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Scientists today have access to an unprecedented arsenal of high-tech tools that can be used to
thoroughly characterize biological systems of interest. High-throughput “omics” technologies
enable to generate enormous quantities of data at the DNA, RNA, epigenetic and proteomic
levels. One of the major challenges of the post-genomic era is to extract functional information
by integrating such heterogeneous high-throughput genomic data. This is not a trivial task as
we are increasingly coming to understand that it is not individual genes, but rather biological
pathways and networks that drive an organism’s response to environmental factors and the
development of its particular phenotype. In order to fully understand the way in which these
networks interact (or fail to do so) in specific states (disease for instance), we must learn both,
the structure of the underlying networks and the rules that govern their behaviour.

In recent years there has been an increasing interest in methods that aim to infer biological
networks. These methods enable the opportunity for better understanding the interactions
between genomic features and the overall structure and behavior of the underlying networks.

So far, such network models have been mainly used to identify and validate new interactions
between genes of interest. But ultimately, one could use these networks to predict large-scale
effects of perturbations, such as treatment by multiple targeted drugs. However, currently, we are
still at an early stage of comprehending methods and approaches providing a robust statistical
framework to quantitatively assess the quality of network inference and its predictive potential.

The scope of this Research Topic in Bioinformatics and Computational Biology aims at
addressing these issues by investigating the various, complementary approaches to quantify
the quality of network models. These “validation” techniques could focus on assessing quality
of specific interactions, global and local structures, and predictive ability of network models.
These methods could rely exclusively on in silico evaluation procedures or they could be
coupled with novel experimental designs to generate the biological data necessary to properly
validate inferred networks.
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The last years following the completion of the human genome
project (Quackenbush, 2011) have given raise to major break-
throughs in the development of novel biotechnologies, such as
next-generation sequencing, that sparked the generation of high-
throughput “omics” data. The robustness and the cost-efficiency
of these technologies increasing over time enabled the conduc-
tion of large screening experiments containing hundreds and even
thousands of samples. As a consequence of these “big” biologi-
cal and biomedical high-throughput datasets, advanced statistical
methodology can now be employed requiring such large sample
sizes.

This is one reason explaining the recent interest in methods
that aim to infer biological networks. These methods offer the
opportunity for better understanding the interactions between
genomic features and the overall structure and behavior of the
underlying networks. In order to foster this research direction
we edited a Research Topic entitled “Quantitative Assessment
and Validation of Network Inference Methods in Bioinformatics.”
This research topic was perceived as relevant and timely by the
scientific community and we consequently received 15 contri-
butions from research groups all over the world (Boucher and
Jenna, 2013; Chun et al., 2013; de Matos Simoes et al., 2013; Lopes
and Bontempi, 2013; Qian and Dougherty, 2013; Schrynemackers
etal., 2013; Scott-Boyer et al., 2013; Staiger et al., 2013; Tran et al.,
2013; Ho etal., 2014; Horn et al., 2014; Montojo et al., 2014; Olsen
et al., 2014; Peng and Schork, 2014; Santra, 2014).

The topics addressed by these contributions can be broadly
grouped into the following categories:

e Data integration (Boucher and Jenna, 2013; Chun et al., 2013;
Scott-Boyer et al., 2013; Ho et al., 2014; Horn et al., 2014; Olsen
et al., 2014; Santra, 2014)

e Network validation (de Matos Simoes et al., 2013; Lopes and
Bontempi, 2013; Qian and Dougherty, 2013; Schrynemackers
et al., 2013; Montojo et al., 2014; Olsen et al., 2014)

e Network inference (Lopes and  Bontempi,
Schrynemackers et al., 2013)

e Time series data (Lopes and Bontempi, 2013)

e Network interpretation (Boucher and Jenna, 2013; Chun et al.,
2013; de Matos Simoes et al., 2013; Montojo et al., 2014; Scott-
Boyer et al., 2013; Tran et al., 2013)

2013;

e Diagnostic applications (Staiger et al., 2013; Peng and Schork,
2014)
e Network modeling (Tran et al., 2013)

First of all, it is important to note that there is still no commonly
accepted term to denote ‘networks’ that are inferred from gene
expression data, which the vast majority of the contributed papers
used for their inference. Indeed, depending on the context, these
networks are called gene regulatory networks (de Matos Simoes
et al., 2013; Lopes and Bontempi, 2013; Qian and Dougherty,
2013; Santra, 2014), molecular interaction networks (Horn et al.,
2014; Olsen et al., 2014), gene co-expression networks (Scott-
Boyer et al., 2013) or biological networks (Schrynemackers et al.,
2013). We believe that this plurality denotes the diversity of usages
and interpretations of such networks, while it may also reflect the
lack of agreement due to the interdisciplinary nature of network
inference in Bioinformatics. For the future it would be beneficial
to find a common terminology for such networks, because this
would certainly enhance the communicability within the commu-
nity. At the moment, the term ’gene regulatory networks’ seems
to be the most frequent denotation in use, however, a thorough
discussion of this important topic seems indispensable.

The two topics that attracted most interest in the submitted
contributions are network validation and data integration. The
former is a good reminder that the assessment of inferred net-
works is not trivial due to two major reasons. First, we still have
only partial knowledge about gene regulatory networks even in
organisms like Saccharomyces cerevisiae (yeast) or E. coli, which
are considerably simpler than Human. Second, networks are
structured objects that means we cannot only assess errors on the
global scale for the whole network, but also on intermediate lev-
els down to single interactions and any combination thereof, e.g.,
motifs or modules (Emmert-Streib and Altay, 2010). In addition,
for labeled data enabling the usage of supervised learning meth-
ods further issues need to be addressed, as indicated and discussed
in the review paper by Schrynemackers et al. (2013).

The integration of different datasets, either of the same or
of different types, is certainly a topic that will gain even more
attention in the future when more and new high-throughput
technologies become available and the access to such datasets
is simplified by a policy change of funding agencies making it
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imperative for grant holders to provide free access to such data.
It appears that Bayesian methods (Santra, 2014) provide a natu-
ral framework that is particularly suited for such an integration
because of its flexibility and widespread acceptance as a funda-
mental statistical inference paradigm. However, other methods
have also been proposed to tackle the challenge of heterogeneous
data integration, such as the regression-based framework inte-
grating priors extracted from the biomedical literature and other
sources (Olsen et al., 2014). This provides opportunities for com-
paring novel methodological developments with well-established
statistical approaches. We would like to emphasize that net-
works inferred from the integration of different datasets require a
reassessment of their validation for similar reasons as for a super-
vised learning of gene regulatory networks (Schrynemackers et al.,
2013).

For the future, we think that applications of inferred net-
work, e.g., for diagnostic, predictive or therapeutic purposes in
medicine will become very important for translational research
because of their potential to provide a systems-approach, cer-
tainly required to understand complex disorders like cancer.
However, until we reach this point more work is needed. For our
Research Topic, two contributions have been submitted that are
good examples for a better understanding of this problem. In
Peng and Schork (2014) the authors found that network central-
ity measures, which are characterizing the importance of nodes
within a gene network that has been constructed from the gene
expression patterns, can be used to identify therapeutic targets. In
contrast, in Staiger et al. (2013) the authors showed that current
composite-feature classification methods considering a network
structure, do not outperform simple single-genes classifiers in
predicting outcome in breast cancer for prognostic purposes. It is
interesting to note that the outcome of both studies allows oppos-
ing conclusions. Whereas the results in Peng and Schork (2014)
can be seen as an encouragement for further studies employing
network-based approaches, the results in Staiger et al. (2013) do
not support this. However, by changing the perspective, the study
by Staiger et al. (2013) suggests that we do not need to focus
on single-gene studies because we can get similar results from
network-based approaches. Now, the crucial question is which
perspective should we chose? The choice of perspective actually
depends on the use of the inferred networks, and therefore the
goal of the study. On the one hand, if one is interested in building
a predictive model, which does not need to be interpretable (often
referred to as “black box” in the literature), then only perfor-
mance of the inferred model matters; in this case scenario Staiger
et al. (2013) showed that, for cancer prognosis, network-based
approaches may not be relevant as they do not outperform sim-
pler methods (singe genes). On the other hand, if one is more
interested in the biological knowledge that could be extracted
from statistical models, network-based approaches are extremely
relevant as they are efficient ways to represent complex biological
patterns while retaining good predictive ability.

Overall, we believe that, in a translational application, the
underlying choice of perspective is of central importance. That
means the utility of a network-based approach is expected to
depend crucially on the biological question to which such a
method should be applied to.
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Networks provide a natural representation of molecular biology knowledge, in particular
to model relationships between biological entities such as genes, proteins, drugs, or
diseases. Because of the effort, the cost, or the lack of the experiments necessary for
the elucidation of these networks, computational approaches for network inference have
been frequently investigated in the literature. In this paper, we examine the assessment
of supervised network inference. Supervised inference is based on machine learning
techniques that infer the network from a training sample of known interacting and possibly
non-interacting entities and additional measurement data. While these methods are very
effective, their reliable validation in silico poses a challenge, since both prediction and
validation need to be performed on the basis of the same partially known network.
Cross-validation techniques need to be specifically adapted to classification problems on
pairs of objects. We perform a critical review and assessment of protocols and measures
proposed in the literature and derive specific guidelines how to best exploit and evaluate
machine learning techniques for network inference. Through theoretical considerations
and in silico experiments, we analyze in depth how important factors influence the outcome
of performance estimation. These factors include the amount of information available for
the interacting entities, the sparsity and topology of biological networks, and the lack of
experimentally verified non-interacting pairs.

Keywords: biological network inference, supervised learning, cross-validation, evaluation protocols, ROC curves,

ulg.ac.be . .
precision-recall curves

1. INTRODUCTION

Networks naturally represent entities such as genes, proteins,
drugs or diseases (as nodes) and their mutual relationships
(as edges). As immense experimental efforts would be required
to comprehensively characterize such networks, computational
approaches for network inference have been frequently inves-
tigated in the literature. Both unsupervised and supervised
approaches have been proposed for network inference. In order
to predict interactions, unsupervised inference methods gener-
ally derive a score expressing the confidence for a pair of nodes to
interact, based on analysis of some experimental data such as gene
expression measurements. In contrast to unsupervised methods,
supervised approaches additionally require a partial knowledge
of the gold standard network. They then exploit some supervised
learning algorithm to construct a model that can subsequently
be applied to classify the remaining untested pairs. As super-
vised methods take advantage of known interactions, they can
model node specific properties (e.g., in gene regulatory networks,
the experimental conditions where a specific regulator becomes
active) and thus perform typically much better than unsuper-
vised ones. Supervised learning approaches have been applied
to predict several biological networks: protein—protein interac-
tion networks (Yip and Gerstein, 2008; Tastan et al., 2009; Park
and Marcotte, 2011), metabolic networks (Yamanishi and Vert,
2005; Bleakley et al., 2007; Geurts et al., 2007), gene regulatory

networks (Mordelet and Vert, 2008; Cerulo et al., 2010), epistatic
gene networks (Ulitsky et al., 2009; Ryan et al., 2010), or networks
of drug-protein interactions (Yamanishi et al., 2008; Bleakley and
Yamanishi, 2009; Cheng et al., 2012; Takarabe et al., 2012; Yu et al.,
2012).

Performance estimation of both unsupervised and supervised
inference methods requires a gold standard of experimentally
tested interactions, i.e., pairs of entities labeled as interacting or
non-interacting. The validation of supervised methods, however,
generally requires special care and the application of cross valida-
tion techniques to avoid any sources of bias. Indeed both training
and validation need to be performed on the basis of the same
partially labeled gold standard. The case of supervised network
inference is even more complex as it works on pairs of objects
so that the traditional cross validation techniques are not suf-
ficient. In the paper, we propose a critical review of protocols
and measures found in the literature for the validation of super-
vised network inference methods and derive specific guidelines
on how to best exploit machine learning techniques for network
inference.

The paper is structured as follows. In section 2, we define
the problem of supervised network inference and review existing
approaches to solve this problem. Section 3 discusses common
metrics used to evaluate network predictions (that are common
to unsupervised and supervised inference methods). Appropriate
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ways to perform cross-validation in this context are discussed
in section 4. The impact of the lack of negative examples in
common biological networks is analyzed in section 5. Finally,
section 6 discusses the positive bias on performance induced
by the heavy-tailed degree distribution often met in biological
networks.

2. SUPERVISED NETWORK INFERENCE

In this section, we first define the problem of supervised network
inference more formally and lay out the notations for the rest of
the paper. We then briefly review existing approaches to solve this
problem.

2.1. PROBLEM DEFINITION

For the sake of generality, let us assume that we have two finite
sets of nodes, U, = {n;, e nﬁ\rUr} and U, = {ng, e nﬁ\ru‘} of
respective sizes Ny, and Ny,. A network connecting these two
sets of nodes can then be defined by an adjacency matrix Y of size

Ny, x Nuy,, such that y;; = 1 if the nodes ! and 1. are connected
and y;; = 0 if not. Actually, the subscripts r and ¢ stand, respec-
tively for row and column, referring to the rows and columns of
the targeted adjacency matrix Y. Y thus defines a bipartite graph
over the two sets U, and U,. Standard graphs defined on only one
family of nodes, that we call homogeneous graphs, can nevertheless
be obtained as special cases of this general framework by consid-
ering only one set of nodes (i.e., U = U, = U,). Undirected or
directed graphs can then both be represented using a symmetric
or an asymmetric adjacency matrix Y.

For example, in the case of protein—protein interaction net-
works, U, = Uj is the set of all proteins of a given organism and
the adjacency matrix is symmetric. A drug-protein interaction
network can be modeled as a bipartite graph where U, and U,
are respectively the sets of proteins and drugs of interest, and ele-

ment y; of Y is equal to 1 if protein n interacts with drug nl,
0 otherwise. A regulatory network can be modeled either as a
bipartite graph where U, is the set of all genes of the organism
of interest and U is the set of all candidate transcription factors
(TFs) among them or equivalently by an homogeneous graph and
an asymmetric adjacency matrix, where U, = Uj is the set of all
genes and y;; = 1 if gene n; regulates gene n;, 0 otherwise.

In addition, we assume that each node n (in both sets) is
described by a feature vector, denoted x(n), typically lying in R?.
For example, features associated to proteins/genes could include
their expression in some conditions as measured by microarrays,
the presence of motifs in their promotor region, information
about their structure, etc. A feature vector x(n,, n.) can also be
associated to each pair of nodes. For example, features directly
associated to pairs of proteins could code for the association of
the two proteins in another network, their binding in a ChIP-
sequencing experiments, etc.

In this context, the problem of supervised network inference
can be formulated as follows:

Given a partial knowledge of the adjacency matrix Y of the target
network in the form of a learning sample of triplets:

LSy = {(ﬂ’,k n]f,}’ikjk) k=1, .-.,NLS} ,

and given the feature representation of the nodes and/or pairs
of nodes, find a function f : U, x U. — {0, 1} that best approx-
imates the unknown entries of the adjacency matrix from the
feature representation (on nodes or on pairs) relative to these
unknown entries.

This problem can be cast as a supervised classification problem,
with the peculiarity, however, that pairs of nodes, and not single
nodes, need to be classified. Next, we discuss existing methods to
solve this problem.

2.2. NETWORK INFERENCE METHODS

Mainly two approaches have been investigated in the literature
to transform the network inference problem into standard clas-
sification problem (Vert, 2010) (see Figure 1). The first, more
straightforward, approach, called pairwise or global, considers
each pair as a single object and then apply any existing classifi-
cation method on these objects (e.g., Takarabe et al., 2012). This
approach requires a feature vector defined on pairs. When fea-
tures on individual nodes are provided, they thus need to be
transformed into features on pairs (Tastan et al., 2009). Several
approaches have been proposed in the literature to achieve this,
ranging from a simple concatenation or addition of the feature
vectors of the nodes in the pair (Chen and Liu, 2005; Yu et al,,
2012) to more complex combination schemes (Yamanishi et al.,
2008; Maetschke et al., 2013). Different classification methods
have been exploited in the literature: nearest neighbor algo-
rithm (He et al., 2010), support vector machines (Paladugu et al.,
2008), logistic regression (Ulitsky et al., 2009), tree-based meth-
ods (Wong et al., 2004; Yu et al., 2012), etc. In particular, in the
context of support vector machines, several kernels have been
proposed to compare pairs of objects on the basis of individual

@)
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O O

Learning set

Learning set

Learning set

FIGURE 1 | Schematic representation of the two main approaches to
solve the problem of network inference. (A) The global approach that
solves a single supervised learning problem by considering each pair as an
object for the learning. (B) The local approach that solves several
supervised learning problems, each defined by a different node.

Frontiers in Genetics | Bioinformatics and Computational Biology

December 2013 | Volume 4 | Article 262 | 8


http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Schrynemackers et al.

On protocols and measures for supervised network inference

features defined on these objects that have been applied for super-
vised network inference (Vert et al., 2007; Hue and Vert, 2010;
Brunner et al., 2012).

In the second approach, called local (Mordelet and Vert, 2008;
Bleakley and Yamanishi, 2009; Vert, 2010; van Laarhoven et al.,
2011; Mei et al., 2013), the network inference problem is divided
into several smaller classification problems corresponding each to
anode of interest and aiming at predicting, from the features, the
nodes that are connected to this node in the network. More pre-
cisely, each of these classification problems is defined by a learning
sample containing all nodes that are involved in a pair with the
corresponding node of interest in LS. Interestingly, when trying

to make a prediction for a given pair (n%, 1), one can aggregate
the predictions of two classifiers: the one trained for ». and the

one trained for .. Note that it is only possible to train a classifier
for a node that is involved in at least one positive and one negative
interaction in LSp. This prevents the use of the local approach to
predict interactions for pairs where both nodes do not satisfy this
property. Like for the global approach, in principle, any classifica-
tion method can be used to train each of the classification models,
but mainly support vector machines have been investigated in
this context (Mordelet and Vert, 2008; Bleakley and Yamanishi,
2009).

From experiments in the literature, there does not seem to be a
clear winner between the local and the global approach in terms of
predictive accuracy. The global approach is typically more flexible
as it can handle any kinds of features and can make prediction for
pairs of unseen nodes, but it requires more computing times and
resources, given that it aims to infer a network in one step.

Besides the global and local approaches that make use of
existing classification methods, other more specific approaches
have also been proposed for supervised network inference. For
example, Kato et al. (2005) formulate the problem as a matrix
completion problem (with input features) and solve it using an
expectation-maximization-based approach. The problem has also
been formulated as a distance metric learning problem (Vert
and Yamanishi, 2005; Yamanishi, 2009): nodes of the graph are
embedded into some euclidean space where they are close as soon
as they are connected in the training graph and a mapping is
then learned from the node feature space to this euclidean space.
A related approach consists in defining a kernel between the nodes
in the network that similarly encodes the connections between the
nodes in the training graph and then exploit the kernel trick at the
output of a regression method to learn an approximation of this
kernel from the node features. This framework has been imple-
mented using tree-based ensemble methods (Geurts et al., 2007)
and ridge regression (Brouard et al., 2011) for example.

While our brief review focused on the inference of the net-
work from node features, it is also possible to solve this prob-
lem by exploiting only the network itself. For example, Cheng
et al. (2012) derive a similarly measure between nodes from the
network topology and then use this similarity to infer new inter-
actions. In a hybrid approach, some authors have also included
features derived from the (training) network topology in the
global approach to improve network inference (Ulitsky et al.,
2009).

3. EVALUATION MEASURES

In this section, we review and discuss evaluation measures that
have been used to quantify the quality of the predictions given
by network inference methods. We focus here on statistical mea-
sures that compare a predicted network (or subnetwork) with the
true one, as in the case of supervised network inference, some
part of the true network is supposed to be available for training.
In the general context of network inference, other performance
measures have been proposed based either on functional annota-
tions shared by genes/proteins or on topological properties of the
inferred networks (see Emmert-Streib et al., 2012, for a survey).

The prediction given by a network inference method for a
given pair of nodes can typically be of two kinds: a binary
(0-1) value, coding for the presence or the absence of an inter-
action between the two nodes in the predicted network, or a
real value, representing some confidence score associated to the
pair: the higher the score, the higher the confidence or cer-
tainty of the model that there is an interaction between the
nodes in the pair. Depending on the supervised network infer-
ence method used, this confidence score can have a probabilistic
interpretation or not, but we will not assume it is the case.
Of course, one can always transform a confidence score into
a binary prediction using a decision threshold. The choice of
an appropriate threshold is, however, not an easy problem in
practice.

In this section, we assume that we have an adjacency matrix
(of a complete or a partial graph) and an equivalent matrix of the
binary or real scores predicted by a network inference method. In
both cases, our goal is to quantify the quality of the predictions
with respect to the true network represented by the adjacency
matrix. Protocols to obtain these matrices will be discussed in sec-
tion 4. We first discuss the case of binary predictions and then
compare the receiver operating characteristic (ROC) curves and
precision-recall (PR) curves that have been predominantly used
to evaluate network inference methods that provide confidence
scores. We end the section with a brief survey of other measures
and a general discussion.

3.1. BINARY PREDICTIONS

Common criteria to evaluate binary predictions are the accu-
racy (the number of correctly predicted pairs divided by the
total number of pairs) or equivalently the error rate (one minus
the accuracy). However, network inference problems typically
correspond to highly imbalanced classification problems as non-
interacting pairs often far outnumber interacting ones. Accuracy
is not appropriate in such situations because it greatly favors
the majority class (high accuracy is given to a model predicting
all pairs as non-interacting pairs). Alternative measures requires
to differentiate between the possible types of errors, that are
usually counted and compiled in a confusion matrix. In the
case of binary classification, this matrix is a 2 x 2 matrix where
the columns and rows represent, respectively the actual and the
predicted classes and each cell contains the number of pairs cor-
responding to these classes. Denoting by positive an interaction
and by negative a non-interaction, the confusion matrix is as
follows:
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actual positive (P) actual negative (N)

predicted positive
(predP)
predicted negative

(predN)

true positive (TP) false positive (FP)

false negative (FN)  true negative (TN)

Several metrics can be then derived from this matrix to evaluate
the performance of a model, among which:

o the true positive rate (TPR), also called the sensitivity or the
recall, is equal to the number of true positives divided by the
number of act}lal positives: TPE—iPFN or %, o

o the true negative rate (TNR), also called the specificity, is equal
to the number of true negatives divided by the number of
actual negati.\/e_:s: H.EriNTN or %, . -

o the false positive rate (FPR), corresponding to 1-specificity, is
equal to the number of false positives divided by the number of
actual negative§: Hgi% or %, o

e the false negative rate (FNR), also called the miss, is equal to
the number of false negative divided by the number of actual
negatives: TPZ—% or %,

o the precision is equal to the number of true positives divided by
the number of PFedicted.p(.)sitives: #{DFP.

o the rate of positive predictions (RPP) is equal to the number

of predicted positive divided by the total number of examples:
TP+ FP predP
P+N T PrN ) .
e the F-score is equal to the harmonic mean of precision and

recall:

Fe2 precision - recall
~ 7 precision + recall

Except for the F-score, these measures should be combined to give
a global picture of the performance of a method, e.g., sensitivity
and specificity or precision and recall. In the case of confidence
scores, all these performance measures can be computed for a
given threshold on the confidence scores. Nevertheless, often, one
would like to measure the performance of a method indepen-
dently of the choice of a specific threshold. Several curves are used
for that purpose that are exposed below.

3.2. ROC CURVES

ROC curves plot the TPR as a function of the FPR, when vary-
ing the confidence threshold (Fawcett, 2006). In concrete terms,
the predictions are sorted from the most confident to the least
confident, and the threshold is varied from the maximum to the
minimum confidence score. Each value of the threshold corre-
sponds to a different confusion matrix, and thus a different pair
of values of the TPR and FPR, and corresponds to a point of the
ROC curve. See Figure 2A for an example.

The two ends of the curve are always the two points (0, 0)
and (1, 1), corresponding, respectively to predP = 0 and predP =
P+ N. A perfect classifier would give the highest values of pre-
diction to the pairs that truly interact, and then would have a
corresponding ROC curve passing through the point (0, 1). The
curve relative to a random classifier corresponds to the diagonal

Sorted predictions 091 086 085 057 054 026 0.18 0.16 0.14 0.13
Rank 1 2 3 4 5 6 i 8 9 10
Actual values 1 1 0 1 0 0 1 0 0 0
FPR 0 0 o Yo s 2 Voo 2 Sk 1
TPR/Recall s ) 15 34 3/a 3a 1 1 1 1
Precision 1 1 % Sy 3 V4 L 4 2
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FIGURE 2 | ROC curve (A), precision-recall curve (B), lift chart (C), and
DET curve (D) for the scores of the table above.

connecting the two points (0,0) and (1, 1) (the dotted line in
Figure 2A).

For comparison purposes, it is often convenient to summa-
rize a ROC curve with a single real number. The most common
such measure is the area under the ROC curve (AUROC), which
is equal to 1 for a perfect classifier and 0.5 for a random one. On
the face of it, one typically assumes that the higher the AUROC,
the better the predictions.

In many network prediction tasks, however, the number of
interactions is much lower than the number of non-interactions.
It is therefore important to achieve a low FPR as even moderate
FPR can easily lead to much more FP predictions than TP pre-
dictions, and hence a very low precision. To better highlight the
importance of small FPR, partial AUROC values are sometimes
used instead of the full AUROC. For example, Tastan et al. (2009)
propose statistics like R50, R100, R200, and R300 that measure
the area under the ROC curve until reaching a FP equal to 50,
100, 200, and 300, respectively.

Another summary statistic of a ROC curve is the Youden
index (Fluss et al., 2005), which is defined as the maximal value
of TPR — FPR over all possible confidence thresholds. It corre-
sponds to the maximal vertical distance between the ROC curve
and the diagonal. The Youden index ranges between 0 (corre-
sponding to a random classifier) and 1 (corresponding to a perfect
classifier). This statistic was used for example in Hempel et al.
(2011) to assess gene regulatory network inference methods.

3.3. PRECISION-RECALL CURVES

PR curves plot the precision as a function of the recall (equal to
the TPR), when varying the confidence threshold. See Figure 2B
for an example. A perfect classifier would give a PR curve passing
through the point (1, 1), while a random classifier would have an
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average precision equal to HLN (dotted line in Figure 2B). All PR

curves end at the point (1, HLN) corresponding to predicting all
pairs as positive. When all pairs are predicted as negative, recall is
0 but the precision is actually undefined. The coordinates of the
first point of the PR curve will therefore be (%, 1) if the most likely
prediction is actually positive, and (0, 0) otherwise. To make all
PR curve defined on the full [0, 1] interval, one sometimes adds a
pseudo point to the curve at (0, 1) (Figure 2B).

The PR curve is also often summarized by the area under the
curve (AUPR). The AUPR is sometimes called MAP, for Mean
Average Precision (Manning et al., 2009; Tastan et al., 2009).
Like for the AUROC, one typically assumes that the higher the
AUPR, the better is the classifier, with the AUPR of a perfect clas-
sifier equal to 1 and the AUPR of a random classifier close to
PJFLN. In practice, the AUPR can be computed from the curve
completed with the additional pseudo-point or not. In the sec-
ond case, one can rescale the area by dividing it by 1 — % )
that its values is equal to 1 for a perfect classifier. Note that it
is important to report exactly on which approach was used to
compute the AUPR as it can make a significant difference when
the number of positives is very small. For example, the AUPR
of the PR curve of Figure 2B is equal to 0.81, 0.75, and 0.56,
respectively with the pseudo-point, without the pseudo-point
but with rescaling, and without the pseudo-point and without
rescaling.

3.4. COMPARISON OF ROC AND PR CURVES

An important difference between ROC and PR curves is their dif-
ferent sensitivities to the ratio between positives and negatives
(class imbalance) among the tested pairs: a ROC curve is indepen-
dent of the precise value of this ratio, while a PR curve is not. To
illustrate this fact, we triplicated every negative examples in the
ranked list of predictions of Figure 2 and plotted the new ROC
and PR curves in Figure 3. As expected, we obtained exactly the
same ROC curves, while the PR curves are different. This hap-
pens because, at fixed recall, a large change in FP will lead to no
change in the FPR used in ROC curves (because to total number
N of negatives will increase in the same proportion), but to a large
change in the precision used in PR curves (Davis and Goadrich,
2006).

A 1 B 1¢ o
0.8 0.8
=
o 06 S 08
& 8
0.4 T 04
0.2 0.2
Ve 0
0 0.5 1 0 0.5 1
FPR Recall

FIGURE 3 | ROC curve (A) and PR curve (B) for a list of scores where
negative examples were tripled with respect to scores of Figure 2. The
comparison with the curves in Figure 2 shows that the ROC curve is
unchanged and that the PR curve degrades, as a consequence of tripling
the negatives.

This independence with respect to the particular content of the
test sample in terms of positives and negatives is actually the main
advantage of the ROC curve over the PR curve when it comes
to compare different classification methods (Fawcett, 2006). ROC
curves allow to compare classification methods whatever will be
the ratio between positives and negatives expected when practi-
cally applying the model. Because of this independence, however,
ROC curves do not really emphasize a particular intervals of val-
ues of this ratio and therefore favor methods that are good for a
large range of such values. If one knows for example that the ratio
between positives and negatives will be very low when applying
the classification model, then one is typically only interested in
the bottom-left part of the ROC curve. PR curves, on the other
hand, provide a better picture of the performance of a method
when the ratio between positives and negatives in the test data is
close to the ratio one expects when practically applying the model.

The dependence of the PR curve on the ratio between posi-
tives and negatives can also be seen as a drawback. First, it means
that PR curves (and their associated AUPR) obtained from dif-
ferent datasets can not really be compared when the ratio % is
very different. This is a limitation if one wants to compare the
performance of a method across several networks for example.
Second, because of this dependence, it is important that the ratio
of positive and negative interactions in the subset of pairs used
to validate the method is representative of the final application
of the method. Otherwise, the PR curve will not provide a realis-
tic evaluation of the method. Note, however, that it is possible to
adapt a given PR curve to a ratio between positives and negatives
different than the one adopted to generate it (Hue et al., 2010).
Mathematical details are given in the supplementary information.

Another drawback of the PR curve is the potential unstability
of the precision for small recall values. Indeed, for small values
of predP, the vertical changes of the curve from one confidence
threshold to the next can be very huge, independently of the size
of the dataset. This is more noticeable when the value of P is
small because the horizontal changes are then also relatively large.
This unstability makes the estimation of the true PR curve highly
imprecise (Brodersen et al., 2010). It is, however, actually a direct
consequence of the stronger focus put by the PR curve on the top
of the ranking with respect to the ROC curve.

Despite these differences, it is interesting to note that a deep
connection exists between the ROC and the PR spaces, in that a
model dominates another model in the ROC space if and only if it
dominates the same model in the PR space (Davis and Goadrich,
2006). In practice, however, it is often the case that a model does
not dominate another model over the whole ROC and PR spaces
and it might thus happen that a method’s AUROC is greater than
another method’s AUROC, while the opposite is true concerning
the AUPR.

3.5. OTHER MEASURES AND CURVES
ROC curves and PR curves are the most popular ways to esti-
mate the performance of biological network inference methods,
but some other measures and curves can also be found in the
literature.

Lift charts (or cumulative lift charts), often used in marketing
(Witten and Frank, 2005), plot the TPR, or recall, as a function
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of the RPP (rate of positive predictions), when varying the confi-
dence threshold. See Figure 2C for an example. A perfect classifier
would give a curve going through the points (0, 0), ( 1%’ 1) and
(1, 1), while a random classifier would be equal to the diagonal
connecting the two points (0, 0) and (1, 1).

For example, Geurts (2011) used a lift chart to evaluate the
performance of supervised methods for the prediction of regu-
latory networks, and Yabuuchi et al. (2011) for the prediction
of compound-protein interactions. Lift charts explicitly show the
number of positive predictions (expressed as a percentage of all
possible interactions) that one needs to accept to retrieve a given
percentage of all truly positive interactions (recall). This is an
important information when one is looking at the experimental
validation of the predictions: a method that dominates another
in terms of lift chart would require to experimentally test less
interactions to achieve a given recall.

Note that when the number of positive examples is much
smaller than the number of negative ones, as it often happens
in biological networks, there is not much difference between the
ROC curve and the lift chart.

Detection error tradeoff (DET) curves plot the two types of
errors versus each other, i.e., FNR as a function of FPR (Martin
etal,, 1997). In addition, the two axes are log scaled. An example
of DET curve is given in Figure 2D. Without the axis rescal-
ing, a DET curve would be equivalent to a ROC curve (because
FNR = 1 — TPR). The interest of the log scale is to expand the
lower left part of the curve (which corresponds to the upper left
part of the corresponding ROC curve), which as argued in Martin
et al. (1997) makes the comparison between different methods
easier. DET curves were used in Brunner et al. (2012) to evaluate
classification methods working on pairs of objects.

Several authors (Li et al., 2009; Junaid et al., 2010; Lapins and
Wikberg, 2010; Niijima et al., 2011) use a correlation coefficient for
the evaluation of the performance of network inference methods.
In this context, the latter is defined as

Q2 —1— Zle(}’i _)A’i)z

Y0 —)?
where the sum runs over all tested pairs, y; and ; are the true and
predicted value corresponding to the ith pair and  is the average
value of y;. Q? values vary between 0 and 1, with Q> = 1 for a
perfect classifier.

The average normalized rank is another way to compare the
performance of different classifiers (Karni et al., 2009; Geurts,
2011). It computes the average rank of all actual positives in the
ranking of all pairs according to their confidence score, and then
divide it by the total number of pairs. Obviously smaller is the
average rank and better is the model.

3.6. DISCUSSION

Biological network inference problems, as binary classification
problems, are usually substantially imbalanced in favor of the
negative class, as the proportion of interacting pairs among all
possible pairs is very small. Given the discussion in section 3.4,
this speaks in favor of the PR curve over the ROC curve. Let us
nevertheless consider three typical scenarios related to the use

of supervised network inference techniques and discuss the most
appropriate use of these measures in each of these scenarios:

e Development of new supervised network inference methods: when
trying to design a new supervised network inference method,
one needs to assess its performance against existing methods,
either on a specific target biological network if the method is
specialized or on several networks if the method is generic. In
this scenario, one has typically no specific application of the
method in mind and the combination of both ROC and PR
curves can be a good idea. While AUROC and AUPR summary
values can be used for comparison purpose, it is always useful
to actually report full ROC and PR curves to better characterize
the areas of the ROC and PR where the new method dominates
competitors.

e Prioritizing interactions for experimental validation: From a
ranking of all the pairs from the most likely to interact to
the less likely to interact, a biologist may want to validate
experimentally the top-ranked pairs, i.e., the potentially new
interacting pairs. More locally, he also may want to find the
nodes (e.g., genes/proteins) the most likely to interact with a
specific node of special interest for him. In this scenario, the
biologist probably wants to find the best tradeoff between the
number of true interactions he will find through the experi-
mental validation and the cost associated to this validation. The
former is measured by the recall and the latter is typically pro-
portional to the RPP, which suggests the use of a lift chart. In
addition, if the goal is also to minimize the rate of unsuccessful
validation experiments (i.e., the precision), then also looking
at the PR curve might be a good idea.

e Global analysis of the predicted network: We may want to use
the top-ranked pairs to create a new network, or to complete an
already known network, for visualization or a more global anal-
ysis of its main statistics. In these cases, we need to find the best
possible tradeoff between precision (not to infer wrong things)
and recall (to maximize the coverage of the true network).
This tradeoff can be found from a PR curve. For example, one
could derive from the PR curve the lowest confidence threshold
corresponding to a precision greater than 50%.

4. EVALUATION PROTOCOLS
Given a learning set LS, of pairs labeled as interacting or not, the
goal of the application of supervised network inference methods
is to get a prediction for all pairs not present in LS, (or a subset of
them depending on the application). In addition, one would like
to compute an estimate of the quality of these predictions as mea-
sured with any of the metrics defined in the previous section. To
obtain such estimation, one could rely only on the learning set LS,
as nothing is known about pairs outside this set by construction.
Standard supervised classification methods are typically vali-
dated using cross-validation (CV), i.e., leaving part of the exam-
ples in the learning sample aside as a test set, training a model
from the remaining examples, and testing this model on the test
set (and possibly repeat this procedure several times and aver-
age). Applying CV in the context of network inference, where
we have to classify pairs, needs special care (Park and Marcotte,
2011). Indeed, the predictive performance of a method for a given
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pair highly depends on the availability in the training data of
interactions involving any of the two nodes in the tested pair. It
is typically much more difficult to predict pairs with nodes for
which no example of interactions are provided in the training
network.

As a consequence of this, pair predictions have to be parti-
tioned into four sets, depending on whether the nodes in the pair
to predict are represented or not in the learning sample of pairs
LSp. Denoting by LS, (resp. LS;) the nodes from U, (resp. U,) that
are present in LS, (i.e., which are involved in some pairs in LS,)
and by TS, = U \LS, (resp. TS, = U,\LS,) unseen nodes from
Uc (resp. U;), the pairs of nodes to predict (i.e., outside LS,) can
be divided into the following four families:

o (LS, x LS))\LS,: predictions of (unseen) pairs between two
nodes which are represented in the learning sample.

e LS, x TS, or TS, x LS,: predictions of pairs between one node
represented in the learning sample and one unseen node, where
the unseen node can be either from U, or from U,.

e TS, x TS,: predictions of pairs between two unseen nodes.

These pairs are represented in the adjacency matrix in Figure 4A.
In this representation, the rows and columns of the adjacency
matrix have been ordered, without loss of generality, in order to
make nodes from LS, and LS, appear first in the ranking and as
a consequence, all four groups define rectangular and contigu-
ous subregions of the adjacency matrix. Such ordering is always
possible but the respective sizes of the four groups of pairs that
this ordering defines is problem dependent. Thereafter, we sim-
plify the notations by dropping the subscript r and ¢ and denote
the prediction sets as LS x LS, LS x TS, TS x LS,and TS x TS.In

o
o
= S,,D LS, x TS, || LS,
- o o
TSy X LS, TG TS |
LS, TS,
B LS, x LS, (] LS, x LS,
O O
O O
O O
O O
O ]
O O O O

FIGURE 4 | Schematic representation of known and unknown pairs in
the network adjacency matrix (A) and of the two kinds of CV, CV on
pairs (B) and CV on nodes (C). In (A): known pairs (that can be interacting
or not) are in white and unknown pairs, to be predicted, are in gray. Rows
and columns of the adjacency matrix have been rearranged to highlight the
four families of unknown pairs described in the text: LS, x LS, LS, x TS,
TS, x LSc, and TS, x TS;. In (B),(C): pairs from the learning fold are in
white and pairs from the test fold are in blue. Pairs in gray represent
unknown pairs that do not take part to the CV.

the case of an homogeneous undirected graph, only three sets can
be defined as the two sets LS x TS and TS x LS are confounded.

Typically, one expects different prediction performances for
these different kinds of pairs and in particular, that TS x TS pairs
will be the most difficult to predict since less information is avail-
able at training about the corresponding nodes. In consequence,
we need ways to evaluate the quality of the predictions of these
four groups separately. Below, we first present the two main CV
procedures that have been proposed in the literature to eval-
uate supervised network inference methods and discuss which
of these four kinds of predictions these procedures are evalu-
ating (sections 4.1, 4.2). We then proceed with suggestions on
how to practically assess network inference methods (section 4.3)
and give an illustration on an artificial gene regulatory network
(section 4.4).

4.1. CROSS-VALIDATION ON PAIRS

The most straightforward way to generate the learning and test
sets needed for the CV, is to randomly select pairs from all the
known pairs in LS, (see Figure 4B). For example, in a specific
step of a 10-fold CV, 90% of all the pairs from LS, are chosen
to be in the learning set, while the remaining 10% are then part
of the test set. We call such CV CV on pairs. Many papers from
the literature on supervised network inference only consider this
sampling method (see e.g., Qi et al., 2006; Chang et al., 2010; Park
and Marcotte, 2011; Yabuuchi et al., 2011).

With CV on pairs, each test set could in principle mix pairs
from the four groups aforementioned. If LS, is relatively dense,
however, (i.e., there are only very few or no pairs in LS, x LS.\
LSp), the chance to have a node in a test set pair not present in any
learning set pair will be very low. The test set will then be largely
dominated by pairs from the LS x LS group. In this case, one can
thus only consider the performance evaluated by CV on pairs as
representative of the performance for the LS x LS pairs. When
used to assess the global performance of a method, however, CV
on pairs will in general give too optimistic estimates.

To obtain an estimate of the four kinds of predictions using
CV on pairs, one could partition the pairs in the test fold into the
four groups and then estimate the performance for each group
separately. The CV scheme proposed in the next section provides,
however, a more natural way to assess the three types of predic-
tions involving the TS. CV on pairs should thus be reserved for
the evaluation of LS x LS pairs. For that purpose, removing pairs
in the test folds that do not belong to the LS x LS group might be
useful to obtain a better estimate, especially when the size of LS,
is small with respect to the size of LS, x LS;.

4.2. CROSS-VALIDATION ON NODES

Instead of sampling pairs, several authors have proposed to sam-
ple nodes. In the general case of a bipartite graph, the idea is to
randomly split both sets LS, and LS, into two sets, respectively
denoted LS. and TS. for LS, and LS, and TS, for LS,. The model
is trained on the pairs in (LS, x LS}) N LS, and then evaluated
separately on three subsets (see Figure 4C):

o (LS. x TS)) N LS, that gives an estimate of the LS x TS
performance,
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o (TS, x LS;)NLS, that gives an estimate of the TS x LS
performance,

o (TS, x TS;) N LS, that gives an estimate of the TS x TS
performance.

In addition, it might be interesting to evaluate the performance
on the union of the three previous subsets of pairs to give an
idea of the overall performance of the method. Better estimates
could also be obtained by averaging results over k splits instead of
one, where the different splits can be obtained either by repeated
random resampling or by partitioning the two sets into k-folds
and considering each fold in turn as a test set. In this latter case,
partitioning LS, and LS, into k folds will lead to k* candidate
(LS., LS,) pairs for training and (TS, TS,) pairs for evaluation
but one could select only k of them arbitrarily to reduce the
computational burden. The same approach can also be applied
to homogeneous graphs to obtain estimate of the LS x TS and
TS x TS performances.

CV on nodes has been applied, for example, for evaluat-
ing LS x TS and TS x TS performances for the prediction of
a protein—protein interaction network and an enzyme network
in Kato et al. (2005), Vert and Yamanishi (2005), and Geurts
et al. (2007); or for evaluating LS x TS, TS x LS, and TS x TS
performances for the prediction of drug-protein interactions in
Yamanishi et al. (2008).

4.3. DISCUSSION

CV on pairs provides a natural way to estimate LS x LS pre-
dictions, while CV on nodes provide a natural way to estimate
LS x TS, TS x LS, and TS x TS predictions. A global perfor-
mance assessment of a method can therefore only be obtained
by combining these two protocols. This was done only by a few
authors (e.g., Yip and Gerstein, 2008; Bleakley and Yamanishi,
2009; Takarabe et al., 2012). The necessity to evaluate all four
groups is, however, problem dependent. Again, when designing
a new supervised network inference method, it is useful to report
performances for all families separately, as a method can work
well for one family and less good for another. If one is interested in
the completion of a particular biological network, then the need
for the evaluation will depend, on the one hand, on the content of
the learning sample LS, and, on the other hand, on which kinds
of predictions the end user is interested in. Indeed, if all nodes
are covered by at least one known interaction in LSy, then there
is no point in evaluating LS x TS or TS x TS predictions. If LS,
corresponds to a complete rectangular submatrix of the adjacency
matrix (i.e., LS, = LS. x LS;), then there is no point in evaluat-
ing LS x LS predictions. Also, for some applications, the end-user
might not be interested in the extension of the network over one
of the two dimensions. For example, when inferring a regulatory
network, one might only be interested in the prediction of new
target genes for known TFs and not in the prediction of new TF
(e.g., Mordelet and Vert, 2008).

In addition to the four groups previously defined, it is also
possible to evaluate independently the predictions related to each
individual node (to get for example an idea of the quality of
the predictions of new target genes for a given TF). This can be
achieved by dividing the test folds according to one of the nodes

in the pairs and then to assess performance for each partition so
obtained. In practice also, the quality of a prediction depends not
only on the fact that the nodes in the pair belong or not to the
learning sample, but also on the number of pairs in the learning
sample that concern these nodes. We can indeed expect that, for a
given node, the more interactions or non-interactions are known
in the learning sample for this node, the better will be the pre-
dictions for the pairs that involve this node. Assessing each node
separately can thus make sense to better evaluate this effect. We
will illustrate this idea in section 4.4.2.

When using k-fold CV to estimate ROC or PR curves, one
question we have not addressed so far is how to aggregate the
results over the different folds. There are several ways to do that.
If one is interested only in AUROC or AUPR values, then one
could simply average AUROC or AUPR values over the k folds.
If one wants to estimate the whole ROC or PR curves, there are
two ways to obtain them: first, by averaging the k curves to obtain
a single one, second by merging pairs from the k test folds with
their confidence score and building a curve from all these pairs.
In the first case, there are several alternative ways to average ROC
(and PR) curves. One of them is to sample the x-axis in each curve
and then average the k y-axis values corresponding to these points
[this is called vertical averaging in Fawcett (2006)]. Merging all
predictions together is easier to implement but it assumes that
the confidence scores obtained from the k different models are
comparable, which is not trivially true for all methods. Note that
our own practical experience shows that there are only very small
differences between these two methods of aggregation and we
usually prefer to average the individual ROC curves so that they
do not have to address the question of the compatibility of the
confidence scores.

Finally, we have seen in section 3.4 that PR curves depend
on the ratio between positives and negatives. This dependence
should be taken into account when performing CV. If CV on
pairs and CV on nodes use uniform random sampling, resp. of
pairs and of nodes, to define the test folds, then they implicitly
assume that the ratio between positives and negatives is the same
in the test fold as in the learning sample of pairs. This seems a
reasonable assumption in most situations but if one expects a dif-
ferent ratio among the predictions, then the procedure developed
in section 3.4 can be used to correct the PR curve accordingly.

4.4. ILLUSTRATION

In this section, we will illustrate the use of CV with experiments
on an artificial network. An artificial network was chosen so that
it is possible to accurately estimate performance and therefore
assess the different biases discussed in the paper. The chosen net-
work is the artificial regulatory network simulated in the context
of the DREAM5 network inference challenge (Marbach et al.,
2012). This network is an artificial (bipartite) regulatory net-
work, composed of 1565 genes, 178 TFs, and 4012 interactions,
corresponding to 1.4% of all the pairs. The network has to be
inferred from 804 artificial microarray expression values obtained
in various conditions and mimicking typical real microarray
compendia. To provide experiments on a homogeneous network
as well, we transformed this network into a co-regulatory net-
work composed of 1565 genes and in which there is an interaction
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between two genes if they are regulated by at least one common
TE. The resulting network is composed of 4,191,120 interactions,
corresponding to 17.1% of all pairs.

4.4.1. Performance over the four families of predictions

We performed a 10-fold CV on both the bipartite and homo-
geneous networks, with a local approach using Random Forests
(Breiman, 2001). For the bipartite network, we sample first on
pairs, and second on genes and on TFs. The resulting curves and
areas under the curves are given in Figures 5A,B. Surprisingly, the
prediction of interactions involving a TF present in the learning
set, and a new gene (LS x T8S) gives slightly better scores than the
prediction of interactions involving a gene and a TF both present
in the learning set (LS x LS). On the other hand, the prediction
of pairs involving a new gene and a TF present in the learning set
(LS x TS) or not (TS x TS) gives performances barely better than
random. Finding new interactions for a known TF is thus much
easier than finding interactions for a known gene.

For the homogeneous network, we sample first on the pairs
and second on the genes. The resulting curves are shown in
Figures 5C,D. Prediction of coregulation between two genes
belonging to the learning set gives the best AUROC and AUPR. As
expected prediction of coregulation between one known gene and
one new gene gives less good performance, followed by prediction
of coregulation between two new genes.
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FIGURE 5 | ROC curves (A) and PR curves (B) for the four groups of
predictions obtained by 10-fold CV on the DREAMS5 artificial gene
regulatory network. AUROC are, respectively, equal to 0.85, 0.86, 0.53,
and 0.55 and AUPR are equal to 0.31, 0.34, 0.02, and 0.02. The
performance of prediction of a pair involving a gene and a TF present in the
learning set (LS x LS) is as good as the performance of prediction of a pair
involving a gene absent and a TF present in the learning set (LS x TS). On
the contrary, predicting an interaction involving a new TF is much more
difficult (TS x LS and TS x TS). Bottom: ROC curves (C) and PR curves (D)
obtained by 10-fold CV on the corresponding DREAMS5 co-regulatory
network. AUROC are, respectively, equal to 0.96, 0.88, and 0.75 and AUPR
are equal to 0.88, 0.65, and 0.40. Predictions on pairs involving two genes
from the learning set are the best, while predictions on pairs involving two
genes from the test set are the worst.

These two examples clearly highlight the fact that all pairs are
not as easy to discover as the others, and that it is thus important
to distinguish them during the validation.

4.4.2. Per-node evaluation

As a second experiment, we computed the ROC and PR curves for
each of the 178 TFs separately, from the result of the 10-fold CV
on genes (bipartite graph). Figure 6 shows the (average) AUROC
and AUPR values for all TFs according to their degree. This plot
shows that the quality of the predictions differs greatly from one
TF to another and that the number of known pairs seems to
affect this quality. For low values of degree (lower than about 20),
the AUROC globally increases when the degree increases, but for
higher values the AUROC does not seem to depend on it. On
the other hand, AUPR values globally increase when the degree
increases, for all values of TE.

4.4.3. A more realistic setting

The goal of CV is to estimate, from the training subnetwork,
the performance one expects on the prediction of new interac-
tions. We carried out a last experiment to evaluate the quality
of the estimation obtained by CV in a realistic setting. In this
setting, we assume that the known pairs are obtained by first ran-
domly drawing 2/3 of the genes and 2/3 of the TFs and then
randomly drawing 2/3 of all interacting and non-interacting pairs
between these genes and TFs. The resulting training set thus con-
tains about 30% of all possible pairs and the goal is to predict the
remaining 70% pairs, which are divided into, respectively 15%,
22%, 22%, and 11% of LS x LS, LS x TS, TS x LS, and TS x TS
pairs.
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FIGURE 6 | AUROC (A,B) and AUPR (C,D) for each TF as a function of
its degree (number of targets) on the DREAMS5 network. Each value
was obtained by 10-fold CV on genes. Each blue point corresponds to a
particular TF and plots its average AUROC or AUPR value over the 10-folds.
Each red point correspond to the average AUROC or AUPR values over all
TFs of the corresponding degree. Globally, the higher the degree, the
higher are the areas under the curve and so the better are the predictions.
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Two validation experiments were performed. First, we eval-
uated the performance of the (global) Random Forests method
by CV across pairs and across nodes on the 30% of known
pairs (experiment A). Second, we trained local models based
on Random Forests on the known pairs and we evaluated them
on the 70% of pairs not used during training. Experiment A is
therefore supposed to provide a CV estimate of the true perfor-
mance as estimated by experiment B. The resulting ROC and PR
curves obtained from these two experiments for the LS x LS and
LS x TS families are shown in Figure7. As expected, for both
kinds of predictions, the curves obtained by the two experiments
are very similar, with a very slight advantage to experiment B.
This small difference comes from the fact that the number of
pairs in the learning set of experiment B is 10% greater than the
number of pairs in the learning sets of experiment A (because of
10-fold CV).

5. LACK OF NEGATIVE EXAMPLES

In biological networks, often truly non-interacting pairs are not
available. Indeed it is often impossible for biologists to experi-
mentally support the lack of an interaction between two nodes.
For example you can prove that a specific drug acts on a set of
proteins, and you may want to find other proteins being affected
by this drug by using machine learning techniques, but you can-
not prove that a particular set of proteins is not affected by the
drug. This lack of negative examples leads to problems both when
training and when evaluating a model. We discuss these two steps
separately below and conclude with an illustration.

5.1. TRAINING A MODEL

Standard supervised machine learning methods require both pos-
itive and negative examples for training. The most common way
to get around this limitation in the presence of only positive
examples is to take as negative examples all, or a subset of, the
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FIGURE 7 | Comparison of the CV estimates of the LS x LS and
LS x TS scores, ROC curve in (A) and PR curve in (B), with true score
values for the same two families of predictions, ROC curve in (C) and
PR curve in (D). AUROC and AUPR values are found in the legends.

unlabeled examples, i.e., in our context, considering all or some
pairs that have not been measured as interacting as actually non-
interacting. This approach has been adopted by most authors
in the literature, e.g., in Geurts et al. (2007), Mordelet and Vert
(2008), Yamanishi et al. (2008), Yip and Gerstein (2008), Bauer
et al. (2011), van Laarhoven et al. (2011), and Takarabe et al.
(2012), the authors use all unlabeled pairs as negatives and in
Yip and Gerstein (2008), Chang et al. (2010), Hue et al. (2010),
Yabuuchi et al. (2011), and Yu et al. (2012) they use only a subset
of them. Although there is a risk that the presence of false neg-
atives in the learning sample will affect the performance of the
machine learning method, using only a subset of the unlabeled
pairs as negative examples will, however, substantially reduce this
risk in the context of biological networks. Indeed, the fraction of
positive interactions is expected to be very small in common bio-
logical networks, which will lead to only a very small number of
false negatives in the learning sample as soon as the size of the
negative set is not too large with respect to the size of the posi-
tive set. For example, for the protein—protein interaction network
of the yeast, it is estimated that 1 pair over 600 is actually inter-
acting (Qi et al., 2006), which corresponds to ~0.2% of all the
possible pairs. A learning sample composed of 1000 positive and
1000 unlabeled pairs is therefore expected to contain in average
only about two or three false negatives. In addition to the reduc-
tion of the number of false negatives, sampling the unlabeled pairs
has also the advantage of decreasing the computational cost at the
training stage and of improving the class imbalance in the train-
ing sample, which might affect the performance of classification
methods (Pandey et al., 2010; Park and Marcotte, 2011).

To even further reduce the risk of incorporating false nega-
tives in the training data, one could also replace random sampling
from the unlabeled pairs by a selection of a subset of more
reliable negative examples using prior knowledge about the bio-
logical interactions of interest. This approach was considered for
example in Ben-Hur and Noble (2006) for protein—protein inter-
actions, in Ceccarelli and Cerulo (2009) for gene-TF interactions,
and in Yousef et al. (2008) for microRNA-gene interactions.

Note that the presence of false negatives is not necessarily
detrimental. Elkan and Noto (2008) showed that, under the
assumption that the interactions in the learning sample are
selected uniformly at random among all interactions, the pres-
ence of false negatives in the learning sample will only affect the
confidence scores by a constant factor, which will thus leave ROC
and PR curves for example unaffected. Although their assump-
tion is quite strong, this nevertheless suggests that the presence of
false negatives might have just a marginal effect on performance.
As an illustration, we run the same experiment as in section 4.4
on the DREAMS5 regulatory network only turning 10% of posi-
tives into negatives when training the model. The AUPR reduces
from 0.31 to 0.29 and the AUROC from 0.85 to 0.84, showing
that the presence of false negatives only very slightly affects the
performance of Random Forests.

One drawback of considering unlabeled pairs as negative pairs
for training the model is that the predictions provided by the
model for these pairs will be biased toward low confidence scores.
One way to obtain unbiased predictions for all unlabeled pairs is
to use CV: construct a model using all known positive pairs and a
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random subset of the unlabeled pairs as negatives, use this model
to obtain a prediction for all unlabeled pairs not used during the
training stage, and repeat the procedure several times using dif-
ferent subsets of unlabeled pairs until all unlabeled pairs have
obtained at least one prediction. Based on this general scheme,
Mordelet and Vert (2013) proposed to train several models using
small random subsamples of unlabeled pairs, leading to several
predictions for each unlabeled pairs that are then aggregated.

Another approach to deal with the lack of negative examples is
to forget about unlabeled examples and exploit machine learning
methods, such as one-class support vector machines (Scholkopf
et al., 2001), that can learn a model only from the positive exam-
ples. This approach was for example adopted in Yousef et al.
(2008) to predict miRNA-gene interactions. Machine learning lit-
erature also provides several specific algorithms for dealing with
positive and unlabeled examples, among which for example (Lee
and Liu, 2003; Denis et al., 2005; Geurts, 2011), that could also
be used in the context of supervised network inference. Geurts
(2011) validated his method for the inference of regulatory net-
works, which showed improvement over standard two-classes
methods.

5.2. EVALUATING A MODEL
The absence of true non-interacting pairs in the training data has
also an impact on the validation of the model, as the different
evaluation measures described in section 3 all rely on the avail-
ability of a set of known interacting and non-interacting pairs on
which to perform the CV.

Like for training, the simplest way to deal with the lack of neg-
atives for validating the model is to consider all unlabeled pairs
within the test folds (generated in the context of CV on pairs or
CV on nodes) as non-interacting pairs and then estimate ROC
or PR curves under this assumption. The presence of false nega-
tives in the gold standard will obviously affect the estimation of
the performance. Let us assume that the ranking of the exam-
ples in a test fold is fixed and that a proportion x of positives
are turned into negatives. Under this assumption, it can be shown
that the TPR remains unchanged while FPR and Prec are modified
as follows:

where the first inequality holds as soon as the ranking is better
than random (see the supplementary information for the details).
One can thus expect that the introduction of false negatives will
systematically degrade both the ROC and the PR curves.

As an illustration, we carried out simulations on the DREAM5
regulatory network (see section 4.4). The model was trained
with Random Forests with the local approach and we focus our
experiment on the LS x LS pairs. The learning sample was kept
unchanged but in each of the 10 CV folds (CV on pairs), we ran-
domly turned a fraction x of positives into negatives, in order to
simulate the introduction of false negatives. We tried several pro-
portions x € {0,0.1,0.2,...,0.9} and got the curves shown in
Figures 8A,B. As expected, the PR curves degrade when the ratio
increases. More surprisingly, the ROC curves do not seem to be
influenced by the ratio of false negatives. This can be explained by
the fact that in Equation (1), TP - x becomes negligible compared
to FP and P - x is negligible compared to N, even for small FPR
values as soon as N is large with respect to P.

Actually, there are potentially two effects that play a role in
the degradation of the PR curve in Figure 8B: the introduction of
false negatives but also the alteration of class imbalance. Indeed,
we have seen in section 3.4 that the PR curve was affected by this
ratio. To try to assess both effects separately, we also generated
the PR curves obtained from the initial curve by increasing the
number of negatives in such a way that the ratio of P/N matches
the ratio of P/N in the previous experiment for x ranging from
0 to 0.9. These curves are plotted in Figure 8C. They are also sys-
tematically degraded by the introduction of more negatives but
the degradation is not as high as the degradation obtained by the
addition of false negatives.

We can conclude from these experiments that PR curves are
much more sensitive than ROC curves to false negatives in the
true dataset. Interestingly, given Equation (2), if we can estimate
the ratio x of false negatives, we can modify the PR curve sim-
ply by dividing the precision by 1 — x, to obtain a more realistic
PR curve. Note, however, that the correction in Equation (2) only
applies under the assumption that false negatives will get scores
distributed similarly as positives. This assumption is not unreal-
istic in practice as we indeed expect that false negatives will be
predicted most often as positives (since they are in fact positives).

FPR = PP 1Px o gpR 1 - . : o
new N+Px M) However, it is also possible that for a given biological network,
Prechew = (1 — x)Prec < Prec, (2) known interactions are the strongest ones (i.e., those with the
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FIGURE 8 | Effect of false negatives on ROC and PR curves. \We simulated increases. The ratio varies from 0 to 0.9. Curves (C) show the evolution of
false negatives in the DREAMDG regulatory network, during the testing stage. the PR curve when the ratio P/N is set similarly as in (B). Although the PR
The ratio of false negatives does not influence the ROC curve (A), but the PR curve degrades also in this case, the degradation is not as important as when
curve (B) decreases while the ratio of positives turned into negatives false negatives are introduced.
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strongest experimental support) and therefore false negatives will
typically correspond to weaker interactions. Their scores, as pre-
dicted by network inference methods, can then be smaller than
those of known positives. In this case, the degradation of the
PR curve will most probably be somewhere in between curves
in Figures 8B,C. Note that even though PR curves are affected
by the introduction of false negatives, this is not really problem-
atic when it comes to compare different inference methods on the
same networks, as all methods will be affected in the same way by
these false negatives. In this case, correcting the PR curve is not
necessary.

Finally, we would like to note that the ratio between positives
and negatives used to evaluate PR curves should be as close as
possible to the expected ratio in the pairs to predict. Indeed, one
could be tempted to estimate performance by CV on pairs on
the positives and the selected negatives (randomly or from prior
knowledge). The resulting PR curves will be, however, represen-
tative only for the given observed ratio between positives and
negatives. If this ratio is different from the expected one, then one
should apply the PR curve correction presented in section 3.4.

5.3. ILLUSTRATION

To illustrate the practical impact of the absence of negatives on
validation, we reproduced the experiment of section 4.4.3 on the
DREAMS5 network, this time assuming that only positive (and
unlabeled) pairs are available in the training data. More con-
cretely, we again first randomly drew 2/3 of the genes and 2/3
of the TFs and then randomly drew 2/3 of the positive pairs exist-
ing among these genes and TFs. This set of positive pairs then
defines our training network and the goal is to find new positive
pairs among all the other ones (that are then considered as unla-
beled). The positive pairs in the training set were chosen so that
they match the positive pairs in the training set in the experiment
of section 4.4.3.

Two validation experiments were performed. First, CV across
pairs and nodes was carried out on all pairs between the selected
genes (2/3) and TFs (2/3), considering all unlabeled pairs as
negative (experiment A). Second, we randomly split the whole
set of unlabeled pairs into two subsets. We trained a model on
the positive pairs and each of these subsets taken in turn as
the set of negative pairs and then used this model to obtain a
prediction for the unlabeled pairs in the other subset. The result-
ing predictions were then evaluated against the true network
(experiment B). Experiment A is thus supposed to provide a CV
estimate of the true performance as computed by experiment
B. The resulting ROC and PR curves obtained from these two
experiments are shown in Figure 9 for the LS x LS and LS x TS
families.

ROC curves and AUROC scores obtained from experiments
A and B are very close but noticeable differences appear in PR
curves and AUPR scores. Indeed, experiment A gives higher
AUPR than experiment B for LS x LS pairs, but gives lower
AUPR for LS x TS pairs. In other words, CV overestimates
the AUPR for LS x LS pairs and underestimates it for LS x TS
pairs. As discussed above, these differences can be explained,
on the one hand, by the presence of false negatives in the
test data generated by the CV and, on the other hand, by
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FIGURE 9 | Comparison of the CV estimates of the LS x LS and
LS x TS scores, ROC curve in (A) and PR curve in (B), with true score
values for the same two families of predictions, ROC curve in (C) and
PR curve in (D), when only positive and unlabeled pairs are available.
AUROC and AUPR values are found in the legends.

the differences in the ratio between positives and negatives
that exist in the two families of pairs between experiments
A and B.

Assuming that both the ratio of false negatives in the training
pairs and the ratio of positives and negatives among the unlabeled
pairs are known or can be estimated, PR curves and AUPR scores
obtained from experiment A can be corrected using results in sec-
tions 3.4, 5.2, so that they match the conditions of the application
of the model in experiment B. Since these quantities are known
for our artificial network, we performed these corrections, first
adjusting the precision to account for the false negatives and then
correcting the curve to account for the different ratio of positives
versus negatives. The corrected AUPR are respectively 0.16 and
0.26 for LS x LS and LS x TS, which are now closer to the value
obtained from experiment B.

Note that another factor that could introduce a difference
between CV scores and real scores is the composition of the
training data in terms of positives and negatives, which might
affect learning algorithms. In our experiment, however, the ratios
of positives versus negatives in the training data are very close
(~ 0.9% for experiment A and ~ 1.0% for experiment B).

6. IMPACT OF HEAVY-TAILED NODE DEGREE DISTRIBUTION

Biological networks are typically non-random. In particular,
many of them have a heavy-tailed distribution of node degrees:
several nodes, called hubs, have degrees greatly higher than the
average (Stumpfand Porter, 2012). In such networks, a new node,
without consideration of its features, is more likely to interact
with a hub than with a less connected node. As a consequence,
it is possible in such network to obtain better than random inter-
action predictions without exploiting the node features, by simply
connecting any new node with the more connected nodes in the
training network.
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Let us illustrate this on the DREAMS5 in silico network. The
topology of this network is based on known transcriptional reg-
ulatory networks of model organisms such as S. cerevisine and
E. coli. It clearly has a heavy-tailed node degree distribution (5%
of the TFs collect about 50% of all interactions). Figures 10A,B
shows the ROC and PR curves obtained using the same 10-CV
folds as in section 4.4.1. The LS x LS pairs are now ranked
according to the sum of the degrees of the nodes, computed in
the training network, and the LS x TS and TS x LS pairs are now
ranked according to the degree of the TF and of the gene, respec-
tively. The AUROC and AUPR are, respectively, equal to 0.83 and
0.14 for LS x LS, 0.83 and 0.17 for LS x TS, and 0.54 and 0.02 for
TS x LS. We can conclude from these results that the degree of
a TF is indeed greatly linked with the probability for it to inter-
act with a known or a new gene. On the contrary, the degree of
a gene does not influence its chance to interact with a new TE.
Although better than random, it is important to note, however,
that the degree-based ranking of LS x TS pairs does not allow to
distinguish potential targets of a given TF since they all inherits
the degree of the TFE.

That it appears possible to complete a network based only on
the degree of LS nodes shows that using a random classifier as
a baseline for assessing the performance of supervised network
inference methods is inappropriate. A network inference method
that does not perform better than the simple degree-based rank-
ing of the interactions is potentially unable to effectively extract
useful information from the features. As a consequence, we
believe that one should always report the performance of the
degree-based ranking as a baseline for assessing the performance
of a supervised network inference method. As an illustration, on
the DREAMS5 network, we obtained with the Random Forests
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FIGURE 10 | The heavy-tailed degree distribution of many biological
networks can lead to better than random predictions, only by
exploiting the network topology and ignoring node or pair features.
First row: ROC curves (A) and PR curves (B) obtained from predictions
made on the DREAMS5 dataset using the degree of the nodes in the
learning set. Second row: ROC curves (C) and PR curves (D) obtained from
predictions made on the DREAMDb dataset when randomly permuting the
feature vectors relative to different nodes.

method AUROC values of 0.85 and 0.86 and AUPR values of 0.31
and 0.34, respectively for LS x LS and LS x TS pairs (see sec-
tion 4.4.1). The AUROC values of 0.85 and 0.86, although very
good in absolute values, should be treated cautiously; they are
indeed only slightly greater than the 0.83 AUROC of the degree-
based ranking. In contrast, the doubling of the more robust AUPR
value (from 0.14 and 0.17 for the degree-based random predictor
to 0.31 and 0.34 for the trained model) indicates that the Random
Forests are able to capture information from the feature vectors
and indeed enable reliable predictions.

Even when the features are uninformative, supervised infer-
ence methods should be in principle able to “learn” and exploit
this positive bias for interactions with nodes of high degree within
the training data. Indeed, this is in this case the only way to get
non-random predictions. To illustrate this assumption, we car-
ried out an experiment on the DREAMS5 network with the same
protocol as in section 4.4.1 but making the features uniforma-
tive. To decorrelate the features from the network, the model is
trained and tested by 10-fold CV on new data obtained by keep-
ing the labels of the pairs unchanged but randomly permuting
the feature vectors of the nodes. Resulting ROC and PR curves
for LS x LS and LS x TS pairs are shown in Figures 10C,D. The
AUROC and AUPR are, respectively, equal to 0.76 and 0.09 for
LS x LS and 0.78 and 0.11 for LS x TS. These results are slightly
worse than the results obtained by the degree-based ranking but
they are much better than random, although the features do not
convey any information about the network by construction. Note
that the AUROC and AUPR values averaged over each TF (as
done in section 4.4.2) are, respectively, equal to 0.48 and 0.02 for
LS x TS pairs. Like the degree-based ranking, the model trained
on permuted features is unable to distinguish between possible
targets of a given TE. This latter experiment further confirms that
the degree-based ranking should be preferred to a random rank-
ing as a baseline to assess the performance of supervised network
inference methods.

7. DISCUSSION

In this paper, we discussed measures and protocols for the valida-
tion in silico of supervised methods for the inference of biological
networks, i.e., methods that infer a biological network from a
training sample of known interacting and non-interacting pairs
and a set of features defined on the network nodes (or directly on
pairs of nodes). Although this problem is very close to a standard
supervised classification problem, it requires to address several
important issues related to the need to classify pairs of entities in
a candidate interaction and to the nature of biological networks.
We carried out a rigorous examination of these issues that we sup-
ported by experiments on an artificial gene regulatory network.
The main guidelines that can be drawn from this examination are
as follows:

e Network inference methods have been assessed mainly using
PR curves and ROC curves. The choice of an appropriate
metric should be dictated mainly by the application but gen-
erally PR curves are more appropriate than ROC curves given
the highly imbalanced nature of the underlying classification
problem, related to the very sparse nature of most biological
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networks. While PR curves are sensitive to the ratio of positives
versus negatives in the test data, we show that it is straight-
forward to adapt them to a new ratio. A further important
characteristic of biological networks that should influence the
choice of a performance metric is the heavy-tailed degree dis-
tribution. We show that this degree distribution severely affects
the ROC curves, making it difficult to estimate the perfor-
mance of inference methods by the AUROC, while PR curves
are much less affected.

e When validating a model, it is necessary to divide the predic-
tions into four groups, given that the two nodes might either
be present or absent in the learning sample of interactions.
Indeed, performance is typically very different from one group
to another and improves when the number of training interac-
tions involving the nodes in the pairs to be predicted increases.
The quality of the predictions for pairs where both nodes have
interactions in the training network can be assessed using CV
over pairs in the training data. The quality of the predictions for
the three other groups of pairs, where at least one node is not
represented in the training data, is best assessed by using CV
over nodes. Unless the inference problem at hand makes some
subgroups of predictions irrelevant, we advocate the joint use
of both kinds of CV to get a more detailed assessment of the
performance of an inference method.

e We discussed the lack of experimental support for non-
interacting pairs in most biological networks. We reviewed
several ways to address this problem at training time and
showed that the presence of false negatives does not really affect
ROC curves but can result in an underestimation of the PR
curve. Assuming that the proportion of false negatives in the
test data is known and that false negatives are selected ran-
domly among positives, we show that it is possible to correct
the PR curve so that it better reflect true performances. The
correction is, however, not necessary when one only wants to
compare different methods.

e We showed empirically that a heavy-tailed node degree distri-
bution seemingly enables a better than random inference only
by exploiting the topology of the training network. As a conse-
quence, random guesses should not be taken as valid baselines
for supervised network inference methods, in order not to
overestimate the performance. Every validation of a supervised
inference method should always be supplemented by a report-
ing of the performance of the simple degree-based score (or a
classifier grown from randomly permuted feature vectors).

Thereby, we provided the most comprehensive examination and
discussion of issues in the evaluation of supervised inference
techniques so far. Given that the examined supervised tech-
niques exploiting prior information on the network are typically
superior in performance to unsupervised approaches, a reliable
assessment is particularly desirable. Following the guidelines we
derived will enable a more rigorous assessment of supervised
inference methods, will contribute to an improved comparability
of the different approaches in this field and will thus furthermore
aid researchers in improving the state of the art methods.

Still, there remain several open questions about supervised
network inference methods and their validation. First, with a few

exceptions, most papers in the domain focus on a given type of
biological network. Yet, unlike unsupervised methods that need
some prior knowledge to derive their confidence scores, super-
vised methods are most of the time generic in that they could
be applied to any network without much adaptation. A thor-
ough empirical comparison of these methods on several net-
works with different characteristics is missing to really understand
the advantages and limitations of all these methods. While we
argue, as others, that predictions within the different pair sub-
groups should be assessed separately, we have not discussed ways
to take into account the resulting information to obtain bet-
ter global network predictions. Indeed, most methods eventually
provide a single ranking of all pairs to be predicted. How to
take into account the performance differences between the dif-
ferent groups of pairs to reorganize this ranking into a better
one, and whether this is actually possible, remains an interest-
ing open question for future research. In this review, we focus
on the statistical and in silico validation of network inference
methods using CV techniques. Such validation helps assess the
quality of the predictions and therefore decide on a confidence
threshold that best suits application needs. However, even more
important is the experimental validation of the predictions pro-
vided by network inference techniques. Experimental validation
depends on the nature of the biological network at hand and
therefore a discussion of these techniques is out of the scope of
this review. Note nevertheless that experimental validation will
be influenced also by the lack of experimental support for non-
interacting pairs and that for some (more abstract) networks,
experimental validation might be very difficult (e.g., disease-gene
networks).
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1. INTRODUCTION

Boolean networks (BoN) are relatively simple and interpretable models of gene
regulatory networks. Specifying these models with fewer parameters while retaining
their ability to describe complex regulatory relationships is an ongoing methodological
challenge. Additionally, extending these models to incorporate variable gene decay rates,
asynchronous gene response, and synergistic regulation while maintaining their Markovian
nature increases the applicability of these models to genetic regulatory networks (GRN).
We explore a previously-proposed class of BoNs characterized by linear threshold
functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional
BoNs with unconstrained transition functions, these models require far fewer parameters
and offer a more direct interpretation. However, the functional form of a TBN does
result in a reduction in the regulatory relationships which can be modeled. We show
that TBNs can be readily extended to permit self-degradation, with explicitly modeled
degradation rates. We note that the introduction of variable degradation compromises
the Markovian property fundamental to BoN models but show that a simple state
augmentation procedure restores their Markovian nature. Next, we study the effect of
assumptions regarding self-degradation on the set of possible steady states. Our findings
are captured in two theorems relating self-degradation and regulatory feedback to the
steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene
response and asynergistic regulation and show that TBNs can be easily extended to
relax these assumptions. Applying our methods to the budding yeast cell-cycle network
revealed that although the network is complex, its steady state is simplified by the
presence of self-degradation and lack of purely positive regulatory cycles.

Keywords: Boolean network, genetic regulatory network, attractor, steady state, state augmentation,
asynchronous update, feedback loop, yeast cell-cycle

resulting in increased gene expression, or negative, resulting in

Dynamic models are used frequently to study the evolution of a
genetic regulatory network (GRN) over time [see De Jong (2002)
for a review]. Often accompanying these models is a graph rep-
resenting the relationships among the genetic components (e.g.,
proteins, DNA, RNA). The components are represented by nodes
and the regulatory relationships by edges. The dynamic models
range from highly quantitative frameworks such as systems of
differential equations [see Heinrich and Schuster (1996) for an
introduction] to more qualitative models such as Boolean net-
works (BoN) (Kauffman, 1969). Although systems of differential
equations are explicit and detailed in their description of net-
work trajectories, they require specialized knowledge of kinetic
parameters, time constants, and the mechanism underlying the
process. In comparison, BoN are easier to construct and interpret.
In a BoN, gene expression is discretized into one of two states,
e.g., on/off, up/down, or active/inactive. Regulation is modeled
by logic functions (e.g., AND, OR, NOT) that code the influ-
ence of the effector genes. Genetic regulation is either positive,

decreased gene expression. While discretizing gene expression
is certainly a simplification, similar approaches have resulted in
increased reproducibility and robustness when estimating both
absolute and differential gene expression (Parmigiani et al., 2002;
Scharpf et al.,, 2003; Zilliox and Irizarry, 2007; McCall et al.,
2011), and Boolean network models have been used to suc-
cessfully model gene regulatory networks (Albert and Othmer,
2003; Espinosa-Soto et al., 2004; Li et al., 2004; Davidich and
Bornholdt, 2008). For certain small networks, systems of differ-
ential equations and BoN are qualitatively similar in their state
transitions and long term behavior (Glass and Kauffman, 1972,
1973). These two types of models can differ in their results
when applied to networks with many nodes and complex gene
interactions.

Ultimately a desirable model is one that retains the relative
ease of modeling and interpretation of a BoN and the quanti-
tative precision of differential equations. A model that possesses
these qualities is the BoN proposed by Li et al. (2004) to study the
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Network Inference

Q: Which kinds of biological networks have been inferred in the paper?
A: We studied genetic regulatory networks (GRN), specifically the budding yeast cell-cycle network, using a threshold
Boolean network (TBN) model specified by linear functions and a threshold.

e Q: How was the quality/utility of the inferred networks assessed? How were these networks validated?
o A: We studied how the TBN model behaves under different assumptions of gene self-degradation and different

parameter specifications. We Markovianized self-degradation and showed that the resulting model is more tractable.
We proposed and proved two theorems relating gene self-degradation to a TBN's attractor set and used these results
to assess the behavior of the budding yeast cell cycle. Our results were then compared to those of a widely cited
GRN model.

e Q: A few sentences explaining the main positive/negative results described in the paper.
o A: We showed how the TBN model accommodates aspects of GRNs such as variable Markovian self-degradation,

asynchronous gene update, and synergistic relationships, making the model more representative of real biolog-
ical networks. Additionally, we found that the complexity of a GRN can be summarized by the presence of
self-degradation and cycles comprised of only positive regulations. The primary limitation of TBNs is that they can-
not easily model all possible regulatory relationships. Nevertheless, the mathematical tractability and qualitative

characteristics of a TBN make it a desirable model for understanding GRNs.

budding yeast cell-cycle. Cited by more than 600 articles, their
BoN employs a simple, elegant linear function with a thresh-
old that utilizes far fewer parameters than a BoN specified by
truth tables. Because of the influential results of Li et al’s thresh-
old Boolean network (TBN) model, a thorough analysis of the
model’s mathematical properties and fidelity to true network
behavior are important. A key aspect of their model is the treat-
ment of genetic degradation. Degradation primarily occurs in
three ways: (a) negative regulation by other genes in the network,
(b) negative regulation by other (unmeasured) genes not in the
network, and (c) intrinsic protein degradation. The latter two
are indistinguishable in a GRN and are commonly referred to as
self-degradation.

Our evaluation of the TBN consists of: (1) characteriz-
ing the regulatory relationships that the TBN can and can-
not express, (2) showing how self-degradation has a substantial
impact on a GRN’s steady state behavior, (3) Markovianizing
self-degradation, (4) proving that steady states of a GRN are
sensitive to gene interaction strengths, (5) commenting on
the role of self-degradation and interaction strength in asyn-
chronous gene update, and (6) augmenting the TBN to allow
for synergistic and antagonistic relationships. The extensions
improve a TBN’s representation of a GRN and the theoretical
results break down its complexity. In Section 2, we formally
introduce BoN, their dynamic properties and Li et al’s cell-
cycle TBN. In Section 3, we evaluate the TBN and present
our theorems relating self-degradation to steady state behav-
ior. A summary and discussion of our findings follows in
Section 4.

2. MATERIALS AND METHODS

2.1. AREVIEW OF BOOLEAN NETWORKS AND DYNAMIC PROPERTIES
A Boolean Network (BoN) is defined as a directed graph G(X, &)
with Boolean transition functions. The graph G is composed of
a set of nodes X = {1, ..., N} and a set of edges &, in which a
directed edge represents a causal relationship between two nodes.
Each node i can have either state x; = 0 or x; = 1. Whenever there

is an edge i — j € &, j is called the child of i and i is called the
parent of j in G. Associated with each node is a Boolean function
fi : BN + B where B = {0, 1}. This function specifies how the
state of node i changes over time. Denote the state of node i at
time t as x;(t). Node i updates its state by the Markovian process,
xi(t+1) = fi(x1(8), ..., xx(¢)) where 1, ..., k are its parents. In
other words, the current state of a node is determined by a func-
tion of its parents’ previous states. Although f; is defined to take
N inputs, the relevant arguments are the parents’ states since all
other nodes do not directly affect i. In GRNS, an f; specifies the
regulatory relationship between gene i and the rest of the net-
work. The entire network updates synchronously by the process,
x(t + 1) = A(x(t)), where x = (x1, ..., xN) is a state vector and
A: BN i BN is the model’s operator. To be exact, A is a vec-
tor whose components are the functions, f;. A network path is a
sequence,

x(0) - x(1) » x(2) —> ...

The long term behavior or steady state of a BoN can be charac-
terized by its attractors. An attractor is a set of network states that
occur infinitely often in the sequence A’(x(0)) with t > 1. If the
set contains only one element, then the attractor is referred to as
a fixed point, otherwise the attractor is periodic. Formally, a fixed
point is defined as x = A(x). An important feature of an attractor
is its basin of attraction, which is the set of state vectors from which
the network reaches the attractor. The size of the basin of attrac-
tion represents the attractor’s pull on the network states. Growing
evidence suggests that an attractor represents a particular cell fate
(Kauffman, 1969; Huang et al., 2005).

2.2. THE CELL-CYCLE THRESHOLD BOOLEAN NETWORK

The cell-cycle of the budding yeast Saccharomyces cerevisiae is a
phenomenon that continues to fascinate and generate knowledge
even after years of research. Li et al. (2004) developed a dynamic
BoN to model the cycle and “demonstrated that the cell-cycle net-
work is extremely stable and robust for its function” (p.4781).
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Their BoN wuses a linear transition function with a threshold,
henceforth referred to as a TBN, in the following manner:

1, Z]- ajixj(t) > 0

0, Zj ajixj(f) < 0 (1)
xi(t), D; aijxj(t) =0

xi(t+1) =

where x;(t) is the expression of the regulator protein j at the
current time f, x;(t + 1) is the expression of the regulated pro-
tein 7 at the next time ¢ + 1, and interaction coefficient a;; codes
the strength and type of regulation that protein j exerts on pro-
tein i. Positive regulation is specified by positive values of a;; and
negative regulation by negative values of a;;. Any regulation is a
product of the parent’s state x;(¢) and the type and strength of
the regulation a;;. The next state of a protein depends only on
its parents’ current states. Specifically, the next state x;(t + 1) of
protein i is ‘on’ if the sum of its parents’ regulatory effects sur-
passes 0, “off” if the sum is below 0, and when the sum is 0, the
state remains the same. Self-degradation is a process not incorpo-
rated in Equation (1), but defined separately as: if Zj a;ixj(t) =0
from t =t; to t = t; + t; — 1 then x;(t; + t;) = 0, where t; is
referred to as the protein’s lifetime. A higher value of #; translates
to a slower rate of decay. In the cell cycle TBN constructed in Li
etal. (2004), only proteins not negatively regulated by others pos-
sess the self-degradation property (we note, however, that Swi5
appears to be an exception, as indicated in Figure 1 of Li et al.
(2004)). Proteins that do not self-degrade maintain their current
state according to line 3 of Equation (1). For ease of reference, we
refer to these proteins as having the persistence property.

Proteins in the cell-cycle network belong to one of four classes:
(a) cyclins (Clnl,-2,-3, Clb1,-2,-5,-6), (b) inhibitors/competitors
of cyclins (Sicl, Cdhl, Cdc20, Cdcl4), (c) transcription factors
(SBE, MBE, Mcm1/SFF, Swi5), and (d) checkpoints. We focus on
a simplified network having only the cell size checkpoint. The
cell-cycle starts at phase G1 where the cell size becomes large
enough and Cln3 reaches a high enough concentration, i.e., its
Boolean state is equal to 1. When these two conditions are met,
the cell commits to division. Next, the cell moves into S phase
in which DNA is synthesized. After S phase is the gap phase G2,
and in the final phase M, chromosomes separate and the yeast cell
divides into two cells. This phenomenon repeats when the right
conditions encourage cell growth and division.

Accompanying the TBN model in Equation (1) is a graph
depicting the relationships among the proteins in the cell-cycle
network. We reproduced the cell-cycle network in Figure 1. The
graph is identical to Li et al’s except for green self loops that
we added to proteins that are assumed to persist. Functionally,
Figure 1 is equivalent to theirs. An edge between two nodes rep-
resent one of four regulatory relationships, negative regulation,
positive regulation, self-degradation and persistence. These rela-
tionships are represented with a red edge, green edge, yellow loop,
and green self loop respectively (note that all genes possess either a
green self loop or a yellow loop). Li et al. assigned all positive reg-
ulations (green edges) the same interaction coefficient a;; = ag,
and all negative regulations (red edges) a;; = a,. Although a;; is
allowed to take on any real value, Li et al’s main results are based
onag = —a, = 1. They claimed that “the results are insensitive to

Cin1&2

Mcm1/SFF

dh1

@&z
7

Cdc20&14

[Swi5

FIGURE 1 | The simplified yeast cell-cycle network.

the values of the weights a; and a; ...and to the protein lifetime
tg, aslong as —a, > ag and t; > 07 (p. 4785).

The cell-cycle network in Figure 1 appears to be very com-
plex. The network contains 11 proteins, some proteins have as
many as five regulators, and there are many feedback loops. With
the exception of Swi5, a protein that is not negatively regulated
by others in the network self-degrades (yellow loop), otherwise
it persists (green self loop). We will show how the attractor set
changes when Swi5 is set to persist instead of degrade, which
illustrates the network’s sensitivity to the assumptions of self-
degradation. An important feature of this network is that the
positive regulations (green edges) are almost acyclic except for
the cycle between Clbl&2 and Mcml/SFE, key players in the
M phase or mitosis. We will discuss in more detail how this cycle
plays a crucial role in the simplicity of the network’s long term
behavior.

Compared to a BoN specified by truth tables, the TBN in
Equation (1) captures genetic relationships with far fewer param-
eters, which is especially convenient when the model space is
relatively large. As an illustration, suppose a network has N nodes
and each node i has k; parents. Defining a BoN with truth tables
requires Zf\] 2ki parameters, 2% parameters per node, while spec-
ifying the TBN in Equation (1) requires only Zf\[ k; parameters,
ki of aj; per node. The TBN is a hybrid between a BoN and a
system of differential equations that retains the interpretability of
the former and the mathematical tractability of the latter.

In the next section, we analyze the TBN model and propose
extensions related to self-degradation, asynchronous gene update
and synergistic relationships. We also state theoretical results that
translate self-degradation and network cycles to network steady
state behavior.

3. RESULTS

3.1. THRESHOLD BOOLEAN NETWORK MODEL

The primary limitation of the model described by Equation (1)
is that only the regulatory relationship OR can be expressed.
For example, given proteins, 7, j, and k, expressing i if jUk
can be achieved by setting a;; = ajx = 1. However, expressing i
if jN k is impossible with any combinations of a;; and aj. To
encode an AND relationship and other types of regulations, the
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threshold needs to be greater than zero. An example of a TBN
with a non-zero threshold was implemented by Davidich and
Bornholdt (2008) to model the fission yeast cell-cycle. We present
a more general form of the model in Equation (1) by including a
threshold parameter o; > 0:

1, Z] ajixi(t) > ;
0, X2 aixj(t) < a (2)
xi(1), 3, aijxi(t) = a.

xi(t+1) =

Clearly, Equation 1 is a special case of Equation 2 in which
a; = 0 Vi. By varying thresholds and interaction coefficients, it
is possible to encode many regulatory relationships. Given pro-
teins, i, j, and k, encoding the relationship i if j N k would simply
require setting a;; = aj = 0.5 and a; = 0.99. Even more compli-
cated relationships can be expressed using the TBN model. For
example, i if (jU k) N1 could be achieved by setting a;; = aj =
0.1,a; =0.95and o; = 1.

However, not all relationships can be expressed. One such
relationship is i if (jNk)U (I Nm). The following example
illustrates this issue:

Example. In order to encode the relationship iif (j N k) U (IN m),
the coefficients aj;, ajk, i, a;, and the threshold o; would have to
satisfy the following inequalities:

aij + aig > O
ail + Aim > O
aj+aj <
ajj + dim = O
ik +aip <o
Aik + Aim = Q.

Summing the first 2 inequalities produces a;; + ai + ai + aim >
2a;. Summing the last four inequalities produces 2a;; + 2a; +
2aj + 2a;y, < 40;. The contradiction shows that it is not possi-
ble to encode the above relationship using any TBN of the form
in Equation (2). Although inclusion of the threshold parameter
o; permits a far wider range of regulatory relationships, some
limitations remain.

3.2. SELF-DEGRADATION
3.2.1. Steady state characteristics
Setting negative regulations (red edges) at the same rate a; =
a, = —1, positive regulations (green edges) at the same rate a;; =
ag = 1 and protein lifetime f; = 1, the main result of the cell-
cycle TBN, reported in Li et al. (2004), is the set of attractors
in Table 1A. The largest basin of attraction shown is 1764. Of
21 = 2048 possible network states, 1764 states flow toward the
fixed point (0,0, 0,0,0,0, 1,0, 0, 1, 0), in which inhibitor pro-
teins Cdhl and Sicl stay active indefinitely even when the rest of
the network is off. Although the cell-cycle network is very com-
plex, the attractor set has only seven attractors, which are all fixed
points.

Thomas (1981) explored the effects of different regulatory cir-
cuits or feedback loops on the composition of the attractor set.

Regulatory circuits are classified as positive or negative depend-
ing on whether the number of negative regulations (red edges)
in the circuit is odd or even. Thomas proposed that positive cir-
cuits are necessary to generate multiple attractors and negative
circuits are necessary to generate fixed points and periodic attrac-
tors. These ideas were later formalized in theorems by Remy et al.
(2008); Richard (2010), and various conditions for a unique fixed
point attractor set have been developed by Robert (1980); Shih
and Dong (2005); Richard (2013). The theorems and results in
this manuscript build upon these works by examining the effect of
self-degradation and regulatory circuits on a network’s long term
behavior.

Theorem 1. Let G = (X, £) be a TBN of the form in Equation (2)
with N nodes, X = {1, ..., N} and edges E. Suppose each threshold
parameter satisfies o; > 0 for each i. If every node has a self-
degradation loop and network cycles must have at least 1 negative
regulation (red edge), then the network’s attractor is a unique fixed
point, the null state.

The proof requires the following definition. Let G = (X, £) be
a graph. An ordering of nodes 1, ..., N is a fopological ordering
relative to G if, whenever we have i — j € £, then i < j. A parent
node has a lower order than a child node. Most importantly, a
graph is directed acyclic or DAG if and only if it has a topological
ordering.

Proof. Denote the set of nodes having either an incoming or out-
going positive regulation (green edge) as X, = {1,...,n} C &.
Given that cycles with all positive regulation (green edges) do
not exist, choose a topological ordering (with respect to green
edges only) for &}, say 7, and add directed null edges, which
have no real regulatory effect, to all pairs of nodes in &}, not hav-
ing an edge such that 7 is not violated. Then X, has the unique
topological ordering 7 = 1, ..., n. The expression of a node in
G = (X, &) at time ¢t is a function of nodes with smaller topo-
logical order and other nodes in X at the previous time t — 1,
ie.,

xl(t) :ﬁ({xl(t - 1)7 e ,X;’_l(t - 1)}5 {Xi(t - 1)7 ey
xXp(t—1), ..., 2y —1D})

where f; is the transition function for node i of the form in
Equation (2) in which the parameter a;; can take any magnitude
so long as positive regulation is defined by a positive sign and
negative regulation by a negative sign.

The proof proceeds from the observation that, under the stated
hypothesis, if for #; consecutive time points all nodes with topo-
logical ordering smaller than i have value 0, at the time point ¢
immediately following we must also have x;(t) = 0.

By mathematical induction, we will show that
(x1(k), ..., x,(k)) = (0, ..., 0) for some time k and remains at0
after time k. At some time ¢t < k,

x1() = A{#} (= 1), ..., xn(t = D})
= 0’
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Table 1| The attractor set for the cell-cycle threshold Boolean network under different interaction coefficients.

Basin size CIn3 MBF Clb5&6 Mcm1/SFF Swib Cdc20&14 Cdh1 CIn1&2 SBF Sic1 Clb1&2
(A) ag = 1
1764 0 0 0 0 0 0 1 0 0 1 0
151 0 0 0 0 0 0 0 1 1 0 0
109 0 1 0 0 0 0 1 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1 0
7 0 1 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
(B) ag =2
1978 0 0 0 0 0 0 1 0 0 1 0
57 0 0 0 0 0 0 0 1 1 0 0
7 0 0 0 0 0 0 0 0 0 1 0
5 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
(C) ag=3
1936 0 0 0 1 1 1 1 0 0 1 1
59 0 0 0 0 0 0 1 0 0 1 0
40 0 0 0 0 0 0 0 1 1 0 0
7 0 0 0 0 0 0 0 0 0 1 0
5 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
Protein lifetime is set at ty = 1. All negative regulations are assigned a common coefficient aj = ar = — 1. All positive regulations are assigned a;; = ag. (A) Shows

the attractor set associated with ag = 1. (B) Shows the attractor set associated with ag = 2. (C) Shows the attractor set associated with ag = 3. For each panel, the
rows are the attractors, which are all fixed points, and columns 2 through 12 indicate whether a protein is on (1) or off (0) in the attractor. Column 1 lists the basin

size of each attractor.

and remains at 0 indefinitely through negative regulation or self-
degradation. At some ¢’ > t,

o) = £ @) @), - X0, xn (D))

00} a0 a0, i (O
=0

where the composite function fz(t/_t) is the (¢’ — t)th iteration
of the transition function f;, and (¥ — t) < t4, for any #;. Node
2 remains at 0 indefinitely through negative regulation or self-
degradation. Assume that for some I nodes, all with order less
than #, satisfies at time t” > ¢/,

x()=...=x(") =0,

and remains at 0 indefinitely through negative regulation or self-
degradation.
Then at time k > ¢7,

a0 = £ Qar (), xn 1 (OO Axa ), L xn (ED))

=570, .., 01, (), . xn(ED))
= 0.

— " . . . .. .
where fn(k ™) is the (k — t"")th iteration of the transition function

fu> and (k — 1) < t4, for any t;. Node n remains at 0 indefinitely.
For all nodes not in &), they remain at state 0 through negative
regulation or self-degradation. Therefore, (x;(k), ..., xn(k)) = 0
and remains a fixed point after time k. O

In short, the proof shows that when upstream positive reg-
ulations are shut down by self-degradation, the network turns
off in a cascading fashion due to the topological order and self-
degradation. The theorem applies to an entire class of networks
whose member graphs may have any number of genes, any num-
ber of cycles with at least one negative regulation (red edge),
differing interaction coefficients a;; and differing protein lifetimes
ta. The theorem is invariant to a;; and ¢4 because these parameters
only work to speed up or slow down the rate at which the network
reaches the null attractor. An example of a network belonging to
this class is displayed in Figure 2A.

Consider a more general network class that is still acyclic in the
positive regulations (green edges) but has the additional feature
of persistence (green self loops). An example of such a network is
shown in Figure 2B.

We noted above that the degradation model defined here
implies an assignment to each gene of either a yellow loop or a
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FIGURE 2 | (A) A network with all genes self degrading (yellow loop on
each node) and acyclic positive regulations (green edges). (B) A network
with persistence (green self loop) in addition to self-degradation and acyclic
positive regulations.

green self loop. Theorem 1 concerns the special case in which all
genes are assigned yellow loops. A green self loop is formally a
cycle (which does not contain a red edge), and so the hypoth-
esis of Theorem 1 does not hold if any persistent nodes are
present.

However, suppose we are given a TBN which does satisfy the
hypothesis of Theorem 1, but we then alter the model by desig-
nating a set of nodes as persistent, otherwise leaving the model
unchanged. We wish to determine how this affects the complex-
ity of the resulting attractor structure. It must have some effect.
To take a trivial case, suppose we have n unconnected persistent
nodes. Each may be analyzed as an independent TBN, each of
which can sustain a fixed point of value 0 or 1. The total num-
ber of unique fixed points for the entire network is therefore 2".
Of course, the complexity of the attractor structure in this case is
due entirely to the lack of any exogenous degradation pathways,
and not to any connectivity structure of the network (which does
not exist in our example).

We next show that this type of reasoning can be extended to
TBNs which have the type of acyclicity defined by Theorem 1, but
which also have persistent nodes. It is possible to describe mathe-
matically weaker properties of acyclicity within cyclic networks
in a way which bounds the complexity of attractor structure.
For example, Skodawessely and Klemm (2011) found the max-
imum number of fixed points in such a network to be 2!V
where V C N is a set of nodes whose removal leaves the network
acyclic.

Here, we extend our notion of acyclicity in the following way.
We say j is an ancestor of i if there is a directed path from j to 1.
Define the two sets of nodes:

S¢ = { all persistent nodes }
Sa = { all nonpersistent nodes not possessing

a persistent node as an ancestor}. (3)

Theorem 2. Suppose we are given a TBN in which the subnetwork
defined by the nodes Sa of (3) satisfies the hypothesis of Theorem 1,
or for which Sy = 0.

Next, define the following sequence of subsets of nodes:

E1 = Sg U Sa,

E; = { all nodes not in U;  jE; with all parents in U; . jE; }, j > 1,

and suppose for some J all nodes are included in U; < JE;. Then any
two fixed points with identical values for the persistent nodes must
be equal, and therefore the maximum number of fixed points is 28,
where g is the number of persistent nodes.

Proof. Suppose we are given any fixed point. The nodes in Sy (if
any) form a TBN satisfying the hypothesis of Theorem 1, so any
fixed point must be 0 on these nodes. This implies that the fixed
point values of the nodes in E; are determined entirely by those of
Sg. The argument may be repeated for E3, Eg, . . ., until the fixed
point values of all nodes are determined. O

Theorem 2 complements the result of Skodawessely and
Klemm (2011). The conclusion implies a similar upper bound of
28 for the number of distinct fixed points, where g is the number
of persistent nodes. However, while the class of BoNs considered
by Theorem 2 is more restricted, removal of the persistent nodes
does not necessarily leave the network acyclic, so that the result of
Skodawessely and Klemm (2011) does not imply Theorem 2.

The hypothesis of Theorem 2 is satisfied by both TBNs of
Figure 2. In particular, for (B) we have Sg = {1, 3}, So =0, E; =
{4}, Es = {2}. However, if a negative regulation from node 2 to
node 4 was added, the hypothesis would no longer hold (we
would have E; = ¢ for all j > 2) and a counter-example could be
constructed.

Next, consider, the cell-cycle network of Figure 1. This TBN
satisfies the hypothesis of Theorem 2 by setting

Sg = {MBF, Clb5&6, Cdh1, SBF, Sicl, Clb1&2}
Sq = {CIn3}

E, = {Mcm1/SFF, Cln1&2}

Es = {Cdc20&14}

E4 = {Swi5}.

It is interesting to note that the hypothesis of Theorem 2 is sat-
isfied despite the existence of a cycle of green edges between
Mcm1/SFF and Clb1&2 (due the the fact that one of these nodes
is persistent).

We can see from the application of Theorem 2 to the cell-cycle
network that the relationship between the attractor structure and
the configuration of persistent nodes is similar to the previous
example of the completely unconnected TBN, in the sense that
all fixed points are fully determined by their values on the per-
sistent nodes, so that the complexity of the attractor structure
must be understood to be driven by a selective lack of exogenous
degradation pathways.
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3.22. Self-degradation assumptions

The assignment of self-degradation (yellow loops) to certain pro-
teins in a network is not a trivial task and cannot be completed
ad-hoc because self-degradation influences the network’s long
term behavior. The simplicity of the attractor set associated with
the cell-cycle network in Table 1A is attributable to the presence
of self-degradation and a lack of active network cycles composed
entirely of positive regulations (green edges). We exemplify this
claim with protein Swi5, the transcription factor for inhibitor
protein Sicl. According to Li et als rule of assigning self degrada-
tion only to proteins without negative regulators (incoming red
edges), Swi5 should not self-degrade since it has the inhibitor
Clb1&2. However, their representation of the network allowed
Swi5 to have both attributes. Suppose we don’t allow Swi5 to self-
degrade since it has an inhibitor. How would this change affect
the network’s steady state behavior? We computed the attrac-
tor set for the cell-cycle TBN (Equation (1)) disallowing Swi5 to
have the self-degradation property in Table 2. Compared to the
attractor set with Swi5 self degrading (yellow loop) in Table 1A,
the attractor set in Table 2 is bigger with 14 fixed points, half
of which has Swi5 on. The attractor set in Table 1A is a subset
of that in Table 2, meaning that the new attractors are due to
Swi5 not degrading to 0. The biggest attractor in this new set is
(0,0,0,0,1,0,1,0,0, 1, 0) which differs from the biggest attrac-
tor in Table 1A only by the presence of Swi5. This exercise has
shown that slightly altering the degradation assumption dramat-
ically affected the size and complexity of the cell-cycle’s long term
behavior.

As noted above, the only cycle constructed with all positive
regulations in Figure 1 is between Clb1&2 and Mcm1/SFFE, and
this cycle is not sustained (both proteins are at state 0) in the
network’s long term behavior. To leave the cycle on indefinitely,
that is, to keep Clb1&2 and Mcml/SFF at state 1 perpetually,
the sum of the interaction coefficients a, associated with the
positive regulations (green edges) must exceed the sum of a,
associated with the negative regulations (red edges) acting on

Clb1&2. Since —a, = ag = 1, the cycle between Clb1&2 and
Mcm1/SFF may get turned on, but does not endure. If this cycle
is deleted, the network satisfies the hypothesis of Theorem 1.
Because the cycle between Clb1&2 and Mcm1/SFF does not stay
on, the network therefore yields a null attractor when all pro-
teins are forced to self-degrade. Thus, following Theorem 2, the
variety of fixed points in Table 1A is attributable to the 6 pro-
teins with persistence (green self loop) and the cardinality of
the attractor set satisfies the upper bound of 2°. Note that the
fixed points in Table 1A differ at the proteins with persistence
(green self loop), as predicted by Theorem 2. In Section 3.3, we
present a network in which the cycle remains active in the steady
state.

3.2.3. Markovian self-degradation

Since self-degradation is not built into the Markovian transi-
tion functions of the TBN model in Equation (1), specifying
incremental degradation is a cumbersome separate process that
requires tracking each gene with the self-degradation property
and counting the t; time steps prior to a state change. More
importantly, by not explicitly modeling degradation, the model in
Equation (1) does not have the typical Boolean network behav-
ior. In particular, a state can be repeated without the network
having reached an attractor. For example, suppose we have a two
member network in which the only regulations are: protein 1 pos-
itively regulates (green edge) protein 2, protein 1 self degrades
(yellow loop), and protein 2 persists (green self loop). The inter-
action coefficient is a; = 1. Further, suppose that a protein’s
lifetime is t; = 2. Using the TBN of Equation (1), a network path
is (1,1) - (1,1) — (0, 1). Markovianizing degradation via the
following model eliminates this problem by augmenting the state
space to express the degradation counter.

1, Z] ajil(xj(f) > 0) > a;
0, Zj aiil(xj(t) > 0) < (4)
max(x;(t) — ¢;, 0), Zj a;1(x(t) > 0) = o;

xi(t+1) =

Table 2 | The attractor set for the cell-cycle threshold Boolean network which does not contain Swi5'’s self-degradation property.

Basin size Cin3 MBF CIb5&6 Mcm1/SFF Swib Cdc20&14 Cdh1 CIn1&2 SBF Sic1 Clb1&2
1383 0 0 0 0 1 0 1 0 0 1 0
380 0 1 0 0 1 0 0 1 1 1 0
139 0 0 0 0 1 0 0 1 1 1 0
108 0 1 0 0 1 0 1 0 0 1 0
10 0 0 0 0 1 0 0 0 0 1 0
8 0 0 0 0 0 0 0 1 1 0 0
6 0 1 0 0 1 0 0 0 0 1 0
5 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 1 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0

The results are based on setting the interaction coefficients ag = —a, = 1 and protein lifetime ty = 1.
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Here I(xj(t) > 0) is an expression indicator for protein j; €; €
[0, 1] is the degradation rate for protein 7 all other parameters are
as previously defined in Equations (1) and (2). Whether a pro-
tein degrades is determined by the degradation parameter €;. A
protein degrades quickly with a large value of €; and persists at
€; = 0. The TBN model in Equation (1) with the protein lifetime
parameter f; = 1 is equivalent to setting € = 1 for proteins with
self-degradation (yellow loop) and € = 0 for proteins with persis-
tence (self green loop). Note that € = 1/t;. Compared to the TBN
model in Equation (1) for which self-degradation must modeled
in a side process, Equation (4) explicitly models self-degradation
as part of the TBN.

The third line in Equation (4) is meant solely as a device for
Markovianizing degradation and persistence. Thus, x;(t + 1) €
[0, 1], but the regulatory relationships remain Boolean via the
indicator I(xj(t) > 0). The state space has simply been augmented
to allow self-degradation. A further modification that would
bring a TBN model closer to a system of differential equations
would be to eliminate I(x;j(¥) > 0) and allow node j to take state
x; € [0, 1] in Equation (4).

So far self-degradation has been treated as a triggered event,
i.e., decays occurs after the net influence on the protein is equal
to the threshold. The model can be extended to have decay in the
presence of a net regulatory effect (Hanel et al., 2012) by letting a
protein be its own parent. The sums in Equation (4) would then
include node i and line 3 could be omitted with < a; replaced by
< a;. These extensions of Equation (4) need to be further studied
to understand their properties and appropriateness for modeling
a genetic regulatory network.

3.3. SENSITIVITY TO INTERACTION COEFFICIENT

To test the robustness of the cell-cycle TBN to different values
of the interaction coefficient a;;, we changed the coefficient of
the positive regulations (green edges) to a; € {2, 3}. The attractor
sets associated with a, = —1 and a; = 2 and with a, = —1 and
ag = 3 are in Tables 1B,C. The attractor set for the model with
ar = —1 and a; = 2 is a subset, with different basin sizes, of the
attractor set for the model with @, = —1 and a; = 1 (Table 1A).
When a, = —1 and a; = 3, the network cycle between Clb1,2
and Mcm1/SFF is turned on indefinitely in the biggest attrac-
tor (0,0,0,1,1,1,1,0,0, 1, 1) which has a basin size of 1936
states. This is a consequence of positive regulations overcoming
negative regulations acting on Clb1,2. With negative interactions
fixed at a, = —1, the attractor sets for networks with a, > 3 are
either identical or very similar to the set corresponding to a; = 3
(Table 1C). For those attractor sets not identical with Table 1C,
the main difference is the appearance of a two state attractor
{(0,0,0,1,1,1,1,0,0, 1,0), (0,0,0,0,1,1,1,0,0, 1, 1)}. This
periodic attractor is very similar to the biggest fixed point
in Table1C because all the same proteins get turned on.
The unequal attractor sets corresponding to different param-
eters indicate that the TBN model is not robust to variable
interaction coefficients; the cell-cycle network exhibit different
behaviors depending on the model specifications. Furthermore,
certain parameter values sustain the network cycle between
Clb1&2 and Mcml/SFF and express cellular activities not
previously seen.

Next we explored how increasing the degradation delay ¢4
changed the cell-cycle network’s behavior. When we set —a, =
a, = land t; > 1in the cell-cycle TBN (Equation (1)) the same 7
attractors in Table 1A appear. Simulation results show that vary-
ing a, and ag with #; yielded attractor sets that are sensitive only
to the interaction coefficient.

3.4. ASYNCHRONOUS GENE RESPONSE

The assumption that all genes in a network update simultane-
ously, synchronous response, may be too simplistic. For example,
synchronous BoN models may yield attractors driven by the
synchrony assumption (Ingerson and Buvel, 1984; Klemm and
Bornholdt, 2005). While synchronous response is well-defined,
asynchronous response has been defined and modeled in a vari-
ety of ways. One model of asynchrony works via an operator
external to the BoN that randomly selects a subset of genes
to update at each iteration while keeping the unselected genes
constant (Ingerson and Buvel, 1984; Greil and Drossel, 2005;
Skodawessely and Klemm, 2011). Another model of asynchrony
is achieved by allowing different regulatory relationships to have
different reaction rates (Thomas and d’Ari, 1990; Silvescu and
Honavar, 2001; Shmulevich and Zhang, 2002). Unlike stochas-
tic asynchrony, asynchrony due to varying reaction rates can be
incorporated into a deterministic BoN. One type of determin-
istic asynchronous response can be modeled by allowing genes
and proteins to have different self-degradation rates and different
interaction coefficients a;;. A protein with a larger lifetime 5 in
Equation (1) will take a longer time to reach state 0. Allowing dif-
ferent proteins to have different lifetimes imply different response
times. A positive regulator with a higher interaction strength,
la;j|, can dominate a negative regulator with a smaller interac-
tion strength and turn on the affected gene. Suppose in a four
member network, the relationships {2 — 1,3 — 1,4 — 1} have
the following attributes: a;; = —1, a;3 = 1, aj4 = 3. Compared
to gene 3, gene 4 can neutralize the effect of the inhibitor gene 2
and turn on gene 1. In the absence of gene 4, gene 3 would not be
able to turn on gene 1 if the inhibitor gene 2 is also on. In this per-
spective, the magnitude of the interaction, |a;j, can be thought of
as a rate. Assigning different interaction coefficients to proteins
in a network may be a way to model asynchronous gene update.
As we’ve discussed in Section 3.3, different choices of the coeffi-
cient may produce different attractor sets. More work is required
to identify which attractors are insensitive to variable a;; and their
importance to the cell-cycle.

3.5. SYNERGY AND ANTAGONISM

Thus far the TBN in Equation (1) assumes the regulatory effects
are additive. However, some genes act together such that their
combined effect is more or less than the sum of the individ-
ual effects. Synergistic regulation occurs when the joint effect of
multiple parents is more than the sum of the individual effects.
In contrast, antagonistic regulation results in a joint effect that
is less than the sum of the individual effects. Such relationships
have been studied in cancer cells in which genes exhibit a syn-
ergistic response to the combined effort of oncogenic mutations
(McMurray et al., 2008). Since synergistic and antagonistic regu-
lations can be critical to the function of a GRN, the interactions
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should be properly modeled. The TBN model in Equation (1))
can be extended to model these types of regulation by includ-
ing the statistical interaction terms, ik ai(jky%j () x (), where the
interaction coefficient a;(jr) between parents j and k and child i
are defined analogously to a;;. Synergy is represented by a posi-
tive a;(jx) and antagonism by a negative a;jr). Interactions of order
greater than two are similarly constructed.

4. DISCUSSION

A TBN specified by linear functions and a threshold instead of
truth tables is more quantitative at describing genetic regula-
tory network (GRN) dynamics. We illustrate how this framework
can accommodate aspects of GRNs such as variable Markovian
self-degradation, asynchronous gene update, and synergistic rela-
tionships. Furthermore, we found that the complexity of a GRN
can be summarized by the presence of self-degradation and cycles
comprised of only positive regulations. Although the model is
more analytical compared to networks specified by truth tables,
it still retains the qualitative interpretation of a BoN.

Inspection of the TBN model in Equation (1) to model the
budding yeast cell-cycle showed that the attractor set relied on
the assumptions of self-degradation and choice of interaction
coefficient a;. Changing these two aspects of the model changed
the steady state behavior of the cell-cycle. Our extension of the
TBN model using a threshold parameter as in Equation (2)
permits greater flexibility in describing regulatory relationships.
Another modification we suggested was Markovianizing degra-
dation to facilitate incremental or delayed degradation. We also
proposed varying the protein lifetime #; and interaction coef-
ficient among proteins to simulate asynchronous gene update
and adding statistical interaction terms to account for synergistic
effects.

Our theorems claimed that the composition of a TBN’s
attractor set depends on the presence and abundance of self-
degradation (yellow loops), persistence (green self loops), and
network cycles. Theorem 1 states that the null attractor is
the only attractor for a network acyclic in the positive reg-
ulations (green edges) and in which all nodes self degrade.
This result holds under varying interaction strength and degra-
dation rates. Although the theorem was proved for TBNs, it
applies to other Boolean network models that are not of the
form in Equation (1) because the proof relies only on topo-
logical ordering in the positive regulations and self-degradation
on all genes. Theorem 2 states that under a weaker def-
inition of acyclicity, the complexity of the attractor struc-
ture is entirely determined by the configuration of persistent
genes.

Future work includes characterizing the attractor set, e.g.,
determine an upper bound on its cardinality, for (a) the class
of TBNs containing network cycles of positive regulations (green
edges), and (b) the class of TBNs containing both persistence
and network cycles of positive regulations in the presence of
self-degradation and asynchronicity.
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There are two distinct issues regarding network validation: (1) Does an inferred network
provide good predictions relative to experimental data? (2) Does a network inference
algorithm applied within a certain network model framework yield networks that are
accurate relative to some criterion of goodness? The first issue concerns scientific
validation and the second concerns algorithm validation. In this paper we consider
inferential validation relative to controllability; that is, if an inference procedure is applied to
data generated from a gene regulatory network and an intervention procedure is designed
on the inferred network, how well does it perform on the true network? The reasoning
behind such a criterion is that, if our purpose is to use gene regulatory networks to design
therapeutic intervention strategies, then we are not concerned with network fidelity,
per se, but only with our ability to design effective interventions based on the inferred
network. We will consider the problem from the perspectives of stationary control, which
involves designing a control policy to be applied over time based on the current state of
the network, with the decision procedure itself being time independent. The objective
of a control policy is to optimally reduce the total steady-state probability mass of the
undesirable states (phenotypes), which is equivalent to optimally increasing the total
steady-state mass of the desirable states. Based on this criterion we compare several
proposed network inference procedures. We will see that inference procedure { may
perform poorer than inference procedure § relative to inferring the full network structure
but perform better than g relative to controllability. Hence, when one is aiming at a specific

application, it may be wise to use an objective-based measure of inference validity.

Keywords: network inference, genetic regulatory network, control, validation, probabilistic Boolean network

1. INTRODUCTION

Network validity can be approached from two perspectives: scien-
tific and inferential. Scientific validity is an epistemological issue
concerning the ability of a network model to yield observations
concordant with those predicted by the model (Dougherty and
Bittner, 2011). It involves relations between model characteristics
and experimental observations such that mathematical predic-
tions based on the model are manifested in the phenomena via
these relations. Inferential validity concerns the ability of an infer-
ence procedure to operate on data generated from the model
and yield an inferred model close to the original network rel-
ative to some distance function. Inferential validity is purely a
mathematical issue concerning the inference algorithm. The two
issues, scientific and inferential validity, are not unrelated because
in practice an inferential procedure is used to construct a model
from real data and the scientific validity is therefore dependent
upon the performance of the inferential procedure. In this paper
we are interested in inferential validity [see Dougherty (2011) for
a discussion of the two types of validity].

The validity of inference procedures for gene regulatory net-
works is discussed in Dougherty (2007), where validation is
relative to some network characteristic and quantified by some
distance between the characteristic for the original network and

the characteristic for the inferred network, such as a norm
between the steady-state distributions of the original and inferred
networks. Generally speaking (we shall be more rigorous shortly),
(1) a characteristic is derived for the network; (2) a data sam-
ple is generated from the network; (3) an inference procedure
operates on the sample to produce an inferred network; (4)
the corresponding characteristic is derived for the inferred net-
work; (5) the corresponding characteristics for the original and
inferred networks are compared; and (6) the validity of the infer-
ence procedure is determined by some distance between the
characteristics.

The preceding validation protocol focuses solely on the net-
work itself, not any objective to which the network is to be
used, although clearly successful use of the inferred network will
depend to some extent on the closeness of the inferred and orig-
inal networks. Our aim here is to characterize the notion of
objective inferential validity, where inferential validity is measured
relative to the objective for which the network will be used. In par-
ticular, we are concerned with controllability. Specifically, if the
objective is to derive a control procedure from the inferred net-
work, then it is of utmost importance that the control procedure
works well on the original network (from which the sample
data have been generated). In other words, to what extent is
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Network Inference

Q: What types of biological networks have been inferred in the paper?

A: We focus on the inferential validity of genetic regulatory network inference. We evaluate and compare different
inference algorithms in the framework of probabilistic Boolean networks (PBNs) by both synthetic random PBNs and
a melanoma metastatic network inferred from gene expression data.

e Q: How was the quality/utility of the inferred networks assessed?
o A: We propose and discuss different inferential validity criteria for inferring genetic regulatory networks, including

(1) Hamming distance to measure the network topology closeness; (2) steady-state mass difference for network
dynamic behavior similarity; and (3) expected difference of desirable steady-state mass shift by applying derived
optimal control when the operational objective is intervention. We would like to emphasize that objective inferential
validity criteria based on operational objectives such as intervention are viable choices when we typically do not have
the ground truth of real-world gene regulatory networks.

e Q: How were these networks validated?
e A: Both synthetic random networks and the melanoma metastatic network are considered as benchmark networks.

From these network models, we simulate the network dynamics with perturbations, inferred networks by different
algorithms are evaluated by ground truth network models based on the aforementioned three inferential validity

criteria.

controllability preserved by the inference procedure? It may be
that the original and inferred networks are a quire discordant;
however, if their lack of agreement has little impact on derivation
of the control procedure, then this lack of agreement is of little
consequence.

Two basic intervention approaches have been considered for
gene regulatory networks in the framework of probabilistic
Boolean networks (PBNs) (Dougherty and Datta, 2005; Datta
and Dougherty, 2007; Shmulevich and Dougherty, 2007), struc-
tural intervention and external control. Both take advantage
of the fact that the probabilistic characteristics of a PBN are
characterized by an associated Markov chain. Structural interven-
tion involves a one-time change of the network structure (wiring)
to beneficially alter the long-run behavior (steady state) of the
network (Shmulevich et al., 2002b; Xiao and Dougherty, 2007;
Qian and Dougherty, 2008). Given a class of potential structural
changes, the problem is to find the optimal structural intervention
resulting in a desired alteration of the steady-state distribution.
Stationary control is generally based on flipping (or not flipping)
the value of a control gene(s) over time in an effort to favor-
ably move the steady-state mass. Efforts have mainly focused
on infinite-horizon stationary external control. The first pro-
posed approach utilizes dynamic programming to find an optimal
policy relative to a cost function, in which case the steady-
state distribution is altered as a by-product of this optimization
(Pal et al., 2006). A second approach is to utilize a greedy (no
optimality) algorithm to find a policy that directly aims at altering
the steady-state distribution Qian et al. (2009). Here we will use
a more recently proposed approach for gene regulatory networks
that uses linear programming to find a policy that is optimal rel-
ative to minimizing undesirable steady-state mass (Yousefi and
Dougherty, 2013). This latter approach avoids the introduction
of a subjectively defined cost function as in Pal et al. (2006) and
avoids the sub-optimality of greedy algorithms (Qian et al., 2009).
Instead, the amount of shift in the steady-state distribution gives
an intrinsic network measure, as it also does in the case of struc-
tural intervention. The situation is analogous to classification,
where the Bayes error is intrinsic to the feature-label distribution,

as opposed to errors resulting from suboptimal classifiers that
have been derived from data via some ad hoc classification rule. In
this paper we restrict our attention to stationary control because
it is very possible that the optimal structural controller for an
inferred network is based on an inferred function that may not
exist in the original network. In such a case it would not be fea-
sible to apply the identified intervention for the inferred network
back to the original network.

Figure 1 illustrates the main idea of objective inferential valid-
ity for quantifying the performance of different network inference
procedures with respect to controllability. Assuming that we are
interested in an impaired biological system that has a higher
risk of entering into aberrant phenotypes, from the collected
measurements, our goal is to design effective stationary control
policies to reduce the risk of entering into these undesirable or
bad states. One way to characterize network states is based on the
prior knowledge of biomarkers. As a hypothetic example, x; in
Figure 1 is considered as the marker gene, whose value being 1
(up-regulated) are not desirable as it may represent metastasizing
phenotypes in cancerous systems, for example. Based on what we
can observe, from microarray profiling or other high-throughput
techniques, we may infer the underlying network model that
governs the state dynamics. Many previous inferential validity
measures are solely interested in the network itself. However,
in this scenario, inference procedures should be evaluated in
regard to our final objective of effectively reducing the undesir-
able risk by evaluating the control performance of intervention
strategies derived using the network model inferred from par-
tially observed data. In fact, in real-world scenario, we typically
do not have the ground truth of the underlying system. Objective
inferential validity may be the only reasonable framework for
network inference validation.

2. SYSTEMS AND METHODS

2.1. PROBABILISTIC BOOLEAN NETWORKS

Probabilistic Boolean networks (Shmulevich et al., 2002a) extend
the classical Boolean networks (Kauffman, 1969, 1993) by intro-
ducing uncertainty in the rule structure [see Shmulevich and
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FIGURE 1 | Schematic illustration of inferential validity. There are different
criteria to evaluate inferred networks from available temporal measurements.
For example, we can directly measure the difference of inferred regulatory
relationships among genes by the commonly adopted Hamming distance
between the original network adjacency matrix and the inferred adjacency
matrix. We are interested in objective-based inferential validity based on
controllability. For example, assuming that x; is a genetic marker marked in
red, the network is considered in “undesirable” states when it is
up-regulated (x; = 1). Hence, from the translational perspective, the ultimate
goal of studying this network system is to develop effective therapeutic
strategies based on collected data from the system. Hence when evaluating
network inference algorithms, instead of comparing other network
characteristics, it may be more appropriate to directly investigate how the
derived intervention strategies based on inferred networks perform on the

objective inferential va‘idity by controllability

original networks by reducing the long-run probability of entering into
undesirable states, which leads to our controllability-based inferential validity.
As shown in the figure, assume that we derive the optimal control based on
the original network to block the regulation from x; to x, while the derived
control from the inferred network is to block the regulation from x; to x3.
Note that both of the derived control policies have to be validated on the true
network. One criterion to evaluate the inferred network as our
"objective-based inferential validity” is to check how the steady-state
distribution 1" by blocking x; — x3 on the original network compares to the
optimally controlled steady-state distribution 7' after blocking x; — x2 with
respect to the reduction of undesirable steady-state mass in the original
steady-state distribution nt before intervention. This difference reflects the
cost of using the derived control from the inferred network instead of the
optimal control designed from the true network.

Dougherty (2010) for a comprehensive review]. This uncertainty
is motivated by randomness in the inference procedure, inherent
biological randomness, and model stochasticity owing to latent
variables outside the model that are involved in regulation.

A binary Boolean network G (V, F) is defined by a set V =
{x1,x2...,,x,} of binary variables, x; € {0,1}, i = 1,...,n,
and a list of Boolean functions F = (fl, frsens f,,) The value
of x; at time t+ 1 is completely determined by a subset
{xi1, X2, - -+ , Xig;} C V' at time ¢ via a Boolean function f; :
{0, l}ki > {0, 1}. Transitions are homogeneous in time and we
have the update x; (t + 1) = fi(xi1(?), x2(t), - - -, xik, (). Each
x; represents the state (expression) of gene i, where x; = 1 and
x; = 0 represent gene i being expressed and not expressed, respec-
tively. It is commonplace to refer to x; as the ith gene. The list F of
Boolean functions represents the rules of regulatory interactions

between genes. All genes are assumed to update synchronously in
accordance with the functions assigned to them and this process is
then repeated. At any time ¢, the state of the network is defined by
astate vector x(¢) = (x1(¢), x2(¢), . .., x4(t)), called a gene activity
profile (GAP). Given an initial state, a BN will eventually reach a
set of states, called an attractor cycle, through which it will cycle
endlessly. Each initial state corresponds to a unique attractor cycle
and the set of states leading to a specific attractor cycle is known
as the basin of attraction (BOA) of the attractor cycle.

A Boolean network with perturbation (BNp) is defined by
allowing each gene to possess the possibility of randomly flip-
ping its value with a positive probability p. Implicitly, we
assume that there is an i.i.d. random perturbation vector y =
(Y1, Y2, - -+, ¥Yn), where y; € {0, 1}, the ith gene flips if and only
ifyy=1,and p=P(y;=1) fori = 1,2,...,n If x(¢) is the
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GAP at time ¢, then the next state x(¢ + 1) is either f(x(¢¥)) with
probability (1 — p)" or x(¢) @ y with probability 1 — (1 — p)”,
where f is the multi-output function from the truth table and &
is component-wise addition modulo 2. Larger values of p result
in the regulatory rules being overridden by random alterations to
the regulatory signaling, which one might call “noise.”

A binary probabilistic Boolean network (PBN) is composed
of a family {B;, B, ..., B;,} of BNps together with probabil-
ities governing the selection of a BNp at each time. The m
constituent BNps are characterized by m network functions,
{fi,f5, ..., f,}. At any time point there is a positive probability
q of switching from the current governing constituent BNp (con-
text) to another, with the selection probabilities for transitioning
to By, By, ..., By given by ¢y, 2, . . ., cm, respectively. Note that
the probability of switching to any constituent network B, 1 <
¢ < m is independent of the current network; indeed, when a
switch is called for, the current network may “switch” to itself. By
definition, a PBN inherits the attractor cycles of its constituent
BNps. There are two modeling interpretations regarding g. If
q < 1, the PBN is said to be context-sensitive (Brun et al., 2005); if
q = 1, as in the original formulation of PBNs (Shmulevich et al.,
2002a), then the PBN is said to be instantaneously random. The
modeling interpretation is that there are latent variables outside
the network model controlling the context of the network and
larger values of g correspond to greater effects of latent variables.
Although we have defined PBNs as having binary gene values,
there is nothing inherent in this restriction and the general def-
inition assumes that each gene can take a finite number of values,
say in the set {0, 1, ..., d}.

Transition rules of any PBN can be modeled by a homoge-
neous Markov chain, whose states of the transition probability
matrix (TPM) P are the GAPs of the PBN [see Faryabi et al. (2009)
for the particulars on how the Markov chain is derived for dif-
ferent classes of PBNs]. Perturbation makes the corresponding
Markov chain of a PBN irreducible and ergodic. Hence, the net-
work possesses a steady-state distribution 7 = 1’ P, describing
its long-run behavior. For small g and p, most of the steady-
state mass lies in the attractors of the PBN (Brun et al., 2005),
which by definition are the attractors of the constituent BNs. Let
S={xy) :xeB,ye{l,2,...,m}} be the state space of the
PBN, where B denotes the space of all GAPs or network states for
any constituent BN with # genes and y is the index to which con-
stituent BN currently governs the dynamics. We note that when
we have BNps with only one constituent BN, y is redundant. Let
{Z € S,k =0, 1, ...} be the stochastic process of the state of the
PBN that has both the information about the current constituent
BN and GAP of the underlying network. Originating from state
i € S, the successor state j € S is selected randomly according to
the TPM P, with its ijth element defined by psj £ P(Zx4 1 = |
Ziy=1)forallk = 0,1,....

2.2. MAXIMAL STEADY-STATE ALTERATION

We now briefly outline the setting in which an infinite-horizon
policy can be found that achieves maximal steady-state alteration,
meaning that it optimizes the shift of steady-state mass from
undesirable to desirable states. Let D and U denote the sets of
desirable and undesirable states, respectively. One way to define

D and U is based on the values of given genetic markers as illus-
trated in Figure 1. For instance, undesirable states may be those
in which gene WNT5A is up-regulated because such states are
associated with increased risk of metastasis in melanoma, whereas
the desirable states would be those in which WNT5A is down-
regulated (see Section 4.3). We assume that the PBN admits an
external control input A from a set of actions, A, specifying the
type of intervention on a set of control genes. For instance, A = 0
may indicate no-intervention and A = 1 may indicate that the
expression level of a single gene, g%, ¢ € {1, 2, ..., n}, is flipped. In
this intervention scenario, the control action A = 1 at state (x, y)
replaces the row corresponding to the state (x, y) in the original
TPM of the underlying Markov chain by the row corresponding
to the state (X, y), where the binary representation of x is the same
as x except in bit v¢, where it is flipped.

Denote by {zx,k = 0,1,...} and {ax, k = 0,1,...} the
sequences of observed states and actions. A policy is a prescrip-
tion for taking actions at each time point k. Actions may be
taken in accordance with a random mechanism, possibly a func-
tion of the entire history of the system up to time k. For time k,
let hy = (zo, ag, 21, a1, . - . , Zk, ax) denote the observed history. A
policy v = (vg, vy, ...) is a sequence prescribed by the decision
maker that steers the dynamics of the underlying system. If the
history hy_ 1 is observed up to time k, then the decision maker
chooses an action a € A(zy) with probability vi(a | hx—1, zx).

The goal is to find an intervention policy to maximally shift the
long-run probability mass of undesirable states to desirable ones.
Let A= A() = {0, 1} for all j € S. The amount of shift in the
aggregated probability of undesirable states for a PBN controlled
under v is defined as

Amy () =Y m— Y ), (1)

jeUu jelu

where 7 and m(v) are the steady-state vectors for the Markov
chains governed by the original and controlled PBNs, respectively.
The goal is to maximize Az (V). An optimal policy that is both
stationary (time-invariant) and deterministic can be obtained by
solving a linear programming problem, which we refer to as the
Maximal Steady-State Alteration (MSSA) algorithm (Yousefi and
Dougherty, 2013). The optimal policy depends on the choice of
undesirable states and the control input. In our case, these will
be determined by the values of certain genes, which can be con-
sidered as a priori known biomarkers for example. Since we are
interested in quantifying the performance of inference procedures
on the network, these marker genes will be selected randomly for
random networks without loss of generality.

2.3. INFERENTIAL VALIDATION

Network comparison is based on a distance function, p, which
need only be a semi-metric because we do not want to require that
w(M, H) = 0 implies M = H, the point being that we compare
networks via characteristics and two distinct networks might pos-
sess the same characteristic yet be quite different. For instance,
consider the steady-state distribution. If @ = (71, 72, ..., )
and o = (w1, w3, ..., W) are the steady-state distributions for
networks H and M, respectively, then a network distance is

Frontiers in Genetics | Bioinformatics and Computational Biology

December 2013 | Volume 4 | Article 272 | 36


http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Qian and Dougherty

Controllability based inferential validity

defined by ps(M, H) = ||t — w||, where |le]| is some vector
norm. As a second example, suppose one is interested in net-
work topology. Define the adjacency matrix in the following
manner: given an n-gene network, fori,j =1, 2, ..., n, the (4, )
entry in the matrix is 1 if there is a directed edge from the
ith to the jth gene; otherwise, the (i, j) entry is 0. If A = (aj))
and B = (bj) are the adjacency matrices for networks H and
M, respectively, where H and M possess the same gene set,
then the Hamming distance between the networks is defined
by Wham (M, H) = ZZj:l |aij - bt]| Both L5 and Wham are
semi-metrics.

Focusing on full network inference (and following Dougherty,
2007), the goodness of an inference procedure { relative to dis-
tance W is measured by w(y(S), H), where H is the original
network and sample S is a realization of the random process, %,
governing data generation from H. Hence, p({(X), H) is a ran-
dom variable and the performance of s is characterized by the
distribution of w(Y(X), H), which depends on the distribution
of . We adopt the expectation of the distribution of W (V(X), H)
as the measure for inferential validity, Ex [ (V(X), H)] taken
with respect to .

Rather than considering a single network, we can consider
a distribution, H, of random networks, where the occurrences
of realizations H of H are governed by a probability dis-
tribution. Averaging over the class of random networks, our
interest focuses on Ey [Ex [W(U(X), H)]]. Inference procedure
Y is better than the inference procedure V, relative to the
distance p, the random network H, and the sampling pro-
cedure 3 if By [Ex [0 (U1 (), H)]] < Bu [Ex [n(W2(%), H)]].
In practice, the expectation must be estimated by an average
% ;":1 m((S)), Hj), where S, S,, ..., S, are sample point
sets generated according to ¥ from networks Hy, Ha, ..., Hm
randomly chosen from H.

The preceding analysis applies unchanged when measuring
validity relative to controllability; indeed, it is just a matter of
defining the distance function. Let H denote the original network,
S be a sample generated from H, vy and vys) be the maxi-
mal steady-state alteration policies for 7{ and {/(S), respectively,
and 1’ and ¥® be the steady-state vectors for H controlled by
vy and vy(s), respectively. Then the inferential-validity distance
relative to controllability is defined by

et (W(S), H) = V=Y xlt, )

ield ield

where U is the class of undesirable states. Applying this distance
to a distribution H, of random networks yields the expectation in
which we are interested, namely,

Ext [Ex e (W(E), 1] = By |:E2 [Z m V=3 ni”ﬂ. (3)

ield ield

For analyzing PBNs, we are confronted by computational issues
in regard to transition probability matrices of their underlying
Markov chains. In the case of controlling binary discrete-time
networks, one is looking at a matrix of dimension N x N, where
N is the number of states. For a PBN, N = m x 2", where m is

the number of contexts and # is the number of genes. Generally
speaking, networks beyond 15 genes become computationally
intractable with regard to deriving control policies. Larger net-
works require first the application of a reduction algorithm to
reduce the size of the state space (Qian and Dougherty, 2009b;
Ivanov et al., 2010; Qian et al., 2010). These inevitably lose infor-
mation. If one is going to study inference for networks larger than
15 genes, then the analysis must include the reduction algorithm
as part of the design. This can certainly be done but it would not
essentially change the kind of inference analysis in which we are
involved. The price would be that, whereas by using the MSSA
algorithm the entire matter is intrinsic, there being no subjective
cost functions, prior use of a reduction algorithm would destroy
the intrinsic nature of the analysis.

2.4. NETWORK INFERENCE ALGORITMS

Learning regulatory relationships among genes is a major chal-
lenge in computational biology. Numerous methods based on
different mathematical models have been developed; however,
performance evaluation remains problematic (Marbach et al,
2010). In this paper, we focus on network inference algorithms for
PBNs from one or several time series of observed gene expression
states x(t). We have implemented a few commonly adopted infer-
ence algorithms for PBNs with modifications to allow for more
than one time series: REVEAL (REVerse Engineering ALgorithm)
and its extension (Liang et al., 1998; Akutsu et al., 1999; Murphy
and Mian, 1999; Martin et al., 2007), MDL (Minimal Description
Length) (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty
etal., 2008), and Best-Fit (Lihdesmiki et al., 2003; Marshall et al.,
2007; Lihdesmiki and Shmulevich, 2012).

These inference algorithms aim for identifying regulatory rela-
tionships among genes as well as finding corresponding Boolean
functions for them so that the observed state transitions in time
series data are most “consistently” explained by the inferred
functions. For example, REVEAL (Liang et al., 1998) identifies
predictors for each gene by estimating the mutual information
between the temporal profile of each gene and all the combina-
tion profiles of potential genes as regulators, starting from one
regulator per gene. In order to find a unique solution, in the
worst case, the algorithm requires an exponential number of state
transitions in the observed time course data, with respect to the
number of genes 7 in the network. However, as most of biolog-
ical networks are sparse (Arnone and Davidson, 1997; Thieffry
et al., 1998), REVEAL works effectively in practice and (Akutsu
et al., 1999) also have proven that only O(logn) state transi-
tions are required when the maximum number of predictors,
K = max?: 1 k;, for all the genes in the network is small. However,
the original REVEAL algorithm and the exhaustive algorithm in
Akutsu et al. (1999) focus on inferring BNs instead of PBNs
and require finding the “consistent” Boolean functions for each
gene. They assume that the observed time course data themselves
are completely consistent based on underlying Boolean functions
without errors.

With random perturbations introduced in PBNs, instead
of finding consistent Boolean functions, the inference algo-
rithm Best-Fit (Lihdesmiki et al., 2003; Marshall et al., 2007;
Lihdesmiki and Shmulevich, 2012) searches for the best-fit
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function for each gene by exhaustively searching for all the
combination of potential regulator sets. Similarly, with small K,
the algorithm is feasible with a given number of state transi-
tions and is efficient with the time complexity O (m log mpoly(n))
with m state transitions, in which poly(n) is time to compute
the minimum error for one given state transition Lihdesmaki
etal. (2003). For our implementations (Murphy and Mian, 1999;
Lihdesmaiki et al., 2003; Lihdesmiki and Shmulevich, 2012)
based on both REVEAL and Best-Fit algorithms, we have mod-
ified the algorithms to get both regulator sets and corresponding
best-fit functions. Finally, with a limited number of observed
state transitions and potential random perturbations, the inferred
regulatory functions may still be partially defined Boolean func-
tions (Lihdesmiki et al., 2003). To obtain a unique solution, we
can further impose other biologically motivating constraints. For
example, in Pal et al. (2005), BNs are inferred simply based on the
attractor structure of network dynamics, which can be extended
to impose dynamic constraints to search for suitable solutions.

In this work, we adopt the MDL-based network inference algo-
rithm (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty et al.,
2008) to penalize the model complexity of inferred networks. We
have modified the algorithm proposed in Zhao et al. (2006) to
identify the best regulator set with the minimum combination of
network coding length, capturing the model complexity, and data
coding length, which is similar to REVEAL based on mutual infor-
mation. The MDL network coding length in Zhao et al. (2006)
has similar asymptotic performance to the Bayesian Information
Criterion (BIC) model complexity, which we also have imple-
mented in our set of inference algorithms. Finally, both MDL
(Zhao et al., 2006) and BIC (Murphy and Mian, 1999) adopt ad
hoc measures of model description length that necessitate tun-
ing parameters as weighting coefficients to balance the model
and data coding lengths (Tabus and Astola, 2001; Dougherty
et al., 2008) and inference performances or validity measures
may change with different tuning parameters. To overcome this
difficulty, we also adopt a universal MDL (uMDL) network infer-
ence algorithm (Dougherty et al., 2008) in which the model
and data coding length together is a theoretical measure derived
from a universal normalized maximum likelihood model and no
tuning parameters are needed (Tabus and Astola, 2001).

3. IMPLEMENTATION

We will compare network inference algorithms for their infer-
ential validity based on both synthetic networks as well as a
well-studied metastatic melanoma network (Bittner et al., 2000;
Kim et al., 2002; Weeraratna et al., 2002; Qian and Dougherty,
2008; Yousefi and Dougherty, 2013).

To evaluate the inference algorithms based on simulated time
series of network states, we first generate random PBNs with
properties that resemble those of biological networks so that we
have the ground truth networks for validation. For appropriate
evaluation, we have imposed a few assumptions: First, as genetic
regulatory networks are commonly believed to have sparse con-
nectivity topology, we have restricted the Boolean functions in
random PBNs to have at most five predictors: K = maxl'?: . ki <
5. This assumption also enables all the inference algorithms
to run smoothly on these random PBNs as the computational

complexity of these algorithms, especially those based on exhaus-
tive enumerations, reduces significantly as shown in Akutsu et al.
(1999); Lihdesmiki et al. (2003). Second, as the network state
space is exponential with respect to the number of genes or the
network size, the number of state transitions observed will usually
not be large enough to uniquely determine the network structure
and thereafter the regulatory functions. For the inference algo-
rithms adopted in this paper, all of which are based on solving
the consistency problem (Liang et al., 1998; Akutsu et al., 1999;
Lihdesmiki et al., 2003; Zhao et al., 2006; Martin et al., 2007),
we take the most sparse network as the final solution within the
feasible networks that give the same minimum prediction errors
in REVEAL and Best-Fit or the same objective function values
in the inference algorithms with BIC and MDL regularization.
The motivation is that biological networks are usually stable and
robust to random perturbations and larger k; leads to increased
sensitivity of the steady-state distribution to random gene pertur-
bations Shmulevich and Dougherty (2007), Qian and Dougherty
(20094, 2010).

With either simulated or real ground truth networks, we can
generate time series of gene expression profiles with different
numbers of state transitions based on their underlying Markov
chains so that we can investigate the inference performances with
different available sample sizes. We have implemented REVEAL,
MDL, BIC, uMDL, and Best-Fit to infer networks with these
simulated time series. Our implementations of these different
algorithms are based on the PBN Toolbox (http://code.google.
com/p/pbn-matlab-toolbox/), the Bayes Net Toolbox (https://
code.google.com/p/bnt/), as well as the source code provided by
the authors of Dougherty et al. (2008). The detailed descriptions
of these different algorithms can be found in the corresponding
papers (Liang et al., 1998; Murphy and Mian, 1999; Lahdesmiki
et al., 2003; Zhao et al., 2006; Dougherty et al., 2008; Lihdesmaki
and Shmulevich, 2012).

We compute three distance functions p (U (S), H) to evaluate
a