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Editorial on the Research Topic
 State-of-the-Art Technology and Applications in Crop Phenomics



Together with the rise of whole-genome sequencing of many plant species, large-scale and high-throughput plant phenotyping (HTP), as well as associated phenotypic analysis, has become a bottleneck that needs to be urgently relieved (Yang et al., 2020). Plant genetics and crop breeding can be accelerated by recent rapid advances through diverse technologies, from sensors to feature extraction, combined with increasing systems integration and decreasing costs in software and hardware systems. The integration of artificial intelligence (AI) driven techniques (e.g., deep learning and machine learning), computer vision, and big-data analytics, and their optimization for the life sciences, has opened doors to new opportunities for a broad plant science research community to develop step change solutions to bridge the gap between traits of interest and genomic information for novel biological discoveries (Tardieu et al., 2017; Zhao et al., 2019). In particular, recent developments in multi-factorial phenotypic models can be dynamically generated from large biological datasets to characterize phenotypic features, including the prediction of genotypic reaction to complex environments as well as genotype-based phenotypic changes across multiple seasons (Großkinsky et al., 2015; Furbank et al., 2019). Such methodological and technical advances have empowered plant scientists to unravel the genetics of complex phenotypes at the levels of cell, organ, tissue, plant, and population (Fiorani and Schurr, 2013).

The importance of this research area has been repeatedly discussed by the research community over the past decade, focusing on either methodological development or applications to varied plant questions. Several Research Topics concerning plant phenotyping were hosted by a series of Frontiers Research Journals, for example, “Drought Phenotyping in Crops: From Theory to Practice” in 2012, “Phenomics” in 2016, “Plant Phenotyping and Phenomics for Plant Breeding” in the year 2017, “Advances in High-Throughput Plant Phenotyping by Multi-platform Remote Sensing Technologies” in 2017, “Phenotyping at Plant and Cell Levels: the Quest for Tolerant Crop Development” in 2018, “High-throughput Field Phenotyping to Advance Precision Agriculture and Enhance Genetic Gain” in 2019, “Phenotyping; from Plant, to Data, to Impact and Highlights of the International Plant Phenotyping Symposium—IPPS 2018” in 2019, and “High-Throughput Phenotyping for Crop Improvement and Breeding” in 2020.

In this Research Topic, we promote recent the latest methodological improvements in crop phenotyping. The 19 research papers range from deep learning, x-ray computed tomography, hyperspectral imaging, to 3D imaging, as well as demonstrating wide applications of phenotyping technologies and phenotypic analysis in post-harvest quality control, breeding, plant research, and genomic selection.

In recent years, deep learning has become a widely adopted toolkit for vision-based trait recognition, classification and object segmentation in plants. Combined with a vision system, a CNN-based model, MobileNet-V2 was adopted to detect defective oranges and could be applied for in-line citrus sorting (Chen et al.). Another CNN model, MaskRCNN, can be used to detect horticultural crops with different degrees of ripeness using images taken in both greenhouse and field for yield-related trait analysis (Afonso et al.). Utilizing a sensor-to-plant greenhouse phenotyping platform capturing top-view images of lettuce, U-Net was used to segment image-based objects and quantify 15 shoot geometry and color traits to derive shoot growth traits (Du et al.). An improved Faster-RCNN recognized and located strawberries much better than ResNet50 and VGG16 (Zhou et al.), but with a higher computational cost when dealing with high-resolution images. In contrast, a fast version of a state-of-the-art plant counting model, TasselNetV2+ was adopted in quantifying numbers of wheat ears, maize tassels, and sorghum heads at 30 frames per second (fps) with an image resolution of 1980 × 1080 (Lu and Cao), which may be employed in real-time plant counting on a portable device in future. The ability of algorithms to function accurately, under diverse conditions and in real time, is essential if they are going to be used to control robotic pickers and similar machinery.

Deep learning has performed well for classification and object detection tasks in research settings. However, image data annotation can be immensely time-consuming and often leads to new bottleneck of generating sufficient and high-quality training datasets, which also could cause overfitting of deep learning models. Interestingly, to address this bottleneck, the combination of a Wasserstein generative adversarial network and gradient penalty (WGAN-GP) and label smoothing regularization (LSR) improved the classification accuracy of plant disease by 24.4% under limited training data (Bi and Hu).

For 2D imagery, machine learning techniques could be applied to analyze different organs of a plant. For example, deep learning was used to determine the number and size of soybean root nodules, and investigate nodule development under different silicon nutrition conditions (Chung et al.). Similarly, an improved CNN model, DeepLabv3+, was used to segment roots from soil and calculated parameters such as root length, surface area, diameter, and root volume with high accuracy (r2 = 0.9449) (Shen et al.). Beyond 2D imaging, x-ray computed tomography (CT) could be applied in monitoring the dynamic growth of potted potato tubers from initiation until harvest (Van Harsselaar et al.).

Sensors mounted on mobile platforms could provide flexible and cost-effective phenotyping solutions in field scenarios. For example, unmanned aerial vehicles (UAVs) and remote sensing can phenotype large-scale crop populations and are not constrained by the static infrastructures typical of greenhouses. For example, UAV-acquired multispectral traits could predict water use efficiency or nitrogen use efficiency and their impact on grain yield in winter wheat (Yang et al.). Using a line scan hyperspectral imaging system of 235 wavelengths from the visible and NIR spectral range, three machine learning-based models, partial least squares-discriminant analysis (PLS), support vector machine (SVM), and multilayer perceptron (MLP) were used to classify four weeds and showed a range of overall accuracy of 70–100% (Li et al.). In addition, hyperspectral image preprocessing, which included segmentation, image correction, and image space-spectral dimensional denoising, improved the classification accuracy of health and infected wheat seeds.

Based on multiple side-view images acquired in an indoor high-throughput plant phenotyping platform (University of Nebraska-Lincoln 3D Plant Phenotyping Dataset, UNL-3DPPD), an algorithm for 3D voxel-grid reconstruction, 3DPhenoMV, was developed to obtain the 3D phenotypes of maize and cotton (Das Choudhury et al.). Similarly, the reconstructed 3D phenotypic traits such as leaf angle and leaf area were used to remotely monitor the drought response in grapevines (Briglia et al.).

While morphological and physiological traits can be assessed non-destructively across large-scale populations, and repeatedly during plant growth and development, many current technologies are still at their infant stages and require active development. For example, many physiological processes are normally monitored based on single leaves, but the Plantarray 3.0 platform has demonstrated the possibility of undertaking such studies on intact plants. This platform was used to dynamically monitor growth and water use of the quinoa under saline conditions, which showed that the high-resolution functional phenotyping could promote the dissection of complex traits of abiotic stress tolerance (Jaramillo Roman et al.).

To handle the massive amount of phenotyping data generated by various imaging sensors, effective image, and data analysis pipelines are urgently needed. Image analysis software, 3DPheno-Seed&Fruit, was developed to extract 3D seed and fruit traits (Liu et al.) from X-ray CT scans. To process seed images acquired by lower cost flatbed scanners or digital cameras, an open-source application, SeedExtractor, was developed to determine seed shape, size, and color with a high speed of 2 s per image (Zhu et al.). Combined with genome-wide association analysis (GWAS), this tool was successfully applied to identify known loci controlling rice seed length and width. To process the huge amounts of data generated by an outdoor high-throughput phenotyping platform, an analytical pipeline SpaTemHTP, composed of three modules, detection of outliers, imputation of missing values, and mixed-model genotype adjusted means computation with spatial adjustment, was developed to efficiently process the temporal phenotyping data for the further genetic analysis (Kar et al.).

Novel image-based feature or derived secondary traits have the power to decipher the complex genetic architecture of drought tolerance in maize (Wu et al., 2021) and can improve genome selection (GS) models. A good example is spectral reflectance data collected using a handheld multi-spectral radiometer: such secondary traits can improve the prediction accuracy by 20% for grain yield and 12% for grain protein content of spring wheat, which showed that combining HTP and genome selection in a plant breeding program could potentially improve the genetic gain by increasing the selection accuracy and reducing the breeding cycle time (Sandhu et al.).

This Research Topic highlights the latest methodological developments of phenotyping and phenotypic analysis in plant research, ranging from the cell to the population level. By using available analytic techniques such as machine learning/deep learning and computer vision, a systematic approach to carry out indoor and in-field phenotyping is formed, capable of answering biological questions through feature extraction, trait analysis, dynamic modeling. As a fast-moving area, plant phenotyping requires efforts from plant biologists, hardware and software engineers, bioinformaticians, and data analysts, contributing to both applied and basic plant sciences. Hence, we believe that the Research Topic not only presents the state-of-the-art technological advances, but also demonstrates a promising approach to utilize high-quality phenotypic information in plant research, enabling us to exploit available genomic resources to develop crop varieties with desired qualities in the context of global climate change.
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Many plants can modify their leaf profile rapidly in response to environmental stress. Image-based data are increasingly used to retrieve reliable information on plant water status in a non-contact manner that has the potential to be scaled to high-throughput and repeated through time. This paper examined the variation of leaf angle as measured by both 3D images and goniometer in progressively drought stressed grapevine. Grapevines, grown in pots, were subjected to a 21-day period of drought stress receiving 100% (CTRL), 60% (IRR60%) and 30% (IRR30%) of maximum soil available water capacity. Leaf angle was (i) measured manually (goniometer) and (ii) computed by a 3D reconstruction method (multi-view stereo and structure from motion). Stomatal conductance, leaf water potential, fluorescence (Fv/Fm), leaf area and 2D RGB data were simultaneously collected during drought imposition. Throughout the experiment, values of leaf water potential ranged from −0.4 (CTRL) to −1.1 MPa (IRR30%) and it linearly influenced the leaf angle when measured manually (R2 = 0.86) and with 3D image (R2 = 0.73). Drought was negatively related to stomatal conductance and leaf area growth particularly in IRR30% while photosynthetic parameters (i.e., Fv/Fm) were not impaired by water restriction. A model for leaf area estimation based on the number of pixels of 2D RGB images developed at a different phenotyping robotized platform in a closely related experiment was successfully employed (R2 = 0.78). At the end of the experiment, top view 2D RGB images showed a ∼50% reduction of greener fraction (GGF) in CTRL and IRR60% vines compared to initial values, while GGF in IRR30% increased by approximately 20%.

Keywords: greener fraction, leaf angle, Multi-view stereo, plant phenotyping, Vitis vinifera, water stress, 3D imaging


INTRODUCTION

Plants constantly adapt to their changing surroundings, adjusting their physiology, development and growth (Schurr et al., 2006). This dynamic adaptation can have both long-term (weeks to months) effects (e.g., shoot elongation, total leaf area development) as well as short-term effects (minutes to hours) that include changes in foliage orientation and leaf temperature (Biskup et al., 2007). Monitoring adaptations triggered by the changing environment are relevant for appropriate choice of management actions and in breeding programs. For example, monitoring the variations of trunk diameter or leaf turgor in response to soil moisture oscillations can direct an irrigation schedule (Goldhamer and Fereres, 2001; Jones, 2006). To monitor these traits, ideally one should use non-contact and non-destructive sensors (e.g., thermocouples and/or thermistors, leaf turgor pressure, trunk diameter gauges, dendrometer, strain gauges) (Ortuño et al., 2010; Fernández, 2014) as these have the potential to be automated and scaled at lower cost than manually implemented approaches.

Image-based sensors have become cheaper, more robust and are intrinsically non-contact. Information derived from images has the potential to parameterize ecophysiological models and predict the impact of environmental factors on various plant and fruit traits including growth, diseases incidence and chemical composition (Gago et al., 2017; Zhao et al., 2019). Drought events are predicted to be more frequent and longer in coming decades in many cultivated regions (e.g., Mediterranean) (Raymond et al., 2019), so image-based assessment of drought stress in crop species are urgent (Berger et al., 2010; Briglia et al., 2019).

Leaf angle is a key indicator of water relations in grapevine mainly because angle changes according to water status or turgor (Smart, 1974). Change of leaf angle has also been implicated in water stress tolerance. For example, leaf angle variation can reduce the thermo-radiative load on leaf (and in turn its temperature, conductance and transpiration), minimizing the inhibition of photosystem II and contributing to water conservation (Gamon and Pearcy, 1989; Palliotti et al., 2008). Many grass species also display leaf blade rolling in response to drought, reducing the surface exposed to thermal radiation and such responses are quantifiable using image based analyses (Duan et al., 2018).

Non-contact sensing of the plant and the environment is increasingly important for crop irrigation management strategies, saving water while maintaining fruit quality (Fernández, 2017; Khanna and Kaur, 2019). Leaf angle is receiving increasing attention within 3D modeling of water dynamics at both leaf and ecosystem scales, due to its influence on water transport and reflectance/absorbance processes in several species (Vicari et al., 2019) including grapevines (Zhu et al., 2018). Multi-view stereo (MVS) 3D reconstruction is increasingly employed to generate 3D point clouds for reconstruction of plants, canopies and estimation of diverse traits such as main shoot height, fruit and leaves in tomato, maize, rape (Lou et al., 2014; Xiong et al., 2017). Various 3D models of plant canopy reconstruction for reliable drought stress characterization also based on MVS photogrammetry have been recently compared (Srivastava et al., 2017; Das Choudhury et al., 2019) but the approach has not yet been applied to grapevines.

Although leaf angle or leaf inclination relative to shoot is related to leaf water potential in several crops (e.g., soybean, wheat, pepper, prune, apricot) (Kao and Forseth, 1991; Torrecillas et al., 2000; Lampinen et al., 2004), it is not yet a common parameter in irrigation management, likely because of practical and cost constraints in handling leaves and measurement. Hence, improved estimation of leaf angle would be highly desirable to potentially improve smart management of irrigation.

A combination of 2D and 3D imaging of specific plant structure/architecture features that respond to drought stress (e.g., leaves orientation, grains and fruits number and structures, primary and secondary roots distribution) could provide smart tools for digital agriculture. For example, in soybean subjected to water deficit, a combination of 3D laser scanning and stereovision reconstruction of leaf revealed the spatial orientation of single leaf and in turn quantified drought stress (Biskup et al., 2007). Point clouds derived from 3D laser scanning have been proposed for leaf and stem classification in grapevine (Paulus et al., 2013) but leaf angle was not tested.

In grapevine, the relationship between manual and image-based measurements of leaf angle and leaf water potential is unknown. It has been reported that manually measured leaf angles might change from the vertical axis by 60–70° in well irrigated vines up to 80–120° in drought stressed ones when approaching severe drought condition (approximately −1.8 MPa early morning) (Smart, 1974; Palliotti et al., 2008; Briglia et al., 2019). However, a systematic characterization of leaf angle response to drought stress using 3D image-based plant-phenotyping domain has not been adequately explored.

Therefore, this study mainly aimed at comparing the variations of leaf angle as measured using 3D images with those using manual (goniometer) methods in progressively drought stressed grapevines.



MATERIALS AND METHODS


Plant Material and Experimental Design

The experiment was conducted at the National Plant Phenomics Centre, IBERS-Aberystwyth University, United Kingdom (N 52° 24′ E -4° 01′) during the 2018 growing season in a greenhouse with controlled environmental conditions. The minimum air temperature was set at 18°C and active radiation (PAR) at approximately 800 μmol m–2 s−1 (natural light supplemented with 600 W sodium lamps) from 0500 to 2000 h. Air temperature and relative humidity were recorded at 5 min interval through the greenhouse integrated wireless sensors (Cambridge sensors)1, the vapour-pressure deficit (VPD) was then automatically computed following Goudriaan and van Laar (1994).

A total of 45 vines (cv Aleatico) grafted on 110R rootstock were grown in black 3.5 L PVC pots filled with a 3:1 v/v mixture of sandy loam soil (82% sand, 7% silt, and 11% clay) and Levingtons F2 peat compost. Maximum soil available water capacity (AWC) (g) was calculated following Minasny and McBratney (2003). The reference soil weight (g) at the field capacity (FC) was determined on 5 soil samples collected after fully irrigating the pots and allowing water to drain for 15 h, until a stable weight was reached. Then the soil weight at the permanent wilting point (WP) was obtained by drying the soil samples at 80°C until a stable weight was reached. The AWC was calculated as difference between FC and WP (Minasny and McBratney, 2003).

The potted vines were placed on a gravimetric platform, composed of a set of precision scales (± 1g) equipped with a computer controlled irrigation system2. Based on the pot weight recorded at 1800 h the platform computed the daily water consumption (g) per vine in each irrigation group as the difference between the reference soil weight and actual plant weight.

From potting of the cuttings (15th of March) until the beginning of irrigation treatment (see below) plants received every 15 days 150 ml plant−1 of an aqueous solution containing 3 g L−1 of Chempack Low Nitrogen Feed Fertilizer (NPK 12.5-25-25).



Irrigation and Drought Stress Imposition

From bud-break (09 BBCH-scale) (early April) till the imposition of irrigation treatments (55 BBCH-scale) (i.e., 21st of May, hereafter referred as “Day 0”), all vines were fully irrigated just after they were weighed replacing 100% of the amount of daily water consumption to keep soil moisture close to field capacity. At Day 0, 15 vines were allocated to each of 3 irrigation treatments (fraction of water to be replenished via irrigation): restoring 100% (control, CTRL), 60% (IRR60%) and 30% (IRR30%) of the AWC.



Stomatal Conductance and Chlorophyll-a Fluorescence

Stomatal conductance (gs) per unit leaf area was measured midday (1130–1230 h) at −3, 0, 2, 3, 8, 10, 14, 16, and 21 days after treatment imposition (DADI) using a portable porometer (Delta-Device ΔP4). The measurements were performed on 4–5 vines per irrigation treatment on two fully expanded leaves per vine selected from the middle region of plant canopy (nodes 6–11 from the ground, see Figure 1).
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FIGURE 1. Left: schematic diagram of the protocol used to determine (a) leaf angle as supplementary of (b) angle of midrib from petiole; right: representation of the lower (nodes 1–5 from ground), middle (nodes 6–11) and upper (nodes >11) region of a plant canopy.


On the same leaf used for gs measurements, chlorophyll a (Chl-a) fluorescence (Fv/Fm) (see Briglia et al., 2019 and reference therein) was measured at midday (1130–1230 h) through a portable chlorophyll fluorometer (PAM- 2500, Heinz Walz GmbH, Effeltrich, Germany).



Stem Water Potential

At 0, 3, 10, 14, 16, and 21 DADI the stem water potential (Ψ) was measured midday using a pressure bomb (The SKPM 1400 series, Skye Instruments Llandrindod Wells Powys, United Kingdom) following the methodology reported by Turner (1981). On each measurement time, 2 leaves per pot (×3–4 pots a treatment) from the middle canopy region (Figure 1) were used.



Soil Moisture

Soil moisture was determined gravimetrically at the end of each gs, Chl-a and Ψ sampling session. Soil samples were taken from each pot per treatment (n = 3–4), weighed (FW, fresh weigh) and dried till constant weight (DW). Soil moisture was calculated as (FW-DW)/DW × 100 and reported as %DW, according to Black (1965).



Leaf Angle and HTP Plant-Phenotyping

After the physiological measurements were collected, the same individuals were used for various image acquisitions.


Leaf Angle

Leaf angle was defined as the supplementary angle of the deviation angle of the midrib from petiole according to Smart (1974; Figure 1). At 0, 3, 10, 14, 16, and 21 DADI, the leaf angle was manually measured using a goniometer on 8 leaves per vine (×3–4 plants a treatment) selected from the lower (nodes 1–5 from ground), middle (nodes 6–11) and upper (nodes >11) region of the canopy (Figure 1).

Leaf angle was also determined through a multi-view stereo (MVS) 3D reconstruction method of plants using multi-view images to feed a Structure-From-Motion procedure followed by a stereo matching and depth-map merging process (Wu, 2013; Lou et al., 2014; Xiong et al., 2017). At 0, 2, 3, 8, 9, 14, 16, and 21 DADI, vines were imaged at the same time of day (between 1200 and 1300 h) using a consumer grade color camera (Nikon Reflex Camera, 6,000 × 4,000 pixel resolution). The 3D imaging station (GreenPheno, Wuhan, China) also included a tripod, a rotatable platform and a servomotor controller, controlled by the image acquisition software (written in LabVIEW). Diffuse illumination was provided by 2 150 W halogen lamps (Patterson TL 3200K, United Kingdom). The plants were imaged by placing on the rotatable platform that was programed to stop every 6°, allowing the capture of 60 images per vine. All images (.PNG) were stored in a database (raw data available on request) and subsequently obtain the 3D point cloud with visual structure from motion (SFM) algorithm. Then, using the 3D model of each vine, the leaf angle was calculated using Cloudcompare and point cloud library (PCL). Figure 2 summarizes the main steps for leaf angle estimation from 3D models: (A) SFM reconstruction algorithm using 60 side-view images to obtain 3D cloud points; (B) identification and removal of noise points (see below), region growing, fill small holes, semi-automatic segmentation of leaf and petiole; (C) point-cloud reconstruction of leaf blade and identification of regression plane; (D) determination of petiole regression line and calculation of the 3D leaf angle.
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FIGURE 2. Schematic work-flow of the procedure for 3D identification of leaf angle showing (A) a digital plant canopy obtained using 60 side-view images and structure from motion reconstruction (SFM) algorithm to obtain 3D cloud points; (B) leaf and petiole segmentation after removing noise points, region growing, filling small holes, the leaf and petiole were segmented semi-automatically; (C) determination of leaf blade regression plane and petiole regression line; (D) calculation of the leaf angle.


The identification of noise points was based on the gray-values (r, g, and b) of RGB color channels of each point, then the removal was executed when that values were below thresholds according with the following criteria:

[image: image]



RGB Imaging and GGF Index

Vines were also imaged (between 1200 and 1300 h) at 0, 2, 3, 8, 9, 14, 16, and 21 DADI using a LemnaTec Scanalyzer phenotyping platform (LemnaTec GmbH, Aachen, Germany). Vines were automatically conveyed into an imaging chamber equipped with a visible light (RGB) sensor with a 2454 × 2056 pixel resolution. Four images were acquired per vine: a Top View (TV) image taken from above and 3 Side Views (SV) taken at 0°, 45° and 90°. Image analyses were performed using the software LemnaGrid v2 following Zaman-Allah et al. (2015) and the segmentation procedure reported in Briglia et al., 2019.

RGB images were then converted to HIS (hue, intensity, saturation) color space. Next, the component H (hue, in degree) was used to calculate the “greener fraction” (GGF) as the number of green pixels (80° < hue < 180°) relative to the total number of pixels of a given image (Casadesús and Villegas, 2014).



Leaf Area Determination

The projected shoot area (PSA) was calculated from the 2D RGB images, according to Briglia et al. (2019) and modified as follows:
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where “Npix 0°SV,” “Npix 45°SV” and “Npix 90°SV” and “Npix TV” is the number of pixels corresponding to the plant object area of the images collected at the various positions.

After final image acquisition, the vines were manually defoliated, leaves were scanned on a flat bed scanner and the leaf area (LA, cm2) measured using Fiji open source software (Schindelin et al., 2012; Maloof et al., 2013).



Data Analysis

The statistical analysis used R software (3.3.2 version) package agricolae” (de Mendiburu, 2016), plotting and fitting were by OriginPro 9.3 (OriginLab Corporation, United States). Data were reported as mean and standard error of the mean (±SE). A one-way ANOVA was used to examine the differences between irrigation treatments at each sampling date, the differences among means were identified by Tukey Honest Significance Difference (HSD) post hoc tests and p values < 0.05 were considered significant.



RESULTS AND DISCUSSION


Plant Water Relations and Environmental Conditions

This study focused mainly the response of leaf angle (as measured using either a goniometer and through a 3D image-based process) to drought stress in grapevines experiencing a relatively wide range of Ψ (see below). Vines were grafted on 110R rootstock, which is a common rootstock used in dry environments to deal with limitation of soil water content due to its structure and function (Yıldırım et al., 2018).

The change of leaf angle in grapevine canopy is a turgor response of the plant to the reducing soil available water (Smart, 1974). However, it has been also documented in Vitis spp. that variation of leaf angle mediates the trade-off between the need for carbon gain and for avoidance of excessive radiation load (Gamon and Pearcy, 1989). In this study grapevines grew at saturating light condition (800 μmol m–2 s−1 PAR) (Greer and Weedon, 2011) to prevent any effect of excessive irradiance load on photoinhibition and in turn on leaf angle (Gamon and Pearcy, 1989). Hence, leaf angle variations here presented are attributable only to plant water status sensu Smart (1974).

During the experiment, values of maximum VPD ranged from approximately 0.6 (12 DADI) to 4.9 kPa (2 and 8 DADI), with an average value of 2 kPa, and a mean air temperature value of 25.5°C (Figure 3). Soil moisture in well irrigated pots was stable at approximately 32% DW throughout the experiment while it gradually reduced in drought stressed ones starting from 3rd DADI (Figure 3) and approaching values close to 10% DW (IRR30%), and 22% DW (IRR60%) at the end of the experiment (Figure 3). Changes of soil moisture are comparable to that reported in a closely related experiment carried out at a different robotized plant-phenotyping facility (Briglia et al., 2019).
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FIGURE 3. Diurnal variations of vapor pressure deficit (VPD) and air temperature recorded inside the glasshouse during the experiment and average values (± SE) of soil moisture (% dry weight) measured across the experiment in vines receiving 60% (IRR60%) and 30% (IRR30%) of the available water capacity and under well irrigation (CTRL). For soil moisture, comparing treatments at the same time different letter indicates statistically significant differences (Tukey’s HSD, p < 0.05), letters were not reported when differences were not significant.


Although pre-dawn leaf water potential is among the most accurate parameter for plant water status assessment (Chone et al., 2001) in this study stem water potential was measured at midday because of its close correspondence with that measured pre-dawn (Chone et al., 2001). Throughout the experiment, the Ψ values of the CTRL vines were stable at approximately −0.4 MPa (Figure 4) similarly to Shackel (2007) and Giorio and Nuzzo (2012). In vines under moderate drought stress (IRR60%) Ψ declined close to −0.6 MPa at 3 DADI where it remained throughout the experiment (Figure 4). In IRR30% vines the values of Ψ decreased to approximately −0.8 MPa after 3 days of drought stress, thereafter it progressively declined to about −1.1 MPa at 21 DADI (Figure 4).


[image: image]

FIGURE 4. Pattern of mean values (±SE) of stem water potential (SWP) and stomatal conductance (gs) measured midday in leaves of grapevines under drought stress receiving 60% (□, IRR60%) and 30% (Δ, IRR30%) of the available water capacity and well watered (•, CTRL). Comparing treatments at the same time different letter indicates statistically significant differences according to Tukey’s HSD test, p < 0.05. Note that letters were not reported when differences were not statistically significant.


Stomatal conductance was measured also before drought stress imposition (at −3 DADI) to check for vines uniformity showing values at approximately 240 mmol H2O m–2 s−1 (Figure 4) similarly to that of field grown grapevines (Chaves et al., 2010). Next days and until 3 DADI, the stem water potential decreased exerting the down-regulation of stomatal closure in both IRR60% and IRR30% (Figure 4) similarly to observations reported for pot and open-field studies (Medrano et al., 2003 and Cifre et al., 2005). In IRR60% gs reduced to a value approximately 50% of the initial one as soon as 3 DADI, it stayed there for the remaining part of the experiment (Figure 4). In IRR30% vines values of gs were ∼70% lower than that of CTRL vines at 3 DADI, thereafter it continued to decline toward the minimum at 14 DADI where it remained until the end of the experiment (Figure 4).

As anticipated, the present experiment was designed to avoid possible influence of (excessive) leaf irradiance load on its angle preventing occurrence of photoinhibition. The values of Fv/Fm measured across −0.4 to −1.1 MPa range of Ψ remained optimal (i.e., close to 0.75) (not shown) similarly to Briglia et al. (2019) where drought was combined with high irradiance (PAR at approximately 2,000 μmol m–2 s−1). Hence, in addition to drought protective mechanism(s) recognized in grapevine (e.g., improved photosynthetic indexes, increased in carotenoids, ROS, proline) (Medrano et al., 2003, Carvalho et al., 2015), leaves of the Aleatico cv might have a cultivar-specific compensatory mechanism(s) of the photosystem (e.g., augmented electron transport capabilities) (Hochberg et al., 2013).



Leaf Angle Response to Drought Stress

Results reveal a linear relationship between Ψ and leaf angle as measured with both 3D and manual methods. Leaf angle (goniometer) gradually increased from approximately 75° (well irrigated) to approximately 110° (severely drought stressed) (Figure 5). The present results are difficult to compare with the existing literature because of poor existing data on leaf angle across a wide range of Ψ. However, results are in line with that of Palliotti et al. (2008) who reported a variation from 76° (well irrigated) to 88° (water stress) but, unfortunately values of related leaf water potential were not reported so preventing a deeper discussion. However, the approximately linear increase of leaf angle in response to decreasing Ψ (Figure 5) fits quite well with results from drought stressed soybean (Kao and Forseth, 1992).
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FIGURE 5. Correlation between stem water potential measured midday (Ψ) at the middle region of canopy and leaf angle measured through (□) goniometer and (•) 3D-image method. Note that goniometer measurements refer to the middle canopy zone while 3D leaf angles are the average of 3–15 measurements collected in various plant canopy zones.


In this study, the Ψ was measured in the middle zone of the canopy while leaf angle was manually measured at the three zones identified (i.e., lower, median and upper) (Figure 1). Hence, leaf angle showed a variable dependence on Ψ according to the canopy region where the angle was measured (Figure 6), which might reflect the variable hydrostatic pressure gradient existing across the vine (Zhu et al., 2018). However, more efforts are required to examine heterogeneity of leaf angle through the canopy as influenced by Ψ gradient.
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FIGURE 6. Relationship between leaf angle manually measured at three regions (upper, middle, and lower) of the canopy and midday leaf water potential (Ψ). Note that in all panels values of Ψ refer to the Ψ measured in the middle region. For location of regions please refer to Figure 1.


This study reports 3D image-based data on specific drought-related trait in grapevine (leaf angle) integrating current information (Srivastava et al., 2017; Das Choudhury et al., 2019).

Leaf angles were gentler when measured using the 3D method for a given Ψ compared to angles measured with the goniometer (Figure 5). Namely, the manual and 3D methods differed by approximately 15–20° in severely water stressed vines (i.e., Ψ close to −1.1 MPa) while differences increased up to 35° in well irrigated vines (i.e., Ψ close to −0.4 MPa). The higher accuracy of leaf angle measurement intrinsically conferred by its direct (manual) and careful determination (Norman and Campbell, 1989) might help to explain its higher coefficient of determination compared to that obtained through the 3D method.

The 3D image-based procedure employed determines the leaf angle as an average of those angles identified in various canopy regions while Ψ was measured in a specific region (see Figure 6). This might help also to explain differences detected between the two methods and the relatively lower predicting strength of the 3D method compared to that of goniometer.

The 3D point cloud data analysis allowed the segmentation of leaf blade planes and petioles as shown by the animated visualization of the 3D vine (Supplementary Video S1) and by Figure 7. However, the number of petioles successfully segmented in each vine (and in turn that of leaf angles determined) was lower (3–15) as compared to the actual number of leaves present (20–25) because the 3D point-cloud reconstruction was sensitive to overlapping or occluded leaves. The topographical position of identified angles around the canopy was not recorded, contributing to reduced predictive accuracy of the 3D method as compared to goniometer.
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FIGURE 7. Schematic output of the 3D point cloud reconstruction and organ segmentation for a drought stressed (Ψ value approximately –1.0 MPa) and well irrigated (approximately –0.4 MPa) vines imaged at 14 DADI. On the right, the partial enlargement of the well irrigated canopy shows the identified petioles (arrows). Note that different colors indicate different items identified; colors apply only for electronic version of the article.


Bailey and Mahaffee (2017) developed a method based on terrestrial LiDAR scanning data to estimate the distribution of leaf orientation for an arbitrary volume of Vitis vinifera and Poplus balsamifera leaves, overcoming some of the occlusion issues. In that study, the reduction of sampling volume and multiple scanning potentially fix the overlapping issue. For laboratory experiments, the vines might be trained to a simpler architecture to minimize leaf overlapping (e.g., single shoot or shoots well outdistanced). To address the erratic identification (number and position) of leaves using the 3D method for the estimation of the leaf angle in grapevine requires more effort.

The methods adopted in this study required the segmentation of both the lamina and the petiole for the same leaf to calculate the leaf angle. In a recent study the inclination of leaf surface relative to the zenith was determined through terrestrial LiDAR point clouds without accounting for the petiole (Vicari et al., 2019). Leaves of the tree species studied (e.g., Ostrya japonica, Diospyros lotus, Ginkgo biloba, Wollemia nobilis) are sessile or have a shorter petiole as compared to that of Vitis spp., however it would be worth testing whether that method is applicable to species with long petiole as grapevine. In addition, in Vitis spp. the inclination of leaf blade per se (and in turn leaf angle) might be influenced by several factors not directly related to plant water status (e.g., shoot position, row orientation, training systems) (Louarn et al., 2007). Hence, measuring changes of leaf angle relative to petiole is essential to avoid confounding factors if plant water status is to be determined. This study mainly related the computer vision signal to the underlying physiology (i.e., leaf angle), being potentially supportive for development and exploitation purposes of a new 3D-image based method of Ψ assessment within precision agriculture domain.



RGB-Image Based Morphometric and Colorimetric Indexes

Several leaf traits (e.g., orientation, thickness, pigments content, trichomes, stomatal conductance, photosynthetic rate) contribute to drought tolerance in plants and are often reinterpreted within a HTP-phenotyping context (Berger et al., 2010). Trichome density of the abaxial surface is a cultivar specific trait varying from “absent” to “very dense” (IPGRI et al., 1997), and a dense trichome layer may confer a lighter green color compared to the a gluacous adaxial leaf surface (Boso et al., 2010). On that basis, it was previously hypothesized that a reduction of dark green fraction occurs in leaves of drought stressed grapevine because of the increased exposure of the lighter green abaxial leaf surface due to the increased leaf angle (Briglia et al., 2019). The Aleatico cv has no (or very sparse) trichomes (Organisation Internationale de la Vigne et du Vin [OIV], 2009, Paolocci et al., 2014) so that hypothesis is not plausible. In addition the color of Aleatico young leaves as discussed above poses further issues. However, it would be worth to test it in case of varieties with higher trichome density.

Vine development, as influenced by drought imposition, was assessed through the estimation of change in leaf area (LA’) employing an RGB-images based model. The linear LA’ model (LA’ = 3.3027 × PSA −283.42, R2 = 0.78) (Figure 8) was trained through a resampling (10-fold) Cross-Validation procedure, revealing its good performance (R2 = 0.87) in predicting LA’ of new test data. This was substantially confirmed by testing the model on a set of 13 additional vines (see the inset of Figure 8). Values of intercept and slope of the LA’ model differed from that of the model developed and validated for well irrigated and droughted grapevines at another robotized HTP plant-phenotyping platform located in Southern Italy (Briglia et al., 2019). Such differences might conceivably be explained considering the different RGB camera resolution of the two HTP facilities and the inclusion of the 45°SV pixels into the equation for PSA determination. Noticeably, addition of the 45°SV pixels allowed a model performance as high as in Briglia et al. (2019) likely because of higher canopy density. Lack of comparable standards and protocols across platforms is a critical issue for the phenotyping community (Reynolds et al., 2019; Rosenqvist et al., 2019). Hence, the present results might support the harmonization and standardization of protocols among HTP facilities (Reynolds et al., 2019).
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FIGURE 8. Linear fitting model of leaf area (y-axis) and the projected shoot area (PSA) resulting from a 10-fold cross-validation analysis. The gray filled area indicate the upper and lower 95% CI about the model. In the inset, a regression analysis testing the model on a different set of vines.


Leaf area of CTRL and IRR60% vines increased by approximately 26% within the experiment reaching approximately 2,800 cm2 p−1 (Figure 9). For the IRR30% vines leaf area showed an initial 14% increase during the early 9 DADI, then it remained stable for a week before a final decline toward the lowest value of 1,970 cm2 p−1 (21 DADI) likely due to an initial defoliation triggered by drought stress. The influence of the irrigation treatment on leaf area growth estimated through LA’ is consistent with Campo et al. (1999).
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FIGURE 9. Evolution of the estimated leaf area (LA’) in grapevines under drought stress receiving 60% (□, IRR60%) and 30% (Δ, IRR30%) of the available water capacity and well watered (•, CTRL).


Decreasing of the green color fraction (or increasing yellow or brown ones) is usually associated to onset and progress of leaf senescence as induced also by drought to the extent that reduction or prolonged persistence of green color are thought robust indicators to discriminate drought prone or tolerant plants (Munné-Bosch and Alegre, 2004; Cai et al., 2016; Duan et al., 2018). During the early 3 DADI, GGF values were not statistically significant among the irrigation treatments, showing a GGF sitting at around 0.6 (Figure 10). Starting from 8 DADI, although Ψ was stable the GGF progressively decreased in CTRL and IRR60% vines. At the end of the experiment (21 DADI) both CTRL and IRR60% plants scored a statistically significant difference in GGF, approximately 50% less than that found in most drought stressed vines (IRR30%). By contrast, TOP view GGF of IRR30% increased from 0.6 (8 DADI) to 0.72 after 13 days of exposure to drought.
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FIGURE 10. Evolution of Greener Fraction (GGF) recorded from top and side views throughout the experiment in vines well irrigated (CTRL) and under drought stress receiving 60% (IRR60%) and 30% (Δ, IRR30%) of maximum soil available water capacity. Comparing treatments at the same time different letters indicate statistically significant differences according to Tukey’s HSD test, p < 0.05. Note that letters were not reported when differences were not statistically significant. In the inset of the Side view panel a 1-year growing shoot of the Aleatico cv. (Vitis vinifera) showing typical copper-reddish young leaves pictured on a background with 0.5 cm mesh. Note that colors apply only for electronic version of the article.


The GGF index has been conceptualized to track senescence (i.e., the more GGF is stable, the less senescence occurs) (Casadesús et al., 2007; Casadesús and Villegas, 2014). The variation of GGF across treatments as a response to drought was influenced by the position of the RGB camera (side or top). When vines were imaged Side view the GGF of CRTL and IRR60% treatments showed a similar 12–15% decreasing trend throughout the experiment, while IRR30% was substantially stable if a transient increase at 16 DADI is excepted (Figure 10). Top view images reveal an approximately 50% decline of GGF in CTRL and IRR60% at the end of experiment, by contrast in IRR30% vines increased by approximately 22% (Figure 10).

Reduction of GGF values in both CTRL and IRR60% vines during the advancement of drought (Figure 10) suggests an apparent progressing senescence particularly in case of top view. However, considering that both CTRL and IRR60% vines continued to grow during the experiment (Figure 9) reduction of GGF might be an artifact related to the increased of not-green leaf area due to the emerging new leaves. Typically young leaves are copper-reddish colored in Aleatico cv. according to internationally recognized ampelographic description (Figure 10; IPGRI et al., 1997; Organisation Internationale de la Vigne et du Vin [OIV], 2009). Calculation of the GGF has been plausibly influenced by such new (non-green) even small sized foliage that increased the total pixels. The gentler decline of GGF derived from side view images compared to top ones might be explained considering that new emerging copper-reddish leaves (belonging the shoot apex) conceivably represented a smaller fraction of the pictured canopy. Hence, application of GGF index to track leaf senescence in grapevine should be cautiously used in relation to color-related juvenile traits of cultivars. An alternative or integrated GGF index accounting for possible dichromatism of young leaves is desirable.

The increase of GGF detected top view in IRR30% vines was likely due to increased chloroplast density per unit leaf area as reported for barley (Munns et al., 2010). The GGF accounts for greener pixels hence it might be considered an analogous of the Dark (or deep) Green fraction (Cai et al., 2016). The pattern of GGF observed in this study during the progress of the drought stress apparently differs from that of the Dark Green fraction reported in Briglia et al. (2019) for the same Ψ typology (i.e., midday) and range (−0.4/−1.1 MPa). Particularly, the greener fraction in Briglia et al. (2019) (i.e., Dark Green) measured in severely drought stressed vines decreased with worsening of drought while in the present study the analogous GGF was stable (side view) or even increased (top view) (Figure 10). Growing conditions (e.g., temperature, light level) differed between the HTP facilities belonging Briglia et al. (2019) and that used this study. For example, irradiance was set at 800 μmol m–2 s−1 in this study while it followed the diurnal change in Briglia et al. (2019) being on average 1,350 μmol m–2 s−1 and often peaking at approximately 2,000 μmol m–2 s−1. In addition, Briglia et al. (2019) used ownrooted vines while in this study vines were grafted on a rootstock. Different irradiance and plant material possibly have influenced nutrient uptake/partitioning, leaf pigments concentration, thickness and in turn its RGB response and the course of senescence (Munné-Bosch and Alegre, 2004). It emerges the need for monitoring and setting of standard environmental growing conditions toward standardization of data acquisition as debated by the plant phenotyping community under several international initiatives (Pieruschka and Schurr, 2019; Rosenqvist et al., 2019).



CONCLUSION

This paper demonstrates that 3D image-based leaf angle phenotyping is a promising tool to estimate plant water status across a wide range of drought stress. The present results document the close correspondence of leaf angle with leaf water potential in grapevines and indicate that imaging, although less well correlated with water potential than manual measurements, provides the opportunity to scale analysis at low cost. This study also documents the suitability of an image-based leaf area estimation model across two HTP plant phenotyping facilities. The study shows that for the suitability of green-related indices (e.g., GGF, Dark Green) for comparisons across platforms and the uniformity of plant material and possible cv-related trait (e.g., dichromatism of young leaves) and growing conditions would be required.
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VIDEO S1 | Animated 3D point clouds reconstruction of a grapevine plant using multi-view stereo method.


FOOTNOTES

1
https://www.plant-phenomics.ac.uk/index.php/resources/methodology/

2
https://github.com/NPPC-UK/Gravimetrics
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The automated harvesting of strawberry brings benefits such as reduced labor costs, sustainability, increased productivity, less waste, and improved use of natural resources. The accurate detection of strawberries in a greenhouse can be used to assist in the effective recognition and location of strawberries for the process of strawberry collection. Furthermore, being able to detect and characterize strawberries based on field images is an essential component in the breeding pipeline for the selection of high-yield varieties. The existing manual examination method is error-prone and time-consuming, which makes mechanized harvesting difficult. In this work, we propose a robust architecture, named “improved Faster-RCNN,” to detect strawberries in ground-level RGB images captured by a self-developed “Large Scene Camera System.” The purpose of this research is to develop a fully automatic detection and plumpness grading system for living plants in field conditions which does not require any prior information about targets. The experimental results show that the proposed method obtained an average fruit extraction accuracy of more than 86%, which is higher than that obtained using three other methods. This demonstrates that image processing combined with the introduced novel deep learning architecture is highly feasible for counting the number of, and identifying the quality of, strawberries from ground-level images. Additionally, this work shows that deep learning techniques can serve as invaluable tools in larger field investigation frameworks, specifically for applications involving plant phenotyping.

Keywords: strawberry detection, deep learning, improved faster-RCNN, plumpness assessment, ground-based imaging system


INTRODUCTION

Strawberry is a perennial root herb and one of the most important berry products in the world (Sønsteby and Heide, 2017). Compared with other types of berries, it has a faster fruit-bearing speed, earlier maturation, smaller plant size, and shorter reproductive cycle. As a cash crop with low investment and high income potential, it has been widely planted all over the world. China has the most abundant wild strawberry resources in the world (103 accessions of wild strawberry genotype), with an annual strawberry production of over eight million tons (Morris et al., 2017). Since the 1980s, through the introduction of hybrid breeding and mutation breeding, many high-yield strawberry varieties have been developed. In strawberry collection, labor costs have always represented by far the highest proportion of the total expenditure (Lu et al., 2017). In the process of strawberry picking and fruit grading, significant numbers of experienced skilled workers are required to perform manual work. Recently, intelligent machines, named strawberry-harvesting robots, have been introduced in the strawberry industry (Bargoti and Underwood, 2017). First, an RGB camera or depth camera is used to capture 2D or 3D images in order to distinguish strawberries from the background. Then, the central control system operates a manipulator to complete strawberry picking based on the results of the fruit location algorithm (Khosro et al., 2018). Numerous studies have achieved the non-destructive recognition and picking of ripe fruit. For example, Ji et al. (2012) developed an automatic visual recognition system for an apple-harvesting robot; they combined a vector median filter with an image segmentation method based on region-growing and color features and finally achieved a recognition success rate of approximately 89%. Furthermore, Liu et al. (2018) proposed a method based on block classification to recognize apples in plastic bags; an edge detection–based watershed algorithm and a support vector machine (SVM) were used to extract color and texture features from blocks, and the recognition of apples in plastic bags was finally realized. Moreover, Savakar and Anami (2009) introduced a classifier named the back-propagation neural network (BPNN) to recognize and classify different kinds of fruit. The obtained average accuracies of 94.1, 84.0, and 90.1% for the selected targets show that the system was efficient and reliable. Additionally, Zhang et al. (2007) proposed a method for the recognition of cucumbers in greenhouses involving the automatic picking of fruits by robots. After successful image preprocessing and network training, the plant images were segmented.

However, the automation of strawberry harvesting presents a number of unique difficulties:


•During the picking process, complete images of strawberries cannot be obtained due to occlusion by leaves and stems.

•Dynamic illumination conditions and surface reflection change the color features of the strawberries and the background.

•Strawberries must be picked at the right time, as they do not ripen significantly once removed from the plant. Any automated system is commanded to pick out all ripe fruit.



Fruit recognition and localization processes play important roles in the development of strawberry-harvesting robots (Gongal et al., 2015). A successful recognition and location model should avoid the misjudgment of strawberries and select suitable fruit for harvesting according to their appearance (Srivastava and Sadistap, 2018). A number of color-pattern recognition methods have emerged in the field of strawberry field-image processing, for example, the K-Nearest Neighbor algorithm, Principle Component Analysis, Linear Discriminant Analysis, and Non-Negative Matrix Factorization (Wu et al., 2017). Luo et al. (2018) designed a vision system to detect cutting points on the peduncles of double-overlapping grape clusters in a vineyard; they used three main steps to detect the cutting point—namely, K-means clustering, edge detection, and geometric information decision-making—and demonstrated the effective practical performance of the system. Wang et al. (2017) combined supervised classification technology with a geometric center–based matching method and built a recognition and matching system for mature litchi fruits. Zhao et al. (2011) proposed an image-based vision servo-control system for harvesting apples. By using an SVM with a radial basis function, the algorithm was able to detect and locate apples in a tree with a successful identification rate of 77%.

Recently, artificial neural networks have been widely used in information processing, pattern recognition, intelligent control, and system modeling, due to their advantages of distributed storage, parallel processing, and self-learning ability (Chaki et al., 2019). Inkyu et al. (2016) presented a fruit detection method using Faster Region–based CNN (Faster-RCNN). They combined information obtained from color and Near-Infrared images, and the final results can be used as a key element for fruit yield estimation and automated harvesting. Furthermore, Madeleine et al. (2016) introduced a novel multi-sensor framework to identify every piece of fruit combined with a state-of-the-art Faster-RCNN detector. They used LiDAR to generate image masks for each canopy so that each fruit could be associated with the corresponding tree. Additionally, Bauer et al. (2019) developed an open-source platform named AirSurf to measure phenotyping information from remote sensing images. A computer vision algorithm was combined with deep learning architecture to realize the quantification of a large number of lettuces using the normalized difference vegetation index (NDVI). However, if the plant varieties and growing conditions are changed, none of the abovementioned methods will be valid. To reliably detect strawberries in the growth stage from RGB images, several changes must be made to the segmentation model, such as changes in the color temperature of the light, changes in reflectance before and after wetting the soil, and lack of typical images of strawberries in universal datasets (e.g., ImageNet) (Deng et al., 2009). Therefore, a robust model must be established, all of whose parameters should be trained using labeled image data.

Fruit quality is a complex parameter that is influenced by the synthesis and action of hormones. The metabolism of sugars and acids is also responsible for the rate of ripening. A small number of researchers have focused on the rapid and non-destructive testing of fruit quality. For example, Zhang et al. (2017) proposed a quadratic polynomial regression model for the assessment of the maturity of peaches based on near-infrared spectroscopy. The experimental results demonstrated a high correlation coefficient between fruit firmness and the index of absorbance difference (IAD). Furthermore, Misron et al. (2017) used a resonant frequency technique to identify the maturity of oil palm fruit bunches; they investigated the resonance frequency of the air coil and tested samples of fresh oil palm fruit bunches. Moreover, researchers have investigated the use of different objective methods to evaluate the internal quality of strawberry; however, the non-destructive and low-cost assessment of the external quality of strawberry (e.g., size and plumpness) is still a challenge due to the unique shape and changing appearance of this fruit.

In this paper, a low-cost image acquisition system was developed in order to obtain images of each strawberry in a greenhouse. In order to avoid interference in the training results due to changing illumination and leaf occlusion, we captured the strawberry images under different illumination intensities. A deep learning model based on transfer learning was used to identify and count the number of target fruits. Additionally, shape information was used to measure strawberry ripeness, which can be useful for studies of precision picking. The experimental results demonstrate that the Improved Faster-RCNN can achieve the suitable recognition and measurement of strawberries in a greenhouse without requiring any prior information. The results of tests on several species of strawberry are presented in this paper, which exemplify the usefulness of the proposed method for the acquisition of phenotypic information for breeding research. From the results, it can be concluded that our method has the potential to assist in the improvement of strawberry varieties as well as in providing decision information for harvesting robots, which is essential in the soft fruit industry. The remainder of this paper is structured as follows: in the materials and methods section, we describe the study area, the image acquisition system, and the data preprocessing process. The images were captured by two near-ground cameras in the greenhouse and were then used to build our original dataset. In the results and discussion section, we analyze the performance of the model by comparison with three other methods. We also provide the results of a method to assess the plumpness of strawberries which involves the application of the minimal external rectangle method. Finally, in the conclusion section, we summarize the significance of the present study and suggest future applications of the method proposed herein.



MATERIALS AND METHODS


Study Area

The strawberry images were captured at the Zhejiang Academy of Agricultural Sciences (ZAAS) Yangdu Scientific Research Innovation Base, Haining County, Zhejiang Province, China (30°27′ N, 120°25′ E). The greenhouse was made of a steel frame and covered by a 0.1-mm-thick polyethylene (PE) film. All strawberries were planted in raised beds placed 0.5 m above the ground which were covered with 0.03-mm-thick PE mulch and were set 0.2–0.3 m apart in rows with a distance of 1.5 m between each row. The soil available phosphorous content was 20 mg kg–1, the soil content of rapidly available potassium was 300 mg kg–1, and the soil content of alkali-hydrolyzable nitrogen was 300.2 mg kg–1. The strawberry samples consisted of three varieties, namely, Red Cheeks, Sweet Charlie, and Yuexin, which are the most widely planted strawberry varieties in Zhejiang Province. There were three plots for each variety, each with an area of 60 m2 (30 m × 2 m), and all plants were watered daily (Figure 1).
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FIGURE 1. Strawberry field experiment. (A) Greenhouse appearance and plot design; (B) location of the experimental base.




Field Experiments and Image Acquisition

The workflow of the image acquisition is shown in Figure 1. In the experiment, the images were first captured from the left and right directions by two MV-SUF1200M-T industrial cameras with a 1″-CMOS and a resolution of 12.0 megapixels (MindVision Technology, Co., Ltd., Shenzhen, China), which are collectively called the “Large Scene Camera System.” The system was installed on top of a four-wheel mobile platform and was set to continuous shooting mode to ensure the stability of shooting. For the acquisition of the original dataset, the Large Scene Camera System was positioned 1.5 m above ground level and the system was set looking forward at an angle of 45 degrees to the vertical, resulting in a spatial resolution of 0.05 cm per pixel. The camera aperture was set at an International Standardization Organization (ISO) of 125, and the focal lengths of the cameras were varied from 18 to 55 mm. The two cameras were controlled by an electronic shutter connected to a laptop by a USB 3.0 interface, and the shooting frequency was 1 picture per second. The final original image dataset consisted of 400 images. Then, the panoramic images were generated by calculating the similarity between the corresponding pixels of two overlapping images (obtained synchronously by the two cameras, with each camera pointing in a different direction). The mosaic method consisted of the following three main parts: (1) feature-point extraction and matching based on scale-invariant feature transform (SIFT) (Rublee et al., 2011); (2) image registration; and (3) image fusion. The open-source source codes of the image mosaic algorithm are available at http://www.lfd.uci.edu/∼gohlke/pythonlibs/. The aim of image mosaicking was to obtain more abundant information and then generate combination images with new characteristics. The final digitized panoramic strawberry images were stored in JPEG format on a hard disk (Figure 2).
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FIGURE 2. The design of the Large Scene Camera System. (A) Design of the system; (B) the appearance of the four-wheel mobile platform. (a) MV-SUF1200M-T industrial camera; (b) mobile platform; (c) sensor bracket; (d) storage device.




Image Preprocessing


Noise Reduction

The image acquisition process in the greenhouse was affected by material properties, the transmission medium, and voltage fluctuation in the cameras (Brekhna et al., 2017). This meant that the images contained noise and could not be directly used for interpretation and analysis. Consequently, a median filter with a size of 3 × 3 pixels was used to remove high-frequency noise from the images. This window size was chosen according to the numbers of strawberry-containing pixels. The denoised images were obtained through the integration of the red, green, and blue denoised channels.



Data Augmentation

The data augmentation process can be divided into two categories: offline augmentation and online augmentation (Parihar and Verma, 2016). In offline augmentation, the number of enhanced data is changed into the product of the value of augmentation factors and the original dataset. Such augmentation is generally used for small datasets. Meanwhile, online augmentation focuses on “batches” and is often used in training using large datasets. The generalization ability of the model can be improved by increasing the amount of data without changing the image category. There are two main approaches for data augmentation with natural images: geometric transformation and pixel transformation. The most commonly used geometric transformation methods are horizontal flip (or mirror), displacement, tailoring, and rotation. During pixel transformation, researchers often use color jittering and noise augmentation to improve the robustness of datasets. In this paper, the original images were processed using eight methods: brightness augmentation and attenuation, chroma augmentation and attenuation, contrast augmentation and attenuation, and sharpness augmentation and attenuation. In these methods, the brightness, chroma, and contrast of the image are attenuated to 1.2 times that of the original image, the sharpness is enhanced to 2 times that of the original image, and the brightness, chroma, contrast, and sharpness of the image are reduced to 60, 60, 60, and 10% of that of the original image, respectively. Additionally, in order to simulate the noise that the equipment may produce during image acquisition, Gaussian noise with a variance of 0.01 was added to the original images. Through the augmentation process, the dataset was expanded by 10 times, reaching 4000 pictures. In order to ensure the credibility of the training results, images were divided into training (80%) and testing (20%) sets (3200 training samples and 800 testing samples).



Annotation and Resizing

To verify the performance of the algorithm, all of the images were labeled by three experts. Many open-source tools are available for image annotation, such as Labelme, labelmg, yolo_mark, Vatic, and the Video Object Tagging Tool (Microsoft Corporation). Each of these tools has its own suitable work scenario and task category. Since strawberry recognition in field conditions is a static multi-target detection task, we chose the Video Object Tagging Tool as the labeling tool due to its simplicity and convenience. For each labeled image, there was an additional extensible markup language (XML) file containing the coordinates of the annotated bounding box (see Supplementary Material). Each box was represented as a four-dimensional array—(xmin, ymin, xmax, ymax)—in order to determine its relative position on the graph. Through the above treatment, each image contained about 100–150 boxes, which represents the number of strawberries. Due to limitations in GPU memory and capacity, in this study, images were resized to an appropriate size in order to improve the efficiency of the algorithm and reduce the computational burden. In order to reduce information loss, the images were split into local patches with a size of 256 × 256 pixels (according to the size of the strawberry displayed in the image) (Figure 3A).


[image: image]

FIGURE 3. Flowchart of the deep learning algorithm used for strawberry detection. The algorithm consists of two main parts: image preprocessing and model training. (A) Architecture of the training models; (B) the structure of the residual module in ResNet. RPN, region proposal network; ROI, region of interest.




Training and Validation Model

Convolutional neural network (CNN) techniques have gradually replaced traditional machine-learning architectures in target recognition applications since they do not need to consider the effectiveness of feature extraction (McCann et al., 2017). The basic Faster-RCNN (Ren et al., 2017) is mainly composed by three parts: (1) basic feature extraction network, (2) region proposal network (RPN), and (3) fast RCNN, while RPN and fast RCNN share the feature to extract the convolution layer. Based on previous studies of fruit recognition and classification by using Faster-RCNN, we focused on three popular feature extraction architectures, namely, VGG16, ResNet50, and the proposed Improved Faster-RCNN model (combined with ResNet50). This study uses a deep learning method based on image processing technology to detect strawberries in images acquired in a greenhouse and attempts to expand its application to an agricultural intelligent system.


The VGG16 Model

The VGG16 architecture follows the same design pattern as the basic VGG architecture, which was proposed by researchers at the University of Oxford, United Kingdom Simonyan and Zisserman (2014). VGG16 is a 16-layer model with input data dimensions of 224 × 224 × 3. Other parameters in the network are as follows: the size of the convolution core is 3 × 3, the pooling size is 2 × 2, the maximum pooling step is 2, and the depths of the convolution layer are 64, 128, 256, 512, and 512, respectively. The convolution blocks in the network consist of 2–3 convolution layers, which can increase the perception ability of the network and reduce the number of parameters. Additionally, the multiple use of the Rectified Linear Unit (ReLU) activation function strengthens the learning ability of the model. In this paper, we experiment with a VGG16 net which contains 13 convolutional layers and in which the output from the convolution layers is a high-dimensional feature map which is sub-sampled by a factor of 16 due to the strides in the pooling layers.



The ResNet50 Model

ResNet is a complete network formed by the repeated accumulation of residual learning modules. The original ResNet model was proposed by Dr. He Kaiming of the Microsoft Research Institute (He et al., 2016). The ResNet model has high accuracy and is easy to integrate with other network structures. ResNet allows the original input information to be transmitted directly to the next layer by adding a direct link (known as a highway network) to the network. The introduction of residual modules solves the problem of gradient dispersion and enhances the feature learning ability and recognition performance. The structure of the residual modules is shown in Figure 3B. Set x as the input and F (x, W1, W2) as the output after the convolution between W1 and W2. The activation function is set as ReLU, so the final output of the residual module unit y can be expressed as follows:

[image: image]

where W1 and W2 represent the weighting parameters to be learned and Ws represents a square matrix that transforms x from the input residual module dimension to the output dimension. Two kinds of residual modules are used in the ResNet network structure; one is connected by two 3 × 3 convolution networks in series, while the other is connected by three convolution networks with sizes of 1 × 1, 3 × 3, and 1 × 1, respectively. ResNet can be set to have different numbers of network layers—with the most commonly used numbers being 50, 101, and 152—which are stacked together by the residual modules mentioned above. Considering the training efficiency and the hardware processing capability, we chose a ResNet network with 50 layers for testing, which is known as ResNet50.



The Improved Faster-RCNN

The traditional Faster-RCNN achieves target detection using a RPN which can automatically extract candidate regions (Sun et al., 2018). Since strawberry recognition is functionally similar to common target recognition and there is presently no training set related to strawberry recognition, we adopted the already-trained ResNet50 model as the feature extraction network and used the weights obtained from the existing ImageNet universal target training set as the initial value. In supervised learning mode, a large amount of data is needed to train the residual network model. However, at present, there are only a few broccoli image data with labels, which cannot meet the training needs of the depth network model. Therefore, in order to improve the accuracy and generalization ability of the ResNet-50 model, a transfer learning method based on middle-level expression was adopted which combines transfer learning with deep learning. First, ImageNet was used to pre-train the ResNet-50 network in order to allow it to extract image features and the trained network parameters were used as network models. Then, the precise segmentation of broccoli head images was realized by adjusting the parameters of the ResNet-50 network. A three-layer adaptive network was used to replace the full connection layer and the classification layer of the ResNet-50 model, and LReLUSoftplus was adopted as the activation function of the architecture. The computing formulas of ReLU and LReLUSoftplus are given in Eqs 2 and 3, respectively, as follows.

[image: image]

where x indicates the input value and a is set as 0.01. A general scheme of the proposed method is shown in Figure 4. M1, M2, M3, and M4 are the four residual blocks in the ResNet-50 model while N1–N3 are the three components of the adaptive network. The number of neurons in layers N1, N2, and N3 is 1000, 256, and 7, respectively, while the activation function of each layer is LReLUSoftplus.


[image: image]

FIGURE 4. The general scheme of the ResNet based on transfer learning.


In transfer learning, since the morphology of strawberries is different from that of general targets, the direct application of the model will reduce the accuracy and speed of detection. Therefore, this study improves the area generation network in the Faster-RCNN network framework in the following aspects:


•There are few pictures of strawberries in ImageNet. In this training, a dropout layer was added after the first fully connected layer in order to enhance the generalization ability of the network. The output of a certain proportion of neurons in this layer was randomly inhibited during the training process, and this layer was moved in the testing process. To maintain the corresponding order of magnitude and physical significance of the input in the latter layer, the output value of the above layer was multiplied by the probability of random discarding.



To reduce over-fitting, only one fully connected layer with 2048 output neurons was used to extract the target.

In order to enable a fair comparison between the results of all the experimental configurations, the hyper-parameters for all experiments were standardized as follows: the loss function was set to dice loss due to this function’s good performance in dichotomous problems. The base learning rate was 0.001 in the first 3000 iterations and was changed to 0.0005 in the subsequent 2000 iterations. The values of momentum and dropout were 0.9 and 0.5, respectively. The number of epochs was 200, and the batch size was 64.



Evaluation Index

To evaluate the performance of the proposed method, strawberries that were manually segmented using the Video Object Tagging Tool were compared with the recognition results of the models mentioned in Section “Errors and Limitations.” We used three indexes, namely, Precision, Intersection-over-Union (IOU), and Average Running Time (ART). The computational formulas of these evaluation indexes are shown in Eqs 4–6:
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where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false positives, and false negatives, respectively; a true positive represents the correct classification of a region as a strawberry, a true negative represents the correct classification of a region as a background, a false positive means the incorrect classification of a region as a strawberry, and a false negative indicates the incorrect classification of a region as background. IOU is a standard metric that represents the overlap rate between a candidate box and a ground truth bound; the ideal scenario is complete overlap, in which case IOU is equal to 1. In addition to detection accuracy, another important performance index for target detection algorithms is detection speed; real-time detection, which is extremely important for some applications, can only be achieved with high-speed detection. ART represents the time taken by different models to process a certain picture using the same hardware. Nt represents the total running time for all the images, and NI represents the number of images.



RESULTS AND DISCUSSION

The performance of the newly developed deep learning method was evaluated by conducting several field experiments under changing light conditions and comparing the results of these experiments to the results of the manual measurement of strawberry numbers. All of the recognition models were developed using the open-source TensorFlow software library (Alphabet, Inc., Mountain View, CA, United States), which is a fast software that can be used for deep-learning applications. The experiments were conducted using the Windows 10 operating system on a PC with a four-core 2.3 GHz Intel I5 processor and 4 GB of GPU Memory. The results and comparisons were performed using the Python programming language.


Strawberry Detection Performance

In this section, the performance of the strawberry recognition system using the Improved Faster-RCNN is compared with the performances of the other methods described in Section “Training and Validation Model.” Due to the diverse nutritional statuses and genotypes of the plants in the field experiments, a large number of strawberry samples were used to generate the training datasets. Here, we randomly selected 50 pictures from the test set as samples to determine the detection accuracy of different models, and the average number of strawberries in each picture was about 100 (based on manual counting results). Figure 5A shows a comparison between the number of strawberries identified by the Improved Faster-RCNN detection system and that identified by manual inspection (Figure 5A).
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FIGURE 5. A demonstration of the strawberry detection performance of the introduced model and two other models using the test set. (A) Correlations between the number of strawberries identified by manual counting and computer detection; (B) comparison of the strawberry detection performances of the introduced model and two other models using the test set. A: Accuracy. B: Intersection-over-Union (IOU). C: Average Running Time (ART). In (B), the red bars represent the mean Accuracy, the blue bars represent the mean IOU, and the green bars represent the mean ART.


As shown in Figure 5A, compared to the other two methods, the Improved Faster-RCNN achieved a higher R-value and a lower normalized root mean square error (NRMSE) in the presence of background noise and variable light intensity. Three indexes were used to assess the recognition accuracy, namely, Accuracy, IOU, and ART. The mean and standard deviation (SD) of each evaluation indicator were calculated. The values of these indicators for each of the four recognition methods are shown in Figure 5B. As shown in the figure, the Improved Faster-RCNN achieved a higher Accuracy (0.860) and a lower standard deviation than the Faster-RCNN and the two other classical models. Additionally, the average IOU of the Improved Faster-RCNN was about 0.892, significantly higher than those of the three other models, which shows that this model has a better target extraction ability. Moreover, the Improved Faster-RCNN achieved an ART of 0.158 s, compared with 0.171, 0.163, and 0.182 s for the ResNet50, VGG16, and Faster-RCNN models, respectively. This low ART shows that the Improved Faster-RCNN had a good running efficiency, which can be mostly attributed to the simplification of layers and the reduced number of training parameters. The above results show that the Improved Faster-RCNN can achieve real-time image processing and guarantee the integrity of strawberry detection. Further, the overall F-measure (Hasan et al., 2018) was computed in order to quantify errors. F-measure is a harmonic mean of Precision and Recall which is useful as a measure of the robustness of a model.

As shown in Table 1, compared to the other approaches, the Improved Faster-RCNN had a higher mean quality factor of 0.889. This indicates that the proposed algorithm could accurately detect strawberries in complex scenes.


TABLE 1. The overall F-measure of the introduced model and other models using the test set.

[image: Table 1]In order to further analyze the efficiency of the introduced training models, we determined the loss and error rates during the whole training process. Here, we define an “epoch” as the process of training the model once with all of the image data in the training set (Figure 6).
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FIGURE 6. The correlation between the number of epochs and training loss.


From Figure 6, it can be concluded that, although the value of the loss metric is initially high, after several rounds of training, the error rate is greatly reduced and the accuracy is significantly improved. No obvious further improvement of accuracy occurred after 200 epochs, and the value of the error rate becomes constant. After around 250 epochs, the benefit of further training appears to be negligible according to the change in the Loss Metric.



Plumpness Assessment

The assessment of fruit quality is a core requirement for strawberry commercialization. Plumpness—the most important structural trait of fruit quality—can be acquired using the minimal external rectangle method. In this study, the rectangles were represented by labeled boxes. Figure 7 shows strawberries of different shapes with their corresponding external rectangles. The four-dimensional array of each box—(xmin, ymin, xmax, ymax)—was used to determine the location of each strawberry, and the maturity of each strawberry was estimated using the length-to-width ratio of the box, as calculated by ymax - ymin/xmax - xmin; the ideal value of this ratio is 1 since the selected varieties are all of globose type (with an aspect ratio very close to 1:1). Through the above process, the length-to-width ratio of each strawberry was estimated, and the strawberries were classified into the following three groups based on this ratio: Plump (0–0.5), Approximately Plump (0.5–0.8), and Fully Plump (0.8–1) (Figure 7).
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FIGURE 7. The results of the plumpness assessment for different varieties of strawberry. (A) Red Cheeks variety; (B) Sweet Charlie variety; (C) Yuexin variety.


As shown in Figure 7, the largest average percentage of Plump fruits (31.3%) was detected for the Red Cheeks strawberry variety, while the lowest average percentages of Approximately Plump and Fully Plump fruits were also detected for this variety. The second-largest average percentage of Plump fruits (17.5%) was detected for the Sweet Charlie variety, while this variety also had the second-highest average percentage of Approximately Plump fruits (27.6%). The lowest average percentage of Plump fruits (6.9%) was detected for the Yuexin variety, while the highest average percentage of Fully Plump fruits (66.2%) was also detected for this variety. Thus, it is clear that the Yuexin variety has a much faster maturation rate under the current nitrogen application conditions than the other two varieties. Then, the accuracy of our method was tested by comparison with the results of manual grading by three experienced workers. As shown in Table 2, when using the length-to-width ratio, about 85% as many strawberries could be correctly graded compared to the manual grading. Specifically, for the Red Cheeks, Sweet Charlie, and Yuexin varieties, the average prediction Accuracy was 0.879, 0.853, and 0.841, respectively. Thus, the performance of the proposed method can satisfy the requirements for practical use. Further research should focus on the introduction of roundness information or other parameters to build a regression model.


TABLE 2. Accuracy of plumpness assessment results for each studied strawberry variety.

[image: Table 2]


Robustness Performance


Analysis of Regions With Occlusion or Adhesion

This section describes the detection and disconnection methodology for regions with occlusion and adhesion. This methodology consisted of two main steps: first, the RGB strawberry images were converted into binary images, and then shape analysis was performed to determine whether the detection result was isolated or not; second, a watershed-based technique was used to automatically separate the non-independent regions of the binary images. Edge curvature analysis was used to determine whether the fruits were adhered to or occluded (in cases of adhesion or occlusion, the curvature of the edge point at the junction of the fruit edge will change abruptly). The fruit boundaries were accurately determined by removing curvature outliers and by using the watershed algorithm. A visual representation of this algorithm and the adjusted detection results are displayed in Figure 8.


[image: image]

FIGURE 8. Post-processing of fruit images with occlusion and adhesion using edge curvature analysis. (A) Strawberry detection without post-processing; (B) detection result after using edge curvature analysis.


From Figure 8, it can be seen that, in some cases, the strawberries cannot be recognized by the proposed architecture due to occlusion by or adhesion with leaves or other strawberries; in these cases, further processing is required. Thus, in both counting and grading studies, the post-processing methodology for regions with occlusion and adhesion had a significant impact on the final detection accuracy. In order to understand the significance of post-processing using edge curvature analysis, the Accuracy and F-measure were used to express changes in detection accuracy. For detection with the Improved Faster-RCNN network, post-processing increased the Accuracy from 0.860 to 0.878, subsequently increasing the F-measure from 0.889 to 0.901. Therefore, the Accuracy is increased by about 1% by performing this step. Compared with the strategy of simply using a deep learning model, the detection that was performed using the combined workflow was much more strongly correlated with the manual counts for each strawberry variety.



Number of Original Images

To examine the utility of using a different number of original images to train the detection algorithm, we varied the number of original images in the learning phase and evaluated the detection performance. All of the images were randomly selected from the whole dataset, and this experiment was repeated five times to take into account the differences between samples (Figure 9).
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FIGURE 9. Comparison of the detection performances achieved using different numbers of original images. (A) Improved Faster-RCNN; (B) ResNet50; (C) VGG16. The blue line represents the mean Accuracy and the red line represents the mean IOU.


As shown in Figure 9, using our method, the strawberry detection Accuracy exceeded 0.8 with less than 200 original images. This is an acceptable result considering the complex environment, which involved, e.g., dynamic light intensity, different vegetation canopy reflectances, shadows, and mutual occlusion between leaves and fruits. Furthermore, the introduced deep learning architecture achieved the highest IOU of all of the three approaches, which shows the high training efficiency of the presented method for the small-scale dataset. When less than 200 training images were used, the average value of IOU was about 0.89, which shows the significant potential of the proposed approach in real-world applications. The results also show initial benefits with a larger amount of data; however, these benefits quickly diminish with an increasing number of training images, with a difference in Accuracy of less the 0.05 in the last three compared phases.



Light Intensity

Illumination conditions change frequently in outdoor environments. To determine the ability of the Improved Faster-RCNN architecture to detect strawberries under different light intensities, the architecture was tested using images obtained under different illumination conditions. For each illumination level, the Matlab software (MathWorks, Natick, MA, United States) was used to tune the brightness component of each test image, and the test set was separated into five clusters from 1000 Lx to 6000 Lx (Figure 10).
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FIGURE 10. Comparison of training performances obtained using images acquired under different light intensities. (A) Improved Faster-RCNN; (B) ResNet50; (C) VGG16. The blue line represents the mean Accuracy and the red line represents the mean IOU.


From Figure 10, it can be seen that the Improved Faster-RCNN is less sensitive to changes in outdoor illumination than the other models. Both of the two low-light conditions were associated with low Accuracy and IOU values, while the normal lighting condition was associated with higher Accuracy and IOU values than the other lighting cases. For light intensities of 4000, 5000, and 6000 Lx, the Accuracy values were 0.852, 0.868, and 0.857, respectively. To summarize, the Improved Faster-RCNN can adapt to different light conditions. This will allow us to use this model to perform different tasks, such as the detection of spikes or panicles in field environments.



Errors and Limitations


Errors

As stated in Section “Robustness Performance,” the method employed in the present study contains some errors. These can be attributed to (1) mutual occlusion between strawberries and leaves and (2) irregular fruit shape and changing surface texture. Overlapping is usually detected using the non-maximum suppression (NMS) algorithm, which predicts the number of fruit targets based on the statistical distribution of candidate boxes and interactive higher-order features in dense regions. Introducing such techniques may allow the identification of overlapping objects. The shape and texture of fruits differ between different varieties of strawberries and between individual fruits of the same variety. As shown in Figure 5, the very different degrees of plumpness which were detected between different varieties of plants confirmed that the proposed model is particularly robust when dealing with different varieties of strawberry. However, the differences in shape and texture between different varieties will make the labeling procedure more tedious and prone to errors; this will likely lead to annotation errors, which in turn will cause many false-positive identifications.



Limitations

Separating plants from background is a common challenge in plant detection and evaluation, especially in natural environments. Recent studies which used color or texture information for plant detection were able to successfully distinguish between fruit and growing plants and thereby achieved highly accurate yield estimations. However, there are a number of limitations to the method presented in the current study which must be addressed in future work. The first limitation of the present study is that, when a set of images taken by a near-ground vehicle is used for plant detection, it is important to account for the angle at which the images were acquired; for example, many characteristics of strawberries cannot be observed from oblique images. Thus, future plant-detection efforts should attempt to obtain images from different angles.

The second limitation is that we are facing up a time-consuming manual effort. Some of the annotation errors can be reduced by applying a voting strategy among the different human labelers; however, this would greatly increase the labor cost. Automatic annotation could provide a less expensive means to reduce labeling errors; however, manual checking would still be required to ensure labeling accuracy.



Future Work

In this work, a strawberry detection and grading system based on near-ground image data using a state-of-the-art framework is presented. The use of CNNs has dramatically improved the performance of fruit detection compared with other traditional approaches. However, some issues need to be addressed in future studies in order to reduce the training complexity and improve the environmental robustness of fruit detection based on convolutional neural networks. First, a larger sample set should be introduced to the presented model to solve the problem of over-fitting with fewer labeled examples. Second, the ratio between the size of the test set and the size of the training set should be varied to ensure that the introduced model achieves relatively high accuracy even in extreme cases.



CONCLUSION

The continuous increase in labor cost is increasing the expenditure requirements within the strawberry industry. Therefore, many producers are looking toward technological solutions such as the automated harvesting and grading of fruit. In this research, we developed and tested a new approach for the detection of strawberries in greenhouses using a deep convolutional neural network. The results showed that the proposed approach successfully detected strawberries with an average Accuracy of 86.0% and an average IOU of 0.89. Additionally, this study developed a process for the assessment of fruit maturity based on the minimal external rectangle. By varying the number of training images and varying the light intensity, it was shown that the proposed model is capable of accurately detecting strawberries in a complex and changing imaging environment. Furthermore, it is shown that the proposed algorithm has a higher accuracy and efficiency than the ResNet50 and VGG16 models. Thus, this methodology could be applied in multitasking automatic or semi-automatic imaging systems which are used inside greenhouses. Depending on the systems’ requirements, the algorithm could be adjusted without intensive skilled human intervention. The future development of the proposed method promises a clear advantage over other color-based approaches and traditional machine learning approaches as the method can be applied to other types of applications and is not limited to greenhouse environments.
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Unmanned aerial vehicle (UAV) based remote sensing is a promising approach for non-destructive and high-throughput assessment of crop water and nitrogen (N) efficiencies. In this study, UAV was used to evaluate two field trials using four water (T0 = 0 mm, T1 = 80 mm, T2 = 120 mm, and T3 = 160 mm), and four N (T0 = 0, T1 = 120 kg ha–1, T2 = 180 kg ha–1, and T3 = 240 kg ha–1) treatments, respectively, conducted on three wheat genotypes at two locations. Ground-based destructive data of water and N indictors such as biomass and N contents were also measured to validate the aerial surveillance results. Multispectral traits including red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), normalized difference red-edge index (NDRE), red-edge chlorophyll index (RECI) and normalized green red difference index (NGRDI) were recorded using UAV as reliable replacement of destructive measurements by showing high r values up to 0.90. NGRDI was identified as the most efficient non-destructive indicator through strong prediction values ranged from R2 = 0.69 to 0.89 for water use efficiencies (WUE) calculated from biomass (WUE.BM), and R2 = 0.80 to 0.86 from grain yield (WUE.GY). RNDVI was better in predicting the phenotypic variations for N use efficiency calculated from nitrogen contents of plant samples (NUE.NC) with high R2 values ranging from 0.72 to 0.94, while NDRE was consistent in predicting both NUE.NC and NUE.GY by 0.73 to 0.84 with low root mean square errors. UAV-based remote sensing demonstrates that treatment T2 in both water 120 mm and N 180 kg ha–1 supply trials was most appropriate dosages for optimum uptake of water and N with high GY. Among three cultivars, Zhongmai 895 was highly efficient in WUE and NUE across the water and N treatments. Conclusively, UAV can be used to predict time-series WUE and NUE across the season for selection of elite genotypes, and to monitor crop efficiency under varying N and water dosages.

Keywords: nitrogen content, phenotyping, vegetation indices, UAV, utilization efficiency, water contents, wheat


INTRODUCTION

Low water and nutrient uptake efficiency of crops is one of the most detrimental limitation in agriculture productivity (Chuan et al., 2016; Lesk et al., 2016). Efficient irrigation and nitrogen (N) supply according to the plant requirement is a key regulator for resource-efficient crop yield (Christopher et al., 2016; Chuan et al., 2016; Nehe et al., 2018; Thorp et al., 2018). Amelioration in uptake efficiency can be adjusted by manipulation of dosage of water and N-fertilizer (Ali and Talukder, 2008) or by improving input use efficiency in crop cultivars (Hawkesford, 2017). Genetic improvement of genotypes for water and N uptake, defined as the ratio of crop yield and water or N consumption capacity of plants is an important goal in crop breeding (Passioura, 2012). Nowadays, the use of N fertilizer increased from 9.2 Mt of pure N in 1960 to 108 Mt of pure N in 2015 worldwide (FAO, 2018). Over-dosage and low N utilization efficiency of crops have caused major resources concerns and substantial greenhouse gas emissions (Guo et al., 2010; Zhang et al., 2015). In China, the agricultural system generally relies on the high-to-excessive N inputs and the total average application of N for winter wheat has increased more than 500 kg N/ha, while the nitrogen-use efficiency (NUE) in wheat system remains lowest as compared with other crops like maize and rice (Cui et al., 2018). Moreover, the traditional irrigation of winter wheat is up to 310 mm and the water use efficiency (WUE) is lower than that of the world (Sun et al., 2011). Establishing substantial regulations and breeding new varieties for high water and N acquisition could provide an effective approach to improve WUE, NUE, and yield potential (Hu and Xiong, 2014; Zhang et al., 2017).

Assessment of resource efficiencies could be detected through physiological indicators such as biomass, water status, N contents and chlorophyll level of plants (Ali and Talukder, 2008; Potgieter et al., 2017). Previously, several studies have been conducted to assess NUE and WUE through destructive approaches for selection and genetic improvement in wheat (Zhang et al., 2007; Haile et al., 2012; Hawkesford, 2017). But destructive methods are considered as bottleneck for rapid and precise estimations of biomass, N and water status at multiple time points in case of large number of genotypes (Cobb et al., 2013; Potgieter et al., 2017). Therefore, use of advance phenotyping technology can increase the precision in data collection and future decision on crop improvement (Araus and Cairns, 2014; Rasheed et al., 2020). Ground-based and aerial-based non-destructive phenotyping systems have been validated as complementary platforms for several traits like green cover, biomass, water stress severity, chlorophyll level, and photosynthesis rate (Araus and Kefauver, 2018; Hassan et al., 2018a). The unmanned aerial vehicle (UAV) platform is capable of covering larger area in a shorter period of time. This can minimize the measurement error caused by changes in environmental factors, and is independent of field condition which can disturb the movement of ground-based systems (Potgieter et al., 2017; Yang et al., 2017). UAV-based remote estimation of canopy water and N-status can provide implication on detection of physiological status for establishing decisions and immediate adopt measures for appropriate irrigation and N-fertilizer applications (Yi et al., 2013; Li et al., 2018). Previously, UAV-based multispectral and RGB imagery have been validated for detection of biomass, plant density, leaf area, senescence rate and photosynthetic activity in wheat, barley, and sorghum (Bendig et al., 2014; Sankaran et al., 2015; Jin et al., 2017; Potgieter et al., 2017; Hassan et al., 2018a, 2019).

Physiological traits such as chlorophyll content, nitrogen concentration, and water status are often hard to be assessed by the human eye but can be detected through variations in reflectance of light spectrum (Haboudane et al., 2002; Mutanga and Skidmore, 2004; Zhang and Zhou, 2019). UAV-based remote sensing has given a great opportunity to assess plants growth by capturing different bands (Blue, NIR, Red, Green, and Red-edge) of light spectrum. Under optimum conditions, healthy plants look green because they absorb red bands and reflect green band of light spectrum (Hatfield et al., 2008). Strong relationship of these combination of light has been reported with photosynthesis, stress and nutrient status in plants (Hatfield et al., 2008; Shafian et al., 2018). For example, normalized difference vegetation index (NDVI), red edge chlorophyll index (CIRed-edge), normalized difference red-edge (NDRE) have been used to differentiate genotypes for stay-green, water stress, growth under N-fertilizer and chlorophyll level (Potgieter et al., 2017; Li et al., 2018; Zheng et al., 2018; Zhang and Zhou, 2019). Grain yield has also been predicted through UAV-based sensors in wheat and sorghum (Han et al., 2018; Hassan et al., 2018b). Therefore, multispectral vegetation indices can be used to assess the status of water and nitrogen and their fluctuations under diverse environmental conditions. The aims of this study were to (1) assess UAV-based multispectral platform determining water and N use efficiencies, (2) evaluate the water and N-fertilizer application strategy using UAV, and (3) identify the genotypes for high water and N efficiency.



MATERIALS AND METHODS


Germplasm and Experimental Design

Three cultivars Zhongmai 895, Aikang 58, and Zhoumai 18 were used to evaluate the accuracy of UAV-based multispectral imagery to predict effectiveness of water and N-fertilizer dosage as well as the potential of genotypes for their uptake efficiencies. These cultivars were released in the Yellow and Huai River Valleys Winter Wheat Region of China over the last decades. The study panel have been known as most prominent varieties for drought resistance and yield potential across the cultivated area by performing differently in stay-green during extreme drought and high temperatures.

Two field trials (water and nitrogen) were conducted at two sites i.e., Anyang (37.3943°N, 126.9568°E) and Xinxiang (35.3037°N, 113.9268°E) in Henan province during 2016–2018. Both trials were consisted of two types of experimental plots (a) destructive sampling plots following CIMMYT manual and (b) non-destructive phenotyping plots using UAV platform across the treatments (Figure 1). Randomized complete blocks with three replications each for destructive and UAV based phenotyping were used to minimize the probability of experimental error. Each experimental plot consisted of 6 rows of 9 m in length, 1.5 m in width, and with 0.2 m inter-row spacing. Seeds were planted with a seedling rate of 270 seedlings/m2 at both sites. In water use efficiency trial, each replication comprised four water levels, viz. zero (control) T0 = 0, T1 = 60 mm, T2 = 120 mm, and T3 = 180 mm at both sites (Figure 1). Nutrients level for water treatments was maintained at the optimal level. While N use efficiency experiment was also consisted of four levels of N for each three replications viz. zero (control) T0 = 0, T1 = 120 kg ha–1, T2 = 180 kg ha–1, and T3 = 240 kg ha–1. Harvesting was done through combine harvester after full maturity to estimate grain yield.
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FIGURE 1. Trial locations, experimental design and UAV platform for phenotyping of water and N use efficiencies.




UAV-Based Platform and Flight Campaigns

A Mavic Pro (SZ DJI Technology Co., Shenzhen, China) carrying sequoia 4.0 multi-spectral sensor (Micasense Parrot, Seattle, WA, United States)1 was used for multispectral imagery over the trials. Mavic pro can fly with slow speed and low altitude for 18 min. Multispectral sensor consists of 4 spectral bands (green, red, red-edge and nir) and a sunshine sensor connected with multi-spectral sensor was installed on the top of UAV to measure environmental irradiation and post-calibrate reflectance. A standardization of band values before and after flight was done through a calibration board with known reflectance. Altizure DJI version 3.6.02 was used to design the flight mission over the trials. All the flights were conducted at 30 m altitude with 2.5 m/s speed, maintaining 85% forward and side overlaps among images. Average ground sample distance of sensor was recorded 2.5 cm. UAV-based multispectral data were collected at heading, flowering and three times at early, mid and late grain filling stages. Data captured at early to late grain filling were averaged to get overall status of genotypes at maturity stage (Table 1).


TABLE 1. Multi-spectral indices, their function and data acquisition schedule for both experiments.
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Image Processing and Data Extraction

All images captured from Sequoia contained accurate geo-referencing due to its built-in GPS device. GPS information was accurate enough to generate dense point cloud for good quality orthomosaic. Pix4D mapper (Version 1.4, PIX4d, Lausanne, Switzerland)3 was used for orthomosaic generation. The key steps of the orthomosaic generation using Pix4D mapper comprised camera alignment, geo-referencing, building point clouds and orthomosaic generation as previously reported (Hassan et al., 2018a, b). QGIS was used for image segmentation to extract the useful information of each plot. For this, polygon shapes were generated with a specific plot ID defining the particular germplasm (Haghighattalab et al., 2016). Spectral values were analyzed using combined orthomosaic TIFF images contain four different bands and polygon shape files in IDL (Version 8.6, Harris, Geospatial Solutions, Inc. Reston, CO, Australia, United States). Reflectance calibration was done using calibrated reflectance panel with known reflectance values provided by Micasense (Micasense Parrot, Seattle, WA, United States). Multispectral images of reflectance panel were captured before and after each flight to calibrate the reflectance maps of each stage.



Estimation of Multi-Spectral Vegetation Indices

Five multispectral traits i.e., red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), normalized difference red-edge (NDRE), red-edge chlorophyll index (RECI), and normalized green red difference index (NGRDI) were also calculated which mainly surrogate to canopy physiological traits including green biomass, chlorophyll level and photosynthesis (Table 1). These indices were calculated from reflectance captured during multi-spectral imagery through Sequoia 4.0 sensor. The calculated multispectral traits were evaluated for non-destructive assessment of water and nitrogen use efficiency by considering cost-effective replacement of traditional destructive indicator such as biomass, N-contents and chlorophyll level under different water and N supply.



Estimation of Soil Moisture, N Contents, Biomass and Yield Related Traits

The volumetric soil water content of the planting zone was measured for every 10 cm section of soil, down to 160 cm using a CNC503D neutron moisture meter (Super Energy. Nuclear Technology Ltd., Beijing, China). The water content of the soil surface of around 20 cm was also measured using the oven-drying method to minimize the error probability in calculating the WUE. Soil was oven-dried at 105°C until a consistent weight, and then pre-and post-drying weights were compared to determine the water content. This measurement was repeated after all irrigation treatments and major precipitation events. Both methods (volumetric measurements and oven-drying) were used to measure total soil moisture as described by Ma et al. (2016).

For soil N content, soil sampling was done from each subplot at the depth of 0–20, 20–40, 40–60, 60–80, and 80–100 cm for the estimation of before sowing soil N contents. Samples were digested, and modified Kjeldahl method was used to determine total N contents in soil samples as described in Bremner and Mulvaney (1982). For plant N contents at flowering and maturity, samples from each subplot was taken by cutting 20 fertile shoots at ground level. Then, shoots were divided into leaves, straw, sheath at flowering and grains at maturity. Total N content was calculated from above mention methodology. Dry biomass was calculated at heading, flowering and maturity stages by destructive method, while yield related traits including spike number (SN), thousand grain weight (TGW), and grain yield (GY) were calculated as described in Gao et al. (2017).



WUE and NUE Measurement and Statistical Analysis

Water use efficiency (WUE) from grain yield and dry biomass were calculated using following formulas by Zhang et al. (2007),
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and

[image: image]

Where, GY is grain yield, Y (kg ⋅ ha–1) is genotypes grain yield, BM (kg ⋅ ha–1) is dry biomass at maturity and ET (mm) is the evapotranspiration during the winter wheat growing seasons. ET was estimated as follows (Eberbach and Pala, 2005).
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Where, I (mm) is the irrigation water amount; P (mm) is precipitation, which was measured at the on-site weather station using a standard rain gauge given in Supplementary Table S1; R (mm) is the surface runoff, which was assumed as non-significant since concrete slabs were placed around each plot; D (mm) is the downward flux below the crop root zone, which was defined as insignificant since soil moisture measurements indicated that drainage at the sites were negligible; and ΔS (mm) is the change in water storage in the soil profile that is exploited by crop roots (initial soil water content minus soil water content at the end of the growing season).

NUE efficiency was measured using following formulas as demonstrated in Haile et al. (2012),
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and
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Whereas, GDWf is grain dry weight in fertilized treatment, GDWc is grain dry weight under control treatment while Ns means total N supply in a particular treatment. Ntf indicates total N content in above ground plant sample in fertilized treatment and Ntc means N concentration in plant sample in control treatment.

Pearson correlation and linear regression between the traits were calculated to check relationship and prediction. Significance variation test at P < 0.05 and performance of genotypes for traits under different water and N treatments were determined by analysis of variance (ANOVA) using R package (R Core Team, 2016). While repeatability of UAV based data was also calculated to ensure the accuracy by following the formula reported in Sehgal et al. (2015).




RESULTS


Correlations of UAV-Based Traits With Indicators of Water Status and WUE

All multispectral traits i.e., red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), normalized difference red-edge (NDRE), red-edge chlorophyll index (RECI), and normalized green red difference index (NGRDI) mainly surrogate to green biomass, water content and chlorophyll level of plants were positively correlated with manually measured indicators of water status i.e., biomass, temporally at heading (r = 0.17 to 0.87), flowering (r = 0.15 to 0.77) and maturity (r = 0.15 to 0.90) in control and all water-supply treatments (Figure 2). Weak to strong correlations between UAV-based multispectral traits with thousand grain weight (TGW) (r = 0.14 to 0.84), and moderate to high with grain yield (GY) (r = 0.27 to 0.65) were observed across the treatments at mid to late grain filling stage. Plant height showed positive correlations (r = 0.17 to 0.81) with RNDVI, GNDVI, NDRE, and RECI in T0, T1 and T2. Water use efficiency calculated from GY (WUE.GY) was strongly correlated with RNDVI (r = 0.51 to 0.65), GNDVI (r = 0.47 to 0.64), NDRE (r = 0.53 to 0.65), RECI (r = 0.40 to 0.66), and NGRDI (r = 0.56 to 0.64). While water use efficiency estimated from biomass (WUE.BM) also exhibited similar trend in correlation with RNDVI (r = 0.36 to 0.67), GNDVI (r = 0.34 to 0.69), NDRE (r = 0.38 to 0.76), RECI (r = 0.15 to 0.56), and NGRDI (r = 0.46 to 0.90) across the water-supply treatments. Correlations between multispectral traits and WUE.BM were slightly lower in T3 compared to T1 and T2 treatments. UAV-based multispectral traits were also positively associated with both NUE at heading (r = 0.10 to 0.82) and flowering (r = 0.25 to 0.85) (Figure 2). Weak but positive correlations were also observed between ground based WUE indicator (biomass) and WUE.GY ranging from r = 0.23 to 0.50 at mid to late grain filling stage across the water-supply treatments.
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FIGURE 2. Correlation map between traits under four water treatments across the two experimental sites. Red and yellow colors indicating intensity of r values from positive to negative. T, treatment; H, heading; F, flowering; M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE, Normalized difference red-edge; RECI, red-edge chlorophyll index; NGRDI, normalized green red difference index; TGW, thousand grain weight; DBH, dry biomass at heading; DBF, dry biomass at flowering; DBM, dry biomass at maturity; SN, spike number per; GY.plot, grain yield per plot; WUE.GY and BM, water use efficiency calculated from grain yield and biomass.




UAV-Based Prediction of WUE and Variations in Genotypes

Significant variations (P < 0.05) among the genotypes and in multispectral traits at mid to late grain filling stage were calculated, with high repeatability ranging from 0.78 to 0.89 (Table 2). In our results, similar trend in variation among WUE and multispectral traits at mid to late grain filling stage were observed that was influencing the GY. Variation results were also validated through ground based destructive measurements (Table 2).


TABLE 2. Significance test and repeatability of traits for three cultivars under four water treatments and two locations.
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Linear regression model was fitted to forecast both WUE.BM and WUE.GY through UAV-based multispectral traits (Figure 3). Results showed high R2 values for RNDVI (R2 = 0.65 to 0.83), GNDVI (R2 = 0.60 to 0.84), NDRE (R2 = 0.58 to 0.80), RECI (R2 = 0.60 to 0.80) and NGRDI (R2 = 0.69 to 0.89) in predicting both WUE at mid to late grain filling stage, while average root mean square errors (RMSE) ranged from 0.002 to 0.04. NGRDI traits was found better with higher coefficients of determination values in predicting both WUE.BM (R2 = 0.69 in T1, R2 = 0.75 in T2 and R2 = 0.89 in T3) and WUE.GY (R2 = 0.86 in T1, R2 = 0.83 in T2 and R2 = 0.80 in T3) with low average RMSE 0.02 and 0.03. Whereas, UAV-based traits also predicted significant differences (P < 0.05) between the water treatments and locations. In Figure 4, fluctuation in dynamic trend of multispectral traits values in all four treatments high for Zhongmai 895 compare to other two genotypes. Dynamic curves showed low level in multispectral traits at mid to late grain filling stage under control treatment. Zhongmai 895 also performed high in both WUE under water-supply treatments, but there was no significant difference in WUE and GY between T2 and T3 (Table 2).
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FIGURE 3. Coefficients of determination results between multispectral traits (A) RNDVI, (B) GNDVI, (C) NDRE, (D) RECI, and (E) NGRDI and WUE calculated from biomass (WUE.BM) and estimated from grain yield (WUE.GY) under water-supply treatments.
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FIGURE 4. Seasonal trend in multispectral traits and comparison of genotypes under water treatments. Error bars are showing standard deviation. *C895, Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.




Correlations of UAV-Based Traits With Ground Indicators of N-Status and NUE

In Figure 5, UAV-based five multispectral traits were positively correlated with N-contents ranging from r = 0.27 to 0.84 at flowering and r = 0.27 to 0.97 at maturity in in all N-supply treatments. NGRDI showed quite low correlations with N-contents at both flowering and maturity in T2 and T3 compared with T0 and T1 where r-values were high ranging from 0.81 to 0.89 (Figure 5). A consistently moderate to high correlations of multispectral traits with TGW ranging from r = 0.23 to 0.86 and GY r = 0.49 to 0.86 were noticed at the maturity stage. There were negative to positive correlations (r = −0.26 to 0.46) between plant height, multispectral traits and N-contents across the treatments. NUE.NC calculated from nitrogen contents of plant samples at maturity was correlated with all five remotely sensed multispectral traits at r = 0.23 to 0.97, while GY based nitrogen use efficiency (NUE.GY) at r = 0.47 to 0.87 across the treatments. Similar correlations trend ranging from r = 0.23 to 0.90 were also observed between ground based NUE indicator (N-contents) and NUE.NC in T2 and T3, and with NUE.GY ranging from r = 0.27 to 0.99 at maturity stage across the treatments (Figure 5). Significantly low to strong correlations were also detected between NUE and UAV-based multispectral traits at heading (r = 0.38 to 0.82) and flowering (r = 0.14 to 0.89).
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FIGURE 5. Correlation map between traits under four nitrogen treatments across the two experimental sites. Red and yellow colors indicating intensity of r values from positive to negative. T, treatment; H, heading; F, flowering; M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE, Normalized difference red-edge; RECI, red-edge chlorophyll index; NGRDI, normalized green red difference index; TGW, thousand grain weight; DBH, dry biomass at heading; DBF, dry biomass at flowering; DBM, dry biomass at maturity; SN, spike number per; GY.plot, grain yield per plot; NUE.GY and NC, water use efficiency calculated from grain yield and nitrogen contents.




UAV-Based Prediction of NUE and Variations in Genotypes

High coefficients of determination were identified between UAV-based traits and NUE calculated from nitrogen content of plant samples (NUE.NC) and GY (NUE.GY) with low RMSE ranging from 0.004 to 0.04 across the N-supply treatments (Figure 6). Strong R2 values of RNDVI (R2 = 0.64 to 0.94), GNDVI (R2 = 0.64 to 0.89), NDRE (R2 = 0.73 to 84), RECI (R2 = 0.66 to 0.86 and NGRDI (R2 = 0.65 to 0.90) with NUE.NC and NUE.GY predicted significant variations (P < 0.05) among genotypes at mid to late grain filling stage with high repeatability ranging from 0.80 to 0.91 (Table 3). RNDVI was high in predicting NUE.NC in T1 (R2 = 0.72), T2 (R2 = 0.89), and T3 (R2 = 0.94), while NDRE was also found consistent in forecasting both NUE.NC with high R2 = 0.75 in T1, R2 = 0.73 in T2, R2 = 0.74 in T3 and NUE.GY by R2 = 0.84 in T1, R2 = 0.75 in T2 and T3 with RMSE of 0.004 to 0.005.


TABLE 3. Significance test and repeatability of traits for three cultivars under four N treatments and two locations.
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FIGURE 6. Coefficient of determination results between multispectral traits (A) RNDVI, (B) GNDVI, (C) NDRE, (D) RECI, and (E) NGRDI and NUE calculated from plant nitrogen contents NUE.NC and estimated from grain yield NUE.GY under N-supply treatments.


Traditionally validated indicators of N-status such as N-contents in plant body significantly varied among the three genotypes (P < 0.05) at mid to late grain filling stage in all N-supply treatments (Table 3). Similar trend was observed for UAV-based remotely sensed traits, illustrating the variations in NUE and fluctuations in GY among the genotypes and differences between the treatments. Multispectral traits were found significantly higher at flowering and mid to late grain filling stage in Zhongmai 895 compared to other genotypes across the treatments (Table 3 and Figure 7). T2 was the most resourceful in both water and N-supply treatment for resource-effective GY. High curves points for multispectral traits indicated greater N-content, chlorophyll level under water and N-supply, which mean high NUE. Whereas, declining curves of UAV-based traits showed their low level in control treatment at mid to late grain filling stage.
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FIGURE 7. Seasonal fluctuation trend in multispectral traits and comparison of genotypes under N treatments. Error bars are showing standard deviation. *C895, Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.


Results showed that Zhongmai 895 was elite in NUE.GY compared to Aikang 58 and Zhoumai 18, but in NUE.NC both Zhongmai 895 and Aikang 58 were equally high under T1 and T2 (Figure 8). Whereas, GY of Zhongmai 895 was also higher across the water and N supply treatments compared to control treatment where no yield difference was observed among the three genotypes.
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FIGURE 8. Comparison of genotypes for (A) WUE.GY, (B) WUE.BM, (C) GY under water treatments and (D) NUE.GY, (E) NUE.NC, (F) GY under N-supply treatments. *C895, Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.





DISCUSSION


Potential of UAV-Based Multispectral Traits to Assess Water and N Use Efficiencies

Manual phenotyping is time consuming, expensive and error prone, and should be replaced by advanced, rapid and accurate technology to assess dynamic biomass and N status to describe WUE and NUE (Zhang and Zhou, 2019). Therefore, it is important to establish usefulness of UAV-based remote sensing over the traditional phenotyping approaches. Previously, some studies have predicted physiological status such as senescence rate and grain yield effectively through UAV-based multispectral data in wheat (Duan et al., 2017; Hassan et al., 2018a, b). In our study, strong correlations of UAV-based multispectral traits with traditionally measured indicators of water (biomass) and N status (N contents) in all treatments had validated the UAV-based data for accurate assessments of WUE and NUE (Figures 2, 5). Whereas, higher correlations of UAV-based multispectral traits with WUE and NUE compared to ground-based destructive data had proven its superiority. Similar trend in correlations of multispectral traits, WUE and NUE with GY also indicated the practicality of UAV for selection in wheat breeding. Moreover, high prediction results of UAV-based multispectral traits ranging from R2 = 0.58 to 0.94 with low RMSE for WUE and NUE using linear regression model, had also exhibited that UAV remote sensing could be capable in detecting within season water and N utilization efficiencies of plant efficiently (Figures 3, 6). Therefore, addition of UAV-based non-destructive phenotyping platform to large breeding programs could be better replacement of traditional approaches and helpful to reduce the cost of labor and time in assessing biomass, N contents and resource efficiencies in wheat.



Comparison of Multispectral Traits in Response to Water and N-Supply

Visible sign of efficient supply of water and N-fertilizer are high greenness, chlorophyll and N level in plant body. Spectral bands have strong relationship with physiological indicators of nutrient’s status such as green cover, chlorophyll, N contents (Li et al., 2018) and can demonstrate the water stress severity and N status in plants (Wang et al., 2013; Zheng et al., 2018). But due to different features of spectral bands, some limitations have been reported in precise physiological information at particular growth stages (Hatfield et al., 2008). For example, it is reported that red band is more reliable at pre-maturation stages due to saturation issues in detecting high chlorophyll level after canopy closure. Therefore, it makes difficult to sense minor variations in spectral indicators of plants physiology. Near infrared (NIR) band is strongest in detecting long range of variations in green biomass and N-status. While reflectance in the green and the red-edge bands ranges are also sensitive to the whole range of variations in chlorophyll and green biomass (Hatfield et al., 2008; Li et al., 2018).

In water trial, multispectral traits derived from NIR, red and green bands (RNDVI, GNDVI and NGRDI) had shown strong relationship with temporally measured biomass, WUE and GY. Especially NGRDI has shown low to high correlations (r = 0.27 to 0.90) with WUE and determined the significant (P < 0.05) variations among three wheat genotypes at mid to late grain filling stage in water-supply treatments (T1, T2, and T3) (Figure 2 and Table 2). Whereas, high repeatability of UAV-based multispectral traits indicated that these traits could be reliable for prediction of WUE (Table 2). Similar correlation results of RNDVI and NGRDI have also been reported for efficient prediction of biomass and GY under different water and N conditions (Duan et al., 2017; Hassan et al., 2018b). Low correlations with GY in control treatment (T0) might be due to saturation in red band after early canopy closure under drought severity, while low greenness could also cause low reflectance of green band. Under normal condition, healthy plant showed high reflectance of NIR band, and low red and re-edge bands. Whereas, green, red and red-edge bands showed high reflectance as compare to NIR under water stress. NGDRI was derived from subtracting red from the green band, which means calculating the fraction of reflected red band from the visible green band. This fractional information about the red band could provide deep information about minor proportion of yellowing in plants (Mutanga and Skidmore, 2004; Hatfield et al., 2008). Therefore, NGDRI could be useful to detect greenness and health of plants under normal growing condition. Whereas, GNDVI derived from NIR and green band was highly correlated (up to r = 0.70) with biomass, at heading to flowering stages compared to mid to late grain filling stage, indicating that this trait could predict the water status at pre-maturation stages effectively. Moderate to strong correlations ranging from r = 0.33 to 0.82 of NDRE and RECI traits derived from NIR and red-edge band with green biomass at particular stage and WUE were also recorded efficient to detect variations among the genotypes across the treatments (Figure 2 and Table 2). Red-edge band has been reported to detect water stress severity because it could cover wider range of chlorophyll level as compare to red band (Sharma et al., 2015). Therefore, despite of similar trend in correlation results, NDRE and RECI could be more reliable traits compared to RNDVI and GNDVI to predict the biomass, WUE and variations among the genotypes at mid to late grain filling stage due to known advantage of red-edge band over red band (Mutanga and Skidmore, 2004).

In N-supply experiment, moderate to strong correlations of all multispectral traits with biomass, N-contents, NUE and GY across the growth stages indicated that UAV-based phenotyping can also be useful in selection of N-efficient genotypes and the assessment of crop cultivation method. Despite the previous finding that biomass varied greatly at early growth stages which can mask the effect of N-supply (Haboudane et al., 2002), our results had shown moderate to strong correlations ranging from r = 0.27 to 0.84 and r = 0.27 to 0.97 between multispectral traits and N-contents, respectively, at heading and flowering stages. Moreover, Haboudane et al. (2002) had reported weak capability of UAV-based spectral indices in assessing N-status after heading because of structural constraints of canopy that cause saturation in reflectance of bands (Haboudane et al., 2002). But in our results, UAV-based multispectral traits showed high ability to detect N-status and NUE at mid to late grain filling stage with high r values [up to 0.97 (Figure 5)]. Interestingly, RNDVI, GNDVI, NDRE, and RECI performed equally in estimating N-contents and NUE at mid to late grain filling stages. RNDVI and NDRE showed high correlations (up to 0.97) with both NUE.NC and NUE.GY at mid to late grain filling stage, because it has strong connection in detecting N-status while reflectance of NIR band has been reported higher under application N-fertilizer. Significant variations at (P < 0.05) among the genotypes for N-contents and NUE were also successfully assessed through variation in UAV-based multispectral traits effectively with high repeatability across the growth stages and N treatments (Table 3). Whereas, similar correlation trends among destructive measurements of N-content and multispectral traits for NUE, TGW, and GY indicated that UAV based non-destructive sensing could be a cost-effective replacement.

In conclusion, NGDRI was more water-sensitive under water efficient conditions, while NDRE and RECI were drought sensitive under water-deficient conditions. Whereas, RNDVI, GNDVI, NDRE, and RECI showed equally better sensitivity to assess NUE across the growth cycle. Especially, RNDVI and NDRE were consistent in forecasting variations for both NUE.NC and NUE.GY.



Significance of UAV-Based Prediction of WUE and NUE for Genotypic Selection

Destructive assessment regarding efficiency of water and N-fertilizer application for different genotypes and evaluation of cultivation approaches have remained a bottleneck for resourceful improvement of crop yield (Boschetti et al., 2014; Zheng et al., 2018). It is due to laborious and error prone work across the season in case large number of genotypes which might mislead the agriculturist during selection. Previously, few studies have been conducted in detecting water and nutrient status of plant using non-destructive remote sensing from both ground and aerial platforms (Haile et al., 2012; Li et al., 2018; Zheng et al., 2018; Zhang and Zhou, 2019). But there is no report on practical application of aerial platform to predict the WUE and NUE for evaluating variations in genotypes under different water and N-supply levels. This study had predicted significant variations successfully among the genotypes for water and N uptake efficiencies and their impact on grain yield through UAV-based multispectral traits with high regression values of R2 = 0.58 to 0.89 and R2 = 0.64 to 0.94, respectively, with low root mean square error (Figures 3, 6). These results had proven the usefulness of non-destructive aerial phenotyping compared to ground-based assessments with high repeatability. Water and N-fertilizer demand of different genotypes at particular growth stages is varied. Therefore, prediction of slight fluctuation in water and N-status and its impact on biomass development, chlorophyll level through generating UAV-based multispectral dataset could be helpful in accurate selection. In our results, genotype Zhongmai 895 performed significantly better in WUE and NUE for enhancement of GY at mid to late grain filling stages as compared to other two genotypes across the treatments of both experiments (Tables 2, 3). While at this stage, there was also high level of multispectral traits for Zhongmai 895 which indicated the usefulness of UAV-based phenotyping to predict WUE and NUE (Figures 4, 7). Superiority of Zhongmai 895 for NUE can also be validated by recently study Yang et al. (2020), which has reported seedling vigor of Zhongmai 895 cultivar under high N condition. Therefore, these remotely sensed traits could be a rapid and cost-effective replacement of traditional traits for precise selection of genotypes.



Significance of UAV-Data for Establishing Cultivation Strategy

Resourceful application of water and N-fertilizer is vital to limit huge losses in important resources. For this, development of elite cultivars and efficient supply of water and N-fertilizer could be effective for required high yield from particular genotypes (Guo et al., 2010). In china, availability of irrigation water is decreasing (Zhang et al., 2007), while N resources are also predicted to decrease in coming years (Chuan et al., 2016; Zhang et al., 2016). Whereas, most of the cultivated lands in China is already been reported highly nitrogenous (Chuan et al., 2016). Therefore, appropriate application of water and N could help to cope with these challenges. It is difficult to phenotype large sample size through destructive measurement repeatedly under various water and N-fertilizer regimes. A non-destructive approach in assessing exact requirement for growth of particular genotypes is important factor regarding potential achievement in crop improvement. Our UAV-based results had shown that T1 and T2 were resourceful for WUE and T2 for NUE compared to T3 (Figure 8). There was no significant difference between T2 and T3 in terms of both UAV and ground-based indicator of water and N status as well as in WUE and NUE for GY. But genotypes had shown significant differences in WUE and NUE under T3 in both water and N-supply treatments. It means up-take efficiency of water and N had increased up to T2 for significant enhancement of GY, but T3 was not resourceful in both experiments. Zhongmai 895 was the most resource-efficient genotype across the water and N-supply treatments (Figure 8 and Tables 2, 3). Our result suggested that UAV-based multispectral data could be vital for establishing cultivation strategies for crops.




CONCLUSION

In this study, we established that UAV-based remotely sensed multispectral traits could predict the variations among the genotypes for WUE, NUE and their impact on GY. We found that NGDRI was an efficient multispectral trait to detect water status under irrigated conditions, while NDRE and RECI under drought stress. Whereas, RNDVI, GNDVI, NDRE, and RECI were equally better to sense the crop growth in different irrigation regimes in rapid manner. The RNDVI, GNDVI, NDRE, and RECI were equally sensitive for NUE prediction. Especially, RNDVI showed better prediction for NUE.NC, and NDRE was constant in assessing both NUE.NC and NUE.GY. Our results also suggested that T2 in irrigation (120 mm) and N-fertilization (180 kg ha–1) trials was the most resource-efficient treatment for all three genotypes, while Zhongmai 895 was elite in WUE and NUE. In future, the inherent mechanism of crop water and N uptake as well as crop morphological and structural properties, coupled with UAV-based remote sensing, will be used to increase the selection accuracy in large breeding programs.



DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.



AUTHOR CONTRIBUTIONS

MY and MH managed the UAV flights for aerial imagery, analyzed the data, and supervised and wrote the manuscript. ZH for supervised the research. MY and KX conducted the ground-based field measurements. YX, YZ, and CZ managed and directed the trial. YX, AR, XX, and XJ gave comments and suggestions during preparation of the manuscript. All authors contributed to the article and approved the submitted version.



FUNDING

This work was funded by the National Natural Science Foundation of China (3171101265 and 31671691), the National Key Project (2016YFD0101804), the Fundamental Research Funds for the Institute Planning in Chinese Academy of Agricultural Sciences (S2018QY02), and CAAS Science and Technology Innovation Program.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.00927/full#supplementary-material

TABLE S1 | Total precipitation across the growing season.


FOOTNOTES

1https://www.micasense.com/parrotsequoia/

2https://www.altizure.com

3https://pix4d.com/


REFERENCES

Ali, M. H., and Talukder, M. S. U. (2008). Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 95, 1201–1213. doi: 10.1016/j.agwat.2008.06.008

Araus, J. L., and Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61. doi: 10.1016/j.tplants.2013.09.008

Araus, J. L., and Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr. Opin. Plant Biol. 45, 237–247.

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., and Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6:10395. doi: 10.3390/rs61110395

Boschetti, M., Nutini, F., Manfron, G., Brivio, P. A., and Nelson, A. (2014). Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS One 9:e88741. doi: 10.1371/journal.pone.0088741

Bremner, J. M., and Mulvaney, C. (1982). “Nitrogen-Total,” in Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, eds A. L. Page, R. H. Miller, and D. R. Keeney (Madison: American Society of Agronomy, Soil Science Society of America), 595–624.

Christopher, J. T., Christopher, M. J., Borrell, A. K., Fletcher, S., and Chenu, K. (2016). Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 67, 5159–5172. doi: 10.1093/jxb/erw276

Chuan, L., He, P., Zhao, T., Zheng, H., and Xu, X. (2016). Agronomic characteristics related to grain yield and nutrient use efficiency for wheat production in China. PLoS One 11:e0162802. doi: 10.1371/journal.pone.0162802

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., and McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoret. Appl. Genet. 126, 867–887. doi: 10.1007/s00122-013-2066-0

Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., et al. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366.

Duan, T., Chapman, S., Guo, Y., and Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 210, 71–80. doi: 10.1016/j.fcr.2017.05.025

Eberbach, P., and Pala, M. (2005). Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant Soil 268, 195–208. doi: 10.1007/s11104-004-0271-y

FAO (2018). Food and Agriculture Organization. Rome: FAO. Available online at: http://www.fao.org/faostat/en/#home

Gao, F., Ma, D., Yin, G., Rasheed, A., Dong, Y., Xiao, Y., et al. (2017). Genetic progress in grain yield and physiological traits in Chinese Wheat Cultivars of Southern Yellow and Huai Valley since 1950. Crop Sci. 57, 760–773. doi: 10.2135/cropsci2016.05.0362

Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., et al. (2010). Significant acidification in major Chinese crop lands. Science 327, 1008–1010. doi: 10.1126/science.1182570

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426. doi: 10.1016/s0034-4257(02)00018-4

Haghighattalab, A., González Pérez, L., Mondal, S., Singh, D., Schinstock, D., Rutkoski, J., et al. (2016). Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35.

Haile, D., Nigussie, D., and Ayana, A. (2012). Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 12, 389–410.

Han, L., Yang, G., Yang, H., Xu, B., Li, Z., and Yang, X. (2018). Clustering field-based maize phenotyping of plant height growth and canopy spectral dynamics using a UAV remote sensing approach. Front. Plant Sci. 9:1638. doi: 10.3389/fpls.2018.01638

Hassan, M. A., Yang, M., Fu, L., Rasheed, A., Zheng, B., Xia, X., et al. (2019). Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 15:37.

Hassan, M. A., Yang, M., Rasheed, A., Jin, X., Xia, X., Xiao, Y., et al. (2018a). Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 10:809. doi: 10.3390/rs10060809

Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., et al. (2018b). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 282, 95–103. doi: 10.1016/j.plantsci.2018.10.022

Hatfield, J. L., Gitelson, A. A., Schepers, J. S., and Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agron. J. 100, S–117–S–131.

Hawkesford, M. J. (2017). Genetic variation in traits for nitrogen use efficiency in wheat. J. Exp. Bot. 68, 2627–2632. doi: 10.1093/jxb/erx079

Hu, H., and Xiong, L. (2014). Genetic engineering and breeding of drought resistant crops. Annu. Rev. Plant Biol. 65, 715–741. doi: 10.1146/annurev-arplant-050213-040000

Jin, X., Liu, S., Baret, F., Hemerlé, M., and Comar, A. (2017). Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 198, 105–114. doi: 10.1016/j.rse.2017.06.007

Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature 529, 84–87. doi: 10.1038/nature16467

Li, J., Shi, Y., Veeranampalayam-Sivakumar, A.-N., and Schachtman, D. P. (2018). Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Front. Plant Sci. 9:1406. doi: 10.3389/fpls.2018.01406

Ma, Y., Qu, L., Wang, W., Yang, X., and Lei, T. (2016). Measuring soil water content through volume/mass replacement using a constant volume container. Geoderma 271, 42–49. doi: 10.1016/j.geoderma.2016.02.003

Mutanga, O., and Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 25, 3999–4014. doi: 10.1080/01431160310001654923

Nehe, A. S., Misra, S., Murchie, E. H., Chinnathambi, K., and Foulkes, M. J. (2018). Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars. Field Crops Res. 225, 152–162. doi: 10.1016/j.fcr.2018.06.002

Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct. Plant Biol. 39, 851–859.

Potgieter, A. B., George-Jaeggli, B., Chapman, S. C., Laws, K., Suárez Cadavid, L. A., Wixted, J., et al. (2017). Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front. Plant Sci. 8:1532. doi: 10.3389/fpls.2017.01532

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rasheed, A., Takumi, S., Hassan, M. A., Imtiaz, M., Ali, M., Morgunov, A. I., et al. (2020). Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. Theoret. Appl. Genet. 133, 1503–1520. doi: 10.1007/s00122-019-03523-w

Sankaran, S., Khot, L. R., and Carter, A. H. (2015). Field-based crop phenotyping: multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput. Electron. Agric. 118, 372–379. doi: 10.1016/j.compag.2015.09.001

Sehgal, D., Skot, L., Singh, R., Srivastava, R. K., Das, S. P., Taunk, J., et al. (2015). Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10:e0122165. doi: 10.1371/journal.pone.0122165

Shafian, S., Rajan, N., Schnell, R., Bagavathiannan, M., Valasek, J., Shi, Y., et al. (2018). Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS One 13:e0196605. doi: 10.1371/journal.pone.0196605

Sharma, L. K., Bu, H., Denton, A., and Franzen, D. W. (2015). Active-Optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in North Dakota. U.S.A. Sensors 15, 27832–27853. doi: 10.3390/s151127832

Sun, Q. P., Kröbel, R., Müller, T., Römheld, V., Cui, Z. L., Zhang, F. S., et al. (2011). Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agric. Water Manag. 98, 808–814. doi: 10.1016/j.agwat.2010.12.007

Thorp, K., Thompson, A., Harders, S., French, A., and Ward, R. (2018). High throughput phenotyping of crop water use efficiency via multispectral drone imagery and a daily soil water balance model. Remote Sens. 10:1682. doi: 10.3390/rs10111682

Wang, L., Hunt, E. R. Jr., Qu, J. J., Hao, X., and Daughtry, C. S. (2013). Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices. Remote Sens. Environ. 129, 103–110. doi: 10.1016/j.rse.2012.10.027

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 8:1111. doi: 10.3389/fpls.2017.01111

Yang, M., Wang, C., Hassan, M. A., Wu, Y., Xia, X., Shi, S., et al. (2020). QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). J. Integrat. Agric. 19, 2–14.

Yi, Q., Bao, A., Wang, Q., and Zhao, J. (2013). Estimation of leaf water content in cotton by means of hyperspectral indices. Comput. Electron. Agric. 90, 144–151. doi: 10.1016/j.compag.2012.09.011

Zhang, F., and Zhou, G. (2019). Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 19:18. doi: 10.1186/s12898-019-0233-0

Zhang, J., Sun, J., Duan, A., Wang, J., Shen, X., and Liu, X. (2007). Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric. Water Manag. 92, 41–47. doi: 10.1016/j.agwat.2007.04.007

Zhang, W., Cao, G., Li, X., Zhang, H., Wang, C., Liu, Q., et al. (2016). Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674. doi: 10.1038/nature19368

Zhang, X., Bol, R., Rahn, C., Xiao, G., Meng, F., and Wu, W. (2017). Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 596-597, 61–68. doi: 10.1016/j.scitotenv.2017.04.064

Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., and Shen, Y. (2015). Managing nitrogen for sustainable development. Nature 528, 51–59.

Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., et al. (2018). Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Front. Plant Sci. 9:936. doi: 10.3389/fpls.2018.00936


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Yang, Hassan, Xu, Zheng, Rasheed, Zhang, Jin, Xia, Xiao and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 06 October 2020
doi: 10.3389/fpls.2020.563386





[image: image]

Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties

Jianjun Du1,2, Xianju Lu1,2, Jiangchuan Fan1,2, Yajuan Qin1,3, Xiaozeng Yang1,3* and Xinyu Guo1,2*

1Beijing Academy of Agriculture and Forestry Sciences, Beijing, China

2Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing, China

3Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing, China

Edited by:
Wanneng Yang, Huazhong Agricultural University, China

Reviewed by:
Ni Jiang, Donald Danforth Plant Science Center, United States
Weijuan Hu, Institute of Genetics and Developmental Biology (CAS), China

*Correspondence: Xinyu Guo, guoxy@nercita.org.cn; guoxy73@163.com; Xiaozeng Yang, yangxiaozeng@baafs.net.cn

Specialty section: This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

Received: 18 May 2020
Accepted: 14 September 2020
Published: 06 October 2020

Citation: Du J, Lu X, Fan J, Qin Y, Yang X and Guo X (2020) Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties. Front. Plant Sci. 11:563386. doi: 10.3389/fpls.2020.563386

The yield and quality of fresh lettuce can be determined from the growth rate and color of individual plants. Manual assessment and phenotyping for hundreds of varieties of lettuce is very time consuming and labor intensive. In this study, we utilized a “Sensor-to-Plant” greenhouse phenotyping platform to periodically capture top-view images of lettuce, and datasets of over 2000 plants from 500 lettuce varieties were thus captured at eight time points during vegetative growth. Here, we present a novel object detection–semantic segmentation–phenotyping method based on convolutional neural networks (CNNs) to conduct non-invasive and high-throughput phenotyping of the growth and development status of multiple lettuce varieties. Multistage CNN models for object detection and semantic segmentation were integrated to bridge the gap between image capture and plant phenotyping. An object detection model was used to detect and identify each pot from the sequence of images with 99.82% accuracy, semantic segmentation model was utilized to segment and identify each lettuce plant with a 97.65% F1 score, and a phenotyping pipeline was utilized to extract a total of 15 static traits (related to geometry and color) of each lettuce plant. Furthermore, the dynamic traits (growth and accumulation rates) were calculated based on the changing curves of static traits at eight growth points. The correlation and descriptive ability of these static and dynamic traits were carefully evaluated for the interpretability of traits related to digital biomass and quality of lettuce, and the observed accumulation rates of static straits more accurately reflected the growth status of lettuce plants. Finally, we validated the application of image-based high-throughput phenotyping through geometric measurement and color grading for a wide range of lettuce varieties. The proposed method can be extended to crops such as maize, wheat, and soybean as a non-invasive means of phenotype evaluation and identification.

Keywords: high throughput phenotyping, lettuce, object detection, semantic segmentation, static trait, dynamic trait, growth rate


INTRODUCTION

Lettuce is an economically important vegetable crop widely cultivated in the world, with the highest outputs in the United States, Europe, and China (Adhikari et al., 2019). Rich in vitamins, carotenoids, antioxidants, and other phytonutrients (Humphries and Khachik, 2003), lettuce is the most consumed leafy vegetable in salads in Europe and the United States and also one of the most commonly used vegetables in Chinese hotpot cuisine. As a leafy vegetable of great economic value, lettuce can be harvested at maturity or in early development (Simko et al., 2016). Lettuce leaves are the main organs of biomass accumulation, and lettuce leaves can be harvested many times during vegetative growth. Therefore, rapid growth of lettuce leaves is beneficial to ensuring the production of leaves with the same shape, color, and taste (Grahn et al., 2015). In addition, environmental factors have important effects on gene expression, protein level, chlorophyll content, photosynthesis, and metabolites of lettuce. Through the appropriate use of culture substrates in a greenhouse, the environmental differences among lettuce varieties can be eliminated to a large extent, simplifying the evaluation of the growth and development status of lettuce plant and clarifying the relationship between the phenotype and genotype.

Image capture is a low-cost and efficient way to assess plant growth status, and industrial cameras have become the basis of almost all high-throughput phenotyping platforms. Lettuce breeders have used optical sensors to evaluate the vegetative growth of lettuce plants and to conduct genetic studies on lettuce by, for example, identifying and mapping the locus controlling light green leaf color (qLG4) in lettuce (Simko et al., 2016). In addition, heat-sensitive and heat-resistant lettuce can also be screened by measuring the leaf and root morphology, and the effect on the leaf and root morphology of RILs population can be quantified to establish a basis for breeding new varieties of lettuce (Choong et al., 2013). Conditions, such as temperature or soil salinity, are critical to the growth of lettuce, which is very sensitive to increases in soil or water salinity (NaCl/CaCl2). Increased salt concentrations inhibit the growth of lettuce, which is especially sensitive at the early stage of development (Xu and Mou, 2015). Studying the dynamic response of lettuce to different abiotic stresses is an important way to evaluate the resistance, e.g., salt tolerance, of a large number of germplasm resources (Zhou et al., 2018). Existing imaging platforms (e.g., PlantScreenTM, developed by Photon Systems Instruments) are also used for dynamic growth analysis of lettuce plants (Sorrentino et al., 2020), but usually only a few types of lettuce can be processed. There remains a lack of research quantifying and evaluating the dynamic growth of large-scale lettuce cultivation using high-throughput phenotyping platforms.

To continuously, stably, and consistently evaluate the growth status of a wide range of lettuce varieties, high-throughput image acquisition is a particularly effective tool. Two modes, i.e., “Plant to Sensor” (Rajendran et al., 2009) and “Sensor to Plant” (Kjaer and Ottosen, 2015), are usually adopted to collect high-throughput data from plants. The former requires complex mechanical structures to transfer plants to a fixed imaging room for data acquisition. Its advantage is that plant images can be captured from different angles; however, the cost of such platforms is very high, and the related work procedures are more complex. The latter system only needs to control the movement of a sensor to specified positions to perform data collection, and it usually only collects images from the overhead views of plant; thus, it is relatively simple and efficient. The present work utilized the “Sensor to Plant” approach to obtaining large quantities of top-view images in a greenhouse environment. Thousands of lettuce images can thus be obtained in a short period of time, and this approach guarantees time-effectiveness for 500 lettuce varieties. The growth and color status of lettuce canopies and leaves can be reflected in top-view images, which can therefore be used as a reliable data source for subsequent phenotypic analyses of lettuce.

Based on high-throughput image acquisition, efficient and high-precision image analysis becomes the key to transforming image data into comprehensive plant traits. For the traits considered by crop breeders, image-based phenotyping pipelines are usually customized based on new or improved image processing methods. In this context, convolutional neural networks (CNNs) are one of the basic components of image-based phenotyping methodologies. CNNs originated in the 1980s (Fukushima, 1980) and became areas of intense active research after Lenet-5 (LeCun et al., 1998) was proposed, which directly promoted the recovery of neural networks and the rise of deep learning through the emergence of AlexNet in 2012 (Krizhevsky et al., 2012). Owing to the leading performance advantages of CNNs in image classification, object detection, semantics, and instance segmentation, image-based phenotyping deeply integrated with CNNs has been widely used to extract and evaluate crop traits for genetics, genomics, breeding, and agricultural production studies (Lu et al., 2017; Taghavi Namin et al., 2018; Ubbens et al., 2018; Uzal et al., 2018).

The objective of this work is the establishment of a data analysis pipeline for high-throughput detection and phenotyping of multiple lettuce varieties. A high-throughput phenotyping platform was utilized to periodically acquire top-view images of lettuce plants. We then built an image analysis pipeline aimed at assessing lettuce growth, which used integrated object detection and semantic segmentation models based on CNN, to extract information from each pot and plant. Finally, we assessed the static and dynamic traits of multiple lettuce varieties, and validated this application of image-based high-throughput phenotyping in geometric measurement and color grading for a broad range of lettuce varieties.



MATERIALS AND METHODS


Data Acquisition

The experimental data acquisition system was built in the greenhouse of the Beijing Academy of Agricultural and Forestry Sciences, utilizing a planar scanning motion mechanism. The imaging unit was able to move automatically above greenhouse regions according to a planned route (Figure 1). The imaging unit was 2.3 m above the greenhouse floor. A mounted industrial camera (Point Gray, Sony ICX808, 1/1.8”, 3.1 m, Global shutter, 18 FPS at 2016 × 2016 pixels) was used to continuously and systematically obtain top-view images of plants. The time interval of data collection was set according to the movement speed of the imaging unit. The total time of a complete data collection process was 38 min, during which time 2280 images could be obtained. The greenhouse was equipped with an automated irrigation system, which could supply water according to the water status of each plant to ensure the normal growth of plants. This experiment began in mid-December 2019, when lettuce seeds were first sown in a square basin (68 mm × 68 mm; depth, 95 mm) with a 1:1 soil–sand mixture, and seedlings were transplanted into pots (diameter, 32 cm; height, 34 cm) in the greenhouse after 30 days.
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FIGURE 1. High-throughput phenotyping platform for greenhouses. The imaging unit is driven along a route with planned according to x and y coordinates, and top-view images of lettuce plants are captured according to a timer or its position.


Into each of 2000 pots, one or two lettuce plants were transplanted, and one plant was retained after 3 days. Plant data were collected at 16:00 p.m. every other day. At that time, the photo-period and photosynthesis rate in the greenhouse was fairly uniform across all lettuce varieties (Simko et al., 2016). In this work, image datasets at eight key time points of lettuce growth were used to evaluate the static and dynamic traits of lettuce plants.



Data Analysis Pipeline

We designed the data analysis pipeline to automatically process the image datasets. For the top-view images of lettuce plants at each time point, data cleaning and calibration were performed to reduce the data storage and analysis demands. In a single data collection session, thousands of images could be collected, but a few images (redundant images) were not included in the comprehensive images of lettuce cultivation regions. Thus, data cleaning was performed to remove the redundant images of the same pot, according to the image acquisition time and location, prior to the subsequent image analysis. The calibration step converted the pixel size of the collected images by detecting the fixed calibration object. The pixel size of the collected image in this work was 1.067 mm/pixels. In order to ensure the matched accuracy of the same plant among different growth points, we used pot detection instead of plant detection. Therefore, after cleaning, the image sequences were successively processed by the pot detection model. It is worth noting that each pot might appear in multiple images at the same time in the image sequence, but the relative positions of each pot in the adjacent images were different. The detection results were used to establish the mapping relationship between pots and the sequence of images and further used to identify the most appropriate top-view image of each pot.

Pot detection for many of the images was a highly redundant operation. We trained an efficient pot detection model based on a CNN to extract pots from the image sequence, and each pot was associated with the size and local coordinates of a certain image. The pot closest to the image center among the images captured had the least imaging position distortion, and this image could thus be regarded as the most suitable top-view image of this pot. Therefore, according to the local position of the pot in the image and image acquisition location, the spatial position of each pot could be determined. Since each pot corresponded to a lettuce plant, we could also determine the spatial position of the lettuce plant according to its pot position. In this way, the pot could be matched to a position, a variety, and a plant. By the late stages of growth, plant leaves would usually grow beyond the perimeter of the pot, possibly causing interference effects among plants. In order to uniformly quantify and evaluate the dynamic growth process of plants over 34 days, we evaluated static and dynamic traits of lettuce only within the pot region.

We trained a semantic segmentation model to extract the lettuce plants from pot images, and the segmented results were then fed into the phenotyping analysis pipeline to calculate the static traits describing, for example, the geometry and color of lettuce. Finally, the image datasets collected at different time points were used to calculate dynamic traits, such as the growth rate and cumulative growth rate of each static trait (Figure 1).

The above data analysis pipeline was implemented in Python under the Windows 10 operating system. The computer used had the following specifications: Intel(R) CoreTM i7-5930k CPU@3.50GHz, 128G RAM, two 8GB NVIDIA GeForce GTX-1080 Ti graphics card, 2TB hard disk. This computer was mainly used to train CNN models for object detection and semantic segmentation (within the TensorFlow framework), as well as for automatic analysis of large quantities of image datasets.



Detection Model

Accurate and efficient pot detection is the key to accurately locating and extracting lettuce plants and a precondition for quantifying plant traits. The YOLOv3 algorithm model (Redmon and Farhadi, 2017) was implemented to perform the end-to-end detection of pots from the top-view image sequence, as shown in Figure 2. The network structure was used to train the pot detection model based on a sufficient number of annotated pot datasets. This detection model determined the positions of pots by using regression; thus, the corresponding prediction boxes of each pot could be obtained by evaluating each image once. The DarkNet-53 network was used to extract features, and the residual structure of ResNet (He et al., 2016) was introduced to control the gradient spread. The network consists of 53 consecutive 3 × 3 and 1 × 1 convolution layers, with the 3 × 3 convolution responsible for increasing the feature graph channel and the 1 × 1 convolutional layer responsible for compressing feature representation after the 3 × 3 convolution. Five 3 × 3 convolutional layers with a step length of 2 were used at intervals to reduce the output feature image to 1/32 the size of the input image. One important characteristic of this structure is it merges the multiscale features to obtain more discriminating feature description. Consequently, it can be independently detected from three feature graphs with 13 × 13, 26 × 26, and 52 × 52 scales so as to meet the detection needs for objects of different sizes. The network allocated three anchor boxes for each scale, corresponding to a total of nine anchor boxes. In this paper, a k-means clustering algorithm was used to re-cluster all annotated boxes in the training dataset, and the clustered box list for this dataset was used as a model training.
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FIGURE 2. Pot detection model and post-processing. Input images were scaled to 416 × 416 pixels and fed into the YOLO v3 model, resulting in a series of predicted boxes. Semantic filtering was performed to extract the valid boxes and assign the local variety and plant indices. C indicates tensor splicing operation, N = 3 represents the output detection channels at different scales, ‘pot’ represents the detected pot, ‘C-’ is the variety index, and ‘P-’ represents the plant index of the individual variety.


The pot detection process first involved the size of collected images being scaled to 416 × 416 pixels, and this data was then fed into a pot detection model. The end-to-end detection resulted in a series of predicted boxes, which contained confidence values and relative coordinates. Then, object boxes with confidence values lower than the threshold value (0.9) were removed by non-maximum suppression (NMS), and each remaining detection box then corresponded to a predicted pot. Further, we defined a region of interest (ROI) in each image to judge whether each predicted box was valid or not, and only those boxes that were completely contained within the ROI were retained. According to the relative position and global position of the pot in each image, the corresponding variety and plant indices of the pot were attached to the predicted box. Based on the above operation, we could extract and identify pots from the image sequence and process them using the semantic segmentation described in the next section.



Semantic Segmentation

Under greenhouse environments, lettuce planting density is high, but growth rates differ among varieties. In the later stage of growth, lettuce leaves gradually grow beyond the perimeters of their pots and interfere with neighboring plants. From the top-view, the early growth range of lettuce is confined to within each pot, and there is no interference among neighboring plants. However, in the later stages of vegetative growth, most lettuce varieties will gradually grow beyond the pot area. In this paper, only plants within the pot regions were semantically segmented. The pot region images of each variety and each plant were extracted from the image sequences data used for image analysis.

Figure 3 shows the semantic segmentation of plants and its post-processing process. We developed a semantic segmentation model of lettuce by using the U-Net network structure (Ronneberger et al., 2015). The network adopts the classical encoding/decoding structure, which mainly includes encoder, decoder, and jump connection components. Among them, the encoder, which is mainly composed of 3 × 3 convolution and 2 × 2 maximum pooling layers, is used to extract features from images at different scales. The activation function is ReLU, and the feature channel is doubled after each encoding. The decoder utilizes deconvolution to gradually halve the number of channels and splice the deconvolution result with the feature graph on the corresponding encoding path. After decoding, the output feature graph is restored to the size of the input image. The jump connection establishes the channel connection between the encoder and decoder features, which can reduce the information loss in feature extraction and improve the accuracy of location and segmentation.
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FIGURE 3. Plant semantic segmentation and post-processing. Input images were scaled to 218 × 218 pixels and fed into a UNET model, resulting in a binary image. Semantic filtering was performed to check the valid regions for subsequent feature extraction.


The semantic segmentation process was as follows: pot images that were exported from the detection model were adjusted to 288 × 288 pixels and imported into the UNET network. The model output followed a probability distribution ranging between 0 and 1, and based on this output, we used a fixed value as the threshold to convert the probability graph into a binary image. We then detected the maximum connected region in the binary image and regarded it as the main structure of each lettuce plant for the subsequent feature extraction.



Feature Extraction

To quantify the dynamic growth processes of lettuce plants during vegetative growth, we extracted data from each pot image and segmented plants from the pot images. This provided the basis for analyzing and evaluating lettuce traits. The top-view images of lettuce plants contain structure, shape, and color information of the plant canopy and leaves, which is an intuitive reflection of growth status and variation. We focused on the static traits (SI) of lettuce across growth points, as well as the dynamic traits corresponding to static traits during a period of growth, including growth rate (GR) and accumulation rate (AC), as shown in Table 1. In this work, the static traits refer to the geometric and color indices of lettuce plants at certain time points, and the growth rates and cumulative traits reflect changes in the static traits during a particular growth period. Therefore, static and dynamic traits are closely related to data acquisition times and time periods. The growth rate describes the change rate of various static traits within a certain time interval, and the cumulative traits corresponding to the static traits are the average daily change rates within a certain time interval, as follows:


TABLE 1. Lettuce features extracted from top-view images.
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Here, SI represents the static indices in Table 1; t1 and t2 respectively represent the start and end times of data acquisition, respectively, where the unit is day; GRSI and ACSI represent the growth rate and cumulative traits of static traits (SI), respectively.



RESULTS


Training the Detection Model

To obtain a high-accuracy detection model, we collected different types of images from several imaging devices to establish pot annotation datasets. These images were captured by industrial cameras, digital cameras (Canon77D), and the Kinect2 sensor, which yielded image of 2016 × 2016, 6000 × 4000, and 1920 × 1080 pixels, respectively. A total of 236 images covered different lighting conditions and imaging heights. Multiple types and sizes of images are helpful to improve the robustness and adaptability of detection models. It should be noted that these images were mainly collected within 30 days after initial lettuce cultivation. We only focused on a single category of object (i.e., pots) in the images, so we thus developed a simple interactive box-selection tool to extract pots from each image and then stored data from each pot in the a corresponding TXT file as five parameters, i.e., category, relative coordinates (i.e., x, y), and size (i.e., width, height). As a result, a total of 7,204 pots of different sizes were labeled manually from these images. Then, the source images and their annotation results were rotated at the same time to expand the number of images three-fold. Finally, 2/3 of images were randomly selected to construct the training dataset, and the remaining images were used as the test dataset. In order to reduce the risk of over-fitting, image operations, such as random scaling and clipping, image exposure, and saturation, were used when the model was loaded into the training model (Barth et al., 2019). A weight model (darknet53) obtained from ImageNet data was used to initialize model training. The basic parameters were set as follows: batch size was 64; the optimizer was Adam; the initial learning rate was 0.001, which was reduced to 0.1 times that of the previous learning rate at 5000 and 8000 iterations, respectively. After 10,000 iterations of model training, the model training loss curve shown in Figure 4A was generated. Through the training and testing, the mean average precision of the average accuracy (mAP@0.50) of this model reached 99.82%, and the recognition accuracy, recall rate, and average intersection over union (IOU) were 96.8, 90.64, and 87.13%, respectively. Figure 4B shows the detection and post-processing results of the images with sizes of 2016 × 2016, and the model detection efficiency reached 0.2 s. The pot diameters detected from the same image were not completely consistent, which is mainly related to the position distortion and annotation tolerance for pots in the training set. The average diameter and pixel size of the pots had an error of less than 3%.


[image: image]

FIGURE 4. Training detection model. (A) Loss curve. (B) Detected pots and their sizes in the input image.




Training Semantic Segmentation Model

To train a high-robustness semantic segmentation model, we collected 5913 pot images from different growth points and lettuce varieties and established a pot dataset. We developed an interactive contour-editing tool to ensure that the lettuce (if any) in the pot image would be accurately extracted, and we then stored these contours in the corresponding mask image. Thus, pot images and their corresponding mask images together comprised an image dataset for semantic segmentation. Further, this dataset was divided into training, verification, and test datasets, containing 3548, 1183, and 1182, images respectively. The parameter configuration of the semantic segmentation model was as follows: the activation function was SIGMOID; batch size was 12, to maximize GPU storage; epochs numbered 100; the optimizer was Adam; the learning rate (LR) was set as 5×10−5. The loss function of the model combined DICE and Binary Focal Loss (Lin et al., 2020), and IOU was used to evaluate the segmentation performance. The Inceptionresnetv2 network (Szegedy et al., 2017) was used to extract features.

Image augmentation techniques, such as random flipping, rotation, scaling, perspective, blurring, sharpening, contrast, and brightness adjustment, were also used to generate the dataset (Buslaev et al., 2020) to improve the data generalization. The model was trained 100 times, and the IOU score and loss curves of the model are shown in Figures 5A,B. The loss rate, IOU score, and F1 score of the model on the training set are shown in Table 2. The loss rate was about 3%, the average accuracy (IOU, mAP) was over 95%, and the average F1 score (the harmonic average of precision and recall) was over 97%. The test dataset included 1,182 images of different lettuce varieties at different growth points, with a total processing time of about 76 s, or approximately 64 ms per plant. Three types of original images at different growth points (S1, S2, and S3), labeled images (GT), and prediction images (PR) were utilized to evaluate the segmentation accuracy, as shown in Figure 5C. The visual comparison between the artificial annotation and the model prediction images shows that the main plant structures could be extracted, and the main differences occurred owing to the presence of slender stems, leaf edges, and internal pores.
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FIGURE 5. Evaluation results of the semantic segmentation model. (A) IOU score, (B) Loss curve, (C) Segmentation results of lettuce plants in the test dataset at different growth points (S1, S2, and S3 respectively correspond to three growth points; GT refers to the manual annotation image in the test dataset; PR refers to prediction results of semantic segmentation).



TABLE 2. Performance of semantic segmentation model on training, verification, and test datasets.
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Evaluating Static Traits

Different lettuce varieties have different geometric and color traits. In this paper, 2036 images of pots (including 36 pots from other experiments) were obtained on the same day to analyze the correlation between 15 geometry and color traits of lettuce. The correlation coefficients between phenotypic traits of lettuces are shown in Table 3, with most traits showing extremely significant positive correlations between each other (P < 0.01), but the correlation coefficients between geometric and color traits were less than 0.5, indicating that the geometric and color traits of lettuce differed in how they described the growth and appearance of lettuce. In addition, there were some traits that were highly correlated, indicating that the descriptive properties of these traits were very similar and only reflected slight differences. Among them, the correlation coefficients between the six traits characterized by length (cm) and area (cm2) (i.e., PA, PP, CA, CP, AXL, and AXS) exceeded 0.72 (among these, the correlation coefficients between CA and CP reached 0.971). From the perspective of feature engineering, these traits indeed revealed the complex geometrical properties from different perspectives and may partially reflect the morphological and structural differences among lettuce varieties. The correlation coefficients between the three channels of RGB image were more than 0.88, and the correlation coefficient between the V-value representing image brightness and the RGB channel was also more than 0.89, indicating that these color indexes might be affected by light intensity. The H channel representing hue showed a significant negative correlation with other color traits to different degrees, which might indicate that value increases of other color channels could lead to decreased hue values within a certain range. ExG is a common color index used to characterize green plants. The effect of green (G) was enhanced by combining RGB channels, and the correlation coefficient with brightness (V) was slightly reduced to 0.85.


TABLE 3. Correlation coefficients between static traits of lettuce.

[image: Table 3]Further, hierarchical cluster analysis was conducted on the static traits of lettuce plants. The within-groups linkage cluster method was used to calculate the squared Euclidean distance of static traits measured from the 2036 lettuce images. When the Euclidean distance was 7, static traits could be divided into five categories, as shown in Figure 6. Therein, two color traits, i.e., S and H, were clustered into two individual categories, while the other five color traits were closely related and clustered into one category. For geometric traits, PAR and CAR were dimensionless values representing area proportions of lettuce plants. Other geometric traits with physical dimensions could be classified into the same class. Once the Euclidean distance was 19, all traits were clustered into two categories, but the meaning of each category is not clear or explanatory. Thus, we subsequently performed a principal component analysis (PCA).
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FIGURE 6. Hierarchical cluster analysis of static traits in lettuce.


Static traits of lettuce plants were standardized and then used for principal component analysis. Eigenvalues greater than 1 were used as a standard for extraction of principal components, and the results are shown in Table 4. The eigenvalues of the first three principal components were greater than 2.22, and the cumulative contribution rate was 84.099%. This indicates the three principal components adequately reflect the basic features of 15 traits. The cumulative contribution rate of the first six principal components reached 96.837%, indicating that the six principal components sufficiently represent all static traits. The contribution rate of the first principal component was the largest, at 38.168%. All the feature vectors representing the length and area were positive and above 0.81, indicating that the geometric structure was still the most direct apparent representation of lettuce, that is, the projected area and size of lettuce plants could best reflect the growth patterns of lettuce plants. The contribution rate of the second principal component was 31.076%, and color traits dominated large feature vector values, among which R, G, V, and ExG feature vectors were all positive and higher than 0.79, indicating that color most differentiated the lettuce plants according to their traits.


TABLE 4. Principal component analysis of lettuce traits.
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Evaluating Dynamic Traits

The growth rate and change in color of lettuce directly reflects the growth and appearance of each plant, which is important in the evaluation and identification of lettuce and of great significance to both breeding and production efforts. In this paper, eight image datasets were collected at 4–5 day intervals during the vegetative growth period (34 days). Based on the image sequence of lettuce plants at each growth point, 15 static characteristics of each plant of each variety were extracted. Then, the variation curves of these static traits (over days) were synthesized in accordance with the time order. Three kinds of lettuce plants with different growth rates and different colors were used to evaluate the growth and accumulation rates of lettuce plants.

Figure 7 shows the top-view image sequence of three lettuce varieties, and the changing curves of the 15 static traits in a 34-day period. We used growth and accumulation rates to quantify these curves. Tables 5, 6 list the dynamic traits of three lettuce varieties according to geometry and color, respectively. Non-parametric tests were performed on the three lettuce samples to evaluate the sample differences. The mean ranks of the geometric traits of varieties L1048, L454, and N648 significantly differed and were 2.06, 2.38, and 1.56, respectively (P = 0.046, χ2 = 6.143). The mean ranks of the color trait also significantly differed and were 1.82, 1.50, and 2.68, respectively (P = 0.005, χ2 = 10.582). The chi-square coefficient of the color traits was larger than that of the geometric traits, indicating that color was more differentiated than geometry among the lettuce varieties. Non-parametric tests were also conducted on the geometric and color traits to evaluate the trait differences. The mean ranks obtained are also shown in Tables 5, 6, which show that the ranks of the accumulation rates of lettuce were greater than those of the growth rates, that is, the accumulation rate of lettuce was more strongly differentiated, with ACPP rank being the most differentiated.
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FIGURE 7. Top-view image sequence and dynamic traits of three lettuce varieties. For the three varieties, 15 static traits were collected from each plant, with corresponding line charts showing the changes in these traits over a 34-day period, and dynamic traits (GR-, AC-) were used to quantify these changes.



TABLE 5. Geometry-related dynamic traits of lettuce plants.
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TABLE 6. Color-related dynamic traits of lettuce plants.

[image: Table 6]The projected area (PA) represents the coverage or spreading area of the lettuce from the top-view, and it is the most commonly used trait to characterize digital biomass. The growth rates of L1048, L454, and N648 varieties were observed to gradually increase, but the accumulation rates differed in the way they changed. In the lettuce seedling stage, the growth rate of L1048 was slow, but accelerated after 17 days, reaching the maximum GRPA at 34 days, and because of the lag in its accelerated growth time, its ACPA was lowest among the three varieties. Similar trends were also found among geometry-related traits, including PP, CA, CP, AXL, and AXS. Moreover, the dynamic PP and CP that described the contour of the lettuce provide richer information, not only reflecting differences in the projected area of the lettuce, but also representing the complexity of lettuce boundaries (i.e., leaf margins) to some extent. On the whole, all the growth rates related to area and size for L2018 were the highest, while its accumulation rate was the lowest, which might indicate that growth rate was sensitive to the initial state, while the accumulation rate was not. This pattern revealed that the time point at which the varieties started accelerated growth, was negatively associated with the accumulation rate. For L454, the rapid growth of lettuce leaves in the pot region maximized the accumulation rate of all traits related to area and size, indicating that the accumulation rate more accurately reflected the growth status of plants in each pot region. Generally, PAR and CAR described the degree to which the plant canopy filled the pot region, and they gradually increased with time.

The color-related dynamic traits of three lettuce varieties are listed in Table 6. The cumulative rate of color change reflected the average color characteristics of the plants throughout the growth period, but the R, G, and B channels of the plants need to be combined to reflect their true colors. For the lettuce varieties L1048 and L454, which have no obvious visual differences, their ACG, ACB, ACS, and ACV values were quite close, indicating that the color differences in G, B, S, and V channels were slight. ACH better described the difference between green and non-green plants. For the dark green L454 and light green N648 varieties, ACG and ACR became effective green difference descriptors. In the comparison of the three colors of lettuce, ACExG always exhibited a strong color differentiation, so the introduction of more color or vegetation indices, such as NGRDI (Hunt et al., 2005), RGRI (Gamon and Surfus, 1999), NDVI (Rouse et al., 1974), DVI (Jordan, 1969), etc., might enhance the color representation of lettuce varieties with different and rich colors.



Verification of Lettuce Traits

The in situ measurement and evaluation of lettuce traits is labor-intensive and highly subjective, especially for geometric and color trait measurement. More importantly, a large number of traits with variable characteristics are difficult to measure manually. In this work, a series of geometric and color traits of lettuce were extracted from top-view images. To verify the measurement accuracy of the phenotype platform, 497 lettuce plants were collected for an individual trial for artificial geometrical measurement and color grading. The canopy width (CW) of lettuce was defined as the longest distance of leaf expansion, which was selected as the manual measurement index owing to its simplicity and consistency. Moreover, the main color of lettuce plants in this particular experiment green, though some purple and red-purple coloration also occurred. Limited by the human eye’s color resolution, we roughly divided the colors of lettuce into light green, dark green, and purple categories.

Based on collected lettuce images, we interactively measured the canopy width of each lettuce plant from the pot image, as shown in Figure 8A. Correlation analysis between canopy width and all static traits of lettuce showed correlation coefficients between CW and color traits of less than 0.18 (Figure 8B). For geometric traits, CW was negatively correlated with PAR (−0.41) and CAR (−0.38), but there were positive correlation coefficients with the other geometric traits (more than 0.72). The two highest correlation coefficients were those for CW with CP and AXL (both about 0.94). As the definition and measurement of CW are highly consistent with AXL, we calculated the coefficient of determination (R2) between CW and AXL, as shown in Figure 8C. Both manual in situ and interactive measurements depend on the experience of the experimenter, thus leading to subjective results. Comparatively speaking, image-based phenotyping can provide more objective, stable, and consistent geometric measurements. Additionally, many important geometric traits, such as projected area (CA) and canopy contour, are almost impossible to measure manually.
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FIGURE 8. Canopy width (CW) as assessed by interactive measurement and correlation analysis with static traits of lettuce plants. (A) CW as assessed by interactive measurement. (B) Correlation between canopy width and static traits of lettuce. (C) Linear fit of canopy width and long axis length (AXL).


Lettuce color, which is regulated by multiple loci, shows dynamic variation during lettuce growth and development, which makes its genetic analysis extremely complex (Su et al., 2020). The accurate quantification and classification of lettuce color is important in studying the genetic and molecular mechanism of leaf color and its components (i.e., anthocyanins) for lettuce breeders. In general, lettuce color can only be roughly classified by visual observation, such as into light green, dark green, red, and other color types. Thus, it is hard to accurately describe and quantify color variation for many lettuce varieties. In this work, the color of 497 lettuce varieties was investigated and graded manually into three categories: light green (0), dark green (1), and purple (2). For all lettuce samples, an artificial color grading index was used as the category, and color traits of lettuce were used to generate the feature vector. Then, the k-nearest neighbors (kNN) algorithm was utilized to calculate the average classification accuracy, which indicated the consistency between the color traits extracted from the image and artificial color grading indices. For the seven color traits (Table 1), we constructed 10 different feature vector combinations for kNN training, which were R, G, B, H, S, V, ExG, (R,G,B), (H,S,V), and color traits (comprising seven traits). In each kNN train process, lettuce samples were first divided into four groups, and each group was further divided into training and test sets. The kNN model was trained based on each feature vector combination, and the average classification accuracy of the kNN classifier was calculated based on four-fold cross-validation. Finally, the average classification accuracy of 10 kNN models were collected and the results are shown in Figure 9A. Among the 10 feature vector combinations, the combination of H, S, and V reached the highest classification accuracy of 86.78%, and color traits (a combination of the seven color traits) had a slightly lower classification accuracy of 85.18%. For feature vectors that only contained one color trait, G had the highest classification accuracy of 85.57%, and S had the lowest classification accuracy of 65.52%. Notably, the classification accuracy of H was only 70.75%. The above results indicate that the color traits have a high consistency with artificial color grading indices, and the classification error of kNN is likely owing to the subjectivity and uncertainty of artificial color grading.
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FIGURE 9. Color grading of lettuce varieties. (A) The average classification accuracy of 10 kinds of feature vector combinations based on the kNN algorithm. (B) Color grading chart of lettuce varieties based on the color trait G. (C) Color grading chart of lettuce varieties based on the color trait H. (D) Sorted lettuce varieties with different color grades quantified by G and H, respectively.


We further calculated the value range of each color trait for all lettuce varieties and then sorted the lettuce varieties according to each trait value to obtain a color grading chart (CGC) for the assessed lettuce varieties. CGC defines a vertical color bar (VCB) that indicates color trait variation of the sorted lettuce varieties; thus, each height position in a VCB represents the corresponding lettuce variety and its trait value. Figures 9B,C show the corresponding color grading charts (CGCs) based on G and H respectively. We divided each VCB into five equal height intervals and marked the representative lettuce varieties and trait values at each interval point. The value ranges of different color traits were quite different, e.g., the value range of G was from 49.62 to 147.63, which was significantly greater than that of H from 24.36 to 52.61. Based on the CGC of G and H, the images of representative lettuces with different color grading indices are shown in Figure 9D. Although lettuce varieties were differentiated according to color grading based on G and H, the continuous trend in lettuce color was visually obvious. Artificial color grading indices (light green, dark green, and red) could also be visually observed between certain small intervals in CVB, but color identification in other intervals was ambiguous for many lettuce varieties. Image-based color grading provided a more consistent and reliable basis for color quantification, and the CGC graphs were helpful for identify trait differences among all varieties.

Compared with manual investigation, morphological measurement and color grading based on the present phenotyping platform improved the efficiency and accuracy of the phenotype investigation for large-scale lettuce cultivation. More importantly, this method can be used to automatically measure multiple time points of lettuce cultivation, so as to assess dynamic variation among all kinds of traits. Thus, this research lays a foundation for identifying and mapping genes related to geometry and color from lettuce germplasms.



DISCUSSION

In this plant high-throughput phenotyping study, stable and high-frame-rate image acquisition by industrial cameras was the most efficient and economical method for phenotyping and analysis. To describe the dynamic changes in traits for large numbers of plants during the growth period, thousands of images collected in batches need to be processed; thus, automated and efficient image processing and trait extraction is a great challenge. In this research, a high-throughput greenhouse-based phenotyping platform was used to collect top-view images during the vegetative growth period for hundreds of lettuce varieties, and an image analysis method was developed to automate the extraction of static and dynamic traits of these lettuce varieties.

We designed multistage CNN models to perform object detection and semantic segmentation of lettuce plants and then made a pipeline to process the image sequence into plant phenotypes. This scheme could improve the robustness and flexibility of lettuce phenotyping systems. An efficient pot detection model was trained to locate plants from the image sequence, with a detection accuracy reaching 99.8% and a measurement error of pot size of less than 3%. The pots detected from the image sequence were matched to the corresponding plants. A high-precision semantic segmentation model was also used to analyze the growth sequence of each lettuce plant, which accurately segmented lettuce of different varieties throughout their vegetative growth stages. The F1 scores in the training, verification, and test sets were each over 97%. The high detection and segmentation accuracy may be related to the relatively simple greenhouse setting and the relatively low background noise in the annotated dataset.

Data collected at eight time points were used to investigate dynamic traits, including the growth and accumulation rates of lettuce varieties. Mean rank of the accumulation rate was higher than one of the corresponding growth rate and thus more appropriately represented trends in dynamic variation of various static traits. Notably, the present study only calculated the various traits of lettuce plants within the perimeter of each pot, and because of overlap among adjacent lettuce plants at later growth stages, it was difficult to completely separate each individual lettuce from the later top-view images. Therefore, we limited the “phenotyping region” to the area within each pot for two reasons. First, the pot region provided a standard threshold for assessing the time at which lettuce plants grew to the boundaries of pots. Thus, the data before this growth point could be used to quantify growth rates of lettuce plants, while the data collected after this growth point could still be used to quantify other dynamic traits (such as color changes etc.) over longer growth time periods. Second, the fixed pot region is helpful in evaluating dynamic growth of lettuce plants under the same criteria, and it reduces ambiguities in the automated phenotyping analysis pipeline. From the perspective of methodology, the “phenotyping region” can also be redefined according to the specific purposes of applications. To enable more accurate monitoring of lettuce growth, it is better to reduce the flowerpot density to eliminate interactions between adjacent plants. However, this inevitably decreases the detection flux and efficiency.

A large number of traits can be extracted from plant images, and various novel indicators can also be determined from different dimensions. However, the interpretability of traits still needs to be explored in depth, specifically in terms of how these traits describe the detailed static and dynamic features of plants. In this work, we quantified the static and dynamic traits (i.e., growth and accumulation) from top-view images of lettuce plants. To eliminate overlap between adjacent plants at the later stage of vegetative growth of lettuce and unify the standards for dynamic phenotyping and quantification, the growth status of lettuce was continuously and stably detected and evaluated only within the circular regions of pots. Fifteen static traits were used to describe the geometry and color status of each lettuce at specific growth points. The correlation, cluster, and principal component analyses of the 2036 lettuce plants showed that the geometry and color traits of lettuce differed, and their correlation coefficients with each other were less than 0.5. Meanwhile, within the same types of traits, there were some pairs of traits with extremely high correlation coefficients. It is necessary to combine these similar traits to describe much less obvious features of plants.

To verify the reliability of this phenotyping platform, we evaluated the geometric and color traits of 497 lettuce varieties, respectively. Canopy width (CW) of lettuce plants was chosen as a geometric indicator for manual human measurements, and correlation analysis results showed a significant correlation between CW and PA, PP, CA, CP, AXL, and AXS traits. The coefficient of determination (R2) between CW and AXL was 0.88. In addition, we performed artificial color grading and classified all lettuce varieties into three categories: light green, dark green, and red. The kNN algorithm was used to calculate the average classification accuracy, and the feature vector combination of H, S, and V reached the highest classification accuracy of 86.78%. Further, the color grading charts (CGC) of lettuce varieties demonstrated more stable and consistent color quantification and classification abilities. The above results demonstrate the reliability of the phenotyping platform in measuring geometric traits and grading color differences for large-scale lettuce cultivation.

Image-based high-throughput phenotyping can be more objective and reliable, especially for continuous traits, and these static and dynamic traits provide a basis for further refining the design of trait indicators of lettuce based on images, and more geometric and color traits could be designed from different perspectives to improve the ability of the system for phenotyping plants. Moreover, the presented method also has reference values for other optical imaging technologies, such as multispectral and thermal infrared imaging. Multiple sensors can be integrated to investigate lettuce traits across more dimensions, especially for physiological and water stress traits of lettuce plants. These technologies have substantial potential to discover new traits that breeders cannot assess via traditional methods, and the resulting static and dynamic traits could be employed in genome-wide association studies (GWAS) of these lettuce varieties.



CONCLUSION

In this paper we proposed an automated phenotyping pipeline for the non-destructive, high-throughput detection and phenotyping of lettuce varieties in a greenhouse environment. We developed multistage CNN models for pot detection and plant segmentation. The pot detection and semantic segmentation models achieved satisfactory analysis results in terms of efficiency and accuracy, which was used to integrate image sequence capture with plant phenotyping in a single pipeline. We have investigated the static and dynamic traits of lettuce plants and interpreted the relationship between static and dynamic traits, using both geometry- and color-related traits. These traits were useful descriptors of the digital biomass and quantity of these lettuce varieties. To the best of our knowledge, this is the first work to study the accumulation rates of static straits, which more accurately reflect the dynamic growth of plants. Finally, we evaluated and validated the application of high-throughput phenotyping platforms in geometry measurement and color grading of large-scale lettuce cultivation. The proposed method is not only suitable for vegetables in greenhouses, but could also be extended to crops such as maize, wheat, and soybean.
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The Rhizotrons method is an important means of detecting dynamic growth and development phenotypes of plant roots. However, the segmentation of root images is a critical obstacle restricting further development of this method. At present, researchers mostly use direct manual drawings or software-assisted manual drawings to segment root systems for analysis. Root systems can be segmented from root images obtained by the Rhizotrons method, and then, root system lengths and diameters can be obtained with software. This type of image segmentation method is extremely inefficient and very prone to human error. Here, we investigate the effectiveness of an automated image segmentation method based on the DeepLabv3+ convolutional neural network (CNN) architecture to streamline such measurements. We have improved the upsampling portion of the DeepLabv3+ network and validated it using in situ images of cotton roots obtained with a micro root window root system monitoring system. Segmentation performance of the proposed method utilizing WinRHIZO Tron MF analysis was assessed using these images. After 80 epochs of training, the final verification set F1-score, recall, and precision were 0.9773, 0.9847, and 0.9702, respectively. The Spearman rank correlation between the manually obtained Rhizotrons manual segmentation root length and automated root length was 0.9667 (p < 10–8), with r2 = 0.9449. Based on the comparison of our segmentation results with those of traditional manual and U-net segmentation methods, this novel method can more accurately segment root systems in complex soil environments. Thus, using the improved DeepLabv3+ to segment root systems based on micro-root images is an effective method for accurately and quickly segmenting root systems in a homogeneous soil environment and has clear advantages over traditional manual segmentation.

Keywords: root systems, rhizotrons, convolutional neural network, image segmentation, deep-learning


INTRODUCTION

The growth environment of plant roots within the soil is extremely complex. However, soil is a non-transparent medium, so it is difficult to quickly and accurately obtain phenotypic information, which is a critical obstacle to research on root development. Traditional root phenotype research methods mostly use the root drilling and soil column methods as well as other excavation methods (Joslin and Wolfe, 1999; Wasson et al., 2016), followed by washing, screening, dyeing, scanning, and other necessary steps. Accordingly, these destructive sampling methods do not enable phenotypic observations of dynamic root systems in situ. To address this limitation, non-destructive observation methods such as X-ray computed tomography (CT) (Mairhofer et al., 2012, 2013; Mooney et al., 2012), nuclear magnetic resonance (NMR) imaging technology (Pflugfelder et al., 2017), laser scanning (Fang et al., 2009), and 3D imaging (Iyer-Pascuzzi et al., 2010; Clark et al., 2011; Topp et al., 2013) have been applied. Although these methods can obtain in situ non-destructive images of roots by adjusting and combining different imaging parameters, they cannot enable the observation of larger plants, owing to expense and technical difficulty. The Minirhizotrons method is a relatively balanced method in terms of cost, throughput, and accuracy, and it has the advantages of causing little degradation, enabling in situ dynamic visualization, accurate root positioning, and digitization (Liao and Liu, 2008). This method receives more and more information by acquiring in situ root images and observing the dynamics of changes in the in situ root phenotype in order to systematically study the birth, growth, death, and decomposition processes of roots (Kage et al., 2004; Vamerali et al., 2012). However, the quality of in situ image segmentation underlies the quality of the root phenotype results.

Traditionally, root segmentation is performed manually or by semi-automatic interactive segmentation. Manual segmentation relies on researchers visually inspecting all images to identify each root within the intricate soil background, resulting in very low segmentation efficiency, with the additional problem of visual fatigue, which can cause substantial segmentation errors (Abramoff et al., 2004; Le Bot et al., 2010). To improve the efficiency of root segmentation, semi-automatic segmentation combines an automated segmentation algorithm with guidance through human–computer interactions. In this approach, researchers assist auxiliary software in image segmentation based on their own visual observations. For example, GT-Roots requires researchers to specify the segmentation area and selection method (Borianne et al., 2018). Split or WinRHIZO Tron MF requires users to draw a perimeter around a root system in an image with a cursor and manually adjust the perimeter to the diameter of the root system in the picture. Over the course of clicking, the root system is detected by the algorithm and automatically generated, and finally, root segmentation is completed (Lobet et al., 2013; Cai et al., 2015). However, these methods rely on the subjective ability of the personnel to distinguish root systems, introducing the element of visual fatigue, the accompanying proneness to errors, and the inherent difficulty in segmenting large-scale in situ root images.

Although Minirhizotrons can help researchers obtain high-definition root images from complex soils, the opacity of soil particles usually poses a challenge for further automation of segmenting root morphology. Traditional image processing methods, such as support vector machine (SVM) (Wilf et al., 2016), and random forest techniques (Breiman, 2001), have improved crop root detection (Singh et al., 2016), were adopted in computer vision. However, some operators and thresholds set by traditional computer vision methods, such as edge detection, morphological filtering, and region growing algorithms, can only segment specific objects and backgrounds and are not practical for all situations. When there are many root coefficients and the background is complex, such artificial target features cannot provide valuable information for subsequent feature learning. Under these conditions, it is difficult to achieve the segmentation accuracy necessary for a fully automated system. With the development of computer vision imaging technology and analytical algorithms, many researches on crop root phenotype data have been deepened in recent years. For example, Falk et al. (2020) proposed a plant root segmentation method based on a computer vision imaging platform and ML and provided biologically relevant time series data on root growth and development for plant breeding applications. González et al. (2020) developed MyROOT 2.0, which uses an automatic and efficient algorithm to detect the root regions of images; this improved the previous version MyROOT, which required manual intervention by the user to define the root area pattern (Betegón-Putze et al., 2019), and also improved the efficiency of batch root detection. Colmer et al. (2020) proposed the SeedGerm system, which integrates automatic seed imaging and machine learning-based phenotype analysis, thus providing a wide range of applications for large-scale phenotype analysis and detection of plant seeds.

Convolutional neural networks (CNNs) are an effective method for replacing traditionally tedious manual target feature extraction. It combines deep learning and computer vision technology to directly extract target features from an input image (LeCun et al., 2015), creating a rich feature hierarchy that can be used for classification without any prior knowledge or cumbersome artificial feature design.

For example, the encoder–decoder-based CNN system RootNav 2.0 (Yasrab et al., 2019) for root image analysis replaces the previous manual and semi-automatic feature extraction system with a very deep multi-task CNN architecture RootNav (Pound et al., 2013). RootNav 2.0 can extract accurate root structures without user interaction, and its speed is increased by 10 times relative to its predecessor. Ruiz-Munoz et al. (2020) designed a framework for the application of deep learning-based SR models to enhance plant root images and demonstrated that the SR model based on deep learning is better than basic bicubic interpolation. AirSurf-Lettuce combines computer vision algorithms and deep learning classifiers to automatically measure the distribution of field iceberg lettuce using super-scale NDVI aerial images, and it has been used to demonstrate the high value of this method in field crop segmentation (Bauer et al., 2019). Wang et al. (2019) proposed a fully automatic root feature extraction method based on CNN called SegRoot and validated its segmentation performance on soybean root images using transfer learning.

Semantic segmentation comprises an important branch of CNNs used for image segmentation, and it is used to measure and segment complex target features on a finer scale. The first application of pixel-level semantic segmentation tasks is the fully convolutional network (FCN) approach (Long et al., 2014), which uses an encoder-decoder structure to automatically extract target features and classify all pixels in an image one by one. In research on root image segmentation based on deep learning, Smith et al. (2020) proposed a U-Net-based root segmentation system; this proposed network architecture is also composed of an encoder–decoder structure. Compared with the traditional machine learning method using Frangi vessel enhancement filter (Frangi et al., 1998), U-net can segment the root morphology in soil images with higher accuracy. However, the above image segmentation method is inadequate for original root images with complex backgrounds, necessitating its continued improvement. The DeepLab series is currently the most effective semantic segmentation network tool, and it serves to further enhance the theoretical depth of the network model structure (Chen et al., 2014, 2017, 2018a,b). Among this series, DeepLabv3+ combines the advantages of encoder–decoder architecture and atrous spatial pyramid pooling (ASPP), which can capture rich contextual information from plant root images at various resolutions and segment clear root loci. Ayhan and Kwan (2020) proposed a DeepLabv3+ network improvement based on a weighting strategy, which is used to segment three vegetation cover types: trees, shrubs, and grasses. They showed that DeepLabv3+ is superior to the most advanced machine learning algorithms, i.e., SVM and random forests, in spatial information extraction and pixel segmentation.

In addition, in medical imaging (Guo et al., 2019), remote sensing images (Zhang et al., 2018), road scenes (Badrinarayanan et al., 2015), electrical equipment (Lin et al., 2019), and other high-pixel image segmentation applications, deep learning-based semantic segmentation networks are also used to improve the efficiency and throughput of traditional segmentation methods. Therefore, we think that a semantic segmentation method combined with the Minirhizotrons system and DeepLabv3+ network may offer a better approach to segmenting in situ plant root images, facilitating further research involving in situ root phenotypes.

Improving the efficiency and accuracy of in situ root image segmentation and exploring high-throughput automated methods for root phenotype analysis are of great significance for research pertaining to root phenotypes. This study proposes an improved and effective method for segmenting in situ root images from the Minirhizotron system, which was employed to obtain high-resolution images of cotton root systems. To improve the performance of segmentation of root images, a network design based on the encoder–decoder architecture of DeepLabv3+ was adopted, and the final upsampling part of the model was improved. This study evaluated the qualitative use of the network segmentation performance according to its accuracy, recall, and F1 score, and the segmentation results were compared with those of Rhizotrons manual segmentation and U-Net network, respectively.



MATERIALS AND METHODS


Image Collection

The experiment was conducted in 2019 at the experimental station of Hebei Agricultural University in Baoding District (38.85°N, 115.30°E), Hebei Province, China, which is located in the Yellow River basin. The experimental site has a temperate climate.


Minirhizotron Installation

Eighteen Minirhizotron tubes were installed at a 45° angle, parallel to the plant rows, and at a distance of 25 cm from the cotton plants (halfway between rows). The tubes were made of plastic, and their bottoms were sealed. The total length of each tube was 200 cm, and the tubes reached a total depth of 150 cm (with 15–20 cm protruding from the soil). Light was restricted from the aboveground section of each tube by a black cover. The Minirhizotron tubes were installed during the winter of 2016 to ensure that the soil would be well distributed around the tubes and prevent roots from growing around the tubes. The device is shown in Figure 1A.


[image: image]

FIGURE 1. Minirhizotron installation and image annotation. (A) Minirhizotron tubes were installed at a 45° angle, parallel to the plant rows, and at a distance of 25 cm from the cotton plants in adjacent rows (halfway between rows), (B) Original image, (C) annotation image.




Root Image Acquisition

To measure root growth characteristics, images were recorded with a CI-600 scanner (CID Bio-Science, Inc., Camas, WA, United States). The scanner was connected to a laptop computer and was able to penetrate deep into the micro-root tubes and close to the inner wall to enable circular scanning. Images were captured at 20-cm intervals at nine positions along the tube with the aid of a connecting rod. The positions of the nine pictures are arranged in order from the deepest to the shallowest. The images were saved in the “bmp” file format.



Root Image Segmentation

In the method based on manual inputs, the images were analyzed with WinRHIZO Tron MF, which provided values for root length, projected root area, root surface area, and root volume based on users tracing the boundaries of each root using a mouse.



Annotation

We conducted the screening and classification of a collection of cotton root images one by one. In the process, some incomplete or blurred images were removed, ultimately leaving 200 complete and clear in situ images of cotton roots. Among them, 20 selected root images were manually annotated for network training, and the remaining 180 were left as unexamined root samples that were used to evaluate network segmentation performance.

Image annotation was completed by experienced agronomy experts using the Adobe Photoshop CC (Adobe Inc., San Jose, CA, United States) lasso tool. All pixels considered to be roots were marked white and saved in a new layer, ultimately leaving the remaining pixels marked black (Figures 1B,C). Each root image was saved at 10,200 × 14,039 dpi resolution, and the annotation time for each image was approximately 4.5 h.



Segmentation Model

DeepLabv3+ utilizes an encoder–decoder structure based on a fully convolutional neural network (FCN) (Chen et al., 2018b) and uses its previous model (DeepLabv3) as its own encoder and Xception as its backbone (Dai et al., 2017). In the root image segmentation task, the encoder is mainly used to extract the characteristics of the root morphology distribution. In the encoder portion, DeepLabv3+ does not blindly perform convolution-pooling operations like FCN. Instead, it uses the ASPP structure (Yang et al., 2018), which contains three parallel atrous convolutions with dilation rates of 6, 12, and 18 (Yu and Koltun, 2014), providing it a larger receptive field that can capture more root context information. Based on this approach, DeepLabv3+ also introduces the idea of depthwise separable convolution (Howard et al., 2017), which reduces the number of parameters while improving both running speed and classification performance. In order to fuse the multi-scale spatial information output by ASPP, feature concatenation is conducted using the concat approach, and channel compression is performed through a 1 × 1 convolution operation, which further reduces the network dimensionality and computation time. Finally, the encoder outputs a total root feature map that is 16 times smaller than the input image.

The main function of the decoder is to upsample the root feature map and to restore the details and boundary information for the root morphology distribution. In the decoder part, first, bilinear upsampling by a factor of 4 was used to change the encoding feature from output stride = 16 to output stride = 4, and then, the feature layer with the same spatial resolution (low-level) as in the encoder was extracted for skip connection. Then a 3 × 3 convolution kernel was used to fuse the combined total feature information, and finally, a 4-fold bilinear upsampling operation was performed on the fused feature to gradually restore the spatial size of the target root system and achieve semantic segmentation of the plant root morphology distribution. The improved model structure is shown in Figure 2.


[image: image]

FIGURE 2. The proposed network architecture.




Model Improvement

The standard DeepLabv3+ network used the bilinear interpolation upsampling method to expand the size of the root fusion features in the final stage of the decoder output segmentation image (Chen et al., 2018b). As an interpolation algorithm in numerical analysis, bilinear interpolation is widely used in digital image processing. In deep learning tasks, bilinear interpolation is a common method for restoring image resolution (upsampling), which essentially performs two linear transformation operations. First, the x coordinate of the target pixel is linearly transformed, and the pixel values for the point R1 = (x,y1) and the point R2 = (x,y2) are, respectively, obtained. Then, another linear interpolation is performed on the pair of points R1,R2 to obtain the pixel value RP at the point P = (x,y). This is summarized in Eqs. 1–3.

[image: image]

In Eqs. 1–3, pointsQ11 = (x1,y1),Q12 = (x1,y2),Q21 = (x2,y1),Q22 = (x2,y2) are known coordinates. Assuming that each pixel value along the coordinate axes satisfies the function Rα = f(Qα), then RP is the calculated pixel value at point P = (x,y).

Although DeepLabv3+ uses bilinear interpolation upsampling to generate smooth segmented images, however, because the bilinear interpolation method only considers the influence of the gray value of the four direct neighboring points around the sample point to be tested, it does not consider the influence of the gray value change rate between each neighboring point. Thus, it has the properties of a low-pass filter, high-frequency components are degraded. Therefore, when the root features are restored to their original spatial size, the pixels at the edge of a root system will become blurry. To some extent, there are problems such as impaired image quality and low calculation accuracy that are caused by improper design of the interpolation function.

This article introduces the idea of the PixelShuffle algorithm (Shi et al., 2016) to perform pixel enhancement on the fusion features before the decoder output, replacing the second bilinear upsampling operation in the original DeepLabv3+ network, as shown in the red box in Figure 2. Sub-pixel convolution is an efficient upsampling method based on deep learning. In most cases, the convolution operation will extract target features and obtain low-resolution feature maps. However, when stride = 1/r(for r > 1), the length and width of the feature layer after the convolution operation will necessarily become larger, that is, the resolution will increase. This operation is called sub-pixel convolution (Aitken et al., 2017). Its initial definition is shown in Eq. 4:

[image: image]

here, ISR refers to the finally restored high-resolution RGB image, ILR refers to the low-resolution RGB image before restoration, fL−1 refers to a neural network with L - 1 layers, WL and bL are parameters of layer L, and PS(⋅) represents a shuffling operator that rearranges the elements of an H×W×(C⋅r2) tensor to a tensor of the shape rH×rW×C, where r is the upscaling factor. In this article, r=2.

The implementation of the PixelShuffle algorithm is summarized in Figure 3. The main concept of PixelShuffle focuses on the sub-pixel convolutional layer, which can convert a low-resolution input image of size H × W into a high-resolution image of rH × rW through sub-pixel convolution. In the whole process, there is no direct way to improve the resolution of target features through interpolation and other methods. Instead, first, a sub-pixel image is created from the original input image using fractional indices, and then, the feature map of r2 channels is generated by convolution (the feature map size is the same as the input low-resolution image), and finally, this high-resolution image is obtained by periodic shuffling. Such an approach can enable the network to learn an interpolation method suitable for the task in the previous convolution layer parameters.


[image: image]

FIGURE 3. The PixelShuffle algorithm implementation flowchart.


Previous studies have shown that for the problem of image super-resolution reconstruction based on deep learning, an upsampling process based on sub-pixel convolution is effective in improving image quality (Zhao et al., 2019, 2020; Yu et al., 2020). Therefore, in the root pixel segmentation task, the introduction of sub-pixel convolution can improve the problem of pixel loss after bilinear upsampling in the standard DeepLabv3+, thereby improving the segmentation accuracy of the network for small root loci and further enhancing the robustness of the model.



Network Training

We randomly selected 10 of the 20 root images with annotations to form the training and validation sets, respectively. As the original images used were too large for GPU memory allocation, we split the 10 root images and their corresponding annotations into 512 × 512 sub-images. In addition, zero padding was included for each image to ensure their dimensions would be divisible by 512.

The server environment for all computations used Ubuntu 16.04LTS and Python 3.6.7. The model was trained and tested under TensorFlow 1.13.1 and CUDA 10.2. The server was equipped with two NVIDIA GEFORCE RTX 2080Ti graphics cards for acceleration, and each graphics card had 10 GB of video memory.

We used three different sampling rates (6, 12, and 18) in the ASPP module of DeepLabv3+ to obtain multi-scale features of the target root system. A pixel-by-pixel cross-entropy loss function and an Adam optimizer (Kingma and Ba, 2015) were used to train the network. Adam is an efficient stochastic optimization method with low memory requirements. It can complete the initial stage of model training by adaptively adjusting the learning rate and quickly approaching the vicinity of the optimal solution, avoiding SGD to adopt a constant learning rate during training to update the weight. In order to improve the convergence speed of the network during training, after many tests, the initial learning rate, momentum β1, momentum β2, and epsilon were set to 7e-4, 0.9, 0.999, and 1e-8, respectively. In order to prevent the network from overfitting, the weight attenuation was set to 1e-6. Because a batch size that is too high will result in insufficient GPU memory, the batch size was set to 24, and 80 epochs were trained.



Evaluation

In order to objectively and reasonably evaluate the effect of the network in the cotton root morphology segmentation task, this paper utilized three quantitative indicators, i.e., precision, recall, and F1-score:

[image: image]

In Eqs. 5, 6, TP is the number of pixels of the root distribution position that is correctly divided, FP is the number of background pixels that are incorrectly divided into the root distribution position, and FN is the number of root pixels that are incorrectly marked as the background. This paper uses precision to evaluate the global accuracy of the model, reflecting the proportion of true positive samples in the positive examples of root pixels determined by the classifier. Recall reflects the proportion of positive examples that are correctly determined to account for the total positive examples. F1 can be regarded as the weighted average of model accuracy and recall. For models with better segmentation performance, the coefficient is relatively high. In the model training process, the verification set was used to calculate the recall, precision, and F1 values of each epoch output in detail, and then, the model performance was evaluated using the test set that was not used in the training.



RESULTS


Performance

After each epoch, accuracy and loss values were calculated on the training set to monitor its ability to generalize and avoid overfitting. After about 7 h and 8 min of training, the model accuracy and loss values tended to be flat after the 40th epoch, and a final accuracy of 0.9978 was obtained by the 80th epoch, with the loss ultimately stabilizing at approximately 0.0051 (Supplementary Figure S1). Table 1 shows the F1-score, recall, and precision of the proposed model in the verification stage. DeepLabv3+ ultimately achieved precision and recall values of 0.9702 and 0.9847, respectively, with the validation set, which means that the number of pixels in the model that mistake the soil background for the root is greater than the number of pixels that mistake the root for the soil background. Additionally, the overall standard F1-score of the model segmentation performance evaluation reached 0.9773, which demonstrates the high accuracy of our method.


TABLE 1. DeepLabv3+ segmentation performance evaluation on the validation set.

[image: Table 1]Figure 4A illustrates the visual effect of the improved DeepLabv3+ in extracting root trajectories from in situ images of cotton roots. The predicted root pixels recovered most of the original root distribution path, reflecting a high similarity to the manual labeling conducted. The example image shown in Figure 4A was the most difficult to distinguish between soil particles and root pixels among the cotton root image data set obtained by Minirhizotrons. It has very small and irregular root trajectories and contains more obstructions by stones. Even human eyes have difficulty in quickly locating the root shape distribution in the image, which poses a huge challenge to the root segmentation task, but our improved DeepLabv3+ network can still more accurately mark the root distribution position with high-contrast contours. To see the results of manual tracking and the improved DeepLabv3+ prediction more clearly, we inserted an enlarged image at the same position in all six images in Figure 4 to show areas with noisy data.
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FIGURE 4. Examples and details of segmentation results. (A) The visual effect of the improved DeepLabv3+ in extracting root trajectories from in situ images of cotton roots, (B) Comparison of segmentation results of previously unanalyzed images. Red box, neglected root locus; Blue box, background mistaken for root.




Untrained Root Image Prediction

In order to further evaluate the segmentation performance of this method for plant roots, we randomly selected 161 out of 180 root images that were unexamined, and, respectively, performed Rhizotrons manual segmentation and the improved DeepLabv3+ network segmentation. Figure 4B shows an example of images and predictions that have never previously been analyzed with the improved DeepLabv3+.

In the prediction results of 161 root images, no obvious performance degradation was observed, which is satisfactory in the segmentation results of most root shapes. However, there were still subtle errors, such as the number of brown root pixels (red box in Figure 4B) in the original image that were ignored by the network, and some of the highlighted soil stone particles (blue box in Figure 4B) under the network analysis were miscategorized as roots. The results show that the improved DeepLabv3+ has a good general ability to analyze root images that it has not been trained with. Additionally, thanks to the ability of Minirhizotrons system to some extent, it is able to obtain high-quality, high-consistency images.

To further evaluate the segmentation performance of the proposed method for plant roots, the 161 root images segmented by the improved DeepLabv3+ and Rhizotrons were analyzed using WinRHIZO Tron MF to obtain four quantitative indicators of root length, surface area, volume, and average diameter for comparative evaluation (Table 2). The root length and average diameter were measured by WinRHIZO Tron MF, while the root surface area and volume were calculated from the root length and average diameter. In addition, a scatterplot and a fitting curve of the improved DeepLabv3+ and Rhizotrons manual segmentation of root length were also drawn, as shown in Figure 5. The Spearman rank correlation between the two measurements was 0.9667 (p < 10–8), with r2 = 0.9449. The comparison reveals that although the improved DeepLabv3+ and Rhizotrons manual segmentation have highly correlated root length results, root surface area, average diameter and total volume results still include obvious errors between the methods.


TABLE 2. Comparison of the improved DeepLabv3+ segmentation and manual segmentation results of 161 root images under WinRHIZO root analysis software.

[image: Table 2]
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FIGURE 5. Root length estimation results (161 images). The two measurements have a Spearman rank correlation of 0.9667 and an R2 of 0.9449.




Sub-Pixel Convolution Performance

To verify the effectiveness of the improved DeepLabv3+ method on the cotton root data set, we recorded the dice scores of different segmentation methods (i.e., standard DeepLabv3+, improved DeepLabv3+, and standard U-Net) on 161 root image segmentation task that has never been trained, as shown in Table 3. We compared the root segmentation results of the original network’s bilinear interpolation upsampling method and the sub-pixel convolution upsampling method, for example. As shown in Figure 6, two root images with different soil backgrounds were randomly selected from the 180 root images that had never been subjected to segmentation analysis.


TABLE 3. Performance comparison of different segmentation methods on the test set.
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FIGURE 6. Example images of the comparison of the bilinear interpolation and subpixel convolution segmentation results of DeepLabv3+. (A,D) Raw image, (B,E) Original DeepLabv3+ segmentation results, (C,F) Improved DeepLabv3+ segmentation results.


Under interference from two different soil background particles, the improved network can complete the segmentation of the original root system images with higher accuracy (Figures 6C,F),coincides with dice score. For Figure 6A, with higher contrast between root and soil, the traditional bilinear interpolation upsampling method functions similarly to a low-pass filter, such that some deep root features of the root system are degraded when returning to the original pixel value (red box in Figure 6B). Additionally, the loss of part of the main root diameter is visible to the naked eye (green box in Figure 6B). In situations such as the one shown in Figure 6D, where the contrast between the root system and the soil is low, the traditional bilinear interpolation upsampling method loses the continuity and brightness of the root system owing to interference from complex soil particles (red box in Figure 6E). The improved network can restore the multi-scale root features visible in the original pixels captured and maintain a high degree of restoration (Figure 6F). Thus, the improved DeepLabv3+ method can maintain the integrity of major roots and the continuity of the outline of the fine root edge, which can thus highlight the distribution characteristics of the fine root with higher contrast, thereby achieving improved segmentation results.



Comparison With U-Net

To further compare the performance of other segmentation methods with the proposed network, we trained another network U-net that is widely used to perform segmentation (Ronneberger et al., 2015). U-net is a deep learning network composed of an encoder–decoder structure with jump connections. Its structure is more inclined to extract the global features of the input image and generate a new representation form based on the overall information. To ensure the consistency of the training process, we used the same 10 annotated in situ cotton root images as the input of the standard U-net and also conducted 80 epochs of training. The server training environment was the same as that used for DeepLabv3+.

Table 4 shows the precision, recall, and F1-score results of the improved DeepLabv3+ and the standard U-Net method in the verification stage; the precision, recall, and F1-score of the improved DeepLabv3+ were 0.9702, 0.9847, and 0.9773, respectively, while those of U-Net were 0.8413, 0.9489, and 0.8919, respectively. In addition, in the segmentation test of 161 root images, U-Net’s dice score (0.5923) is also lower than that of the improved DeepLabv3+ (0.6744), as shown in Table 3. Accordingly, our improved DeepLabv3+ outperformed the standard U-Net in all three metrics.


TABLE 4. Comparison of performance indicators between the improved DeepLabv3+ and the standard U-Net network segmentation in the verification stage.

[image: Table 4]To compare the segmentation performance of the two CNN networks more clearly, part of the root structure was randomly intercepted from the test images that had never been seen, as shown in Figure 7. Compared with the improved DeepLabv3+, U-net’s root trajectory segmentation was too smooth and some of the visible details were lost (red box in Figures 7B,E). Additionally, the method we proposed was superior in terms of detail processing between root pixels and the prediction effect of the root edge contour. However, we also noticed some shortcomings; the improved DeepLabv3+, compared to U-net, had a tendency to mistake individual soil particles as root pixels (green box in Figures 7C,F).
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FIGURE 7. Example images used to compare the improved DeepLabv3+ and the standard U-Net segmentation performance. (A,D) Raw image, (B,E) Segmentation output from U-Net, (C,F) Segmentation output from the improved DeepLabV3+.




DISCUSSION

Minirhizotrons visualizes root growth from pictures of soil profiles obtained by a camera or scanner through a glass or acrylic tube (Ohashi et al., 2019). It is considered a non-destructive method that enables monitoring of root growth across time and seasons (Kirkham et al., 1998). The high-resolution in situ root images collected by the Rhizotrons method generally segments roots and obtains root morphological indicators using WinRHIZO Tron MF software, which is a traditional manual segmentation method (Munoz-Romero et al., 2010). Further analysis of root morphological indicators can be used to obtain the dynamics of root phenotype changes, which is an advantage of the Rhizotrons method. However, this traditional manual segmentation method is greatly affected by human subjectivity, and the segmentation time is longer, approximately 2 to 3 h for an image, making it an inefficient method. Therefore, a high-efficiency and high-accuracy in situ root image segmentation method is needed to support in situ root phenotype research (Smith et al., 2020).

Improving image quality is the most important issue in in situ root system research. To improve the image quality, first, we embedded the micro-root tubes 12 months in advance to make the outer wall of the micro-root tubes close to the soil; second, the imaging equipment was protected to prevent scratches on the inner wall of the micro-root canal; third, before imaging, we brushed the inner wall of the root canal to reduce the influence of dust and determine whether there is water leakage.

In this study, a deep convolutional neural network based on DeepLabv3+ was implemented and tested for the purpose of automatic segmentation of root trajectories in soil. A micro-root window root system was used to obtain high-resolution in situ cotton root images, and WinRHIZO Tron MF was used in a comparative analysis of the segmentation performance of the proposed method. The root image segmentation quality obtained validates the effectiveness of the proposed segmentation method. Comparisons of the root image segmentation quality between the proposed methods and more established methods have revealed the efficiency of the proposed method.

To deeply analyze the segmentation performance of our proposed method, the results of the improved DeepLabv3+ network and Rhizotrons manual hand-drawn segmentation method were compared. Although the comparison results verify that the root lengths obtained with the improved DeepLabv3+ and Rhizotrons hand-segmentation were strongly correlated (Figure 5), there were still large errors in the root SurfArea, AvgDiam and RootVolume results (Table 2). The main explanation for the difference is that the automatic segmentation results of AvgDiam and the manual segmentation results of Rhizotrons have lower fitting performance (r2 = 0.0062). By observing the segmentation statistics of all root images, we find that the automatic segmentation result of AvgDiam always remains near 0.3mm, and does not change with roots of different diameters (Supplementary Table S1). In addition, the reason for the error of SurfArea and RootVolume is related to its calculation method:SurfArea and AvgDiam have a square relationship, while RootVolume and AvgDiam have a cubic relationship, So the error of AvgDiam will make the calculation error of SurfArea and RootVolume bigger. In addition, we believe that another factor that affects the disparity in root segmentation results is that the improved DeepLabv3+ can mistake a portion of soil particles that resemble roots to be root pixels (Figures 4, 7). Accordingly, our future work will focus on further improving the accuracy of the model, especially for the measurement of the average root diameter.

Although the standard U-Net method stitches features together in the channel dimension to obtain richer features, its upsampling results are still relatively smooth. For complex root images, it is easy to lose some details (Figure 7). Additionally, our improved DeepLabv3+ network introduces the PixelShuffle algorithm, which enables the network to learn an interpolation method that adapts to the root segmentation task, and then performs pixel enhancement on the fusion features before the decoder output. In the 161 image segmentation experiments that were never trained, our proposed model also achieved more accurate results (testing dice score of 0.6744). Therefore, the improved DeepLabv3+ achieves accurate segmentation of small branches in the root system with better performance in assessing new samples outside the training set. These colored boxes in Figures 4, 6, 7 are just examples to get a clearer contrast of some of the details.

The traditional Rhizotrons manual segmentation of each cotton root image takes an average of 4.5 h. In this paper, the 161 root images manually segmented by Rhizotrons required a total of more than 700 h, which is often not feasible in actual projects. The improved DeepLabv3+ model takes only 7 h to train from scratch. For in situ root image prediction, each image takes only 55 s, and 161 root image predictions take less than 3 h in total. Compared with Rhizotrons manual segmentation, end-to-end automatic segmentation saves a lot of time with a small error range, and we believe this will greatly promote the study of root morphology segmentation in soil.

Another issue worth discussing in this article is the number of training samples. The resolution of each in situ cotton root system image obtained by Minirhizotrons is as high as 10,200 × 14,039 dpi. We selected 20 of the 200 in situ images of cotton root system as quasi-training images. After many experiments, we found that if all 20 annotated root images are used for network training, the final model accuracy does not objectively improve, but the training time does double. As such, some of this limited dataset appears to indeed be redundant for the network learning. To ensure the diversity of the data, we finally randomly selected 10 of the 20 annotated images for network training. Another 10 of them were used as spare images. As the network input size of the improved DeepLabv3+ is 512 × 512, we generated 16,936 sub-images for network training and 892 sub-images for network verification by cropping portions of the original images. This method enabled DeepLabv3+ to successfully converge within 80 epochs of training. Accordingly, these 10 original root images are sufficient for the network. Moreover, too much training data is considered to not only be tedious but also cause models to be overfit.

The performance of CNN-based segmentation methods partially depends on annotation quality. Owing to the complexity of plant root systems, even experienced agronomists should be expected to introduce some errors when annotating thousands of roots. Obviously, reducing annotation errors as much as possible can somewhat improve the accuracy of target segmentation, because any choice of CNN depends on having correct annotation. Additionally, the process of annotating plant roots is also a very time-consuming task. In this study, the annotate of each root image required 300 min. Accordingly, looking for ways to improve annotation quality and save annotation time will be an important direction of future research.

Transfer learning is a method that uses existing knowledge to solve problems in different but related fields. The key goal is to complete knowledge transfer between related fields (Pan and Yang, 2010). In this study, the previous method of data labeling was time-consuming and cumbersome. However, the use of the DeepLabv3+ network structure proposed in this paper to train the root system data set must be started from scratch each time. Therefore, in future research, we intend to use the method of transfer learning to fine-tune the existing network using root images from different plants to further transfer our proposed method to root segmentation in other crops.

Image enhancement technology has proven to be a method that can improve the performance of CNN models (Perez and Wang, 2017). Further exploration of the application of image enhancement methods in data sets will also be a major direction of our future work. We have recently examined how generative adversarial network (GAN) based on deep learning can learn the characteristics of a class of data and generate similar data (Goodfellow et al., 2014). To solve the problem of randomly occurring apple diseases leading to insufficient image data sets, Tian et al. (2019) used CycleGAN to learn the characteristics of anthracnose apple images and transfer them into healthy apple images. Notably, the apple lesion images generated by CycleGAN have new backgrounds, textures, and shapes, which is very helpful for improving the performance and robustness of the models used for analysis. Such results show that we can also use GAN to extract the root soil characteristics of other crops into the cotton root image. This method is conducive to being integrated into further improvements of DeepLabv3+ ’s root segmentation performance and robustness under complex soil backgrounds.



CONCLUSION

To improve the efficiency of traditional manual segmentation of plant root images, we have proposed and validated a trainable end-to-end deep learning method, a CNN approach implemented in DeepLabv3+, which can be used to segment plant roots efficiently. The CNN model proposed in this paper is based on the encoder–decoder architecture of DeepLabv3+ and improves the final upsampling operation of the network. Precision, recall, and F1-score were used to evaluate the network performance, achieving final verification set scores of 0.9702, 0.9847, and 0.9773, respectively. Additionally, WinRHIZO Tron MF was used to analyze data from 161 root images segmented by the improved DeepLabv3+ and the traditional Rhizotrons method, and four quantitative indexes, i.e., root length, surface area, volume, and average diameter, were obtained for comparative evaluation. The root length results of the improved DeepLabv3+ network had a higher Spearman rank correlation with the manual results, i.e., 0.9667 (p < 10–8) with r2 = 0.9449, compared with the Spearman rank correlation between the root length results of Rhizotrons and manual segmentation. Thus, the proposed method significantly improves the efficiency of root segmentation in soil, making it an efficient alternative to Rhizotrons manual segmentation. Additionally, compared with the U-Net network method, the improved DeepLabv3+ achieved a higher F1-score than U-Net (0.8919) and was observed to segment the in situ root images with higher pixel accuracy and quality.
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Silicon promotes nodule formation in legume roots which is crucial for nitrogen fixation. However, it is very time-consuming and laborious to count the number of nodules and to measure nodule size manually, which led nodule characterization not to be study as much as other agronomical characters. Thus, the current study incorporated various techniques including machine learning to determine the number and size of root nodules and identify various root phenotypes from root images that may be associated with nodule formation with and without silicon treatment. Among those techniques, the machine learning for characterizing nodule is the first attempt, which enabled us to find high correlations among root phenotypes including root length, number of forks, and average link angles, and nodule characters such as number of nodules and nodule size with silicon treatments. The methods here could greatly accelerate further investigation such as delineating the optimal concentration of silicon for nodule formation.

Keywords: phenomics, root phenotype, nodule count, nodule size, legume, machine learning, image process, high-throughput phenotyping


INTRODUCTION

Soybean is regarded as one of the three major crops in the world because of its nutritional value (Bellaloui et al., 2013). For this reason, soybean is broadly cultivated not only for its use as an ingredient in foods, such as soy source, soybean paste, and tofu but also for livestock feed (He and Chen, 2013). Global soybean demands have grown steadily in recent years (Armah et al., 2011), fueling the application of chemical nutrients to increase grain yield. As a result, nitrogen (N), potassium (K), and phosphorus (P) are widely used in crop cultivation (Bharati et al., 1986). Among these nutrients, N is the most essential for plant growth, so vast quantities of nitrogenous fertilizer are used to improve crop yields (Tegeder and Masclaux-Daubresse, 2018).

Most plants need to uptake N from the soil and water via plant roots as inorganic ions, ammonium (NH4+), and nitrate (NO3–) to maintain growth and development such as leaf expansion, stem growth and production of amino acid (Masclaux-Daubresse et al., 2010; Bloom, 2015). However, legumes form symbioses with N2-fixing bacteria in the soil that biologically convert atmospheric N2 to NH3 for use in the plant. This symbiotic relationship generates root nodules on the host plant in which the rhizobia are found as N2-fixing bacteroids (Schultze and Kondorosi, 1998; Stougaard, 2000; Rentsch et al., 2007). Interestingly, such nodulation and N2 fixation depend on an adequate supply of both macro- and micronutrients (Smith, 1982). In particular, among the micronutrients, iron (Fe) plays an important role in nodule formation by affecting the activation of the legume host and rhizobia (Brear et al., 2013). Molybdenum (Mo) is known as an important micronutrient for biological N-fixation in soil because Mo participates biochemical redox reaction when N-fixing bacteria converts atmospheric N2 into ammonium-N and nitrate-N forms in nodules (Mendel and Hänsch, 2002; Alam et al., 2015). Thus, proper concentration of Mo treatment induces increased the number and weight of nodules in leguminous crops (Hashimoto and Yamasaki, 1976; Rahman et al., 2008; Togay et al., 2008; Alam et al., 2015). In the case of silicon (Si), experiments conducted in cowpea found that application of Si to cowpea promoted nodule formation and function (Nelwamondo and Dakora, 1999). However, whether Si application affects either nodule formation or root morphological traits of soybean plant is not yet known.

Si is beneficial not only for plant growth but also in conferring tolerance to abiotic and biotic stress (Guntzer et al., 2012; Kim et al., 2014, 2016; Jang et al., 2018). In Japan, slag silicate fertilizer is applied to paddy fields to increase Si uptake of rice plants because of Si-deficient soil (Ma and Takahashi, 2002). Slag is a byproduct of iron production, so it includes various inorganic nutrients, such as Si, Fe, Mo, and magnesium (Mg) (Ma and Takahashi, 2002). Since Ma et al. (2006) identified Si transfer genes in rice root, similar genes have been discovered in barley, cucumber, tomato, maize, and soybean (Ma et al., 2006; Feng et al., 2009; Mitani et al., 2009; Yamaji et al., 2012; Deshmukh and Bélanger, 2016). Despite the identification of the Si transfer genes (GmNIP2-1 and GmNIP2-2) in soybean roots, the effects of Si on nodule formation and root morphology in soybean remain unidentified (Deshmukh et al., 2013).

The root system is an essential organ for water acquisition and nutrient absorption throughout a plant’s life (Zhao et al., 2017). Moreover, roots participate in nutrient cycling and soil formation/stabilization through interaction with soil organisms (Bardgett et al., 2014; Faucon et al., 2017). Therefore, understanding of root morphological traits helps predict plant growth and development. Information about root system architecture is derived mainly under controlled conditions at early growth stages because manually measuring root traits is time-consuming, laborious, and inaccurate in a fully grown plant (Costa et al., 2001; French et al., 2009; Lobet et al., 2011). In the field, “shovelomics” is a method of field excavation of mature root crowns for analysis of root phenotypes, so shovelomics has been broadly used for breeding and quantitative genetics (Colombi et al., 2015). However, this method measures the ground nodal root (crown root) phenotypes, disregarding the internal root system and the root traits of the younger nodes, despite the overwhelming impact of these roots on plant growth (York and Lynch, 2015). This method of collecting the root data is also time-intensive.

With the advances in data analysis, image-based measurement technologies have become an invaluable detection system for measuring various plant traits, such as leaf color, leaf area index, and stem width and height (York and Lynch, 2015). Several researchers have attempted to identify root traits by high-throughput phenotyping (Leitner et al., 2014; Pace et al., 2014; Lobet et al., 2017). Depending on the target traits, various image analysis methods have been developed, such as X-ray imaging (Mooney et al., 2012), magnetic resonance imaging (MRI; van Dusschoten et al., 2016), 2-dimensional (2D) imaging (Pornaro et al., 2017), and 3-dimensional (3D) imaging (Topp et al., 2013; van Dusschoten et al., 2016). While most of these approaches can analyze root morphological traits, such as length, area, width, and angle, MRI, X-ray, and 3D imaging techniques are difficult to apply in the field because of the associated costs, so 2D image analysis has been widely used (York and Lynch, 2015; Pornaro et al., 2017). For the same reason, the current study used 2D imaging to acquire data on root morphological traits, such as surface area, length, and angle, as well as root nodule number and size in fully grown soybean plants. To analyze morphological traits, we used WinRHIZO technology, which is a root-measuring system. Despite the importance of nodules for N fixation and N utilization, there is no simple way to quantify nodules using 2D image analysis under field conditions. For these reasons, nodule number and size were determined by the deep learning-based detection and segmentation for accurate detection.

In this study, we characterized various root traits, including nodule counts and sizes, based on 2D image analysis, to examine the effect of Si fertilization using image analysis with machine learning techniques.



MATERIALS AND METHODS


Selection of Plant Materials

Our research team previously identified the proper concentration and uptake ratio of Si, using 15 soybean cultivars (Park et al., 2019). The results confirmed that cv. Taeseon showed a higher absorbed-Si content relative to the other cultivars. Thus, cv. Taeseon was used in the current study to investigate the effect of Si on various phenotypic root traits.



Treatment of Si Fertilizer and Sample Preparation

The field was located at the Gyeongsang National University Research Farm (35°14′N, 128°09′E) in Jinju-si, Gyeongnam, South Korea. The experiment was set up as a split-plot arrangement in a randomized complete block design, with three replications. The treatments consisted of (i) Control, (ii) Si–soil (Si applied to soil), and (iii) Si–soil + leaf (Si applied to soil and leaves) since Si is known to be absorbed via leaves as well (Cao et al., 2020). Each plot size was 4 m × 4 m, with 1 m row spacing. Before the planting, ridges (0.3 m high × 0.7 m wide) were prepared for each plot. Soybean seeds were sown on June 15, 2018, at a planting distance of 0.15 m using a disk hand planter (TP-10RA, AGRITECNO YAZAKI Co., Ltd., South Korea). For Si soil application, we applied 1.6 kg of commercial silicate fertilizer (25% SiO2–2% MgO–40% CaO; Pungnong Co., Ltd., South Korea) to the soil surface, according to the manufacturer’s recommendations (100 kg/1000 m2), at planting. Additionally, for foliar application of Si (Si–soil + leaf), we sprayed 2.0 mM of sodium metasilicate (Na2SiO3; Sigma-Aldrich, United States) when the 4th–5th trifoliate leaf had fully emerged and unrolled (V4–V5 stage). To determine the soil chemical properties in the research area, 20 samples were taken from 0 to 30-cm depth, then air-dried. The soil at the experimental site contained organic matter, available phosphate, K, Ca, and Mg at 9.3 g/kg, 55 mg/kg, 0.25 cmol/kg, 4.07 cmol/kg, and 0.47 cmol/kg, respectively (Table 1).


TABLE 1. Soil chemical properties of the experimental site (0–30 cm).
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Phenotypic Data Collection


Root Sampling and Analysis

We applied three different Si applications as seen in “Materials and Methods” to identify Si effects on root morphology. We collected 30 root samples from each plot when the soybean plants reached the R8 stage, i.e., when 95% of the pods display full mature color, and when root growth has ceased (Nleya et al., 2013). Before sampling, the above-ground plant parts were removed, then a circle was marked by a round-basket (30 cm in diameter) on the soil around the target plant. The target root and soil were carefully removed to a depth of 30 cm. To minimize root and nodule loss, roots were gently washed with tap water which was contained in a basket (width 304 mm × height 330 mm) to remove attached soil. Weather conditions during the entire soybean growth period is described in Figure 1. The average temperature was 11.8°C (October) −26.9°C (July) and the rainfall showed 64.0 mm (June) −319.5 mm (August) (Figure 1).


[image: image]

FIGURE 1. Weather condition of experimental field in 2018.




Image Analysis for Root Phenotype

Root images were acquired using a mirrorless camera (M100, Canon, Japan) with a mini-rhizobox (Supplementary Figure S1). The camera information is detailed in Supplementary Table S1. All root samples were imaged with the lens focus fixed at 22 mm. Additionally, to measure root morphological traits, the collected root images were analyzed using WinRHIZO Pro software (WinRHIZO, Regent Instruments, Inc., Canada). Each root trait is defined in Supplementary Table S2.



Image Analysis for Nodule Count and Size

Almost all nodules of soybean roots were small and overlapped each other. The measurements (e.g., number of objects, areas of an object) of small and overlapping objects were computer vision challenges. Therefore, we designed a pipeline of accurate measurements by using a deep network-based nodule segmentation and semi-automatic annotation function-based error correction process (Figure 2). The pipeline code is available at https://github.com/ektf1130/nodule_in_soybean_root. The details are provided below.


[image: image]

FIGURE 2. Image analysis pipeline.



Training deep network and nodule segmentation

U-net architecture is a robust package for segmentation of thin and small objects (Olaf et al., 2015). It is a convolutional network architecture for fast and precise segmentation of images known to be the prior best method for segmentation (Livne et al., 2019). Thus, U-net was used for pixel-wise segmentation of soybean root nodules, with separation of the nodules in a soybean root from the background. To train the segmentation network, RGB color images and their mask images are required; the mask image designates the foreground nodules as white and the background as black (Figures 3C,D). U-Net is used mainly to input the image dimension as multiples of 32, and our network used 1024 × 1024 pixel images as inputs for maximum resolution considering the specifications of our training computer; Intel(R) Core(TM) i7-4790K CPU @ 4.00 GHz, 32 GB RAM, NVIDIA GeForce GTX TITAN X 12 GB.


[image: image]

FIGURE 3. Graphical User Interface of annotation tool and training data generation. (A) overview of annotation tool (B) manual inputs of annotation by clicking polygons (C) an RGB color image (D) a mask image.


In the offline process shown as Figure 2, initially, we created 35 masks (annotations) of root images manually using our customized annotation tool. The RGB color and mask images (i.e., training data) were properly scaled and padded for the network size by pre-processing; the original size of RGB and mask images (6000 × 4000 pixels) were converted to 1024 × 1024 pixel images (Figures 4A,B). Then, our deep network was trained using the processed training data.


[image: image]

FIGURE 4. Nodule measurement processes. (A) raw input RGB color image (6000 × 4000 dimensions) (B) pre-processed RGB color image (1024 × 1024 dimensions) (C) segmentation results; probability for each pixel (1024 × 1024 dimensions) (D) post-processing results on segmentation result (1024 × 1024 dimensions) (E) reconstruction of original size (6000 × 4000 dimensions) (F) loading nodule regions on annotation tool; the regions extracted from the final reconstructed segmentation result is displayed on the tool.


In the online process, input root RGB color images are converted into 1024 × 1024 pixel images, and nodule segmentation of the root is performed using the trained deep network; the network outputs mask images.



Post-processing and Nodule measurements

The fully connected conditional random fields (Krähenbühl and Koltun, 2011) was mainly used to remove noises from mask images (segmentation results) generated by the trained deep network as a post-processing step, to improve the accuracy of segmentation at the pixel level. As a result of the nodule segmentation, the mask image had probabilities of between 0 and 1 for each pixel (Figure 4C). Krähenbühl and Koltun (2011) used the probabilities, and color and position of each pixel to remove noise (Figure 4D). After noise removal, the holes representing nodules in the mask images were filled using the closing process (Figure 4E). Then, the semi-automatic annotation-based error correction was performed. Finally, the fully connected components were detected, and noise was removed by component sizes. The nodules were counted using the detected components (i.e., blobs), shown in Figure 5D, and the nodule size was converted from pixels to actual size (i.e., mm2) using a reference size; the actual sizes of the reference were measured in advance.
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FIGURE 5. Semi-automatic annotation function-based error correction. (A) confirm of error nodules (B) error correction; red rectangles (C) segmentation result (mask image) before error correction (D) segmentation result after error correction.




Semi-automatic annotation-based error correction and transfer learning

In general, adding more validated training data increases the performance of the deep learning-based segmentation network and widens the range of data that can be processed. However, generating annotation images (training data) is labor-intensive; it is time-consuming to generate training data because nodules in a root are small and numerous, and the amount of training data required for optimal deep network performance is unknown. Also, even with the optimal trained networks, segmentation errors can occur for new root images. Therefore, we created a semi-automatic annotation tool to improve the mentioned problem. Our tool was customized based on the existing tool that has a simple to use and convenient graphical user interface (GUI) to generate training data (Dutta et al., 2016). We have added a function that automatically annotates regions of nodules using our pre-trained deep network on the existing tool. Our customized tool was used for semi-automatic annotation (generating training data) and error correction.

Initially, a pre-trained deep network is required for the semi-automatic annotation. So, we manually generated an appropriate amount of training data (mask images) using the customized tool; the appropriate amount means minimal labor for manual annotation. We created 35 training data sets of root images manually; there are multiple nodules on each root, and we drew polygons by clicking on the contour of each nodule (Figures 3A,B). Then, a deep network was trained using the training data; it is a pre-trained deep network. The nodule segmentation of the pre-trained deep network was not robust, but it was enough to use as an aid to create additional training data (Supplementary Table S3).

New root images were input into the pre-trained network and mask images were created. Next, the coordinates of contours of each nodule were computed from the mask images, and were then imported into the customized tool and displayed on the new root images (Figures 4E,F). We then manually corrected the error regions of the contours using the GUI tool (Figures 5A,B); the semi-automatic annotation processes significantly reduced the time to create additional training data, which were used to update the pre-trained deep network (i.e., transfer learning). The segmentation performance of each updated pre-trained deep network was improved by incorporating additional training data (Figure 6A). We repeated these processes until the segmentation performance of the updated pre-trained deep network was sufficiently robust. The performance was evaluated using the F1-score metric, which is frequently used to evaluate segmentation performance (Goutte and Gaussier, 2005; Csurka et al., 2013). The F1-score can be used to evaluate our pre-trained network without bias because the score was considered a balance between precision and recall.
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FIGURE 6. F1-scores of trained deep segmentation networks; y-axis of 1.0 means 100 percentage matched between predicted mask image and actual mask image (ground truth image). (A) F1-scores of trained networks according to the number of training data (B) F1-scores of final deep segmentation network; an epoch means an iteration of the number of training data.


True Positive (TP), False Positive (FP), and False Negative (FN) are ratios between the predicted value (nodule and background) from the pre-trained deep network and the actual value (mask images); TP means that the actual foregrounds are predicted as foregrounds by the pre-trained network; FP means that the actual backgrounds are predicted as foregrounds by the network; and FN means that the actual foregrounds are predicted as backgrounds. Finally, the pre-trained deep network using 135 training data was created and showed robust performance according to the F1-score (Figure 6B).

This pre-trained network became the final nodule segmentation network, with fewer errors than the initial pre-trained network. Additional error correction was performed with the same process as the initial semi-automatic annotation mentioned above. In the online process, error correction was performed on the mask image of the post-processing result, and the new mask was generated after error correction. Nodule measurements were then obtained using the corrected mask images (Figures 5C,D).



Statistical Analysis

A randomized block design was used with subsampling and three replications (blocks). Three treatments (fertilizer type) were applied randomly within each block. Analysis of variance (ANOVA) models were used to investigate the effect of the Si treatments on the root traits. For these traits, the data tidying consisted of computing the sum of nodule size for each image and converting the area measured in millimeters squared to centimeters squared, resulting in 270 data points. The statistical model is given by:

[image: image]

where yijk is the response variable (phenotype); μ is the intercept; βj is the j-th block effect; αi is the i-th treatment effect; δij is the ij-th experimental error (plot effect), and [image: image] is the sampling error.

A quantile–quantile plot was performed to verify the null hypothesis of the normality of the residuals, and the fitted versus residuals plot was tested for homogeneity of variance. For some phenotypes (nodule size and count), logarithmic transformation was sufficient to deal with non-normality and heteroscedasticity. For others, a heteroscedastic linear mixed model was fitted to verify the null hypothesis (i.e., no difference between treatments). The variance structure used to model heteroscedasticity was proportional to the power of the absolute value of the fitted values or different variances across experimental units. Tukey’s test was used to compare the means of the treatments. Correlations between root traits in which the treatments were significant, were computed.



RESULTS

Significant differences in nodule size and number were detected among the treatments (Figure 7). The Si–soil + leaf plants showed a significantly higher mean nodule size as compared with control and Si-soil treated plants. For the number of nodules, the only differences were between Si–soil + leaf and control and between Si–soil and Si–soil + leaf. Overall, Si treatments were effective on increased nodule size and number when applied to both soil and leaf at the same time.


[image: image]

FIGURE 7. P-values associated with pairwise comparisons of means of treatments for nodules size (A) and nodules counts (B). Means are shown using a logarithmic scale.


To investigate if the root architecture phenotypes were affected by Si treatment, nine aspects of root structure were evaluated, including length, average diameter, number of tips, number of forks, projected area, main total length, lateral total length, link projected area, link average length, link average surface area, link average diameter, and link average branching angles (Supplementary Table S2). Among them, three variables, namely length, number of forks, and link average branching angles, showed significant differences (Table 2). This implies that length, the number of forks, and average link angles are important morphological traits for Si response in soybean root. Length showed significant difference between Si–soil and control, and between control and Si–soil + leaf (Figure 8A). However, our results did not show significant difference between Si–soil and control in number of forks, while a significant difference observed in comparison with control and Si–soil + leaf, and between Si–soil and Si–soil + leaf (Figure 8B). Link branching angle observed similar pattern with number of forks. Except for comparison with control and Si–soil, all treatment showed significant difference at P < 0.05 (Figure 8C). Those three root traits were then correlated with the nodule size and number of nodules formed in the control and treated plants to determine if the root structure phenotypes affected nodule formation (Table 3). Treatments do not have effects between nodule size and the number of nodules and between root length and the number of forks. However, there were high correlations (r = 0.95–1.00) between nodule size and number in the control and all treatments, indicating that nodule size and number are highly associated, irrespective of the amount of Si the plant absorbs. There were also high correlations (r = 0.92–1.00) between number of forks and length in the control and all treatments, suggesting that fork development, as the initiation point of elongation of lateral roots, augments root length at all Si levels. There were significant Si treatment effects on the correlation between average branching angle and root length and between average branching angle and number of forks, with correlation values ranging from r = 0.92 to r = 0.99, showing that Si is responsible for lateral root formation and its angle. The correlation between nodule size and between average branching angle and between nodule number and average branching angle was highly affected only by the Si–soil + leaf, although there was a low correlation (r = 0.32) between nodule size and average branching angle in the control plants. However, the correlation results between nodule size and root length, between nodule size and number of forks, between nodule number and root length, and between nodule number and number of forks were difficult to interpret because the correlations were high both in the control and in the Si treatment on Si–soil + leaf treatment, while the correlation was low in the Si–soil treatment.


TABLE 2. F test for fixed effects from the mixed model fitted to root architecture data originated from a randomized complete block design with subsampling.
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FIGURE 8. P-values associated with pairwise comparisons of means of treatments for length (A), number of forks (B), and average link angles (C).



TABLE 3. Correlation network plot between phenotypic data obtained by image analysis and root architecture data.

[image: Table 3]


DISCUSSION

The image was obtained to maximize the area of roots by adjusting the camera angle. Nonetheless, it is impossible to characterize the nodule behind the roots image taken for this experiment. However, it is still analyzable because all treatments including the control had the same method for image obtaining. In other words, if one image has error, the others would have same error. And this is why a lot of images were taken replications to reduce error. Considering this, the high contrast image was fine to characterize nodule. The way the nodule was characterized was to detect the bumpy area from linear line of roots. Based on this, the nodule was found and counted. Once nodule was detected, the part of circle could be detected. Then, based on this part of circle, the rest of the nodule was inferred. According to our results, Si treated soybean plant showed increased nodule number and nodule size as compared to non-Si treated soybean plant. This result revealed that Si treatment induces or participates nodule formation. We assumed that the reason seems to several reasons. The first hypothesis is that Si application is responsible for ABA accumulation, which, in turn, causes lateral root formation and growth, increasing the number of infection sites for nodulation. Furthermore, the increased root angle associated with Si treatment was highly correlated with nodule formation. It may worth to investigate if it is true or not by measuring ABA in the future.

The second hypothesis is that Si influence on the expression of nod genes which affect to formation of nodules in leguminous plants (Nelwamondo and Dakora, 1999). Furthermore, Si is involved in synthesis of isoflavonoids, thus application of Si fertilizer into soil induces increased nodule formation of leguminous plants (van Bockhaven et al., 2013). Because, leguminous plants release isoflavonoids for enticing nitrogen-fixing bacteria (Eckardt, 2006).

Si is known to increase nodule formation and to elongate root length in legumes, which increases the number of potential sites for infection by rhizobial invasion (Nelwamondo and Dakora, 1999). Accordingly, the results in the current study were consistent with the findings of Nelwamondo and Dakora (1999). Root length was highly correlated with nodule size and number in the current study. Furthermore, Si seems to be involved with the total number of secondary roots as forks (Guo et al., 2006). We assumed that this phenomenon also was due to the accumulation of abscisic acid (ABA) in roots, as a result of the Si treatment (Signora et al., 2001; Dakora and Nelwamondo, 2003). According to this study, ABA accumulation, due to Si application, influences not only root growth but also lateral root development and growth. Liang and Harris (2005) likewise reported that ABA stimulates lateral root formation in legumes.

In addition, lateral root formation increases as the concentration of ABA increases (Liang and Harris, 2005). Previously, nodule number was responsive to Si supply in legumes (Nelwamondo and Dakora, 1999) because secondary root formation is highly responsive to the Si concentration (Guo et al., 2006). Together, these observations could explain why Si–soil + leaf treatment showed a stronger correlation than Si–soil. In other words, the Si concentration may not be sufficient to be influential to lateral root formation. Thus, it would be worthwhile to investigate the optimal concentration of Si for nodulation and each of the root morphological traits.

Nodules at a depth of 20 cm or greater were frequently observed at different sites in different cultivars (Grubinger et al., 1982). However, the number of nodules varied significantly in the vertical distribution, depending on the cultivar. If a certain depth is advantageous for nodule formation, the root structure could be influential to nodule formation as well. In the current study, the Si treatment was highly correlated with a higher root angle, which means that Si was involved with root formation horizontally, near the soil surface, and consequently, there was more nodule formation near the soil surface. This result might indicate that the cultivar and bacteria used in this study were a lot more influential in promoting nodule formation in the near soil surface.

The reason for the high correlations between nodule size and root length, between nodule size and forks number, between nodule number and root length, and between nodule number and forks number in both the control and Si–soil + leaf but low correlations for Si–soil could be because of the huge variation found in the data set in the current study (Table 4). There are very significant differences among blocks for nodule size and the number of nodules, which are larger effects than those among treatments. Consequently, it is hard to detect clear difference. This could be because soybean plants are very susceptible to various abiotic stresses (Board, 2013). It may be enhanced with more sophisticated experimental design.


TABLE 4. Analysis of variance from randomized complete blocks design with subsampling for nodule size (mm2) and nodule counts.

[image: Table 4]The robust measurements in the current study using the emerging, deep learning-based detection and segmentation (Olaf et al., 2015; Ren et al., 2017; Chen et al., 2018; Feng et al., 2020; Gao et al., 2020) allowed distinct separation of the object from the background, unlike the conventional image processing methods, which are not robust to various types of objects and noises (Khan et al., 2010; Wang et al., 2011). Overall, the image analysis using machine learning in the current study enabled us to characterize numerous nodules in roots in many plants, which is truly huge advance.



CONCLUSION

Using 2D images, we analyzed huge number of soybean root nodule by machine learning technology. Thus we identified Si application induce increase of nodule size and number. However, current results cannot prove the accurate mechanism. We assumed two possibility. The first hypothesis is that Si application accumulate hormone ABA thus, this phenomena induce various root responses such as nodule formation and root architecture. The second hypothesis is that Si treatment not only stimulate nod gene but also increase isoflavonoid contents, consequently, increased nodule number and size occurs. To prove those hypothesis, additional experiments are required. Furthermore, comparative experiments are need for confirming the utility of nodule baseline technology in leguminous plants. If we get reasonable result, we will open website to use those technology to other researcher.
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Traditional seed and fruit phenotyping are mainly accomplished by manual measurement or extraction of morphological properties from two-dimensional images. These methods are not only in low-throughput but also unable to collect their three-dimensional (3D) characteristics and internal morphology. X-ray computed tomography (CT) scanning, which provides a convenient means of non-destructively recording the external and internal 3D structures of seeds and fruits, offers a potential to overcome these limitations. However, the current CT equipment cannot be adopted to scan seeds and fruits with high throughput. And there is no specialized software for automatic extraction of phenotypes from CT images. Here, we introduced a high-throughput image acquisition approach by mounting a specially designed seed-fruit container onto the scanning bed. The corresponding 3D image analysis software, 3DPheno-Seed&Fruit, was created for automatic segmentation and rapid quantification of eight morphological phenotypes of internal and external compartments of seeds and fruits. 3DPheno-Seed&Fruit is a graphical user interface design and user-friendly software with an excellent phenotype result visualization function. We described the software in detail and benchmarked it based upon CT image analyses in seeds of soybean, wheat, peanut, pine nut, pistachio nut and dwarf Russian almond fruit. R2 values between the extracted and manual measurements of seed length, width, thickness, and radius ranged from 0.80 to 0.96 for soybean and wheat. High correlations were found between the 2D (length, width, thickness, and radius) and 3D (volume and surface area) phenotypes for soybean. Overall, our methods provide robust and novel tools for phenotyping the morphological seed and fruit traits of various plant species, which could benefit crop breeding and functional genomics.

Keywords: computed tomography, seed and fruit, morphological trait, 3D image processing, high-throughput phenotyping


INTRODUCTION

The shape and size of seeds and fruits are among the most vital agronomic traits since they play crucial parts in eating quality, yield, as well as market price. The quantitative assessment of their external and internal morphological traits could promote the progress of plant research areas including genetics, physiology, functional analysis, and plant breeding (Tanabata et al., 2012). Until now, manual measurements using the caliper and cylinder have been the most widely adopted methods. However, majority of seeds and fruits are pretty small which make the manual measurement of external morphological traits time-consuming and labor-intensive. Some shape phenotypes such as surface area and volume are three-dimensional (3D) that are almost impossible to be accurately quantified with the manual methods. Most importantly, the internal morphological traits, such as the size of air space between two cotyledons, are unable to be quantified without damaging the seeds or fruits using the manual measurement approaches. Therefore, rapid, accurate, non-destructive, and high-throughput approaches for seed and fruit phenotyping are urgently needed.

The image-based approaches using digital image processing and computer vision technologies offer solutions to automatically measure a variety of size and shape features from high-resolution images in a high-throughput way. Two-dimensional (2D) based systems are increasing used. For example, Baek et al. (2020) designed an image acquisition device that imaged 100 seeds at a time. To quantitatively measure morphological and color parameters of soybean seeds, the device was equipped with top and side-view RGB cameras. A software, SmartGrain, was developed to automatically segment individual seeds from the scanned images and measure multiple shape-related seed parameters simultaneously (Tanabata et al., 2012). Duan et al. (2011) generated a label-free facility for phenotyping of yield-related grain traits in rice, integrating the spikelet threshing, grain imaging, and real-time algorithm-based evaluation of grain traits (e.g., grain length, width, 1000-grain weight, and seed packing) for each rice plant. For fruit trait phenotyping, Ni et al. (2020) proposed a deep learning based-image processing pipeline to evaluate blueberry fruit traits including cluster compactness, fruit maturity, and berry number per cluster.

The rapid development of 3D sensing methods has led to more and more studies employing 3D imaging techniques to measure shape-related 3D traits for plants (Pieruschka and Schurr, 2019). 3D point clouds were intensively investigated for measuring surface traits at plant and canopy scales for tree and shrub crops, such as canopy volume, fruit, and flower density (Ramón et al., 2015; Underwood et al., 2016). But their resolutions are usually too low to be used for micro-dissection of seed and fruit phenotypes. The higher-resolution 3D imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been attempted on studying the internal structures of plant fruit, grain, and root (Jahnke et al., 2010; Borisjuk et al., 2012; Hubeau and Steppe, 2015). However, both MRI and PET scanners were not widely used in the field of plant phenotyping because of the high cost of the equipment and maintenance.

X-ray computed tomography (CT) is a non-invasive and cost-effective 3D imaging technique based on differential X-ray attenuation by object materials. Similar to MRI and PET, this technique was originally developed as a medical diagnostic tool. But it has since been applied to a broad range of fields, like material, earth, natural, and animal sciences (Cnudde et al., 2006; Schambach et al., 2010). Recent improvements in scanning quality, resolution, and speed allowed it to be adopted to visualize and quantify complex plant traits (Dhondt et al., 2010; Hughes et al., 2017; Xiong et al., 2019; Li et al., 2020; Yang et al., 2020). For example, Arendse et al. (2016) used the X-ray CT to non-destructively quantify the external and internal morphological features (volumes of aril, peel, kernel, juice content, and air space) of pomegranate fruit. Hu et al. (2020) scanned a rice spike and achieved an automatic segmentation of individual grain and high-throughput extraction of 22 spike and grain traits such as grain number, size, shape, and density. These examples demonstrated the feasibility of using CT images to measure plant traits. However, this method has not been so widely applied on quantification of general plant traits as it is expected. One of the important reasons is that the commercially available benchtop CT scanners are usually designed for medical and industrial usage rather than plant phenotyping, and therefore their sample loading carousels are not suitable for scanning plant samples with too small or too large sizes.

Here, we report the development of a low-cost and easy-to-replicate approach for imaging small seeds or fruits in batches using a commercial industrial CT scanner. The corresponding 3D image analysis software, 3DPheno-Seed&Fruit, was also developed that allows not only to extract external morphological phenotypes of seeds or fruits but also non-destructively measure their internal features. To demonstrate the practicality of our method, soybean (Glycine max), wheat (Triticum aestivum), peanut (Arachis hypogaea), pine nut (Pinus koraiensis), pistachio nut (Pistacia vera L.), and fruit of dwarf Russian almond (Prunus tenella) were examined.



MATERIALS AND METHODS


X-Ray CT Imaging

With the aim of scanning multiple seeds and fruits at once, we mounted a plastic container with multiple sub-boxes onto the loading carousels of X-ray CT scanner. The size of the sub-boxes was adjustable that can hold the seeds and fruits with different sizes tightly and avoid shifting position during scanning. Containers were captured using the X-ray micro-CT scanning system AL-μCT-9002 (Dandong Aolong Radiative Instrument Group Co., Ltd., Dandong, Liaoning, China) with the supplied software. Focal length of CT scanner was 5 μm, the effective area is 120 mm × 120 mm, and voltage and current were set as 100 kV and 20 μA, respectively. Helical scan was conducted using the fast and continuous scan mode and its moving height could be up to 200 mm. The container was rotated in the clockwise direction. CT image reconstruction was achieved using a Feldkamp-type (FDK) come-bean CT reconstruction algorithm incorporated in the MiHitect v1.0 software (Dandong Aolong Radiative Instrument Group Co., Ltd., Dandong, Liaoning, China). The output images were saved slice by slice along the z-direction in BIN format with a final resolution of 0.1 mm (1024 × 1024).



3DPheno-Seed&Fruit: A CT Image Analysis Software for Extracting Seed/Fruit Morphological Phenotypes

We developed a software, 3DPheno-Seed&Fruit, for extracting the morphological features of seeds/fruits from CT image analysis with sophisticated visualization of the final results and user-interaction. It was written in Visual C++ in the Microsoft Visual Studio 2015 software creation tool and ran under Microsoft Windows 10. A graphical user interface (GUI) program was created with Qt 5.12 framework (The Qt Company Ltd.). Functions of 3D visualization and view rendering were based on the open-source Visualization Toolkit (VTK). All the CT image analysis pipelines were written in MATLAB 2014a (MathWorks, United States) and packaged into the 3DPheno-Seed&Fruit software by MATLAB CompilerTM. 3DPheno-Seed&Fruit software and CT image datasets used in this manuscript are free for academic purpose and can be downloaded from http://www.wutbiolab.com/resources/39/info/29 and https://github.com/whut-biolab-liuchang/project. The installation manual is available in the Supplementary File 1 and the above website.

The main CT image analysis pipelines included image preprocessing, segmentation of seeds/fruits, and extraction of phenotypes, which were exhibited in Figure 1. The details are described as follows: (1) all the slices of CT image data were stacking along z-direction to form 3D images; (2) intensity standardization was conducted across samples; (3) the container for holding seeds/fruits was removed; (4) seeds/fruits were segmented out individually from the 3D images; (5) the external morphological phenotypes of seeds/fruits were measured; (6) the internal components of seeds/fruits were further separated from the whole seeds/fruits, and the corresponding morphological properties were extracted.


[image: image]

FIGURE 1. X-ray computed tomography image acquisition and processing pipeline for high-throughput phenotyping morphological characteristics of seeds/fruits. (A) Image acquisition and 3D reconstruction. (B) Image intensity equalization. (C) Container removal and object plant tissue segmentation. (D) Morphological phenotype extraction. (E) Internal component segmentation and phenotype extraction.




Image Preprocessing

The inputs of the 3DPheno-Seed&Fruit software were all the CT slices collected from the individual sample with the format of 8-bit PNG, JPG, or TIFF. By combining them along the z-direction, the 3D images were easily gained and would be directly used for all the following image analyses. Comparing to the methods based on 2D image processing (Hughes et al., 2017), this strategy is more precise to identify seeds/fruits from the background noise and the tightly connected interlayers of container because it simultaneously took all voxels from all slices into consideration (Xiong et al., 2019). Before segmentation of seeds/fruits, we conducted a series of 3D image preprocessing, consisting of intensity standardization and removal of holder and background.

The intensity of CT images might vary across sample sets when scanning at different time and using different scanning parameters. To make sure all the images with consistent parameters, a linear stretch mapping method which was adopted in Xiong et al. (2019) was utilized to automatically standardize the intensity of CT images of all sets. The equation for linear stretch mapping is as follows:

[image: image]

where xin(x,y,z) is the intensity of image x at the coordinate x, y, and z; min(xin) is the minimum intensity of all the input CT images; max(xin) is the maximum intensity of all the input CT images; xout is the output of the images after intensity standardization (Figure 1B).



Container Removal and Seed/Fruit Segmentation

We made a seed-fruit container with multiple sub-boxes to fix seeds/fruits in position during scanning (Figure 1A). In the 3D CT image, seeds/fruits were separated by the sub-boxes, and each seed/fruit was surrounded by the edge of the sub-box. Considering edges would be removed for further image processing, we selected low-density plastic materials which have distinct attenuation characteristic of X-ray absorption from that of plant tissues (Figure 1C). The background of the 3D image is composed of noise, artifacts, and nearly black pixels (not zero intensity for most cases). Therefore, seeds/fruits have the stronger intensity compared to the container edge and background. A fixed and learned threshold of intensity has the capacity of removing majority of the container and background.

After image intensity threshold segmentation, besides the seeds/fruits, there are a small number of broken pieces of the container edges and background left in the 3D image. To completely get rid of them, we used the connected domain segmentation method and filtered out any small pieces less than one-twentieth of the mean plant tissue volume. The cleaned seed/fruit 3D image for feature extraction was obtained to generate a mask. The mask was then applied to the original 3D image to separate the 3D seed/fruit object (Figure 1C). The 3D object consisted of voxels with three coordinates and grayscale values.



External Phenotype Extraction

After container removal and object segmentation, voxel set belonging to individual seeds/fruits was accurately obtained, which can be directly used for assessment of their external morphological features (Figure 1D). The size-related traits including length, width, thickness, and radius were measured by application of principle component analysis (PCA). We estimated the volume trait by counting the number of voxels in the point set. The surface area of seed/fruit were measured by reconstructing the seed/fruit surface using the 3D surface reconstruction algorithm. Those morphological phenotypes are important in the quality evaluation and crop breeding of seed and fruit traits.


Size-Related Phenotypes

The segmented seed/fruit may be tilted with irregular shape in the 3D image, which is difficult to directly use its distance on the z-axis to represent the length (Figure 1D). Therefore, we applied PCA to transform the object seed/fruit to another 3D space before quantify its length, width, thickness, and radius. The original 3D coordinates (x-y-z) were defined for all the voxels of each seed/fruit and used as the input for PCA. By orthogonal transformation, the voxels were converted to a set of linearly uncorrected variables (μ1,μ2,μ3,…,μn) which are principle components (PCs). The three PCs with highest eigenvalues (μ1μ2μ3…μn) were selected and their corresponding eigenvectors (v1,v2,v3) were the new coordinates of the voxels. By projecting the voxels toward each eigenvector, the length was calculated by measuring the size of the major axis, while the width and thickness were examined from the major and minor 2D axis of the cross section of each seed/fruit (Figure 1D). The radius is defined as the half of the mean of width and thickness (Equation: radius[image: image]).



Shape-Related Phenotypes

Superior to the traditional 2D images, the 3D CT images enable us to extract the shape-related characteristics of seed/fruit, including volume, surface area, compactness, and sphericity. After obtaining the voxel set of each seed/fruit, its volume is directly calculated by counting the number of voxels. However, the surface area of each 3D reconstructed seed/fruit is jagged and not smooth. Thereby, it is not accurate to simply count the outermost voxels as the exposed surface area. To smooth the surface, we reconstructed the voxel rectangle of outermost surface of seed/fruit to voxel triangle by using marching cubes 3D surface construction algorithm (Lorensen and Cline, 1987). Then we summed area of triangles to estimate the surface area.

Compactness and sphericity are two commonly used parameters that describe how closely the shape of an object resembles a perfect circle in 2D plane and sphere in 3D plane, respectively (Rosenfeld and Kak, 1976; Sakai and Yonekawa, 1992). We treated the cross section of the seed/fruit as an ellipse and its 3D shape as an ellipsoid. Compactness is defined as the ratio of the area of the sample to the area of a circle with the same perimeter. The equation is as follows:

[image: image]

Where C is the compactness (dimensionless); S is the area of cross-section of the sample; and R is the perimeter of the sample. Circle is used as it is the most compact shape with a compactness value of 1. As the compactness approaches to 1, the cross-section of the seed/fruit approaches to a circle.

The sphericity of a sample is defined as the ratio of the surface area of an equal-volume sphere to the surface area of the sample, which extends the definition of compactness from 2D to 3D. The equation for sphericity is as follows:

[image: image]

Where E is the sphericity (dimensionless); Se is the surface area of an equal-volume sphere; Sa is surface area of the sample. The sphericity of a perfect spherical object is 1. As the sphericity value approaches to 1, the seed/fruit sample approaches to a sphere.



Segmentation of Internal Components and Phenotype Extraction

Besides quantification of the external morphological phenotypes, CT images enable to non-destructively quantify the morphological features of internal components (such as arils, peel, kernel, and air space) of seeds/fruits (Figure 1E). Before phenotype extraction, we need to segment the voxel set belonging to each component from the entire voxel set of the seed/fruit. Since the voxels of the same internal component and adjacent to each other have relatively homogeneous grayscale properties, we applied a 3D region growing algorithm (Sekiguchi et al., 1994) for segmentation. The procedures are described as follows: (1) the centroid of each seed/fruit internal components was determined as the 3D region growing seed point; (2) the region growing started from the seed voxel and grow recursively if its 6-adjacent neighborhood satisfied the growing criteria; (3) the region stopped growing when no new seed is found. The growing criteria is that a pixel Px is merged into the growing region if its intensity iP_x is smaller than the averaged intensity of the growing region [image: image]. The idea is expressed by the following equation: [image: image] where α is a user-specified threshold. We set α to 10 in this study. After segmentation of each internal component, the size and shape-related phenotypes were extracted by using the same pipeline as the external phenotypes of seeds/fruits.



Manual Measurement of Phenotypes

The morphological phenotypes (length, width, thickness, and radius) of soybean and wheat seeds were manually measured by using a micrometer caliper. Each measurement was repeated three times and the average value was used as the reference data.



Statistical Analysis

All statistical analyses were carried out with R version 3.6 (R Foundation for Statistical Computing, Vienna, Austria). Pairwise correlation analysis among eight morphological traits of soybean seeds extracted by 3DPheno-Seed&Fruit software were computed using Pearson correlation coefficients. To compare the difference between the 3DPheno-Seed&Fruit and manual measurements for soybean and wheat seeds, we fitted the data to a simple linear regression using the CT measurement as y-axis and the manual measurement as x-axis. The coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were calculated with the following equations:

[image: image]

Where n is the total number of measurements; xi is the manual measurement results; yi is the CT measurement results, and [image: image] is the mean of the CT measurements.



RESULTS AND DISCUSSION


3DPheno-Seed&Fruit Software Description

3DPheno-Seed&Fruit is a high-throughput CT image analysis software that can be used for extracting eight morphological traits of seeds/fruits (length, width, thickness, radius, surface area, volume, compactness, and sphericity) from 3D images. It analyses X-ray CT images that are stored in a specific folder. For all the inputs of CT slices, 3DPheno-Seed&Fruit software automatically stacks them along z-direction to form the 3D image and equalizes the image intensity across all the inputs to minimize image noises. The user-defined intensity threshold parameter is set for removing the container that holds seeds and fruits during scanning. Then the software can automatically segment out the seeds/fruits and measure their external morphological phenotypes individually using the “ExternalPheno” plugin. For extraction of morphological features of inner components, such as extraction of the seed volume inside the draft Russian almond fruit, the region growing function serves for segmentation of internal components and then extract their eight morphological features. The segmentation results which are the CT images of individual seeds/fruits are automatically exported in the PNG (portable network graphics) format, together with the phenotype results being exported as a CSV (comma-separated values) file.

The outstanding advantages of the 3DPheno-Seed&Fruit software is the sophisticated visualization of the phenotype results and user-interaction. As shown in the interface (Figure 2), the end-users are allowed to visualize the original CT images (with a batch of seeds and container) after stacking in a top-view (in the top-left of the interface), a spreadsheet of morphological phenotype results (in the top-middle of the interface), and the statistical graphs (histograms and correlations) summarizing the phenotype results (in lower-middle of the interface). In the result spreadsheet, phenotypes extracted from individual seeds/fruits were saved by row. Through double-clicking a row of the spreadsheet, the corresponding seed will be highlighted in the top-view original CT image window. In the same time, the image of selected seed/fruit after segmentation in the cross-sectional and 3D view will be exhibited in the top-right and the lower-left of the interface, respectively. The color and transparency of the selected single seed/fruit in the 3D view window can be adjustable according to the purpose of end-user, and these functions can be found in the lower-right of the interface.


[image: image]

FIGURE 2. 3DPheno-Seed&Fruit software interface with wheat data. (A) The main interface. (B) Example of histogram and correlation plots incorporated in the lower-middle of the interface.




Applications of Seed/Fruit Container and 3DPheno-Seed&Fruit Software

We attempted our proposed imaging strategy and the 3DPheno-Seed&Fruit software to extract morphological features of seeds/fruits from the CT images. Our imaging strategy is to mount the special-designed seed/fruit container onto the loading carousels of the X-ray CT scanner (Figure 1A). Since the effective area of the X-ray CT scanner AL-μCT-9002 is 120 mm × 20 mm, we designed a series of cylindrical-shaped containers with various diameters of 70, 80, and 90 mm, respectively. The height of these cylindrical containers was designed to be consistent as 40 mm. Since the maximum perpendicular distance that the loading carousels of X-ray CT scanner is 200 mm during the helical scanning, up to five containers can be scanned at one time. For the convenience of container removal in the image processing step, we chose the low-density plastic material to make the container, whose image intensity is far less than our plant tissues (Figure 1C, gray-level histogram). To hold seeds/fruits in batches and fix each seed/fruit in position, the containers were subdivided into multiple sub-boxes using the soft polyurethane foam, which allows to adjust the size of the sub-box according to the seed size. Therefore, the number of seeds that each container can hold mainly depends on the types and sizes of seeds.

As an example, we tested the proposed imaging strategy by scanning a pile of four containers together, as shown in Figure 1A. Among them, one container with a diameter of 70 mm was filled with 50 wheat grains, two containers with diameters of 80 and 90 mm were filled with 30 and 36 soybean seeds, respectively, and one container with a diameter of 90 mm was filled with a combination of eight peanuts, seven pine nuts, and six pistachio nuts (Figure 3). The total scanning time for four containers was 5 min, and reconstruction time was 7 min. In the end, we obtained a total of 1,600 CT slices for four containers with only half of them containing seeds and the other slices only containing edges of containers and sub-boxes (Table 1). According to this finding, for the small seeds like soybean and wheat, we can reduce the height of the cylindrical container and piled more containers together for scanning to improve the scanning throughput of seeds.


[image: image]

FIGURE 3. The raw X-ray computed tomography images. (A) wheat seeds in the container with a diameter of 70 mm; (B) soybean seeds in the container with a diameter of 80 mm; (C) soybean seeds in the container with a diameter of 90 mm; (D) peanuts, pine nuts, and pistachio nuts in the container with a diameter of 90 mm.



TABLE 1. Summary of total CT slides, effective CT slides, and image analysis times for different sizes of containers.

[image: Table 1]3DPheno-Seed&Fruit software was applied to automatically extract the eight seed phenotypes (length, width, thickness, radius, surface area, volume, compactness, and sphericity) in a fast speed of a few minutes (Table 1). An example of phenotype extraction using 3DPheno-Seed&Fruit software was shown in Supplementary Video 1. Considering that analyzation of the 1,600 CT slices collected from four containers together would consume too much memory which caused software crashed in personal computer, CT slices belonging to each container were inputted together into the software. The average time for extraction of eight seed phenotypes costed about 1.5∼2.5 min per container (Table 1).

Seed phenotype results of wheat, soybean, peanut, pine nut, and pistachio nut were summarized in Table 2. As expected, soybean and pistachio nut had had lower correlation of variation (cv) values of majority seed traits than wheat, peanut, and pine nut, because more consistency of size and shape were observed for soybean and pine nut seeds than the other crop seeds in the CT images (Figure 3). The consistency between observation and measurement gives confidence to our proposed CT methods.


TABLE 2. The summary of external morphological phenotypes of soybean, wheat, peanut, pine nut, and pistachio nut seeds extracted from X-ray CT images using the 3DPheno-Seed&Fruit software.

[image: Table 2]The 3DPheno-Seed&Fruit software was also applied to quantify the fruit morphological phenotypes of dwarf Russian almond. Besides extracting the external profile features, we used the “InternalPheno” plugin incorporated in 3DPheno-Seed&Fruit to extract the almond seed phenotypes inside the fruit. Eight morphological phenotypes measured for both external almond fruit and internal almond seed were listed in Table 3, and the measurement process was shown in Figure 1E. Therefore, our software is versatile for evaluating the external structure of seeds and fruits and their internal compartments non-invasively.


TABLE 3. The fruit and seed phenotypes of draft Russian almond extracted from X-ray computed tomography images using the 3DPheno-Seed&Fruit software.

[image: Table 3]


Comparisons Between CT and Manual Measurements

To verify the accuracy of phenotypes extracted by our CT image methods, we compared their phenotype results with these measured by hand. Seed length, width, thickness, and radius were measured by hand for 66 soybean seeds and 50 wheat seeds whose phenotypes had been measured by the 3DPheno-Seed&Fruit software previously. Regression analysis were conducted, and results are present in Figure 4. These size-related traits were highly consistent between the manual and CT methods for both soybean and wheat seeds, even though wheat seeds had a slightly larger R2, smaller MAPE, and smaller RMSE than soybean seeds (Table 4). The high consistencies confirmed the reliability of our CT measurements.


[image: image]

FIGURE 4. Comparison between the 3DPheno-Seed&Fruit and manually measured phenotypes of seeds using the simple linear regression. (A) soybean; (B) wheat. Each point represents individual seeds. Coefficient of determination (R2) and number of observations (N) are shown in individual scatter plots.



TABLE 4. Comparison analysis results between 3DPheno-Seed&Fruit and manual measurements for soybean and wheat seed phenotypes.

[image: Table 4]


Pairwise Correlations Among CT Measured Traits

We explored the correlations between each pair of eight phenotypes that extracted by the CT methods from 66 soybean seeds. The correlation coefficients among all the eight phenotypes were shown in Figure 5. Several expected or intuitive correlations were detected, such as seed volume being strongly correlated with seed surface area (correlation coefficient R = 0.97). In addition, seed volume had higher correlations with seed width (R = 0.89), seed radius (R = 0.93) than seed thickness (R = 0.86), and seed length (R = 0.87). These results indicate that seed width and radius have greater effects on seed volume than seed thickness and length. The similar trends were also observed in rice (Hu et al., 2020). Seed compactness and sphericity showed lower correlations with other size and shape-related features. Moreover, negligible correlations were observed between seed sphericity and seed width (R = 0.03), radius (R = 0.01), thickness (R = −0.01), length (R = −0.15), and volume (R = −0.18), indicating that the seed width, radius, thickness, length, and volume were not the main effects on the extent of a seed resembling sphere in 3D plane.


[image: image]

FIGURE 5. Pairwise-correlation coefficients among eight morphological phenotypes of soybean seeds.




CONCLUSION

In this study, we propose a high-throughput method of precisely investigating morphological phenotypes on seeds and fruits using X-ray CT scanning technology. The specially designed seed-fruit container enables to scan seeds and fruits in batches, and the corresponding 3D image analysis software, 3DPheno-Seed&Fruit, can automatically segment individual seeds/fruits and extract eight morphological traits of their internal and external compartments in a fast speed. Using the proposed methods, we successfully characterized morphological features of soybean, peanut, wheat, pine nut and pistachio nut seeds. For draft Russian almond, the external features of the entire fruit and seed phenotypes inside the fruit endocarp were measured by using the 3DPheno-Seed&Fruit software. Compared to 2D imaging methods (Tanabata et al., 2012; Evgenii et al., 2017; Baek et al., 2020), our methods quantify 3D morphological traits, such as the surface area, volume, and sphericity. Compared to the other 3D image analysis pipelines designed for grain phenotyping (Glidewell, 2006; Hughes et al., 2017; Xiong et al., 2019; Hu et al., 2020; Li et al., 2020), our methods provide an additional function of non-destructively measuring morphological phenotypes of seed and fruit internal compartments. The GUI design software, 3DPheno-Seed&Fruit, is quite user-friendly, which is easy to navigate and has the excellent visualization functions for displaying phenotyping results. In one word, our methods are powerful tools in seed and fruit 3D phenotyping, which will enhance the efficacy and accuracy of seed and fruit evaluation and eventually benefit the seed and fruit industries and crop breeding society.
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Accurately detecting and counting fruits during plant growth using imaging and computer vision is of importance not only from the point of view of reducing labor intensive manual measurements of phenotypic information, but also because it is a critical step toward automating processes such as harvesting. Deep learning based methods have emerged as the state-of-the-art techniques in many problems in image segmentation and classification, and have a lot of promise in challenging domains such as agriculture, where they can deal with the large variability in data better than classical computer vision methods. This paper reports results on the detection of tomatoes in images taken in a greenhouse, using the MaskRCNN algorithm, which detects objects and also the pixels corresponding to each object. Our experimental results on the detection of tomatoes from images taken in greenhouses using a RealSense camera are comparable to or better than the metrics reported by earlier work, even though those were obtained in laboratory conditions or using higher resolution images. Our results also show that MaskRCNN can implicitly learn object depth, which is necessary for background elimination.

Keywords: deep learning, phenotyping, agriculture, tomato, greenhouse


1. INTRODUCTION

Tomatoes are an economically important horticultural crop and the subject of research in seed development to improve yield. As with many other crops, harvesting is a labor intensive task, and so is the manual measurement of phenotypic information. In recent years there has been great and increasing interest in automating agricultural processes like harvesting (Bac et al., 2014), pruning (Paulin et al., 2015), or localized spraying (Oberti et al., 2016). This has stimulated the development of image analysis and computer vision methods for the detection of fruits and vegetables. Since imaging is a quick and non-destructive way of measurement, detection of fruits, both ripe and unripe, and other plant traits using computer vision is also useful for phenotyping (Minervini et al., 2015; Das Choudhury et al., 2019) and yield prediction. The number of fruits during plant growth is an important trait not only because it is an indicator of the expected yield, but is also necessary for certain crops such as apple, where yield must be controlled to avoid biennial tree stress.

Compared to laboratory settings, greenhouses can be challenging environments for image analysis, as they are often optimized to maximize crop production thereby imposing restrictions on the possible placement of a camera and thereby its field of view. Further, variation in the colors or brightness of the fruits can be encountered over different plants of the same crop, over time for the same plant, over images of the same plant from different camera positions, etc (Bac, 2015; Barth, 2018). Repeated measurements are difficult because of ongoing work, changing circumstances such as lighting conditions, and a generally unfriendly atmosphere for electronic equipment.

Most methods for detecting and counting fruits, including tomatoes, have used colorspace transformations in which the objects of interest stand out, and extraction of features such as shape and texture (Gomes and Leta, 2012; Gongal et al., 2015). In most of these works, the discriminative features were defined by the developers, rather than learnt by algorithms. Computer vision solutions based on hand crafted features may not be able to cope with the level of variability commonly present in greenhouses (Kapach et al., 2012; Zhao et al., 2016a). Deep Convolutional Neural Networks (CNNs) are being used increasingly for image segmentation and classification due to their ability to learn robust discriminative features and deal with large variation (LeCun et al., 2015). They however require large annotated datasets for training.

The various flavors of deep learning in computer vision include (i) image classification, in which an image is assigned one label (Krizhevsky et al., 2012), (ii) semantic segmentation, in which each pixel is assigned a label (Long et al., 2015; Chen et al., 2018), and (iii) object detection, which assigns a label to a detected object, thereby providing the location of individual objects (Girshick, 2015; Ren et al., 2015; Girshick et al., 2016). Deep learning is being increasingly used in the domain of agriculture and plant phenotyping (Kamilaris and Prenafeta-Boldú, 2018; Jiang and Li, 2020). Classification at the level of the entire image has been used for detecting diseases (Mohanty et al., 2016; Ramcharan et al., 2019; Toda and Okura, 2019; Xie et al., 2020) or for identifying flowers (Nilsback and Zisserman, 2006). Semantic segmentation and object detection are more relevant for our problem of detecting fruits, and their use in agriculture will be briefly reviewed in the following sub-section.


1.1. Related Work

Object detection is the most informative instance of deep learning for the detection of fruits, but also requires more complex training data. Region based convolutional neural networks (R-CNNs) combine the selective search method (Uijlings et al., 2013) to detect region proposals (Girshick et al., 2016), and were the basis for the Fast-RCNN (Girshick, 2015), and Faster-RCNN (Ren et al., 2015) methods. The You Only Look Once (YOLO) (Redmon et al., 2016) detector applies a single neural network to the full image, dividing the image into regions and predicts bounding boxes and probabilities for each region, and is faster than Fast-RCNN which applies the model to an image at multiple locations and scales. These methods provide bounding-box segmentations of objects of interest, which does not directly convey which pixels belong to which object instance, especially when there are overlapping or occluding objects of the same class.

Mask-RCNN (He et al., 2017) provides a segmentation of both, the bounding box and pixel mask for each object. It uses a CNN architecture such as ResNet (He et al., 2016) as the backbone, which extracts feature maps, over which a region proposal network (RPN) sliding window is applied to calculate region proposals, which are then pooled with the feature maps. Finally, a classifier is applied over each pooled feature map resulting in a bounding box prediction corresponding to an instance of the particular class. The scheme until this point is the same as FasterRCNN. Mask-RCNN applies an additional CNN on the aligned region and feature map to obtain a mask for each bounding box.

In the domain of agriculture, earlier work on detecting fruits of various crops used “classical" machine vision techniques, involving detection and classification based on hand-crafted features (Song et al., 2014). In Brewer et al. (2006), post-harvest images of tomatoes were analyzed for phenotypic variation in fruit shape. The individual tomatoes were placed on a dark background which made the segmentation simple, and the fruit perimeters were then extracted.

A Support Vector Machine (SVM) binary classifier applied on different regions of an image, followed by fusing the decisions was proposed for detecting tomatoes in Schillaci et al. (2012), but this method suffers from too many false positives (low precision). In Zhao et al. (2016b), a pixel level segmentation method for ripe tomatoes was presented, based on fusing information from the Lab and YIQ colorspaces which emphasize the ripe tomatoes, followed by an adaptive threshold. In Zhang and Xu (2018), a pixel level fruit segmentation method was proposed, which assigns initial labels using conditional random fields and Latent Dirichlet Allocation, and then relates the labels for the image at different resolutions. Haar features from a colorspace transform followed by adaboost classification was used in Zhao et al. (2016c) for detecting ripe tomatoes. However, this method tried to fit circles, and did not try to accurately detect individual object masks.

A method for counting individual tomato fruits from images of a plant growing in a lab setting was presented in Yamamoto et al. (2014). This method used decision trees on color features to obtain a pixel wise segmentation, and further blob-level processing on the pixels corresponding to fruits to obtain and count individual fruit centroids. This method reported an overall detection precision of 0.88 and recall of 0.80.

In Hannan et al. (2009), oranges were counted from images in an orchard using adaptive thresholding on colorspace transforms, followed by sliding windows applied on the segmented blob perimeters to fit circles, with voting based on the fitted centroids and radii. A method for ripe sweet pepper detection and harvesting was proposed in Bac et al. (2017), that used detection of red blobs from the normalized difference of the red and green components, followed by a threshold number of pixels per fruit.

More recent works use deep learning, in its various flavors (Tang et al., 2020). A 10 layer convolutional neural network was used in Muresan and Oltean (2018) for classifying images of individual fruits including tomatoes, in a post-harvest setting. In Barth et al. (2017, 2018) a pixel wise segmentation of sweet pepper fruits and other plant parts was presented based on training the VGG network (Simonyan and Zisserman, 2014) on synthetic but realistic data. Deepfruits (Sa et al., 2016) is a detection method for fruits such as apples, mangoes, and sweet peppers, which adapts FasterRCNN to fuse information from RGB and Near-Infrared (NIR) images.

Another work on tomato plant part detection (Zhou et al., 2017) used a convolutional neural network with an architecture similar to VGG16 (Simonyan and Zisserman, 2014) and a region proposal network method similar to Fast-RCNN (Girshick, 2015) and obtained a mean average precision of 0.82 for fruits. It must be noted that (Zhou et al., 2017) is written in Mandarin, with an abstract in English. FasterRCNN object detection was also used in Fuentes et al. (2018) to detect diseased and damaged parts of a tomato plant. A single shot detection architecture based on a grid search was proposed in Bresilla et al. (2019) to detect bounding boxes of apples and pears from images of their trees. In Rahnemoonfar and Sheppard (2017), a modified version of the Inception-ResNet architecture was proposed and trained with a synthetic dataset of red circular blobs, and was able to detect tomato fruits with a prediction accuracy of 91 % on a dataset of images obtained from Google images mainly of cherry tomato plants.

Finally, MaskRCNN has been applied for the segmentation of Brassica oleracea (e.g., Broccoli, Caulifower) (Jiang et al., 2018) and leaves (Ward et al., 2018). In Santos et al. (2020), a method was presented for detecting and tracking grape clusters in images taken in vineyards, based on MaskRCNN for the detection of individual grape bunches and structure from motion for 3D alignment of images thereby enabling their mapping across images.

For quick reference, the above referenced methods are summarized in Table 1.


Table 1. Summary of metrics reported in related work on fruit detection.
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1.2. Contributions

In this work, we apply MaskRCNN for the detection of tomato fruits from images taken in a production greenhouse, using Intel RealSense cameras. We report results on the detection of tomatoes from these images, using MaskRCNN trained with images in which foreground fruits are annotated. After inference, we apply a post-processing step on the segmentation results, to further get rid of background fruit that may have been detected as foreground.

In summary, in this paper, we try to answer the following questions

1. Can we detect tomato fruits in real life practical settings?

2. Can state-of-the-art results be achieved for detecting tomato fruits using MaskRCNN?

It must be noted that we deal with images taken in a greenhouse, which are more difficult than laboratory (Yamamoto et al., 2014) or post-harvest (Muresan and Oltean, 2018) settings and we use RealSense cameras which are less expensive than the point and shoot camera used in Yamamoto et al. (2014), and have a lower resolution than the High Definition one used in Zhou et al. (2017).




2. MATERIALS AND METHODS


2.1. Dataset

The robot and vision system were tested in Enza Zaden's production greenhouse in Enkhuizen, The Netherlands. The images were acquired with 4 Intel Realsense D435 cameras, mounted on a trolley that moves along the heating pipes of the greenhouse. The cameras are placed at heights of 930, 1,630, 2,300, and 3,000 mm from the ground, and are in landscape mode. They are roughly at a distance of 0.5 m from the plants. This setup is shown in Figure 1. With 4 cameras, an entire plant can be covered in one image acquisition event. Previously a robot equipped with a moving camera was used, but that took much more time for image acquisition and was much less practical, and the relative positions of the cameras was unstable.


[image: Figure 1]
FIGURE 1. Imaging system consisting of four RealSense D435 cameras, mounted on the autonomous robot.


The RealSense cameras were configured to produce pixel aligned RGB and depth images, of size 720 × 1280. The images were acquired at night, to minimize variability in lighting conditions due to direct sunlight or cloud cover, on 3 different dates at the end of May, and the first half of June 2019. In this work, we focus on fruit detection at the level of each individual image, and therefore, registration of the images at different camera heights and over nearby positions is not addressed in this paper.

A total of 123 images were manually annotated by a group of volunteers using the labelme annotation tool1. This tool allows polygons to be drawn around visible fruit, or even a circle in case the fruit is almost spherical. Due to occlusions, the same fruit may have multiple polygons, corresponding to disjoint segments. Thus, we obtain not just the bounding box, but also the pixels corresponding to each fruit. Only the tomatoes which belong to the plant in the row being imaged, i.e., the foreground, are annotated. The annotations were visually inspected and corrected fir missing foreground fruit, or incorrectly annotated background fruit. A Matlab script was used to merge the annotations saved from labelme into a JSON file according to the Microsoft COCO format2.

This set of images was randomly split into a training set (two thirds, 82 images) and a test set (one third, 41 images). It was ensured that annotations for images at different camera heights were included in both the training and test sets. Since the annotators only labeled fruits without specifying ripeness, to be able to work with two classes–ripe/red fruits and unripe/green fruits, we apply a post-processing step in Matlab to generate ground truth annotations with two classes ripe and unripe. The chromaticity map of the color image was calculated, and the chromaticity channel values over the respective fruit's pixels are compared. If the red channel exceeds 1.4 times the green channel of the chromaticity mapping for a majority of the fruit's pixels, it was assigned the label ripe, and if not, unripe. This cutoff factor was determined empirically.

A breakdown of the numbers of images and fruits by camera position and training/test set is presented in Table 2. Figure 2 shows an example of an RGB image from the RealSense camera, its corresponding depth, and the RGB image with the ground truth for the single fruit class and two ripeness classes overlaid.


Table 2. Breakdown of ground truth annotations by camera height.
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[image: Figure 2]
FIGURE 2. RealSense camera images example: (A) RGB image, (B) depth image, (C) RGB image overlaid with one class ground truth, (D) RGB image overlaid with 2 class ground truth.




2.2. Software and Setup

The MaskRCNN algorithm (He et al., 2017) has different implementations available, the best known being Detectron, Facebook AI Research's implementation (Girshick et al., 2018) and the Matterport implementation. Detectron is built on the Caffe2/PyTorch deep learning framework, whereas the Matterport version is built on Tensorflow. We opted for Detectron because it uses a format for annotated data, which is easier for dealing with occlusions and disjoint sections of an object.

It was installed on a workstation with an NVIDIA GeForce GTX 1080 Ti 11GB GPU, 12 core Intel Xenon E5-1650 processor and 64GB DDR4 RAM, running Linux Mint 18.3, supported by CUDA 9.0.



2.3. Architectures

The ResNet architecture (He et al., 2016) (50 and 101 layer versions) and ResNext (Xie et al., 2017) (101 layers, cardinality 64, bottleneck width 4) were used in our experiments. These architectures were pre-trained on the ImageNet-1K dataset (Russakovsky et al., 2015), with pre-trained models available from the Detectron model zoo.



2.4. Training Settings

MaskRCNN uses a loss function which is of the sum of the classification, bounding box, and mask losses. The Stochastic Gradient Descent (SGD) optimizer is used by default, and this was not changed. ℓ2 regularization was used on the weights, with a weight decay factor of 0.001. A batch size of 1 image was used throughout to avoid memory issues since only 1 GPU was used. No data augmentation was used. The optimal values of the learning rates were empirically determined to be 0.0025 for ResNet50, 0.001 for ResNet101, and 0.01 for ResNext101. The training was run for 2,00,000 iterations.



2.5. Post-processing of Segmentation Results

The segmentations produced by MaskRCNN were post-processed to discard fruits from the background that may have been picked up as foreground. A Matlab script reads an image, its corresponding depth image, and its segmented objects. For each segmented object, the median depth value over the pixels corresponding to its mask is computed. Since the depth encoding in the RealSense acquisition software uses higher depth values for objects closer to the camera, a detected fruit is considered to be in the foreground if its median depth exceeds a certain threshold. Since the perspectives of the cameras are different and the fact that the fruit trusses are often closer to the middle two cameras, the depth threshold up to which a pixel is considered to be in the foreground differs by camera. The empirically selected threshold values as a function of camera height are summarized in Table 3. The depth value is encoded in 8 bits, and therefore ranges from 0 to 255.


Table 3. Depth intensity foreground limits. Pixels with depth values above these cutoffs are considered foreground.
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2.6. Performance Evaluation

We evaluate the results of MaskRCNN on our validation set. A detected instance is considered a true positive if it has a Jaccard Index similarity coefficient also known as intersection-over-union (IOU) (He and Garcia, 2009; Csurka et al., 2013) of 0.5 or more with a ground truth instance. We also vary this threshold overlap with values of 0.25 (low overlap) and 0.75 (high overlap). The IOU is defined as the ratio of the number of pixels in the intersection to the number of pixels in the union. Those ground truth instances which did not overlap with any detected instance are considered false negatives. From these measures, the precision, recall, and F1 score were calculated,
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where TP = the number of true positives, FP = the number of false positives, and FN = the number of false negatives.

For comparison, we also provide the results of our earlier work on detecting and counting tomatoes on the same dataset, which uses colorspace transforms and watershed segmentation, and detects roughly circular regions based on how closely the perimeters of detected regions can fit circles. This method was implemented in MVTec Halcon.




3. RESULTS


3.1. Detection of Tomato Fruits in General

Table 4 presents the precision and recall metrics on the test set for single class fruit detection, with different architectures and with a breakdown of these metrics over images from each of the 4 cameras. For visual comparison, we present these metrics as a 2D scatter plot, with the x-axis corresponding to the recall, and the y-axis to the precision, in Figure 3. Each color corresponds to inference results with one method/architecture. For each color, the symbols +, o, and × represent overlap IoU thresholds of 25, 50, and 75 %, respectively. Since ideally we would like both metrics to be close to 1, the best method is the one which is as much as possible to the top right corner. Figure 4 shows the results of detection using the classical segmentation method and using MaskRCNN, on the image from Figure 2.


Table 4. Summary of detection results on the test set using a model trained for a single fruit class.
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[image: Figure 3]
FIGURE 3. Plot of detection results on the test set using a model trained for a single fruit class. PP indicates depth post-processing. Each color corresponds to one method/architecture. Symbols +, o, and × represent overlap IoU thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds are linked by dashed lines. The zoomed in version of the scatter plot excluding the classical segmentation is shown in the right side.



[image: Figure 4]
FIGURE 4. Inference with single fruit class: Image from Figure 2 overlaid with fruit detection using (A) Classical segmentation using colorspaces and shape, (B) MaskRCNN with R50 architecture, (C) MaskRCNN with R101, (D) MaskRCNN with X101.


From Table 4 and Figure 3, it can be seen that the results of MaskRCNN using all the architectures are substantially better than those obtained using the Halcon based classical computer vision method. For all methods, we can notice that both precision and recall metrics are lower when the overlap threshold is 75 %, and the highest when this threshold is 25 %. This means that for a stricter matching criterion (higher IoU threshold), fewer detected fruit are being matched with an instance from the ground truth, leading to both metrics being lower. The architectures whose results are the closest to the top right corner are ResNet50 (R50) and ResNext101 (X101), for overlap threshold of both 25 and 50%.

For more visual results of tomato fruit detection with examples of images from each of the four cameras, please refer to the Supplementary Material.



3.2. Detection of Ripe and Unripe Fruits Separately

The precision and recall metrics for the two class case, obtained using the different architectures are presented in Table 5, along with the breakdown by camera, and shown as scatter plots in Figures 5, 6, for the red/ripe and green/unripe fruits, respectively. The color and symbol notations are the same as those in Figure 3. Figure 7 shows the detection results obtained for the same image from Figure 4.


Table 5. Summary of detection results on the test set using a model trained for a two fruit classes.
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[image: Figure 5]
FIGURE 5. Plots of detection metrics for the two class case. Each color corresponds to one method/architecture. Symbols +, o, and × represent overlap IoU thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds are linked by dashed lines. The zoomed in version of the scatter plot excluding the classical segmentation is shown in the right side.



[image: Figure 6]
FIGURE 6. Plots of detection metrics for the two class case. Each color corresponds to one method/architecture. Symbols +, o, and × represent overlap IoU thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds are linked by dashed lines. The zoomed in version of the scatter plot excluding the classical segmentation is shown in the right side.



[image: Figure 7]
FIGURE 7. Inference with two ripeness classes: Image from Figure 2 overlaid with fruit detection using (A) classical segmentation based on colorspaces and circularity, (B) MaskRCNN with R50 architecture, (C) MaskRCNN with R101, (D) MaskRCNN with X101.


As before for the single class case, we can see in Figures 5, 6 that the MaskRCNN metrics are noticeably higher than those obtained using the classical segmentation, for both the ripe and unripe fruit classes. However, unlike the single class case, for the ripe fruits, the metrics obtained with an IoU threshold of 50 % are higher than those with 75 %, but the precision is lower when the threshold is 25 %. This means that for the ripe fruits, lowering the overlap threshold causes more detections to be considered false positives, which can be explained by ambiguity in defining the color cutoff to define the ground truth class. For the both ripe and unripe fruits, the metrics closest to the top right corner are those obtained using the ResNext101 (X101) architecture, while ResNet101 (R101) achieves a comparable recall for the ripe fruits.




4. DISCUSSION

Comparing the visual results in Figures 4, 7 obtained using classical segmentation (hand-crafted features), the results of MaskRCNN have much fewer false positives and false negatives. It can also be seen in Figures 3, 5, 6 that MaskRCNN obtains considerably higher values of the precision and recall. Thus, MaskRCNN can better deal with the variability in the dataset than classical computer vision based on color and geometry.

Using MaskRCNN for detecting tomatoes on our data exceeds the metrics reported in previous work. The precision and recall values for MaskRCNN from Tables 4, 5, and Figures 3, 5, 6 exceed the values of precision 0.88 and recall 0.8 reported in Yamamoto et al. (2014), and the average precision of 0.82 reported in Zhou et al. (2017). Our recall values also consistently exceed the prediction accuracy of 0.91 reported in Rahnemoonfar and Sheppard (2017).

The ResNext 101 (X101) architecture is consistently better than the ResNet 50 and 101 layer architectures, as can be verified in Figures 3, 5, 6. It can be seen that the points corresponding to ResNext101 are the closest to the top right corner of the plot, and considering both precision and recall are always better than the other architectures.

With regards to the difference in detection performance over the four cameras, it can be seen from Tables 4, 5, that the metrics for the top most camera (number 4) are not as good as those of the other 3. This can be explained by there being more leaves toward the top of the plants, which make the detection of green fruits more difficult and also affect the depth thresholding. More illustrative examples can be found in the Supplementary Material, specifically Supplementary Figures 7–10 show images from the top most camera. Since there are very few ripe fruits at the height of camera 4, the metrics for the single class case are dominated by the unripe fruits. The ResNext 101 architecture again deals with this difference better than the other networks. In Table 4, without depth post-processing, the architecture obtains precision and recall values which are still comparable to or greater than those reported in Yamamoto et al. (2014) and Zhou et al. (2017). In practice the lowest camera is the most important one, since that is the height at which fruits are harvested. The top camera is used for forecasting and therefore does not necessarily need the same precision as the best camera. In addition, since the acquisition robot is automated, runs can be done every single night so that the chance of missing a fruit through obstruction is decreased quite significantly.

It can be seen from the results for both single and two class detection in Figures 3, 5, 6 that post-processing using depth to discard background false positives improves the precision but lowers the recall. This can be explained by the fact that the depth values from the RealSense depth image may have some errors, leading to some foreground fruit not being included when post-processing. Refer to Supplementary Figures 11–14 for some examples of these situations. But even without resorting to depth post-processing, the networks still learn the foreground well, since we are training with accurate foreground tomatoes through annotation by experts.

For ripeness, the metrics in Figure 5 are slightly worse for the red tomatoes. The ambiguity in defining the cut-off between the ripe and unripe classes along with the fact that our dataset contains almost twice as many unripe tomatoes as ripe ones, leads to more false positives for the ripe class than the unripe. It may therefore better to detect a single class fruits and then score a scale of ripeness.

On the basis of the results we report, we find that it is possible to robustly detect tomatoes from images taken in practical settings, without using complex and expensive imaging equipment. This can open the door to automating phenotypic data collection on a large scale, and can eventually be applied in automatic harvesting.



5. CONCLUSIONS AND FUTURE WORK

In this work, deep learning instance detection using MaskRCNN was applied to the problem of detecting tomato fruits. Experimental results show that this approach works well for the detection of tomatoes in a challenging experimental setup and using a set of simple inexpensive cameras, which is of interest to practical applications such as harvesting and yield estimation.

In future work, we will address the integration of the results of fruit detection from individual images to the level of plots, to perform a comparison with harvested yield. Including the depth as an additional input layer to MaskRCNN may also be a possible way to try and improve the detection results. This would require some method of improving the depth image quality, such as Godard et al. (2017). Finally, the use of deep learning for the detection of other plant parts such as stems and peduncles, will also be addressed.
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The rapid development of phenotyping technologies over the last years gave the opportunity to study plant development over time. The treatment of the massive amount of data collected by high-throughput phenotyping (HTP) platforms is however an important challenge for the plant science community. An important issue is to accurately estimate, over time, the genotypic component of plant phenotype. In outdoor and field-based HTP platforms, phenotype measurements can be substantially affected by data-generation inaccuracies or failures, leading to erroneous or missing data. To solve that problem, we developed an analytical pipeline composed of three modules: detection of outliers, imputation of missing values, and mixed-model genotype adjusted means computation with spatial adjustment. The pipeline was tested on three different traits (3D leaf area, projected leaf area, and plant height), in two crops (chickpea, sorghum), measured during two seasons. Using real-data analyses and simulations, we showed that the sequential application of the three pipeline steps was particularly useful to estimate smooth genotype growth curves from raw data containing a large amount of noise, a situation that is potentially frequent in data generated on outdoor HTP platforms. The procedure we propose can handle up to 50% of missing values. It is also robust to data contamination rates between 20 and 30% of the data. The pipeline was further extended to model the genotype time series data. A change-point analysis allowed the determination of growth phases and the optimal timing where genotypic differences were the largest. The estimated genotypic values were used to cluster the genotypes during the optimal growth phase. Through a two-way analysis of variance (ANOVA), clusters were found to be consistently defined throughout the growth duration. Therefore, we could show, on a wide range of scenarios, that the pipeline facilitated efficient extraction of useful information from outdoor HTP platform data. High-quality plant growth time series data is also provided to support breeding decisions. The R code of the pipeline is available at https://github.com/ICRISAT-GEMS/SpaTemHTP.
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INTRODUCTION

During the last decade, progress in phenotyping methods have given ground for the development of many high-throughput phenotyping (HTP) platforms (Berger et al., 2010; Tisne et al., 2013; Cabrera Bosquet et al., 2015; Vadez et al., 2015), established across the globe to support rapid screening of plant phenotypes. These platforms generate large-scale phenotypic datasets that are complex to handle, process, and interpret. An important aspect that contributes to the complexity of HTP data handling is the presence of exogenous effects, which primarily include system-generated noise and fluctuations in environmental conditions. This is particularly the case in HTP platforms characterizing phenotypes in open-environments or under non-controlled conditions like the LeasyScan, the PhenoField (Barker et al., 2016), or the Field scanalyzer (Virlet et al., 2017) platforms. These effects can result in large heterogeneity besides erroneous and missing observations. Hence, the data treatment from outdoor platforms requires a systematic approach to deal with such artifacts and facilitate routine usage of HTP data (Dupuy et al., 2017; Namin et al., 2018; Tello et al., 2018). There are few existing automated procedures (pipelines) to process and analyze HTP data (Klukas et al., 2014). In addition, existing ones largely use image-based analysis of plant phenotypes (Hartmann et al., 2011; Artzet et al., 2019), and some are even platform or trait-specific (Galkovskyi et al., 2012; Faroq et al., 2013; Hasan et al., 2018).

This paper presents an automated data analysis pipeline called SpaTemHTP that processes and analyzes large temporal HTP data taking into consideration the specificity of data generated on outdoor platforms. The general philosophy of our pipeline is to progressively increase the information content of the data by applying a succession of analytical steps, which subsequently enhances the understanding of complex biological processes (Van Eeuwijk et al., 2019). The pipeline comprises three components: (a) data preprocessing; (b) genotype adjusted mean computation with spatial adjustment; and (c) further analysis of the genotype adjusted means time series by logistic curve fitting and change-point analysis.

Data generated in outdoors or field-based HTP platforms like the LeasyScan (Vadez et al., 2015) are subjected to conditions that result in occasional inaccuracies/failure of data-generation resulting in extreme or missing values. Therefore, the first step of our pipeline was to preprocess raw data by removing outliers and imputing missing values. We hypothesized that those steps increase the quality of the genotype adjusted mean computation, which is the crucial task of the pipeline. The detection of outliers prevents the model estimates from being impacted by extreme values that are inflated or wrong. Removing outliers also positively influences the imputation step by restricting the data distribution to a more realistic observation from which candidate values will be chosen. In a similar way, the imputation of missing values can help the estimation of the mixed model estimates by providing complete data that were imputed taking the temporal dimension into consideration. The use of imputation methods in longitudinal data has been shown to have a positive effect on the accuracy of the mixed-model estimates (Huque et al., 2018).

The second and main step of the pipeline was to calculate genotype adjusted means using spatial adjustment. The need to adjust phenotypic data for heterogeneity due to field variation is known since many years (Gilmour et al., 1997). So far, spatial adjustment was generally done by a sequential procedure of model fitting and diagnostics steps, which was difficult to implement in an automated way. More recently, Rodríguez-Álvarez et al. (2016) introduced the SpATS model, a two-dimensional (2D) P-spline approach for mixed model spatial adjustment. Velazco et al. (2017) demonstrated that the SpATS model could be successfully adapted for routine applications. Therefore, the SpATS model gave us the opportunity to perform spatial adjustment for genotype adjusted mean computation in an automated way on large HTP time series data. To the extent of our knowledge, the routine application of spatial adjustment to obtain genotype adjusted mean time series from outdoor platform HTP data has not yet been done.

Another advantage of the SpATS model application is the possibility to improve the estimation of the trait heritability, which is an important criterion for breeders (Velazco et al., 2017). In this article, we have considered the broad-sense trait heritability defined as [image: image]), where [image: image] and [image: image] represent genotypic and error variance, respectively. Therefore, accounting for spatial variation will reduce [image: image] since some variation that was previously considered random noise will be considered spatial variation. Such a reduction of [image: image] would increase h2 and help obtain a better estimate of the proportion of the genetic component that resulted in phenotypic variability.

In the last step of the pipeline, we continued the temporal analysis of the genotype adjusted means generated in the previous step by modeling the growth curve and by identifying important plant growth stages. Indeed, temporal analysis of HTP data has also been rarely considered, although it is known that phenotypic expressions of genotypes vary with crop growth stages (Coleman et al., 1994; Ibañez et al., 2017). Plant growth typically follows temporal patterns that can be generally described as (i) initial slow growth (lag phase), (ii) phase of rapid (exponential) growth which gradually slows down toward the end of the system cycle, and (iii) steady phase (Yin et al., 2003; Shi et al., 2016). Phenotypic variations across these stages (i.e., the growth patterns) also contribute to the differences among the genotypes and influence genotypic adaptation to environmental contexts (Chapman, 2008; Kholová et al., 2014). These growth phases can be statistically detected and used to analyze genotypic variance (Chapman, 2008). Here, we used a change point analysis to identify the portion in the temporal dataset where the probability to capture genotypic variance was maximized. Therefore, the second important contribution of this study was the use of genotype adjusted means time series and heritability estimates (obtained after spatial correction) to enable the systematic identification of critical growth phase(s) having maximum genotypic variance.

In the following sections, SpaTemHTP is illustrated by applying it on a wide range of scenarios varying in terms of species (chickpea, sorghum), phenotypic traits (leaf area, projected leaf area, plant height), and experiment replications. Using real-data analyses and simulations, we evaluated the different components of SpaTemHTP (outlier detection, missing value imputation, and spatial adjustment) to estimate their relative contribution in the quality of the temporal series of genotypic estimates. We further illustrated the capacity of SpaTemHTP to detect growth phase and cluster genotypes in consistent groups.



MATERIALS AND METHODS


Data and Test-Site Description

Phenotypic data from two diversity panels were used (Table 1). The first was a chickpea (legume) panel comprising 288 genotypes, and the second was a sorghum (cereal) panel with 384 genotypes. Those panels cover around 90% of the genetic diversity of their respective species (Upadhyaya et al., 2002; Billot et al., 2013). The two populations were phenotyped at ICRISAT-Patancheru (17.5111° N, 78.2752° E) using the LeasyScan HTP platform (Vadez et al., 2015)1 during two seasons. Information about the season, date, and the duration of each experiment is given in Table 1. In each experiment, four replicates of each genotype entry were laid out in an alpha design with 12 blocks containing 24 and 32 genotypes for the chickpea and the sorghum population, respectively. The crops were raised in plots of dimensions: 60 × 40 × 65 cm3 (length, width, and height) filled with farm-collected vertosol using agronomic practices recommended by Trivedi (2008). Here, we want to emphasize that using four replicates per genotype is larger than what is generally done in phenotyping experiments of similar association panels, e.g., in Rodríguez-Álvarez et al. (2016), two replicates were used, and in Zaman-Allah et al. (2015) and Prom et al. (2019), three replicates were used.


TABLE 1. Dataset description.

[image: Table 1]In the LeasyScan HTP platform (see schematic visualization in Supplementary Figure 1), Phenospex’s 3D laser scanners are employed to provide 3D images of the plants. The platform has a total capacity of around 5,000 sectors arranged in eight trenches (each having two columns). There are eight scanners (one per trench) mounted on top of an irrigation boom (automated sprinkle irrigation is used for the platform) which project a laser line on top of the canopy. A camera with 45° angle of view captures the reflection of the laser line at a high rate (50–80 pics/s), allowing the simultaneous reconstruction of 3D images of all the plants. Several algorithms then operate (handled by Phenospex engineers) to extract several morphological traits. The scanners measure the canopy parameters of each sector at an interval of 2 h, and the median value per day is used as the daily measurement of a given trait. Among the available traits, we used the daily means of 3D-reconstructed leaf area (LA3D; mm2), projected leaf area of the canopy (PLA; mm2), and plant height (PH; cm). Those traits indicate the rates of biomass accumulation and can be considered an estimate of crop vigor (Flood et al., 2016; Sivasakthi et al., 2017; Yang et al., 2020).



Pipeline Overview

The pipeline outline is illustrated in Figure 1 which sequentially represents the discrete modules used for converting raw phenotypic data into useful information. The following sections describe each of the methods used for data preprocessing, genotype adjusted mean computation, and temporal analysis of genotypic estimates.


[image: image]

FIGURE 1. Block diagram of the three stages of SpaTemHTP pipeline, illustrated according to the sequence of steps followed for HTP data analysis.




Stage 1: Preprocessing


Outlier Detection

The first step in preprocessing was the detection of outliers, which are the extreme values that occurred mostly due to measurement errors. Outliers in the raw data were detected for each day using boxplots (Sun and Genton, 2011) of the phenotypic value distribution per day, i.e., the distribution included all genotype and replicate values of a specific day. The 25% quantile (QR1), 75% quantile (QR3), and 50% interquantile range (IQR) were calculated, and the observations below QR1 – 1.5 ∗ IQR or above QR3 + 1.5 ∗ IQR were considered outliers. Those outliers were replaced by missing values and then imputed in the next step along with the already existing missing values in the dataset.



Missing Value Imputation

The second step in preprocessing was the imputation of missing values. According to Huque et al. (2018), the use of multiple imputations (MI) on longitudinal data can improve the accuracy of mixed model estimates. This can be due to the capacity of MI to borrow information on the past and future points of the time series to identify genotypes with similar growth pattern and fill the gap of the missing genotypes with similar observed values. We performed MI using the predictive mean matching (PMM) method from the R package “mice” (Buuren and Groothuis-Oudshoorn, 2010). PMM is a method that was developed to reduce the bias by drawing real values sampled from the observed data (Rubin and Schenker, 1986). Therefore, the detection of outliers prior to imputation helps in restricting the observed values distribution to credible values by removing extreme observations. PMM is also a robust and an assumption free method, which can be used for traits with any type of distributions (White et al., 2011).

In our situation, PMM sequentially imputes the missing values of a specific day using the other days information by applying the following steps:

(a) Let us assume we impute the missing values of di. In that case, the other days constitute the set of predictors, z = [d1, …, d(i–1), d(i+1), …, dn].

(b) For the non-missing values of di, PMM performs a linear regression of di on [image: image] using the complete time series information to determine phenotypic values with similar biological trends.

(c) PMM samples a reduced number of linear regression coefficients from the whole sample b = [b1, b2, …, bn] to predict values for both missing [image: image] and non-missing values of di [image: image]. The random sampling of the b coefficients allows to generate some variability by sampling in the multivariate normal distribution with mean b variance σ2 (b).

(d) For each predicted value corresponding to a missing value [image: image], PMM identifies a number of close values in [image: image] (in our case 5) corresponding to an observed value ydiObs. Those values can come from any observed data point of the [image: image] distribution.

(e) PMM imputes each missing values ydiMiss by drawing one of the observed values ydiObs from the sample of values for which the predictions [image: image] were close enough to the missing value prediction [image: image].

(f) The procedure is repeated for each missing value of di and for each day. For further details, see van Buuren and Groothuis-Oudshoorn (2009).

PMM works with data missing at random (MAR) or missing completely at random (MCAR) (Morris et al., 2014). In our case, the daily amount of missing values ranged between 0 and 56.25% with an average of 6.25% across the eight configurations (crop × experiment × traits) (Table 1). We noticed that missing data did not show any pattern across time (see Supplementary Figure 2). Therefore, we could reasonably assume that data were not missing not at random (MNAR) because the missing pattern did not depend on the plant or trait growth stage. In the case of the LeasyScan, which is set up outdoors with partly wireless data transmission, we assumed that data were mostly missing at random being a mix of: (a) MCAR data due to external factors like technical problems and/or natural phenomenon (e.g., wind, birds, or other animals) and (b) MAR data due to time and spatial position. In the latter case, temporal and spatial information was taken into consideration in the PMM imputation process. According to Marshall et al. (2010), the PMM algorithm can handle up to 75% of missing values.

We hypothesize that the sequential application of outlier detection and PMM missing value imputation in HTP time series data is a simple strategy to replace extreme values by realistic observations using the information from the growth pattern, which will ultimately improve the accuracy of the genotype mixed model estimates.



Stage 2: G-BLUE Computation With Spatial Adjustment

The second step of the pipeline was the computation of genotype best linear unbiased estimates (G-BLUEs) using spatial adjustment. The G-BLUEs were calculated using the following realization of the SpATS model (Rodríguez-Álvarez et al., 2016; Velazco et al., 2017):

[image: image]

where, yijklm is the trait value of jth replication of genotype i in block k, row l, and column m. The term f(rowl,colm) is an expression of the smooth spatial surface expressed in terms of row and column information accounting for spatial variation. In the SpATS model, f(rowl,colm) is modeled by a 2D-penalized spline including linear trends across rows and columns, row-column linear interaction, smooth trend across rows and columns, and a smooth-by-smooth interaction between rows and columns. For further details, see Rodríguez-Álvarez et al. (2016) and Velazco et al. (2017). Finally, eijklm represents the plot error term that is normally distributed [image: image]. The replicate, block, row, and column terms were considered random with a specific error term. To calculate the G-BLUEs, the genotype term was treated as fixed.

To evaluate the effect of spatial adjustment, we calculated the G-BLUEs with and without spatial adjustment. The G-BLUEs without spatial adjustment were calculated using a reduced version of model 1 without the f(rowl,colm) term. In a similar way, we used those two versions of model 1 (with and without spatial term) to calculate the heritability (h2). In those cases, we treated the genotype term as random to estimate the genetic variance [image: image]. For the non-spatially adjusted model, h2 = [image: image][image: image][image: image]). For the spatially adjusted model, h2 is calculated in terms of the effective dimension or the effective degrees of freedom associated to the genetic component in the SpATS model (EDg) (Rodríguez-Álvarez et al., 2016). The effective dimension of a model is computed as the trace of the hat matrix H, and Hg is the hat matrix for genotypes. If the number of genotypes = ng and the number of zero eigenvalues of Hg = l, then h2 = EDg/(ng−l). We calculated models with spatial adjustment using the R package “SpATS” (Rodríguez-Álvarez et al., 2016) and the one without spatial adjustment in GenSTAT version 18 (VSN International, 2015).

The combination of each of the abovementioned data processing and G-BLUE calculation options: outlier detection (yes/no), missing value imputation (yes/no), and spatial adjustment (yes/no), represents a total of eight strategies (S1–S8) to calculate G-BLUEs from raw data (Table 2). In the next part of the article, we will refer to those strategies as S1–S8.


TABLE 2. List of strategies to process data from the raw data to the G-BLUE computation.

[image: Table 2]


Single-Step Mixed-Model G-BLUE Computation

An alternative to generate the G-BLUEs is to use a single-step mixed-model approach where outliers are iteratively removed based on the model residuals and the missing values imputed during the estimation procedure. We called this strategy S9 and compared it with the other strategies (S1–S8). To perform S9, outliers were iteratively removed by applying the Grubbs test (p < 0.05) (Grubbs, 1950) on the residuals of model 1. This strategy is similar to the one applied in Lehermeier et al. (2014).



Validation of the G-BLUE Computation

To validate our pipeline, the G-BLUE computation and the data preprocessing steps were extensively evaluated. We performed cross validation (CV) to assess the predictive ability of the mixed model used for the G-BLUE and heritability (h2) computation, which are important information for breeding purposes. We also performed a more direct evaluation of the G-BLUE computation by estimating the correlation between the G-BLUEs obtained from the same population but in two different experiments (e.g., CPE1 and CPE2) at the same stage of development.


Cross Validation

For each combination of population (chickpea, sorghum), trait (PH, LA3D), and experiment (E1, E2), 10 replications of a fivefold CV were performed. To cover the time variability, a different day for each CV replication was randomly selected. In each CV replication, the trait observations were randomly assigned to five samples of equal size. During the five runs, each sample was successively used as the validation set, and the rest of the data went into the estimation set. The estimation set was used to estimate the parameters of model 1. Then, using those parameters estimates, validation set trait values were predicted ([image: image]) as per the experimental design and genotype information of the validation set. We used the Pearson correlation (ρ[image: image], y) between ([image: image]) and the observed trait values as a measure of the predictive ability. During the CV, the h2 in the training sets was also estimated to evaluate the influence of the procedure options on this parameter.

For each CV run, we sequentially applied S1–S9 preprocessing and spatial adjustment strategies on the same estimation and validation data partitions. This allowed us to evaluate the contribution of each component (outlier detection, missing value imputation, and spatial adjustment) on the predictive ability of the mixed model used to calculate the G-BLUEs and the heritability. Using 10 replications of a fivefold CV gave 50 values to determine the average ρ[image: image], y and h2 of each strategy.



Between Experiment Comparison

To complement the CV, we also performed a comparison between experiments run on the same population but at different times, for example, CPE1 and CPE2. For each day at a comparable growth stage, we calculated the Pearson correlation (ρE1, E2) between the G-BLUEs in the two experiments. ρE1, E2 evaluates the ability of a strategy to estimate accurately the genotypic component of the phenotype measurements (Velazco et al., 2017). Ideally, we expect this genetic component to be stable across experiments.

The average ρE1, E2 was calculated for each combination of trait (PH, LA3D) and pair of experiments (CPE1–CPE2, SGE1–SGE2) over all comparable days (CP, 22 days; SG, 21 days). This operation was repeated for all Table 2 strategies to evaluate the respective influence of outlier detection, missing data imputation, and spatial adjustment on ρE1, E2.



Simulations

As suggested by one of the reviewers, we performed simulations based on real data to evaluate the robustness of the methods to manage outliers and/or missing values in the G-BLUE computation. For that purpose, the SGE1 PH data was selected as the most “controlled” dataset, since it had the lowest percentage of missing values (0.29%), a low percentage of outliers (1.6%), and a high heritability (around 0.7) showing the importance of the genetic component compared with other factors. The 15th day of the series was selected as the reference since it contained no missing values and a low number of outliers (1.4%). The G-BLUEs of that day were calculated and kept as reference. Then some noise was introduced in the time series by adding extreme and/or missing values. We tested three scenarios: (a) addition of x percent of missing values; (b) addition of noise on x percent of the values to generate outliers; and (c) a + b. To generate outliers, we added values drawn from a normal distribution N(0, 3∗σ2(population at day i)) to x percent of the data. The simulations were run setting x at 10, 20, 30, 40, and 50%. We evaluated the efficiency of the outlier detection, missing value imputation, and their combination by calculating the correlation between the reference G-BLUEs and the G-BLUEs obtained with strategies S5–S9. We repeated the procedure 10 times for each scenario.



Assessment of the Genotype Growth Patterns

Time-ordered plots of G-BLUEs obtained with strategies S5–S9 were used to visualize the general growth pattern of the genotypes. We also performed some modeling of the growth curves by fitting a logistic curve to the genotype-specific G-BLUE time series. The logistic curve can be used to describe data with a sigmoidal pattern as the one we expect in biological growth (Cao et al., 2019). To fit the logistic curve, the function “drm” from the “drc” R package (Ritz et al., 2015) was used, which determines the curve parameters by likelihood function maximization. The average coefficient of determination (R2) was used as a goodness-of-fit measurement to evaluate the possibility to summarize the G-BLUEs data with the logistic function for each combination of species, trait, experiment, and strategy (S5–S9).



Stage 3: Temporal Analysis of G-BLUEs

In the LeasyScan platform, it has been observed that the scanner resolution drops as plants grow larger and canopies overlap with each other (Vadez et al., 2015). At this stage, while trait value differences between genotypes increase, the h2 tends to decrease (Vadez et al., 2015). Both trait differences and h2 represent two key components for breeders to make selection. They need to select from maximum trait differences (canopy growth traits here), while having maximum genetic variance (highest possible h2). It was thus, important to identify the time-points (or duration) at which the progression and relationship between both the variables altered together. Additionally, we also wanted to identify a window, called the optimal time window (OTW) in the crop growth duration which maximizes genotypic diversity as well as h2. To obtain the OTW, simultaneous changes in the distributions of the two variables during crop growth were first identified using the multivariate change-point analysis (CPA) method (Matteson and James, 2014). CPA was performed for each trait separately.

To represent the evolution of the genetic diversity over time, we used a measurement of distance between genotype cluster (Clust-Dist). Clust-Dist was calculated through clustering of the entire spatially adjusted G-BLUEs time series (of each trait) using the Gaussian Kernel K-Means clustering method (Dhillon et al., 2004; Steinbach et al., 2004). To determine the optimal number of genotypic clusters, the Silhouette method (Rousseeuw, 1987; Das and Padhy, 2017) was used. After determining the optimal number of clusters, genetic diversity values between those clusters were estimated by calculating the Euclidean distance between the cluster centers at each day (Dhillon et al., 2004). The Clust-Dist were leveraged as a measurement of genetic diversity change over time. The incorporation of distance between clusters as a measure of genotypic diversity has also been shown in Tyagi et al. (2015) and Sarker et al. (2017). Subsequently, the trait h2 calculated for each day resulted in a time-ordered set, that was used as the second variable for performing CPA. The E-statistic-based multivariate CPA was implemented to identify the TWs using the R package “ecp” (Matteson and James, 2014). The utilization of multivariate time series data for detecting and understanding the temporally changing relationships between different variables is also shown in Cabrieto et al. (2017).



Genotypic Clusters × Time Window Analysis

A genotypic clusters (Gc) × time window (TW) analysis was conducted as a validation of the final pipeline results. This analysis was used for understanding the relative importance of identified groups of genotypes, of the TWs, and of their interaction. For that purpose, we clustered the G-BLUEs within the OTW into three groups (“low,” “medium,” and “high”) using a k-means clustering procedure (Ding and He, 2004). A two-way analysis of variance (ANOVA) was performed to examine the stability of the clusters in terms of the statistical significance of the Gc × TW interaction for each trait. In this step, the average values of the G-BLUEs within each TW of each genotype, were used to estimate the interaction effects using the model: yijk = μ + Gci + TWj + Gc×TWij + eijk, where yijk is the average G-BLUE value of the genotypes present in ith genotypic cluster, jth time window and kth replicate. Gci and Tj are the effects of ith cluster and the jth TW, respectively. GcGc×TWij denotes the interaction effect between the ith cluster and the jth TW. eijk represents the residual error term.



Pipeline Code and Data Availability

The pipeline was programmed in an R (R Core Team, 2017) package available at: https://github.com/ICRISAT-GEMS/SpaTemHTP. All data, scripts, and functions required to reproduce the results can be found at: https://github.com/ICRISAT-GEMS/SpaTemHTP_Validation.



RESULTS


Validation


Cross Validation

In Table 3, we present the average ρ[image: image], y and h2 results obtained over the whole CV procedure. The information is organized per data treatment (outlier detection, missing value imputation, and spatial adjustment) such that each cell represents the average treatment effect, e.g., outlier detection yes over the two other treatments (i.e., missing value imputation: yes and no, and spatial adjustment: yes and no). For example, the first cell represents the average ρ[image: image], y results of S2, S4, S6, and S8 (all strategies with outlier detection). For each treatment, the average ρ[image: image], y difference with and without the treatment was calculated to evaluate its usefulness. The statistical significance of those differences was estimated using a t-test. At the end of Table 3, the difference between S8, which includes all data treatment options, and the single-step mixed-model G-BLUE computation (S9) is also compared.


TABLE 3. Average predictive ability (ρ[image: image], y) and heritability (h2) for LA3D and PH traits of chickpea (CP) or sorghum (SG) experiments 1 and 2 (E1, E2) obtained with (denoted as “yes”) and without (denoted as “no”) the effect of each data treatment (outlier detection, missing value imputation, and spatial adjustment (ρ[image: image], y).

[image: Table 3]Concerning ρ[image: image], y, spatial adjustment was the only treatment that enabled a significant improvement in the results. The effect of spatial adjustment was significant in five out of eight cases. The significance of spatial adjustment was also noticed in terms of h2. The average h2 difference between strategy with and without spatial adjustment was always large and highly significant. For further details about the implementation of spatial adjustment for different traits see Supplementary Figures 3, 4. The effect of missing value imputation on h2 was also beneficial in some cases (CPE1 PH, CPE2 PH). Finally, from the comparison between the S8 and S9, it can be emphasized that there were no significant differences either in terms of ρ[image: image], y or h2 in the CV procedure.



Between Experiment Comparison

Table 4 consolidates the results from the between experiment comparison procedure, and it is similarly organized as Table 3. The information per data treatment is presented such that each cell represents the average G-BLUEs correlation (ρE1,  E2) for a specific treatment (e.g., remove outliers) over the other treatments (i.e., missing value imputation: yes and no, and spatial adjustment: yes and no). For example, the first cell represents the average ρE1,  E2 for S2, S4, S6, and S8 (all strategies with outlier detection). For each treatment, the difference between the average ρE1,  E2 with and without the treatment was calculated to evaluate the usefulness of each treatment. The statistical significance of those differences was estimated using a t-test. The end of Table 4 shows the comparison between S8 and S9.


TABLE 4. G-BLUEs correlation between two experiments on the same population (ρE1,  E2) of chickpea (CP) and sorghum (SG), for the traits LA3D and PH, obtained with (denoted as “yes”) and without (denoted as “no”) the effect of each data treatment (outlier detection, missing value imputation, and spatial adjustment.

[image: Table 4]The between experiment comparison results confirmed what we observed in the CV procedure. The most influential factor was the spatial adjustment. In three situations out of four, we observed a significantly larger ρE1,  E2 in strategies with spatial adjustment. We could also observe a small positive effect with the detection of outliers (CP PH) and imputation of missing values (CP LA3D). Concerning the comparison between S8 and S9, we could observe a small positive effect of using S8 in the CP PH case.



Simulations

Table 5 contains the simulation results. As expected, the correlation between the calculated G-BLUEs and the reference decreased from the scenario with only missing values to the scenario with missing values and noise. We could also notice that the correlation decreased when the amount of missing values and/or noise increased from 10 to 50%. We could observe that, generally, the results obtained in the scenarios with only missing values were high and stable with values between 0.91 and 1. The result obtained with method S7 using only imputation were particularly good (0.99–1).


TABLE 5. Results of the simulation using real data (SGE1 PH).

[image: Table 5]In the simulations with noise addition and noise addition along with missing values, we could observe that strategy S8, which combines outlier detection and missing value imputation, produced the largest correlation in almost all situations. In all those cases but one (addition of 50% of noise), S8 outperformed S9. The differences between the best method (S8) and the others increased until 20% of noise and/or missing values and then decreased.



Assessment of the Genotype Growth Patterns

In Figure 2, the raw genotype scores and the G-BLUEs time series obtained with different strategies (S5–S9) were plotted in an increasing order of data treatment: from raw data to S8 involving all data treatments. This figure helped to visually evaluate the quality of the time series in two specific scenarios (CPE2 LA3D and SGE2 PH). The G-BLUEs time series of the more erratic raw chickpea data was found to improve considerably from S5 to S8 with progressive introduction of the data treatment steps (outlier detection, imputation, and spatial adjustment). The data treatment sequence reduced the amount of abrupt fluctuations in the time series. In CPE2 LA3D, it was also observed that the G-BLUEs time series obtained from S8 were less erratic than the ones obtained with S9 (single-step mixed model).


[image: image]

FIGURE 2. Comparison of the biological growth pattern of the raw data for chickpea (CPE2) LA3D and sorghum (SGE2) PH and the series of genotypic BLUEs obtained from S5 to S9. The red line in each plot represents the average of the fitted logistic curves for all genotypes.


An inspection of the SGE2 PH time series revealed that the phenotypic data were originally less noisy than the raw CPE2 LA3D values. The differences between the time series and the growth trend corresponding to the different scenario (S5–S9) were also less prominent than in CPE2 LA3D. From the general shape of SGE2 PH values and the average logistic function (red curve), it was evident that these data present a nice example of the sigmoidal growth pattern.

From a general point of view, we could notice in Table 6 that the G-BLUEs growth pattern was well described by the logistic curve. The growth patterns of the sorghum experiments (R2: 0.97–0.99) and chickpea LA3D (R2: 0.94–0.98) were almost perfectly described by the logistic curve. For chickpea PH, 71–85% of the variation could be explained by the logistic curve. In all situations, the use of strategy S8 combining outlier detection and missing value imputation produced the highest R2 values. In the chickpea PH experiments, we could see that strategy S6 using outlier detection performed better than S7 with only missing value imputation.


TABLE 6. R2 estimates of the logistic fit for the G-BLUEs time series data obtained with strategies S5–S9 for traits, LA3D, and PH of each chickpea (CP) and sorghum (SG) experiments.

[image: Table 6]


Change-Point Analysis of G-BLUEs

Figure 3 illustrates the TWs obtained after preprocessing and spatial adjustment in a chickpea example (CPE2 LA3D, Figure 3A) and a sorghum example (SGE2 PH, Figure 3B). The TWs essentially represented the initial lag-phase of plant canopy establishment, the phase of rapid canopy expansion and the later vegetative stage during which the canopies closed. Four TWs were obtained in the chickpea example (Figure 3A) and the last one depicted the canopy closure phase during which reliable measurements of the canopy growth parameters were not feasible. Although both the second and third TWs depicted linearly increasing (sometimes erratic) growth, heritability estimates were observed to exhibit a linearly decreasing trend in the third TW. Hence, the second TW was considered optimal for further analysis. The trait development growth curve in the sorghum example (Figure 3B) was both smoother and closer to the sigmoidal pattern compared with the chickpea example (Figure 3A), owing to two factors: (i) better quality raw data in sorghum and (ii) since sorghum plants are larger than chickpea, the former reached a plateau within the time course of the experiment. The second TW in the sorghum example represented the steepest trend in crop growth as well as highest median h2 estimate, and hence was optimal. The median h2 (∼0.7) during the OTW of both examples ensured reasonable genotypic variance during that growth phase, which could be suitably leveraged for breeding applications.


[image: image]

FIGURE 3. The plots of change point analysis (CPA), illustrating the patterns of daily heritability (h2) estimate and the Clust-Dist for (A) LA3D of CPE2 and (B) PH of SGE2. The vertical red lines in the plots denote the “change points” and the annotations between two change points (i.e., within each time-window) denote the corresponding growth phases.




Gc × TW Analysis

The results of Gc × TW analysis are presented in Tables 7, 8. The effect of TW was found to be highly significant (p < 0.001) for all the traits, species, and experiments, while the interaction term had the least significant effect. In terms of crop types, TW explained an average of approximately 85 and 95% of the total sum of squares in chickpea (Table 7) and sorghum (Table 8), respectively. This implied that sorghum exhibits more vigorous transitions in phenotypic development than chickpea. The relative effect of TW was similar for both the traits (LA3D and PH) of sorghum, which exhibited quite close mean sum of square percentage (SS%), i.e., ∼94–95%. However, LA3D (mean SS% of TW ∼87%) in chickpea developed more diversely across growth phases than PH (mean SS% of TW ∼82%). It was further observed that the cluster differences in chickpea were significantly larger than that of sorghum. The relative effect of the Gc × TW interaction was however similar in both the chickpea experiments but differed between the two sorghum experiments. In terms of traits, SS% associated with Gc was again found similar for both LA3D and PH, in sorghum, while it differed marginally between PH and LA3D of chickpea. The average SS% explained by the Gc × TW interaction in chickpea (4%) and sorghum (0.5%) also suggested that chickpea clusters varied more between the TWs than that of sorghum. Hence, it showed that sorghum clusters were probably more consistent over time than the chickpea clusters. These Gc × TW findings thus, corroborated (i) the stability of clustering and (ii) the importance of OTW identification.


TABLE 7. The degrees of freedom (Df), sum of squares (SS), percent sum of squares (SS%), mean squares (MS), and the F-value (F-val) are shown for each source of variation, obtained from the Gc × TW analysis of LA3D and PH of chickpea experiments (CPE1, CPE2).

[image: Table 7]
TABLE 8. The degrees of freedom (Df), sum of squares (SS), percent sum of squares (SS%), mean squares (MS), and the F-value (F-val) are shown for each source of variation, obtained from the Gc × TW analysis of LA3D and PH of sorghum experiments (SGE1, SGE2).

[image: Table 8]


DISCUSSION


Effect of Data Preprocessing

As observed from the simulation results (Table 5), the use of a strategy combining outlier detection and missing value imputation (S8) performed the best in most of the cases. Especially in the datasets affected by both missing values and contaminated data, which increased the number of outliers. Such outcomes were also reflected in the real data analyses, but to a lesser extent. For example, the positive effect of outlier detection was noticed only in the CP PH between experiment comparison (Table 4). We could also detect a positive effect of missing value imputation on h2 in the CV performed on dataset CPE1 PH (Table 3). Those results were all observed in the chickpea data that contained more missing and extreme values. Therefore, data preprocessing we propose is mostly useful for data characterized by a large amount of noise, which can be characteristics of data generated on outdoors HTP platforms.

The difference between the simulations results and the real data evaluation can be explained by two factors. The first one is the amount of contaminated data needed to observe significant differences. As per the simulations, we could start to observe significant differences between the procedures when the proportion of contaminated data was at least 10–20%. Whereas, in the real data, the maximum proportion of the values that could be considered outliers was only 3.6%, which certainly represented lower levels of data contamination. Another reason is that in the CV process, the days were randomly selected. While some of those days could have many contaminated values, others might have had a few, and averaging of those results could cancel out the effects.

It was further noticed from the simulations that, the sole presence of missing values is not a big problem. All the methods were able to obtain particularly good results even in scenarios involving up to 50% of missing values. In those scenarios, we could see that strategy using only imputation (S7) was very performant. Such a result supports the idea that PMM is an appropriate method for imputation in HTP time series data. It is similar to previous findings showing the robustness of PMM against large rate of missing values (Marshall et al., 2010; Kleinke, 2018).

The presence of extreme values in the data is more problematic than the one of missing values. According to the simulations, the procedures could still produce reasonably good results up to 30% of contaminated data if there are no missing values. The presence of missing values along with noise results in reduced performance of the procedures, which becomes critical beyond 20–30% of contaminated and or missing values. Although these results are quite informative, the simulations presented in this article are derived from a single real-data situation. The users could apply the same procedure on their data to determine the limitations specific to their situation. Here, we also want to highlight the fact that, in this study, we globally did not experience a situation where the leaf area was substantially dropping over time. However, as we could observe in Figure 2 (SG), the leaf area tended to decrease on the last day. This could be the sign that the plant started to reach the plateau phase. We could also imagine that in other conditions like water stress, the total leaf area would decrease at a certain point due to leaf senescence. In that case, we would use another model to fit the data. For example, we could use a segmented linear function with one linear function describing the growth phase and another function describing the decrease phase when leaf senescence dominates the process. However, currently those analyses are beyond the scope of this work.

The simulation results also supported the use of S8 combining outlier detection and missing value imputation in separate steps over S9, which performs imputation during the estimation process and detects outliers based on the mixed model residuals. In all scenarios where noise was added to the data, S8 obtained better results than S9. We could also observe such a result but with a reduced difference in the between experiment comparison (CP PH) and the goodness of fit results of the logistic curve (e.g., CPE1 PH).

From a methodological point of view, the difference between S9 and S8 is due to the fact that S9 uses data only from a single day, while S8 benefits from the information present in the whole time series to impute the missing values. In S8, the possibility to use past and present information allows to build highly accurate prediction for missing values using the growth trend information. In S9, however, missing value imputation is done using the spatial and genetic information of a single day, which makes it more sensitive to the presence of extreme values on that day. The sequential application of outlier detection and imputation by considering the similar values in the phenotypic time series is therefore, a simple yet effective strategy to restore information in contaminated data.



Effect of Spatial Adjustment

The use of spatial adjustment had a positive and significant effect in almost all data analysis evaluations. Such a result can be explained by the fact that data measured in outdoor or field conditions like on the LeasyScan platform are subject to a substantial amount of spatial variation. More precisely, we could see in the SpATS results (Supplementary Figure 3) that the replicates located closer to the wall (e.g., Supplementary Figure 3C) exhibited faster phenotypic development (represented in yellow), likely because of overnight dissipation of the heat accumulated in the concrete wall, compared with the ones located in the middle or on the opposite edges of the platform. Furthermore, the complexity of such spatial interaction was found to increase as the crops grew larger (Supplementary Figure 4). As far as we know, the use of spatial adjustment to process HTP data from an outdoor platform has not been evaluated in previous studies. Extending the results from Velazco et al. (2017), we have shown that the application of the SpATS model in a routine analysis is of great value to account for spatial variation and increase the genetic heritability. The high goodness of fit values for the description of the G-BLUEs time series using a logistic curve (Table 6) illustrates the overall quality of the proposed procedure and its ability to obtain biologically relevant profiles of plant growth traits.



Temporal Analysis of G-BLUEs

Phenotyping of complex traits, e.g., those associated with canopy development, in a diverse set of genotypes is often found to be challenging under non-controlled environments, due to the differences in the responses of genotypes to ambient conditions. This eventually results in reduced h2 of the growth-related traits (Rebetzke et al., 2014). van der Heijden et al. (2012) have discussed the need to exploit temporal information for improving phenotyping efficiency of traits like total leaf area. A few studies have considered temporal plant phenotyping for assessing genotypes based on temporal patterns of phenotypic development (van Dusschoten et al., 2016; Das Choudhury et al., 2017). However, to the extent of our knowledge, a systematic approach to determining an OTW where h2 and genetic diversity are maximized, has not yet been proposed. The incorporation of CPA in this study is therefore an effort to enable an automated and systematic extraction of temporal information from phenotypic data, such that both genetic diversity as well as trait heritability are maximized. Hence, obtaining smoother G-BLUEs time series was also beneficial for identifying the OTW, since an important aspect of the pipeline was to differentiate temporal sections of the G-BLUEs time series with maximum genotypic resolution.

From Figure 3A, phenotypic data toward the later portions of the chickpea experiment were erratic due to overlap of crop canopies, especially during the rapid growth phase, resulting in consequent loss of sensor resolution (Vadez et al., 2015; Zhokhavets et al., 2018) and lowered h2. In the chickpea example (Figure 3A), although both 2nd and 3rd TWs biologically represented the rapid growth phase, a declining trend of h2 was found in the 3rd TW. Therefore, the 2nd TW with the highest genotypic resolution was chosen as optimal. The selected OTW confirmed with our initial hypothesis, and as suggested by van der Heijden et al. (2012) that—the most suitable time to phenotype plants is during initial period of rapid development, when plants are less high and dense, i.e., before the canopy closure phase. Phenotypic data within the OTW of each trait were further utilized to cluster genotypes based on the similarity in their canopy growth or vigor patterns.

The stability of the clusters across the TWs (Tables 7, 8) was also shown for each of the canopy-growth traits, since the interaction effect was found to be small compared with the TW and cluster effect. Minimal interaction effect achieved through OTW cluster-based Gc × TW analysis also implies more predictable performance of the trait of interest for each genotype within a particular cluster (Sorrells, 2015). Thus, by fitting the two-way ANOVA model, we could verify the biological assumption that—most of the phenotypic variation comes from the difference in growth stage (TW), to a reduced but significant extent from the genotypic difference (Gc) and to a lesser extent from difference in genotype modified by the time (Gc × TW). However, several studies have reported that large interaction effects that tend to complicate results interpretation, since phenotypic expression (and hence, ranking) of genotypes would differ across environments (Kaya et al., 2006; Tulu and Wondimu, 2019). Those studies primarily consider genotypic analysis across environments, and not growth-phases, which could also potentially alter the ranking of genotypes. Therefore, clustering similar genotypes based on the results of CPA was performed, since information contained in temporal datasets is generally non-homogeneous throughout the crop growth stage due to changing patterns of phenotypic development (Shi et al., 2016).

Obtaining such consistent results from the temporal analyses could be ascribed to the effects of systematic data treatment. Those procedures helped produce “clean” time series that were more representative of the underlying biological mechanism, in terms of both trait growth and the differences among genotypes. While the preprocessing procedures helped improve the possibility to detect some continuity in the time series (important to detect the effect of time), spatial adjustment helped remove variability due to spatial heterogeneity and then estimate the genotypic effect. Consequently, the improved estimate allowed detecting the ‘true’ expected differences between genotypes. Therefore, we believe that with the proposed procedure the resultant data will be representative of their expected behavior in future experiments, which is essential for selection.



CONCLUSION

Many HTP platforms have been established to perform large-scale experiments, where hundreds of genotypes are screened simultaneously. Although such platforms can generate large datasets, their usage is frequently limited because of the non-availability of convenient and suitable HTP data analysis pipelines. Hence, the sequential analytical pipeline (SpaTemHTP) presented here addresses these limitations and was developed to efficiently process data generated at outdoors platforms, that are characterized by an important amount of exogenous variation. The pipeline embeds a modular design to process raw HTP data for calculating spatially adjusted genotypic estimates, which is generally a complex procedure requiring knowledge about handling of spatial variability using mixed models. The significance of spatial adjustment in enhancing the quality of model estimates was also demonstrated through extensive testing of the pipeline for different species, traits, and experiments. Using a sequence of steps including outlier detection, missing value imputation, and spatial adjustment (S8) allowed to obtain smoother G-BLUEs time series that conformed to the biological expectation, better than the ones produced by a single-step mixed-model approach (S9). Additionally, S8 is conceptually simpler than S9 and computationally less intensive. The usefulness of our approach was particularly relevant for raw data with a large amount of noise, since it could be shown that the pipeline can easily handle up to 50% of missing values with minor impact on the results. We could also show that our procedure produces acceptable results up to 20–30% of contaminated data. Furthermore, the modular design of the pipeline allows to choose the set of operations as per user requirements, e.g., some dataset might not require preprocessing or CPA.

The genotype adjusted means data produced by the pipeline allows the user (breeder) to get quality data for immediate analysis (genotype comparison) or for further analysis like statistical genetics models (QTL, GWAS, or genomic prediction models). Hence, this automated procedure would also be extremely useful for larger data workflow processing strategy. Through CPA, we also showed the use of adjusted means to identify important time sections during an experiment, which provides a basis for further dissection of the genetic components in terms of Gc × TW. For example, the G-BLUEs obtained at different OTW could be used in a multitrait QTL analysis that would help to model genetic effects that take into consideration the longitudinal nature of trait development. This genotype by time analysis could also be further extended to a genotype by time by environment analysis that will help to understand the environmental effect on trait development. Thus, it can be concluded that the proposed pipeline can be employed particularly for large-scale outdoors HTP data and be beneficial for several biological applications.
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Traditionally, plant disease recognition has mainly been done visually by human. It is often biased, time-consuming, and laborious. Machine learning methods based on plant leave images have been proposed to improve the disease recognition process. Convolutional neural networks (CNNs) have been adopted and proven to be very effective. Despite the good classification accuracy achieved by CNNs, the issue of limited training data remains. In most cases, the training dataset is often small due to significant effort in data collection and annotation. In this case, CNN methods tend to have the overfitting problem. In this paper, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is combined with label smoothing regularization (LSR) to improve the prediction accuracy and address the overfitting problem under limited training data. Experiments show that the proposed WGAN-GP enhanced classification method can improve the overall classification accuracy of plant diseases by 24.4% as compared to 20.2% using classic data augmentation and 22% using synthetic samples without LSR.

Keywords: plant disease, classification, regularization, convolutional neural network, generative adversarial network


INTRODUCTION

With the increasing global population, the demand for agriculture production is rising. Plant diseases cause substantial management issues and economic losses in the agricultural industry (Abu-Naser et al., 2010). It has been reported that at least 10% of global food production is lost due to plant disease (Strange and Scott, 2005). The situation is becoming increasingly complicated because climate change alters the rates of pathogen development and diseases are transferred from one region to another more easily due to the global transportation network expansion (Sladojevic et al., 2016). Therefore, early detection, timely mitigation, and disease management are essential for agriculture production (Barbedo, 2018a).

Traditionally, plant disease inspection and classification have been carried out through optical observation of the symptoms on plant leaves by human with some training or experience. Plant disease recognition has known to be time-consuming and error-prone. Due to the large number of cultivated plants and their complex physiological symptoms, even experts with rich experience often fail to diagnose specific diseases and consequently lead to mistaken disease treatments and management (Ferentinos, 2018).

Many methods have been developed to assist disease recognition and management. Lab-based techniques have been developed and established in the past decades. The commonly used techniques for plant disease recognition include enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), immunoflourescence (IF), flow cytometry, fluorescence in situ hybridization (FISH), and DNA microarrays (Sankaran et al., 2010). However, these techniques require an elaborate procedure and consumable reagents. Meantime, image-based machine learning methods for plant disease recognition, which identify plant diseases by training computers with labeled plant images, have become popular. The advantages of image recognition include: (1) the ability to deal with a large number of input parameters, i.e., image pixels, (2) the minimization of human errors, and (3) the simplified process (Patil and Kumar, 2011).

The key to improving the plant disease recognition accuracy is to extract the right features of the surface of plant leaves (Naresh and Nagendraswamy, 2016; Zhang and Wang, 2016). The emergence of deep learning techniques has led to improved performance. Although deep learning based models take a long time to train, its testing time is fast because all information from the training dataset has been integrated into the neural network (Kamilaris and Prenafeta-Boldú, 2018). For the agricultural applications, convolutional neural networks (CNN) have been used for image recognition (Lu et al., 2017). Dhakate et al. used a convolutional neural network for the recognition of pomegranate plant diseases and achieved 90% overall accuracy (Dhakate and Ingole, 2015). Ghazi et al. proposed a hybrid method of GoogLeNet, AlexNet, and VGGNet to classify 91,758 labeled images of different plant organs. Their combined system achieved an overall accuracy of 80% (Ghazi et al., 2017). Ferentinos developed CNN models to classify the healthy and diseased plants using 87,848 images. The success rate was significantly high which can reach 99.53% (Ferentinos, 2018). Ma et al. proposed a deep CNN to recognize four cucumber diseases. The model was trained using 14,208 images and achieved an accuracy of 93.4% (Ma et al., 2018). With the high classification accuracy, it can be concluded that CNNs on leave images are highly suitable for plant disease recognition (Grinblat et al., 2016).

It should be noted that the high prediction accuracy is predicated on that thousands of labeled images were used to train CNNs. A major problem often facing the automatic identification of plant diseases with CNNs is the lack of labeled images capable of representing the wide variety of conditions and symptom characteristics found in practice (Barbedo, 2019). Experimental results indicate that while the technical constraints linked to automatic plant disease classification have been largely overcome, the use of limited image datasets for training brings many undesirable consequences that still prevent the effective dissemination of this type of technology (Barbedo, 2018b). Real datasets often do not have enough samples for deep neural networks to properly learn the classes and the annotation errors, which may damage the learning process (Barbedo, 2018a). If the model learns to assign a full probability to the ground truth label for each training example, it is not guaranteed to generalize because the model becomes too confident about its predictions (Szegedy et al., 2016). It should be noted that although it is relatively cheap to collect images, using additional unlabeled data is non-trivial to avoid model overfitting. This serves as the major motivation for this study on developing a new method that can address the plant disease classification with limited labeled training images.

Data augmentation using synthetic images is the most common method used in training CNN with small amounts of data (Emeršic et al., 2017). Hu et al. synthesized face images by compositing the automatically detected face parts from two existing subjects in the training set. Their method improved over the state-of-the-art method with a 7% margin (Hu et al., 2017). Guo et al. merged the training set with another dataset from the same domain and obtained a performance improvement of 2% (Guo and Gould, 2015). Papon et al. proposed a rendering pipeline that generates realistic cluttered room scenes for the classification of furniture classes. Compared to using standard CNN, the proposed method improved the classification accuracy by up to 2% (Papon and Schoeler, 2015). These methods generate synthetic images by extracting and recombining of local regions of different real images.

In this study, we designed a generative adversarial network (GAN) to generate completely new synthetic images to enhance the training set. GAN was designed based on game theory to generate additional samples with the same statistics as the training set. Compared with the methods in the existing literature, GAN is capable to generate full synthetic images that can increase the diversity of the dataset. Therefore, it has become an increasingly popular tool to address the limited dataset issue (Goodfellow et al., 2014). Nazki et al. (2020) proposed Activation Reconstruction (AR) – GAN to generate synthetic samples of high perceptual quality to reduce the partiality introduced by class imbalance. Compared with Nazki’s work which considered 9 classes of images with about 300 images in each category, our work has considered a more stringent situation of limited dataset which includes 38 classes with 10-28 images in each category. Therefore, one of the key objectives of this study is to reduce overfitting of the model. Label smoothing regularization (LSR) is introduced in this paper. In addition to maximizing the predicted probability of the truth-ground class, LSR also maximizes the predicted probability of the non-truth ground classes (Szegedy et al., 2016). Similarly, Xie et al. (2016) proposed a method named DisturbLabel which prevents the overfitting problem by adding label noises to the CNN. Pereyra et al. (2017) found out that label smoothing can improve the performance of the models on benchmarks without changing other parameters. In our paper, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is combined with LSR to generate images that can enlarge the training dataset and regularize the CNN model simultaneously.

The main contributions of this study lie in two dimensions:


1. To improve the generalization of the proposed method, multiple diseases and multiple plant types have been considered in this paper. The majority of the existing studies focused on a single type of disease or only one plant type. In reality, there may exist multiple diseases for one plant type. However, in reality, it is often necessary to detect the multiple diseases of multiple plant types. Therefore, it would be preferable to design recognition methods with the capability to address the multi-disease and multi-plant type situation.

2. To address the issue of limited training set, an approach that combines classical data augmentation and synthetic augmentation is proposed. LSR has also been employed to increase the generalization ability of the model. Four experiments have been conducted to validate the effectiveness of each component in the proposed framework. The results show that compared to the classic data augmentation methods, the proposed method can improve the total accuracy by 4.2%.



The rest of this paper is organized as follows. Section 2 introduces the motivation of this paper and the structure of the proposed regularized GAN-based approach. Section 3 includes a case study, the experiment results and comparisons. Finally, the paper concludes with the summary, findings, and future research directions in Section 4.



MATERIALS AND METHODS

Image-based plant disease recognition techniques have been developed with the reduced cost for image collection and the increased computational resources. However, in many situations for plant disease, there is not enough well-labeled data due to the high cost of data annotation. Under these circumstances, the machine learning models are prone to overfitting and fail to make accurate classifications for new observations. This study aims to achieve high plant disease classification accuracy with limited training dataset.


Framework of the Proposed Method

To improve the prediction accuracy of CNN in the classification of plant diseases using a limited training dataset, three techniques have been designed and implemented in this study, i.e., data augmentation, WGAN-GP, and LSR. The framework of the proposed method is shown in Figure 1. The first step is to train the WGAN-GP with LSR using real images. The trained WGAN-GP is then used to generate additional labeled images. The synthetic images will be mixed with real images and then augmented through classic data augmentation methods. Finally, the combined dataset will be used to train the CNN. In the following few sections, we will discuss each of the components in detail.


[image: image]

FIGURE 1. Framework of the proposed method.




Convolutional Neural Networks (CNN)

Convolutional Neural Networks is used as the supporting framework of our method. CNN is a class of deep, feed-forward artificial neural networks. It was adopted widely for its fast deployment and high performance on image classification tasks. CNNs are usually composed of convolutional layers, pooling layers, batch normalization layers and fully connected layers. The convolutional layers extract features from the input images whose dimensionality is then reduced by the pooling layers. Batch normalization is a technique used to normalize the previous layer by subtracting the batch mean and dividing by the batch standard deviation, which can increase the stability and improve the computation speed of the neural networks. The fully connected layers are placed near the output of the model. They act as classifiers to learn the non-linear combination of the high-level features and to make numerical predictions. Detailed descriptions on each type of function can be accessed from Gu et al. (2018).

It should be noted that CNN requires a large training dataset, which is typically not the case for plant disease recognitions. With the number of model parameters is greater than the number of data samples, a small training dataset will lead to the overfitting problem, which results from a model that responds too closely to a training dataset and fails to fit additional data or predict future observations reliably. One of the commonly adopted methods to address this problem is data augmentation.



Data Augmentation

Data augmentation is a method to increase the number of labeled images. The classic data augmentation methods include vertical flipping, horizontal flipping, 90° counterclockwise rotation, 180° rotation, 90° clockwise rotation, random brightness decrease, random brightness increase, contrast enhancement, contrast reduction and sharpness enhancement. Figure 2 lists the examples of original image (Figure 2A), rotation (Figure 2B), brightness increase (Figure 2C), and contrast increase (Figure 2D).
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FIGURE 2. Classic data augmentation methods. (A) Original, (B) Rotation, (C) Brightness, and (D) Contrast.


Although data augmentation techniques decrease the impact of the limited training dataset problem, they cannot reproduce most of the practical diversity. This is also the reason why the generative adversarial network has been incorporated in this study.



Wasserstein Generative Adversarial Network (WGAN)

Unlike regular data augmentation methods, GAN is able to generate new images for training, which increases the diversity of data. GANs were firstly introduced by Ian Goodfellow et al. (2014). The generative adversarial networks (GANs) consist of two sub-networks: a generator and a discriminator. The generator captures the training data distribution while the discriminator estimates the probability that an image came from the training data rather than the generator.

[image: image]

Where D represents the discriminator network, G is the generator network, z is a noise vector drawn from a distribution pNoise(z), x is a real image drawn from the original dataset pdata(x).

The idea behind Eq. (1) is that it increases the ability of the generator to fool the discriminator which is trained to distinguish synthetic images from real images. The training process of the original GAN is shown in Figure 3. The specific steps are as follows.


[image: image]

FIGURE 3. Training process of the original GAN.



1. Initialize the parameters of the generator and the discriminator.

2. Sample a batch of noise samples for the generator. Usually, uniform distribution or Gaussian distribution is used.

3. Use the generator to transform the noise samples and predefined labels into images that are labeled as fake.

4. The real images are labeled as true. Then the real images and the synthetic images are mixed and used as the input of the discriminator.

5. Train the discriminator to improve the ability to classify the synthetic images and the real images.

6. Train the generator to generate more images that will be discriminated as true by the generator.

7. Repeat step 2 - step 6 until the termination condition is satisfied.



Many variants of GAN have been proposed in the past several years. Mirza et al. proposed the conditional GAN, which can provide better representations for multimodal data generation (Mirza and Osindero, 2014). Radford et al. proposed the deep convolutional GAN (DCGAN), which allows training a pair of deep convolutional generator and discriminator networks (Radford et al., 2015). Arjovsky et al. (2017) proposed the Wasserstein GAN (WGAN) which uses Wasserstein distance to provide gradients that are useful for updating the generator. Even though the WGAN performs more stable in the training process, it sometimes fails to converge due to the use of weight clipping. Therefore, Gulrajani et al. (2017) proposed an improved version of WGAN in which the weight clipping is replaced by the gradient penalty.

As shown in Figure 4, the major differences between the implementation of WGAN-GP and the original GAN include two aspects. The first is that the WGAN-GP uses the Wasserstein loss function with gradient penalty. Compared with the Jensen–Shannon (JS) and Kullback–Leibler (KL) divergence used in the DCGAN, Wasserstein distance can measure the distance between the distribution of real images and fake images, which can help improve the convergence of the network. The second is that in the WGAN-GP, the real and fake images are labeled as 1 and -1, while in the DCGAN, they are labeled as 1 and 0. This encourages the discriminator (critic) to output scores that are different for real and fake images.


[image: image]

FIGURE 4. Training process of the WGAN-GP. The real images are labeled as “1”. The synthetic images are labeled as “-1”. The Wasserstein distance and gradient penalty are used in the loss function.




WGAN–GP With Label Smoothing Regularization (WGAN-GP-LSR)

In this paper, we made two changes to the WGAN-GP. The first is that we combined the conditional GAN and the WGAN-GP so that the generator can generate images of specific labels. For the generator, the input is a noise vector and a predefined label. Firstly, the label will be represented following the one-hot encoding method. Then the label will be converted to a vector that has the same size as the noise vector by multiplying a matrix. In practice, we used the built-in embedding function of Keras in which each input integer label is used as the index to access a table that contains all possible vectors. The final input vector is obtained by conducting an element wise multiply operation between the noise vector and the label vector. The generator is basically a neural network that outputs matrices of the image size with one matrix representing one image. For the discriminator, the output includes the class labels and the validity labels. The second is that LSR is used to modify the loss function of GAN. Compared with L1 and L2 regularization methods which change the weights, LSR directly influences the output of the network through the loss function. At the same time, LSR can increase the robustness of GAN and help avoid model collapse.

In the training of GAN, the most widely used loss function for multiclass classification tasks is the cross-entropy loss as Eq. (2),
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where i is the index of the disease type, N is the total number of disease types, p(i) is the predicted probability of the image belonging to class i, q(i) equals to 1 if the label of the image is i; otherwise, q(i) equals to 0.

The minimization of the cross-entropy loss is achieved when the predicted probability of ground-truth classes is maximum. However, if the model assigns full probabilities to ground-truth labels, it is likely to be overfitted. In other words, it will be very easy for CNN to determine the truth-ground classes of the images. It means that the improvement brought by generating additional images for training will be limited. Thus, the regularization is introduced. Regularization is a technique that makes the model less confident such that the model generalizes better.

The LSR method is used in this paper. The objective function of GAN is as Eq. (3) (Szegedy et al., 2016),
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where ε is a hyperparameter between 0 and 1, i is the index of the disease type, N is the total number of disease types, p(i) is the predicted probability of the image belonging to non-truth ground class i, p(y) is the predicted probability of the image belonging to truth-ground class y.

If εis equal to 0, Eq. (3) is the same as Eq. (2) since the second term in Eq. (3) becomes 0. The objective is to maximize the predicted probability of the truth-ground class. If εis equal to 1, the first term equals to 0. The objective is to maximize the summation of the predicted probability of the other non-truth ground classes. Therefore, in addition to maximizing the predicted probability of the truth-ground class, the LSR function also maximizes the predicted probability of the other non-truth ground classes. In the training process of the generator, the synthetic images will learn the same distribution of the probability. In other words, each generated image contains the features of all disease types, which can improve the generalization ability of the model. In practice, a generated image will be assigned with the label of the largest predicted possibility.



CASE STUDY

To validate the effectiveness of the proposed method, a case study on plant disease classification has been conducted. The dataset contains images of different plant diseases from multiple species. Four experiments were conducted to compare the results. In Experiment I, the CNN was trained without data augmentation. In Experiment II, the CNN was trained with classic data augmentation methods. In Experiment III, the CNN was trained with classic augmentation methods and WGAN-GP. In Experiment IV, the CNN was trained with classic data augmentation methods and WGAN-GP-LSR.


Data Source and Performance Measure

The dataset used in this paper is from www.plantvillage.org. The original dataset contains 43,843 labeled images. To imitate the limited dataset problem, we randomly selected 873 images (i.e., 1.9% of all available images) as the training dataset. For each category, there are 10-28 images for training. We also randomly selected 4,384 images (i.e., 10% of all available images) as the testing dataset. This step was completed by using the train_test_split function from sklearn package. As shown in Table 1, the images include 14 crop species: Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, and Tomato. It contains images of 17 fungal diseases, 4 bacterial diseases, 2 mold (Oomycete) diseases, 2 viral diseases, and 1 disease caused by a mite. Twelve crop species also have images of healthy leaves that are not visibly affected by a disease (Hughes and Salathé, 2015). The total number of classes is 38 which includes 12 groups of healthy leaves and 26 groups of diseased leaves.


TABLE 1. Dataset for classification of plant disease.

[image: Table 1]Four measurements have been used as the performance indicators in this study, i.e., overall accuracy, precision, recall, and F1 score. The overall accuracy, recall and precision can be calculated as in Eq. (4)–Eq. (6).
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Since the problem is a multi-class classification problem, a modification on recall and precision calculations has been made as Eq. (7) and Eq. (8). The F1 score is the harmonic mean of the recall and precision which can be calculated based on Eq. (9).
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Where Mij is the number of images belonging to the ith category that are predicted to be in the jth category, ∑jMij is the number of samples belonging to the ith category, Recalli is the ratio of samples belonging to the ith category that are correctly classified, Presioni is the ratio of samples predicted to be in the ith category that are correctly classified.



Parameters of Neural Networks

The architectures of the generator and the discriminator are shown in Table 2. For the generator, we established a network with a 1000-dimensional vector input. The inputs consist of two parts, i.e., noise and label. The noise is a vector of 1000 randomly generated variables. The label is converted to a vector of size using the built-in embedding function in Keras. In the function, each integer label is used as the index to access a table that contains all possible vectors. Then the input can be obtained by conducting element-wise multiplication on the two 1000-dimensional vectors. A dense layer is then used to covert the input vector to a vector of size 128 × 16 × 16. Through three convolutional layers, the output is an image of dimension 128 × 128 × 3. For the discriminator, all input images have been resized to 128 × 128 × 3. The real images are assigned with label “1” while the synthetic images are assigned with label “-1”. There are two output layers. One output layer has one neuron telling whether the input image is real or fake. The other output layer has 38 neurons representing the 38 classes of leaves. The optimizer is RMSprop with the learning rate α = 0.00005. The objective functions of the discriminator include Wasserstein loss function, gradient penalty function, and cross-entropy function as Eq. (3). We have conducted numerical experiments and analyses to tune the parameter ε in Eq. (3). The results showed that the quality of the synthetic images of WGAN-GP with LSR was better when ε was between 0.20 and 0.25. Therefore, the ε is set as 0.22 in this analysis.


TABLE 2. Architectures of the generator and the discriminator.

[image: Table 2]As shown in Table 3, the CNN used to classify the images is the VGG16 with updated 128 × 128 × 3 input (Simonyan and Zisserman, 2014). The input layer is based on image RGB color space with a size of 128 × 128 × 3. The output layer has 38 neurons representing the 38 classes of leaves. The optimizer is RMSprop. The learning rate is 0.0001. The batch size is 100. All the above networks were built using the Keras framework (Chollet, 2015).


TABLE 3. Architecture of the CNN.

[image: Table 3]


Experiment Design

To validate the proposed CNN framework, a comparative experiment using 90% of the original dataset (i.e., 39459 images) as train set and 10% (i.e., 4384 images) as the test set. The training accuracy achieved 99.9% while the testing accuracy achieved 99.8%. The results are comparable to the results obtained by Mohanty et al. (2016). It means that this framework can achieve a high prediction accuracy if there are enough data samples. Therefore, the proposed CNN framework can be used as the baseline model for this study. The influence of the CNN framework on the model performance can be ruled out.

Four numerical experiments have been designed, which used 873 training images and 4,384 testing images to keep consistency in the number of testing images. In Experiment I, the CNN is trained using the real dataset without any data augmentation. In Experiment II, the CNN is trained using real images with classic data augmentation methods. The classic augmentation methods include 360 rotation range, 0.3 width shift range, 0.3 height shift range, 0.3 zoom range, horizontal flip, and vertical flip. In Experiment III, the CNN is trained using the classic augmented data and the synthetic images generated by WGAN-GP without LSR. In each epoch, we use the trained generator to generate 30 new synthetic images for each category. In Experiment IV, the CNN is trained using the dataset generated by the proposed method. The training process is the same as that of the third experiment. It should be noted that, in Experiment III and IV, WGAN-GP is trained using the classic augmented data and then be used to generate synthetic images.

The number of images used for training in each epoch is shown in Table 4. In Experiment I, the 873 images used in each epoch are the same. In Experiment II, III and IV, the classic augmented images and synthetic images used in each epoch are new images that are generated randomly by the classical data augmentation methods and WGAN-GP, respectively. This paper implements the classic augmentation by using the ImageDataGenerator function from Keras package which replaces the original batch with the new, randomly transformed batch. Therefore, in Experiment II, III and IV, the number of original images used in each epoch is 0. The generator ran in parallel to the model for improved efficiency. For instance, this allows us to do real-time data augmentation on images on CPU in parallel to training our model on GPU.


TABLE 4. Number of images used for training in each epoch.

[image: Table 4]To eliminate the influence of training time, the models are trained until the curve of training accuracy converges. This means the model performance cannot be improved by increasing the training time. Therefore, the number of epochs is set as 700. All experiments including the comparative experiment used the same testing dataset.



Results and Comparisons

The most important process is the training of the GAN. The training effectiveness of WGAN-GP-LSR can be illustrated by Figure 5. At the beginning, the output of the generator is just white noise. After 12,000 iterations, the outline of the leaf can be identified visually. At the 22,000th iteration, the shape of the leaf is much clearer. Figure 6 is the train loss curve of WGAN-GP-LSR. It can be seen that after 20,000, the Wasserstein distance, which is used to measure the distance between generated images and real images, converges. Figure 7A shows the real images drawn from 38 categories while Figure 7B shows the 38 samples generated by the regularized GAN. Each sample belongs to one unique class.
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FIGURE 5. Synthetic images in different training stages of WGAN-GP-LSR (# of iterations) (A) 0, (B) 2,000, (C) 12,000, and (D) 22,000.
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FIGURE 6. Train loss of WGAN-GP-LSR.
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FIGURE 7. Original images and generated image samples. The images at the same location belong to the same class. The healthy classes are numbered from A to L. The diseased classes are numbered from 1–26. (A) Original images (B) Samples generated by the WGAN-GP-LSR.


It can be found that the synthetic images look different from the original ones. There are two reasons for this. The first reason is that the synthetic images also contain information from other classes because of LSR. For example, for a classification problem of five classes, the ideal output of discriminator for a sample of class 1 should be [1,0, 0, 0, 0]. However, to increase the generalization ability of the model, the ideal output is expected to be [0.6, 0.1, 0.1, 0.1, 0.1]. This means the generated images also have small probabilities to be classified as other non-ground-truth classes. The second reason is that the WGAN-GP cannot generate perfect images that restore all details of real images due to the limited training set. The discriminator of WGAN only focuses on some specific regions (e.g., leaf shape, yellow spot, hole) that it can extract features from. Therefore, some information, such as background color and contrast degree, may be lost. However, the neural network can extract the right features to make predictions. The trained generator is used to generate additional images. Those images are mixed with real images and used as the input of the CNN.

The results of the four experiments are shown in Figure 8. From Figure 8A, it can be found that after about 60 epochs, the training accuracy in Experiment I is close to 1 while the test accuracy is only about 60%. This is an indicator that the model is overfitted. It can be seen from Figure 8B that after using the classic data augmentation methods, the test accuracy in Experiment II is about 80%, which is 20% higher than that in Experiment I. Figure 8C shows the results of training CNN with classic data augmentation methods and synthetic data augmentation. After introducing the WGAN-GP, the test accuracy is improved by 1.9%. It proves that the synthetic images can increase the diversity of the dataset and improve the prediction accuracy. Since there are more training images, the curve of test accuracy is more stable than that in Experiment I and Experiment II. The results of Experiment IV is shown in Figure 8D. Compared to using WGAN-GP without LSR, the proposed method can improve the test accuracy by 2.1%, which validates the effectiveness of LSR.
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FIGURE 8. Results of the four numerical experiments (A) Pure CNN, (B) CNN+classic data augmentation, (C) CNN+ data augmentation +WGAN-GP, and (D) CNN+ data augmentation+WGAN-GP-LSR.


Table 5 lists the training accuracy and test accuracy of the above four experiments. Compared to using CNN only, the proposed method improves the test accuracy by 21.6%. Compared to using CNN with classic data augmentation methods, the proposed method can improve the test accuracy by 4.2%. Compared to using CNN with classic data augmentation method and WGAN-GP, the proposed method can improve the test accuracy by 2.3%.


TABLE 5. Comparisons among four methods.

[image: Table 5]Table 6 includes the recall, precision, and F1 scores of 26 diseases. The top-5 F1 scores achieved by the proposed method are 0.91 on disease type 9 (Grape Phaeomoniella Spp.), 0.98 on disease type 11 (Orange Candidatus Liberibacter), 0.91 on disease type 14 (Potato Alternaria solani), 0.91 on disease type 16 (Squash Erysiphe cichoracearum) and 0.98 on disease type 25 (Tomato Mosaic Virus). Compared to using the CNN only, the advantages of the proposed method are dominant in terms of F1 score in almost all classes (i.e., 24 out of 26). For example, the proposed method improves F1 scores by 0.38 on disease type 8 (Grape Guignardia bidwellii), 0.57 on disease type 15 (Potato Phytophthora infestans) and 0.38 on disease type 21 (Tomato Fulvia fulva). The proposed method outperforms the CNN with classic data augmentation on most of the disease classes (i.e., 23 out of 26). Compared to using WGAN-GP without LSR, the proposed method performs much better on disease type 4 (Cherry Podosphaera Spp.) and disease type 14 (Potato Alternaria Solani). The average F1 score of the proposed method (i.e., 0.77) is higher than that of the CNN with classic data augmentation method (i.e., 0.71) and that of using WGAN-GP without LSR (i.e., 0.75).


TABLE 6. Recall, precision and F1 scores of 26 diseases (R: Recall; P: Precision; F: F1 score).

[image: Table 6]When comparing the recall and the precision of each disease type, specific patterns of the models can be observed. For example, the difference between the recall and the precision of the disease type 10 (Grape Pseudocercospora vitis) is significantly different for all four models. The recall is 0.51∼0.6 while the precision is 0.84∼0.98. This means only a small number of images that have type 10 disease are classified as disease type 10. However, most of the images predicted that are classified to be type 10 are correctly labeled. The model might be confused between disease type 10 and other diseases, so it set a high standard for the classification of type 10. Therefore, the prediction of disease type 10 is highly reliable but the sensitivity of the model is low since the false negative predictions are high.

Since the objective of the training process is to improve the total prediction accuracy over all disease classes, it is not guaranteed that the proposed method will outperform other models in all categories. For example, the F1 score of disease type 3 (Apple Gymnosporangium juniperi-virginianae) in Experiment IV is much lower than that of other diseases. The reason is that the disease is more likely to be predicted as corn fungus diseases by the model. The comparison between the recall and the precision of each disease type can help to gain additional insights into the models and make the right decision according to different situations.

Table 7 lists the recall, precision and F1 scores of 12 healthy groups. The average F1 scores in the four experiments are 0.46, 0.76, 0.78 and 0.81, separately. However, all of the four models do not perform well for the classification of potato healthy leaves. Since there are only 15 testing images in this group, the reason might be that the distribution of the training set is not close to that of the testing set. Except for this, the F1 scores of most groups in Experiment II, III and IV are greater than 0.75.


TABLE 7. Recall, precision and F1 scores of 12 healthy groups (R: Recall; P: Precision; F: F1 score).

[image: Table 7]


CONCLUSION

Plant disease recognition plays an important role in disease detection, mitigation, and management. Even though some deep learning methods have achieved good results in plant disease classification, the problem of the limited dataset is overlooked. In practice, it is time-consuming to collect and annotate data. The performance of CNN will drop dramatically if there is not enough training data. Therefore, a method for plant disease recognition under the limited training dataset is necessary.

In this paper, a CNN has been built for plant disease recognition, which can recognize multiple species and diseases. To address the overfitting problem caused by the limited training dataset, a GAN-based approach is proposed. The LSR method is also employed, which works by adding a regularization term to the loss function.

The experiments show that the proposed method can improve the prediction accuracy by 4.2% than the CNN with the classic data augmentation method. Compared with using the CNN only, the proposed method can improve the prediction accuracy by 24.4%. Compared with using the WGAN-GP without LSR, the proposed method can improve the prediction accuracy by 2.3%. Based on our work, plant disease classification can be conducted under the limited training dataset, which will bring benefits to the rapid diagnosis of plant diseases.

It should be noted that this proposed plant disease classification method is subject to a few limitations which suggest future research directions. First, significant computational resources are needed to train the GAN and generate new labeled images for training. This problem can be addressed using pre-trained models. Next, the proposed method still needs enough images to train the GAN. If the size of dataset is very small, it is not able to extract enough information to generate new labeled images. One potential solution to this is to introduce transfer learning techniques. Last, in this paper, we only used one CNN framework. In future, we will try different CNN frameworks and investigate the relationship between the size of the real image dataset and the effectiveness of the proposed method.
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Plant counting runs through almost every stage of agricultural production from seed breeding, germination, cultivation, fertilization, pollination to yield estimation, and harvesting. With the prevalence of digital cameras, graphics processing units and deep learning-based computer vision technology, plant counting has gradually shifted from traditional manual observation to vision-based automated solutions. One of popular solutions is a state-of-the-art object detection technique called Faster R-CNN where plant counts can be estimated from the number of bounding boxes detected. It has become a standard configuration for many plant counting systems in plant phenotyping. Faster R-CNN, however, is expensive in computation, particularly when dealing with high-resolution images. Unfortunately high-resolution imagery is frequently used in modern plant phenotyping platforms such as unmanned aerial vehicles, engendering inefficient image analysis. Such inefficiency largely limits the throughput of a phenotyping system. The goal of this work hence is to provide an effective and efficient tool for high-throughput plant counting from high-resolution RGB imagery. In contrast to conventional object detection, we encourage another promising paradigm termed object counting where plant counts are directly regressed from images, without detecting bounding boxes. In this work, by profiling the computational bottleneck, we implement a fast version of a state-of-the-art plant counting model TasselNetV2 with several minor yet effective modifications. We also provide insights why these modifications make sense. This fast version, TasselNetV2+, runs an order of magnitude faster than TasselNetV2, achieving around 30 fps on image resolution of 1980 × 1080, while it still retains the same level of counting accuracy. We validate its effectiveness on three plant counting tasks, including wheat ears counting, maize tassels counting, and sorghum heads counting. To encourage the use of this tool, our implementation has been made available online at https://tinyurl.com/TasselNetV2plus.

Keywords: plant counting, real-time processing, wheat ears, maize tassels, sorghum heads, pytorch implementation


1. INTRODUCTION

Plant counting runs through almost every critical stage in agricultural production spreading from seed breeding (Wiles and Schweizer, 1999; Mussadiq et al., 2015; Guo et al., 2018), germination (Baofeng et al., 2016; Primicerio et al., 2017), cultivation (Yu et al., 2013; Liu et al., 2018), fertilization (Vos and Frinking, 1997; Boissard et al., 2008), pollination (Guo et al., 2015; Lu et al., 2017a; Sadeghi-Tehran et al., 2017), to yield estimation (Nuske et al., 2014; Ghosal et al., 2019; Zabawa et al., 2019), and harvesting (Häni et al., 2019; Jin et al., 2019). It also plays an important role in phenotyping functional traits of plants because many traits of interest are quantity-related, such as density (Madec et al., 2019) and the number of leaves (Giuffrida et al., 2015). This task is typically addressed with manual efforts in traditional agriculture. Manual counting, however, is subjective, tedious, error-prone, labor-intensive and inefficient due to fatigue of humans. Indeed agricultural practitioners have tried to automate this task over past decades (McDonald and Chen, 1990; Gomes and Leta, 2012; Kamilaris and Prenafeta-Boldú, 2018). Unfortunately this goal is not that easy to achieve due to versatile varieties of plants and intrinsic/extrinsic variations in reality. An automated plant counting system therefore is often limited to a controlled environment or a certain application scenario such that manual counting still takes place in most regions of the world.

With the prevalence of low-end digital cameras, high-performance graphics processing units (GPUs) and effective deep learning-based technology, computer vision has received much attention in plant counting due to increased reliability and decreased costs. Plant counting has thus gradually shifted from traditional manual counting to vision-based automated solutions. The most popular solution in plant counting comes from the success of a widely-used object detection framework called Faster Region-based Convolutional Neural Network (Faster R-CNN) (Ren et al., 2015). Faster R-CNN leverages a so-called region proposal network to identify potential object locations specified by bounding boxes, then passes these boxes into a classifier to assign object labels and confidence scores, and finally suppresses overlapped boxes per the confidence scores with a non-maximum suppression operator. The population of plants can be easily inferred from the number of bounding boxes detected. Faster R-CNN has been substantially applied to plant science and agriculture engineering communities to, for example, estimate ear density (Madec et al., 2019), detect maize tassels (Liu et al., 2020), localize sweet pepper (Halstead et al., 2018), identify crop seedlings (Quan et al., 2019), etc. However, it is expensive in computation due to the use of high-capacity ImageNet-pretrained models (Deng et al., 2009), such as VGG-16 (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016), especially when dealing with high-resolution images. To acquire sufficient spatial resolution, high-resolution imagery, unfortunately, cannot be avoided in modern plant phenotyping platforms such as unmanned aerial vehicles. The problem is that it is intractable to directly train/test high-resolution images with Faster R-CNN due to GPU memory limitation. It has been reported in Madec et al. (2019) that the maximum image size acceptable for training Faster R-CNN is about 500 × 500 pixels. To address this, pre-splitting images becomes a common practice during both training and inference, rendering inefficient image analysis. For instance, according to Madec et al. (2019), the inference of around 100 high-resolution images can take more than 1 h. Such inefficiency largely limits the throughput of phenotyping. In modern high-throughput plant phenotyping systems, it is important that an image analysis tool can process high-resolution images within a short period of time.

In this paper, we advocate another promising plant counting paradigm—object counting. Instead of detecting object bounding boxes, object counting directly regresses object counts from an image. This is a much direct way when only the population of objects is concerned. Indeed the transductive principle suggests never to solve a harder problem than the target application necessities (Vapnik, 1998)—estimating object counts does not have to localize where objects are. Compared with object detection, object counting has many appealing advantages, for instance: (i) cheap manual annotations: learning object counting models only requires dotted annotations, rather than more expensive bounding boxes annotations used in object detection; (ii) simplified network architectures: object detection generally builds on multi-scale architectures such as feature pyramid networks (Lin et al., 2017; Tan et al., 2019) that have extensive decoding stages, while object counting, especially for local count regression models (Lu et al., 2017c; Xiong et al., 2019a), only needs an encoder; (iii) robust to partially overlapping instances: object detection tends to under-estimate object counts due to the existence of non-maximum suppression where partially overlapping instances are likely to be suppressed, while object counting naturally takes overlapping instances into account during ground-truth generation; and (iv) light-weight computational requirement: a light-weight object counting model trained from scratch can deliver sufficiently accurate counting accuracy, while object detection models generally require ImageNet-pretrained models, with also large GPU memory consumption.

In fact, object counting is a long-standing topic in computer vision. It can at least date back to early 2000s when counting is still a by-product of face/pedestrian detectors (Viola and Jones, 2001; Dalal and Triggs, 2005). Object counting then is gradually accepted as an independent research topic after the first counting-by-regression approach (Chan et al., 2008) appears where the global object count can be regressed from an image. The idea of counting by regression is further amplified by Lempitsky and Zisserman (2010) who introduce the concept of the density map. The density map is generated from dotted annotations with Gaussian smoothing such that each pixel is assigned with a value that corresponds to the object density, which transforms counting into a dense prediction problem (Lu et al., 2019, 2020). It has become the basic building block for many object counting models (Chen et al., 2013; Arteta et al., 2014) including recent deep counting networks (Zhang et al., 2015, 2016; Sindagi and Patel, 2017; Li et al., 2018; Liu et al., 2020; Ma et al., 2019; Xiong et al., 2019b). Most state-of-the-art counting networks, however, are also inefficient due to the use of pretrained VGG-16, which hinders their applicability in high-resolution imagery in plant counting. In plant science community, many attempts have also been made for direct counting by regression (Giuffrida et al., 2015, 2018; Rahnemoonfar and Sheppard, 2017; Wu et al., 2019). In particular, in our previous work we propose TasselNet (Lu et al., 2017c), a counting network based on the idea of local count regression, to count in-field maize tassels, demonstrating that even a low-capacity network can achieve reasonably good counting accuracy. We remark that, the idea of local count regression is particularly suitable for counting plants, because this paradigm is robust to size variations of plants. Such robustness is important because a plant per se is a self-changing system such that its physical size varies over time. Xiong et al. (2019a) further extends TasselNet to TasselNetV2 and applies this new version to wheat spikes counting. We observe that TasselNetV2 turns out to be a generic tool for plant counting and even achieves comparable accuracy in crowd counting against state-of-the-art deep counting networks in computer vision. Unfortunately both TasselNet and TasselNetV2 are only implemented in a research-orientated software, i.e., MATLAB, making them infeasible for practical deployment1.

In this work, we implement a fast version of TasselNetV2, TasselNetV2+, based on PyTorch (Paszke et al., 2019). By profiling the computational bottleneck, we make several minor yet effective modifications to TasselNetV2 to improve its efficiency. These modifications are based on a novel framework view of TasselNetV2, which decomposes TasselNetV2 into an encoder, a counter and a normalizer, allowing module-specific optimization and diagnosis. In particular, we find the main computational bottleneck of TasselNetV2 lies in the poor implementation of the normalizer. We address this issue with a novel mathematically-equivalent reformulation that enables an efficient GPU-based implementation. In addition, we notice a large portion of model parameters are included in the first convolutional layer of the counter, which also introduces many floating-point calculations. Inspired by a common practice in image classification (Lin et al., 2013; He et al., 2016), we make the same observation that the first convolutional layer of the counter can be safely replaced with global average pooling without performance loss. This simple modification significantly reduces model parameters, improves efficiency, and more importantly, enables flexible adaptation to different object sizes. Further, we also slightly improve the efficiency of the encoder by moving forward the last downsampling layer. Such a modification enlarges the receptive field (RF) by 17% so that extra context can be seen by the network. Altogether these modifications significantly improve the efficiency of TasselNetV2 by more than an order of magnitude, achieving around 30 fps on image resolution of 1980 × 1080 (tested on a low-end GTX1070 GPU), as shown in Figure 1. More importantly, these modifications have no negative effect on counting accuracy. To encourage the use of this tool, we has released our implementation online. We believe TasselNetV2+ will facilitate many counting-related tasks in plant phenotyping systems. In short, we make the following contributions:

• TasselNetV2+: a fast version of TasselNetV2 with significant optimization in efficiency;

• A framework view of TasselNetV2 as a concatenation of an encoder, a counter and a normalizer, which allows module-specific optimization and diagnosis;

• A novel reformulation of local-count normalization that enables an efficient GPU-based implementation.


[image: Figure 1]
FIGURE 1. The number of processed frames per second with different image resolution. TasselNetV2+ is an order of magnitude faster than TasselNetV2. Frames per second are averaged over 100 independent trials on random input tested on GTX 1070 GPU, i7-8700 CPU, and 16 GB RAM.




2. DATASETS AND METHODS


2.1. Plant Counting Datasets

Since the focus of this work is on the methodology part, we leverage three publicly available plant counting datasets in our evaluation.

The Wheat Ears Detection (WED) dataset was collected in France with a wheat field phenotyping platform using a Sony ILCE-6000 digital camera in 2017. Images were captured from a trial of 120 2 × 10 m microplots with 20 contrasting genotypes at 2.9 m distance to the ground. The image resolution was 6, 000 × 4, 000. The number of ears in each image varied from 80 to 170. The dataset included 236 images. 30, 729 wheat ears were identified and manually annotated with bounding boxes. More details about the dataset can be found in Madec et al. (2019).

The Maize Tassels Counting (MTC) dataset was collected from four experimental fields across China between 2010 and 2015 with 6 different maize cultivars. The images were captured from a 5-meter-height imaging device with a CCD digital camera (E450 Olympus). The image resolutions were 3648 × 2736, 4272 × 2848 and 3456 × 2304. The dataset had 361 images, with 186 training images and 175 testing images. The number of maize tassels varied from 0 to around 100. Each maize tassel was manually annotated with a single dot. More details can be found in Lu et al. (2017c).

The Sorghum Heads Counting (SHC) dataset was collected from a trail with 1440 plots in Australia during the 2015–2016 growing season. The images were captured using an unmanned aircraft vehicle at flight heights of 20 m and a flight speed of 3 m/s with a commercial RGB camera. The resolution of the camera was 5472 × 3648. In the released dataset, there were two subsets called “dataset1” and “dataset2” with 52 cropped images and 40 post-processed images, respectively. The cropped image resolution in dataset1 was 1154 × 1731. Forty processed images were of varied resolutions. These two subsets were chosen because only they were labeled with dotted annotations. More details can be found in Guo et al. (2018).

Some example images of the three plant counting datasets are illustrated in Figure 2.


[image: Figure 2]
FIGURE 2. Example images on three plant counting datasets. Panels (A,B) are from the Wheat Ears Detection (WED) dataset, panels (C,D) are from the Maize Tassels Counting (MTC) dataset, and panels (E–H) are from the Sorghum Heads Counting (SHC) dataset.




2.2. Recapping TasselNetV2

As the baseline of this work, here we first recap TasselNetV2 (Xiong et al., 2019a). TasselNetV2 extends TasselNet (Lu et al., 2017c)—the simplest implementation of local count regression, i.e., learning a mapping from local image features to local region counts. TasselNetV2 is inspired by an observation that the theoretical RF is wasted in TasselNet such that TasselNet is weak in modeling context. It addresses this issue by changing all fully-connected layers into convolutional ones to allow arbitrary sizes of input. Instead of sampling and operating on small image patches, TasselNetV2 processes full images. In this way, hidden RF can be freed to benefit some plant counting tasks where context is an important cue, such as wheat spikes counting (Xiong et al., 2019a).

The network architecture of TasselNetV2 is shown in Figure 3. It includes 7 convolutional layers and 3 max pooling layers. Concretely, it is defined by C3(16)-M-C3(32)-M-C3(64)-C3(64)-C3(64)-M-C8(128)-C1(128)-C1(1), where Ck(m) denotes a 2D convolutional layer with m-channel k × k filters, followed by batch normalization (BN) (Ioffe and Szegedy, 2015) and ReLU (Nair and Hinton, 2010), and M is a 2-stride max pooling operator with 2 × 2 kernel size. The last C(1) is the prediction layer where BN and ReLU are not included.


[image: Figure 3]
FIGURE 3. A framework view of TasselNetV2. Given an input image, TasselNetV2 processes it through an encoder with a few convolutional and downsampling layers, passes it into a counter to regress local counts, and finally, normalizes the local counts with a normalizer to generate the final output.


In local count regression, an image is mapped to a (redundant) count map where each local count in the count map corresponds to a r × r local region. The relative order between r and the output stride s determines whether the count map is redundant. Note that r ≥ s. The count map is redundant when r > s, because in this case every two adjacent local regions have a [image: image] overlap. Only when r = s that the overlap disappears. According to the network definition above, r = 64 and s = 8 in TasselNetV2, so the resulting count map is redundant. A normalizer must follow for de-redundancy such that the sum of the final normalized count map can reflect the image count exactly. We call r × r the base input size of the network. The base input size is only related to the network architecture. This is a different concept from the input image size that can be arbitrarily large in theory. For example, given an input I ∈ ℝr×r×3, TasselNetV2 defines a transformation f such that f(I):ℝr×r×3 → ℝ; if I′ ∈ ℝH×W×3 where H, W ≫ r and are assumed to be divisible by s, then [image: image]. This suggests the output size of the count map is irrelevant to the base input size when the input image size is larger than the base input size. We will use this concept extensively throughout this paper.



2.3. Profiling Computational Bottlenecks

Despite TasselNetV2 exhibits remarkable counting performance on counting maize tassels and wheat spikes (Xiong et al., 2019a), its efficiency does not meet the requirement of high-throughput high-resolution image analysis (Figure 1). It is thus natural to consider whether there is room for efficiency improvement. Before optimization, a prerequisite is to figure out where the computational bottleneck is.

From Figure 3, an important insight of this work is that, by decomposing the architecture, TasselNetV2 can be viewed as a concatenation of an encoder, a counter and a normalizer: the encoder specializes in encoding the image representation; the counter maps the image representation to the local count; and the normalizer normalizes redundant local counts and outputs the final image-level count. Such decomposition is essential to allow module-specific diagnosis and profiling.

Given the framework view of TasselNetV2, we profile the time usage of each module in detail. The profiling results are shown in Figure 4. We surprisingly find that most of time consumption comes from the normalizer, and its occupancy even increases with increased image resolution. Since the bottleneck is found, the next step is to figure out why it wastes so much time. In what follows, we discuss this problem and our solution in detail.


[image: Figure 4]
FIGURE 4. Time profiling of TasselNetV2. It is clear that the main computational bottleneck lies in the normalizer. From low resolution to high resolution, the normalizer takes up 91.72, 93.31, 93.62, 94.25% of the total processing time, respectively.




2.4. Reformulating Local-Count Normalizer

Let us first elaborate on how the normalizer works. As aforementioned, given an input image I ∈ ℝH×W×3, TasselNetV2 produces a redundant count map [image: image]. To remove redundancy, a normalizer is followed to generate a normalized count map [image: image]. Notice that the spatial resolution is first reduced by s times and then recovered to the input resolution. TasselNetV2 achieves this by averaging each local count value c ∈ Cr into to a r × r region, i.e., each element of the r × r region is assigned with an averaged count of [image: image] (the sum of the local region still equals to c). By applying this rule to all local counts in Cr and rearranging them following the same spatial order and the output stride, an upsampled count map [image: image] can be acquired. Cu is still redundant. TasselNetV2 addresses this by constructing a reference map P ∈ ℝH×W that records how many times each location is counted. P can be an indicator of redundancy, as visualized in Figure 5. The final normalized count map [image: image] therefore can be computed by Cn = Cu ⊘ P, where ⊘ denotes the element-wise division operator. Finally, the image-level count cI can be computed by aggregating Cn, i.e.,

[image: image]

where Cn(x, y) is the value of Cn indexed by x and y. The normalization process above can be implemented by Algorithm 1.


[image: Figure 5]
FIGURE 5. Visualization of redundancy. The lighter the color is, the more redundant the regions are. The redundancy gradually grows from border to center and then remains constant in central areas.



Algorithm 1: CPU implementation of redundant count normalization in TasselNetV2.

[image: Algorithm 1]

Algorithm 1 is a CPU-based sequential implementation. It is easy to verify that most time consumption takes place in the two nested for loops, leading to inefficient normalization. One possible solution may be to parallel this process with additional computational resources, while a more elegant way may be to pose the question: Can we speed up the normalizer at the algorithmic level? Our answer is positive. Our solution comes from a mathematically-equivalent reformulation of Equation (1), which takes the form

[image: image]

where [image: image] is the vectorized version of Cr, cr(i) denotes the i-th local count of cr, and Pi indicates the r × r local region extracted from P that corresponds to cr(i). The benefit of such a reformulation is that we can evade the explicit computation of Cu and achieve per-region normalization simultaneously. In addition, Pi can be efficiently constructed with modern image manipulation operators, such as im2col in MATLAB or fold in PyTorch. By defining another vector [image: image] where [image: image], Equation (2) can be further simplified to

[image: image]

This new formulation can be implemented by Algorithm 2. It is worth noting that Algorithm 2 is a full GPU-based implementation. We re-profile the time usage of TasselNetV2 with this new implementation. As shown in Figure 6, the time consumption of the normalizer reduces significantly.


Algorithm 2: GPU implementation of redundant count normalization in TasselNetV2+.

[image: Algorithm 2]


[image: Figure 6]
FIGURE 6. Time profiling of TasselNetV2 with the GPU-based normalizer. The GPU-based normalizer speeds up the inference significantly. From low resolution to high resolution, the normalizer only takes up 56.62, 52.36, 49.48, 49.15% of the total processing time, respectively.




2.5. Optimizing Encoder and Counter

After addressing the main computational bottleneck, we also take a closer look at the encoder and the counter to examine their possibility for further optimization. Indeed we find such possibility. For the counter, we notice that the number of parameter of the first convolutional layer is 8 × 8 × 64 × 128 = 524, 288, while the total number parameters of the model is 638, 993. That is to say, this single layer takes up 82.05% of model parameters. This fact motivates us to investigate the necessity of reserving such a parameter-extensive layer. Inspired by a common practice in image classification (Lin et al., 2013; He et al., 2016) where fully-connected layers are replaced with a global average pooling (GAP) layer, we apply this modification to TasselNetV2 and surprisingly find that almost no performance loss is observed (we will justify this point in section 3), which suggests the first convolutional layer in the counter can be safely replaced by GAP. Note that, the sense of “global” in GAP is relative to the base input size, rather than the input image size. It is still implemented by a standard average pooling layer, with the same kernel size compared to the size used in convolution, i.e., 8 × 8 for r = 64.

A very interesting property of introducing the GAP layer is that it allows flexible manipulation of the base input size r × r without changing the model complexity because GAP is a non-parametric layer. Allowing the change of r enables TasselNetV2+ to adapt to different object sizes in images. It is clear that, when resizing an image, object sizes change accordingly. r should also change to match the object size. For instance, if an image is upsampled by ×2, r also should be doubled. This is a hyper-parameter that needs to be tuned when choosing an appropriate image resolution in practice. Tuning r is easy in TasselNetV2+. Given the desired base input size r × r and the output stride s, one only needs to modify the kernel size of GAP to be [image: image]. Note that such a modification does not affect the model complexity. We will show later in section 3 how counting performance changes with changed base input sizes.

Regarding the encoder, it is not immediately clear on how to improve its efficiency because its design is sufficiently clean. Despite there exist efficient convolutional operators such as depthwise convolution, such efficiency still stays in theory, e.g., “depthwise convolution + pointwise convolution” used in MobileNet (Howard et al., 2017) is even less efficient than standard convolution in TasselNetV2 (23.76ms vs. 16.92ms for processing an 1920 × 1080 input with the encoder). Instead we find a simple trick that can improve the encoder efficiency. The trick is to move forward the last downsampling layer, right after the third convolutional layer. This simple modification leads to an efficiency improvement from 16.92 ms to 14.39 ms on an 1920 × 1080 input. The improvement can boil down to the early decrease of spatial resolution such that conv4 and conv5 are executed on low-resolution feature maps. The modification also increases the RF by 17%, from 94 to 110, as illustrated in Figure 7. The importance of RF for plant counting has been highlighted in Xiong et al. (2019a). Such increment of RF hence allows additional context modeling.


[image: Figure 7]
FIGURE 7. Receptive field comparison between TasselNetV2 and TasselNetV2+.


We remark that, since the improvements to the counter and the encoder are somewhat tricky and minor, we do not declare any novelty or contribution in this part.



2.6. Meeting TasselNetV2+

Altogether the efficient normalizer, the trimmed counter, and the improved encoder construct a fast version of TasselNetV2 we call TasselNetV2+. Figure 8 highlights the improvements of TasselNetV2+ over TasselNetV2. Following the same notation in section 2.2, the architecture of TasselNetV2+ is formally defined by C3(16)-M-C3(32)-M-C3(64)-M-C3(128)-C3(128)-A8-C1(128)-C1(1), where A8 is the average pooling operator with 8 × 8 kernel size so that each inferred local count is still learned from a region of the base input size.


[image: Figure 8]
FIGURE 8. A framework view of TasselNetV2+. Our modifications are in boldface, including changing the downsampling behavior in the encoder, aggregating encoder features with global average pooling in the counter, and implementing a GPU-based normalizer.


To showcase the overall effect in efficiency optimization, we again profile the time usage of TasselNetV2+ in Figure 9. It can be observed that, compared with Figure 6, the time consumption of the counter decreases significantly. Now TasselNetV2+ can process an 1920 × 1080 image in less than 40 ms. To give one a sense why TasselNetV2+ is significantly faster than TasselNetV2, we further summarize the number of parameters and GFLOPs (an indicator of the amount of floating-point operations) of two models. TasselNetV2 has 639K model parameters with the GFLOPs of 29.20, while TasselNetV2+ is with 262K and 12.42 GFLOPs (GFLOPs are based on an 1920 × 1080 input). Overall TasselNetV2+ is an order of magnitude faster than TasselNetV2 per Figure 1 with less parameters and GFLOPs. In section 3, we will show that the decrease of model parameters and GFLOPs does not imply the degradation of counting accuracy; instead TasselNetV2+ achieves almost the same counting accuracy compared to TasselNetV2.


[image: Figure 9]
FIGURE 9. Time profiling of TasselNetV2+.





3. RESULTS AND DISCUSSIONS

The goal of this work is to provide an easy-to-use tool for plant counting and to improve the efficiency of TasselNetV2. Since the efficiency issue has already been justified in the previous sections, here we mainly address the concern on whether the increased efficiency comes at the cost of decreased accuracy. We evaluate TasselNetV2+ on three plant counting tasks, wheat ears counting (Madec et al., 2019), maize tassels counting (Lu et al., 2017c), and sorghum heads counting (Guo et al., 2018).


3.1. Wheat Ears Counting

Here we report results of TasselNetV2+, TasselNetV2 (Xiong et al., 2019a), TasselNet (Lu et al., 2017c), and Faster R-CNN (Ren et al., 2015) on the WED dataset (Madec et al., 2019). Since bounding boxes annotations are given, we only use the center points computed from bounding boxes to train TasselNetV2 and TasselNetV2+. We follow the same train/validation split used in Madec et al. (2019). We also follow (Madec et al., 2019) that designs a series of experiments with different downsampling rates of [image: image], [image: image], [image: image], [image: image], and [image: image] and different cropped image sizes. This allows us to directly compare TasselNetV2+ with the results of Faster R-CNN reported in Madec et al. (2019). Note that, since in high resolution, the average size of wheat ears will be larger than the RF of TasselNetV2+, we also build several variants of TasselNetV2+ with changed base input sizes.

ℓ1 loss is used for training TasselNetV2 and TasselNetV2+. 256 × 256 or 512 × 512 image patches are randomly cropped from each image with random horizontal flipping for data augmentation (only one patch is sampled from each image in each epoch). The network is trained from scratch with a batch size of 8. Model parameters are initialized from the normal distribution with a standard deviation of 0.01. The stochastic gradient descent (SGD) optimizer is used for optimization. Parameters are updated for 500 epochs, with 10, 000 iterations. The learning rate is initially set to 0.01 and reduced by 10 × at the 200-th and 400-th epoch, respectively. The mean absolute error (MAE), root mean square error (RMSE), relative RMSE, and the coefficient of determination (R2) are reported.

Results are listed in Table 1. We can make the following observations:

• TasselNetV2+ achieves counting performance comparable to TasselNetV2 (5c vs. 5d);

• The best performance reported by TasselNetV2+ is slightly better than that reported by Faster R-CNN (4d vs. 1a), while TasselNetV2+ and Faster R-CNN achieve this at different resizing ratios ([image: image] vs. [image: image]);

• Compared to Faster R-CNN (1a, 2a, 3b, and 4b), the performance of TasselNetV2+ is less sensitive to the change of image resolution (1b, 2b, 3d, and 4d). We believe the reason is that Faster R-CNN requires to encode sufficiently good appearance features to detect bounding boxes. In low image resolution, degraded appearance cues may lead to decreased performance of Faster R-CNN. By contrast, local count models like TasselNetV2 and TasselNetV2+ do not require detecting bounding boxes but work by counting repetitive visual patterns. Such repetitive patterns do not have to be the whole ear and instead can be any representative part of an ear. The patterns are not likely to change significantly with changed image resolution;

• Local regression models like TasselNetV2 and TasselNetV2+ generally work well when the ear size is small (4c, 4d, 5c, and 5d). This can be a valuable property in practice because these models make it possible for large-scale phenotyping from the sky, e.g., with unmanned aircraft vehicles, where the phenotyped plants often appear to be small in images;

• The counting performance of TasselNetV2+ improves when the base input size is larger than the average ear size (2b vs. 2c vs. 2d and 1b vs. 1c vs. 1d), which means the RF of the network should be large enough to cover the objects counted. In high resolution, the performance of TasselNetV2+ slightly decreases. We think the reason is that TasselNetV2+ is not sufficiently deep (with only 5 convolutional layers), the feature representation may not be encoded well at the high resolution (details of ears are rich in high resolution).

• Compared to Faster R-CNN, TasselNetV2+ is also efficient. It is reported in Madec et al. (2019) that the inference of Faster R-CNN on the [image: image] resolution requires about 1 h to iterate over the validation set, while TasselNetV2+ only takes a few seconds.


Table 1. Performance on the Wheat Ears Detection dataset.

[image: Table 1]



3.2. Maize Tassels Counting

Here we evaluate TasselNetV2+ on the MTC dataset (Lu et al., 2017c). Following the same practices in Lu et al. (2017c) and Xiong et al. (2019a), we downsample images to its [image: image] resolution for a fair comparison. We also report performance of TasselNetV2 and other state-of-the-art methods that have reported their counting performance on this dataset.

We follow the same training configuration used in the counting wheat ears except that, 256 × 256 image patches are randomly cropped, the batch size is set to 9 (with the same 10, 000 iterations). The MAE and RMSE are used as evaluation metrics. We also report R2 for TasselNetV2 and TasselNetV2+.

Results are shown in Table 2. It is clear that TasselNetV2+ performs no worse than TasselNetV2 and other state-of-the-art methods, with the best MAE of 5.1 and a comparable RMSE of 9.0. The slightly improved performance compared to Xiong et al. (2019a) may boil down to the improved training protocol (we observe that mini-batch training leads to more stable training behavior than single-image training used in Xiong et al., 2019a).


Table 2. Performance on the Maize Tassels Counting dataset.

[image: Table 2]



3.3. Sorghum Heads Counting

Here we evaluate TasselNetV2+ on the SHC dataset. The SHC dataset is introduced by Guo et al. (2018) where two subsets with 52 and 40 images are labeled with dotted annotations, respectively. Since two datasets are generated in different ways, we evaluate TasselNetV2+ on them independently. For the dataset1 with 52 images, 26 images are randomly sampled for training, and the rest for testing. For the dataset2 with 40 images, 20 images are randomly sampled for training, and the rest for testing. We do not downsample the images in both training and testing.

We also follow the same training configuration used in counting wheat ears except that, 256 × 1024 image patches are randomly cropped, and the batch size is set to 5. We report MAE, RMSE and R2.

Results are shown in Table 3. Again TasselNetV2+ and TasselNetV2 achieve comparable counting performance. It is worth noting that, both models are trained with a limited number of training samples (no more than 30), which implies that TasselNetV2+ is applicable to small sample sizes. The R2 on the dataset2 is slightly poor, but we notice most inferred counts on this dataset are sufficiently accurate. Since the number of testing sample is limited, the computation of R2 may be biased by some outliers shown in Figure 11.


Table 3. Performance on the Sorghum Heads Counting dataset.

[image: Table 3]



3.4. Further Discussions

As a summary of experiments above, we compare merits and drawbacks of Faster R-CNN, TasselNet, TasselNetV2, and TasselNetV2+ in Table 4. Faster R-CNN is accurate and has good multi-scale adaptation, but it becomes slow when scaling to high-resolution images due to large model capacity and high GPU memory consumption. TasselNet is a prototype of the plant counting model with only dotted annotations required. It points out a promising plant counting paradigm under resource-constrained conditions, but also leaves many problems unsolved. TasselNetV2 improves the accuracy and efficiency of TasselNet with the same model capacity, but still cannot tackle high-resolution images well. TasselNetV2+ inherits all the advantages of TasselNet and TasselNetV2 and is also scalable to high resolution. Despite TasselNetV2+ may not generalize well to multiple scales, we consider it a good candidate for plant counting.


Table 4. Characteristics of different methods.

[image: Table 4]

Qualitative results of TasselNetV2+ on three plant counting tasks are shown in Figure 10. TasselNetV2+ infers accurate counts with strong/weak responses on plant/non-plant regions. The resulting count map can be an useful auxiliary cue to benefit related tasks such as detection or segmentation. Note that, TasselNetV2+ are applied to these plant counting tasks with the same architecture and almost the same hyper-parameters (we only slightly vary the batch size to ensure the same number of iterations during parameters updating).


[image: Figure 10]
FIGURE 10. Qualitative results of TasselNetV2+ on three plant counting dataset. From top to bottom, the wheat ears detection dataset, maize tassels counting dataset, sorghum heads counting—dataset1, and sorghum heads counting—dataset2. Red points are manual annotations.


We further compare the manual counts and inferred counts of TasselNetV2+ on three counting tasks in Figure 11. A strong correlation between manual counts and inferred counts is observed on the WED, MTC, and SHC-dataset1 datasets, with R2 of 0.9179, 0.8880 and 0.9587, respectively. On the SHC-dataset2, the R2 is slightly poor. We believe the reason is that the points are too sparse such that R2 can be easily affected by few outliers. Most predictions are sufficiently accurate. We also observe that on the MTC dataset, a set of samples are underestimated. This is because this dataset is the most challenging one with a large data shift between training and testing set. Models learned on the training set may not generalize well to the testing set with significant variations in plant cultivars, illumination changes, and poses. In this case, the idea of domain adaptation may be applied to fill the performance loss (Lu et al., 2017b, 2018).


[image: Figure 11]
FIGURE 11. Comparison between inferred counts and manual counts with TasselNetV2+ in four plant counting datasets. (A) Wheat ears counting, (B) maize tassels counting, (C) sorghum heads counting—dataset1, and (D) sorghum heads counting—dataset2.


All evaluation results above suggest the general applicability of TasselNetV2+ in plant counting, especially when only the count value is the output of interest. However, an application note is that, TasselNetV2+ may have limited adaptation to scale variations, e.g., for a model trained on images captured at 5 m height will significantly degrade when testing on images captured at 10 m height. This is because TasselNetV2+ is inherently not a multi-scale model. Fortunately practitioner often have consistent image capturing plans, so this may not be a problem to deploy TasselNetV2+ in reality.




4. CONCLUSION

In high-throughput phenotyping systems, the term “throughput” is closely related to the efficiency of data analysis algorithms. Targeting plant counting, we present TasselNetV2+, a fast implementation of a state-of-the-art plant counting model TasselNetV2, to deal with high-throughput counting from high-resolution imagery. This new implementation is inspired by a time profiling that the computational bottleneck of TasselNetV2 lies in the normalizer. We therefore improve this part with a novel mathematically-equivalent formulation that enables a fast GPU implementation. TasselNetV2+ shows a clear advantage in efficiency on processing high-resolution images. Compared to Faster R-CNN, it also demonstrates its effectiveness and robustness in changed image resolution.

We believe our new implementation will encourage many real-time applications in phenotyping plant counts. An interesting application scenario would be that, images are directly processed right after capturing on the unmanned aircraft vehicles, instead of being sent back for post-processing. It would also be interesting to see applications of TasselNetV2+ to other plant species. For future work, we plan to enhance the scale adaptation of the model.
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High throughput image-based plant phenotyping facilitates the extraction of morphological and biophysical traits of a large number of plants non-invasively in a relatively short time. It facilitates the computation of advanced phenotypes by considering the plant as a single object (holistic phenotypes) or its components, i.e., leaves and the stem (component phenotypes). The architectural complexity of plants increases over time due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. One of the central challenges to computing phenotypes from 2-dimensional (2D) single view images of plants, especially at the advanced vegetative stage in presence of self-occluding leaves, is that the information captured in 2D images is incomplete, and hence, the computed phenotypes are inaccurate. We introduce a novel algorithm to compute 3-dimensional (3D) plant phenotypes from multiview images using voxel-grid reconstruction of the plant (3DPhenoMV). The paper also presents a novel method to reliably detect and separate the individual leaves and the stem from the 3D voxel-grid of the plant using voxel overlapping consistency check and point cloud clustering techniques. To evaluate the performance of the proposed algorithm, we introduce the University of Nebraska-Lincoln 3D Plant Phenotyping Dataset (UNL-3DPPD). A generic taxonomy of 3D image-based plant phenotypes are also presented to promote 3D plant phenotyping research. A subset of these phenotypes are computed using computer vision algorithms with discussion of their significance in the context of plant science. The central contributions of the paper are (a) an algorithm for 3D voxel-grid reconstruction of maize plants at the advanced vegetative stages using images from multiple 2D views; (b) a generic taxonomy of 3D image-based plant phenotypes and a public benchmark dataset, i.e., UNL-3DPPD, to promote the development of 3D image-based plant phenotyping research; and (c) novel voxel overlapping consistency check and point cloud clustering techniques to detect and isolate individual leaves and stem of the maize plants to compute the component phenotypes. Detailed experimental analyses demonstrate the efficacy of the proposed method, and also show the potential of 3D phenotypes to explain the morphological characteristics of plants regulated by genetic and environmental interactions.

Keywords: 3D plant voxel-grid reconstruction, 3D plant phenotyping taxonomy, Plant component separation, 3D phenotype computation, benchmark dataset


1. INTRODUCTION

The complex interaction between a genotype and its environment determines the observable phenotypic characteristics of a plant that influence resource acquisition and yield (Das Choudhury et al., 2019). High throughput image-based plant phenotyping refers to the non-invasive monitoring and quantification of plants' morphological and biophysical traits by analyzing their images captured at regular intervals with precision (Das Choudhury et al., 2018, 2019). It facilitates the analysis of a large number of plants in a relatively short time with no or little manual intervention to compute diverse phenotypes. The process is generally non-destructive, allowing the same traits to be quantified repeatedly at multiple times during a plant's life cycle. Extracting meaningful numerical phenotypes based on image analysis remains a critical bottleneck in plant science. Current image-based plant phenotyping methods have mainly focused on the computation of phenotypes, e.g., morphological, architectural, textural and color-based, from 2D plant image sequences for vegetative and reproductive stages (Dellen et al., 2015; Brichet et al., 2017; Das Choudhury et al., 2017, 2018; Pound et al., 2017; Zhang et al., 2017; Yin et al., 2018). However, plants, 3D in nature, exhibit increasing architectural complexity over time due to self-occlusions and phyllotaxy (i.e., arrangements of leaves around the stem), which pose significant challenges in the attempt to accurately estimating phenotypes from a 2D image and linking these phenotypes to genetic expression. For example, the stem angle determination method in Das Choudhury et al. (2017) from 2D single view image sequences (at which the line of sight of the camera is perpendicular to the line of axis of the leaves) in the 2D space, is unable to account for stem lodging toward and away from the camera. Furthermore, accurate estimation of the 3D structure of a plant to compute 3D phenotypes is important for the study of physiological processes in plants, e.g., plant leaf area and leaf angle significantly influence light interception, and thereby, transpiration, photosynthesis, and plant productivity (Thapa et al., 2018).

The method by Bosquet et al. (2016) experimentally demonstrated the temporal variation of leaf angle and leaf area induced by light interception based on 3D reconstruction of maize plants from multiple 2D side view images. The method by McCormick et al. (2016) used a depth camera for 3D reconstruction of the sorghum plants, and identified quantitative trait loci regulating sorghum architecture for the measurements of shoot height, leaf angle, leaf length, and shoot compactness. The method by Golbach et al. (2016) used the shape-from-silhouette method for reconstructing a 3D model of a tomato seedling based on images captured from ten calibrated cameras. The individual components of the plants, i.e., stem and leaves, were segmented from the 3D model to determine stem height and area of each leaf. A low-cost multiview stereo imaging system was described in He et al. (2017) for 3D point cloud reconstruction of strawberry fruits. The model was used to estimate seven agronomically important strawberry traits, i.e., height, length, width, volume, calyx size, color, and achene number. The method in Srivastava et al. (2017) described an algorithm for 3D model reconstruction of wheat plants with occluded leaves for drought stress characterization using deep learning techniques. A depth camera was used to acquire images of sorghum plants, and a semi-automated software pipeline was developed to generate 3D plant reconstructions from the images, which were used to compute standard measures of shoot architecture such as shoot height, leaf angle, leaf length and shoot compactness (McCormick et al., 2016).

Most of the existing methods (Klodt and Cremers, 2015; Golbach et al., 2016; Scharr et al., 2017) have focused on the 3D reconstruction of seedlings or early growth stages. Note that the smaller plants are characterized by architectural simplicity due to the absence of self-occlusions and concavities, and hence, their reconstructions are easier and less error prone. Unlike the previous studies, we aim to reconstruct plants at later vegetative stages to address the complexity that arise from self-occlusions and leaf crossovers. McCormick et al. (2016) performed 3D reconstruction of sorghum plants using depth images to identify quantitative trait loci for characterizing shoot architecture. However, the procedure required manual transportation of the plants from the greenhouse to a turn-table for imaging that resulted in a low throughput analysis. A fast high resolution volume carving method using octree was presented by Scharr et al. (2017) for shoot reconstruction of maize and banana seedlings. The method performed reconstruction using five maize plants from seedling to 2–8 leaves stage. The images were captured in a semi-automated system that required manual positioning of the plant on a turntable. The banana seedlings were imaged in an automatic screenhouse system, however, the plant height was limited to few centimeters. Furthermore, the method computed only three well-known phenotypic traits, i.e., the volume of visual hull, leaf-count and area of each leaf. The method in Guan et al. (2018) used a density-based spatial clustering algorithm for 3D reconstruction of soybean canopies to compute phenotypes. A multi-source imaging system consisting of a photonic mixer detector and a RGB camera was used to capture images of soybean plants placed at a distance of 80 cm to capture multiview images in an outdoor environment. The method in Wu et al. (2019) used Laplacian skeleton extraction to extract the skeleton of the 3D point cloud of a maize plant. It used color information to estimate phenotypes, e.g., leaf length, leaf inclination angle, leaf top length, leaf azimuthal angle, leaf growth height, and plant height. The method attempted to analyze plants after silking stage with reported limitations of unsatisfactory skeletonization of upper plant part where leaves were incompletely unfolded and also the reproductive organs, i.e., tassel and ear. The 3D point clouds were obtained using a terrestrial laser scanner (Faro Focus3D X130) in a low throughput indoor setting, where six plants were scanned at a time.

In this paper, we present a novel method called 3DPhenoMV for computing 3D plant phenotypes based on a voxel-grid reconstruction approach using multiview visible light image sequences captured in an automated high throughput plant phenotyping platform (HTP3) where the distance between the pot and the camera is significantly larger (5.5 m) compared to the state-of-the methods. 3DPhenoMV uses a well-known space carving technique for voxel-grid reconstruction and aims to achieve the fully automatic reconstruction of a large number of plants at their late vegetative stages (with plant's height up to 2.5 m) without requiring any manual intervention on an individual plant basis. This scalability and lack of human interaction will contribute to the method's adaptability for a large scale phenotypic study regulated by genotypes, and also the method can be applied in the study of quantitative genetic engineering to identify loci controlling variation in the 3D phenotypic traits.

We also introduce a comprehensive taxonomy of 3D phenotypes, first of its kind, that addresses some of the pitfalls associated with 2D single view images due to self-occlusions and leaf crossovers. In the proposed study, either the plant is considered as a single object or as a composite of its components to compute holistic and component structural phenotypes respectively, from the voxel-grid of the plant. The study focuses on maize plants as this species along with rice and wheat, directly or indirectly provide over half of the total world caloric consumption each year. 3DPhenoMV introduces a voxel overlapping consistency check followed by point cloud clustering technique to detect and isolate individual leaves and stem of the maize plants to compute the component phenotypes. To evaluate the proposed method, we also provide a publicly available benchmark dataset called the University of Nebraska-Lincoln 3D Plant Phenotyping Dataset (UNL-3DPPD). The dataset will foster research in 3D image-based plant phenotyping, facilitate new algorithm development, and enable uniform comparisons among competing methods.



2. METHOD

3DPhenoMV consists of four key modules: (a) camera calibration; (b) 3D plant voxel-grid construction; (c) plant component detection and separation; and (d) computation of holistic and component phenotypes.

Figure 1 shows the block diagram of 3DPhenoMV. The images of a plant captured from multiple side views are used as the input to the algorithm. Before the 3D volumetric representation of the plant is reconstructed, the camera parameters must be computed in a calibration step. The 3D model of the plant is reconstructed using the multiple side view images and camera parameters. A set of 3D holistic phenotypes are computed from the 3D model. The individual components of the plant are detected and separated to compute the 3D component phenotypes. These modules are discussed in detail next.


[image: Figure 1]
FIGURE 1. The block diagram of the proposed method.



2.1. Camera Calibration

Camera calibration is an essential prerequisite for accurate reconstruction of 3D models based on projective geometry (Ji and Zhang, 2001). It is also necessary to account for geometrical lens distortion. The process involves the determination of intrinsic (e.g., focal length, skew and optical center) and extrinsic (e.g., location and rotation of the camera in space) camera parameters to relate the 2D image pixel coordinates to object points in a 3D reference coordinate system. A cube with checkerboard patterns on side surfaces is used as the calibration target (see Figure 2). The cube is then fitted to the metallic and composite carrier placed on the movable conveyor belt of the HTP3, which moves the calibration cube to the imaging chamber for capturing images in the visible range from multiple side views.


[image: Figure 2]
FIGURE 2. Camera calibration process: checkerboard images with detected corners.


The calibration algorithm described in Heikkila and Silven (1997) involves direct linear transformation based on the collinearity principle of pinhole camera model, where each point in the object space is projected by a straight line through the projection center into the image plane. First, a set of images of the calibration target is derived from multiple viewing angles. Then, interest points from the images are identified, aligned, and the camera parameters are obtained by simultaneous estimation of the parameters based on the Levenberg-Marquardt optimization method. We captured 40 images of the checkerboard cube at 9° intervals. The calibration algorithm uses Harris corner detection algorithm to detect the corners of the 2D checkerboard images. It is evident from Figure 2 that each corner of all four checkerboard surfaces are correctly detected. The additional steps to compensate for radial and tangential distortions due to circular features add robustness to the method. We used camera calibrator app of image processing and computer vision toolbox of Matlab based on this algorithm to compute the camera parameters. To determine the orientation of the checkerboard pattern, it is important that the checkerboard pattern should not be a square, i.e., one side must contain an even number of squares and the other side an odd number of squares. The measurement of the square is required for calibration. The dimension of each square of our checkerboard pattern is 2.5 × 2.5 inches.



2.2. 3D Plant Voxel-Grid Construction

A voxel is a unit of graphic information that defines a value of a regular grid in 3D space. The first step for 3D model reconstruction of a plant as a grid of voxels (referred to as 3D plant voxel-grid construction) is to segment the plant (foreground), from the background, i.e., the part of the scene which remains static over the period of interest, from images of the plant captured from multiple views. Since, the imaging chambers of HTP3 have a fixed homogeneous background, the simplest background subtraction technique based on frame differencing is often adequate to extract the plant from the background. However, different segmentation techniques may be required in more complex imaging setups. The successful execution of the frame differencing technique requires the background and foreground images to be aligned with respect to scale and rotation. Hence, prior to applying frame differencing technique of background subtraction, we used automated image registration technique based on feature matching to account for change in zoom levels (resulting in scale variation) during the image capturing process. Figures 3A,B show the background image without any plant and an image of a sample plant, respectively.


[image: Figure 3]
FIGURE 3. Illustration of segmentation process: (A) background image; (B) original image; (C) foreground obtained after applying frame differencing technique; (D) foreground obtained by green pixel superimposition; (E) foreground containing green pixels characterizing the plant; and (F) binary image.


The extracted foreground obtained using the frame differencing technique is shown in Figure 3C. This image retains some pixels corresponding to the background due to lighting variations, and also some undesirable parts, e.g., soil, soil covering film, etc. In order to remove resulting noises due to variation in lighting, the green pixels of the original image are superimposed onto Figure 3C, which results in the image as shown in Figure 3D. The green pixels constituting the plant are retained, while nosy pixels of other colors are set to zero values to make them part of the background. Thus, the noises are removed. The resulting foreground consisting of only green pixels characterizing the plant is shown in Figure 3E. A color-based thresholding in HSV (Hue, Saturation and Value) color space is applied on this image. The thresholds will depend on the imaging environment, camera characteristics and the reflectance properties of the plant, and can be empirically determined. The following ranges were found to be effective for our imaging setup: hue (range: 0.051–0.503), saturation (range: 0.102–0.804), and value (range: 0.000–0.786). The resulting binary image is subjected to connected-component analysis involving morphological erosion to remove noisy pixels and dilation to fill up any small holes inside the plant image to derive a single connected region as shown in Figure 3F.

After the silhouettes (binary images) of the plant from multiple views are obtained, the 3D model is reconstructed using a space carving approach extended by photo-consistency theory, as explained in Kutulakos and Seitz (2000). Given an initial volume that contains the scene, the algorithm proceeds by iteratively removing (i.e., “carving”) portions of that volume until it converges to the photo hull which is defined as the maximal shape that encloses the set of all photo-consistent silhouettes (Kutulakos and Seitz, 2000). Figure 4 shows the 3D voxel-grid reconstruction of a plant iteratively using the space carving approach. The images in the right cell show the reconstructed 3D plant using the side view images shown in the corresponding left cell for each row. The figure shows that the accuracy in the voxel-grid reconstruction increases with the number of views.


[image: Figure 4]
FIGURE 4. Illustration of 3D plant voxel-grid reconstruction using iterative space carving algorithm, where the right cell shows the reconstructed plants using the image views in the left cell for each row.




2.3. Plant Component Detection and Separation

Here, we explain the overlapping consistency check and point cloud clustering techniques to divide the 3D plant voxel-grid into three components based on the structure of the plants: stem, leaves and top leaf cluster (TLC) to compute component phenotypes. The TLC denotes the top part of the plant where the last few newly emerged leaves are not attached to distinct junctions, instead, multiple incompletely unfolded leaves surround a single junction occluding each other. In this paper, we are interested in computing phenotypes of full-grown leaves. The endpoint of the stem is considered as the location from where the TLC emerges. These components, i.e., stem, each full-grown leaf and the TLC are shown in Figure 5. The steps to separate these components from the voxel-grid are summarized below.

• Stem: The height of the bounding cube enclosing the reconstructed plant voxel-grid (VG) is considered as the height of the plant. The cross-section of VG at height = 0 denotes the base of the stem. We then proceed along height and consider the next adjacent cross-section at height = 1. At this level, we count the total number of cross-sections, and measure their areas by the number of constituent voxels. if the number of cross-section at the next level is still one, we conclude that the cross-section is part of the stem and add it to the stem. if the number of cross-section is two, then we conclude the presence of a junction with a leaf. Note that this assumption holds true for maize plants, as in maize plants leaves emerge using bottom-up approach in alternate opposite fashion, and a single leaf is attached to each junction. We then compute the area of overlapping regions of each of these two cross-sections with the cross-section at the previous level. The cross-section which shows the maximum overlapping with the previous level based on the number of voxels, is considered to be the most consistent cross-section with the previous one, and is considered as the part of the stem. This technique is called as the voxel overlapping consistency check. At this point, we form a frustum of a right circular cone with the two adjacent cross-sections of the stem as the two parallel surfaces of the frustum. All voxels not included in this frustum are discarded. This process is called stem trimming. The iterative process continues until it reaches the TLC, i.e., the termination condition. When TLC is reached, there is no one or two distinct cross-sections, instead a group of several cross-sections are formed with much higher area. The part of the plant thus extracted, is the stem of the plant.

• Top leaf cluster (TLC): The part of the plant enclosed between the endpoint of the stem and the upper horizontal side of the bounding cuboid enclosing the plant is considered as TLC.

• Leaves: Once the stem and TLC are separated out from the plant, the voxels that remain (denoted as leaf point cloud), are the constituents of leaves. We use pcsegdist() function of Matlab R2018a to segment the leaf point cloud into different clusters based on minimum Euclidean distance value of 0.5 between points in different clusters. The points belonging to each cluster represent a leaf. The function pcsegdist() assigns an integer cluster label to each point in the point cloud, and returns the labels of all points. The total number of clusters returned as the output of the function represents the total number of leaves.


[image: Figure 5]
FIGURE 5. Illustration of plant component labeling. ‘Key’: TLC, top leaf cluster.




2.4. Phenotype Computation

Figure 6 shows the proposed taxonomy of 3D phenotypes. Image-based above-ground 3D plant phenotypes are broadly classified into three categories, namely structural, physiological and temporal. Structural phenotypes are based on morphological characteristics of the plants, whereas physiological phenotypes refer to the physiological processes in plants regulating growth and metabolism. Structural and physiological phenotypes are grouped into two categories: holistic and component. Holistic phenotypes consider the whole plant as a single object to compute basic geometric properties, e.g., the volume of convex-hull enclosing the plant to account for the size of the plant. The component phenotypes consider the individual parts of a plant, e.g., leaf, stem, flower, and fruit. Examples of 3D component phenotypes include stem volume, cross-sectional area of the stem, total number of leaves, leaf curvature, leaf thickness, flower and fruit volume. Temporal phenotypes are either trajectory-based to account for variations of the static phenotypes with respect to time, e.g., plant growth rate, or event-based which records the important events in a plant's life cycle, e.g., germination and emergence of a new leaf. If a phenotype is based on a single attribute, it is called primary phenotype, e.g., stem height, leaf length and flowering time. A derived phenotype combines two or more primary phenotypes, e.g., the ratio of stem circularity to plant height, time to flowering from germination, etc. In this paper, we focus on holistic and component structural phenotypes and trajectory-based temporal phenotypes of maize plants.


[image: Figure 6]
FIGURE 6. A taxonomy of 3D plant phenotypes.



2.4.1. Holistic Phenotypes

Once the 3D volumetric representation of the plant is constructed, a number of holistic phenotypes can be computed. We list the most significant holistic phenotypes below.

Plant volume: It is the number of voxels in the reconstructed voxel-grid of the plant.

Volumetric occupancy ratio: It is defined as the ratio of number of plant voxels in the reconstructed 3D plant model to the volume of the 3D convex-hull.

Spherical volume: It is measured as the volume of the minimum enclosing sphere of the plant.

3D aspect ratio: It is defined as the ratio of the height (vertical axis) of the bounding cube of the plant to either the width (longer horizontal axis) or the depth (shorter horizontal axis) of the bounding cube. Based on these two choices, we define two types of aspect ratios: primary and secondary. The primary and secondary aspect ratios are defined as

[image: image]

and

[image: image]

Where, HeightBC denotes the height of the bounding cube, WidthBC denotes the width of the bounding cube and DepthBC denotes the depth of the bounding cube of the plant in the side views.



2.4.2. Component Phenotypes

We define the following component phenotypes that can be computed after the individual leaves, stem, and the TLC of the plants have been separated. These component phenotypes significantly contribute to the assessment of the plant's vigor.

Leaf count: This is the total number of leaves in the plant, and can be computed as the number of clusters in the leaf point cloud.

3D leaf length: It measures the length of each leaf. First, the skeleton of the point cloud of each separated leaf is computed using the Laplacian based contraction method as explained in Cao et al. (2010). Then an n-th order polynomial, p(x), is used to approximate the leaf skeleton using polynomial curve fitting based on a least square error approach. It is given by

[image: image]

where, p1, p1, …, pn+1 are the coefficients of the best fit polynomial for the leaf skeleton optimizing the least square error. The leaf length is computed as

[image: image]

where, x1 and x2 denote the x-co-ordinates of the two extreme points of the skeleton.

Total leaf volume: It is measured by the number of voxels in the leaf cluster.

TLC volume: It is measured by the number of voxels in the TLC.

Stem height: Given stem S = {(xi, yi, zi)}, the height of the stem (Sh) is computed by

[image: image]

Stem volume: It is measured by the number of voxels in the stem.

Average stem cross-section area: Stem cross-section area is measured as the total number of voxels in the transverse plane of the stem at any stem height. The average cross-section area over the height of the stem is a useful phenotype.

Stem circularity-height: The rate of change of stem cross-section area with respect to stem height is introduced as stem circularity-height phenotype. Stem circularity-height is an example of a trajectory based derived phenotype.

Let us consider a 3D voxel-grid of a plant P of size M × N × H be aligned with X, Y, Z axes, respectively. H is the height of the plant, which is computed as the height of the enclosing bounding cube of the plant. Without loss of generality, we assume that the stem of the plant, although not perfectly vertical, is generally aligned with the z-axis. Hence, P can be represented by

[image: image]

A cross-section, CS of the stem of a plant P, is a slice obtained at a given height, h, and is give by

[image: image]

3DPhenoMV is summarized in Algorithm 1.


Algorithm 1. 3DPhenoMV: Performs voxel-grid construction of a plant from 2D multiview images to compute 3D holistic and component phenotypes.

[image: Algorithm 1]

The algorithm for plant component detection and separation is summarized in Algorithm 2.


Algorithm 2. componentSeparate3D(): The function performs plant component detection and separation, i.e., divides a plant into three components, i.e., stem, leaves and TLC.

[image: Algorithm 2]





3. BENCHMARK DATASET


3.1. Imaging Setup

The Lemnatec 3D Scanalyzer of the high throughput plant phenotyping core facilities at the University of Nebraska-Lincoln (UNL) is used to acquire images for this research. In this system, each plant is placed in a metallic carrier (dimension: 236 × 236 × 142 mm) on a conveyor belt that moves the plants from the greenhouse to the four imaging chambers successively for capturing images in different modalities. The conveyor belt can accommodate up to 672 plants with height up to 2.5 m. It has three watering stations with balance that can add water to target weight or specific volume, and records the specific quantity of water added daily.

The cameras installed in the four imaging chambers are (a) visible light side view and top view, (b) infrared side view and top view, (c) fluorescent side view and top view, and (d) hyperspectral side view and near infrared top view, respectively. Each imaging chamber has a rotating lifter for up to 360 side view images. The specifications of the cameras and detailed descriptions of the HTP3 can be found in Das Choudhury et al. (2018). The average time interval between a plant entering into and exiting from each of the first three imaging chambers for capturing 10 side view images is approximately 1 min 50 s. Since a hyperspectral camera typically captures a scene in hundreds of bands at a narrow interval over a broad range of the spectrum, its image capturing time is significantly higher than that of the other imaging modalities. For our HTP3, the time to capture a single side view image of a plant using a hyperspectral camera (total number of bands: 243; spectrum range: 546–1,700 nm) is approximately 2 min 15 s.



3.2. Dataset Description

We introduce a benchmark dataset called UNL-3DPPD to evaluate our algorithms and extraction of holistic and component phenotypic parameters specifically for maize. The dataset is also made publicly available to stimulate 3D phenotyping research, and to encourage researchers to evaluate the accuracy of these algorithms for related crop species with similar plant architectures.1 The dataset consists of images of the 20 maize plants for 10 side views, i.e., 0°, 36°, 72°, 108°, 144°, 180°, 216°, 252°, 288°, and 324°. The images were captured daily by the visible light camera for 4 consecutive days. The plants were in their late vegetative stage. Figure 7 shows 10 sample images of a maize plant of the dataset, where each image is captured at 36° intervals of viewing angles. The resolution of each image is 2454 × 2056. Figure 8 shows images of a sample cotton plant captured from five side views, i.e., 0°, 72°, 144°, 216°, and 288°.


[image: Figure 7]
FIGURE 7. Sample images of a maize plant from UNL-3DPPD dataset for 10 side views.



[image: Figure 8]
FIGURE 8. Images of a sample cotton plant captured from five side views.





4. RESULTS

We evaluated the performance of 3DPhenoMV algorithm on UNL-3DPPD. Figure 9 (rows 1 and 2) show different views of a 3D plant model reconstructed from 10 side view images of a maize plant. Similarly, Figure 9 (rows 3 and 4) show different views of a reconstructed 3D model of a cotton plant using the five side view images as shown in Figure 8. The experimental results for holistic and component phenotyping analysis, are given below.


[image: Figure 9]
FIGURE 9. Different views of reconstructed 3D models of plants: rows 1 and 2-maize; and rows 3 and 4-cotton.



4.1. Holistic Phenotyping Analysis

Figure 10 (row-1) shows a sample 3D volxel grid plant from UNL-3DPPD enclosed by bounding rectangular prism, minimum bounding sphere, 3D convex-hull and minimum bounding rectangular prism. Similarly, Figure 10 (row-2) shows the 3D volxel grid of a sample cotton plant enclosed by bounding rectangular prism, minimum bounding sphere, 3D convex-hull and minimum bounding rectangular prism. Figures 11A,B graphically demonstrate two holistic phenotypes, i.e., the volume of convex-hull and the total number of plant voxels, of several representative plants from UNL-3DPPD for 4 days. The scatter plot in Figure 12A shows the three dimensions of the bounding cuboid enclosing a plant, i.e., height, width and depth, for five maize plants from UNL-3DPPD for 4 consecutive days. The same markers are used to denote the same plant for ease of visualization. Figure 12B shows the trajectories of the bounding volume of the same five maize plants for 4 consecutive days to represent the plant growth rate.


[image: Figure 10]
FIGURE 10. Computation of holistic phenotypes of a sample maize (row 1) and cotton (row 2) plants: bounding rectangular prism; minimum bounding sphere; 3D convex-hull and minimum bounding rectangular prism (left to right).



[image: Figure 11]
FIGURE 11. The number of plant voxels of sample maize plants (A); and the volume of convex-hull of the same plants (B) over consecutive 4 days.



[image: Figure 12]
FIGURE 12. The dimensions of bounding cuboid of sample maize plants (A) and the volume of bounding cuboid of the same plants (B) over consecutive 4 days.




4.2. Component Phenotyping Analysis

To compute the component phenotypes, it is essential to detect and separate individual parts of a plant accurately. The result of plant component detection and separation, i.e., separating full-grown leaves, stem and TLC from the reconstructed plant voxel-grid, is shown in Figure 13. Figure 13 (left) shows the reconstructed voxel-grid of a plant with its three main components, i.e., stem, individual leaves and TLC, shown in different colors. A separated view of these components is shown in Figure 13 (right) for illustration. The figure shows that the total number of full-grown leaves (not included in TLC) are five in number.


[image: Figure 13]
FIGURE 13. Illustration of plant component segmentation: (left) the voxel-grid reconstruction of a plant; and (right) plant voxel-grid with its three disjoint components.


Figure 14 shows the reconstructed voxel-grid of a plant (left) and the isolated stem (middle) computed by the plant component detection and separation algorithm. Figure 14 (right) shows the rate of change of stem cross-section area as a function of stem height. Figure 15 shows the isolated TLC and the individual leaves of the plant shown in Figure 14 (left). We also show the volumes of the stem, the TLC and the individual leaves of the plant using a pie chart for comparative analysis. The chart shows that the volume of the TLC is significantly larger than that of the stem, and is comparable to the volume of all the leaves combined. The leaves are numbered in order of emergence. Note that the volume of the leaves are directly related to the order of emergence, e.g., the first leaf has the highest volume, and vice versa.


[image: Figure 14]
FIGURE 14. Illustration of stem-based component phenotypes: the 3D voxel-reconstruction of a plant (left); the isolated stem (middle); and line graph showing the rate of change of stem cross-section area as a function of stem height (right).



[image: Figure 15]
FIGURE 15. Illustration of leaf-based component phenotypes: isolated TLC (top left); isolated leaves (top right) and pie graph showing the total number of voxels constituting stem, TLC and individual leaves (bottom).





5. DISCUSSION

The number of leaves that emerge in the life cycle of a maize plant are the indicator of the plant's growth stage. The number of leaves present at any point in the plant's life cycle, the size of individual leaves, stem height, rate of growth of stem cross-section area, are the important phenotypes that best represent plant's vigor. However, accurate computation of these phenotypes from 2D projections (images) of 3D plants is not possible in general, especially in the late vegetative growth stages where maize plants exhibit complex architecture due to cluttered leaves. While most state-of-the-art methods have addressed the 3D reconstruction of plants in early growth stages due to simplicity, we contribute in the research advancement of 3D phenotyping analysis of plants in the late vegetative stage by developing an algorithm, introducing a 3D plant phenotyping taxonomy and public release of a multiview benchmark dataset consisting of original image sequences of maize plants and images of checkerboard patterns for camera calibration.

We introduce a novel method, i.e., 3DPhenoMV, to compute 3D holistic and component structural phenotypes based on voxel-grid construction of plants using images captured from multiple viewing angles in a HTP3. Plants like maize are characterized by thin ribbon-like architecture, where some parts of leaves may be as wide as only a few pixels in images. In addition to thin structures, lack of textures in the surface of the plants pose challenges to the accurate 3D reconstruction of plants, often resulting in the disjoint leaf parts (Furukawa and Hernandez, 2013). Unlike maize, cotton plants have a bushy architecture with lots of cluttered leaves around the stem. To demonstrate the efficacy of the 3DPhenoMV to reconstruct the 3D voxel-grid of plants with different architectures, we used five side view RGB images of a cotton plant to reconstruct its 3D model and compute the holistic phenotypes. The creation of a new dataset consisting of images of the different types of plants with varying architectures, e.g., sorghum, tomato, and wheat, and additional view angles, will be examined in the future work.

The significance of the 3D phenotypes computed by 3DPhenoMV are discussed below. Leaves are one of the primary organs of plants which transform solar energy into chemical energy in the form of carbohydrate through photosynthesis, releasing oxygen as a byproduct. Maize plants alter leaf arrangement around the stem (i.e., phyllotaxy) at different stages of the life cycle in response to light signal perceived through the phytochrome to optitmize light interception. The total number, orientation and size of leaves are therefore linked to plant photosynthetic light efficiency and net primary productivity. Thus, the total number of voxels constituting each leaf can be used as a proxy for leaf size, and hence, is an important phenotype. The stem height is a direct measure of a plant's growth. The stem cross-section area is a measurement of toughness of a stem. Stem cross-section area appears to be an important defense mechanism in maize across diverse groups of germplasms. Stem cross-section area as a function of stem height, i.e., circularity-height ratio, provides information on plant's strength, and hence, can be an early signal to lodging susceptibility. Stem lodging is primarily caused due to water logging, nutrient imbalances and deficiencies. Yield loss due to lodging reduces the US corn harvest by 5–25% per year (2.4–12 billion dollars at 2015 corn prices), and hence, a phenotype to measure its susceptibility is important.

The area of convex-hull enclosing the plant computed from 2D image sequences is not an accurate estimation of plant's biomass, because maize plants may rotate for shade avoidance (Das Choudhury et al., 2016). This is evident from the fact that graph for the area of convex-hull as a function of time oscillates randomly instead of following an increasing trend. The volume of bounding cuboid enclosing the plant provides a more accurate estimation of its biomass. 3D Plant aspect ratio is a metric for distinguishing between genotypes with narrow vs. wide leaf extent after controlling for plant height. The volume of bounding cuboid and 3D plant aspect ratio are important phenotypes that are influenced by the genetic environment interaction. They also help in the study of determining plants' response to environmental stresses. The time rate of variation of these phenotypes (i.e., trajectory-based phenotypes) is also demonstrated in this paper. The graph showing the variation of volume of bounding cuboid as a function of time is a trajectory-based temporal phenotype, and is an illustration of the plant's growth rate.

The 3D voxel-grid reconstruction and 3D phenotype computation algorithms are implemented using Microsoft Visual Studio 2017 Edition on an Intel Core i7-7700HQ processor with 16 GB RAM and Nvidia GeForce GTX 1060 with Max-Q Design 6 GB DDR5 memory working at 2.80-GHz. The computer runs a 64 bit Windows 10 operating system. The original input images are re-scaled to the size of 1200 × 1200 prior to the reconstruction. The algorithms use NVIDIA GPU Computing Toolkit 9.0 and OpenCV 3.3, and the implementation is parallelized on GPU cores using Nvidia's CUDA library. The size of the input voxel-grid is 1200 × 1200 × 1200. The time taken for reconstructing the 3D voxel-grid of a single maize plant (that requires carving out 2402365 total number of voxels) using 10 side views captured by the visible light camera is approximately 3.5 min on this platform.



6. CONCLUSION

The paper introduces a novel method called 3DPhenoMV for 3D voxel-grid reconstruction of maize plants based on images captured from multiple views to compute 3D holistic and component phenotypes in the late vegetative stage. It also provides a broad taxonomy of 3D phenotypes, and publicly disseminates a benchmark 3D dataset for the development and uniform comparisons of algorithms to compute phenotypes for the advancement of 3D image-based high-throughput plant phenotyping research. In addition to maize, the efficacy of 3DPhenoMV for 3D voxel-grid reconstruction is demonstrated using a sample cotton plant which assumes more complex architecture than a maize plant, due to the presence of cluttered leaves around the stem. The promising reconstruction performance of cotton using half of the number of side views that are used for maize reconstruction, shows the potential of the method to be extended to other plant architectures.

We use the space carving approach to construct the 3D voxel-grid of a plant using multiple side view images. We compute a set of holistic phenotypes by considering the plant as a whole, e.g., volumetric occupancy ratio to estimate the biomass yield and 3D aspect ratio which provides information on canopy architecture. It is essential to detect and separate the individual components of the plant to compute component phenotypes. Thus, we use point cloud clustering and overlapping consistency check methods to separate individual leaves, stem and the TLC of the plant. A set of component phenotypes, e.g., total leaf-count, length and volume of individual leaves, stem height, stem circularity-height, stem volume and volume of TLC are proposed in this paper. The component detection and separation algorithm is applicable for plants with distinct stems that are above-ground, not highly branched, and characterized by distinct nodes and internodes. Experimental analyses on UNL-3DPPD consisting of images of maize plants shows the efficacy of the proposed method. Future work will consider creation of a new dataset consisting of larger number plants belonging to different genotypes with additional views, and validation of the phenotypes with physical measurements from the plant, destructively if needed, e.g., for biomass. Additional phenotypes and computational methods to compute them will also be explored in our future research. The method will also be evaluated to estimate the temporal variation of phenotypes controlled by genetic factors for heritability analysis.



DATA AVAILABILITY STATEMENT

The datasets generated for this study are publicly available from https://plantvision.unl.edu/dataset.



AUTHOR CONTRIBUTIONS

SD developed and implemented the algorithm, and led experimental analysis, UNL-3DPPD planning and organization, and the manuscript writing. SM developed and implemented the algorithm, and performed experimental analyses. AS supervised the research, provided constructive feedback throughout the algorithm development process and critically reviewed the manuscript. VS facilitated the dataset formation. SM, AS, and TA contributed to the manuscript writing. All authors contributed to the article and approved the submitted version.



FUNDING

This project was based on research that was partially supported by the Nebraska Agricultural Experiment Station with funding from the Hatch Act capacity funding program (Accession Number 1011130) from the USDA National Institute of Food and Agriculture.



FOOTNOTES

1UNL-3DPPD can be freely downloaded from http://plantvision.unl.edu/.



REFERENCES

 Bosquet, L. C., Fournier, C., Brichet, N., Welcker, C., Suard, B., and Tardieu, F. (2016). High-throughput estimation of incident light, light interception and radiation use efficiency of thousands of plants in a phenotyping platform. N. Phytol. 212, 269–281. doi: 10.1111/nph.14027

 Brichet, N., Fournier, C., Turc, O., Strauss, O., Artzet, S., Pradal, C., et al. (2017). A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods 13:96. doi: 10.1186/s13007-017-0246-7

 Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. (2010). “Point cloud skeletons via Laplacian based contraction,” in 2010 Shape Modeling International Conference (Aix-en-Provence: IEEE), 187–197. doi: 10.1109/SMI.2010.25

 Das Choudhury, S., Bashyam, S., Qiu, Y., Samal, A., and Awada, T. (2018). Holistic and component plant phenotyping using temporal image sequence. Plant Methods 14:35. doi: 10.1186/s13007-018-0303-x

 Das Choudhury, S., Goswami, S., Bashyam, S., Samal, A., and Awada, T. (2017). “Automated stem angle determination for temporal plant phenotyping analysis,” in IEEE International Conference on Computer Vision workshop on Computer Vision Problmes in Plant Phenotyping, 41–50. doi: 10.1109/ICCVW.2017.237

 Das Choudhury, S., Samal, A., and Awada, T. (2019). Leveraging image analysis for high-throughput plant phenotyping. Front. Plant Sci. 10:508. doi: 10.3389/fpls.2019.00508

 Das Choudhury, S., Stoerger, V., Samal, A., Schnable, J. C., Liang, Z., and Yu, J.-G. (2016). “Automated vegetative stage phenotyping analysis of maize plants using visible light images,” in KDD workshop on Data Science for Food, Energy and Water (San Francisco, CA).

 Dellen, B., Scharr, H., and Torras, C. (2015). Growth signatures of rosette plants from time-lapse video. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 1470–1478. doi: 10.1109/TCBB.2015.2404810

 Furukawa, Y., and Hernandez, C. (2013). “Multi-view stereo: a tutorial,” in Foundations and Trends® in Computer Graphics and Vision, 9, 1–148. doi: 10.1561/0600000052

 Golbach, F., Kootstra, G., Damjanovic, S., Otten, G., and van de Zedde, R. (2016). Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Mach. Vis. Appl. 27, 663–680. doi: 10.1007/s00138-015-0727-5

 Guan, H., Liu, M., Ma, X., and Yu, S. (2018). Three-dimensional reconstruction of soybean canopies using multisource imaging for phenotyping analysis. Remote Sens. 10:1206. doi: 10.3390/rs10081206

 He, J. Q., Harrison, R. J. P., and Li, B. (2017). A novel 3D imaging system for strawberry phenotyping. Plant Methods 13:93. doi: 10.1186/s13007-017-0243-x

 Heikkila, J., and Silven, O. (1997). “A four-step camera calibration procedure with implicit image correction,” in IEEE International Conference on Computer Vision and Pattern Recognition (San Juan, PR), 1106–1112. doi: 10.1109/CVPR.1997.609468

 Ji, Q., and Zhang, Y. (2001). Camera calibration with genetic algorithms. IEEE Trans. Syst. Man Cybernet A Syst. Hum. 31, 120–130. doi: 10.1109/3468.911369

 Klodt, M., and Cremers, D. (2015). “High-resolution plant shape measurements from multi-view stereo reconstruction,” in Computer Vision - ECCV 2014 Workshops, eds L. Agapito, M. M. Bronstein, and C. Rother (Cham: Springer International Publishing), 174–184. doi: 10.1007/978-3-319-16220-1_13

 Kutulakos, K. N., and Seitz, S. M. (2000). A theory of shape by space carving. Int. J. Comput. Vis. 38, 199–218. doi: 10.1023/A:1008191222954

 McCormick, R. F., Truong, S. K., and Mullet, J. E. (2016). 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture. Plant Physiol. 172, 823–834. doi: 10.1104/pp.16.00948

 Pound, M. P., Atkinson, J. A., Townsend, A. J., Wilson, M. H., Griffiths, M., Jackson, A. S., et al. (2017). Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6, 1–10. doi: 10.1093/gigascience/gix083

 Scharr, H., Briese, C., Embgenbroich, P., Fischbach, A., Fiorani, F., and Muller-Linow, M. (2017). Fast high resolution volume carving for 3D plant shoot reconstruction. Front. Plant Sci. 8:1680. doi: 10.3389/fpls.2017.01680

 Srivastava, S., Bhugra, S., Lall, B., and Chaudhury, S. (2017). “Drought stress classification using 3d plant models,” in IEEE International Conference on Computer Vision workshop on Computer Vision Problems in Plant Phenotyping, 2046–2054. doi: 10.1109/ICCVW.2017.240

 Thapa, S., Zhu, F., Walia, H., Yu, H., and Ge, Y. (2018). A novel lidar-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum. Sensors 18:1187. doi: 10.3390/s18041187

 Wu, S., Wen, W., Xiao, B., Guo, X., Du, J., Wang, C., et al. (2019). An accurate skeleton extraction approach from 3d point clouds of maize plants. Front. Plant Sci. 10:248. doi: 10.3389/fpls.2019.00248

 Yin, X., Liu, X., Chen, J., and Kramer, D. M. (2018). Joint multi-leaf segmentation, alignment, and tracking for fluorescence plant videos. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1411–1423. doi: 10.1109/TPAMI.2017.2728065

 Zhang, X., Huang, C., Wu, D., Qiao, F., Li, W., Duan, L., et al. (2017). High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol. 173, 1554–1564. doi: 10.1104/pp.16.01516

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Das Choudhury, Maturu, Samal, Stoerger and Awada. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	 
	ORIGINAL RESEARCH
published: 25 January 2021
doi: 10.3389/fpls.2020.611622





[image: image]

Identification of Weeds Based on Hyperspectral Imaging and Machine Learning

Yanjie Li1†, Mahmoud Al-Sarayreh1, Kenji Irie2, Deborah Hackell3, Graeme Bourdot4, Marlon M. Reis1 and Kioumars Ghamkhar1*

1AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand

2Red Fern Solutions Ltd, Christchurch, New Zealand

3AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand

4AgResearch Ltd., Christchurch, New Zealand

Edited by:
Wanneng Yang, Huazhong Agricultural University, China

Reviewed by:
Lingfeng Duan, Huazhong Agricultural University, China
Haiyan Cen, Zhejiang University, China

*Correspondence: Kioumars Ghamkhar, Kioumars.Ghamkhar@agresearch.co.nz

†Present address: Yanjie Li, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China

Specialty section: This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

Received: 29 September 2020
Accepted: 30 December 2020
Published: 25 January 2021

Citation: Li Y, Al-Sarayreh M, Irie K, Hackell D, Bourdot G, Reis MM and Ghamkhar K (2021) Identification of Weeds Based on Hyperspectral Imaging and Machine Learning. Front. Plant Sci. 11:611622. doi: 10.3389/fpls.2020.611622

Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70–100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.

Keywords: hyperspectral imaging, weeds classification, superpixel, PLS-DA, multilayer perceptron


INTRODUCTION

Pastures based on perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) are the main source of forage for animal production in New Zealand (McClearn et al., 2020). Weeds are a major economic constraint. Within the primary sector alone, weeds cost farmers NZ$50M in actual expenditure on chemical herbicides and labor (Bourdôt et al., 2007). Technologies that reduce these costs, and help minimize the use of synthetic herbicides, would improve the value of forage production (Bacco et al., 2018).

Recently, technologies such as hyperspectral imaging (HSI) systems are providing opportunities for rapid classification of plant species both in the laboratory and the field (Griffel et al., 2018; Liu and Zhang, 2018; Xu et al., 2018; Ferreira et al., 2019). The advantage of HSI is the provision of a combined spectroscopy and relationships between various chemical components and the absorption of spectra (Curran, 1989; Ebbers et al., 2002). The principle of HSI spectroscopy is based on molecular vibrations in the IR region (Youngentob et al., 2012). Therefore, absorbance at specific wavelengths, which might be related to specific chemical bands, can be used for different materials classification and quality determination (Vaiphasa et al., 2007; Schwanninger et al., 2011).

Many attempts have been made to use the visible light imaging or Red-Green-Blue (RGB) to identify weeds (Ahmad et al., 2018; Raja et al., 2020). However, shape, color and size, are limiting constraints of RGB imaging for the identification of species with similar phenotype (Wang et al., 2019). HSI can overcome these limitations by capturing spectral and spatial information simultaneously. It has a proven history of widespread use in materials discrimination and quality estimates including in meat science (Al-Sarayreh et al., 2018; Reis et al., 2018), forestry (Te et al., 2019), and land cover mapping (Jiang et al., 2017; Xu et al., 2018). Shorten et al. (2019) showed the potential of HSI for the measurement of a few components of forage quality. Other studies (Ahmad et al., 2019; Farooq et al., 2019b) indicate promising potentials for plant identification based on chemical signatures of different species.

Numerous analytical methods for HSI data classification have been reported (Lunga et al., 2014; Li et al., 2017; Audebert et al., 2019). Among these techniques, support vector machine (SVM; Yu et al., 2012; Peng et al., 2015) and partial least squares discriminant analysis (PLS-DA; Yang et al., 2015; Carreiro Soares et al., 2016; Walter et al., 2019) are considered as the most reliable techniques. This is specifically the case when limited training data are available (Melgani and Bruzzone, 2004; Chevallier et al., 2006).

Machine learning has been widely used for image classification (Chen et al., 2014). The Multilayer Perceptrons (MLP) methods have the advantage of handling a large number of training data (Golhani et al., 2018; Taneja, 2020). These methods could automatically learn features, while yielding comparable results on HSI classification process to other methods (Sutskever and Hinton, 2008).

Generally, the original HSI image contains the target (i.e., weeds) as well as the background and other components that could affect the labeling accuracy of the target species. To remove the background and obtain the region of interest (ROI), a segmentation strategy is required (Ren and Malik, 2003). Single or multistep thresholding algorithms are commonly used for obtaining the ROI and extracting the average spectrum of a sample (Sharma and Bhavya, 2020). Building prediction models based on the extracted spectra is commonly used for indoor applications (Mishra et al., 2017; Yuan et al., 2019). Spatial variation in spectra requires more attention in pixel-wise prediction and outdoor applications for achieving high prediction accuracy (Vaughn et al., 2016).

Image segmentation is a crucial step in analyzing and understanding the contents of an image. It can be used to extract a wide range of image features including spatial features and superpixel (Sp) segmentation is one of these segmentation methods (Ren and Malik, 2003). In this method the pixels are grouped into many small segments adhering to the target boundaries where each segment shares the same spectral and spatial features of a common target (Li and Chen, 2015). It provides a compact and uniform segmentation for the target and extracts the spatial spectra from the image (Fan et al., 2017).

Therefore, we hypothesize that there are unique spectral signatures in each weed species, which are detectable by HSI and modeling. To test our hypothesis, we used three common weeds and a proxy weed species in ryegrass paddocks of New Zealand (NZ). The three weed species were the annual winged thistle (Carduus tenuiflorus Curtis), the annual yellow bristle grass [Setaria pumila (Poir.) Roem. & Schult.] and the perennial giant buttercup (Ranunculus acris L.). Winged thistle is a problematic weed of drought-prone low-fertility sheep and beef cattle pastures while yellow bristle grass and giant buttercup are weeds of high-fertility dairy pastures (Bourdôt et al., 2003; Lamoureaux, 2014). The fourth species, wind grass [Anemanthele lessoniana (Steud.) Veldkamp], is a NZ native species. It was used as a proxy for Chilean Needle Grass [Nassella nessiana (Trin. & Rupr.)], which cannot legally be cultivated in NZ. This grass is currently limited in its geographical distribution in New Zealand but threatens vast tracts of low-fertility drought prone hill-country pasture land (Bourdôt et al., 2010, 2012). Proven true, this hypothesis will allow future development of database for spectral signatures of weeds, which is valuable to detect weeds independently of the type of fields they are found in (i.e., independently of the type of plant species that are surrounding the weeds).



MATERIALS AND METHODS


Weed Sample Preparation

Four criteria were considered to choose the weed species, i.e., cover grass, broadleaf, perennial, and annual weeds. Selected weed species included three weeds of ryegrass pastures [thistle (TT), yellow bristle grass (YBG), and buttercup (BC)] and one proxy endemic species [wind grass (WG)] (Figure 1). Weed seeds were sourced from Margot Forde Germplasm Centre (MFGC), Palmerston North, NZ. For each weed species, 30 single seeds were planted in pots (one plant per pot) on 2 October 2018 at AgResearch Ruakura campus (Hamilton, New Zealand), The pots were standard 7 cm (7 × 7 × 8 cm) plastic pots placed on tables in the open-air greenhouse with a temperature between 18 and 25 degrees and watered as required (2–3 times a week). The standard Daltons potting mix soiled was used (40% bark fiber, 20% C.A.N Fines A grade, 20% Coco fiber classic, 20% pumice 7 mm plus fertilizer containing lime, permawet, osmocote, microplus (Te, Mg, and Fe), Gypsum, dolomite, and coated ExteNd). After 3 weeks, all plants were transferred to the lab for HSI scanning.


[image: image]

FIGURE 1. The four weed species (a): Thistle (TT), (b): Yellow bristle grass (YBG), (c): Buttercup (BC), and (d): wind grass (WG).




Hyperspectral Imaging

A line scan HSI spectrograph system (Extended VNIR, Headwall Photonics, Fitchburg, MA, United States), with a 320 × 240 pixels camera was used for the HSI data collection. This system covered the range of 550–1,700 nm spectra with 5 nm spectral resolution and 235 wavelengths from the visible and NIR range of the electromagnetic spectrum. A halogen lamp light source (JCR 21V 150W/AL Japan 2DB) was set up on one side of the camera’s lens, at 30o from the vertical plane as the illumination system. The light power was adjusted using a white reference tile (Labsphere Inc., North Sutton, NH, United States) where the highest intensity detected in the white reference tile (Labsphere Inc., North Sutton, NH, United States) was set as 85% of the saturation of the detector to prevent areas where the sample may saturate the detector. The distance between the plant sample and the camera was adjusted to 25 cm and the plants were placed directly below the HSI system with the camera exposure time set on 25 ms. The translation speed of the linear stage was set to 11.1 mm/s. The white reference image was captured by placing a white tile under the hyperspectral camera. Dark reference images were acquired with the lens cap on the hyperspectral camera.

Single weed-pots were placed on the linear stage to capture the hyperspectral images when they pass under the camera. Considering that each pot was scanned individually, the presence of shadows was not a major issue. For cases where the scanning is performed in the field, it is possible to use a different illumination system to reduce the presence of shadows (Bateman et al., 2020).

Three steps of the workflow for identification of weeds are shown in Figure 2. These three steps are:


[image: image]

FIGURE 2. Proposed workflow for identification of Weeds.


Step 1: Acquiring hyperspectral images:

Hyperspectral images were captured for 30 samples of each weed. Four types of weeds samples were present so in total, 120 hyperspectral images of weeds have been captured.

Step 2: Image Processing

Captured hyperspectral images were go through a series of steps to process them for extracting the spectral data for modeling.

Step 3: Modeling

Spectral data extracted from the image processing step pre-processed and then it was used as an input for model development.



Image Processing

This was the second step of the workflow where ROI extracted by employing segmentation on calibrated hyperspectral images.


Calibration

Each captured hyperspectral image was calibrated, using dark reference (D), and white reference image (W). Hyperspectral images raw intensity values were used to calculate reflectance by using Eq. 1.

[image: image]

where Rc is the absolute reflectance, Xraw stands for the intensity value of sample weeds scanned, Xw symbolizes the intensity value of captured white reference and XD represents the intensity of the dark reference.



Segmentation

The aim of segmentation was to extract plant ROI by segregating the background (i.e., soil, stones, etc.) from the vegetation (i.e., leaves of different weeds). Custom code was generated in-house using R for thresholding segmentation and superpixel segmentation. Details of this are provided below.

(a) Thresholding segmentation: A thresholding algorithm was developed by applying threshold value of 0.19 at 950 nm wavelength. This generated a mask which was then multiplied with the original HSI image to create an image of vegetation material only (Figure 3). The spectral data extracted after the thresholding segmentation was averaged and we named these averaged spectra as “Av” spectra which is the spectra for each plant with 235 components corresponding to 235 wavelengths. To obtain the Av, the mean spectrum of 120 segmented HSI images (one HSI image for each potted plant) was calculated on weed leaves resulting in the collection of 120 samples, which were used for training (96 samples), and validating (24 samples) the PLS-DA, SVM, and MLP models.


[image: image]

FIGURE 3. Thresholding segmentation to extract spectral features.


(b) Superpixel segmentation (Figure 4): The simple linear iterative clustering (SLIC) algorithm (Achanta et al., 2012) was used to divide the plant image into non-overlapping patches Sp (superpixels). This was achieved by taking the similarity in spectral and spatial domains into account when grouping pixels into clusters. Principal components analysis (PCA) was used to transform the original HSI image (where each pixel contained 235 wavelengths) into three channels (each pixel contained 3 principal components). In total, 120 PCA images were created. This was followed by the segmentation of each PCA image into 400 patches using SLIC algorithm. The patches that contained leaves were extracted and the mean spectrum of each valid patch was extracted from the HSI image and used as the spectral and spatial (Spectro-spatial) features of the weed leaves. All patches in each plant were marked with the same label. We denoted it as “Sp” averaged spectra which mean each plant has “n” “SP” spectra, each containing 235 elements corresponding to 235 wavelengths. “n” is the number of super-pixels for an individual plant. This number of clusters used in SLIC (i.e., 400 patches) was enough to avoid patches mixing regions from weed leaves and the background. While for this study the valid patches (which contained leaves) were separated manually, in a practical application a model may be used to separate between patches representing the plant leaves and the background.


[image: image]

FIGURE 4. Superpixel segmentation to extract spatial-spectral features.




Modeling

Three commonly used discrimination models for object classification were used in this study. These were partial least squares-discriminant analysis (PLS-DA), SVM, and MLP.


Partial Least Squares-Discriminant Analysis

Partial least squares-discriminant analysis is a very popular linear classification method in chemometrics and is based on the PLS regression algorithm (Lee et al., 2018). In PLS-DA, the output (y variable) of PLS regression is transferred into a categorical structure as reference value and descriptor matrix x is used for discrimination analysis. It typically produces the lowest within-class variability and therefore maximum separation. The scores of latent variables (LVs) from the resulting PLS-DA model were used to identify groups of samples representing the four types/classes of weeds. The regression coefficients corresponding to those LVs with discrimination power between classes were then evaluated to identify the spectral regions potentially associated with discrimination of weeds (Wold et al., 2001; Barker and Rayens, 2003). This method has been widely used for identifying chemical traits and species classification in food and agriculture sciences (Bassbasi et al., 2014; Botelho et al., 2015; Lenhardt et al., 2015).



Support Vector Machine

Support vector machine analysis (Boser et al., 1992), is a powerful technique and ideal for data classification, especially for the high-dimensional data with a limited number of training samples (Tarabalka et al., 2010). This method was originally defined for binary classification and has been also extended to form a multi-class classification (Pérez-Cruz and Artés-Rodríguez, 2002). This extension allows for a broad application in hyperspectral image analysis (Fauvel et al., 2008; Pal and Foody, 2010) and remote sensing (Melgani and Bruzzone, 2004; Mountrakis et al., 2011).



Multilayer Perceptron

Multilayer perceptron is a powerful machine learning technique that can characterize the features of the samples and learn the appropriate classification features from the samples (Goodfellow et al., 2016). The MLP model is dependent on multiple sets of parameters, such as the number of hidden layers, regularization parameter, and activation epoch (Ramchoun et al., 2017). Activation function allows the introduction of non-linear function to the neural network. Activation epoch also prevents the MLP model from becoming a simple linear function with limited learning power. There are three main activation functions: hyperbolic tangent (Tanh; Kalman and Kwasny, 1992), rectifier (Xavier et al., 2011), and maxout (Goodfellow et al., 2013). The two types of regularization (L1 and L2) are useful functions in the MLP model to reduce the effect of overfitting.



Multivariate Data Analysis

Data analysis was conducted in R software version 3.1.2 (R Core Team, 2017). The “mdatools” package (Kucheryavskiy, 2019) was applied for the PLS-DA model, and the “e1071” package (Meyer et al., 2019) for SVM model construction. The “h2o” package (Erin et al., 2019) was used for MLP modeling and variable selection.

Two types of data, i.e., (a) spectral data, i.e., “Av” and (b) combined spectral and spatial data “Sp” were used for training the model by using PLS-DA, SVM, and MLP methods. These included average of a leaf spectra for each weed and the average of each selected leaf patch of a weed species (Figures 3, 4). We chose 80% of each data set for model calibration and the remaining 20% for validation and elementary testing. Two assessments were used: (1) all the pixels from segmented plant; and (2) the averaged spectra of segmented plants. This generated two datasets: “all pixels dataset” and “average dataset.” Then each dataset was split into two sets. The “all pixels” generated “all pixels calibration dataset” and “all pixels validation dataset.” Similarly, the “averaged dataset” generated “averaged calibration dataset” and “averaged validation dataset.” Each calibration dataset was used to fit a model independently. Each model was then applied to the corresponding validation dataset. The assessment of predictions resulting from these two independent validation datasets resulted in two set of accuracies.

The pre-processing method SNV (Standard Normal Variate) was applied to the spectra before model calibration which has been shown to be a reliable pre-processing method on weed classification (Shirzadifar et al., 2018). The number of significant LVs for the PLS-DA, and the parameters of epsilon and cost for SVM models were determined using the leave-one-out cross-validation method (Sudheer et al., 2014; Vehtari et al., 2017).


Model Performance Metrics and Optimization

The parameters recall (R), precision (P), average accuracy (AA), and overall accuracy (OA) were used for PLS-DA, SVM, and MLP model performance. Four quantities from the performance of a classification process in the population of all instances were used to calculate R, P, AA, and OA: True positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) using below the equations:

[image: image]

where n is the number of the classes [thistle (TT), yellow bristle grass (YBG), buttercup (BC), and wind grass (WG)]. To qualitatively evaluate the predictability power of models for weed classification, the t-SNE algorithm (Maaten and Hinton, 2008) was applied. The accuracy of a classification process was defined as the portion of true positives and true negatives in all instances.


Model optimization

To find the best parameters of the MLP model for Av and Sp data, a grid loop with different hidden layers, activation function, epochs and different l1 or l2 regularization parameters was set up (Figure 5). A five-fold cross-validation was used for fine-tuning these parameters. Models with the highest OA and the lowest loss values were chosen as the final model, and the feature weight from the final best performance model was used for feature evaluation.


[image: image]

FIGURE 5. The loop structure for all MLP models.




RESULTS


Mean Raw and Standard Normal Variate Spectra

The raw and SNV mean of 30 weeds for each species are plotted in Figure 6. While all weeds showed similar general patterns in both types of spectra, large variability between the four weeds was also observed. The SNV spectra highlights regions that can be used for discrimination between the four weed species. Three important regions were identified based on these two types of spectra: 550 to 700 nm, 1,000 to 1,200 nm, and 1,300 to 1,500 nm. These regions are the only regions in the spectra used in this study with detectable difference in reflectance value among the four weed species.


[image: image]

FIGURE 6. The raw and SNV VIS-NIR mean spectra of four weed species. TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass.




Models Evaluation

The notations used for models developed with Av and Sp data using PLS-DA, SVM, and MLP are given below:

(a) Av_PLS-DA: PLS-DA model developed with Av data

(b) Sp_PLS-DA : PLS-DA model developed with Sp data

(c) Av_SVM: SVM model created with Av data

(d) Sp_SVM: SVM model created with Sp data

(e) Av_MLP: MLP model generated with Av data

(f) Sp_MLP: MLP model generated with Sp data

The optimal number of LVs was chosen as 10 for both Av and Sp_PLS-DA models based on cross validation. The optimal value of epsilon and cost for SVM model using Av and Sp data were 0 and 32, and 0 and 4, respectively. For the MLP model, Tanh activation with two hidden layers (32, 16) were selected for final application. The full-length spectra with 5% dropout was set as the input layer, and the four classification classes were set as the output layer. The validation set of both Av and Sp data were used to test the ability of our model for weed classification. The results of the modeling are presented in Table 1. Overall, the PLS-DA, SVM and MLP models yielded relatively high classification results based on both the Av and Sp data with an overall accuracy (OA) of 70–100%. MLP model yielded the highest recall (R), precision (P). Furthermore, average accuracy (AA) and OA with Av and Sp data were 1, 1, and 0.89, 0.90, respectively.


TABLE 1. Evaluation of the preformance of the proposed PLS-DA SVM, MLP models for weed recognition in the validation set, using four parameters: average accuracy (AA), overall accuracy (OA), recall (R), and precision (P), based on Av and Sp data.

[image: Table 1]Multilayer Perceptron models were best performing models with Av and Sp data. The t-SNE algorithm was applied to the features that were extracted from Av_MLP model hidden layer and the raw Av spectral data for comparison. The results showed that the raw Av data did not discriminate the four species (Figure 7A). However, they were distinctly classified after the application of the MLP extraction model (Figure 7B).
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FIGURE 7. The prediction performance of Av_MLP using spectral data of four weed (A) raw avearage spectral data (B) features data that extracted from Av_MLP model hidden layer.




Performance of the Models on All Hyperspectral Pixels

The confusion matrix of the actual weeds and predicted weeds by Av_MLP and Sp_MLP models are shown in Figure 8. The Sp_MLP model produced higher prediction accuracy than the Av_MLP model. The prediction accuracy of Av_ MLP model (81.6%) using all pixels validation dataset was lower than the accuracy of using averaged validation dataset (100%; Table 1). The Sp_MLP and Av_MLP models yielded similar accuracy for the predication of all pixels with 89.1 and 81.6% accuracy, respectively. Av_MLP performed lower accuracies (65 and 65.8%) than the Sp_MLP model (80.7 and 93.4%) for the identification of YBG and windgrass. These results suggest that averaging all spectra across the weed species enhances the amount of information captured about the weeds. However, when spectra come from smaller regions (e.g., single pixel, from Sp) this ability is reduced.


[image: image]

FIGURE 8. Confusion matrix of predicted weed species for validation set (A) by Av_MLP (B) by Sp_MLP. The numbers in the matrices are each weed prediction percentage. (TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass).


The predicted, ground truth and false color images of the weeds are presented in Figure 9. From Figures 9C,D we can conclude that Sp_MLP model showed better precision in overall weed recognition (i.e., for YBG, BC, and WG weeds) than the Av_MLP model. Furthermore, in the case of thistle, similar prediction was observed by Sp_MLP and Av_MLP models.


[image: image]

FIGURE 9. False color and predicted images of validation set for weeds (A) False color images of the weeds : TT: thistle, YBG: yellow bristle grass, BC: buttercup, and WG: wind grass (B) generated ground truth images (C) Predicted image with Av_ MLP model (D) Predicted image with Sp_MLP model. Note: Four prediction colors were used; Red: Thistle, Blue: YBG, Green: Buttercup, and Pink: Windgrass and a hard threshold was used to remove the background of the leaves. The different colors are representing different weeds, which means that some pixels in this image have been predicted as other plants, and not all pixels have been predicted correctly.




DISCUSSION

Targeted weed control could increase the speed and accuracy and reduce costs to farmers (Komi et al., 2007). The prerequisite of targeted weed control is a reliable weed identification system. Many techniques have been used in recent years to increase the accuracy and speed of weed identification mainly applying RGB imaging (Solahudin et al., 2018). HSI, however, has the advantage of identifying weeds based on their reflectance data, which is an indicator of the plant’s chemical composition (Farooq et al., 2019a). Using HSI will add value to the weed identification techniques based on RGB imaging, which is hinged on shape, size, and color discrimination. Wei et al. (2014) applied canonical discriminant analysis and the PLS-DA model to data from five wavelengths (672, 757, 897, 1,117, and 1,722 nm) to discriminate soil and five weed species from winter rape. They achieved this with a high accuracy of 90.91%, which is slightly higher than our result. The reason for this might be that they only discriminated the broad leave species, whereas we have very narrow-leaf species of grass as well. Broad leaf species are slightly simpler to identify than the narrow leaf species because of the fact of more uniform spectral data collection.

The MLP method has been widely used for classification in agricultural research (Golhani et al., 2018; Kiani et al., 2018). In our study, four important spectral regions (550–750, 995–1,005, 1,110–1,220, and 1,380–1,470 nm) have been identified by Sp_MLP model as “the best model” with high weed identification performance. In general, the 500–750 nm spectral region has been reported as important in vegetation discrimination (Cochrane, 2000; Smith and Blackshaw, 2003; Frels et al., 2018). Further, the region around 700 nm is known to be highly informative for vegetation discrimination due to its association with chlorophyll content (Gitelson and Merzlyak, 1997). The spectra in the ranges of 880–1,000,1,050–1,200, and 1,250–1,550 nm has been mostly associated with the third and second overtone of C-H stretching and second overtone of O-H stretching (Burns and Ciurczak, 2007; Schwanninger et al., 2011). Danson et al. (1992) described that the bands at 970, 1,200, and 1,450 nm wavelengths are water absorption bands.

All three identification models used in this study yielded high prediction accuracy both based on the Av and Sp selected spectra. However, the MLP model produced the highest accuracy, sensitivity and speciality compared to the other identification models both in the calibration and validation sets using the Av and Sp data. The t-SNE method has been recognized as a very powerful approach for data exploration and visualizing high-dimensional data (Maaten and Hinton, 2008). In this study, the first two dimensions of t-SNE extracted from original spectra and Av_MLP showed that the original spectra do not efficiently discriminate the four weed species. However, the discrimination power was improved by the Av_MLP model, with four weeds identified and discriminated.

The Av spectral models also distinctly identified the four weed species. This is likely due to chemical composition of each species (Vengris et al., 1953). However, the data could not be simply averaged for model calibration when the model was used for classification across all pixels obtained from hyperspectral images. According to (Fang et al., 2015) the shape of the hyperspectral images should be assessed based on the different structures of HSI specifically if the heterogeneous spatial area is large. Averaging each selected Sp area as the input data for model calibration has the advantage of including overall and distributed leaf spectral information. It will also reduce the size of the input data for training the model. This method has been widely used for the RGB and HSI imaging (Achanta et al., 2012; Fang et al., 2015).

Overall, the Sp_MLP model showed the best predictive results, followed by Sp_SVM and Sp_PLS-DA. Silva et al. (2013) also suggested that PLS-DA has a lower classification power and is not suitable for weed identification.

The novel approach introduced in this study based on super-pixels (Sp) allows the detection of weeds even where only few parts of the plant are visible, for instance in pastures where these weeds are mixed with other plant species. Thus, the introduced approach helps to overcome the challenging situation where the incomplete visibility of plant’s morphology is a limiting factor for RGB imaging. Also, it is worth noting that spectral signatures could be obtained with non-imaging approaches, but this would have practical challenges in large grazing fields. The HSI used for detection of weeds in our study is either based on unique spectral signature and/or morphological features extracted from the hyperspectral images.



CONCLUSION

This study demonstrated the ability of HSI to detect unique spectral signatures of a diverse group of weed species including grass and broadleaf as well as annual and perennial weeds. Models developed with Sp spectral data can provide better results in comparison to averaged spectral data for weed classification. Compared to the traditional classification methods, MLP is a more robust and reliable method when developed with Sp data. This novel approach based on Sp will significantly advance the applicability of HSI in plant identification. This is especially useful when it is applied in the grazing field including in mixed swards of a few plant species. Future work should focus on the development of a system that provides classification using spectral signature and/or morphological features aligned with decision tree strategies to deal with complex systems such as mixed swards.
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Accurate measurement of seed size parameters is essential for both breeding efforts aimed at enhancing yields and basic research focused on discovering genetic components that regulate seed size. To address this need, we have developed an open-source graphical user interface (GUI) software, SeedExtractor that determines seed size and shape (including area, perimeter, length, width, circularity, and centroid), and seed color with capability to process a large number of images in a time-efficient manner. In this context, our application takes ∼2 s for analyzing an image, i.e., significantly less compared to the other tools. As this software is open-source, it can be modified by users to serve more specific needs. The adaptability of SeedExtractor was demonstrated by analyzing scanned seeds from multiple crops. We further validated the utility of this application by analyzing mature-rice seeds from 231 accessions in Rice Diversity Panel 1. The derived seed-size traits, such as seed length, width, were used for genome-wide association analysis. We identified known loci for regulating seed length (GS3) and width (qSW5/GW5) in rice, which demonstrates the accuracy of this application to extract seed phenotypes and accelerate trait discovery. In summary, we present a publicly available application that can be used to determine key yield-related traits in crops.

Keywords: rice, image analysis, seed size, seed color, GWAS, genome wide analysis


INTRODUCTION

Most of the plant-based food that we eat is either seed or seed-derived products. Thus, a large proportion of resources in crop improvement programs are invested toward better seeds. In this context, obtaining precise measurements of seed size and seed shape is critical to both breeding programs aimed at enhancing crop yields and facilitating fundamental research that is focused on discovering genetic components that regulate seed size. Manual measurements of seed size provide evidence of restricted parameters such as length and width at a low resolution, which can be error-prone and time-consuming. Mechanized seed size measuring equipment is expensive, requires regular calibration, and often needs large amounts of seeds to run through the system. In contrast, imaging-based automated platforms that are tailored to accurately measure seed parameters offer an efficient solution to mitigate time constraints, seed amount issues, and circumvent manual errors (Furbank and Tester, 2011; Fiorani and Schurr, 2013; Sandhu et al., 2019; Yang et al., 2020). Moreover, high-throughput image analysis provides a powerful tool for trait discovery that facilities a more rapid input into downstream analysis such as genome-wide association studies (GWAS) for performing genetic mapping of yield-related traits.

Qualitative assessment of the yield-related traits can also be important to ensure optimal nutritional values of seeds (Zhao et al., 2020). Within this framework, seed color can be associated with enhanced nutrition (Shao et al., 2011 and references therein). For instance, colored rice varieties carry antioxidant properties, which are known to decrease the risks involved with developing cardiovascular diseases (Ling et al., 2001). Similarly, pigmented maize seeds offer several beneficial effects on human health due to their antioxidant properties (Casas et al., 2014; Petroni et al., 2014). In addition to their medicinal properties, colored rice varieties hold cultural significance for certain regions and are consequentially valued in the respective local markets (Finocchiaro et al., 2007). Furthermore, the red pigmented wheat, which is resistant to pre-harvest sprouting, has been extensively targeted in wheat breeding programs (Groos et al., 2002).

Keeping in view the importance of seed size and color, several seed image analysis applications have been developed. For example, SmartGrain determines seed morphometrics such as area, perimeter, length, and width, as well as seed shape. However, it does not extract seed color information (Tanabata et al., 2012). On the other hand, GrainScan provides information with respect to seed size and color (Whan et al., 2014). Both the applications can be operated only on the Windows platform. Although, these applications offer high levels of accuracy for analyzing seed images for size and shape determination, the adjustments that may be needed in setting the parameters are limited. For instance, SmartGrain only allows the user to determine the foreground and background colors, wherein GrainScan can only allow the user to set the size parameters. Moreover, processing a large number of images is time-consuming, and images with uneven illumination pose a challenge for precise measurements that may interfere with downstream analysis. These applications are not open-source and, therefore, cannot be further developed to improve based on user needs. In addition, other tools such as SeedSize (Moore et al., 2013) and Plant Computer Vision or Plant CV can be utilized to determine seed morphometrics (Fahlgren et al., 2015; Gehan et al., 2017).

To address the missing features in available seed image analysis software, we have developed a MATLAB based tool –SeedExtractor, an open-source graphical user interface (GUI) software that allows a user to conduct seed size analysis with precision. Based on the image processing libraries in MATLAB, our application is highly efficient, as it can process a large number of samples in a short period of time. The application allows the user to fine-tune the parameters for image processing and can handle a wide array of images. Most importantly, our application is open-source as the source code of our program is published and MATLAB is available to most users through institutional license. Moreover, we developed a Standalone version of SeedExtractor, which uses MATLAB Compiler Runtime and does not require MATLAB license for its operation. Overall, our tool allows the user to freely modify the application to suit more specific needs. As a test case to examine the value of this software, we screened mature seeds from 231 rice accessions corresponding to Rice diversity Panel 1 (RDP1) with different genetic (indica, temperate japonica, tropical japonica, aus, and admixed) and geographical backgrounds usingSeedExtractor. The derived seed-size related traits such as mature seed length and width were used to perform GWAS. Our association mapping confirmed the identity of known loci/genes regulating seed length (GS3) and width (qSW5) in rice, thus validating the accuracy of this application tofacilitate genetic analysis and trait discovery.



MATERIALS AND METHODS


SeedExtractor Workflow

SeedExtractor is a MATLAB-based application, which makes it compatible with multiple operating systems. The tool is available in two formats: Standalone and Regular (see “Software Availability” section). The standalone version of SeedExtractor uses “MATLAB Compiler Runtime” and does not require MATLAB license for its operation. The regular version does require MATLAB license for its operation. Both these versions are similar in their interface and performance. First, the user needs to install the SeedExtractor application. Then, the folders which contain the seed images (scanned or camera-based images) must be provided (see Figure 1). Next, the parameters, based on user’s requirement, is set and an individual image is tested to validate the optimal settings (see Figure 1). Sequentially, batch processing can be conducted to extract seed traits such as (1) area, (2) perimeter, (3) major axis length (length), (4) minor axis length (width), (5) circularity, (7) seed number, (8) color intensity (different channels) and other digitally derived traits such as centroid. We have provided a step-by-step guide to use SeedExtractor (see SeedExtractor Guide Document: Supplementary Data Sheet 1).
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FIGURE 1. SeedExtractor workflow. Firstly, seed images are loaded, and the parameters are set. Testing of the parameters is performed to ensure optimal settings. Then, batch processing can be conducted to extract seed traits.




Software Implementation


Tool Development

We have designed a GUI based on MATLAB, which provides users with the flexibility of setting unique parameters for processing seed images (see Figure 2).
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FIGURE 2. Graphical user interface of SeedExtractor. The numbers denote a step-by-step guide on how to use the application: (1) path of the seed images is specified (* represents that all images in the particular folder need evaluation), (2) files are loaded automatically, (3) selection of color space should be made, (4) spinner can be used to change the current image (shown in the original image), (5) the user may select “histogram” option (if applicable), (6) histograms representing distribution of colors in the three channels of the selected color space will be generated, (7) the range of histograms can be used to set the color parameters for the respective channel, (8) by selecting “foreground” and “background”—the user can scribble to define the color of the seed and background, respectively, and “graph cut” will facilitate segmentation of the seeds from the background, (9) minimum and maximum seed size parameters are defined (either default settings or manual corrections can be made) to filter out regions that are not seeds, (10) the user can “measure” objects that have been used as a scale in the image and (11) define the scale measurement (in millimeters) that will aid in transforming the pixel length into metric units, (12) a test run should be performed prior to batch processing in order to ensure that the parameter settings are optimized, (13) if the user has decided which parameters will be optimum, batch processing can be initiated, and (14) progress can be monitored via the progress bar.




Execution Steps

A brief step-by-step guide is provided below to perform seed image analysis: (1) path specification, (2) file loading, (3) color space selection, (4) image selection, (5) histogram generation, (6) parameters setting, (7) graph cutting, (8) scale measurement, and (9) testing and processing.


Path Specification

SeedExtractor is compatible with widely used image formats including jpg, png, and tiff. This tool supports batch processing by loading all the images using a regular expression. For example,“FOLDER NAME\∗.jpg”loads all the jpg images under the respective folder.



File Loading

Once the correct regular expression has been typed in “Path” textbox, the “Load” button can be clicked to load all the filenames into the application. The “Light bulb” located on the right side of the interface will turn red while the filenames are being loaded. Afterward, the unprocessed image will be shown in “Original Image” (see Figure 2). The spinner can be used to change the index of the current image. The current image will be used for parameter setting and testing in later steps.

For accurate measurements, the “Original Image” and “Processed Image”can be zoomed in and out to check for any discrepancy between the original image and the processed image in the binary format. They can also be panned by holding the left-click button.



Color Space Selection

The application supports three different color spaces: (1) red, green, and blue (RGB),(2) hue, saturation, and value (HSV), and (3) Lab. These three different choices of color spaces provide the flexibility to the user in finding the optimal segmentation output. Once the color space is selected, the images will be processed in the respective color space for the next steps.



Histogram Generation

The three histograms (Channel 1, 2, and 3; see Figure 2) showing the distribution of colors in the three channels of the selected image (seed and the background) are generated. The meaning of the channels is dependent on the color space selected by the user. For example, if “RGB” is chosen as a preferred color space, then histograms for “Channel 1, 2, and 3” refer to “red, green, and blue.” Similarly, “hue, saturation, and value” for “HSV,” and “l, a, and b” for “Lab” color space. The distribution of colors in these three channels can be used as guide for setting the correct color ranges. Default parameters are provided; however, the user needs to change the color parameters in order to use their own preferred range of color channels based on the histograms (see Graph Cutting).



Parameter Setting

A set of default parameters are automatically loaded after launching the tool. Channel ranges (minimum and maximum) are used to segment the seed regions from the background. Minimum and maximum seed size and shape parameters, such as area, major and minor axis length, are used to filter out regions that are not seeds. However, the default parameters may not work for all the seed types or images. Thus, in this case, the user may need to set these parameters manually.



Graph Cutting

To simplify the process of parameter setting, our application can also generate the parameters automatically based on “user scribbles” to select the foreground and background. Then, using the “GraphCut” algorithm (Kwatra et al., 2003), the foreground can be segmented from the background.

To select the foreground (i.e., seed in this case), the user can click the “foreground” button, which will open a new window. The user can scribble on the seed using a red mark (see Figure 3A). In cases where the seed is too small, the user can zoom the image inward for scribbling. Thereafter, “Original Image” view can be restored. To select the background, the user can click the “background” button, which will open a new window. Then, the user can scribble on the background using a green mark (see Figure 3B).
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FIGURE 3. Selection of foreground, background, and scale measurements. By utilizing the function “user scribbles,” SeedExtractor can select foreground and background. (A) To select the foreground, the user can click the “foreground” button on the graphical user interface and scribble on the seed with a red mark. The image can be zoomed inward for the purpose of scribbling on smaller seeds. (B) For background selection, the user can click the “background” button and scribble on the background with a green mark. (C) For metric-scale measurements, the application allows the user to measure objects that have been used as a scale in the image, which can then be used to transform the pixel length into millimeters. For this, a blue line can be drawn by clicking the “Measure” button. When the line is drawn, the pixel length of the blue line will appear in the “Length (pixel)” textbox. The user can type the corresponding length of the blue line in the “Length (mm)” textbox. Then, the application automatically converts the selected values into metric units.


Once the foreground and background have been marked or selected, the user can click the “GraphCut” button to segment the seeds from the background. An image showing the mask of the foreground will be shown in “Processed Image” view. After selecting the “GraphCut,” the histograms corresponding only to the seed region will be displayed in “Channel 1, 2, and 3” to guide the user in setting the color ranges. Implementation of the “GraphCut” function may take a few additional seconds. Supplementary Figure S5 shows the histogram and parameter setting with and without “GraphCut.”

Due to a wide range of variation in seed size and color, it is difficult to automatically set optimal size and color ranges (for all the color spaces). In this context, the tool provides the flexibility to the user to set these parameters manually based on the histograms. It is highly recommended that the user adjusts the parameters through testing. Nevertheless, the automatically generated default seed color and size parameters provide good initial values for the user to initiate adjusting parameters.



Scale Measurement

To obtain seed sizes in the metric system, the application allows the user to measure objects that have been used as a scale in the image (the tape in Figure 3C). The known size of the scale can be used to transform the pixel length into millimeters (mm), thus presenting the extracted trait values into the metric system. For this, a blue line can be drawn by clicking the “Measure” button. When the line is drawn, the pixel length of the blue line will appear in the “Length (pixel)” textbox. The user can type the corresponding length of the blue line in the “Length (mm)” textbox (see Figure 2). Then, the application automatically converts those values into metric units.



Testing and Processing

Once the user has set the parameters to investigate how the parameters work, a test should be performed prior to batch processing. To test the performance of the current parameters, the user can click the “Test” button. An image showing the mask of the seeds will be shown in “Processed Image” plot. There is a checkbox “Seed Number,” which is used to control whether the seed regions in the processed image will be numbered or not. If the box is ticked, a series of numbered yellow boxes will be drawn on the lower right corners of the individual seed in the binary image.

If the user has decided on the parameters to be used, batch processing can be initiated. The application requires that the seeds are not touching each other when imaged. The processing will begin by clicking the “Launch” button. A series of traits will be extracted by the application, and the extracted traits will be exported as CSV files. The “Light bulb” will turn red during the processing of images and will turn green upon completion of the designated task. The “Progress” gauge will show the progress of the image processing.

For each processed image, SeedExtractor will generate an output file that contains trait information of an individual seed in a particular image. Likewise, the mask of the seed regions from each image will be generated as a processed image. The indices of all the seed regions are marked in the processed image. In addition, the user can download combined file (labelled as TotalResult.csv) representing the average of particular trait for all the seeds per image from the MATLAB console.



Algorithms


Image Segmentation

The foreground with the seeds needs to be segmented from the background to process the image. We use the color thresholding technique to find the seed regions. We allow the user to segment the images in one of the three color spaces, RGB, HSV, and Lab. The default color space is HSV, as we observed that HSV and Lab color spaces are better able to account for potentially uneven illuminations in the images. Range (minimum Ci_ min and maximum Ci_ max) of the ith channel in the color parameter setting is used to define the color ranges in the selected color space. More specifically, if C1, C2, and C3 are the three values of a pixel in the selected color space, a pixel satisfying the following inequalities will be identified as a seed pixel:

[image: image]

where && means the logic and operation. The processed image that is used as the mask of seed regions can be generated after color thresholding in the selected color space (Bruce et al., 2000).

The application detects each seed region in the binary format. The shape-related traits are extracted from the binary or processed seed image and the colors are extracted from the original color image. Currently, this application provides a series of traits such as seed number, area, perimeter, length, width, circularity, and centroid, as well as seed-color intensity (see Table 1). In this software, area A is dictated by the number of pixels inside the region, and perimeter P is determined by the length of the boundary of the region. Major (seed length) and minor (seed width) axis lengths are the lengths of the major and the minor axis of the ellipse that has the same normalized second-central moments as the region. Circularity is calculated as (4πA)/P2 and can be used to evaluate how similar the region is to a circle. The centroid is the center of the seed region, which contains two values of coordinates. Color intensities are the average intensity of Red, Green, and Blue channel intensity values for each seed region.


TABLE 1. Traits evaluated by SeedExtractor.
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Performance Testing

To test the performance of SeedExtractor, we evaluated the time required to process: (case-I) images having a different number of seeds and (case-II) images at different levels of resolution (see Supplementary Tables S1, S2 and Supplementary Figure S1). For this, mock seeds were computationally generated and increased from 1 seed to 100 seeds in a series of images (case-I). In case-II, we used a fixed number of 10 seeds, and increased the level of resolution of each image from 50 × 50 to 1,000 × 1,000 pixels.



Comparisons With Other Automated Methods and Manual Measurements

First, we compared the time taken by SeedExtractor to analyze images (10 mature seed images from different rice) compared to other freely available applications such as SmartGrain and GrainScan (see Supplementary Table S3). Next, we compared the accuracy of the seed morphometric measurements obtained by SeedExtractor, SmartGrain, and GrainScan to manual measurements using carbon fiber composite digital caliper (Resolution: 0.1 mm/0.01,” Accuracy: ± 0.2 mm/0.01,” Power: 1.5 V; Fisherbrand). For this, we only considered seed length as it can be manually measured with relatively higher confidence levels than seed width. Raw values from manual and image-based measurements are provided in Supplementary Table S4.



Seed Analyses From Other Plant Species

To show adaptability of the application to measure seed images from other plant species, we analyzed images scanned using flatbed scanner (controlled light conditions) from rice, wheat, soybean, sorghum, common bean, and sunflower (see Supplementary Figure S2). These plant species represent a wide variation in the seed size. Further, two additional users analyzed mature seed images from five different plant species to test the consistency of the SeedExtractor. The parameters used by the two users are presented in Supplementary Figure S3. In addition, to test the efficiency of our tool under variable light conditions and background, we analyzed developing rice seed (7 and 10 days after fertilization) images taken by a standard smartphone camera (12-megapixel, f/1.8 aperture; see Supplementary Figure S4).



Rice Diversity Panel 1: A Test Case for SeedExtractor Validation

Approximately 231 rice accessions from RDP1 (Liakat Ali et al., 2011; Zhao et al., 2011; Eizenga et al., 2014) were grown under optimal greenhouse conditions, 16 h light and 8 h dark at 28 ± 1°C and 23 ± 1°C, respectively, and a relative humidity of 55–60% (Dhatt et al., 2019). The harvested panicles were dried (30 ± 1°C) for 2 weeks and mature seeds were dehusked using a Kett TR-250. The dehusked seeds were scanned using flatbed scanner—Epson Expression 12000 XL at 600 dpi resolution (Paul et al., 2020). The seeds were spread out on a transparent plastic sheet placed on the glass of the scanner to avoid scratching. A piece of tape at 0.5-inch (12.7 mm)width was used for scaling.



Morphometric Measurements

SeedExtractor was used to obtain morphometric measurements on mature seed size. The various morphometric measurements derived from the scanned seed images were checked for normality and outliers were removed. The mature seed size data (length and width) was analyzed, and adjusted means for each accession across the replications were obtained with the following statistical model:

[image: image]

where yik refers to the performance of the ith accession in the kth replication, μ is the intercept, gi is the effect of the ith accession, rk is the effect of kth replication, and ϵik is the residual error associated with the observation yik. R statistical environment was used for the analysis (R Core Team, 2019).



Genome Wide Association Study (GWAS)

Adjusted means of various seed morphometric were used for GWAS analysis. GWAS was performed in rrBLUP R package (Endelman, 2011) using a high-density rice array (HDRA) of a 700k single nucleotide polymorphism (SNP) marker dataset (McCouch et al., 2016) with a total of 411,066 SNPs high quality SNPs retained after filtering out the missing data (<20%) and minor allele frequency (<5%). Following single marker linear mixed model was used for GWAS:

[image: image]

where y is a vector of observations, μ is the overall mean, X is the design matrix for fixed effects, β is a vector of principle components accounting for population structure, s is a vector reflecting the number of alleles (0,2) of each genotype at particular SNP locus, α is the effect of the SNP, Z is the design matrix for random effects, [image: image] is the vector of random effects accounting for relatedness, G is the genomic relationship matrix of the genotypes, [image: image] is the genetic variance, and ϵ is the vector of residuals. Manhattan plots were plotted using the qqman R package (Turner, 2014). To declare the genome-wide significance of SNP markers, we used a threshold level of P < 3.3 × 10–6 p or -log10(P) > 5.4 (Bai et al., 2016).



RESULTS AND DISCUSSION


Performance Test

We evaluated the performance of SeedExtractor with respect to the time required to process images. For this, we evaluated two cases: images having different numbers of seeds and images at different levels of resolution. In the first case, we used an incremental range (from 1 to 100) of seeds in a series of images (see Supplementary Table S1 and Supplementary Figure S1A). We observed that the number of seeds does not affect the performance, as the time taken to process an image with a single seed is similar to that of an image with 100 seeds (see Figure 4A). Secondly, we used a fixed number of seeds and increased the resolution of each consecutive image incrementally (see Supplementary Table S2 and Supplementary Figure S1B). We detected that the performance of the application slows gradually with increase in resolution (see Figure 4B).


[image: image]

FIGURE 4. Performance testing of SeedExtractor. Plot showing the time taken to process images having different number of seeds (A), and images having different resolution levels (B).




SeedExtractor vs. Other Automated Software and Manual Measurements

Next, we investigated the efficiency of SeedExtractor with respect to the time needed to analyze images relative to other automated software tools such as SmartGrain and GrainScan. Remarkably, the SeedExtractor takes ∼21 s for analyzing 10 images i.e., 30 times and 6 times more efficient than SmartGrain and GrainScan, respectively (see Supplementary Table S3). Then, we correlated manual measurements with the analysis performed using each of the three automated software (SeedExtractor, SmartGrain, and GrainScan). Although manual measurements are prone to errors, we considered only seed length for the correlation because it can be measured with relatively higher confidence levels than seed width. Consequently, SeedExtractor showed the least deviation from manual measurements, as we detected correlation of 0.93 for SeedExtractor, 0.84 for GrainScan, and 0.92 for SmartGrain with manually measured seed length (see Supplementary Table S4). Furthermore, we checked the correlation between the morphometric measurements obtained from the SeedExtractor and the other two software (see Table 2 and Supplementary Table S5). We detected a significantly high correlation (>0.97) between the analyses conducted by SeedExtractor and SmartGrain (see Table 2 and Supplementary Table S5). Contrarily, the correlation between GrainScan and SmartGrain or SeedExtractor was relatively low (<0.81; see Table 2 and Supplementary Table S5). Thus, SeedExtractor serves in a time-efficient and reliable manner to analyze seed size parameters.


TABLE 2. Correlation of the three automated applications for determining different seed size parameters.
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Seed Image Analysis From Other Species

In addition to rice, seed measurements from other plant species representing a wide variation with respect to seed size were evaluated using SeedExtractor. For this, mature seeds from wheat, sorghum, common bean, and sunflower were also processed using SeedExtractor. After establishing the optimal parameters (see Supplementary Figure S2 and Supplementary Table S6), SeedExtractor precisely segmented the mature seeds form the different plant species (see Figure 5). Further, these values were consistent with those obtained from two additional independent users analyzing these images (see Supplementary Figure S3 and Supplementary Tables S6, S7, S8).


[image: image]

FIGURE 5. Seed analysis of different plant species. Mature seed images (original image) corresponding to rice, wheat, sorghum, common bean, and sunflower were evaluated using SeedExtractor. Processed image shows the segmented image pertaining to their respective plant species. Different color tapes in the original image were used for scaling purposes.


Since the analyzed seed images were taken in controlled light conditions (flatbed scanner Epson Expression 12000 XL), we determined the efficacy of the tool by analyzing developing rice seed images taken by a standard smartphone camera under variable light conditions and background. As a result, we were able to finely segment the developing rice seeds from the background using SeedExtractor (see Supplementary Figure S4). In summary, the successful and consistent derivation of the seed morphometrics from multiple plant species as well as the ability to analyze seed images taken under controlled and variable light conditions demonstrates the adaptability and utility of the application.



Validation of SeedExtractor Derived Morphometric and Colorimetric Data

To validate the seed related traits derived from SeedExtractor, we screened 231 rice accessions corresponding to RDP1 (see Supplementary Table S9). The mature seed length and width, which showed a normal distribution, were used for GWAS (see Supplementary Figure S6). Consequently, we identified 13 significant SNPs associated with seed length and 8 with seed width under control (see Figure 6 and Supplementary Table S10). Remarkably, the lead SNP on chromosome 3 (SNP3.16732086; -log10 P = 13.95) that affects mature seed length, corresponded to GS3, a known regulator of seed size (Fan et al., 2006). This known regulation of GS3 was explanatory for 13.24% of phenotypic variation (Figure 6 and Supplementary Table S8). GS3 encodes a subunit of G-protein complex. Different alleles of GS3 have been discussed to promote either longer (null alleles; Fan et al., 2006; Takano-Kai et al., 2009) or shorter seeds (gain-of-function allele; Mao et al., 2010). The other two significant SNPs for grain length were detected on chromosome 4 (SNP4.4655556; -log10 P = 5.66) and 6 (SNP6.1112028; -log10 P = 5.99), which encompasses deformed interior floral organ 1 and an expressed protein, respectively.


[image: image]

FIGURE 6. Manhattan plots of genome-wide association analysis for mature grain length (upper panel) and width (lower panel). The red dashed horizontal line indicates cut-off of significance threshold (P < 3.3 × 10– 6 or -log10(p) > 5.4) level. Previously known major seed length (GS3) and width (qSW5) regulators are highlighted with a red arrow.


Furthermore, we identified several SNPs for seed width (see Supplementary Table S10). For instance, the lead SNP on chromosome 2 (SNP2.2487459; -log10 P = 6.07) co-localizes with an expressed protein (Os02g05199), and the SNP on chromosome 3 (SNP3.10130641; -log10 P = 5.84) is localized in the intergenic sequence between Os03g18130 and Os03g18140 (see Figure 6 and Supplementary Table S10). Interestingly, the significant SNP on chromosome 5 (SNP5.5348012; -log10 P = 5.56; see Figure 6 and Supplementary Table S10) corresponded to a known regulator for seed width, qSW5/GW5 (Weng et al., 2008; Duan et al., 2017; Liu et al., 2017; Kumar et al., 2019). This SNP explained phenotypic variation of 4.4%, which is in line with the previous studies (Huang et al., 2010; Zhao et al., 2011). The detection of the known seed size regulators, and the novel loci from the association mapping of the morphometric data, obtained by SeedExtractor, substantiates the power of the application to facilitate trait discovery.

Next, to test SeedExtractor’s capability to extract colorimetric features, we screened the RDP1 that have already been visually classified based on seed color (Liakat Ali et al., 2011; Zhao et al., 2011; Eizenga et al., 2014). We detected a clear distinction between the SeedExtractor derived color intensities that corresponded to different color-based groups (see Supplementary Figure S7 and Supplementary Table S11). Collectively, these results validate the robustness of SeedExtractor’s ability to analyze seed size, shape, and color parameters that can be used in downstream genetic analysis for trait discovery.



CONCLUSION

This open-source cross-platform application provides a powerful tool to analyze seed images from a wide variety of plant species in a time-efficient manner. The accuracy of the tool is demonstrated by GWAS that identified the known regulators of seed length and width in rice. The versatility of this tool can extend beyond flatbed-scanned images, as it can also evaluate images taken by other cameras. In the future, this tool can be extended to include downstream processing of the results (e.g., phenotypic distribution and clustering) as well as to estimate other yield-related parameters such as opaqueness or chalkiness in rice, which account for significant yield losses in global rice production.



DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



AUTHOR CONTRIBUTIONS

HW and HY supervised the project. PP led the study, scanned the seeds, and performed manual measurements. PP, BD, JS, LI, and KW performed the experiment on Rice Diversity Panel 1. FZ designed and developed the application. WH and GM performed analysis on the phenotypic data and genome-wide association mapping. PP and HW performed candidate gene analysis. PP and FZ wrote the manuscript. All authors read and approved the manuscript.



FUNDING

This work was supported by the National Science Foundation Award # 1736192 to HW, GM, and HY.



ACKNOWLEDGMENTS

This manuscript has been released as a pre-print at bioRxiv (Zhu et al., 2020). We would like to thank Manny Saluja and Scott Sattler for providing sorghum seeds, Carlos Urrea for common bean seeds, Yavuz Delen and Ismail Dweikat for sunflower seeds.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.581546/full#supplementary-material

Supplementary Figure 1 | Images used for performance testing.

Supplementary Figure 2 | Parameters used to evaluate images from multiple plant species.

Supplementary Figure 3 | Seed color and size parameters used by User-1 and User-2.

Supplementary Figure 4 | Rice developing seed at 7 and 10 days after fertilization analyzed using SeedExtractor.

Supplementary Figure 5 | Graph-cutting.

Supplementary Figure 6 | Phenotypic distribution of mature seed length and width.

Supplementary Figure 7 | Box plot representing seed color intensities for three channels in RGB color space for the visually classified RDP1. The numbers below the color groups signify the number of genotypes in the respective group. For stats, we used LSmeans student’s t-test across all 15 groups (5 color groups and 3 color channels). Different letters indicate significant differences between a particular group and channel; α = 0.05 and t-statistic = 1.96.

Supplementary Table 1 | Performance testing with incremental seed numbers.

Supplementary Table 2 | Performance testing with incremental image resolution.

Supplementary Table 3 | Evaluation of efficiency with respect to time.

Supplementary Table 4 | Manual and automated seed length measurements.

Supplementary Table 5 | Morphometric analysis using the automated applications.

Supplementary Table 6 | SeedExtractor based analysis of seed images from different plants.

Supplementary Table 7 | Morphometric measurements of mature seed images from different plant species using SeedExtractor by two additional users (User-1 and User-2). Color and size parameters by User-1 and 2 are also represented.

Supplementary Table 8 | Variation in (area and color-1) of mature seed images from different plant species using SeedExtractor by two additional users (User-1 and User-2).

Supplementary Table 9 | Rice accessions used for genome wide association study.

Supplementary Table 10 | Significant SNPs associated with seed length and width.

Supplementary Table 11 | Seed color intensities for three channels in RGB color space for the RDP1.

Supplementary Data Sheet 1 | SeedExtractor guide document.



REFERENCES

Bai, X., Zhao, H., Huang, Y., Xie, W., Han, Z., Zhang, B., et al. (2016). Genome-wide association analysis reveals different genetic control in panicle architecture between Indica and Japonica rice. Plant Genome 9, 1–10. doi: 10.3835/plantgenome2015.11.0115

Bruce, J., Balch, T., and Veloso, M. (2000). “Fast and inexpensive color image segmentation for interactive robots,” in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, (Takamatsu: IEEE), 2061–2066. doi: 10.1109/iros.2000.895274

Casas, M. I., Duarte, S., Doseff, A. I., and Grotewold, E. (2014). Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop. Front. Plant Sci. 5:440. doi: 10.3389/fpls.2014.00440

Dhatt, B. K., Abshire, N., Paul, P., Hasanthika, K., Sandhu, J., Zhang, Q., et al. (2019). Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front. Plant Sci. 10:1443. doi: 10.3389/FPLS.2019.01443

Duan, P., Xu, J., Zeng, D., Zhang, B., Geng, M., Zhang, G., et al. (2017). Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol. Plant. 10, 685–694. doi: 10.1016/j.molp.2017.03.009

Eizenga, G. C., Ali, M. L., Bryant, R. J., Yeater, K. M., McClung, A. M., and McCouch, S. R. (2014). Registration of the rice diversity Panel 1 for genomewide association studies. J. Plant Regist. 8, 109–116. doi: 10.3198/jpr2013.03.0013crmp

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome J. 4:250. doi: 10.3835/plantgenome2011.08.0024

Fahlgren, N., Gehan, M. A., and Baxter, I. (2015). Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 24, 93–99. doi: 10.1016/J.PBI.2015.02.006

Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., et al. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171. doi: 10.1007/s00122-006-0218-211

Finocchiaro, F., Ferrari, B., Gianinetti, A., Dall’Asta, C., Galaverna, G., Scazzina, F., et al. (2007). Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol. Nutr. Food Res. 51, 1006–1019. doi: 10.1002/mnfr.200700011

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Furbank, R. T., and Tester, M. (2011). Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635–644. doi: 10.1016/j.tplants.2011.09.005

Gehan, M. A., Fahlgren, N., Abbasi, A., Berry, J. C., Callen, S. T., Chavez, L., et al. (2017). PlantCV v2: image analysis software for high-throughput plant phenotyping. PeerJ 5:e4088. doi: 10.7717/peerj.4088

Groos, C., Gay, G., Perretant, M. R., Gervais, L., Bernard, M., Dedryver, F., et al. (2002). Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor. Appl. Genet. 104, 39–47. doi: 10.1007/s001220200004

Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). Genome-wide asociation studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967. doi: 10.1038/ng.695

Kumar, A., Kumar, S., Prasad, M., and Thakur, J. K. (2019). Designing of a mini-core that effectively represents 3004 diverse accessions of rice. bioRxiv [preprint] doi: 10.1101/762070

Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. (2003). Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22, 277–286. doi: 10.1145/882262.882264

Liakat Ali, M., McClung, A. M., Jia, M. H., Kimball, J. A., McCouch, S. R., and Georgia, C. E. (2011). A rice diversity panel evaluated for genetic and agro-morphological diversity between subpopulations and its geographic distribution. Crop Sci. 51:2021. doi: 10.2135/cropsci2010.11.0641

Ling, W., Cheng, Q., Ma, J., and Wang, T. (2001). Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits. J. Nutr. 131, 1421–1426. doi: 10.1093/jn/131.5.1421

Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., et al. (2017). GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043. doi: 10.1038/nplants.2017.43

Mao, H., Sun, S., Yao, J., Wang, C., Yu, S., Xu, C., et al. (2010). Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc. Natl. Acad. Sci. U. S. A. 107, 19579–19584. doi: 10.1073/pnas.1014419107

McCouch, S. R., Wright, M. H., Tung, C. W., Maron, L. G., McNally, K. L., Fitzgerald, M., et al. (2016). Open access resources for genome-wide association mapping in rice. Nat. Commun. 7:10532. doi: 10.1038/ncomms10532

Moore, C. R., Gronwall, D. S., Miller, N. D., and Spalding, E. P. (2013). Mapping quantitative trait loci affecting arabidopsis thaliana seed morphology features extracted computationally from images. G3 Genes Genomes Genet. 3, 109–118. doi: 10.1534/g3.112.003806

Paul, P., Dhatt, B. K., Sandhu, J., Hussain, W., Irvin, L., Morota, G., et al. (2020). Divergent phenotypic response of rice accessions to transient heat stress during early seed development. Plant Direct 4, 1–13. doi: 10.1002/pld3.196

Petroni, K., Pilu, R., and Tonelli, C. (2014). Anthocyanins in corn: a wealth of genes for human health. Planta 240, 901–911. doi: 10.1007/s00425-014-2131-2131

R Core Team (2019). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing. Vienna: R Core Team.

Sandhu, J., Zhu, F., Paul, P., Gao, T., Dhatt, B. K., Ge, Y., et al. (2019). PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits. Plant Methods 15:162. doi: 10.1186/s13007-019-0545-542

Shao, Y., Jin, L., Zhang, G., Lu, Y., Shen, Y., and Bao, J. (2011). Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theor Appl. Genet. 122, 1005–1016. doi: 10.1007/s00122-010-1505-1504

Takano-Kai, N., Hui, J., Kubo, T., Sweeney, M., Matsumoto, T., Kanamori, H., et al. (2009). Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182, 1323–1334. doi: 10.1534/genetics.109.103002

Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M. (2012). SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 160, 1871–1880. doi: 10.1104/pp.112.205120

Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv [preprint] doi: 10.1101/005165

Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., et al. (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199–1209. doi: 10.1038/cr.2008.307

Whan, A. P., Smith, A. B., Cavanagh, C. R., Ral, J. P. F., Shaw, L. M., Howitt, C. A., et al. (2014). GrainScan: a low cost, fast method for grain size and colour measurements. Plant Methods 10:23. doi: 10.1186/1746-4811-10-23

Yang, W., Feng, H., Zhang, X., Zhang, J., and Doonan, J. (2020). Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187–214. doi: 10.1016/j.molp.2020.01.008

Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Liakat Ali, M., Price, A. H., et al. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2:467. doi: 10.1038/ncomms1467

Zhao, M., Lin, Y., and Chen, H. (2020). Improving nutritional quality of rice for human health. Theor. Appl. Genet. 133, 1397–1413. doi: 10.1007/s00122-019-03530-x

Zhu, F., Paul, P., Hussain, W., Wallman, K., Dhatt, B. K., Irvin, L., et al. (2020). SeedExtractor: an open-source GUI for seed image analysis. bioRxiv [preprint] doi: 10.1101/2020.06.28.176230

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhu, Paul, Hussain, Wallman, Dhatt, Sandhu, Irvin, Morota, Yu and Walia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	
	ORIGINAL RESEARCH
published: 11 February 2021
doi: 10.3389/fpls.2021.622062






[image: image2]

A Deep Learning-Based Vision System Combining Detection and Tracking for Fast On-Line Citrus Sorting
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Defective citrus fruits are manually sorted at the moment, which is a time-consuming and cost-expensive process with unsatisfactory accuracy. In this paper, we introduce a deep learning-based vision system implemented on a citrus processing line for fast on-line sorting. For the citrus fruits rotating randomly on the conveyor, a convolutional neural network-based detector was developed to detect and temporarily classify the defective ones, and a SORT algorithm-based tracker was adopted to record the classification information along their paths. The true categories of the citrus fruits were identified through the tracked historical information, resulting in high detection precision of 93.6%. Moreover, the linear Kalman filter model was applied to predict the future path of the fruits, which can be used to guide the robot arms to pick out the defective ones. Ultimately, this research presents a practical solution to realize on-line citrus sorting featuring low costs, high efficiency, and accuracy.

Keywords: defective citrus sorting, CNN-based detector, SORT-based tracker, deep learning, vision system


1. INTRODUCTION

Citrus is an important agricultural commodity produced in 140 countries, with the annual worldwide production estimated at over 110 million tons in the period 2016–2017 (Nazirul et al., 2017). For the fresh citrus fruit market, consumers demand fruits at a reasonable price without defects and diseases, which can be guaranteed by proper monitoring in the field and post-harvest quality inspection (Campbell et al., 2004). Traditionally, citrus fruits are manually sorted based on their external appearance in the packinghouse, which is time-consuming and cost-expensive. As the skill of the sorter varies from person to person, it is also an inaccurate process (Satpute and MJagdale, 2016). Therefore, it is necessary to develop automated systems to more effectively, economically, and accurately sort citrus fruits before they are sold in the market.

Damage to the citrus fruits can be caused by various issues, including insects in the field, bad practice in harvesting, infection penetration through injuries, or evolution of previous diseases during post-harvest storage (Holmes and Eckert, 1999; Burks et al., 2005). These diverse types of defects generate very different symptoms on their external appearance, making it challenging to develop non-destructive sorting methods with both high accuracy and efficiency. Hyperspectral image (HSI) technology, which inherits the advantages of both spectral and image analysis, has been adopted in several automated systems to detect the defects of agricultural products (Xing et al., 2004; Lee et al., 2014). However, applying HSI in real-time is difficult due to the relatively long time needed to acquire and analyze high-dimensional hyperspectral images. Multispectral image (MSI) technique captures images at only several specific wavelengths for higher efficiency and has been integrated into a real-time citrus sorting system (Qin et al., 2012). Despite a high accuracy of 95.3% achieved, it remains narrow as it focuses purely on citrus canker and new pests and diseases are still appearing. Traditional machine vision based on RGB cameras is a promising solution for on-line fruit sorting due to its high speed and low costs. This method has been adopted to investigate defective apples in a recent study with an average recognition accuracy of 90.2% (Zhang et al., 2017), but the accuracy is actually dependent on the features selected such as color, morphological and textural characteristics. The application of the NIR camera and NIR coded structured light, which aims to provide even lightness over the fruit surface, also complicates the system and increases the costs of postharvest handling.

In recent years, deep learning has become state of the art due to its strong adaptability to variances within the working scene, showing potentials for a variety of tasks within machine vision such as image classification (He et al., 2016), object detection (Redmon and Farhadi, 2017), and image segmentation (Kang et al., 2020). As it is capable of automatically learning the image features, better recognition accuracy can be expected compared with traditional image processing methods (Kang and Chen, 2020a). It has found its applications in various detection tasks in agriculture such as the pesticide residues of apples (Jiang et al., 2019), classes of garlic bulbs (Quoc et al., 2020), defects in cucumber (Liu Z. et al., 2018) and peaches (Sun et al., 2019), plant diseases (Picon et al., 2019), and automated robot harvesting (Kang and Chen, 2019, 2020a). In a more recent study, a deep learning-based vision sensor is developed to perform on-line detection of defective apples (Fan et al., 2020). However, since the apples are placed one by one on the conveyor for the simplicity of recognition, the speed of 5 apples per second is low and unsatisfactory for commercial production. As a result, none of the existing automated sorting systems is capable of achieving a good combination of high accuracy, efficiency, and low costs.

In this paper, we aim to develop a vision system based on deep learning, which can be implemented directly on a citrus processing line and perform fast on-line citrus sorting. To this end, a camera was mounted above the conveyor that transported multiple citrus fruits and presented their different surfaces during rotation. A novel detection-from-tracking sorting strategy was proposed that combined a detector and a tracker. The detector detected the defective surfaces of the fruits while the tracker memorized their classification information and tracked the location along their paths, and their true categories were identified through the historical information. The future paths of the defective fruits were also predicted using the Kalman filter algorithm, which can be adopted to control the robot arms to pick them out in real-time in future work.



2. MATERIALS AND METHODS


2.1. System Configuration


2.1.1. Samples

Sample oranges were harvested in August 2020 from a commercial orchard in Zigui, Yichang, China. This type of oranges is characterized by moderate sugar-to-acid ratio and varietal green to orange skin colors at the mature stage. A day after harvest the fruits with normal surface and several types of common defects were packed in cardboard boxes and sent to Wuhan, China via air flight.

The oranges were first manually inspected and classified into three categories, including Normal (N), Mechanical damaged (MD), and with Skin Lesions (SL). Category N related to the oranges without any defects and ready for the fresh fruit market, as shown in Figure 1A. Category MD usually refers to those mechanically damaged by improper handling during the harvest or post-harvest process, while in this study it was defined as those with observable mechanical wounds and no other skin disorders for the simplicity of recognition, as shown in Figure 1B. For the fruits infected by fungi, pets or insects, the contrast between the sound peel and defects exists, and they were classified into Category SL, as shown in Figure 1C. A total of 300 oranges were randomly selected for the tests, of which 100 were from Category N, 100 from Category MD, and 100 from Category SL.


[image: Figure 1]
FIGURE 1. Sample oranges are classified into three categories, including (A) normal, (B) mechanical damaged (MD), and (C) with skin lesions (SL).




2.1.2. Platform Setup and Vision System

A commercially available citrus fruit processing line (GJDLX-5) was assembled in the lab and employed for automatic fruit cleaning and waxing, as shown in Figure 2A. Traditionally, the conveyor is employed to rotate the fruits freely so that the whole surface of each fruit can be manually inspected by the sorters. After that, the fruits with a sound surface are transported to the washing machine and waxing machine for processing. To automate the sorting process, a low-cost webcam (Gucee HD98) with an image resolution of 640 × 480 in 30 frames per second (FPS) was used to detect and track the defective fruits. The camera was mounted 0.5 m above the conveyor, and a 100 W LED light was used to enhance and balance the lighting conditions within the working space.


[image: Figure 2]
FIGURE 2. Platform setup and computer vision system. (A) The citrus processing line assembled in the lab, with a webcam mounted above the conveyor. (B) The diagram showing an automated citrus sorting system using a camera and robot arms, and the robot arms will be implemented in future work.


The vision-guided sorting process included two-steps: defective citrus detection and tracking. In the first step, the conveyor continuously rotated the oranges, letting the webcam view different surfaces of the oranges and detect the defective ones. A one-stage neural network-based detector Mobile-Citrus was therefore developed to detect and temporarily classify the citrus fruits into corresponding categories. In the second step, a tracker adopting a custom Simple Online and Real-time Tracking (SORT) algorithm was used to track the defective oranges (including Categories MD and SL) and predict their possible paths. The true categories of the oranges were then identified through the stored historical information. The predicted paths will be sent to the central control system to guide the robotic arms to pick out the defective ones, as shown in Figure 2B, which will be implemented in our future work.

As shown in Figure 3, although the camera could capture multiple images when the orange rotated, it might fail to observe the entire fruit surface of especially those near the edges of the conveyor. One solution is to implement multiple cameras to observe these oranges, which will be conducted in future work. During image acquisition in our experiment, we randomly picked 30–40 oranges from the 300 ones and placed them on the conveyor moving at a speed of 0.3 m/s for video taking each time. Forty videos at the frequency of 30 Hz were collected in total, and their duration were between 15 and 30 s. Among these videos, 30 were used for the developed detector. To avoid heavily overlapped information between neighboring frames, two frames per second were taken from each video sequence, resulting in 2400 images collected in total. Among these images, 700 were randomly selected to train the detector, another 500 as validation data, while the rest were used as test data. LabelImg tool was used to manually label the collected images in VOC format. The oranges were labeled as Category MD or SL only when the surfaces with damaged or lesional parts were captured. The remaining 10 videos were adopted to assess the performance of the combination of the detector and tracker. An object tracking dataset was also constructed to evaluate the proposed sorting strategy. This dataset included the bounding box and temporary category label of each orange presented in the video, with a specific number assigned to indicate its identity during the tracking process.


[image: Figure 3]
FIGURE 3. Diagram illustrating the part of the fruit surface captured by the camera in the rotation process.





2.2. Defective Citrus Detection


2.2.1. Network Model

As convolution neural network (CNN)-based algorithms have shown superior performance in many computer vision tasks compared to traditional vision methods (Kang and Chen, 2019, 2020b), we developed a CNN-based detector Mobile-Citrus to detect the normal and defective oranges on the conveyor. CNN-based algorithms can be classified into two categories: two-stage detection networks with better performance in complex conditions and one-stage detection networks featuring better computational efficiency (Han et al., 2018). Since the proposed vision system should be capable of detecting defective oranges in a singular environment with real-time speed, a one-stage detection network was developed and applied in this work. The architecture of our proposed detection network included two parts: the network backbone and detection branch, as shown in Figure 4. Here, we applied a lightweight classification network MobileNet-V2 (Sandler et al., 2018) as the network backbone to extract multi-scale feature maps from the input images. After that, a Path-Aggregation Feature Pyramid Network (PANet) (Liu S. et al., 2018) was used to aggregate multiple-scale information from feature maps and detect the defective oranges.


[image: Figure 4]
FIGURE 4. Network architecture of the detector, Mobile-Citrus, which includes MobileNet-V2 as the backbone and PANet as the detection branch. The output of the objects' bounding boxes are predicted from P4 level.




2.2.2. Network Backbone

The network backbone was used to extract and learn features and representations of the oranges within the input images. It adopted convolution layers to process the features of the oranges and pooling layers to aggregate the important features from the feature maps. As the pooling layers continuously shrunk the size of the images, the feature maps from the shallow levels comprised more spatial features of the oranges while the feature maps from the deep levels contained more semantic features. To improve the real-time computational performance, MobileNet-V2 using the depth-wise convolution operation was applied as the backbone due to its reduced computational complexity without sacrificing accuracy. Moreover, the shortcut design of the residual network module was introduced, which can largely improve the classification accuracy and training performance in deep networks. The proposed MobileNet-V2 included 18 depth-wise residual network modules in the model. The 8-times (C3), 16-times (C4), and 32-times (C5) size-reduced feature maps were used as the input for the detection branch to perform detection of the defective oranges.



2.2.3. Detection Branch

Mobile-Citrus applied PANet to aggregate multiple-scale features from the backbone to perform the detection of defective citrus fruits. Compared to the standard Feature Pyramid Network (FPN), PANet introduced the top-down-top multiple-scale feature aggregation strategies for enhanced performance. As PANet can fuse both semantic features and spatial features to the corresponding detection head, it directly encoded the bounding box and classification information of the oranges in the tensors. The detection branch of Mobile-Citrus received C3, C4, and C5 feature maps from the backbone network, and the feature maps then followed the specific path of PANet and arrived at the detection head at C4 level. Since Mobile-Citrus was designed to sort oranges within a fixed scale, only the detection head at C4 level outputted the prediction of the bounding box and classification information of the defective oranges. The detection head of Mobile-Citrus followed the design of the YOLO network which includes the information of the confidence score, bounding box, and classification information within the tensors.



2.2.4. Network Training

Multiple image augmentation methods were applied during the training, including scaling (0.8–1.2), flip (in horizontal and vertical direction), rotation (±20°), and adjustment of saturation (0.8–1.2) and brightness (0.8–1.2) in HSV color space, as shown in Figure 5. Adam-optimizer was used to train the network, and the batch size was 24 with the training image resolution of 416 × 416. During the training process, we froze the weight within the backbone network and only trained the detection branch. The network was trained with a learning rate of 0.001 for the first 80 epochs and another 40 epochs with a learning rate of 0.0001.


[image: Figure 5]
FIGURE 5. The example of augmented images and labels in network model training.





2.3. Defective Citrus Tracking

Defective citrus fruits can have both fine and damaged/lesion surfaces over the fruit body. As the conveyor continuously rotated the oranges, the proposed detector alone could capture multiple surfaces of each fruit, thus possibly labeling the same orange differently in different images. To achieve better detection accuracy, a real-time object tracker was therefore proposed to track and record the classification information of each orange on its path within the working space. The vision system could then classify the true categories of each orange based on the historical classification information.


2.3.1. SORT

We implemented the SORT algorithm, which is a tracking-by-detection framework-based Multiple Object Tracking (MOT) algorithm (Bewley et al., 2016), as the real-time object tracker for the oranges. SORT has been applied in many vision-based applications, such as autonomous driving (Du et al., 2018), pedestrian tracking (Tang et al., 2016; Wojke et al., 2017), and so on (Chen et al., 2017; Janai et al., 2017; Kosiorek et al., 2018). SORT included two modules: the estimation model and data association, as shown in Figure 6. The estimation model used a linear constant to approximately estimate the motion of the oranges, with the state of each formulated as:

[image: image]

where u and v are the horizontal and vertical position of the orange center within the image, and s and r are the scale and aspect ratio of the bounding box, respectively. If a new detection was matched with an existing tracked orange, the bounding box of the new detected orange was used to update the existing orange's state and predict the bounding box in the next image frame based on the linear Kalman filter model. Data association was solved using the Hungarian algorithm, and the similarity between the predicted bounding box and the new detected bounding box was computed via Intersection-Over-Union (IOU). A minimum threshold was adopted to reject the assignment when the area intersection between the matched bounding boxes was lower than IOUmin.


[image: Figure 6]
FIGURE 6. Workflow of the vision system combing a detector and a tracker.




2.3.2. Classification From Tracking

During the sorting process, the detector detected all the oranges within the working space and temporarily classifies them into Category N, SL, and MD in each image. However, the recognition error would exist when a defective orange presents its sound surface to the camera when rotating. Here, we proposed a new classification strategy that determined the true category of each orange from the tracking process. As the tracker used the detected bounding boxes to track and record the corresponding way-points and classification information of each orange, the vision system recorded a historical list. A logical tree could then be applied to examine the historical list of every orange and identify its true category.

As shown in Figure 7, although each orange rotated at a different speed, it rotated roughly 540 degrees when the camera took 70–80 frames in 2–3 s. As a result, if a defect existed on the surface of an orange, it would be captured in a series of neighboring frames. We divided every 8 continuous images as a set of the historical list, and the true category of the orange would be labeled as SL or MD if more than 1 frame in a set was labeled correspondingly. Such a strategy can eliminate some random recognition errors and improve detection accuracy. The classification information would keep updating when the oranges were in the working space, and the oranges would be labeled as N if they were not classified as true SL or MD yet.


[image: Figure 7]
FIGURE 7. The captured images of a defective orange in 2–3 s, which includes 78 images. The defective part exists in a series of neighboring frames.





2.4. Implementation Details

The implemented code of Mobile-Citrus was programmed using the slim library in Tensorflow-1.13, and the model and pre-trained weights of the MobileNet-v2 were from Github publicly code library. The implemented code of SORT was built based on FilterPy library. The overall code of the vision system was built on python 3.5 and performed on windows-10 and Linux ubuntu 16.04. The running speed test was conducted using an NVIDIA-GPU GTX-1660Ti with an Intel-CPU i7-9750 on Linux ubuntu 16.04.




3. RESULTS AND DISCUSSION


3.1. Evaluation Metrics

The performance of the vision system is evaluated from two aspects: the performance of the detector alone and the performance of the combination of the detector and tracker. In the first experiment, the detector alone is evaluated working on a single image without considering continuous tracking during the sorting process. The F1 score measures the overall performance of detection, which is formulated as follow:

[image: image]

where recall measures the fraction of true-positive objects that are successfully detected, and accuracy measures the fraction of true-positive objects within the detection.

In the second experiment, the overall performance of the vision system is evaluated using the Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP). The MOTA is formulated as below:

[image: image]

where mt and fpt measure the total number of miss and fault results within detection, respectively, and mmet measures the mismatched objects within the tracking process. gt is the ground truth of object tracking at time t. The MOTP is formulated as follow:

[image: image]

where [image: image] is the Intersection Over Union (IOU) value between the predicted ground-truth locations and ct is the number of the correct matched objects, respectively. Higher MOTP and MOTA indicate a better performance of the vision system.



3.2. Performance Evaluation


3.2.1. Evaluation of the Detector

We first evaluate the performance of the detector, Mobile-Citrus. A threshold value 0.5 is used to filter unmatched bounding boxes. The experimental results of the detector on defective citrus detection are presented in Table 1 and Figure 8.


Table 1. Performance evaluation of the detector alone.

[image: Table 1]


[image: Figure 8]
FIGURE 8. Defective detection results by using the mobile-citrus network. The detected green boxes are normal mandarins while detected red boxes are skin lesion or mechanical damaged mandarins.


The overall recall, accuracy, and F1 score achieved by the detector are 0.87, 0.88, and 0.871, respectively. To further evaluate the model performance in different categories, we separate the classification into Normal and Defective cases, where Defective case includes Category SL and MD. The detector has higher accuracy but lower recall on Normal oranges, while it has higher recall but relatively lower accuracy on Defective ones. This is possibly due to the varietal green to orange colors on the surface of this type of oranges. Since the lesional areas on the defective oranges, which are usually presented in dark and rotten appearances, are similar to the darkly green area on normal oranges, the recognition accuracy can be influenced. As a result, the detector tends to classify Normal oranges into Defective ones in a small amount of cases.

The recall and accuracy of the detector without considering classification error are 0.99 and 1.0, respectively, indicating its capability to detect all the oranges within the working space. It has to be noted that, as shown in Figure 8, even defective oranges have both normal and defective surfaces, which are captured in different images and temporarily classified as Normal and Defective cases respectively. A true Normal orange, however, should present a sound surface to the camera all the way during rotation. Therefore, the detector alone cannot classify the true category of the oranges, and tracking is an indispensable step to track oranges along their paths and identify the true SL and MD ones.



3.2.2. Evaluation of the Combination of the Detector and Tracker

The tracker enables the vision system to memorize the historical classification information and track the location of each orange. The MOTP (also includes mt and fpt, as described in section 3.1) and MOTA are used as metrics to measure the performance of the combination of the detector and tracker. The experiment adopts the recorded tracking list to perform classification and the object tracking dataset performs the evaluation. The results are summarized in Table 2 and an example of the results is shown in Figure 9.


Table 2. Performance evaluation of the combination of the detector and tracker.

[image: Table 2]


[image: Figure 9]
FIGURE 9. Defective detection and tracking results by using the developed methods. The tracking series of five identified defective mandarins are shown in figure. Green box stands that this mandarin is identified as normal case, while red box stands that this mandarin is identified as defect.


It can be observed that the proposed strategy significantly improves the accuracy of the sorting process. The overall MOTA is 93.6%, and mt and fpt within MOTA are 3.5 and 2.9%, respectively. The error distribution of the system is different in the cases of Normal and Defective oranges. For the Normal oranges, the system has a larger error in miss classification (mt is 3.68%) while is more accurate in false classification (fpt is 2.53%). However, for the Defective oranges, the system can identify most of the defective ones (mt is 2.83%) but the classification accuracy is relatively lower (fpt is 3.76%). These results demonstrate that our vision system can classify the true categories of most of the oranges. However, it also tends to misclassify the normal oranges as Defective ones in a small portion of the cases, possibly also due to the similar appearance between the dark green surface and defective area. The MOTP score of the tracking algorithm is 85.5%, demonstrating a highly precise performance on estimating future locations of the oranges. This also indicates that the velocity of each orange on the conveyor is relatively constant.



3.2.3. Evaluation of the Running Time

In automated citrus sorting, real-time performance is essential as high-speed updating of the new vision information secures the accuracy and success rate. The proposed vision system consists two components, a detector and a tracker, and their average running time are presented in Table 3.


Table 3. Average running time of detection and tracking algorithms.

[image: Table 3]

We count the frequency of the orange number within an image within the dataset and denote it as the fraction in Table 3. As shown in the results, the average running time of the detector is from 10 to 12 ms [increasing processing time is required in Non-Maximum Suppressing (NMS) algorithm], which is equal to 83–100 Frame Per Seconds (FPS) and indicates good real-time performance. The average running time of the tracker depends on the number of oranges requiring processing. Considering that there are usually 8–20 oranges in each image captured by the camera, the average processing time of the tracker is 12 ms. Overall, the total processing time of each input image when combining the detector and tracker is 23 ms, which is equal to 43 FPS and shows good potential to update the vision information in real-time.




3.3. Discussion

The classification accuracy obtained through the combination of the detector and tracker (93.6%) is higher than the results using a similar method (Fan et al., 2020), which yields 90.9% for the Defective fruits and only 83.3% for the Normal ones. A major reason is that the classification-by-tracking strategy proposed identifies a fruit as a true Defective case only if it is temporarily classified as Defective in more than one image in the neighboring 8 ones, resulting in a decrease in random recognition errors. Moreover, instead of performing on-line detection on one fruit at a time, our proposed system can perform detection and tracking on multiple objects simultaneously, leading to significantly improved performance and efficiency. Compared to the results obtained through other methods, such as MSI (Qin et al., 2012), the detection accuracy is similar. Although MSI has its merits in the detection of early decay in the fruits, the proposed vision system has higher detection speed and significantly lower costs. Moreover, the images are captured and analyzed through a conveyor in this study, which complicates the working conditions due to mechanical vibrations, fruit movement, and the increased number of fruits.

The experimental results show that the false classification rate of the vision system on normal and defective oranges are 2.53 and 3.76%, respectively, while the miss detection rate on normal and defective oranges are 3.68 and 2.83%. False classification rate and miss detection rate respectively measure the faction of false-classified oranges and miss-detected oranges in the detection process. When considering only the classification on the normal and defective oranges, the number of false-classified normal oranges should equal the number of miss-detected detective ones and vice versa. The above experimental results indicate that our system has a relatively high recall rate on the detection of defective oranges but the accuracy of the classification is lower. This is due to the similar appearance between the defective part and dark green area on the normal oranges, and a better performance can be expected when it works on another type of oranges with a uniform skin color at the mature stage.




4. CONCLUSIONS

The focus of this study is to develop a novel vision system to realize fast on-line citrus sorting. A CNN-based detector is adopted to temporarily detect the defective oranges in each image, and a SORT algorithm-based tracker is used to identify the true categories of the oranges from the tracked historical information. The combination of the detector and tracker can detect and track multiple fruits simultaneously, yielding a high overall detection accuracy of 93.66%. The results of this study demonstrate three advantages of the vision system: (1) it can perform detection, tracking, and motion estimation of the defective oranges in a highly accurate and real-time behavior; (2) the algorithms adopt a deep learning network-based architecture, which largely improves the accuracy and robustness of the system; (3) it does not require any modification on the original processing line, which can facilitate our vision system to be promoted and implemented in a wide range of applications with similar working scenarios. Overall, the developed vision system achieves good accuracy and real-time performance that can meet the demand of packing houses for fast on-line citrus sorting.
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Genomics and high throughput phenomics have the potential to revolutionize the field of wheat (Triticum aestivum L.) breeding. Genomic selection (GS) has been used for predicting various quantitative traits in wheat, especially grain yield. However, there are few GS studies for grain protein content (GPC), which is a crucial quality determinant. Incorporation of secondary correlated traits in GS models has been demonstrated to improve accuracy. The objectives of this research were to compare performance of single and multi-trait GS models for predicting GPC and grain yield in wheat and to identify optimal growth stages for collecting secondary traits. We used 650 recombinant inbred lines from a spring wheat nested association mapping (NAM) population. The population was phenotyped over 3 years (2014–2016), and spectral information was collected at heading and grain filling stages. The ability to predict GPC and grain yield was assessed using secondary traits, univariate, covariate, and multivariate GS models for within and across cycle predictions. Our results indicate that GS accuracy increased by an average of 12% for GPC and 20% for grain yield by including secondary traits in the models. Spectral information collected at heading was superior for predicting GPC, whereas grain yield was more accurately predicted during the grain filling stage. Green normalized difference vegetation index had the largest effect on the prediction of GPC either used individually or with multiple indices in the GS models. An increased prediction ability for GPC and grain yield with the inclusion of secondary traits demonstrates the potential to improve the genetic gain per unit time and cost in wheat breeding.
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INTRODUCTION

Agronomically important traits are often controlled by a large number of small effect quantitative trait locus (QTLs), which have been challenging to take advantage of in plant breeding (Bernardo, 2008). In recent years, genome-wide association studies (GWAS) have offered a solution for dissecting the genetic basis of complex traits like disease resistance, grain yield, and end-use quality traits (Jernigan et al., 2018; Lewien et al., 2018). However, in GWAS, small effect QTLs are challenging to map and even if the mapping is successful, their effect is usually confounded due to multiple QTLs present. Moreover, the small effect of these QTLs makes them inefficient to be used with marker-assisted selection (MAS) (Bernardo, 2008). Grain yield is an essential example of a quantitative trait which is difficult to improve in nearly all crop plants. On that regard, genomic selection (GS) has demonstrated the capacity to overcome the limitation of MAS and quantitative traits and is being implemented in various crop plants to improve genetic gain through selection (Jannink et al., 2010).

Originally proposed by Meuwissen et al. (2001), GS provides an alternative method for predicting the breeding values in plants using genome-wide markers. It offers the potential for accelerating genetic gain by increasing selection intensity, accuracy, and shortening the breeding cycle time. To perform GS, a population that has been both genotyped and phenotyped is selected and termed as the training population. Training populations are used to train the GS models for estimating marker effects, which are then used to assign genomic estimated breeding values (GEBVs) for lines which have not been phenotyped. This second set of lines which have only been genotyped are termed as the testing population (Crossa et al., 2010; Rutkoski et al., 2014). A model’s ability to predict accurately is termed as prediction accuracy and is defined as the correlation between observed phenotypes and predicted breeding values. Individuals can be selected based on the GEBVs before being tested under field conditions, ultimately speeding up the breeding cycle (Heffner et al., 2010; Burgueño et al., 2012). Numerous factors affect GS accuracy, including sample size, heritability, selection intensity, relatedness between training and testing population, and genotype imputation methods (Heffner et al., 2011; Isidro et al., 2015).

Genomic selection models rely on accurate phenotypic information which has been the main driver for increasing genetic gain in classical breeding approaches. Prediction accuracy of GS models depends upon the quality of phenotypic data collected on the training population (Beyene et al., 2019). However, advancements in phenotyping has lagged compared with recent advancements in genomics (White et al., 2012). During the last decade, several high throughput phenotyping (HTP) tools have been developed to cope with the phenotyping bottleneck (White and Conley, 2013; Araus and Cairns, 2014). Recently, HTP tools have been implemented to measure various traits in wheat breeding programs, such as vegetation indices, growth rate, plant height, and disease resistance (Stewart et al., 2016; Jimenez-Berni et al., 2018; Khan et al., 2018; Rincent et al., 2018). HTP could be performed during different growth stages and in multiple environmental conditions, drastically increasing phenotypic data to improve selection accuracy (Lopes et al., 2012; Singh et al., 2016). In wheat, secondary traits aid in indirect selection for primary traits such as grain yield, although these estimates might not provide the same accuracy as that of direct selection (Gizaw et al., 2018b,c). These indirect estimates for selection are of great value in early generation breeding cycles when the seed is limited to take measurements for quantitative traits and conduct multi-environment trials. Therefore, prediction of quantitative traits at an early stage using HTP and genome-wide markers may assist in improving selection accuracy.

The basis of spectral radiometry is to measure electromagnetic energy at varying wavelengths interacting with different plant parts. Plant cells, tissues, and metabolites have a light specific reflectance, absorption, and transmittance of photons (Tucker and Sellers, 1986; Sankaran et al., 2010). The phenotype is measured quantitatively through interaction between light and plants, that may aid in differentiating healthy and stressed plants. Spectral reflectance indices (SRI) are derived by measuring photons in visible and near-infrared regions of the electromagnetic spectrum. These indices provide information about different physiological and agronomic traits of plants. The SRI calculated from reflected light in these regions can be categorized into three main groups. In the first group, a combination of reflection form visible and near-infrared region is used to derive SRIs. These indices provide information about stay green duration, vegetative greenness, photosynthetic efficiency, and rate of senescence (Babar et al., 2006). This group contains indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The second group contain indices such as anthocyanin reflectance index (ARI) and photochemical reflectance index (PRI), which are solely derived from reflectance in the visible region and estimate the abundance and composition of plant pigments (Peñuelas et al., 1994). The indices in the third group are calculated from reflectance in the near-infrared region and provide information about plant hydration status. Most commonly used indices for measuring water stress are water index (WI) and normalized water index (NWI) (Penuelas et al., 1993; Zarate-Valdez et al., 2012).

Combining information from SRI and GS to identify lines which have higher genetic potential for grain yield and end-use quality traits have the potential for use in wheat breeding. There are various physiological processes affecting grain yield and grain protein content (GPC) in wheat, and SRI provides indirect information about them (Gutiérrez-Rodríguez et al., 2004; Babar et al., 2006). Traditionally, most of the GS models were single trait models, including phenotypic information about primary traits only, such as grain yield, GPC, end-use quality attributes, or disease resistance, which are of main interest to the plant breeder. These single trait GS models do not take advantage of the correlation between the primary trait of interest and secondary traits like SRI, which indirectly explain the physiological processes occurring in the plants. Recently, multi-trait GS models have been applied to utilize the power of correlated traits (Anche et al., 2020). Improvement in prediction accuracies for traits having lower heritability has been observed by including correlated traits in the multivariate GS models (Jia and Jannink, 2012). Calus and Veerkamp (2011) showed that multivariate GS models increase the prediction accuracy up to 0.12 using traits having a high genetic correlation. Even traits having less genetic correlation improved the prediction accuracy when incorporated in multi-trait GS models. Crain et al. (2018) showed that incorporation of vegetation indices and canopy temperature in multivariate GS models improve the accuracy for grain yield in wheat by as much as 50% compared to a univariate GS model.

These findings show that incorporation of secondary traits helps improve the performance of GS models. Grain yield and GPC are two traits very important in hard red spring wheat breeding, yet difficult to select for due to their well-known negative correlation. Furthermore, these traits are correlated to various SRI and can be used for indirect selection. Thus, we wanted to evaluate the (1) comparison between univariate and multivariate GS models for predicting GPC and grain yield in wheat; (2) identification of the best growth stage for collecting spectral information in wheat breeding in the Pacific Northwest (PNW) for each trait; (3) selection of the best SRI for incorporation into GS models; and (4) assessment of GS model performance for within and across environments predictions for both traits.



MATERIALS AND METHODS


Plant Material

The nested association mapping (NAM) population used in this study consists of 32 spring wheat accessions from the USDA-ARS National Small Grains Collection, each crossed to common cultivar “Berkut” to create 32 half-sib families (Blake et al., 2019). Berkut was used as a common parent because it is a semi-dwarf and broadly adapted photoperiod insensitive cultivar released by the International Maize and Wheat Improvement Center (CIMMYT), Mexico. As most of the NAM parents were non-adapted landraces, crosses with “Berkut” helps in evaluating effects of various un-adapted alleles. Recombinant inbred lines (RILs) were generated by the single seed descent method for five generations. A total of 864 F2 plants from each family were planted in greenhouse in Bozeman, MT in 2010. Selections were performed from the F2 to F5 generation to select early flowering plants and photoperiod insensitive genotypes. Furthermore, plants having height greater than the median height were discarded, as most of the landraces were homozygous for Rht alleles. Complete details about the population development is referred to Blake et al. (2019). At the end, seventy-five early heading and semi-dwarf plants were selected from each cross resulting in a population of 2,400 RILs whose genotyping data were provided by Kansas State University (Jordan et al., 2018). Due to space constraint, 650 RILs from the original 2,400 were planted between 2014 and 2016 at Spillman Agronomy Farm, Pullman, WA, United States (Sandhu et al., 2020). A modified augmented design was used each year with 15–20% of the field plots planted with the replicated checks (Berkut, “McNeal” (Lanning et al., 1994), and “Thatcher”).



Trait Measurement and Calculations

Grain yield (tha–1) was obtained from grain weight per plot with a Wintersteiger Nursery Master combine (Ried im Innkreis, Austria). A Perten DA 7,000 NIR analyzer (Perkin Elmer, Sweden) was used to determine the percentage of GPC. A handheld CROPSCAN multi-spectral radiometer (CROPSCAN, Inc., Rochester, United States) was used to obtain spectral reflectance at Feekes growth stages 10.1 (heading) and 11.1 (grain filling) (Large, 1954). These two stages were used for selecting spectral information, as previous studies from our group showed that these stages have high correlation to primary traits of interest (Gizaw et al., 2016, 2018b). These two stages provide a window of 1 week when spectral data could be collected. We continuously monitored the weather conditions and regularly visited the field to monitor growth stages, in order to decide the best day for data collection. CROPSCAN was radiometric calibrated before utilization, which accounts for any interference due to clouds and wind during the operation. CROPSCAN contains selective filters which measures incident and reflected radiation at 16 different wavelengths between 420 and 980 nm. During data collection, CROPSCAN was placed in the middle of each plot around 1 meter above the canopy level. Data for spectral reflectance was taken within a 2-h window of solar noon and avoiding shadow, clouds, and strong wind. Reflectance values from the whole plots were averaged to obtain the single value for a particular genotype to avoid the bias. Spectral information for each plot was processed through the CROPSACN MSR software. Eight SRI were derived using reflectance values (Table 1).


TABLE 1. Spectral reflectance indices, their calculation, and physiological processes measured for a nested association mapping population of spring wheat.
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Statistical Analysis

The augmented complete block design (ACBD) model implemented in the R program was used to calculate adjusted means for all phenotypic data collected under field conditions between 2014 and 2016 (Rodríguez et al., 2018). Best linear unbiased estimates (BLUE) were calculated for each environment, treating effects as fixed and using the model
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Where Yij is the primary trait, u is the mean effect, Blocki represents effect of the ith block, Checkj denotes effect of the repeated checks on each block, Genj represents un-replicated genotypes, and eij is the standard normal error. Broad sense heritability for all traits is obtained from the ACBD model treating genotypic effects as random and using the formula [image: image].

Where H2 is the broad-sense heritability, σ2g and σ2e are the genotypic and error variance components.

Narrow sense heritability for both primary and secondary traits were calculated with the model

[image: image]

Where Y is the BLUP of the genotype for each trait, X is an incidence matrix for the fixed effect (b), Z is also an incidence matrix corresponding to random genetic effect (g), and e is the standard error. Variance and covariance were based on the assumptions that g ∼ N(0, Gσ2a), where G is the genomic relationship matrix and σ2a is the additive genetic variance, and e ∼ N(0, Iσ2e), where I is the identity matrix and σ2e is the residual variance. Narrow sense heritability for primary and secondary traits was calculated using the formula h2 = [image: image]

Genetic correlation (rg) was calculated with the bivariate model, which is represented as

[image: image]

Where yA and yB are BLUP for primary and secondary traits, respectively, X and Z are fixed and random design matrix, subscript A and B represent the primary trait (GPC or grain yield) and secondary trait (one of the SRI), separately, and b, g, and e are the fixed effects, random genetic effect, and residual for each trait, respectively. Variance components were calculated assuming [image: image]∼ N(0, H ⊗ G), where H is the genetic variance-covariance matrix and G is genomic relationship matrix, and [image: image]∼ N(0, I ⊗ R), where I is identify matrix, and R is the residual variance covariance matrix. Genetic correlation was calculated as
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Where cov(A,B) is the covariance between primary and secondary trait, and var(A), and var(B) represents the genetic variance of the primary and secondary trait, individually (SAS Institute Inc, 2011).



Genotyping

Genotyping by sequencing and 90K iSelect SNP genotyping was used for genotyping the whole NAM population (Poland et al., 2012; Wang et al., 2014). Detailed procedures about genotyping, marker calling, and map construction is reported in Jordan et al. (2018). Initial genotyping data consisted of 73,345 molecular markers anchored to the Chinese Spring RefSeqv1 reference map at Kansas State University (Marcussen et al., 2014; Jordan et al., 2018). Individual lines missing phenotypic data in one environment were removed before genotype filtering. Markers were discarded if more than 20% of the lines had missing data, and lines that had more than 10% genetic data missing were removed for further analysis. Furthermore, markers were discarded with minor allele frequency less than 0.1. At the end of quality filters, 40,005 polymorphic markers were remaining for 635 individuals.



Genomic Selection Models

Genomic selection emerged as a technique that avoided using an individual marker for predicting a trait, as in the MAS and QTL mapping. Meuwissen et al. (2001) proposed GS to use the whole genome-wide markers for estimating the marker effects and total genetic values, thus minimizing the biasedness during marker effect estimation. However, a large number of markers (p) and fewer individuals (n) created the so-called “large p, small n” problem. Ordinary least squares could not estimate the marker effects due to a lack of enough degrees of freedom. Furthermore, high collinearity among the markers results in the overfitted model. Several statistical models were proposed to overcome these limitations for using whole genome-wide markers, which can be grouped into variable selection models, shrinkage models, dimension reduction methods, and kernel methods. The commonly used variable selection models are Bayes A, Bayes B, Bayes C, shrinkage models are LASSO, rrBLUP, and elastic net. Dimension reduction methods include principal component analysis and partial least square, and finally, kernel methods include reproducing kernel hilbert space and support vector machine. All these GS models can be represented as
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Where yi is the observed phenotype for a particular trait in ith individual, xi is a vector of 1 × p predictors (markers), g(xi) is a function relating the predictors to the phenotypes, and ei is the residual term. Each GS model tries to lower the residuals or certain loss function. The GEBVs estimated from the models are equal to g(xi).

The traditional least square regression for predicting a trait and their residual sum of the square is represented as
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Ridge regression is very similar to least square regression, except the coefficients of the equations are estimated using minimizing the ridge regression coefficient estimated as

[image: image]

Where λ is known as the tuning parameter. We can see that ridge regression fit the data by lowering the RSS and selecting small coefficients for [image: image] to shrink the estimates toward zero, and hence in this way, it uses the shrinkage penalty. The value of λ can vary from zero to infinity and is usually selected by cross-validation.

Another way of solving for λ in GS is assuming that marker effects are drawn from a normal distribution centered on zero and solving the mixed linear model equation of Henderson (1975). Here λ = σ2e/σ2u where σ2e is the residual variance and σ2u is marker effect variance, as small σ2u will result in shrinking of marker effects strongly toward zero, showing that large λ has an equivalent impact too. Here in this study, we used the rrBLUP package for performing GS using shrinkage capacity of the ridge regression; and this model is equivalent to the traditional BLUP models, and hence all the formulas are represented as mixed model equations.

The genome-wide marker effects for GPC and grain yield were estimated using ridge regression best linear unbiased prediction (rrBLUP) including SRI in the model (Endelman, 2011). Predictions were made using the rrBLUP GS model in the R package “rrBLUP,” according to the model:
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Where y is the N × 1 vector of BLUEs for the phenotypic trait, μ is the overall mean, Z is an N × M matrix linking markers to the genotypes, μ is the vector of normally distributed random marker effects as μ∼ N(0, Iσ2u) and e is the residual error with e ∼ N(0, Iσ2e). The solution for mixed equation can be written as
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Here λ is the ridge regression parameters obtained as the ratio of the residual and marker variances and is represented as λ = σ2e/σ2u. The rrBLUP model was used in this study, as it has the capability of dealing with “large p and small n” with penalized regression and high stability with correlated markers (Endelman, 2011). In our study, we used above GS model with the addition of different parameters in the baseline model.

Several statistical models were used for prediction namely (1) univariate-single trait GS (Uni-GS) model, (2) models using SRI as predictors only, (3) GS model with SRI as a phenotypic covariate, and (4) multivariate GS model where primary and secondary traits were fitted for each environment. The SRI collected at heading and grain filling stages were fitted separately in the model to identify the best stage for data collection for GPC and grain yield. The models used for the analysis are


(1.) Uni-GS used to calculate the GEBVs and represented as
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Where y is an N × 1 vector of BLUEs for GPC and grain yield for each line, μ is the overall mean, Z is an N × M matrix assigning markers to genotypes and u is a 1 × N matrix of normally distributed marker predictor effects as u ∼ N(0, Iσ2u) and e is the residual error with e ∼ N(0, Iσ2e). This equation was solved to obtain the GEBVs for all the lines, treating markers as independent variables.


(2.) The univariate model fitting SRI as predictors (SRIr). Only SRI information was used for prediction and the model is represented as



[image: image]

Where X is the design matrix for the fixed effect components (SRI) and β is the vector of fixed effect coefficients. Other terms are defined previously. This equation was solved using SRI information as independent variables in the model.


(3.) In a covariate GS model, SRI were fitted as fixed effects (GS + SRI). The equation of the model is represented as
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Where X and Z are the design matrix associating the fixed effects (SRI) and random effects (markers), β is the vector of fixed effect coefficient of each SRI, u is a vector of normally distributed random marker effects as u∼ N(0, Iσ2u) and e is the residual error with e ∼ N(0, Iσ2e). In this case, both markers and SRI information was used as independent variables in the model for obtaining GEBVs for all the lines.


(4.) Lastly, a multi-variate GS model was used containing primary and secondary traits in the model (Multivariate GS). The equation of the model is represented as
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Where n is the number of traits (grain yield or GPC, individual SRI or combination of them), y1 to n represents the vector of BLUEs for the primary (GPC and grain yield) and secondary traits (SRI) y, X is a design matrix of fixed effects which simplifies to a vector of 1 for each trait representing the mean only as only markers were entered in the model, Z represents the random effect design matrix, [image: image] represents the random marker effects, distributed as ∼ N(0, G⊗ H) where G is the genomic relationship matrix and H is the variance-covariance matrix, and ∈1…n represents the standard normal error, distributed as ∼ N(0, I ⊗ R), where I is identify matrix, and R is the residual variance covariance matrix. The covariance matrix H and R were assumed unstructured for the variance estimation. In this multivariate equation, markers are used as independent variables while SRI and primary traits (grain yield or GPC) are used as dependent variables for predicting the GEBVs for all the lines.



Cross-Validation and Model Performance

The GS models were developed separately for each environment using a subset of the population as the training set to estimate each marker effect. After assessing the marker effects, GEBVs were calculated for the whole population. GS model accuracy is defined as a correlation between GEBVs of predicted individuals and actual phenotypes. GS was performed with five-fold cross-validation by including 80% of the lines in the training model and predicting the GEBVs values of the remaining 20% of the lines under each environment. One replicate consisted of five model iterations where the population was split into five groups, and the testing set was rotated between each group. For accuracy assessment, two 50 replication sets were performed.

Independent validations were performed by training the GS model using the 2014 environment and predicting the GEBVs for remaining two environments. Similarly, the model trained on the 2015 environment was used for predicting GEBVs for the 2016 environment. These validations represent the scenario to predict the performance of a line before planting them in the field for further observations. Furthermore, SRI data were also included in the independent validation GS models. These GS models represent a scenario in the breeding program where SRI have been collected, and the plants are not harvested; therefore, lines will be selected primarily on predicted values.



RESULTS


Phenotypic Data Summary

Average grain yield ranged from 1.7 to 2.4 t/ha across the three environments with 2016 having the highest and 2015 being the lowest yielding. Average GPC ranged from 12.2 to 14.4% with 2014 being the highest, and 2015 being the lowest (Supplementary Table 1). Broad-sense heritability of GPC and grain yield were obtained (Table 2). Grain yield and GPC both showed the highest heritability in the 2016 environment. The heritability for grain yield was less than all secondary traits under all environments. The majority of SRI traits have higher heritability than GPC (Tables 2, 3). Within each SRI, 2015 has the lowest heritability (Table 3).


TABLE 2. Genotypic variance and heritability for grain protein content and grain yield for a nested association mapping population of spring wheat planted for three environments (2014–2016) in the United States Pacific Northwest.
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TABLE 3. Broad sense heritability of eight spectral reflectance indices derived for a spring wheat population planted for three environments (2014–2016) in the United States Pacific Northwest.
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In contrast to heritability, correlation between primary traits (grain yield and GPC) and secondary traits varied significantly across growth stages and environments (Tables 4, 5). This allowed using these correlated responses for predicting the primary traits. Phenotypic correlation of grain yield was higher with SRI at the grain filling stage (Table 4 and Supplementary Table 2), whereas GPC has higher correlation with SRI at the heading stage (Table 5 and Supplementary Table 3). These results were consistent with previous studies where SRI were correlated with grain yield and GPC (Sun et al., 2019). Correlation of grain yield was not significant with most of the SRI under the 2015 environment at the heading and grain filling stages. Genetic correlation of grain yield and GPC with SRI is provided (Supplementary Table 4).


TABLE 4. Phenotypic correlation between grain yield and eight spectral reflectance indices derived at the grain filling stage of a spring wheat population planted for three environments (2014–2016) in the United States Pacific Northwest.
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TABLE 5. Phenotypic correlation between grain protein content and eight spectral reflectance indices derived at the heading stage of a spring wheat population planted in three environments (2014–2016) in the United States Pacific Northwest.
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Genomic Selection Within Environments Using All Four Models

For the three environments, GS prediction ability ranged between 0.07 and 0.58 for grain yield using four different models (Table 6). There was an improvement of GS prediction accuracy with inclusion of all SRI traits in the covariate and multivariate GS models. The highest improvement in prediction accuracy was observed for 2014 (35%), followed by 2016 (22%), and negligible effect during 2015 (2.5%). Spectral information collected at the grain filling stage resulted in greater but non-significant improvement in prediction accuracy compared to that of the heading stage. Overall, there was an improvement of 20% prediction accuracy for grain yield by including secondary traits. The multivariate GS model performs as well as the covariate model, with a non-significant difference between the two models. We observed that the highest prediction with the univariate GS model was for the 2016 environment (0.45) compared to the 2014 (0.43), and 2015 (0.40) environments (Table 6). The highest accuracy observed in 2016 was due to the highest broad sense heritability for grain yield for the 2016 environment. However, with the inclusion of secondary traits in the multivariate models, prediction accuracy was highest in the 2014 environment (0.58), which can be attributed to more correlation observed between the grain yield and spectral information (Table 6). In this way, we observed that models perform differently across the environment’s and their performance depends upon the trait heritability and correlation with secondary traits.


TABLE 6. Genomic selection accuracies for three different environments (2014–2016) using univariate GS model, all spectral reflectance indices in a univariate model at heading and grain filling stage (SRIr), GS + SRI in a covariate model with SRI as covariate, and multivariate GS model for prediction of grain yield and grain protein content in a spring wheat NAM panel.
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GS prediction ability ranged between 0.27 and 0.64 for GPC across the three environments (Table 6). Inclusion of all spectral data with genetic markers consistently provided higher prediction accuracies than univariate and SRI information alone. On average, there was an increase in 12% prediction accuracy with multivariate and covariate GS models when all SRI data was used in the models. Similar to the improvement in prediction accuracy for grain yield, there was the highest improvement in 2014 (35%), followed by 2016 (6%) and least in 2015 (3.6%) for GPC. Spectral information collected at the heading stage resulted in a significant (p < 0.05) improvement compared to the grain filling stage. The maximum prediction accuracy for GPC was observed during the 2014 environment (0.64), followed by the 2015 (0.58) and 2016 (0.56) environments using multivariate GS models (Table 6). While for the univariate GS model, the maximum prediction accuracy was 0.55 for the 2015 environment (Table 6). This within environment difference in prediction accuracy for GPC can be attributed to environmental variation, which creates this bias. Similarly, to grain yield, the model’s performance was best with the inclusion of secondary traits for 2014 due to more correlation and high heritability of secondary traits for this environment.



Genomic Selection With Single SRI as Predictor

Along with fitting all the SRI together for predicting GPC and grain yield, individual SRI were used in multivariate GS models. SRI at the heading stage were used to predict GPC, whereas SRI data from the grain filling stage were used for predicting grain yield, as these timings had the highest correlations between traits (Table 6).

Across all environments for predicting GPC, GS models including GNDVI in the multivariate model had the greatest improvement in prediction accuracy for 2014 and 2015 (Figures 1A,B). In 2016, GNDVI and NDVI gave similar increases in prediction accuracy in multivariate GS models (Figure 1C). This suggested that GNDVI is the most important SRI to be included in GS models for predicting GPC. In the case of predictions for grain yield, NWI results in the highest improvement in prediction accuracy for 2014 and 2015 (Figures 2A,B), whereas for 2016 ARI, NCPI, and WI perform better for predicting grain yield (Figure 2C).
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FIGURE 1. Box plots of prediction accuracies for predicting GPC across three environments (2014–2016) using individual SRI collected at heading, as a predictor in multivariate GS models while results for a univariate GS model is also provided. The figures (A–C) represent the model’s performance under the three environments evaluated in this study. The mean squared error for each model is presented above the boxplots.
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FIGURE 2. Box plots of prediction accuracies for predicting grain yield across three environments (2014–2016) using individual SRI collected at grain-filling, as a predictor in multivariate GS models while results for a univariate GS model is also provided. The figures (A–C) represent the model’s performance under the three environments evaluated in this study. The mean squared error for each model is presented above the boxplots.




Genomic Selection Across the Environments

In addition to within environment predictions for both traits, we also assessed the across environment prediction by including spectral information in the models. GS models were trained on previous years data and predictions were made for upcoming years for grain yield (Figure 3) and GPC (Figure 4). Prediction accuracies for independent validations varied across the environments, because of different environmental effects. There was improvement in prediction accuracy for each of the independent validations with inclusion of spectral information in the multivariate GS models, demonstrating the great potential for HTP in wheat breeding and GS. There was higher independent validation for grain yield when GS models were trained on the 2015 environment and predictions were made on the 2016 environment (Figure 3). This was probably a result of the higher phenotypic correlation between SRI and grain yield during this field trial (Figure 3 and Supplementary Table 5). Similar results were obtained for predicting the 2016 environment for GPC using the 2015 environment as the training set (Figure 4 and Supplementary Table 5).
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FIGURE 3. Independent validations using univariate (UV) and multivariate (MV) GS models for predicting grain yield in a United States Pacific Northwest spring wheat mapping population. First number on the x-axis represents prediction year, second number represents year for training population and third letter represent the type of GS model used.
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FIGURE 4. Independent validations using univariate (UV) and multivariate (MV) GS models for predicting grain protein content in a United States Pacific Northwest spring wheat mapping population. First number on the x-axis represents prediction year, second number represents year for training population and third letter represent the type of GS model used.




DISCUSSION


Prediction Ability With a Univariate, Covariate, and Multivariate GS Models

We evaluated several different models for predicting GPC and grain yield using univariate GS models, SRI in multiple regression, covariate GS models with SRI as a covariate, and multivariate GS models. GS is used in plant breeding to increase genetic gain by reducing the time required to complete the breeding cycle with HTP information improving the accuracy of phenotypic selection (Cobb et al., 2013; Araus and Cairns, 2014). This suggested that combining GS and HTP information could translate into higher genetic gain by reducing breeding cycle time and improving the model’s accuracy. Both Crain et al. (2018) and Sun et al. (2019) combined GS with HTP information for grain yield in wheat and observed improvement in GS accuracy using NDVI and canopy temperature as secondary traits. Herein, we combined eight different SRI collected at heading and grain filling stages for assessing GS performances for GPC and grain yield.

We observed that inclusion of secondary correlated traits into covariate and multivariate GS models resulted in a significant (p < 0.05) improvement in prediction accuracies for both traits, which can be attributed to the genetic correlation between primary and secondary traits used in this study. These results are strengthened by GS studies in animals and other crop plants, where improvements in predictions were observed with the inclusion of secondary correlated traits (Tsuruta et al., 2011; Okeke et al., 2017). Another reason for the improvement of predictions in multivariate GS models is attributed to the high heritability of secondary correlated traits when the primary traits have lower heritability, which was the case here for grain yield (Hayashi and Iwata, 2013).

Furthermore, we did not observe any difference in performances of covariate and multivariate GS models for both traits. These observations are consistent with the work of Crain et al. (2018), where they also observed no differences between the performance of covariate and multivariate models for predicting grain yield in wheat with the inclusion of canopy temperature in the multivariate models. Additionally, some studies have shown the superiority of multivariate GS models compared to covariate GS models (Colombani et al., 2012; Rutkoski et al., 2016). Our results thus suggested that secondary correlated information can be used in any of these models for improving the prediction of grain yield and GPC in wheat.



Genomic Selection Within the Environment

We observed higher and consistent prediction accuracy for predicting both traits under each environmental condition using cross-validation approaches in the univariate GS model. Prediction accuracies are usually higher within the environment than across environment predictions because using a common environment for training and testing the model introduces little bias in assessing the model’s performances. The consistent performance of GS models for all environments could be because univariate GS models can accurately estimate the additive genetic variance component for training the model and requires no environmental components to be included. Furthermore, for within environment predictions, both training and testing populations have the same environmental variations allowing biasness during model training and testing.

Babar et al. (2006) showed that the combined use of SRI collected at booting, heading, and grain filling contributes to the indirect selection response for grain yield in wheat. We observed that SRI collected during grain filling resulted in higher prediction accuracies for grain yield when included in the GS models, because of higher and significant correlation between SRI and grain yield during grain filling compared to at the heading stage. Higher correlation with grain yield could be because grain filling is the main stage for accumulation of carbohydrates in the grain. The difference in grain yield of different wheat lines can be more accurately measured at grain filling compared to heading because of continuous photosynthesis and nutrient translocation happening after heading. This results in higher correlation between SRI and grain yield collected during grain filling compared to at the heading stage.

Grain protein content was accurately predicted at the heading stage, with a higher correlation between SRI and GPC at heading compared to the grain filling stage. The inverse relationship between GPC and grain yield (Avivi, 1978), coupled with the biological mechanics underlying these traits, lends support to these results. The heading stage is important for GPC because, up to this stage, plants accumulate required nitrogen which needs to be translocated to the different plant organs. As senescence starts, and these accumulated products are translocated to different plant organs. This suggests that measuring the nitrogen content is more appropriate at heading, which is directly linked the GPC. SRI collected later at grain filling have less correlation with GPC; this could be because of the saturation of indices.

The inclusion of secondary correlated traits has resulted in improvement in prediction accuracies for grain yield and GPC. This can be attributed to high heritability and genetic correlation between primary and secondary traits. The improved prediction accuracies aid in predicting quantitative traits earlier in the breeding cycle or when seed is limited for performing yield and multi environment trials. Secondary correlated traits also allow the opportunity for modeling the genotype by environmental interaction, ultimately reducing the generations required for variety evaluations. Increased prediction for these quantitative traits aids more accurately predicting such quantitative traits with limited seed availability, which helps in the selection of parents for new crosses earlier in the breeding pipeline. These results suggest that the inclusion of secondary traits have the potential for increasing genetic gain per unit with the inclusion of them in the GS models.



Genomic Selection With Individual SRI in Multivariate GS Models

When using SRI for predicting GPC and grain yield, we observed that inclusion of individual SRI resulted in significant (p < 0.05) improvement for predicting GPC during 2014 and 2015 environment compared to multiple SRI in the model. GNDVI was the best SRI which resulted in the highest increase in GPC prediction accuracy for all three environments, suggesting that there is some strong relationship between GNDVI and GPC. GNDVI measures reflection in the near infra-red and green region of the electromagnetic spectrum (Gitelson et al., 1996). This index provides information about the chlorophyll A concentration in the plants, and it could be possible that this green photosynthetic reflection region is a determinant of GPC in wheat. GNDVI can be used as an indirect selection for GPC because of its significant genetic and phenotypic correlation with GPC and higher heritability than GPC.

Nitrogen is mobilized inside the grain from the soil, and results in the increase of GPC in the wheat grain. Furthermore, early senescence in wheat results in the higher accumulation of GPC and some micronutrients as it increases remobilization of nutrients from the senescing organ to the grain (Olmos et al., 2003; Uauy et al., 2006). GNDVI provides information about nitrogen status in the plant and is linked to the measurement of the reflection for the nitrogen translocation in the plant, which probably results in the better prediction accuracy compared to other indices in this study. The leaf senescence and color changes during the transition of various stages in crop plants are a clear indicator for the accumulation of nutrients and decomposition of pigments which are easily measured by these SRI (Gitelson et al., 1996). NDVI just focuses on the vegetative greenness and plant health, but GNDVI is known to be five times more sensitive to this reflection in the green region of the electromagnetic spectrum (Gitelson et al., 1996). The increased performance in GS models with GNDVI provides insight that plant breeders need to target specific indices for each trait for making predictions.

When predictions were made for grain yield with single and multiple SRI in the GS model, NWI performed best for predicting grain yield under two of the three environments. NWI directly measures the plant hydration status by measuring reflection in the near infrared region (Prasad et al., 2007). The increase in prediction accuracy for grain yield with inclusion of NWI suggests that canopy water status plays an important role for determining grain yield under the rainfed conditions. NWI showed higher genetic correlation compared to the phenotypic correlation observed under each environment. This showed that NWI has an association at the genetic level to grain yield and acts as a powerful tool for determining grain yield. Therefore, higher heritability of NWI than grain yield, larger genetic correlation, and increases in prediction accuracy for grain yield provides ample scope for inclusion of NWI as an indirect estimate for selecting high yielding lines.

We observed that the inclusion of individual SRI is as good, or superior, compared to the addition of multiple SRI in the GS model for GPC. Inclusion of more secondary correlated traits results in multicollinearity issues and made it harder to understand the significance of individual SRI. The multicollinearity arises between the SRI as they are derived from the same region of reflection, either visible or near infrared. This can be avoided by identifying SRI which are highly correlated to each other or provide the same physiological information about the plant traits, and not including them into the multi-variate models. Furthermore, dimension reduction techniques such as partial least square or principal component analysis can be used to extract the latent variables from these SRI which explains the maximum variation between the response and predictors (Wold et al., 2001; Crain et al., 2018). Montesinos-López et al. (2017) showed that with the use of functional splines and functional Fourier models, 250 reflection bands could be used to make predictions for grain yield in wheat while avoiding multicollinearity issues.

Another advantage of including individual SRI compared to multiple SRI, is computational time and convergence problems in the mixed model outcomes. There is no advantage of including a large number of SRI in the GS models if they do not increase the prediction accuracy. Schulthess et al. (2016) also showed that inclusion of multiple traits in GS models did not result in improved predictions compared to inclusion of the single best correlated features for predicting grain yield in rye (Secale cereale), validating our results for inclusion of the single most influential SRI in the GS models. In this context, due to issues associated with inclusion of large number of SRI in the GS models, it is advisable to select the best SRI for making predictions. In this study, we concluded that GNDVI and NWI result in the highest improvement in the prediction accuracy for GPC and grain yield, respectively, and should be used in selecting improved lines. Furthermore, these indices have higher genetic correlation and heritability for inclusion in the GS models and will ultimately translate to increase the genetic gain in wheat breeding.



Genomic Selection Across Environments Without Inclusion of Secondary Traits

We also applied across cycle predictions providing realistic scenarios for the use of GS in plant breeding programs by testing the performance of lines in untested environments. There was a significant (p < 0.05) decrease in across environment prediction accuracy compared to cross-validation prediction accuracy. This is due to the different environmental conditions in training and testing environments compared to the common environment for the cross-validation predictions. Furthermore, univariate GS models are not able to model the genotype by environment interactions and provide an opportunity for inclusion of secondary correlated traits or genotype by environment interactions into the GS models to explain such variations. The other reason for the decrease in prediction accuracy is that both these traits are polygenic. Hence, training of a population in one environment results in the prediction of marker effect under that environment only, completely ignoring non-genetic variations (González-Recio et al., 2014). When that same model was used for predicting phenotypes in unknown environments, it results in less accuracy because the real phenotype not only depends upon the genetic effect, but also on environment and genotype by environmental interactions.

The highest independent prediction accuracy for grain yield was observed for the 2016 environment when the GS model was trained on the 2015 environment. This is because the genotypic variance explained for grain yield was highest for the 2015 environment compared to the other two environments (Table 2). Higher genotypic variance for the 2015 environment results in the accurate training of the GS models which explain more genetic variation, and ultimately results in better predictions of grain yield for 2016. Another reason for this high prediction for these two environment combinations could be because of the larger phenotypic correlation of grain yield for these two environments (Supplementary Table 5). There was variation in the correlation between traits across environments because of the varying environment and genotype by environment interactions, providing the importance of conducting multi environmental and replicated trails.



Improvement of Across Environments Prediction Accuracy With the Inclusion of Secondary Traits

Previous studies by Rutkoski et al. (2016) and Crain et al. (2018) have demonstrated improvement in prediction accuracies for grain yield using secondary traits (NDVI and canopy temperature) within and across cycles. Rutkoski et al. (2016) observed a maximum improvement of 70% prediction accuracy for grain yield with secondary traits in multivariate models. Such high accuracy in their study was attributed to many replications, large training population, frequent collection of spectral information across all replicates, and correctness for days to headings in the models. However, Crain et al. (2018) concluded that prediction accuracy in multivariate models varies from −33 to 7% for predicting grain yield with the inclusion of secondary traits. Herein, we included secondary traits from the tested environments for making predictions and observed the improvement in prediction accuracies for both traits, which vary from 1–10%. This improvement in prediction accuracy suggests that secondary traits can accommodate some amount of environmental effect, and hence improve the model performance. The other reason for the improvement in prediction accuracy is the genetic correlation between primary and secondary traits and higher heritability of the secondary traits. Improvement in prediction accuracy across environments provides an opportunity for inclusion of the best SRI in the GS model for each trait. These collected SRI can aid in understanding the genotype by environment predictions which might be present under the testing environment.

We did not observe any improvement in independent prediction accuracies for GPC in 2016, which can be attributed to the negative correlation observed between GPC and SRI in 2016 compared to positive correlation in other environments. This suggests that GS selection models used for across cycle predictions are problematic if the secondary correlated traits are affected by environmental conditions and do not account for unpredictable genotype by environment interactions. These findings provide evidence that increased prediction in the untested environment is governed by the secondary correlated traits.

The approach used for across cycles predictions in this study resembles a breeding program where SRI has been collected, and plots are not yet harvested to get information for grain yield and GPC. This allows the breeders to make the selection based on these predicted GEBVs by incorporation of secondary traits in the multi-trait GS models. Previously, it has been shown that these secondary correlated traits have the potential for indirect selection in the PNW for spring and winter wheat breeding (Gizaw et al., 2018a,b). This study demonstrated the potential of inclusion of secondary traits for predicting GPC and grain yield for spring wheat within and across cycles. These increases in GS selection accuracy will aid in increasing the genetic gain per unit time and cost. The findings from this study can be applied in other crops with selection of appropriate secondary traits and identification of appropriate growth stages for collecting them.



CONCLUSION

Our study demonstrates the improvement in GS prediction accuracies for grain yield and GPC in wheat with the inclusion of secondary correlated traits in the models and identifies the most effective SRI and plant growth stage for secondary data collection. We observed a vital role of secondary traits for improving the predictions for both within and across cycle predictions. On average, there was an improvement in prediction accuracies of 20% for grain yield and 12% for GPC. Moreover, we observed that secondary traits have the potential to improve independent validations, showing their capabilities to accommodate for different environmental effects in the models. This study shows the potential of combining genomics and HTP for improving selection in wheat breeding programs and can be transferable to other plant breeding programs. Inclusion of HTP and GS in a plant breeding program will ultimately improve the genetic gain by increasing the selection accuracy and reducing the cycle time.
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This paper focuses on image segmentation, image correction and spatial-spectral dimensional denoising of images in hyperspectral image preprocessing to improve the classification accuracy of hyperspectral images. Firstly, the images were filtered and segmented by using spectral angle and principal component analysis, and the segmented results are intersected and then used to mask the hyperspectral images. Hyperspectral images with a excellent segmentation result was obtained. Secondly, the standard reflectance plates with reflectance of 2 and 98% were used as a priori spectral information for image correction of samples with known true spectral information. The mean square error between the corrected and calibrated spectra is less than 0.0001. Comparing with the black-and-white correction method, the classification model constructed based on this method has higher classification accuracy. Finally, the convolution kernel of the one-dimensional Savitzky-Golay (SG) filter was extended into a two-dimensional convolution kernel to perform joint spatial-spectral dimensional filtering (TSG) on the hyperspectral images. The SG filter (m = 7,n = 3) and TSG filter (m = 3,n = 4) were applied to the hyperspectral image of Pavia University and the quality of the hyperspectral image was evaluated. It was found that the TSG filter retained most of the original features while the noise information of the filtered hyperspectral image was less. The hyperspectral images of sample 1–1 and sample 1–2 were processed by the image segmentation and image correction methods proposed in this paper. Then the classification models based on SG filtering and TSG filtering hyperspectral images were constructed, respectively. The results showed that the TSG filter-based model had higher classification accuracy and the classification accuracy is more than 98%.

Keywords: hyperspectral image, preprocessing, image segmentation, double standard reflectance plates, spatial-spectral dimension combined filtering, classification recognition


INTRODUCTION

In recent years, hyperspectral imaging technology has been developed increasingly mature. With the features of multiple spectral channels, high spectral resolution, strong band continuity, and “map unity,” hyperspectral imaging technology is widely used in remote sensing (Nalepa et al., 2020; Tu et al., 2020), agriculture (Jiang et al., 2016; Moliner and Romero, 2020; Zhang et al., 2020), biomedicine (Shirokanev et al., 2020; Trajanovski et al., 2020), and other fields. The data acquired by hyperspectral imaging techniques are called hyperspectral images. The analysis of hyperspectral images allows the acquisition of morphological features of external attributes and spectral features of internal component attributes of the sample, enabling the classification of the target. However, because of the high correlation of information between the bands of hyperspectral images, the following factors can interfere in practical applications.


• Redundant background information of hyperspectral images.

• Noise of dark current.

• Spatial and spectral dimensional noise.



Therefore, preprocessing operations are required before classifying hyperspectral images. Currently, methods such as thresholding (Couceiro and Ghamisi, 2016; Pang et al., 2020), region segmentation (Saravana and Rengasari, 2019) and watershed algorithms (Dao et al., 2021) are often used to remove the redundant background information from hyperspectral images. The black-and-white correction method (Esfahani et al., 2020; Xin et al., 2020) is the most widely used method for the correction of noise in dark currents. Because the hyperspectral image is a two-dimensional image in the spatial dimension, the individual bands can be denoised using classical image denoising methods; the spectral dimension is often denoised using Savitzky-Golay (SG) filtering (Wang et al., 2019; Ayaz et al., 2020; Jiang et al., 2020; Khamsopha and Teerachaichayut, 2020; Li et al., 2020; Ye et al., 2020).

Although the above preprocessing methods are widely used in hyperspectral image classification, there are still some shortcomings. When the difference between the grayscale of the region where the target of interest is located in the hyperspectral image and the grayscale between the surrounding pixels is small or the overlap of the grayscale range is large, the effect of the threshold method segmentation is often not satisfactory. Region segmentation can lead to over-segmentation or under-segmentation when the parameters are not handled properly. The essence of the watershed algorithm is the process of successive erosion of binary images, which has a high speed in image segmentation but is very prone to over-segmentation. The black-and-white correction method is divided into two steps: all-white correction and all-black correction. In the all-black correction, the fluctuation of the dark current is constantly changed by environmental factors such as temperature. Although the calibration was performed using multiple reference images and multiple dark current images to obtain the mean value (Qiu et al., 2020), the synchronization of the acquired sample spectral information with the calibration information was not guaranteed and the calibration results still had errors. Hyperspectral data are three-dimensional in nature. Although denoising in the spatial or spectral domain alone can filter out most of the noise, it is not able to handle hyperspectral images with low signal-to-noise ratio well. So joint denoising of the spatial and spectral dimensions of hyperspectral images are needed.

Firstly, to address the problem of redundant background information in hyperspectral images, this paper proposes a spectral angle joint principal component analysis (Machidon et al., 2020; Uddin et al., 2020) based on the histogram thresholding method (Datta and Chakravorty, 2018; Saravana and Rengasari, 2019) and only a few of pixels were not successfully segmented using hyperspectral images of Zhengmai 8 wheat seeds as experimental data. Secondly, in order to solve the problem of noise instability of dark current, this paper proposes the double standard reflectance plates correction method instead of the black-and-white correction method. The standard reflectance plate with 50% reflectance whose spectral information is known is used as the target sample and the standard reflectance plates with 2 and 98% reflectance are used as the calibration plates. The reflectance spectral curve after correction of the bicriteria reflectance plate is closer to the true reflectance spectral curve of the sample and the corrected result improves the total classification accuracy of the hyperspectral image by 1.88%. Finally, in order to realize the joint spatial and spectral dimension filtering of hyperspectral images, a joint spatial-spectral dimension filtering method (TSG) is proposed based on the principle of Savitzky-Golay filtering. The hyperspectral image of Pavia University was used as the experimental image to evaluate the image quality before and after SG/TSG filtering. The results show that although TSG filtering changes the original image more than SG filtering, it still retains most of the original features and has less noise information after filtering. Comparing the effects of SG/TSG filtering on the classification results, it was found that the total classification accuracy after TSG filtering was significantly greater than that after SG filtering, reaching 98.69%.



MATERIALS AND EQUIPMENT

The variety of wheat seeds used in this experiment was Zhengmai 8, originated from Tongling, Anhui province, and provided by Taihe Experimental Station of Anhui Academy of Agricultural Sciences and Hefei Institute of Physical Sciences, Chinese Academy of Sciences. The samples were divided into two groups, one containing a number of healthy wheat seeds and the other containing a number of wheat seeds infected with scab. For healthy wheat seeds and wheat seeds infected with scab there is a breakdown in application as follows: Sample 1 was divided into two groups, Sample 1–1 and Sample 1–2. The hyperspectral images of sample 1–1 (healthy Zhengmai 8 wheat seeds) and sample 1–2 (Zhengmai 8 wheat seeds infected with scab) were used as the experimental data for image segmentation and the training set and test set for the wheat scab recognition model. The ratio of the training set to the test set is 9:1. The 4500 sample points randomly selected from the hyperspectral images of sample 1–1 and sample 1–2 are used as the training set, respectively. Then 500 sample points randomly selected from the remaining sample points are used as the test set. The same batch of wheat seeds as sample 1 but completely different from those used in sample 1 was selected as sample 2. Divide sample 2 into three groups: sample 2–1, sample 2–2, and sample 2–3. Sample 2–1 contained 240 healthy wheat seeds; sample 2–2 contained healthy wheat seeds and wheat seeds infected with scab totaling 256 seeds, 50% each; sample 2–3 contained 273 wheat seeds infected with scab. The hyperspectral images of sample 2–1, sample 2–2, and sample 2–3 are collected and used as the validation set of the classification model. The wheat of Zhengmai 8 was sown on October 10, 2016, with a fertility period of 226 days, and harvested on May 24, 2017, and the wheat was inoculated with fusarium at flowering.

In this paper, hyperspectral images of wheat seeds were acquired using a combination of a pendulum sweep imaging spectrometer and a displacement platform. Pendulum sweep hyperspectral imager was developed by Chinese Academy of Sciences STS Zhejiang Center Hangzhou Center. The wavelength range of the imaging spectrometer was 400∼1000 nm, the number of spectral bands was 270, the spectral resolution was 2.6 nm, the spatial resolution was 1 mrad, and the focal length of the lens was 35 mm. As shown in Figure 1, the pendulum sweep angle of the imaging spectrometer was set to 0° in order to ensure the same light condition for each frame of data, which becomes a line-sweep type. The imaging spectrometer was placed above the displacement platform, and the line field of view was perpendicular to the running direction of the guide. The speed of the displacement stage was controlled at 0.6 m/min, the distance between the lens and the sample was 300 mm, the integration time of the detector was 16 ms, and the illumination source was a 21 V/150 W tungsten bromide light source.


[image: image]

FIGURE 1. Hyperspectral image acquisition system. ① Imaging spectrometer; ② Tungsten bromide light source; ③ Standard reflectance plate; ④ Sample carrier stage; ⑤ Displacement stage; ⑥ Computer.


When acquiring hyperspectral images, wheat seeds were placed uniformly on the sample stage above the displacement platform. A white standard reflectance plate with 98% reflectance and a black standard reflectance plate with 2% reflectance were placed at each end of the sample stage. Hyperspectral images of wheat seeds and two standard reflectance plates can be acquired simultaneously in a image as the displacement stage was moved. Combined with the imaging characteristics of the pendulum sweep imaging spectrometer, the synchronization of hyperspectral image acquisition of wheat seeds and standard reflectance plates was ensured.

The standard reflectivity plates used in the experiment are shown in the Figure 2, manufactured by Labsphere. Each standard reflectivity plate has a size of 17 mm × 132 mm × 132 mm. The reflectivity of the reflectivity plates are 2, 50, and 98% from left to right.


[image: image]

FIGURE 2. Hyperspectral images of calibrated standard reflectance plate. (a) reflectivity of 2% (b) reflectivity of 50% (c) reflectivity of 98%.




METHODS


Image Segmentation by Spectral Angle Combined With PCA

It can be consider that the spectral information corresponding to the pixel as a vector. The angle between the spectral information of the pixel and the x-axis of the hyperspectral image in two-dimensional plane coordinates is found according to Equation (1).

[image: image]

Where θ represents the spectral information of the pixel and the angle between the x-axis in two-dimensional plane coordinates of the hyperspectral image, which is called the spectral angle in this paper; [image: image] represents the spectral information of the pixel; and [image: image] represents the unit vector of the x-axis. The larger spectral angle indicates that the correlation between vector [image: image] and vector [image: image] is smaller. In other words, the spectral information of the pixel and the image information of the space interfere less with each other. The spectral angles of the hyperspectral images are calculated band by band, and the images and feature wavelengths corresponding to the maximum spectral angles are selected. The filtered images are added, the mean value is obtained to remove the interference of “superposition” random noise, and the image is segmented to obtain segmentation result 1 (Note: The number of feature wavelengths selected will vary for different hyperspectral images).

On the other hand, principal component analysis is applied to the corrected hyperspectral images to find the principal component images with distinct edge contours, and image segmentation is performed on it to obtain segmentation result 2. Then, the intersection of the two segmentation results is found to obtain the segmentation result 3. Finally, the corrected hyperspectral image is masked using segmentation result 3 to obtain a hyperspectral image containing only the target sample, removing the interference of excess background information.



Hyperspectral Image Correction With Double Standard Reflectance Plates

After obtaining the hyperspectral image containing the target sample, image correction of the hyperspectral image is also required. For an image we can use a function f(x,y) to represent it. A hyperspectral image has one more spectral dimension than a traditional image, so a hyperspectral image can be defined by the function f(x,y,λ), where x and y represent two-dimensional plane space coordinates and λ represents the spectral dimension coordinates. f(x,y,λ) is the digital number (DN) of the pixel at any position (x,y,λ) of the hyperspectral image. It can be defined by Equation (2) as:

[image: image]

where g(x,y,λ) is the true DN of the sample point and ξ(x,y,λ) is the noise at the corresponding sample point in the hyperspectral image.

The imaging spectrometer is held stationary on top of a stand while the imaging spectrometer acquires hyperspectral images of the sample. At the same time, the sample is placed on top of a motor-controlled drive rail that moves smoothly and the field of view line slowly scans the target sample. The scanning direction of the imaging spectrometer corresponds to the x-direction in Equation (2) and the field-of-view line direction corresponds to the y-direction. Thus, when the y-coordinates are the same, the points corresponding to any x-coordinate are obtained from the same imaging region of the imaging spectrometer, which noise is extremely similar, so that the noise at these points can be considered approximately equal.

Therefore, an estimate of the noise at any sample point (x,y,λ) in the hyperspectral image can be calculated using Equation (3).

[image: image]

where R1 and R2 represent the reflectance of two standard reflectance plates (known by calibration), respectively, and f1(:,y,λ) and f2(:,y,λ) are measured by the imaging spectrometer.

[image: image]

The parameters on the right-hand side of Equation (3) are known. Therefore, the noise ξ(y,λ) at any sample point in different bands corresponding to the y-coordinate can be found directly. Then ξ(y,λ) can be subtracted from f(x,y,λ), so that the true DN at that sample point can be obtained for the purpose of suppressing noise in hyperspectral images.



Method of Denoising in the Joint Spatial-Spectral Dimensional (TSG)

The Savitzky-Golay smoothing filter, developed by Savitzky and Golay, is a polynomial smoothing algorithm based on the least squares principle. First, SG filtering requires determining a window whose fixed size is (2×m + 1). Then the best-fit method is performed by shifting the window using least squares. Where m is the window coefficient of SG filtering. All the data inside the window as a collection. Let each measurement point x = [−m,1−m,…,0,1,…,m]. Finally, Equation (5) is used to fit it (Yang et al., 2017).

[image: image]

Where n is the order of the polynomial fit; ak is the polynomial coefficient to be solved. The squares residuals of the fitted curve and the original spectrum are calculated, and the minimum value of the squares residuals is set as the boundary condition (Yang et al., 2017). The best coefficient matrix is found to be B = X(XT⋅X)−1XT. Then the coefficient matrix is convolved with the spectrum corresponding to each sample point in the hyperspectral image to complete the SG filtering.

The SG filtering algorithm is widely used for filtering spectral curves, and it is excellent for noise reduction and smoothing of one-dimensional curves. The one-dimensional SG convolution kernel is expanded to two dimensions, and the convolution operation is performed for each band of the image. The advantage of less information loss in SG filtering can be exploited to filter and reduce noise while fully preserving the original spatial image information. SG convolution kernel coefficients have symmetry. In order to maintain the symmetry of the convolution kernel, it is combined into a two-dimensional convolution kernel in four directions: horizontal, vertical, oblique upward and oblique downward in this paper. Then, let the size of the 2D SG convolution kernel be (2×m + 1)2 and the coordinates of each element within the convolution kernel be (x, y). The 2D SG convolution kernel can be described by Equation (6).
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Where x = [−m1,1−m1,…,0,1,…,m1], y = [−m,1−m,…,0,1,…,m], [image: image] is the largest integer not larger than [image: image], and B is the one-dimensional SG convolution kernel coefficient matrix. Two-dimensional SG convolution filtering of hyperspectral images (called TSG filtering in this paper) can be accomplished by convolving the spatial images of each band in the hyperspectral image data through the two-dimensional fast Fourier transform using the two-dimensional SG convolution kernel described in Equations (6).



RESULTS AND DISCUSSION


Analysis of Image Segmentation Results

The hyperspectral images of sample 1–1 and sample 1–2 were collected as experimental data, and the hyperspectral images are shown in Figure 3. Both hyperspectral images have a wavelength range of 400∼1,000 nm, a total of 270 spectral bands, a spectral resolution of 2.6 nm, and a spatial resolution of 1 mrad. Among them, the healthy wheat seeds of Zhengmai 8 full of grains, through the body is brown. Infected with russet wheat seeds are dry, wrinkled, whitish local areas are pink or reddish brown.


[image: image]

FIGURE 3. Hyperspectral images of some wheat seeds. (a) Sample 1–1; (b) Sample 1–2.


The entropy of the hyperspectral image was calculated band-by-band, and the maximum image entropy was obtained at the wavelength of 823 nm. The image corresponding to the wavelength is 823 nm was chosen to draw a grayscale histogram and perform threshold segmentation. Based on the results of the grayscale histogram, 171 was selected as the threshold for the image at 823 nm and binarized. The grayscale histogram and the binarized image of the corresponding image are shown in Figure 4. It can be seen from Figure 4 that this method suffers from more serious interference and the deviation from the desired true threshold value exists is large. It eventually leads to the presence of many black dots in the background of the binarized image and white blocks in the wheat seed part. The segmentation of the hyperspectral image by this method and the segmentation result map is shown in Figure 5.


[image: image]

FIGURE 4. Grayscale histogram and binarized images. (A) Sample 1–1; (B) Sample 1–2.



[image: image]

FIGURE 5. Hyperspectral images based on threshold segmentation. (a) Sample 1–1; (b) Sample 1–2.


As shown in Figure 5, the direct application of thresholding segmentation does not achieve the desired results and there are large errors. Therefore, this paper uses the combination of spectral angle and principal component analysis to segment the hyperspectral images. After calculating the spectral angles band-by-band, the images and characteristic wavelengths corresponding to the top 20 cases of maximum spectral angles (470, 474, 479, 569, 695, 823, 878, 881, 886, 891, 894, 897, 901, 904, 907, 910, 912, 916, 918, and 922 nm) were selected in this paper. Additive operations are performed on the images corresponding to the above feature wavelengths. Image segmentation is performed on the result after finding the mean value, and segmentation result 1 is obtained.

On the other hand, the load distribution of the hyperspectral images of healthy wheat seeds after principal component analysis were calculated using Figure 3a as an example. The first 6 of these loadings are 95.69, 2.31, 0.68, 0.2, 0.08, and 0.04% in that order. Since the cumulative contribution of the first six principal components has reached 99.03%, the first six principal components of wheat seed hyperspectral images can be considered to represent approximately all the information of the hyperspectral images. The pseudo-color images corresponding to the first six principal components of the hyperspectral images of samples 1–1 are shown in Figure 6.


[image: image]

FIGURE 6. The first six principal components in the hyperspectral image of sample 1–1. (a–f) the pseudo-color images corresponding to the 1st–6th principal components.


In the pseudo-color image shown in Figure 6, the edge part of wheat seeds in the second principal component image is highlighted, so the second principal component image is segmented and segmentation result 2 is obtained. The intersection of segmentation result 1 and segmentation result 2 is obtained as segmentation result 3. The grayscale histogram and binarized image of the splitting result 3 are shown in Figure 7. From the figure, it can be seen that the problems present in Figure 4 are solved. Finally, the segmentation result 3 is applied to mask the hyperspectral images of sample 1–1 and sample 1–2, and the final segmented hyperspectral images are shown in Figure 8.


[image: image]

FIGURE 7. Grayscale histogram and binarized images. (A) Sample 1–1; (B) Sample 1–2.



[image: image]

FIGURE 8. Hyperspectral images of wheat seeds after masking. (a) Sample 1–1; (b) Sample 1–2.


Theoretically, the hyperspectral image of wheat seeds contains only wheat seeds with white background. However, the three-dimensional morphology of the wheat seeds and the uneven illumination of the illumination source leads to the existence of shadow parts with uneven luminance distribution around the wheat seeds, which makes the image segmentation difficult. In addition, some regions in the figure also have overlapping phenomenon, uneven distribution of light and dark in the shadow part, and insignificant abrupt change of gray value in the edge part. Moreover, the interval between adjacent wheat seeds is small, so it is not suitable for the segmentation methods commonly used in hyperspectral image segmentation.

In this paper, firstly, the images with less interference between spectral and spatial information of image elements are selected by using the spectral angle, and the interference of “superposition” random noise is removed by the addition operation. Secondly, using principal component analysis to find the principal component images of wheat seeds whose edge parts are highlighted for segmentation can reduce the misclassification rate of edge shadow parts. A more accurate segmentation result can be obtained after intersecting the two segmentation results. However, in Figure 5 we can see that there are still some background pixel points that are not segmented and the segmentation method needs further improvement.



Results Analysis of Different Hyperspectral Image Correction Methods

The hyperspectral image correction methods of a single standard reflectance plate and two standard reflectance plates were tested by taking the reflectance spectrum of a standard reflectance plate with 50% as the calibration spectrum. The reflectance of the one standard reflectance plate used for the black-and-white calibration experiment was 98%, and the noise of the dark current was collected by the masking lens. The reflectance of the two standard reflectance plates used in the double-plate experiment was 2 and 98%, respectively. A comparison of the results of the black-and-white correction method and the double standard reflectivity plates correction method is shown in Figure 9. The data for the calibration spectra were obtained from a standard reflectance plate with a reflectance of 50%, provided by Labsphere.
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FIGURE 9. Comparison of corrected results. (A) Comparison of the corrected spectral curves; (B) Mean square error curves of different methods.


It can be seen in Figure 9A that the spectral curves obtained by calibration with the double standard reflectance plate are very close to the calibration spectra, while the spectral curves obtained by inversion with the black-and-white calibration method has large errors with the calibration spectra. To further illustrate the errors between the two methods and the calibration spectra, a comparison of the mean square error curves of the reflectance spectra and the calibration spectra obtained with different calibration methods is shown in Figure 9B. As can be seen in Figure 9B, in the wavelength range of 500–900 nm, the mean square error between the reflectance spectrum obtained by the double standard reflectance plates correction method and the calibration spectrum is less than 0.0001, which is 89.75% less than that of the black-and-white correction method. Therefore, it can be concluded that the reflectance inversion method using the double standard reflectance plate can obtain the true spectrum of the sample.

A SVM (support vector machine) (Maktabi et al., 2020; Song et al., 2020; Wang et al., 2020; Xiang et al., 2020)-based classification model for wheat blast was constructed. After retaining the first six principal components, the hyperspectral images of samples 1–1 and 1–2 were normalized and corrected by two correction methods to create the dataset. From each of them, 4,500 sample points of the hyperspectral images were randomly selected as the training set and 500 sample points as the test set. The ratio of the training set to the test set samples is 9:1. the accuracy comparison results are shown in Table 1.


TABLE 1. Comparison of classification accuracy of two normalized databases.

[image: Table 1]
It can be seen from Table 1 that the hyperspectral image classification model with bicriteria reflectance plate correction has higher classification accuracy.

Compared with the double standard reflectivity plate calibration method, the main reason for the large deviation of the black-and-white calibration method is the interference of the noise of the dark current, which fluctuates constantly under the influence of environmental factors such as temperature, and even the noise of the dark current obtained by the same instrument at different times is not consistent. Although the black-and-white correction method calculates the mean value after multiple image acquisitions, it does not guarantee the synchronization of the noise of the dark current and the hyperspectral image acquisition of the sample to be measured, and there will inevitably be errors. The double standard reflectance plate correction method acquires the hyperspectral images of two standard reflectance plates at the same time as the hyperspectral images of the sample to be measured, which ensures the continuity of the acquisition process and the consistency of the acquisition environment, so that the information closer to the real hyperspectral images can be well restored and the errors can be reduced.



Evaluation of Hyperspectral Image Quality Before and After SG/TSG Filtering

In this section, Pavia University hyperspectral images with a ground spatial resolution of 1.3 m and a size of 610×340 pixels are used as experimental data, containing a total of 115 bands, of which 12 bands with severe water absorption are removed (Fang et al., 2015). As shown in Figure 10, a portion of them was selected for simulation experiments, with a size of 200×200×103. The image is normalized before filtering it, and the normalization is done using the following Equation (7).


[image: image]

FIGURE 10. Pavia University hyperspectral image.


[image: image]

Where f is the DN of the image element, fmin is the noise of the hyperspectral image dark current, measured by closing the lens cap, fref is the DN of the pixel corresponding to the standard reflectivity plate, R is the reflectivity of the standard reflectivity plate, and ref is the reflectivity corresponding to the pixel.

Both SG/TSG filtering algorithms have two kernel parameters of window coefficient m and order n. After optimization, the SG filtering kernel parameters m = 7 and n = 3, and the TSG filtering kernel parameters m = 3 and n = 4 are set. SG/TSG filtering was applied to the hyperspectral images of Pavia University in succession. The average image entropy, average image signal-to-noise ratio, average sharpness of each band of the hyperspectral images of Pavia University before and after comparing SG/TSG filtering, as well as the average peak signal-to-noise ratio and structural similarity of the compared original images are shown in Table 2 after retaining two decimal places.


TABLE 2. Hyperspectral image quality evaluation table before and after SG/TSG filtering.
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Table 2 shows that the average entropy of the hyperspectral images after SG filtering increased by 0.51, the average signal-to-noise ratio of the images improved by 4.04 dB, the average sharpness was approximately unchanged, the average peak signal-to-noise ratio was greater than 30 dB, and the structural similarity was as high as 99.91%. The average entropy of the hyperspectral images after TSG filtering increased by 1.04, the average signal-to-noise ratio improved by 4.16 dB, the average sharpness decreased by 0.06, the average peak signal-to-noise ratio was greater than 30 dB, and the structural similarity was as high as 96.70%. In summary, SG filtering preserves the image information features of hyperspectral images and enhances the image quality. TSG filtering changes the original image more than SG filtering, but still retains most of the original image features and less noise information in the filtered image. The reason for the above results is that TSG filtering not only has the ability of SG filtering to suppress the noise in the spectral dimensional of hyperspectral images, but also can filter out the noise in the spatial dimensional to achieve the effect of joint spatial-spectral dimensional filtering of hyperspectral images.

The hyperspectral images of samples 1–1 and 1–2 were processed by the image segmentation and correction method proposed in this paper. Then they are filtered by using SG/TSG filtering, and the effect of SG/TSG filtering on the accuracy of the hyperspectral classification model is investigated using the construction method and classification algorithm of the data set in 4.2. The results are shown in Table 3.


TABLE 3. Effect of SG/TSG filtering on the classification accuracy of hyperspectral images.
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From Table 3, we can see that the TSG filtering has greatly improved the accuracy of the hyperspectral classification model, which indicates that the TSG filtering algorithm proposed in this paper can obtain good results in practical applications. The hyperspectral images of samples 1–1 and 1–2 are used as the experimental samples, and the training and test sets are constructed by the preprocessing method proposed in this paper, and the classification model is established based on the support vector machine (SVM) (Fang et al., 2015; Song et al., 2020; Wang et al., 2020; Xiang et al., 2020) algorithm, and the hyperspectral images of samples 2–1, 2–2, and 2–3 are used as the validation set.

As shown in Figure 11, the prediction results of wheat scab identification constructed based on the hyperspectral image preprocessing algorithm proposed in this paper matched well with the actual situation and truly reflected the disease information of the samples. However, there are still a few pixels that are incorrectly identified, which can be easily identified in practical applications. On the one hand, it shows that the wheat scab classification model based on the preprocessing method which proposed in this paper has a high accuracy. On the other hand, the preprocessing algorithm needs to be improved and enhanced for the false recognition of individual pixel points.
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FIGURE 11. (a) Sample 2–1; (b) Sample 2–2; (c) Sample 2–3. Visualization of classification results for validation sets.


In summary, the preprocessing method proposed in this paper has higher classification accuracy for hyperspectral images. The classification accuracy has been improved in three main ways. Firstly, the image segmentation is performed using spectral angle and principal component analysis, respectively, and the intersection is taken to obtain the segmentation result 3. The hyperspectral image is masked using the segmentation result 3 to minimize the interference of background information. Secondly, the use of double standard reflectance plates instead of black and white correction method in this paper ensures the continuity of the hyperspectral images of the samples at the time of acquisition and avoids the effect of dark current noise instability. Finally, the noise in the spectral dimensional of the hyperspectral image is suppressed while the noise in the spatial dimensional is also filtered to achieve the effect of joint spatial-spectral dimensional filtering of hyperspectral images. After the above operation, the reliability of the data set can be effectively improved and thus the recognition accuracy of the classification model can be improved.



CONCLUSION

Preprocessing of hyperspectral data has a very important position in the processing and application of hyperspectral data. An effective preprocessing method can reduce or even eliminate the interference of dark currents and background of samples in the original hyperspectral data, which provides a more accurate data source for the subsequent analysis based on hyperspectral data, making the modeling accuracy more accurate and realizing the efficient and accurate utilization of data.

This paper focuses on three aspects of image segmentation, image correction and image space-spectral dimensional denoising in hyperspectral image preprocessing to make the classification accuracy of hyperspectral images improved. First, the spectral angle size is calculated band by band and the images with less interference between the spectral and spatial information of the pixels are selected. Then additive operations are performed to remove the interference of “superimposed” random noise. The principal component analysis was used to find the principal component images of wheat seeds whose edges were highlighted for segmentation, which reduced the misclassification rate of the shaded parts of the edges. After the intersection of the two results, a more accurate segmentation result can be obtained, and the interference of background information on the wheat spectral data can be effectively removed. Secondly, the standard reflectance plate with known reflectance spectra was calibrated by using double standard reflectance plates. Compared with the results of black-and-white correction, the results of the double standard reflectance plate correction are closer to the true spectrum of the sample, and the mean square error of the reflectance spectrum and the calibration spectrum is less than 0.0001. This makes the hyperspectral image acquisition continuous and improves the accuracy of the correction. Finally, TSG filtering is proposed for joint spatial-spectral dimensional denoising of hyperspectral images, which still retains most of the original image features while smoothing the spectral profile, and the filtered image has less noise information.

By comparing the total classification accuracy and kappa coefficient of the classification models with different preprocessing methods, it can be found that the preprocessing methods proposed in this paper have significantly improved the total classification accuracy and kappa coefficient. It is shown that the preprocessing method of hyperspectral images proposed in this paper can effectively improve the classification accuracy of hyperspectral images.
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X-Ray CT Phenotyping Reveals Bi-Phasic Growth Phases of Potato Tubers Exposed to Combined Abiotic Stress
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As a consequence of climate change, heat waves in combination with extended drought periods will be an increasing threat to crop yield. Therefore, breeding stress tolerant crop plants is an urgent need. Breeding for stress tolerance has benefited from large scale phenotyping, enabling non-invasive, continuous monitoring of plant growth. In case of potato, this is compromised by the fact that tubers grow belowground, making phenotyping of tuber development a challenging task. To determine the growth dynamics of tubers before, during and after stress treatment is nearly impossible with traditional destructive harvesting approaches. In contrast, X-ray Computed Tomography (CT) offers the opportunity to access belowground growth processes. In this study, potato tuber development from initiation until harvest was monitored by CT analysis for five different genotypes under stress conditions. Tuber growth was monitored three times per week via CT analysis. Stress treatment was started when all plants exhibited detectable tubers. Combined heat and drought stress was applied by increasing growth temperature for 2 weeks and simultaneously decreasing daily water supply. CT analysis revealed that tuber growth is inhibited under stress within a week and can resume after the stress has been terminated. After cessation of stress, tubers started growing again and were only slightly and insignificantly smaller than control tubers at the end of the experimental period. These growth characteristics were accompanied by corresponding changes in gene expression and activity of enzymes relevant for starch metabolism which is the driving force for tuber growth. Gene expression and activity of Sucrose Synthase (SuSy) reaffirmed the detrimental impact of the stress on starch biosynthesis. Perception of the stress treatment by the tubers was confirmed by gene expression analysis of potential stress marker genes whose applicability for potato tubers is further discussed. We established a semi-automatic imaging pipeline to analyze potato tuber delevopment in a medium thoughput (5 min per pot). The imaging pipeline presented here can be scaled up to be used in high-throughput phenotyping systems. However, the combination with automated data processing is the key to generate objective data accelerating breeding efforts to improve abiotic stress tolerance of potato genotypes.

Keywords: X-ray, belowground, phenotyping, tuber (potato), genetic diversity, biomass, non-invasive (non-contact) measurements, abiotic stress


INTRODUCTION

Independent climate change models predict that global temperatures will increase, and patterns of rainfall will change entailing periods of drought on the one hand and floods on the other hand (Cook et al., 2007). As a result, plants will be—and are already—exposed to changing environmental conditions which cause substantial yield losses (Hijmans, 2003; Ciais et al., 2005). The prevention of such losses is of particular importance regarding the rapidly growing world population and the increasing need for food and feed (Alexandratos and Bruinsma, 2012). Potato (Solanum tuberosum L.) is the fourth most important crop plant worldwide and as such of great significance with respect to food security (Thiele et al., 2010). Potato productivity is limited by abiotic stresses like drought and heat (Aksoy et al., 2015). Moreover, potato plants are cultivated worldwide including geographic areas that are prone to heat waves and drought periods. Therefore, potato yield is likely to be negatively affected by these stress factors alone or in combination.

Originating from the temperate zones of the Andes, potato plants prefer cooler temperatures below 20°C and a short photoperiod (12 h) (Van Dam et al., 1996). Potato tubers are formed by longitudinal cell division in pith and cortex from underground stem-derived shoots called stolons. Tuber formation is associated with increased cell expansion and division and an enhanced starch and storage protein biosynthesis and deposition. Sucrose unloading changes from apoplasmic to symplasmic (Viola et al., 2001) rendering Sucrose Synthase (SuSy) as the main enzyme hydrolyzing sucrose and thus providing building blocks for other metabolic processes like starch biosynthesis (Appeldoorn et al., 1997). As a consequence, SuSy has been identified as a determinant of sink strength (Zrenner et al., 1995). Both, heat and drought, have been shown to inhibit tuberization causing decreased tuber number, size and quality (Levy, 1985; Deblonde and Ledent, 2001). These adverse effects are caused by an interference of heat and drought with the formation of the tuberization signal SP6A (Navarro et al., 2011; Hastilestari et al., 2018), carbon allocation to developing tubers (Wolf et al., 1990; Gawronska et al., 1992), and tuber filling (Krauss and Marschner, 1984). In addition, starch mobilization has been described during both, heat and drought stress, leading to increased reducing sugar content of the tubers (Dahal et al., 2019).

Conventional methods to follow tuber growth over time involved the removal of tubers and/or alterations in the substrate leading to potential disturbances of source-sink relationships (Pérez-Torres et al., 2015). X-ray computed tomography (CT) is used to determine non-destructively and non-invasively above ground plant material for example of wheat ears (Hughes et al., 2017; Schmidt et al., 2020), rice tillers (Yang et al., 2011), or seeds (Duong Quoc Le et al., 2019). For belowground it is used to observe the soil root interactions (Rogers et al., 2016), the root systems (Tracy et al., 2010; Mooney et al., 2012; Zappala et al., 2013; Metzner et al., 2015; Pfeifer et al., 2015; Gao et al., 2019; Teramoto et al., 2020) or other plant organs like cassava or potato tubers (Pérez-Torres et al., 2015). Other methods to observe tuber growth dynamics non-destructively and non-invasively are magnetic resonance imaging (MRI) (Metzner et al., 2015; van Dusschoten et al., 2016) and ground penetrating radar (GPR) (Delgado et al., 2017). CT has previously been shown to allow non-invasive tracking of tuber growth and reproducible determination of tuber volume (Ferreira et al., 2010). A hindrance of this method was the high demand for manual corrections of the segmentation of the images which led to low sample throughput capacities, time-consuming data analysis and high costs.

Here we describe the implementation of a medium-throughput imaging pipeline enabling us to continuously monitor growth of potato tubers by means of CT analysis. We observed the implications of combined heat and drought stress on tuber growth velocity in vivo and analyzed gene expression of potato tubers with destructive sampling.



MATERIALS AND METHODS


Plant Material and Growth Conditions

Solanum tuberosum plantlets of the cultivars Agria, Saturna, Tomensa, and Ramses were obtained from Solana Research GmbH (Windeby, Germany). The cultivar Diamant was obtained from KWS Potato BV (Nagele, Netherlands). All plantlets were propagated in tissue culture on MS-Medium (Murashige and Skoog, 1962) containing 2% (w/v) sucrose under conditions of 16 h light (150 μmol m–2 s–1) and 8 h dark at 21°C. Plants were transferred to individual pots with 15 cm diameter and a volume of 1.5 L containing sieved soil (Einheitserde Classic ED73; sieve grid 0.5 cm). The pots were placed in plant growth chambers (Conviron, Winnipeg, Canada) under conditions of 16 h light at 21°C and 8 h dark at 18°C and 50% humidity during the day and 35% humidity at night. Plants were watered daily with 50 ml per day/plant and tuber growth was monitored by CT three times per week. In the first experiment, four plants each of the cultivars Agria, Saturna, Tomensa, Ramses and Diamant were monitored at the same time. When tubers were detectable via CT, combined heat and drought stress was applied by increasing the temperature to 29°C during the light period and 21°C during the dark period and reducing the amount of water given to each plant from 50 to 30 ml/day. In the second experiment with the cultivar Diamant, 30 plants were used of which 16 were monitored by CT analysis. After tuber initiation, as determined by CT monitoring, drought and mild heat stresses were applied to half of the plants for 2 weeks while the other half of the plants served as control group. The control group was watered with 50 ml per day/plant for the whole time while the stress group was subjected to the conditions described above.



X-Ray CT Imaging

All plants were measured at an individually designed CT system at the Fraunhofer EZRT in Fuerth, Germany using a GE 225 MM2/HP source, Aerotech axis systems and the Meomed XEye 2020 Detector operating with a binned rectangular pixel size of 100 μm (see Figure 1A). The source was operated at 175 kV acceleration voltage with a current of 4.7 mA, recording 800 individual projections with an integration time of 380 ms per projection. The stack of projections was made with continuous sample rotation (fly-by) over 360°, resulting in a measurement time of 5 min per pot. To harden the x-ray spectra, a 1 mm thick copper pre-filtering was applied with the filter mounted directly in front of the source. For the reconstruction of the recorded projection stack (see Figures 1B,C), we used a filtered back projection reconstruction library from Fraunhofer EZRT. The algorithms are implemented following the description of Buzug (2008). For a stable analysis result, we normalized all reconstructed volumes regarding the unattenuated intensity of areas without any transmitted volume. Thus, the resulting gray-scale range is comparable throughout the whole series of measurements. In the CT system we used a focus object distance of 725 mm and a focus detector distance of 827 mm. This resulted in a reconstructed voxel size of 88.9 μm. With this small distance between the pot and the detector, the resolution is mainly determined from the rectangular pixel size of the detector and not influenced from the focal spot size of the x-ray source. Thus, a scanning time of 5 min per pot is feasible. The loading of the potato pots was done manually (see Figure 1A). Figures 1D,E shows a horizontal and a vertical cross-section of the reconstructed volume, respectively.
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FIGURE 1. Panel (A) shows a potato plant in the CT-System. On the left-hand side is the X-ray tube and on the right-hand side the detector, which collects the projections; panel (B) represents the stack of 2D projections; panel (C) shows a 3D visualization of the reconstructed and segmented data; (D) horizontal and (E) the vertical cross-section.




Implementation of an Automated Data Analysis Platform for CT Imaging

We generated an automated data analysis platform for the high-throughput CT analysis. For better performance the image processing was done in a special C++ application which can be used in the VolumePlayerPlus visualization and segmentation software. To analyze all plants in a comparable manner, special segmentation algorithms were used. Only using the reconstructed linear absorption coefficient, results in many false positives and it would be very hard to distinguish tubers from different plant material inside the soil (like turf, stolon and roots). Thus, we used the hypothesis that the soil is inhomogeneous compared to tubers for our image segmentation pipeline which contains eight steps (see Figure 2).


[image: image]

FIGURE 2. Single steps of the image processing for segmenting potato tubers and the final segmentation as green overlay over the original volume. For representation virtual 2D cross sections at the same depth of the reconstructed 3D volume of the pot are shown.


As first step after the reconstruction we applied a size adaptable median filter in 3D to reduce the noise. On this filtered volume we calculated pixel wise the local variance:

[image: image]

Now, compared to the soil, tubers are more homogeneous and a single threshold binarization separates most of the surrounding soil from the tubers. However, in this state potato tubers and stolons are still connected. Therefore, we applied a morphological operator called Erosion (Soille, 1998). As next step we calculated the connected components with a chessboard metric to have each object in the volume individually labeled and applied a morphological operator called Dilatation. This was necessary because the local variance calculation and the erosion reduced the size of the labeled segments. With the Dilatation we reversed this reduction and received the original size of the tubers.

At this stage only homogenously labeled objects were left over in the reconstructed dataset. For all of these objects, parameters like the volume, the mean absorption coefficient, the position and the aspect ratio were calculated. Scanning the same pot several times in a row, allowed to further differentiate between tubers and other false positive segmented homogenous objects like stones and parts of unconnected stolons. A tuber has to grow over time and the mean reconstructed absorption coefficient is depending on the material and density (Buzug, 2008), thus, it is possible to distinguish homogenous clay parts from the tubers. In case the aspect ratio is very different from a sphere all the disconnected homogenous stolons can be filtered as well. To track the potato tubers over time we calculated the center of mass of the individual potato tuber and compared it with the position of the timepoint before. The maximal distance was determined by the diameter of the sphere equivalent volume of the potato tuber at this timepoint. This resulted in a time dependent threshold of maximal difference between the center of mass of two timepoints.

Using these algorithms, it is possible to reconstruct, segment and analyze all plants at each measured time point with only one set of parameters. Both experiments combined 592 measurements in a total of 36 plants. An evaluation version of the Tuber segmentation package as well as some reference volumes can be obtained by the senior author (SG).



Sampling of Tuber Material

Tuber samples from the experiment with the cultivar Diamant were taken at three time points; (1) 8 days after initialization of the stress period, when the tubers had stopped growing (TP1), (2) 3 days after the stress period, when the tubers had started growing again (TP2), and (3) at the end of the experimental period, 2 weeks after the end of the stress phase (TP3). At each time point five plants per treatment were harvested and the leaf and tuber biomass were measured with a laboratory balance. At the first time-point, 10 plants (five per condition) were harvested which had not been monitored by CT analysis. At the second time-point, two plants per condition had not been subjected to CT analysis, while the other three sampled plants had been monitored. At the end of the experimental period the remaining 10 plants which had been monitored via CT imaging were harvested and biomass was determined. At each time point and condition, 10 tubers were selected for sampling. Samples were immediately frozen in liquid nitrogen and stored at −80°C until further use.



Determination of Starch Content

Starch was quantified in tuber samples extracted with 80% ethanol incubated for 1 h at 80°C. After centrifugation, removal of the supernatant, and washing with ethanol and water, 0.2 M Hepes-KOH, pH 7.5 was added and samples kept at 4°C overnight. After heating the samples to 95°C for 1.5 h, the pH was neutralized with 1 N acetic acid. Next, starch extracts were incubated with Amyloglucosidase overnight at 55°C and pH 5.5. The spectrophotometric determination of released glucose was conducted as described previously (ap Rees et al., 1977).



Measurement of Sucrose Synthase Activity

Sucrose Synthase activity was measured according to Zrenner et al. (1995). Protein content was determined according to Bradford (1976).



RNA Isolation

RNA was isolated as described previously (Logemann et al., 1987). Total RNA was quantified, and quality controlled using the ND-1000 Spectrophotometer (NanoDrop Technologies).



CopyDNA Synthesis and Quantitative Reverse Transcriptase Polymerase Chain Reaction Analysis

Two μg of total RNA were treated with DNase I (Thermo Scientific) prior to reverse transcription using oligo d(T) primers and RevertAidTM H minus first strand copyDNA (cDNA) synthesis kit (Thermo Scientific) according to the manufacturer’s instructions. For relative quantification of starch gene derived transcripts, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses were performed using the AriaMX qPCR system (Agilent Technologies) in combination with the Brilliant II SYBR® Green QPCR Master Mix (Agilent Technologies) with four biological replicates for each condition and two technical replicates. Ubi3 [L22576, (Kloosterman et al., 2005)] expression was used for normalization of target gene expression. The thermal profile was as follows: 1 cycle 10 min at 95°C for DNA polymerase activation followed by 40 cycles of 30 s at 95°C, 30 s 60°C and 30 s 72°C and subsequently a melting curve. Primers were designed using the Primer-designing tool on the NCBI website (Ye et al., 2012) to have a product length ranging from 70–150 bp and a melting temperature from 59–61°C. Target genes and sequences are listed in Table 1.


TABLE 1. Target genes and primer sequences for qRT-PCR analyses.

[image: Table 1]


RESULTS


Calibration of Tuber Fresh Weight From CT Analysis

Analyzing the volume and the mean linear absorption coefficient for each tuber allows to calculate a virtual fresh weight. For this assumption we used the high correlation between the linear absorption coefficients of the reconstruction of the 3D volume with the physical density of the object. However, this only holds, as long as the elemental composition of the object of interest is more or less constant. In case of potato tubers, the elemental composition is mainly determined by hydrocarbon chains and water. In Figure 3, the correlation of the fresh weight with the non-destructively determined virtual fresh weight for individual potato tubers was calculated with an R2 of 0.99.


[image: image]

FIGURE 3. Calibration curve for virtual tuber fresh weight to real tuber fresh weight.


Applying this as calibration, it was possible to directly calculate the corresponding fresh weight during the growth process for each measured tuber. With the results of the depicted image processing pipeline and the corresponding calculated features, a python script collected each single result and calculated the growth statistics over time for each potato tuber and variety.



Growth Curves of Different Potato Varieties as Result of the Imaging Pipeline

Potato plants were monitored via CT imaging every second day. After the measurement the potato tubers were virtually excavated out of the soil for each time point. This segmentation process was automated and ran with the same parameter for all plants even if there were differences in potato tuber sizes or in soil moisture due to stress conditions. Figure 4A demonstrates the segmentation process from plant to segmented tubers. Figure 4B depicts some timepoints of the growth of the potato tubers. The image from day 14 shows that the potato tubers can be segmented from the beginning where the potato tubers were only 3.6 mm in diameter. The image of day 42 demonstrates that even if there were several bigger potato tubers close together, the segmentation is possible. On the segmented tubers the volume and fresh weight of each tuber for each time point was calculated to determine the growth curve over time. Thus, each potato tuber could be tracked over the different measurements and even with slight variation in moisture content of the soil robust tuber tracking and segmentation was possible.


[image: image]

FIGURE 4. Schematic representation of the virtual excavation of potato tubers using the automated segmentation process. The scanned plant is reconstructed after the CT measurement and virtually excavated. (A) On the right-hand side, the excavated tubers are shown after the last measurement time point. (B) three timepoints as example of the growth of the potato tubers.


During the first experiment, five different genotypes were measured every second day from day 14 after planting until day 42 after planting. From day 15 after planting until day 29 after planting combined drought and heat stress was applied. The plants had between three and nine tubers which shows that the algorithm can segment the tubers even if the space between the tubers is restricted. In Figures 5A–E the growth analysis for the genotypes Agria, Saturna, Tomensa, Diamant and Ramses is shown, respectively. The subfigures represent the growth of the tubers for one plant of the respective variety, exemplary. Each curve is related to one tuber of this particular potato plant. The growth curves clearly show that during the drought and heat stress the increase of volume is slower than in the recovery phase. Each genotype basically exhibited the same growth dynamic: In the first growth phase, tubers grew until stress treatment was started. In the second growth phase, after commencing the stress treatment, tuber growth slowed down and eventually stopped. In the last growth phase, after the stress was relieved, tubers resumed their growth. An unusual observation is that after the stress period there was at least one tuber which didn’t continue growing. This was seen for all plants which had more than three tubers before stress application (Figures 5A–E).


[image: image]

FIGURE 5. Growth over time for each tuber of one exemplary plant for five different genotypes. (A) Agria, (B) Saturna, (C) Tomensa, (D) Diamant, and (E) Ramses where growth curves of tubers in the yellow circle are enlarged in the yellow square.


Additionally, the total tuber biomass was calculated for each plant individually as the sum of all tuber weights of the respective plant at each time-point and the average total tuber fresh weight was calculated for all plants of the same cultivar. For all genotypes analyzed, the increase of total tuber biomass stagnated during the combined abiotic stress treatment between days 15 and only very small increments in tuber biomass were observable (Figure 6B). After the stress treatment, tubers resumed growth in all cultivars. As shown in Figure 6A the resulting pattern of tuber biomass accumulation thus exhibited a bi-phasic course.
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FIGURE 6. Average total tuber mass per plant and genotype over the experimental time-course. Plants were grown in the greenhouse until tuber induction and then transferred to phytochambers under long day conditions. The red line indicates the period of elevated temperature and drought from day 15 to day 29. Tuber growth was monitored three times per week in four plants of each of the cultivars; Diamant (diamond), Ramses (quadrat), Agria (triangle), Saturna (circle), Tomensa (cross). Error bars represent standard deviations of four biological replicates. (A) Average total tuber biomass per plant over the experimental time course; (B) average growth velocity of total tubers per plant in g/d.




Comparison of Tuber Growth Under Combined Heat and Drought Stress and Control Conditions

To investigate whether the bi-phasic growth curve is a response to the combined heat and drought stress, a second experiment with only one genotype but with a control group was conducted. Therefore, thirty potato plants of the cultivar Diamant were grown in two phytochambers. Initially, the same temperature regime was applied to all plants until tubers developed i.e., 16 h light at 21°C and 8 h dark at 18°C and 50% humidity during the day and 35% humidity at night. Via the CT analysis pipeline, we monitored the tuber growth three times per week in 16 pots and utilized the same calibration set (see Figure 3) as in the previous experiment to estimate the individual tuber biomass from the volumetric data. The stress treatment was applied when all plants exhibited detectable tubers. After this, we applied to half of the plants a combined heat and drought stress by increasing ambient temperature to 29 °C during the day and 21°C during the night for 2 weeks and simultaneously decreasing daily water supply to 30 ml per day/plant instead of 50 ml per day/plant for control conditions. A few days after commencement of the stress treatment, tubers in the stressed group of plants ceased growing (Figure 7A) while tubers in the control group continued their growth (Figure 7B). Combined stress treatment led to a discontinuation of growth of all tubers, which is visible in Figure 7A, where all growth curves become flat. Control tubers showed constant growth although at varying velocities, as depicted in Figure 7B for tubers of one exemplary plant. This became clearly visible when average total tuber biomass per plant was calculated for each condition (Figure 7C) and, moreover, when the average biomass increase per day per plant was investigated (Figure 7D). Four days after the beginning of the stress treatment, a decrease in growth velocity was already measurable and it dropped close to zero at the end of the stress period. In contrast, tubers of plants kept under control conditions showed constant growth, which is depicted for the mean tuber biomass of monitored plants in Figure 7D. After releasing the plants from the stress treatment, growth velocity immediately increased to a level similar to that of the control treated plants resulting in a bi-phasic growth pattern (Figures 7C,D).


[image: image]

FIGURE 7. Growth characteristics of potato tubers of cv. Diamant under normal plant growth conditions (con) and under combined heat and drought stress (hd). (A) Growth of each tuber of one plant of the stressed group, (B) growth of each tuber of one plant of the control group, (C) average total tuber fresh weight per plant over the experimental time course, and (D) average growth velocity of total tubers per plant in g/d. Error bars represent standard deviations of five to eight plants per treatment.




Abiotic Stress Marker Gene Expression Analysis Confirms Combined Stress Treatment

To validate that the stress treatment had an effect on tuber physiology, the expression of potential marker genes for stress were investigated. Therefore, tuber samples taken 8 days after commencement of the combined stress treatment (TP1), 3 days after cessation of stress treatment (TP2) and after a 14-day recovery phase at the end of the experimental period (TP3) were subjected to qRT-PCR analysis. Stress-responsive genes were selected from publications on drought stress and subsequent re-watering in potato stolons (Gong et al., 2015), potato plants exposed to elevated temperatures (Hancock et al., 2014) and combined heat and drought stress in tobacco (Rizhsky et al., 2002).

Gene expression of candidate stress marker genes drought-induced 19 (DI19), Abscisic acid and environmental stress-inducible protein (TAS14), Lipoxygenase (LOX1), and Heat-shock Protein (HSP) was significantly increased during the heat treatment at TP1 when compared to potato tubers grown under control conditions (Figures 8A–D). After relieving the stress from the plants, gene expression of DI19, TAS14 and LOX1 decreased to control values (Figures 8A–C, TP2 and TP3). The only potential stress marker gene whose expression did not return to control values was a HSP whose expression stayed significantly above control values until the end of the experimental period although to a lesser extent as during the stress treatment at TP1 (Figure 8D). The expression of DI19 was significantly increased during the stress treatment but showed a lot of variation after stress release at TP2 and 3 (Figure 8A) indicating that individual tubers adjust differently to the changed environmental conditions.
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FIGURE 8. qRT-PCR on stress-responsive gene expression in tuber samples of the potato cultivar Diamant. Results from control plants are shown in dark gray, stress treated plants are shown in light gray. Error bars represent standard deviation of three to four biological replicates. (A) Drought-induced 19 (DI19), (B) Abscisic acid and environmental stress-inducible protein (TAS14), (C) Lipoxygenase 1 (LOX1), and (D) Heat-shock protein (HSP). Different subscript letters indicate statistically different expression (p < 0.05).




Impact of Combined Stress on Starch Metabolism

Abiotic stress is known to cause yield penalties and quality loss in potato (Levy, 1985, 1986). Since starch content is the main factor determining potato tuber dry matter and an important trait for breeders (Li et al., 2008), the impact of the stress treatment on starch metabolism was investigated. Therefore, activity of sucrose synthase, a marker enzyme for starch biosynthesis (Zrenner et al., 1995; Baroja-Fernández et al., 2009) was measured. In comparison to the plants grown under control conditions, SuSy-activity was decreased during the stress treatment and remained low throughout the rest of the experimental period (Figure 9A). In contrast, when measuring starch contents of the tubers at the three time-points, no significant changes were detected (Figure 9B).


[image: image]

FIGURE 9. SuSy-activity (A) and starch content (B) of tubers from plants grown under control and combined stress conditions. Dark gray bars represent values from control treated plants; light gray values represent values from stressed plants. Error bars represent standard deviations of nine to 10 biological replicates and six to 10 biological replicates for SuSy and starch measurements, respectively (*p < 0.05, Student’s t-test).


To further elucidate the impact of the stress treatment on starch metabolism, gene expression of SuSy4, the main SuSy isoform in potato tubers (Fu and Park, 1995; Van Harsselaar et al., 2017) and a determinant of sink strength (Zrenner et al., 1995) was evaluated via qRT-PCR analysis. During the stress treatment (TP1) a marked decrease in SuSy4 expression in comparison to the control group was detected (Figure 10A). After the stress treatment (TP2) SuSy4 expression recovered to control level. At the end of the experimental period (TP3) SuSy4 expression in stress treated tubers exceeded the expression in control tubers Figure 10A). As a second starch metabolism marker, the expression of granule-bound starch synthase (GBSS) was analyzed. Similar to SuSy4, GBSS expression was found to be significantly down-regulated in tubers of the stressed group during the stress treatment (TP1) and to recover to control values after the stress (TP2 and 3, Figure 10B). Additionally, GPT2.1 expression was analyzed. During the stress treatment and 1 week after ending the treatment, no effect of the stress on GPT2.1 expression could be observed. At the end of the experimental period (TP3), GPT2.1 expression was slightly, but non-significantly higher in tubers grown under stress conditions than in tubers grown under control conditions (Figure 10C).
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FIGURE 10. Relative expression of marker genes for starch biosynthesis. (A) Sucrose synthase 4 (SuSy4), (B) Granule-bound starch synthesis (GBSS), and (C) Glucose-6-phosphate translocator 2.1 (GPT2.1). RNA expression was assessed by qRT-PCR with specific primers and normalized to ubi3 expression by 2–ΔΔCt method. Values of control treated plants are shown in dark gray; stressed plants are shown in light gray. Error bars represent standard deviation of four biological replicates. *p < 0.05 (Student’s t-test).


In summary, analysis of stress markers as well as markers for starch biosynthesis show that the biphasic growth curve is due to the combined drought and heat stress response which affects tuber biomass accumulation. Although starch content was not significantly affected by the stress treatment, biochemical and molecular biological parameters suggest an impact on tuber metabolism which is in line with the observation that tuber growth was inhibited by the stress treatment (Figure 7).



DISCUSSION


Combined Heat and Drought Stress Affects Tuber Growth

In this study, potato tuber development from initiation until harvest was monitored by CT analysis in stressed plants and plants grown under ambient conditions. We were able to establish an imaging pipeline to analyze the potato tuber delevopment in a high thoughput (5 min per pot) and automated way (one set of parameter for the whole experiment). This enabled analyzing the stress dependend growth dynamic of individual tubers within one pot and to visualize even small variations in belowground biomass. The time dependance of this data set allowed the 4D analysis of growth processes affected by abiotic stresses. The imaging pipeline presented here can be scaled up to be used in high-throughput phenotyping systems. However, the combination with automated data processing is the key to generate objective data accelerating breeding efforts to improve abiotic stress tolerance.

We chose combined heat and drought stress since these abiotic stresses are likely to occur in parallel in the context of global climate change (Hijmans, 2003; Ahuja et al., 2010). We applied the stress treatment after tuber induction, when tubers were detectable by CT, in order to avoid delaying or even completely inhibiting tuber formation. Such detrimental effects of heat and drought have been described previously (Jackson, 1999; Luitel et al., 2015; Dahal et al., 2019; Aliche et al., 2020). During combined stress application, CT analysis revealed that tuber growth is inhibited under combined elevated temperature and drought stress and most of the tubers can resume after the stress has been terminated. The growth arrest as calculated from the CT data led to significantly lower tuber biomass in stressed plants at the end of the stress treatment compared to control plants. After cessation of the stress, tubers started growing again and were only slightly smaller than control tubers at the end of the experimental period.

Due to the early timing of the stress treatment directly after tuber induction, it seems that most tubers were able to recover from the implications of the stress treatment on biomass accumulation. This was also seen in an early study on the effects of individual heat and drought stress on tuber development (Levy, 1985) where early stress, imposed when tubers were small, reduced tuber yield and dry matter accumulation only slightly. Heat or drought stress applied during the tuber bulking stage had a more deleterious effect on tuber yield (Levy, 1986, 1985). Moreover, in our experimental setup plants were still immature at the end of the experimental period, exhibiting only small tubers and low overall tuber biomass. How our findings translate to potato plants grown to maturity requires further trials.



Stress Markers Respond to the Treatment

Genes which have previously been shown to respond with differential expression during abiotic stress were selected from the literature (Rizhsky et al., 2002; Gong et al., 2015) in order to confirm that the stress led to a response in the potato tubers. Gong et al. (2015) analyzed gene transcription in stolon tips of potato plants grown under control conditions, drought stress and after re-watering. They found that TAS14 was 4.7-fold up-regulated after 3 days of drought treatment and 8.2-fold down-regulated after re-watering when compared to stolons from plants grown under control conditions. In our study, TAS14 expression in tubers was almost 50-fold up-regulated after 8 days of combined drought and heat stress but had returned to values similar to control 3 days after stress release. This indicated that TAS14 might be suitable as a marker for stress in potato tubers. However, further characterization of its expression profile in different plant organs and under differing conditions is needed to confirm its suitability as a stress marker. Support for the role of TAS14 during abiotic stress comes from experiments in tomato, where stable overexpression of TAS14 led to improved long-term drought tolerance (Muñoz-Mayor et al., 2012).

Rizhsky et al. (2002) examined gene expression patterns under different stress conditions as well as their combinations in tobacco plants. A combination of drought and heat stress led to significant increases in gene expression of DI19 and Lox1, by 34- and 6.7-fold, respectively. DI19 has also been described in rice as a key regulator during drought stress and drought tolerance (Wang et al., 2014). In the present study, DI19 and Lox1 were induced significantly, but to a far lesser extent than in those previous studies, in tubers during combined stress treatment compared to tubers grown under control conditions. It appears that these two transcripts are not suitable as markers for combined heat and drought stress in potato tubers.

Heat-shock protein (DMT400032851) which was strongly elevated in potato tubers during combined heat and drought stress compared to control, has previously been found in a microarray analysis among 2,886 differentially expressed genes in potato tubers of the cultivar Desirée during mild heat (Hancock et al., 2014). In the experiment by Hancock et al. (2014), potato plants were subjected to elevated temperature (30°C during the day / 20°C during the night) for 1 week and expression patterns over a time course of 20 h were compared to tubers grown under ambient conditions (22°C / 16°C). HSP was found to be upregulated approximately 12-fold on average over time (range 0.8–30.8-fold) during elevated temperature. The strong induction which we have determined for HSP could be a result of the additional drought treatment and the different methodology (qRT-PCR vs. microarray analysis). Thus, HSP might be an appropriate marker for combined heat and drought stress in potato tubers but further validation is recommended.



Combined Heat and Drought Stress Has a Negative Influence on Expression of Genes Encoding Enzymes Involved in Starch Biosynthesis

Heat and drought are abiotic stress factors influencing many developmental and physiological processes. In potato plants, both factors, alone or in combination, affect tuberization and starch accumulation associated therewith (Bodlaender, 1963; Wolf et al., 1990; Gawronska et al., 1992). Depending on the timing of the occurrence of these disruptive environmental conditions, tuberization can be inhibited completely or tuber bulking can be disturbed (Tang et al., 2018). Furthermore, carbon partitioning can be altered by transient exposure of potato plants to heat stress leading to reduced starch and increased reducing sugar contents of tubers (Busse et al., 2019). We have seen a disturbance of tuber bulking which was confirmed by analysis of mRNA expression of SuSy4 as well as specific activity of SuSy, a marker for starch biosynthesis, in tuber samples. Increased SuSy expression and activity has been associated with increased starch and total yield (Baroja-Fernández et al., 2009). Under adverse conditions like heat, SuSy4 expression and SuSy activity have been shown decrease (Hastilestari et al., 2018).

GPT2.1 has been identified as the tuber-specific GPT2 isoform (Van Harsselaar et al., 2017), whose expression is strongly associated to processes linked to starch biosynthesis and correlates to SuSy4 expression (Ferreira et al., 2010). Therefore, we hypothesized that GPT2.1 expression would decrease during stress treatment. However, gene expression analysis of GPT2.1 revealed no significant differences between stressed tuber samples and tubers grown under control conditions. This is consistent with the gene expression data from tuber samples under elevated temperatures published by Hancock et al. (2014) and Hastilestari et al. (2018) where GPT2.1 was not among the differentially regulated genes.

Granule-bound starch synthase is the starch synthase isoform responsible for amylose-synthesis (Visser et al., 1989). Expression of GBSS was found to be significantly down-regulated in potato tuber during combined heat and drought stress in our qRT-PCR analysis. Similarly, in the microarray experiment by Hancock et al. (2014), GBSS expression was downregulated significantly in the tuber samples from plants grown under elevated temperature. This seems consistent with an overall decrease of starch biosynthesis in potato tubers under heat and drought stress. In our experiment, SuSy4 and GBSS expression recovered to levels of tubers grown under control conditions after the stress conditions were released. Similar observations were reported by Chen et al. (2020) in potato leaves during re-watering after a dehydration period, where most genes which were differentially expressed during the dehydration period reversed their expression during re-watering.



CT Analysis Pipeline Is a Phenotyping Tool for Stress Detection

The presented imaging pipeline was able to generate stable results in growth analysis of potato tubers for five different genotypes. Using only one set of parameters it was possible to track individual tubers for different growth stages and a high variation in tuber number per plant. Thus, we demonstrated that this kind of CT analysis is a suitable tool to monitor morphological changes of otherwise inaccessible, underground tissues in planta and enables also methods like guided sampling to correlate in future morphological and physiological measurements. This is in accordance with for example Pfeifer et al. (2015) or Metzner et al. (2015). With the presented image pipeline for segmentation and feature calculation it is possible to track each individual potato tuber over time within the experiment. These time-resolved data were used for more detailed growth curve analysis like non-invasive biomass determination and the assessment of growth velocity. We could show that the observed biphasic growth pattern is directly connected with the heat and drought stress response in the tubers. This enabled us to use this CT based method together with the presented image pipeline to be a non-invasive tool for prediction of stress in potato tubers already in early growth stages. A major point was the presented combination of the individual 3D volume image analysis techniques. Doing so we could use only one set of input parameters for the extraction of the individual tubers for the whole experiment. Thus, the volume analysis toolchain was robust enough to handle the individual noise in the reconstructed volumes and the differences in moisture between well-watered and heat and drought stressed plants. For potato breeding purposes, this method could be used as a phenotyping platform for the development of stress resistant varieties. Additionally, the robust image pipeline and the relatively fast measurement times enables the observation of below ground tuber growth in high throughput. For future experiments it is possible to use pots up to a diameter of 20 cm and a volume of 4 L to analyze potato plants also in later growth stages. However, a deeper understanding of the processes and regulatory circuits elicited by drought, heat or both combined is required for potato in order to define parameters to distinguish stress tolerant and susceptible varieties. This is an important factor toward more resistant genotypes.

In general, the throughput of the system has to be evaluated in terms of cycle time in the measurement—including the measurement time and the time for sample exchange—and the time for data processing. The data processing time is directly connected to the computing power used for the analysis and with the data analysis pipeline presented a parallel computing can be realized. Thus, the processing time is not a bottleneck to further increase the overall throughput of the combined system. However, the current system was relying on a manual change of the individual plants. To further increase the cycling time of the system an integration in a conveyor system would be highly beneficial. Doing so, the time for sample exchange could be minimized. To decrease the measurement further, there are some more steps possible. The easiest one is to decrease the resolution and at the same time increase the smallest detectable tuber. This option is strongly connected with the breeding use case in mind. If this is not an option, using stronger X-ray sources or even pulsed sources is a way to decrease the scanning time. Finally, a vertical gantry system with pulsed X-ray sources with rotating anodes would be a possibility for real high-throughput tuber analysis.
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The Plantarray 3.0 phenotyping platform® was used to monitor the growth and water use of the quinoa varieties Pasto and selRiobamba under salinity (0–300 mM NaCl). Salinity reduced the cumulative transpiration of both varieties by 60% at 200 mM NaCl and by 75 and 82% at 300 mM NaCl for selRiobamba and Pasto, respectively. Stomatal conductance was reduced by salinity, but at 200 mM NaCl Pasto showed a lower reduction (15%) than selRiobamba (35%), along with decreased specific leaf area. Diurnal changes in water use parameters indicate that under salt stress, daily transpiration in quinoa is less responsive to changes in light irradiance, and stomatal conductance is modulated to maximize CO2 uptake and minimize water loss following the changes in VPD (vapor pressure deficit). These changes might contribute to the enhanced water use efficiency of both varieties under salt stress. The mechanistic crop model LINTUL was used to integrate physiological responses into the radiation use efficiency of the plants (RUE), which was more reduced in Pasto than selRiobamba under salinity. By the end of the experiment (eleven weeks after sowing, six weeks after stress), the growth of Pasto was significantly lower than selRiobamba, fresh biomass was 50 and 35% reduced at 200 mM and 70 and 50% reduced at 300 mM NaCl for Pasto and selRiobamba, respectively. We argue that contrasting water management strategies can at least partly explain the differences in salt tolerance between Pasto and selRiobamba. Pasto adopted a “conservative-growth” strategy, saving water at the expense of growth, while selRiobamba used an “acquisitive-growth” strategy, maximizing growth in spite of the stress. The implementation of high-resolution phenotyping could help to dissect these complex growth traits that might be novel breeding targets for abiotic stress tolerance.

Keywords: quinoa, salt stress, Plantarray, transpiration, stomatal conductance, water use efficiency, radiation use efficiency, phenotyping


INTRODUCTION

Plant breeding for abiotic stress tolerance has proven to be complex (Gilliham et al., 2017). A major challenge is that stress tolerance is a systemic process that involves a number of synchronized, interconnected physiological processes and genes operating together. A second important complication is that these physiological processes are largely and continuously influenced by the environment. Thus, a proper screening of tolerance traits would ideally involve continuous monitoring of the plant responses to changes in the environment, which means that an accurate physiological phenotyping of well-defined traits is essential for the successful breeding for salt tolerance. Plant phenotyping has rapidly evolved in the past decades and has benefited enormously from developments in other disciplines such as remote sensing, robotics, computer vision and machine learning (Furbank and Tester, 2011). Most state-of-the-art phenotyping facilities, particularly for stress-related traits, collect information using robotics and automated image acquisition and analysis: image-based phenotyping (Fahlgren et al., 2015). A complementary platform implements physiology-based gravimetric systems that enable the direct measurement of plant dynamic responses, also called functional phenotyping (Negin and Moshelion, 2017). The data provided by gravimetric platforms, together with controlled measurements of environmental parameters, such as radiation, humidity, atmospheric vapour-pressure deficit (VPD) and temperature provide new insights into the complex genotype x environment interactions under specific treatments or abiotic stresses (Negin and Moshelion, 2017).

Soil salinization is a major limiting factor for agriculture, causing significant pressure on the availability of arable land. Saline soils constitute more than 20% of the global irrigated land and affect agricultural production in more than 75 countries. Soil salinity causes severe yield and economic losses, especially to smallholder farmers worldwide, and is expected to expand as a result of climate change (Qadir et al., 2014). Plant growth is directly and indirectly affected by soil salinity. Growth takes place by the conversion of photosynthates into structural molecules. Energy from photosynthesis is also needed to maintain several physiological functions that rely on assimilation of carbon dioxide and glucose metabolism, known as maintenance respiration (De Vries, 1975). When salt accumulates in the soil, the osmotic potential decreases, and the osmotic gradient between root medium and the roots leads to reduced water uptake with a subsequent reduction in cell expansion (Munns, 2002). By adjusting internal osmotic potential by for instance the accumulation of inorganic and/or organic compounds, plants can restore water uptake, at least up to a certain degree. The salinity-induced water uptake limitation directly affects growth through decreased CO2 availability resulting from stomata closure and down-regulation of photosynthetic metabolism (Chaves et al., 2008). The indirect effects of salt stress on growth include possible damage to the photosynthetic machinery caused by the secondary oxidative stress prompted by salinity as well as an increased maintenance respiration caused by several costly salt stress response mechanisms (i.e., osmotic adjustment, ion transport) (Karlberg et al., 2006). Due to the increased maintenance respiration less assimilates will be available for plant growth with the same amount of transpired water, which would lead to a decreased water use efficiency (Munns et al., 2020).

The assessment of plant growth and the relation with transpiration and transpiration efficiency would provide a mechanistic account of the salinity effects at the whole plant level. However, transpiration has always been a trait that is laborious and expensive to measure and this has limited its incorporation in salt tolerance studies. Therefore, we only have fragmented understanding of the consequences of salinity-induced changes in transpiration on growth and yield reduction (Harris et al., 2010). In the present study we use a functional phenotyping platform based on mini-lysimeters, the Plantarray 3.0 platform (Plant-Ditech, Rehobot, Israel). This platform allows simultaneous and high temporal resolution measurements of water uptake, transpiration and plant growth to expand our understanding of salt stress responses of plants, using the facultative halophyte Chenopodium quinoa as a model species. Chenopodium quinoa is an herbaceous, annual crop that originated in the Andes and is well-adapted to harsh environments, such as nutrient-poor, drought-affected, and saline soils. The high salt tolerance of quinoa has been widely recognized (Hinojosa et al., 2018; Jaramillo Roman et al., 2020). The overall goals of this study are: (i) to explore the interacting effects of salt stress on water uptake, transpiration and growth of quinoa, (ii) to identify salt tolerance strategies of two quinoa genotypes known to differ in their response to salinity and (iii) to examine the potential of high-resolution functional phenotyping for identifying physiological markers for salt tolerance screening in breeding programs.



MATERIALS AND METHODS


Plant Materials and Treatments

The European non-bitter quinoa varieties Pasto and selRiobamba, a line selected from Riobamba (Riobamba has still some residual heterozygosity) were used in this experiment. These varieties were bred at Plant Breeding, Wageningen University & Research (The Netherlands) and AbbottAgra (France) and in previous experiments they have shown contrasting responses to salt stress (Jaramillo Roman et al., 2020). The experiment was conducted between March and May 2019 at the Unifarm greenhouse facilities of Wageningen University & Research, The Netherlands. Plants were sown in trays filled with potting soil and transplanted to 4 L pots 16 days after sowing (DAS). The pots were filled with standard filtered sand (grain size 0.6–1.0 mm) and each pot contained 4 plants. To prevent evaporation, small PVC balls were put on the surface of the pots, surrounding the plants. The greenhouse air humidity was set to a minimum of 80% and the photoperiod to 16 h light. When the incoming shortwave radiation was below 200 Wm–2, additional lighting was supplied (100 Wm–2). The temperature in the greenhouse was set up to a minimum of 15°C during the night. During the day, ventilation was controlled so the temperature did not exceed 35°C. The plants were irrigated with half-concentrated Hoagland’s nutrient solution. Salt stress treatment started 33 DAS with irrigation with 0.5 × Hoagland’s solution plus 200 mM NaCl. However, due to the sudden increase to 200 mM NaCl salinity, wilting was observed in the leaves of treated plants a few hours after irrigation. Therefore, the excess of salt was washed out and the salt treatment was built up in incremental steps of 100 mM NaCl per day until the desired salt concentration was reached. The final salt treatments of 200 mM and 300 mM NaCl were reached on day 36 after sowing, and the soil salt concentration in the drainage was monitored continuously with a conductivity meter (Profile Cond 315i, Xylem Analytics, Germany) for the duration of the experiment. Four pots per variety were used in each treatment, each pot was considered one experimental unit. Half of the plants (2 plants per pot) were harvested 47 days after sowing and the remaining plants were harvested 77 days after sowing. During the first destructive harvest, the above-ground biomass was collected and separated into stems, leaves and inflorescences. Leaves were split in young (upper one-third of the plant) and old leaves (lower two-thirds of the plant). Fresh weights of leaves, stems and inflorescences were recorded, and leaf area was measured using a leaf area meter (Li-3000 Area Meter, Li-Cor, Lincoln, NE, United States). During the second destructive harvest, roots were collected as well and weighed. Dry weights were determined after drying the samples in a forced-air oven at 60°C until they reached stable weight. The salt tolerance index (STI) was calculated as the ratio of above-ground dry biomass of salt-treated plants and the dry biomass of control (0 mM NaCl) plants. A timetable of all the parameters assessed in this study is presented in Supplementary Table 1.



Plantarray Design and Data Collection

The functional phenotyping platform Plantarray 3.0 platform (Plant-Ditech, Rehobot, Israel) was used to monitor plant growth through controlled tracking and measuring of irrigation and biomass increase throughout the growing period. The system uses highly sensitive load cells that are used as weighing lysimeters. Additional sensors were incorporated to the system in order to monitor other environmental factors. These were: HC2-S3-L meteo probe for relative humidity and temperature in the greenhouse (Rotronic, Crawley, United Kingdom), LI-COR 190 Quantum Sensor for photosynthetically active radiation measurements (Lincoln, NE, United States), and a soil moisture, electro-conductivity and temperature sensor (5T, Decagon devices, Pullman, WA, United States) incorporated in every pot. We monitored environmental factors to calculate VPD throughout the experiment and to understand the influence of these environmental factors in the transpiration and other physiological parameter measured on the plants. Each load unit (containing one pot) was connected to an individual control unit (CR1000 data logger) (Campbell Scientific, Logan, UT, United States) (Figure 1A). The system recorded the weight of the pots plus the environmental information registered by the sensors every 3 min. The data collection could be viewed in real-time through the online web-based software SPAC-analytics (Plant Ditech, Rehobot, Israel). The physiological traits could not directly be extracted from the protocols implemented by the SPAC analytics software, because at the beginning of the experiments the seedlings were very small and despite the use of the PCV balls the effect of evaporation was considerable, and therefore the weight of the pots could not be equilibrated. Several pots containing only substrate were placed next to the system and weighed manually on a daily basis to estimate evaporation from the pots.
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FIGURE 1. (A) Plant Array 3.0 platform used in this study. Each pot is positioned in a sensitive load cell connected to a control unit. (B) Pasto and selRiobamba at 77 DAS (6 weeks after the start of the salt treatment).


Additional pots were grown next to the system for the two varieties (8 pots with 4 plants each, each pot was considered one experimental unit) and harvested throughout the experiment for growth rate calculations. Several destructive harvests were performed on this material: (1) when seedlings were transplanted from trays to pots (16 days after sowing (DAS)), (2) when pots were incorporated to the system (26 DAS), (3) when the salt treatment started (36 DAS). The harvested material was used to measure leaf weight ratio (LWR) (g g–1), and specific leaf area (SLA) (m2 kg–1). SLA was calculated as the amount of leaf area per unit of leaf dry weight, LWR as the leaf fraction of the total dry plant biomass. RGR (d–1) was calculated as the natural logarithm of the relative increase in plant biomass over the mentioned period of time: RGR = ln(W2/W1)/(t2-t1) (Lambers and Poorter, 1992). Net assimilation rate (NAR, g m–2 day–1) was derived using the linear relation RGR = LWR×SLA×NAR. The RGR components calculated per period for the plants in the extra pots were used to estimate the RGRs of the plants in the system. To do so, it was assumed that the plants only grew during the light hours, and that RGR was strongly correlated with PAR during the day. This allowed us to derive RGRs for the plants in the system from the RGRs measured on the extra pots. Using the initial weight of the seedlings at the start of the experiment and assuming exponential growth of the plants, the derived RGRs were used to calculate fresh weights (FW) of the plants in the system with a 3-minute resolution. The measured fresh weights of the first three destructive harvest of the extra pots (16, 26 and 36 DAS) and the measured fresh weights on the plants on the system at 47 and 77 DAS were used as reference values to validate the calculation of FW values throughout the experiment.

The interpolated RGRs and FWs were used to estimate the other components of the RGR analysis (LWR and SLA) at each individual timepoint, and to obtain a reference value for the leaf area. Transpiration rate per time point equates rate of water loss from the pots, corrected for evaporation. This was calculated using the weight values of pots + plants provided by the system and subtracting the interpolated FW and the weight of static components added to the lead cells. Correction for evaporation was done based on the evaporation rates of the extra pots without plants. A running average of 180 min was used in the calculations to account for possible missing values in the weights provided by the lysimeters. Stomatal conductance (gs) was calculated as transpiration rate/leaf area/VPD. A running average of 120 minutes of data that was recorded every 3 min was used to correct for possible errors or outlier values in the system or VPD measurements. To validate the calculated gs, a portable leaf porometer (Decagon Devices Inc., WA, Australia) was used to measuregs on the abaxial side of the second fully developed non-shadowed leaf between 12:00 and 13:00 h at 58 DAS. Finally, whole plant water use efficiency (WUE) was calculated as g FW/g water transpired for an interval of 3 min in a 2 h running average using the interpolated fresh weights and transpiration rates.



Integrating Phenotyping Data to a Crop Production Model

The mechanistic crop growth model LINTUL (Light interception and utilization) was used as a framework to integrate several physiological components to plant growth (Spitters and Schapendonk, 1990). LINTUL is based on the linear relationship between produced biomass and the amount of radiation intercepted by the crop. The crop growth rate is calculated as: dWt/dt = ft = PARt×RUE, wheredWt/dt is the instantaneous growth rate at day t (g DM m−2 d−1), PARt the incoming amount of photosynthetically active radiation (MJ m−2 d−1, ‘light’ wave bands 400–700 nm), ft the fraction of PAR intercepted by the foliage, and RUE the average light utilization efficiency or radiation use efficiency (g DM MJ−1 PAR). The fraction of light intercepted during exponential growth can be calculated as 1–exp(–k LAI) on the basis of simulated LAI, where LAI is the leaf area index (m2 leaf surface (Wt x LWR x SLA) m−2 ground surface) and k is the extinction coefficient (Spitters and Schapendonk, 1990). Based on several studies that applied the LINTUL crop growth model (Sinclair and Muchow, 1999), the radiation extinction coefficient (k) was assumed to be 0.8 for this experiment, and the area of the pot that intercepted light (based on a pot size of 40 cm × 60 cm) to be 1 m2. Following an Expo linear model, RUE can be related to the RGR through the following relations: 1/Wt×dWt/dt = RGR = LWR×SLA×NAR, thus NAR = PARt×RUE (Van Loo, 1992).



Rapid Light Curve

Chlorophyll fluorescence measurements were performed at 76 DAS using the stand device Robin PSI PlantScreen TM system (Photon System Instruments, Brno, Czechia) for kinetic chlorophyll fluorescence analysis. The device is equipped with a chlorophyll fluorescence imaging unit FluorCam FC-800 mF Pulse Amplitude modulated (PAM). Three detached young leaves per plant were introduced in the device to perform the analysis. Rapid light curves were measured following 20 s acclimation at six different actinic light intensities (10-20-40-60-80-100% of a maximum actinic light of 1,692 μmol m−2 s−1) for a duration of 10 s. The calculated parameter was the PSII effective quantum yield (φPSII) defined as (F’m–F’)/F’m where F’ is the fluorescence emission from a light-adapted leaf and F’m is the maximal efficiency from a light-adapted leaf. Relative electron transport rate (rETR) is an approximation of the rate of electrons pumped through the photosynthetic chain, and was estimated as: rETR = φPSII x PAR × 0.85 × 0.5 where 0.85 is the value for absorption coefficient of the leaves and 0.5 the fraction of excitation energy distributed to PSII (Tschiersch et al., 2017).



Thermal Imaging of Quinoa Leaves

A thermal camera (FLIR A655sc, FLIR Systems, INC., Wilsonville, United States) was mounted above the plants. This camera has a 640 × 480 pixels resolution, and a temperature range of −40°C to 150°C, with a spectral range of 7.5–14 μm. The camera was allowed to automatically perform a NUC calibration throughout the period of imaging (between day 58 and 66 after sowing). One picture frame was recorder every ten minutes and the leaf temperatures were measured in a circular region in the center of a young leaf of each plant as depicted in Figure 5A.
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FIGURE 2. Dynamics of transpiration and growth throughout the season. (A) Cumulative plant transpiration in two varieties (Pasto and selRiobamba) and three salt concentrations (control (0 mM NaCl), 200 mM NaCl and 300 mM NaCl). (B) Total water transpired by the plants at 77 DAS under salt stress as a percentage of the control. (C) Fresh biomass per plant. Fresh weights were interpolated based on RGRs estimated from destructive harvest from extra pots (days 11, 21, and 36 after sowing) or plants growing in the system (47 and 77 DAS). The dotted black lines in the graph indicate the dates of the harvest in which the interpolated weights were validated with the biomass data from the harvests (16, 26, 36, 47, and 77 DAS). (D) Fresh biomass of the plants at 77 DAS under salt stress as a percentage of the controls. Means of 4 plants. In panels (A,C) the error bars indicate the SEM (standard error of mean) from the ANOVA at a specific timepoint. In panels (B,D) the error bars indicate the SE of the individual means.
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FIGURE 3. Water use parameters derived from Plantarray 3.0 data. (A) Average transpiration rate per day considering the hours of light received by the plants in the greenhouse. (B) Average stomatal conductance (gs_system) per day considering the hours of light received by the plants in the greenhouse. (C) Average whole-plant agronomic water use efficiency (WUE) per day considering the hours of light received by the plants in the greenhouse. Means of 4 plants. Error bars indicate the SEM (standard error of mean) from the ANOVA at a specific timepoint.
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FIGURE 4. Comparison of the derived versus porometer stomatal conductance (gs). (A) gs_system derived from Plantarray data as the average gs between 12:30 to 13:15 at 58 DAS. (B) gs_porometer measured with a porometer from 12:30 to 13:15 at 58 DAS. (C) Correlation between the derived from Plantarray versus porometer gs. Means of 4 plants. Error bars indicate SE of individual means. Statistically significant differences (p ≤ 0.05) between any variety and salt treatment combination are shown with different letters.
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FIGURE 5. Leaf temperatures from thermal imaging for quinoa. (A) Thermal image obtained by a FLIR A655SC Thermal Camera. White circles indicate the regions used to determine the mean leaf temperature per plant. (B) Average leaf temperature during the day (07:00 AM–18:00 PM). Means of 7 consecutive days (59-65 DAS). Error bars indicate SE of individual means in the same plant. Statistically significant differences (p ≤ 0.05) between any variety and salt treatment combination are shown with different letters. (C) Fluctuation of leaf temperature during a day (63 days after sowing, 42 days after start of the stress). (D) Correlation between leaf temperatures and gs_system derived from Plantarray data.




Ion Content Measurements

The ion content of young and old leaves, stems and roots was measured using Ion Chromatography (IC) system 850 Professional (Metrohm Switzerland). For this purpose, oven-dried tissues were ground to fine powder using a hammer mill with 1 mm sieve. Twenty-five mg per sample was ashed in a furnace at 550°C for 5 h. Ten ml of Milli-Q® water was added to the ashes and these were shaken for 15 min at 5,000 rpm at 100°C. Prior to injection onto the IC system, samples were diluted 400 times with Milli-Q®. Ion contents were calculated as the amount of ions per unit of dry weight (mg ion g–1 dry mass) and the ion concentrations were estimated based on the water content of the tissue. The ratio K+/ Na+ was calculated based on mg K+/ mg Na+ content.



Statistical Analysis

General analyses of variance (ANOVA) were performed to determine the significance of genotypic differences, salt treatment differences and their interactions (p < 0.05). The analyses were performed following a standard procedure for a linear mixed model, for which genotype and salt treatment were considered fixed effects and blocks random effects. The above-mentioned model was: yijk = μ + bk + αi + βj + αβij + eijk, were yijk is the response variable, μ is the grand mean, αi is the salt treatment effect, βj is the genotype effect, αβij is the genotype-by-salt interaction effect, bk is the block effect and eijk is the residual error. Multiple comparison analyses were performed using Fisher’s protected least significant difference (LSD) test on genotype means. All statistical analyses were performed using the software Genstat 19th Edition (VSN International Hemel Hempstead, United Kingdom). The Treatment structure used in Genstat was Variety ∗ Salt concentration. The Block structure was plainly Blocks (four blocks laid out as A) pots 1-6, 7-12, 13-18, 19-24). Each block had one replicate pot of each treatment × variety combination. Each pot contained four plants (two for harvest point on DAS 47 and two for harvest point DAS 77). The pots were considered to be the experimental units. The two harvest time points of plants from the pots on the system were seperately analyzed with ANOVA as the residual variance depended on the time.




RESULTS


General Salt Stress Response of the Plants

The effect of salt stress on the biomass and ion distribution in plant tissues of Pasto and selRiobamba was similar to previous evaluations (Jaramillo Roman et al., 2020). Two destructive harvests were carried out during this experiment. The first one at 47 DAS (11 days after the start of the stress) and the second one at 77 DAS (41 days after the start of the stress). After 11 days of salt stress, biomass was already significantly reduced and the average salt tolerance based on dry weight was 80% for the 200 mM NaCl treatment and 50% for the 300 mM NaCl treatment. At the second destructive harvest (6 weeks of salt stress), the impact of salinity on biomass was greater, with an average salt tolerance of 56% at 200 mM NaCl and 34% at 300 mM NaCl (Figure 1B). Both varieties were smaller but remained green and did not lose leaves despite the high salt treatments, but selRiobamba was significantly more salt tolerant than Pasto. The Na+, K+ and Cl– concentrations were measured in roots, stems, old and young leaves at 77 DAS. The concentration of Na+ in selRiobamba showed an increasing gradient from roots to stem to leaves, and the concentration was slightly lower in young leaves compared to old leaves. Pasto on the other hand, showed lower [Na+] in leaves compared to roots and stems. The [Na+] of Pasto in young leaves at the 300 mM NaCl treatment was 156 mM, compared to 531 mM in selRiobamba (Supplementary Figure 1A). A similar trend was observed for the [Cl–] in different tissues. The highest concentration of Cl– for selRiobamba was measured in leaves, while Pasto showed lower levels of Cl– in young leaves compared to stems and roots (Supplementary Figure 1B). Salinity significantly decreased the [K+] of selRiobamba in all tissues. For Pasto, [K+] was not significantly affected by the 200 mM NaCl treatment and was significantly increased by an average of 20% in stems and young leaves at 300 mM NaCl (Supplementary Figure 1C). The K+/Na+ was higher in Pasto for all tissues and treatments.



Monitoring Plant Growth and Transpiration Throughout the Season

The Plantarray phenotyping platform used in this study allowed us to monitor transpiration and biomass gain of plants continuously throughout the growing period (77 days). The cumulative water transpired by the plants is depicted in Figure 2A. Under control conditions, transpiration of Pasto and SelRiobamba was similar, in spite of their morphological differences (Pasto is a shorter variety and has higher leaf area per plant than selRiobamba). The salt treatment significantly affected the transpiration of plants. At 200 mM NaCl, transpiration was reduced by on average 60%. The more severe treatment of 300mM NaCl had a stronger effect on transpiration and also accentuated the differences between varieties. By the end of the experiment, the average cumulative transpiration per plant was 11 L in control conditions, while at 300 mM NaCl, transpiration was 66% lower for selRiobamba and 78% lower for Pasto (Figure 2B). The progressive accumulation of biomass was also monitored throughout the experiment (Figure 2C). Salinity had a significant effect on the fresh weight of plants already after four days (p < 0.001). Throughout the season, growth rates and biomass accumulation of both varieties were not significantly different under control conditions and were reduced by salinity. Biomass was more reduced in Pasto than selRiobamba. By the end of the experiment (after 6 weeks of salt treatment), the fresh biomass of selRiobamba was 35% decreased under 200 mM NaCl and 50% decreased under 300 mM NaCl, while Pasto biomass was 50 and 70% decreased under 200 and 300 mM NaCl, respectively (Figure 2D).



Variation in Water Use Responses to Salinity Throughout the Season

Daily transpiration rate was calculated considering only the hours of light (Figure 3A). Salt-induced differences in the amount of water transpired were detected from the first day of salt treatment. Throughout the season, the transpiration rates were similar for the varieties under control conditions and under the lower salt treatment of 200 mM NaCl. However, under 300 mM NaCl, transpiration was clearly higher for selRiobamba. The differences in transpiration between salt treatments and varieties were significant. By the end of the experiment, the transpiration rate was reduced by 75% for selRiobamba under 300 mM NaCl and 82% for Pasto.

Stomatal conductance (gs) was calculated using transpiration rates and interpolated leaf area data as described in Materials and Methods. Salt had a significant effect on stomatal conductance already three days after the start of the salt treatment (Figure 3B). Under 200 mM NaCl, the gs for selRiobamba was 35% lower, while the gs for Pasto was 15% lower than control. Under 300 mM NaCl, the gs for both varieties was reduced by 35%.

Water use efficiency (WUE) at whole-plant level was calculated using Plantarray data as the ratio of cumulative biomass to cumulative water transpired. WUE was strongly influenced by the salt treatment throughout the growing period (Figure 3C). Shortly after the start of the salt treatment, WUE was lower at 300 mM compared to control and the 200 mM NaCl. However, a few days after the application of salt, WUE of the stressed plants exceeded the one of plants growing under control conditions. By the end of the experiment, WUE of both varieties at 200 mM NaCl was 56% higher than control. At 300 mM NaCl, Pasto WUE was increased by 60% and selRiobamba WUE by 75% compared to the controls.



Plantarray Derived Versus Porometer Stomatal Conductance

The stomatal conductance derived from the Plantarray System data (gssystem) was validated by comparing with the stomatal conductance measured with a steady state porometer (gsporometer) at 58 DAS (21 days after start of salt stress). Similar to gssystem, salt-treated plants had significantly lower leaf gsporometer than control plants and no significant differences were found between varieties (Figures 4A,B). A strong positive correlation of 0.95 was found between the gsporometer and the gssystem (Figure 4C), indicating that the stomatal conductance calculations using the Plantarray data are valid and that the derived stomatal conductance is a reliable representation of stomatal behavior.



Thermal Imaging as a Surrogate Estimation of Stomatal Conductance

Infrared thermography phenotyping was used as an additional tool to monitor plant stomatal responses to salt stress from 58-66 DAS (39-45 days after the start of the stress) (Figure 5). Leaf temperatures were higher in the leaves of stressed plants compared to the controls (Figures 5A–C). On average, the difference between control and stressed plants was 2°C, and the difference between the 200 and 300 mM NaCl treatments was about 1°C (Figure 2C). The daily leaf canopy temperature and the daily gs calculated from Plantarray parameters were highly correlated (R2=0.9277) (Figure 5D).



Variation in Water Use Responses to Saline Conditions Throughout the Day

The physiological traits measured in this study (transpiration rate, gs, WUE, leaf temperature) are influenced by environmental factors such as light intensity and VPD that vary between days and with the diurnal cycle. Figure 6 depicts the diurnal patterns of these parameters under control and saline conditions for two consecutive days (62-63 DAS, 41-42 days after the start of the stress). Light intensity and VPD showed considerable variation through the day and between days (Figures 6A,B). The first day had higher irradiance levels than the second day. Maximum PAR on the first day was 830 μmol m−2s−1 and occurred between 12:15 and 13:15 hrs. On the second day, the distribution of light was more homogenous during the day, and the maximum PAR recorded was 380 μmol m−2s−1. VPD patterns were similar to PAR patterns, with a maximum VPD of 3.5 kPa measured during the first day and of 2.2 kPa during the second day. The transpiration rate during the same two days showed clear differences between treatments, varieties, and days (Figure 6C). Transpiration under control conditions followed the pattern of PAR. On the first (bright) day, the transpiration rate at the highest PAR level of the day was 740 mg H2O/plant/min for both varieties, compared to a maximum rate of 580 mg H2O/plant/min measured on the second more cloudy day. Under salt stress, transpiration rate was stable during the day and not significantly different between days, indicating that under saline conditions, transpiration is less responsive to changes in PAR. Stomatal conductance showed an early morning peak that declined as VPD increased and reached a plateau during the late morning and midday hours (Figure 6D). The morning gs showed a peak earlier under salt conditions than under control conditions, which may be a strategy to maximize CO2 absorption despite the lower transpiration rate. WUE for plants under control conditions was very stable throughout the day on both days, and similar for both varieties (20 kg FW/m3 H2O) (Figure 6E). WUE was significantly higher in plants under stress conditions. At 200 mM NaCl, WUE was similar for both varieties. During the first day, a max WUE of 65 kg FW/m3 H2O was estimated around 11:00 AM (about one hour before the light irradiance and VPD max peaks recorded on the same day). During the second day with lower levels of irradiance, WUE values were also lower; the max WUE at 200 mM NaCl was 42 kg FW/m3 H2O. The varietal differences were even more pronounced under 300 mM NaCl treatment, and the relative differences between the varieties were also higher on bright days. At peak irradiation on day one, WUE of selRiobamba was about 79 kg FW/m3 H2O, while the WUE of Pasto at the same time was 15% lower. In line with gs, leaf temperatures of stressed plants were significantly higher than control plants during the whole day (Figure 6F). Differences in temperature were clear from the start of the light period. The highest differences in temperature were observed during the afternoon (13:00–18:00) when the average leaf temperature of control plants was 21°C and of stressed plants as high as 25°C. No significant temperature difference was observed between the 200 and 300 mM NaCl treatment. Leaf temperatures were different between a bright and cloudy day, especially for stressed plants. The maximum temperature registered for leaves of plants growing at 300 mM was 31°C at 13:00 PM, while the temperature of control plants at the same time was 24°C.
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FIGURE 6. Daily patterns of experimental conditions measured by sensors and physiological components derived from Plantarray measurements. The influence of a bright (16/4/2019, 62 DAS, 41 days after the start of the stress) and cloudy day (17/4/2019, 63 DAS, 42 days after the start of the stress) are compared. (A) Light intensity. (B) VPD. (C) Transpiration rate (E). (D) Stomatal conductance (gs). (E) Water use efficiency (WUE). (F) Leaf temperature measured by a thermal camera.




Effect of Salt on the Photosynthetic Capacity of Quinoa

A rapid light response curve was recorded at 76 DAS to investigate the effect of salt on the photosynthetic capacity of quinoa plants, plotting effective quantum yield (φPSII) as a function of PAR irradiance (Figure 7A). φPSII provides an indication of the amount of energy used for photochemistry. At the lowest level of irradiance, φPSII has its maximum value, which for control was 0.77, indicative for a healthy leaf. No significant differences were found in the φPSII between treatments. At 183–965 μmol photons m−2s–1, the effect of salt was the most pronounced. For selRiobamba, φPSII was 7% lower at 200 mM NaCl and 11% lower at 300 mM NaCl. Pasto showed a 10% decrease at 200 mM NaCl but only a 5% decrease at 300 mM NaCl. φPSII multiplied by PAR gives a relative indication of the photosynthetic electron transport rate (ETR) (Figure 7B). Since φPSII is not linked to the amount of chlorophyll, the calculated parameter is the relative ETR (rETR) and is distinct from the ETR obtained from an oxygen-base P-E curve (Ralph and Gademann, 2005). The rETR rapidly increased with light intensity. However, the steady state was not reached with the maximum actinic light applied in this study (1692 μmol photons m−2s−1). The rETR of plants growing under salt treatment were slightly lower but not significantly different than control plants (Figure 7B).
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FIGURE 7. Derived parameters of a rapid light curve from light adapted detached young leaves of quinoa. (A) Effective quantum yield as a function of PAR. (B) Relative electron transfer rate as a function of PAR. Means of 4 plants. Error bars indicate SE of individual means. Statistically significant differences (p ≤ 0.05) between any variety and salt treatment combination are shown with different letters.




Functional Growth Analysis of Quinoa

During the course of this experiment, RGR and its components were monitored in three main periods: before the application of the stress, from the beginning of the stress until the first destructive harvest (36-47 DAS) and between the first and second destructive harvests (47-77 DAS). During the first phase of stress, salt significantly decreased RGR, especially in Pasto (Figure 8A). At 200 mM NaCl, selRiobamba RGR was similar to control, while Pasto’s RGR was already significantly lower (Figure 8A). The decrease in the RGR of Pasto at this time appeared to be mostly caused by a significant decrease in the specific leaf area (SLA) (Figure 8B), while the reduction in net assimilation rate (NAR) was mostly responsible for the reduced RGR of selRiobamba (Figure 8D). For both varieties, LWR was not significantly different between the control and 200 mM NaCl, but increased in the most severe treatment of 300 mM NaCl (Figure 8C). During the last period in which RGR analysis was performed (47-77 DAS), the RGR components were less affected by salt. Only the SLA was decreased by the salt treatment and, interestingly, NAR was even higher under salt stress than under control conditions for Pasto.
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FIGURE 8. Relative growth components of quinoa throughout the growing period. (A) Relative growth rate (RGR). (B) Incremental specific leaf area (SLA’). (C) Incremental leaf weight ratio (LWR’). (D) Incremental net assimilation rate (NAR’). (E) Radiation use efficiency estimated by LINTUL mechanistic model. Means of 4 plants. Error bars indicate SE of individual means. Statistically significant differences (p ≤ 0.05) between any variety and salt treatment combination are shown with different letters.


Radiation use efficiency (RUE) provides a measurement of the efficiency of a plant to use radiation energy for biomass production. In our experiment, the LINTUL crop model was used to estimate RUE as an integration of several physiological parameters. During the first period of growth after the application of the stress (36-47 DAS), RUE was significantly decreased by salt stress, and differences were found between varieties. For Pasto, RUE decreased by 33% at 200 mM NaCl and by 73% at 300 mM NaCl. For selRiobamba, RUE was only decreased at the highest salt concentration of 300 mM NaCl by 63% (Figure 8E).




DISCUSSION

We used the Plantarray phenotyping platform to gain insight in the salt response of two quinoa varieties, and in the consequences of different strategies with respect to transpiration, assimilation and growth. The impact of salt stress on the growth and physiological responses of the quinoa varieties Pasto and selRiobamba was similar as reported before (Jaramillo Roman et al., 2020). The plants remained green and were able to grow under salinity but dry biomass was strongly reduced by on average 44% at 200 mM NaCl and 66% at 300 mM after six weeks of the start of the salt treatment. Pasto and selRiobamba showed differences in their physiological responses to salinity, which resulted in a higher salt tolerance in selRiobamba than Pasto. Salt stress caused a reduction in RGR as a consequence of reduced a dry matter production from early stages of the stress. Similar reductions in quinoa growth caused by salt stress were reported before (Riccardi et al., 2014). The contribution of NAR and SLA to the decrease in RGR was different between varieties. The main cause of the reduced growth rate of Pasto was a decrease in SLA, which strongly indicates that the leaf area expansion rate of Pasto was relatively low, and leaf thickness increased. The SLA of selRiobamba was less affected; the main cause of the reduction of the growth rate of this variety under salinity appeared to be a lowered NAR, which is indicative of the photosynthetic capacity of the plant (Lambers and Poorter, 1992). The varieties also differed in ion uptake and distribution within plant tissues. In Pasto, the Na+ and Cl– concentration in young leaves remained lower than the root medium, while in selRiobamba concentrations of 500 mM were measured for both ions, which points to a stronger shoot ion exclusion activity for Pasto. Differences in Na+ accumulation between quinoa varieties have been reported before (Kiani-Pouya et al., 2019). These differences can be attributed to varying degrees of how effective compartmentalization of Na+ in vacuoles can take place. While Pasto has to adapt physiological responses to reduce Na+ in the shoot, selRiobamba might tolerate higher Na+ concentrations due to a more effective vacuolar compartmentalization. As reported before, quinoa is recognized for its ability to retain or even increase K+ under salinity, especially in young photosynthetically active leaves (Hinojosa et al., 2018; Jaramillo Roman et al., 2020). Pasto and selRiobamba showed differences in K+ retention. In Pasto, [K+] in young leaves of salt stressed plants was 400 mM, 20% higher than in plants under control conditions, while in selRiobamba, [K+] was 50% reduced under the 300 mM NaCl treatment. The energetic cost of K+ retention under saline conditions is high: 1–2 mol ATP is needed for the retention of 1 mol of K+ (Rubio et al., 2020). For this reason, retaining K+ under salinity has been described as a ‘metabolic switch’, in which a larger amount of ATP is redirected to adaptive traits to salt stress (Rubio et al., 2020). Our results indicate that Pasto allocated more resources toward this adaptation, but this may have come at a metabolic cost, reflected in the higher reduction of biomass under salt stress (Figure 2).


Whole-Plant Adaptations to Salt Stress

Transpiration was strongly reduced by salinity. Under the 200 mM NaCl treatment, cumulative transpiration was 60% reduced for both varieties. The 300 mM NaCl treatment strengthened this reduction and the differences between varieties; cumulative transpiration was 66 and 80% reduced in Pasto and selRiobamba, respectively. Cumulative transpiration had a strong positive correlation with the fresh weights of the plants (Figure 9A). However, under 200 mM NaCl, Pasto had a stronger reduction in biomass than selRiobamba while transpiration was similarly reduced. It is possible that while the available resources (water, CO2) in both varieties were similar, assimilates were less allocated to biomass production in Pasto, and more directed toward salt tolerance responses (morphological adaptations like decrease in SLA, Na+ and Cl– exclusion, K+ retention, among others). Transpiration was significantly correlated to [Na+] and [Cl–] in the roots (Figure 9B) but not in young leaves. In addition, Na+ and Cl– concentrations in leaves of Pasto were lower than selRiobamba, while the transpiration rate in both varieties was similar. This indicates that the ion concentrations in young leaves may be more determined by ion exclusion mechanisms (mainly at xylem loading) than by the transpiration rate of the plants. We examined the effect of the reduction of transpiration on the growth rate and the RGR components. Despite the 60% reduction in transpiration, the 200 mM NaCl treatment did not affect NAR, which means the photosynthetic rate was not affected by this for quinoa mild salinity level (Figure 9C). Transpiration had a positive correlation with SLA (Figure 9D). The morphological adaptation of reduced leaf expansion and thicker leaves reduced the total surface available for water loss, which agrees with the lower transpiration of Pasto, especially under 300 mM NaCl.
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FIGURE 9. Relations between some of the physiological traits analyzed in this study. The values of selRiobamba are indicated by squares and of Pasto by circles. Level of stress is indicated by color; green: no-salt, blue: 200 mM NaCl, red: 300 mM NaCl. (A) Cumulative transpiration vs. fresh weight of plants. (B) [Na+] in roots vs. cumulative transpiration of plants. (C) Cumulative transpiration of plants vs. net assimilation rate (NAR). (D) Specific leaf area (SLA) vs. cumulative transpiration of plants. (E) Dry weight of plants vs. water use efficiency. (F) Cumulative transpiration vs. leaf temperature. (G) Water use efficiency vs. leaf temperature. (H) Net assimilation rate (NAR) vs. radiation use efficiency (RUE).


Interestingly, selRiobamba had a smaller reduction in total plant transpiration than Pasto, but its stomatal conductance (transpiration per unit leaf area, standardized for VPD) was more reduced than that of Pasto. Our results indicate that this may be explained by the stronger reduction in leaf expansion of Pasto. We argue that this might be an important difference between the salt stress response of these quinoa varieties. Pasto lowers total transpiration by a decreased leaf area (without strong control of stomata) while selRiobamba appears to control stomatal aperture to minimize water loss and optimize transpiration.

The effect of salinity on the stomatal conductance calculated from Plantarray data (gssystem) was comparable to the effect on the stomatal conductance measured with a porometer (gsporometer) (Figure 4), validating the gssystem calculations. However, the gssystem values were approximately 46% lower than the gsporometer values under all treatments. This seems counterintuitive as the gssystem was derived from the total leaf transpiration (transpiration from both the abaxial and adaxial side of leaves), while gsporometer represents the conductance only from the abaxial side of a leaf. We tested the relative contribution of abaxial and adaxial stomatal conductance to the total stomatal conductance with plants grown at 0 and 300 mM NaCl in a separate experiment. At 0 mM, the adaxial gs was not significantly different from the abaxial gs; the ratio of adaxial to abaxial gs was 1.02 (Supplementary Table 2). At 300 mM, however, this ratio was much lower than 1 (0.76). We used this information to correct the whole plant gs calculated from porometer gs values for the relative contribution of the abaxial and adaxial sides of the leaves. Another parameter that needs to be considered when comparing gsporometer and gssystem is the boundary layer resistance. The gsporometer data is not affected by the boundary layer resistance (McDermitt, 1990). Yet the influence of boundary layer resistance in plants growing in the greenhouse might considerably decrease whole-plant conductance (Katsoulas et al., 2007), and the effect of the boundary layer resistance (gb) is not considered in the calculation of the gssystem. The gssystem, which in fact is the total conductance, includes gs as well as gb, and is equal to 1/(1/gs+ 1/gb). Here, gs is the stomatal resistance from both sides of the leaves combined and gb is the boundary layer resistance. Therefore, the whole plant gs was used to estimate a single boundary layer resistance for this experiment (230 mmol/m2/s). The boundary layer resistance in greenhouses varies from 200 to 2,000 mmol/m2/s depending on the wind speed and the size of leaves (Kimura et al., 2020). The gb calculated in our experiment corresponds to a very low wind speed of 0.05 m/s, which is in agreement with the conditions in our greenhouse. The gssystem values corrected for the boundary layer resistance (gssysyem_corr) are highly comparable to gsporometer values corrected for both sides of the leaf (gsporometer_corr) (Figure 10).
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FIGURE 10. Correlation between gs porometer measurements corrected for the abaxial and adaxial sides of the leaves (gsporometer_corr) and the gs from the system after correcting for the effect of the boundary layer resistance (gssysyem_corr).


WUE can be defined and measured in different ways; it can be an instantaneous measurement of the ratio of the photosynthetic rate and the transpiration rate, or a productivity measurement of the ratio of biomass accumulation and water use over a period of time (Leakey et al., 2019). The Plantarray system provides a platform to continuously monitor changes in WUE that result from dynamic interactions between water use and biomass gain by the plants. Thus, WUE can be studied as a dynamic process more than a productivity indicator. In our study, salinity significantly increased the WUE of quinoa. It should be noted that the WUE calculated from Plantarray data is expressed as kg Fresh Weight/m3 H2O, and not dry weight; however, the differences in WUE caused by the salt treatment in quinoa are not a result of a lowered water content in the leaves of salt stressed plants, since the differences in the dry matter content between treatments were negligible (data not shown). A main goal of breeding for salt or drought stress tolerance is to improve the WUE of plants, but only as long as this also supports greater productivity under the stress conditions (Leakey et al., 2019). High values of WUE are typically observed when stomatal conductance is lower that the potential maximum for a genotype, which also results in reduced growth (Yoo et al., 2009). Therefore, higher values of WUE are often associated with smaller plants, lowered growth and low crop production (Blum, 2009). By continuously monitoring WUE and parameters that might affect the WUE (evaporation, transpiration rate, biomass gain, stomatal conductance, leaf area, and environmental parameters such as VPD) we might be able to identify whether the increase of WUE in a particular genotype is mostly associated with lower water loss, or whether certain adaptations contribute to increase productivity and maximizing the efficiency of water use. Both Pasto and selRiobamba showed higher WUE under salinity; however, with similar amounts of water transpired, more biomass was produced by selRiobamba (Figure 9E). The increased WUE might therefore be a favorable trait for the productivity of selRiobamba, and more of a water-saving strategy for Pasto; the causes of the increase of WUE in both varieties might be associated with different physiological mechanisms that should be further explored.

One of the greatest advantages of the Plantarray system is the temporal resolution of the measurements that enables to monitor water use responses not only to environmental variation throughout the growing cycle, but also to diurnal variations of environmental parameters like light irradiance and atmospheric VPD. The day-to-day patterns of transpiration, gs and WUE were compared between two consecutive days that showed different levels of VPD and light irradiance (Figure 6). The relative differences in the transpiration rate between days were higher under control than under salt stress. Reducing transpiration is a common adaptation to saline conditions. Photosynthesis is primarily limited by CO2 uptake, while it is affected by light availability to a much lower extent (Flexas et al., 2004). Assuming the photosynthetic machinery is saturated, the additional water transpired under control conditions in a day with higher irradiation will be either wasted or used for canopy cooling purposes, but will not be associated with higher biomass synthesis. Under saline conditions, the plant cannot afford to waste water. Therefore, a tighter control of transpiration rate by quinoa under salt stress is necessary. Stomatal conductance was influenced by the fluctuations in VPD during the day, which has been identified as a “patchy” stomatal behavior (Buckley, 2005). The daily gs is depressed at maximal VPD (midday), and a high gs is observed in the early morning, when light irradiance increases and VPD is still low (Gosa et al., 2019). When VPD is high, evaporation from the leaves is high as well, so a strict control of stomatal opening at high VPD might be an additional strategy to enhance CO2 uptake without excessive loss of water. The continuous monitoring of gs indicated that quinoa has a strict control in stomatal opening, which might be even increased under salinity. However, the total amount of water that could be saved throughout the growth cycle by the temporal control of stomatal opening needs to be estimated.

Infrared thermography was used to monitor salinity-induced changes in leaf temperature. Leaf temperature has been considered a proxy for gs (Hackl et al., 2012; Ivushkin et al., 2018), and canopy thermography was also used as an indicator of salinity stress in quinoa (Ivushkin et al., 2019). The surface of a leaf is cooled by evaporation, so a strong correlation exists between the cooling of the leaves with transpiration rate and stomatal opening. In our study, canopy temperature had a strong negative correlation with gs, transpiration, biomass, and growth, and a positive correlation with water use efficiency, Na+ and Cl– content in young leaves (Figures 9F,G). Salinity significantly increased the leaf temperature by 2°C at 200 mM NaCl and 2.7°C at 300 mM NaCl. Genotype-specific responses could also be identified using infrared thermography (Figure 5). The leaf temperatures of selRiobamba were slightly but not significantly higher than Pasto. Previously, we pointed out that Pasto had a lower transpiration rate than selRiobamba, and suggested that this was achieved by decreasing SLA rather than decreasing gs. An additional advantage of this adaptation could be that water loss is reduced without compromising the cooling system of leaves. In this way, significant differences were found in the transpiration rate and gs of Pasto and selRiobamba, without significant differences in leaf temperatures. Based on our measurements, leaf temperature has the potential to be used as a proxy to gs, also to WUE; the diurnal pattern of WUE was very well followed by the leaf temperature pattern, and both traits were highly correlated (r = 0.99).

Reduced stomatal conductance under salinity stress is an important determinant for reduced photosynthetic activity. However, other non-stomatal photosynthesis-limiting factors might also play a role when plants face salt stress. Chlorophyll fluorescence was used to measure the response of photosynthetic parameters to salinity. Rapid light curves provide information on the saturation characteristics of electron transport, as well as the overall photosynthetic performance of a plant over a wide range of ambient light intensities (Ralph and Gademann, 2005). It was previously reported that net apparent photosynthesis activity (AN) and the internal CO2 concentration at PAR levels higher than 500 μmol photons m−2s−1 were significantly reduced in quinoa by a salt treatment of 250 mM NaCl, while photochemical parameters, light compensation point and maximum apparent photosynthetic quantum yield were not affected (Becker et al., 2017). In our experiment, φPSII and rETR as a function of irradiance were more impacted by salt treatment than the Fv/Fm ratio of dark-adapted leaves, but no significant differences were found in these parameters between treatments. However, at lower light levels in the range of 183 to 965 μmol photons m−2s−1 the maximum rate of photosynthesis was lowered (similar to the LICOR measurements by Becker et al. (2017)). In a crop situation, most leaves are exposed to medium light levels, which means that a stronger effect of salt (at 200 and 300 mM NaCl) on the maximal photosynthesis rate may be experienced. Even though the φPSII was not significantly different between treatments and varieties, it was slightly lower for selRiobamba than Pasto, and Pasto had a higher φPSII under 300 mM NaCl than 200 mM NaCl. It is possible that the higher φPSII of Pasto is also related to its lower SLA. Thicker leaves likely have a higher density of Rubisco and chlorophyll per unit of leaf area, thus their photosynthesis rate might increase (Terashima et al., 2011).



Varietal Differences in Responses to Salt Stress From a Resource Use Perspective

The differences in morphological and physiological traits associated with the use of water, energy and assimilates of Pasto and selRiobamba in response to salinity indicate that these varieties may use different strategies to cope with salt stress. Pasto had the lowest [Na+] and [Cl–] in the leaves and the highest [K+]. In addition, it had the highest reduction in transpiration and the lowest growth rate, which was mostly associated with a decreased SLA (Figure 9H). These traits are in line with a “conservative growth” strategy aimed at survival that is reflected in reduced growth and a higher investment in metabolically expensive stress tolerance traits (e.g., K+ retention) that constitute a trade-off to growth. A genotype like Pasto with its reduced growth rate and higher K+ retention (as observed in our study) will conserve water in the soil on the one hand (less transpiration and therefore less increase in salinity) and will be able to tolerate a higher increase in salinity at the end of the growing season. In selRiobamba transpiration was less reduced by saline conditions, Na+ and Cl– accumulated to higher levels in the shoots and [K+] in leaves was maintained, but did not increase as much as in Pasto. SelRiobamba appeared to follow an “acquisitive growth” strategy aimed at continued growth in spite of the stress.

The relation between allocation of resources, functional traits and stress tolerance has been extensively studied (Reich et al., 2003; Reich, 2014; Balachowski and Volaire, 2018). Fast growers or “acquisitive-growth” plants are normally more productive under moderate stress, but under prolonged or severe stress they might exhaust the limitedly available resources, risking plant failure and death. On the other hand, slow growers or “conservative growth” plants are typically more penalized under moderate stress, but better survivors under more severe conditions.

Our results suggest that a conservative or acquisitive growth strategy of a quinoa variety is influenced by the severity and duration of the stress in addition to a genetic component. The conservative growth response of Pasto serves to protect tissues to prolonged and severe salinity and Pasto would therefore be better able to survive such conditions than selRiobamba. However, the acquisitive growth strategy of selRiombamba was more favorable in the conditions of this experiment (relatively mild for quinoa and until flowering stage), demonstrated by a higher growth rate and higher accumulation of green biomass. Our study shows a method of analyzing genetic differences in response to salinity and this may provide a selection tool for breeding. Further validation of the hypothesized genetic differences in the field will help to evaluate the best way to implement these growth strategies as selection criteria in breeding programs.

The ability of quinoa to adapt strategies is to some extent also reflected in the results of this study; while at 200 mM NaCl Pasto’s transpiration rate was similar to selRiobamba, the higher stress level changed Pasto’s behavior to a more conservative growth strategy. Possibly, quinoa can be called a facultative halophyte because of the ability to switch from an acquisitive growth to a conservative growth strategy when stress becomes severe and less resources are available, and Pasto and selRiobamba differ in the salinity threshold that flips this switch. Accurate and high-resolution phenotyping platforms like the Plantarray system are highly useful tools to distinguish physiological differences between both strategies, and to identify genetic variation that can be used to improve quinoa yields in a broad range of saline environments.



Future Perspectives of Functional Phenotyping in Abiotic Stress Tolerance Research

Several reports have examined the influence of salt stress on physiological parameters related to water and carbon fluxes, photosynthesis and ion contents in quinoa. However, extrapolating data from limited timepoint measurements on single leaves (e.g., gas exchange rate, rate of net photosynthesis) to the growth cycle of a crop is not straightforward (Harris et al., 2010; Morton et al., 2019). This study shows the potential of the implementation of high throughput functional phenotyping in the understanding of complex physiological responses to salt stress. The Plantarray system is scalable, which means that a high number of plants and genotypes could potentially be screened simultaneously. The possibility to scan entire mapping populations opens up the possibility of identifying genetic determinants underpinning differences in traits such as water use efficiency or the diurnal control of stomatal conductance. The system can for instance be complemented with digital imaging systems that monitor leaf expansion and estimate leaf area, which will produce even more accurate measurements of stomatal conductance. In addition, the high-resolution continuous monitoring of growth and transpiration provides valuable data for the development and improvement of crop growth models. We used the mechanistic crop model LINTUL to integrate several physiological processes for an estimation of the radiation use efficiency (RUE) and to analyze the impact of salinity on the RUE of quinoa (Spitters and Schapendonk, 1990; Sinclair and Muchow, 1999). We estimated average RUE values of 5 gDW/MJ under control conditions. Previous studies in quinoa reported a significantly lower RUE (1.4–1.75 gDW/MJ) (Ruiz and Bertero, 2008; Razzaghi et al., 2012). This difference may be attributed to different growing conditions and the time of the measurements. High RUE values (3–5 gDW/MJ) are often reported in plants growing under controlled conditions due to the high proportion of diffuse radiation inherent to glasshouses and the lower daily incident radiation that might induce higher photosynthetic efficiency (Cabrera-Bosquet et al., 2016). In our conditions, RUE was significantly reduced by salt stress, which is in contrast with previous studies in which no differences in RUE were found even with a salt treatment of 40 dS/m (Razzaghi et al., 2012). Razzaghi et al. (2012) estimated RUE in a field trial where the average light level experienced by the leaves is much lower. In those conditions the initial light use efficiency determines RUE. In our conditions, where the LAI remained much lower than in a crop situation, most leaves experienced higher light levels than in a crop. This will explain the lower overall RUE estimated under stress conditions. Although genetic improvement of RUE has been suggested as a way to increase yield, few studies have explored its genetic variation, probably due to technical difficulties in the estimation of this parameter (Cabrera-Bosquet et al., 2016). Our results suggest that using the Plantarray system data as input for growth models may be a viable strategy for crop improvement based on RUE. High throughput and high-resolution technologies thus enable the dissection of plant growth and water consumption into very specific parameters that could constitute novel targets for the improvement of abiotic stress tolerance of crops.
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