.26 89.57 ± 3.07
100X 84.06 ± 4.80 86.12 ± 2.23 97.77 ± 2.25 83.89 ± 6.08 90.17 ± 3.01
200X 78.56 ± 3.55 78.58 ± 3.30 96.38 ± 3.92 79.75 ± 8.05 87.12 ± 3.13
400X 74.79 ± 3.80 74.94 ± 4.33 97.74 ± 4.66 75.19 ± 8.13 84.98 ± 3.59

Gabor 40X 80.06 ± 4.64 79.84 ± 2.61 98.03 ± 2.59 79.96 ± 5.82 88.01 ± 2.55
100X 81.25 ± 4.89 81.57 ± 2.57 98.91 ± 1.94 80.6 ± 5.84 88.75 ± 3.01
200X 76.94 ± 2.88 75.43 ± 1.90 98.17 ± 1.71 77.36 ± 4.68 86.49 ± 2.23
400X 77.40 ± 4.68 78.70 ± 3.54 92.37 ± 2.37 80.19 ± 7.64 85.71 ± 3.28

Hog 40X 76.46 ± 4.03 76.30 ± 2.29 97.50 ± 1.98 77.18 ± 4.00 86.09 ± 2.31
100X 75.80 ± 3.51 74.31 ± 1.73 97.63 ± 2.91 76.56 ± 3.87 85.76 ± 2.27
200X 76.22 ± 2.59 74.74 ± 1.60 97.78 ± 1.86 76.85 ± 2.43 86.05 ± 1.81
400X 76.02 ± 3.23 75.84 ± 1.84 91.15 ± 4.68 79.30 ± 4.34 84.70 ± 2.76
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channel features and gray-level features for the image level and
the patient level. The advantages of the three-channel features
can be seen more clearly from Figure 4.

Although the advantages of the three-channel features are
obvious, we still have no idea about which channel plays a more
important role in the classification results. Table 6 shows the
classification performance of single-channel features under
Frontiers in Oncology | www.frontiersin.org 10155
different magnifications. Observing the experimental results,
we can find that R channel have a greater impact on the
classification results under 40X, 100X, 200X magnifications,
while B channel performs better under 400X. This is consistent
with the actual situation of H&E histopathological images under
different magnifications. The images of 40X, 100X, and 200X
have more cytoplasm and appear pink. The image of 400X
A

B

FIGURE 4 | Classification accuracy for different features. (A) Image_accuracy for three-channel features and gray-level features, (B) patient_accuracy for three-
channel features and gray-level feature\s.
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contains more information about the precise lesion locations,
which is usually presented through the nucleus, and appear
blue-purple.

Different descriptors extract different features. It often cannot
obtain all the effective information of the image only by one
method. There may be a complementary relationship between
different methods, and sometimes more redundant information
may be added. In this paper, GLCM1 with the best recognition
Frontiers in Oncology | www.frontiersin.org 11156
performance is combined with 8 other methods except GLCM4.
Different features are fused in a cascade way. The results are
shown in Table 7.

Table 7 shows that after the combination of GLCM1 and
APVEC, the recognition accuracy of 40X and 100X is better than
a single method whether it is for the image level or the patient
level, and the accuracy of 200X and 400X is slightly lower than
that of APVEC. The combination of GLCM1 and HIM improves
TABLE 6 | Classification performance of single-channel features under different magnifications.

Features 40X

R G B

Image_accuracy (%) Patient_accuracy (%) Image_accuracy (%) Patient_accuracy (%) Image_accuracy (%) Patient_accuracy (%)

GLCM1 89.03 ± 2.28 87.46 ± 2.23 82.25 ± 4.51 82.03 ± 2.30 83.62 ± 3.07 82.84 ± 2.12
GLCM4 88.47 ± 1.99 86.06 ± 1.58 81.53 ± 4.12 82.05 ± 2.68 83.58 ± 3.62 82.00 ± 3.23
APVEC 83.43 ± 1.51 79.73 ± 1.30 77.00 ± 3.95 77.39 ± 2.60 74.97 ± 3.32 73.18 ± 0.23
HIM 81.08 ± 1.03 77.26 ± 0.86 77.30 ± 4.28 77.81 ± 2.54 74.83 ± 3.31 73.08 ± 0.00
Wavelet 80.74 ± 4.69 80.24 ± 2.28 81.35 ± 5.17 81.21 ± 3.16 81.28 ± 5.12 80.97 ± 2.89
Tamura 76.90 ± 3.50 75.57 ± 0.64 79.32 ± 4.22 78.84 ± 1.85 77.17 ± 3.06 75.97 ± 0.77
LBP 84.70 ± 3.75 86.65 ± 3.63 84.11 ± 3.52 85.53 ± 2.93 84.64 ± 3.01 86.35 ± 2.02
CLBP 82.64 ± 4.17 83.29 ± 2.78 83.79 ± 3.75 84.90 ± 2.81 83.36 ± 4.40 84.18 ± 3.11
Gabor 83.46 ± 4.47 82.09 ± 3.56 78.63 ± 3.25 78.31 ± 3.32 80.60 ± 4.86 80.12 ± 2.49
Hog 76.59 ± 4.22 76.09 ± 3.13 76.38 ± 3.95 75.77 ± 1.91 76.07 ± 3.79 75.33 ± 2.18
Features 100X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 90.32 ± 1.59 88.52 ± 1.87 84.00 ± 4.99 84.95 ± 4.6 87.43 ± 1.10 85.00 ± 1.05
GLCM4 88.94 ± 1.46 86.83 ± 2.17 83.17 ± 4.99 84.62 ± 3.67 87.14 ± 1.54 85.58 ± 1.03
APVEC 77.70 ± 4.37 74.96 ± 2.26 78.29 ± 5.93 78.91 ± 4.77 75.00 ± 3.74 73.08 ± 0.00
HIM 78.83 ± 2.58 75.92 ± 1.32 78.32 ± 4.74 77.11 ± 3.99 76.17 ± 2.90 73.70 ± 0.44
Wavelet 79.94 ± 3.77 79.73 ± 1.38 81.00 ± 3.84 81.08 ± 1.01 79.46 ± 4.64 79.13 ± 2.12
Tamura 78.01 ± 3.83 77.31 ± 1.67 79.91 ± 4.28 79.69 ± 1.72 78.83 ± 4.26 78.41 ± 1.99
LBP 84.48 ± 4.98 85.68 ± 3.83 84.61 ± 5.02 86.51 ± 3.21 83.25 ± 4.49 84.54 ± 2.32
CLBP 81.75 ± 4.38 82.78 ± 3.12 81.41 ± 4.13 83.49 ± 1.73 81.83 ± 3.58 82.66 ± 1.55
Gabor 88.42 ± 2.99 87.27 ± 2.69 82.25 ± 5.07 83.63 ± 3.32 83.45 ± 3.64 83.31 ± 1.63
Hog 76.04 ± 3.86 74.73 ± 1.97 75.76 ± 4.05 74.40 ± 0.65 75.67 ± 3.93 74.34 ± 1.15
Features 200X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 91.31 ± 3.14 90.11 ± 3.82 79.05 ± 3.82 77.86 ± 2.81 88.62 ± 3.76 86.74 ± 5.37
GLCM4 90.45 ± 2.90 89.35 ± 3.65 78.18 ± 3.86 78.42 ± 3.27 88.77 ± 3.30 86.91 ± 4.72
APVEC 83.95 ± 0.97 81.71 ± 2.93 79.40 ± 5.22 79.00 ± 4.83 76.46 ± 1.57 73.89 ± 1.12
HIM 83.89 ± 1.56 81.72 ± 2.61 78.46 ± 5.16 77.63 ± 4.28 79.09 ± 2.46 77.02 ± 1.37
Wavelet 77.67 ± 4.12 76.68 ± 2.27 77.69 ± 3.76 76.58 ± 2.48 76.59 ± 3.99 75.16 ± 2.18
Tamura 75.98 ± 2.10 74.17 ± 2.44 76.48 ± 1.77 74.84 ± 2.52 76.01 ± 2.08 74.05 ± 2.18
LBP 83.21 ± 4.75 84.35 ± 3.95 82.66 ± 4.97 83.36 ± 4.19 82.48 ± 4.07 82.87 ± 3.39
CLBP 79.21 ± 3.43 79.24 ± 2.83 77.08 ± 3.15 75.97 ± 2.15 77.59 ± 3.37 77.19 ± 1.29
Gabor 88.38 ± 1.91 86.82 ± 2.72 78.46 ± 4.83 77.66 ± 3.66 84.03 ± 1.9 80.46 ± 2.54
Hog 75.75 ± 2.97 74.3 ± 1.25 76.39 ± 2.55 74.99 ± 1.12 75.99 ± 2.91 74.16 ± 1.06
Features 400X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 83.48 ± 1.11 81.67 ± 1.35 80.22 ± 5.84 81.96 ± 5.05 83.09 ± 2.20 82.28 ± 3.23
GLCM4 83.14 ± 1.11 81.24 ± 1.55 82.25 ± 5.36 83.43 ± 5.00 84.51 ± 2.73 83.75 ± 3.71
APVEC 73.34 ± 2.99 73.10 ± 0.05 79.31 ± 6.57 80.75 ± 5.89 73.37 ± 2.85 73.03 ± 0.11
HIM 74.27 ± 3.01 74.07 ± 1.10 78.08 ± 5.87 79.33 ± 5.53 76.01 ± 1.36 74.51 ± 2.39
Wavelet 75.47 ± 3.87 75.80 ± 2.41 75.18 ± 3.90 75.20 ± 2.50 75.54 ± 4.67 75.83 ± 3.40
Tamura 73.34 ± 2.99 73.10 ± 0.05 73.47 ± 2.76 73.25 ± 0.29 75.37 ± 4.01 75.92 ± 2.36
LBP 80.81 ± 5.01 81.87 ± 3.61 80.78 ± 5.77 82.31 ± 3.97 82.3 ± 6.32 83.35 ± 5.19
CLBP 74.88 ± 3.31 75.00 ± 1.70 74.07 ± 3.55 74.40 ± 1.21 74.63 ± 3.50 75.11 ± 1.60
Gabor 78.71 ± 3.73 76.82 ± 4.35 80.12 ± 5.34 81.46 ± 4.02 79.27 ± 2.88 77.86 ± 2.79
Hog 75.41 ± 3.02 74.66 ± 0.76 76.75 ± 3.68 76.91 ± 1.54 77.03 ± 3.31 76.62 ± 1.83
June 2021 | Volu
me 11 | Article 657560

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hao et al. Breast Cancer Histopathological Image Recognition
the image level accuracy, while for the patient level, the accuracy
of 40X and 100X is slightly lower than GLCM1. This shows the
complementary relationship between GLCM1 and APVEC,
HIM. The performance of the combination of GLCM1 and
other methods is lower than that of single GLCM1, which
shows that the fusion of different texture features increases the
redundancy of features and reduces the recognizability.

The recognition accuracy of GLCM1, GLCM4, APVEC, and
HIM based on the three-channel features is better than many
existing studies, particularly, better than the performance of
some deep learning models. Table 8 shows that the method
proposed in this paper is superior to many state-of-the-art
methods in benign and malignant tumor recognition, both for
the image level and the patient level. It is worth mentioning that
works (35–43) did not split training and test set according to the
protocol of (9), works (44, 45) adopted the existed protocol, and
works (46, 47) randomly divided training set (70%) and test set
(30%), but they did not mention whether it was the same as the
protocol. Although the recognition accuracy of the works (37, 39,
41–43, 46, 47) is significantly higher than that of our method,
they all use deep learning model, which requires a large number
of labeled training samples and consumes longer training time.
In addition, in these works, except (42), they only calculated the
image level recognition accuracy. George et al. even only tested
their method based on the data of 200X.
Frontiers in Oncology | www.frontiersin.org 12157
CONCLUSION

In this paper, a breast cancer histopathological images recognition
method based on low dimensional three-channel features is
proposed. There have been many related studies, but in traditional
methods, most scholars did not consider the color channel of the
image, so that the extracted features lost part of the effective
information. This paper compares the performance of 10 different
feature descriptors in the recognition of breast cancer
histopathological images. We extracted the three-channel features
of different descriptors and fused the features of each channel. Then
SVMwas used to assess their performance. The experimental results
show that the recognition accuracy of GLCM1, GLCM4, APVEC
can reachmore than 90% regardless of the image level or the patient
level. And the performance based on three-channel features is much
better than that of gray-level features, especially for GLCM1,
GLCM4. We also proved that the R channel has a greater impact
on the classification results of 40X, 100X, and 200X,while for 400X, it
is more dependent on the B channel. In addition, high dimensional
features consume more recognition time, this paper dedicates to
achieving accurate recognition based on low dimensional features.
Experiment results verify that the high dimensional features
extracted by LBP, Hog, and Gabor require more recognition time,
but the accuracy has not been greatly improved.Ourmethod is based
on the existing traditionalmethods and is easy to implementwithout
TABLE 7 | Classification performance of GLCM1 combined with other descriptors.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1+APVEC 40X 94.22 ± 2.18 93.70 ± 2.68 95.77 ± 2.19 96.39 ± 1.57 96.07 ± 1.77
100X 92.78 ± 2.88 91.80 ± 3.67 95.47 ± 4.45 94.83 ± 1.84 95.09 ± 2.29
200X 94.77 ± 2.18 94.33 ± 2.99 97.23 ± 3.64 95.89 ± 2.13 96.50 ± 1.65
400X 91.20 ± 2.17 91.59 ± 1.94 91.82 ± 3.90 96.03 ± 2.9 93.80 ± 1.80

GLCM1+ HIM 40X 94.13 ± 1.85 93.15 ± 2.52 95.26 ± 2.24 96.75 ± 1.33 95.99 ± 1.56
100X 92.69 ± 2.71 91.17 ± 3.58 95.46 ± 4.74 94.75 ± 1.71 95.03 ± 2.22
200X 94.88 ± 2.39 94.30 ± 3.17 96.98 ± 4.00 96.29 ± 2.47 96.56 ± 1.76
400X 91.19 ± 2.73 91.54 ± 2.26 91.55 ± 4.75 96.26 ± 2.44 93.76 ± 2.27

GLCM1+Wavelet 40X 93.24 ± 3.45 92.85 ± 3.75 94.67 ± 3.7 96.06 ± 2.14 95.35 ± 2.61
100X 92.37 ± 3.47 91.38 ± 4.29 95.03 ± 4.67 94.66 ± 1.98 94.80 ± 2.73
200X 94.25 ± 1.64 93.47 ± 2.39 96.35 ± 3.45 96.06 ± 2.33 96.15 ± 1.27
400X 90.62 ± 1.45 90.35 ± 1.52 91.49 ± 3.33 95.59 ± 3.08 93.42 ± 1.27

GLCM1+Tamura 40X 93.76 ± 2.89 93.35 ± 3.24 94.81 ± 3.14 96.64 ± 1.80 95.71 ± 2.35
100X 92.28 ± 3.73 91.07 ± 4.44 95.63 ± 5.63 94.04 ± 1.97 94.75 ± 2.95
200X 94.88 ± 1.89 94.45 ± 2.90 97.36 ± 2.98 95.98 ± 2.71 96.61 ± 1.30
400X 90.97 ± 1.76 91.26 ± 1.84 92.23 ± 3.63 95.34 ± 2.91 93.69 ± 1.52

GLCM1+LBP 40X 88.02 ± 3.43 88.28 ± 3.79 90.60 ± 3.33 93.33 ± 3.70 91.83 ± 2.82
100X 89.03 ± 4.85 89.12 ± 4.08 93.05 ± 2.69 92.30 ± 5.04 92.64 ± 3.45
200X 89.71 ± 3.10 89.26 ± 3.22 92.49 ± 3.25 93.68 ± 2.35 93.06 ± 2.33
400X 87.18 ± 4.14 86.42 ± 3.79 89.18 ± 3.76 93.08 ± 5.15 90.99 ± 3.15

GLCM1+CLBP 40X 93.86 ± 2.62 93.07 ± 3.55 95.69 ± 4.12 96.03 ± 2.36 95.84 ± 2.14
100X 91.72 ± 3.07 90.46 ± 3.82 94.06 ± 3.75 94.70 ± 1.62 94.36 ± 2.39
200X 94.34 ± 1.99 93.51 ± 2.61 97.48 ± 1.60 95.15 ± 2.21 96.29 ± 1.29
400X 89.66 ± 3.23 88.94 ± 3.64 90.87 ± 5.22 94.83 ± 3.75 92.69 ± 2.66

GLCM1+Gabor 40X 87.63 ± 4.43 87.22 ± 4.8 93.86 ± 2.38 90.47 ± 6.57 91.92 ± 3.15
100X 90.28 ± 2.04 89.95 ± 2.72 93.44 ± 2.97 93.71 ± 3.22 93.51 ± 1.34
200X 91.28 ± 2.64 89.81 ± 4.09 97.06 ± 1.88 91.92 ± 3.66 94.37 ± 1.70
400X 89.02 ± 2.83 87.80 ± 2.54 96.72 ± 1.77 89.22 ± 3.37 92.79 ± 1.96

GLCM1+Hog 40X 85.55 ± 5.78 86.56 ± 5.32 93.02 ± 2.53 88.39 ± 6.82 90.56 ± 4.20
100X 86.62 ± 5.08 88.34 ± 3.18 94.06 ± 3.22 89.23 ± 7.32 91.35 ± 3.14
200X 90.47 ± 3.78 90.04 ± 3.61 93.68 ± 4.40 93.55 ± 2.85 93.57 ± 2.92
400X 88.15 ± 4.05 88.13 ± 3.72 91.45 ± 2.54 92.28 ± 4.56 91.82 ± 3.01
June
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complex image preprocessing. Experimental results and comparison
with other methods confirm that our method requires less training
time than deep learning methods, which cannot be ignored in
practical applications.

In the future work, we will continue to propose more efficient
and rapid methods for breast cancer recognition. The target is to
realize multi-class recognition of breast cancer based on the
research of benign and malignant tumor recognition. In addition
to improving the recognition accuracy, we also hope to extract
Frontiers in Oncology | www.frontiersin.org 13158
more effective information about cancer, which can help doctors
find the lesion faster and reduce the workload on doctors.
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TABLE 8 | Comparison of the proposed methods with other state-of-the-art methods.

Methods Training/test Magnification Image_accuracy (%) Patient_accuracy (%)

Gupta V et al. (35) 70%/30% 40X \ 87.2 ± 3.74
100X \ 88.22 ± 3.28
200X \ 88.89 ± 2.51
400X \ 85.82 ± 3.81

Das K et al. (36) 80%/20% 40X \ 89.52
100X \ 89.06
200X \ 88.84
400X \ 87.67

Das K et al. (37) 80%/20% 40X 94.82 \
100X 94.38 \
200X 94.67 \
400X 93.49 \

Cascianelli S et al. (38) 25%/75% 40X \ 87.0
100X \ 85.2
200X \ 85.0
400X \ 81.3

Wei B et al. (39) 75%/25% 40X 97.89 97.02
100X 97.64 97.23
200X 97.56 97.89
400X 97.97 97.50

Zhi W et al. (40) 80%/20% 40X 91.28 \
100X 91.45 \
200X 88.57 \
400X 84.58 \

Nahid AA et al. (41) 85%/15% 40X 95.0 \
100X 96.6 \
200X 93.5 \
400X 94.2 \

Han Z et al. (42) 50%/50% 40X 95.8 ± 3.1 97.1 ± 1.5
100X 96.9 ± 1.9 95.7 ± 2.8
200X 96.7 ± 2.0 96.5 ± 2.1
400X 94.9 ± 2.8 95.7 ± 2.2

Boumaraf S et al. (43) 80%/20% 40X 99.25 \
100X 99.04 \
200X 99.00 \
400X 98.08 \

Song Y et al. (44) 70%/30% 40X 87.0 ± 2.6 90.0 ± 3.2
100X 86.2 ± 3.7 88.9 ± 5.0
200X 85.2 ± 2.1 86.9 ± 5.2
400X 82.9 ± 3.7 86.3 ± 7.0

Saxena S et al. (45) 70%/30% 40X 86.41 89.46
100X 88.92 92.61
200X 90.05 93.92
400X 83.16 89.78

Wang P et al. (46) 70%/30% 40X 92.71 ± 0.16 \
100X 94.52 ± 0.11 \
200X 94.03 ± 0.25 \
400X 93.54 ± 0.24 \

George K et al. (47) 70%/30% 40X \ \
100X \ \
200X 96.66 ± 0.77 \
400X \ \
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4 West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China

Objectives: The purpose of this study aimed at investigating the reliability of radiomics
features extracted from contrast-enhanced CT in differentiating pancreatic cystadenomas
from pancreatic neuroendocrine tumors (PNETs) using machine-learning methods.

Methods: In this study, a total number of 120 patients, including 66 pancreatic
cystadenomas patients and 54 PNETs patients were enrolled. Forty-eight radiomic
features were extracted from contrast-enhanced CT images using LIFEx software. Five
feature selection methods were adopted to determine the appropriate features for
classifiers. Then, nine machine learning classifiers were employed to build predictive
models. The performance of the forty-five models was evaluated with area under the curve
(AUC), accuracy, sensitivity, specificity, and F1 score in the testing group.

Results: The predictive models exhibited reliable ability of differentiating pancreatic
cystadenomas from PNETs when combined with suitable selection methods. A
combination of DC as the selection method and RF as the classifier, as well as
Xgboost+RF, demonstrated the best discriminative ability, with the highest AUC of
0.997 in the testing group.

Conclusions: Radiomics-based machine learning methods might be a noninvasive tool
to assist in differentiating pancreatic cystadenomas and PNETs.

Keywords: pancreatic cystadenomas, pancreatic neuroendocrine tumors, radiomics, machine learning,
differentiation, pNETs, CT
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INTRODUCTION

Pancreatic neuroendocrine tumors (PNETs), a rare group of
heterogeneous tumors originated from ductal pluripotent stem
cells, account for less than 5% of pancreatic neoplasms and 7% of
all NETs (1–3). Its incidence has increased in recent years,
reaching 0.48 per 100 000 persons per year in the United
States. This increase is probably due to the improvement in
modern imaging and endoscopic technologies (4). Based on the
clinical manifestations, PNETs have two subtypes, functional
and non-functional PNETs. The most common functional
PNETs includes insulinoma, gastrinoma, and glucagonoma.
However, about 2/3 of all PNETs are non-functional, making
the diagnosis difficult in clinical practice (5). For localized and
advanced, but resectable PNETs, surgery is the first-line therapy
capable of improving the clinical outcome (6–8). Pancreatic
cystadenomas including serous pancreatic cystadenomas and
mucinous pancreatic cystadenomas, account for approximately
46.3% of all surgically removed pancreatic cystic tumors (9).
Serous cystadenomas are rare glycogen-rich lesions, which arise
from pancreatic ductal epithelium (10). But mucinous
cystadenomas are cystic epithelial tumors, consisting of ovarian
stromata and mucus-producing columnar epithelium (11). In
clinical practice, most pancreatic cystadenoma patients are
asymptomatic or manifest non-specific symptoms (12). The
management of patients is different due to the biological
differences of PNETs and pancreatic cystadenomas. The
endoscopic ultrasound fine-needle aspiration (EUS-FNA) is
considered the best approach to diagnosis pancreatic tumors,
but it is invasive and not completely accurate due to the small
size of samples (13, 14). Therefore, a preoperative differential
diagnosis is vital to identify the most appropriate therapies and
improve clinical management.

Generally, computed tomography (CT) is the most effective
imaging technique for initial detection and tumor staging among
pancreatic patients (15–18). Previous studies showed that CT
could clearly show the tumor site and boundary, maximum
diameter, cyst wall characteristics, enhancement degree and
other imaging signs, which may contribute to differentiating
pancreatic cystadenoma from PNETs (18–21). Radiomics is a
high-throughput method to extract quantitative imaging
features, which can conduct mining and analysis of image
feature data in depth. The strength of radiomics is to provide
an objective, repeatable, non-invasive and low-risk diagnostic
tool, which helps to derive a comprehensive characterization of
tumors heterogeneity. It has plenty of applications including
biological feature prediction and tumor classification (14, 22, 23).
According to recent studies, the radiological features extracted
from CT images are helpful for differentiating pancreatic
neoplasms (19, 24, 25), as well as the prediction of PNETs
grading (21). For example, He et al. developed three models to
differentiate non-functional PNET and pancreatic ductal
adenocarcinoma (PDAC), which all showed good performance
(26). The AUC of the validation cohort was 0.884 in the LASSO
based model that integrated clinicoradiological features and
radiomic. Another study built a radiomics model based on
Frontiers in Oncology | www.frontiersin.org 2162
non-contrast MRI to predict grades of non-functional PNETs
and the AUC was 0.769 in the training cohort and 0.729 in the
validation cohort (27). However, there are no studies to
differentiate pancreatic cystadenomas from PNETs. Therefore,
we conducted this study to identify pancreatic cystadenomas and
PNETs using machine learning methods based on enhanced CT
image features.
MATERIALS AND METHODS

Patient Selection
We retrospectively included all patient with pancreatic
cystadenomas including pancreatic mucinous and serous
cystadenoma or PNETs in West China hospital from January
2013 to May 2018 in this study. We initially identified 356
eligible patients according to criteria as followed: (1) pathological
diagnosis of pancreatic cystadenomas or PNETs; (2) enhanced-
contrast CT examination before biopsy or surgery. Then 92 of
356 patients without exact pathological evidence supporting
pancreatic cystadenomas or PNETs were excluded. In addition,
144 patients lacking abdominal enhanced-contrast CT images
before surgery were also excluded. Finally, we enrolled 120
qualified patients, consisting of 66 pancreatic cystadenomas
patients and 54 PNETs patients. The patient selection process
was illustrated in Figure 1. All procedures conformed to the
Declaration of Helsinki, as well as its later amendments.

CT Image Acquisition
All the contrast-enhanced CT images were collected from the
patients before they received any treatment. A single 64-MDCT
scanner (Brilliance64, Philips Medical Systems, Eindhoven, The
Netherlands) were used for scanning. The tube voltage was 120
kVp, and tube current was 200 mAs. The gantry rotation time
was 0.42 s, and the detector collimation was 0.75 mm. The matrix
was 512×512 and beam pitch was 0.891. The slice thickness was
1.0 mm and reconstruction increment was 5.0 mm. Before the
examination, patients were administrated with 1.5-2.0 mL/kg of
nonionic contrast material (Omnipaque 350, GE Healthcare)
intravenously at 3 mL/s. Images were obtained at 60-65 s for
portal venous phase.

ROI Segmentation and Texture Extraction
All the contrast-enhanced CT images (400-bit gray scale) were
obtained through searching the picture archiving and
communication system (PACS). The lesion segmentation and
texture analysis were acquired with a local image features
extraction software (LIFEx v3.74, CEA-SHFJ, Orsay, France)
(9). Briefly, the two-dimensional region of interest (ROI) was
firstly obtained by drawing the outline of each tumor in the
portal vein phase CT images (Figure 2) and then three-
dimensional ROIs were automatically generated with default
setting (28, 29). In order to reduce bias in the evaluation of
derived radiomic features, the whole process was performed
July 2021 | Volume 11 | Article 606677
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FIGURE 1 | Flowchart shows selection of study population and exclusion criteria.
FIGURE 2 | Examples of lesion segmentation and contouring on contrast-enhanced CT images. Portal vein phase CT images of a patient with histopathologically
proved pancreatic cystadenomas (A, B) and pancreatic neuroendocrine tumors (C, D).
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independently by two experienced radiologists without relevant
knowledge of pancreatic tumor diagnosis and a third radiologist
evaluated and selected the more accurate ROIs. The ROIs
included the whole tumor while avoiding vascular shadows
and surrounding adipose tissue. Then the textural parameters
were calculated automatically based on the ROIs by the
computer software LIFEx. Forty-eight texture features were
extracted, including histogram-based matrix, shape-based
matrix, gray-level co-occurrence matrix (GLCM), gray-level
run length matrix (GLRLM), neighborhood gray-level
dependence matrix (NGLDM) and gray-level zone length
matrix (GLZLM). The association among texture parameters
was analyzed by Pearson correlation coefficient test.

Machine Learning Model
In this study, five feature selection methods, namely, random
forest (RF), distance correlation (DC), least absolute shrinkage
and selection operator (LASSO), gradient boosting decision tree
(GBDT) and eXtreme gradient boosting (Xgboost) were used to
analyze the texture parameters and several clinicoradiological
features (gender, age, size, location of lesions and calcification of
lesions). Then, discriminative models were built by nine machine
learning classifiers, which covers linear discriminant analysis
(LDA), RF, Adaboost, support vector machine (SVM),
GaussianNB, k-nearest neighbor (KNN), GBDT, logistic
regression (LR) and decision tree (DT). Patients meeting the
criteria were randomly assigned to either training group or
validation group. The ration of patient number in training
group to validation group was 4:1. The classification models
were generated from the training group and the discriminative
capability of models were tested in the validation group.
Frontiers in Oncology | www.frontiersin.org 4164
We performed 10-fold cross validation with 1000 repetition to
guarantee the real distribution of classification. The sensitivity,
specificity, accuracy and F1 score were calculated accordingly
after establishing a confusion matrix. Besides, the area of receiver
operating characteristic curve (AUC) was recorded to assess the
discriminative ability of the classification models. The machine
learning algorithm was completed by the Python programming
language and sklear-Package. The whole study process was
shown in Figure 3.
RESULTS

Patient Characteristics
In this study, a total number of 120 patients (including 66
individuals with pancreatic cystadenomas and 54 patients with
PNETs) were enrolled. The median age of all patients was 50.26
(ranging from 24 to 77) in the group of pancreatic cystadenomas,
and 54 (ranging from 29 to 73) in the PNETs group. Of the 66
patients with pancreatic cystadenomas, 15 (22.7%) were males
and 51 (77.3%) were females. In PNETs group, there were 32
(59.3%) male and 22 (40.7%) female patients. In the patients with
pancreatic cystadenomas, 40.9% of lesions were located in the
pancreatic head, whereas 59.1% were in the pancreatic body-tail.
Of the 54 patients with PNETs, the tumor was located in the head
of pancreas in 23 patients (42.6%) and in the pancreatic body-tail
in 31 patients. The average size of pancreatic cystadenomas
and PNETs was 4.1 cm (range 0.8-12.0 cm) and 4.19 cm
(range 1.0-12.0 cm) respectively. The summary of patient and
lesion characteristics were recorded in Table 1.
FIGURE 3 | Flowchart depicts the workflow of the whole study.
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Texture Parameters Selection
Most texture parameters were uncorrelated or weakly correlated
according to the result of Pearson correlation coefficient test,
only a few parameters showing strong positive or negative
correlation (Figure 4). Different texture parameters were
selected in five feature selection methods, however, no
clinicoradiological feature was selected using the five feature
selection methods (Table 2). LASSO selected the most number of
parameters , including maxValue, HISTO_Skewness,
SHAPE_Sphericity, GLRLM_SRLGE, GLRLM_GLNU,
GLRLM_RLNU, GLRLM_RP, GLZLM_SZE, GLZLM_LGZE,
Frontiers in Oncology | www.frontiersin.org 5165
GLZLM_SZLGE, GLZLM_LZLGE, GLZLM_GLNU,
GLZLM_ZLNU, GLZLM_ZP and Xgboost selected only
four parameters.

Machine-Learning Model Evaluation
Through a random combination offive feature selection methods
and nine machine-learning classifiers, we acquired a total of
forty-five predictive models for distinguishing pancreatic
cystadenomas from PNETs. The AUC, accuracy, sensitivity,
specificity and F1 score of all models in the testing group were
shown in Table 3. The result revealed that radiomics-based
machine learning models were able to differentiate pancreatic
cystadenoma from PNETs, with AUC more than 0.743 in the
validation cohort (Figure 5). It is noteworthy that the
combination of DC as the selection method and RF as the
classifier, as well as Xgboost+RF, demonstrated the best
discriminative ability, with the highest AUC of 0.997 in the
testing group. The receiver operating characteristic (ROC) curves
of 10 fold for DC+RF and Xgboost+RF in the testing group were
shown in Figure 6. For the model (DC+RF) in the testing group,
the accuracy, sensitivity, specificity and F1 score were 0.983,
0.980, 0.986 and 0.980, respectively. The mean AUC for DC+RF
was 0.9977 (Std= 0.0024; 95% CI, 0.9976 to 0.9979) after 1000
repetition. As for the model of Xgboost+RF, the accuracy,
sensitivity, specificity and F1 score were 0.992, 0.980, 1.000 and
TABLE 1 | Characteristics of patients and lesions.

Characteristics Pancreatic
cystadenomas

Pancreatic
neuroendocrine tumors

Number 66 54
Mean age (range) (year) 50.26 (24-77) 50.48 (29-73)
Gender
Male 15 (22.7%) 32 (59.3%)
Female 51 (77.3%) 22 (40.7%)
Location
Head 27 (40.9%) 23 (42.6%)
Body or tail 39 (59.1%) 31 (57.4%)
Maximum diameter
(range) (cm)

4.1 (0.8-12) 4.19 (1-12)
FIGURE 4 | The result of Pearson correlation coefficients test between radiomics features.
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0.989 respectively in the validation group and the mean AUC
was 0.9962 (Std=0.0033; 95% CI, 0.9960 to 0.9964) after
1000 repetition.
DISCUSSION

Contrast‐enhanced CT and MRI are widely used for identification
of pancreatic neoplasms, which is not sufficiently specific due to the
overlapping of anatomical imaging features between different
pancreatic tumors (30). Furthermore, PNETs identification is to
exploit somatostatin analog radiotracers for CT and MRI imaging,
which is easily affected by intra-/inter-observer variability (31). The
accuracy for manual identification of tumor lesions is only 60%-
70%, even by highly-trained radiologists (32). To date, EUS-FNA is
considered the best approach to diagnosis pancreatic tumors based
on cytopathologic features. However, it is invasive with the
possibility for puncture failure, as well as unable to reflect tumor
heterogeneity accurately due to the small size and limited number of
samples (14, 33).

Radiomics combine quantitative image analysis with machine
learning or artificial intelligence methods to select out and classify
target features in the sample images. It has been applied in
modern medical care including diagnosis, risk stratification,
virtual biopsy and radiogenomics (34). Several studies have
investigated the utility of machine learning based-radiomics on
the differentiation of pancreatic mucinous cystadenomas from
pancreatic serous cystadenomas (35, 36) and the prediction of
PNETs grading (13, 21, 37–39). However, no studies reported
how to differentiate pancreatic cystadenomas from PNETs. Given
the similar incidence, nonspecific symptoms and various
biological behaviors of pancreatic cystadenomas and PNETs, we
conducted this study by combining radiomics and machine
learning method to distinguish these two types of pancreatic
lesions. This is the first study that utilized enhanced CT images
features and machine learning methods to differentiate pancreatic
cystadenomas from PNETs so far.
Frontiers in Oncology | www.frontiersin.org 6166
Different radiomic features were obtained from preoperative
contrast-enhanced CT images. Then the establishment of
predictive models were based on five feature-selection methods
and nine machine-learning classifiers. Our results proved that
the combination of predictive models and appropriate selection
methods could differentiate pancreatic cystadenomas from
PNETs, with AUC more than 0.743 in the validation cohort.
Notably, the combination of DC as the selection method and RF
as the classifier, as well as Xgboost+RF, seemed to be optimal in
differentiating the two types of pancreatic lesions, with the
highest AUC of 0.997 in the testing group. For the model
(DC+RF) in the testing group, the accuracy, sensitivity,
specificity and F1 score were 0.983, 0.980, 0.986 and 0.980,
respectively. In addition, the accuracy, sensitivity, specificity
and F1 score were 0.992, 0.980, 1.000 and 0.989 respectively in
the validation group for the model of Xgboost+RF. RF classifier is
an excellent classification algorithm that has been widely used in
many studies (40–42). Previous studies have investigated the
diagnostic performance of PNETs from PDACs based on CT
features and texture analysis. Yu et al. used LASSO and
univariate logistic regression (ULR) analyses to select CT
radiomic features and generated four multivariate logistic
regression (MLR) models. The highest AUC was 0.926 in the
model built with CT radiomic features extracted from portal
venous phase (43). Another study developed a MLR model to
discriminate PNETs from solid pseudopapillary tumors (SPTs)
(44). The model incorporating MRI radiomics features and sex
and age of patients exhibited the best discriminative ability with
AUC of 0.97 and 0.86 in the training and validation cohort
separately. Compared with previous studies, we developed more
predictive models by employing more selection methods and
classifiers to identify the best model.

However, our study existed several limitations. First of all, this
study was conducted in a retrospective fashion, which had
unavoidable selection bias. Second, it was a single-center study
with a small group of patients. Multicenter studies with more
patients would be helpful to confirm these findings. Third, there
TABLE 2 | Selected features of five selection methods.

DC RF LASSO Xgboost GBDT

meanValue meanValue maxValue meanValue HISTO_Kurtosis
HISTO_Kurtosis HISTO_Kurtosis HISTO_Skewness HISTO_Kurtosis GLRLM_SRHGE
GLZLM_HGZE PARAMS_YSpatialResampling SHAPE_Sphericity GLRLM_HGRE GLRLM_LRHGE
GLZLM_SZHGE GLRLM_HGRE GLRLM_SRLGE GLRLM_LRHGE GLZLM_HGZE
GLRLM_HGRE GLRLM_SRHGE GLRLM_GLNU GLZLM_SZHGE
GLRLM_SRHGE GLRLM_LRHGE GLRLM_RLNU
GLZLM_SZE GLZLM_SZE GLRLM_RP

GLZLM_HGZE GLZLM_SZE
GLZLM_SZHGE GLZLM_LGZE

GLZLM_SZLGE
GLZLM_LZLGE
GLZLM_GLNU
GLZLM_ZLNU

　 　 GLZLM_ZP 　 　
July 2021 | Volume 11
DC, distance correlation; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree;
GLZLM, gray-level zone length matrix; HGZE, High Grey Level Zone Emphasis; GLRLM, Gray Level Run Length Matrix; SZHGE, Short Zone High Grey Level Emphasis; HGRE, High Gray
Level Run Emphasis; SRHGE, Short-Run High Grey Level Emphasis; SZE, Short Zone Emphasis; LRHGE, Long-Run High Grey Level Emphasis; SRLGE, Short-Run Low Grey Level
Emphasis; GLNU, Grey Level Non-Uniformity; RLNU, Run Length Non-Uniformity; RP, Run Percentage; LGZE, Low Gray Level Zone Emphasis; SZLGE, Short Zone Low Grey Level
Emphasis; LZLGE, Long Zone Low Grey Level Emphasis; ZP, Zone Percentage.
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was subjectivity when manually defining the tumor boundary on
CT images.
CONCLUSION

This study concluded that radiomics-based machine learning
method was able to preoperatively differentiate pancreatic
cystadenomas from PNETs, which may guide clinical decision-
making for better treatment. The feature selection method DC or
Xgboost and classifier RF showed a good prospect in
discriminating pancreatic cystadenomas from PNETs. However,
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FIGURE 5 | The results of AUC (A), sensitivity (B) and specificity (C) in the
testing group.
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more large-scale multicenter studies are required to supplement
more evidence concerning the feasibility of this method in
clinical practice.
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In recent years, the automotive field has been changed by the accelerated rise of new

technologies. Specifically, autonomous driving has revolutionized the car manufacturer’s

approach to design the advanced systems compliant to vehicle environments. As a

result, there is a growing demand for the development of intelligent technology in order to

make modern vehicles safer and smarter. The impact of such technologies has led to the

development of the so-called Advanced Driver Assistance Systems (ADAS), suitable to

maintain control of the vehicle in order to avoid potentially dangerous situations while

driving. Several studies confirmed that an inadequate driver’s physiological condition

could compromise the ability to drive safely. For this reason, assessing the car driver’s

physiological status has become one of the primary targets of the automotive research

and development. Although a large number of efforts has been made by researchers to

design safety-assessment applications based on the detection of physiological signals,

embedding them into a car environment represents a challenging task. These mentioned

implications triggered the development of this study in which we proposed an innovative

pipeline, that through a combined less invasive Neuro-Visual approach, is able to

reconstruct the car driver’s physiological status. Specifically, the proposed contribution

refers to the sampling and processing of the driver PhotoPlethysmoGraphic (PPG) signal.

A parallel enhanced low frame-rate motion magnification algorithm is used to reconstruct

such features of the driver’s PhotoPlethysmoGraphic (PPG) data when that signal is

no longer available from the native embedded sensor platform. A parallel monitoring

of the driver’s blood pressure levels from the PPG signal as well as the driver’s eyes

dynamics completes the reconstruction of the driver’s physiological status. The proposed

pipeline has been tested in one of the major investigated automotive scenarios i.e., the

detection and monitoring of pedestrians while driving (pedestrian tracking). The collected

performance results confirmed the effectiveness of the proposed approach.

Keywords: driver drowsiness monitoring, deep learning, pedestrian tracking, adas, photoplethysmographic

170

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.667008
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.667008&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:francesco.rundo@st.com
https://doi.org/10.3389/fninf.2021.667008
https://www.frontiersin.org/articles/10.3389/fninf.2021.667008/full


Rundo et al. Deep NeuroVision Embedded ADAS

1. INTRODUCTION

Drowsiness is a symptom related to a lack of awareness which
affects concentration, reaction time, and most seriously, safety
(Schmidt, 1989; Rundo et al., 2019c). In the last few years,
researchers discovered the mechanisms for which the level of
attention is strongly correlated to the cardiac activity (Schmidt,
1989; Kurian et al., 2014; Rundo et al., 2019c).

The main functions of the heart are regulated by the
Autonomic Nervous System (ANS). Specifically, the sympathetic
and the parasympathetic nervous system, the two branches of
ANS, are responsible for regulating many cardiac mechanisms,
which are reflected in the attentional state of a subject (Schmidt,
1989). As stated previously, physiological signals represent a
relevant data source to assess a subject’s physiological condition
(Kurian et al., 2014; Dastjerdi et al., 2017; Rundo et al.,
2019d). The study of physiological signals have received much
attention from the scientific community of the automotive
industry (Kurian et al., 2014; Dastjerdi et al., 2017; Rundo et al.,
2019d). Specifically, the growing proliferation of non-invasive
medical devices to collect physiological parameters has led to
the development of advanced new tools to be integrated into
vehicle-environment. In this context, PhotoPlethysmoGraphic
(PPG) signal has been proposed as a valid solution to analyze
a subject’s physiological status (Kurian et al., 2014; Dastjerdi
et al., 2017; Rundo et al., 2019c,d). With the recent advances
in safety awareness systems, the car manufacturers have spent
a lot of efforts to develop innovative ADAS architectures based
on PPG signal processing (Kurian et al., 2014; Rundo et al.,
2019c). PPG is a convenient and simple physiological signal
that provides information about the cardiac activity of a subject
(Rundo et al., 2019d) and, therefore, the drowsiness status of
a subject as well as pathologies which may indirectly have
an impact on the subject’s guidance1. In this work, we also
focused on the use of the PPG signal for monitoring the
subject’s blood pressure. Several studies have pointed out that
a robust driving risk assessment system leverages the so-called
“driver fatigue condition” (which combines drowsiness and
blood pressure monitoring) to perform a robust risk estimation
(Husodo et al., 2018).

In this regard, the authors investigated promising solutions
based on the use of a sensor framework to determine the level
of driving safety through the driver’s drowsiness assessment as
well as the correlated blood pressure analysis (Littler et al., 1973;
Husodo et al., 2018; Hui and Kan, 2019). Current solutions
propose the use of wearable sensors or embedded devices
equipped with such sensors in order to detect the first signs of
fatigue2 (i.e., a significant and progressive lowering of the body
temperature, the heart rate, etc.). Therefore, they require the use
of invasive methodologies for the car driver that are often not
feasible in automotive applications (Littler et al., 1973; Husodo
et al., 2018; Hui and Kan, 2019).

1https://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/
2https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/

ersosynthesis2015-fatigue25_en.pdf

Several reports have highlighted that cardiovascular diseases
could have a major impact on the health of a subject, affecting
also the level of attention (Wu et al., 2015). In order to gather
information about users’ health conditions (and specifically the
“car driver” users), major interventions have been made for
monitoring and analyzing the systolic and diastolic pressure of
both healthy and hypertensive subjects through physiological
signals. Preliminary studies have confirmed that there is a strong
correlation between cardiovascular risk, drowsiness estimation,
pressure level quantification, and physiological PPG signal
(Littler et al., 1973; Schmidt, 1989; Kurian et al., 2014; Wu
et al., 2015; Dastjerdi et al., 2017; Husodo et al., 2018; Hui
and Kan, 2019; Rundo et al., 2019c,d). Inspired by the recent
research studies, we defined the proposed work, providing
an effective solution to overcome the limitations of the PPG
acquisition. Due to the high sensibility of the PPG signal to
Motion Artifacts (MA) generated with the body movements,
ad-hoc sensing device combined with an innovative processing
workflow was used (Dastjerdi et al., 2017; Rundo et al.,
2019d). Therefore, it is not always easy to use methods
based on PPG sampling and processing. In automotive field,
the sensors of the PPG signal are usually embedded in the
driver’s steering in order to detect the needed physiological
data (from the car driver hand placed on the steering) for
drowsiness monitoring.

In Kurian et al. (2014) and Rundo et al. (2019c), the
authors of these contribution have developed and patented an
application that allows to detect the PPG waveforms of the
driver from his/her hand placed in the car steering. Anyway,
it is needed that the car-driver applies the hand in the PPG
sensing devices arranged in the steering wheel; otherwise, the
PPG signal cannot be collected (Kurian et al., 2014; Rundo et al.,
2019c,d). Similarly, it would be advantageous to have a non-
invasive system for monitoring the driver’s blood pressure from
PPG signal without having to wear such medical devices. In
order to address the aforementioned issues, the authors propose
an innovative pipeline for estimating some features of the PPG
signal of any subject without the use of invasive devices. This
paper presents an efficient Deep Learning pipeline designed
to perform a non-invasive PPG features reconstruction using
an innovative low frame-rate Motion Magnification algorithm
(Wu et al., 2012). Moreover, we developed a proper Application
System Framework (ASF) to assess both the driver drowsiness
trough the usage of PPG signal features and the correlated
blood pressure level, providing a robust evaluation of the
driving safety.

The authors have a lot investigated thementioned issue related
to the car driver drowsiness monitoring as reported in Rundo
et al. (2020a), Rundo et al. (2020b), Battiato et al. (2020), and
Rundo et al. (2020c). They performed in-depth studies in relation
to the robustness and performance of the delivered solutions.
This paper is arranged into five sections. In section 2, the
PPG based theory was introduced with a special focus to the
physical principle that characterizes its formation. In section 3,
we presented the used PPG sensing device. In section 4, the main
scientific literature contributions are reported and discussed. In
section 5, the whole proposed pipeline is described while in
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section 6 both the experiments and validation results are reported
and discussed.

2. THE PPG SIGNAL: UNDERLYING
PHYSICAL PHENOMENA

PhotoPlethysmoGraphy is a non-invasive method for measuring
blood flow in the cardiovascular circulatory system (Dastjerdi
et al., 2017). More specifically, PPG is a physiological signal
generally obtained through a combined optical-to-electric
sensing system able to transduce the blood flow dynamic into
electrical waveforms (Dastjerdi et al., 2017; Vinciguerra et al.,
2019).

Through the mentioned optical sampling methods, we are
able to collect the PPG signal by illuminating the region of
interest of the subject’s skin with a Light Emitting Diode (LED).
The used LED is coupled with a photo-sensing device that is
able to capture the part of emitted light (photons), which is
not absorbed by the subject blood flow (Back-Scattered signal;
Vinciguerra et al., 2019). In particular, the photo-sensing device
captures the part of reflected LEDs emitted light which is not
absorbed mainly by the oxygenated hemoglobin (HbO2) and
in residual form by the non-oxygenated (Hb) present in the
subject’s blood (Conoci et al., 2018; Vinciguerra et al., 2019). An
electrical transduction circuit of the optical signal will complete
the typical PPG signal acquisition pipeline. In Figure 1, the
overall representation of the PPG pattern formation is reported.
It shows the physical phenomenon underlying the formation of
the PPG signal. Through the action of the ANS the heart rate of
the subject is regulated (Schmidt, 1989). This regulation produces
an impact in the arterial blood flow of the i.e., in the back-
scattering data linked to the dynamics of HbO2 andHb (Schmidt,
1989; Kurian et al., 2014; Rundo et al., 2019c,d). This collected
data will be properly electrically transduced and processed by
means of an automotive grade microprocessor, described in the
next paragraphs.

3. THE PROPOSED PPG SENSING SYSTEM

Different hardware architectures have been proposed in order
to sample the PPG signal (Agrò et al., 2014; Liu et al., 2016;
Conoci et al., 2018; Vinciguerra et al., 2019). The authors
proposed the use of an hardware architecture based on the
employment of a photo-multiplier silicon device called SiPM
(SiliconPhotoMultiplier) (Mazzillo et al., 2009, 2018; Liu et al.,
2016; Vinciguerra et al., 2017; Rundo et al., 2018a).

The designed sensing device is composed by two OSRAM
LED emitters (SMD package) emitting at 850 nm. These leds are
then used as optical light sources with a SiPM device (detector)
which has a total area of 4.0 × 4.5 mm2 and 4,871 square
microcells with 60 µm of the pitch. The proposed SiPM device
has a geometrical fill factor of 67.4% and is packaged in a
surface mount housing (SMD) of 5.1 × 5.1 mm2 total area.
More details about the used hardware in Conoci et al. (2018),
Agrò et al. (2014), Liu et al. (2016), and Mazzillo et al. (2009).
Furthermore, to sample the PPG optical signal [through the

embedded 12-bit Analogic to Digital Converter (ADC)] and to
handle the implemented filtering and stabilization algorithms,
the SPC5x 32-bit Chorus microcontroller was used (Vinciguerra
et al., 2017; Mazzillo et al., 2018; Rundo et al., 2018a). Figure 2
shows the proposed designed PPG sensing hardware platform.
The so sampled PPG raw signal comprises a pulsatile (“AC”)
physiological signal, which is correlated to cardiac-synchronous
changes in the blood volume, superimposed with a slowly
varying (“DC”) component containing lower frequency sub-
signals, which is correlated to respiration, thermoregulation,
and so on (Vinciguerra et al., 2017; Mazzillo et al., 2018;
Rundo et al., 2018a). Usually, the sampled raw PPG signal
contains various types of noise: electronic, motion artifacts,
micro-movements due to breathing and so on (Mazzillo et al.,
2009, 2018; Liu et al., 2016; Vinciguerra et al., 2017; Rundo
et al., 2018a). For this reason, it is needed to filter the raw
PPG signal to obtain only the “AC” part of our interest (as
it is directly correlated with the subject’s heart activity) de-
noised from the various kinds of noise. Figure 3A shows an
instance of raw noised PPG signal sampled from the hand
of a recruited subject. To achieve this purpose, a raw PPG
signal filtering pipeline was implemented by authors. More in
detail, in the aforementioned pipeline a Butterworth bandpass
filter in the 0.5–10 Hz range was used. The authors also
implemented an innovative, robust stabilization, and de-noising
pipeline (motion artifacts, micro-breathing movements, etc.)
called PPG-PRS (Choi et al., 2016; Rundo et al., 2018a, 2021). In
Figure 3B, we reported a detail of the so filtered PPG waveforms.
As shown in Figure 3B, a filtered steady-stable PPG signal is
obtained by the deep pipeline proposed by the authors and called
PPG-PRS (PPG Pattern Recognition System) (Choi et al., 2016;
Rundo et al., 2018a, 2021). The so generated signal contains
PPG waveforms which are compliant with the standard for
this type of signal (Vinciguerra et al., 2017; Mazzillo et al.,
2018).

The PPG-PRS technique is based on the use of a bio-inspired
“reaction-diffusion” mathematical model that characterizes
the two phases of cardiac activity (specifically it has been
hypothesized that the diastolic phase is combined with
a “reaction” dynamic and systolic to a phenomenon of
“diffusion”). Through a cross-correlation analysis between
the sampled PPG signal (filtered in the range 0.5–10 Hz)
and the standard compliant PPG signal generated by the
aforementioned reaction-diffusion mathematical model,
the authors are able to recognize the waveforms of the
PPG signal which are compliant with the standard and
consequently discard those affected by noise or artifacts.
Further implementation details of the PPG-PRS stabilization
and de-noising pipeline can be found in Rundo et al. (2018a,
2021).

As introduced in the previous sections, in order to make
a non-invasive sampling of the driver’s PPG signal, the PPG
sensing devices were embedded in the car steering in different
positions, specifically, those where statistically the driver places
the hands while driving. In this way, each time the driver also
places a single hand in the steering part in which the PPG
sensing device was embedded, the described signal formation
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FIGURE 1 | The PPG signal formation diagram.

FIGURE 2 | The proposed PPG Sensing Probe.

mechanism will start working and the raw data will be sampled
and then subsequently processed accordingly. In Figure 4,
the overall scheme of the proposed PPG sampling pipeline
is shown.

4. RELATED WORKS

Over the last decade, several researchers have investigated
the issue that concern the evaluation of the driver’s
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FIGURE 3 | (A) Sampled raw PPG time-series. (B) Detail of the filtered PPG signal.

status with the physiological signals (Choi et al., 2016).
Typically, these solutions are computationally expensive and
invasive (Vavrinskỳ et al., 2010). Moreover, the continuous
monitoring of physiological parameters during car driving
requires high-performance systems (both hardware and
software) to ensure high levels of safety while driving

(Vavrinskỳ et al., 2010; Choi et al., 2016; Rundo et al., 2018a,
2021).

In this context, the PPG signal is the easiest to acquire among
all the physiological signals that can be sampled by the driver
(Vavrinskỳ et al., 2010; Choi et al., 2016). By simply allocating
sensing devices (LED + SiPM) in the car steering wheel, the raw
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FIGURE 4 | The overall scheme of the proposed PPG sensing device embedded in the car steering.

PPG signal of the driver can be easily sampled using the physical
mechanism described in the previous paragraphs. The sampled
PPG signal is post-processed by the microcontroller devices
placed on the car (ADAS framework) to monitor drowsiness
(Vavrinskỳ et al., 2010; Choi et al., 2016; Koh et al., 2017). In
the other hand, to obtain the ElectroCardioGraphic (ECG) signal
of the car driver, at least three contact-points would be required
(Einthoven triangle; Rundo et al., 2018a). Therefore, the use of
the PPG signal is preferred.

Another reliable source of data (which can be sampled in
a non-invasive way) is the visual information referring to the
driver’s face and related facial expressions that seems to be
correlated to the level of attention (Vural et al., 2007). For these
reasons, many visio-based and physio-based solutions have been
designed and implemented. In Koh et al. (2017), the authors
analyzed the pattern of Heart Rate Variability (HRV) to monitor
the drowsiness of the car driver. The HRV is a simple indicator
suitable to measure the variation in the time interval between
consecutive heartbeats (in milliseconds; Vavrinskỳ et al., 2010;
Choi et al., 2016; Koh et al., 2017; Rundo et al., 2021). Several
studies confirmed the correlation between a subject’s attention
level and the dynamic of related HRV, specifically with the
analysis of such indicators extracted from the HRV called HF
(High-Frequency power), LF (Low-Frequency power), and the
LF/ HF ratio (Vural et al., 2007; Lee et al., 2011, 2019; Choi et al.,
2017; Koh et al., 2017; Deng and Wu, 2019).

In Lee et al. (2019), a Convolutional Neural Network was
used to classify drowsy/wakeful status. The CNN was fed by
analyzing three types of recurrence plots (RPs) derived from
the R-R intervals. The authors found that the simultaneous use
of ECG and PPG signal (needed to collect the HRV) inevitably
introduced a non negligible noise and artifacts. Another solution
related to assess car-driver fatigue is reported in Choi et al.
(2017) in which the authors proposed a system to measure the
car driver’s emotional and physiological status coming from a
wearable device placed on the wrist. As well as previous work, a
pre-processing pipeline was developed in order to extract such
valid time-series from the acquired signals. The so extracted

features were classified by using a Support Vector Machine
method. The results confirmed the effectiveness of the proposed
solution in detecting and distinguishing the driver’s physiological
status. In Lee et al. (2011), the researchers proposed an innovative
method to detect driver drowsiness combining Computer Vision
and Image Processing approaches. Specifically, they evaluated the
PPG signal waveform in order to record changes from awake
to a drowsy state. At this stage, they detect the eye region
through the use of template matching in combination with a
Genetic algorithm to analyze the eye’s behavior. In order to
derive the final classification, PPG drowsy signals are evaluated
with eye motion behavior to provide more robust and effective
results. Deng and Wu (2019) proposed a novel approach, called
DriCare, to estimate driver drowsiness by using a face-tracking
algorithm. The authors designed a new method to individuate 68
key points in facial regions with the aim of evaluating drivers’
fatigue status. Another promising work that investigates the
problem of assessing car driver’s fatigue state is Jabbar et al.
(2020) in which the authors developed a Convolutional Neural
Networks to classify drowsiness status. Specifically, the authors
used facial landmarks as input data for their proposed model.
The main contribution of their work is the development of a
deep learning-based system that can be easily integrated into a
car environment. As introduced in this scientific contribution,
several studies investigated the driving safety assessment, in
addition to the detection of the level of car driver attention
as well as to monitor driver blood pressure. In the scientific
literature many approaches deals with the arterial stiffness or
the estimation of blood pressure with the advantage of Deep
Learning (DL)methods and PPG signal based analysis. InMonte-
Moreno (2011), the authors used a photoplethysmography sensor
in order to estimate the diastolic and systolic blood pressure
in a non-invasive way. In particular, the PPG waveform was
used to gather the features used as input data in a various
machine learning algorithm to be able to estimate the systolic
(SBP) and diastolic (DBP) blood pressure and the blood glucose
level (BGL). The results confirmed that Random Forest achieved
better prediction estimation confirming the relationship between
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FIGURE 5 | The overall scheme of the proposed Vison2PPG Reconstruction pipeline.

the shape of PPG waveform and blood pressure level. The
effectiveness of Machine Learning (ML)-based techniques have
been furtherly confirmed by experimental results that showed
the relationship there is among the PPG waveform, blood
pressure and glucose levels. Slapničar et al. (2019) investigated
the problem of detecting Blood Pressure (BP) using an ML-based
architecture. The authors fed a novel spectro-temporal Deep
Neural Network (DNN) with the PPG and its first and second
derivative to be able to overcome limitations that concern the
cuff-based devices. The ability to compute dependency between
PPG waveforms and blood pressure and the effectiveness of the
proposed model was confirmed by means of leave-one subject-
out experiments. In Alty et al. (2007), a pipeline to predict arterial
stiffness (an indicator correlated to subject blood pressure)
was proposed by the authors. Moreover, with the purpose of
examining cardiovascular disease they performed classification
of subjects into high and low aortic pulse wave velocity (PWV)
classes. The collected results confirmed the effectiveness of the
proposed Support Vector Machine (SVM) based solution. In
Rundo et al. (2018b), a novel approach was described by the
authors in order to estimate cardiovascular disease risk by means
blood pressure. The method reported in Rundo et al. (2018b)
measures the subject blood pressure by analyzing the correlated
PPG signal. In Huynh et al. (2018), the authors used the averaging
Impedance Plethysmography (IPG) for the detection of Pulse
Transit Time (PTT) in order to estimate the blood pressure.

The tests showed that the estimation of blood pressure (BP)
achieved interesting results (RMSE: 8.47 ± 0.91 and 5.02 ± 0.73
mmHg for systolic and diastolic levels, respectively). On the other
hand, the previous approaches needs the use of invasive medical
devices and sometimes require the need to sample the ECG
signal in addition to the PPG and therefore impracticable in the
automotive application.

5. METHODS AND MATERIALS

5.1. The Driving Safety Assessment
Through Physiological Driver Analysis
Recent studies have highlighted the need to assess the car driver’s
physiological state in order to create highly safety automotive-
grade applications. As previously reported, the PPG is a less-
invasive signal suitable to provide useful information about the
physiological condition of the driver. In fact, the main limitation
of the existing solutions consists in the integration of sensors
inside the vehicle to acquire the physiological signals. Most
of the solutions propose a PPG signal sampling methodology
based on the usage of such sensors placed on the car steering
wheel. However, this implies that the driver has to maintain an
unnatural behavior i.e., the hands constantly over the sensors.
Moreover, if these sensors no longer work while driving,
the classic pipelines would not be able to collect the signal,
representing a serious risk during the real-time safety assessment
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FIGURE 6 | A filtered compliant PPG waveform with a detail of such extreme

points m1, m2, m3, m4.

(Kurian et al., 2014; Rundo et al., 2018b, 2021). In Figure 4, we
schematized the PPG sampling pipeline embedding the sensors
placed on the steering wheel.

With this regard, we designed an innovative pipeline which
combines an enhanced version of the Motion Magnification
analysis and Deep Learning approach for a non-invasive
processing of the car driver PPG signal. As a result, the proposed
approach is able to overcome the aforementioned critical
issues. More specifically, we developed an innovative module
called Vision2PPG Reconstruction Pipeline that reconstructs the
features of the driver’s PPG signal from a visual data. Through
the use of a video-camera placed on the car dashboard, we
recorded the driver’s face, tracking the facial movements over
the frames. Finally, by ad-hoc processing of these visual data we
developed ad-hoc algorithm to reconstruct such features of the
car driver’s PPG signal even in absence of native sensing data.
The use of Deep Architectures properly trained will complete the
proposed pipeline.

5.2. The Vision2PPG Reconstruction
Pipeline
In this section, we go through the details of the developed
Vision2PPG pipeline. The proposed pipeline consists of a
PPG sensing device designed to perform a preliminary system
calibration and a camera device that captures the dynamic of
the driver’s frontal face. The collected data have been used
to extract facial descriptors (landmarks). The designed module
is based on Computer Vision techniques which cover specific
requirements regarding the automotive certification ASIL-x
(Dastjerdi et al., 2017; Vinciguerra et al., 2019). A deep learning
algorithm (embedded in an ASIL-B microcontroller as firmware)
completes the proposed pipeline by correlating the subject’s face
descriptors with the corresponding PPG waveforms. The overall
flowchart of the proposed Vision2PPG pipeline is shown in
Figure 5. A detailed description of the pipeline will be reported
in the following paragraphs. As PPG sensors, we implemented
the sensing system design described in the previous section.
The designed four PPG sensing probes will be embedded in
the driver’s steering wheel equidistant from each other. The

designed LEDs will emit at the wavelength of 850 nm (near
infrared). The first phase of the proposed pipeline is the training-
calibration task. The training-calibration phase includes a
learning stage in which the pipeline determines the correlation
between visual time-dynamic of the segmented face descriptors
(landmarks) with the associated PPG features. This module was
designed to collect enough data to characterize the car driver
drowsiness as well as the correlated blood pressure level. At this
stage, the raw PPG signal is firstly sampled by using the designed
coupled LED-SiPM sensing probes (Mazzillo et al., 2018; Rundo
et al., 2018a). We also applied the PPG-PRS (means PPG Pattern
Recognition System) algorithm to the so collected raw PPG signal
in order to obtain a compliant filtered PPG time-series (Rundo
et al., 2018a, 2021).

The PPG-PRS preliminary filters the raw PPG signal cutting
off artifacts and noise through the use of a Butterworth
bandpass filter in the range 0.5–10 Hz. Moreover, a study
of the first and second derivatives of the filtered PPG signal
was implemented in the PPG-PRS algorithm. This analysis
allows to detect the minimum and maximum extreme points
of each selected compliant PPG waveform. Finally, by means
of a second order dynamic and Reaction-Diffusion system,
which emulates the physiological phenomenon of the PPG
signal formation, the PPG-PRS algorithm is able to stabilize
the sampled PPG signal. The configuration of the PPG-PRS
algorithm is exactly the one reported in the scientific contribution
(Rundo et al., 2018a). In Figure 6, we depicted an instance of a
filtered PPG compliant waveform, identifying the corresponding
extreme points m1,m2,m3,m4. The second part of the proposed
Vision2Physio reconstruction pipeline is composed by the
enhanced motion magnification module. More in detail, we
performed the PPG sampling simultaneously with the recording
of a video sequence of the subject’s frontal face by using a
low frame-rate camera device under normal light conditions.
Specifically, we used a device with a max resolution of 2.3
Mpx and 50 fps as framerate. Several studies have demonstrated
that the face of a subject performs visual micro-movements
closely related to the cardiac pumping activity (systolic and
diastolic phase; Oh et al., 2018). The PPG signal (as a cardiac-
related signal) is strongly correlated to the aforementioned
micro-movements (Balakrishnan et al., 2013). In order to make
these micro-movements visible at naked eyes, some authors
have designed innovative motion magnification techniques
which require a video-camera devices with high frame-rate (on
average, frame rate ranging from 10 Kfps up; Rubinstein et al.,
2013). Motion Magnification refers to amplifying facial micro-
movements in order to reveal the flow of blood (Balakrishnan
et al., 2013; Rubinstein et al., 2013; Oh et al., 2018). However, the
method originally proposed for motion magnification showed
an evident issue in relation to automotive applications as it
requires, as mentioned, the need for a high frame-rate video
device (of the order of Kfps). This constraint is not easily covered
in automotive field mainly for reasons of costs and sustainability
of the underlying hardware. For this reason, by extending a
previous version already implemented, the authors propose
in this contribution a different motion magnification method
which addresses the mentioned issues. The preliminar version
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of the proposed enhanced motion magnification algorithm was
reported by the authors in Trenta et al. (2019). With this regard,
we firstly developed a method to process video frames depicting
face sequences of the car driver in order to preliminary identify
significant landmarks or descriptors on the subject’s face. The
proposed pipeline is shown in Figure 7.

In order to detect the aforementioned landmarks, the
approach implemented in Kazemi and Sullivan (2014) was used.
This algorithm locates the (x, y) coordinates of 68 facial points
(landmarks) describing the facial structures (i.e., mouth, eyes,
nose, etc.) on a subject’s face image. The approach is based on
the usage of a pre-trained learning model (Kazemi and Sullivan,
2014). Themain advantage of this algorithm consists in obtaining
near real-time high-quality landmarks recognition and tracking
even with a low frame-rates video. More details in Kazemi and
Sullivan (2014). In our previous solution reported in Trenta et al.
(2019). both the hardware PPG signal sensing system and the
landmarks detection algorithm were quite different. The PPG
sensing system used green LEDs. Furthermore, although Kazami
and Sullivan’s algorithm was used to retrieve the landmarks of
the driver’s face, the number of used landmarks were significantly
lower than the total number (68 descriptors), specifically, there
were only two (landmarks adjacent to the eyes). For the
reconstruction of the PPG features from the visual subject’s face
frames, a deep classifier based on LSTM was used. However,
this model only reconstructed the minimum points of each PPG
waveform. The setup reported in Trenta et al. (2019) allowed us to
prove that the motionmagnificationmodel we proposed was able
to achieve optimal performance in the automotive field. However,
the pipeline described in Trenta et al. (2019) was implemented
in a prototype system by National Instruments that required
data buffering and therefore the overall system response time
was significantly slowed down. Furthermore, considering that
the pipeline used only two car driver landmarks adjacent to the
eyes, in certain scenarios this visual data could be no longer
available (for instance a scenario in which the driver wearing
sunglasses) and therefore the pipeline would be no longer
applicable. These limitations have been largely overcome in the
motion magnification pipeline herein proposed. Formally, we
have defined the reconstruction of landmarks dynamics bymeans
of Kazemi and Sullivan based function ψKS(.). If we indicate with
Itk (x, y) the captured M × N gray-level (or luminance gray-level
channel in case of color camera device) video frame of the car’s
driver at the instant tk, the i − th dynamic landmark ℓi(tk, xl, yl)
is reconstructed as follow:

ℓi(tk, xli, yli ) = ψKS(Itk (x, y)); k = 1..Nf ; i = 1..NL (1)

where ℓi(tk, xli, yli) represents the pixel intensity variation of
the i-th landmark identified at the space position (xli, yli) on
the frame while Nf represents the number of captured frames
and NL represents the number of identified landmarks (i.e.,
68 as per Kazemi et al. based algorithm). Therefore, in the
proposed pipeline the whole set of landmarks was used making
the proposed method more robust than the version reported in
Trenta et al. (2019). We did a test in a scenario where the driver
is wearing sunglasses. While the Trenta et al. (2019) method is no

longer applicable, our approach continues to work by presenting
overlapping performances (see experimental results session for
more details). Furthermore, it must be said that the Trenta et al.
(2019) method is not applicable to the reconstruction of the
driver’s pressure level (see next paragraphs) due to the reduced
number of landmarks. Moreover, the usage of a PPG sensing
device emitting at near-infrared spectrum allowed to have a
native PPG signal more detailed than that obtained using green
light (as in Trenta et al., 2019) and that is for some specific
characteristics implicit in the physiological process of the signal
formation (Schmidt, 1989; Kurian et al., 2014; Dastjerdi et al.,
2017; Conoci et al., 2018; Rundo et al., 2019d; Vinciguerra et al.,
2019).

Once the representative landmark dynamics of the driver
have been identified, we proceed analysing the so collected
descriptors time-series ℓi(tk, xli, yli) in order to correlate their
intensity temporal dynamics with the underlying cardiac activity.
The proposed method does not require high frame-rate camera
devices as for the method to which it is inspired (Littler et al.,
1973). It requires a normal commercial vision device having a
framerate in the range ≥40 fps. To model the aforementioned
relationship between face landmarks and the cardiac activity
of the analyzed driver, the authors propose two deep learning
frameworks: one based on the usage of Deep Long Short-Term
Memory (D-LSTM) architectures and the other one based on
the usage of 1D Temporal Deep Dilated Convolution Neural
Network (1D-TDCNN) network. Moreover, in order to improve
the robustness of the proposed safety assessment pipeline, we
introduce a classical Deep Convolutional Neural Network (D-
CNN) for car driver’s eyes tracking to be correlated with level of
attention or drowsiness. In the following sections, some details of
the proposed framework will be outlined.

5.3. The Deep Learning Framework
As described in the previous section, the proposed Deep Learning
framework consisted of two parts: (i) a deep architecture (D-
LSTM or 1D-TDCNN) employed to classify driver’s PPG signal
or in case it is no longer available, the driver landmarks dynamics
ℓi(tk, xli, yli) retrieved from the Vision2PPG Reconstruction
pipeline, (ii) a Depp CNN used to perform eyes-based visual
classification of the car-driver drowsiness. In the following
subsections, the authors proceed to the scientific description of
each block of the proposed Deep Learning pipeline.

5.3.1. The Car Driver Landmarks Deep Classifier
As introduced, we propose two deep learning basic solutions
to correctly classify the driver visual landmarks and correlate
them with such PPG features (specifically: the extreme points
of the PPG signal). The first setup uses ad-hoc Deep Long
Short-TermMemory (D-LSTM) framework. In particular, our D-
LSTM network is based on Vanilla architecture, firstly proposed
by Hochreiter and Schmidhuber (1997). As mentioned, the
authors have already used such LSTM-based architecture to
address similar automotive application with respect to what it is
herein described (Trenta et al., 2019). Moreover, vanilla D-LSTM
architectures have been largely employed in the automotive
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FIGURE 7 | The proposed enhanced Motion Magnification pipeline.

FIGURE 8 | A prototype of the LSTM cell.

field (Monte-Moreno, 2011; Koh et al., 2017; Vinciguerra
et al., 2017). We remark that in this contribution, the authors
significantly improved the approach previously described in
Trenta et al. (2019). Specifically, the proposed approach allows
to better reconstruct the PPG signal (more extreme points) and
consequently improves the performance in terms of drowsiness
classification. Furthermore, the proposed approach allows to

estimate the corresponding level of blood pressure. In the
next paragraphs, more details about the performance and
benchmarking of the proposed approach. Let’s introduce the
designed deep platform. The proposed D-LSTM architecture
is composed of one input layer, two hidden layers and one
output layer. In order to significantly improve the classification
performance, the input layer was designed with 64 input units
and, consequently, the two hidden layers with 64 and 128 cells,
respectively. Finally, the output layer, that consists in 1 cell, will
provide the predicted PPG samples that will be used to determine
the extreme points m1,m2,m3,m4. In Figure 8, we reported the
basic unit structure of the used D-LSTM. The mathematical
model which represents the learning model of the cell is reported
as follow:

ft = σ (Wf •
[

ht−1, xt
]

+ bf (2)

it = σ (Wi • [ht−1, xt]+ bi (3)

˜Ct = tanh (WC • [ht−1, xt]+ bC) (4)

Ct = ft ∗ Ct−1 + it ∗ ˜Ct (5)

ot = σ (Wo • [ht−1, xt]+ bo (6)

ht = ot ∗ tanh (Ct) (7)
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From Figure 8, it is clear that given xt as input vector, the
previous output cell ht−1 as well as the previous cell memory
Ct−1, the current cell output ht and the current cell memory
Ct , are suitable to determine what information the D-LSTM has
to be stored. Equations (4)–(7) allows to model the behavior
of the proposed D-LSTM. In order to improve the overall
performance, a batch normalization and dropout layer have
been added to the output of each LSTM layer. Our model was
trained with an initial learning rate of 10−3, a batch size set
to 512 and with the maximum number of training epochs set
to 200. During the training-calibration phase of each recruited
driver subject, the suggested Deep LSTM is able to learn the
correlation there is among the selected facial landmark time-
series ℓi(tk, xli, yli) and the corresponding sampled PPG signal.
The designed Deep LSTM pipeline will produce in output
the predicted PPG waveforms from which the extreme points
m1,m2,m3,m4 will be detected as reported in Figure 6. After
several tests we found that not all the identified landmarks are
correlated with the subject’s cardiac activity and then in order to
obtain acceptable performances, in terms of reconstruction of the
PPG signal features, only a subset of landmarks can be processed.
Furthermore, thanks to the implemented D-LSTM architecture
we have verified that a more simple composite landmarks signal
can be used for addressing the needed PPG reconstruction task.
Specifically, we perform the following computation:

µℓ (tk) =
1

NL

NL
∑

j=1

ℓj

(

tk, xl j, ylj

)

∀ tk (8)

The so computed (properly normalized) signal µℓ(tk) will be
given as input of the designed D-LSTM. Consequently, the
architecture will be trained to find the correlation between
the input signal µℓ(tk) and the corresponding PPG signal.
Figure 9 shows the overall scheme of the proposed D-LSTM.
Basically, the extreme points m1,m2,m3,m4 for each predicted
PPG waveforms (see Figure 6 for more details) are computed by
performing the same analysis applied by thementioned PPG-PRS
algorithm (Rundo et al., 2018b) i.e., by analyzing the first and
second derivative of the D-LSTM estimated PPG signal.

The second analyzed deep architecture that we have
implemented to correlate the visual features and the
corresponding PPG signal, is based on the use of a temporal
deep architecture. Specifically, ad-hoc 1D Temporal Deep
dilated Convolutional Neural Network (1D-TDCNN) has
been developed (Zhao et al., 2019). The main building block
consists of a dilated causal convolution layer that operates
over the time steps of each sequence (Zhao et al., 2019). The
proposed 1D-TDCNN includes multiple residual blocks, each
containing two sets of dilated causal convolution layers with
the same dilation factor, followed by normalization, ReLU
activation, and spatial dropout layers. Furthermore, a 1 × 1
convolution is applied to adapt the number of channels between
the input and output. Specifically, we implemented a 1D-
TDCNN composed of 25 blocks with a downstream SoftMax
layer. Each of the deep blocks comprise a dilated convolution
layer with 3 × 3 kernel filters, a spatial dropout layer, another

dilated convolution layer, a ReLU layer, and a final spatial
dropout. The dilation factor size starts of a factor equal to
2 and it will be increased for each block till the value of 16.
As for LSTM based solutions, the so-designed 1D-TDCNN
output represents predicted extreme points of the PPG signal.
The following Figure 10 shows the proposed 1D-TDCNN
based solution.

To validate the effectiveness of the proposed Deep pipelines
in reconstructing such features of the original PPG signal, we
computed the Fast Fourier Transform (FFT) of a signal obtained
through the difference between the PPG reconstructed minimum
points (Trenta et al., 2019). As described in the introductory part
of this contribution, the HRV monitoring is one of the classic
structured physiological method for determining the drowsiness
level of a subject. As widely confirmed in scientific literature,
the HRV can be computed performing a proper Fast Fourier
Transform (FFT) of a differential physiological signal obtained
from ECG i.e., by means of the distance R-Peak to R-Peak as
well as from PPG through the distance of the minimum points
of two consecutives waveforms (Lee et al., 2011; Rundo et al.,
2018b; Trenta et al., 2019). Therefore, a well robust measurement
of HRV of a subject (car driver in our application) can be
obtained by computing the FFT spectrum of the PPG based
physiological differential signal. In case of the PPG signal is
unavailable the predicted PPG minimum points reconstructed
by Vision2PPG block will be used. Once the HRV is computed,
by means of classical analysis based on the usage of the HF
(High-Frequency power), LF (Low-Frequency power) and the
LF/ HF ratio, the drowsiness of a subject is easily detected and
monitored (Lee et al., 2011, 2019; Choi et al., 2017; Deng and
Wu, 2019). More details about the performance validation of
the proposed deep pipelines will be reported in the experimental
results section.

As soon as the proposed Deep architecture -both D-LSTM
either 1D-TDCNN- has learned the correlation there is among
the driver’s facial landmarks and extreme points of the relative
PPG signal, the training-calibration phase will be dropped, and
therefore the system will work feed-forward. The calibration
phase of the whole described pipeline requires a 15/20 s of
PPG signal (the proposed sensing device is able to execute an
acquisition at 1 KHz) with the relative visual frames (acquired at
50 fps) and it will be needed to perform only at once. Obviously,
this system will be enabled by the driver hardware control
unit whenever the physiological signal of the driver will not
be detected for some reasons by the PPG sensors embedded in
the car’s steering. Therefore, compared to the previous approach
proposed by the authors in the contributions (Rundo et al.,
2018a,b, 2019d; Trenta et al., 2019), the method herein described
allows to reconstruct more discriminating PPG features (the four
extremal points of the PPGwaveform against only theminimums
of the previous version). Furthermore, the Vision2PPG pipeline
with the downstream classifier is much more robust than in
scenarios where some visual landmarks are no longer available.
By using a 1D TDCNN, the long-range temporal dependencies
of the PPG signal are better treated allowing an effective changes
detection in the state of attention induced by the autonomic
nervous system of the driver. In addition, the proposed pipeline
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FIGURE 9 | The proposed D-LSTM pipeline for PPG features estimation. The corresponding extreme points are highlighted with black circle and “x” symbol in the

predicted PPG waveforms (red signal).

FIGURE 10 | The proposed 1D-TDCNN pipeline for PPG features estimation. The corresponding extreme points are highlighted with black circle and “x” symbol in the

predicted PPG waveforms (red signal).

provides features that allow to also obtain a less invasive and cuff-
less assessment of the driver’s pressure level not possible in the
solutions previously proposed in Trenta et al. (2019).

5.3.2. The Car Driver Eye’s Tracking Trough Deep

CNN Pipeline
In order to have a simultaneous safety monitoring pipeline
without technology overlap with the previously described blocks,
the authors implemented a further assisted pipeline based on
the usage of ad-hoc Deep Convolutional Neural Network (D-
CNN). The proposed 2D D-CNN network is quite simple and

includes three convolutional layers each of which has a ReLU
activation layer (with batch-normalization), such 2 × 2 max
pooling layers except for the last convolutional layer. The first
convolutional layer performs 32 operations with 3 × 3 kernel
filters, where the second and the third shows 64 and 128 kernel
filters of 3 × 3, respectively. A stack of densely connected layers
and Softmax complete the proposed D-CNN pipeline in order
to perform two classes classification of the input visual data
i.e., drowsy/wakeful status of the analyzed driver. Fine-tuning is
done for 100 epochs using Adam optimizer and cross entropy
as loss function. To carry out the experiments, we also set the
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learning rate to 0.001 and the batch size to 32. In Figure 11,
the proposed D-CNN architecture. The input visual frame of the
D-CNN is a patch depicting a single eye (77 × 77 resolution),
which we segment from the driver’s face using the algorithm
proposed in Viola and Jones (2001). This algorithm does not
require an annotated images dataset to work and can it be easily
carried on embedded hardware architectures while maintaining
remarkable performance both in segmentation and in execution
speed. More details in Viola and Jones (2001). The proposed
full D-CNN has been designed in order to get it portable to
such embedded hardware solution ASIL-B certified i.e., STA1295
Accordo5 MCU3 as described in this work. Specifically, the D-
CNN (as well as the previous D-LSTM/1D-TDCNN pipelines)
will be hosted in the STA1295 Accordo5 embedded automotive
grade DUAL ARM A7 which includes a 3D-GFX accelerator cell
suitable for this kind of processing (Rundo et al., 2019a). In
Figure 12, we reported a scheme of the overall platform. All input
data (PPG samples and visual frames) will be properly stored
in such buffers allocated in the EMI memory of the STA1295
MCU platform.

5.4. The Car-Driver Blood Pressure
Estimation Pipeline
The application described in this section regards the monitoring
of the driver blood pressure as strongly correlated to the driving
safety and driver attention level. We propose a novel solution
for measuring blood pressure from such features of the PPG
signal as well as from the corresponding facial video frames of
the subject by using the proposed Vision2PPG reconstruction
pipeline (in case the PPG signal unavailability). We remark that
our proposed blood pressure estimation pipeline works both
in the scenario in which the PPG is unavailable and in the
case in which the physiological signal was correctly sampled by
the sensing probe. As described, by means of the Vision2PPG
pipeline, we will obtain the extreme points of the subject’s
PPG signal. From these predicted data, by means of a suitably
configured Shallow Neural Network (Rundo et al., 2019c), the
authors are able to discriminate normal blood pressure subjects
from those who had pressure values beyond the norm. The
blood pressure estimation pipeline has been designed in order
to be ported as firmware running in the STA1295 Accordo5
embedded automotive processor. Once the set of characteristic
extreme points of the PPG waveforms have been collected (by
means of the Vision2PPG reconstruction pipeline or from native
PPG signal), we are able to characterize the subject’s cardiac
activity (systole, dicrotic, and diastole phases) on which the level
depends the blood pressure (Rundo et al., 2018b). Let’s formalize
this application. In Figure 6, we have reported an instance of
compliant PPG waveform with highlighted extreme points mx.
For each pair of PPG waveforms PPGj, PPGj+1 we define the
following indicators:
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where mAIJ is a modified version of the so-called Augmentation
Index, usually computed for measuring the arterial stiffness
(Vavrinskỳ et al., 2010) while NPPG represents the number of
estimated PPG waveforms. The other indicators reported in the
Equations (9)–(12) are able to characterize cardiac cycles and,
therefore, the relative blood pressure level. The input of the
above-mentioned Shallow Neural Network (SNN) is represented
by the elements of the vector ϕ. The SNN is a Fully Connected
Multi-Layers Network with two hidden layers of 500 and 300
neurons and a binary output. It was designed with the target
of learning the correlation there is among the so computed
input elements in ϕ and the associated diastolic and systolic
blood pressure values. Furthermore, the aforementioned SNN
was trained with the Scaled Conjugate Gradient backpropagation
(SCG) algorithm (Rundo et al., 2019c). As output, the SNN
framework will produce a value that may be treated like a
discriminating flag able to differentiate the subject showing
normal pressure values (0) with respect to the hypertensive or
hypotensive subject (1). Specifically, we calibrate the system in
order to detect if the subject has a pressure level that is on average
15% higher or lower than a reference value. The set 120/80,
which indicates 120 mmHg for systolic pressure and 80 mmHg
for diastolic pressure, has been considered normal blood pressure
values (as confirmed by the team of physiologists who assisted
us in this study). On the other hand, higher or significantly
lower (15%) values are considered anomalous. It should be noted
that the proposed system is able to monitor and discriminate
even different pressure levels (with respect to the classic 120/80
mmHg) requiring a different and adequate calibration. This is to
cover the cases of moderate hypotension/hypertension affected
subjects who physiologically present a normal blood pressure
level a little different from 120/80 mmHg. For these subjects,
the pipeline calibration phase will refer to different reference
pressure values. In any case, during the calibration phase of
the Vision2PPG recognition system, the training of the SNN
block will be performed in order to correlate the blood pressure
(reference value and current value) and PPG levels of the subject
preparing to drive. The proposed pipeline has been tested and
validated in one of the most interesting automotive scenario: the
pedestrian tracking system.

5.5. The Deep Network With Criss-Cross
Attention for Pedestrian Tracking System
The tracking of pedestrians while driving is certainly one of
the most important aspects in the field of safety automotive
requirements. The detection and subsequent monitoring of
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FIGURE 11 | (A) The proposed D-CNN architecture. (B) Some instances of D-CNN input visual data.

FIGURE 12 | The STA1295A Accordo5 platform hosting the D-LSTM Vison2PPG Reconstruction pipeline as well as D-CNN architecture.

pedestrians in the driving scene allows the automatic driver
assistance system to continuously validate if the driving dynamics
and the level of attention are compatible with the presence of
pedestrians in the scene. Many authors have investigated this
relevant issue by analyzing the advantages inherent in the use of
deep learning architectures (Tian et al., 2015; Song et al., 2018;
Jeon et al., 2019; Bhola et al., 2020). The authors investigated
several interesting object detection and tracking architecture
backbones to be adapted to pedestrian tracking. Specifically,
the researchers found that deep learning systems embedding
attention mechanisms significantly increase the performance in
classification and segmentation of the underlying backbones. For
these reasons, we found it useful to implement an innovative
network that included the recent self-attention context through
the use of Criss-Cross layers (Huang et al., 2019). More in detail,
for each source image/feature pixel, an innovative Criss-Cross

attention module computes the contextual information of all
the correlated pixels on its Criss-Cross path. This attention pre-
processing combined with further recurrent operations allow
the Criss-Cross method to leverage the full-image dependencies
during the learning session of the deep network (Huang et al.,
2019). Let us formalize the attention processing embedded in
the Criss-Cross layer. Given a local feature map H ∈ RC×W×H

where C is the original number of channels while W × H
represents the spatial size of the generated feature map trough
a Deep Convolutional Network. The Criss-Cross layer applies
two preliminary 1 × 1 convolutional layers on H in order to

generate two feature maps F1 and F2, which belong to RC
′
×W×H

and in which C’ represents the reduced number of channels due
to dimension reduction with respect to original (C). Let define an
Affinity function suitable to generate the Attention-Map AM ∈

R(H+W−1)×(W×H). The affinity operation is so defined. For each
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position u in the spatial dimension of F1, we extract a vector
F1,u ∈ RC. Similarly, we define the set �u ∈ R(H+W−1)×C by
extracting feature vectors from F2 at the same position u, so that,

�i,u ∈ RC
′

is the i-th element of �u. Taking into account the
above operations, we can define the introduced Affinity operation
as follows:

δ
A
i,u = F1,u�

T
i,u (14)

where δAi,u ∈ D is the affinity potential i.e. the degree of correlation
between features F1,u and �i,u, for each i = [1,...,H + W - 1], and
D ∈ R(H+W−1)×(W×H). Then, we apply a softmax layer on D
over the channel dimension to calculate the attention map AM .
Finally, another convolutional layer with 1 × 1 kernel will be
applied on the feature map H to generate the re-mapped feature
ϑ ∈ RC×W×H to be used for spatial adaptation. At each position
u in the spatial dimension of ϑ , we can define a vector ϑu ∈ RC

and a set8u ∈ R(H+W−1)×C. The set8u is a collection of feature
vectors in ϑ having the same row or column with position u. At
the end, the final contextual information will be obtained by an
Aggregation operation defined as follows:

H′

u =

H+W−1
∑

i=0

Ai,u
M8i,u +Hu (15)

where H′
u is a feature vector in H′

∈ RC×W×H at position u

while Ai,u
M is a scalar value at channel i and position u in AM .

The so defined contextual information H′
u is then added to the

given local feature H to augment the pixel-wise representation
and aggregating context information according to the spatial
attention map AM . These feature representations achieve mutual
gains and are more robust for semantic segmentation. Anyway,
the criss-cross attention module is able to capture contextual
information in horizontal and vertical directions but the
connections between one pixel and its around is not processed.
To overcome this issue, the authors firstly introduced the Criss-
Cross methodology proposed a Recurrent Criss-Cross processing
in which classic Criss-Cross operations can be unrolled into R
loops. We defined R = 2 for our purpose as suggested by the
original description (Huang et al., 2019).

The proposed Criss-Cross layer has been embedded in
the Mask-R-CNN architecture used as pedestrian detection,
segmentation and tracking. The architecture of Mask-R-CNN
has been descripted in He et al. (2017). The Mask-R-CNN
architecture extends previous detection and segmentation similar
solutions such as Fast-R-CNN or Faster R-CNN by adding
a branch-pipeline for predicting an object mask in parallel
with the existing pipeline for bounding box recognition (He
et al., 2017). One of the main parts of the Mask-R-CNN
architecture is the Deep convolutional network used for the
feature maps extraction. For this purpose, different backbones
have been tested in the scientific literature (He et al., 2017,
2020). We denote the used backbone architecture using the
nomenclature network-depth-features (He et al., 2017, 2020).
In this proposed work, we used the Mask-R-CNN with a
backbone based on a 2D ResNet-101 (He et al., 2017, 2020) in
which we embedded, in the last block, a layer of self attention

based on the aforementioned Criss-Cross methodology. The
following Figure 13 shows the overall scheme of the proposed
Criss-Cross enhanced Mask-R-CNN and some instances of the
detected and segmented pedestrians both with red bounding-
boxes and without. This architecture performed very well as
we reached a test-set performance mIoU of 0.695 over CamVid
dataset which is in line with the performance of other more
complex architectures (He et al., 2017, 2020). Obviously, it is
reiterated that the target of the work herein described in this
manuscript is not to propose an architecture that outperforms the
others in relation to the detection, tracking and segmentation of
pedestrians but rather a system that detects the level of driving
safety in risky scenarios. This proposed enhanced Criss-Cross
architecture has been used as it presents an excellent trade-
off between segmentation performance and complexity for an
embedded system (as mentioned, this pipeline is being ported
over the STA1295MCU system). Furthermore, theMask-R-CNN
also allows us to obtain the bounding-box of the pedestrian which
we will need to determine the distance from the driver’s car.
Quite simply, the height and width of the segmentation bounding
box of each segmented pedestrian will be determined. Only
bounding-boxes that have at least one of the two dimensions
greater than two heuristically fixed thresholds (L1 and L2,
respectively for length and width) will be considered salient
pedestrians, i.e., pedestrians thatmust be considered by the driver
when choosing the driving dynamics. The other pedestrians will
be considered non salient and therefore not involved in safety
level assessment. This so computed distance assessment will be
used in the next block of the proposed pipeline.

5.6. The Driving Safety Monitoring System
We proposed an innovative pipeline for monitoring the car
driving safety by means of visual and physiological data analysis.
Specifically, the designed pipeline is able to combine the driver’s
physiological and visual data sampled in ad-hoc implemented
sensing framework embedded in the car. We developed a system
that was non-invasive for the driver, addressing the classic
critical issues based on the usage of such physiological bio-signal
difficulty to sample in a vehicle (ECG or EEG) or which require
such sensors to be worn by the driver. For these reasons we have
implemented a solution based on the usage of less-invasive car
driver’s PPG signal processing.When that PPG signal is no longer
available for some reason, a parallel pipeline based on the usage of
car driver visual data will be able to reconstruct specific features
of the missed driver’s PPG signal. From these estimated features
we can reconstruct the level of driving safety by monitoring the
driver’s fatigue level i.e., a degree of attention through the analysis
of Heart Rate Variability (HRV) and tracing the correlated blood
pressure dynamics. Moreover, in order to increase the robustness
of the proposed approach, a further visual driver face processing
has been implemented trough ad-hocD-CNN which will provide
a classification of the car driver attention.

The proposed application use-case is mainly aimed at driving
in risky conditions, for instance, in scenarios in which one or
more pedestrians are moving in the driving scene. By means of a
modified Mask-R-CNN network with an attention layer through
Criss-Cross methodology, we are able to detect and segment
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FIGURE 13 | The proposed Pedestrian Tracking System based on Criss-Cross enhanced Mask-R-CNN.

FIGURE 14 | The overall scheme of the proposed solution with a detail of the designed Driving Safety Detection System.
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pedestrians in different configurations. Furthermore, we are able
to obtain bounding-box segmentation and tracking which will
allow us to estimate the distance of the pedestrian from the
car. A comprehensive scheme of the proposed driving safety
estimation architecture is showed in Figure 14. In this scheme
is highlighted a block called Driving Safety Detection System
(DSDS) which will process the outputs obtained by each of the
previously described pipelines, specifically, the assessment of the
driver’s attention level (HRV analysis), the driver’s blood pressure
level (SNN output), the classification of the driver attention level
performed by the implemented D-CNN and the distance of the
detected and segmented pedestrians from the car. In detail, the
DSDS will trigger an acoustic alert-signal, with different intensity
according to the risk level, if one of the following setup will
come true:

• High Risk Level (Alert-Signal with High intensity) HRV shows
low attention level AND (the SNN output shows abnormal
blood pressure OR D-CNN shows low attention level) AND
the Mask-R-CNN identifies such salient pedestrians;

• Medium-Low Risk Level (Alert-Signal with Medium-Low
intensity) HRV shows low attention level OR D-CNN shows
low attention level AND the Mask-R-CNN identifies such
salient pedestrians;

The acoustic signal is managed by the STA1295A Accordo5
Audio sub-system which will host the DSDS software
implementation (see Figure 12). The system will therefore
provide an assessment of the driving safety in the analyzed
use-case: pedestrian tracking. All the developed sub-systems of
the proposed pipeline are ongoing to be ported over the STA1295
Accordo5 Dual ARM Cortex MCUs platform.

5.7. Dataset
Under the supervision of physiologists, a dataset of selected
and monitored subjects was collected. More in details, for
each recruited subject we performed an acquisition of the PPG
signal simultaneously with systolic and diastolic blood pressure
measurements and contextually with a session of face video-
recording. All data collections were conducted by inducing
in both subjects such states of high attention and states of
low attention that the physiologists who supervised the clinical
study properly induced. More in details, for each recruited
subject the EGG signal was sampled as well as the EEG
time-series from which the physiologist analyze the dynamic:
alpha waves representative of low attention status or beta
waves representative of medium-high attention level (Guo and
Markoni, 2019; Rundo et al., 2019b). Participants were recruited
after signing the informed consent form provided by the Ethical
Committee CT1 (authorization n.113/2018/PO). The dataset
(further recruitments with respect to the work described in
Rundo et al., 2018b, 2019b) is composed of 71 subjects (males
and females, min age: 20 years, max age: 75 years) splitted into
45 subjects having a less or equal to 120/80 mmHg and 26
subjects having a blood pressure higher than 120/80 mmHg both
in physiological and pathological state.

To carry out our experiments, we paid attention to the subjects
with an arterial pressure greater or lower than 15% in average

with respect to normal values (configured during the training-
calibration phase of the Vision2PPG reconstruction pipeline for
each subject). In case of hypotensive or hypertensive subjects,
we have adjusted the reference blood pressure accordingly. The
overall study was carried out in accordance with the protocol
of the Declaration of Helsinki. For each subject, the blood
pressure measurements were certified by means of a medical
sphygmomanometer device. The PPG was sampled by the
proposed sensing device at 1 kHz frequency. For retrieving
visual data, we have used a commercial color camera device
having max resolution of 2.3 Mpx and 50 fps as frame-rate. The
collected minimum pressure value is around 98/70, while the
maximum pressure value is 158/90. Each measurement session
lasts 10 min, 5 of which in a state of high attention and 5 in
a state of low attention. The level of adequate attention has
been induced by performing mathematical calculations, reading
anecdotes or by viewing representative driving scenarios where
high driver attention is required (car overtaking, changing lane,
braking, etc.). During this phase the subjects’ EEG signal was
sampled, confirming the presence of beta waves (Rundo et al.,
2019b). Similarly, for low attention measurement sessions in
which subjects were asked to relax, close their eyes for a few
moments, listen slowmusic that induces states of relaxation, thus
inducing a decrease in heart rate and the simultaneous presence
of typical visual expressions showing drop in attention such as the
decrease in the frequency of eye blinking. Only when the EEG
showed the dynamic of alpha waves, the data (PPG and visual)
were acquired so as to have certainty of the low attention state
of the analyzed subject. Same approach for high attention states
corresponding to beta waves. We divided the dataset as follows:
70% of the data has been used for the training while the remaining
30% for validation (15%) and testing (15%). We have run our
experiments as well as training and testing of the proposed
deep learning architectures in MATLAB full toolboxes rel. 2019b
environment running in a server having an Intel 16-Cores and
NVIDIA GeForce RTX 2080 GPU.

6. RESULTS

In order to validate the proposed composed approach we have
tested each of the proposed blocks i.e., the PPG-basedHRVdriver
drowsiness detection as well as the driver blood pressure level
estimation and finally the visual drowsiness estimation based on
D-CNN processing and the pedestrian detection, segmentation
and tracking. About the proposed PPG based HRV based
drowsiness detection pipeline, the following Table 1 reports the
overall testing accuracy of the approach as well as accuracy for
each classified class.

A description of the hardware and software system
implemented to obtain these performances is reported. Four
PPG sensing probes have been embedded in the car steering
with the characteristics described in the introductory section of
this paper having near infrared emission LEDs at 850 nm. In
addition, a camera with characteristics of 50 fps and a maximum
resolution of 2.3 Mpx has been mounted in the base of the
steering wheel and directed to sample the driver’s face. As
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TABLE 1 | Car driver HRV drowsiness monitoring performance.

Method Overall accuracy (%) Class 1 drowsy driver accuracy (%) Class 2 driver accuracy (%)

Proposed LSTM 95.07 95.77 94.36

Proposed 1D-TDCNN 95.67 96.33 94.78

Trenta et al. (2019) with

LSTM

94.43 95.10 93.77

Rundo et al. (2019c) 93.66 95.77 91.54

MLP 87.94 87.55 88.33

SVM 88.05 86.98 89.11

ResNet-50 93.90 93.85 93.95

TABLE 2 | Car driver’s face Landmarks detection methods: Robustness comparison.

Method Overall accuracy car driver NS (%) Overall accuracy car driver WS (%) Class 2 accuracy car Driver WE (%)

Trenta et al. (2019) with

LSTM

94.43 0.00 70.16

Proposed 1D-TCNN 95.67 92.31 93.98

(NS, normal scenario; WS, wearing sunglasses; WE, wearing eyeglasses).

TABLE 3 | Blood pressure (BP) performance.

Method Overall accuracy (%) Class 1 normal BP accuracy (%) Class 2 abnormal BP accuracy (%)

Proposed 90.14 88.88 92.30

Rundo et al. (2019a) 88.73 91.11 84.61

Trenta et al. (2019) with

LSTM

<50 <50 < 50

MLP 89.47 87.62 91.33

SVM 82.24 81.98 82.05

ResNet-50 90,01 89.02 91.01

described in the Vision2PPG reconstruction section, the vision
system has been calibrated to reconstruct the PPG features
processed as per Equations (9)–(13). The driver’s PPG signal
data sampled by the sensing probes will be then converted by
the analog-to-digital converters (ADCs) embedded in the SPC5x
Chorus MCU used to acquire and pre-process the raw PPG
signal from the sensors. Furthermore, the so collected raw PPG
signal will be stabilized and filtered in the range 0.5–10 Hz by
means of the previously introduced PPG-PRS pipeline running
as firmware in the mentioned embedded MCU. The visual
frames of the Vision2PPG block will instead be stored in the
DRAM of the embedded system based on STA1295A Accordo5
MCU in which the landmarks detection system based on the
Kazemi and Sullivan approach is running. Therefore, the results
reported in Table 1 were obtained by creating an application
use-case lasting 45 minutes of acquisition of different scenarios,
specifically ones in which the PPG signal was available (the driver
placed the hand over the PPG probes embedding on the steering)
and another ones in which this PPG signal was no longer
available and therefore the Vision2PPG reconstruction block
start the reconstruction of the PPG features. The PPG signal is

sampled at a frequency of 1 Khz. The used ADCs embedded
in the SPC5x CHORUS have a resolution of 12 bits. The set
of PPG features have been reconstructed by Vision2PPG block
through the usage of both D-LSTM (three layers of 64,64,128
cells trained with an initial learning rate of 10-3, a batch size set
to 512 and with the maximum number of training epochs set
to 200) and 1D-TCNN architectures (25 blocks -convolutions,
normalization layer, spatial dropout, ReLU, residual block-,
kernel 3 × 3, dilated convolutional with factor starting from
2 to 16, mini Batch Size of 1; initial learning rate equal to
0.001; and a Dropout Factor rated of 0.1). A comparison with
similar approaches based on different methodologies have been
reported in Table 1. More specifically, we have compared our
architecture with our previous solution described in Rundo et al.
(2019c) and Trenta et al. (2019) as well with an approach based
on the usage of Support Vector Machine (SVM), Multi-layer
Perceptron (MLP having an hidden layer of 600 neurons and
trained with a more performer Levenberg-Marquardt algorithm)
and finally with a ResNet-50, arranging the input landmarks in a
224 × 224 matrix. As highlighted from the reported benchmark
comparison results, the method we propose and based on the
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use of deep 1D-TCNN network outperforms the others not only
in terms of accuracy but rather in robustness as can also be
seen from Table 2. Specifically, the method we propose presents
a noteworthy advantages in terms of robustness compared to
the previous version (Trenta et al., 2019) in real scenarios in
which the driver wears sunglasses or eyeglasses (highly probable
scenarios). Furthermore, in terms of computational complexity
and therefore implementation costs, our solution based on
1D-TDCNN networks shows a lower complexity than the
architectures that show comparable performances: ResNet-50
has a size of 98 Mb against the 42 Mb of our 1D-TDCNN.
This aspect is very important considering that this solution
must be applied in the automotive field over the embedded
platforms mentioned in the previous sections, confirming an
undoubted advantage in terms of sustainability costs with greater
performance in terms of accuracy. The accuracy reported in
Table 1 was obtained by analyzing the HRV associated with the
features of the PPG signal thus processed, by analyzing the HF,
LF, and HF/LF ratio indicators (see section 5.3.1). We remark
that most significant advantage of the proposed method is non-
invasiveness in that it does not require the driver to wear any
sensor nor does it requires the driver necessarily places the hand
on the part of the steering in which the PPG sensors are housed.
Similarly, in the same dataset, we validated the reconstruction of
the driver’s blood pressure level through the SNN network. For
this testing session, we used the same aforementioned hardware
setup of the PPG sensing probes. The collected PPG features
(both native from sensors and reconstructed from Vision2PPG
block) will be fed to the implemented SNN Fully Connected
Multi-Layers Network having 64 neurons as input layer joined
with two hidden layers of 500 and 300 neurons and a binary
output. The network was trained with Scaled Conjugate Gradient
backpropagation (SCG) algorithm and compared with other
methodologies such as MLP, SVM, ResNet-50, and previous
method described in Trenta et al. (2019). The validation scenario
consists in constantly monitoring the subject’s blood pressure
level (by means of a digital blood pressure detection device
embedded in the driver’s arm) and detecting the classification
reconstructed by our SNN output system (output in the range
0–0.5 means pressure within the norm while values above 0.5
indicate abnormal blood pressure of the driver). Once again, an
examination of the benchmark comparison values reported in
Table 3 confirms the evident advantages of the proposed pipeline
as it not only outperforms in accuracy our previous solution
reported in Rundo et al. (2019a) and the other methodologies
tested but, in terms of complexity is significantly lower than a
solution based on deep learning (ResNet-50). Furthermore, the
pipeline herein described allows to overcome the raised limit of
the previous version reported in Trenta et al. (2019) which had
no significant accuracy in the classification of the subject’s blood
pressure level.

A comparison with another approach (Rundo et al., 2019c)
is reported. As evident from comparison data reported in
Table 1, the proposed method performs very well (both by
using the D-LSTM and 1D-TDCNN backbone) in that it shows
overall accuracy and accuracy for each classified class slightly
greater to the compared methods. The significant advantage

FIGURE 15 | For the proposed D-CNN performance diagrams: (A) Training

and testing accuracy (B) training and testing loss.

of the proposed method is non-invasiveness in that it does
not require the driver to wear any sensor nor does it requires
the driver necessarily places his/her hand on the part of the
steering in which the PPG signal sensors are housed. Similarly,
in the same dataset, we validated the reconstruction of the
driver’s blood pressure level through the SNN network trained
with the features extracted from PPG signal (or from the
Vision2PPG reconstruction block). Also, in this case we have
compared our method with others reported in the literature
(Rundo et al., 2019a). From Table 3, the performance of the
proposed method is very promising as we are able to classify
normal-pressure subjects (with an accuracy of 88.88% with
respect to 91.11% showed by similar PPG based pipeline; Rundo
et al., 2019a) from those who instead have a pressure level
out of range (accuracy of 92.30%) with an overall accuracy
of 90.14% relatively outperforming with respect to the similar
methods based on PPG signal sampling. We tested the D-
CNN based pipeline for tracking and classifying the visual

Frontiers in Neuroinformatics | www.frontiersin.org 19 July 2021 | Volume 15 | Article 667008188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Rundo et al. Deep NeuroVision Embedded ADAS

features extracted from the driver’s face during the measurement
sessions. Also in this case we have obtained an accuracy about
of 90% in the testing dataset confirming the robustness of the
proposed approach. In Figure 15, we show the loss and accuracy
related to the D-CNN learning and testing phase. Although
the target of this proposal is not the detection, tracking and
segmentation of pedestrians in the driving scene, we have still
validated the deep architecture we have developed by including
a Self Attention layer based on Criss-Cross processing in the
Mask-R-CNN network with ResNet-101 as the backbone. As
explained, that enhanced Mask-R-CNN was used as simple
application use-case for checking driving safety by mean of
the proposed pipeline. As introduced in the previous section,
we obtained in the testing phase a performance mIoU of
0.695 over CamVid dataset which outperforms other similarly
complex architectures described in the literature (He et al., 2017,
2020).

7. CONCLUSIONS AND DISCUSSION

In this study, we addressed the mentioned issue regarding the
estimation of driving safety by using a non-invasive and robust
methodology. Contrary to existing approaches, our proposed
method does not require contact with the driver or the necessity
to wear PPG sensors to collect the physiological signal. The
advantages of non-invasiveness are however accompanied by
overlapping (and sometimes even higher) performances than
those obtained by the classic methods which, however, require
the use of invasive sensing devices. The proposed multi-modal
approach that involves the use of visual and physiological
data and to correlate to each other (by means of Vision2PPG
reconstruction system) allows to obtain high fault tolerance
performance. The experimental results allow to be confident
about the applicability of the proposed Vison2Physio approach
in different scientific applications. The implemented pipeline is
ongoing to be ported to SPC5 Chorus based platform (PPG
sensing and processing) while the deep learning architectures
will be ported in the STA1295A Accordo5 embedded automotive
platform in which two ARM Cortex A7 and 3D GFX accelerator
hardware are able to host the developed software as firmware.
The embedded Operating System used for both applications is
ad-hoc YOCTO Linux distribution released for this specific kind
of application. The use-case analyzed in this proposal concerns
the intelligent tracking of pedestrians in a safe driving scenario.
However, the implemented approach can be successfully used
in several other automotive use cases. For instance, we have
implemented a safe driving application in which, through a deep
architecture based on Fully Convolutional Neural Network with
Self Attention, we are able to classify the level of risk of the driving
scenario and at the same time the driver drowsiness through
the PPG-based monitoring pipeline herein described (Rundo
et al., 2020a). Another automotive issue we have addressed
is the robust identification of the car driver. Through ad-
hoc intelligent pipeline based on the usage of PPG signal and
deep network, we have designed the so called “physiological

fingerprint” of the driver used for an effective identification
(Rundo et al., 2020d). Therefore the proposed method can
be generalized and applied in various automotive scenarios in
which it is necessary to characterize the level of attention of
the driver or in all the use-cases that deal with driving safety.
As future development, we plan to collect more data with the
aim of improving the effectiveness of the proposed approach.
Specifically, we will address further application in the automotive
field with special focus to autonomous driving andADAS systems
during low-light driving scenarios both inside and outside
the car.
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In terms of seizure prediction, how to fully mine relational data information among

multiple channels of epileptic EEG? This is a scientific research subject worthy

of further exploration. Recently, we propose a multi-dimensional enhanced seizure

prediction framework, which mainly includes information reconstruction space, graph

state encoder, and space-time predictor. It takes multi-channel spatial relationship as

breakthrough point. At the same time, it reconstructs data unit from frequency band level,

updates graph coding representation, and explores space-time relationship. Through

experiments on CHB-MIT dataset, sensitivity of the model reaches 98.61%, which proves

effectiveness of the proposed model.

Keywords: epilepsy EEG signal, seizures prediction, multichannel relationship, graph convolutional network,

space-time prediction

1. INTRODUCTION

Epilepsy is a chronic disease caused by brain dysfunction, which is characterized by sudden and
transient (Jia et al., 2004). In the study of seizure symptoms, EEG plays an important role. It is an
important auxiliary technology for epilepsy diagnosis (Yuan et al., 2012). In traditional diagnosis
of epilepsy symptoms, EEG data is often analyzed by experienced doctors. This process takes the
doctors too much time and energy. Besides, doctors often work for long time, their judgments are
also likely to be negatively affected by their body fatigue. To solve the problem, automatic detection
technology of epilepsy EEG is born.

At present, there are abundant researches of automatic detection based on epilepsy EEG.
However, only a few literatures have focused on the analysis of seizure prediction. In real life, it
is meaningful to predict seizures. For patients, uncertainty of seizures may cause unpredictable
accidents, which may seriously affect life and work (Holmes, 1984; Ahmed, 2005). The effective
prediction of seizure can help patients to solve the problems in time, thus reducing the loss of
patients to a minimum. In addition, for doctors and researchers, the effective prediction of seizures
not only helps them to explore the basic mechanisms of epileptic seizures, but also provides
important support for building accurate and stable epilepsy auxiliary diagnostic tools. In this paper,
we will focus on seizure prediction.

The process of seizure prediction generally consists of EEG signal acquisition, data
preprocessing, feature extraction, and classification. In particular, mining rich and effective features
from native EEG data is essential to improve classification accuracy. According to variation of the
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domains that EEG features are extracted from, features may
come from time domain, frequency domain, and the time-
frequency domain.

In time domain, Tessy et al. (2016) focused on extracting two
time-domain features of line length and energy to obtain high
classification results on k-nearest neighbors (KNN) classifier.
The algorithm proposed by Shanir et al. (2015) was based on
average and minimum of each segment. In addition, the team
of Zhang et al. (2018) divided EEG into several clusters and
extracted a set of time-domain features from each cluster. Each
group of features was regarded as a node of complex network.
Then, average weighted degree was calculated from network as
classification feature.

In frequency-domain, through experiments on Freiburg and
CHB-MIT databases, Zhou et al. (2018) proved that classification
accuracy of frequency-domain signals is significantly better than
that of time-domain signals. Al Ghayab et al. (2019) extracted
statistical features from sub windows by Fourier transform, and
sorted features by using information gain technique to select the
most appropriate ones.

In time-frequency-domain, more and more researches
focused on extracting EEG features from time-frequency
distribution (TFDs). Guerrero-Mosquera et al. (2010) extracted
length, frequency, and energy from the smoothed Wigner-
Ville distribution (SWVD) by using trajectory estimated from
McAulay-Quatieri sinusoidal model. A new method (Wavelet-
Chaos) of wavelet transformation was proposed by analyzing
δ, θ , α, and β subbands of EEG, they found that significant
differences could be captured by combining subband information
(Adeli et al., 2007). Sharma et al. (2014) used cubical threshold
denoising methods based on wavelet to analyze EEG signals
before extracting statistical features from frequency bands (0 ∼

8, 8 ∼ 16, 16 ∼ 32, and 0 ∼ 32 Hz). In addition, local binary
pattern (LBP) was extended to analysis of EEG signals, because
of its outstanding advantages such as rotation invariance and
gray invariance. For example, Shanir et al. (2018) proposed a
morphological feature extractionmethod based on LBP operator.

Considering comprehensively above these points, we propose
multi-dimensional enhanced seizure prediction framework based
on graph convolutional network (MESPF). The contributions of
this research are as follows:

• It is very importance to improve accuracy of seizure
prediction. To provide the prediction model with
more powerful and abundant data, we enhance overall
consideration of dimensions about epilepsy EEG signals.
In particular, we take multichannel spatial relationship
as breakthrough point, update representation of graph
relational data at frequency band level, and explore the
space-time relationships.

• We propose a multi-dimensional enhanced seizure
prediction framework, which mainly includes information
reconstruction space, graph state encoder, and space-time
predictor. We combine technical advantages of wavelet packet
decomposition, graph convolutional network and gated
recurrent neural network in construction of the framework.
From aspects of frequency, channel, and time, we intend

to mine richer and more effective data information than
previous studies.

• Finally, we apply the framework to data set (CHB-MIT)
for verification. In terms of experimental results, it has
surpassed or approached many existing algorithms. In short,
our framework provides a novel way for peers to study
principle of seizure prediction.

The organizational structure of our article is as follows, the
second section introduces prediction principle of the framework
(MESPF), the third section briefly describes experimental results
and analysis, and the fourth section is summary.

2. METHODOLOGIES

For seizure prediction, we propose a multi-dimensional
enhanced seizure prediction framework (MESPF). It mainly
includes information reconstruction space, graph state encoder,
and space-time predictor. The main process of the model
is shown in Figure 1. The following contents give specific
explanations in turn.

2.1. Information Reconstruction Space
Patients vary in physiological mechanisms, and their pre-ictal
signals may occur in different frequency band range. To capture
these subtle difference, we designs an information reconstruction
space. It is mainly used to highlight specificity and explore the
effect of feature enhancement on graph encoding.

Since epileptic EEG signals are random, non-stationary and
non-linear, we actively introduce wavelet packet decomposition
(WPD) in information reconstruction space to decompose EEG
signals. It should be emphasized that since range of wavelet
transform is mainly low frequency part of signals, it is difficult
to characterize a large amount of detailed information. However,
wavelet packet decomposition can orthogonally decompose
signal in full frequency range, and resolution of high frequency
part is better than the former. It is a more precise analysis method
than wavelet transform. So that it has gradually become one of
main methods for analyzing non-stationary signals (Hyvarinen
et al., 2001). Through wavelet packet decomposition, we can
analyze EEG signals from multiple frequency bands.

The principle of information reconstruction space in MESPF
is shown in Figure 2. By decomposing epileptic EEG signals
and calculating characteristics of energy value, it can update
representation of graph data. First of all, C1 − Cn represents
18 channels. In the third step, data of each channel is
processed by wavelet packet decomposition technique. Then
we calculate energy values of corresponding sub-bands and
reconstruct vectors characterized by energy values (step 4–
5). After completion of channel data reconstruction, we use
Pearson correlation coefficient calculation method to calculate
correlation between multiple channels (step 6). We update graph
relationship representation as one of direct inputs to graph
encoder (equivalent to edges of graph). Finally, related relational
data and each channel data itself (equivalent to vertex data of
graph) are used as input to graph encoder, as shown in step 7.
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FIGURE 1 | Our model mainly includes information reconstruction space, graph state encoder, and space-time predictor.

Specifically, decomposition principle of information
reconstruction space is shown in Figure 3. For a signal,
wavelet coefficients (A and D) are obtained by wavelet packet
decomposition of the first layer. A represents low frequency part
of signal, and D represents high frequency part. Each node in
graph represents a data sequence. Then, energy values of each
sub-band are calculated, respectively. In the experiment, four-
layer wavelet packet decomposition is adopted to obtain wavelet
coefficients of 16 frequency bands. In this way, each signal unit
can be represented by energy values. It should be noted that since
epilepsy EEG signal is continuous waveform, our experiment
uses a relatively smooth Daubechies (Db) wavelet base.

2.2. Graph State Encoder
After signal unit is processed by information reconstruction
space, the graph data are given into graph encoder for further
feature processing.

Seizure is a synergistic result of multiple brain regions.
For EEG, each channel records activities of different brain
regions, and there must be a certain relationship between
channels. Therefore, we build a graph state encoder to
explore relationship by extracting spatial features between
multiple channels. The specific structure and parameters

about graph encoder are shown in Figure 4, which mainly
includes input layer, graph convolution layer-1, graph
convolution layer-2, fully connected layer, and graph status
code layer. The activation layer in network uses Rectified
Linear Unit (ReLU), which can speed up convergence speed.
In general, after extracting features of graph space through
graph convolution layer, relevant data are weighted by fully
connected layer. Then, graph status code is generated. As
for status code, it is composed of 18 eigenvalues, which,
respectively, represent 18 channels of graph data. Each status
code represents data characteristics of corresponding time
period. Finally, we feed status codes into space-time predictor in
chronological order.

As for graph state encoder, we refer to method proposed
by Kipf and Welling (2016) and build sub-module based on
graph convolutional network. In particular, we need to emphasize
application of filter. Firstly, we define convolution operation on
graph as:

Conv = XMESPF ∗ Ke (1)

XMESPF represents direct input (signal) of graph state encoder, Ke

represents convolution kernel. Furthermore, in previous studies,
Defferrard et al. (2016) introduced Chebyshev polynomials,
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FIGURE 2 | The figure shows concrete principle of information reconstruction space.

FIGURE 3 | EEG signals are divided into several sub-bands by wavelet packet decomposition.

and they provided an algorithm for constructing fast local
filters in spectral domain, which can learn local, static and
combined features on graph. Subsequently, Kipf and Welling
(2016) optimized convolutional network structure through the
first-order local approximation of spectrogram convolution.

In process of graph convolution, due to existence of graph
Fourier transform, computational complexity of model is
relatively high. Chebyshev polynomials have numerical stability
and computational efficiency in field of polynomial function
approximation. Therefore, we actively introduce Chebyshev
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FIGURE 4 | Graph state encoder mainly includes input layer, graph convolution layer, and fully connected layer.

FIGURE 5 | The core part of space-time predictor is gate recurrent unit.

polynomials into the model. The relevant formula is as follows:

Tk(XMESPF) = 2XMESPFTk−1(XMESPF)− Tk−2(XMESPF) (2)

Ke(3) ≈
∑N

n=0 θnTn(˜3) (3)

θ represents vector of Chebyshev coefficients, ˜3 =
2

λmax
3− I, 3

represents diagonal matrix of eigenvalues, λmax represents
maximum eigenvalue of regularized feature matrix, I

represents identity matrix, convolution on graph is finally
expressed as:

OMESPF = XMESPF ∗ Ke ≈
∑N

n=0 θnTn(˜3)XMESPF (4)

OMESPF represents the output of graph convolution layer. Then
OMESPF is processed through ReLU activation function, this is
shown in Formula 5.
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FIGURE 6 | According to actual seizure process, EEG is divided into different stages.

O∗

MESPF = ReLU(OMESPF) = max(0,OMESPF) (5)

Finally, through fully connected layer, we synthesize several
graph space features to generate status code SMESPF .

SMESPF = FC(O∗

MESPF)18 (6)

2.3. Space-Time Predictor
In themodel, space-time predictor is constructed. After exploring
multi-channel spatial relationship, we further explore change rule
at time series level.

The internal structure of space-time predictor is shown in
Figure 5. SMESPF_t−1 and SMESPF_t , respectively, represent graph
status codes at time t − 1 and time t. Specifically, as complexity
of neural network architecture increases or training time of
experimental data becomes longer, phenomenon of gradient
disappearance or explosion is easy to occur. It is difficult to
master law of EEG timing signal. The emergence of gate recurrent
network solves related problems well. So, it is mainly built on
the basis of gate recurrent unit. And direct input of space-
time predictor is output of graph state encoder. It should
be emphasized that relevant input data should be entered in
chronological order. By mining implicit relationship in terms
of timing, prediction results are finally output by multilayer
perceptron (MLP).

Focus on gated recurrent unit, Cho et al. (2014) integrate
forget gate and input gate into an update gate. Specifically, GRU
includes update gate and reset gate. The former controls extent
to which state information at previous moment is brought into
the current state. And the latter controls extent to which state
information at previous moment is ignored. The GRU structure
is shown in lower right corner of Figure 6. Then, we combine
diagram and formulas to further explain.

The calculations for reset gate (Rt) is shown in Formula (5).
Both Wr and Ur are weight matrices. And σ represents sigmoid
function, which can map results between 0 and 1. The calculation
principle of update gate (Nt) is similar to that of reset gate.

Rt = σ (WrSMESPF_t + UrCt−1) (7)

Nt = σ (WzSMESPF_t + UzCt−1) (8)

The calculation of candidate hidden layer (˜Ct) is as follows. Tanh
represents tanh function, and its mapping range is−1 to +1.

˜Ct = tanh(WSMESPF_t + RtUCt−1) (9)

The final output hidden layer information (Ct) calculation
formula is as follows:

Ct = (1− Nt) ∗ Ct−1 + Nt ∗˜Ct (10)

3. RESULTS ANALYSIS

3.1. Data Set Description
In order to prove effectiveness of the framework, we further apply
it to CHB-MIT data set. The download link for complete database
is https://physionet.org/content/chbmit/1.0.0/. It consist of 23
data samples from 22 subjects(5 males, ages 3–22; and 17 females,
ages 1.5–19). All samples are stored in EDF format. And all
signals are sampled at 256 samples per second. It should be
noted that this is a verification experiment of validity. In order
to achieve effective prediction of seizures, we uses the framework
to classify pre-ictal and inter-ictal.

In previous studies, Litt et al. (2001) have demonstrated
that seizure-like EEG signals become more frequent at 2 h
before actual seizure. They propose that accumulated energy will
increase within 50 min before initial state. And Affes et al. (2019)
propose that pre-seizure phase is 1 h before seizure. Based on
researches mentioned above, we defines pre-ictal period as data
between 1 h and 5 min before seizure. And the definition of
inter-ictal is shown in Figure 6.

It should be noted that in the process of data collection, data
of inter-ictal period is much more than data of pre-ictal period.
To make the number of samples in these two periods equal,
an overlapped window is applied in pre-ictal period for data
segmentation, and the window overlap rate is set as 50%.

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2021 | Volume 15 | Article 605729197

https://physionet.org/content/chbmit/1.0.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Chen et al. M-Dimensional Enhanced Seizure Prediction Framework

3.2. Experimental Indicators
The evaluation indicators of our model include Accuracy,
Sensitivity, Specificity, False Positive Rate, and F1-Score. The
calculation formulas for these indicators are as follows:

Accuracy = TP+TN
TP+TN+FP+FN × 100 (11)

Specificity = TN
TN+FP × 100 (12)

Sensitivity = TP
TP+FN × 100 (13)

False Positive Rate = FP
FP+TN × 100 (14)

Positive Predictive Value (PPV) = TP
TP+FP × 100 (15)

Negative Predictive Value (NPV) = TN
TN+FN × 100 (16)

F1− Score = 2TP
2TP+FP+FN (17)

TP indicates that it is actually a positive example and the
predicted result is a positive example. FP is actually a negative
example, and the predicted result is a positive example. TN
indicates that it is actually a negative example, and predicted
result is a negative example. FN indicates that it is actually a
positive example, and predicted result is a negative example.

3.3. Experimental Environment
Configuration
As for experimental environment, information reconstruction
space of MESPF model is completed on the Windows10 system
with Intel(R) Core(TM) I7-6500U CPU @ 2.50GHz 2.59GHz.
Construction of graph encoder and space-time predictor is
completed on the Ubuntu system. Relevant model is built based
on TensorFlow framework with Python. Adam optimizer is also
used in related experiments, and initial learning rate is set at 0.01.

In addition, the loss function of the model includes cross
entropy term and L2 regularization term, as shown in Formula
(18). H(pMESPF_O,qMESPF_R) represents the loss function of
MESPFmodel for seizure prediction. pMESPF_O represents related
predicted value of space-time predictor. qMESPF_R represents true
label for each data unit.

H(pMESPF_O,qMESPF_R) =

∑

x

PMESPF_O(x) · log(
1

qMESPF_R(x)
)

+
λ

2

∑

w2 (18)

FIGURE 7 | Time-domain image of signal in pre-ictal is shown in figure.

FIGURE 8 | Time-domain image of signal in pre-ictal is shown in figure.

3.4. Analysis of Experimental Results
To further explain principle of information reconstruction
space, we set up a control group to visualize the process of
reconstruction. One group is pre-ictal samples, and the other
group is inter-ictal samples. Figures 7, 8 show time domain
information. It can be seen that there are more high frequency
signals before seizure. These are extremely important features
for predicting seizure in advance. Figures 9, 10 are images after
transforming from time domain to frequency domain. It can also
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FIGURE 9 | Frequency-domain image of signal in inter-ictal is shown in figure.

FIGURE 10 | Frequency-domain image of signal in inter-ictal is shown in figure.

be seen from the former that times of high frequency increases
significantly in pre-ictal period.

Subsequently, in order to mine the law of different frequency
band in signals, we use WPD to decompose signals. Through
WPD, we extract wavelet packet coefficients of nodes. Then
energy of wavelet packet coefficients is used as eigenvalue to
construct eigenvector. Figures 11, 12 show energy values of the
fourth layer after four-layer WPD.

FIGURE 11 | Energy percentage of each frequency band (pre-ictal) in the

fourth layer of WPD is shown in figure.

FIGURE 12 | Energy percentage of each frequency band (inter-ictal) in the

fourth layer of WPD is shown in figure.

In our experiment, each epileptic patient is assigned a
unique ID number, from case 1 to case 24. The comprehensive
index analysis for each patient is shown in Table 1. These
indicators include specificity, sensitivity, PPV, NPV, FPR, and
accuracy. More than half of the experiments achieve sensitivity
of 100%. The average level of false positive rate is only 0.0106.
Experimental data shows that the lower false positive rate, the
better model’s performance. For details of other experimental
indicators, please refer to Table 1.

As a comprehensive index, F1-Score balances effects of
precision and recall, and can systematically evaluate a classifier.
The value of F1-Score ranges from 0 to 100%, and the larger
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TABLE 1 | Specific indicators of samples are shown in the table.

ID Specificity Sensitivity PPV NPV FPR Accuracy

1 98.85 100.00 98.87 100.00 0.0115 99.43

2 100.00 100.00 100.00 100.00 0.0000 100.00

3 99.67 100.00 99.67 100.00 0.0033 99.84

4 97.82 97.85 97.81 97.85 0.0219 97.83

5 100.00 100.00 100.00 100.00 0.0000 100.00

6 92.85 95.38 93.02 95.26 0.0715 94.11

7 98.65 100.00 98.66 100.00 0.0135 99.32

8 100.00 99.34 100.00 99.34 0.0000 99.67

9 100.00 100.00 100.00 100.00 0.0000 100.00

10 100.00 100.00 100.00 100.00 0.0000 100.00

11 99.24 94.56 99.20 94.80 0.0076 96.90

12 98.46 94.50 98.39 94.71 0.0155 96.48

13 96.98 96.24 96.96 96.27 0.0302 96.61

14 99.02 100.00 99.04 100.00 0.0097 99.51

15 98.63 97.05 98.61 97.10 0.0137 97.84

16 97.76 100.00 97.81 100.00 0.0224 98.88

17 99.12 100.00 99.12 100.00 0.0089 99.56

18 99.42 97.04 99.41 97.11 0.0057 98.23

19 100.00 100.00 100.00 100.00 0.0000 100.00

20 100.00 97.18 100.00 97.26 0.0000 98.59

21 100.00 100.00 100.00 100.00 0.0000 100.00

22 100.00 100.00 100.00 100.00 0.0000 100.00

23 98.37 98.31 98.37 98.31 0.0163 98.34

24 99.85 99.26 99.84 99.26 0.0016 99.55

Average 98.95 98.61 98.95 98.64 0.0106 98.78

FIGURE 13 | In order to balance influences of precision and recall, we have added F1-Score indicator.
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TABLE 2 | In classification tasks of pre-ictal and inter-ictal, the framework is compared with other advanced methods.

References Years Method Specificity Sensitivity Accuracy

Khan et al. (2012) 2012 LDA 100.00 83.00 91.80

Kiranyaz et al. (2014) 2014 Automated patient-specific 94.71 89.00 -

Pramod et al. (2014) 2015 NN 99.29 98.06 -

Alotaiby et al. (2015) 2015 CSP 98.61 86.84 92.72

Yuan et al. (2018) 2018 Multi-view DL - - 94.37

Solaija et al. (2018) 2018 Dynamic mode decomposition 98.93 87.00 -

Dash et al. (2020) 2019 IFD and HMM 99.85 96.78 99.60

Our method 2020 MESPF 98.95 98.61 98.78

the F1 value, the better the model performance. The result of
F1-Score is shown in Figure 13. The average level of 24 cases is
0.9877. The best F1-Score value reach 100% for patients with ID
2, 3, and 5. And the lowest F1-score is 0.9419 for patient with
ID 6.

Finally, we compare the performance of the proposed model
with some existing algorithms, from traditional ones to that
based on deep learning. The results are shown in Table 2. In
terms of our method, we have analyzed epileptic EEG signals
from multiple dimensions, including energy characteristics
of frequency bands, spatial characteristics of channels, and
timing characteristics of signals. In the process, we make full
use of advantages of wavelet packet decomposition, graph
convolutional network and gate recurrent unit network in their
professional fields.

As we all know, sensitivity is the proportion of people who
are actually sick that are correctly judged as true positives. It is a
meaningful indicator in medical clinical diagnosis. Table 2 shows
an excellent performance of our model in sensitivity (98.61%).
Besides, the accuracy is also consistent with the high level of other
algorithms, and the specificity also reaches the average level of the
other algorithms.

4. CONCLUSIONS

In conclusion, we propose the MESPF framework to explore
the law of epilepsy EEG signals. From frequency, channel and
time, we, respectively, build information reconstruction space
based on wavelet packet decomposition, graph state encoder
based on graph convolution network, and space-time predictor
based on gated recurrent unit. We make full use of advantages
of different methods to build an efficient seizure prediction
framework (MESPF). MESPF has achieved better results in
classification of pre-ictal and inter-ictal than existing methods.

This integrated method of multidimensional and multi-method
epileptic EEG provides a more novel idea for peers to study
biomedical signals.

As far as the research is concerned, we take frequency, space
(channel), and time into consideration. However, there is still
a lot of work to be done. In our next step, we will consider
more features, such as multiple spikes, approximate entropy,
information entropy, fuzzy entropy, etc. Finally, we hope to build
a more accurate and stable intelligent framework for seizure
prediction by continuously mining surface meaning and internal
correlation of epileptic EEG.
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Bioelectric Impedance Analysis
Test Improves the Detection of
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Candidates: A Multifeature
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Vincenzo Ficarra3, Enzo Pasquale Scilingo2 and Gaetano Valenza2
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Human and Paediatric Pathology “Gaetano Barresi” University of Messina, Messina, Italy

Prostate cancer (PCa) gold-standard diagnosis relies on prostate biopsy, which is
currently overly recommended since other available noninvasive tools such as prostate-
specific antigen (PSA) multiparametric MRI (mMRI) showed low diagnostic accuracy or
high costs, respectively. The aim of the study was to determine the accuracy of a novel
Bioelectric Impedance Analysis (BIA) test endorectal probe for the selection of patients
candidate to prostate biopsy and in particular the clinical value of three different
parameters such as resistance (R), reactance (Xc), and phase angle (PA) degree. One-
hundred twenty-three consecutive candidates to prostate biopsy and 40 healthy
volunteers were enrolled. PSA and PSA density (PSAD) determinations, Digital Rectal
Examination (DRE), and the novel BIA test were analyzed in patients and controls. A 16-
core prostate biopsy was performed after a mMRI test. The study endpoints were to
determine accuracy of BIA test in comparison with PSA, PSAD levels, and mMRI and
obtain prostate cancer (PCa) prediction by BIA test. The Mann-Whitney U-test, the
Wilkoxon rank test, and the Holm-Bonferroni’s method were adopted for statistical
analyses, and a computational approach was also applied to differentiate patients with
PCa from those with benign disease. Combined PSA, PSAD, DRE, and trans-rectal
ultrasound test failed to discern patients with PCa from those with benign disease
(62.86% accuracy). mMRI PIRADS ≥3 showed a sensitivity of 83% and a specificity of
59%. The accuracy in discerning PCa increased up to 75% by BIA test (sensitivity 63.33%
and specificity 83.75%). The novel finger probe BIA test is a cheap and reliable test that
may help to improve clinical multifeature noninvasive diagnosis for PCa and reduce
unnecessary biopsies.

Keywords: prostate cancer diagnosis, bioelectric impedance analysis, prostate specific antigen (PSA), prostate-
specific antigen density (PSAD), multiparametric MRI, computational statistical analysis
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INTRODUCTION

Prostate cancer (PCa) diagnosis necessarily implies the use of
prostate biopsy which is an invasive procedure burdened by
potentially relevant complications such as bleeding and systemic
infection. On the other hand, currently available noninvasive
diagnostic tools seem to be unable to reduce the number of
unnecessary biopsies. The decision-making process is mainly
based on total prostate-specific antigen (PSA) values and the
results of multiparametric MRI (mMRI) (1, 2). PSA levels alone
are often unable to differentiate PCa from benign prostate
hyperplasia (BPH) while the combination of total PSA and
DRE, as well as the combination of PSA, DRE, and trans-rectal
ultrasound (TRUS) improve the cancer detection rate to 50%
(3, 4). mMRI in naïve patients remains of difficult application
due to its high costs and the high number of men who need to be
investigated in every day clinical practice, although its accuracy
has been improved by the PIRADS V2 score classification (5).
Therefore, there is a need for alternative noninvasive tools
improving the selection of patient candidate for prostate
biopsies. Previous studies on Bioelectric Impedance Analysis
(BIA) revealed enthusiastic results mainly in patients with
aggressive cancers (6, 7). Phase-sensitive instruments are able
to simultaneously measure resistance (R), reactance (Xc), and
provide the phase angle degree (PA). Very low PA values indicate
cells with altered electrical activity due to different intracellular
content, DNA, and water in cancers (8) (Figure 1).

Studies previously conducted on PCa characterization were
limited by the applicability of proper probes on the prostate
surface and the gland anatomic location inside the pelvic bone
girdle (9–11). With the aim to reduce previous limitations in the
applications of BIA test, we tested the performance of a novel
endorectal probe in a series of consecutive patient candidate to
prostate biopsy for suspicious PCa.

The objectives of the present study were to test the accuracy of
BIA test to detect prostate cancer by analyzing three different
parameters such as R, Xc, and PA, to evaluate if the proposed
BIA methodology has to be further optimized to obtain clinically
meaningful results and to develop a multifeature decision
Frontiers in Oncology | www.frontiersin.org 2204
support system including BIA test parameters for the
prediction of prostate cancer.
MATERIALS AND METHODS

Patient Selection
All the patients who were candidates for a prostate biopsy for
suspicious prostate cancer were consecutively and prospectively
selected in the timeframe between March and September 2018.
Presumptive diagnosis was based on persistently raised total PSA
value (>4 ng/ml) and/or suspicion of cancer at DRE. Patients
younger than 45 years and those affected by other neoplasms,
electrolyte imbalance, and liver diseases were excluded from the
study to avoid the risk of confounding factors. Moreover,
patients with declared allergies to antibiotics and/or other
compounds such as lidocaine, were excluded from the study. A
total of 123 patients with persistently high total PSA levels and
negative DRE underwent to mMRI and were classified in
accordance with the PIRADS V2 system (5). Moreover, a
group of young healthy volunteers were collected from a series
of patient candidates to circumcision and selected with the same
exclusion criteria. Healthy voluntaries were enrolled if total PSA
value was <4 ng/ml, and no earlier history of prostate diseases or
prostate-related symptoms was referred. Subjects included in the
control group were not age-matched selected due to both the risk
of developing familiar prostate cancer also in relatively young
men (over45 years old) and the prostate growth that individually
starts at the age of 30 but become usually symptomatic after
50 years of age (12). Patients who had undergone to prostate
biopsy were age matched and had comparative risks of
developing BPH or PCa. All patients selected for a prostate
biopsy had a clinical suspicion of prostate cancer due to
persistently increased PSA serum levels, and/or gland
indurations at DRE, and/or familiar history of prostate cancer.
Diagnosis of prostate cancer was performed on the basis of the
pathological response after prostate biopsy. The study protocol
was developed in accordance with the STROBE Statement and
approved by Internal Review Committee (IRC) (1251/2017) and
A B

FIGURE 1 | BIA test current voltage and phase angle definition. (A) Phase angle consists in a ratio between current out-of-phase and current phase, and it may be
expressed by an angle value (f). (B) Reactance and resistance measurement by BIA test may express a phase angle value.
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then registered (NCT03428087) (13). All patients and healthy
volunteers provided their preliminary approval to participate in
the study by signing an informed consent form.

For every patient, the following prebioptical parameters were
collected: age, BodyMass Index (BMI), baseline total PSA (ng/ml),
digital rectal examination (DRE), prostate volume estimated
during TRUS examination, PSA density, and PIRADS score
when available.

The BIA Test and the New
Endorectal Probe
All patients underwent a BIA test using a new endorectal “finger
probe” before to perform prostate biopsy. The Akern’s BIA tester
is tested and validated instrument and was previously used to
measure the biometric parameters (BIA 101 ASE®, Akern Srl,
Italy) (14). The BIA test was provided with the patient placed in a
left flank position as normally adopted for DRE and prostate
biopsy procedures. The negative pole electrodes (red) were
placed at the base of penile shaft and at the coccyx apex while
the positive ones (black) were placed at half inch over the pubic
bone and at the novel “finger probe”, respectively (Figure 2).

The electrodes placement was done to create a restricted
electric field in the prostate area and get more reliable results in
terms of sensitivity as demonstrated by other authors (9–11, 15).
The novel probe was conceived to test the prostate tissue directly
and consists of an electrode placement over a single rubber finger
glove tip wearable over the rubber gloves normally used to detect
prostate abnormalities. Carbon fibers are fixed at the tip of the
probe, passed into the rubber finger, and connected to the
“receptor”-positive pole BIA electrode. The use of flat and
tender fibers other than rigid sensors was planned to allow an
easy and sensitive concomitant palpation of the prostate gland.
The BIA tester automatically calculated R, Xc, and PA, and
different registrations have been made for the two prostate lobes.
Because the location of possible cancer tissue is not known a
Frontiers in Oncology | www.frontiersin.org 3205
priori, measurements from the BIA test were averaged between
the two lobes for further analyses.

Prostate Biopsy
Transrectal prostate biopsy was performed after combined
antibiotic prophylaxis with ceftriaxone single shot and oral
fosfomycin lasting for a couple of days and local anesthesia with
10% of 5 ml lidocaine. All the patients received a cleansing enema
2 hours prior the biopsy procedure and signed an informed
consent to the procedure. In all cases, at least 16 cores were
systematically taken with systematic criteria except for the patients
with PIRADS V2 score >3 who received adjunctive cores in
relation to the number of prostate gland sites described at
mMRI (5). Prostatic cores were embedded in formalin solution
and then analyzed by two uropathologists. The presence of cancer
or other diseases were documented as well as the Gleason score
classification in the case of cancer diagnosis confirmation.

Statistical Analysis, ROC Curve, and
SVM Classification
All BIA measures were normalized by dividing their value by the
prostate volume, which was estimated during the TRUS
examination. Therefore, the BIA test was not dependent by the
volume of the prostate, which can be significantly affected by the
presence of cancer.

Biomarker samples were statistically described using median
and median absolute deviation (MAD) given the nonnormality
of the majority of samples demonstrated using Kolmogorov-
Smirnov tests (16). Accordingly, the Mann-Whitney U-test was
used to statistically compare continuous variables from two
different groups (e.g., patients vs. controls), whereas the
Wilcoxon signed-rank test was used to compare differences in
paired data (17, 18).

All p-values were corrected for multiple comparisons
following the Holm-Bonferroni’s method (19).
FIGURE 2 | The BIA endorectal probe. (A) Electrodes placement red/black 1:1 and 2:2. (B) The BIA tester. (C) The finger probe with the carbon fibers placed at the
tip of the second finger.
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A receiver operating characteristic (ROC) curve analysis was
performed on PIRADS V2 scores gathered from 123 patients by
pairing false-positive rates (1-specificity) and true-positive rates
(sensitivity) at different PIRADS V2 score thresholds (5, 20).

To maximize a direct clinical applicability of the proposed
study and move to a clinical evaluation at a single-patient level,
we implemented a multifeature computational approach that
takes into account all features, combine them through a
particular mathematical function, and automatically estimate
the multidimensional threshold to be used to make a clinical
decision for the prediction of cancer presence. The computational
methodology is quite common in the bioengineering field and is
named support vector machine (SVM). We further extend the
implementation of such a decision support system by integrating
the so-called recursive feature elimination (RFE) approach. This
scores each patient’s feature such that it is possible to rank and
select the most informative clinical information for the automatic
discrimination of patients with prostate cancer and BPH.

The proposed SVM model combining standard PCa
biomarkers including BMI, PSAD, and PSA, together with
BIA-related parameters was calibrated using data from
N = 123 − 1 = 122 subjects and then tested using data from the
Nth subject for model validation. This validation procedure has
been iterated N times following the so-called leave-one-subject out
procedure (LOSO), where the calibration and validation sets
randomly change at each iteration. The sensitivity and specificity
of the proposed multiparametric approach are then calculated
after N iterations, based on the observation of true positives/
negatives and false positives/negatives.
RESULTS

One hundred-forty men candidate to prostate biopsy for clinical
suspicion of PCa were enrolled during the study period. No
patients had relevant complication after the biopsy except for
persistent bleeding in seminal fluid lasting for at least 1 month.
Patients with total PSA levels of <4 ng/ml presented suspicion of
cancer at DRE and 6 out 15 PIRADS >3 at mMRI. Cancer was
detected in four out of 15 cases. PIRADS score >3 was found in
three out of four subjects with PCa. Cancer was found in 31 out of
64 patients with total PSA between 4.1 and 10 ng/ml. PIRADS
score >3 was found in 34 out of 58 cases, but only 22 of them
presented association with PCa. Similarly, PCa was found in 21
out of 61 patients with total PSA >10 ng/ml. MMRI confirmed
the presence of cancer in 18/25 patients although resulted positive
in 31 out of 54 subjects. In 60 (42.8%) cases (median BMI, 26.25;
IQR, 24.87–28.7), the biopsies resulted positive for prostate
cancer while in the remaining 80 (57.2%) cases (median BMI,
25.75; IQR, 24.17–27.87), a nonneoplastic prostatic condition
(BPH or inflammation) was diagnosed. ROC curve analysis
performed on PIRADS V2 scores obtained from 123 mMRI of
patients who underwent prostate core biopsy (no healthy
volunteers have been included) showed a major threshold score
or equal to 3 a sensitivity of 83% and a specificity of 59% and VPP
and VPN were 61% and 82%, respectively (Figure 3).
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By analyzing patients with prostate cancer, in 21 (35%) cases,
the disease involved a single lobe (11 the right side and 10 the left
side). Conversely, in the other 39 (65%) cases, both lobes were
involved by the tumor. Therefore, according to D’Amico risk
classification, 31 (51.6%) patients were classified as low risk, nine
(15%) as intermediate, and 20 (33.4%) as high risk (21). The 40
young healthy volunteers showed a median age of 37 years
(MAD = 4) and a median BMI of 25 (MAD = 1.1). The
median prostate volume was 19.23 cm3 (MAD = 6.5) with a
median PSA density of 0.05 (MAD = 0.03). Comprehensive
descriptive statistics of patients’ characteristics stratified
according to the biopsy results are reported in Table 1.

Inferential statistics between patients with PCs, BPH, and
controls are reported in Table 2.

Comparing patients with PCa vs. controls, differences in age,
PSA, prostate volume, and PSA density were found. Same
statistical differences were found comparing BPH vs. controls.
Concerning BPH vs. patients with PCa, significant differences
were found in the prostate volume exclusively (p < 0.01); hence,
PSAD analysis exclusively was retained for further analyses.

Evaluation of BIA Test Parameters
Table 2 summarizes and compares BIA test parameters gathered
from patients with prostate cancer, benign prostatic disease, and
healthy volunteers. While no significant differences between
groups were found on the BIA parameter PA, significant
differences were found in comparing BPH vs. controls using R
(p < 0.01), as well as comparing controls vs. patients with PCa
and controls vs. BPH using Xc (p < 0.05).

Concerning the statistical comparison between the three
bioimpedance test measurements from the right and left sides
of the prostate, we split the dataset in three subsets: (i) a subset of
patients with right-sided prostate cancer (Table 3); (ii) a subset
FIGURE 3 | ROC curve of multiparametric MRI. ROC curve of multiparametric
MRI on 123 patients with clinical suspicion of PCa (AUC 0.7893).
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of patients with left-sided prostate cancer (Table 4); and (iii) a
subset of patients with both-sided prostate cancer (Table 5).

It is worthwhile noting that the R of the right side of the
prostate was significantly lower than the left side in the left- and
both-sided cancer patient group. Moreover, PA of the left side of
the prostate was significantly lower than the right side in the
both-sided cancer patient group.

Evaluation of a Multifeature Clinical
Decision Support System for Diagnosis
at a Single-Subject level
Using the parameter set comprising BMI, PSA density, PSA,
AGE, R, PA, and Xc, we built an SVM multifeature
computational model as described above and derived cancer
Frontiers in Oncology | www.frontiersin.org 5207
recognition accuracy, sensitivity, specificity, positive, and
negative predictive values (PPV and NPV) (Table 6).

For each feature, we performed a ROC curve analysis to
evaluate the performance of each single feature in discriminating
between patient with PCa from those with benign disease. From
each ROC curve, we computed the area under the curve (AUC)
and the related 95% confidence interval (95% CI AUC).
TABLE 1 | Patients’ characteristics.

PCa BPH Healthy
controls

Patients (n.) 60 80 40
Age (years) 70 ± 5 69 ± 5 37 ± 4
BMI (kg/m2) 26.01 ± 1.51 26.15 ± 2.15 25 ± 1.10
Prebiopsy total PSA value (ng/ml)
<4 4 11 35
4–10 31 33 0
>10 25 36 0

Prostate nodule/s at DRE (n. pts)
Right 18 14 0
Left 10 7 0
Bilateral 8 4 0
Negative 24 55 35

Prostate volume at TRUS (ml) 41.48 ± 11.88 53.78 ± 13.30 19.23 ± 6.50
PSA density (PSA/volume) 0.25 ± 0.13 0.17 ± 0.07 0.05 ± 0.03
Prostate biopsy YES YES NO
Low-risk PCa (n.) 31 – –

Intermediate-risk PCa (n.) 9 – –

High-risk PCa (n.) 20 – –

Patients who underwent to
prebiopsy mMRI (n.)

60 63 –

Patients with mMRI PIRADS ≥3
(n./%)

43/71.6 28/44.4 –

Patients with mMRI PIRADS ≥4
(n./%)

15/25 2/3.1 –
MAD, median absolute deviation.
Descriptive ranges are expressed as (median ± MAD).
TABLE 2 | Statistical comparison between patients who underwent to prostate biopsy (cancer and BPH) and controls.

Feature MEDIAN (PCa) MAD (PCa) MEDIAN (BPH) MAD (BPH) MEDIAN (HC) MAD (HC) p-Value p-Value p-Value
PCa vs. HC BPH vs. HC BPH vs. PCa

AGE 70 5 69 5 37 4 <0.001 <0.001 n.s.
BMI 26.01 1.51 26.15 2.15 25 1.1 n.s. n.s. n.s.
PSA 8.985 2.535 9.11 3.915 0.87 0.45 <0.001 <0.001 n.s.
Prostate volume at TRUS 41.475 11.88 53.775 13.295 19.23 6.5 <0.001 <0.001 <0.001
PSA density 0.25 0.13 0.17 0.07 0.05 0.03 <0.001 <0.001 n.s.
R 41.425 10.325 47.125 12.45 34.25 10.95 n.s. <0.01 n.s.
Xc 8.875 3.3 10.425 2.7 6.2 1.55 <0.05 <0.001 n.s.
PA 12.3 3.875 13.025 3.45 12.15 4.15 n.s. n.s. n.s.
August 2021
 | Volume 11 |
n.s., nonsignificant p-value; MAD, median absolute deviation; BMI, Body Mass Index; PSA, prostate-specific antigen; TRUS, trans-rectal ultra sound; RES, resistance; REA, reactance;
PHASE, phase angle; PCa, prostate cancer; BPH, benign prostate hyperplasia; HC, healthy controls.
Bold values indicate significant p-values lower than 0.05.
TABLE 3 | Median and MAD values of the bioimpedance features calculated on
the right and left sides of the prostate in the right-sided prostate cancer group.

Feature MEDIAN right
side

MAD right
side

MEDIAN left
side

MAD left
side

p-
Value

R 46 9.6 46.9 9.45 n.s.
Xc 8.7 4.1 9.05 3.95 n.s.
PA 9.45 2.9 9.5 2.85 n.s.
Article 5
The last column shows the results of the Wilcoxon signed-rank test for paired data
between the left and right sides of the prostate (n.s., nonsignificant p-value).
TABLE 4 | Median and MAD values of the bioimpedance features calculated on
the right and left sides of the prostate in the left-sided prostate cancer group.

Feature MEDIAN right
side

MAD right
side

MEDIAN left
side

MAD left
side

p-
Value

R 40.5 7.9 40.8 9.55 <0.01
Xc 10.35 3.15 10 3.05 n.s.
PA 14.7 3.8 14.35 3.25 n.s.
The last column shows the results of the Wilcoxon signed-rank test between the left and
right sides of the prostate (n.s., nonsignificant p-value).
Bold values indicate significant p-values lower than 0.05.
TABLE 5 | Median and MAD values of the bioimpedance features calculated on
the right and left sides of the prostate in the both-sided prostate cancer group.

Feature MEDIAN right
side

MAD right
side

MEDIAN left
side

MAD left
side

p-
Value

R 40.9 10.35 41.7 11.5 <0.001
Xc 8.4 2.7 8.5 2.75 n.s.
PA 12.4 3.9 11.55 3.5 <0.05
The last column shows the results of the Wilcoxon signed-rank test for paired data
between the left and right sides of the prostate (n.s., nonsignificant p-value).
Bold values indicate significant p-values lower than 0.05.
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According to the 95% CI AUC, we tested also if the AUC was
statistically greater than 0.5, i.e., the chance performance value
(AUC p-value).

Moreover, we identified the threshold cutoff point associated
with the best accuracy (Accuracy Cut-off point) according to the
Youden’s index (Sensitivity-Specificity-1) and the related
sensitivity and specificity values (Table 7).

The average prediction accuracy achieved is shown in
Figure 2, with a final score as of 75.00% (Figure 4).

This was obtained mathematically combining the following
four parameters that were identified as clinically relevant:
BMI, PSA density, R, and PSA. A comprehensive, ranked
clinical feature list for this decision support system is reported
in Table 8, while the corresponding confusion matrix is in
Table 9. Sensitivity and specificity of the PCa prediction vs.
BPH were 63.33% and 83.75%, respectively. The PPV and NPV
were 74.51% and 75.28%, respectively. It is worthwhile noting
that the resistance, averaged between the right and left prostate
lobes, is one of the most informative features and gives a
significant contribution to achieve the 75.00% of accuracy.

Importantly, as a counterproof, we obtained a significant
decrease in the PCa prediction accuracy of 62.86% while
repeating the same SVM-based computational procedure using
a feature set that does not include the three biometric measures.
As expected, the most informative subfeatures set included BMI,
PSA density, and PSA.
DISCUSSION

BIA of different tissues was originally investigated by Geddes
and Baker in the 1960s (22). They carried out an electrical
Frontiers in Oncology | www.frontiersin.org 6208
measurement on living tissues demonstrating different values
of resistivity. From that period, the BIA test have been used for
various purposes such as the lean and fat body mass
calculation and other medical applications like skin and
breast cancer diagnosis (23–25). Halter et al. measured
electrical properties of “ex vivo” prostate tissues with the
aim of future applications for PCa noninvasive diagnosis.
They realized that PCa, BPH, nonhyperplastic glandular
tissue, and stromal tissue had different conductivity at all
frequencies while mean cancer permittivity was significantly
greater than that of benign tissues at high frequencies (15).
Other authors demonstrated that best results for cancer
diagnosis by BIA test were obtained by measuring the tissue
phase angle. Low phase angle suggests cell death or decreased
cell integrity, whereas higher phase angle suggests healthy cell
(26, 27). A low phase angle has been associated with an
impaired outcome in tumor diseases such as pancreatic
cancer, colorectal cancer, and lung cancer (6, 7, 15). Tyagi
et al. recently demonstrated that low phase angle values
measured by BIA test allow for discriminating PCa patients
from matched controls and those with advanced stage and
high-risk PCa in particular. They investigated a group of
subjects using the BIA electrode placement on the right
upper and right lower limb. On the other hand, all PCa-
diagnosed subjects had a total PSA increased values and other
TABLE 6 | Feature ranking according to the RFE criterion.

Feature ranking

BMI
PSA density
R
PSA
PA
AGE
Xc
Feature ranges for healthy controls and PCa patients are reported in Tables 1, 2.
TABLE 7 | Statistical analysis for each feature.

Feature AUC 95% CI AUC Accuracy cutoff point Sensitivity Specificity AUC p-value

AGE 0.5597 0.4641-0.6553 75 0.825 0.267 0.110
BMI 0.51092 0.4141-0.6078 34.2 0.988 0.0333 0.413
PSA 0.49015 0.3931-0.5871 42.74 0.988 0.067 0.579
PSA density 0.62337 0.5311-0.7156 0.25 0.812 0.533 0.00437
R 0.52737 0.4308-0.6239 2.1185 0.925 0.167 0.289
Xc 0.50038 0.4034-0.5973 1.1439 0.975 0.0833 0.497
PA 0.55362 0.4578-0.6494 0.5291 0.925 0.200 0.136
Augus
t 2021 | Volume 11 |
The area under the curve (AUC) was calculated from the ROC curve as well as the related 95% confidence interval (95% CI AUC). According to the 95% CI AUC, the AUC was statistically
greater than 0.5, i.e., the chance performance value (AUC p-value).
Bold values indicate significant p-values lower than 0.05.
TABLE 8 | Comprehensive ranked clinical feature list of the most accurate
subset of features: BMI, PSA density, RES, and PSA.

BMI, PSA density, R, PSA Cancer BPH

Cancer predicted 63.33% 16.25%
BPH predicted 36.67% 83.75%
Article
Bold values indicate significant p-values lower than 0.05.
TABLE 9 | Confusion matrix of the most accurate sub-set of features excluding
BIA parameters.

BMI, PSA density, PSA Cancer BPH

Cancer predicted 51.67% 28.75%
BPH predicted 48.33% 71.25%
BMI, Body Mass Index; PASD, prostate-specific antigen density; PSA, prostate-specific
antigen.
Bold values indicate significant p-values lower than 0.05.
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concomitant diseases excluded to avoid the risk of false-
positive results (10). Similarly, Khan developed a new
composite impedance metrics method with a nine-electrode
microendoscopic probe. This novel device was tested on “in
vivo” and “ex vivo” prostate tissue either intraoperatively or
after the prostate removal in patients who underwent surgery
for PCa or BPH. The results obtained demonstrated a
predictive accuracy of 90.79% for PCa (11). For these
reasons, we provided an alternative electrode placement and
a restricted locoregional electric field in order to improve the
BIA test sensitivity and specificity and reduce possible
confounding fac tors . The finger probe a l lows the
obtainment of the tissue resistance, reactance, and phase
angle measurements directly from the prostate gland surface
through a restricted electric field generated into the pelvic
bone girdle. However, prostate tissue presents an extreme
variability of electrical absorption due to its water and/or
stromal content and the presence of microcalcifications in its
tissue context with subsequent false positive results.

Our results demonstrated that the finger probe is a
promising, reliable, and easy-to-use tool to improve the
accuracy of PCa noninvasive diagnosis together with other
standard clinical parameters. In patients where PCa was
diagnosed in both prostate lobes (i.e., 65% of cases), BIA PA
were found significantly different between the right and left
side, while seemed to be comparable when PCa was diagnosed
in a single lobe. Our experimental evidences on BIA phase
angles do not replicate previous findings reported in (9). This
may be justified by the presence of more represented stromal
tissue and/or calcifications inside the gland, as well as by the
normalization procedure that we have performed prior to the
statistical analyses. All BIA measures including R, Xc, and PA,
Frontiers in Oncology | www.frontiersin.org 7209
in fact, were normalized by dividing their value by the prostate
volume estimated during the TRUS examination to avoid
biases. Without normalization, patients with BPH and with
PCa vs. healthy controls showed significant differences in terms
of BIA PA (p = 0.006 and 0.003, respectively), therefore
confirming previous observations by Tyagi et al. (10). BIA
resistance values were lower in patients with PCa although,
taken alone, it seemed to be unable to differentiate cancer from
noncancer patients, while it was significantly different between
healthy subjects and the BPH group. BIA reactance values were
significantly different between healthy subjects and patients,
although taken alone were not significantly different between
BPH and PCa patients.

In this sense, likewise for the PSA alone, the BIA test failed to
differentiate subjects with clinical suspicion of PCa and
prospectively missed the intent of avoiding unnecessary
biopsies. Nevertheless, when combined with the other standard
clinical parameters including patients’ PSA and PSA density, BIA
test provided meaningful information for discerning between
PCa and BPH patients with an accuracy as high as 75% at a single
patient level.

Our results indicate a good PCa prediction using a
combination of the following clinical features: BMI, Age, PSA,
and PSA density. In this case, sensitivity and specificity are lower
than the ones associated with a combination of BMI, PSA
density, R, and PSA, thus demonstrating the significant clinical
information associated with BIA test.

Study limitations include the limited amount of data,
especially gathered from healthy volunteers, the nonage-
matched group taken as negative control due to the increased
risk of developing prostate diseases in the advanced age and a
fixed range of 50 mHz frequency band for the BIA.
FIGURE 4 | BIA test accuracy for the diagnosis of prostate cancer.
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The proposed BIA test is a cheap, easy-to-perform method
helpful for the multifeature clinical and noninvasive detection of
prostate cancer and may be also able to decrease the number of
unnecessary biopsies. The use of a novel transrectal “finger-
probe” allows to do the BIA test with a minimal discomfort for
the patient, contributing to an accuracy as high as 75% for the
PCa vs. BPH prediction when properly combined with BMI, total
PSA, and PSA density. Interestingly, the test can be easily
repeatable. Further studies by varying the BIA tester voltage
frequency are necessary to improve the BIA test efficacy. The
cheaper cost of the method in comparison with mMRI may be
immediately attractive for low-income countries.
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