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Scientists today have access to an unprecedented arsenal of high-tech tools that can be used to 
thoroughly characterize biological systems of interest. High-throughput “omics” technologies 
enable to generate enormous quantities of data at the DNA, RNA, epigenetic and proteomic 
levels. One of the major challenges of the post-genomic era is to extract functional information 
by integrating such heterogeneous high-throughput genomic data. This is not a trivial task as 
we are increasingly coming to understand that it is not individual genes, but rather biological 
pathways and networks that drive an organism’s response to environmental factors and the 
development of its particular phenotype. In order to fully understand the way in which these 
networks interact (or fail to do so) in specific states (disease for instance), we must learn both, 
the structure of the underlying networks and the rules that govern their behaviour.

In recent years there has been an increasing interest in methods that aim to infer biological 
networks. These methods enable the opportunity for better understanding the interactions 
between genomic features and the overall structure and behavior of the underlying networks. 
So far, such network models have been mainly used to identify and validate new interactions 
between genes of interest. But ultimately, one could use these networks to predict large-scale 
effects of perturbations, such as treatment by multiple targeted drugs. However, currently, we are 
still at an early stage of comprehending methods and approaches providing a robust statistical 
framework to quantitatively assess the quality of network inference and its predictive potential.        

The scope of this Research Topic in Bioinformatics and Computational Biology aims at 
addressing these issues by investigating the various, complementary approaches to quantify 
the quality of network models. These “validation” techniques could focus on assessing quality 
of specific interactions, global and local structures, and predictive ability of network models. 
These methods could rely exclusively on in silico evaluation procedures or they could be 
coupled with novel experimental designs to generate the biological data necessary to properly 
validate inferred networks. 
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The last years following the completion of the human genome
project (Quackenbush, 2011) have given raise to major break-
throughs in the development of novel biotechnologies, such as
next-generation sequencing, that sparked the generation of high-
throughput “omics” data. The robustness and the cost-efficiency
of these technologies increasing over time enabled the conduc-
tion of large screening experiments containing hundreds and even
thousands of samples. As a consequence of these “big” biologi-
cal and biomedical high-throughput datasets, advanced statistical
methodology can now be employed requiring such large sample
sizes.

This is one reason explaining the recent interest in methods
that aim to infer biological networks. These methods offer the
opportunity for better understanding the interactions between
genomic features and the overall structure and behavior of the
underlying networks. In order to foster this research direction
we edited a Research Topic entitled “Quantitative Assessment
and Validation of Network Inference Methods in Bioinformatics.”
This research topic was perceived as relevant and timely by the
scientific community and we consequently received 15 contri-
butions from research groups all over the world (Boucher and
Jenna, 2013; Chun et al., 2013; de Matos Simoes et al., 2013; Lopes
and Bontempi, 2013; Qian and Dougherty, 2013; Schrynemackers
et al., 2013; Scott-Boyer et al., 2013; Staiger et al., 2013; Tran et al.,
2013; Ho et al., 2014; Horn et al., 2014; Montojo et al., 2014; Olsen
et al., 2014; Peng and Schork, 2014; Santra, 2014).

The topics addressed by these contributions can be broadly
grouped into the following categories:

• Data integration (Boucher and Jenna, 2013; Chun et al., 2013;
Scott-Boyer et al., 2013; Ho et al., 2014; Horn et al., 2014; Olsen
et al., 2014; Santra, 2014)

• Network validation (de Matos Simoes et al., 2013; Lopes and
Bontempi, 2013; Qian and Dougherty, 2013; Schrynemackers
et al., 2013; Montojo et al., 2014; Olsen et al., 2014)

• Network inference (Lopes and Bontempi, 2013;
Schrynemackers et al., 2013)

• Time series data (Lopes and Bontempi, 2013)
• Network interpretation (Boucher and Jenna, 2013; Chun et al.,

2013; de Matos Simoes et al., 2013; Montojo et al., 2014; Scott-
Boyer et al., 2013; Tran et al., 2013)

• Diagnostic applications (Staiger et al., 2013; Peng and Schork,
2014)

• Network modeling (Tran et al., 2013)

First of all, it is important to note that there is still no commonly
accepted term to denote ’networks’ that are inferred from gene
expression data, which the vast majority of the contributed papers
used for their inference. Indeed, depending on the context, these
networks are called gene regulatory networks (de Matos Simoes
et al., 2013; Lopes and Bontempi, 2013; Qian and Dougherty,
2013; Santra, 2014), molecular interaction networks (Horn et al.,
2014; Olsen et al., 2014), gene co-expression networks (Scott-
Boyer et al., 2013) or biological networks (Schrynemackers et al.,
2013). We believe that this plurality denotes the diversity of usages
and interpretations of such networks, while it may also reflect the
lack of agreement due to the interdisciplinary nature of network
inference in Bioinformatics. For the future it would be beneficial
to find a common terminology for such networks, because this
would certainly enhance the communicability within the commu-
nity. At the moment, the term ’gene regulatory networks’ seems
to be the most frequent denotation in use, however, a thorough
discussion of this important topic seems indispensable.

The two topics that attracted most interest in the submitted
contributions are network validation and data integration. The
former is a good reminder that the assessment of inferred net-
works is not trivial due to two major reasons. First, we still have
only partial knowledge about gene regulatory networks even in
organisms like Saccharomyces cerevisiae (yeast) or E. coli, which
are considerably simpler than Human. Second, networks are
structured objects that means we cannot only assess errors on the
global scale for the whole network, but also on intermediate lev-
els down to single interactions and any combination thereof, e.g.,
motifs or modules (Emmert-Streib and Altay, 2010). In addition,
for labeled data enabling the usage of supervised learning meth-
ods further issues need to be addressed, as indicated and discussed
in the review paper by Schrynemackers et al. (2013).

The integration of different datasets, either of the same or
of different types, is certainly a topic that will gain even more
attention in the future when more and new high-throughput
technologies become available and the access to such datasets
is simplified by a policy change of funding agencies making it
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imperative for grant holders to provide free access to such data.
It appears that Bayesian methods (Santra, 2014) provide a natu-
ral framework that is particularly suited for such an integration
because of its flexibility and widespread acceptance as a funda-
mental statistical inference paradigm. However, other methods
have also been proposed to tackle the challenge of heterogeneous
data integration, such as the regression-based framework inte-
grating priors extracted from the biomedical literature and other
sources (Olsen et al., 2014). This provides opportunities for com-
paring novel methodological developments with well-established
statistical approaches. We would like to emphasize that net-
works inferred from the integration of different datasets require a
reassessment of their validation for similar reasons as for a super-
vised learning of gene regulatory networks (Schrynemackers et al.,
2013).

For the future, we think that applications of inferred net-
work, e.g., for diagnostic, predictive or therapeutic purposes in
medicine will become very important for translational research
because of their potential to provide a systems-approach, cer-
tainly required to understand complex disorders like cancer.
However, until we reach this point more work is needed. For our
Research Topic, two contributions have been submitted that are
good examples for a better understanding of this problem. In
Peng and Schork (2014) the authors found that network central-
ity measures, which are characterizing the importance of nodes
within a gene network that has been constructed from the gene
expression patterns, can be used to identify therapeutic targets. In
contrast, in Staiger et al. (2013) the authors showed that current
composite-feature classification methods considering a network
structure, do not outperform simple single-genes classifiers in
predicting outcome in breast cancer for prognostic purposes. It is
interesting to note that the outcome of both studies allows oppos-
ing conclusions. Whereas the results in Peng and Schork (2014)
can be seen as an encouragement for further studies employing
network-based approaches, the results in Staiger et al. (2013) do
not support this. However, by changing the perspective, the study
by Staiger et al. (2013) suggests that we do not need to focus
on single-gene studies because we can get similar results from
network-based approaches. Now, the crucial question is which
perspective should we chose? The choice of perspective actually
depends on the use of the inferred networks, and therefore the
goal of the study. On the one hand, if one is interested in building
a predictive model, which does not need to be interpretable (often
referred to as “black box” in the literature), then only perfor-
mance of the inferred model matters; in this case scenario Staiger
et al. (2013) showed that, for cancer prognosis, network-based
approaches may not be relevant as they do not outperform sim-
pler methods (singe genes). On the other hand, if one is more
interested in the biological knowledge that could be extracted
from statistical models, network-based approaches are extremely
relevant as they are efficient ways to represent complex biological
patterns while retaining good predictive ability.

Overall, we believe that, in a translational application, the
underlying choice of perspective is of central importance. That
means the utility of a network-based approach is expected to
depend crucially on the biological question to which such a
method should be applied to.
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Networks provide a natural representation of molecular biology knowledge, in particular
to model relationships between biological entities such as genes, proteins, drugs, or
diseases. Because of the effort, the cost, or the lack of the experiments necessary for
the elucidation of these networks, computational approaches for network inference have
been frequently investigated in the literature. In this paper, we examine the assessment
of supervised network inference. Supervised inference is based on machine learning
techniques that infer the network from a training sample of known interacting and possibly
non-interacting entities and additional measurement data. While these methods are very
effective, their reliable validation in silico poses a challenge, since both prediction and
validation need to be performed on the basis of the same partially known network.
Cross-validation techniques need to be specifically adapted to classification problems on
pairs of objects. We perform a critical review and assessment of protocols and measures
proposed in the literature and derive specific guidelines how to best exploit and evaluate
machine learning techniques for network inference. Through theoretical considerations
and in silico experiments, we analyze in depth how important factors influence the outcome
of performance estimation. These factors include the amount of information available for
the interacting entities, the sparsity and topology of biological networks, and the lack of
experimentally verified non-interacting pairs.

Keywords: biological network inference, supervised learning, cross-validation, evaluation protocols, ROC curves,

precision-recall curves

1. INTRODUCTION
Networks naturally represent entities such as genes, proteins,
drugs or diseases (as nodes) and their mutual relationships
(as edges). As immense experimental efforts would be required
to comprehensively characterize such networks, computational
approaches for network inference have been frequently inves-
tigated in the literature. Both unsupervised and supervised
approaches have been proposed for network inference. In order
to predict interactions, unsupervised inference methods gener-
ally derive a score expressing the confidence for a pair of nodes to
interact, based on analysis of some experimental data such as gene
expression measurements. In contrast to unsupervised methods,
supervised approaches additionally require a partial knowledge
of the gold standard network. They then exploit some supervised
learning algorithm to construct a model that can subsequently
be applied to classify the remaining untested pairs. As super-
vised methods take advantage of known interactions, they can
model node specific properties (e.g., in gene regulatory networks,
the experimental conditions where a specific regulator becomes
active) and thus perform typically much better than unsuper-
vised ones. Supervised learning approaches have been applied
to predict several biological networks: protein–protein interac-
tion networks (Yip and Gerstein, 2008; Tastan et al., 2009; Park
and Marcotte, 2011), metabolic networks (Yamanishi and Vert,
2005; Bleakley et al., 2007; Geurts et al., 2007), gene regulatory

networks (Mordelet and Vert, 2008; Cerulo et al., 2010), epistatic
gene networks (Ulitsky et al., 2009; Ryan et al., 2010), or networks
of drug-protein interactions (Yamanishi et al., 2008; Bleakley and
Yamanishi, 2009; Cheng et al., 2012; Takarabe et al., 2012; Yu et al.,
2012).

Performance estimation of both unsupervised and supervised
inference methods requires a gold standard of experimentally
tested interactions, i.e., pairs of entities labeled as interacting or
non-interacting. The validation of supervised methods, however,
generally requires special care and the application of cross valida-
tion techniques to avoid any sources of bias. Indeed both training
and validation need to be performed on the basis of the same
partially labeled gold standard. The case of supervised network
inference is even more complex as it works on pairs of objects
so that the traditional cross validation techniques are not suf-
ficient. In the paper, we propose a critical review of protocols
and measures found in the literature for the validation of super-
vised network inference methods and derive specific guidelines
on how to best exploit machine learning techniques for network
inference.

The paper is structured as follows. In section 2, we define
the problem of supervised network inference and review existing
approaches to solve this problem. Section 3 discusses common
metrics used to evaluate network predictions (that are common
to unsupervised and supervised inference methods). Appropriate
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ways to perform cross-validation in this context are discussed
in section 4. The impact of the lack of negative examples in
common biological networks is analyzed in section 5. Finally,
section 6 discusses the positive bias on performance induced
by the heavy-tailed degree distribution often met in biological
networks.

2. SUPERVISED NETWORK INFERENCE
In this section, we first define the problem of supervised network
inference more formally and lay out the notations for the rest of
the paper. We then briefly review existing approaches to solve this
problem.

2.1. PROBLEM DEFINITION
For the sake of generality, let us assume that we have two finite

sets of nodes, Ur = {n1
r , . . . , n

NUr
r } and Uc = {n1

c , . . . , n
NUc
c } of

respective sizes NUr and NUc . A network connecting these two
sets of nodes can then be defined by an adjacency matrix Y of size

NUr × NUc , such that yij = 1 if the nodes ni
r and n

j
c are connected

and yij = 0 if not. Actually, the subscripts r and c stand, respec-
tively for row and column, referring to the rows and columns of
the targeted adjacency matrix Y . Y thus defines a bipartite graph
over the two sets Ur and Uc. Standard graphs defined on only one
family of nodes, that we call homogeneous graphs, can nevertheless
be obtained as special cases of this general framework by consid-
ering only one set of nodes (i.e., U = Ur = Uc). Undirected or
directed graphs can then both be represented using a symmetric
or an asymmetric adjacency matrix Y .

For example, in the case of protein–protein interaction net-
works, Uc = Ur is the set of all proteins of a given organism and
the adjacency matrix is symmetric. A drug-protein interaction
network can be modeled as a bipartite graph where Ur and Uc

are respectively the sets of proteins and drugs of interest, and ele-

ment yij of Y is equal to 1 if protein ni
r interacts with drug n

j
c,

0 otherwise. A regulatory network can be modeled either as a
bipartite graph where Uc is the set of all genes of the organism
of interest and Ur is the set of all candidate transcription factors
(TFs) among them or equivalently by an homogeneous graph and
an asymmetric adjacency matrix, where Uc = Ur is the set of all
genes and yij = 1 if gene ni regulates gene nj, 0 otherwise.

In addition, we assume that each node n (in both sets) is
described by a feature vector, denoted x(n), typically lying in R

p.
For example, features associated to proteins/genes could include
their expression in some conditions as measured by microarrays,
the presence of motifs in their promotor region, information
about their structure, etc. A feature vector x(nr, nc) can also be
associated to each pair of nodes. For example, features directly
associated to pairs of proteins could code for the association of
the two proteins in another network, their binding in a ChIP-
sequencing experiments, etc.

In this context, the problem of supervised network inference
can be formulated as follows:

Given a partial knowledge of the adjacency matrix Y of the target
network in the form of a learning sample of triplets:

LSp =
{(

nik
r , n

jk
c , yikjk

) ∣∣k = 1, . . . , NLS

}
,

and given the feature representation of the nodes and/or pairs
of nodes, find a function f : Ur × Uc → {0, 1} that best approx-
imates the unknown entries of the adjacency matrix from the
feature representation (on nodes or on pairs) relative to these
unknown entries.

This problem can be cast as a supervised classification problem,
with the peculiarity, however, that pairs of nodes, and not single
nodes, need to be classified. Next, we discuss existing methods to
solve this problem.

2.2. NETWORK INFERENCE METHODS
Mainly two approaches have been investigated in the literature
to transform the network inference problem into standard clas-
sification problem (Vert, 2010) (see Figure 1). The first, more
straightforward, approach, called pairwise or global, considers
each pair as a single object and then apply any existing classifi-
cation method on these objects (e.g., Takarabe et al., 2012). This
approach requires a feature vector defined on pairs. When fea-
tures on individual nodes are provided, they thus need to be
transformed into features on pairs (Tastan et al., 2009). Several
approaches have been proposed in the literature to achieve this,
ranging from a simple concatenation or addition of the feature
vectors of the nodes in the pair (Chen and Liu, 2005; Yu et al.,
2012) to more complex combination schemes (Yamanishi et al.,
2008; Maetschke et al., 2013). Different classification methods
have been exploited in the literature: nearest neighbor algo-
rithm (He et al., 2010), support vector machines (Paladugu et al.,
2008), logistic regression (Ulitsky et al., 2009), tree-based meth-
ods (Wong et al., 2004; Yu et al., 2012), etc. In particular, in the
context of support vector machines, several kernels have been
proposed to compare pairs of objects on the basis of individual

FIGURE 1 | Schematic representation of the two main approaches to

solve the problem of network inference. (A) The global approach that
solves a single supervised learning problem by considering each pair as an
object for the learning. (B) The local approach that solves several
supervised learning problems, each defined by a different node.
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features defined on these objects that have been applied for super-
vised network inference (Vert et al., 2007; Hue and Vert, 2010;
Brunner et al., 2012).

In the second approach, called local (Mordelet and Vert, 2008;
Bleakley and Yamanishi, 2009; Vert, 2010; van Laarhoven et al.,
2011; Mei et al., 2013), the network inference problem is divided
into several smaller classification problems corresponding each to
a node of interest and aiming at predicting, from the features, the
nodes that are connected to this node in the network. More pre-
cisely, each of these classification problems is defined by a learning
sample containing all nodes that are involved in a pair with the
corresponding node of interest in LSp. Interestingly, when trying

to make a prediction for a given pair (ni
r, n

j
c), one can aggregate

the predictions of two classifiers: the one trained for ni
r and the

one trained for n
j
c. Note that it is only possible to train a classifier

for a node that is involved in at least one positive and one negative
interaction in LSp. This prevents the use of the local approach to
predict interactions for pairs where both nodes do not satisfy this
property. Like for the global approach, in principle, any classifica-
tion method can be used to train each of the classification models,
but mainly support vector machines have been investigated in
this context (Mordelet and Vert, 2008; Bleakley and Yamanishi,
2009).

From experiments in the literature, there does not seem to be a
clear winner between the local and the global approach in terms of
predictive accuracy. The global approach is typically more flexible
as it can handle any kinds of features and can make prediction for
pairs of unseen nodes, but it requires more computing times and
resources, given that it aims to infer a network in one step.

Besides the global and local approaches that make use of
existing classification methods, other more specific approaches
have also been proposed for supervised network inference. For
example, Kato et al. (2005) formulate the problem as a matrix
completion problem (with input features) and solve it using an
expectation-maximization-based approach. The problem has also
been formulated as a distance metric learning problem (Vert
and Yamanishi, 2005; Yamanishi, 2009): nodes of the graph are
embedded into some euclidean space where they are close as soon
as they are connected in the training graph and a mapping is
then learned from the node feature space to this euclidean space.
A related approach consists in defining a kernel between the nodes
in the network that similarly encodes the connections between the
nodes in the training graph and then exploit the kernel trick at the
output of a regression method to learn an approximation of this
kernel from the node features. This framework has been imple-
mented using tree-based ensemble methods (Geurts et al., 2007)
and ridge regression (Brouard et al., 2011) for example.

While our brief review focused on the inference of the net-
work from node features, it is also possible to solve this prob-
lem by exploiting only the network itself. For example, Cheng
et al. (2012) derive a similarly measure between nodes from the
network topology and then use this similarity to infer new inter-
actions. In a hybrid approach, some authors have also included
features derived from the (training) network topology in the
global approach to improve network inference (Ulitsky et al.,
2009).

3. EVALUATION MEASURES
In this section, we review and discuss evaluation measures that
have been used to quantify the quality of the predictions given
by network inference methods. We focus here on statistical mea-
sures that compare a predicted network (or subnetwork) with the
true one, as in the case of supervised network inference, some
part of the true network is supposed to be available for training.
In the general context of network inference, other performance
measures have been proposed based either on functional annota-
tions shared by genes/proteins or on topological properties of the
inferred networks (see Emmert-Streib et al., 2012, for a survey).

The prediction given by a network inference method for a
given pair of nodes can typically be of two kinds: a binary
(0–1) value, coding for the presence or the absence of an inter-
action between the two nodes in the predicted network, or a
real value, representing some confidence score associated to the
pair: the higher the score, the higher the confidence or cer-
tainty of the model that there is an interaction between the
nodes in the pair. Depending on the supervised network infer-
ence method used, this confidence score can have a probabilistic
interpretation or not, but we will not assume it is the case.
Of course, one can always transform a confidence score into
a binary prediction using a decision threshold. The choice of
an appropriate threshold is, however, not an easy problem in
practice.

In this section, we assume that we have an adjacency matrix
(of a complete or a partial graph) and an equivalent matrix of the
binary or real scores predicted by a network inference method. In
both cases, our goal is to quantify the quality of the predictions
with respect to the true network represented by the adjacency
matrix. Protocols to obtain these matrices will be discussed in sec-
tion 4. We first discuss the case of binary predictions and then
compare the receiver operating characteristic (ROC) curves and
precision-recall (PR) curves that have been predominantly used
to evaluate network inference methods that provide confidence
scores. We end the section with a brief survey of other measures
and a general discussion.

3.1. BINARY PREDICTIONS
Common criteria to evaluate binary predictions are the accu-
racy (the number of correctly predicted pairs divided by the
total number of pairs) or equivalently the error rate (one minus
the accuracy). However, network inference problems typically
correspond to highly imbalanced classification problems as non-
interacting pairs often far outnumber interacting ones. Accuracy
is not appropriate in such situations because it greatly favors
the majority class (high accuracy is given to a model predicting
all pairs as non-interacting pairs). Alternative measures requires
to differentiate between the possible types of errors, that are
usually counted and compiled in a confusion matrix. In the
case of binary classification, this matrix is a 2 × 2 matrix where
the columns and rows represent, respectively the actual and the
predicted classes and each cell contains the number of pairs cor-
responding to these classes. Denoting by positive an interaction
and by negative a non-interaction, the confusion matrix is as
follows:
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actual positive (P) actual negative (N)

predicted positive
(predP)

true positive (TP) false positive (FP)

predicted negative
(predN)

false negative (FN) true negative (TN)

Several metrics can be then derived from this matrix to evaluate
the performance of a model, among which:

• the true positive rate (TPR), also called the sensitivity or the
recall, is equal to the number of true positives divided by the
number of actual positives: TP

TP + FN or TP
P ,

• the true negative rate (TNR), also called the specificity, is equal
to the number of true negatives divided by the number of
actual negatives: TN

FP + TN or TN
N ,

• the false positive rate (FPR), corresponding to 1-specificity, is
equal to the number of false positives divided by the number of
actual negatives: FP

FP + TN or FP
N ,

• the false negative rate (FNR), also called the miss, is equal to
the number of false negative divided by the number of actual
negatives: FN

TP + FN or FN
P ,

• the precision is equal to the number of true positives divided by
the number of predicted positives: TP

TP + FP .
• the rate of positive predictions (RPP) is equal to the number

of predicted positive divided by the total number of examples:
TP + FP
P + N or predP

P + N• the F-score is equal to the harmonic mean of precision and
recall:

F = 2 · precision · recall

precision + recall

Except for the F-score, these measures should be combined to give
a global picture of the performance of a method, e.g., sensitivity
and specificity or precision and recall. In the case of confidence
scores, all these performance measures can be computed for a
given threshold on the confidence scores. Nevertheless, often, one
would like to measure the performance of a method indepen-
dently of the choice of a specific threshold. Several curves are used
for that purpose that are exposed below.

3.2. ROC CURVES
ROC curves plot the TPR as a function of the FPR, when vary-
ing the confidence threshold (Fawcett, 2006). In concrete terms,
the predictions are sorted from the most confident to the least
confident, and the threshold is varied from the maximum to the
minimum confidence score. Each value of the threshold corre-
sponds to a different confusion matrix, and thus a different pair
of values of the TPR and FPR, and corresponds to a point of the
ROC curve. See Figure 2A for an example.

The two ends of the curve are always the two points (0, 0)

and (1, 1), corresponding, respectively to predP = 0 and predP =
P + N. A perfect classifier would give the highest values of pre-
diction to the pairs that truly interact, and then would have a
corresponding ROC curve passing through the point (0, 1). The
curve relative to a random classifier corresponds to the diagonal

FIGURE 2 | ROC curve (A), precision-recall curve (B), lift chart (C), and

DET curve (D) for the scores of the table above.

connecting the two points (0, 0) and (1, 1) (the dotted line in
Figure 2A).

For comparison purposes, it is often convenient to summa-
rize a ROC curve with a single real number. The most common
such measure is the area under the ROC curve (AUROC), which
is equal to 1 for a perfect classifier and 0.5 for a random one. On
the face of it, one typically assumes that the higher the AUROC,
the better the predictions.

In many network prediction tasks, however, the number of
interactions is much lower than the number of non-interactions.
It is therefore important to achieve a low FPR as even moderate
FPR can easily lead to much more FP predictions than TP pre-
dictions, and hence a very low precision. To better highlight the
importance of small FPR, partial AUROC values are sometimes
used instead of the full AUROC. For example, Tastan et al. (2009)
propose statistics like R50, R100, R200, and R300 that measure
the area under the ROC curve until reaching a FP equal to 50,
100, 200, and 300, respectively.

Another summary statistic of a ROC curve is the Youden
index (Fluss et al., 2005), which is defined as the maximal value
of TPR − FPR over all possible confidence thresholds. It corre-
sponds to the maximal vertical distance between the ROC curve
and the diagonal. The Youden index ranges between 0 (corre-
sponding to a random classifier) and 1 (corresponding to a perfect
classifier). This statistic was used for example in Hempel et al.
(2011) to assess gene regulatory network inference methods.

3.3. PRECISION-RECALL CURVES
PR curves plot the precision as a function of the recall (equal to
the TPR), when varying the confidence threshold. See Figure 2B
for an example. A perfect classifier would give a PR curve passing
through the point (1, 1), while a random classifier would have an
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average precision equal to P
P + N (dotted line in Figure 2B). All PR

curves end at the point (1, P
P + N ) corresponding to predicting all

pairs as positive. When all pairs are predicted as negative, recall is
0 but the precision is actually undefined. The coordinates of the
first point of the PR curve will therefore be ( 1

P , 1) if the most likely
prediction is actually positive, and (0, 0) otherwise. To make all
PR curve defined on the full [0, 1] interval, one sometimes adds a
pseudo point to the curve at (0, 1) (Figure 2B).

The PR curve is also often summarized by the area under the
curve (AUPR). The AUPR is sometimes called MAP, for Mean
Average Precision (Manning et al., 2009; Tastan et al., 2009).
Like for the AUROC, one typically assumes that the higher the
AUPR, the better is the classifier, with the AUPR of a perfect clas-
sifier equal to 1 and the AUPR of a random classifier close to

P
P + N . In practice, the AUPR can be computed from the curve
completed with the additional pseudo-point or not. In the sec-
ond case, one can rescale the area by dividing it by 1 − 1

P so
that its values is equal to 1 for a perfect classifier. Note that it
is important to report exactly on which approach was used to
compute the AUPR as it can make a significant difference when
the number of positives is very small. For example, the AUPR
of the PR curve of Figure 2B is equal to 0.81, 0.75, and 0.56,
respectively with the pseudo-point, without the pseudo-point
but with rescaling, and without the pseudo-point and without
rescaling.

3.4. COMPARISON OF ROC AND PR CURVES
An important difference between ROC and PR curves is their dif-
ferent sensitivities to the ratio between positives and negatives
(class imbalance) among the tested pairs: a ROC curve is indepen-
dent of the precise value of this ratio, while a PR curve is not. To
illustrate this fact, we triplicated every negative examples in the
ranked list of predictions of Figure 2 and plotted the new ROC
and PR curves in Figure 3. As expected, we obtained exactly the
same ROC curves, while the PR curves are different. This hap-
pens because, at fixed recall, a large change in FP will lead to no
change in the FPR used in ROC curves (because to total number
N of negatives will increase in the same proportion), but to a large
change in the precision used in PR curves (Davis and Goadrich,
2006).

FIGURE 3 | ROC curve (A) and PR curve (B) for a list of scores where

negative examples were tripled with respect to scores of Figure 2. The
comparison with the curves in Figure 2 shows that the ROC curve is
unchanged and that the PR curve degrades, as a consequence of tripling
the negatives.

This independence with respect to the particular content of the
test sample in terms of positives and negatives is actually the main
advantage of the ROC curve over the PR curve when it comes
to compare different classification methods (Fawcett, 2006). ROC
curves allow to compare classification methods whatever will be
the ratio between positives and negatives expected when practi-
cally applying the model. Because of this independence, however,
ROC curves do not really emphasize a particular intervals of val-
ues of this ratio and therefore favor methods that are good for a
large range of such values. If one knows for example that the ratio
between positives and negatives will be very low when applying
the classification model, then one is typically only interested in
the bottom-left part of the ROC curve. PR curves, on the other
hand, provide a better picture of the performance of a method
when the ratio between positives and negatives in the test data is
close to the ratio one expects when practically applying the model.

The dependence of the PR curve on the ratio between posi-
tives and negatives can also be seen as a drawback. First, it means
that PR curves (and their associated AUPR) obtained from dif-
ferent datasets can not really be compared when the ratio P

N is
very different. This is a limitation if one wants to compare the
performance of a method across several networks for example.
Second, because of this dependence, it is important that the ratio
of positive and negative interactions in the subset of pairs used
to validate the method is representative of the final application
of the method. Otherwise, the PR curve will not provide a realis-
tic evaluation of the method. Note, however, that it is possible to
adapt a given PR curve to a ratio between positives and negatives
different than the one adopted to generate it (Hue et al., 2010).
Mathematical details are given in the supplementary information.

Another drawback of the PR curve is the potential unstability
of the precision for small recall values. Indeed, for small values
of predP, the vertical changes of the curve from one confidence
threshold to the next can be very huge, independently of the size
of the dataset. This is more noticeable when the value of P is
small because the horizontal changes are then also relatively large.
This unstability makes the estimation of the true PR curve highly
imprecise (Brodersen et al., 2010). It is, however, actually a direct
consequence of the stronger focus put by the PR curve on the top
of the ranking with respect to the ROC curve.

Despite these differences, it is interesting to note that a deep
connection exists between the ROC and the PR spaces, in that a
model dominates another model in the ROC space if and only if it
dominates the same model in the PR space (Davis and Goadrich,
2006). In practice, however, it is often the case that a model does
not dominate another model over the whole ROC and PR spaces
and it might thus happen that a method’s AUROC is greater than
another method’s AUROC, while the opposite is true concerning
the AUPR.

3.5. OTHER MEASURES AND CURVES
ROC curves and PR curves are the most popular ways to esti-
mate the performance of biological network inference methods,
but some other measures and curves can also be found in the
literature.

Lift charts (or cumulative lift charts), often used in marketing
(Witten and Frank, 2005), plot the TPR, or recall, as a function

www.frontiersin.org December 2013 | Volume 4 | Article 262 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Schrynemackers et al. On protocols and measures for supervised network inference

of the RPP (rate of positive predictions), when varying the confi-
dence threshold. See Figure 2C for an example. A perfect classifier
would give a curve going through the points (0, 0), (

p
p + n , 1) and

(1, 1), while a random classifier would be equal to the diagonal
connecting the two points (0, 0) and (1, 1).

For example, Geurts (2011) used a lift chart to evaluate the
performance of supervised methods for the prediction of regu-
latory networks, and Yabuuchi et al. (2011) for the prediction
of compound-protein interactions. Lift charts explicitly show the
number of positive predictions (expressed as a percentage of all
possible interactions) that one needs to accept to retrieve a given
percentage of all truly positive interactions (recall). This is an
important information when one is looking at the experimental
validation of the predictions: a method that dominates another
in terms of lift chart would require to experimentally test less
interactions to achieve a given recall.

Note that when the number of positive examples is much
smaller than the number of negative ones, as it often happens
in biological networks, there is not much difference between the
ROC curve and the lift chart.

Detection error tradeoff (DET) curves plot the two types of
errors versus each other, i.e., FNR as a function of FPR (Martin
et al., 1997). In addition, the two axes are log scaled. An example
of DET curve is given in Figure 2D. Without the axis rescal-
ing, a DET curve would be equivalent to a ROC curve (because
FNR = 1 − TPR). The interest of the log scale is to expand the
lower left part of the curve (which corresponds to the upper left
part of the corresponding ROC curve), which as argued in Martin
et al. (1997) makes the comparison between different methods
easier. DET curves were used in Brunner et al. (2012) to evaluate
classification methods working on pairs of objects.

Several authors (Li et al., 2009; Junaid et al., 2010; Lapins and
Wikberg, 2010; Niijima et al., 2011) use a correlation coefficient for
the evaluation of the performance of network inference methods.
In this context, the latter is defined as

Q2 = 1 −
∑n

i = 1(yi − ŷi)
2

∑n
i = 1(yi − ȳ)2

where the sum runs over all tested pairs, yi and ŷi are the true and
predicted value corresponding to the ith pair and ȳ is the average
value of yi. Q2 values vary between 0 and 1, with Q2 = 1 for a
perfect classifier.

The average normalized rank is another way to compare the
performance of different classifiers (Karni et al., 2009; Geurts,
2011). It computes the average rank of all actual positives in the
ranking of all pairs according to their confidence score, and then
divide it by the total number of pairs. Obviously smaller is the
average rank and better is the model.

3.6. DISCUSSION
Biological network inference problems, as binary classification
problems, are usually substantially imbalanced in favor of the
negative class, as the proportion of interacting pairs among all
possible pairs is very small. Given the discussion in section 3.4,
this speaks in favor of the PR curve over the ROC curve. Let us
nevertheless consider three typical scenarios related to the use

of supervised network inference techniques and discuss the most
appropriate use of these measures in each of these scenarios:

• Development of new supervised network inference methods: when
trying to design a new supervised network inference method,
one needs to assess its performance against existing methods,
either on a specific target biological network if the method is
specialized or on several networks if the method is generic. In
this scenario, one has typically no specific application of the
method in mind and the combination of both ROC and PR
curves can be a good idea. While AUROC and AUPR summary
values can be used for comparison purpose, it is always useful
to actually report full ROC and PR curves to better characterize
the areas of the ROC and PR where the new method dominates
competitors.

• Prioritizing interactions for experimental validation: From a
ranking of all the pairs from the most likely to interact to
the less likely to interact, a biologist may want to validate
experimentally the top-ranked pairs, i.e., the potentially new
interacting pairs. More locally, he also may want to find the
nodes (e.g., genes/proteins) the most likely to interact with a
specific node of special interest for him. In this scenario, the
biologist probably wants to find the best tradeoff between the
number of true interactions he will find through the experi-
mental validation and the cost associated to this validation. The
former is measured by the recall and the latter is typically pro-
portional to the RPP, which suggests the use of a lift chart. In
addition, if the goal is also to minimize the rate of unsuccessful
validation experiments (i.e., the precision), then also looking
at the PR curve might be a good idea.

• Global analysis of the predicted network: We may want to use
the top-ranked pairs to create a new network, or to complete an
already known network, for visualization or a more global anal-
ysis of its main statistics. In these cases, we need to find the best
possible tradeoff between precision (not to infer wrong things)
and recall (to maximize the coverage of the true network).
This tradeoff can be found from a PR curve. For example, one
could derive from the PR curve the lowest confidence threshold
corresponding to a precision greater than 50%.

4. EVALUATION PROTOCOLS
Given a learning set LSp of pairs labeled as interacting or not, the
goal of the application of supervised network inference methods
is to get a prediction for all pairs not present in LSp (or a subset of
them depending on the application). In addition, one would like
to compute an estimate of the quality of these predictions as mea-
sured with any of the metrics defined in the previous section. To
obtain such estimation, one could rely only on the learning set LSp

as nothing is known about pairs outside this set by construction.
Standard supervised classification methods are typically vali-

dated using cross-validation (CV), i.e., leaving part of the exam-
ples in the learning sample aside as a test set, training a model
from the remaining examples, and testing this model on the test
set (and possibly repeat this procedure several times and aver-
age). Applying CV in the context of network inference, where
we have to classify pairs, needs special care (Park and Marcotte,
2011). Indeed, the predictive performance of a method for a given
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pair highly depends on the availability in the training data of
interactions involving any of the two nodes in the tested pair. It
is typically much more difficult to predict pairs with nodes for
which no example of interactions are provided in the training
network.

As a consequence of this, pair predictions have to be parti-
tioned into four sets, depending on whether the nodes in the pair
to predict are represented or not in the learning sample of pairs
LSp. Denoting by LSc (resp. LSr) the nodes from Uc (resp. Ur) that
are present in LSp (i.e., which are involved in some pairs in LSp)
and by TSc = Uc\LSc (resp. TSr = Ur \LSr) unseen nodes from
Uc (resp. Ur), the pairs of nodes to predict (i.e., outside LSp) can
be divided into the following four families:

• (LSr × LSc)\LSp: predictions of (unseen) pairs between two
nodes which are represented in the learning sample.

• LSr × TSc or TSr × LSc: predictions of pairs between one node
represented in the learning sample and one unseen node, where
the unseen node can be either from Uc or from Ur .

• TSr × TSc: predictions of pairs between two unseen nodes.

These pairs are represented in the adjacency matrix in Figure 4A.
In this representation, the rows and columns of the adjacency
matrix have been ordered, without loss of generality, in order to
make nodes from LSr and LSc appear first in the ranking and as
a consequence, all four groups define rectangular and contigu-
ous subregions of the adjacency matrix. Such ordering is always
possible but the respective sizes of the four groups of pairs that
this ordering defines is problem dependent. Thereafter, we sim-
plify the notations by dropping the subscript r and c and denote
the prediction sets as LS × LS, LS × TS, TS × LS, and TS × TS. In

FIGURE 4 | Schematic representation of known and unknown pairs in

the network adjacency matrix (A) and of the two kinds of CV, CV on

pairs (B) and CV on nodes (C). In (A): known pairs (that can be interacting
or not) are in white and unknown pairs, to be predicted, are in gray. Rows
and columns of the adjacency matrix have been rearranged to highlight the
four families of unknown pairs described in the text: LSr × LSc , LSr × TSc ,
TSr × LSc , and TSr × TSc . In (B),(C): pairs from the learning fold are in
white and pairs from the test fold are in blue. Pairs in gray represent
unknown pairs that do not take part to the CV.

the case of an homogeneous undirected graph, only three sets can
be defined as the two sets LS × TS and TS × LS are confounded.

Typically, one expects different prediction performances for
these different kinds of pairs and in particular, that TS × TS pairs
will be the most difficult to predict since less information is avail-
able at training about the corresponding nodes. In consequence,
we need ways to evaluate the quality of the predictions of these
four groups separately. Below, we first present the two main CV
procedures that have been proposed in the literature to eval-
uate supervised network inference methods and discuss which
of these four kinds of predictions these procedures are evalu-
ating (sections 4.1, 4.2). We then proceed with suggestions on
how to practically assess network inference methods (section 4.3)
and give an illustration on an artificial gene regulatory network
(section 4.4).

4.1. CROSS-VALIDATION ON PAIRS
The most straightforward way to generate the learning and test
sets needed for the CV, is to randomly select pairs from all the
known pairs in LSp (see Figure 4B). For example, in a specific
step of a 10-fold CV, 90% of all the pairs from LSp are chosen
to be in the learning set, while the remaining 10% are then part
of the test set. We call such CV CV on pairs. Many papers from
the literature on supervised network inference only consider this
sampling method (see e.g., Qi et al., 2006; Chang et al., 2010; Park
and Marcotte, 2011; Yabuuchi et al., 2011).

With CV on pairs, each test set could in principle mix pairs
from the four groups aforementioned. If LSp is relatively dense,
however, (i.e., there are only very few or no pairs in LSr × LSc\
LSp), the chance to have a node in a test set pair not present in any
learning set pair will be very low. The test set will then be largely
dominated by pairs from the LS × LS group. In this case, one can
thus only consider the performance evaluated by CV on pairs as
representative of the performance for the LS × LS pairs. When
used to assess the global performance of a method, however, CV
on pairs will in general give too optimistic estimates.

To obtain an estimate of the four kinds of predictions using
CV on pairs, one could partition the pairs in the test fold into the
four groups and then estimate the performance for each group
separately. The CV scheme proposed in the next section provides,
however, a more natural way to assess the three types of predic-
tions involving the TS. CV on pairs should thus be reserved for
the evaluation of LS × LS pairs. For that purpose, removing pairs
in the test folds that do not belong to the LS × LS group might be
useful to obtain a better estimate, especially when the size of LSp

is small with respect to the size of LSc × LSr .

4.2. CROSS-VALIDATION ON NODES
Instead of sampling pairs, several authors have proposed to sam-
ple nodes. In the general case of a bipartite graph, the idea is to
randomly split both sets LSc and LSr into two sets, respectively
denoted LS′

c and TS′
c for LSc and LS′

r and TS′
r for LSr . The model

is trained on the pairs in (LS′
c × LS′

r) ∩ LSp and then evaluated
separately on three subsets (see Figure 4C):

• (LS′
c × TS′

r) ∩ LSp that gives an estimate of the LS × TS
performance,
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• (TS′
c × LS′

r) ∩ LSp that gives an estimate of the TS × LS
performance,

• (TS′
c × TS′

r) ∩ LSp that gives an estimate of the TS × TS
performance.

In addition, it might be interesting to evaluate the performance
on the union of the three previous subsets of pairs to give an
idea of the overall performance of the method. Better estimates
could also be obtained by averaging results over k splits instead of
one, where the different splits can be obtained either by repeated
random resampling or by partitioning the two sets into k-folds
and considering each fold in turn as a test set. In this latter case,
partitioning LSc and LSr into k folds will lead to k2 candidate
(LS′

c, LS′
r) pairs for training and (TS′

c, TS′
r) pairs for evaluation

but one could select only k of them arbitrarily to reduce the
computational burden. The same approach can also be applied
to homogeneous graphs to obtain estimate of the LS × TS and
TS × TS performances.

CV on nodes has been applied, for example, for evaluat-
ing LS × TS and TS × TS performances for the prediction of
a protein–protein interaction network and an enzyme network
in Kato et al. (2005), Vert and Yamanishi (2005), and Geurts
et al. (2007); or for evaluating LS × TS, TS × LS, and TS × TS
performances for the prediction of drug-protein interactions in
Yamanishi et al. (2008).

4.3. DISCUSSION
CV on pairs provides a natural way to estimate LS × LS pre-
dictions, while CV on nodes provide a natural way to estimate
LS × TS, TS × LS, and TS × TS predictions. A global perfor-
mance assessment of a method can therefore only be obtained
by combining these two protocols. This was done only by a few
authors (e.g., Yip and Gerstein, 2008; Bleakley and Yamanishi,
2009; Takarabe et al., 2012). The necessity to evaluate all four
groups is, however, problem dependent. Again, when designing
a new supervised network inference method, it is useful to report
performances for all families separately, as a method can work
well for one family and less good for another. If one is interested in
the completion of a particular biological network, then the need
for the evaluation will depend, on the one hand, on the content of
the learning sample LSp and, on the other hand, on which kinds
of predictions the end user is interested in. Indeed, if all nodes
are covered by at least one known interaction in LSp, then there
is no point in evaluating LS × TS or TS × TS predictions. If LSp

corresponds to a complete rectangular submatrix of the adjacency
matrix (i.e., LSp = LSc × LSr), then there is no point in evaluat-
ing LS × LS predictions. Also, for some applications, the end-user
might not be interested in the extension of the network over one
of the two dimensions. For example, when inferring a regulatory
network, one might only be interested in the prediction of new
target genes for known TFs and not in the prediction of new TF
(e.g., Mordelet and Vert, 2008).

In addition to the four groups previously defined, it is also
possible to evaluate independently the predictions related to each
individual node (to get for example an idea of the quality of
the predictions of new target genes for a given TF). This can be
achieved by dividing the test folds according to one of the nodes

in the pairs and then to assess performance for each partition so
obtained. In practice also, the quality of a prediction depends not
only on the fact that the nodes in the pair belong or not to the
learning sample, but also on the number of pairs in the learning
sample that concern these nodes. We can indeed expect that, for a
given node, the more interactions or non-interactions are known
in the learning sample for this node, the better will be the pre-
dictions for the pairs that involve this node. Assessing each node
separately can thus make sense to better evaluate this effect. We
will illustrate this idea in section 4.4.2.

When using k-fold CV to estimate ROC or PR curves, one
question we have not addressed so far is how to aggregate the
results over the different folds. There are several ways to do that.
If one is interested only in AUROC or AUPR values, then one
could simply average AUROC or AUPR values over the k folds.
If one wants to estimate the whole ROC or PR curves, there are
two ways to obtain them: first, by averaging the k curves to obtain
a single one, second by merging pairs from the k test folds with
their confidence score and building a curve from all these pairs.
In the first case, there are several alternative ways to average ROC
(and PR) curves. One of them is to sample the x-axis in each curve
and then average the k y-axis values corresponding to these points
[this is called vertical averaging in Fawcett (2006)]. Merging all
predictions together is easier to implement but it assumes that
the confidence scores obtained from the k different models are
comparable, which is not trivially true for all methods. Note that
our own practical experience shows that there are only very small
differences between these two methods of aggregation and we
usually prefer to average the individual ROC curves so that they
do not have to address the question of the compatibility of the
confidence scores.

Finally, we have seen in section 3.4 that PR curves depend
on the ratio between positives and negatives. This dependence
should be taken into account when performing CV. If CV on
pairs and CV on nodes use uniform random sampling, resp. of
pairs and of nodes, to define the test folds, then they implicitly
assume that the ratio between positives and negatives is the same
in the test fold as in the learning sample of pairs. This seems a
reasonable assumption in most situations but if one expects a dif-
ferent ratio among the predictions, then the procedure developed
in section 3.4 can be used to correct the PR curve accordingly.

4.4. ILLUSTRATION
In this section, we will illustrate the use of CV with experiments
on an artificial network. An artificial network was chosen so that
it is possible to accurately estimate performance and therefore
assess the different biases discussed in the paper. The chosen net-
work is the artificial regulatory network simulated in the context
of the DREAM5 network inference challenge (Marbach et al.,
2012). This network is an artificial (bipartite) regulatory net-
work, composed of 1565 genes, 178 TFs, and 4012 interactions,
corresponding to 1.4% of all the pairs. The network has to be
inferred from 804 artificial microarray expression values obtained
in various conditions and mimicking typical real microarray
compendia. To provide experiments on a homogeneous network
as well, we transformed this network into a co-regulatory net-
work composed of 1565 genes and in which there is an interaction
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between two genes if they are regulated by at least one common
TF. The resulting network is composed of 4,191,120 interactions,
corresponding to 17.1% of all pairs.

4.4.1. Performance over the four families of predictions
We performed a 10-fold CV on both the bipartite and homo-
geneous networks, with a local approach using Random Forests
(Breiman, 2001). For the bipartite network, we sample first on
pairs, and second on genes and on TFs. The resulting curves and
areas under the curves are given in Figures 5A,B. Surprisingly, the
prediction of interactions involving a TF present in the learning
set, and a new gene (LS × TS) gives slightly better scores than the
prediction of interactions involving a gene and a TF both present
in the learning set (LS × LS). On the other hand, the prediction
of pairs involving a new gene and a TF present in the learning set
(LS × TS) or not (TS × TS) gives performances barely better than
random. Finding new interactions for a known TF is thus much
easier than finding interactions for a known gene.

For the homogeneous network, we sample first on the pairs
and second on the genes. The resulting curves are shown in
Figures 5C,D. Prediction of coregulation between two genes
belonging to the learning set gives the best AUROC and AUPR. As
expected prediction of coregulation between one known gene and
one new gene gives less good performance, followed by prediction
of coregulation between two new genes.

FIGURE 5 | ROC curves (A) and PR curves (B) for the four groups of

predictions obtained by 10-fold CV on the DREAM5 artificial gene

regulatory network. AUROC are, respectively, equal to 0.85, 0.86, 0.53,
and 0.55 and AUPR are equal to 0.31, 0.34, 0.02, and 0.02. The
performance of prediction of a pair involving a gene and a TF present in the
learning set (LS × LS) is as good as the performance of prediction of a pair
involving a gene absent and a TF present in the learning set (LS × TS). On
the contrary, predicting an interaction involving a new TF is much more
difficult (TS × LS and TS × TS). Bottom: ROC curves (C) and PR curves (D)

obtained by 10-fold CV on the corresponding DREAM5 co-regulatory
network. AUROC are, respectively, equal to 0.96, 0.88, and 0.75 and AUPR
are equal to 0.88, 0.65, and 0.40. Predictions on pairs involving two genes
from the learning set are the best, while predictions on pairs involving two
genes from the test set are the worst.

These two examples clearly highlight the fact that all pairs are
not as easy to discover as the others, and that it is thus important
to distinguish them during the validation.

4.4.2. Per-node evaluation
As a second experiment, we computed the ROC and PR curves for
each of the 178 TFs separately, from the result of the 10-fold CV
on genes (bipartite graph). Figure 6 shows the (average) AUROC
and AUPR values for all TFs according to their degree. This plot
shows that the quality of the predictions differs greatly from one
TF to another and that the number of known pairs seems to
affect this quality. For low values of degree (lower than about 20),
the AUROC globally increases when the degree increases, but for
higher values the AUROC does not seem to depend on it. On
the other hand, AUPR values globally increase when the degree
increases, for all values of TF.

4.4.3. A more realistic setting
The goal of CV is to estimate, from the training subnetwork,
the performance one expects on the prediction of new interac-
tions. We carried out a last experiment to evaluate the quality
of the estimation obtained by CV in a realistic setting. In this
setting, we assume that the known pairs are obtained by first ran-
domly drawing 2/3 of the genes and 2/3 of the TFs and then
randomly drawing 2/3 of all interacting and non-interacting pairs
between these genes and TFs. The resulting training set thus con-
tains about 30% of all possible pairs and the goal is to predict the
remaining 70% pairs, which are divided into, respectively 15%,
22%, 22%, and 11% of LS × LS, LS × TS, TS × LS, and TS × TS
pairs.

FIGURE 6 | AUROC (A,B) and AUPR (C,D) for each TF as a function of

its degree (number of targets) on the DREAM5 network. Each value
was obtained by 10-fold CV on genes. Each blue point corresponds to a
particular TF and plots its average AUROC or AUPR value over the 10-folds.
Each red point correspond to the average AUROC or AUPR values over all
TFs of the corresponding degree. Globally, the higher the degree, the
higher are the areas under the curve and so the better are the predictions.
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Two validation experiments were performed. First, we eval-
uated the performance of the (global) Random Forests method
by CV across pairs and across nodes on the 30% of known
pairs (experiment A). Second, we trained local models based
on Random Forests on the known pairs and we evaluated them
on the 70% of pairs not used during training. Experiment A is
therefore supposed to provide a CV estimate of the true perfor-
mance as estimated by experiment B. The resulting ROC and PR
curves obtained from these two experiments for the LS × LS and
LS × TS families are shown in Figure 7. As expected, for both
kinds of predictions, the curves obtained by the two experiments
are very similar, with a very slight advantage to experiment B.
This small difference comes from the fact that the number of
pairs in the learning set of experiment B is 10% greater than the
number of pairs in the learning sets of experiment A (because of
10-fold CV).

5. LACK OF NEGATIVE EXAMPLES
In biological networks, often truly non-interacting pairs are not
available. Indeed it is often impossible for biologists to experi-
mentally support the lack of an interaction between two nodes.
For example you can prove that a specific drug acts on a set of
proteins, and you may want to find other proteins being affected
by this drug by using machine learning techniques, but you can-
not prove that a particular set of proteins is not affected by the
drug. This lack of negative examples leads to problems both when
training and when evaluating a model. We discuss these two steps
separately below and conclude with an illustration.

5.1. TRAINING A MODEL
Standard supervised machine learning methods require both pos-
itive and negative examples for training. The most common way
to get around this limitation in the presence of only positive
examples is to take as negative examples all, or a subset of, the

FIGURE 7 | Comparison of the CV estimates of the LS × LS and

LS × TS scores, ROC curve in (A) and PR curve in (B), with true score

values for the same two families of predictions, ROC curve in (C) and

PR curve in (D). AUROC and AUPR values are found in the legends.

unlabeled examples, i.e., in our context, considering all or some
pairs that have not been measured as interacting as actually non-
interacting. This approach has been adopted by most authors
in the literature, e.g., in Geurts et al. (2007), Mordelet and Vert
(2008), Yamanishi et al. (2008), Yip and Gerstein (2008), Bauer
et al. (2011), van Laarhoven et al. (2011), and Takarabe et al.
(2012), the authors use all unlabeled pairs as negatives and in
Yip and Gerstein (2008), Chang et al. (2010), Hue et al. (2010),
Yabuuchi et al. (2011), and Yu et al. (2012) they use only a subset
of them. Although there is a risk that the presence of false neg-
atives in the learning sample will affect the performance of the
machine learning method, using only a subset of the unlabeled
pairs as negative examples will, however, substantially reduce this
risk in the context of biological networks. Indeed, the fraction of
positive interactions is expected to be very small in common bio-
logical networks, which will lead to only a very small number of
false negatives in the learning sample as soon as the size of the
negative set is not too large with respect to the size of the posi-
tive set. For example, for the protein–protein interaction network
of the yeast, it is estimated that 1 pair over 600 is actually inter-
acting (Qi et al., 2006), which corresponds to ∼0.2% of all the
possible pairs. A learning sample composed of 1000 positive and
1000 unlabeled pairs is therefore expected to contain in average
only about two or three false negatives. In addition to the reduc-
tion of the number of false negatives, sampling the unlabeled pairs
has also the advantage of decreasing the computational cost at the
training stage and of improving the class imbalance in the train-
ing sample, which might affect the performance of classification
methods (Pandey et al., 2010; Park and Marcotte, 2011).

To even further reduce the risk of incorporating false nega-
tives in the training data, one could also replace random sampling
from the unlabeled pairs by a selection of a subset of more
reliable negative examples using prior knowledge about the bio-
logical interactions of interest. This approach was considered for
example in Ben-Hur and Noble (2006) for protein–protein inter-
actions, in Ceccarelli and Cerulo (2009) for gene-TF interactions,
and in Yousef et al. (2008) for microRNA-gene interactions.

Note that the presence of false negatives is not necessarily
detrimental. Elkan and Noto (2008) showed that, under the
assumption that the interactions in the learning sample are
selected uniformly at random among all interactions, the pres-
ence of false negatives in the learning sample will only affect the
confidence scores by a constant factor, which will thus leave ROC
and PR curves for example unaffected. Although their assump-
tion is quite strong, this nevertheless suggests that the presence of
false negatives might have just a marginal effect on performance.
As an illustration, we run the same experiment as in section 4.4
on the DREAM5 regulatory network only turning 10% of posi-
tives into negatives when training the model. The AUPR reduces
from 0.31 to 0.29 and the AUROC from 0.85 to 0.84, showing
that the presence of false negatives only very slightly affects the
performance of Random Forests.

One drawback of considering unlabeled pairs as negative pairs
for training the model is that the predictions provided by the
model for these pairs will be biased toward low confidence scores.
One way to obtain unbiased predictions for all unlabeled pairs is
to use CV: construct a model using all known positive pairs and a
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random subset of the unlabeled pairs as negatives, use this model
to obtain a prediction for all unlabeled pairs not used during the
training stage, and repeat the procedure several times using dif-
ferent subsets of unlabeled pairs until all unlabeled pairs have
obtained at least one prediction. Based on this general scheme,
Mordelet and Vert (2013) proposed to train several models using
small random subsamples of unlabeled pairs, leading to several
predictions for each unlabeled pairs that are then aggregated.

Another approach to deal with the lack of negative examples is
to forget about unlabeled examples and exploit machine learning
methods, such as one-class support vector machines (Schölkopf
et al., 2001), that can learn a model only from the positive exam-
ples. This approach was for example adopted in Yousef et al.
(2008) to predict miRNA-gene interactions. Machine learning lit-
erature also provides several specific algorithms for dealing with
positive and unlabeled examples, among which for example (Lee
and Liu, 2003; Denis et al., 2005; Geurts, 2011), that could also
be used in the context of supervised network inference. Geurts
(2011) validated his method for the inference of regulatory net-
works, which showed improvement over standard two-classes
methods.

5.2. EVALUATING A MODEL
The absence of true non-interacting pairs in the training data has
also an impact on the validation of the model, as the different
evaluation measures described in section 3 all rely on the avail-
ability of a set of known interacting and non-interacting pairs on
which to perform the CV.

Like for training, the simplest way to deal with the lack of neg-
atives for validating the model is to consider all unlabeled pairs
within the test folds (generated in the context of CV on pairs or
CV on nodes) as non-interacting pairs and then estimate ROC
or PR curves under this assumption. The presence of false nega-
tives in the gold standard will obviously affect the estimation of
the performance. Let us assume that the ranking of the exam-
ples in a test fold is fixed and that a proportion x of positives
are turned into negatives. Under this assumption, it can be shown
that the TPR remains unchanged while FPR and Prec are modified
as follows:

FPRnew = FP + TP·x
N + P·x > FPR (1)

Precnew = (1 − x)Prec < Prec, (2)

where the first inequality holds as soon as the ranking is better
than random (see the supplementary information for the details).
One can thus expect that the introduction of false negatives will
systematically degrade both the ROC and the PR curves.

As an illustration, we carried out simulations on the DREAM5
regulatory network (see section 4.4). The model was trained
with Random Forests with the local approach and we focus our
experiment on the LS × LS pairs. The learning sample was kept
unchanged but in each of the 10 CV folds (CV on pairs), we ran-
domly turned a fraction x of positives into negatives, in order to
simulate the introduction of false negatives. We tried several pro-
portions x ∈ {0, 0.1, 0.2, . . . , 0.9} and got the curves shown in
Figures 8A,B. As expected, the PR curves degrade when the ratio
increases. More surprisingly, the ROC curves do not seem to be
influenced by the ratio of false negatives. This can be explained by
the fact that in Equation (1), TP · x becomes negligible compared
to FP and P · x is negligible compared to N, even for small FPR
values as soon as N is large with respect to P.

Actually, there are potentially two effects that play a role in
the degradation of the PR curve in Figure 8B: the introduction of
false negatives but also the alteration of class imbalance. Indeed,
we have seen in section 3.4 that the PR curve was affected by this
ratio. To try to assess both effects separately, we also generated
the PR curves obtained from the initial curve by increasing the
number of negatives in such a way that the ratio of P/N matches
the ratio of P/N in the previous experiment for x ranging from
0 to 0.9. These curves are plotted in Figure 8C. They are also sys-
tematically degraded by the introduction of more negatives but
the degradation is not as high as the degradation obtained by the
addition of false negatives.

We can conclude from these experiments that PR curves are
much more sensitive than ROC curves to false negatives in the
true dataset. Interestingly, given Equation (2), if we can estimate
the ratio x of false negatives, we can modify the PR curve sim-
ply by dividing the precision by 1 − x, to obtain a more realistic
PR curve. Note, however, that the correction in Equation (2) only
applies under the assumption that false negatives will get scores
distributed similarly as positives. This assumption is not unreal-
istic in practice as we indeed expect that false negatives will be
predicted most often as positives (since they are in fact positives).
However, it is also possible that for a given biological network,
known interactions are the strongest ones (i.e., those with the

FIGURE 8 | Effect of false negatives on ROC and PR curves. We simulated
false negatives in the DREAM5 regulatory network, during the testing stage.
The ratio of false negatives does not influence the ROC curve (A), but the PR
curve (B) decreases while the ratio of positives turned into negatives

increases. The ratio varies from 0 to 0.9. Curves (C) show the evolution of
the PR curve when the ratio P/N is set similarly as in (B). Although the PR
curve degrades also in this case, the degradation is not as important as when
false negatives are introduced.
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strongest experimental support) and therefore false negatives will
typically correspond to weaker interactions. Their scores, as pre-
dicted by network inference methods, can then be smaller than
those of known positives. In this case, the degradation of the
PR curve will most probably be somewhere in between curves
in Figures 8B,C. Note that even though PR curves are affected
by the introduction of false negatives, this is not really problem-
atic when it comes to compare different inference methods on the
same networks, as all methods will be affected in the same way by
these false negatives. In this case, correcting the PR curve is not
necessary.

Finally, we would like to note that the ratio between positives
and negatives used to evaluate PR curves should be as close as
possible to the expected ratio in the pairs to predict. Indeed, one
could be tempted to estimate performance by CV on pairs on
the positives and the selected negatives (randomly or from prior
knowledge). The resulting PR curves will be, however, represen-
tative only for the given observed ratio between positives and
negatives. If this ratio is different from the expected one, then one
should apply the PR curve correction presented in section 3.4.

5.3. ILLUSTRATION
To illustrate the practical impact of the absence of negatives on
validation, we reproduced the experiment of section 4.4.3 on the
DREAM5 network, this time assuming that only positive (and
unlabeled) pairs are available in the training data. More con-
cretely, we again first randomly drew 2/3 of the genes and 2/3
of the TFs and then randomly drew 2/3 of the positive pairs exist-
ing among these genes and TFs. This set of positive pairs then
defines our training network and the goal is to find new positive
pairs among all the other ones (that are then considered as unla-
beled). The positive pairs in the training set were chosen so that
they match the positive pairs in the training set in the experiment
of section 4.4.3.

Two validation experiments were performed. First, CV across
pairs and nodes was carried out on all pairs between the selected
genes (2/3) and TFs (2/3), considering all unlabeled pairs as
negative (experiment A). Second, we randomly split the whole
set of unlabeled pairs into two subsets. We trained a model on
the positive pairs and each of these subsets taken in turn as
the set of negative pairs and then used this model to obtain a
prediction for the unlabeled pairs in the other subset. The result-
ing predictions were then evaluated against the true network
(experiment B). Experiment A is thus supposed to provide a CV
estimate of the true performance as computed by experiment
B. The resulting ROC and PR curves obtained from these two
experiments are shown in Figure 9 for the LS × LS and LS × TS
families.

ROC curves and AUROC scores obtained from experiments
A and B are very close but noticeable differences appear in PR
curves and AUPR scores. Indeed, experiment A gives higher
AUPR than experiment B for LS × LS pairs, but gives lower
AUPR for LS × TS pairs. In other words, CV overestimates
the AUPR for LS × LS pairs and underestimates it for LS × TS
pairs. As discussed above, these differences can be explained,
on the one hand, by the presence of false negatives in the
test data generated by the CV and, on the other hand, by

FIGURE 9 | Comparison of the CV estimates of the LS × LS and

LS × TS scores, ROC curve in (A) and PR curve in (B), with true score

values for the same two families of predictions, ROC curve in (C) and

PR curve in (D), when only positive and unlabeled pairs are available.

AUROC and AUPR values are found in the legends.

the differences in the ratio between positives and negatives
that exist in the two families of pairs between experiments
A and B.

Assuming that both the ratio of false negatives in the training
pairs and the ratio of positives and negatives among the unlabeled
pairs are known or can be estimated, PR curves and AUPR scores
obtained from experiment A can be corrected using results in sec-
tions 3.4, 5.2, so that they match the conditions of the application
of the model in experiment B. Since these quantities are known
for our artificial network, we performed these corrections, first
adjusting the precision to account for the false negatives and then
correcting the curve to account for the different ratio of positives
versus negatives. The corrected AUPR are respectively 0.16 and
0.26 for LS × LS and LS × TS, which are now closer to the value
obtained from experiment B.

Note that another factor that could introduce a difference
between CV scores and real scores is the composition of the
training data in terms of positives and negatives, which might
affect learning algorithms. In our experiment, however, the ratios
of positives versus negatives in the training data are very close
(∼ 0.9% for experiment A and ∼ 1.0% for experiment B).

6. IMPACT OF HEAVY-TAILED NODE DEGREE DISTRIBUTION
Biological networks are typically non-random. In particular,
many of them have a heavy-tailed distribution of node degrees:
several nodes, called hubs, have degrees greatly higher than the
average (Stumpf and Porter, 2012). In such networks, a new node,
without consideration of its features, is more likely to interact
with a hub than with a less connected node. As a consequence,
it is possible in such network to obtain better than random inter-
action predictions without exploiting the node features, by simply
connecting any new node with the more connected nodes in the
training network.
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Let us illustrate this on the DREAM5 in silico network. The
topology of this network is based on known transcriptional reg-
ulatory networks of model organisms such as S. cerevisiae and
E. coli. It clearly has a heavy-tailed node degree distribution (5%
of the TFs collect about 50% of all interactions). Figures 10A,B
shows the ROC and PR curves obtained using the same 10-CV
folds as in section 4.4.1. The LS × LS pairs are now ranked
according to the sum of the degrees of the nodes, computed in
the training network, and the LS × TS and TS × LS pairs are now
ranked according to the degree of the TF and of the gene, respec-
tively. The AUROC and AUPR are, respectively, equal to 0.83 and
0.14 for LS × LS, 0.83 and 0.17 for LS × TS, and 0.54 and 0.02 for
TS × LS. We can conclude from these results that the degree of
a TF is indeed greatly linked with the probability for it to inter-
act with a known or a new gene. On the contrary, the degree of
a gene does not influence its chance to interact with a new TF.
Although better than random, it is important to note, however,
that the degree-based ranking of LS × TS pairs does not allow to
distinguish potential targets of a given TF since they all inherits
the degree of the TF.

That it appears possible to complete a network based only on
the degree of LS nodes shows that using a random classifier as
a baseline for assessing the performance of supervised network
inference methods is inappropriate. A network inference method
that does not perform better than the simple degree-based rank-
ing of the interactions is potentially unable to effectively extract
useful information from the features. As a consequence, we
believe that one should always report the performance of the
degree-based ranking as a baseline for assessing the performance
of a supervised network inference method. As an illustration, on
the DREAM5 network, we obtained with the Random Forests

FIGURE 10 | The heavy-tailed degree distribution of many biological

networks can lead to better than random predictions, only by

exploiting the network topology and ignoring node or pair features.

First row: ROC curves (A) and PR curves (B) obtained from predictions
made on the DREAM5 dataset using the degree of the nodes in the
learning set. Second row: ROC curves (C) and PR curves (D) obtained from
predictions made on the DREAM5 dataset when randomly permuting the
feature vectors relative to different nodes.

method AUROC values of 0.85 and 0.86 and AUPR values of 0.31
and 0.34, respectively for LS × LS and LS × TS pairs (see sec-
tion 4.4.1). The AUROC values of 0.85 and 0.86, although very
good in absolute values, should be treated cautiously; they are
indeed only slightly greater than the 0.83 AUROC of the degree-
based ranking. In contrast, the doubling of the more robust AUPR
value (from 0.14 and 0.17 for the degree-based random predictor
to 0.31 and 0.34 for the trained model) indicates that the Random
Forests are able to capture information from the feature vectors
and indeed enable reliable predictions.

Even when the features are uninformative, supervised infer-
ence methods should be in principle able to “learn” and exploit
this positive bias for interactions with nodes of high degree within
the training data. Indeed, this is in this case the only way to get
non-random predictions. To illustrate this assumption, we car-
ried out an experiment on the DREAM5 network with the same
protocol as in section 4.4.1 but making the features uniforma-
tive. To decorrelate the features from the network, the model is
trained and tested by 10-fold CV on new data obtained by keep-
ing the labels of the pairs unchanged but randomly permuting
the feature vectors of the nodes. Resulting ROC and PR curves
for LS × LS and LS × TS pairs are shown in Figures 10C,D. The
AUROC and AUPR are, respectively, equal to 0.76 and 0.09 for
LS × LS and 0.78 and 0.11 for LS × TS. These results are slightly
worse than the results obtained by the degree-based ranking but
they are much better than random, although the features do not
convey any information about the network by construction. Note
that the AUROC and AUPR values averaged over each TF (as
done in section 4.4.2) are, respectively, equal to 0.48 and 0.02 for
LS × TS pairs. Like the degree-based ranking, the model trained
on permuted features is unable to distinguish between possible
targets of a given TF. This latter experiment further confirms that
the degree-based ranking should be preferred to a random rank-
ing as a baseline to assess the performance of supervised network
inference methods.

7. DISCUSSION
In this paper, we discussed measures and protocols for the valida-
tion in silico of supervised methods for the inference of biological
networks, i.e., methods that infer a biological network from a
training sample of known interacting and non-interacting pairs
and a set of features defined on the network nodes (or directly on
pairs of nodes). Although this problem is very close to a standard
supervised classification problem, it requires to address several
important issues related to the need to classify pairs of entities in
a candidate interaction and to the nature of biological networks.
We carried out a rigorous examination of these issues that we sup-
ported by experiments on an artificial gene regulatory network.
The main guidelines that can be drawn from this examination are
as follows:

• Network inference methods have been assessed mainly using
PR curves and ROC curves. The choice of an appropriate
metric should be dictated mainly by the application but gen-
erally PR curves are more appropriate than ROC curves given
the highly imbalanced nature of the underlying classification
problem, related to the very sparse nature of most biological
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networks. While PR curves are sensitive to the ratio of positives
versus negatives in the test data, we show that it is straight-
forward to adapt them to a new ratio. A further important
characteristic of biological networks that should influence the
choice of a performance metric is the heavy-tailed degree dis-
tribution. We show that this degree distribution severely affects
the ROC curves, making it difficult to estimate the perfor-
mance of inference methods by the AUROC, while PR curves
are much less affected.

• When validating a model, it is necessary to divide the predic-
tions into four groups, given that the two nodes might either
be present or absent in the learning sample of interactions.
Indeed, performance is typically very different from one group
to another and improves when the number of training interac-
tions involving the nodes in the pairs to be predicted increases.
The quality of the predictions for pairs where both nodes have
interactions in the training network can be assessed using CV
over pairs in the training data. The quality of the predictions for
the three other groups of pairs, where at least one node is not
represented in the training data, is best assessed by using CV
over nodes. Unless the inference problem at hand makes some
subgroups of predictions irrelevant, we advocate the joint use
of both kinds of CV to get a more detailed assessment of the
performance of an inference method.

• We discussed the lack of experimental support for non-
interacting pairs in most biological networks. We reviewed
several ways to address this problem at training time and
showed that the presence of false negatives does not really affect
ROC curves but can result in an underestimation of the PR
curve. Assuming that the proportion of false negatives in the
test data is known and that false negatives are selected ran-
domly among positives, we show that it is possible to correct
the PR curve so that it better reflect true performances. The
correction is, however, not necessary when one only wants to
compare different methods.

• We showed empirically that a heavy-tailed node degree distri-
bution seemingly enables a better than random inference only
by exploiting the topology of the training network. As a conse-
quence, random guesses should not be taken as valid baselines
for supervised network inference methods, in order not to
overestimate the performance. Every validation of a supervised
inference method should always be supplemented by a report-
ing of the performance of the simple degree-based score (or a
classifier grown from randomly permuted feature vectors).

Thereby, we provided the most comprehensive examination and
discussion of issues in the evaluation of supervised inference
techniques so far. Given that the examined supervised tech-
niques exploiting prior information on the network are typically
superior in performance to unsupervised approaches, a reliable
assessment is particularly desirable. Following the guidelines we
derived will enable a more rigorous assessment of supervised
inference methods, will contribute to an improved comparability
of the different approaches in this field and will thus furthermore
aid researchers in improving the state of the art methods.

Still, there remain several open questions about supervised
network inference methods and their validation. First, with a few

exceptions, most papers in the domain focus on a given type of
biological network. Yet, unlike unsupervised methods that need
some prior knowledge to derive their confidence scores, super-
vised methods are most of the time generic in that they could
be applied to any network without much adaptation. A thor-
ough empirical comparison of these methods on several net-
works with different characteristics is missing to really understand
the advantages and limitations of all these methods. While we
argue, as others, that predictions within the different pair sub-
groups should be assessed separately, we have not discussed ways
to take into account the resulting information to obtain bet-
ter global network predictions. Indeed, most methods eventually
provide a single ranking of all pairs to be predicted. How to
take into account the performance differences between the dif-
ferent groups of pairs to reorganize this ranking into a better
one, and whether this is actually possible, remains an interest-
ing open question for future research. In this review, we focus
on the statistical and in silico validation of network inference
methods using CV techniques. Such validation helps assess the
quality of the predictions and therefore decide on a confidence
threshold that best suits application needs. However, even more
important is the experimental validation of the predictions pro-
vided by network inference techniques. Experimental validation
depends on the nature of the biological network at hand and
therefore a discussion of these techniques is out of the scope of
this review. Note nevertheless that experimental validation will
be influenced also by the lack of experimental support for non-
interacting pairs and that for some (more abstract) networks,
experimental validation might be very difficult (e.g., disease-gene
networks).
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Boolean networks (BoN) are relatively simple and interpretable models of gene
regulatory networks. Specifying these models with fewer parameters while retaining
their ability to describe complex regulatory relationships is an ongoing methodological
challenge. Additionally, extending these models to incorporate variable gene decay rates,
asynchronous gene response, and synergistic regulation while maintaining their Markovian
nature increases the applicability of these models to genetic regulatory networks (GRN).
We explore a previously-proposed class of BoNs characterized by linear threshold
functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional
BoNs with unconstrained transition functions, these models require far fewer parameters
and offer a more direct interpretation. However, the functional form of a TBN does
result in a reduction in the regulatory relationships which can be modeled. We show
that TBNs can be readily extended to permit self-degradation, with explicitly modeled
degradation rates. We note that the introduction of variable degradation compromises
the Markovian property fundamental to BoN models but show that a simple state
augmentation procedure restores their Markovian nature. Next, we study the effect of
assumptions regarding self-degradation on the set of possible steady states. Our findings
are captured in two theorems relating self-degradation and regulatory feedback to the
steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene
response and asynergistic regulation and show that TBNs can be easily extended to
relax these assumptions. Applying our methods to the budding yeast cell-cycle network
revealed that although the network is complex, its steady state is simplified by the
presence of self-degradation and lack of purely positive regulatory cycles.

Keywords: Boolean network, genetic regulatory network, attractor, steady state, state augmentation,

asynchronous update, feedback loop, yeast cell-cycle

1. INTRODUCTION
Dynamic models are used frequently to study the evolution of a
genetic regulatory network (GRN) over time [see De Jong (2002)
for a review]. Often accompanying these models is a graph rep-
resenting the relationships among the genetic components (e.g.,
proteins, DNA, RNA). The components are represented by nodes
and the regulatory relationships by edges. The dynamic models
range from highly quantitative frameworks such as systems of
differential equations [see Heinrich and Schuster (1996) for an
introduction] to more qualitative models such as Boolean net-
works (BoN) (Kauffman, 1969). Although systems of differential
equations are explicit and detailed in their description of net-
work trajectories, they require specialized knowledge of kinetic
parameters, time constants, and the mechanism underlying the
process. In comparison, BoN are easier to construct and interpret.
In a BoN, gene expression is discretized into one of two states,
e.g., on/off, up/down, or active/inactive. Regulation is modeled
by logic functions (e.g., AND, OR, NOT) that code the influ-
ence of the effector genes. Genetic regulation is either positive,

resulting in increased gene expression, or negative, resulting in
decreased gene expression. While discretizing gene expression
is certainly a simplification, similar approaches have resulted in
increased reproducibility and robustness when estimating both
absolute and differential gene expression (Parmigiani et al., 2002;
Scharpf et al., 2003; Zilliox and Irizarry, 2007; McCall et al.,
2011), and Boolean network models have been used to suc-
cessfully model gene regulatory networks (Albert and Othmer,
2003; Espinosa-Soto et al., 2004; Li et al., 2004; Davidich and
Bornholdt, 2008). For certain small networks, systems of differ-
ential equations and BoN are qualitatively similar in their state
transitions and long term behavior (Glass and Kauffman, 1972,
1973). These two types of models can differ in their results
when applied to networks with many nodes and complex gene
interactions.

Ultimately a desirable model is one that retains the relative
ease of modeling and interpretation of a BoN and the quanti-
tative precision of differential equations. A model that possesses
these qualities is the BoN proposed by Li et al. (2004) to study the
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Network Inference

• Q: Which kinds of biological networks have been inferred in the paper?
• A: We studied genetic regulatory networks (GRN), specifically the budding yeast cell-cycle network, using a threshold

Boolean network (TBN) model specified by linear functions and a threshold.
• Q: How was the quality/utility of the inferred networks assessed? How were these networks validated?
• A: We studied how the TBN model behaves under different assumptions of gene self-degradation and different

parameter specifications. We Markovianized self-degradation and showed that the resulting model is more tractable.
We proposed and proved two theorems relating gene self-degradation to a TBN’s attractor set and used these results
to assess the behavior of the budding yeast cell cycle. Our results were then compared to those of a widely cited
GRN model.

• Q: A few sentences explaining the main positive/negative results described in the paper.
• A: We showed how the TBN model accommodates aspects of GRNs such as variable Markovian self-degradation,

asynchronous gene update, and synergistic relationships, making the model more representative of real biolog-
ical networks. Additionally, we found that the complexity of a GRN can be summarized by the presence of
self-degradation and cycles comprised of only positive regulations. The primary limitation of TBNs is that they can-
not easily model all possible regulatory relationships. Nevertheless, the mathematical tractability and qualitative
characteristics of a TBN make it a desirable model for understanding GRNs.

budding yeast cell-cycle. Cited by more than 600 articles, their
BoN employs a simple, elegant linear function with a thresh-
old that utilizes far fewer parameters than a BoN specified by
truth tables. Because of the influential results of Li et al.’s thresh-
old Boolean network (TBN) model, a thorough analysis of the
model’s mathematical properties and fidelity to true network
behavior are important. A key aspect of their model is the treat-
ment of genetic degradation. Degradation primarily occurs in
three ways: (a) negative regulation by other genes in the network,
(b) negative regulation by other (unmeasured) genes not in the
network, and (c) intrinsic protein degradation. The latter two
are indistinguishable in a GRN and are commonly referred to as
self-degradation.

Our evaluation of the TBN consists of: (1) characteriz-
ing the regulatory relationships that the TBN can and can-
not express, (2) showing how self-degradation has a substantial
impact on a GRN’s steady state behavior, (3) Markovianizing
self-degradation, (4) proving that steady states of a GRN are
sensitive to gene interaction strengths, (5) commenting on
the role of self-degradation and interaction strength in asyn-
chronous gene update, and (6) augmenting the TBN to allow
for synergistic and antagonistic relationships. The extensions
improve a TBN’s representation of a GRN and the theoretical
results break down its complexity. In Section 2, we formally
introduce BoN, their dynamic properties and Li et al.’s cell-
cycle TBN. In Section 3, we evaluate the TBN and present
our theorems relating self-degradation to steady state behav-
ior. A summary and discussion of our findings follows in
Section 4.

2. MATERIALS AND METHODS
2.1. A REVIEW OF BOOLEAN NETWORKS AND DYNAMIC PROPERTIES
A Boolean Network (BoN) is defined as a directed graph G(X , E)

with Boolean transition functions. The graph G is composed of
a set of nodes X = {1, . . . , N} and a set of edges E , in which a
directed edge represents a causal relationship between two nodes.
Each node i can have either state xi = 0 or xi = 1. Whenever there

is an edge i → j ∈ E , j is called the child of i and i is called the
parent of j in G. Associated with each node is a Boolean function
fi : BN �→ B where B = {0, 1}. This function specifies how the
state of node i changes over time. Denote the state of node i at
time t as xi(t). Node i updates its state by the Markovian process,
xi(t + 1) = fi(x1(t), . . . , xk(t)) where 1, . . . , k are its parents. In
other words, the current state of a node is determined by a func-
tion of its parents’ previous states. Although fi is defined to take
N inputs, the relevant arguments are the parents’ states since all
other nodes do not directly affect i. In GRNs, an fi specifies the
regulatory relationship between gene i and the rest of the net-
work. The entire network updates synchronously by the process,
x(t + 1) = A(x(t)), where x = (x1, . . . , xN) is a state vector and
A : BN �→ BN is the model’s operator. To be exact, A is a vec-
tor whose components are the functions, fi. A network path is a
sequence,

x(0) → x(1) → x(2) → . . .

The long term behavior or steady state of a BoN can be charac-
terized by its attractors. An attractor is a set of network states that
occur infinitely often in the sequence At(x(0)) with t ≥ 1. If the
set contains only one element, then the attractor is referred to as
a fixed point, otherwise the attractor is periodic. Formally, a fixed
point is defined as x = A(x). An important feature of an attractor
is its basin of attraction, which is the set of state vectors from which
the network reaches the attractor. The size of the basin of attrac-
tion represents the attractor’s pull on the network states. Growing
evidence suggests that an attractor represents a particular cell fate
(Kauffman, 1969; Huang et al., 2005).

2.2. THE CELL-CYCLE THRESHOLD BOOLEAN NETWORK
The cell-cycle of the budding yeast Saccharomyces cerevisiae is a
phenomenon that continues to fascinate and generate knowledge
even after years of research. Li et al. (2004) developed a dynamic
BoN to model the cycle and “demonstrated that the cell-cycle net-
work is extremely stable and robust for its function” (p.4781).
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Their BoN uses a linear transition function with a threshold,
henceforth referred to as a TBN, in the following manner:

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijxj(t) > 0

0,
∑

j aijxj(t) < 0

xi(t),
∑

j aijxj(t) = 0

(1)

where xj(t) is the expression of the regulator protein j at the
current time t, xi(t + 1) is the expression of the regulated pro-
tein i at the next time t + 1, and interaction coefficient aij codes
the strength and type of regulation that protein j exerts on pro-
tein i. Positive regulation is specified by positive values of aij and
negative regulation by negative values of aij. Any regulation is a
product of the parent’s state xj(t) and the type and strength of
the regulation aij. The next state of a protein depends only on
its parents’ current states. Specifically, the next state xi(t + 1) of
protein i is ‘on’ if the sum of its parents’ regulatory effects sur-
passes 0, “off” if the sum is below 0, and when the sum is 0, the
state remains the same. Self-degradation is a process not incorpo-
rated in Equation (1), but defined separately as: if

∑
j aijxj(t) = 0

from t = ts to t = ts + td − 1 then xi(ts + td) = 0, where td is
referred to as the protein’s lifetime. A higher value of td translates
to a slower rate of decay. In the cell cycle TBN constructed in Li
et al. (2004), only proteins not negatively regulated by others pos-
sess the self-degradation property (we note, however, that Swi5
appears to be an exception, as indicated in Figure 1 of Li et al.
(2004)). Proteins that do not self-degrade maintain their current
state according to line 3 of Equation (1). For ease of reference, we
refer to these proteins as having the persistence property.

Proteins in the cell-cycle network belong to one of four classes:
(a) cyclins (Cln1,-2,-3, Clb1,-2,-5,-6), (b) inhibitors/competitors
of cyclins (Sic1, Cdh1, Cdc20, Cdc14), (c) transcription factors
(SBF, MBF, Mcm1/SFF, Swi5), and (d) checkpoints. We focus on
a simplified network having only the cell size checkpoint. The
cell-cycle starts at phase G1 where the cell size becomes large
enough and Cln3 reaches a high enough concentration, i.e., its
Boolean state is equal to 1. When these two conditions are met,
the cell commits to division. Next, the cell moves into S phase
in which DNA is synthesized. After S phase is the gap phase G2,
and in the final phase M, chromosomes separate and the yeast cell
divides into two cells. This phenomenon repeats when the right
conditions encourage cell growth and division.

Accompanying the TBN model in Equation (1) is a graph
depicting the relationships among the proteins in the cell-cycle
network. We reproduced the cell-cycle network in Figure 1. The
graph is identical to Li et al.’s except for green self loops that
we added to proteins that are assumed to persist. Functionally,
Figure 1 is equivalent to theirs. An edge between two nodes rep-
resent one of four regulatory relationships, negative regulation,
positive regulation, self-degradation and persistence. These rela-
tionships are represented with a red edge, green edge, yellow loop,
and green self loop respectively (note that all genes possess either a
green self loop or a yellow loop). Li et al. assigned all positive reg-
ulations (green edges) the same interaction coefficient aij = ag ,
and all negative regulations (red edges) aij = ar . Although aij is
allowed to take on any real value, Li et al.’s main results are based
on ag = −ar = 1. They claimed that “the results are insensitive to

FIGURE 1 | The simplified yeast cell-cycle network.

the values of the weights ag and ar . . . and to the protein lifetime
td, as long as −ar ≥ ag and td > 0” (p. 4785).

The cell-cycle network in Figure 1 appears to be very com-
plex. The network contains 11 proteins, some proteins have as
many as five regulators, and there are many feedback loops. With
the exception of Swi5, a protein that is not negatively regulated
by others in the network self-degrades (yellow loop), otherwise
it persists (green self loop). We will show how the attractor set
changes when Swi5 is set to persist instead of degrade, which
illustrates the network’s sensitivity to the assumptions of self-
degradation. An important feature of this network is that the
positive regulations (green edges) are almost acyclic except for
the cycle between Clb1&2 and Mcm1/SFF, key players in the
M phase or mitosis. We will discuss in more detail how this cycle
plays a crucial role in the simplicity of the network’s long term
behavior.

Compared to a BoN specified by truth tables, the TBN in
Equation (1) captures genetic relationships with far fewer param-
eters, which is especially convenient when the model space is
relatively large. As an illustration, suppose a network has N nodes
and each node i has ki parents. Defining a BoN with truth tables
requires

∑N
i 2ki parameters, 2ki parameters per node, while spec-

ifying the TBN in Equation (1) requires only
∑N

i ki parameters,
ki of aij per node. The TBN is a hybrid between a BoN and a
system of differential equations that retains the interpretability of
the former and the mathematical tractability of the latter.

In the next section, we analyze the TBN model and propose
extensions related to self-degradation, asynchronous gene update
and synergistic relationships. We also state theoretical results that
translate self-degradation and network cycles to network steady
state behavior.

3. RESULTS
3.1. THRESHOLD BOOLEAN NETWORK MODEL
The primary limitation of the model described by Equation (1)
is that only the regulatory relationship OR can be expressed.
For example, given proteins, i, j, and k, expressing i if j ∪ k
can be achieved by setting aij = aik = 1. However, expressing i
if j ∩ k is impossible with any combinations of aij and aik. To
encode an AND relationship and other types of regulations, the

www.frontiersin.org December 2013 | Volume 4 | Article 263 | 25

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Tran et al. Threshold Boolean Networks

threshold needs to be greater than zero. An example of a TBN
with a non-zero threshold was implemented by Davidich and
Bornholdt (2008) to model the fission yeast cell-cycle. We present
a more general form of the model in Equation (1) by including a
threshold parameter αi ≥ 0:

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijxj(t) > αi

0,
∑

j aijxj(t) < αi

xi(t),
∑

j aijxj(t) = αi.

(2)

Clearly, Equation 1 is a special case of Equation 2 in which
αi = 0 ∀i. By varying thresholds and interaction coefficients, it
is possible to encode many regulatory relationships. Given pro-
teins, i, j, and k, encoding the relationship i if j ∩ k would simply
require setting aij = aik = 0.5 and αi = 0.99. Even more compli-
cated relationships can be expressed using the TBN model. For
example, i if (j ∪ k) ∩ l could be achieved by setting aij = aik =
0.1, ail = 0.95, and αi = 1.

However, not all relationships can be expressed. One such
relationship is i if (j ∩ k) ∪ (l ∩ m). The following example
illustrates this issue:

Example. In order to encode the relationship i if (j ∩ k) ∪ (l ∩ m),
the coefficients aij, aik, ail, aim and the threshold αi would have to
satisfy the following inequalities:

aij + aik > αi

ail + aim > αi

aij + ail ≤ αi

aij + aim ≤ αi

aik + ail ≤ αi

aik + aim ≤ αi.

Summing the first 2 inequalities produces aij + aik + ail + aim >

2αi. Summing the last four inequalities produces 2aij + 2aik +
2ail + 2aim ≤ 4αi. The contradiction shows that it is not possi-
ble to encode the above relationship using any TBN of the form
in Equation (2). Although inclusion of the threshold parameter
αi permits a far wider range of regulatory relationships, some
limitations remain.

3.2. SELF-DEGRADATION
3.2.1. Steady state characteristics
Setting negative regulations (red edges) at the same rate aij =
ar = −1, positive regulations (green edges) at the same rate aij =
ag = 1 and protein lifetime td = 1, the main result of the cell-
cycle TBN, reported in Li et al. (2004), is the set of attractors
in Table 1A. The largest basin of attraction shown is 1764. Of
211 = 2048 possible network states, 1764 states flow toward the
fixed point (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), in which inhibitor pro-
teins Cdh1 and Sic1 stay active indefinitely even when the rest of
the network is off. Although the cell-cycle network is very com-
plex, the attractor set has only seven attractors, which are all fixed
points.

Thomas (1981) explored the effects of different regulatory cir-
cuits or feedback loops on the composition of the attractor set.

Regulatory circuits are classified as positive or negative depend-
ing on whether the number of negative regulations (red edges)
in the circuit is odd or even. Thomas proposed that positive cir-
cuits are necessary to generate multiple attractors and negative
circuits are necessary to generate fixed points and periodic attrac-
tors. These ideas were later formalized in theorems by Remy et al.
(2008); Richard (2010), and various conditions for a unique fixed
point attractor set have been developed by Robert (1980); Shih
and Dong (2005); Richard (2013). The theorems and results in
this manuscript build upon these works by examining the effect of
self-degradation and regulatory circuits on a network’s long term
behavior.

Theorem 1. Let G = (X ,E) be a TBN of the form in Equation (2)
with N nodes,X = {1, . . . , N} and edges E . Suppose each threshold
parameter satisfies αi ≥ 0 for each i. If every node has a self-
degradation loop and network cycles must have at least 1 negative
regulation (red edge), then the network’s attractor is a unique fixed
point, the null state.

The proof requires the following definition. Let G = (X ,E) be
a graph. An ordering of nodes 1, . . . , N is a topological ordering
relative to G if, whenever we have i → j ∈ E , then i < j. A parent
node has a lower order than a child node. Most importantly, a
graph is directed acyclic or DAG if and only if it has a topological
ordering.

Proof. Denote the set of nodes having either an incoming or out-
going positive regulation (green edge) as Xn = {1, . . . , n} ⊂ X .
Given that cycles with all positive regulation (green edges) do
not exist, choose a topological ordering (with respect to green
edges only) for Xn, say T , and add directed null edges, which
have no real regulatory effect, to all pairs of nodes in Xn not hav-
ing an edge such that T is not violated. Then Xn has the unique
topological ordering T = 1, . . . , n. The expression of a node in
G = (X , E) at time t is a function of nodes with smaller topo-
logical order and other nodes in X at the previous time t − 1,
i.e.,

xi(t) = fi({x1(t − 1), . . . , xi − 1(t − 1)}, {xi(t − 1), . . . ,

xn(t − 1), . . . , xN(t − 1)})

where fi is the transition function for node i of the form in
Equation (2) in which the parameter aij can take any magnitude
so long as positive regulation is defined by a positive sign and
negative regulation by a negative sign.

The proof proceeds from the observation that, under the stated
hypothesis, if for td consecutive time points all nodes with topo-
logical ordering smaller than i have value 0, at the time point t
immediately following we must also have xi(t) = 0.

By mathematical induction, we will show that
(x1(k), . . . , xn(k)) = (0, . . . , 0) for some time k and remains at �0
after time k. At some time t < k,

x1(t) = f1({∅}, {x1(t − 1), . . . , xN(t − 1)})
= 0,
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Table 1 | The attractor set for the cell-cycle threshold Boolean network under different interaction coefficients.

Basin size Cln3 MBF Clb5&6 Mcm1/SFF Swi5 Cdc20&14 Cdh1 Cln1&2 SBF Sic1 Clb1&2

(A) ag = 1

1764 0 0 0 0 0 0 1 0 0 1 0

151 0 0 0 0 0 0 0 1 1 0 0

109 0 1 0 0 0 0 1 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1 0

7 0 1 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

(B) ag = 2

1978 0 0 0 0 0 0 1 0 0 1 0

57 0 0 0 0 0 0 0 1 1 0 0

7 0 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

(C) ag = 3

1936 0 0 0 1 1 1 1 0 0 1 1

59 0 0 0 0 0 0 1 0 0 1 0

40 0 0 0 0 0 0 0 1 1 0 0

7 0 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

Protein lifetime is set at td = 1. All negative regulations are assigned a common coefficient aij = ar = −1. All positive regulations are assigned aij = ag. (A) Shows

the attractor set associated with ag = 1. (B) Shows the attractor set associated with ag = 2. (C) Shows the attractor set associated with ag = 3. For each panel, the

rows are the attractors, which are all fixed points, and columns 2 through 12 indicate whether a protein is on (1) or off (0) in the attractor. Column 1 lists the basin

size of each attractor.

and remains at 0 indefinitely through negative regulation or self-
degradation. At some t′ > t,

x2(t′) = f (t′ − t)
2 ({x1(t)}, {x2(t), . . . , xn(t), . . . , xN(t)})

= f (t′ − t)
2 ({0}, {x2(t), . . . , xn(t), . . . , xN(t)})

= 0

where the composite function f (t′ − t)
2 is the (t′ − t)th iteration

of the transition function f2, and (t′ − t) ≤ td, for any td. Node
2 remains at 0 indefinitely through negative regulation or self-
degradation. Assume that for some l nodes, all with order less
than n, satisfies at time t′′ > t′,

x1(t′′) = . . . = xl(t′′) = 0,

and remains at 0 indefinitely through negative regulation or self-
degradation.

Then at time k > t′′,

xn(k) = f (k − t′′)
n ({x1(t′′), . . . , xn − 1(t′′)}, {xn(t′′), . . . , xN(t′′)})

= f (k − t′′)
n ({0, . . . , 0}, {xn(t′′), . . . , xN(t′′)})

= 0.

where f (k−t′′)
n is the (k − t′′)th iteration of the transition function

fn, and (k − t′′) ≤ td, for any td. Node n remains at 0 indefinitely.
For all nodes not in Xn, they remain at state 0 through negative
regulation or self-degradation. Therefore, (xi(k), . . . , xN(k)) = �0
and remains a fixed point after time k.

In short, the proof shows that when upstream positive reg-
ulations are shut down by self-degradation, the network turns
off in a cascading fashion due to the topological order and self-
degradation. The theorem applies to an entire class of networks
whose member graphs may have any number of genes, any num-
ber of cycles with at least one negative regulation (red edge),
differing interaction coefficients aij and differing protein lifetimes
td. The theorem is invariant to aij and td because these parameters
only work to speed up or slow down the rate at which the network
reaches the null attractor. An example of a network belonging to
this class is displayed in Figure 2A.

Consider a more general network class that is still acyclic in the
positive regulations (green edges) but has the additional feature
of persistence (green self loops). An example of such a network is
shown in Figure 2B.

We noted above that the degradation model defined here
implies an assignment to each gene of either a yellow loop or a
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FIGURE 2 | (A) A network with all genes self degrading (yellow loop on
each node) and acyclic positive regulations (green edges). (B) A network
with persistence (green self loop) in addition to self-degradation and acyclic
positive regulations.

green self loop. Theorem 1 concerns the special case in which all
genes are assigned yellow loops. A green self loop is formally a
cycle (which does not contain a red edge), and so the hypoth-
esis of Theorem 1 does not hold if any persistent nodes are
present.

However, suppose we are given a TBN which does satisfy the
hypothesis of Theorem 1, but we then alter the model by desig-
nating a set of nodes as persistent, otherwise leaving the model
unchanged. We wish to determine how this affects the complex-
ity of the resulting attractor structure. It must have some effect.
To take a trivial case, suppose we have n unconnected persistent
nodes. Each may be analyzed as an independent TBN, each of
which can sustain a fixed point of value 0 or 1. The total num-
ber of unique fixed points for the entire network is therefore 2n.
Of course, the complexity of the attractor structure in this case is
due entirely to the lack of any exogenous degradation pathways,
and not to any connectivity structure of the network (which does
not exist in our example).

We next show that this type of reasoning can be extended to
TBNs which have the type of acyclicity defined by Theorem 1, but
which also have persistent nodes. It is possible to describe mathe-
matically weaker properties of acyclicity within cyclic networks
in a way which bounds the complexity of attractor structure.
For example, Skodawessely and Klemm (2011) found the max-
imum number of fixed points in such a network to be 2|V |
where V ⊆ N is a set of nodes whose removal leaves the network
acyclic.

Here, we extend our notion of acyclicity in the following way.
We say j is an ancestor of i if there is a directed path from j to i.
Define the two sets of nodes:

SG = { all persistent nodes }
SA = { all nonpersistent nodes not possessing

a persistent node as an ancestor}. (3)

Theorem 2. Suppose we are given a TBN in which the subnetwork
defined by the nodes SA of (3) satisfies the hypothesis of Theorem 1,
or for which SA = ∅.

Next, define the following sequence of subsets of nodes:

E1 = SG ∪ SA,

Ej = { all nodes not in ∪i < jEi with all parents in ∪i < jEi }, j > 1,

and suppose for some J all nodes are included in ∪i ≤ JEi. Then any
two fixed points with identical values for the persistent nodes must
be equal, and therefore the maximum number of fixed points is 2g ,
where g is the number of persistent nodes.

Proof. Suppose we are given any fixed point. The nodes in SA (if
any) form a TBN satisfying the hypothesis of Theorem 1, so any
fixed point must be 0 on these nodes. This implies that the fixed
point values of the nodes in E2 are determined entirely by those of
SG. The argument may be repeated for E3, E4, . . ., until the fixed
point values of all nodes are determined.

Theorem 2 complements the result of Skodawessely and
Klemm (2011). The conclusion implies a similar upper bound of
2g for the number of distinct fixed points, where g is the number
of persistent nodes. However, while the class of BoNs considered
by Theorem 2 is more restricted, removal of the persistent nodes
does not necessarily leave the network acyclic, so that the result of
Skodawessely and Klemm (2011) does not imply Theorem 2.

The hypothesis of Theorem 2 is satisfied by both TBNs of
Figure 2. In particular, for (B) we have SG = {1, 3}, SA = ∅, E2 =
{4}, E3 = {2}. However, if a negative regulation from node 2 to
node 4 was added, the hypothesis would no longer hold (we
would have Ej = ∅ for all j ≥ 2) and a counter-example could be
constructed.

Next, consider, the cell-cycle network of Figure 1. This TBN
satisfies the hypothesis of Theorem 2 by setting

SG = {MBF, Clb5&6, Cdh1, SBF, Sic1, Clb1&2}
SA = {Cln3}
E2 = {Mcm1/SFF, Cln1&2}
E3 = {Cdc20&14}
E4 = {Swi5}.

It is interesting to note that the hypothesis of Theorem 2 is sat-
isfied despite the existence of a cycle of green edges between
Mcm1/SFF and Clb1&2 (due the the fact that one of these nodes
is persistent).

We can see from the application of Theorem 2 to the cell-cycle
network that the relationship between the attractor structure and
the configuration of persistent nodes is similar to the previous
example of the completely unconnected TBN, in the sense that
all fixed points are fully determined by their values on the per-
sistent nodes, so that the complexity of the attractor structure
must be understood to be driven by a selective lack of exogenous
degradation pathways.
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3.2.2. Self-degradation assumptions
The assignment of self-degradation (yellow loops) to certain pro-
teins in a network is not a trivial task and cannot be completed
ad-hoc because self-degradation influences the network’s long
term behavior. The simplicity of the attractor set associated with
the cell-cycle network in Table 1A is attributable to the presence
of self-degradation and a lack of active network cycles composed
entirely of positive regulations (green edges). We exemplify this
claim with protein Swi5, the transcription factor for inhibitor
protein Sic1. According to Li et al.’s rule of assigning self degrada-
tion only to proteins without negative regulators (incoming red
edges), Swi5 should not self-degrade since it has the inhibitor
Clb1&2. However, their representation of the network allowed
Swi5 to have both attributes. Suppose we don’t allow Swi5 to self-
degrade since it has an inhibitor. How would this change affect
the network’s steady state behavior? We computed the attrac-
tor set for the cell-cycle TBN (Equation (1)) disallowing Swi5 to
have the self-degradation property in Table 2. Compared to the
attractor set with Swi5 self degrading (yellow loop) in Table 1A,
the attractor set in Table 2 is bigger with 14 fixed points, half
of which has Swi5 on. The attractor set in Table 1A is a subset
of that in Table 2, meaning that the new attractors are due to
Swi5 not degrading to 0. The biggest attractor in this new set is
(0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0) which differs from the biggest attrac-
tor in Table 1A only by the presence of Swi5. This exercise has
shown that slightly altering the degradation assumption dramat-
ically affected the size and complexity of the cell-cycle’s long term
behavior.

As noted above, the only cycle constructed with all positive
regulations in Figure 1 is between Clb1&2 and Mcm1/SFF, and
this cycle is not sustained (both proteins are at state 0) in the
network’s long term behavior. To leave the cycle on indefinitely,
that is, to keep Clb1&2 and Mcm1/SFF at state 1 perpetually,
the sum of the interaction coefficients ag associated with the
positive regulations (green edges) must exceed the sum of ar

associated with the negative regulations (red edges) acting on

Clb1&2. Since −ar = ag = 1, the cycle between Clb1&2 and
Mcm1/SFF may get turned on, but does not endure. If this cycle
is deleted, the network satisfies the hypothesis of Theorem 1.
Because the cycle between Clb1&2 and Mcm1/SFF does not stay
on, the network therefore yields a null attractor when all pro-
teins are forced to self-degrade. Thus, following Theorem 2, the
variety of fixed points in Table 1A is attributable to the 6 pro-
teins with persistence (green self loop) and the cardinality of
the attractor set satisfies the upper bound of 26. Note that the
fixed points in Table 1A differ at the proteins with persistence
(green self loop), as predicted by Theorem 2. In Section 3.3, we
present a network in which the cycle remains active in the steady
state.

3.2.3. Markovian self-degradation
Since self-degradation is not built into the Markovian transi-
tion functions of the TBN model in Equation (1), specifying
incremental degradation is a cumbersome separate process that
requires tracking each gene with the self-degradation property
and counting the td time steps prior to a state change. More
importantly, by not explicitly modeling degradation, the model in
Equation (1) does not have the typical Boolean network behav-
ior. In particular, a state can be repeated without the network
having reached an attractor. For example, suppose we have a two
member network in which the only regulations are: protein 1 pos-
itively regulates (green edge) protein 2, protein 1 self degrades
(yellow loop), and protein 2 persists (green self loop). The inter-
action coefficient is a21 = 1. Further, suppose that a protein’s
lifetime is td = 2. Using the TBN of Equation (1), a network path
is (1, 1) → (1, 1) → (0, 1). Markovianizing degradation via the
following model eliminates this problem by augmenting the state
space to express the degradation counter.

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijI(xj(t) > 0) > αi

0,
∑

j aijI(xj(t) > 0) < αi

max(xi(t) − εi, 0),
∑

j aijI(xj(t) > 0) = αi

(4)

Table 2 | The attractor set for the cell-cycle threshold Boolean network which does not contain Swi5’s self-degradation property.

Basin size Cln3 MBF Clb5&6 Mcm1/SFF Swi5 Cdc20&14 Cdh1 Cln1&2 SBF Sic1 Clb1&2

1383 0 0 0 0 1 0 1 0 0 1 0

380 0 1 0 0 1 0 0 1 1 1 0

139 0 0 0 0 1 0 0 1 1 1 0

108 0 1 0 0 1 0 1 0 0 1 0

10 0 0 0 0 1 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1 1 0 0

6 0 1 0 0 1 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 1 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 1 0 0 1 0

The results are based on setting the interaction coefficients ag = −ar = 1 and protein lifetime td = 1.
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Here I(xj(t) > 0) is an expression indicator for protein j; εi ∈
[0, 1] is the degradation rate for protein i; all other parameters are
as previously defined in Equations (1) and (2). Whether a pro-
tein degrades is determined by the degradation parameter εi. A
protein degrades quickly with a large value of εi and persists at
εi = 0. The TBN model in Equation (1) with the protein lifetime
parameter td = 1 is equivalent to setting ε = 1 for proteins with
self-degradation (yellow loop) and ε = 0 for proteins with persis-
tence (self green loop). Note that ε = 1/td. Compared to the TBN
model in Equation (1) for which self-degradation must modeled
in a side process, Equation (4) explicitly models self-degradation
as part of the TBN.

The third line in Equation (4) is meant solely as a device for
Markovianizing degradation and persistence. Thus, xi(t + 1) ∈
[0, 1], but the regulatory relationships remain Boolean via the
indicator I(xj(t) > 0). The state space has simply been augmented
to allow self-degradation. A further modification that would
bring a TBN model closer to a system of differential equations
would be to eliminate I(xj(t) > 0) and allow node j to take state
xj ∈ [0, 1] in Equation (4).

So far self-degradation has been treated as a triggered event,
i.e., decays occurs after the net influence on the protein is equal
to the threshold. The model can be extended to have decay in the
presence of a net regulatory effect (Hanel et al., 2012) by letting a
protein be its own parent. The sums in Equation (4) would then
include node i and line 3 could be omitted with < αi replaced by
≤ αi. These extensions of Equation (4) need to be further studied
to understand their properties and appropriateness for modeling
a genetic regulatory network.

3.3. SENSITIVITY TO INTERACTION COEFFICIENT
To test the robustness of the cell-cycle TBN to different values
of the interaction coefficient aij, we changed the coefficient of
the positive regulations (green edges) to ag ∈ {2, 3}. The attractor
sets associated with ar = −1 and ag = 2 and with ar = −1 and
ag = 3 are in Tables 1B,C. The attractor set for the model with
ar = −1 and ag = 2 is a subset, with different basin sizes, of the
attractor set for the model with ar = −1 and ag = 1 (Table 1A).
When ar = −1 and ag = 3, the network cycle between Clb1,2
and Mcm1/SFF is turned on indefinitely in the biggest attrac-
tor (0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1) which has a basin size of 1936
states. This is a consequence of positive regulations overcoming
negative regulations acting on Clb1,2. With negative interactions
fixed at ar = −1, the attractor sets for networks with ag > 3 are
either identical or very similar to the set corresponding to ag = 3
(Table 1C). For those attractor sets not identical with Table 1C,
the main difference is the appearance of a two state attractor
{(0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0), (0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1)}. This
periodic attractor is very similar to the biggest fixed point
in Table 1C because all the same proteins get turned on.
The unequal attractor sets corresponding to different param-
eters indicate that the TBN model is not robust to variable
interaction coefficients; the cell-cycle network exhibit different
behaviors depending on the model specifications. Furthermore,
certain parameter values sustain the network cycle between
Clb1&2 and Mcm1/SFF and express cellular activities not
previously seen.

Next we explored how increasing the degradation delay td

changed the cell-cycle network’s behavior. When we set −ar =
ag = 1 and td > 1 in the cell-cycle TBN (Equation (1)) the same 7
attractors in Table 1A appear. Simulation results show that vary-
ing ar and ag with td yielded attractor sets that are sensitive only
to the interaction coefficient.

3.4. ASYNCHRONOUS GENE RESPONSE
The assumption that all genes in a network update simultane-
ously, synchronous response, may be too simplistic. For example,
synchronous BoN models may yield attractors driven by the
synchrony assumption (Ingerson and Buvel, 1984; Klemm and
Bornholdt, 2005). While synchronous response is well-defined,
asynchronous response has been defined and modeled in a vari-
ety of ways. One model of asynchrony works via an operator
external to the BoN that randomly selects a subset of genes
to update at each iteration while keeping the unselected genes
constant (Ingerson and Buvel, 1984; Greil and Drossel, 2005;
Skodawessely and Klemm, 2011). Another model of asynchrony
is achieved by allowing different regulatory relationships to have
different reaction rates (Thomas and d’Ari, 1990; Silvescu and
Honavar, 2001; Shmulevich and Zhang, 2002). Unlike stochas-
tic asynchrony, asynchrony due to varying reaction rates can be
incorporated into a deterministic BoN. One type of determin-
istic asynchronous response can be modeled by allowing genes
and proteins to have different self-degradation rates and different
interaction coefficients aij. A protein with a larger lifetime td in
Equation (1) will take a longer time to reach state 0. Allowing dif-
ferent proteins to have different lifetimes imply different response
times. A positive regulator with a higher interaction strength,
|aij|, can dominate a negative regulator with a smaller interac-
tion strength and turn on the affected gene. Suppose in a four
member network, the relationships {2 → 1, 3 → 1, 4 → 1} have
the following attributes: a12 = −1, a13 = 1, a14 = 3. Compared
to gene 3, gene 4 can neutralize the effect of the inhibitor gene 2
and turn on gene 1. In the absence of gene 4, gene 3 would not be
able to turn on gene 1 if the inhibitor gene 2 is also on. In this per-
spective, the magnitude of the interaction, |aij|, can be thought of
as a rate. Assigning different interaction coefficients to proteins
in a network may be a way to model asynchronous gene update.
As we’ve discussed in Section 3.3, different choices of the coeffi-
cient may produce different attractor sets. More work is required
to identify which attractors are insensitive to variable aij and their
importance to the cell-cycle.

3.5. SYNERGY AND ANTAGONISM
Thus far the TBN in Equation (1) assumes the regulatory effects
are additive. However, some genes act together such that their
combined effect is more or less than the sum of the individ-
ual effects. Synergistic regulation occurs when the joint effect of
multiple parents is more than the sum of the individual effects.
In contrast, antagonistic regulation results in a joint effect that
is less than the sum of the individual effects. Such relationships
have been studied in cancer cells in which genes exhibit a syn-
ergistic response to the combined effort of oncogenic mutations
(McMurray et al., 2008). Since synergistic and antagonistic regu-
lations can be critical to the function of a GRN, the interactions
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should be properly modeled. The TBN model in Equation (1))
can be extended to model these types of regulation by includ-
ing the statistical interaction terms,

∑
j,k ai(jk)xj(t)xk(t), where the

interaction coefficient ai(jk) between parents j and k and child i
are defined analogously to aij. Synergy is represented by a posi-
tive ai(jk) and antagonism by a negative ai(jk). Interactions of order
greater than two are similarly constructed.

4. DISCUSSION
A TBN specified by linear functions and a threshold instead of
truth tables is more quantitative at describing genetic regula-
tory network (GRN) dynamics. We illustrate how this framework
can accommodate aspects of GRNs such as variable Markovian
self-degradation, asynchronous gene update, and synergistic rela-
tionships. Furthermore, we found that the complexity of a GRN
can be summarized by the presence of self-degradation and cycles
comprised of only positive regulations. Although the model is
more analytical compared to networks specified by truth tables,
it still retains the qualitative interpretation of a BoN.

Inspection of the TBN model in Equation (1) to model the
budding yeast cell-cycle showed that the attractor set relied on
the assumptions of self-degradation and choice of interaction
coefficient aij. Changing these two aspects of the model changed
the steady state behavior of the cell-cycle. Our extension of the
TBN model using a threshold parameter as in Equation (2)
permits greater flexibility in describing regulatory relationships.
Another modification we suggested was Markovianizing degra-
dation to facilitate incremental or delayed degradation. We also
proposed varying the protein lifetime td and interaction coef-
ficient among proteins to simulate asynchronous gene update
and adding statistical interaction terms to account for synergistic
effects.

Our theorems claimed that the composition of a TBN’s
attractor set depends on the presence and abundance of self-
degradation (yellow loops), persistence (green self loops), and
network cycles. Theorem 1 states that the null attractor is
the only attractor for a network acyclic in the positive reg-
ulations (green edges) and in which all nodes self degrade.
This result holds under varying interaction strength and degra-
dation rates. Although the theorem was proved for TBNs, it
applies to other Boolean network models that are not of the
form in Equation (1) because the proof relies only on topo-
logical ordering in the positive regulations and self-degradation
on all genes. Theorem 2 states that under a weaker def-
inition of acyclicity, the complexity of the attractor struc-
ture is entirely determined by the configuration of persistent
genes.

Future work includes characterizing the attractor set, e.g.,
determine an upper bound on its cardinality, for (a) the class
of TBNs containing network cycles of positive regulations (green
edges), and (b) the class of TBNs containing both persistence
and network cycles of positive regulations in the presence of
self-degradation and asynchronicity.
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There are two distinct issues regarding network validation: (1) Does an inferred network
provide good predictions relative to experimental data? (2) Does a network inference
algorithm applied within a certain network model framework yield networks that are
accurate relative to some criterion of goodness? The first issue concerns scientific
validation and the second concerns algorithm validation. In this paper we consider
inferential validation relative to controllability; that is, if an inference procedure is applied to
data generated from a gene regulatory network and an intervention procedure is designed
on the inferred network, how well does it perform on the true network? The reasoning
behind such a criterion is that, if our purpose is to use gene regulatory networks to design
therapeutic intervention strategies, then we are not concerned with network fidelity,
per se, but only with our ability to design effective interventions based on the inferred
network. We will consider the problem from the perspectives of stationary control, which
involves designing a control policy to be applied over time based on the current state of
the network, with the decision procedure itself being time independent. The objective
of a control policy is to optimally reduce the total steady-state probability mass of the
undesirable states (phenotypes), which is equivalent to optimally increasing the total
steady-state mass of the desirable states. Based on this criterion we compare several
proposed network inference procedures. We will see that inference procedure ψ may
perform poorer than inference procedure ξ relative to inferring the full network structure
but perform better than ξ relative to controllability. Hence, when one is aiming at a specific
application, it may be wise to use an objective-based measure of inference validity.

Keywords: network inference, genetic regulatory network, control, validation, probabilistic Boolean network

1. INTRODUCTION
Network validity can be approached from two perspectives: scien-
tific and inferential. Scientific validity is an epistemological issue
concerning the ability of a network model to yield observations
concordant with those predicted by the model (Dougherty and
Bittner, 2011). It involves relations between model characteristics
and experimental observations such that mathematical predic-
tions based on the model are manifested in the phenomena via
these relations. Inferential validity concerns the ability of an infer-
ence procedure to operate on data generated from the model
and yield an inferred model close to the original network rel-
ative to some distance function. Inferential validity is purely a
mathematical issue concerning the inference algorithm. The two
issues, scientific and inferential validity, are not unrelated because
in practice an inferential procedure is used to construct a model
from real data and the scientific validity is therefore dependent
upon the performance of the inferential procedure. In this paper
we are interested in inferential validity [see Dougherty (2011) for
a discussion of the two types of validity].

The validity of inference procedures for gene regulatory net-
works is discussed in Dougherty (2007), where validation is
relative to some network characteristic and quantified by some
distance between the characteristic for the original network and

the characteristic for the inferred network, such as a norm
between the steady-state distributions of the original and inferred
networks. Generally speaking (we shall be more rigorous shortly),
(1) a characteristic is derived for the network; (2) a data sam-
ple is generated from the network; (3) an inference procedure
operates on the sample to produce an inferred network; (4)
the corresponding characteristic is derived for the inferred net-
work; (5) the corresponding characteristics for the original and
inferred networks are compared; and (6) the validity of the infer-
ence procedure is determined by some distance between the
characteristics.

The preceding validation protocol focuses solely on the net-
work itself, not any objective to which the network is to be
used, although clearly successful use of the inferred network will
depend to some extent on the closeness of the inferred and orig-
inal networks. Our aim here is to characterize the notion of
objective inferential validity, where inferential validity is measured
relative to the objective for which the network will be used. In par-
ticular, we are concerned with controllability. Specifically, if the
objective is to derive a control procedure from the inferred net-
work, then it is of utmost importance that the control procedure
works well on the original network (from which the sample
data have been generated). In other words, to what extent is
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We focus on the inferential validity of genetic regulatory network inference. We evaluate and compare different

inference algorithms in the framework of probabilistic Boolean networks (PBNs) by both synthetic random PBNs and
a melanoma metastatic network inferred from gene expression data.

• Q: How was the quality/utility of the inferred networks assessed?
• A: We propose and discuss different inferential validity criteria for inferring genetic regulatory networks, including

(1) Hamming distance to measure the network topology closeness; (2) steady-state mass difference for network
dynamic behavior similarity; and (3) expected difference of desirable steady-state mass shift by applying derived
optimal control when the operational objective is intervention. We would like to emphasize that objective inferential
validity criteria based on operational objectives such as intervention are viable choices when we typically do not have
the ground truth of real-world gene regulatory networks.

• Q: How were these networks validated?
• A: Both synthetic random networks and the melanoma metastatic network are considered as benchmark networks.

From these network models, we simulate the network dynamics with perturbations, inferred networks by different
algorithms are evaluated by ground truth network models based on the aforementioned three inferential validity
criteria.

controllability preserved by the inference procedure? It may be
that the original and inferred networks are a quire discordant;
however, if their lack of agreement has little impact on derivation
of the control procedure, then this lack of agreement is of little
consequence.

Two basic intervention approaches have been considered for
gene regulatory networks in the framework of probabilistic
Boolean networks (PBNs) (Dougherty and Datta, 2005; Datta
and Dougherty, 2007; Shmulevich and Dougherty, 2007), struc-
tural intervention and external control. Both take advantage
of the fact that the probabilistic characteristics of a PBN are
characterized by an associated Markov chain. Structural interven-
tion involves a one-time change of the network structure (wiring)
to beneficially alter the long-run behavior (steady state) of the
network (Shmulevich et al., 2002b; Xiao and Dougherty, 2007;
Qian and Dougherty, 2008). Given a class of potential structural
changes, the problem is to find the optimal structural intervention
resulting in a desired alteration of the steady-state distribution.
Stationary control is generally based on flipping (or not flipping)
the value of a control gene(s) over time in an effort to favor-
ably move the steady-state mass. Efforts have mainly focused
on infinite-horizon stationary external control. The first pro-
posed approach utilizes dynamic programming to find an optimal
policy relative to a cost function, in which case the steady-
state distribution is altered as a by-product of this optimization
(Pal et al., 2006). A second approach is to utilize a greedy (no
optimality) algorithm to find a policy that directly aims at altering
the steady-state distribution Qian et al. (2009). Here we will use
a more recently proposed approach for gene regulatory networks
that uses linear programming to find a policy that is optimal rel-
ative to minimizing undesirable steady-state mass (Yousefi and
Dougherty, 2013). This latter approach avoids the introduction
of a subjectively defined cost function as in Pal et al. (2006) and
avoids the sub-optimality of greedy algorithms (Qian et al., 2009).
Instead, the amount of shift in the steady-state distribution gives
an intrinsic network measure, as it also does in the case of struc-
tural intervention. The situation is analogous to classification,
where the Bayes error is intrinsic to the feature-label distribution,

as opposed to errors resulting from suboptimal classifiers that
have been derived from data via some ad hoc classification rule. In
this paper we restrict our attention to stationary control because
it is very possible that the optimal structural controller for an
inferred network is based on an inferred function that may not
exist in the original network. In such a case it would not be fea-
sible to apply the identified intervention for the inferred network
back to the original network.

Figure 1 illustrates the main idea of objective inferential valid-
ity for quantifying the performance of different network inference
procedures with respect to controllability. Assuming that we are
interested in an impaired biological system that has a higher
risk of entering into aberrant phenotypes, from the collected
measurements, our goal is to design effective stationary control
policies to reduce the risk of entering into these undesirable or
bad states. One way to characterize network states is based on the
prior knowledge of biomarkers. As a hypothetic example, x1 in
Figure 1 is considered as the marker gene, whose value being 1
(up-regulated) are not desirable as it may represent metastasizing
phenotypes in cancerous systems, for example. Based on what we
can observe, from microarray profiling or other high-throughput
techniques, we may infer the underlying network model that
governs the state dynamics. Many previous inferential validity
measures are solely interested in the network itself. However,
in this scenario, inference procedures should be evaluated in
regard to our final objective of effectively reducing the undesir-
able risk by evaluating the control performance of intervention
strategies derived using the network model inferred from par-
tially observed data. In fact, in real-world scenario, we typically
do not have the ground truth of the underlying system. Objective
inferential validity may be the only reasonable framework for
network inference validation.

2. SYSTEMS AND METHODS
2.1. PROBABILISTIC BOOLEAN NETWORKS
Probabilistic Boolean networks (Shmulevich et al., 2002a) extend
the classical Boolean networks (Kauffman, 1969, 1993) by intro-
ducing uncertainty in the rule structure [see Shmulevich and
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FIGURE 1 | Schematic illustration of inferential validity. There are different
criteria to evaluate inferred networks from available temporal measurements.
For example, we can directly measure the difference of inferred regulatory
relationships among genes by the commonly adopted Hamming distance
between the original network adjacency matrix and the inferred adjacency
matrix. We are interested in objective-based inferential validity based on
controllability. For example, assuming that x1 is a genetic marker marked in
red, the network is considered in “undesirable” states when it is
up-regulated (x1 = 1). Hence, from the translational perspective, the ultimate
goal of studying this network system is to develop effective therapeutic
strategies based on collected data from the system. Hence when evaluating
network inference algorithms, instead of comparing other network
characteristics, it may be more appropriate to directly investigate how the
derived intervention strategies based on inferred networks perform on the

original networks by reducing the long-run probability of entering into
undesirable states, which leads to our controllability-based inferential validity.
As shown in the figure, assume that we derive the optimal control based on
the original network to block the regulation from x1 to x2 while the derived
control from the inferred network is to block the regulation from x1 to x3.
Note that both of the derived control policies have to be validated on the true
network. One criterion to evaluate the inferred network as our
“objective-based inferential validity” is to check how the steady-state
distribution π

′′
by blocking x1 → x3 on the original network compares to the

optimally controlled steady-state distribution π
′

after blocking x1 → x2 with
respect to the reduction of undesirable steady-state mass in the original
steady-state distribution π before intervention. This difference reflects the
cost of using the derived control from the inferred network instead of the
optimal control designed from the true network.

Dougherty (2010) for a comprehensive review]. This uncertainty
is motivated by randomness in the inference procedure, inherent
biological randomness, and model stochasticity owing to latent
variables outside the model that are involved in regulation.

A binary Boolean network G (V, F) is defined by a set V =
{x1, x2 . . . , , xn} of binary variables, xi ∈ {0, 1}, i = 1, . . . , n,
and a list of Boolean functions F = (

f1, f2, . . . , fn
)
. The value

of xi at time t + 1 is completely determined by a subset
{xi1, xi2, · · · , xiki} ⊂ V at time t via a Boolean function fi :
{0, 1}ki �→ {0, 1}. Transitions are homogeneous in time and we
have the update xi (t + 1) = fi(xi1(t), xi2(t), · · · , xiki (t)). Each
xi represents the state (expression) of gene i, where xi = 1 and
xi = 0 represent gene i being expressed and not expressed, respec-
tively. It is commonplace to refer to xi as the ith gene. The list F of
Boolean functions represents the rules of regulatory interactions

between genes. All genes are assumed to update synchronously in
accordance with the functions assigned to them and this process is
then repeated. At any time t, the state of the network is defined by
a state vector x(t) = (x1(t), x2(t), . . . , xn(t)), called a gene activity
profile (GAP). Given an initial state, a BN will eventually reach a
set of states, called an attractor cycle, through which it will cycle
endlessly. Each initial state corresponds to a unique attractor cycle
and the set of states leading to a specific attractor cycle is known
as the basin of attraction (BOA) of the attractor cycle.

A Boolean network with perturbation (BNp) is defined by
allowing each gene to possess the possibility of randomly flip-
ping its value with a positive probability p. Implicitly, we
assume that there is an i.i.d. random perturbation vector γ =
(γ1, γ2, . . . , γn), where γi ∈ {0, 1}, the ith gene flips if and only
if γi = 1, and p = P (γi = 1) for i = 1, 2, . . . , n. If x(t) is the
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GAP at time t, then the next state x(t + 1) is either f(x(t)) with
probability (1 − p)n or x(t) ⊕ γ with probability 1 − (1 − p)n,
where f is the multi-output function from the truth table and ⊕
is component-wise addition modulo 2. Larger values of p result
in the regulatory rules being overridden by random alterations to
the regulatory signaling, which one might call “noise.”

A binary probabilistic Boolean network (PBN) is composed
of a family {B1, B2, . . . , Bm} of BNps together with probabil-
ities governing the selection of a BNp at each time. The m
constituent BNps are characterized by m network functions,
{f1, f2, . . . , fm}. At any time point there is a positive probability
q of switching from the current governing constituent BNp (con-
text) to another, with the selection probabilities for transitioning
to B1, B2, . . . , Bm given by c1, c2, . . . , cm, respectively. Note that
the probability of switching to any constituent network B�, 1 ≤
� ≤ m is independent of the current network; indeed, when a
switch is called for, the current network may “switch” to itself. By
definition, a PBN inherits the attractor cycles of its constituent
BNps. There are two modeling interpretations regarding q. If
q < 1, the PBN is said to be context-sensitive (Brun et al., 2005); if
q = 1, as in the original formulation of PBNs (Shmulevich et al.,
2002a), then the PBN is said to be instantaneously random. The
modeling interpretation is that there are latent variables outside
the network model controlling the context of the network and
larger values of q correspond to greater effects of latent variables.
Although we have defined PBNs as having binary gene values,
there is nothing inherent in this restriction and the general def-
inition assumes that each gene can take a finite number of values,
say in the set {0, 1, . . . , d}.

Transition rules of any PBN can be modeled by a homoge-
neous Markov chain, whose states of the transition probability
matrix (TPM) P are the GAPs of the PBN [see Faryabi et al. (2009)
for the particulars on how the Markov chain is derived for dif-
ferent classes of PBNs]. Perturbation makes the corresponding
Markov chain of a PBN irreducible and ergodic. Hence, the net-
work possesses a steady-state distribution πT = πTP, describing
its long-run behavior. For small q and p, most of the steady-
state mass lies in the attractors of the PBN (Brun et al., 2005),
which by definition are the attractors of the constituent BNs. Let
S = {(x, y) : x ∈ B, y ∈ {1, 2, . . . , m}} be the state space of the
PBN, where B denotes the space of all GAPs or network states for
any constituent BN with n genes and y is the index to which con-
stituent BN currently governs the dynamics. We note that when
we have BNps with only one constituent BN, y is redundant. Let
{Zk ∈ S, k = 0, 1, . . .} be the stochastic process of the state of the
PBN that has both the information about the current constituent
BN and GAP of the underlying network. Originating from state
i ∈ S , the successor state j ∈ S is selected randomly according to
the TPM P, with its ijth element defined by pij � P(Zk + 1 = j |
Zk = i) for all k = 0, 1, . . ..

2.2. MAXIMAL STEADY-STATE ALTERATION
We now briefly outline the setting in which an infinite-horizon
policy can be found that achieves maximal steady-state alteration,
meaning that it optimizes the shift of steady-state mass from
undesirable to desirable states. Let D and U denote the sets of
desirable and undesirable states, respectively. One way to define

D and U is based on the values of given genetic markers as illus-
trated in Figure 1. For instance, undesirable states may be those
in which gene WNT5A is up-regulated because such states are
associated with increased risk of metastasis in melanoma, whereas
the desirable states would be those in which WNT5A is down-
regulated (see Section 4.3). We assume that the PBN admits an
external control input A from a set of actions, A, specifying the
type of intervention on a set of control genes. For instance, A = 0
may indicate no-intervention and A = 1 may indicate that the
expression level of a single gene, gc, c ∈ {1, 2, . . . , n}, is flipped. In
this intervention scenario, the control action A = 1 at state (x, y)
replaces the row corresponding to the state (x, y) in the original
TPM of the underlying Markov chain by the row corresponding
to the state (x̃, y), where the binary representation of x̃ is the same
as x except in bit vc, where it is flipped.

Denote by {zk, k = 0, 1, . . .} and {ak, k = 0, 1, . . .} the
sequences of observed states and actions. A policy is a prescrip-
tion for taking actions at each time point k. Actions may be
taken in accordance with a random mechanism, possibly a func-
tion of the entire history of the system up to time k. For time k,
let hk = (z0, a0, z1, a1, . . . , zk, ak) denote the observed history. A
policy υ = (υ0,υ1, . . .) is a sequence prescribed by the decision
maker that steers the dynamics of the underlying system. If the
history hk − 1 is observed up to time k, then the decision maker
chooses an action a ∈ A(zk) with probability υk(a | hk − 1, zk).

The goal is to find an intervention policy to maximally shift the
long-run probability mass of undesirable states to desirable ones.
Let A = A(j) = {0, 1} for all j ∈ S . The amount of shift in the
aggregated probability of undesirable states for a PBN controlled
under υ is defined as

�πU (υ) =
∑
j ∈U

πj −
∑
j ∈U

πj(υ), (1)

where π and π(υ) are the steady-state vectors for the Markov
chains governed by the original and controlled PBNs, respectively.
The goal is to maximize �πU (υ). An optimal policy that is both
stationary (time-invariant) and deterministic can be obtained by
solving a linear programming problem, which we refer to as the
Maximal Steady-State Alteration (MSSA) algorithm (Yousefi and
Dougherty, 2013). The optimal policy depends on the choice of
undesirable states and the control input. In our case, these will
be determined by the values of certain genes, which can be con-
sidered as a priori known biomarkers for example. Since we are
interested in quantifying the performance of inference procedures
on the network, these marker genes will be selected randomly for
random networks without loss of generality.

2.3. INFERENTIAL VALIDATION
Network comparison is based on a distance function, μ, which
need only be a semi-metric because we do not want to require that
μ(M,H) = 0 implies M = H, the point being that we compare
networks via characteristics and two distinct networks might pos-
sess the same characteristic yet be quite different. For instance,
consider the steady-state distribution. If π = (π1,π2, . . . ,πm)

and ω = (ω1, ω2, . . . ,ωm) are the steady-state distributions for
networks H and M, respectively, then a network distance is
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defined by μss(M,H) = ‖π − ω‖, where ‖•‖ is some vector
norm. As a second example, suppose one is interested in net-
work topology. Define the adjacency matrix in the following
manner: given an n-gene network, for i, j = 1, 2, . . . , n, the (i, j)
entry in the matrix is 1 if there is a directed edge from the
ith to the jth gene; otherwise, the (i, j) entry is 0. If A = (aij)

and B = (bij) are the adjacency matrices for networks H and
M, respectively, where H and M possess the same gene set,
then the Hamming distance between the networks is defined
by μham(M,H) = ∑n

i, j = 1 |aij − bij|. Both μss and μham are
semi-metrics.

Focusing on full network inference (and following Dougherty,
2007), the goodness of an inference procedure ψ relative to dis-
tance μ is measured by μ(ψ(S),H), where H is the original
network and sample S is a realization of the random process, �,
governing data generation from H. Hence, μ(ψ(�),H) is a ran-
dom variable and the performance of ψ is characterized by the
distribution of μ(ψ(�),H), which depends on the distribution
of �. We adopt the expectation of the distribution of μ(ψ(�),H)
as the measure for inferential validity, E� [μ(ψ(�),H)] taken
with respect to �.

Rather than considering a single network, we can consider
a distribution, H, of random networks, where the occurrences
of realizations H of H are governed by a probability dis-
tribution. Averaging over the class of random networks, our
interest focuses on EH [E� [μ(ψ(�),H)]]. Inference procedure
ψ1 is better than the inference procedure ψ2 relative to the
distance μ, the random network H, and the sampling pro-
cedure � if EH [E� [μ(ψ1(�),H)]] < EH [E� [μ(ψ2(�),H)]].
In practice, the expectation must be estimated by an average
1
m

∑m
j = 1 μ(ψ(Sj),Hj), where S1, S2, . . . , Sm are sample point

sets generated according to � from networks H1,H2, . . . ,Hm

randomly chosen from H.
The preceding analysis applies unchanged when measuring

validity relative to controllability; indeed, it is just a matter of
defining the distance function. LetH denote the original network,
S be a sample generated from H, υH and υψ(S) be the maxi-
mal steady-state alteration policies for H and ψ(S), respectively,
and πH and πψ(S) be the steady-state vectors for H controlled by
υH and υψ(S), respectively. Then the inferential-validity distance
relative to controllability is defined by

μctrl(ψ(S),H) =
∑
i ∈U

π
ψ(S)

i −
∑
i ∈U

πH
i , (2)

where U is the class of undesirable states. Applying this distance
to a distribution H, of random networks yields the expectation in
which we are interested, namely,

EH [E� [μctrl(ψ(�),H)]] = EH

[
E�

[∑
i ∈U

π
ψ(S)

i −
∑
i ∈U

πH
i

]]
. (3)

For analyzing PBNs, we are confronted by computational issues
in regard to transition probability matrices of their underlying
Markov chains. In the case of controlling binary discrete-time
networks, one is looking at a matrix of dimension N × N, where
N is the number of states. For a PBN, N = m × 2n, where m is

the number of contexts and n is the number of genes. Generally
speaking, networks beyond 15 genes become computationally
intractable with regard to deriving control policies. Larger net-
works require first the application of a reduction algorithm to
reduce the size of the state space (Qian and Dougherty, 2009b;
Ivanov et al., 2010; Qian et al., 2010). These inevitably lose infor-
mation. If one is going to study inference for networks larger than
15 genes, then the analysis must include the reduction algorithm
as part of the design. This can certainly be done but it would not
essentially change the kind of inference analysis in which we are
involved. The price would be that, whereas by using the MSSA
algorithm the entire matter is intrinsic, there being no subjective
cost functions, prior use of a reduction algorithm would destroy
the intrinsic nature of the analysis.

2.4. NETWORK INFERENCE ALGORITMS
Learning regulatory relationships among genes is a major chal-
lenge in computational biology. Numerous methods based on
different mathematical models have been developed; however,
performance evaluation remains problematic (Marbach et al.,
2010). In this paper, we focus on network inference algorithms for
PBNs from one or several time series of observed gene expression
states x(t). We have implemented a few commonly adopted infer-
ence algorithms for PBNs with modifications to allow for more
than one time series: REVEAL (REVerse Engineering ALgorithm)
and its extension (Liang et al., 1998; Akutsu et al., 1999; Murphy
and Mian, 1999; Martin et al., 2007), MDL (Minimal Description
Length) (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty
et al., 2008), and Best-Fit (Lähdesmäki et al., 2003; Marshall et al.,
2007; Lähdesmäki and Shmulevich, 2012).

These inference algorithms aim for identifying regulatory rela-
tionships among genes as well as finding corresponding Boolean
functions for them so that the observed state transitions in time
series data are most “consistently” explained by the inferred
functions. For example, REVEAL (Liang et al., 1998) identifies
predictors for each gene by estimating the mutual information
between the temporal profile of each gene and all the combina-
tion profiles of potential genes as regulators, starting from one
regulator per gene. In order to find a unique solution, in the
worst case, the algorithm requires an exponential number of state
transitions in the observed time course data, with respect to the
number of genes n in the network. However, as most of biolog-
ical networks are sparse (Arnone and Davidson, 1997; Thieffry
et al., 1998), REVEAL works effectively in practice and (Akutsu
et al., 1999) also have proven that only O(log n) state transi-
tions are required when the maximum number of predictors,
K = maxn

i = 1 ki, for all the genes in the network is small. However,
the original REVEAL algorithm and the exhaustive algorithm in
Akutsu et al. (1999) focus on inferring BNs instead of PBNs
and require finding the “consistent” Boolean functions for each
gene. They assume that the observed time course data themselves
are completely consistent based on underlying Boolean functions
without errors.

With random perturbations introduced in PBNs, instead
of finding consistent Boolean functions, the inference algo-
rithm Best-Fit (Lähdesmäki et al., 2003; Marshall et al., 2007;
Lähdesmäki and Shmulevich, 2012) searches for the best-fit
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function for each gene by exhaustively searching for all the
combination of potential regulator sets. Similarly, with small K,
the algorithm is feasible with a given number of state transi-
tions and is efficient with the time complexity O

(
m log mpoly(n)

)
with m state transitions, in which poly(n) is time to compute
the minimum error for one given state transition Lähdesmäki
et al. (2003). For our implementations (Murphy and Mian, 1999;
Lähdesmäki et al., 2003; Lähdesmäki and Shmulevich, 2012)
based on both REVEAL and Best-Fit algorithms, we have mod-
ified the algorithms to get both regulator sets and corresponding
best-fit functions. Finally, with a limited number of observed
state transitions and potential random perturbations, the inferred
regulatory functions may still be partially defined Boolean func-
tions (Lähdesmäki et al., 2003). To obtain a unique solution, we
can further impose other biologically motivating constraints. For
example, in Pal et al. (2005), BNs are inferred simply based on the
attractor structure of network dynamics, which can be extended
to impose dynamic constraints to search for suitable solutions.

In this work, we adopt the MDL-based network inference algo-
rithm (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty et al.,
2008) to penalize the model complexity of inferred networks. We
have modified the algorithm proposed in Zhao et al. (2006) to
identify the best regulator set with the minimum combination of
network coding length, capturing the model complexity, and data
coding length, which is similar to REVEAL based on mutual infor-
mation. The MDL network coding length in Zhao et al. (2006)
has similar asymptotic performance to the Bayesian Information
Criterion (BIC) model complexity, which we also have imple-
mented in our set of inference algorithms. Finally, both MDL
(Zhao et al., 2006) and BIC (Murphy and Mian, 1999) adopt ad
hoc measures of model description length that necessitate tun-
ing parameters as weighting coefficients to balance the model
and data coding lengths (Tabus and Astola, 2001; Dougherty
et al., 2008) and inference performances or validity measures
may change with different tuning parameters. To overcome this
difficulty, we also adopt a universal MDL (uMDL) network infer-
ence algorithm (Dougherty et al., 2008) in which the model
and data coding length together is a theoretical measure derived
from a universal normalized maximum likelihood model and no
tuning parameters are needed (Tabus and Astola, 2001).

3. IMPLEMENTATION
We will compare network inference algorithms for their infer-
ential validity based on both synthetic networks as well as a
well-studied metastatic melanoma network (Bittner et al., 2000;
Kim et al., 2002; Weeraratna et al., 2002; Qian and Dougherty,
2008; Yousefi and Dougherty, 2013).

To evaluate the inference algorithms based on simulated time
series of network states, we first generate random PBNs with
properties that resemble those of biological networks so that we
have the ground truth networks for validation. For appropriate
evaluation, we have imposed a few assumptions: First, as genetic
regulatory networks are commonly believed to have sparse con-
nectivity topology, we have restricted the Boolean functions in
random PBNs to have at most five predictors: K = maxn

i = 1 ki ≤
5. This assumption also enables all the inference algorithms
to run smoothly on these random PBNs as the computational

complexity of these algorithms, especially those based on exhaus-
tive enumerations, reduces significantly as shown in Akutsu et al.
(1999); Lähdesmäki et al. (2003). Second, as the network state
space is exponential with respect to the number of genes or the
network size, the number of state transitions observed will usually
not be large enough to uniquely determine the network structure
and thereafter the regulatory functions. For the inference algo-
rithms adopted in this paper, all of which are based on solving
the consistency problem (Liang et al., 1998; Akutsu et al., 1999;
Lähdesmäki et al., 2003; Zhao et al., 2006; Martin et al., 2007),
we take the most sparse network as the final solution within the
feasible networks that give the same minimum prediction errors
in REVEAL and Best-Fit or the same objective function values
in the inference algorithms with BIC and MDL regularization.
The motivation is that biological networks are usually stable and
robust to random perturbations and larger ki leads to increased
sensitivity of the steady-state distribution to random gene pertur-
bations Shmulevich and Dougherty (2007), Qian and Dougherty
(2009a, 2010).

With either simulated or real ground truth networks, we can
generate time series of gene expression profiles with different
numbers of state transitions based on their underlying Markov
chains so that we can investigate the inference performances with
different available sample sizes. We have implemented REVEAL,
MDL, BIC, uMDL, and Best-Fit to infer networks with these
simulated time series. Our implementations of these different
algorithms are based on the PBN Toolbox (http://code.google.
com/p/pbn-matlab-toolbox/), the Bayes Net Toolbox (https://
code.google.com/p/bnt/), as well as the source code provided by
the authors of Dougherty et al. (2008). The detailed descriptions
of these different algorithms can be found in the corresponding
papers (Liang et al., 1998; Murphy and Mian, 1999; Lähdesmäki
et al., 2003; Zhao et al., 2006; Dougherty et al., 2008; Lähdesmäki
and Shmulevich, 2012).

We compute three distance functions μ(ψ(S),H) to evaluate
an inference algorithm ψ: (1) the Hamming distance μham; (2)
the L1 norm μss between the steady-state distributions of ψ(S)

andH; and (3) the controllability distance μctrl defined in (2). For
inferential validity based on controllability, we find the optimal
stationary control policies for the original and inferred networks
based on the MSSA algorithm (Yousefi and Dougherty, 2013).

4. RESULTS AND DISCUSSION
4.1. SIMULATED BNps WITH 7 GENES
We first evaluate different inference algorithms on synthetically
generated random networks. We generate 1000 random BNps
with n = 7 genes, maximum input degree K = 3, and perturba-
tion probability p = 0.01. For each node, we uniformly assign 1
to K regulators. Hence the average connectivity in this set of ran-
dom networks is 2. After determining the regulatory relationships
among nodes, the regulatory functions for each node are deter-
mined by randomly filling in the corresponding truth tables with
Bernoulli random numbers with the bias following a Beta dis-
tribution with mean 0.5 and standard deviation 0.01. For each
random BNp, we simulate time series of different numbers of state
transitions based on its underlying Markov chain. The number of
“observed” state transitions M ranges from 10 to 60 to reflect the
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difficulty level of network inference. For control, we choose the
first node as the marker gene and define the undesirable states as
these network states with the first node down-regulated. In the
binary representation of network states, U = {x|x1 = 0}. As the
networks are randomly generated, without loss of generality, we
allow intervention on the last node as the control gene, which we
can either knock up or down to derive control policies. In our
simulated random BNps, we have the original average undesirable
steady state mass π

org
U = 0.5071 with standard deviation 0.3575,

with π
org
U ≈ 0.5 because we set the bias to 0.5. When we apply the

MSSA algorithm to derive the optimal stationary control policies
for these random BNps, the average controlled undesirable steady
state mass is πU = 0.3703 with the standard deviation 0.3749.

Based on these simulated time series, we have implemented
REVEAL, BIC, MDL, uMDL, and Best-Fit inference algorithms
and modified accordingly to reconstruct BNps, including regula-
tory relationships and regulatory functions represented as general
truth tables. For BIC and MDL, we set the regularization coeffi-
cients to values previously reported to have good performance in
Zhao et al. (2006), λ = 0.5 for BIC and λ = 0.3 for MDL.

Table 1 provides the network inferential validity measure-
ments: normalized Hamming distance μham (Hamming distance
over the total number of edges in true networks), the steady-state
distance μss, and the controllability distance μctrl for different
network inference algorithms given different numbers of state
transitions. As discussed in (Zhao et al., 2006), BIC and MDL
perform similarly. Regarding the accurate recovery of regula-
tory relationships, it is interesting to see that Best-Fit appears
to achieve the best performance with respect to μham while
REVEAL does not perform very well. One explanation could
be that REVEAL introduces many false positives, hopefully to
best fit the data by using the functions with more regulators.
This is in fact what we observe from our experiments. All the
other inference algorithms choose the functions with the small-
est number of regulators either by complexity regularization in
BIC, MDL, and uMDL; or choosing the “parsimonious” func-
tions with the minimum prediction errors in Best-Fit. For uMDL,
we note that μham improves quickly with the increasing sample
size compared to other complexity regularization algorithms BIC
and MDL. Based on our experiments, uMDL consistently gener-
ates very low false positive edges (close to zero), even with a very
limited number of samples, which is the main advantage of the
uMDL algorithms. This has also been shown in the original paper
(Dougherty et al., 2008). For μss, both REVEAL and Best-Fit per-
form consistently better than BIC, MDL, and uMDL, since both

REVEAL and Best-Fit aim to find the network models that best
fit the observed state transitions. With regularization on model
complexity by BIC, MDL, and uMDL, the steady-state distances
are greater. As mentioned earlier, REVEAL and Best-Fit, especially
REVEAL, reconstruct networks with more edges to explain the
observed data, which leads to smaller μss.

When we investigate the inferential validity with respect to
controllability, μctrl, we see interesting changes of tendency
between the five algorithms. Especially with very few state transi-
tions, M = 10, BIC, MDL, and uMDL algorithms perform better
than REVEAL and Best-Fit, which indicates that the regulariza-
tion on model complexity with a limited number of observations
helps reconstruct network models that yield better controllers.
With more observations, REVEAL and Best-Fit gradually perform
better than BIC, MDL, and uMDL due to introduced bias by
model complexity regularization.

Figure 2 plots μham, μss, and the average undesirable steady-
state mass using the control policy designed on the inferred
network via the MSSA algorithm. For comparison purposes, the
latter average is compared to the average original undesirable
mass and the average undesirable mass following application of
the MMSA control policy designed on the original network. As
M increases from 10 to 60, all algorithms improve. In fact, with
more than 50 observed state transitions for these generated ran-
dom BNps, the derived stationary control policies achieve almost
the same performance compared to the optimal control policies
with complete knowledge of the network models. The average
performances from inferred networks are in fact within 5% for
all five inference algorithms when M = 60.

We further evaluate inference algorithms on a similar set of
1000 random BNps with n = 7 genes with the same settings
but change the maximum input degree K = 5, which increases
the average connectivity to 3. For this set of random BNps, we
have the average undesirable original steady state mass π

org
U =

0.4841 with standard deviation 0.3171 . When we apply the MSSA
algorithm to derive the optimal stationary control policies for
these random BNps, the average controlled undesirable steady
state mass is πU = 0.2529 with the standard deviation 0.3144.
The average shift of undesirable masses is higher compared to
the previous set of random networks, which is expected as the
network sensitivity monotonically increases with the average net-
work connectivity (Kauffman, 1993; Shmulevich and Dougherty,
2007; Qian and Dougherty, 2009a). With higher sensitivity, net-
works can be more effectively controlled. We again compare the
inferential validity as in the previous experiment. Figure 3 shows

Table 1 | The comparison of network inference algorithms (REVEAL, BIC, MDL, uMDL, and Best-Fit) with M different number of observed state

transitions.

Validity μham μss μctrl

M 10 30 50 10 30 50 10 30 50

REVEAL 0.7774 0.6111 0.6511 0.6743 0.4657 0.4216 0.1067 0.0275 0.0049

BIC 0.6966 0.4196 0.3304 0.8679 0.7089 0.5492 0.0739 0.0300 0.0126

MDL 0.7204 0.4260 0.3294 0.9414 0.7225 0.5435 0.0775 0.0311 0.0121

uMDL 0.8000 0.3728 0.2471 1.1957 0.6973 0.4935 0.1058 0.0352 0.0093

Best-Fit 0.7311 0.3919 0.2913 0.6378 0.4244 0.4098 0.1027 0.0250 0.0045
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FIGURE 2 | Performance comparison of five network inference

algorithms by different validity indices based on simulated BNps with 7

genes and K = 3. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

U

A B C

FIGURE 3 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 7

genes and K = 5. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

plots analogous to Figure 2. Especially, we note that in this set of
experiments, we can achieve close-to-optimal intervention with
fairly small sample size as illustrated in Figure 3C. It is clear that
the performance of different inference algorithms depends on
the characteristics of the networks, especially the network sen-
sitivity. More specifically, all three indices become worse for all
the inference algorithms, illustrating that with increasing network
sensitivity, the inference problem becomes more difficult. It is
also clear that the performance improves at slower rates with the
increasing sample size when we have higher network sensitivity.
Another important difference is that for this set of random net-
works, both REVEAL and Best-Fit have higher μham when the
number of samples increase above 40. The reason may be due to
the tendency of random perturbations forcing both algorithms
to bias toward more complex Boolean functions with more input
variables as regulators.

4.2. SIMULATED BNps WITH 9 GENES
For simulations with 9 genes, owing to run time, we generate 200
BNps with n = 9 genes and perturbation probability p = 0.01.

We again make uniformly random assignments of 1 to K regu-
lators, with K = 3 so that the average connectivity is 2. The bias
for the corresponding truth tables follows the same Beta distri-
bution with mean 0.5 and stand deviation 0.01. The number of
“observed” state transitions M range from 10 to 60. The deriva-
tion of control policies is still based on the definition of the
undesirable states U = {x|x1 = 0} and the last node is the con-
trol gene. In the simulated random BNps, the average undesirable
steady state mass is π

org
U = 0.4886 with the standard deviation

0.3764. When we apply the MMSA algorithm to derive the
optimal stationary control policies for these random BNps, the
average controlled undesirable steady state mass is πU = 0.3668
with the standard deviation 0.3863. Figure 4 shows plots analo-
gous to Figure 2 with the trends similar as those observed in the
previous experiments with corresponding random BNps with 7
genes and K = 3.

In the second set of simulated random BNps with 9 genes,
the settings are the same except that K = 5. In these random
networks, the average undesirable steady state mass is π

org
U =

0.4895 with standard deviation 0.3269. When we apply the
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U

A B C

FIGURE 4 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 9

genes and K = 3. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

U

A B C

FIGURE 5 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 9

genes and K = 5. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

MSSA algorithm to derive the optimal stationary control poli-
cies for these random BNps, the average controlled undesirable
steady state mass is πU = 0.2781 with standard deviation 0.3268.
Figure 5 is analogous to Figure 3.

In summary, when we evaluate different inference procedures
with respect to different inferential validity criteria, different
inference procedures show different trends with their increas-
ing sample size. Their performance overall depends on network
characteristics as well as available samples. Finally, when effective
intervention is our final operational objectivel, it is promising that
we can achieve effective intervention based on inferred networks,
even with fairly small sample size as illustrated in Figures 2C, 3C,
4C, 5C.

4.3. A METASTATIC MELANOMA NETWORK
Finally, we evaluate different inference algorithms based on a
metastatic melanoma network used in previous studies on net-
work intervention (Qian and Dougherty, 2008; Qian et al., 2009;
Yousefi and Dougherty, 2013). The network has 10 genes listed
in the order from the most to the least significant bit: WNT5A,

Table 2 | Regulatory functions in the metastatic melanoma network

[Modified from Table 1 in Yousefi and Dougherty (2013)].

Node Gene Boolean function

x1 WNT5A (x3 ∧ x5 ∧ ¬x6) ∨ (¬x5 ∧ x6)

x2 PIR (¬x1 ∧ ¬x3 ∧ x5) ∨ (x1 ∧ ¬x3 ∧ ¬x5)

x3 S100P x7

x4 RET1 (¬x1 ∧ x2 ∧ x4) ∨ (¬x2 ∧ x4)

x5 MMP3 (x4 ∧ x9) ∨ (¬x9)

x6 PLCG1 (¬x4 ∧ ¬x7) ∨ (x4 ∧ x7 ∧ x10)

x7 MART1 x7

x8 HADHB (x1 ∧ x5) ∨ (¬x5 ∧ ¬x9) ∨ (x1 ∧ ¬x5 ∧ x9)

x9 SNCA (¬x1 ∧ ¬x7 ∧ ¬x10) ∨ (x4 ∧ ¬x7 ∧ x10) ∨ x7

x10 STC2 ¬x3

PIR, S100P, RET1, MMP3, PLCG1, MART1, HADHB, SNCA, and
STC2. The order does not affect our analysis. We note here that
this network was derived from gene expression data (Kim et al.,
2002) collected in studies of metastatic melanoma (Bittner et al.,
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2000; Weeraratna et al., 2002). Table 2 and Figure 6 together illus-
trate the regulatory relationships among these selected 10 genes
from 587 genes profiled in Bittner et al. (2000), Weeraratna et al.
(2002), which were derived based on gene expression data rather

FIGURE 6 | Multivariate relationships among genes in the metastatic

melanoma network.

than curated regulatory relationships among genes in literature.
We believe that the model is appropriate for the purpose of illus-
trating the effectiveness of objective inferential validity on quanti-
fying the performance of inference procedures in this work. Based
on these information, we construct a BNp with the perturbation
probability p = 0.01. As in the previous studies, the control
objective is based on the fact that up-regulation of WNT5A is
associated with increased metastasis. Thus, U = {x|x1 = 1}. For
this network, the undesirable steady-state mass is πU = 0.2073
in the original network, which can be reduced as illustrated in
Table 3 with different genes as potential targets using the MSSA
algorithm on the original network. Based on this model, we sim-
ulate 20, 60, and 80 state transitions and infer the network based
on these time series data using all five algorithms. As the pri-
mary objective here is to reduce the undesirable steady-state mass
with WNT5A up-regulated, we focus on its shift derived by the
MSSA algorithm based on the inferred networks using different
inference algorithms.

Table 3 compares this network inferential validity μctrl for dif-
ferent algorithms. According to the table, even with small sample
size, we may obtain effective intervention strategies in most cases
from all five inference algorithms. For example, with M = 60
samples, RET1, MMP3, PLCG1, and MART1 can be success-
fully identified as effective intervention targets based on inferred
networks using different inference algorithms. These potential
targets have been similarly identified in previous publications
(Qian and Dougherty, 2008, 2009a; Qian et al., 2009; Yousefi and

Table 3 | The shifted undesirable steady-state mass in the metastatic melanoma network by the MSSA algorithm for different control genes

derived on inferred networks from five network inference algorithms (REVEAL, BIC, MDL, uMDL, and Best-Fit) with M = [20, 60, 80] different

number of observed state transitions, compared to the optimal shift by applying the MSSA algorithm to the original network.

Control WNT5A PIR S100P RET1 MMP3 PLCG1 MART1 HADHB SNCA STC2

OPT (UC)

0.0847 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M REVEAL

20 −0.0421 0.1319 0.1702 0.1761 0.1739 −0.1375 0.1777 0.0000 0.0227 0.1027
60 0.0054 0.1316 0.1754 0.0634 0.1961 0.1940 0.1622 0.0000 −0.0448 0.1660
80 0.0728 0.1339 0.1737 0.1727 0.1965 0.1965 0.1795 0.0000 0.0235 0.1678

M BIC

20 −0.0421 0.0789 0.1696 −0.4032 0.1802 −0.1246 0.0026 0.0000 −0.2800 0.0132
60 −0.0421 0.0789 0.1264 0.1765 0.1965 0.1965 0.1799 0.0000 0.0259 0.0023
80 0.0738 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M MDL

20 −0.0421 0.0628 0.1696 −0.2655 0.1802 −0.2695 0.0026 0.0000 −0.3586 −0.0574
60 −0.0421 0.0789 0.1264 0.1764 0.1965 0.1965 0.1799 0.0000 0.0259 0.0023
80 0.0738 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M uMDL

20 −0.0421 0.0829 −0.2255 −0.2645 −0.2300 −0.1810 −0.2952 0.0000 −0.2295 0.1065
60 −0.0421 0.1309 0.0363 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.0189
80 0.0844 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M Best-Fit

20 0.0588 0.1330 0.1724 0.1762 0.1793 −0.0662 0.1796 0.0000 0.0256 0.0115
60 0.0816 0.1340 0.1767 0.1764 0.1965 0.1965 0.1798 0.0000 0.0258 0.1677
80 0.0728 0.1339 0.1737 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680
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Dougherty, 2013), which demonstrates the feasibility of deriving
effective therapeutic strategies even with partially observed data
from the original system. All the algorithms achieve almost opti-
mal performance for all possible control genes when M = 80.
In fact, Best-Fit appears to obtain the best performance when
M = 60 compared to all the other algorithms as it better cap-
tures network dynamics manifested as steady-state distributions.
Hence, Best-Fit appears to be the best-performing inference algo-
rithm when we consider the operational objective to be beneficial
alteration of network dynamics. We also note that with small sam-
ples (M = 20), it is relatively difficult to derive effective control
based on the inferred network by uMDL; however, when we have
enough samples (M = 80), we can derive the most effective con-
trol for all the target genes based on uMDL. This is again due
to its advantage of obtaining consistently close to zero false posi-
tive regulators, which leads to the best performance when we have
enough samples. This is consistent with the previous results we
have seen using simulated networks.

5. CONCLUDING REMARKS
We have considered inferential validity from three perspectives:
(1) Hamming distance, which relates to accurate network topol-
ogy; (2) steady-state distribution, which corresponds to accurate
phenotyping because attractors dominate the steady-state mass
and attractors correspond to phenotypes; and (3) controllability.
From a translational perspective, controllability is an important
criterion because a key interest in translational genomics is to
derive intervention strategies from gene network models. We
have observed from the experiments that controllability provides
quite a different view of validation than either Hamming distance
or steady-state mass, with performance comparison depending
strongly on the number of observations. The upside is that one
can achieve decent control when there is still considerable dis-
tance between the original and inferred networks relative to
Hamming distance and steady-state mass. This depends on net-
work size, connectivity, sample size, and the inference procedure.
The general point is that it may be wise to use objective-based
measures of validity for practical applications. While the individ-
ual components and connections in a system may overall be fairly
inaccurate, it may be that those that matter for the objective are
determined fairly accurately so that the inaccuracy of the others
is of little consequence. The situation is analogous to uncertainty
in model classes. While entropy provides an overall measure of
model uncertainty, it may be better to use a measure of uncer-
tainty that accounts for the cost of the uncertainty relative to a
particular objective because uncertainty that does not negatively
impact attainment of the objective is of no practical consequence
(Yoon et al., 2013).
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APPENDIX
We plot the normalized false positive rates (the ratio of the
number of false positive regulators over the total number of

edges) in Figure A1, in which we can see that the perfor-
mance of different algorithms are consistent as we discussed
previously.

A B C D

FIGURE A1 | Comparison of five network inference algorithms by normalized false positive rates. (A) BNps with 7 genes and K = 3; (B) BNps with 7
genes and K = 5; (C) BNps with 9 genes and K = 3; (D) BNps with 9 genes and K = 5.

www.frontiersin.org December 2013 | Volume 4 | Article 272 | 45

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


ORIGINAL RESEARCH ARTICLE
published: 16 December 2013

doi: 10.3389/fgene.2013.00281

B-cell lymphoma gene regulatory networks: biological
consistency among inference methods
Ricardo de Matos Simoes1, Matthias Dehmer2 and Frank Emmert-Streib1*

1 Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of
Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK

2 Institute for Bioinformatics and Translational Research, UMIT, Hall in Tirol, Austria

Edited by:

Benjamin Haibe-Kains, Institut de
Recherches Cliniques de Montréal,
Canada

Reviewed by:

Victor P. Andreev, University of
Miami, USA
Jaume Bacardit, University of
Nottingham, UK

*Correspondence:

Frank Emmert-Streib, Computational
Biology and Machine Learning
Laboratory, Faculty of Medicine,
Health and Life Sciences, Center for
Cancer Research and Cell Biology,
School of Medicine, Dentistry and
Biomedical Sciences, Queen’s
University Belfast, 97 Lisburn Road,
Belfast, BT9 7BL, UK
e-mail: v@bio-complexity.com

Despite the development of numerous gene regulatory network (GRN) inference methods
in the last years, their application, usage and the biological significance of the resulting
GRN remains unclear for our general understanding of large-scale gene expression data
in routine practice. In our study, we conduct a structural and a functional analysis of B-cell
lymphoma GRNs that were inferred using 3 mutual information-based GRN inference
methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level,
we find that the inferred B-cell lymphoma GRNs show major differences. However,
on the edge-level and the functional-level—that are more important for our biological
understanding—the B-cell lymphoma GRNs were highly similar among each other. Also,
the ranks of the degree centrality values and major hub genes in the inferred networks are
highly conserved as well. Interestingly, the major hub genes of all GRNs are associated
with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies
that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and
Aracne, representing prominent targets for signaling pathways. Finally, we describe the
functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory
networks. Our study shows that these GRNs that are inferred from large-scale gene
expression data are promising for the identification of novel candidate interactions and
pathways that play a key role in the underlying mechanisms driving cancer hallmarks.
Overall, our comparative analysis reveals that these GRNs inferred with considerably
different inference methods contain large amounts of consistent, method independent,
biological information.

Keywords: gene regulatory network, C3Net, BC3Net, Aracne, GPEA, statistical inference

1. INTRODUCTION
To date, a vast amount of gene regulatory network (GRN) infer-
ence methods are being developed with the future goal to establish
qualitative and quantitative procedures for a structural, biological
and experimental validation of the inferred networks (Friedman,
2004; Wille et al., 2004; Werhli et al., 2006; Margolin and Califano,
2007; Yip et al., 2010; Zhang et al., 2011; Emmert-Streib et al.,
2012). One of the most conservative approaches for GRN infer-
ence was introduced with the C3Net (Altay and Emmert-Streib,
2010, 2011) method that inferres at most one interaction (edge)
for each gene with the strongest mutual dependency. An exten-
sion of C3Net was introduced by the bagging (Breiman, 1996;
Zhang and Singer, 2010) approach BC3Net (de Matos Simoes
and Emmert-Streib, 2012) that allows to aggregate ensembles
of C3Net networks that are inferred from bootstrap (Efron and
Tibshirani, 1994; Davison and Hinkley, 1997) datasets. The main
advantage of a C3Net and BC3Net over many other methods
is the intuitive interpretation of the inferred interactions that
correspond to gene-pairs with the strongest significant mutual
dependency, present in the data. Notably, a C3Net GRN has
the property to infer very sparse, modular networks with a
preference for interactions in the periphery of the network

corresponding to genes with a less complex mutual dependency
structure.

In de Matos Simoes and Emmert-Streib (2011), C3Net was
used to infer GRNs from simulated gene expression data using
a known underlying network structure. This study demonstrated
that interactions (edges) of genes with a low number of direct
neighbors (low degree) are more likely to be inferred correctly
compared to interactions of genes with a large number of direct
neighbors. From this observation one can presume that the
interaction periphery of the unknown gene network is more
prominently represented in an inferred GRN due to the lower
complexities of the gene expression dependencies between the
genes. However, the underlying gene network is unknown when a
GRN is inferred from real biological gene expression data. Thus,
the periphery and the center of the gene network is restricted to
known experimental interactions that provide only a static and
incomplete representation of the gene network. Furthermore, in
de Matos Simoes et al. (2012) it was shown that the giant con-
nected component (GCC) of the GRN using C3Net is highly
enriched with membrane associated proteins. This observation
suggested that the periphery of a gene network represents, to
some extend, also the physical periphery of the biological cell that
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We use gene expression data from B-cell lymphoma and infer GRNs.
• Q: How was the quality/utility of the inferred networks assessed?
• A: We compare the inferred GRNs with a protein-protein interaction network and a transcriptional regulatory network.

Furthermore, we compare 3 GRNs among each other to identify their similarity. This analysis is conducted by using
the Gene Ontology database and a variety of additional databases.

• Q: How were these networks validated?
• A: All networks are analyzed computationally and statistical hypotheses testing is employed to test various

hypotheses about the network structure and the biological function of the investigated GRNs.

is centered around signaling receptors that represent the major
hubs of the GRN.

When comparing different methods with each other for infer-
ring GRN it is important to conduct this comparison on sim-
ilar grounds. For this reason, we are comparing in this paper
only methods with each other that employ statistical hypothe-
sis testing (Lehman, 2005; Young and Smith, 2005) and utilizing
mutual information to estimate the interactions within regula-
tory networks. In this way we are avoiding a potential bias that
could result from comparisons between networks with a different
meaning.

The performance of GRN inference methods have been often
compared using simulated data from biological or simulated net-
work structures (Van den Bulcke et al., 2006; Schaffter et al., 2011;
Emmert-Streib, 2013). One major problem with a simulation-
based analysis is that the assumed mechanisms to simulate gene
expression are only partially understood biologically, leaving a
certain uncertainty about the resulting properties of the expres-
sion data. On the other hand, when real data are used, the under-
lying network structure remains unknown or highly incomplete.
Furthermore, differences between inferred GRN using different
methods may be negligible due to small sample sizes of real data
sets and the presence of noise in these gene expression data.

Of great importance is the question “what” and “how con-
sistent” is the information that can be extracted from a given
large-scale gene expression data set to generate novel data-driven
hypotheses. Unfortunately, to date, frequently, targets for wetlab
studies are chosen based on the popularity of key genes rather
than on the information within data sets. However, a non-data
driven hypothesis ignores the limitations of an underlying data set
to resolve known and unknown gene relationships. Furthermore,
the efforts that have been performed for the validation of GRNs
where mostly focusing on individual interactions, such as tran-
scription factor target gene interactions (e.g., for MYC). To our
knowledge, the most prominent genes appearing in a GRN, e.g.,
the actual hub genes, have not been considered for experimental
validation.

In our study, we infer a C3Net, BC3Net and Aracne B-cell lym-
phoma GRN from a large-scale gene expression data set (Basso
et al., 2005). We provide a structural and a functional com-
parison between the sparse, modular network structure inferred
by C3Net and the more densely connected BC3Net and Aracne
GRNs. Furthermore, we discuss the role of the hub genes and
known cancer genes, such as MYC, we find in the inferred GRNs.

The paper is organized as follows. In the next section, we
discuss the data we use for our analysis, the network inference
methods and statistical measures we use for our analysis. In the
results section, we present a comparative analysis and discuss dif-
ferences between the 3 inferred GRNs and 2 reference networks (a
PPN and a TRN). This article finishes with a discussion.

2. MATERIALS AND METHODS
2.1. GENE EXPRESSION DATA
For our study, we use the gene expression data with the GEO
(Barrett et al., 2011) accession GSE2350 from Basso et al. (2005).
The data set includes transformed and untransformed B-cell lym-
phoma samples. For our analysis, we consider only samples for
which raw gene expression data in form of Affymetrix CEL files
are available. From the total of 387 samples of the GSE2350
dataset, 344 samples were available in a CEL file format from the
hgu95a and hgu95av2 chip platform. The data were preprocessed
as described in detail in de Matos Simoes and Emmert-Streib
(2011). Probeset identifiers were mapped to entrez gene symbols
when available using the org.Hs.eg.db R-package (Carlson, 2013).
Multiple probesets that mapped to the same gene were summa-
rized using their median value. The final gene expression data set
comprises 9684 genes and 344 samples. We subsequently applied
a copula transformation to the processed gene expression data, as
described in Margolin et al. (2006).

2.2. INFERENCE OF GENE REGULATORY NETWORKS
For the inference of the B cell lymphoma GRN, we use 3 mutual
information-based GRN inference methods: C3Net, BC3Net and
Aracne (Margolin et al., 2006; Altay and Emmert-Streib, 2010;
de Matos Simoes and Emmert-Streib, 2012). Mutual information
(MI) for all gene pairs is computed using a Pearson estimator
(Meyer et al., 2007; Olsen et al., 2009),

I (X, Y) = −1

2
log
(
1 − ρ2) , (1)

where ρ is the Pearson correlation coefficient.

2.2.1. Null-distribution of mutual information values
In order to determine the statistical significance of the mutual
information values between genes we test for each pair of genes
the following null hypothesis.

HI
0 : The mutual information between gene i and j is zero.
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Because we are using a nonparametric test we need to obtain the
corresponding null distribution for HI

0 from a randomization of
the data. Principally, there are several ways to perform such a ran-
domization. Here we permute the sample and gene labels for all
genes of the entire expression matrix at once. In de Matos Simoes
and Emmert-Streib (2011) we investigated three different ran-
domization schemes and found that the randomization proce-
dure applied here [in de Matos Simoes and Emmert-Streib (2011)
called RM3] leads to similar results as other procedures that are
computationally more demanding.

2.2.2. C3Net
The C3Net (Conservative Causal Core) algorithm consists of
three main steps (Altay and Emmert-Streib, 2010, 2011). In
the first step, mutual information values among all gene pairs
are estimated. For this, we use a Pearson estimator for mutual
information values, as given in Equation 1. In the second
step, we select for each gene only the largest mutual informa-
tion interaction (see Figure 1, indicated by the red elements in
matrix I). This interaction corresponds also to the most sig-
nificant gene among the neighbor edges. Third, we apply a
non-parametric significance test for the mutual information val-
ues of the largest elements. The null distribution for this test
is obtained from a randomization of the sample labels in the
gene expression matrix. We use a significance level of α = 0.05
in combination with a Bonferroni multiple testing correction
(Dudoit and van der Laan, 2007).

Since C3Net employs mutual information values as test statis-
tics among genes, there is no directional information that can
be inferred thereof. Hence, the resulting network GC3Net is undi-
rected and unweighted (corresponding to a symmetric, binary
adjacency matrix A; as indicated by the orange and yellow ele-
ments in Figure 1). For a detailed explanation of C3Net and its
technical details, the reader is referred to Altay and Emmert-Streib
(2010, 2011).

2.2.3. BC3Net
The BC3Net (de Matos Simoes and Emmert-Streib, 2012) algo-
rithm is a bagging (Breiman, 1996) version of C3Net (Altay and
Emmert-Streib, 2010, 2011). Briefly, BC3Net consists of 2 major
steps. In the first step, a bootstrap ensemble of B data sets is
generated. For each data set in the ensemble a GRN is inferred
using C3Net; see Figure 1. In step two, the resulting ensemble
of networks is combined into a weighted network, where the
weights in this network Gweighted describe the ensemble con-

sensus rate for an edge in the bootstrap ensemble. Then, we
apply a binomial test to all edges in the weighted network and
retain only edges that are statistically significance for a signifi-
cance level of α = 0.05 that pass a Bonferroni multiple testing
correction (see Figure 1B—aggregation). This results into the
final network GBC3Net. For a statistically detailed description, the
reader is referred to de Matos Simoes and Emmert-Streib (2012).

2.2.4. Aracne
The Aracne (algorithm for the reconstruction of accurate cellu-
lar networks) algorithm (Basso et al., 2005; Margolin et al., 2006)
consists of two main steps. In step one, it estimates the mutual

information values between all gene pairs and identifies their sta-
tistical significance. In Figure 1, these elements are represented
as green elements in the matrix I′. In step two, all gene-triples
(ijk), i.e., three genes with significant mutual information val-
ues, are used in combination with the data processing inequality
(DPI) (Cover and Thomas, 1991) for thinning the resulting net-
work. Specifically, for each triplet (ijk), the edge corresponding
to the lowest mutual information value I1 = Ii′j′ , with (i′j′) =
argmin{Iij, Ijk, Iik}, is eliminated from the mutual information
matrix I (in Figure 1 indicated by the white circles) and the adja-
cency matrix A, if it is smaller than the second smallest mutual
information value I2, adjusted by a factor (1 − ε), i.e.,

Ai′j′ = Aj′i′ =
{

0 Ii′j′ ≤ I2 (1 − ε)

1 otherwise.
(2)

Here 0 ≤ ε ≤ 1. The introduction of this step has been moti-
vated by the so called data processing inequality (DPI) (Cover
and Thomas, 1991). The DPI is a relation between mutual infor-
mation values, which means loosely that a post-processing of
data cannot increase its information content. Specifically, one can
show (Cover and Thomas, 1991) that the DPI for the following
relation between the three random variables,

X → Y → Z, (3)

implies that I(X, Z) ≤ I(X, Y). Due to the fact that the criteria in
Equation 2 is for ε > 0 less stringent than the DPI (Equation 3),
ε is called tolerance parameter.

In order to ensure an unique solution that is independent
of the order of the selected gene-triples, the procedure starts by
listing all possible gene-triplets that can be found from the signif-
icant mutual information values after step one. Then, all of these
gene-triplets are tested sequentially. Hence, the results of these
tests have no influence on subsequent tests and the formation of
gene-triplets.

For our practical application of Aracne, we use the stan-
dalone java executable Aracne2 (Basso et al., 2005; Margolin et al.,
2006) available from (http://wiki.c2b2.columbia.edu/califanolab/
index.php/Software/Aracne) to infer a GRN. For Aracne, we use
the recommended parameter settings for this data set, listed in
the following: For the mutual information estimator a kernel
width of w = 0.12918 is defined with b = 6 bins. The significance
threshold for MI was t = 0.064394 with a p-value threshold of
p = 1.0e − 7. Aracne considers the removal of indirect interac-
tions between a triplet of genes by applying the data processing
inequality (DPI) with a tolerance parameter that is set to ε = 0.15.

2.3. EXPERIMENTAL INTERACTIONS: REFERENCE NETWORKS
We use a meta collection of protein-protein interactions provided
by iRefIndex (Razick et al., 2008). iRefIndex gathers protein inter-
actions from BIND, BioGrid, DIP, HPRD, IntAct, MINT, MPact,
MPPI and OPHID. Uniprot and refseq Ids were converted to
entrez gene symbols using the org.Hs.eg.db R package (Carlson,
2013). If an identifier could not be mapped directly to entrez
identifiers, the HUGO gene symbol was used. The remaining
identifiers that could not be directly mapped to entrez gene sym-
bols were not used. The resulting undirected protein network we
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A

B

C

FIGURE 1 | Overview of the 3 applied inference methods and their key methodological analysis steps. (A) C3Net, (B) BC3Net and (C) Aracne.

use for our analysis includes a total of 185, 433 protein-protein
interactions for 15, 233 proteins.

Furthermore, we use a transcriptional regulatory network
(TRN) provided by the HTRidb database comprising a collec-
tion of experimentally validated transcription factor target gene

interactions (Bovolenta et al., 2012). The database comprises a
total of 51, 871 interactions for 284 transcription factors, regulat-
ing 18, 302 genes.

In the results section, we use these two experimental networks
as reference networks to compare them with the inferred GRNs.
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2.4. NETWORK CENTRALITY MEASURES
In the following, we describe 4 network-based measures we use
for our analysis, namely, (A) degree centrality, (B) edge den-
sity, (C) transitivity and (D) assortativity. For a more detailed
description see (Newman, 2010; Emmert-Streib and Dehmer,
2011).

The (A) degree centrality is defined as the total number of
direct neighbors of a vertex vi (gene). Formally, the degree cen-
trality of vi in an undirected network is given by Newman (2010),

C1(vi) =
n∑

j = 1

Aij, (4)

where the adjacency matrix of the network is given by A and n is
the total number of genes. That means C1(vi) of node vi is just
the number of connections that node vi has to other nodes in the
network. Frequently, this is briefly called the degree of a node.

The (B) edge density of a network is the number of edges
divided by the maximal number of possible edges. For an undi-
rected network, this number of possible edges is given by n(n −
1)/2, whereas n is the total number of genes. Hence, the edge den-
sity is a global measure for the connectivity of a network, whereas
small values indicate sparsely connected networks and high values
indicate densely connected networks.

The (C) transitivity centrality value of a vertex vi, also called
the local clustering coefficient, measures the proportion of edges
of the direct neighbors of vi in a clique of k vertices. The local
clustering coefficient is given by Watts and Strogatz (1998),

C3(vi) = 2|{eij}|
k(k − 1)

, (5)

where |{eij}| is the number of edges for vertex vi to all its direct

neighbors vj, and k(k − 1)
2 corresponds to the total number of edges

in a clique of k vertices. Formally, the transitivity of a vertex is that
probability that two neighbors of this vertex are connected with
each other. Informally, this can be translated in “friends of mine
are friends too,” if a “friend” is defined as “connected with.”

Finally, the (D) assortativity measure is the Pearson correlation
coefficient of the degree centrality between the connected vertices
in a network (Newman, 2002),

r = M−1 ∑
i jiki − [

M−1 ∑
i

1
2 (ji + ki)

]2

M−1
∑

i
1
2

(
j2i + k2

i

)− [
M−1

∑
i

1
2

(
ji + ki

)]2
. (6)

Here ji and ki correspond to the degrees of the vertices at the end
of edge i, and M is the total number of edges in the network. We
would like to remark that Equation 6 is symmetric in ji and ki.
Informally, the assortativity is a global measure that gives positive
values when—in average—vertices connect to other vertices that
have a similar degree (e.g., high to high and low to low), and it
has negative values—in average—when vertices connect to other
vertices that have a dissimilar degree.

2.5. DEGREE CENTRALITY PATHWAY ANALYSIS
We define the test statistic δ, as the average degree centrality in
the GRN, for a set of k genes defined by a Gene Ontology term.

For an undirected network, δ is given by,

δobs = 1

k

k∑
i = 1

( n∑
j = 1

Aij

)
, (7)

where A is again the adjacency matrix of the network.
For each gene set (resulting from a GO term), the null distri-

bution of δ is obtained from randomizations of the gene labels in
the GRN. The p-value is estimated from the fraction of random-
izations with a larger value than the test statistic, δobs, for a given
term in the GRN, i.e.,

p = P (δ ≥ δobs) . (8)

For each GO term, R = 10, 000 randomizations are performed.
We set the p-value to p = 0.0001 = 1/R in cases when none of
the randomizations exceed the test statistic for a given term.
We perform a multiple hypothesis correction using the FDR by
Benjamini and Hochberg (1995).

2.6. DRUGBANK
For the major hub genes in a GRN, we tabulated the associated
drugs from the drugbank database (Knox et al., 2011). We use
the drugbank version from july 2013. The drug to target protein
links were extracted from all_target_ids_all.csv and the drug-
names from drug_links.csv. We map uniprot identifiers to entrez
gene symbols using org.Hs.eg.db R-package (Carlson, 2013).

3. RESULTS
3.1. GLOBAL PROPERTIES OF GENE REGULATORY NETWORKS
For the B-cell lymphoma gene expression data set in Basso et al.
(2005), we infer 3 GRN using C3Net, BC3Net and Aracne. For
the 3 inferred networks, we estimated the edge-density, maximal
node degree, size of the giant component (GCC), assortativity
and transitivity (Table 1A). Here, the GCC is the largest sub-
network and its size corresponds to the number of genes in this
subnetwork.

As one can see from Table 1A, for these global measures
the networks differ considerably for all measures. Specifically,
the C3Net GRN has the lowest edge density (1.9 × 10−5) and
it is composed of 463 separated network components (sub-
networks). In contrast, the Aracne GRN has the highest edge
density (6.8 × 10−3) followed by the BC3Net GRN (1.2 × 10−3).
The assortativity coefficient shows a weak negative correla-
tion for C3Net indicating a tendency that, e.g., genes with
a high degree have a tendency to be connected with genes
with a low degree. For BC3Net and Aracne this cannot be
observed.

From a pairwise comparison of the 3 GRNs in Table 1B,
we find that the C3Net GRN is a subnetwork of BC3Net and
Aracne, with almost all edges (99%) represented in both net-
works (see Table 1B). Also the BC3Net and the Aracne GRN
show a large overlap with over 91.11% (52, 777/57, 905) of
common edges that are present in BC3Net. In contrast, only
16.46% (52, 777/320, 668) of the common edges are present in
the Aracne GRN.
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Table 1 | (A) Global network properties of the B-cell lymphoma C3Net,

BC3Net and Aracne GRN. (B) Edge-overlap between the 3 GRN.

C3Net BC3Net Aracne

(A)

Number of genes 9684 9684 9684

Number of edges 9221 57, 905 320, 668

Edge-density 1.9 × 10−5 1.2 × 10−3 6.8 × 10−3

Max degree 46 169 2198

Number of
components

463 8 1

Size of GCC 884 9668 9684

Assortativity −0.144 −0.0195 0.0543

Transitivity 0.089 0.000 0.230

(B)

C3Net 9221 (100%) 9215 (99.93%) 9167 (99.41%)

BC3Net 9215 (15.91%) 57, 905 (100%) 52, 777 (91.11%)

Aracne 9167 (2.86%) 52, 777 (16.46%) 320, 668 (100%)

(A, B) For this table, we compare the number of edges in both networks divided

by the total number of edges of the network in the row.

On a general note, we would like to add that the differing
number of edges in the 3 inferred GRN is related to the differ-
ent inference methods applied (see Methods section). Whereas
C3Net aims only to infer the interactions within a GRN that
are strongest, as emphasized by its name (Conservative Causal
Core = C3), BC3Net is a bagged (Breiman, 1996) version of
C3Net that is capable of exploiting also less strong signals by
estimating their variability from an ensemble approach. Finally,
Aracne employs an entirely different inference strategy than
C3Net or BC3Net. Whereas C3Net aims only to infer the strongest
interactions and BC3Net aims to add additional interactions
by bagging C3Net, Aracne uses the data processing inequality
to thinning all significant mutual information values. Hence,
C3Net is the most conservative approach, Aracne is the most
anti-conservative approach and BC3Net is situated in-between
them.

The results in Table 1 indicate clearly that the 3 GRNs are con-
siderably different among each other, if compared with global
measures.

3.2. FUNCTIONAL ANALYSIS OF B-CELL LYMPHOMA NETWORKS
Next, we investigate the functional similarity of the 3 GRNs. In
order to identify the most prominently represented biological
processes in the 3 B-cell lymphoma GRN, we perform a gene
pair enrichment analysis (GPEA). The GPEA analysis tests the null
hypothesis whether the number of interactions in a GRN con-
necting genes from the same GO term is similar to the number
of interactions connecting genes from different GO terms. This is
tested by a hypergeometric test.

We perform the GPEA using gene sets, defined by the
Gene Ontology database, for the categories biological process
(BP), molecular function (MF) and cellular component (CC).
In addition, we use terms defined in the reactome database.
Furthermore, we compare the results obtained for the C3Net,
BC3Net and Aracne gene regulatory networks among each other.

Table 2 | (A) Functional enrichment using a GPEA for the C3Net,

BC3Net, and Aracne GRN. Shown are the numbers of significant

terms/number of total terms, and the percentage of significant

terms. (B) Overlap percentage (%) of significant terms in the GPEA

between the C3Net, BC3Net and Aracne gene regulatory networks.

C3Net% BC3Net% Aracne%

(A)

BP 124/1673 (7.4) 166/2604 (6.3) 386/3565 (10.8)

CC 30/241 (12.4) 49/357 (13.7) 110/477 (23.1)

MF 8/308 (2.6) 25/535 (4.7) 38/774 (4.9)

Reactome 92/270 (34.1) 129/387 (33.3) 186/492 (37.8)

(B)

C3Net vs.
BC3Net

92.74 96.67 87.50 96.74

C3Net vs.
Aracne

92.74 100.00 87.50 96.74

BC3Net vs.
Aracne

97.59 97.96 64.00 99.22

In Table 2A, we show an overview of the number of significant
terms identified using the GPEA. For example for GO BP, we find
124 significant terms for C3Net, 166 significant for BC3Net and
386 significant terms for Aracne. The number of significant terms
is similar between C3Net and BC3Net. For the Aracne GRN, the
number of significant terms is almost twice as large. The num-
ber of significant terms for the reactome is similar for all three
networks comprising a total of 30% of the terms. For MF the
number of significant terms is the lowest for the three networks
comprising only 5% of the terms. Table 2B shows the overlap of
significant terms for BP, MF, CC and reactome between C3Net,
BC3Net, and Aracne. For all pairwise comparisons, we observe
an overlap of >90% of significant terms between pairs of GRNs,
except for MF.

Another interesting observation we make is that the rank-
order of significant GO terms is highly correlated between C3Net
and BC3Net (r = 0.88, p ≤ 2.2 × 10−16), but also the other two
pairs of GRNs. For instance, Figure 2 shows a pairwise compari-
son of the rank-order of the GPEA analysis for BP terms between
BC3Net and Aracne, whereas the topmost 25 pairs are high-
lighted in blue. That means for each network, we rank-ordered
the analyzed GO terms according to their resulting p-values and
we used these ranks as x-coordinates (Aracne) and y-coordinates
(BC3Net) in Figure 2. On a technical note, we want to remark
that we used logarithmically transformed (log-transformed) val-
ues to obtain a better visualization of the shown GO terms.
However, because a logarithm is a monotonous function, the
original rank-order of the GO terms remains unchanged by this
transformation.

Biologically, from the top 25 BP GO terms in Figure 2 we
observe a variety of significant biological processes for pro-
tein translation, targeting and protein complex disassembly, viral
transcription and cell cycle. Interestingly, in contrast to the results
from the global analysis of GRNs, the functional analysis indicates
that all 3 GRNs are biologically quite similar to each other.
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FIGURE 2 | Comparison of the rank-order of significant biological process (BP) GO terms from the GPEA analysis for BC3Net (y-axis) and Aracne

(x-axis). The axis are log-transformed for a better visualization. The blue circles correspond to the top GO terms for Aracne and BC3Net.

3.3. EXPERIMENTAL INTERACTIONS: COMPARISON WITH REFERENCE
NETWORKS

In this section, we compare the 3 inferred GRNs with experimen-
tal networks (serving as reference networks). Specifically, we use a
protein-protein interaction network (PPN) and a transcriptional
regulatory network (TRN) for this comparison. The transcrip-
tional regulatory network is obtained from the HTRIdb database
of experimental validated transcription factor target gene inter-
actions (Bovolenta et al., 2012). The database comprises a total
of 284 transcription factors and 18, 302 target genes comprising a
total of 51, 871 interactions. The PPN is from iRefIndex contain-
ing a total of 185, 433 protein-protein interactions among 15, 233
proteins; see the Methods section for more details.

An overview of the pairwise comparisons between the B-cell
lymphoma GRNs and the TRN is shown in Table 3A and the com-
parison with the PPN is shown in Table 3B. The percentage of
shared interactions for all 3 GRNs is very low, and ranges around

0.1%. However, only for C3Net the number of shared interac-
tions with the TRN is significant. For the comparison between
the PPN and the inferred GRNs the number of shared interac-
tions is significant for all three GRNs and the percentage of shared
interactions is in the range between 1% to 2%. Again for C3Net
we observe the highest overlap of edges between the GRN and
the TRN.

3.3.1. Correlation between the degree centrality of the GRNs and
the reference networks

In this section, we study the correlation between the degree
centrality value of genes that we find in the GRNs and the exper-
imental reference networks, i.e., the TRN and the PPN, using the
Pearson correlation coefficient. Specifically, we start with the top-
most 25 genes in these networks and then increase the number
of the genes sequentially in step sizes of 25 genes, until all genes
are included. This corresponds to an averaging window with one
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fixed side and one sliding side that increases in steps of 25 genes
to lower ranked genes. The results of this analysis are shown in
Figure 3. In this figure, the gray area indicates correlation values
that would not be statistically significant for a significance level of
α = 0.05. In other words, all correlation values that are outside
the gray area, are statistically significant. We obtained the values
of the significance boundaries from using an assymtotic relation
between a t-statistic, t, and a Pearson correlation coefficient, r,
given by Sheskin (2004)

r = t√
df + t2

. (9)

Here df = n − 2 is the degree of freedom of the data for a pro-
file vector of length n. It is important to note that also a t-statistic
is a function of the degree of freedom, i.e., t(df ). From select-
ing a significance level α one obtains for each profile vector of a
certain length, n, the corresponding t-statistics, which gives via
Equation 9 the corresponding values for the Pearson correlation

coefficients. For our analysis we assumed a two-sided hypothesis
explaining the symmetric values of the correlation around zero.
As one can see from Figure 3, due to increasing sizes of the profile
vectors for which correlations are assessed, these decision bound-
aries are not constant but are becoming narrower around zero
when more genes are used in the analysis.

For all three GRNs and the PPN, we observe a tendency for the
high-degree genes to show a statistically significant negative cor-
relation to the degrees observed in the PPN (∼ −0.2, Figure 3A).
For larger window sizes, the correlation slowly decreases for
C3Net and BC3Net, but much faster for Aracne. Interestingly,
C3Net assumes positive statistically significant correlation val-
ues (∼0.05) for very large window sizes.The observations for
the comparison between the three GRNs and the TRN are sim-
ilar, however, less strong (see Figure 3B). In this case, all three
GRN inference methods C3Net, BC3Net and Aracne retain their
negative statistically significant correlation values, even for very
large window sizes.

Table 3 | Network comparison between the 3 B-cell lymphoma GRNs and the (A) TRN and (B) PPN.

(A) Transcriptional regulatory network (TRN)

Shared genes (%) Edges GRN Edges TRN Shared edges% p-value

C3Net 7915 6361 22,668 8 (0.125 ) 0.045

BC3Net 7915 39, 507 22, 668 33 (0.084) 0.176

Aracne 7915 210, 036 22, 668 134 (0.064) 0.923

(B) Protein protein network (PPN)

Shared genes (%) Edges GRN Edges PPN Shared edges% p-value

C3Net 7944 6429 100,074 145 (2.226) 0

BC3Net 7944 40,049 100,074 563 (1.406) 0

Aracne 7944 213,841 100,074 2110 (0.987) 0

Here, shared genes and shared edges correspond to the genes and edges that can be found in a GRN and the (A) TRN and (B) PPN.

A B

FIGURE 3 | Shown are Pearson correlation coefficients that are

obtained for genes that are rank-ordered according the size of

their degree centrality values in the GRNs compared to: (A)

PPN and (B) TRN. The ordering is from high to low degree

centrality values and the size of the underlying profile vectors
increases with the number of the gene rank. The gray area
indicates correlation values that are not statistically significant for
α = 0.05.
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3.4. HUB GENES
In this section, we study the major hub genes in the B-cell
lymphoma GRNs inferred from C3Net, BC3Net and Aracne.
Furthermore, we conduct a functional analysis to elucidate the
role of the involved biological processes of the major hub genes.

We start by performing a global comparison of the degree cen-
trality values for all genes between the C3Net, BC3Net and Aracne
GRN. The largest global rank-order Spearman correlation coeffi-
cient for all genes is observed between C3Net and BC3Net (r =
0.72, p < 2.2 × 10−16) and for BC3Net and Aracne (r = 0.74,
p < 2.2 × 10−16). The lowest correlation is observed between
C3Net and Aracne (r = 0.54, p < 2.2 × 10−16). In Figure 4,
we show the pairwise comparison between the rank-order of
the degree centrality of all genes for BC3Net and Aracne.
Interestingly, we observe no substantial difference between the
degree rank of genes with the highest node degree. This holds for
all pairwise comparisons between the three GRNs. That means all
3 GRNs contain essentially the same hub genes.

In general, the connection between hub genes for different
physiological contexts, as represented by a protein network (PPI)
or a GRN, is not well studied. In a PPI network, lethal pro-
teins have been observed to have the tendency to form hubs

(Jeong et al., 2001), whereas non-lethal disease associated pro-
teins, which are putative drug targets, are more likely to reside at
the periphery of a PPI network (Goh et al., 2007). Interestingly, in
contrast to a PPI network, the GRN hub genes of the B-cell lym-
phoma GRNs have the tendency to be associated with signaling
receptors, such as from the G-protein coupled receptor pathway
that comprises promising drug targets in cancer (Lappano and
Maggiolini, 2011).

We would like to note that the hub genes of the B-cell lym-
phoma GRNs, see Figure 4, are not restricted to signaling recep-
tors and can also include a variety of transcription factors such
as, e.g., ZIC2 and ELAVL2 (HuB). Although, the literature does
not show studies investigating these genes specifically for B-cell
lymphoma, several studies point to their importance for the
development of tumors. For instance, ZIC2 was observed with a
higher expression in malignant ovarian tumors (Marchini et al.,
2012) and overexpression analysis showed oncogenic properties
of ZIC2 to drive tumor growth in ovarian cancer (Marchini et al.,
2012). Also, proteins of the ELAV gene family (Hu genes) such as
ELAVL2 are tumor antigens that are investigated for early stage
lung cancer detection (D’Alessandro et al., 2010). Hu genes are
usually expressed in neuron cells and were found to have an

FIGURE 4 | Comparison of the rank-order of hub-genes for BC3Net (y-axis) and Aracne (x-axis). The axis are log-transformed for a better visualization. The
red circles correspond to the top hub genes for Aracne and BC3Net.
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Table 4 | Results for the degree centrality pathway analysis test for the BC3Net GRN.

GO Term δobs δ (avg) Size p-value FDR

GO:0007188 Adenylate cyclase-modulating G-protein
coupled receptor signaling pathway

17.5 11.95 86 0.0001 0.02877

GO:0007267 Cell-cell signaling 13.73 11.96 776 0.0001 0.02877

GO:0007600 Sensory perception 14.69 11.95 263 0.0001 0.02877

GO:0009581 Detection of external stimulus 21.06 11.95 52 0.0001 0.02877

GO:0009582 Detection of abiotic stimulus 21.77 11.96 47 0.0001 0.02877

GO:0009583 Detection of light stimulus 25.27 11.99 26 0.0001 0.02877

GO:0050877 Neurological system process 13.45 11.96 772 0.0001 0.02877

GO:0051320 S phase 16 11.95 119 0.0001 0.02877

GO:0007187 G-protein coupled receptor signaling pathway,
coupled to cyclic nucleotide second messenger

16.6 11.96 111 0.0001 0.02877

GO:0007601 Visual perception 16.24 11.97 132 0.0001 0.02877

GO:0008217 Regulation of blood pressure 15.92 11.97 110 0.0001 0.02877

GO:0050906 Detection of stimulus involved in sensory
perception

23.46 11.98 26 0.0001 0.02877

GO:0050953 Sensory perception of light stimulus 16.24 11.96 132 0.0001 0.02877

GO:0003073 Regulation of systemic arterial blood pressure 18.6 11.96 50 0.0002 0.04675

GO:0051606 Detection of stimulus 17.45 11.95 84 0.0002 0.04675

GO:0000216 M/G1 transition of mitotic cell cycle 17.85 11.95 65 0.0002 0.04675

GO:0007189 Adenylate cyclase-activating G-protein coupled
receptor signaling pathway

19.51 11.96 41 0.0003 0.06233

GO:0000084 S phase of mitotic cell cycle 15.96 11.96 113 0.0003 0.06233

GO:0045649 Regulation of macrophage differentiation 32 11.92 10 0.0004 0.07874

ectopic expression in neurodendocrine tumors (Gultekin et al.,
2000). However, the association between tumor progression and
Hu gene expression remains unclear on the molecular level.

For the functional analysis of the GRN hub genes, we applied
a non-parametric test to identify biological processes that are
related to genes with a large degree centrality value in the GRN.
We perform a permutation-based test that defines the average
degree centrality from the GRN as test statistic for the gene set
of a given GO term; see Equation 7. As a result, Table 4 shows
the most significant biological process terms with the highest
average degree centrality (δobs) in the GRN (with FDR≤0.1).
We observe a large variety of signaling related processes such
as adenylate cyclase-modulating G-protein coupled receptor sig-
naling pathway, cell-cell signaling, sensory perception, cell cycle
processes (S phase), blood pressure regulation and macrophage
differentiation.

We further studied whether major hub genes of a GRN are dru-
gable by known drugs that are related to the treatment of B-cell
lymphoma. For the 30 genes with the largest degree centrality in
the B-cell lymphoma BC3Net we extracted associated drugs from
the drugbank database (Knox et al., 2011). A variety of drugs
were associated with 8 genes comprising calcium-channel block-
ers (calcium channel subunit CACNA1F), dopamine antagonists
(serotonin receptor HTR7), metabolic compounds such as glu-
tathione, NADH, L-proline and pituitary hormone analogues, see
Table 5 for an overview.

3.4.1. MYC
The study of Basso et al. (2005) provided a validation for some
interactions of the transcription factor MYC. However, when

considering the degree centrality values of MYC in the inferred
networks, MYC has a low rank-order. Interestingly, this is con-
sistent for all three inferred GRNs and holds also for the ranking
of other network-based measures. In Table 6, the rank of MYC is
shown for C3Net, BC3Net and Aracne (in decreasing order of the
absolute degree value) for the degree centrality, betweenness and
local transitivity. For example, MYC ranks for the degree central-
ity of the GRN for C3Net 3110 (9684), BC3Net 9322 (9684) and
Aracne 2317 (9684). Here, the number in brackets corresponds
to the total number of genes. In the C3Net GRN, we find that
MYC has only one single direct neighbor. In the BC3Net GRN,
MYC has 4 direct neighbors, namely, POLD2 (52 neighbors),
NME1 (26 neighbors), SRM (30 neighbors), NINL (13 neighbors)
(Figure 5). For the Aracne GRN, MYC has 68 direct neighbors.
The direct neighbors of C3Net and BC3Net are also present in the
Aracne GRN.

4. DISCUSSION
In this paper, we conducted a structural and a functional analy-
sis of B-cell lymphoma GRNs that were inferred using 3 mutual
information-based inference methods, namely, C3Net (Altay and
Emmert-Streib, 2010), BC3Net (de Matos Simoes and Emmert-
Streib, 2012) and Aracne (Basso et al., 2005). On the global-level,
our analysis revealed that the inferred B-cell lymphoma GRNs
have major differences in their edge density, maximal degree,
transitivity and assortativity. However, on the edge-level, the 3
GRNs were highly similar among each other, whereas the C3Net
GRN and the BC3Net GRN represent almost a subnetwork of the
Aracne GRN. The global differences in the edge densities can be
mainly explained by the different inference strategies employed
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Table 5 | Drug targets for major hub genes in the BC3Net B-cell

lymphoma gene regulatory network, see Figure 4.

Target gene Drugbank Drugname

CACNA1F DB00393 Nimodipine

DB00568 Cinnarizine

DB00661 Verapamil

DB01388 Mibefradil

DB04855 Dronedarone

DB04920 Clevidipine

HTR7 DB00216 Eletriptan

DB00246 Ziprasidone

DB00247 Methysergide

DB00248 Cabergoline

DB00334 Olanzapine

DB00363 Clozapine

DB00751 Epinastine

DB01200 Bromocriptine

DB01224 Quetiapine

DB01238 Aripiprazole

DB04946 Iloperidone

DB06216 Asenapine

DB06288 Amisulpride

DB08815 Lurasidone

GSTM5 DB00143 Glutathione

TUB DB02028 DB02028

NR5A1 DB04683 DB04683

DB04752 Phosphatidyl ethanol

CYP4A11 DB00157 NADH

SLC6A7 DB00172 L-Proline

AVPR1B DB00035 Desmopressin

DB02638 Terlipressin

Table 6 | MYC rank (in decreasing order) for degree centrality,

betweeness and transitivity for the C3Net, BC3Net, and Aracne GRN.

GRN Degree rank Betweeness rank Transitivity rank

C3Net 3110 (1) 6955 (0) 1936 (0)

BC3Net 9322 (4) 2184 (4142.263) 3968 (0)

Aracne 2317 (68) 3397 (7778) 712 (0.23)

The absolute values of the centrality measure are shown in parenthesis. In total,

the maximal rank order is 9684 corresponding to the total number of genes.

by the three methods (see Methods section) resulting always
in GRNs with the following ordering in the number of edges;
#edgesC3Net < #edgesBC3Net < #edgesAracne.

A C3Net GRN represents the core network structure of a GRN
that considers only the strongest signal from a data set (Altay
and Emmert-Streib, 2010). Although C3Net limits the analysis
to a very sparse GRN structure, it provides a less complex and

more clearly arranged structural organization of large GRN net-
works (de Matos Simoes et al., 2012). Furthermore, because only
the strongest gene neighbors are considered for each gene, using
C3Net or BC3Net, the number of putative indirect associations is
highly reduced.

In our study, we compared also the biological functions that
are significantly represented in GRNs. We observed high similar-
ities between the GRN of C3Net, BC3Net and Aracne, where sig-
nificant biological processes, cellular components and Reactome
terms were overlapping with >90%. The tendency for Aracne to
observe a larger number of significant terms for the GPEA analysis
can be explained due to the larger edge-density that is beneficial
for a GPEA analysis. Among the significant terms common in all
3 GRNs, we find biological processes for protein translation, tar-
geting and protein complex disassembly, viral transcription and
cell cycle.

Next, we compared the 3 inferred GRNs with 2 experimental
networks (we called reference networks). Specifically, we com-
pared the 3 GRNs with a protein-protein interaction network
(PPN) and a transcriptional regulatory network (TRN). From
this comparison, we determined the quantitative edge-overlap
between the 2 reference networks and the 3 B-cell lymphoma
GRNs. For the TRN, we observed ∼ 0.1% of shared interactions
with the GRNs. However, for the PPN, we observed a higher
relative percentage of 1 − 2% of shared interactions. A reason
for this low, but significant (see p-values in Table 3), overlap is
three-fold. First, the used reference networks are not condition
specific for B-cell lymphoma. For instance, many interactions in
the PPN are obtained from yeast-two-hybrid (Y2H) experiments
providing only information about the potential binding of pro-
teins outside a particular cellular context (Maslov and Sneppen,
2002). Similarly, the experimentally verified interactions in the
TRN provided by the HTRidb database are identified from a wide
range of different normal (not pathological) physiological con-
ditions. Second, a GRN provides only an average representation
of the interactions across the spatial and temporal separation
of the cellular processes that are reflected by the observed gene
expression dependencies. Third, due to the different data types
used to assemble a PPN (e.g., Y2H), TRN (e.g., ChIP-chip)
and a GRN (gene expression) they are all different from each
other. The relation between these networks has been studied sys-
tematically for the model organisms S. cerevisiae and E.coli in
de Matos Simoes et al. (2013).

We compared the degree centrality of the GRNs to the PPN
and TRN. For the PPN and the TRN, we observed a statistically
significant negative correlation for the genes with the largest degree
centrality, independent of the GRN inference method. That means,
the major hub genes of a GRN have a tendency to relate to proteins
with a low(er) degree in the PPN or TRN. This analysis suggest
that proteins with few direct neighbor interactions have a stronger
relationship in gene expression data for the corresponding genes
that are connected in a GRN, which may more likely represent the
periphery of the gene network. However, one major limitation of
defining the degree centrality from a PPN network is that protein
interactions are not well defined and gathered from multiple
experimental methods for different interaction types that are not
distinguished and largely incomplete.
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FIGURE 5 | BC3Net subnetwork including MYC (red) and its 2nd level nearest neighbors. The first degree MYC neighbors are shown in blue and the 2nd
degree MYC neighbors are shown in gray.

In a PPI network lethal proteins have been observed to have
a tendency to form hubs (Jeong et al., 2001), whereas non-lethal
disease associated proteins, which are putative drug targets, are
more likely to reside at the periphery of a PPI network (Goh
et al., 2007). Our functional analysis to identify pathways with
a significantly larger average degree centrality revealed pathways
involved in the G-protein coupled receptor signaling pathway,
sensory perception, cell-cell signaling and cell cycle. G-protein
coupled receptors are prominent drug targets for a large catalogue
of conditions such as cardiovascular related and neuropsychiatric
disorders (Esposito et al., 2002; Albizu et al., 2010) and promising
drug targets in cancer (Lappano and Maggiolini, 2011).

For example, the major hub gene CACNA1F, see Table 5, can
be inhibited by a variety of channel blockers like nifedipine,
amlodipine, verapamil, and diltiazem (Striessnig et al., 2010).
Due to the importance of ion channels in signaling the cal-
cium channel blockers are also being investigated for the treat-
ment of B-cell lymphoma (Shamash et al., 1998). For CACNA1F
6 calcium channel blocking drugs were identified from drug-
bank. The combination of verapamil and antineoplastic agents
is suggested to induce chemosensitivity in chemoresistant cells
(Simpson, 1985). Furthermore, mibefradil was shown to slow
tumor growth in glioblastoma cell lines (Keir et al., 2013).

The serotonin receptor HTR7 is a G-protein coupled recep-
tor. The drugs associated to HTR7 are dopamine antagonists
used for neuropsychiatric disorders. GSTM5 is associated to
Glutathione that is highly abundant and important for protect-
ing the cell against free radicals, but also promote chemore-
sistance (Balendiran et al., 2004). A number of studies inves-
tigated the depletion of Glutathione following chemotherapy
for increasing chemosensitization of cancer cells (Balendiran
et al., 2004). Lastly, AVPR1B is associated to desmopressin
which may impair metastasis of cancer cells (Gomez et al.,
2006).

The hub genes of the B-cell lymphoma GRN are not restricted
to signaling receptors and can also include transcription factors
such as ZIC2 or RNA-binding proteins such as ELAVL2 (HuB).
Although, the literature does not show studies investigating these
genes specifically for B-cell lymphoma several studies point to
their importance in tumorgenic processes. ZIC2 was observed
with higher expression in malignant ovarian tumors (Marchini
et al., 2012). Overexpression analysis showed oncogenic proper-
ties of ZIC2 to drive tumor growth in ovarian cancer (Marchini
et al., 2012). Proteins of the ELAV gene family (Hu genes) such
as ELAVL2 are tumor antigens that are investigated for early stage
lung cancer detection (D’Alessandro et al., 2010). Hu genes are
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usually expressed in neuron cells and were found to have an
ectopic expression in neurodendocrine tumors (Gultekin et al.,
2000). However, the association between tumor progression and
Hu gene expression remains unclear on the molecular level.

This discussion shows a potential application of the result-
ing GRNs. That means, major inferred hub genes could be used
for the experimental validation of drugs to effect important bio-
logical pathways of B-cell lymphoma. In this way, data-driven
hypothesis about drug targets could be derived from the inferred
GRN (Ildirim et al., 2007; Hopkins, 2008; Ghosh and Basu, 2012).
Additionally, in a similar way, hallmark pathways could be stud-
ied, because since the seminal work by Hanahan and Weinberg
(2000, 2011) it is generally accepted that the molecular causes of
cancer need to be approaches on this level, rather than on the level
of individual genes.

Overall, our analysis sheds light on the biological similarity
of GRNs inferred with C3Net, BC3Net and Aracne, and indi-
cates that these network inference methods contain consistent
biological information. This is a very important result, because
it demonstrates the biological robustness of the information that
can be reliably derived from such different GRNs, despite existing
differences among various other aspects of such networks.

4.1. DATA SHARING
We provide the gene expression data, the inferred GRNs and
the reference experimental networks from our analysis in the
R-package BClymphomaGRN, available from CRAN.
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It is challenging to identify meaningful gene networks because biological interactions are
often condition-specific and confounded with external factors. It is necessary to integrate
multiple sources of genomic data to facilitate network inference. For example, one can
jointly model expression datasets measured from multiple tissues with molecular marker
data in so-called genetical genomic studies. In this paper, we propose a joint conditional
Gaussian graphical model (JCGGM) that aims for modeling biological processes based on
multiple sources of data. This approach is able to integrate multiple sources of information
by adopting conditional models combined with joint sparsity regularization. We apply
our approach to a real dataset measuring gene expression in four tissues (kidney, liver,
heart, and fat) from recombinant inbred rats. Our approach reveals that the liver tissue
has the highest level of tissue-specific gene regulations among genes involved in insulin
responsive facilitative sugar transporter mediated glucose transport pathway, followed by
heart and fat tissues, and this finding can only be attained from our JCGGM approach.

Keywords: Gaussian graphical models, gene networks, GGMs, conditional GGMs, joint sparsity

1. INTRODUCTION
Inference of gene networks plays an important role in reveal-
ing the interactions among genes that may lead to a better
understanding of molecular mechanisms in organisms. Biologists
routinely use high-throughput technologies (e.g., microarrays) to
measure gene expression data at the genome scale to study var-
ious biological and biomedical problems. Statisticians are often
charged to explore interactions among genes through statisti-
cal analysis of these large data sets. It is natural to use mul-
tivariate approaches to analyze these high-throughput datasets,
because multivariate methods may reveal various interactions
among genes that cannot be captured from individual gene based
approaches.

In this paper we focus on a graphical model approach that
aims at finding relationships among a group of genes, where a
graph is used for encoding relationships among multiple vari-
ables. When a graph is used for a gene network, nodes represent
genes and edges represent relationships between the connected
genes. The edges can be defined with various relationships among
genes. For example, pairwise correlations are used to define edges
in a “relevance network.” Similarly, we can define edges through
conditional dependence, that is, any two genes connected with
an edge in such graphical models are conditionally dependent of
each other when the effects from all other genes are explained
away. Therefore, when the expression profiles of two genes are
correlated because they are both regulated by some other genes,
the graphical model does not put an edge between these two genes
because they are conditionally independent given the expres-
sions of the common regulatory genes. In this way, the graphical

model produces a more parsimonious graph than a relevance
network.

Gene network inference is a complex problem, because the
relationships of genes are often affected by external variables (e.g.,
genomic variations), and gene regulatory relationships may be
altered under different conditions such as tissue types. This means
that a single network inferred from gene expression measure-
ments alone may not be adequate to describe the relationships
among genes. Further, it is often desirable to jointly model gene
networks under various conditions rather than considering them
separately, because large parts of the networks are likely to share
common topologies corresponding to similar underlying biolog-
ical processes across conditions (e.g., the house keeping functions
and the clock), and thus joint modeling may increase the power
of detecting common gene interactions. Therefore, one may want
to infer multiple condition-specific networks in a single model
framework, while the network models may also need to incor-
porate all available external variables as well. Such inference is
possible through the analysis of datasets in genetical genomic
studies from same genetic origin (Jansen and Nap, 2001) where
gene expressions from multiple tissues, as well as marker geno-
types, are measured from the same set of individuals. These
data allow us to perform an integrative analysis via joint condi-
tional Gaussian graphical models (JCGGM) to infer relationships
among genes. The JCGGM approach is an extension of the con-
ditional Gaussian graphical model (CGGM) in order to increase
power of the methods via joint modeling. The joint modeling is
particularly important in the conditional models with a limited
sample size, since the model’s complexity increases very quickly
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We use gene expression data and marker data from recombinant inbred rats and infer gene regulation network by

using genes consisting of the insulin responsive facilitative sugar transporter mediated glucose transport pathway.
• Q: How was the quality/utility of the inferred networks assessed?
• A: Our JCGGM found that the liver network has the highest tissue specificity, and this is in line with the role of

SLC2A4 protein, which forms glucose concentration gradient of muscle and fat cells, as well as the specialized
glycogen breakdown of glycogen phosphorylase that only occurs in liver tissue (Watson et al., 2004; Campbell et al.,
2006).

• Q: How were these networks validated?
• A: We have performed simulation study to test performance of the proposed JCGGM approach and our approach

performs the best over all simulation scenarios. We have also provided the scientific literature to support the validity
of the inferred networks.

and the separate models have no power unless appropriately
combined.

In Section 2, we first introduce CGGMs and joint regulariza-
tion approaches, and then propose the JCGGM that uses both
the CGGM and a joint regularization approach. In Section 3, we
show the performance of our approach via a simulation study
and then apply it to a genetical genomics study, where gene
expressions from four different tissues are measured together with
genotype data from recombinant inbred rats. We show that the
JCGGM approach is able to find tissue-specific gene networks.
The discussion follow in Section 4.

2. MATERIALS AND METHODS
2.1. MATERIAL
For a real data analysis, we used a dataset of Petretto et al.
(2006) in which gene expression levels in four tissues (liver,
kidney, heart and fat) were measured from a panel of 29 rat
recombinant inbred (RI) strains. This strain was derived from
a cross between the spontaneously hypertensive rat (SHR) and
the brown norway (BN) strains (Hubner et al., 2005). We down-
loaded the dataset normalized by the robust multi-array average
(RMA) algorithm from www.genenetwork.org (Accession num-
bers: GN70, GN79, GN221 and GN222). From the same website,
we also downloaded a genetic marker dataset that consists of 556
markers.

2.2. METHODS
In this section, we briefly introduce recent approaches for
CGGMs as well as those for joint estimation of multiple Gaussian
graphical models. We then propose a new method to combine
these approaches in order for inferring networks from multiple
sources of biological data for finding multiple CGGMs. Finally,
we explain the simulation process for generating datasets that are
used for comparing the performance of our proposed method.

2.2.1. A brief summary on CGGM and joint estimation of
multiple GGMs

A GGM describes the conditional independences of multiple ran-
dom variables, Y1, . . . , Yp with a graph G = (V, E), where V =
{1, . . . , p} is a set of nodes and E is a set of edges, in which an edge
between nodes represents that they are conditionally dependent.
According to the Hammersely and Clifford theorem, a graphical

FIGURE 1 | Illustration of conditional GGM: X represents a single

molecular marker, and Y1, Y2, Y3 represent the expressions of three

genes. When the marker effect is ignored, there are two edges in a graphical
model: 1 ↔ 2 and 2 ↔ 3. After considering the marker effect, there is a
single edge, represented with a solid line, in a conditional graphical model.

model can be inferred from a factorization of the joint density
of a multivariate random vector Y = (Y1, . . . , Yp)

T . When Y is
assumed to follow a multivariate Gaussian distribution Np(0, �),
where � is a p × p covariance matrix, a factorization can be eas-
ily found from zero elements of the inverse covariance matrix
(also known as the precision matrix), �−1 = �. Hence, condi-
tional independence can be directly inferred from zero entries of
a precision matrix, when a multivariate Gaussian assumption is
made. This model is called a GGM (Lauritzen, 1996). Finding a
sparse precision matrix with various regularizations such as lasso
and adaptive lasso (Tibshirani, 1996; Zou, 2006) has been studied
by many researchers including Li and Gui (2006); Yuan and Lin
(2007); Friedman et al. (2008).

More recently, it has been noted that one can further elabo-
rate a GGM by using extra sources of information. For example,
as in Figure 1, let us assume that X represents a single molecular
marker, and Y1, Y2, Y3 represent the expressions of three genes.
When the marker effect is ignored, there are two edges in the
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unconditional graphical model: 1 ↔ 2 and 2 ↔ 3. After consid-
ering the marker effect, there is only one edge, represented by the
solid line, in the conditional graphical model. For this purpose, a
conditional Gaussian graphical model (CGGM) is introduced by
several researchers including Yin and Li (2011); Li et al. (2012);
Cai et al. (2013).

In addition to the conditional modeling, there is recently an
increasing needs for inferring multiple networks that vary across
conditions. For example, gene expression levels are measured in
multiple tissues so as to study the tissue specificity of the gene
regulations. Since the sample size is often limited, we would
achieve a more accurate network inference when an appropri-
ate joint modeling is used than when a separate estimation is
made for each network because such joint analysis allows borrow-
ing information across conditions. The joint modeling problem
has been studied by several researchers including Guo et al.
(2011); Danaher et al. (2013); Chun et al. (unpublished). These
approaches do not accommodate the conditional models, and we
will consider a joint approach in the context of estimating the
conditional models.

2.2.2. Joint estimation of multiple conditional Gaussian
graphical models

In this section, we propose an approach to estimate the multi-
ple CGGMs jointly. This approach is aimed to infer tissue-specific
gene networks from a genetical genomic dataset that consists of a
marker dataset and a collection of gene expression datasets from
several tissues.

We assume that at the t-th condition, a p-dimensional gene

expression measurement Y (t) is from Np(f (t)(X), (�(t))
−1

), t =
1, . . . , T, where f (t)(·). is an arbitrary function, and X is a
q-dimensional vector (X1, . . . , Xq)

T , describing an extra dataset
such as a genetic marker dataset. We remark that f (t)(·) varies
along with the condition t, and thus our model is able to reflect
the dynamic nature of genetic controls (Gerrits et al., 2009). A
conditional model describes conditional independence between
any two variables, Yi and Yj given the remaining variables Y−{i, j}
and the extra information f (t)(X). Here, Y−{i, j} represents a p − 2
dimensional subvector of Y excluding the i th and j th com-
ponents. The interest is in estimating {�(t)}T

t = 1 jointly, while
accounting for the effects from X. We will take a two-stage
approach: (1) finding consistent conditional covariance matrix
�̂(t), t = 1, . . . , T and (2) finding sparse estimates of {�(t)}T

t = 1
by using a joint sparsity penalty.

The first step is finding �̂(t) with a conditional covariance
matrix estimator after carefully selecting a subset of X that are
related to Y . Such �(t) can be estimated by using a condi-
tional variance matrix of �YY |X , based on a conditional vari-
ance operator between RKHSs of X and Y under some gen-
eral model assumptions (Li et al., 2012). Assuming the X(t), i

and Y (t), i, i = 1, . . . , n, are independently and identically dis-
tributed random vectors as with X(t) and Y (t), respectively, we
can estimate the conditional variance matrix by using a kernel

KX as follows: 1
n

(
Y(t)T

QY(t) − Y(t)T
Q(QKXQ)(QKXQ)†QY(t)

)
,

where Y(t) = (
Y (t), 1, . . . , Y (t),n

)T
, Q = In − 1

n Jn, In is an n × n
identity matrix, Jn is an n × n matrix whose elements are all
1, and A† means a generalized inverse of a matrix A. When a

linear kernel is used, the conditional variance matrix becomes

SY (t)Y (t) − SY (t)XS−1
XXSXY (t) , where SXX = 1

n

∑n
i = 1 XiXiT , SXY (t) =

1
n

∑n
i = 1 XiY (t), iT and SY (t)Y (t) = 1

n

∑n
i = 1 Y (t), iY (t), iT . Thus, one

can obtain the estimate of the conditional variance as in Yin
and Li (2011); Cai et al. (2013) by using linear kernels. When
X represents marker genotypes of a backcross from a geneti-
cal genomics study, the linear model assumption is reasonable
because the genotypes have two levels of genotype values (e.g.,
back cross population). With other kernels such as a polynomial
and a radial basis function kernel, one can model an arbitrary
form of f flexibly.

Second, we will use a penalized profiled likelihood that jointly

estimate
{
�(t)

}T
t = 1 with a joint sparsity penalization as follows:

PPL

({
�(t)

}T

t = 1

)
=

T∑
t = 1

nt

(
− log det

(
�(t)

)
+ tr

(
�̂(t)�(t)

))

+ P

({
�(t)

}T

t = 1

)
, (1)

where �̂(t) is the conditional covariance matrix estimate, and
P(·) is a penalty function. In addition, tr(A) and det(A) denote
trace and determinant of matrix A, respectively. The joint sparsity
function P(·) can be chosen from the following different penalty
functions:

• λ1
∑

j �= j′

√∑T
t = 1

∣∣∣ω(t)
j, j′
∣∣∣ (Guo et al., 2011)

• λ1
∑T

t = 1

∑
j, j′
∣∣∣ω(t)

j, j′
∣∣∣+ λ2

∑
j, j′

√∑T
t = 1 ω

(t)
j, j′

2
(Danaher

et al., 2013)

• λ1
∑

j �= j′ g
(∑T

t = 1

∣∣∣ω(t)
j, j′
∣∣∣
)

(Chun et al., unpublished),

where ω
(t)
j, j′ is the (j, j′)th element of �(t), λ1 and λ2 are positive

tuning parameters, and g is a nonconvex function such as g(x) =
xβ, where 0 < β < 1, or a truncated log function or a truncated
inverse polynomial function.

The approach of Chun et al. (unpublished) is a generaliza-
tion of Guo et al. (2011), where it allows the control in balance
between common and condition-specific structures by the choice
of the penalty function P(·). Through a simulation study, Chun
et al. (unpublished) showed that the truncated log penalty per-
forms well, when the majority of networks are shared across
conditions. Interestingly, the approach of Danaher et al. (2013)
uses two tuning parameters, which can make the algorithm com-
putationally challenging. Also, in their approach, the common

structure is defined as

√∑T
t = 1 ω

(t)
j, j′

2
, whereas it is defined as

∑T
t = 1

∣∣∣ω(t)
j, j′
∣∣∣ in the other approaches. With the latter choice, the

condition-specific regularization can be automatically achieved
by the use of a nonconvex penalty function. Additionally, they
proved that the estimator from the nonconvex penalty has a spar-
sistency (variable selection consistency) for edges that appear in
any of the conditions. We thus use the truncated log penalty of
Chun et al. (unpublished) for the joint estimation of multiple
GGMs. That is, our penalty function is given by
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P
(
{�}T

t = 1

)
=
∑
j �= j′

{(
log

(
T∑

t = 1

∣∣∣ω(t)
j, j′
∣∣∣
)

− log ε + 1

)
IA

+
∣∣∣∑T

t = 1 ω
(t)
j, j′
∣∣∣

ε
IAc

⎫⎬
⎭ ,

where A =
(∑T

t = 1

∣∣∣ω(t)
j, j′
∣∣∣ > ε

)
, Ac =

(∑T
t = 1

∣∣∣ω(t)
j, j′
∣∣∣ ≤ ε

)
and ε

is a small positive constant (we used ε = 1e−3 in the current
manuscript). We remark that the choice of a different penalty
function corresponds to enforcing different level of joint sparsity
in network inference. Hence we may obtain improved results from
the different penalty function depending on the underlying truth.
However, due to the limited sample size in biological datasets, it
is often very difficult to find the optimal penalty function.

The objective function 1 can be optimized by using a local lin-
ear approximation as in Guo et al. (2011). We remark that the
solution from the current optimization algorithm may not pro-
duce a global solution, and hence the choice of the good initial
estimate is very important. However, our simulation study sug-
gests that the current algorithm yields a good estimate in terms
of performance of the approach. Specifically, at the (k + 1)th
iteration, the PL is decomposed into T individual optimization
problems as follows:

(
�(t)

)(k + 1) = argmin�(t)nt

(
tr
(

S(t)�(t)
)

− log
{

det
(
�(t)

)})

+ λ
∑
j �= j′

ζ
(k)
j, j′
∣∣∣ω(t)

j, j′
∣∣∣ ,

where ζ
(k)
j, j′ = P′

(∑T
t = 1

∣∣∣∣
(
ω

(t)
j, j′
)(k)

∣∣∣∣
)

=

max

(∑T
t = 1

∣∣∣∣
(
ω

(t)
j, j′
)(k)

∣∣∣∣ , ε
)−1

and
(
ω

(t)
j, j′
)(k)

is the solu-

tion of the previous k-th step. Then, the formulation becomes a
single precision matrix estimation problem with a weighted lasso
penalty, which can be solved by the glasso algorithm (Friedman
et al., 2008).

JCGGM algorithm

1. Compute �̂ by using a kernel. When a linear kernel is
used, �̂t = SYt Yt − SYt XS−1

XXSXYt .

2. Initialize �̂t =
(
�̂t + δIp

)−1
for all 1 ≤ t ≤ T, where Ip

is the identity matrix and the constant δ is chosen so that
�̂t + δIp is invertible. We added 1e−3 to the diagonals
when the ratio of largest and smallest eigen values is larger
than 1e3.

3. Update �̂t for all 1 ≤ t ≤ T by solving

min�t tr
(
�̂t�t

)
− log

{
det

(
�t)} +λ

∑
j �= j′

∣∣∣ωt
j, j′
∣∣∣

(∑T
t = 1

∣∣∣ω̂t
j, j′
∣∣∣
) ,

using a glasso, where ω̂t
j, j′ is the estimate from the previ-

ous step.
4. Repeat step 2 until convergence is achieved.

For selecting the tuning parameter λ, one can use the following
BIC criterion:

BIC(λ) =
T∑

t = 1

{
− log det

(
�̂(t)(λ)

)
+ tr

(
�̂(t)�̂(t)(λ)

)

+ log (nt) dft/nt
}
,

where {�̂(t)(λ)}T
t = 1 are the estimates from solving the penal-

ized negative log likelihood with a tuning parameter λ where

dft is card{(j, j′) : j ≤ j′, ω̂(t)
j, j′ �= 0} with card representing the

cardinality of a finite set.

2.3. METHODS FOR SIMULATION STUDY
For simulation study, we generate datasets by taking the num-
ber of conditions T = 3, the number of gene expression variables
p = 30 and the number of markers q = 10. We set the sample
sizes nt = 30 and 100 to assess the small and large sample per-
formances of the estimators. We first simulate X that mimics a
marker dataset by using sim.map and sim.cross functions from
R/qtl package. We consider a single chromosome with length
1000 cM and place 10 equally spaced markers. We use the back-
cross design, since it is the design used in our real data analysis in
the next section.

The scale-free network structures, which are the most com-
monly observed structure in biology, are generated using the
Barabasi–Albert algorithm (Barabasi and Albert, 1999). We start
from six edges, and add one edge at each step. We first gen-
erate common edges from each of the network structures. For
each condition, randomly selected 0.1 M edges are added as
condition-specific edges, where M is the total number of edges
in the common structure. Based on the network structures, we
simulate the precision matrices by setting values for the off-
diagonals that correspond to edges with random numbers from
Unif ([−1, −0.5] ∪ [0.5, 1]), and by setting the diagonal elements
with

∑
j �= i |ωi, j|. The process is repeated until �t becomes a

positive definite matrix.
For simulating Yt , we first consider a scenario where there is no

external variable that causes dependence among genes. This is an
extreme scenario where our proposed conditional approach does
not have any advantage over the unconditional model. We sim-
ulate Yt with the model Yt = XBt + Et . The elements of Bt are
zeros except for (1,1), (2,4) and (3,8)th positions. These nonzero
coefficients are (−0.09, 0.789, −0.667), (1.361, 1.508, −2.608)
and (0.687, 0.316, 2.020) for three conditions. The ith row of Et is
simulated from Np(0, �t−1

).
We then consider a scenario where there exist hotspots

that cause marginal associations among genes. This is the
case where our proposed conditional approach is expected
to perform better than the unconditional approach. Now,
Yt

1, . . . , Yt
18 are linked to X1; Yt

19, . . . , Yt
25 are to Xt

4; and
Yt

26, . . . , Yt
30 are to X8. The nonzero coefficients are simulated

by perturbing the coefficients used in Case 1. B1
(i, 1)

= −0.09 +
N(0, 0.12), for i = 1, . . . , 18; B1

(i, 1)
= 0.789 + N(0, 0.12), for

i = 19, . . . , 25; B1
(i, 1)

= −0.667 + N(0, 0.12), for i = 26, . . . , 30;

B2
(i, 1)

= 1.361 + N(0, 0.12), for i = 1, . . . , 18; B2
(i, 1)

= 1.508 +
N(0, 0.12), for i = 19, . . . , 25; B2

(i, 1)
= −2.608 + N(0, 0.12), for
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i = 26, . . . , 30;B3
(i, 1)

= 0.687 + N(0, 0.12), for i = 1, . . . , 18;and

B1
(i, 1)

= 0.316 + N(0, 0.12), for i = 19, . . . , 25; B1
(i, 1)

= 2.020 +
N(0, 0.12), for i = 26, . . . , 30. The ith row of Et is simulated from
Np(0, �t−1

).

3. RESULTS
3.1. RESULTS FROM SIMULATION STUDY
We compare the performances of unconditional/conditional
GGMs and joint conditional GGMs. We use the following five
criteria for the comparison:

1. False positive rate at λ̂BIC:

FP(λ̂BIC) = 1

T

T∑
t = 1

card{(i, j) : i > j, ωt
i, j = 0 and ω̂t

i, j �= 0}
card{(i, j) : i > j and ωi, j = 0} .

2. False negative rate at λ̂BIC:

FN(λ̂BIC) = 1

T

T∑
t = 1

card{(i, j) : i > j, ωt
i, j �= 0 and ω̂t

i, j = 0}
card{(i, j) : i > j and ωi, j �= 0} .

3. False positive rate for common zeros at λ̂BIC:

FPC(λ̂BIC)

=

card
{
(i, j) : i > j; ωt

i, j = 0 for all t = 1, . . . , T; and

ω̂t
i, j �= 0 for any t, 1 ≤ t ≤ T

}

card{(i, j) : i > j; and ωt
i, j = 0 for all t = 1, . . . , T} .

4. False negative rate for common zeros at λ̂BIC:

FNC(λ̂BIC)

=

card
{
(i, j) : i > j; ωt

i, j �= 0 for any t, 1 ≤ t ≤ T; and

ω̂t
i, j = 0 for all t = 1, . . . , T

}

card{(i, j) : i > j; and ωi, j �= 0 for any t, 1 ≤ t ≤ T} .

5. Relative Frobenius loss (RFL):

RFL = 1

T

T∑
t = 1

||�t − �̂t ||2F/||�t ||2F.

The results are given in Tables 1, 2. First, one can see that the joint
approach improves the performance greatly for the small sample
cases. This effect is more pronounced for the conditional mod-
els. This may be explained by the fact that conditional models
require the estimation of more parameters than unconditional
ones. Second, for large sample sizes, JCGGM performs the best
in both simulation scenarios. This also confirms that even if we
include extra variables in a conditional model, it will perform
well as long as the sample size is large enough. The current
results depend on the BIC criterion, and one may have differ-
ent results when different tuning parameter selection approach
is used. We thus present ROC curves in Figure 2. These ROC
curves are the average ROC curves of 200 replicates. The fig-
ure confirms that JCGGM performs the best in all simulation
scenarios.

3.2. REAL DATA ANALYSIS
In this section, we demonstrate how to use the JCGGM approach
in a real biological study. In this analysis, we focused on genes
that consist of a particular pathway. Pathway information was
obtained from rgd.mcw.edu, and we investigated the insulin
responsive facilitative sugar transporter mediated glucose transport
pathway. We were able to identify 34 genes in our dataset that
belong to the pathway. We then used joint GGMs and joint
CGGMs approach for finding a gene regulation networks. For
the CGGM approach, we have selected a marker set based on
scanone function of R/qtl package. For each of 34 genes, we
selected markers that were significantly linked to the gene expres-
sion at the genome wide significance level of 0.05. We used
permutation with 1000 replicates for computing the genome wide
significance. We then took the union of those selected markers as
covariates for our RKHS conditional covariance estimator with
a linear kernel. We remark that the set of selected markers were
tissue-specific.

Table 1 | Results for Case 1.

FP FN FPC FNC RFL

n = 30

GGMs 0.081 (0.002) 0.755 (0.004) 0.222 (0.004) 0.518 (0.008) 0.703 (0.002)

CGGMs 0.946 (0.001) 0.063 (0.002) 0.999 (0.000) 0.000 (0.000) 5087.146 (135.93)

JGGM 0.053 (0.002) 0.560 (0.004) 0.067 (0.002) 0.524 (0.005) 0.564 (0.002)

JCGGM 0.114 (0.013) 0.459 (0.007) 0.134 (0.014) 0.434 (0.008) 2.517 (0.624)

n = 100

GGMs 0.051 (0.001) 0.475 (0.003) 0.144 (0.003) 0.262 (0.004) 0.577 (0.001)

CGGMs 0.054 (0.001) 0.335 (0.003) 0.152 (0.003) 0.164 (0.004) 0.348 (0.002)

JGGM 0.027 (0.002) 0.383 (0.002) 0.030 (0.001) 0.346 (0.003) 0.504 (0.001)

JCGGM 0.020 (0.001) 0.329 (0.002) 0.021 (0.001) 0.298 (0.003) 0.263 (0.001)

The performances of GGMs, CGGMs, JGGMs, and JCGGMs are compared with the comparison criteria explained in subsection 3.1. When the sample size is small,

the separate CGGMs select many false positives, which can be alleviated with JCGGMs. Under the scenario which is favored to JGGM, the JCGGM performs as

well as the JGGM in both small and large sample cases.
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Table 2 | Results for Case 2.

FP FN FPC FNC RFL

n = 30

GGMs 0.143 (0.003) 0.685 (0.005) 0.367 (0.006) 0.359 (0.007) 0.692 (0.002)

CGGMs 0.945 (0.001) 0.066 (0.002) 1.000 (0.000) 0.000 (0.000) 5343.2 (142.343)

JGGM 0.011 (0.005) 0.907 (0.006) 0.014 (0.005) 0.890 (0.006) 71.99 (71.27)

JCGGM 0.112 (0.013) 0.467 (0.008) 0.133 (0.013) 0.444 (0.008) 2.992 (0.84)

n = 100

GGMs 0.161 (0.002) 0.226 (0.002) 0.365 (0.004) 0.061 (0.002) 0.471 (0.002)

CGGMs 0.080 (0.001) 0.228 (0.002) 0.189 (0.003) 0.060 (0.002) 0.328 (0.002)

JGGM 0.103 (0.001) 0.164 (0.002) 0.135 (0.002) 0.132 (0.003) 0.392 (0.001)

JCGGM 0.023 (0.001) 0.162 (0.003) 0.024 (0.002) 0.127 (0.003) 0.234 (0.001)

The performances of GGMs, CGGMs, JGGMs, and JCGGMs are compared with the comparison criteria explained in subsection 3.1. When the sample size is small,

the separate CGGMs select many false positives, which can be alleviated with JCGGMs. Under the scenario which is favored to JCGGMs, the JCGGM performs

the best in both small and large sample cases.

A

C

B

D

FIGURE 2 | ROC curves: the average ROC curves are presented.

Throughout all scenarios, the JCGGM performs the best. (A) With no
external variable and a small sample size, JGGM, and JCGGM perform well.
(B) With no external variable and a large sample size, JCGGM performs the
best, followed by CGGM and JGGM. These two performs similarly. (C)

With external variables and a small sample size, only JCGGM performs
well. (D) With external variables and a large sample size, JCGGM performs
the best, followed by JGGM and CGGM.

The results are given in Table 3. First, in both JGGM and
JCGGM, the liver networks have the largest numbers of edges.
The heart and fat networks have similar numbers of edges to
the liver network based on JGGM, but they have fewer edges
based on JCGGM. This suggests that the pathway is the most acti-
vated in a liver tissue, and some tissue-specific controls in heart
and fat might be from marker effects. We then computed the
percentage of edges that present only in the corresponding tis-
sue. Based on the JGGM, liver and heart networks have a high

Table 3 | Results from JGGM and JCGGM.

Kidney Liver Heart Fat

JGGMs Number of edges 93 120 115 117

% specific edges 1.1 5.8 6 4.2

JCGGMs Number of edges 74 99 94 93

% specific edges 0 9.1 3.2 2.1

The JGGM and JCGGM are applied to the expression measurements of genes

involved in insulin responsive facilitative sugar transporter mediated glucose

transport pathway. The JGGM implies that liver, heart, and fat tissues have the

similar level of tissue-specificity, whereas the JCGGM implies that the liver tis-

sue has the highest level of tissue specificity. The result from JCGGM is more

convincing due to the fact that the specialized enzyme activity of glycogen

phosphorylase only occurs in liver tissue.

level of tissue-specific edges. But, the JCGGM found that the
liver network has the highest tissue specificity. Interestingly, our
finding is in line with the role of SLC2A4 protein, which forms
glucose concentration gradient of muscle and fat cells, as well
as the specialized glycogen breakdown of glycogen phosphory-
lase that only occurs in liver tissue (Watson et al., 2004; Campbell
et al., 2006). We also present the estimated graphs in Figure 3.

As demonstrated in the analysis, the CGGMs can distinguish
intrinsic and extrinsic regulations and gives a better overview in
tissue-specificity in intrinsic regulations. To our knowledge, the
tissue-specificity in gene regulations has been studied in marker-
expression relationships only, and the tissue specificity in intrinsic
interactions has never been studied. The JCGGMs approach can
be useful for studying tissue-specificity in gene interactions.

4. DISCUSSION
Genes interact with each other in various ways. Some genes inter-
act directly, whereas some genes interact because they are both
regulated by the same set of genes or other covariates. CGGM
allows us to infer only direct interactions among genes by using
the definition of a graphical model and using extra information
as predictors. The joint sparsity regularization can be achieved
by using various penalty functions. By combining these two
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A B

C D

FIGURE 3 | Networks inferred from JCGGM: the liver network has the

largest number of edges and the highest level of tissue-specificity.

(A) The inferred gene regulation network of the kidney tissue is presented.

(B) The inferred gene regulation network of the liver tissue is presented. (C)

The inferred gene regulation network of the heart tissue is presented. (D)

The inferred gene regulation network of the fat tissue is presented.

approaches, we have explained how to find multiple CGGMs
jointly and applied the approach to a real biological dataset. The
analysis showed that JCGGM is able to reveal tissue-specific inter-
actions that cannot be explained by marker effects. In addition to
the previous findings on tissue specificity in gene-marker regu-
lations, studying the extra level of tissue-specificity in gene-gene
interactions brings additional understanding of the complexity in
gene interactions.

In the conditional model, it is important to include all rele-
vant extra information in the model. However, it is not necessary
to include only relevant predictors, which means that one can find
a better network when one incorporates available extra variables
into the model as long as the sample size is large compared to
the number of included variables. The RKHS approach does not
involve a variable selection step of X because it assumes that a
proper set of covariates are available. However, when the num-
ber of covariate is is large, while the sample size is small, we need
to consider a variable selection step for choosing only a relevant
subset of covariates. Otherwise, the RKHS conditional covari-
ance estimator would not be consistent. The only requirement for
the conditional covariance matrix estimator is that the estimator
is consistent and has a finite variance [Equation 24 of Li et al.

(2012)], and thus any method that can produce such an estima-
tor can work well for finding a CGGM. For example, one can use
the approaches of Yin and Li (2011) or Cai et al. (2013) as long
as it yields a reasonable set of covariates. In genetical genomics
study, one can use a traditional quantitative trait loci (QTL) map-
ping method to select relevant markers, and the eQTL mapping
method was used in our manuscript.
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A genetic interaction (GI) between two genes generally indicates that the phenotype of
a double mutant differs from what is expected from each individual mutant. In the last
decade, genome scale studies of quantitative GIs were completed using mainly synthetic
genetic array technology and RNA interference in yeast and Caenorhabditis elegans. These
studies raised questions regarding the functional interpretation of GIs, the relationship of
genetic and molecular interaction networks, the usefulness of GI networks to infer gene
function and co-functionality, the evolutionary conservation of GI, etc. While GIs have
been used for decades to dissect signaling pathways in genetic models, their functional
interpretations are still not trivial. The existence of a GI between two genes does not
necessarily imply that these two genes code for interacting proteins or that the two genes
are even expressed in the same cell. In fact, a GI only implies that the two genes share a
functional relationship.These two genes may be involved in the same biological process or
pathway; or they may also be involved in compensatory pathways with unrelated apparent
function. Considering the powerful opportunity to better understand gene function, genetic
relationship, robustness and evolution, provided by a genome-wide mapping of GIs, several
in silico approaches have been employed to predict GIs in unicellular and multicellular
organisms. Most of these methods used weighted data integration. In this article, we
will review the later knowledge acquired on GI networks in metazoans by looking more
closely into their relationship with pathways, biological processes and molecular complexes
but also into their modularity and organization. We will also review the different in silico
methods developed to predict GIs and will discuss how the knowledge acquired on GI
networks can be used to design predictive tools with higher performances.

Keywords: genetic interaction, network, conservation, prediction, Saccharomyces cerevisiae, Caenorhabditis

elegans, genomics

WHAT IS A GENETIC INTERACTION?
GENERAL DEFINITION
The term genetic interaction (GI) covers a group of functional
relationships between genes. One kind of these relationships,
called epistasis, was first defined by Bateson and Mendel (1909).
Biological epistasis was then described as the effect of one allele
masking the effect of another one (Moore, 2003). Nine years later
statistical epistasis, originally called “epistacy,” was described by
Fisher (1919) as a significant deviation of the phenotype of a dou-
ble mutant from what is expected considering the phenotypes of
the single mutants.

This statistical epistasis enabled the identification of an array
of different GIs. One popular classification of these GIs con-
sists of dividing them in two main classes: the negative and
the positive interactions. The negative GIs, called also aggravat-
ing or synergistic interactions, refer to an observed phenotype
higher than expected when considering the phenotypes of single
mutants and assuming that the mutated genes function inde-
pendently one from the other (Figure 1). A synthetic lethal
interaction, which is an extreme case of negative GI, occurs when
both single mutants are viable but the double mutant is lethal

(Figure 1). At the opposite, the positive GIs can be subdivided in
buffering/alleviating interactions where the biological effect of an
allele is mitigated by a second one, and also the suppressive inter-
actions in which the double mutant is healthier than the sickest
single mutant (Figure 1).

As mention above, identification of statistical epistasis depends
on the calculation of the expected phenotype of the double
mutant considering the phenotype of the single mutants and
assuming a functional independency of the two mutated genes.
Several models exist and are used to estimate this expected value.
For developmental and population geneticists, the quantitative
assessment of a phenotype involves the statistical assessment
of its penetrance – the statistical occurrence of a phenotype
in a group of known genotypes – considering its expressiv-
ity. A threshold is then usually set for the expressivity of the
phenotype – the degree to which the phenotype expression dif-
fers among individuals – to measure the penetrance (Miko,
2008).

The development of additive, multiplicative, Min and Log
models to calculate the expected phenotype of double mutants was
mostly motivated by the development of systematic and large-scale
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FIGURE 1 | Statistical epistasis. (A) When considering the penetrance of
a given phenotype as the percentage of animals expressing this phenotype
at a given “significative” level, genetic interactions (GIs) are usually
identified using the additive model. Considering the phenotype of wild-type
(wt ) animals, close to zero, the expected phenotype of the double mutant
AB corresponds to the sum of the phenotypes of mutant A and B. An
aggravating GI between A and B is then identified if the phenotype of AB is
significantly higher than the expected. An Alleviating GI is identified if the
phenotype of AB is significantly lower than expected. A suppressive
interaction is identified if the phenotype of AB is lower than the single
mutant with the highest penetrance. When considering two mutants C and
D with no observable phenotype, a synthetic interaction is identified if the
double mutant CD expresses a significant phenotype. (B) When fitness is
measured as a phenotype, the wt animals present high fitness rate, the
expected phenotype of the double mutant AB is calculated using the
multiplicative phenotype (it could also be the Log or Min) as the product of
the fitness level of A and B. An aggravating interaction is then identified if
AB is significantly lower than expected. Alleviating is identified if the fitness
of AB is significantly higher than expected. Suppressive interaction is
identified or if the double mutant is more viable than the sickest single
mutants. A synthetic interaction is identified if the double mutant presents
a significant fitness defect while the two single mutants are fit.

screening of GIs, especially in the yeast Saccharomyces cerevisiae
(Tong et al., 2001; Collins et al., 2007; Jasnos and Korona, 2007;
Costanzo et al., 2010). These studies identified GIs based on fit-
ness measurements (Figure 1B), a class of phenotype that is

measured in terms of population allele frequency (Wolf et al.,
2000; Otto and Lenormand, 2002; Puniyani et al., 2004), growth
rate, or number of progeny of mutant strain relative to wild-type
(Elena and Lenski, 1997; Szafraniec et al., 2003; Segre et al., 2005;
Sanjuan and Elena, 2006; St Onge et al., 2007). The additive and
multiplicative models, originally used by developmental geneti-
cists (Figure 1A) and fitness measurements in yeast (Figure 1B)
respectively, consider the expected phenotype of a double mutant
to be the sum (or the product) of the phenotypes measured for
the single mutants if the two mutated genes function indepen-
dently one from the other (Mani et al., 2008). The Log model
has been specifically designed to identify GIs from measurements
on a logarithmic fitness scale (Mani et al., 2008). The Min model
considers that for non-interacting genes, the fitness of the double
mutant should be similar to the fitness of the less-fit single mutant.
Although these models agree under certain circumstances, they
often diverge dramatically (Mani et al., 2008). For example, while
the Min model appears to be highly suitable for pairs of genes
with more extreme single-mutant defects, this model is clearly not
ideal for defining alleviating interactions and more particularly,
several epistatic interactions for which a double mutant pheno-
type is similar to that of the single mutant with the most severe
phenotype (St Onge et al., 2007). Unfortunately, GIs identified
using this model account for a large part of all GIs found in inter-
action databases. This tends to bias the yeast genetic interactome
against this later kind of GIs (Mani et al., 2008). Identification
of GIs considering several of these models would then be an
appropriate approach to enable fair comparison and integration
of GIs from different screening pipeline into a homogeneous GI
interactome.

LEVELS OF ABSTRACTION IN BIOLOGICAL SYSTEMS
Mapping of GI networks is an endeavor that attracted more
attention with the emergence of network and systems biology
approaches. Network biology consists in simplifying complex bio-
logical systems into different layers of graphical representations
in which nodes correspond to physical elements (genes, protein,
metabolites, RNA, etc.) and edges refer to different relationships
between these elements. Systems biology, and more particularly
integrative genomics, aims to better understand the structure and
the functioning of the system through integration of these different
networks (Ge et al., 2003).

In computer sciences, organization of systems into several
abstraction levels aims to hide a certain level of detail to allow
the programmer to focus on a given problem. For a computer,
the lower level of abstraction would contain details on the hard-
ware while the higher level will represent the logic of the program.
In agreement with this approach, a systems biologist will con-
sider a biological system with all its complexity and identify,
from the genomic sequence to the phenotype, different levels of
abstractions. At the lower level of this conceptual structure, we
would find several networks representing the physical structure
and organization of the genome. In these networks, nodes could be
genes/coding sequences, single-nucleotide polymorphisms (SNPs)
or coding sequences linked by edges representing their physical
proximity and organization within chromosomes, their homol-
ogy etc. (Figure 2, level I). The second level of abstraction would
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represent the expression of that genome into physical compo-
nents: proteins and RNA. Edges between these elements would
indicate that they are co-expressed in different contexts or that
their expression profiles throughout multiple experimental con-
ditions are highly correlated (Figure 2, level II; Ge et al., 2003;
Vidal et al., 2011). The third level of abstraction would represent
physical interactions between different elements – protein–protein
(PPI), protein-DNA (PDI) or protein-RNA (PRI) interactions
(Figure 2, level III; Vidal et al., 2011). The fourth level of abstrac-
tion will allow the visualization of the functional relationships
linking these physical elements. This level would contain GI net-
works, signaling and metabolic pathways (Figure 2, level IV).
The fifth level would represent biological processes. This level
would contain networks where proteins implicated in the same
biological process would be linked by an edge (Figure 2, level
V). The sixth and last level of abstraction would represent phe-
notypes and show the relationships between elements associated
with similar phenotypes and diseases (Figure 2, level VI). Breaking
down through the different levels of abstraction aims to under-
stand the molecular basis of higher levels. A huge amount of
effort is being made to enable such a breaking down and to
establish the links and the dynamics underlying the relationships
between networks located at the different levels. The relationship
between the second (gene expression) and the third level (mainly
PPI and PDI) has been well documented. Some studies showed
that interacting proteins are more likely to be encoded by genes

FIGURE 2 | Representation of the six levels of abstraction in biological

systems. Note that, while each gene/protein can be followed from one
abstraction level to another, the relationships linking it with its neighbors
are different at each level. The conservation of links between two levels of
abstraction in a given system and between orthologous genes/proteins in
different systems are discussed in the main text of this review.

with similar expression profiles than non-interacting proteins (Ge
et al., 2001; Grigoriev, 2001; Mrowka et al., 2001; Jansen et al.,
2002; Kemmeren et al., 2002). Similarly, expression profiles can
be used to understand the organization and dynamics of pro-
tein interaction networks through functional characterisation of
highly connected nodes (Hubs). For example, Hubs have been
divided into “party” and “dating” Hubs. The former class of Hubs
corresponds to proteins that tend to be co-expressed with their
protein partners while the later ones are not (Han et al., 2004).
Party Hubs have then been proposed to interact with all their pro-
tein partners in all biological conditions, while dating Hubs may
interact with subgroups of their protein partners in certain condi-
tions and/or environments (Han et al., 2004). PPIs and PDIs can
also be used to understand the molecular basis of co-expression
(Lee et al., 2002; Segal et al., 2003; Yu et al., 2003; Luscombe et al.,
2004).

The link between the third (molecular interactions) and the
fourth level (functional interactions) has also been investigated.
Notably, signaling and metabolic pathways were shown to be
enriched in PPIs and PDIs (Vidal et al., 2011). It is important
to notice that, as detailed in the third chapter of this review,
the term pathway has been assimilated in several papers as PPI
and PDI modules – PPI/PDI subnetworks with a high density of
links – or as dense GI network structures (Kelley and Ideker, 2005;
Bellay et al., 2011a). Here, signaling and metabolic pathways will
be described as a group of molecules functioning together and
most of the time, in cascade to control a biological function. As
detailed in the following chapters, GI networks are also linked
to PPI and PDI networks (see In Silico Mapping of GIs). This
link is however less evident than the link between PPI/PDI net-
works and signaling/metabolic pathways (see In Silico Mapping of
GIs).

The relationship existing between the level six (phenotypes
and diseases) and the level four (functional interactions) moti-
vated the construction of pathway databases such as Reactome
(Joshi-Tope et al., 2005) or the kyoto encyclopedia of genes and
genomes (KEGG; Kanehisa and Goto, 2000), and is at the fore-
front of the research effort to identify therapeutic targets and
pharmaceutical compounds (Yuryev, 2012).

The link between the levels four (functional interactions) and
five (biological processes) is clear for signaling and metabolic
pathways. Each signaling pathway, for example the EGF recep-
tor/Ras/MAP kinase pathway, involves proteins that can be
grouped based on their implication in the control of var-
ious biological processes, e.g., endocytosis, Ras regulation,
actin cytoskeleton remodeling, kinase activity/phosphorylation,
etc.

Abstractions levels can also be linked to distant levels. For
example, GIs are shown to be enriched in co-expressed genes
(Zhong and Sternberg, 2006; Lee et al., 2010a; link between
the fourth and the second level). Similarly, integration of
the sixth level (phenotype) to the third (PPI) permitted the
construction of the human disease interactome. This interac-
tome was proposed to support the existence of disease specific
functional modules and also to help the molecular character-
ization of the protein products of disease genes (Goh et al.,
2007).
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Integration of different networks within or across abstrac-
tion levels brings substantial information on the structure of
the system, and to some extent, information about its dynam-
ics (Han et al., 2004). These pieces of information constitute,
as described in this review, the baseline for the construc-
tion of predictive tools used to enrich and complete sparse
networks.

We will focus, in this review, on the fourth level and more
particularly, on GI networks. While this kind of functional rela-
tionship is linked to higher and lower levels of abstraction,
most of these links appear much less clear than those involv-
ing signaling and metabolic pathways. We can then wonder if
mapping such a network is of biological interest: would it bring
complementary information to those brought from pathways dis-
section and significantly help understanding the functioning of the
system?

WHY CONSTRUCTING A CATALOG OF GENETIC
INTERACTIONS?
There are two main reasons why mapping GI networks is of bio-
logical interest. The first one is to understand the mechanisms
underlying the robustness of biological systems. How the system
compensate for the loss or alteration of a biological function or
the alteration of its environment?

Unnecessary genes do not exist in biological systems and
would be eliminated through evolutionary processes (Stern and
Orgogozo, 2009). So, why 73% of these necessary genes appears
not to be essential (Giaever et al., 2002)? Because compensatory
relationships exist between genes, pathways, and biological pro-
cesses. Therefore, mapping of GIs appears to be the best way to
identify these compensatory phenomena. In addition to the high
contribution this mapping will bring to basic sciences, it is also
of high interest for translational research. Biological robustness
is indeed, a major problem in the pharmaceutical industry with
the development of resistance to therapeutic agents, particularly
to anti-cancer chemotherapies (Edelman et al., 2010). Identifica-
tion of compensatory relationships between genes and pathways,
through mapping of GIs, appears then as an avenue that needs
to be explored in parallel with the dissection of the pathways
themselves.

The second reason is associated with the still mysterious rela-
tionship existing between genotype and phenotype. Population
geneticists highlighted the intricate complexity of genetic varia-
tions and how positive and negative relationships between alleles
influence phenotypical outcome (Gibson, 2010). Cancer modi-
fier loci, including “susceptibility” or “resistance” alleles, are good
examples of genetic variations affecting a patient phenotype, here
the aggressiveness of the tumor phenotype (Dragani, 2003). Simi-
larly, GIs and more particularly digenic synthetic GIs may underlie
many common diseases that are familial but not Mendelian in
their inheritance, such as glaucoma, type II diabetes, lupus ery-
thematosus and schizophrenia (Tong et al., 2004). Exploring GI
networks in model organisms, through screening of low order
(between two alleles) and high-order interactions (between more
than two alleles), may then help understanding the genetic net-
works underlying phenotypical variations and multigenic diseases
(Lehner, 2011).

MAPPING GENETIC INTERACTOMES IN MODEL ORGANISMS
IN YEAST
Quantitative studies of synthetic sick or lethal (SSL) interactions
in the baker’s yeast S. cerevisiae represent most of the GIs screens
done to date. The existence of mutation libraries for both essen-
tial and non-essential genes is regarded as the main reason for
the development of large-scale GI studies (Giaever et al., 2002).
Non-essential gene mutant libraries contain strains where single
gene coding sequences are substituted by a drug-resistance marker
(Giaever et al., 2002) while essential genes mutant libraries consist
in a collection of conditional alleles (Tong et al., 2001; Davierwala
et al., 2005; Schuldiner et al., 2005; Costanzo et al., 2010). These
libraries have been extensively used in an automated methodology
called synthetic genetic array (SGA; Tong et al., 2001, 2004). SGA
screening consists in using single mutated yeasts as query against
a whole deletion library for the construction of double mutants
in a high-throughput fashion (Tong et al., 2001, 2004). The fitness
defects of double mutants are then scored to uncover SSL interac-
tions for non-essential genes (Tong et al., 2004; Sharifpoor et al.,
2012) and essential genes (Tong et al., 2001; Davierwala et al., 2005;
Schuldiner et al., 2005; Costanzo et al., 2010).

In parallel, the epistatic mini-array profile (E-MAP) – another
variant of SGA – takes colony size measurements (based on imag-
ing) as a basis for the detection of GIs (Schuldiner et al., 2005).
GIs are then identified through measurement of a slower (SSL,
negative GIs) or faster (alleviating, positive GIs) growth rate of the
double mutants than what is expected from each single mutant
growth rate. This allowed the identification of both positive and
negative GIs while SGA was set originally to detect negative SSL
GIs only. E-MAP was also used to map GIs in different yeast species
such as Schizosaccharomyces pombe (Ryan et al., 2012).

Among the other high-throughput methods to discover GIs
in yeast, diploid-based synthetic lethality analysis with microar-
rays (dSLAM), uses a library of barcoded mutants and barcode
microarrays to measure the relative abundance of each barcoded
double mutants in pooled populations to identify digenic SSL
interactions (Pan et al., 2006; Lin et al., 2008). Optical density mea-
surements (St Onge et al., 2007), biomass quantification analysis
termed flux balance analysis (FBA) (Segre et al., 2005), quantita-
tive phenotype (Drees et al., 2005) and gene expression data (Van
Driessche et al., 2005) have also been employed to map GIs in spe-
cific biological processes. However, these studies remain restricted
in terms of genome coverage.

IN C. elegans
Screening a large amount of GIs in the nematode requires the uti-
lization of RNA interference (RNAi) through soaking animals in a
solution containing RNAi molecules or feeding them with E. coli
strains expressing the RNAi (Maeda et al., 2001; Timmons et al.,
2001). This approach induces a downregulation of the expres-
sion of targeted gene, instead of a deletion. This has to be taken
into consideration when comparing the Caenorhabditis elegans
and yeast genetic interactomes (Lehner, 2007; Dixon et al., 2009).
To identify a GI, either both genes are targeted using RNAi or a
genetic mutant strain containing either a hypomorphic or a null
allele can be submitted to RNAi targeting the other gene (Kamath
et al., 2003; Lehner et al., 2006; Byrne et al., 2007). Both approaches
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have been used to map a quite limited area of the C. elegans genetic
interactome (<2,000 GIs) when compared to genetic studies in
yeast (>200,000 GIs; Lehner et al., 2006; Byrne et al., 2007; Tischler
et al., 2008; Costanzo et al., 2010).

IN HUMAN
To identify GIs in human, apart from the RNAi treatment of
specifically mutated cell lines (reviewed in Dixon et al., 2009),
Lin et al. (2010) suggested an interesting method that uses radi-
ation hybrid (RH) genotyping data sets. This approach, while
being fast and inexpensive, is different than standard RNAi screen-
ing in that RH panels are used in order to “simulate” a double
mutations. The simulation is done with medium-selected cells
that possess extra copies of two genes and “attractive” or “repul-
sive” interactions are then identified whether the promoting effect
of the extra copies is death or survival of the cell line respec-
tively. The results obtained using this approach could not be easily
compared to negative and positive interactions observed through
gene deletion and/or expression reduction. By joining several data
sets of RH panels, a network of ∼6.7 million potential GIs were
extracted and covered ∼3.4% of all human gene pairs (Lin et al.,
2010).

IN SILICO MAPPING OF GIS
Only few organisms, mainly unicellular, are amenable to an
experimental mapping of GIs through genome-wide screen-
ing. Mapping of genetic interactomes in higher organisms
requires development of predictive tools that allow a signif-
icant reduction of the number of gene pairs to be tested
experimentally.

During the last decade, numerous strategies have been used
to infer GIs in unicellular and multicellular organisms (Table 1;
reviewed in Steen, 2012). However, to date, only S. cerevisiae
and C. elegans genetic networks have gained substantial infor-
mation from large-scale machine learning studies. Numbers of
tools were developed to predict PPIs, co-essentiality, genes with
similar functions, genes functioning in the same molecular com-
plex and GIs. The design of these tools highlighted the intimate
link existing between different networks – GI networks being used
to infer PPIs and co-functionality (Tong et al., 2004; Ye et al.,
2005a) and inversely PPI networks, phenotypic profiles and GO
annotations being used to predict GIs as detailed below. These
different predictors present also cross-specificities – GIs occur-
ring to some extend between genes coding for interacting or
non-interacting proteins, between or within-pathways/molecular
modules, between genes involved in the same biological pro-
cess or being involved in different and compensatory processes
as discussed below.

Intuitively, we expect that the GI world constitutes a patchwork
of functional relationships with distinctive properties. Predictive
tools capturing different properties will then be able to identify a
portion of the GI interactome and will be complementary one to
another. Ultimately, acquiring a good knowledge on the molec-
ular particularities of subclasses of GIs will lead to the design of
specific and accurate predictors. To make an informed choice on
the different elements that could be employed to design these pre-
dictors, we will review here the different structural and functional

particularities of GIs, and detail how they have been used or could
be used to generate predictor for GIs.

EXPLOITING THE PROTEIN–PROTEIN AND GENETIC INTERACTION
NETWORK DENSITY AND STRUCTURE
A primary attribute of biological interaction networks, including
GI networks, is a scale-free/power law distribution of connections,
where most nodes are sparsely connected (“non-Hub” nodes) and
few ones are highly connected (“Hub” nodes) (Watts and Strogatz,
1998; Jeong et al., 2001; Wagner, 2001; Tong et al., 2004). These
networks appear also to exhibit a small-world organization – dense
interacting modules are sparsely connected to other modules but
with a short average path length (Watts and Strogatz, 1998; Jeong
et al., 2001; Wagner, 2001).

There is a clear connection between PPI- and GI-Hubs since
a protein with many interactions in the physical network (PPI-
Hub) typically has also many interactions in the genetic network
(GI-Hub; Ozier et al., 2003; Kafri et al., 2008). Both kinds of
Hubs tend to be essential or associated with severe fitness defects,
and to genetically interact with each other (Ozier et al., 2003;
Davierwala et al., 2005; Lehner et al., 2006; Goh et al., 2007;
Baryshnikova et al., 2010; Costanzo et al., 2010; Sharifpoor et al.,
2012). Intuitively, we may see essential Hubs as a direct associ-
ation with human diseases. However, it is important to notice
that, while PPI-Hubs tend to be ubiquitously expressed, disease
genes (such as inherited disease genes) tend to encode for PPI-
non-Hubs and to be tissue specific (Goh et al., 2007; Vidal et al.,
2011).

Comparative analysis of the yeast interactome networks also
revealed that the “non-essential” SSL network is at least four
times denser than the PPI network (Tong et al., 2004), while
the “essential“ SSL network is five times denser than the “non-
essential” SSL (Tong et al., 2001, 2004; Davierwala et al., 2005).
The higher density of essential when compared to non-essential
GI networks, suggests that essential genes are highly connected
Hubs within GI networks, and that essential pathways may be
connected to number of compensatory pathways (Davierwala
et al., 2005; Costanzo et al., 2010). Given that 18% of all yeast
genes are essential (Giaever et al., 2002; Christie et al., 2004),
this also suggests that most yeast GIs may involve at least one
essential gene (Davierwala et al., 2005). The higher density of
GI network, when compared to PPI network, may reflect the
fact that in the case of two compensatory pathways, PPIs may
occur between proteins of a linear pathway, while any member
of each pathway may genetically interact with any component
of its own pathway or of its compensatory pathway (Tong et al.,
2004).

As shown for PPI networks, the interaction density is not
homogenously distributed within GI networks that are com-
posed of dense modules (Tong et al., 2004). These structures,
as detailed above and in the following sections, are enriched in
interactions occurring within functional modules (such as sig-
naling pathways or protein complexes) or between functional
modules. This property of dense GI modules could directly
be used to predict novel GIs within a non-saturated network.
Tong et al. (2004) showed for three specific GI modules, that
∼20% of genes that interact with a high number of common
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partners – being part of the same dense GI module – also
genetically interact one with the others. This was significantly
higher than what was measured in random networks (approx-
imately 1%; Tong et al., 2004). Qi et al. (2008) extended this
network analysis by including neighbors of interacting genes
from any distances and by classifying those distances by the
parity of the path lengths. They employed a graph diffusion
kernel that uses weighted sums for different path lengths and
found that odd-length kernels were better at predicting GIs
while even-length kernels were more effective in finding new PPI
partners (Qi et al., 2008).

Several methods have been developed to dissect complex
networks into functionally meaningful modules. Using various
clustering techniques, some studies reordered the GI matrix to sort
genes according to the similarity of their GI profiles. Congruent
genes are then defined as genes with similar GI profiles (Schuldiner
et al., 2005; Ye et al., 2005b; Collins et al., 2007; Costanzo et al.,
2010, 2011). The resulting map has a modular structure that
distinguishes between major biological processes, such as tran-
scription and chromatin remodeling, DNA replication and repair
or sister chromatid segregation. These GI profiles then provide
a powerful way to identify sets of genes functioning in the same
biological process (Tong et al., 2004; Schuldiner et al., 2005; Ye
et al., 2005b; Pan et al., 2006). Some of these methods have used
the complex and pathway (COP) scores for finding sets of genes
that are both highly correlated and that lack an aggravating GI
(Schuldiner et al., 2005; Collins et al., 2006, 2007). The top-scoring
gene pairs using this method included several sets of known com-
plex or linear pathway components, as well as several predictions of
novel ones (Schuldiner et al., 2005). Mutual clustering coefficient
(MCC) was also employed to measure the neighborhood sharing
of connections in the GI network – called congruence score (Ye
et al., 2005a,b). A high score indicates that two genes share more
GI partners than expected by chance. The resulting scores are then
used as weight for non-directed edges linking genes within a con-
gruence network (Ye et al., 2005b). By comparing path lengths
in three types of networks (GI, genetic congruence, and protein
interaction), they showed that high genetic congruence exhibits
correlation with direct PPI linkage and also exhibits proportion-
ate distance with the PPI network (Ye et al., 2005b). This congruent
score can then be used to predict PPIs.

Altogether, these studies showed that the structure of the GI
network contains enough information to predict novel GIs and
also to predict novel PPI, highlighting the intricate relationship
existing between PPI and GI networks.

By further exploiting the relationship between PPI and GI
networks, Paladugu et al. (2008) showed that PPI network graph-
theory properties could also be used to predict GIs. They
showed that proteins coded by SSL gene pairs, as compared
to non-SSL ones, tend to have higher average degree, close-
ness centrality, information centrality and number of mutual
neighbors within PPI network (Paladugu et al., 2008). When
combined, these graph-theory properties of PPI network pro-
vided a powerful tool to predict SSL GIs (Paladugu et al., 2008).
Moreover, this approach showed that the PPI network alone
contains enough valuable information to predict SSL interac-
tions. This approach appears particularly useful to predict GIs

in higher organisms which are hardly amenable to system-
atic screening of GIs while having their PPIs at least partially
mapped.

Few methods used GI and PPI networks to observe the dis-
tribution of GIs within or between dense modules of physical
interactions (PPI and PDI), called in these studies “pathways”
(Figures 3A,B; Kelley and Ideker, 2005; Ulitsky and Shamir,
2007). Canonical“within and between pathway models”were orig-
inally identified by Kelley and Ideker (2005). They found that the
“between pathway model,” consisting of GIs occurring between
dense modules of molecular interactions (Figure 3B), can explain
three-and-a-half times as many GIs as the“within pathway”involv-
ing GIs within dense molecular interaction modules (Figure 3A;
Kelley and Ideker, 2005). Further arguments for the prevalence
of between-pathway GIs in yeast were given by Ye et al. (2005a)
and Pan et al. (2006) who postulated that genes in the same path-
way are expected to share common GI partners. The between and
within pathway models were however shown to explain only 40%
of all yeast GIs (Kelley and Ideker, 2005). Ulitsky and Shamir
(2007) extended this interactome coverage by defining “pathways”
as connected subnetworks within the physical interaction network
rather than a dense interaction module (Figure 3C). This study
provided a significant increase from the number of interactions
explained by the Kelley and Ideker models (Ulitsky and Shamir,
2007).

Kelley and Ideker (2005) used their within and between path-
way models to predict novel GIs. A five-fold cross validation
technique was used to investigate the accuracy of predicting GIs
using both the “within pathway model” – genes within a given
pathway genetically interact more frequently than expected by
chance – or using the “between pathway model” – genes in one
pathway genetically interact with many of the same partners in
a second pathway. They showed that both models are efficient
for predicting GIs while the “between-pathway” model appears
to outperform the “within-pathway model” (Kelley and Ideker,
2005).

Deeper studies on the “between and within pathways models”
showed that they were often monochromatic, meaning that they
were composed almost exclusively of a single type of GIs, either all
negatives or all positives (Segre et al., 2005; Costanzo et al., 2010;
Michaut et al., 2011). Monochromatic patterns have been used to
identify biological processes and other functional modules (Segre
et al., 2005; Pu et al., 2008; Jaimovich et al., 2010). Monochro-
matic processes are functionally diverse, but also biased (Michaut
et al., 2011; Szappanos et al., 2011). For instance, microautophagy
and histone exchange are monochromatic positives whereas pro-
tein import and small GTPase mediated signal transduction are
monochromatic negatives (Michaut et al., 2011). Importantly,
those studies showed that protein complexes are often monochro-
matic (Bandyopadhyay et al., 2008; Costanzo et al., 2010) and that
monochromatic patterns, identified within and between biological
processes, are mainly dependant on protein complexes (Michaut
et al., 2011). The distinction between negative and positive inter-
actions, when considering the relationship between PPIs and GIs,
has not yet been exploited to predict GIs to the best of our
knowledge. The monochromaticity and the functional bias of this
monochromaticity pattern have not been exploited neither.

Frontiers in Genetics | Bioinformatics and Computational Biology December 2013 | Volume 4 | Article 290 | 73

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-04-00290” — 2013/12/13 — 20:24 — page 7 — #7

Boucher and Jenna Better predict genetic interactions

FIGURE 3 | Canonical and non-canonical within/between pathway

models. (A) The canonical within pathway model as described by Kelley
and Ideker, consists in genetic interactions (GIs, red edges) occurring
within a dense module of protein interactions (bleu edges). (B) The
canonical between pathway models, as described by Kelley and Ideker
(2005) , consists in GIs occurring between dense modules of protein
interactions. (C) The canonical between pathway models, as defined by
Ulitsky et al., 2008, consist in GIs occurring between connected
subnetworks/graph modules of protein interactions. This study also
identified pivot proteins as proteins highly connected at the molecular level
with component of two subnetworks connected through between pathway
GIs. (D) Non-canonical within pathway model, are quasi-cliques (q-cliques),
biclusters of highly connected genes. (E) The non-canonical between
pathway models consist in bicliques – biclusters in which prays and target
genes of GIs do not overlap.

In contrast to what was shown in yeast, the “within pathway
model”tends to be more prevalent when compared to the“between
pathway model” in the C. elegans interactome (Lehner et al.,
2006; Lehner, 2007). It was suggested that this difference might
come from experimental screening methodologies employed to
generate the GI interactomes in different organisms (Lehner,
2007). While in yeast most of the mutations used to disrupt

genes are null, in C. elegans, they are mainly hypomorphic. The
highest number of “within pathway” interactions in C. elegans
when compared to yeast may then be explained by the fact that
hypomorphic alterations of genes functioning within the same
protein complex or signaling pathway, may lead to a signifi-
cant aggravation of the phenotype (synthetic interaction) while
this would not be the case for null mutations (Lehner, 2007).
Also, we cannot exclude the possibility that this difference might
come from the intrinsic difference existing between unicellu-
lar and multicellular organisms. “Within and between-pathway
models” have not been used directly to predict novel GIs in the
nematode.

While it is clear that signaling pathways are enriched in molec-
ular interaction modules, it is important to notice the potential
ambiguity created by the denomination of GIs occurring between
dense molecular interaction modules as“between pathways” inter-
actions. To the best of our knowledge, it has not been clearly
proved that two densely connected molecular networks may not
participate to the same signaling pathway – defined as a cas-
cade of molecular events controlling a biological function. This
possibility is supported by the fact that a high number of “path-
ways”/molecular interaction modules defined by Kelley and Ideker
(2005) as well as Ulitsky and Shamir (2007), are very small (Ma
et al., 2008). Consequently, we cannot exclude the possibility that
some “between pathways/molecular modules” interactions may
actually occur within signaling or metabolic pathways. This taken
into consideration, the fact that most GIs in yeast occurs between
molecular modules and presumably pathways constitutes a golden
avenue to identify compensatory pathways responsible for the cel-
lular homeostasis and development of resistance to therapeutic
agents (Tucker and Fields, 2003; Szappanos et al., 2011). This
hypothesis was validated experimentally using, for example, the
Cdc14 early anaphase release (FEAR) and the mitotic exit network
(MEN), two parallel pathways required for the release of the essen-
tial protein phosphatase Cdc14p from nucleolus during yeast cell
cycle (Stegmeier et al., 2002).

Other approaches were used to study the modularity of GI net-
works. The decomposition of these networks using a biclustering
technic recalled the idea of congruence. This technic was used
to clusters groups of genes based on their GI profiles. However,
in addition to clustering, biclustering helped the identification of
two kinds of motif within the GI network: bicliques and q-cliques.
This decomposition of the GI networks in absence of any inte-
gration of molecular networks gave also a bright new perspective
to the within/between pathway models (Bellay et al., 2011a). In
this study, the between pathway model implies that GIs occurs in
“bicliques” – defined as biclusters in which the query genes (first
cluster of genes) and the array genes (set of genes interacting with
the query genes) do not overlap (Figure 3E). Following the same
reasoning, within pathway interactions occur in “cliques/quasi-
cliques/q-cliques” – defined as biclusters in which query and array
genes have significant overlap (Figure 3D; Bellay et al., 2011a).
Interestingly, both positive and negative interactions were mainly
found in bicliques (Bellay et al., 2011a), similarly to what was
shown using the canonical “between pathway” model (Costanzo
et al., 2011). In addition, negative q-cliques – q-cliques com-
posed of negative interactions – which corresponded to only 9%
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of negative biclusters (versus 91% of negative bicliques), did not
appear to represent single protein complexes or pathways (Bellay
et al., 2011a). This constitutes a major difference with the canoni-
cal “within pathway” model defined by the overlap of genetic and
molecular modules (Kelley and Ideker, 2005). The genes found
in negative q-cliques were found to be expressed in a coordi-
nated manner and to be enriched for chromosome segregation
and cell cycle processes (Bellay et al., 2011a). Bellay et al. (2011a)
suggested that this particular functional enrichment might arise
due to general sensitivity to perturbation in fragile systems such
as cell division.

Altogether, these studies support the idea that different tech-
niques used to decompose GI networks help revealing different
categories of GIs. They suggest that predictive tools developed
based on any of these models (the canonical “within /between
pathway” model or the “biclique/q-clique” model) may be com-
plementary to models built on the other one. The functional bias
observed for different GI modules also suggests that predictive
tools may gain in performance if they specifically target GIs asso-
ciated to a subset of biological functions alongside homogenous
particularities with respect to GI network modularity.

Network decompositions using biclustering techniques also
help to provide critical information on duplicated genes (Bellay
et al., 2011a). Duplicate genes were previously shown to dis-
play negative GIs with each other and exhibit fewer GIs than
other genes because they tend to buffer one another function-
ally (VanderSluis et al., 2010). They were also shown to exhibit
numerous unique GIs, suggesting that duplicated genes are func-
tionally redundant but have divergent roles (Ihmels et al., 2007;
VanderSluis et al., 2010). While, we would expect duplicated genes
to be part of the isolated group of GIs within the biclustering
array, a significant amount of them were fund to exhibit negative
GIs with each other as part of larger modular structures (biclus-
ters; Bellay et al., 2011a). Interestingly, this subgroup of duplicates
was significantly more divergent in terms of sequence identity. It
was suggested by Bellay et al. (2011a) that duplicates with a high
degree of functional similarity specifically compensate for the loss
of one another (isolated GIs in biclustering array), while in the
second case, they appeared to have diverged into entirely differ-
ent functional modules with compensatory properties (GIs being
part of large biclusters). This study opens the door to predictive
avenues that consider using protein sequence homology to identify
compensatory genes and modules.

EXPLOITING RELATIONSHIPS BETWEEN NETWORKS AT DIFFERENT
ABSTRACTION LEVELS
Networks at different abstraction levels were used to infer GIs in
yeast and C. elegans as detailed in Table 1 and below. These studies
also brought a deeper understanding of the molecular basis of GIs
(Avery and Wasserman, 1992; Guarente, 1993; Thomas, 1993).

Genetic interaction in yeast, C. elegans and in human, were
significantly more abundant between genes sharing mutant phe-
notypes (abstraction level VI) or gene ontology (GO) annotations
(level V), and between genes encoding proteins in the same subcel-
lular localization (level V) and/or within the same protein complex
(level III) or pathway (level IV; Lee et al., 2004, 2008; Tong et al.,
2004; Kelley and Ideker, 2005; Lin et al., 2010). In agreement with

the general idea that synthetic GIs may occur between genes with
redundant functions, the SSL yeast network was also found to be
enriched in gene pairs encoding homologous proteins (level I).

A link between two genes or their protein products within
networks located at different levels of abstraction is then infor-
mative of a potential GI. An important class of predictive
methodologies used these diverse sources of data to discrimi-
nate interacting from non-interacting genes. The first of these
studies used decision tree learning to integrate various types of
data along with a “2hop” network topology assessment for var-
ious genomic relationships (Table 1; Wong et al., 2004). The
“2hop” method considers gene pairs linked to a common part-
ner by a functional relationship (e.g., physical interaction and
sequence homology) to be informative of a potential SSL interac-
tion between them in yeast. In total, 123 functional relationships
(26 “major” categories) were used (Wong et al., 2004). The most
powerfull predictive informations were selected using a Bayesian
information criterion (BIC; similar to the Akaike information
criterion, AIC).

For multicellular organisms, Zhong and Sternberg (2006) inte-
grated multiple types of data from yeast, fly and nematodes to
predict 18,183 GIs in the nematode C. elegans (Table 1). Here, a
logistic regression was used to integrate features (or “attributes”)
defined as the relative weight of a single type of data accord-
ing to its predictive power. The positive set of elements used to
train the model consisted in 1,816 validated GIs and 2,878 PPIs
while negative examples were made of 3,296 paired cis markers.
These makers are used in genetic mapping experiments and are
assumed to have less probability of interacting together than pairs
of genes randomly picked from the genome. The utilization of
yeast/fly data to obtain greater genome coverage for a multitude
of data sources appears to positively contribute to the predictive
power of the developed tool (Zhong and Sternberg, 2006). We
will discuss the limitation brought by data from other organisms
in the following chapter considering evolutionary conservation
of PPI and GI networks. In this study, the predictive interac-
tion network was submitted to experimental validation using as
bait let-60/Ras and itr-1/ITPR (two human disease-related genes)
with a high success rate – 44 and 60% of true positive predic-
tions respectively (Zhong and Sternberg, 2006). Although it is still
unpublished, a new version of Zhong and Sternberg (2006) predic-
tor, called“GeneOrienteer,” is available online (geneorienteer.org).
This model employs a naïve Bayes classifier and integrates more
than 20 features to predict GIs in several species.

Another approach, developed by Chipman and Singh (2009) ,
used a random walks algorithm to calculates the topological simi-
larity of two genes in many types of biological networks, including
genetic and physical interactions, co-expression and GO annota-
tion networks, for both S. cerevisiae and C. elegans (Table 1).
This topological similarity is then used to predict negative GIs. In
this study, the decision tree classifier was shown to outperform
the logistic regression classifier (Chipman and Singh, 2009). The
good performances of this approach, tested using cross-validation
technics, was unfortunately not supported by any experimental
validations.

Other studies using the likelihood scoring of gene pairs for
the prediction of GIs in the nematode C. elegans were generated
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soon after (Table 1; Lee et al., 2010a,b). The first approach, called
“WormNet,” is used to infer the shared function of two genes,
which is also indicative of a possible GI (Lee et al., 2008). This
model was trained on thousands of gene pairs sharing GO annota-
tions. A second version of this model, called ”WormNet2,” employs
a weighted sum instead of a naïve Bayes classifier and integrates
many “updated” features derived from log likelihood scores of var-
ious functional data (Lee et al., 2010b). Contrarily to Zhong and
Sternberg (2006) methodology where functional data are more
intuitive (e.g., co-expression of genes), WormNet2 included some
“less-common” types of data (e.g., co-citation of gene names) as
features to infer shared functions (Lee et al., 2010b). Although
they did not use any feature selection methodology (e.g., BIC or
AIC), several examples of resulting predicted interactions by the
weighted sum model showed that most features contributed to the
final scores. They also succeeded in validating several GI for three
signaling genes via RNAi screening but the validation success rate
for individual genes appears to be low ranged from only 4% to a
maximum of 15% achieved for the gene vab-1 (Lee et al., 2010b).

Considering the environment of genes/proteins in networks
at different level of abstractions, we built an additional model:
“GIFinder” (Table 1; Lee et al., 2010a). This tool used logistic
regression and six features to predict GIs with a positive train-
ing set composed uniquely of validated GIs. This model also
used novel attributes that consider the enrichment of phenotypic
features in the co-expression/physical network environment of a
gene. This kind of attribute integrates data from three abstrac-
tion levels (level II, III, and VI) to assess whether two genes may
be part of the same functional module instead of relying only
on evidences of direct interactions. These attributes also reduced
the negative effect of using biological datasets with poor genome
coverage and were shown to highly contribute to the overall per-
formance of the predictor (Lee et al., 2010a). This approach would
be appropriate when trying to integrate sparse data such as tissue
expression profiles and subcellular localization, to other datasets
with high genome coverage such as expression data. Experimen-
tal validations of predicted GIs for gdi-1/GDI1 – a Rho GTPase
regulator associated with non-syndromic forms of mental retar-
dation in human – supported the idea that such methodology
could be useful to identify therapeutic targets for monogenic dis-
eases from predictive GI networks of lower organisms (Lee et al.,
2010a). With a success rate of at least 42%, the performance
in experimental validations was comparable to that of similar
approaches.

Recently, Hoehndorf et al. (2013) created a predictor of GIs
for 4 different species by inferring the function of many genes
using semantic similarity measurements of phenotypes and GO
annotations. The semantic similarity – a measure of the dis-
tance or relatedness between two terms – was done using the
Jaccard index. Unfortunately, the GIs obtained from their inferred
gene functions were not validated experimentally. This later
methodologies exploit only biological information located at the
highest level of abstraction (level V and VI). We expect that
this methodology – ignoring co-expression and molecular inter-
action levels – would then be able to predict GIs occurring
between genes controlling a given biological process from distant
environments (cell non-autonomous interactions). However, this

possibility has not been investigated by the authors (Hoehndorf
et al., 2013).

When trying to compare the relative performances of pre-
dictive tools, it is important to note, that while experimental
validation of predictions highly contribute to the demonstra-
tion of the validity of the method, the heterogeneity of link
density within the GI network and the experimental methods
used to validate the interactions may highly influence the suc-
cess rate of the validation. Therefore, it is extremely difficult to
compare the relative performance of individual methods just by
comparing the success rate of validation experiments, using one
or two genes as bait, and different validation methods (mutant
and RNAi, mutant and double mutant, or RNAi and double
RNAi).

To assess how different integration designs impact the pre-
diction of GIs for a given organism, we compared the predic-
tions obtained for GeneOrienteerv2.12, GIFinder and WormNet2.
Interestingly, these predictors appear to be highly complementary
with more than 90% of predicted interactions by the three models
being unique – i.e., predicted by only one approach (Figure 4A).
This suggests that these three predictors capture different areas of
the GI interactome covered by sets of experimentally identified
GIs leaving more than 57% of it untouched (Figure 4B). Gene-
Orienteerv2.12 performed extremely well when tested on a set of
1,514 GIs obtained from interaction databases. This set of GIs,
being used as a predictive feature or training sets in GIFinder and
GeneOrienteerv2.12 (see“geneorienteer.org”; Lee et al., 2010a), we
tested the three models on a set of recently published interactions
(curated manually and absent from the databases) and observed a
significant reduction in the performance of GeneOrienteer when
compared to the two other models (Figure 4C). The deprived
overlaps of predictions generated using the three predictors could
be explained by the different integration methodologies used to
generate the predictors (naïve Bayes classifier vs. linear regres-
sion) or by the different training sets used. The major difference
of GIFinder when compared to others tools comes from the uti-
lization of validated GIs as the only positive training examples as
opposed to the two other ones that also employed physical inter-
actions or functional annotations (Zhong and Sternberg, 2006;
Lee et al., 2010a,b). While PPI and GI networks may have some
overlap (some interactions occurring within protein modules),
training a model using PPIs as a positive training set may bias
the model toward within protein module GIs. Similar reasoning
would be also valid for functional annotations. While functional
annotations, such as GO annotations, are enriched between inter-
acting genes, a large number of GIs are expected to occur between
genes with different functions as discussed earlier. Interestingly,
and as discussed in the following chapter, within protein mod-
ule and within biological process GI appear to be more conserved
that between modules or process GIs. We may then postulate that
the bias induced through training the models using PPIs and GO
annotations may increase the rate of evolutionary conserved inter-
actions in the predictions. This taken into consideration, the fact
that the training sets, constituted by the union of GIs and PPIs
and/or pairs of genes with similar functions, is larger than vali-
dated sets of GIs only may improve the performance of predictive
models using machine-learning techniques (Babyak, 2004).
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FIGURE 4 | Venn diagrams of C. elegans predicted genetic interactions

from three different approaches. (A) Genome-wide predictions.
(B) Experimentally validated genetic interactions taken from Lee et al.
(2010a). (C) Experimentally validated genetic interactions (GIs) collected
from recent studies (2009–2012). Numbers in red indicates statistically
significant overlaps (P < 0.05), evaluated using an exact hypergeometric

probability test. The selected score thresholds used to predict GIs yield the
same false positive rate (FPR) for all three predictors. Each FPR was
evaluated using a negative set consisting of 10,000 random gene pairs free
of any gene present in validated interactions. Predicted GIs or functional
links, for GeneOrienteer and WormNet respectively, were downloaded in
October 2010.

While the existence of an edge between two genes/proteins
in a network at a given level of abstraction is now confirmed
as a useful information to infer a missing edge between these
two genes/proteins at another level, it is important to real-
ize that the conservation of links between two genes/proteins
in different networks is a relatively rare event. For example,
approximately 1% of SSL pairs (0.4% of negative and 0.5%

of positive GIs in E-MAP datasets) codes for physically linked
proteins (conservation of links between networks at levels III
and IV) and 1% for homologous proteins (conservation of links
between networks at levels I and IV; Tong et al., 2004; Costanzo
et al., 2010). Cumulating these evidences of direct links between
genes and proteins may increase the sensitivity of predictive tools
for GIs. Considering only these direct links may also contribute
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to their relative poor performances. These tools would then gain
in performance if integrating attributes that consider the envi-
ronment of the genes in networks and the network modularity as
shown by GIFinder (Lee et al., 2010a).

CONSIDERING EVOLUTION OF PROTEIN–PROTEIN AND GENETIC
INTERACTION NETWORKS
Several tools used data from evolutionary distant species to pre-
dict GIs. The evolutionary conservation of these data along with
the structure of interaction networks between species is then of a
critical interest when considering using this information to design
a powerful predictive tool. In addition, while GI interactomes are
extensively mapped in certain organisms such as yeast, the utiliza-
tion of these networks to predict GIs in higher organisms mainly
depends on the evolutionary conservation of GIs and of the GI
network structure.

Genetic interaction are known to play a critical role in evo-
lutionary processes (Yukilevich et al., 2008; Stern and Orgogozo,
2009). In opposition to what was initially thought, all genes are not
equal in the eyes of evolution, and evolutionarily relevant muta-
tions tend to accumulate in hotspot genes at specific positions of
these genes (Stern and Orgogozo, 2009). A mutation in a gene,
having a high number of GI partners, would not be advantageous
in a context of adaptive evolution since it will increase the phe-
notypic variance associated with this mutation and therefore, will
cause an increased fitness fluctuation dependent on the genetic
background (Stern and Orgogozo, 2009). In addition, mutations
generating specific phenotypic changes are more likely to con-
tribute to adaptive evolution than pleiotropic mutations altering
several seemingly unrelated traits (Stern and Orgogozo, 2009).
Genetic Hubs, being by definition connected to a large number
of genes and highly enriched for pleiotropic and multifunctional
genes (Costanzo et al., 2010), would then be less touched by muta-
tions associated with adaptive evolution. As expected, GI-Hubs
are highly evolutionary conserved (Bellay et al., 2011b) as are
PPI-Hubs (Wuchty et al., 2006).

When considering PPIs, interactions within modules are con-
served at a higher level than interactions occurring outside
modules (Zinman et al., 2011). This suggests that there might be
a much higher selective pressure to maintain interactions within
a single module than between modules (Zinman et al., 2011). PPI
networks from distant species were used in number of studies to
predict GIs (Table 1; Zhong and Sternberg, 2006; Chipman and
Singh, 2009; Lee et al., 2010a,b; Hoehndorf et al., 2013). These
studies, however, did not discriminate dense modules of PPIs
from non-modular interactions. Since within complex/modules
PPIs were shown to be more conserved than extra-modular PPIs,
it would be interesting to assess whether the utilization of modu-
lar components of PPI interactomes from distant species, instead
of the complete interactome, would improve performances of
predictive tools for GIs.

While the evolutionary conservation of PPI- and GI-Hubs, as
well as PPIs within protein complexes/modules has been clearly
established, the overall conservation of GIs between evolutionary
distant species is still controversial. Comparison of the S. cerevisiae
and S. pombe E-MAPs showed that negative and positive GIs of
two yeast species, distant of approximately 400 million years, were

significantly conserved (Sipiczki, 2000). Also, essentiality in genes
appears to be highly conserved between the yeast and nematode
(Kamath et al., 2003), the extent of the GI conservation between
these organisms appears to be very low, and not reported as sig-
nificant in all studies (Pan et al., 2004; Lehner, 2007; St Onge et al.,
2007; Mani et al., 2008; Tischler et al., 2008). The difference in
methodologies used to generate the GI networks between yeast and
nematodes, the fact that some GIs in nematodes may not be cell
autonomous because of its multi-cellularity and the poor genome
coverage of C. elegans vs. yeast genetic interactomes may be part of
the reasons behind the poor conservation of GIs observed between
these organisms.

Since we expect the majority of GIs not to be conserved
across species, GI-Hubs, on the other hand, appear to be well
conserved throughout evolution (Lehner et al., 2006; Costanzo
et al., 2010). Predicting genetic Hubs are of biological importance
because of their tendency to influence fitness defects when they
are individually mutated (Costanzo et al., 2010). Some high-end
methodologies have been developed to predict GI degrees – the
number of GIs involving a given gene – in the yeast, S. cere-
visiae (Szappanos et al., 2011; Koch et al., 2012). The first study
successfully predicts negative and positive interaction degrees for
genes implicated in yeast metabolism (Szappanos et al., 2011).
Using only SSL and positive GIs as training sets, they showed
that only a small fraction of interacting genes shares the major-
ity of the interactions in both empirical and in silico data. They
also provided a mechanistic explanation for genetic “Hubs” in
relation with their tendency to be multifunctional and found
that the predicted negative interaction degree of a gene correlates
with its multifunctionality (Szappanos et al., 2011). In another
work, Koch et al. (2012) drove the analysis furthermore to pre-
dict the GI degrees of many genes in S. cerevisiae and also in the
distantly related species Schizosaccharomyces pombe. They inte-
grated 16 features; covering mRNA expressions, GO terms, PPIs
and other functional data, via a decision-tree learning to predict
GI degrees with only interacting genes as training sets. Among
some interesting findings, they confirmed the general consensus
that the GI network structure is conserved across species (Koch
et al., 2012). In fact, they found retaining high conservation of
GI degrees between S. cerevisiae and S. pombe for specific genes
sharing a significant amount of functional information. It would
be extremely interesting to carry on such study to assess whether,
despite the poor conservation of GIs between yeast and nematodes,
the GI network structures may also be conserved between the two
organisms.

As the conservation of GI-degrees, conservation of GIs between
S. cerevisia and S. pombe was significantly increased when the
analysis was restricted to genes that shared the same functional
annotations and when the analysis was restricted to pairs of genes
coding for interacting proteins (Roguev et al., 2008). This indicates
that GIs between two genes is more evolutionary conserved if these
two genes are also linked in networks located at lower and higher
abstraction levels. Several studies also suggested that both positive
and negative GIs within functional modules (protein complexes,
gene belonging to the same biological process) are significantly
more conserved between S. cerevisiae and S. Pombe, than wiring
between these modules (Dixon et al., 2008; Roguev et al., 2008;
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Ryan et al., 2012). This suggests that not only the dependencies,
but also the buffering relationships within complexes are highly
conserved (Ryan et al., 2012).

While the conservation of GIs between functional mod-
ules/biological processes appears to be limited, the overall number
of GIs between biological processes appears to be highly retained
(Ryan et al., 2012). For example, while a significantly high num-
ber of GIs links genes controlling chromatin/transcription and
those controlling mitosis and chromosome segregation in dis-
tant species, the level of conservation for individual interactions
between these processes remains low (Ryan et al., 2012). This
suggests that, although there is flexibility at the level of individ-
ual GIs and consequently significant rewiring between functional
modules/processes in distant species, there may exist a biologi-
cal selective pressure and requirements for the conservation of a
high of low linking strength between particular processes (Ryan
et al., 2012). Importantly, biological processes interacting with a
larger amount of biological processes than expected – called here
“process-Hubs” – suggest that these processes are important for
mediating cross-process connections in genetic networks of sev-
eral organisms (Lehner et al., 2006; Costanzo et al., 2010). For
example, process-hubs such as chromatin/transcription, secretion
and membrane trafficking, have been identified in S. cerevisiae
(Costanzo et al., 2010) and C. elegans (Lehner et al., 2006). Con-
versely, some processes, such as amino acid metabolism and
trans-membrane transport, have very few GIs linking them to
other processes, suggesting a high degree of functional indepen-
dency among these modules with less impact on other cellular
processes than process-Hubs (Ryan et al., 2012).

Altogether, these data suggest that the conservation of the over-
all structure of GI networks still needs further characterization in
distant organisms to identify the selective pressure applied on GI
networks, not necessarily at the level of individual genes, but at the
level of functional modules. Conclusions from such studies would
bring important information that could be exploited in order to
use GI networks from lower organisms to predict GIs in higher
ones.

CONCLUSION AND PERSPECTIVES
Mapping of GI networks and extensive study of their struc-
tures, conservation in different species and relationships with
other functional and molecular interaction networks has already
provided us with a better understanding of the biological robust-
ness and phenotypical manifestation of genomic codes. Some
of these pieces of information have also been exploited to
generate predictors for GIs as detailed in this review. How-
ever, to date, these tools show limited performances and gave
predictions, for example in C. elegans, for less than 50%
of the expected GI interactome. These studies also opened
some paths that could be followed to improve predictive tools
for GIs.

The first path suggests that tools should consider GIs in their
structural context instead of considering them in isolation. This
comes from several observations. The first one showed that
similarity of GI profiles of two genes is more indicative of a co-
functionality (sharing GO annotations, involvement in the same
protein complex, etc.) than a direct GI between these genes. This

comes along with the other observations that – irrespective of the
method used to decompose the genetic interactome into modules –
GI tends to segregate into two categories following either a“within-
“or a“between-pathway”model (Figure 5). These two kinds of GIs,
based on structural properties of the network, have also different
particularities. The “between-pathway” GIs tend to be less evolu-
tionary conserved than the “within-pathway” GIs. Similarly, at a
lower level of abstraction, “between protein modules” PPIs tend
to be less conserved than “within protein modules” PPIs. Overall,
these data suggests that “within and between pathways” GIs may
have to be assessed using different approaches. This also suggests
that data used to predict GIs, such as PPIs, may also have to be
considered in their modular context.

The second path of improvement for predicting GIs consists in
considering GIs from a higher level of abstraction when attempt-
ing to predict GIs using data from distant species. This comes
from the observation that the overall level of GIs between bio-
logical processes appears to be much more conserved between
distant species than independent GIs between genes involved in

FIGURE 5 | Integration of the abstraction level III, IV, and V. Abstraction
level III shows protein–protein interactions (PPIs, blue edges) within highly
connected protein interaction modules. It represents also a pivot proteins
highly connected with proteins of two dense modules. The abstraction level
IV shows the connection of dense protein modules through genetic
interactions (GIs, red edges, between pathway model). It shows also the
approximate rate of within pathway and between pathways GIs observed in
yeast. The level V shows the clustering of dense modules in biological
processes and the link brought by GIs between these processes. The
strength of that link is more evolutionary conserved than individual GIs at
the abstraction level IV.
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different processes (Figure 5). Considering GIs at the level of
the biological processes (abstraction level V) instead of individ-
ual genes (abstraction level IV), may then significantly improve
our ability to accurately predict functional relationships between
genes and group of genes. Such approach may also open exciting
opportunities. Studying the monochromaticity of GI modules also
showed that the monochromatic within and between pathways
interactions were biologically biased. This suggests that biological
processes have either compensating or synergistic relationships
one with another, but also that many components of a given bio-
logical process have predominantly either compensating or syner-
gistic relationships. These data suggest that considering GIs from a
higher level of abstraction may also be a good avenue to specifically
identify synergistic and compensating/antagonistic relationships
between functional biological modules. This avenue is particu-
larly attractive when considering the need of such predictive tools
in translational research and more particularly when trying to
identify compensatory mechanisms leading to therapeutic drug
resistance.

The last proposed path to improve GI predictions, in particular
in higher organisms, is to try to better understand the structural
differences that may exist between lower/unicellular and higher
organisms. The fact that the within pathway model may be preva-
lent over the between pathway model in C. elegans, as opposed to
yeast, need to be confirmed and the reason why this trend might
be different in several organisms needs to be explained. In con-
clusion, while an extensive characterization of genetic networks in
yeast has brought precious information about the still mysterious
genetic interactome, its apparent plasticity requires similar studies
to be done in higher organisms. These studies would then open
the door to the design of well-informed and highly performing
predictors for GIs in higher organisms such as human.
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Integrating gene expression data with secondary data such as pathway or protein-protein
interaction data has been proposed as a promising approach for improved outcome
prediction of cancer patients. Methods employing this approach usually aggregate the
expression of genes into new composite features, while the secondary data guide this
aggregation. Previous studies were limited to few data sets with a small number of
patients. Moreover, each study used different data and evaluation procedures. This makes
it difficult to objectively assess the gain in classification performance. Here we introduce
the Amsterdam Classification Evaluation Suite (ACES). ACES is a Python package to
objectively evaluate classification and feature-selection methods and contains methods for
pooling and normalizing Affymetrix microarrays from different studies. It is simple to use
and therefore facilitates the comparison of new approaches to best-in-class approaches.
In addition to the methods described in our earlier study (Staiger et al., 2012), we have
included two prominent prognostic gene signatures specific for breast cancer outcome,
one more composite feature selection method and two network-based gene ranking
methods. Employing the evaluation pipeline we show that current composite-feature
classification methods do not outperform simple single-genes classifiers in predicting
outcome in breast cancer. Furthermore, we find that also the stability of features across
different data sets is not higher for composite features. Most stunningly, we observe that
prediction performances are not affected when extracting features from randomized PPI
networks.

Keywords: outcome prediction, breast cancer, classification, feature selection, networks, evaluation

1. INTRODUCTION
During the past decade several algorithms for predicting outcome
in breast cancer based on gene expression data were developed.
The first predictors used single-genes approaches that extracted
genes, which were differentially expressed between the “good”
outcome (metastasis-free for at least 5 years) and “poor” out-
come patients (metastasis within 5 years). Two prominent gene
signatures that were determined by such approaches are the
gene signatures by van ’t Veer et al. (2002) and Wang et al.
(2005). Although these gene signatures can predict outcome,
they vary substantially between data sets, and could thus not
provide a homogeneous biological interpretation of the data.
Moreover, Ein-Dor et al. (2005) showed in their study that
there exist many other signatures that perform as well as the
suggested gene signatures. This indicates that the signal is dis-
tributed over many genes which in turn makes it difficult to
pinpoint one predictive network or gene signature from expres-
sion data alone. One explanation for this lies in the data. Since

the underlying data are high-dimensional gene expression stud-
ies that contain many genes but only few patients, the extrac-
tion of predictor genes is prone to overtraining and may fit
the noise in the data rather than explaining the underlying
disease/phenotype.

Integrating gene expression data with secondary data such
as pathway or protein-protein interaction (PPI) data has been
proposed to address these problems and to improve outcome pre-
diction of cancer patients (Chuang et al., 2007; Lee et al., 2008;
Taylor et al., 2009; Abraham et al., 2010; Dao et al., 2010; Ma
et al., 2010). These methods infer disease or subtype specific sub-
networks and subpathways and use their status as features in
classification. In the context of classification we call these subnet-
works and subpathways composite features. In the single-genes
approaches, each gene is represented by a gene expression vec-
tor across the patients, composite features carry a vector in which
for each patient the expression values of the feature’s member
genes are aggregated. Employing composite features reduces the
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Network Inference

The article describes a novel framework for evaluating network inference methods in the context of breast cancer. The
inferred networks are specific for the outcome of breast cancer patients with respect to the endpoints “5-year distant
metastasis free survival” and “5-year recurrence free survival.” We tested the classification performance of classifiers
employing the inferred networks as features and compared the performances to classifiers employing single genes.
Our results show that the tested classifiers employing network-based features do not perform better than simple
single-genes classifiers on the breast cancer data. However, we find evidence that network inference methods are
more sensitive to the quality of the underlying data and are thus less noisy.

feature space. The underlying biological hypothesis that motivates
the data integration and aggregation of genes is that genes do
not act alone, and complex diseases, such as cancer, are caused
by the activation or inactivation of whole pathways and protein
complexes.

Previous studies exploring the use of such features were lim-
ited to few data sets with a small number of patients. Moreover,
each study used different data and evaluation procedures. This
makes it difficult to objectively assess the gain in classification
performance and shows the need for a standardized evaluation
procedure.

To overcome these problems we recently suggested a classifi-
cation protocol and showed on a breast cancer cohort of ∼900
samples that current composite-feature classification methods do
not outperform simple single-genes classifiers in predicting out-
come in breast cancer (Staiger et al., 2012). Similar findings have
been reported in (Cun and Fröhlich, 2012). Furthermore, we
showed that the gene signatures defined by composite features
are not more stable across different data sets than single genes.
We found that, unexpectedly, classifiers employing composite
features extracted from randomized PPI networks and pathway
databases performed as well as those employing features extracted
from unperturbed secondary data. In our evaluation we strictly
separated between the training and the testing data by using
different gene expression studies for the two steps.

Since the publication of the first composite classifiers, more
gene expression data has become available. In addition, proce-
dures to remove batch effects and merge data sets have become
available. This allows the creation of much larger breast cancer
gene expression data sets, resulting in more statistical power in
the analyses. According to the findings by Ein-Dor et al. (2006)
thousands of samples are required to generate stable gene lists
for classification. In our work we pooled twelve studies to form
a data set of 1600 patients. To account for the fact that we now
only have one data set, we employ a double loop cross valida-
tion (DLCV) protocol (Wessels et al., 2005) that also ensures
strict separation between the testing and training data. All clas-
sifications are performed by nearest mean classifiers (NMC). We
chose the NMC for the following reasons: (i) the NMC provides
performances comparable to other classifiers on expression data
(Wessels et al., 2005; Popovici et al., 2010), (ii) the NMC is a
simple base-line classifier, and (iii) compared to other non-linear
classifiers it offers an easier way to biologically interpret the use of
features.

In this work, we introduce the Amsterdam Classification
Evaluation Suite (ACES), an implementation of the DLCV
protocol. ACES is a Python package to objectively evaluate

classification and feature-selection methods and contains meth-
ods for pooling and normalizing Affymetrix gene expression
microarray data from different studies. In the provided software
package both schemes, the DLCV and the previously published
pipeline (Staiger et al., 2012), can be applied in the evaluation
procedure.

ACES is simple to use and therefore facilitates the compari-
son of new approaches to best-in-class approaches. In addition
to the methods described in (Staiger et al., 2012), we include
here the well-established prognostic gene signatures proposed
by van ’t Veer et al. (2002) and Wang et al. (2005), the recent
composite-feature selection method by Dao et al. (2010) and
two network-based gene-ranking methods by Morrison et al.
(2005) and by Winter et al. (2012). To analyse classification
performances we employ a much larger cohort of patients. In
contrast to the paired data set evaluation in Staiger et al. (2012)
we describe here an evaluation framework that makes use of
a DLCV, which facilitates the evaluation of classifiers on one
large data set. Furthermore, we provide a concise correction
for batch effects. In addition to the above-mentioned NMC,
the software package contains an implementation of the logistic
regression and the k-nearest neighbor classifier. To account for
new developments in the field we provide detailed information
on how to add new data to the package. Furthermore, we ded-
icate a tutorial on how to insert new feature-selection methods
into ACES.

Applying ACES to a large breast cancer cohort confirms the
findings of our previous study, that is, (i) none of the evaluated
methods performs better than a simple single-genes classifier; (ii)
features extracted by the methods are as stable as single genes, and
(iii) randomizing the secondary data source has no effect on the
classification performance.

The software package ACES, the normalization and merg-
ing package for gene expression data and all raw results can be
downloaded from http://ccb.nki.nl/aces/.

2. MATERIALS AND METHODS
2.1. CLASSIFICATION
Classifiers were trained by a double-loop cross validation (see
Figure 1). Since the gene signatures (Wang et al., 2005) and (van ’t
Veer et al., 2002) consist of a fixed set of genes, it was not necessary
to run the inner CV. Hence, only one classifier for each training
data set was trained employing all genes in the gene signatures.
All other feature selection methods provide a ranking of the fea-
tures. We trained classifiers with increasing number of features up
to 400 features. Features were added sequentially to the classifiers
according to the order in the ranking.
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The package provides the nearest mean classifier (NMC) with
four different scoring metrics based on the cosine distance and the
Euclidean distance. Here we use a metric (V1), that projects the
sample to the straight line connecting the two class means and
normalizes the value; points that project closer to the mean of
the poor outcome patients μpoor are scored as zero, points that

FIGURE 1 | Amsterdam classification evaluation suite (ACES). ACES
executes a double-loop cross validation (DLCV) to train classifiers with
features extracted by different feature extraction methods. The DLCV
consists of two nested fivefold cross-validations (CV), an outer and an inner
CV. 1, Data set D is split into five parts of which one is reserved as test data
and four parts are used as the training data for the outer CV loop. To
determine the best number of features an inner CV is executed. The blue
arrows denote the connection between the outer and the inner cross
validation. Inner CV (blue arrows): 2, The training data of the outer CV is
split into five parts, four parts serve as training data, the remaining part is
used as test data for the inner CV. 3, Features are determined with one of
the methods listed in the yellow box. The methods returns n ranked
features—either single genes or composite features. Note that due to
significance testing the number of returned features is not known in
advance for some of the methods. We set the maximum for n to 400.
4, Nearest mean classifiers (NMC) are trained by sequentially adding the
features according to their ranking. The index corresponds to the number of
features employed in the training. Thus, NMCi is an NMC trained on the top
i features. 5, The performance of the NMCs is tested on the reserved test
data of the inner CV. 6, Steps 3 and 4 are repeated until each of the five
splits was used as test data yielding five performances for each number of
features. The index k of the best performing NMC gives the number of
features that will be employed in the outer CV. Outer CV (green arrows): 7,
k features are extracted on the four training splits, i.e., the training data of
the outer CV. 8, An NMC with the top k ranked features is trained on the
training data. 9, The classifier’s performance is tested on the fifth split. 10,
After completing the outer CV, i.e., each split was employed once as test
data, we receive five performances and five sets of features.

project closer to the mean of the good outcome µgood patients
are scored as one. The three other metrics are described in
Supplement section 8. We also provide the code for a k-nearest
neighbor classifier and the logistic regression.

2.2. EXPRESSION DATA
We compiled a large cohort of breast cancer samples from
NCBI’s Gene Expression Omnibus (GEO) (see Table 1) as it
was suggested in (Györffy and Schäfer, 2009). We only took
samples from the U133A platform into account and removed
duplicate samples, that is, samples that occur in several stud-
ies under the same GEO id. Array quality checks were executed
for all samples belonging to the same study by the R package
arrayQualityMetrics. Due to high memory demands of this
package, studies containing more than 400 samples had to be
divided into two parts. Samples that were classified as outliers
in the RLE or NUSE analysis were discarded. Finally, all sam-
ples across all studies were normalized together using R’s justRMA
function yielding for each sample and each probe a log(intensity)
value. This normalization also included a quantile normalization
step. Subsequently, probe intensities were mean centered, yielding

for each sample and each probe p a log( intensity
μ(intensityp)

) value.

We found batch effects within single studies, where samples
have been collected from different locations and batch effects
between studies. Specifically for breast cancer, samples also form

Table 1 | Datasets.

Label Data set Geo accession No. of No. of

(GSE) poor good

DMFS

Ivshina 4922 6 29
Hatzis-Pusztai 25066 102 48
Desmedt-June07 7390 36 146
Miller 3494 7 33
Schmidt 11121 24 145
Loi 6532 15 32

Total 190 433

RFS

Ivshina 4922 30 72
Hatzis-Pusztai 25066 102 48
Desmedt-June07 7390 56 127
Minn 2603 21 44
Miller 3494 21 68
WangY-ErasmusMC 2034 88 169
Schmidt 11121 24 145
Pawitan 1456 33 114
Symmans 17705 37 187
Loi 6532 24 33
Zhang 12093 9 112
WangY 5327 10 42

Total 455 1161

Shown are the original studies from which the two data sets U133A-DMFS and

U133A-RFS were compiled. The patient labels “good” and “poor” correspond

to 5 year distant metastasis free survival (DMFS) and recurrence free survival

(RFS).
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batches according to the five subtypes of breast cancer: lumi-
nal A, luminal B, Her2 enriched, normal like and basal like. To
account for these effects we employed R’s combat, where the can-
cer subtype was modeled as an additional covariate to maintain
the variance associated with the subtypes. To do so we needed to
stratify the patients according to the subtype. Since this variable is
not always available in the annotation of the patients, we predict
the subtype employing the PAM50 marker genes as documented
in R’s genefu package.

Principal component analysis of the batch corrected data
revealed pairs of samples with a very high correlation (>0.9).
Those pairs were regarded as replicate samples. For each pair of
replicate samples one sample was removed randomly. Affymetrix
probe IDs were mapped to Entrez Gene IDs via the map-
ping files provided by Affymetrix. Only probes that mapped to
exactly one Gene ID were taken into account and probes start-
ing with AFFX were discarded. If an Entrez Gene ID mapped
to several Affymetrix probe IDs, probes were considered in
the following order according to their suffix (Gohlmann and
Talloen, 2010): “_at,” “s_at,” “x_at,” “i_at,” and “a_at.” When there
were still several probes valid for one Gene ID, the Affymetrix
probe with the higher variance of expression values was
chosen.

The patients’ class labels corresponding to recurrence free or
distant metastasis free survival were calculated with respect to a 5-
year threshold. The final cohort is shown in Table 1. We derived
two data sets: one labeled according to recurrence free survival
(RFS) and one labeled according to distant metastasis free sur-
vival (DMFS). Note, that the DMFS data set is a subset of the RFS
data set.

We provide all of the code, data, secondary data and the pro-
cedure for normalization, sample selection and batch correction
as a package at http://ccb.nki.nl/aces/.

2.3. SECONDARY DATA
2.3.1. KEGG
We collected all pathway information for Homo sapiens (hsa) from
the KEGG database (Kanehisa et al., 2010), version December
2010. The considered pathways are metabolic pathways, path-
ways involved in genetic information processing, signal transduc-
tion in environmental information processing, cellular processes
and pathways active in human disease and drug development.
We obtained 215 pathways. In this way we obtained a net-
work composed of 200 pathways containing 4066 nodes and
29972 interactions of which 3249 nodes are also contained in the
expression sets.

2.3.2. MsigDB
As second pathway database we used the C2 collection of the
MsigDB (Subramanian et al., 2005) (version 3.0), which was also
used in Lee et al. (version 1.0). It contains gene sets from pathway
databases such as KEGG, gene sets made available in scientific
publications and expert knowledge. We obtained 3272 gene sets
of which 3000 could be entirely or partially covered by genes in
the expression data. The MsigDB does not contain any edges,
thus this database was only usable for the algorithm by Lee et al.
(2008).

2.3.3. HPRD9
The protein-protein interactions were derived from the litera-
ture. We employed the HPRD version 9 (Prasad et al., 2009).
The HPRD contains 9231 proteins and 35853 interactions. The
protein ids were mapped to their corresponding Entrez Gene
IDs. There are 7728 genes contained in both the HPRD and the
expression sets.

2.3.4. OPHID/I2D
The OPHID/I2D database, downloaded in April 2011, combines
protein-protein interactions from BIND, HPRD and MINT as
well as predicted interactions from yeast, mouse and C. elegans.
The database contains 12643 nodes and 142309 edges. 10018 of
the nodes are also present in the breast cancer studies exam-
ined here.

2.3.5. PPI network curated by Chuang et al. (NetC)
Chuang et al. (2007) gathered a PPI of 57228 interactions and
11203 nodes of which 8572 are contained in the cohort. The
source of the interactions are yeast two hybrid experiments and
interactions predicted from co-citation.

2.4. FEATURE SELECTION METHODS
Let E be the expression data matrix where Epj is the expression of
gene j in patient p. The set of genes is denoted by G. We denote the
patient’s class label by cp where cp = 0 indicates a “good” outcome
patient and cp = 1 indicates a “poor” outcome patient. Similarly,
we denote the patient’s survival time as tp ∈ R.

A PPI network is defined as a graph N = (G, E) where G is
the set of genes and edges E denote interactions between genes. A
pathway is an unsorted set of genes G′ ⊆ G.

2.4.1. Gene signatures Wang et al., 2005 and van ’t Veer et al., 2002
We included two gene signatures for predicting distant metastasis
free survival based on gene expression data, the signature by van ’t
Veer et al. (2002) and by Wang et al. (2005). Each gene j is used
as one feature in the classifier and the value for each of these fea-
tures is the gene’s expression value for a patient p. Both signatures
are actually probe signatures. The signature by Wang et al. (2005)
(Erasmus) was determined on the Affymetrix U133A array, thus
all probes are also present in the two data sets we generated. The
76 probes map to only 66 unique geneIDs.

The signature by van ’t Veer et al. (2002) (NKI) was deter-
mined on an Agilent platform. This required the probes
to be matched to gene IDs and then mapped to the data.
Here we employed the gene ID collection from the MsigDB
‘VANTVEER_BREAST_CANCER_POOR_PROGNOSIS’ path-
way as gene signature. From this pathway 41 genes were also
present in the two data sets.

2.4.2. Single-genes and random genes—the benchmark methods
The single-genes approach ranks all genes G by their t-statistic
between the good and poor outcome patients. The top n genes are
used in an NMC and the expression values of the top n genes serve
as the feature values for each patient. To determine the genes to be
employed in a random single-genes classifier we simply randomly
selected n genes from the total set of genes.
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2.4.3. GeneRank (Morrison et al., 2005) and Winter et al., 2012
The GeneRank algorithm (Morrison et al., 2005) and the method
by Winter et al. (2012) are based on Google’s page rank algorithm
(Page et al., 1999). The vector of gene ranks r is calculated as
follows:

(I − dWtD−1)r = (1 − d)r0 (1)

where I is the identity matrix, Wt is the transpose of the PPI
network’s adjacency matrix, D = diag(deg(j) + 1) for j ∈ G and
r0 is the vector of initial ranks. The vector r contains for each
gene the resulting rank. The degree of genes was incremented by
one to allow singleton genes to be included in the calculation.
The parameter d is called the damping factor and regulates the
influence of the network on the rank. If d = 1 gene ranks are
determined by the network only whereas with d = 0 each gene
keeps its initial rank.

As initial ranks for GeneRank we chose the absolute difference
of average expression between the “poor” outcome patients and
the “good” outcome patients, as it was suggested in the origi-
nal paper. Additionally, we calculated classification performances
with the initial ranks being the t-statistic between the two patient
groups.

The original Winter method proposed the correlation coeffi-
cient between the survival times of the patients and the genes’
expression values. Additionally, we considered the correlation
between the patients’ class labels.

2.4.4. Chuang et al., 2007
This method determines subnetworks with the aim to distin-
guish between “good” and “poor” outcome patients. The dis-
criminatory power of a subnetwork is evaluated by the mutual
information score between the discretized average gene expres-
sion (Equation 2) and the patients’ class labels. Given a subnet-
work induced by G′ ⊆ G, its activity score a for a patient p is
given by

aG′,p =
∑
j ∈ G′

epj√|G′| (2)

To calculate the mutual information of a subnetwork we need to
calculate the activity scores for each patient and subsequently dis-
cretize them. Let a′ be the vector of discretized activity scores
for the network induced by G′ and let c be the vector of class
labels. The mutual information score for the subnetwork is
defined as

sMI(a′, c) =
∑
x ∈ a′

∑
y ∈ c

ρ(x, y) log
ρ(x, y)

ρ(x)ρ(y)
(3)

where ρ denotes the joint and marginal probability density
functions.

All subnetworks are subjected to statistical tests assessing the
significance with respect to the local and global null distribution
of the activity scores and with respect to the null distribution of
mutual information scores. We used the java package PinnacleZ
as an implementation of the algorithm. PinnacleZ performs a
z-normalization prior to the subnetwork search, which is depre-
ciated in a fivefold cross validation. Therefore, we implemented a
patch that skips this normalization step.

2.4.5. Taylor et al., 2009
This algorithm identifies differentially coordinated hub proteins
in the PPI network. As measure for coordination the Pearson
correlation is used. The coordination of a hub and one of its inter-
actors is defined as the Pearson correlation PC(h, i) between the
hub’s expression h and the interactor’s expression i. To assess the
different coordination of a hub across the two patient groups the
average hub difference is calculated

d(h) =

∑
i ∈ n(h)

|PC0(h, i) − PC1(h, i)|

|n(h)| (4)

given the two sample classes, indicated by the superscript 0 and
1, n(h) denotes the set of neighbors. All hubs are subjected to a
statistical test, testing the significance of the hub difference. Only
hubs with a significant hub difference are selected as features.
Feature values for each patient are given by the average difference
of expression between the hub and its interactors.

2.4.6. Dao et al., 2010
This method defines subnetworks that obey two criteria: they are
(i) maximally densely connected and (ii) show deregulation in at
least L poor outcome patients. To decide whether a gene is deregu-
lated the expression matrix is discretized, i.e., each pair of patient
and gene is assigned one of the three signs {+,−, 0}, where +
means the gene is overexpressed, − indicates underexpression and
0 indicates that patient does not show an aberrant gene expres-
sion with respect to the cohort. Given a PPI network and a gene
expression data set the algorithm first enumerates all connected
subnetworks that obey the above-mentioned two criteria such
that no subnetwork is a subgraph of any other subnetwork. The
subnetworks are ranked based on their information gain. The
parameter L was set such that at least 5% of the poor outcome
patients were covered by each subnetwork. In the classification
step these subnetworks served as features. To classify patients the
average expression across all member genes of each subnetwork
was calculated for each patient to obtain feature values.

2.4.7. Lee et al., 2008
This method extracts sub-pathways as features from a pathway
database. The member genes of each pathway are ranked by their
t-statistic between the “good” and “poor” outcome patients. Then
the top n genes are combined by Equation 2 and their com-
bined expression is again tested by the t-statistics. The search for
the subpathway starts with the highest ranking gene and succes-
sively adds the next genes in the ranking as long as the t-statistic
increases.

3. TUTORIALS
To enable a wider use of ACES and to keep the package flexible
to new developments in the field we provide tutorials on how to
include more expression data, PPI networks and pathway data.
Further, we dedicate one tutorial to the topic of including more
feature extraction methods, including methods that are developed
in programming languages different from Python, and show how
to create a wrapper that links the new software to ACES.
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3.1. INTEGRATING NEW DATA
We created Python objects to represent the expression data,
PPI networks and pathways. The class ExpressionDataset con-
tains the expression matrix, patient labels and the patient class
labels. PPI networks are represented by the class EdgeSet. Each
edge is represented by a frozenset containing the start and
end node of the edge. Weights on the edges can be stored as a
dictionary in EdgeSet.edgeweights, where the key is the edge
and the value is the weight. Pathways are represented by the class
GeneSetCollection. The whole pathway database is represented
as a list of lists, GeneSetCollection.geneSets, where each path-
way itself is stored as a list of genes. The names of the pathways
are stored as a list in GeneSetCollection.geneSetsNames.

3.1.1. Expression data
The Python script NewDatasets.py provides code and infor-
mation on how to convert external data files into an
ExpressionDataset and subsequently saves it in hdf5 format.

3.1.2. Network and pathway data
New PPI data should be provided as SIF formatted file and can be
read in by EdgeSet.ReadSIF. Similarly pathway data can be read
in by GeneSetCollection. ReadGeneSetCollection. The file for-
mat is as follows. Each line contains one gene set, and genes in a
gene set are space-separated. If you want to attach names to each
gene set, insert a line starting with “NAME” directly before the
gene set. Examples are provided in the folder “experiments/data”
in the ACES package.

3.2. INTEGRATING A NEW FEATURE SELECTION METHOD
We assume that any new feature selection method written in some
programming language is provided as software that is called from
command line. We further assume that all input is read in from
files and all output is written to files.

To integrate a new feature selection method you will need to
provide the code for the two classes Feature ExtractionFactory
and FeatureExtractor. The FeatureExtractorFactory deter-
mines the features on a training data set and a secondary data
source, whereas the FeatureExtractor maps the input genes
from the data set to the feature space and scores each feature for
each sample in the data set. We clearly divided between these two
classes since they correspond to different steps in the pipeline.

3.2.1. The FeatureExtractorFactory
In the FeatureExtractorFactory the code that defines features is
provided. When the actual feature extraction algorithm is given
as an independent software package in a different language the
FeatureExtractionFactory serves as a wrapper to connect the
software to ACES. To initialize a new FeatureExtractorFactory

the location of the executable of the software is passed to the
constructor—the __init__ function:

def __init__(self, softwareExecutable):
self.executable = softwareExecutable

The method train receives all necessary data instances to
extract the features. To ensure that several instances of the
FeatureExtractionFactory can be run at the same time on

the same machine we first create a temporary directory to
which the input files are written. The input files can be
directly created from the data instances, which contain func-
tions to write the data as space- or tab-separated files. The
format for pathways is as follows: each line contains all genes
belonging to one pathway separated by spaces. The name of
each pathway, if present in the GeneSetCollection instance, is
printed in the line preceding the member genes and is indi-
cated by the keyword “NAME.” Instances of the type EdgeSet

can be written to a space-separated sif-file or a file where
each line consists of the start node, end node and the edge
weight. The function ExpressionDataset.writeToFile writes
the gene expression matrix to a tab-separated file, while all
patients’ class labels are saved in a separate file by the function
ExpressionDataset.writeClasslabels.

In the example below the expression matrix is written to the
file “matrix_file.txt,” the patients’ class labels are written to “class-
labels_file.txt” and the network is written to “network_file.sif”:

def train(self, dataset, network):
tempdir = tempfile.mkdtemp()

MatrixFilename = os.path.join(tempdir,
’matrix_file.txt’)

dataset.writeToFile(MatrixFilename)
ClassesFilename = os.path.join(tempdir,

’classlabels_file.txt’)
dataset.writeClasslabels(ClassesFilename)
NetworkFilename = os.path.join(tempdir,

’network_file.sif’)
network.writeSIF(NetworkFilename)

Next, we create the command that calls the executable with the
input files. Note that the executable lies in a different directory
than the input files. To achieve that also the output is written to
the temporary directory we either need to copy the executable to
the new location or create an option for the output in the exe-
cutable. The shutil module provides several functions for copy-
ing files to a different location from within python. For now, we
assume the executable is located in the temporary directory and
the output is written to a file called “output.txt” that contains the
features. The list args contains the complete call of the executable.
You can check the correctness by print ’ ’.join(args). The
command is executed as subprocess in the temporary directory:

def train(self, dataset, network):

tempdir = tempfile.mkdtemp()

...

args = []
args.extend([yourCompiler+’ ’+os.path.basename

(executable)])
args.extend([MatrixFilename, ClassesFilename,

NetworkFilename])

proc = subprocess.Popen (args, cwd=os.path.
dirname(tempdir))

Finally, the generated output.txt needs to be read in and for-
matted as a list of lists, where each sublist contains the genes
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belonging to one feature. This is accomplished by modules =

readOutput(tempdir+’/output.txt’), which must be provided
by the user. In ACES we assume that the genes belonging to the
features are not given by their name but by their index with
respect to the data set used in the function train. Thus, if genes
are given by name in the output file, we need to map them to their
indices:
def train(self, dataset, network):

...

modules = readOutput
(tempdir+’/output.txt’)

geneLabelsToIndex = dict(zip(dataset,
geneLabels, xrange(len(dataset.
geneLabels))))

features = [frozenset([geneLabels
ToIndex[gene] for gene in module if
gene in geneLabelsToIndex]) for module
in modules]

return NewFeatureExtractor
(dataset.geneLabels, features)

The output of the FeatureExtractorFactory is an instance of
the FeatureExtractor that maps an expression data set with the
same genes and the same ordering of the genes as the data set
employed in the train function to the feature space.

3.2.2. The FeatureExtractor
In the FeatureExtractor an input data set is mapped to the fea-
ture space and each feature is scored for each patient of the data
set. Features are defined over the indices of the genes in the data
set employed to determine the features. The FeatureExtractor is
initialized with the gene space and the features it maps to. Only
data sets with the same genes and the same ordering of genes can
be mapped to the features:

def __init__(self, geneLabels, features):

self.geneLabels = geneLabels
self.features = features
self.validFeatureCounts = range(1,

len(self.features) + 1)

The method extract maps the data to the first k features. We
ensure here that there are k features and that the data set is defined
on the correct genes:

def extract(self, dataset, k):

assert all(dataset.geneLabels ==
self.geneLabels)

assert k in self.validFeatureCounts

return numpy.transpose(numpy.array ([self.score
(dataset.expressionData, feature)
for feature in self.features[:k]]))

The function score attaches a score to each feature for each
patient. In the case of single genes this would be the gene’s expres-
sion value for the patients. In case of a feature consisting of
multiple genes the function score needs to provide information

on how to merge the genes’ expression to one value. We show
here an example of how to average over the genes’ expression that
belong to the same feature:

@staticmethod
def score(expressionData, feature):

return numpy.sum(expressionData[:, list(feature)],
axis = 1) /len(feature)

To store and reload a feature extractor efficiently, we provide a
function toJsonExpression which stores all the information in a
json document:

def toJsonExpression(self):
return json.dumps((self.__class__.__name__,

[geneLabel for geneLabel in self.geneLabels],
[sorted(feature) for feature in self.features]))

The full example code is shown in Supplementary section 6.

4. RESULTS AND DISCUSSION
4.1. NETWORK AND PATHWAY-BASED METHODS DO NOT

OUTPERFORM THE BENCHMARK METHODS
We evaluated the performances of nearest mean classifiers
(NMC) employing the benchmark feature-selection methods
“single genes,” “random genes” and gene signatures specific for
breast cancer outcome, “NKI” and “Erasmus,” and compared
them with the performances of classifiers employing composite
features.

All classifiers were trained in the double-loop cross validation
(DLCV) procedure described in Figure 1. The DLCV consists of
two nested fivefold cross validations. In the outer CV we deter-
mine the training and testing data. From the inner CV we obtain
the parameters for the outer CV’s classifier and feature selec-
tion method (number of features and the damping factor for the
Page Rank based algorithms Morrison et al., 2005; Winter et al.,
2012). Once the inner CV is completed we use its best performing
parameters to train the outer CV classifier. Thus, although hav-
ing only one initial data set for training and evaluating classifiers,
we strictly separate the data employed in these two steps, which
ensures an unbiased evaluation.

Figures 2, 3 and Supplementary figure S1 show the results
for the NMC using the V1 metric. There are no differences
in performances between the different versions of the NMC.
From this we conclude that the distance measure does not play
a major role (the raw data for all NMCs can be downloaded
at http://ccb.nki.nl/aces/). None of the composite-features clas-
sifiers significantly outperforms the single-genes classifier (see
Table S1). In the Supplement sections 2.1–2.19 we show that
changing the number of features does not lead to a change
in performance. The feature selection proposed by Winter
et al. (2012) and the GeneRank algorithm are also influenced
by the damping factor. Supplementary section 3, however,
shows that the classifiers performances do not vary signifi-
cantly across different damping factors. This suggests that the
network only has a marginal influence on the classification
result.
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FIGURE 2 | Classification results of the NMC V1 on the DMFS data

set. The number of features was trained in the inner CV. Shown are
the five performances received in the outer CV. The individual AUC
values are shown as blue dots. The red lines indicate the mean
performances. The gray area indicates the performance interval of the
single-genes classifier. SG, Single genes; L, Lee; C, Chuang; T, Taylor;

D, Dao; W, Winter using association between class labels and gene
expression as initial gene ranks; W-time, Winter using association
between survival times and gene expression as initial gene ranks; GR,
GeneRank with absolute expression difference between “good” and
“poor” outcome groups as initial rank; GR-Tstat, GeneRank employing
the t-statistic as initial gene ranks.

FIGURE 3 | Classification results of the NMC V1 on the RFS data set.

Description as in Figure 2. SG, Single genes; L, Lee; C, Chuang; T, Taylor;
D, Dao; W, Winter using association between class labels and gene
expression as initial gene ranks; W-time, Winter using association between

survival times and gene expression as initial gene ranks; GR, GeneRank
with absolute expression difference between “good” and “poor” outcome
groups as initial rank; GR-Tstat, GeneRank employing the t-statistic as
initial gene ranks.

The method by Dao et al. (2010) performs worse than the
benchmark methods. The reason might be that not necessarily
all patients are considered during extraction of predictive net-
work markers. In the algorithm a minimum number of “poor”
outcome patients is required to be covered by each network.
However, there is no constraint reinforcing that each patient is
covered by the networks. This allows that the same group of poor
outcome patients determines all the features and good outcome
patients are neglected in this step. Thus, valuable information
about patients might be lost, which, in turn, leads to higher
misclassification rates.

Previously, we have shown that classifiers employing the
features by Taylor et al. (2009) perform worse than the
single-genes classifiers (Staiger et al., 2012). In our earlier
interpretation of the algorithm each edge was regarded as a
single feature. This led to an enormous feature space and
to poor classification performances. Here, we keep the selec-
tion of hubs and their interactors, but in contrast to the
previous classifier, we score each hub by the average expres-
sion difference between itself and all of its interactors. This
decreases the feature space and leads to much better classifica-
tion results. Still, the method does not outperform the bench-
mark methods.

4.2. NETWORK AND PATHWAY-BASED METHODS DO NOT PRODUCE
MORE STABLE GENE SETS THAN THE BENCHMARK METHODS

In addition to the claim that using composite features increases
classification performance, it is often stated that these features are
by far more stable than single genes. Here, we analyze the overlap
of composite features by means of Fisher’s exact test and compare
them to the overlap of single genes. Since composite features con-
sist of many genes we considered all genes belonging to the k best
performing features. Thus, the overlap of two composite-feature
sets is determined by the overlap of the corresponding gene sets.
Composite features are calculated from PPI and pathway data,
which contain different numbers of genes and fewer genes than
there are genes in the expression data. These differences have to
be taken into account when comparing the overlap between gene
sets. For example, when determining two composite feature sets
from the KEGG database for two different data sets the overlap
between the two sets is very likely to be higher than generat-
ing two feature sets for the same data on the I2D network due
to the difference in size of the two PPIs. Fisher’s exact test takes
these differences into account. We illustrate the use of the test in
Supplementary section 7. Moreover, to compare the overlap of
the composite features’ gene sets to single genes we have to cor-
rect for the size of the composite features since a single composite
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feature can contain many genes. For each training data set and
each feature selection approach we obtain the n highest ranking
features containing m genes. We then determine the size-matched
highest scoring single genes on the same training data set of the
outer CV.

Figures 4, 5 show that none of the composite features produces
more stable gene sets than the single genes. In many cases the
control-for-size single genes are more stable than the correspond-
ing composite features. The overlap of randomly drawn genes is
very low, as expected. Although their performance in classifica-
tion is equally good as single genes, the experiment clearly shows
that overlap and performance in classification are not related to
each other. The method by Taylor et al. (2009) produces highly
stable gene sets. The method selects hub proteins and a feature
consists of the hub and all of its interactors. Thus, a large number
of genes contribute to a feature. This seems to be enough to ensure
a high overlap as the corresponding box of the control-for-size
single genes also indicate highly stable gene sets.

From the results we can not conclude that composite-features
ensure more stable gene signatures from expression data than
single-genes classifiers where the genes were selected on an indi-
vidual basis, given that a sufficiently large number of genes are
selected.

4.3. RANDOMIZATION OF THE SECONDARY DATA SOURCES DOES NOT
DECREASE CLASSIFICATION PERFORMANCES OF NETWORK AND
PATHWAY-BASED METHODS

To find out whether the quality of the PPI networks have a major
influence on the performance we executed randomization exper-
iments. The nodes in each network were shuffled. By this the
network topology stayed the same, but nodes that were origi-
nally hubs may now have only few neighbors and nodes with
few neighbors might become hubs. For each PPI network we

did this random shuffling 25 times, resulting in 25 PPI net-
works. Each network dependent method was then executed on
each of these 25 networks using the DLCV ACES protocol. Thus,
the network provides only non-sensical biological information,
which in turn should hinder the methods to extract useful fea-
tures. We would expect that the classification performances drop
dramatically when employing these features.

Figures 6, 7 show the results for the network dependent meth-
ods executed on the shuffled I2D PPI network, the performance
interval employing the original networks is depicted in gray.
Figures S2, S3 show the results for the randomized HPRD9.

The methods by Chuang et al. (2007), Dao et al. (2010) and
Taylor et al. (2009) do not always find features for some combina-
tions of data set and randomized networks, i.e., the algorithms do
not return features. This indicates that these methods are indeed
sensitive to the quality of the network data.

The method by Taylor et al. (2009) searches for significantly
altered hubs across the two conditions. Shuffling the nodes in the
networks disrupts the connection between significantly altered
genes and hubs. Previous hub genes might no longer be hubs
or may be shifted to a neighborhood in which their interactors
do not show high (anti-)correlation with it. Under these circum-
stances the method cannot define features. A confirmation of
this effect provides the analysis of the features. Supplement sec-
tion 5 clearly shows that the algorithm finds fewer features with
fewer member genes on the randomized PPI networks. The effect
becomes stronger when a small network is randomized (cf. Taylor
on I2D and HPRD9) or when the data set size is small (cf. Taylor
on the DMFS data set and the RFS data set). Thus, searching for
altered hubs might offer a good biological interpretation of the
data in context of outcome prediction. However, it is important to
note that the algorithm is sensitive to the network size and data set
size. When features can be defined by the method, they perform

FIGURE 4 | Overlap of the gene sets corresponding to the best

number of features on the DMFS data set. Genes belonging to the
best number of composite features were extracted for each training set
(outer CV). The overlap between the gene sets was calculated with

Fisher’s exact test. The corresponding number of top ranking single
genes for each training data set were drawn and the overlap was
calculated between these gene sets to control the influence of the
gene set sizes.
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FIGURE 5 | Overlap of the gene sets corresponding to the best number of features on the RFS data set.

as well in classification as features determined on the real PPI net-
works. Thus, the major factor contributing to a good classification
performance is the expression data.

Chuang et al. (2007) determines subnetworks whose mutual
information between the member genes’ expression and the class
labels is high. This link is certainly disrupted by randomizing
the PPI network. The algorithm includes statistical tests to only
return significantly altered subnetworks, which should prevent
returning randomized features. Thus, for some combinations of
randomized networks and expression data no subnetworks can
be found whose mutual information score is significantly high.
However, if features are found we observe that the classifica-
tion performance is as good as with features extracted from the
real networks. Moreover, Supplement section 5 shows that the
number of features increases on the randomized PPI networks.
One reason for that could be that many genes are involved in
breast cancer and many of them also show a significant differ-
ential expression (Ein-Dor et al., 2005). Thus, by shuffling the
nodes there is still a high chance that subsets of these genes again
form a subnetwork that is then identified by the algorithm as
a feature. Since genes are no longer grouped according to their
pathway, the information is scattered over the network. Thus,
features extracted from randomized networks with the method
by Chuang et al. may contain a lot of redundant information.
As above this leads to the conclusion that the main factor in
classification is the expression data.

In contrast to the above mentioned algorithms, the features
by Dao et al. (2010) perform significantly worse in classification
when they were determined on random PPI networks. We also
observe that no features are found for some combinations of
input data and in general fewer features are found (Supplement
section 5). Since it is required in the method that a certain per-
centage of “poor” outcome patients show deregulation for each
of the features, the number of member genes in the features
can not decrease. The method searches for maximally densely

connected subnetworks that cover at least 5% of the poor out-
come patients. As noted before, looking for features that only
describe one condition and do not consider information about
all training samples might lead to a poor performance. The effect
is worsened when giving the algorithm non-sensical biological
information, as we do with the randomized networks. However,
comparing the results obtained on the I2D network and the
HPRD9 network and on the two different expression data sets,
it seems that this effect is also linked to network and data set
size. Since the methods by Taylor et al. (2009) and Dao et al.
(2010) are more sensitive to the underlying quality of the data
we can conclude that they are less prone to extract noise from the
underlying data.

Also the GeneRank algorithm (Morrison et al., 2005) and the
method by Winter et al. (2012) do not suffer from randomizing
the networks. Both methods determine the rank for each gene by
an initial rank and the diffused ranks of the genes in the vicin-
ity. Having many differentially expressed genes in a network may
contribute to selecting genes that can well distinguish between the
patient classes. This is also confirmed by the fact that the damp-
ing factor, and thus the network, has only a minor influence on
the classification when employing real PPI networks (see Section
3 in the supplement).

4.4. COMPOSITE FEATURES EXTRACTED FROM RANDOMIZED
NETWORKS ARE LESS STABLE

In previous studies the overlap between features, i.e., in case of
composite features the genes contained in the features, has been
used as an indicator for biological meaningful features. When
genes are chosen as features or as a part of composite features on
different data sets, they might contain valuable biological infor-
mation. We now analyze the overlap between features generated
on the randomized PPI networks. For each training data set in
the outer CV we determined the best performing features on one
randomized network. We then calculated the overlap between
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FIGURE 6 | Classification performance when employing randomized

networks, I2D and DMFS data. The nodes in the I2D PPI network were
shuffled 25 times yielding 25 different randomized networks. Each network
dependent feature selection method was applied to each of the randomized
networks and classifiers were trained using the double-loop CV protocol. The

gray area indicates the AUC value interval employing the original PPI
network. Panel (A), Chuang; panel (B), Dao; panel (C), Taylor; panel (D),
GeneRank with absolute expression difference between “good” and “poor”
outcome groups as initial rank; panel (E), Winter using association between
survival times and gene expression as initial gene ranks.

the genes contained in the features for the five training data sets
as above. Thus, we only compared features that were generated
using the same algorithm and the same randomization of the net-
work. The boxes in Figures 8, 9 summarize all values across the
25 randomizations. Overlap for gene sets determined on random

networks is always significantly worse than the overlap of features
determined on the real networks when employing the method
by Dao et al. (2010). Apparently, looking for maximally densely
connected subnetworks is an adequate mathematical translation
to define marker genes for breast cancer outcome. Taylor always
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FIGURE 7 | Classification performance when employing randomized

networks, I2D and RFS data. Description as in Figure 6. Panel (A), Chuang;
panel (B), Dao; panel (C), Taylor; panel (D), GeneRank with absolute

expression difference between “good” and “poor” outcome groups as initial
rank; panel (E), Winter using association between survival times and gene
expression as initial gene ranks.

produces an equally stable overlap. The only exception on the
NetC PPI network is due to the small number of features that
could be determined on this network. This confirms that the
high overlap is merely due to the algorithm. Selecting many
genes leads to stable gene sets. The results for Chuang, Winter
and the GeneRank algorithm are mixed. Here, the stability of
features seems to depend on the combination of network and
expression dataset. To conclude, we showed that randomizing the

subnetworks leads to a loss of information that is important to
extract gene sets that are stable across different data sets. However,
the lost information is irrelevant for the classification as shown in
the previous section.

4.5. SUMMARY
Previously many feature selection methods were put forward
for better classification of breast cancer outcome. The novel
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FIGURE 8 | Overlap of the gene sets determined on the randomized PPI networks, DMFS data set. The overlap between the gene sets was calculated
with Fisher’s exact test. The blue boxes show the overlap of the corresponding features determined on the original networks.

FIGURE 9 | Overlap of the gene sets determined on the randomized PPI networks, RFS data set. The overlap between the gene sets was calculated with
Fisher’s exact test. The blue boxes show the overlap of the corresponding features determined on the original networks.

methods claimed that integrating gene expression data and
secondary data, such as PPI networks and pathway data,
improves the classification performance and provides more sta-
ble features. We evaluated the methods based on two large
breast cancer data sets and a variety of PPI networks and
pathway databases. Our results do not confirm any of these
claims.

To facilitate an easy and unbiased evaluation of more
methods on more networks, pathways and expression data,

we have proposed the Amsterdam Classification Evaluation
Suite (ACES), a novel evaluation framework. In the imple-
mented pipeline, we strictly separate between the training data
and the testing data by employing a double-loop cross val-
idation procedure. We provide tutorials which make it very
easy to extend the described pipeline with additional data.
Furthermore, we provide a tutorial and in depth instructions
how to include new feature selection methods. ACES is freely
available.
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We conclude that it remains difficult to evaluate whether the
composite-features selection methods draw any useful informa-
tion from the secondary data sources, such as PPI networks and
pathway data. We showed here and in our previous work (Staiger
et al., 2012) that the methods by Chuang et al. (2007), Winter
et al. (2012) and Lee et al. (2008) and the GeneRank algorithm
(Morrison et al., 2005) do indeed perform as well on random-
ized PPI networks as on the real PPI networks. In contrast, the
methods by Dao et al. (2010) and Taylor et al. (2009) are more
dependent on the subnetwork structure when selecting features
and fail to provide useful features on randomized network data.
However, we also observe that in some cases these two methods
perform worse on the original PPI networks than the single-genes
classifiers, suggesting that some specific combinations of gene
expression data and network data delivers less information for
the classification task than the expression data alone. This sug-
gests that the most predictive power for outcome is derived from
the gene expression data and that the PPI network and path-
way data only provides some means to reduce the feature space
but adds little to the predictive accuracy of the classifiers. To this
end it is extremely difficult to decide whether networks in gen-
eral add little information to the classification task or whether
the tested methods are not able to successfully leverage this
information.

There are two independent goals when creating feature selec-
tion methods for outcome prediction in breast cancer: (i) to
correctly classify the patients and (ii) to find genes or combi-
nations of genes that carry some biological meaning. We have
shown that currently the first goal can best be achieved by apply-
ing simple single-gene approaches and not by applying elaborate
methods that use network or pathway data. However, for the def-
inition of gene signatures specific for certain phenotypes, such
methods seem to be more reliable to extract less noisy features—
and thus possibly biological meaningful genes—than single-gene
approaches.
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Accurate inference of causal gene regulatory networks from gene expression data
is an open bioinformatics challenge. Gene interactions are dynamical processes and
consequently we can expect that the effect of any regulation action occurs after a certain
temporal lag. However such lag is unknown a priori and temporal aspects require specific
inference algorithms. In this paper we aim to assess the impact of taking into consideration
temporal aspects on the final accuracy of the inference procedure. In particular we will
compare the accuracy of static algorithms, where no dynamic aspect is considered, to that
of fixed lag and adaptive lag algorithms in three inference tasks from microarray expression
data. Experimental results show that network inference algorithms that take dynamics
into account perform consistently better than static ones, once the considered lags are
properly chosen. However, no individual algorithm stands out in all three inference tasks,
and the challenging nature of network inference tasks is evidenced, as a large number of
the assessed algorithms does not perform better than random.

Keywords: gene network inference, causality inference, temporal models, static models, experimental assessment

1. INTRODUCTION
The measurement of gene expression levels, by using microarrays
or high throughput technologies, makes it possible to infer sta-
tistical dependencies (e.g., correlations) between the expression
of two genes. Some of these dependencies can be seen as a result
of causal interactions, as the expression of a gene can influence
the future expression of another gene (these causal interactions
are known as gene regulatory interactions). Several methods have
been proposed to infer gene regulatory interactions from mea-
sured gene expression levels. Some of them are static, in the
sense that they do not take temporal aspects into consideration,
while others are designed in order to learn the dynamical aspects
of the dependencies. Since gene interactions are not instanta-
neous, we expect that temporal aspects should shed light on the
causal dependencies between genes. In other terms if two genes
are part of a regulatory interaction, their expression levels over
time are expected to be correlated with a certain lag and the
time order is expected to elucidate the respective promoter/target
roles. However, unfortunately such lag is unknown a priori and
should be properly learned from data. If on one hand dynamic
approaches may appear as more powerful than static ones because
of the temporal representation, on the other hand they are more
sensitive to the accuracy of the adopted lag. In machine learning
jargon, this is known as a bias/variance trade-off. The adoption of
temporal dynamic models makes the learner less biased but nec-
essarily more exposed to high variance. In spite of this intuition,
and although there are some comparisons between dynamic and
static methods in the literature on gene regulatory networks, these
are not systematic or extensive.

For this reason, we propose in this paper an experimental set-
ting to assess the role of dynamics on the accuracy of the inferred
regulatory network. To this aim, we compare a number of state-
of-the-art static and dynamic approaches on three challenging
inference tasks. As state-of-the-art static approaches, we consider
Bayesian networks (Balov and Salzman, 2010; Kalisch et al., 2012)
and directed graphical Gaussian models (GGM) (Schäfer and
Strimmer, 2005). These two methods are based on the estima-
tion of conditional dependencies between genes. The first infers
a directed network using the rules of d-separation, the latter is
an undirected graphical model (an edge indicates the presence
of a conditional linear correlation between the respective nodes),
but that can be made directed by making ad hoc assumptions. As
dynamic approaches we consider: Vector AutoRegressive models
(VAR) (Charbonnier et al., 2010), Dynamic Bayesian networks
(DBN) (Lebre, 2009) and adaptive lag methods (Zoppoli et al.,
2010; Lopes et al., 2012). VAR models are linear models where the
target variable at a time point is modeled as a linear combina-
tion of predictor variables at previous time points (typically one).
DBN are graphical models where variables at different time points
are represented by different nodes and edges are allowed only
from variables at time t to variables at time superior than t.
Adaptive lag models are dynamic approaches which include an
automatic estimation of a temporal lag for each pair of genes,
e.g., by maximizing some dependence score. In order to make a
fair comparison, all the assessed approaches (static and dynamic)
are causal, in the sense that they infer directed interactions.

Our experimental study makes an assessment of static and
dynamic algorithms by comparing the accuracy of the networks
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Network Inference

• Q: Which kinds of biological networks have been inferred in the paper?
• A: 500 gene regulatory networks of 5 nodes were inferred for three species (E.coli, yeast, fruit fly). Networks were

inferred from time series gene expression datasets.
• Q: How was the quality/utility of the inferred networks assessed. How were these networks validated?
• A: The gold standard was defined as being interactions reported in the literature. A precision recall curve, and the

respective area under (AUPRC) was assigned to each inferred network. The AUPRC values of the 500 networks
predicted by an inference method were averaged, and this value was used to score that method.

• Q: What are the main results described in the paper?
• A: The general performance of state of the art network inference methods on the proposed task is weak (in two

species, most of the methods do not have a performance significantly better than random). However, methods that
take into account temporal information tend to perform better than static, non-temporal methods. The performance
of temporal methods is expected to depend on the temporal sampling interval and on the sample size of the used
time series. This fact is confirmed in our experiments and we infer general conclusions on the proper use of temporal
network inference methods.

inferred from three microarray time series. These datasets have
different characteristics, in terms of biological species, time length
and sampling period (5, 10, and 30 min). The first outcome of
the study is that dynamic models perform consistently better
than static ones. The second outcome is an interesting insight
on the most probable interaction lag between gene expressions.
Our results suggest that this lag can take values in the range of a
few hours, and that temporal network inference models should be
adjusted to incorporate this information. In the next chapter we
will present the assessed network inference algorithms, the third
chapter describes the experimental setting and is followed by the
results and discussion.

2. MATERIALS AND METHODS
Two family of network inference algorithms, static and dynamic,
are considered in this study and will be discussed in the follow-
ing section. Table 1 summarizes the differences between the used
models.

2.1. STATIC MODELS
Static network inference models do not take into account any
information related to the temporal nature of the gene expression
data. Two well-known examples are Bayesian networks and GGM.

A Bayesian network is a graphical representation by directed
acyclic graph of a multivariate probability distribution, where
nodes denote variables and edges variable dependencies. Under
the faithfulness assumption for the probability distribution, there
exists a bijective mapping between the conditional independen-
cies of variables in the distribution and topological properties
(d-separation) in the graph. The main advantages of a Bayesian
Network representation are its sparsity (i.e., use of few param-
eters), the ease of interpretation and the availability of several
inference algorithms. For further references on the estimation of
Bayesian networks from biological data see Needham et al. (2007)
or Margaritis (2003).

A GGM is an undirected graph, where the presence of an edge
indicates a non zero partial correlation between two nodes given
all the others (Dempster, 1972; Lauritzen, 1996). Partial correla-
tions can be obtained by inverting the covariance matrix, but this

is problematic if the covariance matrix does not have full rank.
One solution is a positive definitive estimation of the covariance
matrix (Opgen-Rhein and Strimmer, 2007). Another approach
estimates partial correlations using the eigenvectors of the covari-
ance matrix associated with non-zero eigenvalues (Lezon et al.,
2006). It has been shown that partial correlations emerge, under
the assumption that the variables are Gaussian-distributed, when
maximizing the entropy of the system conditioned on the empir-
ical mean and covariance of the variables (Lezon et al., 2006).
Below we describe three implementations of static models, avail-
able in R packages: two estimations of Bayesian networks and one
estimation of a GGM with an extension to direct some of its edges.

The R package catnet (Balov and Salzman, 2010) infers cat-
egorical Bayesian networks from categorical data (the variables
have to be discrete, taking only a finite number of values). The
maximum likelihood criterion is used to assess different pos-
sible networks. This package implements a stochastic search in
the network space, using a simulated annealing algorithm. In the
experiments here presented, we defined the number of categories
to be three (corresponding to different levels of gene expression).
The output of this algorithm is a number of networks (rep-
resented by adjacency matrices) of increasing complexity each
annotated with a likelihood. In order to obtain a final score matrix
we made a weighted sum (based on likelihood) of all adjacency
matrices.

The package pcalg (Kalisch et al., 2012) infers Bayesian
networks from continuous data, and is based on the PC algorithm
(Spirtes et al., 1993). The PC algorithm starts by considering a
fully connected graph and progressively removes edges, depend-
ing on the conditional dependencies between the respective genes.
The size of the conditioning sets is one at the beginning and then
gradually increased. The existence and the direction of the edges
is inferred using the rules of d-separation. In our experiments,
the conditional dependence is measured by partial correlation,
which is equivalent to assume that the variables are Gaussian
distributed and their dependencies linear. The Fisher transfor-
mation is used to compute the significance level of the partial
correlation value. By defining a set of decreasing threshold val-
ues for the significance level, we obtained a number of inferred
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Table 1 | Assessed network inference models.

Method Type Lags Category Features

catnet Static – Bayesian network – Categorization of data
– Stochastic search (simulated annealing) in the network space

pcalg Static – Bayesian network – Progressive removal of edges (backwards selection)
– Conditional dependence estimated with partial correlation

GeneNet Static – Graphical Gaussian Model – Full partial correlations estimated through shrinkage
– Edges are directed from the most to the less exogenous variable

VAR I +lars Dynamic Fixed (first) VAR –VAR(I) model subject to a LI penalty term
– Regression coefficients estimated with least angle regression

(lars)

simone Dynamic Fixed (first) VAR –VAR(I) model subject to a variable penalty term (to favor the
selection of transcription factors)

– Regression coefficients estimated through optimization

GI DBN Dynamic Fixed(first) Dynamic Bayesian network – Estimation of a number of first order partial regression
coefficients,for each possible interaction

– Predictors and target are lagged by I time point

Time Delay ARACNE Estimated(one) Information–theoretic – Mutual information used to infer dependencies (MI estimated
with a copula–based approach)

– Estimation of the lag between two genes
– Use of the DPI to break up fully connected triplets

Time lagged MRNET Estimated(one) Information–theoretic – Mutual information used to infer dependencies (Gaussian
assumption)

– Estimation of the lag between two genes
– mRMR feature selection

Time lagged CLR Estimated(one) Information–theoretic – Mutual information used to infer dependencies (Gaussian
assumption)

– Estimation of the lag between two genes
– Normalization of MI

networks with an increasing number of edges. Then we asso-
ciated to each possible interaction a score equal to the average
number of times that this interaction is inferred in the returned
networks.

GeneNet (Opgen-Rhein and Strimmer, 2007) estimates par-
tially directed GGM. Once the positive definitive covariance
matrix is estimated (using a shrinkage technique Schaefer et al.,
2006), it computes the concentration matrix (the inverse of the
covariance matrix) and a partial correlations matrix. An undi-
rected GGM is created by selecting the edges associated to the
highest partial correlations. GeneNet infers the directionality of
the interactions by comparing, for each pair of connected nodes,
the partial variances of the respective variables. The partial vari-
ance of a variable is its variation that cannot be modeled, or
predicted, in a linear regression model using the other variables
in the set as predictors. The ratio between the partial variance and
the variance gives the percentage of the variation that corresponds
to unexplained variation. These relative values of unexplained
variation are used as indicators of how much of the variable vari-
ation can be explained from within the system (using all the other
variables). An edge between two nodes is directed from the one
with higher unexplained variation to the one with lower. Each

edge is given a p-value (the null hypothesis is that the partial cor-
relation between its nodes, or genes, is zero). For each edge we
assigned a score equal to 1 minus the respective p-value.

2.2. DYNAMIC MODELS
We will distinguish dynamic models according to the approach
used to define the lag between variables. In what follows p is the
number of genes and Xt is used to denote the value of the variable
X at time t.

2.2.1. Fixed lag models
Vector autoregressive models of order lmax (VAR(lmax)) models
each gene Xt , at time t, as a linear function of all the genes at time
t − l, where l = 1, .., lmax.

Xt
i = c +

lmax∑
l = 1

p∑
j = 1

βl,jX
t − l
j + εi (1)

Therefore VAR(1) denotes a lag-one model where the value of lmax

is set to 1. The coefficients β in (1) can be estimated by Ordinary
Least Squares algorithm (OLS), provided that there are enough
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samples. Alternatively, β can be returned by a regularization algo-
rithm, such as the Lasso (Tibshirani, 1994), which adds a penalty
term in the OLS solution equation, that is proportional to the
L1 norm of β. In other words, the Lasso minimizes the sum of
squares of the residuals, given that the sum of the absolute value
of the coefficients β is less than a constant. This approach imposes
scarcity in the number of returned non-zero coefficients and can
be used to detect the most relevant coefficients.

Another fixed lag model is the Dynamic Bayesian Network
(DBN). DBN are modifications of Bayesian networks to model
time series: each gene is represented by different nodes, at dif-
ferent time points (Perrin et al., 2003). An edge is allowed to go
from a node Xt − l to a node Yt . In our study we assessed three lag-
one models, two of them penalty-constrained implementations of
VAR(1) models, and one of them an implementation of a DBN.
They are described below.

Our implementation VAR(1) + lars models the data from a
VAR(1) perspective: a variable Xt

i is regressed using all the vari-

ables lagged by one time point: Xt − 1
j , j = 1 . . . p. As with the

Lasso, a penalty term proportional to the L1 norm of the regressor
coefficients is added to the model. The coefficients of the model
are estimated using the lars algorithm [(Efron et al., 2004), avail-
able in the R package lars]. The lars algorithm computes in a fast
manner the coefficients of the lasso path, when the regulariza-
tion penalty term goes from infinity (where there is no non-zero
returned coefficients) to 0 (corresponding to the OLS solution).
Using lars, for each gene we computed the coefficients of its pre-
dictors at the points (in the lasso path) where the coefficient of a
predictor becomes non-zero and enters the model. We then com-
puted the average of the coefficients of each predictor variable and
used it as the directed dependence score between the predictor
and the target gene.

The R package simone (Charbonnier et al., 2010) estimates the
coefficients of a VAR1 model subject to a L1 norm penalty term.
Here, a weighted lasso is used, a modification of the Lasso to
allow different penalty terms for different regressors. Genes are
grouped into two main groups: hubs, which are genes that show
a high level of connectivity probability to all the other genes, and
leaves, which are only connected to hubs. It is suggested that hubs
will correspond to transcription factors (genes whose expression
levels influence the transcription of other genes). Every gene is
assigned to the group of hubs or to group of leaves, from an ini-
tial estimation (or optionally, from expert knowledge if available).
This initial estimation is done by computing a matrix of coeffi-
cients using the standard Lasso, and then group genes into hubs
or leaves according to the L1 norm of the respective rows in the
estimated coefficients matrix. The regressors are assigned one of
two different weights, one for hubs and the other for leaves, which
multiply the respective coefficients before they are used in the
calculation of the penalty term. The idea behind this implementa-
tion is that interactions coming from hubs (transcription factors)
should be less penalized than interactions coming from leaves.
Simone returns a list of inferred networks for different values of
the penalty weights. In the experiments here reported, we defined
the score for an interaction as the number of times the interac-
tion is associated with a non-zero coefficient in all the returned
networks.

G1DBN is a R package (Lebre, 2009) that estimates dynamic
Bayesian networks, using first order conditional dependencies.
G1DBN is designed to work with time series and implements a
lag-one model. Each gene is represented by two nodes lagged by
one time point. Interactions are only allowed from nodes at time
t − 1 to nodes at time t. It is a two-step method: the first step
computes all possible regression coefficients, of each gene Xt − 1

j

to each gene Xt
i , conditioned on each other gene Xt

k, k �= j, i. This
way, each directed interaction is assigned a number of coefficients,
one for each conditioning variable. Each of these coefficients is
subject to a statistical test based on the student’s t distribution (the
null hypothesis is that the value is zero) and a p-value is returned.
The maximum of these p-values is considered as a score for the
respective interaction. A threshold α1 is defined, and edges with
scores lower than it are selected. The second step of the algorithm
starts with this graph and removes more edges: for each gene, it is
calculated the regression coefficient of it toward one of its parents,
given all the other parents. To each of these coefficients is assigned
a p-value, in an analogous way as in the first step. A new threshold
α2 is defined, and only edges with p-values lower than α2 are kept.
In our experiments, we defined α1 = 0.7, as it was the value used
in the method’s original proposal. We used several values for α2,
and for each of them an adjacency matrix was returned, with the
estimated p-values for each possible interaction. For each inter-
action, the subtraction 1 minus the average of the respective final
p-values, was used as the final score.

2.2.2. Adaptive lag models
Adaptive lag models are models where each possible interaction is
assigned a score which is a function of an estimated temporal lag,
that hypothetically characterizes the interaction. This lag is esti-
mated as the one which maximizes some score S. The lag between
two genes X and Y is estimated as:

lagXY = arg max
l

(
S
(

Xt, Yt − l
))

l = −lmax, .., −1, 0, 1, .., lmax

(2)
The parameter lmax is the maximum allowed lag. The adaptive
lag methods implemented are based on the measure of mutual
information (which is represented as I(X; Y), between two vari-
ables X and Y).

The Time-Delay ARACNE (Zoppoli et al., 2010) is an exten-
sion of the information theoretic algorithm ARACNE (Margolin
et al., 2005). It is based on three steps: the first step estimates the
times at which each gene starts to be differentially expressed (and
the set of possible interactions is restricted to the directed interac-
tions where the target gene has a start-of-regulation time higher
than the start-of-regulation time of the source gene). The second
step of the algorithm lags the temporal expression of each pair of
genes, and finds the lag which maximizes the mutual information
between the genes. The mutual information is estimated through
a copula based approach. A copula transformation (a rank based
empirical copula) is applied to the distribution, and a kernel
density estimator is used to estimate the bivariate marginal dis-
tribution p̂(Xt

i , Xt − l
j ), for each gene Xt

i and each gene Xt − l
j .

The directed edges whose lagged mutual information is higher
than a defined threshold are kept in the graph. The third and
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final step of the algorithm applies the data processing inequality
(DPI) property to break up fully connected triplets. A binary adja-
cency matrix, indicating the predicted interactions, is returned.
We defined various values for the threshold and obtained differ-
ent adjacency matrices. Each interaction is assigned a score equal
to the number of times the interaction has been predicted in the
returned adjacency matrices. The parameter lmax was set to 6 time
points.

The Time-lagged MRNET is the dynamic extension of the
MRNET algorithm (Meyer et al., 2007) which is based on
the minimum-Redundancy Maximum-Relevance (mRMR) feature
selection method (Ding and Peng, 2005). For each gene Y , it
selects all other genes in a sequential manner. The first selected
gene (added to the group of selected genes S) is the one that has
the highest mutual information toward the target gene. The next
gene to be selected, XmRMR

j , is defined as the one which maximizes
the following mRMR score, u − r:

XmRMR
j = arg max

Xj /∈S

(
uj − rj

)
(3)

where uj and rj are defined as follows:

uj = I(Xj; Y) (4)

rj = 1

| S |
∑
Xk∈S

I
(
Xj, Xk

)
(5)

The term uj represents the relevance of Xj toward Y and the term
rj represents the redundancy of Xj with the previously selected
genes in S. This process is repeated for all genes. To any pair of
genes the MRNET algorithm assigns a score which is equal to the
maximum between two mRMR scores: the mRMR score of the
first when the second is the target, and the mRMR score of the
second when the first is the target. The time-lagged MRNET is a
modification of the MRNET algorithm (Lopes et al., 2012). Here,
the mutual information considered by the algorithm (between
each pair of genes) is a lagged mutual information. The lag is the
one which maximizes the mutual information, as in the Equation
(2). The estimation of lags allows to direct interactions, as the sign
of the lags provide information on the direction of interactions.
Therefore, the time-lagged MRNET returns directed interactions,
as opposed to the standard undirected MRNET.

The Time-lagged CLR is the dynamic version of the context
likelihood of relatedness (CLR) inference algorithm (Faith et al.,
2007). CLR takes into account the fact that some genes exhibit,
on average, a relatively high, or low, mutual information toward
all the other genes. Each possible interaction between X and Y is

assigned a score equal to wxy =
√

z2
x + z2

y , where:

zx = max

(
0,

I(X, Y) − μx

σx

)
(6)

μx and σx are the empirical mean and the standard deviation of
the mutual information between X and all the other genes. This
way, the CLR score for an interaction between genes X and Y is
higher for situations when both X and Y , or any of them, exhibit a
low mutual information toward the majority of remaining genes

in the dataset, compared with the otherwise situation. The time-
lagged CLR is a modification of CLR (Lopes et al., 2012), just as
the time-lagged MRNET is relative to MRNET.

On the implementations here described, the mutual informa-
tion used by the time-lagged MRNET and CLR was estimated
with the Pearson correlation. The value for the maximum allowed
lag parameter, lmax, was set to be 6, 12, and 18 time points. In the
following results, the time-lagged MRNET and CLR of a certain
lmax are referred as TL lmax MRNET and TL lmax CLR, respectively
(e.g., TL12 MRNET).

We note that the assessment here presented does not consti-
tute an extensive review of all the causal network inference models
found in the literature. These include dynamic models based on
ordinary differential Equations, such as the Inferelator (Bonneau
et al., 2006) or the TSNI (Bansal et al., 2006), and other imple-
mentations of Bayesian and Dynamic Bayesian networks, such as
Banjo (Smith et al., 2006).

2.3. THE DATASETS
Three time series datasets, from different species were collected.
All these datasets are available in the Gene Expression Omnibus
(GEO) database repository.

• A time series dataset of the gene expression of Drosophila
melanogaster, of length 22 h (Hooper et al., 2007). The number
of observations is 28 and the time between observations is 1 h
after the 10 first observations, and approximately 30 min in the
first 10 observations. We will refer to this dataset as dataset Fly.

• A time series dataset of the gene expression of Escherichia coli,
of length 5 h and 20 min (Traxler et al., 2006). The number of
observations is 17 and the time between observations changes
between 10 and 50 min. We will refer to this dataset as dataset
E.coli.

• A time series dataset of the gene expression of Saccharomyces
cerevisiae, of length 2 h (Pramila et al., 2006). The number of
observations is 25 and the time between observations is 5 min.
We will refer to this dataset as dataset Yeast. This dataset is com-
posed of two time series, and we averaged the samples of equal
time points.

In the datasets Fly and E.coli we interpolated linearly the data, to
obtain time series with a constant step: 30 min in the first and
10 min in the second. After this operation, the dataset E.coli has
32 time points and the dataset Fly has 45 time points.

2.4. PERFORMANCE ASSESSMENT
Adjacency matrices with documented interactions for the three
different species were obtained in Gallo et al. (2010), Gama-
Castro et al. (2011) and Abdulrehman et al. (2011) (for the Fly,
E.coli and Yeast datasets). Only strong evidence interactions were
selected. From these adjacency matrices, we generated small reg-
ulatory networks, containing only genes whose expression levels
are measured in the respective dataset. For each dataset, 500
sub-networks of 5 nodes were randomly generated. Using the
algorithms in the way that was described in the previous section,
we obtained for each algorithm and network, a square matrix of
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scores for all possible directed interactions (the element (i, j) rep-
resents the score of the interaction from gene i to gene j). For any
pair of genes, only one interaction was kept, corresponding to the
strongest direction. To assess the performance of an algorithm on
a given network we used the AUPRC (area under the precision
recall curve). Interactions were incrementally selected (from the
highest to the lowest ranked), and at each selection, precision and
recall values were computed. We assigned to each recall its high-
est associated precision (there can be multiple precision values
for a given recall). The AUPRC was estimated as the average pre-
cision, for all values of recall. For each algorithm and dataset, we
averaged the AUPRC obtained for the 500 networks. The random
baseline was estimated as being the expected average AUPRC of a
random ranking, on all networks. Figure 1 shows some examples
of precision recall curves, in blue with an higher AUPRC than the
expected random baseline, and in red with lower (the number of
instances is 20, and the number of positives is 5).

3. RESULTS
The average AUPRC values for each algorithm and dataset can be
seen in the Figure 2. The Figure 3 represents the existence (black),
or not (white) of a significant difference between the performance
of any two algorithms. All pairs of algorithms were subject to a
paired t-test (two-sided, different variances) to test for a signif-
icant difference in their performance. The algorithms’ AUPRC
values were given as the input to the test and a difference was con-
sidered significant is the returned p-value was lower than 0.05. Of
particular interest are the differences relative to the random rank-
ing of interactions. Relative to the dataset Fly, dynamic models
clearly outperform static models, which do not perform better
than random. In the dataset E.coli, the best performers are the
time lagged-MRNET and the time lagged-CLR when lmax is set to
18 time points (corresponding to 3 h). Fixed lag models and static

FIGURE 1 | Precision-recall curves.

models perform similarly, with only one method performing bet-
ter than random (VAR1+lars). Relative to the dataset Yeast, the
best performers are G1DBN and Time-Delay ARACNE, and are
the only ones with a performance significantly better than ran-
dom. As a control procedure, the ordering of the time points in
the datasets was randomized, and the dynamic network inference
methods were rerun (static models do not depend on the order-
ing of the samples). As expected, on all occasions the performance
drops to the random level.

4. DISCUSSION
Some points can be drawn from the results presented:

• The performance of some methods can be poor. On the dataset
E.coli only three methods are better than random, and on the
dataset Yeast there are only two. On the dataset Fly no static
method performs better than random (the dynamic methods,
on the contrary, perform well). This poor performance may be
a result of the low number of samples of the datasets, or with
the way the networks are generated and assessed, using gene
regulatory interactions as a ground-truth that may not be ade-
quate, or representative of the interactions that are regulating
gene expression.

• The best performers on all datasets are dynamic models. This
suggests that incorporating temporal information is beneficial
to the inference of gene regulatory interactions. On all datasets,
static models do not perform better than random. The fact that
the assessed dynamic models are computationally simpler than
the static algorithms (particularly the ones estimating Bayesian
networks) is another reason to prefer dynamic models over
static ones when inferring networks from time series.

• Most of the temporal models perform better on the dataset Fly
than on the datasets Yeast and E.coli (see the comparison with
random in Figure 3). This difference is possibly due to the tem-
poral characteristics of the datasets (Fly is a 30-min interval
dataset, of duration of 24 h; Yeast is a 5-min interval dataset,
of duration 2 h). It seems natural that the gain in performance
using dynamic models depends on the temporal characteristics
of the dataset. On the dataset Fly, the dynamic performers also
exhibit a significant difference between them. On the contrary,
on the dataset Yeast, most of the models perform similarly (at
the random level) and do not exhibit such difference.

• On the dataset Fly, the best performers are fixed lag methods.
These methods directly estimate conditional dependencies, as
opposed to the adaptive lag methods that only estimate pair-
wise dependencies. This aspect may play a role in the observed
differences in performance.

• The performance of the adaptive lag models changes with the
parameter lmax. On the datasets Fly and Yeast there is a decrease
in the performance of the time-lagged MRNET and CLR as lmax

increases. On the dataset E.coli, on the contrary, there is a large
performance boost when lmax is set to 18 time points.

• On the dataset Fly, a long time series where each time point
corresponds to 30 min, setting lmax to too high values can be
unrealistic (a lag of 18 time points corresponds to 9 h). If we
estimate lagged dependencies over a long and unrealistic range
of lags, it may happen that some genes that do not interact, are
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eventually found to be correlated at some lag. This may be the
reason behind the decrease in performance, when lmax is set to
high values.

• On the dataset E.coli, setting lmax to 18 time points greatly
improves the performance. Here, 18 time points correspond
to 3 h. This number may be an indication of the true range of
values of gene interaction lags.

• Relative to the dataset Yeast, the performance decrease that is
seen when setting lmax to 18 time points is likely to be a result
of the fact that this dataset is composed of only 25 points.
The number of samples used to estimate dependencies between
genes varies from n to n − lmax where n is the number of sam-
ples in the dataset. On datasets of a low n, setting lmax to a
high value may greatly reduce the number of samples used in
the estimations, and if this number is too low, the variance of
the algorithm increases, which causes the estimation of high
correlations between genes that in reality do not interact. This
may be happening in the case of the dataset Yeast, of 25 time
points. When lmax is 90 min, the number of points used is only
7. If we compare with the dataset E.coli, when lmax is set to the

maximum of 180 min, the number of samples used is still 14.
When it comes to the dataset Fly, the number of samples used
in the maximum lmax, of 9 h, is 27.

• The performance of fixed lag models (lag being one time point)
should be influenced by the interval length of the time series.
These models should perform, relatively to static models, bet-
ter on time series with interval lengths similar to the true lags
of interactions. It can be seen that fixed lag models perform
consistently better than static models on the dataset Fly. The
same cannot be said regarding the other two datasets, where
static and fixed lag models perform similarly. This may indicate
that fixed lag, with lag equal to one, models are more appropri-
ate to model time series with a temporal step relatively high,
in the order of 30 min, than to model time series of shorter
steps.

4.1. ANALYSIS OF LAG DISTRIBUTIONS
Adaptive lag algorithms are based on the estimation of lags
between pairs of genes. These should reflect in some way the true

FIGURE 2 | Average AUPRC for the three datasets and different algorithms.

FIGURE 3 | Existence (black) or not (white) of a significant difference between the algorithms performance.
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lags of the interactions. The Figures 4, 5 show the distribution of
the estimation of lags of true interactions, done by the algorithms
time-lagged MRNET and time-lagged CLR, when the maximum
allowed lag is set to 6 time points and 18 time points. There is a
relatively high value of lags estimated to be 0, on all datasets. An
explanation may be that a number of assumed interactions (taken
from the regulatory interactions lists) are not correct, and that the
respective genes, instead of one regulating the other, are in fact
co-regulated. These results may provide insights on the temporal
lag of gene interactions. Different interactions are possibly char-
acterized by different lags, and these can depend on the biological
function of the interacting genes. Also, it is likely that different
species have different gene interaction lag times. On the dataset
Fly, adaptive lag models see their performance decrease when lmax

is set to 9 h. We suggest that this is due to the fact that, when
setting lmax to such a high value, some interaction lags are esti-
mated to be unrealistically high. This is confirmed in the Figure 5,
when we see that there is a relatively large proportion of interac-
tion lags estimated to be between 7 and 9 h. We also note a peak on
estimated lag values between 1 and 2 h, that can be an indication
of some of the true interaction lags. On the dataset E.coli, there is
a large proportion of interaction lags estimated to be between 130
and 180 min. The fact that there is a great performance increase,

when lmax is set to 180 min, suggests that maybe some interactions
are characterized by these large lag values. However, it is possible
that these high estimated lag values are a result of a decrease in the
number of samples used to estimate the lagged dependencies. This
phenomenon is certainly happening in the dataset Yeast, when the
number of samples used to estimate dependencies reduces to 25%
of the time series length (7 samples, or 30 min), when lmax is set
to 90 min, and increasing the variance of the algorithm.

4.2. STUDY LIMITATIONS
Only three gene expression datasets were used, each with its
own distinct characteristics. Further validation of the results here
presented should be made using other datasets, preferably with
higher number of samples, as they become more available to bio-
statisticians. The inference of regulatory interactions was done
on networks of 5 genes. All things equal, the network inference
models here presented will return lower AUPRC scores if the
number of genes increases, and the ratio true edges/possible edges
decreases - the inference task becomes more challenging. Network
inference was assessed using interactions reported in the litera-
ture, which means some true interactions may be missing, and
some reported interactions may be biologically inexistent in the
used datasets.

FIGURE 4 | Distribution of lags for the three datasets, maximum allowed lag is 6 time points.

FIGURE 5 | Distribution of lags for the three datasets, maximum allowed lag is 18 time points.
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5. CONCLUSION
Results obtained using three different datasets show that dynamic
models perform better on the inference of gene regulatory inter-
actions from time series, than static models such as Bayesian
networks. This is explained by the inclusion of beneficial tem-
poral information. Nevertheless, the overall performance of the
assessed models is poor: only three and two models outperformed
random in the E.coli and Yeast datasets, respectively. The dif-
ferences in the results obtained in the datasets (a much higher
performance variation in Fly, with most of the methods perform-
ing better than random) are likely due to the characteristics of the
time series, such as the temporal interval. Regarding the dynamic
models, the advantage of the considered fixed lag models is that
they directly estimate conditional dependencies, instead of being
based on pairwise dependencies, as the considered adaptive lag
models are. On the other hand, the advantage of the adaptive lag
models is that they can potentially infer interactions character-
ized by higher and variable lags. Their performance depends on
the maximum allowed lag, lmax, and care should be taken when
defining this parameter: if it is set to an unrealistic high value,
in the range of many hours, eventually interactions will be esti-
mated at that range, hurting the network inference performance
(we argue that this is seen in the results regarding the dataset
Fly). If lmax is set to be equal to a high fraction of the length
of the time series, lagged dependencies between genes will be
estimated with a small number of samples, increasing the vari-
ance of the algorithm and decreasing its performance (this is
seen in the results regarding the dataset Yeast). Relative to the
lag of regulatory gene interactions, the fact that lag-one mod-
els (the fixed lag models) perform, compared with static models,
better on a dataset with a temporal interval of 30 min than in
datasets with lower temporal intervals (10 and 5 min) suggests
that the range of lags of gene interactions is likely to be closer to
30 min than to 10 or 5 min. The experimental results also suggest
that there may exist gene interactions characterized by a longer
lag, in the order of a couple of hours. As a general set of rules,
we conclude from the experiments here reported that dynamic
methods should be used to predict interactions in time series;
fixed lag methods (estimating conditional dependencies) should
be used when the interval scale is high (30 min to hours); adap-
tive lag methods should be used when the maximum allowed
lag is set to high values (order of a couple of hours), and, in
order to prevent an excessive algorithm variance, the number of
samples minus the maximum allowed lag is still high (the results
obtained on the E.coli dataset suggest this value to be at least 14
samples).

AUTHOR CONTRIBUTIONS
Miguel Lopes designed and implemented the experimental
run, and contributed to the writing of the paper. Gianluca
Bontempi supervised the study and contributed to the writing of
the paper.

ACKNOWLEDGMENTS
This work was supported by grants from the Communaute
Francaise de Belgique Actions de Recherche Concertees (ARC).

REFERENCES
Abdulrehman, D., Monteiro, P. T., Teixeira, M. C., Mira, N. P., Lourenco, A. B.,

dos Santos, S. C., et al. (2011). Yeastract: providing a programmatic access
to curated transcriptional regulatory associations in saccharomyces cerevisiae
through a web services interface. Nucleic Acids Res. 39(Suppl. 1), D136–D140.
doi: 10.1093/nar/gkq964

Balov, N., and Salzman, P. (2010). How to Use Catnet Package. Comprehensive R
Archive Network (CRAN), R package vignette (version 1.13.8).

Bansal, M., Gatta, G. D., and Di Bernardo, D. (2006). Inference of gene regula-
tory networks and compound mode of action from time course gene expression
profiles. Bioinformatics 22, 815–822. doi: 10.1093/bioinformatics/btl003

Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N., et al. (2006).
The Inferelator: an algorithm for learning parsimonious regulatory networks
from systems-biology data sets de novo. Genome Biol. 7:R36+. doi: 10.1186/gb-
2006-7-5-r36

Charbonnier, C., Chiquet, J., and Ambroise, C. (2010). Weighted-lasso for struc-
tured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9:1.
doi: 10.2202/1544-6115.1519

Dempster, A. (1972). Covariance selection. Biometrics 28, 157–175. doi:
10.2307/2528966

Ding, C., and Peng, H. (2005). Minimum redundancy feature selection from
microarray gene expression data. J. Bioinform. Comput. Biol. 3, 185–205. doi:
10.1109/CSB.2003.1227396

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Ann. Stat. 32, 407–499.
doi: 10.1214/009053604000000067

Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., et
al. (2007). Large-scale mapping and validation of Escherichia coli transcrip-
tional regulation from a compendium of expression profiles. PLoS Biol. 5:e8.
doi: 10.1371/journal.pbio.0050008

Gallo, S. M., Gerrard, D. T., Miner, D., Simich, M., Des Soye, B., Bergman, C. M.,
et al. (2010). REDfly v3.0: toward a comprehensive database of transcriptional
regulatory elements in Drosophila. Nucleic Acids Res. 39(Suppl. 1), D118–D123.
doi: 10.1093/nar/gkq999

Gama-Castro, S., Salgado, H., Peralta-Gil, M., Santos-Zavaleta, A., Muniz-
Rascado, L., Solano-Lira, H., et al. (2011). RegulonDB version 7.0: transcrip-
tional regulation of Escherichia coli K-12 integrated within genetic sensory
response units (Gensor Units). Nucleic Acids Res. 39(Suppl. 1), D98–D105. doi:
10.1093/nar/gkq1110

Hooper, S., Boue, S., Krause, R., Jensen, L., Mason, C., Ghanim, M., et al.
(2007 (data accessible at NCBI GEO database (Edgar et al., 2002), acces-
sion GSE6186)). Identification of tightly regulated groups of genes during
Drosophila melanogaster embryogenesis. Mol. Syst. Biol. 3:72. doi: 10.1038/
msb4100112

Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., and Bühlmann, P. (2012).
Causal inference using graphical models with the R package pcalg. J. Stat. Softw.
47, 1–26.

Lauritzen, L. (1996). Graphical Models. Oxford: Oxford University Press. ISBN 0-
19-852219-3

Lebre, S. (2009). Inferring dynamic genetic networks with low order independen-
cies. Stat. Appl. Genet. Mol. Biol. 8:9. doi: 10.2202/1544-6115.1294

Lezon, T. R., Banavar, J. R., Cieplak, M., Maritan, A., and Fedoroff, N. V.
(2006). Using the principle of entropy maximization to infer genetic interac-
tion networks from gene expression patterns. Proc. Natl. Acad. Sci. U.S.A. 103,
19033–19038. doi: 10.1073/pnas.0609152103

Lopes, M., Meyer, P., and Bontepi, G. (2012). Estimation of temporal lags for the
inference of gene regulatory networks from time series. in BeneLearn 2012:
Proceedings of the 21st Belgian-Dutch Conference on Machine Learning (Ghent),
19–26.

Margaritis, D. (2003). Learning Bayesian Network Model Structure from Data.
PhD thesis, School of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.

Margolin, A. A., Nemenman, I., Basso, K., Klein, U., Wiggins, C., Stolovitzky,
G., et al. (2005). ARACNE: an Algorithm for the Reconstruction of Gene
Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics
7(Suppl 1):S7+. doi: 10.1186/1471-2105-7-S1-S7

Meyer, P. E., Kontos, K., Lafitte, F., and Bontempi, G. (2007). Information-
theoretic inference of large transcriptional regulatory networks. EURASIP
J. Bioinf. Syst. Biol. 2007. doi: 10.1155/2007/79879. Available online at:
http://bsb.eurasipjournals.com/content/2007/June/2007

www.frontiersin.org December 2013 | Volume 4 | Article 303 | 107

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive
http://bsb.eurasipjournals.com/content/2007/June/2007


Lopes and Bontempi Experimental assessment of static and dynamic algorithms

Needham, C. J., Bradford, J. R., Bulpitt, A. J., and Westhead, D. R. (2007). A primer
on learning in bayesian networks for computational biology. PLoS Comput. Biol.
3:e129+. doi: 10.1371/journal.pcbi.0030129

Opgen-Rhein, R., and Strimmer, K. (2007). From correlation to causation
networks: a simple approximate learning algorithm and its application to
high-dimensional plant gene expression data. BMC Syst. Biol. 1:37. doi:
10.1186/1752-0509-1-37

Perrin, B. E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., and Buc, F. D. (2003).
Gene networks inference using dynamic Bayesian networks. Bioinformatics
19(Suppl. 2), II138–II148. doi: 10.1093/bioinformatics/btg1071

Pramila, T., Wu, W., Miles, S., Noble, W., and Breeden, L. (2006 (data accessible
at NCBI GEO database (Edgar et al., 2002), accession GSE4987)). The fork-
head transcription factor hcm1 regulates chromosome segregation genes and
fills the s-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev.
20, 2266–2278. doi: 10.1101/gad.1450606

Schaefer, J., Opgen-Rhein, R., and Strimmer, K. (2006). Reverse engineering genetic
networks using the geneNet package. R News 6/5, 50–53.

Schäfer, J., and Strimmer, K. (2005). An empirical Bayes approach to infer-
ring large-scale gene association networks. Bioinformatics 21, 754–764. doi:
10.1093/bioinformatics/bti062

Smith, A. V., Yu, J., Smulders, T. V., Hartemink, A. J., and Jarvis, E. D. (2006).
Computational inference of neural information flow networks. PLoS Comput.
Biol. 2:e161+. doi: 10.1371/journal.pcbi.0020161

Spirtes, P., Glymour, C., , and Scheines, R. (1993). “Lecture Notes in Statistics,” in
Causation, prediction, and search. Vol. 81 (Springer).

Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. J. R. S. Soc.
Ser. B 58, 267–288.

Traxler, M. F., Chang, D.-E., and Conway, T. (2006 (data accessible at NCBI
GEO database (Edgar et al., 2002), accession GSE7265)). Guanosine 3′ 5′-
bispyrophosphate coordinates global gene expression during glucose-lactose
diauxie in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 103, 2374–2379. doi:
10.1073/pnas.0510995103

Zoppoli, P., Morganella, S., and Ceccarelli, M. (2010). Timedelay-aracne: reverse
engineering of gene networks from time-course data by an information theo-
retic approach. BMC Bioinformatics 11:154. doi: 10.1186/1471-2105-11-154

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 July 2013; paper pending published: 24 August 2013; accepted: 10
December 2013; published online: 24 December 2013.
Citation: Lopes M and Bontempi G (2013) Experimental assessment of static and
dynamic algorithms for gene regulation inference from time series expression data.
Front. Genet. 4:303. doi: 10.3389/fgene.2013.00303
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Genetics.
Copyright © 2013 Lopes and Bontempi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | Bioinformatics and Computational Biology December 2013 | Volume 4 | Article 303 | 108

http://dx.doi.org/10.3389/fgene.2013.00303
http://dx.doi.org/10.3389/fgene.2013.00303
http://dx.doi.org/10.3389/fgene.2013.00303
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


ORIGINAL RESEARCH ARTICLE
published: 26 December 2013

doi: 10.3389/fgene.2013.00291

Network statistics of genetically-driven gene co-expression
modules in mouse crosses
Marie-Pier Scott-Boyer1, Benjamin Haibe-Kains2 and Christian F. Deschepper1*

1 Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal, Montreál, QC, Canada
2 Bioinformatics and Computational Genomics Research Unit, Institut de Recherches Cliniques de Montréal, Montreál, QC, Canada

Edited by:

Frank Emmert-Streib, Queen’s
University Belfast, UK

Reviewed by:

Xia Yang, University of California Los
Angeles, USA
Matthias Dehmer, UMIT - University
for Health Sciences, Medical
Informatics and Technology, Austria

*Correspondence:

Christian F. Deschepper,
Cardiovascular Biology Research
Unit, Institut de Recherches
Cliniques de Montréal, Université de
Montréal, 110 Avenue des Pins,
Montreál, QC H2W 1R7, Canada
e-mail: christian.deschepper@
ircm.qc.ca

In biology, networks are used in different contexts as ways to represent relationships
between entities, such as for instance interactions between genes, proteins or
metabolites. Despite progress in the analysis of such networks and their potential to
better understand the collective impact of genes on complex traits, one remaining
challenge is to establish the biologic validity of gene co-expression networks and to
determine what governs their organization. We used WGCNA to construct and analyze
seven gene expression datasets from several tissues of mouse recombinant inbred
strains (RIS). For six out of the 7 networks, we found that linkage to “module QTLs”
(mQTLs) could be established for 29.3% of gene co-expression modules detected in
the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL
was on the same chromosome as the one contributing most genes to the module, with
genes originating from that chromosome showing higher connectivity than other genes
in the modules. Such modules (that we considered as “genetically-driven”) had network
statistic properties (density and centralization) that set them apart from other modules
in the network. Altogether, a sizeable portion of gene co-expression modules detected
in mouse RIS panels had genetic determinants as their main organizing principle. In
addition to providing a biologic interpretation validation for these modules, these genetic
determinants imparted on them particular properties that set them apart from other
modules in the network, to the point that they can be predicted to a large extent on
the basis of their network statistics.

Keywords: genetics, network inference, mouse recombinant inbred strains, gene co-expression modules,

chromosome domain

INTRODUCTION
In recent years, new technologies such as microarrays have made
it possible to generate large numbers of gene expression datasets.
To understand how genes interact with one another, methods
have been developed to construct gene co-expression networks,
and then identify modules of highly connected genes. “Weighted
Gene Co-expression Network Analysis” (WGCNA) is the most
established and widely used of such methods (Langfelder and
Horvath, 2008). Several studies have used these methods to
construct (on the basis of gene expression datasets) gene co-
expression networks, and then identify modules of highly con-
nected genes (Califano et al., 2012; Cho et al., 2012; Weiss et al.,
2012). One common premise of such analyses is that co-expressed
genes within modules are more likely to share biological func-
tions. Accordingly, it has been reported several times that some
modules detected by gene co-expression analysis show enrich-
ment for genes originating from a particular biologic pathway
(Gargalovic et al., 2006; Yang et al., 2009; Rhinn et al., 2013).

The properties of gene co-expression modules can be ana-
lyzed in several ways. Eigengenes are values that represent the first
principal component of all expression profiles in modules. When
networks are constructed using expression data from individuals
in a genetic cross, genetic mapping can be performed to test

whether the eigengenes of modules show linkage to quantita-
tive trait loci (QTLs), the latter being called “module QTLs”
(mQTLs). For instance, mQTLs have been detected in some
mouse F2 genetic crosses, with some of them having profiles
matching that of phenotypic QTLs (Davis et al., 2012; Leduc et al.,
2012). Such findings suggest that the same genetic determinants
may link to both a phenotype and the expression levels of genes
within the associated module. This suggests that genetic linkage,
rather than function, may contribute to coexpression modules
detected in genetic crosses However, it is currently not known
whether the contributions of genetic determinants to gene co-
expression modules represent a common phenomenon, and/or
whether corresponding modules have distinctive properties.

Recombinant inbred strain (RIS) are organisms derived from
the progenies of crosses of parental inbred strains, and where
recombination events between parental chromosomes have been
made permanent by long-term inbreeding. When tissue gene
expression is measured in RIS by using several animals per strain
(to provide both biologic and technical replicates), genetic vari-
ations constitute the main cause of variance in gene expression
level. Moreover, RIS are homozygous at all loci, which maximizes
the potential effect of genetic variation on gene expression. Panels
of RIS therefore constitute sensitive backgrounds to study links
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Network Inference

• Type of Biological Networks
The analyzed networks correspond to gene-co-expression networks constructed from gene expression data obtained
in mouse genetic crosses, where genetic variants are the main cause of gene expression variance.

• Utility of the Inferred Networks
We focused on the detection of gene co-expression network modules showing linkage to quantitative trait loci in
multiple independent datasets. We tested the reproducibility of our findings across multiple datasets and across
two network inference methods.

• Summary of Results
In tissues from mouse recombinant inbred strain (RIS) panels, a sizeable portion of gene co-expression modules had
genetic determinants as their main organizing principle. These modules had particular properties that set them apart
from other modules in the network, to the point that they can be predicted on the sole basis of their gene expression
profile characteristics and associated network statistics.

between genomic variants and gene expression. To test to which
extent genomic variants may link to coordinate gene expression
within gene co-expression modules, we analyzed publicly avail-
able gene expression datasets obtained in several tissues from
two kinds of mouse RIS panels. In such panels, we found that
a sizeable proportion of gene co-expression modules showed
linkage to mQTLs. Moreover, such modules had network statis-
tics that set them apart from other modules in the network.
Lastly we observed that these network statistics are sufficiently
discriminative to predict, solely on the basis of gene expression,
which modules are likely to be genetically-driven.

MATERIALS AND METHODS
DATASETS PREPROCESSING
Discovery datasets were used to test whether gene co-expression
modules showing linkage to mQTLs had properties and network
statistics that set them apart from other modules. In follow-up
experiments, validation sets were used to test whether the prop-
erties and network statistics of gene co-expression modules (as
determined in the validation sets) could be used to predict accu-
rately whether gene co-expression modules corresponded to a
particular type of modules. The discovery sets comprised data
obtained in five tissues and one purified cell population from
BxD mouse RIS, as well as one tissue from AxB/BxA mouse
RIS (Table 1). The validation sets comprised data obtained in
one purified cell population from BxD and one tissue from
AxB/BxA mouse RIS (Table 1). All data were obtained from the
www.genenetwork.org web site, and comprised both gene expres-
sion data as well as genomic maps. For gene expression analysis,
we used for each gene the one single probe that corresponded
to the most variant one. To reduce computation time and facil-
itate the comparisons between networks, we used the data for
the 20,000 most variant genes in each tissue (corresponding to
the number of genes that was the smallest common denominator
among all datasets used).

NETWORK CONSTRUCTION AND MODULES DETECTION
We used the “Weighted Gene Co-expression Network Analysis”
(WGCNA) R package (Langfelder and Horvath, 2008)
to construct the gene co-expression networks. To avoid
computationally intensive tuning of WGCNA parameters, we
used all default parameters as proposed previously (Zhang and

Horvath, 2005). Within a network, each gene represents a node,
and the connections between nodes are defined as edges. To
obtain comparable networks between the different datasets, we
utilized the top 25% most significant edges in each network. To
define modules (i.e., clusters of highly interconnected genes),
we used the dynamic tree cut algorithm implemented in the
dynamicTreeCut function. “Eigengenes” are summary values
representative of the gene expression profiles in corresponding
modules. Accordingly, eigengene values can be used to detect
“module-QTLs” (mQTLs), i.e., QTLs showing linkage to entire
gene co-expression modules(Davis et al., 2012; Leduc et al.,
2012). For each module, we used WGCNA to calculate its
corresponding eigengene value, and performed QTL mapping
with the “R-QTL” tool (Broman et al., 2003), using a detection
threshold corresponding to a “logarithm-of-the-odds” (LOD)
score of 3.3 (Lander and Kruglyak, 1995). Modules shown for
illustration were drawn using the Cytoscape software (Shannon
et al., 2003).

In order to test the robustness of our findings with respect
to the network inference approach, we also used the GeneNet R
package (Schaefer et al., 2006) to construct the gene co-expression
networks. This method uses partial correlation to calculate the
link between two genes and has the advantage of not requiring
any parameter (with the exception of the correlation threshold
used to select the most relevant edges). The results derived from
GeneNet are reported in Supplementary Information.

COMPARISONS BETWEEN MODULES
To estimate the contribution of each chromosome to a module,
we calculated the percentage of genes that each chromosome con-
tributed to the module. The one chromosome with the highest
percentage was considered as the “top contributing” chromo-
some, and the corresponding percentage value was considered as
the “enrichment index for single chromosome contribution.” To
calculate a normalized index (and thus allow comparisons across
modules), the enrichment index value was divided by the mean
of the percentages of genes contributed by all other chromosomes
in the module.

Each module was also characterized in terms of its “net-
work statistics” (also known as “fundamental network concepts”)
(Dong and Horvath, 2007). We thus calculated the values
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Table 1 | Gene expression datasets from tissues of mouse RIS used for either discovery or validation analyses in the present study.

Discovery Mouse RIS panel Tissue Microarray # of WGCNA modules # of GeneNet modules

datasets platform total/gen total/gen

GN373 24 AXB-BXA Liver Affy 95/10 313/31

GN207 68 BXD Whole eyes Affy 49/11 42/16

GN160 47 BXD Lung Affy 42/12 124/34

GN389 48 BXD Pituitary Affy 52/15 65/21

GN122 33 BXD Regulatory T cells Affy 77/11 311/34

GN260 38 BXD Spleen Illumina 45/13 177/52

GN323 46 BXD Brain amygdala Affy 34/0 168/32

VALIDATION DATASETS

GN210 24 AXB-BXA Whole eyes Illumina 43/4 74/6

GN319 31 BXD T cell helper Helper T cells Affy 68/12 280/39

First column: GeneNetwork ID number of the dataset. Second column: type of mouse RIS and number of strains used in the study. Third column: name of tissue or

type of cell used. Fourth column: microarray platform used in the study. Fifth column: number of gene co-expression modules (total and “type 1” genetic) detected

in each network using WGCNA for construction of the network. Since no genetic module was detected in dataset GN323 using default parameters, this dataset

was not used for analysis of WGCNA modules. Sixth column: number of gene co-expression modules (total and “type 1” genetic) detected in each network using

GeneNet for construction of the network.

of heterogeneity, centralization, and density, using the func-
tion “fundamentalNetworkConcepts” of WGCNA R package
(Langfelder and Horvath, 2008). Comparisons between groups
were performed using either the non-parametric Wilcoxon
Signed Rank test (for binary comparisons) or the Kruskal
Wallis test (for comparisons involving more than 2 classes).
Combined P-values were calculated using the Z transform
approach (Whitlock, 2005), using the survcomp R package
(Schröder et al., 2011).

VALIDATION TESTS
In the datasets used for validation (Table 1), we first calculated
the values of heterogeneity, centralization, density and normal-
ized enrichment index in order to identify which modules could
be considered as being “genetically-driven” (according to our own
definition: see below). We then ranked all modules according to
corresponding values by grouping them in “top percentile” win-
dows ranging from the top 5% to the top 80% (in successive 5%
steps). We then: (1) tested whether modules in the top percentile
windows corresponded or not to genetically-driven modules, and
(2) calculated the accuracy with which each network statistic
value categorized corresponding modules. For the latter tests, we
calculated the numbers of modules whose characteristics were
truly positively predicted (TP), truly negatively predicted (TN),
falsely positively predicted (FP) and falsely negatively predicted
(FN), and we calculated the receiving operating characteristics
(ROC) curves based on sensitivity and specificity, using the ROCR
package in R.

All network statistics (heterogeneity, centralization, density
and normalized enrichment index) were analyzed independently.

RESULTS:
GENETICALLY-LINKED AND GENETICALLY-DRIVEN MODULES
Gene co-expression networks were built using WGCNA for seven
RIS mouse expression datasets (Table 1). Since the datasets were
obtained using different microarray platforms for different tissues
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FIGURE 1 | The bar graphs represent normalized enrichment indices

(mean ± SD) in the 6 tested discovery datasets. The indices quantify to
which extent genes in co-expression network originate from a single
chromosome. Black bars: values for “genetically-driven” modules (type 1
genetic modules); gray bars: values for the other “genetic” modules (type
2); white bars: values for “non-genetic modules.” ∗P < 0.05 (Kruskal Wallis
tests).

from different animal crosses, we built gene co-expressions net-
work using the same number of genes (the 20,000 most varying
genes) and selected the 25% most significant edges in the net-
works. This approach allowed us to generate networks with com-
parable characteristics. For each network, we extracted modules
containing at least 30 genes, and found that networks contained
in average 56 modules (Table 1). Genomic mapping analyses
were performed for the eigengenes of all modules to deter-
mine whether we could detect linkage of modules to mQTLs.
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We found that in 6/7 networks, we could detect modules that
could be considered as “genetically-linked,” on the basis of
showing linkage to a mQTL. In these 6 networks, the pro-
portion of such genetically-linked modules averaged 29.3% (sd
8.4%) (with values ranging from 15.7 to 36.7%)., could be.
For 74.6% of these genetically-linked modules, the chromo-
some harboring the mQTL corresponded to the top-contributing
chromosome. Since in such cases the location of the mQTL
corresponded to the chromosome that contributed most genes
to the modules, we considered these particular modules to
be “genetically-driven.” In further comparisons, we called such
modules “type 1 genetic modules”; genetically-linked modules
where the top-contributing chromosome was not the same as
the one harboring the mQTL were called “type 2 genetic mod-
ules.” For both types of genetic modules, we calculated the
“normalized enrichment index for single chromosome contribu-
tion,” and compared it to that of other modules that did not
show linkage to any mQTL (“non-genetic modules”) (Figure 1).
In all 6 tested WGCNA networks, normalized enrichment

index of type 1 genetic modules was significantly higher than
that of other types of modules, with type 2 genetic modules
showing no difference in comparison to non-genetic modules
(Figure 1).

NETWORK STATISTICS
For further analyses, we studied the three following network
statistics (Dong and Horvath, 2007): (I) density (which corre-
sponds to the mean connectivity of the network); (II) centraliza-
tion (which takes the value 0 if the network has a star topology
and the value 1 if all nodes have the same connectivity); and (III)
heterogeneity (which is the coefficient of variation of the connec-
tivity of the network). Within each studied network, we calculated
these three values for genetically-driven (type 1 genetic) mod-
ules, and compared them to that obtained other modules in the
network (including both the type 2 genetic and the non-genetic
modules) (Figure 2). Density was significantly higher (P < 0.05)
in genetically-driven modules for all six networks, whereas cen-
tralization was significantly higher in genetically-driven modules
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FIGURE 2 | The bar graphs represent the heterogeneity, centralization and density values (mean ± SD) of modules within networks from the 6 tested

discovery datasets. Black bars: “genetically-driven” modules; gray bars: other modules. ∗P < 0.05 (Wilcoxon Signed Rank test).
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for 5 out of 6 of the studied networks (Figure 2). We did not
observe a consistent trend for heterogeneity (Figure 2). When
all six modules were combined to calculate overall P-values,
the differences between type 1 genetic modules vs. all other
modules were significant for centralization (p = 9.68e-06) and
density (p = 2.02e-08), but not for heterogeneity (p = 0.457).
Differences in network statistics were not due to differences in
the sizes of the modules since the latter showed no significant
difference in genetically-driven networks compared to the other
modules.

Given that (I) density was higher in genetically-driven mod-
ules; and (II) these modules showed enrichment in genes
originating from one single chromosome, we tested in these
modules whether the connectivity of genes from the top-
contributing chromosome was higher than that of other genes
in the modules We found that this was indeed the case,
with differences being significant for genetically-driven mod-
ules in 5 out of the 6 networks tested (Figure 3). When all
datasets were combined, the overall P-value for connectivity was
5.8e-18.

VALIDATION TESTS
We used two independent validation datasets to test how robustly
network statistics values could discriminate genetically-driven
modules from the other ones. In the GN319 dataset, the “area
under the curve” (AUC) values for ROC curves were all higher
than 0.9, with normalized enrichment index and centralization
being most predictive (Figure 4). Even in GN210 (where the pro-
portion of type 1 genetic networks was <10%), network statistics
still had good predictive power, since all AUC values were greater
than 0.7 (data not shown).
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FIGURE 3 | Comparisons (for the genetically driven modules detected

in the 6 tested discovery datasets) of the mean connectivity values of

genes originating from the top-contributing chromosome vs. that of

other genes in the modules. The bars represent mean ± SD. ∗P < 0.05
(Wilcoxon Signed Rank test).

ALTERNATIVE NETWORK INFERENCE METHOD
To test the robustness of our findings we performed the analy-
ses previously described using GeneNet (Schaefer et al., 2006) as
an alternative method to build networks of gene co-expression.
Interestingly, whereas the number of modules detected in the
WGCNA networks averaged 60 (sd = 21), we detected a higher
number of modules averaging 172 (sd = 118) in the corre-
sponding networks built using GeneNet, although this differ-
ence was not significant (p-value = 0.06 by two-sided paired
Wilcoxon signed rank test). Nonetheless, regardless of the method
used for network inference, our observations concerning the
differences between genetic and non-genetic modules held true
(with in addition heterogeneity also being significantly higher
in genetically-driven modules than in non-genetic modules).
The various differences in network statistics are further illus-
trated in two modules of similar sizes detected in the GN122
dataset on the basis of networks constructed with GeneNet
(Figure 5)

DISCUSSION
Complex genetic quantitative traits result from the many inter-
actions of genetic variants with environmental factors, and only
a minority of are believed to result from the dysregulation of
only one gene (Plomin et al., 2009). Moreover, biological sys-
tems are typically organized as modular networks where genes act
synergistically rather than representing the sum of their individ-
uals actions (Cho et al., 2012; Weiss et al., 2012). Consequently,
gene co-expression network analyses have been proposed as a
means to better understand the mechanisms of complex regu-
latory biologic processes (Califano et al., 2012; Cho et al., 2012;
Weiss et al., 2012). Up until now, much of the interpretation of
gene co-expression has relied on empirical observations.

FIGURE 4 | Receiver operating characteristic (ROC) curves illustrating

how 3 different network statistics discriminate genetically-driven

modules from other modules in a validation set.
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FIGURE 5 | Ilustrative examples of gene expression modules detected

in the GN122 dataset from regulatory T cells (on the basis of the gene

co-expression network being built using GeneNet). Each module was of
equal size as they both contained a total of 75 genes; (A): non-genetic
module; (B): genetic module. Each node is represented by a circle, either
full (when the corresponding gene originates from the top contributing
chromosome) or empty (other genes). The edges are colored according to a
gray scale, where the darkness of the edge is proportional to the
connectivity between 2 nodes. It can be seen that the genetically-driven
module contains a higher number of genes from the top-contributing
chromosome. Moreover, that module contains a core a several genes
displaying connectivity levels that are much higher than other genes in the
module, which corresponds to the fact that the values of density and
centralization were higher in genetically-driven modules.

For instance, one common strategy has been to rely on anno-
tations (either gene ontology or pathway information) to test
whether module show enrichment for genes related to anno-
tated functions. However, the drawbacks are that: (1) “canonical”
pathways are often still incomplete, and in fact represent “over-
simplifications”; and (2) enrichment analyses are biased toward
what we already know (Carro et al., 2010; Farber, 2013).

In some instances, gene co-expression modules have shown
linkage to mQTLs in genetic animal crosses, with some of them
having profiles matching that of phenotypic QTLs (Davis et al.,
2012; Leduc et al., 2012). In such cases, it is likely that a valid
biologic process drives gene co-expression in the module. To test
to which extent such mechanisms could underlie the organization
of gene co-expression modules in genetic crosses, we performed
gene co-expression network analyses of datasets originating from
eight different tissues and two different panels of mouse RIS.
We found (on the basis of detection of mQTLs) evidence of
genetic contributions for an average of 29% of the modules. For
about 73% of these genetically-linked modules, the influence of
the genetic determinants appeared to be even stronger, as the
mQTL was located on the same chromosome that was the highest
contributor of genes to the module. In such modules, the normal-
ized enrichment index for single chromosome contribution was
significantly higher than in other types of modules. Given this
clustering of co-expressed genes around mQTLs, we considered
such modules as being “genetically-driven.” These modules also
appear to have specific features in terms of network statistics: (1)
their density was higher, indicating that their mean connectivity
was higher than that of other modules; (2) their centralization
value was higher, which is compatible with the presence of a core
several highly connected genes (in opposition to the presence of

one main hub gene regulating all others in the module). Since
genetically-driven modules show enrichment for genes originat-
ing from one chromosome, these differences in network statistics
might be explained if these genes showed higher connectivity than
that of other genes in the module. We thus tested this possibility,
and found that within genetically-driven modules, connectivity
of genes from the top-contributing chromosome was in average
2.25 higher than that of other genes in the module. Our observa-
tions did not depend on network inference approaches, as similar
conclusions were reached using either WGCNA or GeneNet.

Thus, the gene composition and network statistics of
genetically-driven modules indicate that one of their main com-
ponent is constituted by several highly connected genes origi-
nating from one chromosome. In mammals, co-expressed genes
have been reported to cluster both at either short-range (1 Mb)
or long-range (>10 Mb) levels (Woo et al., 2010). Moreover, we
have recently reported in mouse RIS the existence of clusters of
co-expressed genes that all show linkage to one common QTL
(Scott-Boyer and Deschepper, 2013). Corresponding genomic
regions showed a greater abundance of polymorphic SINE retro-
transposons, the latter showing enrichment for the motifs of
binding sites for various regulators of transcription. We postu-
late that such mechanisms may account (at least in part) for the
presence of several high co-expressed genes within chromosome
domains, which constitute the core of gene co-expression mod-
ules that have characteristics that set them apart from other kinds
of modules.

In mouse RIS, genetically-driven modules are not a rare occur-
rence, since they constitute in average 21% of all modules. Their
network statistics differ substantially from that of other modules,
with high AUC values being obtained for the normalized enrich-
ment index as well as the density and centralization valuesThis
suggests that genetically-driven modules can, to some extent, be
predicted solely on the basis of their gene expression patterns.

In summary, genetic determinants constitute one main orga-
nizing principle of a sizeable portion of gene-co-expression mod-
ules detected in mouse RIS panels, which provides a biologic
validation for corresponding modules. In addition, these mod-
ules appear to derive from cores of highly inter-connected genes
clustering on one chromosome. This may constitute one partic-
ular mechanism driving gene co-expression, which imparts on
genetically-driven modules particular properties. These proper-
ties set them apart from other modules in their network, to the
point that they can be predicted to a large extent on the basis of
their network statistics. Of note, it is possible that RIS panels pro-
vide a background that is particularly appropriate for the detec-
tion of genetically-driven modules. It remains to be seen to which
extent they will be detectable in other types of genetic crosses.
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Analysis of the biological gene networks involved in a disease may lead to the identification
of therapeutic targets. Such analysis requires exploring network properties, in particular
the importance of individual network nodes (i.e., genes). There are many measures that
consider the importance of nodes in a network and some may shed light on the biological
significance and potential optimality of a gene or set of genes as therapeutic targets.
This has been shown to be the case in cancer therapy. A dilemma exists, however, in
finding the best therapeutic targets based on network analysis since the optimal targets
should be nodes that are highly influential in, but not toxic to, the functioning of the entire
network. In addition, cancer therapeutics targeting a single gene often result in relapse
since compensatory, feedback and redundancy loops in the network may offset the activity
associated with the targeted gene. Thus, multiple genes reflecting parallel functional
cascades in a network should be targeted simultaneously, but require the identification of
such targets. We propose a methodology that exploits centrality statistics characterizing
the importance of nodes within a gene network that is constructed from the gene
expression patterns in that network. We consider centrality measures based on both graph
theory and spectral graph theory. We also consider the origins of a network topology, and
show how different available representations yield different node importance results. We
apply our techniques to tumor gene expression data and suggest that the identification of
optimal therapeutic targets involving particular genes, pathways and sub-networks based
on an analysis of the nodes in that network is possible and can facilitate individualized
cancer treatments. The proposed methods also have the potential to identify candidate
cancer therapeutic targets that are not thought to be oncogenes but nonetheless play
important roles in the functioning of a cancer-related network or pathway.

Keywords: network analysis, centrality, cancer, pathway, drug targets, personalized treatment, gene expression

1. INTRODUCTION
Treating many forms of cancer effectively is notoriously difficult
as most tumors have complex cellular dysfunctions replete with
compensatory and redundancy mechanisms that contribute to
tumor growth despite some aspect of the tumor being targeted
for destruction by an anti-cancer therapeutic agent. Thus, while
many cancer treatments seem effective when first administered,
relapses often occur, particularly in later stages of tumor develop-
ment. This general “robustness” of biological networks in tumor
cells presents true challenges for cancer treatments and cures,
especially if treatments administered only target a single gene.
To reduce the likelihood of resistance and the risk of relapse, it
may be important to target multiple pathways and oncogenes
simultaneously, but the best way to do this has not been estab-
lished (Hughes, 2007; Petrelli and Giordano, 2008; Dar et al.,
2012).

While many tumors have certain pathologies and dysfunc-
tional pathways in common, the specific mechanisms contribut-
ing to the growth of any one tumor are often distinctive and
subtle. However, the identification of these mechanisms and
the characterization of their contributions to individual tumor

growth and treatment resistance can be greatly aided through
the use of modern genomic assays and pathway analyses. Assays
such as DNA sequencing, RNA sequencing, copy number varia-
tion assays, and proteomic profiling can reveal phenomena such
as damaging mutations in oncogenes, resistance gene amplifi-
cations, and abnormal silencing of tumor suppressor genes. In
conjunction with these assays, network and pathway analyses
methods can reveal connections between different perturbations
in tumors and may suggest interactions between genes that, if
targeted simultaneously with different therapeutic compounds,
could disrupt the network integrity of the tumor cells and lead
to more effective interventions.

The best way to assess connections between multiple perturba-
tions in tumors that could be targeted simultaneously is an open
question. However, analyses of the principal properties, behavior
and structures associated with biological networks within tumors
may lead to the identification of more optimal therapeutic tar-
gets. Of the measures that one could consider in evaluating the
properties of a tumor gene network, those focusing on network
integrity are of particular interest. Network integrity analysis can
lead to the identification of central gene nodes or gene hubs within
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We use gene expression data in conjunction with cancer-related signaling pathways to infer tumor–specific net-

works. The extracted tumor-specific networks help us further infer critical nodes (genes) and potential therapeutic
targets for specific types of tumors or tumor cells.

• Q: How was the quality/utility of the inferred networks assessed?
• A: We compare and contrast the predictions with those derived using canonical pathways. We further compare

the predictions on various normal tissues, tumor types and tumor cells. We also assess the results using multiple
pathway/network databases.

• Q: How were these networks validated?
• A: Many of the targets predicted from the networks have supporting evidences in the literatures: they are either

implicated as oncogenes or known targets of cancer treatments.

the network that contribute to the maintenance and growth of
a tumor in critical ways (Jeong et al., 2001; Ágoston et al., 2005;
Perumal et al., 2009; Horvath, 2011; Li et al., 2011). For exam-
ple, genes that are critical to the formation and growth of tumors
have been observed to code for proteins that have increased levels
of connectedness with other genes as well as greater centrality (i.e.,
occupying a more central place in the network rather than being
on the periphery of the network) than genes that do not con-
tribute to tumor growth and formation (Jonsson and Bates, 2006;
Sun and Zhao, 2010; Xia et al., 2011). However, it has also been
shown that most disease genes do not necessarily code for proteins
that are hubs within a network, suggesting that some network
characteristics may be better indicators of optimal therapeutic
gene targets than others (Goh et al., 2007). In addition, most
network analyses have been performed on comprehensive and
generic interaction information rather than on networks or path-
ways specific to individual tumors, calling into question which
type of network topology or representation an analysis should be
pursued with. It is noteworthy, however, that network centrali-
ties have also been used to derive integrated gene signatures for
breast cancer (Wang et al., 2011) and, in the context of signaling
pathways, centrality-based analysis approaches have been used to
identify enriched pathways from gene expression data (Gu et al.,
2012), suggesting that different data types and approaches may
provide complementary insights.

We assess the properties and characteristics of a cancer net-
work topology based on gene expression data across a variety
of tumors with subsequent analyses confined to specific types
of tumors or tumor cells. We contrast the results of the use of
different measures of network integrity on the ability to iden-
tify therapeutically meaningful gene targets in cancer networks.
Our ultimate goal was to determine if it is possible to make
compelling claims about the existence of gene targets that might
be optimal for therapeutic intervention based on the network
characteristics. We rank genes (i.e., nodes in the network) and
edges based on their influences on network function and topol-
ogy defined by various measures, and illustrate that centrality
analysis on signaling pathways may provide additional insights
to that based on protein-protein interaction (PPI) networks. One
of the potential uses of network topology analyses like those
we pursued is to identify targets that are not necessarily known
to be directly cancer-related but may influence tumor growth

nonetheless. Thus, in addition to common measures of network
centrality which focus on cancer-related genes, we also investigate
the utility of centralities based on spectral graph theory, includ-
ing spectral gap centrality, that consider network function in a
broader context and that have not been explored in the context of
biological networks to date.

The remainder of the manuscript is organized as follows.
Section 2 describes several centrality measures based on both
graph theory and spectral graph theory, as well as the con-
struction of network centralities based on gene expression data.
Section 3 contrasts the critical nodes (i.e., genes) and edges
defined and determined by different measures in cancer PPI sub-
networks and pathways, pathways from different sources, and
pathways conditioned on specific tissues and tumor cell lines.
Section 4 summarizes the main observations and issues, and
makes recommendations. We note that some of the terminol-
ogy used in the literature and ways of referring to network
components are often ambiguous. We use network and pathway
interchangeably, although network often corresponds to the actual
topology associated with a biological pathway. Also, when refer-
ring to nodes in a network (pathway) we are referring to individual
genes and their place in the topology associated with a network
(pathway).

2. MATERIALS AND METHODS
2.1. CRITICAL NODES IN A NETWORK
Network centralities are important structural attributes of a net-
work. They can be exploited in analyses evaluating network
robustness and reflect how much a network is connected and,
importantly, how network functionality might be affected locally
or globally if certain nodes or connections in the network are dis-
rupted. There are many types of centrality measures (Freeman,
1978/1979; Koschützki and Schreiber, 2008; Horvath, 2011) and
they are often used in different contexts. In biological network or
pathway analysis, potential drug targets are expected to be highly
influential nodes such that perturbing these nodes will have a
major effect on network integrity and the flow of information
through that network. These nodes might correspond to genes
that affect many other genes in the network, or they could be asso-
ciated with network fragility in the sense that if they are perturbed
the network cannot function as a whole. Such highly influential
nodes in a network or pathway might also be toxic to the entire
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network and lead to a complete inability of the network to func-
tion if perturbed. Such complete dysfunction might induce more
harm than good if it is a network that normal, non-tumor cells
require in order to function properly. In this light, it might be bet-
ter to target nodes or genes that influence the most critical nodes
in a network and not the actual critical nodes themselves. Among
the various measures of network centrality that have been pro-
posed in the literature, we primarily focused on the four measures
described briefly below.

2.1.1. Degree centrality
The simplest and the most common measure of node importance
in the context of a specific network topology is degree centrality.
Consider a network defined as a simple graph G = (V, E) with
n = |V | nodes and |E| edges. The degree of node v ∈ V is the
number of edges incident to v. Mathematically, the graph G can
be represented as an adjacency matrix A(G), defined as

Aij =
{

1 if i, j ∈ V , {i, j} ∈ E,
0 otherwise,

where 1 ≤ i, j ≤ n. Note that in discussions of the adjacency
matrix, we will often refer to node vi as node i and use these two
notations interchangeably. The degree centrality of node i is then
defined as cd(i) = ∑

j aij and reflects how well a node is connected
as well as its likely direct influence on its neighbors.

2.1.2. Betweenness centrality
The betweenness centrality is defined as the frequency with which
a node is on the shortest path between two other nodes (Freeman,
1978/1979). It reflects the likely control of communication between
other nodes by the node in question. There are definitional and
operational differences between two types of betweenness central-
ity measures: node betweenness and edge betweenness. Betweenness
for node k is defined as following,

cb(k) =
∑
i<j

gikj

gij

where gij denotes the number of shortest paths between nodes i
and j, and gikj denotes the number of shortest paths between i, j
through node k. Betweenness for edge e is similarly defined as,

eb =
∑
i<j

giej

gij

where giej denotes the number of shortest paths between nodes i, j
through edge e. In contrast to the local effect of degree centrality,
betweenness captures local connectivity as well as a node’s global
importance to the network. A node or edge of high betweenness
essentially serves as a gatekeeper that could control the flow of
information across the network.

2.1.3. Eigenvector centrality
The eigenvector centrality is defined as the centrality of a node
that is proportional to the sum of the centralities of the nodes

it is connected to Bonacich (1972). The eigenvector centrality of
node i is

ce(i) = 1

λ

∑
j

aijce(j)

where λ is the largest eigenvalue of the adjacency matrix A. It
reflects how well a node is connected to the well-connected nodes
and how differences in node degrees propagate through a net-
work. Both Google’s PageRank measures and Katz centrality are
variants of the eigenvector centrality.

2.1.4. Spectral gap centrality
Another measure derived from spectral graph theory was pro-
posed by Wehmuth and Ziviani (2011). As it is based on the
spectral gap of sub-networks, we will refer to it as spectral gap
centrality. The diagonal degree matrix of G, denoted D(G), is
defined as

Dij =
{

dk if i = j = k,
0 otherwise,

where dk is the degree of node k. The normalized Laplacian
matrix (Chung, 1997) of graph G, denoted L(G), is defined as

Lij =

⎧⎪⎨
⎪⎩

1 i = j,
− 1√

didj
{i, j} ∈ E,

0 otherwise.

All eigenvalues of L(G) are between 0 and 2, i.e., 0 = λ1(L) ≤
λ2(L) ≤ · · · ≤ λn(L) ≤ 2. If G is a single connected component,
λ2(L) (referred to as the spectral gap) is the smallest non-zero
eigenvalue and is less than 1 if the graph is not complete. λ2

approaches 0 as the graph becomes less connected. The critical
nodes are nodes with high spectral gap centrality. The spectral
gap centrality of node i is defined as

ch
s (i) =

{
λi

2
log2(di)

di > 1,

∞ di = 1.

where λi
2 is the spectral gap of the h-neighborhood of node i, i.e.,

the subgraph induced by all nodes within h edges from node i, and
di is the degree of node i. The lower the value ch

s (i), the more crit-
ical the node i is to the network. The spectral gap centrality thus
reflects the neighborhood connectivity, and captures both degree
and betweenness to some extent depending on the value of h.

The four centrality measures are chosen primarily for their
representative characteristics of networks, their direct relevance
to potential biological functions that we are interested in, and
the intuitive interpretation of the results. Among other mea-
sures that might be of interest, closeness (Sabidussi, 1966) and
radiality (Valente and Foreman, 1998) centralities reflect how
quickly a node can reach another, which represents a different
type of functionality. Closeness centrality requires network to
be strongly connected which is often not the case for pathways.
PageRank (Page et al., 1999) and Katz status index (Katz, 1953)
are variants of eigenvector centrality. Another class of centralities
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are motif-based (Koschützki and Schreiber, 2008), which repre-
sent functional substructures, thus are more likely employed in
specific contexts.

2.2. THE ORIGINS AND RELEVANCE OF NETWORK AND PATHWAY
TOPOLOGIES

The question of which centrality measure yields a better pre-
diction for therapeutic targets is only one of many important
questions associated with biological network analyses. A more
fundamental question is which biological network to interrogate.
Network analysis can be applied to protein-protein interaction
(PPI) networks, often derived empirically through experimen-
tation, or biological pathways that have been described over
the years. The choice of a particular pathway is also compli-
cated, since there are multiple versions and subcomponents of
pathways to choose from. One option is to derive a protein-
protein interaction subnetwork from the genes of relevance to a
particular, e.g., phenotype that are grounded in a pathway. An
alternative is to analyze the pathway topology directly without
considering the elements associated with a protein-protein inter-
action subnetwork. Different choices of a network or pathway
representation—even if chosen to address the same overarching
questions—will undoubtedly yield different results due to intrin-
sic differences between PPI subnetwork definitions and pathways.
In addition, the same pathway defined from different database
sources, or compiled based on different readings or reviews of
the literature, may also yield different results due to topological
differences between the network representations. Further com-
pounding these issues is the fact that all genes in a pathway are
not equally expressed in all tissues. Thus, networks constructed
from one set of resources or experiments may not represent the
true network topologies associated with different tissues. For the
identification of critical nodes and genes to be relevant to a par-
ticular biological setting, tissue-specific network configurations
might need to be considered. Obviously, if a gene is not expressed
in a particular tissue of interest, for example, the node in another
tissue-derived gene expression-based network corresponding to
that gene and its associated edges must perforce be deleted from
the network, thus altering the network topology.

To evaluate the effects of different network representations
and different network centrality measures on the identifica-
tion of critical nodes in that network, we analyzed MAPK and
EGFR signaling pathways and configurations obtained from dif-
ferent sources. We treated these signaling pathway representations
as true networks. We obtained pathway information from the
KEGG (Kanehisa and Goto, 2000) and WikiPathways (Pico et al.,
2008) databases. We obtained a human PPI network from the
STRING (Mering et al., 2003) database. In order to have the path-
way representations comparable to PPI network representations,
we treated them as undirected graphs. Note that the PPI subnet-
work from a pathway is a subgraph of the entire PPI network
limited to the nodes corresponding to the intersection between
genes implicated in the pathway and those present in the PPI
network.

To compare and contrast tissue-specific pathways (based on
the genes expressed in that tissue) and more generic, non-
expression-based pathways, we analyzed cancer-related pathways

based on expression patterns obtained from the NCI60 tumor
cell lines (Scherf et al., 2000). To determine expression patterns
in the NCI60 cell lines, we applied the Gene expression bar-
code algorithm (McCall et al., 2011) to the Affymetrix gene
expression data of each cell line, which yielded an expression
state (i.e., expressed/unexpressed) for each gene in each cell
line. In addition, we analyzed pathways conditioned on a set
of gene expression states and levels obtained from normal tis-
sues. RNA-Seq data for eleven human tissues were obtained
from RNA-Seq Atlas (Krupp et al., 2012). A threshold on gene
expression value RPKM (reads per kilobase of transcript per mil-
lion mapped reads (Mortazavi et al., 2008)) was used to filter
genes such that genes with expression levels having an RPKM<

0.5 were considered unexpressed. Tissue or cell-specific pathway
information was obtained by removing genes (i.e., nodes in the
network) corresponding to unexpressed genes from the default
pathway.

For each pathway (represented as a network) and each net-
work centrality measure, the nodes (i.e., genes) within them were
ranked in two ways: (i) by their centrality values; (ii) by the order
that they were removed based on an iterative procedure to identify
their importance in the network. This iterative procedure worked
by removing top-ranked nodes based on centrality value (along
with edges incident to the node), reassessing the nodes in the
network and repeating this process until all nodes were assessed.

3. RESULTS
3.1. THE EGFR AND MAPK PATHWAYS IN CANCER
We ultimately analyzed two different pathways known to have
pronounced roles in oncogenesis: The epidermal growth fac-
tor receptor (EGFR) pathway and the mitogen-activated protein
kinase (MAPK) pathway. Both EGFR and MAPK signaling path-
ways are well-studied and comprehensively curated, making them
ideal for our comparison of various methods for assessing node
importance and therapeutic target potential. We briefly describe
each below.

EGFR, also called ErbB1, is a member of the ErbB family
of receptor tyrosine kinases. The EGFR pathway is one of the
most important pathways regulating cell growth, differentiation
and survival (Holbro and Hynes, 2004). Abnormally high lev-
els of the EGFR protein are frequently found on the surface of
many types of cancer cells, facilitating the excessive cell division
that is the hallmark of cancer. The defective regulation of the
EGFR signal transduction pathway is also known to be associated
with oncogenesis. EFGR and its signaling components therefore
offer promising therapeutic targets for various cancers (Citri and
Yarden, 2006; Scaltriti and Baselga, 2006).

The MAPK superfamily includes well-conserved kinase genes
known to be involved in various cellular functions including cell
growth, proliferation, differentiation, migration and apoptosis.
They are regulated by four distinct groups of genes in mammals:
ERK1/2, JNK, p38 and ERK5. While ERK1/2 and ERK5 pathways
are relatively insulated, JNK and p38 kineses share many of their
activators, thus the two cascades are more entangled (Chen et al.,
2001; Yang et al., 2003). It has been well-established that aberra-
tions in MAPK signaling play critical roles in cancer development
and progression (Dhillon et al., 2007).
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3.2. PPI SUB-NETWORK VERSUS SIGNALING PATHWAY ANALYSES
The EGFR network we derived from WikiPathways [EGFR sig-
naling pathways (Pico et al., 2008; Kandasamy et al., 2010)] has
235 nodes and 249 edges. The average node degree is 1.06, and
the graph density (i.e., the fraction of possible edges) is 0.01. The
PPI subnetwork induced by EGFR pathway has 119 nodes and
4638 edges. Its average node degree is 39, and the graph den-
sity is 0.66. We applied the different centrality measures discussed
above to each network and ranked the nodes (genes) on the basis
of these measures. Tables 1, 2 list the top-ranked genes (ranked
between 1 and 10 for at least one measure) obtained from the
PPI subnetwork and the EGFR pathway, respectively. The left five
columns reflect degree centrality, node betweenness, eigenvector
centrality, spectral gap centrality with h = 2 and spectral gap cen-
trality with h = 3; the right five columns provide corresponding
measures with top-ranked nodes removed and the remaining sub-
graphs re-evaluated iteratively. The upper triangular matrix at the
bottom half of the table gives Spearman’s rank correlation coeffi-
cients assessing the relationship between the results of each pair
of metrics. This is computed using the actual rankings of all genes
listed in the table, including those ranked beyond ten.

As shown by Spearman’s ρ in Table 1, the rankings from differ-
ent metrics are highly correlated among genes in the PPI subnet-
work. This can be explained by the properties of the network. The
PPI network, like many biological networks (Lima-Mendez and
van Helden, 2009), has the following properties: (i) High-degree
nodes tend to be connected with other high-degree nodes; (ii)

The network diameter (i.e., the length of the longest of the short-
est paths between any two nodes) is usually small. A subnetwork
shares these properties if it is induced on nodes of high degrees.
Genes corresponding to high-degree nodes in a PPI network usu-
ally have systemwide effects and are involved in multiple pathways
including cancer-related pathways (Han et al., 2004; Barabási
et al., 2011). Spectral gap centralities in such a subnetwork are
largely dominated by node degrees, and eigenvector and between-
ness centralities also track the degrees for the high-degree nodes.
Consequently, different centrality metrics on a pathway-induced
PPI subnetwork are unlikely to yield significant insights beyond
what is already coded in node degrees. As noted, although high-
degree nodes in a PPI network may serve as effective drug targets,
they are also likely to be toxic if perturbed in severe ways, due
to their system-wide influence, i.e., their likely being involved in
many cellular functions as they influence many pathways simulta-
neously. In this light, Wang et al. (2013) showed that the number
of side effects of a drug is positively correlated with the degree
and betweenness centralities of that drug’s targets in the protein-
protein interaction network. This observation was found to be the
case for both cancer and non-cancer drugs.

In contrast to an analysis of the PPI network, the different cen-
trality measures produced different node rankings when applied
to the pathway information, as described in Table 2. Thus, while
some nodes ranked high in multiple metrics indicating their
overall importance, there are groups of nodes that rank high
based on one or another measure, especially with respect to the

Table 1 | Top ranking genes in EGFR PPI subnetwork by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

AKT1 1 1 1 1 1 1 1 1 1 1

EGF 2 3 2 2 2 2 3 2 2 2

EGFR 3 2 3 3 3 3 2 3 3 3

GRB2 4 5 4 4 4 4 5 5 5 4

MAPK1 5 4 5 5 5 5 4 4 4 5

RAC1 6 7 6 6 6 6 8 6 6 6

CDC42 7 6 7 7 7 7 6 8 7 7

MAPK3 8 10 8 8 8 8 10 7 8 8

STAT3 9 9 9 9 9 9 9 9

ERBB2 10 8 10 10 10 7 10 10

FOS 9 9

PTEN 10 10

cd 0.92 0.97 1 1 1 0.9 0.96 0.99 1

cb 0.87 0.92 0.92 0.92 0.99 0.85 0.93 0.92

ce 0.97 0.97 0.97 0.83 0.99 0.97 0.97

c2
s 1 1 0.9 0.96 0.99 1

c3
s 1 0.9 0.96 0.99 1

cr
d 0.9 0.96 0.99 1

cr
b 0.8 0.9 0.9

cr
e 0.97 0.96

cr2
s 0.99

cd , degree centrality; cb, node betweenness; ce, eigenvector centrality; c2
s , c3

s , spectral gap centrality h = 2, 3. cr
{d,b,e,s},c

{2,3}r
s , node ranking are obtained by

consecutively removing the top ranked nodes. The bottom matrix is Spearman’s rank correlation coefficients.
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Table 2 | Top ranking genes in EGFR pathway by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

SRC 1 2 5 1 2 3 2 5

STAT3 2 1 3 2 2 1 2

EGFR 4 3 1 6 7 7 1 10

HRAS 6 3 8 5 9 4 6

MAPK1 7 9 4 7 6 6 3 4

MAPK3 8 9 9 2

GRB2 9 1 7 1 8 1 5 5 1

MAPK7 10 10 8

SOS1 2 6 3

RAF1 4 5 3 4

REPS2 5

ASAP1 6 4

MAP2K1 7 4 3

MAP2K2 10 6

STAT1 2

JAK2 4

JAK1 5

PIAS3 6

COX2 7

GRIM19 8

PLCG1 9 8 9

GAB1 8

PLD1 10

CBLC 9

MAPK8 10

SH3KBP1 7 7

JUN 9

JUND 10

cd 0.34 −0.27 0.76 0.68 0.87 0.53 0.76 0.66 0.69

cb −0.35 0.65 0.78 0.3 0.44 0.26 0.4 0.39

ce −0.29 −0.25 −0.19 −0.31 −0.24 −0.16 −0.21

c2
s 0.81 0.53 0.5 0.49 0.71 0.51

c3
s 0.65 0.44 0.49 0.48 0.7

cr
d 0.65 0.8 0.48 0.79

cr
b 0.6 0.54 0.45

cr
e 0.35 0.5

cr2
s 0.51

Spearman’s rank correlation coefficients are computed on genes in the table with their actual rankings (ranking > 10 not shown). Nodes that do not directly

correspond to genes are omitted.

betweenness and eigenvector centrality measures. High ranking
nodes based on the betweenness and eigenvector centrality mea-
sures appear to be exclusive to each other in the pathways we have
analyzed. The spectral gap centrality measure tends to capture a
few nodes ranked high by each of the other three metrics. Similar
results were observed when we analyzed the MAPK pathways, as
described in the next section.

We note that genes (nodes) ranked high exclusively by the
eigenvector centrality measure (i.e., STAT1, JAK2, JAK1, PIAS3,
COX2, GRIM19) are all neighbors (directly downstream or
upstream in the pathway) of STAT3, which plays a leading role
in cancer inflammation and immunity, and is a validated target

for cancer therapy (Yu et al., 2009). JAK-STAT signaling is a well
understood cascade as its aberrant activation has been implicated
in various types of leukemias, as well as solid tumors (Ferrajoli
et al., 2006; Sansone and Bromberg, 2012). In addition, it has
been established that STAT1 overexpression is associated with
anticancer drug resistance (Khodarev et al., 2012). Interestingly,
the FDA-approved drug ruxolitinib is a JAK1 and JAK2 inhibitor,
and more JAK inhibitors are in development (Verstovsek et al.,
2012). Also, PIAS3 overexpression has been shown to inhibit cell
growth and increase drug sensitivity in lung cancer (Ogata et al.,
2006), and several studies have indicated that COX2 inhibitors
(NSAIDs and celecoxib) have protective effects against colorectal
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cancers and breast cancers (Gupta and DuBois, 2001; Arun and
Goss, 2004; Brown and DuBois, 2005). Finally, Okamoto et al.
(2010) demonstrated that overexpression of GRIM19 in cancer
cells suppresses STAT3-mediated cancer growth.

As emphasized, the analysis of singular nodes that may be logi-
cal drug targets in a network is tremendously important in cancer
therapeutic development. However, targeting multiple signaling
pathways simultaneously is an essential strategy in managing can-
cer and reducing the possibility of an individual tumor developing
drug resistance. It is therefore important to identify critical genes
in multiple cascades within a network. By removing top-ranked
nodes that appear to be the most critical for drug response and
then re-evaluating the remaining subnetworks, additional critical
nodes that may act as redundancy and compensatory mechanisms
and contribute to drug resistance can be identified. Interestingly,
when the betweenness and spectral gap centralities are applied to
a network in such fashion, the first few critical nodes often reside
on different paths (cascades) in that network. This phenomenon
is not as pronounced for the node degree and eigenvector cen-
trality measures, as their values are affected primarily by a node’s
nearest neighbours in the network and the properties that these
neighboring nodes have. For example, consider cr

s as applied to
the EGFR pathway (Table 2): for h = 2, the top three nodes are
EGFR, SRC, and MAPK1 (ERK), belonging to two paths; for
h = 3, the top nodes are GRB2, STAT3 and MAP2K1 (MEK),
also on two cascades, the classical MAPK and Jak-STAT cascades.
We observed similar effects in the analysis of the MAPK pathway
as detailed in the next section. In this light, nodes ranked high
by cr

s alone, such as SH3KBP1, PLCG1, JUN, JUND, might also
serve as potential therapeutic targets. SH3KBP1 has been impli-
cated in cell death and shown to mediate down regulation of
EGFR (Soubeyran et al., 2002; Feng et al., 2011), and JUND has
been shown to reduce tumor angiogenesis (Gerald et al., 2004).
We consider the betweenness centrality measure in a separate
section.

3.3. DIFFERENT REPRESENTATIONS OF THE SAME NETWORK
There are often multiple sources for the same biological network
or pathway. Variations in the topology of a network associated
with different representations of that network can be attributed
to, among other things: what genes or proteins (nodes) are
included in the network; what types of interactions are included
(e.g., gene-protein, protein-protein, interactions derived from
correlations in expressions values of genes) and how they are rep-
resented as edges in the network; and how protein complexes
are represented. The MAPK pathway can be used to illustrate
this. The MAPK pathway from KEGG (Kanehisa and Goto,
2000) has 129 unique nodes and 161 edges (average node degree
= 1.25; graph density = 0.02), while the same pathway from
WikiPathways (Pico et al., 2008) is made of 186 nodes and 168
edges (average node degree = 0.90; graph density = 0.01). Note
that a pathway is not always represented as one connected com-
ponent. A main difference between the KEGG and WikiPathways
representations is that protein-gene complexes are shown as sin-
gle nodes in the former, while various components of the complex
appear individually in the latter, and additional nodes, referred to
as compound nodes subsequently, are used to group the complex

together. Although the different representations of the MAPK
pathway have biological appeal, since they exploit and incorporate
different data types and ways of integrating them, the resulting
topologies are quite different and obviously affect the ability to
identify critical nodes in that pathway. For instance, nodes con-
necting a complex (i.e., compound nodes) in WikiPathways often
have high degrees. Consequently, the significance of the individ-
ual nodes in the complex, as well as other nodes, will be affected
in the identification of critical nodes. Pathways involving differ-
ent data sources may be represented as compound graphs for
perhaps a clearer layout and to facilitate more modularized mod-
eling (Dogrusoz et al., 2005). However, it is unclear how best to
treat differences between pathway representations in a network
analysis, especially with respect to what makes the most biolog-
ical sense, as well as how to interpret the different results. We
considered analyses involving both the KEGG and WikiPathways
representations to highlight differences that may result from
their use.

Tables 3, 4 list critical nodes identified from the MAPK path-
way as derived from the KEGG and WikiPathways representa-
tions. While some nodes ranked high in one pathway but not the
other, most top-ranked nodes are shared. Their rankings, how-
ever, are rather different. Of the compound nodes in the MAPK
pathway from WikiPathways, CASP∗, PPP3∗ and PRKC∗ rank
high essentially because they are each connected to multiple indi-
vidual genes (7, 5, 5 genes, respectively) of a complex, thus having
relatively high degrees. While compound nodes highly affect the
degree centrality ranking, other measures, especially the spectral
gap centrality measures, are less affected (unless average node-
degree is high, as shown in the analysis of the PPI subnetworks),
making them more informative and reliable. In addition, the
spectral gap centrality measure, when applied with a higher h,
captures nodes with more global rather than local importance.
For instance, the top three nodes by cr

s (h = 3) in the KEGG
MAPK pathway representation are RAF1, ASK1 and MEKK1,
which are on the ERK1/2, p38, and JNK cascades respectively.
Similarly the top three nodes in WikiPathways MAPK pathway
representation are ERK, MEKK1 and MKK7, which are on the
ERK1/2 and JNK cascades. As shown in the previous section,
nodes captured by eigenvector centrality are especially interest-
ing, particularly if they are not captured by other measures, since
they are often connected to otherwise critical nodes, thus suggest-
ing that these nodes have the potential of being a direct influence
on the behavior of the network. For instance, the MKP (from
the DUSPs gene family) and PTP genes are ranked high by ce

alone and ranked 2 and 3 based on an analysis of the KEGG
MAPK pathway representation, and as the top two ce nodes in
the WikiPathways representation of the MAPK pathway as well.
These genes are known to be inhibitors of ERK, JNK and p38,
thus covering three out of four potential cascades or crucial
subcomponents of the MAPK pathway. Indeed, PTP genes have
emerged as drug targets for cancer (Jiang and Zhang, 2008), and
MKP-DUSP genes have been found to be involved in cancer pro-
gression and resistance, and have thus also become potential drug
targets (Bermudez et al., 2010).

The PPI subnetworks associated with the MAPK pathway,
based on both KEGG and WikiPathways representations, share
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Table 3 | Top ranking genes in MAPK pathway (KEGG) by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

MEKK1 1 2 7 4 4 1 4 2 9 3

JNK 2 6 1 3 9 2 2 1 4 4

ASK1 3 7 7 3 3 7 2

Ras 4 4 3 4 8 4 5

ERK 5 5 6 10 5 5 6 6 7 7

Elk1 6 4 10 8

p38 7 10 5 7 8 6 5 3 6

GRB2 8 9 6 7 5 10

MAPKAPK 9 8 6

MKK7 10 10 9 10

MEK2 1 1 2 1 1

Raf1 3 1 1

SOS 8 10

MKP 2

PTP 3

MKK4 8 2 2

Sap1a 9

MKK3 5 10 5

cJUN 6

TNFR 7 9

IL1R 9

TRAF2 3

TAK1 8

similar properties with those from EGFR pathways: (i) the aver-
age node degrees are high; (ii) the graph densities are roughly
2/3; (iii) the node degrees dominate the critical node rankings
of various metrics. As a result, the top-ranked nodes are the usual
suspects, such as AKT1, P53, and RAF1. And for brevity’s sake, we
do not provide detailed descriptions of the results of this analysis.

3.4. THE IMPORTANT ROLE OF BETWEENNESS CENTRALITY IN
NETWORK ANALYSES

Since attacking multiple networks and pathways therapeutically
in cancer is appropriate and necessary, it is imperative to find
the critical signaling and major parallel cascade subnetworks.
Betweenness centralities have the potential to reveal gatekeeping
nodes or edges that control the flow of signal transduction along
the cascades. In addition to node betweenness, edge between-
ness may reveal targets that confer distinct functional advantages.
It is noteworthy that although many genes/nodes in a network
can be linked to multiple functions, it may be the case that
only one of such links is disease-related (Zhong et al., 2009).
Thus, blocking or perturbing a node with multiple functions may
have unanticipated effects. The edge betweenness measure may
offer more information than node importance in this regard.
In addition, it could identify edges connecting major cascades
involved in multiple functions. Since it is known that some
cancer-related genes and proteins are difficult to target with
small molecules, for example the p53 gene, drugs targeting an
edge/interaction for which such genes are connected may offer
ways of indirectly targeting and influencing those genes (Arkin
and Wells, 2004).

Our analyses involving betweenness centrality with consecu-
tive removal of top-ranked nodes or edges is more revealing. For
instance, in Table 2, the following nodes with high betweenness,
GRB2, SOS1, HRAS, RAF1, MAP2K1, MAP2K2, and MAPK1 are
all on the same path. If the top-ranked node is removed and
betweenness is re-evaluated on the remaining network, we imme-
diately recognize the critical importance of nodes GRB2 and SRC,
which are involved in multiple signaling paths in the network.
Similarly, for analyses involving the edge betweenness centrality
for the EGFR pathway, while four out of the top five edges by eb

are on the same path, the top five edges by er
b are on four distinct

paths (Table 5).
This phenomenon of nodes and edges gaining or losing impor-

tance depending on the measure used is even more pronounced
in the analysis of the MAPK pathways (Tables 3, 6). The MAPK
pathways include four cascades: classical MAPK pathway (also
known as ERK1/2 pathway), JNK and p38 MAPK pathway, and
ERK5 pathway. The top three nodes by cr

b, MEK2, JNK, ASK1, are
on three of these cascades (Table 3). Table 6 suggests that while
four of the top five edges by eb are on the same ERK1/2 cascade,
the top three edges by er

b are each on one cascade: Raf1−MEK2
on ERK1/2, ASK1−MKK2 on p38, MKK−JNK on JNK, while the
fourth edge MEKK1−MEK2 connects the JNK and ERK1/2 paths

edges do indeed essentially capture the main paths in the MAPK
network. Note that the ERK5 cascade is presented as a separate
component and the subgraph is a linear graph. Consequently,
none of its nodes or edges ranked high in this particular
analysis.
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Table 4 | Top ranking genes in MAPK pathway (WikiPathways) by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

CASP* 1 7 2 8 1 1

DUSP*(MKP) 2 2 9 2 4

TGFBR1/2 3 10 3 10 7 5

IL1R1/2 4 1 1 4 1 5 1 5

PPP3* 5 4 9 8 7

K/N/MRAS 6 6 5 3 6 9

PRKC*(PKC) 7 6

GRB2 8 7 7 10 7

MAP3K1(MEKK1) 9 2 4 2 8 4 3 2

MAPK8-10(JNK) 10 4 7 9

TRAF2 3 6 3

MAP3K7(MKK7) 4 6 3

MAP3K7IP1 5

RAC1/2,CDC42 8 5 10 3

PTPN5/7,PTPRR(PTP) 9 1 3 5 2 2 2 6

MAP2K4(MKK4) 10 10

MAPK1/3/4/6(ERK) 3 1 5 1

PTPN5 5 8

MAPK12-14(p38) 8 10 8

MAPK13 9

PTPN7 10

NRAS 7 4

IKBKB/G,MAP3K14 9 10

MAPK1 8

KRAS 8

MAPK10 9

Nodes that do not correspond to genes directly are omitted.

Table 5 | High betweenness edges in EGFR pathway.

Rank eb (Edge) Path er
b

(Edge) Path

1 GRB2–SOS1 Classical MAPK GRB2–SOS1 Classical MAPK

2 SOS1–HRAS Classical MAPK SRC–PLCG1 Calcium

3 GRB2–REPS2 SRC–GAB2 SRC/GAB2/PI3K/AKT (Phagocytosis)

4 HRAS–RAF1 Classical MAPK RAF1–MAP2K1 Classical MAPK

5 RAF1–MAP2K1 Classical MAPK ASAP1–ARF6 PAG3/ARF6 (Phagocytosis)

3.5. PATHWAY ANALYSES CONDITIONED ON EXPRESSED GENES IN
TISSUES AND TUMOR CELLS

Not all genes are expressed in all tissues and cells. In tumor cells,
certain genes are amplified, others silenced, often abnormally so.
Not only do tumor cells differ from normal cells in this regard, but
they also differ from each other. As such, the same pathway man-
ifests differently in different cell types: if a gene is unexpressed,
the encoded protein should be considered non-functional, and
should be factually deleted from the pathway for an analysis.
While analyzing the default pathway topology yields invaluable
insights, tissue or cell-specific pathway topology needs be consid-
ered for network analysis to be more relevant. The best way to
construct appropriate networks for cell or tissue-specific analyses
is an open question, but might be achieved best by constructing

them de novo from relevant experimental data (Ranola et al.,
2013).

3.5.1. EGFR pathway restricted by gene expression levels in the
NCI60 cell lines

There are sixty unique cell lines of nine tumor types in
NCI60 database. We applied the gene expression barcode algo-
rithm (McCall et al., 2011) to the microarray gene expression
data of NCI60 cell lines to filter out unexpressed genes. The
gene expression barcode is essentially a normalization method
leveraging microarray data in the public domain to answer the
question: “given an individual microarray experiment of a cell
type, is a gene expressed or unexpressed in that cell?” Unexpressed
genes are deleted from the default pathway. For each NCI60 cell
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Table 6 | High betweenness edges in MAPK pathway (KEGG) .

Rank eb (Edge) Path er
b

(Edge) Path

1 Raf1–MEK2 Classical MAPK Raf1–MEK2 Classical MAPK

2 Ras–Raf1 Classical MAPK ASK1–MKK3 p38 MAPK

3 MEKK1–MEK2 MKK4–JNK JNK MAPK

4 MEK2–ERK Classical MAPK MEKK1–MEK2

5 SOS–Ras Classical MAPK MKK4–MKK7 JNK MAPK

line, between 40% and 60% of the 235 nodes in the default net-
work made from EGFR pathway were removed after this simple
analysis. We then evaluated the importance of nodes or edges in
each individual topology.

Figure 1A shows gene rankings for the spectral gap central-
ity measure cr

s (h = 2) averaged over cell lines for each tumor
type, where the top row labeled as def provides the rankings in
the default pathway. While all tumor types are different from
each other, the patterns of genes expressed and unexpressed in
them suggest that a network derived from these genes would be
very different from the default pathway. Essentially, each indi-
vidual cell line presents unique gene expression patterns as well.
This diversity requires pathway analyses specific for each individ-
ual tumor. Figures 1B,C show the gene rankings for individual
melanoma and breast cancer cell lines respectively. Figures 2, 3
show top-ranked nodes by eigenvector centrality and top-ranked
edges by betweenness for each tumor type as well as the individual
melanoma and breast cancer cell lines.

Melanoma cell lines can be clustered into three groups by
cr

s (h = 2) top-ranked genes, one with EGFR and RAF1 ranked
high exclusively, the other with MAPK1 at top rank, and the third
with a mixture of EGFR/RAF1/MAPK1 (Figure 1B). Eigenvector
centrality ce clusters melanoma cell lines quite differently from
cr

s (h = 2) (Figure 2B). Among breast cancer cell lines, MCF7
is unique when the measure cr

s (h = 2) is used to assess the
EGFR pathway with GRB2 and MAPK1 ranking highest, while
all the other cell lines have EGFR and/or RAF1 as top rank-
ing genes (Figure 1C). T47D appears unique by both ce and eb

(Figures 2C, 3C). Eigenvector centrality ce yields unique sets of
genes for each cell line except for genes STAT1/3 and CBL, each
shared by two cell lines as the top candidates (Figure 2C). CBL
protein family has been implicated in a number of human can-
cers and indeed shown to enhance breast tumor formation by
inhibiting tumor suppressive activity of TGF-β signaling (Kang
et al., 2012). The application of the edge betweenness measure
again clusters melanoma and breast cancer cell lines into two to
three groups, but in different ways than those derived with other
metrics (Figures 3B,C).

3.5.2. Analysis of the EGFR pathway restricted to eleven normal
tissues

The RNA-Seq Atlas (Krupp et al., 2012) has RNA-Seq data for
eleven normal human tissues. Hebenstreit et al. (2011) suggests
that there are two major classes of gene expression levels in most
cells: lowly expressed, which are likely non-functional, and highly
expressed, which are likely to be biologically meaningful. The dis-
tribution of log2(RPKM) gene expression values across the eleven

human tissues is indeed bimodal, suggesting these two major
classes. Determining a simple threshold for defining unexpressed
genes, however, is still somewhat arbitrary. We considered a 0.5
RPKM value as a threshold for differentiating unexpressed vs.
expressed gene, which is not only often suggested as a conservative
threshold, but also seems reasonable in this dataset. Figures 4A,C
show the top ranked genes by spectral gap centrality cr

s (h = 2)

and top edges by the betweenness measure er
b for each tissue. With

the exception of liver, and to a lesser extent skeletal muscle, the
rankings of the most critical genes in the other nine tissues are
quite similar to those from the default pathway, and even more
similar to each other. The critical edges in tissues differ from those
from the default pathway, but they are very similar to each other
with the exception of those of skeletal muscle. Even though the
data set cannot be compared directly to the NCI tumor cell lines
for purely technical reasons, the general patterns of node impor-
tance are markedly different (see Figures 1, 3). With the use of
a threshold of 0.5 RPKM, around a quarter nodes are deleted
from the default EGFR pathway. To make the number of nodes
more comparable to the tumor cell lines, we set a more aggres-
sive threshold of 3 RPMK so that between 40% and 60% nodes
are filtered out. Figure 4B shows the result for cr

s (h = 2) (edge
betweenness er

b is omitted due to space limitation). Even though
there are considerable differences and variations, they are still
less varied than the tumor cell types (Figures 1A, 2A, 3A). We
note that expression patterns of a tissue could be the averaged
expressions over different cell types within the tissue.

3.5.3. Integrated breast cancer pathway restricted by NCI60 breast
tumor cells

The Integrated Breast Cancer pathway incorporates the most
important proteins for breast cancer. It has 190 unique nodes
and 348 edges (mean node degree = 1.83; graph density = 0.02).
Figure 5 shows the top ranking nodes and edges by different
measures for each NCI60 breast cancer cell line.

While BRCA1 ranked highest by cd (not shown), cr
s (h = 2, 3)

(h = 3 not shown) for cell lines MCF7, MDA_MB_231 and
BT_549, MAX (Myc associated factor X) ranked highest by cd and
cr

s (h = 3) for HS578T and T47D. It is known that MYC deregula-
tion contributes to breast cancer development and progression.
Loss of BRCA1 coupled with MYC overexpression leads to the
development of breast cancer (Xu et al., 2010) and recent evidence
has shown that MYC is druggable (Pourdehnad et al., 2013).

Smad2 ranked high by at least one measure for each cell
line. Smad genes are highly ranked by ce for all but MCF7 and
BT_549, for which STAT1 and AR emerged more important
(in addition to BRCA1). Although Smad2/3/4 signaling plays a
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FIGURE 1 | Top ranked genes by spectral gap centrality with node

removal cr
s(h = 2) of EGFR pathway conditioned on NCI60 cell line gene

expression. Ranks range from 1 (dark red) to 10 (blue), and > 10 (the darkest
blue). (A) Rankings are averaged for each tumor type: BR, breast; CNS,

central nervous system; CO, colon; LC, non-small cell lung; LE, leukemia;
ME, melanoma; OV, ovarian; PR, prostate; RE, renal. def, default pathway
with all nodes. (B) Gene ranking by cr

s(h = 2) for NCI60 melanoma cell lines.
(C) Gene ranking cr

s(h = 2) for NCI60 breast cancer cell lines.

tumor suppressor role, it also exhibits a pro-metastatic func-
tion in breast cancer (Kang et al., 2005). It is also believed that
Smad-dependent pathway is involved in TGF-β tumor suppres-
sor functions. Various TGF-β inhibitors are in development and
preclinical studies have shown their promises in cancer treat-
ments (Nagaraj and Datta, 2010).

Evidence has correlated up-regulation of STAT1 activity with
increased breast tumor progression and immune suppression in
tumor microenvironment, thus STAT1 inhibition is a promising
immune therapeutic target (Hix et al., 2013). Androgen receptor
(AR) is commonly expressed in breast cancers. It ranked high by
ce for cell lines MCF7 and BT-549. There is a history of target-
ing AR for therapy in breast cancer, although the efficacy of AR
targeted treatments is moderate (Garay and Park, 2012) probably
due to a lack of clear understanding of the AR signaling mecha-
nism. For MCF7 cell line though, inhibitory effects of androgens
targeting AR have indeed been shown in multiple studies (Greeve
et al., 2004; Macedo et al., 2006).

Notice that since the analysis of the breast cancer pathway is
conditioned on the gene expression patterns in each cell line,
major tumor suppressor genes such as P53 and BRCA2 are
deleted. The exome data of NCI60 (Abaan et al., 2013) cell lines
shows that each of the five breast cancer cell lines has between
one to four missense or silencing TP53 mutations, and two to five
missense or silencing mutations in BRCA2. Only MDA_MB_231
has a silencing BRCA1 mutation. If we analyze the default breast
cancer pathway instead of the pathways built only from genes
expressed in the cell lines, the top three gene nodes are P53,
AKT1 and BRCA1 based on the cd or ce measures, or CERK1,
SMAD2 and AKT1 by the cr

s (h = 2) measure, respectively. The
top two ranked edges based on the betweenness measure (with
edge removal) are the TGFR1-SMAD4 and P53-C9JNK1 edges.

4. DISCUSSION
The identification of genes that are optimal or logical therapeu-
tic targets in tumors based on genomic information is crucial for
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FIGURE 2 | Top ranked genes by eigenvector centrality ce of EGFR

pathway conditioned on NCI60 cell line gene expression. Ranks
range from 1 (dark red) to 10 (blue), and > 10 (the darkest blue).

(A) Gene ranking by ce for tumor types. (B) Gene ranking ce for
NCI60 melanoma cell lines. (C) Gene ranking ce for NCI60 breast
cancer cell lines.

individualizing cancer treatments. We explored the utility of net-
work centrality analysis of standard pathways and pathways based
on gene expression information in identifying potential thera-
peutic targets for a tumor. We also described the complexity of,
and issues associated with, such analysis. We considered ranking
genes in a network or pathway either by their centrality values or
by iteratively recording the top-ranked node and reevaluating the
remaining subnetwork with the highest ranked node removed.
When analyses are performed on PPI subnetwork created from
genes associated with a specific pathway, the top ranked genes
based on different node importance measures are highly posi-
tively correlated. We observed a similar phenomenon when PPI
subnetworks derived from genes that have been implicated in par-
ticular types of cancers were assessed, both when using the genes
in these PPI subnetworks alone and by expanding these subnet-
works by including nodes one or two edges from the seed genes
used to create the PPI subnetwork (data not shown). The high-
degree nodes in a PPI network are critical to the functioning of
that network, and thus are likely to be important drug targets.
However, such nodes are not likely to be specific to a particular
pathway and as such targeting them therapeutically could also be
potentially toxic to a patient.

When applied to a signaling pathway, various measures of cen-
trality yield different sets of important genes and the rankings
of these genes across different node importance measures are
much less correlated. This lack of correlation among node impor-
tance measures may provide more insight into the functioning
of a network or pathway since the different measures may be
capturing different aspects of information flow through the net-
work. However, a possible confounding factor in the analysis of
node importance in networks is that the same pathway may be
represented in different ways across different databases, leading
to different network topologies. It is unclear how to determine
which topology is the best representation of a pathway in such
cases.

In the context of different measures of node importance,
eigenvector centrality has the potential to reveal nodes that may
impact other highly influential nodes (for instance nodes of high
degree). These other nodes may reflect genes that could serve as
alternative therapeutic targets when the highest ranked nodes or
genes are hard to target or possibly be toxic to the system as a
whole if targeted therapeutically directly. Identifying these alter-
native important nodes using eigenvector centrality should be
done on the pathway without iteratively deleting nodes or those
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FIGURE 3 | Top ranked edges by betweenness with edge removal er
b

of EGFR pathway conditioned on NCI60 cell line gene expression.

Ranks range from 1 (dark red) to 5 (blue), and > 5 (the darkest blue).

(A) Edge ranking by er
b for tumor types. (B) Edge ranking by er

b for
NCI60 melanoma cell lines. (C) Edge ranking by er

b for NCI60 breast
cancer cell lines.

alternative nodes are not likely to be discovered. For instance,
while SRC, STAT3, EGFR and GRB2 ranked the highest in the
EGFR pathway by two or more measures, STAT1, JAK1/2, PIAS3,
COX2 and GRIM19, all being neighbors of STAT3, ranked within
top ten exclusively by the eigenvector centrality. Each of these
genes has been implicated in some type of cancers and some are
known targets of cancer treatments. As mentioned in Section 3.2,
Ruxolitinib, an FDA-approved drug for treatment of a type of
bone marrow cancer, is a JAK1/2 inhibitor (Mesa, 2010). NSAIDs
and Celecoxib are COX2 inhibitors and have protective effects
against colorectal and breast cancers (Gupta and DuBois, 2001;
Arun and Goss, 2004; Brown and DuBois, 2005). In addition,
Hide et al. (2011) showed that the combination of a PTGS2
(COX2) inhibitor and an EGFR inhibitor prevented tumorgenesis
of oligodendrocyte lineage-derived glioma-initiating cells. Finally,
Li et al. (2013) demonstrated that microRNA-26b might act as a
tumor suppressor in breast cancer by targeting PTGS2.

Nodes ranked high by the betweenness measure with iterative
node removal are often on parallel cascades in the pathway, which
are important for simultaneously targeting multiple pathways in
cancer treatment. The top three nodes identified in this fash-
ion in MAPK pathways, for example, are MEK2, JNK and ASK1,
which reside on ERK1/2, JNK and p38 cascades respectively. Edge
betweenness generates potential edge-specific, or edgetic targets,
which are more specific to a particular pathway and the nodes
implicated in these edges might provide an alternative for ther-
apeutic targeting if the highest ranked individual nodes are hard
to target. Similarly, edges identified as important by iterative edge
removal tend to reside on separate paths.

Although high degree nodes are very important to the func-
tioning of a network, they are also more prone to differ if local
changes in a network topology are made. The spectral gap cen-
trality measure, on the other hand, is less sensitive to local degree
changes, and is more reliable if slightly different network topolo-
gies are considered. The spectral gap centrality measure also
captures both degree and betweenness phenomena simultane-
ously, thus complementing betweenness measures when used in
isolation in an important way. This is particularly true in the con-
text of signaling pathways where the betweenness measures tend
to capture fragile nodes and edges. The choice of the parameter h
in the spectral gap centrality measure calculation is more compli-
cated and is likely best approached empirically. Smaller values of
h tend to capture local node importance while larger values of h
tend to capture more global node importance. For typical path-
ways and PPI networks, setting h = 2 or 3 is a reasonable choice.
The spectral gap centrality measure node rankings are also more
informative when computed with iterative node removal.

Ultimately, in the context of finding potential therapeutic tar-
gets for tumors, we firmly believe that network analysis should
consider cell or tissue specific pathways and networks and not
rely on generalized or tissue independent canonical pathways and
networks. In order to assess tissue-specific networks and path-
ways, we considered the use of the expression levels of genes
in tissues to filter out unexpressed genes. We did this by using
either gene expression barcodes based on available array data or a
RPKM threshold based on RNA-Seq data. When different mea-
sures of node importance are applied to tissue or cell-specific
pathways obtained in this way, the resulting top-ranked genes
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FIGURE 4 | Top ranked nodes of EGFR pathway conditioned on

eleven normal human tissues from RNA-Seq Atlas. Ranks range
from 1 (dark red) to 10 (blue), and > 10 (the darkest blue)
for (A,B); from 1 (dark red) to 5 (blue), and > 5 (the darkest

blue) for (C). (A) Node ranking by spectral gap centrality cr
s(h = 2)

with RPKM ≥ 0.5. (B) Node ranking by spectral gap centrality
cr

s(h = 2) with RPKM ≥ 3.0. (C) Edge ranking by betweenness er
b

with RPKM ≥ 0.5

varied significantly among different cell types. We found that
variations in node importance between different tumor types are
generally larger than those variations between different normal
tissues. This is to be expected given the complex rearrangements
and perturbations in tumors. For a particular tumor type, anal-
ysis of different tumor cell lines or subtypes results in different
nodes deemed crucial or important to a particular pathway. For
instance, when the integrated breast cancer pathway is restricted
by the five NCI60 breast tumor cell lines based on their respective
gene expressions, BRCA1 ranked highest by degree and spectral
gap centralities for cell lines MCF7, MDA_MB_231 and BT_549,

while MAX ranked highest by the same measures for cell lines
HS578T and T47D. SMAD2 ranked high by at least one central-
ity measure for each of the five cell lines. While SMAD genes
were highly ranked by eigenvector centrality for MDA_MB_231,
HS578T and T47D, STAT1 and AR appeared more important for
MCF7 and BT_549.

We recognize that there are limitations and caveats in our
analyses. As more and more RNA sequencing studies are being
pursued on tumors, a simple threshold used to differentiate
expressed and unexpressed genes in these tumors will be harder
to define. Thus, better methods need be explored to determine
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FIGURE 5 | Top ranked nodes and edges of integrated breast cancer

pathway conditioned on NCI60 breast cancer cell lines. Ranks range from
1 (dark red) to 10 (blue), and > 10 (the darkest blue) for (A,B); from 1 (dark

red) to 5 (blue), and > 5 (the darkest blue) for (C). (A) Node ranking by
spectral gap centrality cr

s(h = 2). (B) Node ranking by eigenvector centrality
ce. (C) Edge ranking by betweenness er

b .

which genes might need to be filtered out or included in a path-
way analysis. While capturing important relevant oncogenes or
genes impacting oncogenes in a pathway, filtering genes based on
whether they are expressed or unexpressed in a cell type naturally
filters out abnormally silenced genes, thus potentially excluding
malfunctioned tumor suppressor genes in analysis, such as the
p53 gene. This can be salvaged by analyzing the default path-
way to some extent. In this light, given the extremely complex
nature of cancers, finding critical genes in specific pathways is
just a tiny piece of a puzzle to determine how best to treat can-
cers. Not only will an analysis of critical nodes in a network
need be approached with caution, but it should also be used
in conjunction with other information, such as the analysis of
DNA sequence mutations, copy number variations and other
bio-markers. In addition, treating gene expression as a binary
factor to construct a network’s topology for use in an analysis
of node importance is admittedly a simplistic approach. Rather,
expression levels and rates of gene amplifications can also be
incorporated into network analysis. Also, in addition to analyzing
tumor cells alone, it will likely be more informative to com-
pare normal and tumor samples to better quantify tumor-specific
genomic perturbations. Ultimately, we believe our analyses shed

light on the utility of measures of node and edge importance in
an analysis of gene networks and pathways in tumor biology and
cancer treatment choice and hope that they may motivate further
research in this area.
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Network inference utilizes experimental high-throughput data for the reconstruction of
molecular interaction networks where new relationships between the network entities
can be predicted. Despite the increasing amount of experimental data, the parameters of
each modeling technique cannot be optimized based on the experimental data alone, but
needs to be qualitatively assessed if the components of the resulting network describe the
experimental setting. Candidate list prioritization and validation builds upon data integration
and data visualization. The application of tools supporting this procedure is limited to
the exploration of smaller information networks because the display and interpretation
of large amounts of information is challenging regarding the computational effort and
the users’ experience. The Ondex software framework was extended with customizable
context-sensitive menus which allow additional integration and data analysis options
for a selected set of candidates during interactive data exploration. We provide new
functionalities for on-the-fly data integration using InterProScan, PubMed Central literature
search, and sequence-based homology search. We applied the Ondex system to the
integration of publicly available data for Aspergillus nidulans and analyzed transcriptome
data. We demonstrate the advantages of our approach by proposing new hypotheses for
the functional annotation of specific genes of differentially expressed fungal gene clusters.
Our extension of the Ondex framework makes it possible to overcome the separation
between data integration and interactive analysis. More specifically, computationally
demanding calculations can be performed on selected sub-networks without losing any
information from the whole network. Furthermore, our extensions allow for direct access
to online biological databases which helps to keep the integrated information up-to-date.

Keywords: exploratory analysis, Ondex, data integration, data visualization, information network, Aspergillus

nidulans, customizable workflow, gold-standard

1. INTRODUCTION
In our study, we developed and applied customizable context-
sensitive menus to the data integration and visualization tool
Ondex. This allows for the interactive exploration of experi-
mental data that is integrated into an information network. The
introduction starts with a survey of network inference methods
and qualitative assessment of inferred networks. Exploratory data
analysis looks for new patterns and hypothesis in a dataset and
it is thus well suited to qualitatively assess network modeling
and experimental results within the context of an information
network.

1.1. QUALITATIVE ASSESSMENT OF NETWORK INFERENCE
Network inference reconstructs molecular interaction networks
on the basis of experimental high-throughput data. Nodes in
the resulting network usually represent molecular entities (e.g.,
genes or proteins), for which concentration or activity has been
measured using omics-technology. The edges in the network
stand for direct and indirect relationships between the molecu-
lar entities, i.e., they symbolize diverse modes of regulation or

direct molecular interaction. New molecular relationships may
be predicted with the help of network inference modeling tech-
niques. The predictions are new biological hypotheses which
result from the given experimental data. A highly diverse variety
of network inference modeling techniques have been developed
based on differential equation systems or Bayesian networks (as
reviewed in Hecker et al., 2009). Each modeling technique uti-
lizes a wide range of modeling parameters which are optimized
mainly on the given experimental data. For example, the gene reg-
ulatory network inference method NetGenerator (Guthke et al.,
2005; Töpfer et al., 2006; Weber et al., 2013) is based on differen-
tial equation systems which minimizes both the model fit error,
i.e., the difference between the measured and the simulated data
of time-series experiments, and the number of model parame-
ters. Additionally, prior knowledge is used to guide the inference
process (Linde et al., 2010, 2012).

In order to validate the chosen modeling technique and its
parameter optimization, it is necessary to assess the validity of
the resulting biological networks. Quantitative measures utilize
an error model and model selection criteria, e.g., least square
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Network Inference

• Q: How can exploratory analysis be used for the validation of inferred networks?
• A: It needs to be qualitatively assessed if inferred network components describe the experimental setting. Tools like

Ondex provide automatic data integration and visualization which facilitate exploratory data analysis as well as the
quality control.

• Q: What are the challenges for this kind of qualitative network validation?
• A: The large amount of available information leads to a high computational effort during the data integration and the

automatic data visualization. This may result in a non-satisfying users’ experience.
• Q: What method is introduced to overcome these limitations?
• A: We introduce the concept of context-sensitive workflows for Ondex. During the data exploration, it allows for the

integration of additional information for a set of interesting features. Thus, computational-demanding calculations are
only performed for a subnetwork, which greatly improves the usability of the tool for network validation.

error model and Akaike’s Information Criterion, which makes use
of the experimental data and the inferred model (Rao et al., 2008).
The internal validation evaluates whether the model is robust
and can be generalized. For these purposes, subsampling (cross-
validation), bootstrapping and network perturbations are applied
(reviewed by Hecker et al., 2009). Another aspect is the utilization
of benchmark data which can be either generated from an artifi-
cially constructed gene regulatory network or the experimental
data is gathered from a well-researched biological system. As an
example, the DREAM challenge provided gene expression data
from a synthetically generated network which consisted of five
genes (Cantone et al., 2009).

Nevertheless, the parameters of each network inference tech-
nique cannot be optimized based on experimental or simulated
data alone. The particular outcome of a network reconstruction
needs to be qualitatively assessed by verifying that its compo-
nents describe the experimental setting and that they are in
accordance to prior knowledge. For this step, test data (“gold-
standard”) is required, which was not included in the training
dataset for the network inference. It consists of expert knowl-
edge and data which was predicted with the help of bioinformatic
tools, e.g., the software tool SiTAR for transcription factor bind-
ing sites predictions (Fazius et al., 2011). As a second aspect,
network inference methods can infer genome-wide networks
which may contain thousands of nodes and relations (Altwasser
et al., 2012). Validation of these genome-wide networks is hard
because the number of model parameters is very high and the
gold-standard used is usually too small to make generalizations
about the quality of the whole network. Due to the large size of the
resulting network, the experimental validation with a high qual-
ity standard is not suitable. Thus, all components and proposed
interactions need to be interpreted and prioritized before further
experimental analysis.

1.2. EXPLORATORY DATA ANALYSIS
From a methodological point of view, feature selection or can-
didate prioritization can be performed by two complementary
approaches: exploratory and confirmatory data analysis (Tukey,
1977, 1980). Confirmatory data analysis starts with an open, pre-
cise question. Usually, it is a fixed procedure and it is, hence,
especially suited to be performed by a computer, e.g., using statis-
tics or guided pathway exploration. In contrast, exploratory data

analysis (as introduced by Tukey, 1980) does not follow a direct
route between question and answer, but allows for iterative cycles
between research question, experimental design and gathered
data. Computer analysis is needed to search for the right questions
and hidden relationships buried within the massive amounts of
data coming from high-throughput methods. Another aspect is
that data stored within public data repositories usually has been
analyzed with respect to a limited number of research ques-
tions. Therefore, there is still a considerable potential to gain new
insights from this data, but the challenge is to find the right ques-
tions in order to perform a successful meta-analysis or re-analysis
of the data. Despite the importance of exploratory analysis for
research, very few software systems are available that support the
requirements to integrate multiple sources of biological data and
provide the rich set of analysis methods needed for exploratory
data analysis (discussed in Kelder et al., 2010). To help researchers
recognize patterns within the data more readily and to enable
them to concentrate on the interpretation of the data, soft-
ware tools should perform all automatable tasks of handling
large data amounts, i.e., the data integration and automatic data
visualizations.

1.3. ONDEX—A SOFTWARE SOLUTION FOR EXPLORATORY ANALYSIS
Many software tools have been developed for data integration and
visualization using network structures. [A good review of data
integration methodologies and tools is given by Huttenhower and
Hofmann (2010) and Bebek et al. (2012) and tools for visual-
ization of biological network data are described by Pavlopoulos
et al. (2008).] In this study, we use the Ondex data integration
framework, which combines data integration, analysis, and visu-
alization (Köhler et al., 2006). While Ondex shares many of its
features with other tools, its main advantage lies in its flexible
data representation and available visualization methods (Taubert
et al., 2007). It is very suitable for exploratory data analysis—
meaning the exploration of experimental data without prior
hypotheses and a pre-defined data analysis workflow. Ondex
uses a graph-based core data structure where nodes represent
biological entities (e.g., genes or proteins) and edges represent
the relationships between them (e.g., “a gene encodes a pro-
tein”). Using ontologies, Ondex automates the integration of
heterogeneous data from diverse sources (e.g., structured data
repositories, flat files, or free-text) into a semantically consistent

Frontiers in Genetics | Bioinformatics and Computational Biology February 2014 | Volume 5 | Article 21 | 134

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Horn et al. Context-sensitive workflows in Ondex

graph representation. The provenance of the data is retained
during the integration process. The modular plug-in architec-
ture of Ondex enables the addition of extra functionality, such
as parsers for new data sources or complex filtering methods.
The Ondex front-end facilitates interactive visualization, search-
ing, and filtering of the datasets. Certain attributes contained in
the graph can be associated with the color, glyphs, and visibility
of nodes and edges. Ondex is open source, written in platform-
independent Java and supports open standards and interfaces.
The Ondex data integration framework has already successfully
been used for the study of microarray expression data (Köhler
et al., 2006), data integration for plant genomics (Lysenko
et al., 2009), supporting in silico drug discovery (Cockell et al.,
2010), and finding genes implicated in plant stress response
(Hassani-Pak et al., 2010).

Despite the advantages and the successful application of
Ondex, the handling of large amounts of data is still challeng-
ing. The system can be used to produce integrated datasets
with several millions of entries, which makes efficient query-
ing and visualization difficult. Additionally, the data warehousing
approach of Ondex means that some of the data can become
out-of-date. This contrasts with the approach used by federated
data integration systems, which always query live data resources
[e.g., Taverna (Hull et al., 2006)]. To overcome these limitations
to some extent, the Ondex front-end already offers the possibil-
ity to iteratively explore parts of the graph and link-out to more
recent data available in online resources.

In this paper, we present the implementation of interactive
context-sensitive workflows in Ondex to improve the analysis of
large integrated datasets.

1.4. OUR WORK
We applied Ondex to construct a gold-standard information
network for Aspergillus nidulans as a basis for the qualitative
assessment of reconstructed networks. The network inference for
filamentous fungi is challenged by the circumstance that prior
knowledge is limited and widely scattered. It needs to be col-
lected from literature and diverse databases, or predictions need
to be made with the help of additional bioinformatic tools (Horn
et al., 2012). As a consequence, no extensive knowledge net-
work exists which can function as gold-standard. A. nidulans is
the main model organisms for filamentous fungi and substan-
tial knowledge about the regulation of secondary metabolites
exists (Brakhage, 2013). Secondary metabolites may directly con-
tribute to the pathogenicity of fungi, e.g., gliotoxin was found
to modulate the immune response and induce apoptosis in cells
of A. fumigatus (Scharf et al., 2012). The knowledge about the
mechanisms of regulation of secondary metabolites of A. nidu-
lans can be transferred to other filamentous fungi, especially if
filamentous fungi share the same secondary metabolite gene clus-
ters. As an example, the penicillin gene cluster is present in A.
nidulans and Penicillium chrysogeneum. Generally, most fungal
gene clusters are silent under standard laboratory conditions, and
it is promising for drug target research to systematically deter-
mine conditions under which these gene clusters are expressed
and secondary metabolites are produced (Walton, 2000; Brakhage
and Schroeckh, 2011). Prominent examples are non-ribosomal

peptide synthetases (NRPS) and polyketide synthases (PKS),
which are two main classes of secondary metabolites that often
serve as drug lead structures (Newman and Cragg, 2012). Most
gene clusters are currently not functionally annotated (Sanchez
et al., 2012) making the investigation of gene clusters challenging.

One of our objectives was to facilitate simultaneous interactive
data integration during visual data exploration. This procedure
has been implemented and is available for the community (see
section 2). In order to demonstrate the practical relevance of
our approach, the context-sensitive menus and the invocation of
external web services were applied to the integrated network for
A. nidulans. This also included data from an expression profil-
ing experiment comparing the wild-type and a �cnsE-mutant at
different developmental stages (Nahlik et al., 2010).

2. MATERIALS AND METHODS
In this section, we present (1) an information network for
A. nidulans and (2) an extension of the Ondex framework in
the form of context-sensitive menus, which are subsequently
(3) used to analyze a transcriptome experiment. In this sec-
tion, the functionality of the menus and generalizable workflows
and approaches are presented. Exploration strategies which are
based on the specific data, intermediate results, and the research
question of the experiment are presented in the results section.
The workflow of data integration, the resulting network, and
the context-specific menu items are available from http://ondex.
rothamsted.ac.uk/anidulans.

2.1. DATA INTEGRATION: AN APPLICATION CASE FOR
Aspergillus nidulans

Experimentally-derived data for most fungi is scarce, incomplete,
and scattered over several resources. Additionally, this data
undergoes rapid changes due to newly assigned annotations and
new genome assemblies. We integrated several publicly avail-
able datasets for A. nidulans using the pre-existing plug-ins
from the Ondex integrator. (An overview of the data sources
used and the extracted data is given in Table 1 and Figure 1).
Gene concepts are mapped to the Gene Ontology hierarchies
(Ashburner et al., 2000) (Biological_Process, Cellular_Component,
Molecular_Function). Additional functional annotation data from
the FunCat (Functional Categories) (Ruepp et al., 2004) and
KEGG Pathways (Pathway) (Kanehisa et al., 2012) was integrated.
In order to allow comparative analysis of A. nidulans, ortholo-
gous gene mappings to Aspergillus fumigatus and Saccharomyces
cerevisiae were included. A mapping between publications and
genes was performed if these genes were in the focus of the
publication. A list of manually-curated publications was down-
loaded from the Aspergillus Genome Database (AspGD) (Arnaud
et al., 2010). Additionally, a metabolic network (David et al.,
2008), reflecting the regulatory relationships of enzymatic reac-
tions by regulatory genes was integrated.

Experimental data from a study from Nahlik et al. (2010)
was integrated. This data is available from the Gene Expression
Omnibus (GEO identifier: GSE22442). The focus of this exper-
iment was to investigate the impact of the COP9 signalosome
complex on the transcriptome. Two genotypes (wild-type and
�csnE-mutant) were compared under four different induced

www.frontiersin.org February 2014 | Volume 5 | Article 21 | 135

http://ondex.rothamsted.ac.uk/anidulans
http://ondex.rothamsted.ac.uk/anidulans
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Horn et al. Context-sensitive workflows in Ondex

Table 1 | Data sources for A. nidulans information network.

Data source Web address Description Concept class

Aspergillus genome database www.aspgd.org Gene ontologies GO
Homologues GeneAfu, GeneScer
Literature Publication
Synonyms Gene

Gene ontology www.geneontology.org Gene ontologies GO

Ensembl fungi (CADRE) http://fungi.ensembl.org Annotation Gene
Chromosomal position Gene
Identifier mapping Gene

KEGG (version: 2011) www.genome.jp/kegg/ Pathways Pathway

MIPS functional catalog http://pedant.gsf.de FunCat ontologies FunCat

David et al. (2008) www.biomedcentral.com Metabolic network Metabolite, reaction

GEO (GSE22442) (Nahlik et al., 2010) www.ncbi.nlm.nih.gov/geo/ Expression values Gene

Several data sources for A. nidulans were parsed and mapped into one Ondex information network. Data was downloaded from several sources. Instead of using

publicly available transcriptome data from GEO, in-house experimental data may be mapped.

FIGURE 1 | Meta-legend of the integrated dataset for A. nidulans

depicting all available concept classes. The number of concepts within a
concept class is given in bold numbers, whereas the number of mappings
or relations between respective concept classes are given in italic numbers.

growth stages—vegetative 14 h, vegetative 20 h, sexual 48 h, asex-
ual 48 h. For each growth stage, two biological replicates each
with four technical replicates were measured, summing up to
a total of 32 samples. The raw data was downloaded from
GEO and the biological replicates were normalized individu-
ally with the help of loess and quantile normalization provided
by the limma package (Smyth and Speed, 2003). A preceding
analysis of variance (ANOVA) showed that the highest system-
atic variation arises from the biological replicates rather than
any other experimental source of variation. Thus, the signals
were modeled independently with the linear model provided
by the limma-package. Calculated p-values were corrected for
multiple testing using the method by Benjamini and Hochberg
(Benjamini and Yekutieli, 2001). Results from both biological

replicates were combined using the z-transformation of the p-
values suggested by Stouffer (Whitlock, 2005). Probe sequences
were mapped to gene definitions of the A. nidulans structural
genome annotation (Horn et al., 2011). According to this map-
ping, the experimental data was integrated by Ondex into the
A. nidulans information network. In order to emphasize the
level of regulation, the glyphs of the gene concepts were scaled
and colored by Ondex according to the expression values of the
corresponding transcripts. For each growth-stage, the resulting
information network was further explored separately in order to
adequately understand the underlying interactions and correctly
interpret the experimental data with respect to the experimental
setting.

2.2. ONDEX EXTENSION: CONTEXT-SENSITIVE MENUS
The flexibility and power of the analysis offered by the Ondex
system is realized primarily through the notion of customisabil-
ity, i.e., users are free to build their own application cases from
a set of generic re-usable components. Larger integration and
analysis tasks are realized as workflow components, whereas the
less substantial ones can be completed by calling a set of in-
built functions. To that end, the Ondex system incorporates a
JavaScript API (based on Mozilla Rhino v1.7) and a rich selec-
tion of binding and analysis functions that can be used both to
manipulate the graph and to alter its appearance in the Ondex
front-end. The binding and functions available via the scripting
environment abstract some of the complexity of the Java-based
Ondex API and allow for more concise syntax and greater conve-
nience. This additional simplification is made possible by the use
of run-time bytecode code generation (powered by the JavaAssist
v3.12.0 library) that creates a set of wrappers. This setup allows
both easy incorporation of additional external libraries and their
seamless integration into the Mozilla Rhino scripting environ-
ment by automating the process of creating wrappers that imple-
ment additional interface(s) or delegate calls to multiple classes.
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FIGURE 2 | Simplified modular view of context menu extension. The
new Ondex framework extension realizes context-sensitive menus which
can be edited with the help of a GUI based editor. Concept specific entries
are implemented in XML-files that contain Java Script code. Existing
plug-ins for data integration from the Ondex library can be directly invoked.
Web services and local installations of external programs can be called
from the context menu.

The Ondex scripting environment can be accessed interactively
using a console environment. In this work, we have extended
this functionality further by developing a system of context-
specific menus that can dispatch calls to the Ondex scripting
APIs. The use of temporary sub-graphs also allows users to define
their own JavaScript functions to be added as entries on these
menus. For this study, we provide new functions for on-the-fly
data integration using InterProScan, Blast, and PubMedCentral
full-text search (see next section for more details). Using the
modular architecture of Ondex, we extended the framework with
context-sensitive pop-up menus which allow integration to be
performed on the fly, while the network is being explored visu-
ally (see Figure 2). Throughout the paper, we keep the official
nomenclature that nodes in an Ondex network are referred to
as concepts (Taubert et al., 2007). The term gene concept hence
describes one particular node which represents a gene entity.
While examining the graph, users can integrate additional data
or perform computationally demanding calculations for selected
concepts. The menus are sensitive in regard to the concept class.
This means that certain operations are only available for certain
concept classes, e.g., BLAST operations are only available if the
concept is a gene and contains sequence information. Internally,
computational operations are either performed directly on the
main graph or a temporary sub-graph, which initially consist only
of the user-selected concepts. This mechanism also facilitates the
re-use of the wide variety of Ondex workflow plug-ins, as indi-
vidual workflow modules can also be called via particular items
in the menu. Context menu functionalities are implemented
using JavaScript code and they are stored as Extensible Markup
Language (XML) files on the local file system using JavaBeans.
Each XML-file represents one context menu item which can be
restricted to be applicable only to the nodes of particular Ondex
concept classes. The context-specific menus can also be organised
hierarchically, where the nesting of the sub-menus is represented
by the structure of the directories containing the XML-files in the
file system.

The XML-files can either be edited with the help of exter-
nal tools or with an embedded JavaScript editor. The graphical
user interface (GUI) of the editor provides an easy way to specify
concept class restrictions, integration of additional Java libraries
and syntax highlighting with help of jEdit. The Ondex framework
extension has been integrated into the main Ondex project and is
freely available at http://www.ondex.org.

2.3. SPECIFIC WORKFLOW AND CUSTOMIZED CONTEXT-SENSITIVE
MENUS FOR Aspergillus nidulans DATASET

In Ondex, the precise workflow of exploration depends specif-
ically on the integrated data, the research question, and the
preferences of the user. Nevertheless, we performed analyses with
a generally applicable workflow that gave us a first overview
of the information contained in the data, i.e., filtering down
to specific genes, biological processes, and underlying interac-
tions. For our study, we provide new functionalities to Ondex
through context-sensitive menus, namely the InterProScan, a
sequence-based homology search, and a full-text literature search
at PubMed Central. During the procedure described above, the
log-fold changes of gene expression data from 32 samples were
integrated as attributes to the gene concepts in the information
network. This allowed us to significantly reduce the number of
concepts (i.e., genes and proteins) by applying a filter based on
the log-fold change and p-value. Thus, the number of interest-
ing concepts which need to be manually checked were reduced.
At the same time, all available information can be reconsidered
during the analysis by redisplaying previously filtered data. We
independently analyzed each contrast, i.e., the differences in tran-
script abundance between the �csnE-mutant and the wild-type
at different time points (i.e., growth stages), and filtered for either
differentially expressed transcripts (DEGs) (|fold-change| ≥ 4 and
adjusted P-value ≤ 0.05) or for strongly differentially expressed
transcripts (|fold-change| ≥ 8 and adjusted P-value ≤ 0.05).
Previously integrated information, i.e., concepts such as gene
ontologies and publications, was included in the visualization if
it is associated with the resulting gene sets.

The DEGs were subject to further exploratory analysis and the
integrated dataset was used to identify which of the functional
categories were predominantly up or down-regulated. For this
purpose, only gene concepts which are differentially regulated
were made visible and all connected gene ontology concepts
have been visualized while retaining their hierarchical network
structure (see Figure 3). The functional categories and their
associated differentially expressed genes were arranged using
a hierarchical layout (see Figure 3B). In order to make our
results comparable to the publication from Nahlik et al. (2010),
we additionally grouped and named our functional categories
according to the terminology adopted by that paper (For details
see Supplementary File S1). Ondex automatically sorts the
networks by its size, i.e., the number of connected concepts.
Thus, it is immediately possible to identify and further explore
the annotation-orientated sub-networks where many DEGs have
been mapped.

A second approach is to explore known characteristics of the
species in focus. In fungi, it is known that genes belonging to
a single secondary metabolite pathway tend to cluster on the
chromosome (Brakhage and Schroeckh, 2011). The A. nidulans
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FIGURE 3 | Different visualization types of the distribution of functional

annotations. (A) Bar and pie chart diagram representing the percentage of
prominent biological processes within the strongly differentially expressed
genes (|fold-change| ≥8, adjusted P-value ≤0.05). Example charts are shown
for the asexual developmental growth stage after 48 h (A48). (B) A detail of
the sub-network representing the mapping between functional categories
and strongly differentially expressed genes during the sexual development
after 48 h. Green polygonic concepts represent gene ontology concepts,

whereas red circular concepts represent genes. An arrow between two gene
ontologies reflects the hierarchical structure of the directed acyclic graph of
the gene ontologies. An arrow pointing from an ontology concept to a gene
concept shows which genes have been assigned to the respective gene
ontology concept. In contrast to commonly used pie and bar chart diagrams,
the visualization within Ondex allows to explore possible multiple mappings
between genes and ontologies without losing the information about the level
of detail at which the mapping occurs.

FIGURE 4 | Chromosomal View/Gene Cluster View. (A) Gene concepts
located near to each other on the chromosome are connected. Transcriptome
data has been integrated and glyphs are scaled accordingly, i.e., the circle size
represents the expression values of the corresponding transcripts. Regions
with several strongly differentially expressed genes are possible indications for

secondary metabolite gene clusters. The figure depicts chromosome II of A.
nidulans with the transcriptomic data of the asexual developmental growth
stage after 48 h (A48). (B) Detailed view of the neighborhood of two differentially
expressed gene clusters: the orsellinic gene cluster (AN7909–AN7914) and a
putative, uncharacterized gene cluster (AN11582–AN7879).

information network includes the data of the chromosomal posi-
tion of all genes. If two genes are neighbors, an edge is drawn
between them. We applied Ondex’ genomic view layout to imme-
diately check the transcriptome data for the regulation of fungal
gene clusters, because it lays out each chromosome separately
and keeps the spatial information (see Figure 4). Differentially
expressed gene clusters are recognized by the regions of the

chromosome where several neighboring genes are depicted with
larger glyphs (representing high fold-changes). This way, dif-
ferentially expressed gene clusters could be identified in our
analysis of the transcriptome data from Nahlik et al. (2010) (see
Supplementary File S2).

For A. nidulans, there were many genes with little or no infor-
mation in the network. One way to enhance the completeness
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of the functional annotation is to consider gene annotations
from orthologous genes for related species. Orthologous genes
are known to likely have a similar function. The orthology infor-
mation was integrated for the relatively well-characterized fungal
species A. fumigatus and S. cerevisiae. Another approach is the
retrieval of additional data from other databases or the pre-
diction of gene functions by applying bioinformatics methods.
Context-sensitive workflow items beneficial to the exploratory
analysis of experimental data of the resulting network were devel-
oped (see Figure 5). The implemented methods use web services
ensuring that the processed data is up to date while outsourcing
computations to the service providers.

• InterProScan. The protein sequences of selected genes are
retrieved from the BioMart web service (Kinsella et al., 2011).
The sequence is used to predict protein domains by invok-
ing the web service for InterProScan (Zdobnov and Apweiler,
2001). The retrieved protein domains and their corresponding
information are added to the network.

• Homolog search. The protein sequences of selected genes are
retrieved from BioMart web service (Kinsella et al., 2011). The
web service for NCBI-BLAST (Altschul et al., 1990) is invoked
with these sequences in order to search for similar sequences
in UniProtKB (Magrane and UniProt Consortium, 2011).
Significant results and their corresponding details are inte-
grated into the network. Additionally, a bidirectional BLAST
was implemented to check whether similar sequences were
really homologous.

• Full-text literature search. Selected genes and their corre-
sponding synonyms are used to search all available full-texts
at PubMed Central. The metadata of publications is retrieved
from the web service and subsequently integrated into the
information network. It is used to download the full text, which
itself is scanned for occurrences of any gene name and syn-
onym which is present in the information network. The text
bodies are pre-computed using suffix trees (Ukkonen, 1995),
in order to allow high-speed text-search using many keywords
in large texts. To connect the publication to the network, edges
are drawn between the publication and any identified gene.

The application of these interactive menu items facilitated the
on-the-fly retrieval of additional data as part of our analysis
workflow. The resulting networks were laid out adequately with
the genomic view layout, which is already part of the Ondex
suite. All resulting networks have been manually checked if previ-
ously unobserved relations between the data concept lead to new
hypotheses.

3. RESULTS
In this study, we present new extensions of the Ondex system
(Köhler et al., 2006) and demonstrate how they can be effec-
tively applied to extract integrated information networks for
new insights. We have enhanced the features within Ondex by
implementing customizable context-sensitive menus which allow
interactive integration of additional data while exploring the
integrated information network in the Ondex front-end. The
application of these context-sensitive menus enables interactive

FIGURE 5 | Example application of the context-sensitive menu and

meta-legend from the resulting network. (A) Screenshot of
context-sensitive menu available for the concept class protein. The protein
concept of an associated gene may be either used to invoke an
NCBI-BLAST or InterProScan protein domain prediction. (B) Meta-legend of
resulting network which has been integrated using the customized
context-sensitive menu. The gene names can be used to retrieve
publications from PubMed Central or to download protein sequences from
the BioMart web service. The protein sequence can be subsequently used
to predict the protein domains with the help of InterProScan. Another
possibility is to search for similar genes with the help of NCBI-BLAST. A
backward BLAST is available in order to provide a bidirectional BLAST to
make the prediction of homologs more reliable. All operations are only
performed for selected nodes and use web services to integrate up-to-date
data.

extensions of the network to be made by the user. This pro-
cess is illustrated in Figures 3–6. The new functionality facilitates
the gathering of additional information, which helps to retrieve
existing annotations from web services and supports making
hypotheses about possible gene functions. With the help of the
interactive menus, we can overcome the strict separation between
data integration and visualization. In this section, our approaches
for the exploration of the specific data are presented. The pre-
cise workflow depends on intermediate results and the research
focus of the experiment. To our knowledge, this is the first
application of an integrative network analysis approach to A.
nidulans.

3.1. INFORMATION NETWORK FOR Aspergillus nidulans
Data integration is especially important for less studied organ-
isms, where often no reference genome data repositories such as
Ensembl (Flicek et al., 2013) are available. Information networks
function as the basis of the validation, prioritization, and selec-
tion of candidates from candidate lists resulting from modeling
techniques. Usually, the gene annotation for less-studied organ-
isms is highly fragmented and therefore it is necessary to call
upon a large selection of less comprehensive resources in order
to construct a representative annotation set. In order to expand
the number of predicted functional annotations, it is common
to integrate data from orthologous genes from closely-related
species.
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We applied Ondex to integrate publicly available data from
A. nidulans (see Table 1). The resulting Ondex information net-
work facilitates exploration of the existing data (see Figure 1).
The network contains information for 10,527 genes, which are
connected according to their chromosomal position. This allows
for the detection and analysis of fungal chromosomal gene clus-
ters. Furthermore, these genes were annotated with the three
Gene Ontology (GO) domains: biological process, cellular com-
ponent, and molecular function (Ashburner et al., 2000). The
hierarchical structure of the Gene Ontology is preserved and
23,431, 3003, and 9397 different GO terms are integrated for
each domain, respectively. Another set of functional annota-
tions for A. nidulans is available from the Functional Catalog
(FunCat) (Ruepp et al., 2004). This resource has more than 29,500
mappings between genes and 656 functional categories for A.
nidulans. A large fraction of genes (2917) can also be mapped to
pathways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2012) and its corresponding hierarchi-
cal structure which contains 438 unique entities. Additionally, a
genome-wide metabolic network model published by David et al.
(2008) was integrated. This model incorporates 904 instances
of enzymatic reactions being regulated by particular genes in A.
nidulans. The whole metabolic network is comprised of 794 reac-
tions and 738 metabolites. Pre-computed orthologous genes in
Aspergillus fumigatus and Saccharomyces cerevisiae were also inte-
grated from the Aspergillus Genome Database (AspGD) (Arnaud
et al., 2010). The annotations of 2261 S. cerevisiae and 7054 A.
fumigatus genes have contributed to filling in the gaps in the A.
nidulans annotation in the instances where orthologous genes
between these organisms and A. nidulans were identified. AspGD
also provides manually curated occurrences of A. nidulans in 2123
publications, which were also imported and made available in the
Ondex information network.

3.2. INTEGRATION OF EXPERIMENTAL DATA
Publicly available data for A. nidulans was integrated into an
information network which was subsequently used to compare a
wild-type and a �csnE-mutant at different developmental stages
by re-analyzing published microarray data (Nahlik et al., 2010).
After the integration of experimental data taken from Nahlik
et al. (2010), it was possible to filter the network to display only
nodes representing genes where the regulation was affected by the
mutation. This processing facilitated the identification of general
trends in the datasets.

A total number of 1252 genes were found to be differen-
tially expressed due to the �csnE mutation, when only non-
redundant gene identifiers were counted at all measurement
points (see Table 2). The distribution of differentially expressed
genes (DEGs) between different contrasts shows that, despite the
fact that csnE is only expressed during the first vegetative growth
phase, most changes in gene expression occur at later stages of
sexual development after 48 h (see Table 2). (The term contrast
refers to the comparison of transcript abundances between dif-
ferent conditions at certain time points, i.e., the �csnE mutant
versus the wild-type at different developmental stages.) This
implies that most changes caused by the mutant take place before
cell differentiation. Specifically, 1161 genes (95.1% of all 1252

DEGs) have a |fold-change| ≥4 during sexual or asexual devel-
opment in contrast to only 157 DEGs (12.5%) during vegetative
growth. A similar proportion holds for higher |fold-changes| ≥8
(see Table 2). In fact, the effect of a gradually increased number of
DEGs caused by the �csnE-mutation can already be observed by
comparing the two different time points of the vegetative growth
phase.

3.3. VISUAL EXPLORATION OF FUNCTIONAL ANNOTATIONS
The network approach automatically considers that genes are
mapped to different hierarchical levels of the functional annota-
tion. As an example, in Figure 3B the gene AN3256.4 is associated
with two different levels in the annotation hierarchy, i.e., the high-
est level secondary metabolism and a lower level metabolism of
phenylpropanoids. In the pie chart visualization in Figure 3A, only
the highest level is displayed and the gene is part of the section
secondary metabolism. In order to show more detailed informa-
tion about the lower hierarchies, new diagrams need to be drawn.
The annotation-orientated network of each contrast forms a basis
for further exploration, i.e., other functional annotation schemes
such as GO, can be simultaneously shown and genes of inter-
est can be displayed within the full context of all their annotated
functional categories.

We performed a visual assessment of the functional anno-
tation for all strongly differentially expressed transcripts at all
four contrasts. Unlike Nahlik et al. (2010), we integrated pub-
licly available functional annotations for A. nidulans, namely
Functional Catalog and Gene Ontology. We tried to estimate
whether our results (using automatically created data sources
for the annotation) are comparable to the original publica-
tion (using manually assigned functional categories). The most
prominent functional categories are secondary metabolism, stress
and defence related genes, cell wall and genes associated with
transport processes. In addition to the results published by
Nahlik et al. (2010), a large proportion of differentially expressed
genes is associated with primary metabolism. Due to the dif-
ference in the underlying functional annotation, the details of
the results from the study of Nahlik et al. (2010) were not

Table 2 | Number of differentially expressed genes for each growth

stage.

Developmental stage |Fold-change| ≥ 4 |Fold-change| ≥ 8

V14 50 21

V20 134 45

V14 and V20 157 49

A48 980 438

S48 577 236

A48 and S48 1161 499

Total non-redundant DEGs 1252 530

In each analyzed growth stage (V14—vegetative growth after 14 h, V20—

vegetative growth after 20 h, S48—sexual development after 48 h, A48—asexual

development after 48 h), the wildtype is compared with a �csnE mutant. The

number of differentially expressed genes and strongly differentially expressed

genes between both genotypes are shown.
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completely comparable. Nevertheless, our analysis could repro-
duce the main findings of the original publication, i.e., the set
of mainly regulated functional categories and the observation
that the largest transcriptomic changes occur after 48 h. This
endorses the manual classification of the authors, as well as
the one offered by publicly-available annotation resources based
on ontologies.

An exploration of the distribution of functional annotations
within the network provides a quick, intuitive overview of affected
processes and forms the basis for further in-depth analyses of gene
functions. It is an alternative to commonly used visualizations
of functional annotations with the help of bar or pie charts (see
Figure 3A) and provides a starting point for a more detailed data
interpretation.

3.4. EXPLORATION OF FUNGAL GENE CLUSTERS
The genomic view provided by the integrated Ondex network
allows gene clusters, which are strongly differentially expressed,
to be easily identified (see Figure 4 and Supplementary File S2).
Clusters of several strongly differentially expressed genes are pos-
sible indications for secondary metabolite gene clusters induced
in the respective developmental stage.

Using the genomic view, the orsellinic acid synthesis cluster
(AN7909–AN7914) is immediately identified as being strongly
expressed in the vegetative growth phase after 20 h and in both
developmental stages at 48 h (see Figure 4). These genes have
been subject to the newly added interactive function—carrying
out a full-text literature at PubMed Central. The genes that are
part of the orsellinic acid cluster are linked to publications that
have investigated their gene function. Although the precise func-
tion of products of this gene cluster is unknown, it has been
shown that it is expressed if A. nidulans is co-cultured with the
actinobacteria Streptomyces rapamycinicus, which is found in the
same biological habitat (Schroeckh et al., 2009). The bacteria
induces the expression of the orsellinic acid by histone modifi-
cations; in particular through the main histone acetyltransferase
complex Saga/Ada (Nützmann et al., 2011). This gene cluster is
therefore proposed to be part of a signalling pathway, which is
involved in the communication between microbes of different
species. The published data suggests that the interplay between
fungi and microbes might be connected to the fungal develop-
ment via the signalosome complex of A. nidulans. The exploration
of the information network with Ondex linked this experiment,
investigating the fungal signalosome, to publications focusing on
fungal-bacterial interaction.

A second differentially expressed gene cluster of high inter-
est was the characterized sterigmatocystin biosynthesis path-
way which is composed of 25 genes (AN7805–AN7825)
and located on chromosome IV (Brown et al., 1996) (see
Supplementary File S2). This gene cluster is only expressed dur-
ing the asexual growth stage, where large amounts of intermedi-
ate metabolites of this chemical structure have been verified by
Nahlik et al. (2010). They possibly result from an inhibited secre-
tion of the metabolite into the medium. The regulation of this
gene cluster is very important since sterigmatocystin contributes
to the defence of the cell against other microorganisms in the
same habitat during this developmental phase. A more detailed

functional annotation of this gene cluster was undertaken using
our newly developed context-sensitive workflows for the Ondex
system.

3.5. GENE ANNOTATION USING THE CONTEXT-SENSITIVE MENUS
Gene clusters found in the previous step were explored in greater
detail in order to confirm their relevance. At this stage, sev-
eral context-sensitive menus were used to obtain additional
annotations (see Figure 5). As gene clusters encode for a single
functional unit, genes encoding for particular enzymes, pathway
regulators, and related transporters should be near each other on
the chromosome in fungi. A hypothesis about the function of
genes surrounding the sterigmatocystin gene cluster (AN7805–
AN7825) was formed using Ondex. The InterProScan web ser-
vice was invoked for neighboring genes surrounding the cluster.
The observation that the neighboring gene AN7797.4 is highly
down-regulated (fold-change = −3.25 and adjusted P-value <

10−7) and the prediction of a transmembrane protein domain by
InterProScan led us to conjecture that this is a potential sterigma-
tocystin transporter, which needs to be validated experimentally
(data not shown).

Another example of our exploratory data analysis was the
application of the InterProScan for gene AN7899.4, in the region
of the predicted NRPS AN7884.4 and the already described
NRPS-PKS AN7909.4 (see Figure 6A). The gene is strongly dif-
ferentially expressed in the mutant during vegetative growth after
20 h (fold-change = 20.25 and adjusted P-value < 10−5). The
InterProScan predicts that this gene contains a serine hydro-
lase domain and is therefore catalytically active. Additionally, the
protein sequence was used to invoke a BLAST web service in
order to search for potential similar genes. We found that only
the CPSG_01145 gene from the pathogenic fungus Coccidioides
posadasii had a high sequence similarity of more than 60%. It
is annotated as citrinin biosynthesis oxidoreductase CtnB and
therefore is likely to be involved in the secondary metabolism
of this fungus. These findings and the chromosomal location of
AN7899.4 in the proximity of two secondary metabolite gene
clusters has not been reported before and make this gene interest-
ing for further experimental research. The example shows that the
added Ondex functionality helps to make new hypotheses which
otherwise would not have been recognized.

Literature data is the most reliable and abundant source of
information, which is regularly updated. The full text of a large
fraction of publications can be mined with the help of the
PubMed Central database web service. We were able to take
advantage of this functionality using the context-sensitive menu
system developed to support this application case. The full-text
search was executed for all papers relating to a gene cluster
(AN11582–AN7879) which was strongly differentially expressed
during the asexual growth stage (see Figure 6B). This cluster was
of great interest due to its close location to the orsellinic acid gene
cluster. For three genes, an associated publication was found. A
more detailed inspection revealed that in the paper by Shimizu
et al. (2010) AN7876.4 and AN7878.4 were predicted to encode
the transaminase B genes, whereas in the paper by Schroeckh
et al. (2009) it was found that this gene cluster is co-expressed
with the orsellinic acid gene cluster during co-cultivation with
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FIGURE 6 | Example annotation resulting from the usage of

context-sensitive menus. (A) A gene of interest (AN7899.4) is
explored further by retrieving the protein sequence (CADANIAG0000
3918) from BioMart web service. This sequence is used to invoke the
InterProScan which predicts a serine hydrolase domain. The protein
sequence is also used to execute a bidirectional BLAST-search finding

a potential homologous gene (CPSG_01145) which is involved in the
secondary metabolism of Coccidioides posadasii. (B) A sequence of
neighbored strongly differentially expressed genes (AN11582.4–AN78
79.4) is selected to retrieve publications from the full-text search from
PubMed Central. Three different publications are returned (orange
squared glyphs).

S. rapamycinicus. This approach shows that our extension easily
reveals and visualizes connections between different studies which
supports data interpretation. In contrast to a sole analysis in a
web browser, Ondex instantly integrates newly found citations
within the information network. The new concepts can form the
basis for further additional data integration. That way, it is much
easier to reproduce the same chain of reasoning. Additionally,
the new network can benefit from other basic functionalities of
Ondex, i.e., interactive or automatic visualization of the informa-
tion network, the creation of additional labels, and the usage of
filters. Overall, the integration of new knowledge into the net-
works ensures that it is possible to keep track of different data
sources and the connection between them.

In summary, the custom workflows for A. nidulans are a
proof-of-concept for our extensions to the Ondex framework.
The user-defined context-sensitive menus provide new function-
ality that makes better use of existing features of Ondex. As
the import of additional data is controlled by the user and
can be limited to particular sub-networks, this approach helps
to address the scalability problem when working with large
datasets. Eventually, this procedure leads to a lower overall mem-
ory usage of Ondex. The implementation of the new function-
ality within Ondex emphasizes high cohesion, low coupling,
and encapsulation, thus ensuring the re-usability of the code.
Individual menu items can be seen as add-on elements, easily
allowing the Ondex functionality to be extended in a modular
way. An integrated editor allows easy implementation of new
menus, which can be adapted for the specific data and analysis
requirements.

Our extensions to the Ondex data integration and visualiza-
tion framework improves its applicability for exploratory data
analysis. The presented context-sensitive workflows extend the

functionality of Ondex and helped to propose new interpretations
of experimental data. Although the presented data integration
scheme is tailored for the interpretation of the gene expression
data in the context of secondary metabolite analysis, this frame-
work and the presented workflows will benefit the analysis of
other datasets. Data can be interactively visualized and additional
data can be integrated on demand. Thus, the user is not limited
to a pre-defined analysis workflow and to previously integrated
data. At the same time, the advantages of computer-assisted data
integration and visualizations are retained.

4. DISCUSSION
The quality of network inference models does not only need
to be assessed with the help of quantitative models but the
resulting network topology also needs to be evaluated quali-
tatively. Currently, the qualitative assessment requires in-depth
expert knowledge about the components in the network model
and about its dependence upon the experimental setting. Online
resources providing static, pre-integrated knowledge, such as
BiologicalNetworks (Kozhenkov et al., 2011) and GeneMania
(Mostafavi et al., 2008), focus on widely-studied model organ-
isms or require the upload of experimental in-house data. With
the increasing number of sequenced organisms, we predict a
further diversification of studied organisms and an increased
need to create custom integration networks. Thus, the appli-
cation and improvement of data integration and visualization
software providing the possibility to compose integrated datasets
using custom workflows according to user specifications is essen-
tial. Currently, the utilization of such tools is hampered by the
challenge of proper data integration and visualization for large
datasets. Here, we describe the extension of the data integration
and visualization framework Ondex allowing the user to build
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context-sensitive workflows. The workflows described here are
examples of an exploration of experimental results followed by a
more detailed analysis, which have led to new hypotheses about
the functions of currently unannotated genes. The strength of
our approach is that it captures the essential information from
a complex network of integrated publicly available data while the
analysis can be individually tailored for each network region of
interest in order to reduce the overall computational effort. In the
manner of an exploratory data analysis, the workflow can be easily
adjusted by the scientist to develop innovative research questions
and identify patterns within the data that emerge from a combi-
nation of analysis and expert judgement. The provision of data
integration functionalities with the help of pop-up menus is con-
venient and intuitive. This way, the graphical interface does not
need additional separate windows and the researcher does not
have to become acquainted with a specialized user interface, e.g.,
via a scripting language.

We used Ondex to integrate publicly-available key datasets
for A. nidulans, which would otherwise be spread over different
resources. The mapping of the information allows the data to be
easily explored and visualized in an intuitive manner. This net-
work can then serve as a scaffold for further integration of addi-
tional experimental data. The information connected to a gene
locus helps the user to confirm predictions and generate hypothe-
ses. In the case where comprehensive data about a gene set of
interest is missing, context-sensitive menus can be applied for the
prediction of gene functions. Therefore, Ondex can help to steer
the selection of new experiments and define new directions for
further investigation. This is the first integrative approach based
on networks applied to A. nidulans. This study demonstrates the
exploration of co-expressed gene clusters for secondary metabo-
lite biosynthesis pathways. The exploratory analysis helped to link
the data to other publications covering a fungal-bacteria inter-
action. It also enabled the identification and annotation of dif-
ferentially expressed genes in the proximity of gene clusters. The
uncharacterized gene AN7797.4 may be a transporter involved in
the sterigmatocystin pathway, whereas the uncharacterized gene
AN7899.4 may be part of the metabolic pathway of the orsellinic
acid. It needs to be explored in further experiments whether and
how these genes are directly involved in the regulation of these
clusters.

Our proposed procedure to analyze gene expression data with
the focus on fungal secondary metabolite gene clusters could
have been performed without the assistance of the Ondex frame-
work. In a traditional approach, we would have filtered the
interesting differentially expressed genes in spreadsheets result-
ing from statistical analysis. Afterwards, additional information
would be gathered using a web browser. Different resources such
as genome browsers, the online InterProScan tool, the online
BLAST tool, and the PubMed Central search interface need to be
consulted. These research steps need to be performed in succes-
sion for each gene of interest separately while keeping in mind
that each gene may have different gene identifiers (which is espe-
cially important for performing a full-text literature search). By
providing these data integration functionalities through context-
sensitive menus in the Ondex framework, the data interpretation
procedure is sped up, it is more reproducible, and it helps to

direct the researcher’s focus on the data interpretation rather
than the methodology of retrieving it. Another advantage of the
approach to data integration supported by the Ondex frame-
work is that it facilitates tracking of different sources of data
and the path of reasoning and exploration. This would not be
possible using web resources and their interfaces alone, which
work mostly in a sequential, linear manner. All publicly avail-
able information about a gene can be consolidated within one
graph, making the navigation easier and ensuring the best possi-
ble quality of data, as all relevant data can be efficiently collected.
If the information about a gene locus is missing, the utility of
Ondex to draw conclusions is limited and additional experi-
mental data or bioinformatic methods are necessary to fill the
gap. Thus, the completeness of the underlying functional anno-
tation is of particular importance as it has a major impact on
the subsequent interpretation of the dataset. In our example,
it became apparent that most conclusions about the functional
categorization of A. nidulans genes can be drawn from the
Functional Catalog, which has already been successfully applied
to fungal genes and proteins in other studies (Priebe et al.,
2011). Ondex visualization ensured that additional information
provided from GO was not disregarded at any point during
analyses.

The standard procedure in Ondex is to integrate available data
from different data sources prior to the visualization and data
analysis. If a large amount of data is integrated, it results in
large datasets which need to be handled and visualized by the
Ondex software framework. Currently, the complexity of layout
algorithms and the computational limitations, i.e., memory or
CPU, make it challenging to manage the vast amount of data in
a user-friendly and responsive manner. Additionally, if access to
the most recent information is very important and the under-
lying data changes frequently, the time-consuming step of data
integration has to be repeated regularly. If the data originates
from user-made, computationally demanding calculations, a fre-
quent data integration becomes computationally infeasible. Our
extension of the Ondex framework overcomes these limitations
by offering the option to apply these steps to a selected part of
the network via the context-sensitive menus. Thus, the required
amount of data is reduced, current data can be instantly down-
loaded from web resources, and intensive calculations need only
be performed for subsets of the available data relevant to the
current focus of investigation. Hence, the memory and compu-
tational load is reduced and access to the most recent data is
guaranteed.

In this way, the context-sensitive menus make the interactive
data analysis more efficient and user-friendly by providing data
integration and filtering on-the-fly. The precise workflow of data
analysis does not have to be established for the whole data inte-
gration process beforehand and the integration can be repeatedly
applied and adjusted during the interactive analysis. This exten-
sion to the Ondex framework now combines the advantages of
two data integration paradigms, i.e., of data warehousing and fed-
erated data integration, into one easy-to-use single system. The
extensions to Ondex reported here have significantly improved its
suitability for its usage for the qualitative assessment of inferred
network models.
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Background: In this paper, we consider analytic methods for the integrated analysis of
genomic DNA variation and mRNA expression (also named as eQTL data), to discover
genetic networks that are associated with a complex trait of interest. Our focus is the
systematic evaluation of the trade-off between network size and network search efficiency
in the construction of these networks.

Results: We developed a modular approach to network construction, building from smaller
networks to larger ones, thereby reducing the search space while including more variables
in the analysis. The goal is achieving a lower computational cost while maintaining high
confidence in the resulting networks. As demonstrated in our simulation results, networks
built in this way have low node/edge false discovery rate (FDR) and high edge sensitivity
comparing to greedy search. We further demonstrate our method in a data set of cellular
responses to two chemotherapeutic agents: docetaxel and 5-fluorouracil (5-FU), and
identify biologically plausible networks that might describe resistances to these drugs.

Conclusion: In this study, we suggest that guided comprehensive searches for
parsimonious networks should be considered as an alternative to greedy network
searches.

Keywords: Bayesian networks, search algorithm, network variable selection, eQTL, chemotherapy resistance

1. INTRODUCTION
Beginning with work by Schadt et al. (2005), a number of recent
studies combine SNP datasets with transcriptional, metabolomic
or other data to develop network models for common diseases
that link response to treatment (Chen et al., 2008; Schadt, 2009;
Chang and McGeachie, 2011). Schadt describes the principle
behind this approach: “In the context of common human dis-
eases, the disease states can be considered emergent properties of
molecular networks, as opposed to the core biological processes
associated with a disease being driven by responses to changes in
a small number of genes” (Schadt, 2009). These methods have
proved effective in several practical settings (Pe’er et al., 2001;
Mehrabian et al., 2005; Zhu et al., 2007; Chen et al., 2008; Yang
et al., 2009) but there are open problems and overcoming the
computational difficulties associated with high dimensional data
analysis is of particular interest. Approaches commonly used to
manage the computational burden include reducing the number
of genes by pre-filtering based on gene function or the results
of univariate analysis, (Imoto et al., 2003; Li et al., 2005; Chang
and McGeachie, 2011), and improving the efficiency of the search
for solutions, for instance by using greedy algorithms (Friedman
et al., 2000; Yu et al., 2002; Teyssier, 2005).

Most recently, hybrid approaches like the H2PC algorithm
(Gasse et al., 2012) combine the greedy hill-climbing step with a
constraint-based optimization, although these have not yet been
adapted for use on a mixture of continuous and discrete variables,

limiting their applicability to networks incorporating several
types of genomic data. Others have incorporated transcription-
factor, or protein–protein binding information from biological
knowledge bases to improve gene network inference. The GRAM
algorithm (Bar-Joseph et al., 2003), as well as the approaches by
Xu et al. (2004), and Tu et al. (2006) are representative of this
strategy. Alternatively, other approaches for studying genetic net-
works consider only pairwise relationships such as correlation or
partial correlations (Zhang and Horvath, 2005; Lasserre et al.,
2013). These approaches investigate the association between pairs
of genes, and hence do not consider the directionality of an edge.

In this study, we plot a unique course suggested to us by
Schadt’s use of SNP-transcript-phenotype trios in causal analy-
sis (Schadt et al., 2005), wherein we build the causal network
up modularly from smaller, data-driven network components.
Here network is used in the sense of Bayesian networks, our
tool of choice for describing the dependence structure between
variables. At the most basic level, this can be thought of as a
strategy for selecting the most informative genomic and tran-
scriptomic sites for use in network models. Although they did
not incorporate the philosophy into variable selection, Pe’er et al.
(2001) also emphasized the value of basing network inferences
on small but high-confidence subnetworks: “We hypothesize that
if we can find a subnetwork . . . with a relatively high confi-
dence, then our estimate of edges and other features in this region
will be more reliable. While a full-scale network is currently of
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insufficient quality, statistically significant sub-networks can be
reconstructed. Indeed, such subnetworks often correspond to
biologically meaningful relations between genes” (Pe’er et al.,
2001). The goal is to strike a balance between the high compu-
tational costs of large scale network analysis, on the one hand,
and the loss of information contained in the data necessitated by
aggressive pre-filtering steps and greedy approaches to network
development on the other. We are looking for an equilibrium
point where component networks are small enough that search-
ing through them is computationally feasible but large enough to
capture important network substructures.

We propose a network-driven feature selection strategy,
whereby sets of variables are chosen on the basis of their role
in small subnetworks, and then iteratively assembled into larger
structures. To investigate the utility of this approach, referred to
as nPARS for network Partition and Reassembly Search, we eval-
uate it in an extensive set of biologically plausible simulations,
comparing it to a gold standard exhaustive search for a best fitting
network as well as the commonly-used greedy hill-climbing algo-
rithm. We also demonstrate our proposed approach in a data set
of cellular responses to two chemotherapeutic agents: docetaxel
and 5-fluorouracil (5-FU) and discuss possible extensions.

2. METHODS
2.1. BAYESIAN NETWORKS FOR GENETIC NETWORK DISCOVERY
We chose Bayesian networks to represent the widely used class
of network models that aim to capture the dependence structure
in a dataset. A particularly attractive feature of Bayesian net-
works is their ability to accommodate genomic data of various
types by using continuous or discrete nodes to represent variables
under consideration, for example: continuous nodes to represent
continuous measurements such as gene expression, and discrete
nodes to represent discrete variable such as genotype.

Given a Bayesian network structure, the approach to calculate
likelihood and network score has been well-established in the lit-
erature. The novelty of this paper is to introduce the nPARS search
algorithm, described in section 2.2, to guide the search process
and to visit parts of the network space that reflect parts of the
true underlying network structure in a given data, since the search
space is oftentimes enormous. Formally, a Bayesian network is a
graphical representation of the joint distribution of a set of vari-
ables (Pearl, 1988) consisting of two components: (1) a directed
acyclic graph in which nodes correspond to random variables,
and directed edges to dependencies between variables; for exam-
ple, L → E indicates that the status at node L is associated with the
alteration of status of node E. And (2) the joint distribution of the
random variables decomposed according to the graphical model,
under an assumption of Markov conditional independence.

Thus the dependence structure can be described as
P
(
X1, X2, ..., Xp|G

) = ∏p
i P (Xi|Pa(Xi), G), where Pa(Xi)

represents the parents of nodes Xi in graph G. The conditional
distributions in the described equation were specified according
to the types (discrete or continuous) of Xi. For discrete nodes, we
assume they follow multinomial distribution with parameter θd

and the prior distribution of θd follows Dirichlet. For continuous
nodes, we assume linear Gaussian conditional densities given
the value of its parents and apply Gaussian-inverse gamma

priors. For example, assuming a continuous node, Xi, has both
continuous parents (Pac)and discrete parents (Pad), we apply the
following distribution model:

P
(
Xi|Pac(Xi) = u, Pad(Xi) = j

) = N(mj + βj. u, σ2),

(
mj, βj|σj

) ∼ N(μj, σjτ
−1
j ),

σj ∼ I�

(
ρj

2
,
φj

2

)
.

Given a network structure, the likelihood function and network
score can be found in Bøttcher and Dethlefsen (2003, pp. 3–
6, 11–12). We follow Bøttcher and Dethlefsen’s implementation
of Bayesian networks and also refer the reader to these publi-
cations (Friedman et al., 2000; Bøttcher and Dethlefsen, 2003;
Bøttcher, 2004) for a complete discussion of Bayesian networks
and the software (Bøttcher and Dethlefsen, 2003) we used to fit
and analyze the data.

2.1.1. Ranking network structures
All else equal, the best fitting network model can be identified by
maximizing the log posterior probability of the network G given
the data d, herein called the network score and denoted

S(G) = log P(G|d) ∝ log P(d|G) + log P(G). (1)

In the simple example shown in Figure 1, nodes corresponding
to SNP markers are denoted by L, expression by E and the
disease, or phenotypic outcome by D. The SNPs, being discrete
variables, are shown with a black background in the graphical
network representation while the continuous nodes are shown
in white. Assuming that gene expression level or phenotypic
status could not change SNP genotypes, we restrict the possible
network structures so that no edges come from the expression
and phenotypic nodes to the SNP node at locus L, leaving a
total of 12 possible DAGs that can be generated from the triplet
{L, E, D}. In this example, the best fitting network structure
for the {L, E, D} triplet will turn out to be G10 with S = −5558.75.

We have made a few adaptions to the likelihood-based network
score S(G) to address certain practical concerns. When comparing
network structures with different sets of nodes, and especially dif-
ferent numbers of nodes, the network scores of Equation (1) may
be on different scales. And, all else equal, we prefer a network in
which molecular variables are strongly associated with the pheno-
type D over one with very tight molecular associations but weak
correlation with outcome. To achieve these goals, we define the
average network improvement score (ϕ):

ϕ = λ(S − S0) + (1 − λ)S

α
. (2)

where S is the network score of the structure under consid-
eration, and S0 is the network score of its corresponding null
network, obtained by removing the edge(s) to “D”. For example,
for network structure G10 in Figure 1, the null network is G2. In
addition, λ is a tuning parameter between 0 and 1, and α is the
number of nodes considered in the network.
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The quantity (S-S0) measures the improvement in the network
score resulting from adding an edge to “D”. The numerator of ϕ

is a weighted average of these two parts: the difference (S − S0)

and the network score S. In addition, the tuning parameter, λ is
used to adjust the weight of the two parts. To weight the two parts
equally, we set λ = 0.5 in the following analysis.

To adjust for the number of nodes in network scores, we divide
the numerator of ϕ by the number of nodes. This is used as a
simple approximation of the effect of the number of nodes in
the marginal likelihood. From Equation (1), when considering
networks with no edges and assuming the nodes have the same
distribution, the log marginal likelihood decreases linearly when
adding nodes in the model, providing a heuristic justification for
our specification.

The ϕ score so defined favors network structures that
have both high posterior support and strong association
with the phenotypic outcome. Using the previous example,
the network score of G10 is −5558.75, and the score of
its corresponding null graph, G2 is −5757.38. Hence, ϕ =
0.5[−5558.75−(−5757.38)]+(0.5×−5558.75)

3 = −893.35.

2.2. BUILDING NETWORKS
Our motivating hypothesis is that a network built on genomic
sites and transcripts shown to be important in smaller network
structures will be both accurate and computationally efficient.
Accordingly we took a triplet—a SNP genotype taken together
with an expression measure, and the phenotypic outcome—
to be the basic building “module” in nPARS with larger net-
works formed by merging candidate triplets. The process can
be divided into three main steps: (1) construct and score
all triplets, (2) select the most informative of the resulting

subnetworks, and (3) assemble these into larger networks. We
will describe each of these in a little more detail in the next
paragraph.

2.2.1. Constructing three-node subnetworks
To form the basic building blocks, we decompose the whole
network space into all possible (L, E, D) triplets, calculating a
network score and best fitting structure for each. For the data
set described in section 4, there are a total of 2330 × 3554 =
8, 280, 820 (L, E, D) triplets, and for each we find the network
structures with the best network scores, as described above.

2.2.2. Selection
Triplets are selected on the basis of the biological relevance of their
best fitting network structures as well as the network scores. We
exclude any (L, E, D) subnetworks containing a node of degree
zero (having no connections with other nodes), so that only ade-
quately connected networks are admitted for further analysis.
Thus we select the subnetworks with structures shown as G6,
G7, . . . , G12 in Figure 1. Next, we apply the average network
improvement score (ϕ) to select the subnetworks that have both
large support from the posterior and significant relevance to the
outcome of interest. Subnetworks are ranked according to the ϕ

scores. We then choose the top k1 subnetworks for further anal-
ysis. It is possible that after this step, there is only one (L, E, D)
left. In this case, the algorithm reports this single three-node net-
work. Our search in this step is exhaustive, which we find to be a
significant strength of our approach.

2.2.3. Reassembly
The final step is to build larger network structures from the
chosen triplets. In doing this we considered first that the larger

FIGURE 1 | All 12 possible networks for a given (L, E, D) triplet.
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networks should contain two or more complete triplets, rather
than mix and match individual nodes from different triplets,
in order to preserve information that may be held jointly in
those variables. Secondly, it should be permissible to reconstruct
edges within triplets in addition to adding connections between
triplets. These two considerations thus defined the assembly pro-
cess, wherein a new Bayesian network is built from scratch using
the nodes from a set of triplets. In our tests we assembled every
pair of high scoring (L, E, D) triplets into four to five node net-
works, and used an exhaustive search to find the top scoring
structure for each. We then build larger networks sequentially,
adding additional triplets to the best scoring five node networks.
At some point, as the networks get larger the exhaustive search
option becomes computationally infeasible. This in fact happens
fairly early, but we anticipate that the improved variable selection
afforded by the modular approach would continue to pay divi-
dends even if a greedy algorithm were used to construct edges at
later stages in the assembly.

We summarize the three steps in the nPARS algorithm: con-
struction of subnetworks, selection, and assembly as follows:

1. Construction of subnetworks:

(a) Partition the whole network space into (L, E, D) sub-
sets and

(b) construct subnetworks.

2. Selection: Select the subnetworks with

(a) network structures that are among G6, ..., G12 in
Figure 1 and

(b) top k1 subnetworks with largest ϕ scores.

3. Reassembly:

(a) Assemble two or more subnetworks into the union of their
nodes;

(b) Re-construct the assembled networks by scoring all possible
network structures with the set of nodes.

(c) Report the top k2 networks with largest ϕ scores.

The diagram shown in Figure 2 is a simple example for the nPARS
algorithm described above. In Figure 2, eight triplet combina-
tions are generated from four SNP loci (L1, L2, L3, and L4),
and two expression measurements (E1 and E2). These three-node
subnetworks are considered the basic building blocks (mod-
ules) of the nPARS algorithm. In the second selection step,
three subnetworks are selected and a larger six-node network is
re-constructed from scratch using the nodes from the selected
subnetworks. In this example, L4 does not enter into the final
reassembly step, since in the first step, the subnetworks asso-
ciated with L4 do not connect with any expression (E) and
phenotype (D).

3. TESTING
To rigorously evaluate performance of our network partition and
assembly approach (nPARS), we simulated a set of plausible gene
networks, comparing our partition and assembly approach to an
exhaustive (Exh) search on the one hand and a greedy search with
random restarts on the other (Greedy) . These algorithms are

evaluated by comparing the reported final network structures to
the assumed true network structure, to determine how frequently
the correct nodes and edges are recovered. In these simulations we
intentionally evaluate small networks, concentrating on the four-
and five-node structures that result from joining two triplets.
There are two reasons for this: (1) The exhaustive search for a
best fitting network structure, which represents the gold standard
of performance in these simulations, quickly becomes computa-
tionally prohibitive as a network gets larger. (2) We hope to model
biologically plausible gene systems and to understand how fea-
tures of those systems affect performance, and are not confident
that human intuition is scalable in these regards.

3.1. SIMULATION SETTINGS
To examine performance, we investigate seven simulated net-
work structures, shown in Figure 3. Some of these scenarios
are observed during the experimental data analysis presented in
section 4 and others are developed from biological theory. For
example, scenarios 1 and 2 are constructed based on the funda-
mental dogma of gene expression: DNA → RNA → phenotype.
In scenario 3, 4, and 7, we add direct edges from L to D in keeping
with structures identified in the course of analyzing experimen-
tal data. In addition, in scenario 5 and 6, we examine network
structures with long connections (L → E1 → E2 → D). Scenario
7 could be considered as the worse case scenario because SNP loci
contribute directly to D without alteration gene expression levels.

When simulating data, in order to mimic real world situations,
we add unrelated SNP markers and expression measures as noise.
The simulated data sets contain five SNP markers, five expres-
sion measures, and one continuous disease outcome. We simulate
the data in the following four sample sizes: 100, 200, 500, 1000.
SNP markers are simulated to have genotypes aa, Aa, and AA,
with probability 0.25, 0.5, 0.25, respectively. Gene expression val-
ues from independent transcripts are simulated as N(10,

√
3.6).

Expression values (Ei) with edge effect β, for example from Li are
generated using the linear regression model: Ei = 8 + β · Li + εi,
εi ∼ N(0,

√
3.6). Phenotypic outcomes (D) are then generated

based on genotype, and expression values through another linear
regression model.

Specifically, we generate the simulated data using the follow-

ing models: in scenario 1 and 2, D = β
2 · E1 + β

2 · E2 + εi; in
scenario 3, D = β · I(L1 = 1) + βI(L1 = 2) + β · E1 + β · E2 +
εi; in scenario 4, D = β · I(L1 = 1) + βI(L1 = 2) + β · E1 + β ·
E2 + εi; in scenario 5, D = β

2 · E2 + εi; in scenario 6, D = 3β ·
E2 + εi, and in scenario 7, D = β · I(L1 = 1) + βI(L1 = 2) +
β · I(L2 = 1) + βI(L2 = 2) + β · E1 + β · E2 + εi, where I is the
indicator function. In the above equations, all εi are generated
from N(0,

√
3.6). We evaluate the performance of each of the

three algorithms for various β values.

3.2. COMPARISON OF NODE RECOVERY
3.2.1. Algorithms
Three algorithms are implemented in this simulation study:
nPARS, Exh, and Greedy. We apply nPARS as described previ-
ously. Specifically, in the selection step we keep all the subnet-
works with more than one edge. In the final assembly step, we
report the top 1 scoring network structure.
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FIGURE 2 | The three steps in the nPARS algorithm: (1) constructing

three-node subnetworks, (2) select subnetworks, and (3) reassemble

into larger networks.

FIGURE 3 | Graphical representation of the simulation scenarios.

For comparison, in Exh, we define the network space to be all
network structures that can be generated by all possible {L1, L2,
E1, E2, D} five-node combinations, and exhaustively score all of
them reporting the network with the largest ϕ score. In the sim-
ulation, we perform greedy search with 10 random restarts, stop-
ping when the network score converges or when the algorithm
reaches 100 iterations.

3.2.2. Evaluation
Our first aim in the simulation analysis is to investigate whether
nPARS recovers the correct nodes. For each true five-node net-
work structure, we categorize the “nodes” in the final reported
network structure as true positive (tp), false positive (fp) or

false negative (fn) and evaluate the recovery of nodes using

Sensitivity = tp
tp+fn , and FDR = fp

tp+fp .

3.2.3. Results
The comparisons of node recovery are shown in Figures 4–6.
In all simulation scenarios, nPARS (black line) exhibits slightly
lower node sensitivity than Exh (red line) when sample size is
the same. In addition, nPARS demonstrates lower node false dis-
covery rate (FDR) than Exh and Greedy (green line) in all seven
scenarios.

In addition, Greedy demonstrates highest sensitivity but also
relatively large FDR in all simulation scenarios. In all simula-
tion scenarios, Greedy reports networks with edge connections
between almost all the nodes in the data. There are 6 out of
11 (54.5%) false nodes in the simulation dataset, and the aver-
age node FDR of Greedy search is 54.4%( 0.544

0.545 ≈ 99.8%) when
sample size (n) is less than 1000. In other words, Greedy falsely
recovered 99.8% of the false nodes in the simulation dataset when
n is less than 1000. This number decreases to 51.7%( 0.517

0.545 ≈
94.9%) when n = 1000.

3.3. COMPARISON OF EDGE RECOVERY
3.3.1. Algorithms
The nPARS and Exh algorithms are implemented as described in
section 3.2. However, as our findings from node recovery indicate,
Greedy search often reports networks with too many nodes, and
thus achieves high edge sensitivity at the price of a high number
of false positive nodes. Hence, for edge the recovery comparison,
it is desirable to control the number of nodes. In this analysis,
we restrict the search space of the Greedy algorithm to network
structures with no more than five nodes by adding an additional
stopping rule requiring that when the network reaches five-nodes
it stops. We call the revised version, GreedyE. As above, we cate-
gorize edges into tp, fp, fn, and calculate edge sensitivity and edge
FDR based on the assumed true network.

3.3.2. Results
In most of the studied scenarios, nPARS has better perfor-
mance than GreedyE in terms of edge sensitivity, as shown in
Figures 7–9, given the same sample size. The exceptions occur in
a few instances in scenario 1, 3, and 7, when the edge effect β

is small. When β is increased in scenarios 3 and 7, nPARS tends
to have better edge sensitivity compared to GreedyE. In scenario
1, nPARS appears to have similar edge sensitivity compared to
GreedyE. Exh has the best edge sensitivity recovery in almost all
the scenarios.

In terms of edge FDR, GreedyE demonstrates the highest edge
FDR in all simulation scenarios. nPARS shows similar edge FDR
compare to Exh except in scenarios 1 and 2, when β is rela-
tively small. In general, when considering both edge sensitivity
and FDR, nPARS often demonstrates better edge sensitivity with
the benefit of lower edge FDR compare to GreedyE. Exh has
the best performance, however, in practice it is not feasible to
implement Exh.

Overall, in the comparison with Greedy search, nPARS
demonstrates lower FDR in both node and edge recoveries. In the
comparison with Exh, nPARS demonstrates similar FDR in both
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FIGURE 4 | The sensitivity and FDR of node comparisons in simulation scenario 1–3. nPARS shows lowest node FDR with slightly lower node sensitivity
compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.

Frontiers in Genetics | Bioinformatics and Computational Biology February 2014 | Volume 5 | Article 40 | 151

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Ho et al. Network partition and re-assembly search algorithm

FIGURE 5 | The sensitivity and FDR of node comparisons in simulation scenario 4–6. The same legend is used as in Figure 3. nPARS shows lowest node FDR
with slightly lower node sensitivity compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.
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FIGURE 6 | The sensitivity and FDR of node comparisons in simulation scenario 7. The same legend is used as in Figure 3. nPARS shows lowest node FDR
with slightly lower node sensitivity compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.

node and edges recoveries but lower sensitivity. It is also notable,
however, that nPARS achieved strikingly low, node FDRs in our
tests, suggesting that the stepwise approach to network develop-
ment may offer protection against over-fitting. For example, the
stage 1 of nPARS requires that each expression node demonstrate
a clear and simple link between some locus L and disease D, which
makes it difficult for false nodes to make it to a full, five-node net-
work in stage 2. In comparison, it could be relatively easy for the
exhaustive procedure to complete a strong, four-node network
with a noisy false fifth variable.

With regard to computational efficiency, under simulation sce-
nario 1 with β = 0.8, nPARS takes about 32 s to complete 1
iteration, Greedy search takes about 52 s and Exh takes 2387 s
(39 min and 47 s) with a single 2.3 GHz CPU core on a 64-bit
AMD Opteron-based server. The run times are similar in mag-
nitude under other scenarios. The time complexity of the nPARS
algorithm depends on the parameters k1 and k2. The time com-
plexity of the first step of nPARS grows linearly with increasing
number of genes. If k1 and k2 are fixed regardless of the number of
genes considered in the study, then the time complexity of nPARS
algorithm grows linearly with increasing number of genes. The
R source code and documentation of the nPARS algorithm are
available at http://www.biostat.umn.edu/~yho/research.html.

4. IMPLEMENTATION
4.1. CELLULAR RESPONSE TO ANTICANCER DRUGS DATA
In this example, we investigate differential responses to two
chemotherapeutic agents: docetaxel and 5-FU. Both are widely
used for a broad spectrum of cancers including colorectal, gas-
tric, and head and neck cancer (Herbst and Khuri, 2003; Wang
et al., 2004). Inter-individual variations in response to these
anti-neoplastic drugs are commonly observed in cancer patients.
Although several studies have shown that the resistance to doc-
etaxel and 5-FU in human cancer cell are significantly inheritable

(Watters et al., 2004), little is known about the underlying genetic
mechanisms for this resistance.

This dataset includes 140 participants from 12 three-
generation CEPH Utah families provided by the Genetic Analysis
Workshop 15 (GAW15) (Cheung et al., 2005) and PharmGKB
(Klein et al., 2001). Each family has approximately eight sibships
in the third-generation. For each individual in the study, data
from multiple sources was combined, including genotype, mRNA
abundance, and cellular cytotoxicity levels in lymphoblastoid
cells.

Genotypes of 2882 autosomal and X-linked SNPS, from across
the whole genome, were generated by the SNP Consortium
(http://snp.cshl.org/linkagemaps/) and provided through
GAW15. We remove 552 SNP markers that have a high pro-
portion of missing values (>0.3) or which are insufficiently
polymorphic (minor allele frequency <0.1). We also examine the
Mendelian consistency of the SNP genotypes and corrected them
using Pedcheck and Merlin algorithms (O’Connell and Weeks,
1998; Abecasis et al., 2002).

Lymphoblastoid cells were isolated from each patient and
8793 mRNA transcripts were measured using Affymetrix Human
Focus Arrays in previous studies (Cheung et al., 2003, 2005;
Morley et al., 2004). We obtained the Affymetrix CEL files for all
array hybridizations through GAW15. We then preprocessed the
expression measures using RMA (Irizarry et al., 2003) and used
mean expression intensities for replicates. For 3554 of the 8793
genes tested, Morley et al. (2004) found greater variation among
individuals than between replicate determinations on the same
individual. Hence, we choose these 3554 expression measures for
further analyses.

The docetaxel and 5-FU cytotoxicity measures were obtained
using lymphoblastoid cell lines derived from each participants
and are available from the PharmGKB website http://www.

pharmgkb.org/index.jsp. The percentages of LCL cell viability at
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FIGURE 7 | The sensitivity and FDR of edge comparisons in simulation scenario 1–3. nPARS has better performance than GreedyE in terms of edge sensitivity
except in scenario 1 and 3. In scenario 1, nPARS has comparable edge sensitivity compare to GreedyE. nPARS has lower edge FDR compare to GreedyE.
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FIGURE 8 | The sensitivity and FDR of edge comparisons in simulation scenario 4–6. The same legend is used as in Figure 6. nPARS has higher edge
sensitivity and lower edge FDR compare to GreedyE in scenario 4–6.
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FIGURE 9 | The sensitivity and FDR of edge comparisons in simulation scenario 7. The same legend is used as in Figure 6. nPARS has higher edge
sensitivity and lower edge FDR than GreedyE in these scenarios.

0.1, 0.5, 1, 5, 10, 50, 100 nM for docetaxel and at 0.76, 1.92,
3.84, 5.77, 7.68, 19.2, 38.4, 76.8 mM for 5-FU were measured
and recorded for each individual. More detail about the cyto-
toxicity experiment procedures can be found in Watters et al.
(2004).

4.2. FAMILIAL AGGREGATION OF RESPONSES TO
CHEMOTHERAPEUTIC AGENTS

In Figure 10, we plot the percentages of cell viability against the
loge dose of docetaxel and 5-FU for each individuals. A large
area under the log dose response curve indicates strong chemo-
resistance. In the following analysis, for each individual, we use
the area under the log-dose response curve as a summary rep-
resenting the chemo-resistance outcome. There is one missing
observation at 0.1 nM for docetaxel, there are four missing obser-
vations at 0.76 mM for 5-FU and there are no missing observation
at the end dose for either agents. Since missing the first dose
will underestimate the area under the curve, we apply linear
regression models to predict the missing cytotoxicity values from
non-missing observations at other does using data from the same
individual.

Familial aggregation of the responses to chemotherapeutic
agents can be observed. For example, individuals in the Utah
1346 pedigree (blue) show generally higher level of resistance than
individuals in Utah 1424 (orange), Utah 1416 (green), and Utah
1362 (light blue) families in both graphs.

4.3. RESULTS USING nPARS ALGORITHM
We apply the nPARS algorithm to this data, with 2330 SNP
loci (L) and 3554 gene expression measures (E). We use the
area under the log dose response curve as the phenotypic out-
come (D), and analyze docetaxel and 5-FU separately. For each
phenotypic outcome, we exhaustively score all possible 2330 ×
3554 = 8, 280, 820 triplets combinations in the partition step.

The subnetwork for each triplet is determined by the highest net-
work score. Among these triplets, there are 825,637 (≈10.0%)
triplets whose best fitted subnetworks are among G6, . . . , G12 for
docetaxel and 635,390 (≈7.7%) for 5-FU.

Among these, we select the top 100 scoring triplets for
reassembly. We list the top 10 scoring triplets in Tables 1, 2 for
docetaxel and 5-FU, respectively. Particularly, our results suggest
four important SNP markers: rs1333798, rs695937, rs2056737,
and rs1485768 because they appear many times in the top rank-
ing networks for both docetaxel and 5-FU. In the subsequent
reassembly step, we combine every two triplets into (100, 2) =
4950 sets of four or five nodes. After calculating the ϕ score for
all resulting 4950 networks, we select the top 20. We present
the five-node networks, if they have two gene expression as
intermediate variables, in Tables 3, 4, for docetaxel and 5-FU,
respectively. The corresponding network structures are plotted in
Figures 11, 12.

To estimate the variance explained by the top scoring net-
works, we perform linear regression adjusting for family. In
the regression model, we used the area under the log-dose
response curve as response variable and the nodes reported in
the final networks (shown in Tables 3, 4) as predictors, while
adjusting for family. The results are shown in the final col-
umn in Tables 3, 4 for docetaxel and 5-FU, respectively. After
adjusting for family structure, we observe that the top scoring
networks reported by nPARS explain a significant amount of
variation in drug resistance outcomes. The mean adjusted R2

are 48.63% and 33.01% for docetaxel and 5-FU, respectively.
In addition, we obtain p-values using an F test based on lin-
ear regression models. All top scoring networks show p-value
smaller than 0.00001 for docetaxel and smaller than 0.01 for 5-
FU. Even after Bonferroni correction for multiple comparisons,
all remain statistically significant except subnetwork #7 and #9
for 5-FU.
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FIGURE 10 | The cytotoxicity responses of docetaxel and 5-FU.

Table 1 | Top 10 scoring triplets for docetaxel, and associated ϕ scores.

L Location of L (Chr: Mb) E Location of E (Chr: Mb) ϕ

1 rs1333798 13:88.8 CCL20 02:228.7 −103.04

2 rs695937 03:64.2 CCL20 02:228.7 −106.51

3 rs2056737 02:156.8 CCL20 02:228.7 −110.01

4 rs1333798 13:88.8 PSTPIP2 18:43.6 −113.34

5 rs1333798 13:88.8 SPARC 05:151.1 −113.64

6 rs1333798 13:88.8 PON2 7:95.1 −114.70

7 rs1333798 13:88.8 BUD31 7:99.0 −114.71

8 rs1485768 04:177.6 EGFL6 X:13.6 −114.81

9 rs1333798 13:88.8 VCAM1 01:101.2 −114.93

10 rs1333798 13:88.8 USP39 02:85.9 −115.56

Table 2 | Top 10 scoring triplets for 5-FU, and associated ϕ scores.

L Location of L (Chr:Mb) E Location of E (Chr:Mb) ϕ

1 rs695937 03:64.2 CCL20 02:228.7 −105.80

2 rs1333798 13:88.8 CCL20 02:228.7 −106.64

3 rs2056737 02:156.8 CCL20 02:228.7 −111.19

4 rs1333798 13:88.8 PON2 7:95.1 −114.17

5 rs1333798 13:88.8 FFAR2 19:35.9 −114.56

6 rs1485768 04:177.6 EGFL6 X:13.6 −114.71

7 rs1333798 13:88.8 UPB1 22:24.9 −115.30

8 rs2056737 02:156.8 FKBP5 6:35.6 −115.94

9 rs1015453 X:14.0 C5AR1 19:47.8 −115.98

10 rs2056737 02:156.8 TPM2 9:35.7 −116.62

Through this experimental data analysis, we intend to demon-
strate the implementation of nPARS in a large-scale genomic
data set. The analysis results suggest that rs1333798, rs1485768,
rs2056737, and rs695937 and CCL20 combinations might explain

the cytotoxicity responses observed in the lymphoblastoid cell
lines for both docetaxel and 5-FU. rs1485768 is within the VEGFC
gene which is involved in multiple cancer related pathways. In
addition, rs695937 locates within the PRICKLE2 gene coding
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Table 3 | Top scoring five-node subnetworks for docetaxel*.

L1 L2 E1 E2 ϕ Adjusted R2 (%)

1 rs1333798 rs1485768 CCL20 EGFL6 −71.26 48.75

2 rs2056737 rs1333798 CCL20 ADARB1 −71.28 50.15

3 rs2056737 rs1333798 CCL20 PRKCA −71.85 49.36

4 rs2056737 rs1333798 CCL20 BUD31 −71.96 47.96

5 rs1485768 rs1333798 EGFL6 CD93 −71.97 41.47

6 rs2056737 rs1333798 CCL20 CCNA1 −72.24 47.97

7 rs2056737 rs1333798 CCL20 UPB1 −73.23 50.09

8 rs2056737 rs1333798 CCL20 RAI14 −73.33 50.18

9 rs2056737 rs1333798 CCL20 VCAM1 −73.37 48.96

10 rs2056737 rs1333798 CCL20 PSTPIP2 −73.4 51.36

All p values <0.00001.

Table 4 | Top scoring five-node subnetworks for 5-FU.

L1 L2 E1 E2 ϕ p value Adjusted R2 (%)

1 rs2056737 rs695937 CCL20 UPB1 −71.46 3.81×10−5 40.51

2 rs695937 rs2056737 CCL20 CRIP1 −74.24 1.03×10−4 37.85

3 rs2056737 rs1333798 CCL20 ADARB1 −74.62 3.38×10−3 25.72

4 rs695937 rs2056737 CCL20 IL18R1 −74.69 1.07 ×10−5 43.69

5 rs695937 rs2056737 CCL20 BLMH −75.09 3.40 ×10−5 40.81

6 rs2056737 rs1333798 CCL20 UPB1 −75.41 1.13 ×10−3 29.41

7 rs2056737 rs1333798 CCL20 PRKCA −75.46 6.80 ×10−3 23.17

8 rs695937 rs2056737 CCL20 TPM2 −75.52 3.57×10−4 34.24

9 rs1333798 rs2056737 CCL20 BUD31 −75.59 0.01 21.68

region. PRICKLE2 belongs to the Wnt signalling pathway which
regulates many downstream genes through its interaction with
the T-cell factor family of transcription factors. The wnt signal-
ing pathway also leads to remodeling of the cytoskeleton which is
the main drug action of docetaxel, though the exact connection
between these genetic variants and CCL20 expression is not yet
clear.

CCL20 is a chemokine and it provokes proliferation and adhe-
sion to collagen for several types of cancer cells (Beider et al.,
2009). It is also believed that CCL20 is relevant to chemo-
resistance for various kind of cancers (Chang et al., 2008).
For docetaxel resistance in lymphoblastoid cells, it is possi-
ble that CCL20 may influence resistance through regulation of
actin cytoskeleton via the chemokine singling pathway, since
cytoskeleton function is the main drug target of docetaxel. Genes’
expressions that are likely to co-regulate with CCL20 and con-
tribute to docetaxel resistance include EGFL6, ADARB1, PRKCA,
BUD31, CD93, CCNA1, UPB1, RAI14, VCAM1, and PSTPIP2.
Some of these genes are likely to be relevant to chemo-resistance
response through cell cycle regulation, adhesion, or carcinogen-
esis pathways, EGFL6, PRKCA, VCAM1. ADARB1 and BUD31
are involved in mRNA precursor editing and modification. CD93,
RAI14, and PSTPIP2 are part of cytoskeleton or interact with
cytoskeleton function.

In addition, as indicated in the reported top fifth scor-
ing network, the genetic variations in two SNP markers:
rs1485768 and rs1333798 might contribute to the variation

in gene expression of EGFL6, CD93. EGFL5 and CD93 play-
ing important roles in regulating cell cycle, and remodeling
cytoskeleton.

As for resistance to 5-FU, the CCL20 chemokine is also found
to be crucial. CCL20 might play an important role through
mediating DNA degradation or GPCR pathways. Other genes
that could potentially co-regulate 5-FU resistance together with
CCL20 include UPB1, CRIP1, ADARB1, IL18R1, BLMH, PRKCA,
TPM2, BUD31, ITGAM, and RAB8B. Specifically, UPB1 partici-
pates in the 5-FU drug metabolic pathway by converting fluoro-
beta-ureidopropionate to fluoro-beta-alanine (FBAL). FBAL is
the major secretable form of 5-FU found in patients’ urine sam-
ple. Although feasible biological hypotheses could be suggested
based on our analysis results, further experiments are needed
to validate the roles of these genetic factors in chemotherapy
response.

5. CONCLUSION
To meet the growing need for efficient data analysis at the level of
biological systems, we have developed and evaluated a modular
approach to the construction of genetic networks. Our goal was
to strike an appropriate balance between two potential sources
of error. There is the error introduced when a necessarily less-
than-exhaustive search through high-dimensional network space
misses important regions of that space. This risk can be reduced
by judicious variable selection to reduce the size of the search,
but “judicious” is a loaded term and ideally the variable selection
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FIGURE 11 | Top scoring five-node network structures for docetaxel reported from nPARS algorithm.

step would capture some of the information that is distributed
jointly across network components. By building a network from
small components identified in an exhaustive search we hope to
improve variable selection while controlling the computational
burden.

The main focus of the paper is to assess the advantage of
network-driven feature selection strategy. Based on our study
findings, this network construction strategy provides ways to
focus on small subnetworks that present with higher signal
and allow more reliable estimation of network structure. In a
set of extensive simulations, we compared the performance of
the modular nPARS approach to that of both the greedy and
exhaustive searches, evaluating the performance of each across
a variety of scenarios. In these analyses, nPARS outperformed
the greedy search which tended to have high FDRs for both
nodes and edges, and proved competitive with the exhaustive
search.

The fact that nPARS achieves better performance in terms of
false discovery than exhaustive search in some simulation sce-
narios is beyond our expectation, and we suggest two possible
factors: (1) Although we have attempted to represent a range of
biologically realistic networks, there may be some bias in the sys-
tem whereby the variable selection criteria implicit in nPARS is
particularly appropriate to the network structures modeled in
some of those scenarios. (2) One of the goals driving this method
was to improve the effectiveness of the search through network
space by including only those variables that made a significant
contribution to smaller network structures. By requiring clear

links between locus L, transcript E and phenotype D in the first
stage of the algorithm, we make it less likely that a noisy false
node is available for inclusion in the larger network later on.
Without such a filtering step, it is relatively easy for the exhaus-
tive procedure to complete a strong four-node network with
a noisy, false fifth node. By either cause, we would anticipate
that in larger, more complex networks, that nPARS’ advantage
over the exhaustive procedure would diminish. Unfortunately
it is not yet practical to scale the exhaustive approach to
test this.

We did not explicitly model family structure when construct-
ing the Bayesian networks on our chemo-resistance application,
assuming that any similarity of phenotypic values between rela-
tives could be fully explained by the genetic variables considered
in a network. However, since pedigree data was available for the
samples in the drug response study, we used it in evaluating
the top scoring networks we reported. Specifically, we performed
a linear regression analysis that included family structure, to
see how well the genetic variables explained drug response after
adjusting for pedigree structure. We obtained small p-values and
large adjusted R2, suggesting that the reported networks play
significant roles in drug resistance responses.

Other limitation of the proposed nPARS algorithm is that
the algorithm in its current specification focuses on identify-
ing structures related to (L ,E, D). As demonstrate by sim-
ulation scenario 7, nPARS has considerable power to detect
cases where L contribute to D directly (L → D). However,
in scenario 7, if we replace E1 and E2 by L3 and L4, then
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FIGURE 12 | Top scoring five-node network structures for 5-FU reported from nPARS algorithm.

nPARS would have a diminished power to detect such case.
The algorithm can be easily modified to consider this modified
scenario but increased amount of computational intensity will be
expected.

Furthermore, our implementation of nPARS is tailored to the
SNP—expression—phenotype setting in which it was tested, but
could be readily modified to accommodate other genetic or epi-
genetic data in place of SNPs, including copy number and DNA
methylation, though it may be necessary to modify the scoring
functions or re-weight the prior distribution on network struc-
tures to reflect the unique biological characteristics of each data
type. Potential direction for future research is to accommodate
pedigree structure into the marginal likelihood score of Bayesian
networks. But this approach would require considerable amount
of samples to have enough power for detecting effects. We antic-
ipate to have demonstrated that a practical compromise between
exhaustive and greedy searches can improve on both and that our
method can be the basis for future expansions.
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Significant effort has been invested in network-based gene function prediction algorithms
based on the guilt by association (GBA) principle. Existing approaches for assessing
prediction performance typically compute evaluation metrics, either averaged across all
functions being considered, or strictly from properties of the network. Since the success
of GBA algorithms depends on the specific function being predicted, evaluation metrics
should instead be computed for each function. We describe a novel method for computing
the usefulness of a network by measuring its impact on gene function cross validation
prediction performance across all gene functions. We have implemented this in software
called Network Assessor, and describe its use in the GeneMANIA (GM) quality control
system. Network Assessor is part of the GM command line tools.

Keywords: network inference, function prediction, cross validation, network biology, machine learning

INTRODUCTION
Networks of gene-gene functional interactions (or more generally,
associations) have proven useful to predict gene function (Zhang
et al., 2004; Mostafavi et al., 2008; Peña-Castillo et al., 2008). In
this model, the nodes of the network are genes and the edges rep-
resent specific types of associations between them. For example,
a gene can be connected to other genes that inhibit or promote it,
that encode similar protein domains, that share similar expression
profiles, that are located close together on the same chromosome,
or whose products physically interact with its products.

Various methods exist for predicting function from gene-gene
networks. The most common approach uses some variation of
the guilt by association (GBA) principle (Schwikowski et al., 2000;
Hishigaki et al., 2001; Wu et al., 2002; Vazquez et al., 2003; Deng
et al., 2004; Ye et al., 2005; Sharan et al., 2007; Franceschini et al.,
2013; Zuberi et al., 2013). This assumes the function of a gene can
be inferred from its neighbors in the network by following edges.
Guilt-free approaches also exist, such as using the node degree of
a gene without considering any properties of its neighbors (Gillis
and Pavlidis, 2011). These algorithms use binary classification to
perform predictions for one function at a time. Multi-label clas-
sifiers also exist that can make predictions for multiple functions
simultaneously (Wang et al., 2013; Yu et al., 2013).

Network-based gene function algorithms have demonstrated
strong performance for multifunctional genes (Gillis and Pavlidis,
2011). Algorithms that use binary classification are typically eval-
uated by using cross validation against a gold standard, such as
gene annotations from Gene Ontology (GO) (The Gene Ontology
Consortium, 2000) or FunCat (Ruepp et al., 2004). This pro-
cess involves passing the association networks and a subset of the
genes in a specific GO term as input to a binary classifier, which

implements a particular prediction algorithm. The classifier then
attempts to recover the withheld genes by ranking them based
on the likelihood that they are members of the GO term. From
this ranking, the area under the receiver operating characteris-
tic curve (AUROC) and the area under the precision-recall curve
(AUPR) metrics are computed (Fawcett, 2006). The AUROC and
AUPR values are typically aggregated across GO terms to produce
a mean AUROC and mean AUPR. The input association networks
may need to be integrated into a single graph prior to binary clas-
sification, depending on the prediction algorithm used. A similar
process can be used with multi-label classifiers when evaluating
label-based performance (Tsoumakas et al., 2010).

When the input association networks and gold standard are
held constant, we can use this process to compare the perfor-
mance of different prediction algorithms. However, if we instead
fix the algorithm and gold standard, we can assess the useful-
ness of the input association networks for particular tasks, such
as assigning gene membership to GO terms.

Quantifying the usefulness of specific gene-gene networks for
function prediction is difficult in general. The topology of a net-
work may impact prediction performance differently depending
on the function in question. Sometimes a small fraction of edges
may account for most of the cross validation performance for a
large number of GO terms (Gillis and Pavlidis, 2012). Larger net-
works are more likely to include more of these informative edges,
but it’s also possible for a large network to have only a few of them.
Similarly, a small network can be constructed to contain a large
proportion of such critical or exceptional edges.

The software we present, Network Assessor, was designed for
gene function-specific quantification of the usefulness of associ-
ation networks for prediction tasks. In particular, the software
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quantifies the predictive potential of one or more networks by
reporting the differences in cross validation performance for
each GO term, with and without the network(s) in question.
Although the software provides built-in support for using the lat-
est GO annotations, any annotation set can be used as the gold
standard. Network Assessor has already been used to demon-
strate that genetic interaction networks obtained under differ-
ent experimental conditions provide complementary information
that improves gene function prediction performance (Michaut
and Bader, 2012).

Network Assessor currently uses the GeneMANIA (GM) algo-
rithm (Mostafavi et al., 2008), which is a fast, real-time network
integrator and binary classifier that uses GBA to infer gene func-
tion. Recent studies have indicated that cross validation perfor-
mance of GBA-based algorithms depends on the GO term being
tested (Gillis and Pavlidis, 2012). Although Network Assessor
uses a GBA-based predictor, it can be readily extended to use
non-GBA algorithms and even multi-label classifiers. Network
Assessor permits term-by-term analysis by providing AUROC and
AUPR metrics for each GO term rather than averaging over all GO
terms.

Network Assessor was originally used to analyze changes in
prediction performance between different releases of the GM web
server (Warde-Farley et al., 2010; Zuberi et al., 2013). The results
of this analysis help identify issues with GM network data, make
parameter decisions and are used to evaluate new networks for
inclusion in the system.

EXPERIMENTAL OBJECTIVES
We designed Network Assessor to quantify the usefulness of
an association network for predicting gene function. However,
directly measuring the predictive potential of an arbitrary net-
work in isolation by simply assessing the degree to which the
association network connects nodes with similar labels is not nec-
essarily informative because of the synergistic nature of network
data. For example, suppose you have two non-overlapping net-
works, A and B, and another network C that overlaps with both A
and B. Predictions that use only A, B, or C in isolation would be
very different from those made using the integration of all three
because the set of reachable neighbors in the latter is much larger.
This difference is significant for predictors based on label propa-
gation (Kato et al., 2009) that utilize indirect connections between
genes. Our approach allows us to measure the impact of adding
(or withholding) network C.

Since prediction performance may vary by GO term, Network
Assessor computes the relative predictive potential of an asso-
ciation network by measuring the impact of adding it to (or
removing it from) a network with known predictive potential for
each GO term. This allows researchers to examine differences in
performance by GO term size and position in the GO hierarchy.

LIMITATIONS OF CURRENT TECHNIQUES
Alternative techniques for quantifying the usefulness of networks
in gene function prediction exist. For instance, identifying which
gene functions follow the GBA principle in a given network
can be accomplished by applying statistics originally developed
for testing spatial clustering in proximity networks (Kleessen
et al., 2013). The degree of global spatial autocorrelation (such as

Moran’s I statistic) indicates whether gene expression correlates
well with gene function. This is useful for investigating which
gene functions follow the GBA principle. In contrast to these
methods, Network Assessor measures the effect on predic-
tion performance of an arbitrary network for all known gene
functions one at a time.

Furthermore, Network Assessor provides a network integra-
tor to allow the evaluation of sets of networks from different
sources. This is critical for organisms with poor annotation cov-
erage. Intra-species transfer of annotations and the integration of
functional interaction networks derived through orthology would
likely improve prediction performance (Klie et al., 2012).

In particular, Network Assessor also permits the analysis of dif-
ferent combinations of networks. It uses GM’s various network
integration algorithms to combine multiple weighted undirected
networks into a single weighted undirected network. For exam-
ple, the default behavior uses the Simultaneous Weights and
Unregularized algorithms (Mostafavi and Morris, 2010) to assign
weights to each network indicating its information content for the
GO term prediction task at hand. This weight is multiplied with
each of that network’s edges during network integration. Weights
can also be assigned equally by network.

Network Assessor makes analysis of association networks more
accessible to both computational and non-computational scien-
tists who otherwise must script their own analysis or do not have
access to automated tools, respectively.

NETWORK ASSESSOR
Network Assessor measures the predictive potential of an associa-
tion network by following a five step process (Figure 1). First, the
set of baseline networks are combined into a weighted, undirected
graph using GM’s “automatic” network integration algorithm
(Zuberi et al., 2013). Specifically, we use the GO Biological Process
(BP)-based Simultaneous Weights algorithm for queries with less
than five genes, and the Unregularized algorithm for five or more
genes (Mostafavi and Morris, 2010). This follows the default
behavior of GM’s network integrator.

Second, this composite network is used during K-fold cross
validation to recover the annotations in the user-provided gold
standard, such as a set of GO terms and the lists of genes they
annotate. Annotated nodes are treated as positive examples and
all others are treated as negative. The GM algorithm is used as the
binary classifier during cross validation and an AUROC/AUPR
statistic is computed for each annotation, for each fold. A per-
fect classifier produces AUROC and AUPR values equal to 1. A
random classifier achieves AUROC equal to 0.5 and AUPR close
to P/(P+N) where P and N are the number of actual positive and
negative examples, respectively (Schrynemackers et al., 2013).

Next, Steps 1 and 2 are repeated using the subject (i.e.,
non-baseline) networks. Typically, this comprises the baseline
networks with the association network(s) of interest added (or
removed, if the association network is part of the baseline).

Finally, the percentage differences of the AUROC and AUPR
values are computed for each annotation. The results are sorted by
these differences to highlight which annotations perform better
or worse when predictions are made with or without the associ-
ation network of interest. This method is a generalization of the
leave-one-out analysis that we described in (Costanzo et al., 2010)
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FIGURE 1 | Schematic diagram of the Network Assessor workflow. The green arrows indicate the first round of cross validation. Red arrows are second
round. AUROC/AUPR statistics are computed for each node label (e.g., GO term) for each round of cross validation. Dashed lines indicate alternative options.

to measure the contribution of individual genetic interaction
datasets to our understanding of functional relationships in
yeast.

The results produced by Network Assessor are reported as a
table in tab-delimited text format. Although we describe in this
protocol how to use Network Assessor with gene-gene associ-
ations to validate against GO annotations, Network Assessor is
generic enough to be used directly with any type of network data
and gold standard.

Network Assessor is bundled with over 1800 GM networks
for eight different model organisms. However, it is possible to
use any organism and networks by using the Id Importer tool
documented at http://pages.genemania.org/tools/.

MATERIALS
Prerequisites
• Familiarity with the Windows, Mac OS X, or Linux command

line.

Reagents
• An association network in tab-delimited format. The first

two columns are the identifiers of the interactors. These can
be a mix of gene symbols, UniProt accessions/IDs, Ensembl
Gene/Protein IDs, RefSeq mRNA/Protein IDs, TAIR IDs or
Entrez Gene IDs. Optionally, a third column can be added
to indicate the weight of the interaction. Here is an example
weighted network with two interactions. “<TAB>” denotes a
tab character, which must not be surrounded by spaces in the
network file:

BRCA1<TAB>RAD50<TAB>0.25
BRCA1<TAB>MRE11A<TAB>0.34

Equipment
• A computer with at least 8 GB of RAM and an internet

connection.

Equipment setup
The following software is required:

• Windows XP 64-bit, Mac OS 10.6 or Ubuntu Linux 8.04 64-bit
(or equivalent) or later.

• Java 1.6 64-bit or later.
• GM command line tools version 3.3 or later (http://pages.

genemania.org/tools/).

Procedure
Steps 1–3: Set up the command line environment.

1. Create a new directory for storing the results of your work.
2. Copy the GM command line tools JAR file into this directory.

In later steps, we will assume this file is called genemania.jar.
Also copy your association data into this directory.

3. In your shell, set the current directory to the working directory
you just created.

Steps 4–10: Install baseline association data for your organism of
choice.

4. Run the following command in your shell to list the available
baseline data sets (The full documentation for this command
and the ones below is available at http://pages.genemania.org/
tools):

java -jar genemania.jar DataAdmin list

The following shows the output of this command:

Data Set ID Total Size Database Version
2013-10-15 9351.08 MB 15 October 2013
2013-10-15-core 2059.38 MB 15 October 2013
2013-10-15-open_license 9324.49 MB 15
October 2013

2012-08-02 5994.14 MB 19 July 2012
2012-08-02-core 1764.09 MB 19 July 2012
2012-08-02-open_license 5963.38 MB 19
July 2012

...
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5. Note the “Data Set ID” (first column) of the data you wish
to install. The latest release as of this writing is “2013-10-15”
which corresponds to database version 15-Oct-2013.

6. Run the following command to download the base data set.
This should take no more than a few seconds using a 3 Mbit/s
connection.

java -jar genemania.jar DataAdmin \\
install 2013-10-15

7. Run the following command to list the available organisms for
the selected data set:

java -jar genemania.jar DataAdmin \\
list-data

Here is an example of the output:

Data ID Description Status
1 A. thaliana Arabidopsis (2494 MB)
2 C. elegans Worm (282 MB)
3 D. melanogaster Fly (792 MB)
4 H. sapiens Human (2361 MB)
5 M. musculus Mouse (2137 MB)
6 S. cerevisiae Baker’s yeast (458 MB)
7 R. norvegicus Rat (576 MB)
8 D. rerio Zebrafish (248 MB)

8. Note the “Data ID” (first column)” of the organism you wish
to install. For example, human data is “4.”

9. Run the following command to install the organism-specific
baseline data set. Human data takes approximately 60 min to
download and install using a 3 Mbit/s connection. In general
it takes 10–70 min depending on the organism selected.

java -jar genemania.jar DataAdmin \\
install-data gmdata-2013-10-15 4

Note: \\ indicates a line continuation and should not be
included in the command.

Step 10: Download a gold standard for cross validation.

10. Run the following command to download the latest GO
annotations and save it to a file. You can choose a particular
GO branch, such as “bp” for biological process, “cc” for cel-
lular component, or “mf” for molecular function, or “all” for
everything. In the following example, the GO terms for tax-
onomy ID 9606 from the “bp” branch will be saved in the file
“go-terms.txt.” By default, this command will download the
annotations from the European Bioinformatics Institute GO
MySQL server. It takes about 8 min on a 3 Mbit/s connection.

java -jar genemania.jar \\
ValidationSetMaker \\
--organism 9606 --branch bp \\
--query go-terms.txt

Here are the taxonomy IDs of the organisms currently avail-
able in GM:

Organism Taxonomy ID

A. thaliana 3702
C. elegans 6239
D. melanogaster 7227
H. sapiens 9606
M. musculus 10090
S. cerevisiae 4932
R. norvegicus 10116

Step 11: Import the association data you want to analyze into your
data set.

11. Run the following command to install your association data.
This assumes your association data is stored in a file called
“network.txt,” is for the organism with taxonomy ID 9606
(human), and will be saved with the name “network1” and
categorized into group “group1.”

java --Xmx6G --jar genemania.jar \\
NetworkImporter \\
--data gmdata-2013-10-15 \\
--organism 9606 \\
--name "network1" --group "group1" \\
--filename network.txt

Step 12: Use Network Assessor to analyze the association data you
imported.

12. To specify all GM networks as a baseline, use “coexp,
coloc,gi,path,pi,predict,spd.” To measure the
impact of your network in isolation not including the base-
line networks, use “network1” for the “–network” parame-
ter. To measure the impact of your network added to the
baseline, use “coexp,coloc,gi,path,pi,predict,spd,network1”
instead. The following example will assess your network in
isolation, using 5-fold cross validation on four simultane-
ous processing threads with GO terms containing between
3 and 10 annotations, inclusive, and store the results in
“go-terms.result.txt”:

java --Xmx6G -jar genemania.jar \\
NetworkAssessor \\
--data gmdata-2013-10-15 \\
--auto-negatives \\
--baseline "coexp,coloc,gi,path, \\
pi, predict,spd" --seed 1 \\
--threads 4 --networks "network1" \\
--organism 9606 --folds 5 --min 3 \\
--max 10 --query go-terms.txt \\
--outfile go-terms. result.txt

Cross validation is a highly-parallelizable process since each
annotation in the validation set is assessed independently.
Network Assessor can automatically distribute the work
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across all cores of a multi-core system by specifying the num-
ber of threads to use. You can also partition “go-terms.txt”
into multiple files and process each file on a different
cluster node. Since Network Assessor is a memory- and
computation-intensive program, ensure that at least 6 GB of
RAM are free prior to starting the assessment. It takes an eight
core 2.53 GHz Intel Xeon E5540 system approximately 24 s
per line in “go-terms.txt” on average for the 15-Oct-2013 full
human data set using eight processing threads. Since human
is our largest dataset, using another organism or a subset of
the networks will allow faster cross validation times. On a 10-
node cluster of similar nodes, assessing the network against
1000 GO terms would take around 40 min of real time (6.6 h
of CPU time).
The “–min 3” and “–max 10” parameters instruct Network
Assessor to only consider GO terms with at least 3 and no
more than 10 annotations. This is important because binary
classification algorithms generally perform worse with small
GO terms. Using ranges 3–10 and 11–300 will give similarly
sized partitions when used with the current GO database (see
below for further explanation).
The “–threads” parameter should be set to the number of
physical cores on your computer. For example, use “4” for a
single quad core processor. For a dual-processor system with
eight cores each, use “16.”
Using the same non-zero “–seed” ensures the results of dif-
ferent runs of Network Assessor are reproducible, as long as
all parameters and inputs are the same. Otherwise Network
Assessor will have slightly different results due to how the
folds are randomized. Specifying a seed will guarantee the K-
folds of the baseline and subject data sets are partitioned the
same way.
Here is a sample of the first four columns of Network
Assessor’s output:

QUERY BASELINE-AUC- SUBJECT-AUC- %ERR-AUC-

ROC ROC ROC

GO:0000046 0.498133458 0.548483434 0.101077
GO:0000117 0.471654812 0.516121807 0.094279
GO:0000114 0.461791463 0.503638908 0.09062

The first column indicates the GO term used in the assess-
ment. The second column is the mean AUROC of the baseline
networks across the K-folds. The third is the mean AUROC
of the subject networks, which in this example is the new net-
work in isolation. Finally, the fourth column shows the %
improvement in subject AUROC compared to the baseline,
computed as follows:

%ERRAUROC = SUBJECTAUROC

BASELINEAUROC
− 1

In addition to these, the actual output file has similar
columns for the AUPR and precision-at-10% recall statistics.
If you run into any issues or have any questions, you can get
in touch with the GM team at http://pages.genemania.org/
contact/.

NETWORK ASSESSOR AND GeneMANIA QUALITY CONTROL
The dataset used by the GM gene function prediction server
is updated on a regular basis. It performs real-time predic-
tions for eight model organisms using over 530 million gene-
gene functional associations organized into over 1800 net-
works. These associations are the edges of networks, which are
weighted, undirected graphs, and come from numerous indepen-
dent third-party sources. For example, co-expression networks
are derived from gene expression profiles from GEO (Barrett
et al., 2013); protein and genetic interactions from BioGRID
(Chatr-Aryamontri et al., 2013); protein interactions inferred
through orthology from I2D (Brown and Jurisica, 2007); path-
way interactions from Pathway Commons (Cerami et al., 2011);
and protein interactions from iRefIndex (Razick et al., 2008).
Shared protein domain associations are derived from InterPro
(Hunter et al., 2012) and PFAM (Punta et al., 2012). Identifiers
and their metadata are sourced from Ensembl (Flicek et al.,
2013).

Data imported from third parties can change without notice so
each GM release reflects the state of those sources at a fixed point
in time. For example, in an older data update, R6 (19-July-2012),
cross validation results indicated a general drop in performance
relative to the previous release, R5 (21-Dec-2011). This prompted
further investigation, through which we discovered GM no longer
recognized 10% (2344) of the human gene symbols that R5
supported. This was due to changes within Ensembl between R5

Table 1 | Median AUROC and AUPR for all networks in R6 and R8, as

well as the default networks of each, respectively (bold indicates

higher number per comparison).

R6 R8 R6 (default) R8 (default)

GO TERM SIZE = 3–10

Median AUROC 0.650 0.694 0.627 0.684

95% CI ±0.316 ±0.311 ±0.334 ±0.329

versus R6 (p-value) *4.74 × 10−82 *1.41 × 10−27

versus R8 (p-value) *8.11 × 10−10

GO TERM SIZE = 11–300

Median AUROC 0.871 0.890 0.857 0.882

95% CI ±0.217 ±0.195 ±0.246 ±0.212

versus R6 (p-value) *9.96 × 10−258 *5.68 × 10−129

versus R8 (p-value) *4.53 × 10−35

GO TERM SIZE = 3–10

Median AUPR 0.012 0.019 0.019 0.026

95% CI ±0.349 ±0.409 ±0.343 ±0.408

versus R6 (p-value) *1.35 × 10−28 *1.34 × 10−18

versus R8 (p-value) *5.19 × 10−19

GO TERM SIZE = 11–300

Median AUPR 0.185 0.220 0.181 0.215

95% CI ±0.412 ±0.528 ±0.415 ±0.529

versus R6 (p-value) *8.45 × 10−256 4.62 × 10−1

versus R8 (p-value) 3.56 × 10−2

The Wilcoxon rank sum test was performed on the following pairs conditions:

R6 versus R8, R6 versus R6 (default), and R8 versus R8 (default). The p-values

for these tests are listed with statistically significant values (p < 0.01) marked

with an asterisk.
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and R6 beyond our control as well as the conservative nature of
GM’s identifier mapping process. For instance, if a gene symbol is
found to map to multiple distinct genes, that symbol is dropped to
avoid ambiguity. When considering all identifiers that GM recog-
nizes (>273,000), including Uniprot IDs and synonyms, the net
loss was 3% (8196).

The set of recognized identifiers determines which associations
are imported from the third-party sources. If at least one inter-
actor in an association is not recognized, that association is not
imported, so the loss of gene symbols led to a loss in interac-
tions, including those that might indirectly connect two genes
with retained identifiers. These changes affected prediction per-
formance. We corrected this issue in the latest release, R8, which
addresses the identifier mapping issues introduced in R6 and now
outperforms both that and R5.

Default networks
The GM dataset is represented as a collection of weighted, undi-
rected graphs. The human dataset contains 164 million edges
organized into 395 networks. Of these edges, 156 million are co-
expression. To ensure responsiveness and high availability for the
GM web server, it is not practical to always use all association

networks for each prediction. Instead, GM uses a semi-manually
curated subset of networks by default. This includes all the net-
works described above except predicted interactions that are not
inferred through orthology, and select co-expression networks.
To determine which co-expression networks to include, all the
default networks and all co-expression networks are combined
using the GO BP-based Simultaneous Weights algorithm, which
assigns each network a weight. The top 20 co-expression net-
works with the highest weights are selected for membership in
the default set. This results in only 6.8 million co-expression edges
retained. The number of edges across all default networks is 13.7
million, which is about 8% of the total.

Assessment of default networks
Network Assessor was used to assess the predictive potential of
default networks of R6 in isolation vs. all networks in R6 using
human data. The same was done for R8. Five fold cross valida-
tion was used in each case against GO BP annotations that were
downloaded on 18-Jul-2013 from the European Bioinformatics
Institute GO MySQL database mirror. Following the work of
Mostafavi and Morris (2010), GO terms were grouped based on
the number of genes annotated by each term since GO terms

FIGURE 2 | Cumulative distributions of AUROC and AUPR of GO BP

terms containing 3–10 annotations, and 11–300 from human

network data from R6 and R8. The “(default)” suffix indicates only

the networks selected by default on the web server were used from
the data set. The lack of the suffix indicates all available networks
were used.
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with fewer annotations tend to exhibit worse prediction perfor-
mance. This resulted in two partitions with similar sizes: 3–10
annotations (n = 3239) and 11–300 (n = 3271). These results are
summarized in Table 1. In general, the full set of networks con-
sistently performs better than the default set; except for AUPR
on GO terms containing 3–10 annotations, where both the R6
and R8 defaults have higher AUPR than the full. This is likely
due to overfitting since each network is assigned a weight by the
integration algorithm, and the full set of networks contains more
than twice as many networks as the default set. Performance also
increased for all measures in R8 compared to R6.

Figure 2 shows the cumulative distributions of the AUROC
and AUPR of GO BP terms containing 3–10 annotations (n =
3239), and 11–300 (n = 3271).

Network Assessor was also used to analyze the relative pre-
dictive potential of default networks, as well as other key
types of networks by measuring the degree to which predic-
tion performance decreases when they are removed. Table 2
shows the AUROC and AUPR of GO BP terms containing 3–
10 annotations, and 11–300 for R8 with default, co-expression,
co-localization, genetic interaction, pathway, physical (protein)
interaction, predicted, and shared protein domain networks
removed, respectively. Median AUROC dropped by at least 4%
when default or co-expression networks were removed. Median
AUPR dropped by at least 14% when default, physical inter-
action, or shared protein domain networks were removed for

terms containing 3–10 annotations. Median AUPR increased
by almost 30% when co-expression networks were left out for
the same terms. This is likely due to overfitting, which has
been observed for smaller GO terms (Mostafavi et al., 2008).
Median AUPR also increased by 3.4% when genetic interac-
tion networks were left out for the same terms. In general,
AUPR dropped by at least 15% when default networks were
removed. AUPR also dropped substantially when predicted net-
works, most of which are derived through orthology from yeast,
worm, fly, mouse, rat, were removed. This agrees with Klie
et al. (2012) about the importance of intra-species transfer of
annotations.

In Figure 3, the AUROC of most of the GO BP terms dropped
when default networks were removed. The drop in AUPR was
even more pronounced, regardless of the number of annota-
tions in the GO term. This indicates an overall loss of precision
and sensitivity when predictions were made without the default
networks. The same analysis was performed for GO molecular
function terms with similar results, which agrees with the findings
of Mostafavi and Morris (2010).

CONCLUSION
Network Assessor has proven useful for measuring the impact
of the changes that occur in the third-party sources from which
the GM prediction web server derives its training data and
can be used by others for similar analysis with custom data.

Table 2 | Median AUROC and AUPR for R8 when all networks are used (All) compared to when default (-default), co-expression (-coexp),

co-localization (-coloc), genetic interaction (-gi), pathway (-path), physical (protein) interaction (-pi), predicted (-predict), and shared protein

domain (-spd) networks are removed, respectively.

All -default -coexp -coloc -gi -path -pi -predict -spd

R8

Total edges 1.64 × 108 1.50 × 108 6.94 × 106 1.63 × 108 1.59 × 108 1.64 × 108 1.63 × 108 1.63 × 108 1.63 × 108

Edges removed from all 0 1.37 × 107 1.57 × 108 4.87 × 105 4.85 × 106 1.16 × 105 2.75 × 105 1.99 × 105 1.02 × 106

R8: GO TERM SIZE = 3–10

Median AUROC 0.694 0.685 0.675 0.694 0.695 0.692 0.694 0.694 0.688
95% CI ±0.311 ±0.309 ±0.332 ±0.311 ±0.310 ±0.311 ±0.309 ±0.310 ±0.313
% difference from all −1.3% −2.8% −0.1% 0.1% −0.4% −0.1% −0.1% −0.9%
versus all(p-value) *2.17 × 10−3 *1.43 × 10−23 *5.04 × 10−67 *4.23 × 10−109 *1.46 × 10−4 *5.86 × 10−13 *4.05 × 10−17 7.05 × 10−1

R8: GO TERM SIZE = 11–300

Median AUROC 0.890 0.866 0.864 0.889 0.890 0.887 0.887 0.890 0.880
95% CI ±0.195 ±0.206 ±0.224 ±0.196 ±0.195 ±0.197 ±0.199 ±0.196 ±0.199
% difference from all −2.8% −2.9% −0.1% 0.0% −0.3% −0.4% 0.0% −1.1%
versus all(p-value) *0 *6.91 × 10−183 1.91 × 10−1 *8.24 × 10−20 *1.54 × 10−22 *1.01 × 10−27 8.83 × 10−1 *1.88 × 10−219

R8: GO TERM SIZE = 3–10

Median AUPR 0.019 0.011 0.025 0.019 0.020 0.019 0.016 0.018 0.017
95% CI ±0.409 ±0.377 ±0.406 ±0.409 ±0.408 ±0.407 ±0.392 ±0.411 ±0.404
% difference from all −44.8% 29.8% 0.0% 3.4% −4.0% −16.4% −4.8% −14.0%
versus all(p-value) *2.43 × 10−9 *5.94 × 10−15 *6.98 × 10−61 *5.10 × 10−83 *8.71 × 10−13 *1.97 × 10−11 *3.40 × 10−24 *1.82 × 10−4

R8: GO TERM SIZE = 11–300

Median AUPR 0.220 0.186 0.209 0.219 0.220 0.218 0.206 0.218 0.215
95% CI ±0.528 ±0.527 ±0.530 ±0.528 ±0.528 ±0.525 ±0.528 ±0.528 ±0.527
% difference from all −15.6% −5.0% −0.4% 0.1% −0.6% −6.2% −0.9% −2.2%
versus all(p-value) *1.14 × 10−181 *4.89 × 10−9 3.20 × 10−1 *3.63 × 10−38 *3.92 × 10−16 *1.20 × 10−43 *3.40 × 10−24 *1.82 × 10−4

The number of edges removed for each analysis is also listed, as well as total edges used during assessment. The Wilcoxon rank sum test was used to compute

the listed p-values, where significant values (p < 0.01) are marked with an asterisk.
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FIGURE 3 | AUROC and AUPR performance of each GO term. X-axis denotes performance using all networks from R8 while the Y-axis is R8 without default
networks. GO terms containing 90 genes or more consistently performed better using all networks from R8.

Network Assessor is open-source and is part of the GM project.
Code is available on request, although migration to GitHub is
planned.
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Reconstruction of gene regulatory networks (GRNs) from experimental data is a funda-
mental challenge in systems biology. A number of computational approaches have been
developed to infer GRNs from mRNA expression profiles. However, expression profiles
alone are proving to be insufficient for inferring GRN topologies with reasonable accu-
racy. Recently, it has been shown that integration of external data sources (such as gene
and protein sequence information, gene ontology data, protein–protein interactions) with
mRNA expression profiles may increase the reliability of the inference process. Here, I
propose a new approach that incorporates transcription factor binding sites (TFBS) and
physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable
selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected
to genetic perturbations. Using real experimental data, I show that the integration ofTFBS
and PPI data with mRNA expression profiles leads to significantly more accurate networks
than those inferred from expression profiles alone. Additionally, the performance of the
proposed algorithm is compared with a series of least absolute shrinkage and selection
operator (LASSO) regression-based network inference methods that can also incorporate
prior knowledge in the inference framework. The results of this comparison suggest that
BVS can outperform LASSO regression-based method in some circumstances.

Keywords: network inference, Bayesian statistics, data interpretation, statistical, variable selection, gene regulatory
networks

INTRODUCTION
Understanding how genes regulate each other to orchestrate cellu-
lar phenotypes is a fundamental challenge of Biology. A straight-
forward way of uncovering gene regulatory networks (GRNs) is
to perturb each gene of the network, e.g. by means of siRNAs and
chemical inhibitors, and measure the effects of these perturbations
on the expression of other genes in the network (Kholodenko et al.,
2002; Wagner, 2002). However, the effects of such perturbations
rapidly propagate through the entire network, causing widespread,
global changes in the gene expressions, making it challenging to
differentiate the direct interactions from the indirect ones. Several
computational approaches were proposed to unmask the direct
gene regulatory interactions by systematically analyzing pertur-
bation responses (Kholodenko et al., 2002; Repsilber et al., 2002;
Wagner, 2002; Gardner et al., 2003; Hartemink, 2005; Rogers and
Girolami, 2005; de la Fuente and Makhecha, 2006; Margolin et al.,
2006; Bansal et al., 2007). Many of these studies found that the
steady-state perturbation responses of a gene are linearly depen-
dent on the same of its direct regulators (Kholodenko et al., 2002;
Gardner et al., 2003; Rogers and Girolami, 2005; de la Fuente and
Makhecha, 2006; Bansal et al., 2007). These findings presented a
unique opportunity of identifying direct genetic interactions by
simply solving a set of linear equations. Although this approach
seems simple in theory, implementing it in practice is not straight-
forward. First, biological measurements are noisy and contain
experimental errors. The noise in biological datasets may cause
significant errors while reconstructing GRNs by solving linear

equations. Second, and perhaps most importantly, in order to
solve these linear equations, one needs to perturb a GRN at least
as many times as the number of genes in the network and measure
the responses of all its genes after each perturbation (Kholodenko
et al., 2002; Gardner et al., 2003; Rogers and Girolami, 2005;
de la Fuente and Makhecha, 2006; Bansal et al., 2007). There-
fore, reconstructing genome scale GRNs using the above method
requires thousands (for simple organisms, e.g. bacteria, fungus,
etc.) and often tens of thousands (for complex organisms such as
mammals) of perturbation experiments that are time consuming
and expensive. Most perturbation experiments, except those per-
formed in some simple model organisms such as Escherichia coli
(Baba et al., 2008) or yeast (Hughes et al., 2000), involve far fewer
perturbations than the number of genes in the GRN. As a result,
the datasets produced by these experiments do not have enough
information for a full reconstruction (by solving linear equations)
of the corresponding GRNs. Several statistical algorithms have
been proposed to resolve this issue. For instance, some authors
used singular value decomposition and linear regression (Yeung
et al., 2002; Guthke et al., 2005; Zhang et al., 2010) to reconstruct
GRNs using datasets obtained from a small number of pertur-
bation experiments. Huang et al. (2010) used regulator filtering,
forward selection, and linear regression for GRN reconstruction;
and Imoto et al. (2003) used non-parametric regression embed-
ded within a Bayesian network for the same purpose. Several other
regression techniques such as the elastic net (Zou and Trevor, 2005;
Friedman et al., 2010) and least absolute shrinkage and selection
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operator (LASSO; van Someren et al., 2003; Li and Yang, 2004; van
Someren et al., 2006; Shimamura et al., 2007; Hecker et al., 2009,
2012; Lee et al., 2009; Charbonnier et al., 2010; Gustafsson and
Hornquist, 2010; James et al., 2010; Pan et al., 2010; Peng et al.,
2010; Wang et al., 2013) have also been widely used to reconstruct
GRNs from noisy and insufficient perturbation response data.

Although many of these algorithms perform reasonably well, it
is being increasingly clear that the accuracy of these algorithms can
be significantly increased by integrating external data sources, e.g.
gene sequence, single nucleotide polymorphism (SNP), protein–
protein interaction (PPI), etc., in the network reconstruction
process (Yeung et al., 2011; Lo et al., 2012). Public data reposi-
tories provide a rich resource of biological data related to gene
regulation. Integrating data from these external data sources into
network inference algorithms has become a primary focus of the
systems and computational biology community. Previously, James
et al. (2010) incorporated documented transcription factor bind-
ing sites (TFBS) information to infer the GRN of E. coli. Djebbari
and Quackenbush (2008) used preliminary GRN derived from
PubMed indexed literature and PPI databases as prior knowl-
edge for their Bayesian network reconstruction algorithm. Zhu
et al. (2004) combined TFBS and PPI data to infer GRNs. Imoto
et al. (2003) used PPI, documented TFBS, and well studied path-
ways as prior information for their network inference method.
Lee et al. (2009) presented a systematic way to incorporate various
types of biological knowledge, such as the gene ontology (GO)
annotations, data from ChIP–ChIP experiments, and a compre-
hensive collection of information about sequence polymorphisms.
Yeung et al. (2005), Yeung et al. (2011), and Lo et al. (2012)
developed a Bayesian model averaging approach to systematically
integrate publicly available TFBS data, ChIP–ChIP data, physical
interactions, genetic interactions, additional expression data, and
literature curation.

This study is an extension of our previous work (Santra et al.,
2013) which used a Bayesian framework that was designed to
reconstruct biochemical networks by analyzing steady-state per-
turbation response data. In our previous study, we used Bayesian
variable selection (BVS) algorithm to account for model uncer-
tainty under noisy and insufficient data. Only generic topological
knowledge such as sparsity of biochemical networks was used
as prior information in the network reconstruction process. No
external knowledge regarding potential interactions between net-
work components was used to guide the inference process. The
contributions of this study are four folds. First, a simple and an
intuitive technique is proposed to incorporate external knowl-
edge into the BVS framework in the form of a prior distribution.
Second, a new way of integrating protein interactions among tran-
scription factors (TFs) into the network inference framework is
proposed. Although, PPI data were used previously (Zhu et al.,
2008) in the context of GRN inference, the approach used by pre-
vious researchers was very different from the approach used in
this study. For instance, protein interactions among target genes
were used by Zhu et al. (2008) to determine co-regulation of
multiple genes. Here, we use protein interaction among TFs to
determine combinatorial regulations by multiple TFs. Third, as a
proof of concept, the proposed methodology is applied to a gene
expression dataset obtained from a liver-enriched TF regulatory

network, revealing that it significantly outperforms our previous
work. Finally, the performance of the proposed method is com-
pared with a LASSO regression-based network inference method
using publicly available gene expression datasets.

The rest of this study is organized as follows. In the next Section
“Linear Model of Gene Regulation”, I briefly discuss linear models
of gene regulation, followed by a detailed description of the pro-
posed BVS algorithm in Sections “The Bayesian Variable Selection
Algorithm” and “Sampling Scheme for the Proposed BVS Frame-
work.” In Section “Integrating External Data to Formulate P(Ai),”
I present a new method of integrating external data sources in the
BVS formulation. An implementation of this method to infer a
liver-specific GRN is then discussed in Section “Inferring Liver-
Specific Gene Regulatory Network from Perturbation Response
Data.” In this section, I also compared the performance of the
proposed BVS algorithm with our previous work. The results of
comparing the proposed method with other network inference
techniques are presented in Section “Inferring GRN of Human
Breast Epithelium and Comparison with LASSO.” Finally, in the
conclusion section, I discuss the advantages and disadvantages of
our algorithm and future directions.

LINEAR MODEL OF GENE REGULATION
When a GRN is perturbed, the effect of the perturbation rapidly
propagates through the entire network, causing widespread, global
changes in the expression levels of its genes. It has been shown
(Rogers and Girolami, 2005; Bansal et al., 2007; Lo et al., 2012)
that the responses (xi

= {xij, j= 1, . . ., np}) of a gene (gi), to a series
of (np) perturbations, are linearly dependent on the responses
(Xi
= {xkj, k= 1, . . ., ni, j= 1, . . ., np, k 6= i}) of its direct regulators

(gi
= {gk, k= 1, . . ., ni, k 6=i}), i.e.,

x i
= X iT

βi (1)

where ni is the number of regulators of the gene (gi), and βi
= {βik,

k= 1, . . ., ni, k 6= i} are the linear coefficients that represent the
strengths and types of the interactions between the gene (gi) and
its direct regulators (gi).

The measurements of the expression levels usually contain
experimental errors, and may not exactly fit into the above Eq. 1.
The difference between the left and right hand side of Eq. 1 caused
by such errors are called the “residuals.” In order to compensate
for errors, the residuals are added to Eq. 1 leading to,

x i
= X iT

βi
+ εi (2)

where εi
= {εij, j= 1, . . ., np} represents the residuals caused by

measurement errors. It can be easily showed that the residual vari-
ables (εij) are linear combinations of the individual measurement
errors associated with the perturbation responses of the gene (gi)
and its regulators (gi) (Kariya and Kurata, 2004). Since, the mea-
surement errors are random in nature, the residual variables are
also random variables, and by central limit theorem, these vari-
ables have Gaussian distribution (Kariya and Kurata, 2004). It is
further assumed that the residual variables (εi) are independent of
each other and have 0 mean and variance σ2 which depend on the
extent of experimental/measurement error in the dataset (Rogers
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and Girolami, 2005; de la Fuente and Makhecha, 2006; Bansal et al.,
2007; Vignes et al., 2011; Santra et al., 2013).

To identify the direct regulators (gi) of the gene (gi), one needs
to calculate βi by solving Eq. 2 in a least-square sense. The ele-
ments (βik) of βi whose absolute values are significantly >0 are
then selected as direct interactions, and the corresponding genes
(gk) are considered to be the direct regulators of gi. However, solv-
ing Eq. 2 requires at least as many perturbations as the number
of genes (n) in the network (Kholodenko et al., 2002; Rogers and
Girolami, 2005; de la Fuente and Makhecha, 2006; Santra et al.,
2013). Under most circumstances, it is not possible to perform
so many perturbation experiments, and therefore, in such cases,
a full GRN reconstruction is not feasible by solving Eq. 2, either
exactly or in a least-square sense. This issue is resolved by variable
selection algorithms.

BAYESIAN VARIABLE SELECTION ALGORITHM
Variable selection algorithms find the most likely set of regulators
(gi) for each gene (gi) by iteratively solving Eq. 2. It should be noted
that the inferred interactions between a gene (gi) and its regulators
(gi) may not always represent causal relationships. In many cases,
these interactions represent “acausal” dependencies between gene
expressions (Guyon and Elisseeff, 2003). Yet, it has been shown
that variable selection algorithms can infer gene regulatory pro-
grams with reasonable accuracy (Yeung et al., 2005, 2011; Lo et al.,
2012). The mechanism of a simple variable selection technique in
the context of GRN reconstruction is described below.

(a) First, a random set of genes
(
g i

1

)
are selected as the potential

regulators of a gene (gi), and the least-square estimates
(
βi

1

)
of the corresponding interaction strengths and the resulting
sum of square error

(
εSOS

i1 = ||ε
i
1||

2
)

are calculated.

(b) At the next iteration, a different set of genes
(
g i

2

)
are selected as

the potential direct regulators of gene gi, and again, the least-

square estimates
(
βi

2

)
of corresponding interaction strengths

and the resulting sum of square error
(
εSOS

i2 = ||ε
i
2||

2
)

are
calculated.

(c) The newly calculated sum of square error
(
εSOS

i2

)
is then com-

pared with the one
(
εSOS

i1

)
calculated in the previous iteration.

If εSOS
i2 < εSOS

i1 , then the new set of potential regulators
(
g i

2

)
is

considered more likely to directly regulate gi than the previous
one

(
g i

1

)
, otherwise the old set is retained as the most likely

potential regulators.
(d) For each gene (gi), the above procedure is repeated for all possi-

ble combination of potential regulators until a set of regulators
is found that has the minimum sum of squared error.

The above scheme is simple in theory, but there are some major
obstacles in implementing it in practice. For instance, if we want
to reconstruct a GRN involving 1000 genes, then, for each gene,
we need to iterate through 2999 possible combinations of poten-
tial regulators to find its most likely direct regulators. Iterating
through so many possible combinations is not feasible even for
the most advanced computing systems. Therefore, we must adopt
a smarter strategy to find the most likely set of regulators of each
gene in a GRN. BVS algorithms (in general) implement efficient

search strategies to identify the most likely regulators of a gene in a
reasonable time. Here, I adopted a BVS framework which is similar
to our previous work (Santra et al., 2013) with a few exceptions.

To formulate the BVS algorithm, it is convenient to represent
the topology of a GRN using a binary “adjacency” matrix (A).
A non-zero entry (Aik= 1, k 6= i) of this matrix represents direct
regulation of one gene (gi) by another (gk, k 6=i), whereas the zero
elements indicate no direct regulation. Consequently, the non-
zero elements of the ith row (Ai

= {Aik, k = 1, . . ., n, k 6= i}) of this
matrix represent interactions between the gene gi and its direct
regulators (gi). Note that the binary adjacency matrix (A) and the
matrix of interaction strengths (β) are closely related, since absence
of direct interaction (Aik= 0, i 6= k) between two genes (gi, gk)
implies zero interaction strength (βik= 0, i 6= k). In other words,
the elements (βik, i 6= k) of the interaction strength matrix (β)
corresponding to the zero elements (Aik= 0, i 6= k) of the binary
adjacency matrix (A) are also zero. Therefore, finding the most
likely direct regulators of a gene (gi) amounts to finding the most
likely combination of 0s and 1s in the ith row (Ai) of the binary
matrix A.

To avoid iterating through all possible combinations of Ai, BVS
algorithms adopt a Bayesian approach. Bayesian algorithms closely
mimic the natural learning process of human brain that updates
its knowledge about certain events when it receives new informa-
tion about the event. In these algorithms, the prior knowledge
about a certain event is represented by its prior distribution which
assigns a prior probability to each possible outcome of the event.
When new information becomes available, the prior probabilities
are updated using Bayes’ theorem. The updated probability dis-
tribution is known as the posterior distribution. The posterior
distributions represent our up-to-date knowledge about a certain
event based on the data that have been recently available.

In the context of GRN reconstruction, any prior knowledge
about the possible regulators (gi) of each gene (gi) is encoded in
the prior distributions (P(Ai)) of the binary vectors Ai. In our
previous work (Santra et al., 2013), we formulated the prior dis-
tribution P(Ai) to penalize gene regulation models with too many
regulators and favored sparse models where each gene is regulated
by a small number of regulators. No other external knowledge was
used to formulate the prior distribution of Ai. Here, we take a
different approach and formulate a more informative prior dis-
tribution of Ai by integrating TFBS and PPI between TFs. The
process of integrating PPI and TFBS data into the prior distribu-
tion of Ai is an important aspect of data integration and will be
discussed in detail in the next section.

Prior information about the possible values of the interaction
strengths (βi) is rarely available. In the absence of any specific
prior knowledge of the possible values of βi , it is safe to assume
that its non-zero elements can take a wide range of positive or
negative values depending on whether the corresponding inter-
action is activating or repressing. The zero elements represent
no direct interaction and correspond to the zero elements of Ai.
This assumption is formulated by assigning a multivariate Gauss-
ian prior to the non-zero elements of βi . The prior distribution
of βi is assumed to have zero mean and covariance matrix V βi ,
which is a (ni× ni) matrix that represents our prior knowledge
about the possible ranges of values of βi . A common approach
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is to assume that the prior covariance matrix (Vβi ) of βi is pro-

portional to the scaled fisher information matrix (FIM) of βi ,

i.e. V βi = cσ2
(

X iT
X i
)−1

, where c is the proportionality con-

stant (also known as Zellner’s constant) which determines the
span of the prior distribution of βi (Zellner, 1986; Ishwaran and
Rao, 2005; Gupta and Ibrahim, 2009) and σ2 is the scaling factor
which is the same as the variances of the residual variables εij. The
above formulation of the covariance matrix assumes that the vari-
ances/covariances of the interaction strengths depend not only on
the inherent variability of the perturbation responses, but also on
the variance of the measurement errors. It was shown by other
researchers that the choice of the proportionality constant c has
a significant impact on the performance of BVS algorithms and
several studies were conducted to find the most appropriate value
of c (George and Foster, 2000; Fernández et al., 2001; Hansen and
Yu, 2001; Liang et al., 2008). Fernández et al. (2001) demonstrated
that among the commonly used values, c = max

(
np , n2

i

)
per-

forms the best in most scenarios. Therefore, this value was chosen
for the BVS framework presented in this study.

The prior knowledge about the noise variance σ2 is incorpo-
rated in its prior distribution. Previously, the noise variance σ2

was assumed to have a gamma distribution with shape and scale
parameters, α and β, respectively (Santra et al., 2013). The val-
ues of these parameters were set to 1 to ensure a flat prior, which
represents our lack of prior knowledge about extent of noise in
the dataset. Here, in order to avoid extra hyper parameters (α, β),
we assumed that σ2 has Jeffrey’s prior (Fernández et al., 2001),
i.e.p(σ2) ∼ 1

σ2 , which is an uninformative “improper” prior that
relies on the notion that noises in biological data are unlikely to
cause very large residuals in the linear models.

These prior distributions can then be updated to posterior dis-
tributions based on the measured perturbation responses of the
network using Bayes formula. Here, we are interested in the pos-
terior distributions of binary vectors Ai, i= 1, . . ., n, since these
vectors represent the network topology. It is straightforward to
show that the posterior distribution (P(Ai|xi, Xi)) of Ai given the
perturbation responses of gene gi and its regulators is (Liang et al.,
2008; Note 1 in Supplementary Material)

P
(

Ai
|x i , X i

)
∝

(1+ c)
−

(
ni+1

2

)(
1−

c

1+ c
R2
)−(np−1)

2

 P
(

Ai
)

(3)

here R2
= 1 −

(
x i
−X iT β̂i

)T (
x i
−X iT β̂i

)
(

x i−x i
)T (

x i−x i
) is the coefficient of deter-

mination of the linear model shown in Eq. 2, where β̂i =(
X iT

X i
)−1

X iT
x i is the least-square estimate of βi , and x i is the

sample average of xi.
Finding the most likely regulators of gene gi is equivalent to

finding the configuration of Ai that maximizes the above posterior
probability (Eq. 3). But, as discussed before, finding this con-
figuration requires iterating through all possible configurations
of Ai, which is hardly possible for large networks. An alterna-
tive approach is to estimate the “expected” configuration of Ai

using model averaging techniques that identify a number of “good
enough” configurations instead of a single “best” configuration.
The average of these good configurations is commonly used as an
approximation of the “expected” configuration of Ai. The “good
enough”configurations of Ai can be determined in reasonable time
by drawing samples from the above posterior distribution (Eq. 3)
using a Markov Chain Monte Carlo (MCMC)-based sampling
algorithm.

SAMPLING SCHEME FOR THE PROPOSED BVS FRAMEWORK
A typical MCMC-based sampling algorithm iteratively explores
different configurations of Ai in order to find those with relatively
high posterior probability. In each iteration, it calculates the poste-
rior probability of the current and a proposed new configuration
of Ai. However, in some cases, it is not possible to calculate the
posterior probability of certain configurations of Ai. For instance,
when ni � np , i.e. the number of 1s in Ai is larger than the num-

ber of perturbations, then the corresponding data matrix Xi has
dimensions np× ni and suffers from rank deficiency. Therefore,

the Gram matrix X iT
X i is non-invertible and the correspond-

ing coefficient of determination (R) and the posterior probability
(P(Ai|xi, Xi)) do not exist. Previously (Santra et al., 2013), we

addressed this issue by adding a diagonal loading (X iT
X i + δI ) to

the Gram matrix, ensuring its invertibility. However, this approach
requires the estimation of an optimal value for the loading con-
stant (δ), which adds to the complexity of the sampling process.
Additionally, the effects of diagonal loading on the overall outcome
of BVS algorithms are not well understood. In this study, a differ-
ent strategy is adopted to address the above issue. Here, in order
to avoid rank deficiency, the search space (ζ) of the MCMC algo-
rithm is constrained to only those configurations of Ai which has
less number of 1s than the number of perturbations, i.e. ni < np.
The restricted search space is denoted by ζnp

(
ζnp ⊂ ζ

)
, where

the subscript np indicates the upper limit on the number of 1s
in the configurations of Ai. The above approach has two major
advantages over the previous method. First, it ensures the existence
of the posterior probability without artificial diagonal loading of
the Gram matrix. Second, it decreases the computational com-
plexity of the MCMC algorithm by reducing the size of the data
matrix Xi. This property makes this approach particularly attrac-
tive for inferring large GRNs where computational complexity is
a major issue for MCMC-based variable selection algorithms. The
computational cost of sampling can be significantly reduced by
further restricting the search space to an even smaller subspace(
ζk ⊆ ζnp

)
, which contains only those configurations of Ai that

have less than k (where k ≤ np) numbers of 1s. Restricting the
search space to ζk implies that the MCMC algorithm will explore
regulatory programs (configurations of Ai) consisting of at most
k ≤ np regulators for each gene (gi). For accurate network infer-
ence, it is therefore desirable to assign the restriction parameter (k)
a reasonable value that is not far from the ground truth. Although,
there is no easy way of determining an optimal k, one can use prior
information about the topology of the network to have a broad
estimate of this parameter. This is discussed in the results section
where the proposed algorithm is implemented on experimental
data sets to infer GRNs. In the rest of this section, I continue with

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology May 2014 | Volume 2 | Article 13 | 174

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Santra Data integration for network inference

the discussion of the MCMC-based sampling algorithm, which is
used in this study to explore the restricted search space (ζk) of
potential gene regulatory programs.

A Metropolis–Hastings algorithm was implemented to sys-
tematically explore ζk and identify highly probable regulatory
programs (Ai). The sampling algorithm starts with a random

configuration of Ai
∈ ζk. A new configuration Ai′

∈ ζk is then
proposed based on a proposal distribution Q. The proposal dis-
tribution (Q) is formulated as follows. Let η(Ai)⊆ ζk denote a set
of binary vectors consisting of all possible configurations that can
be obtained by changing one of the elements of Ai from 0 to 1 or
vice versa. Define a proposal distribution Q as follows.

Q
(

Ai , Ai′
)
=

{
=

1
|η
(
Ai
)
|

if Ai′
∈ η

(
Ai
)

0 if Ai′ /∈ η
(
Ai
) (4)

Based on the above proposal distribution, an acceptance ratio

α =
P
(

Ai′
|X i′ ,x i

)
Q
(

Ai′ ,Ai
)

P
(
Ai |X i ,x i

)
Q
(

Ai ,Ai′
) is computed. The proposed new config-

uration Ai′ is then accepted with probability min(1,α). If accepted,
Ai′ is added to the sequence of drawn samples and becomes
the current configuration. Else, Ai remains the current config-
uration. Repeating this procedure in an iterative manner gives
rise to an irreducible Markov chain in the restricted search space
(ζk). This Markov chain asymptotically converges (Geyer, 2011) to
the desired posterior (P(Ai|xi, Xi)). Upon convergence, the sam-
ples drawn by the chain resemble those drawn from the posterior
(P(Ai|xi, Xi)), and therefore, the most probable configurations of
Ai appear more frequently in the drawn samples than the improb-
able ones. These samples are then used to determine an “average”
or “expected” regulatory program for each gene (gi). The expected
probability that a gene (gi) is regulated by another gene (gk) is
estimated by calculating the ratio of the number (nij) of samples
whose jth element is 1 to the total number (ns) of samples, i.e.
P
(
Aij = 1|x i , X i

)
=

nij

ns
(Mukherjee and Speed, 2008). Calculat-

ing this probability for each pair of genes results in a probabilistic
representation of the network topology.

The above sampling algorithm draws samples from the pos-
terior distribution of Ai (Eq. 3) which depends on its prior
distribution. This can be exploited to incorporate prior knowl-
edge from external data sources into the BVS algorithm. To do
so, the prior distribution (P(Ai)) needs to be formulated in such
a way that it favors the likely interactions supported by external
data sources. This will bias the posterior of Ai toward the interac-
tions that are supported by external data. Below, I show a scheme
that integrates TFBS with PPI information to formulate the prior
distribution P(Ai).

INTEGRATING EXTERNAL DATA TO FORMULATE P (AI)
Genes regulate each other via several mechanisms, e.g. transcrip-
tional regulation, methylation, histone acetylation, etc. Among the
known mechanisms of gene regulation, transcriptional regulation
via TFs is perhaps the most well-studied gene regulatory mecha-
nism. In the case of transcriptional regulation, proteins produced
by regulatory genes undergo post-translational modifications and
then either directly bind to the promoter regions of target genes

or form multi-protein transcription factor complexes (TFCs) that
bind to the gene promoters and regulate the activity of the corre-
sponding genes. The regulatory proteins and TFCs bind genes at
specific locations containing specific nucleotide sequences, com-
monly referred to as TFBS. These binding sites are experimentally
determined by ChIP–ChIP experiments (Hughes et al., 2000)
and/or computationally predicted by statistical algorithms (Matys
et al., 2006; Bryne et al., 2008; Bailey et al., 2009; Ernst et al., 2010).
There are a number of databases that contains vast amount of
information on binding specificities (TFBS) of several TFs and
TFCs (Matys et al., 2006; Bryne et al., 2008; Bailey et al., 2009).
However, there are some limitations of incorporating these infor-
mations as prior knowledge into a network inference algorithm.
First, the binding specificities are known only for a fraction of all
TFs and TFCs that are found in nature. For a large number of
TFs and TFCs, such information is unavailable. It is challenging
to interpret the unavailability of information in an unambiguous
manner. For instance, it is difficult to determine whether the lack
of information represents absence of interaction or simply lack
of knowledge about the presence of interaction. Second, TFs may
indirectly regulate genes by forming protein complexes (TFCs)
with other TFs which directly bind to gene promoters. Many of
these indirect regulations are not well characterized, further con-
tributing to the incompleteness of prior knowledge regarding gene
regulation.

To address the above issues, I propose a simple scheme of
incorporating available knowledge into the prior distribution of
Ai. The proposed prior distribution favors potential regulatory
interactions supported by TFBS data available in public databases.
However, it does not exclude the possibility of potentially new
interactions that are not supported by external sources. Further-
more, it uses information regarding protein interactions among
the TFs to determine potential indirect gene regulations. These
indirect regulatory interactions, along with the TFBS specificities,
are then collectively used as potential regulatory interactions in
the formulation of the prior distribution of Ai. A step-by-step
description of using external data sources to formulate the prior
distribution of Ai is shown below.

Step 1: First, TFBS information are collected from multi-
ple external sources, e.g. public databases such as HTRIDB
(Bovolenta et al., 2012), ENCODE (Hughes et al., 2000), KEGG
(Ogata et al., 1999), ConsensusPathDB (Kamburov et al., 2011),
etc., published literature (Ernst et al., 2010), computational
TFBS prediction services such as MEME (Bailey et al., 2009),
TRANSFAC (Bryne et al., 2008), JASPER (Matys et al., 2006),
TRED (Jiang et al., 2007), etc.
Step 2: Next, information regarding PPIs among known TFs are
obtained from publicly available sources. Recently, Ravasi et al.
(2010) determined a comprehensive map of physical interac-
tions among mammalian TFs using mammalian two-hybrid
system. They identified around 800 protein interactions among
human and mouse TFs. Arguably, this dataset is the most reliable
source of information regarding protein interactions among
TFs and is used in the large-scale GRN inference study later in
this study. However, Ravasi et al.’s study does not cover all mam-
malian TFs, in which case proteins interaction databases such as
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STRING (Szklarczyk et al., 2011), HPRD (Keshava Prasad et al.,
2009), IntAct (Kerrien et al., 2012), BIND (Bader et al., 2003),
KEGG (Ogata et al., 1999) is used to determine PPI between
TFs. It should be noted that many of these databases store
functional and computationally predicted PPIs which may not
always represent physical protein bindings. Since, we are inter-
ested in physical interactions among TFs, only physical PPIs
are carefully selected from the above databases, functional and
computationally predicted PPIs are excluded from the list of
potential TF–TF protein interactions.
Step 3: The above information is then used to build a prior
network that contains both direct and indirect regulations sup-
ported by external data. Potential direct regulations are iden-
tified using TFBS information as described above (see Step
1). Potential indirect regulations are identified based on the
assumption that if a TF binds to another TF which targets a
certain gene, then the former indirectly regulates the target of
the later (Figure 1). Both direct and indirect regulations are
incorporated in the prior network as potential transcriptional
interactions. The prior network is represented by a weighted
adjacency matrix (Γ). The non-zero elements of this matrix rep-
resent potential transcriptional regulations supported by TFBS
and PPI data. The value of a non-zero element (Γij 6= 0) repre-
sents our confidence on the regulation of a gene (gi) by another
(gj). In this study, equal confidence is placed on all potential
transcriptional regulations that are supported by TFBS and PPI
data, i.e., Γij= αc if gene gi has a TFBS for gj or any of its binding
partners. Here, αc is called the confidence parameter. The ith
row (Γi) of the prior adjacency matrix (Γ) represents our prior
knowledge about the regulatory program of gene gi and is used
to formulate the prior distribution of the binary vector Ai in the
following manner.

P(Ai) ∝ exp(ΓiT
Ai) : Ai

∈ ζk

= 0 otherwise. (5)

The above prior distribution ensures that the prior probability
of Ai

∈ ζk depends only on the number of interactions (Aij= 1)
which are supported by prior information (Γij= αc). This implies

that if two different configurations of Ai have different numbers of
potentially new interactions (Aij= 1, Γij= 0) but the same num-
ber of previously known interactions (Aij= 1, Γij= αc), then these
two configurations have the same prior probability. Therefore,
the above prior distribution (Eq. 5) favors regulatory programs
(configurations of Ai) that have large number of known interac-
tions (Γij= αc) but does not penalize the presence of previously
unknown interactions, allowing such interactions to be seamlessly
inferred by the variable selection algorithm.

As a proof of concept, I implemented the above BVS algorithm
to reconstruct a liver-specific transcription regulatory network by
analyzing perturbation response data. To show the effectiveness
of integrating TFBS and PPI data in the BVS framework, I used
four different prior settings for Ai. In the first setting, no exter-
nal data source was used to formulate the prior distribution of Ai

and all possible regulatory programs (configurations of Ai) were
considered equally likely a priori. In the second setting, no exter-
nal data sources were used, but the prior distribution of Ai was

Gene

Protein Protein Interac�on

Predicted TF binding sites

TF1 TF2 TF3

TF4

Gene

Prior transcription regulatory network

TF1 TF2 TF3 TF4

Promoter region Coding region

Promoter region Coding region

FIGURE 1 | Constructing prior transcription regulatory network using
TFBS and PPI data.

designed to favor sparse regulatory programs, i.e., the configura-
tions of Ai which has relatively fewer non-zero elements than zero
elements. This approach is similar to that we adopted in our previ-
ous work (Santra et al., 2013). In the third setting, a prior network
was constructed using only direct regulatory interactions that were
predicted from publicly available TFBS information. This prior
network was then used to formulate the prior distribution of Ai as
shown in Eq. 5. In the final setting, I used both direct and indirect
regulatory interactions that were predicted from both TFBS and
PPI interaction data to construct the prior network. This prior net-
work was then used to formulate the prior distribution of Ai. The
results of the above analysis are described in detail in the following
section.

INFERRING LIVER-SPECIFIC GENE REGULATORY NETWORK
FROM PERTURBATION RESPONSE DATA
Genes that play key roles in liver development, physiology, and
disease are found to be tightly regulated by a handful of TFs, such
as hepatocyte nuclear factors (HNF1A, HNF1B, HNF3A, HNF3B,
HNF3G, HNF4A, HNF4G, and ONECUT1), CCAAT/enhancer-
binding proteins (CEBPA and CEBPB), peroxisome proliferator
activated receptors (PPARA, PPARD, and PPARG), retinoic acid
receptors (RARA, RARB, and RARG), retinoid receptors (RXRA,
RXRB, and RXRG), and RAR-related orphan receptors (RORA
and RORC) (Schrem et al., 2002, 2004; Odom et al., 2004, 2006;
Tomaru et al., 2009). The genes that encode these TFs are known
to transcriptionally regulate each other to maintain a particular
sequence of events leading to the normal development of liver tis-
sues (Schrem et al., 2002, 2004; Odom et al., 2004, 2006; Tomaru
et al., 2009). Therefore, uncovering the GRN involving the above
genes is a fundamental step in understanding the physiological
processes of liver development. For this purpose, Tomaru et al.
(2009) perturbed the above GRN, one gene at a time, using siR-
NAs and measured the steady-state expression levels of these genes
after each perturbation. Here, these measurements were used to
infer the topology of the above GRN.

As mentioned above, four different versions of the aforemen-
tioned BVS framework were used for network inference, each with
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a different prior distribution of Ai. In the first case, all configu-
rations of Ai were assumed to have equal prior probability, i.e.
P(Ai)= γ, where γ is a constant.

In the second case, the prior distribution of Ai was designed
to assign higher probabilities to those configurations of Ai which
have fewer ones than zeroes. For this purpose, Ai was assumed to
have a beta binomial distribution,

P
(

Ai
)
=

(
nr

ni

)
B (ni + α , nr − ni + β)

B(α, β)
(6)

Here, nr is the number of potential regulators in gene gi. When
all genes in the network are considered to be the potential regu-
lators of gi, nr= n− 1. The values of the shape parameters (α, β)
were kept the same as those used in our previous work (Santra
et al., 2013), i.e. α= 1, β= 2.

In the third setting, only TFBS information was used to
construct the prior network (Figure 2A). TFBS information
were collected from HTRIDB (Bovolenta et al., 2012), MEME
(Bailey et al., 2009), TRANSFAC (Bryne et al., 2008), JASPER
(Matys et al., 2006), TRED (Jiang et al., 2007), and SABioscience
(www.sabiosciences.com). Here, only those TFBS that were found
within a 5000 bp region of the gene promoters were included
in the analysis. This resulted in a total of 106 potential tran-
scriptional regulations (excluding autoregulations, see Table S1
in Supplementary Material for details) among the 21 TFs men-
tioned above. These regulatory interactions were represented by a
prior adjacency matrix (ΓTFBS) whose non-zero elements repre-
sent potential gene regulations and are assigned a value of αc= 2.
The ith row

(
Γi

TFBS

)
of this matrix (ΓTFBS) represents our prior

knowledge on the regulatory program of the ith gene gi, based
solely on TFBS information, and was used to formulate the prior
distribution of Ai.

In the fourth setting,both TFBS and PPI among TFs (Figure 2B;
Table S2 in Supplementary Material) were used to determine
potential gene regulations. The TFBS information was collected
as described above. Information regarding PPIs among the above
TFs was obtained from STRING (Szklarczyk et al., 2011) and
HPRD (Keshava Prasad et al., 2009) databases (Table S2 in Sup-
plementary Material). The TFBS and PPIs were used to determine
potential direct and indirect regulatory interactions as described
in the previous section (see Figure 1). These resulted in a total of
217 potential gene regulatory interactions (excluding autoregula-
tions; see Table S3 in Supplementary Material for details) which
were used to construct the prior network matrix (ΓTFBS+PPI).
The non-zero elements of this matrix (ΓTFBS+PPI) were assigned
a value of αc= 2. The rows of the prior matrix (ΓTFBS+PPI) were
then used to formulate the prior distributions P(Ai), i= 1, . . ., n.

In all the above cases, the search space for the MCMC sampler
was restricted to ζk, where the subscript k represents the upper
limit on the number of regulators for each gene. The value of k
was chosen to be the same as the average number of regulators per
gene

( 217
21 ≈ 10

)
in the prior network (ΓTFBS+PPI) constructed

from TFBS and PPI data.
The GRNs reconstructed using the above prior settings were

then compared to a gold standard network (GSN) which was
deduced by Tomaru et al. (2009) using matrix RNAi combined

with rt-qPCR and Chromatin Immunoprecipitation (X-ChIP)
experiments (see Figure S1 in Supplementary Material). To recon-
struct the GSN, Tomura et al. knocked down 19 of the above genes,
one at a time, and measured the responses of these genes to each
knockdown. If a gene responded to the knockdown of another,
then the former was considered to be potentially regulated by the
later. Based on this assumption, a set of potential gene regula-
tory interactions (GRNAi) were determined. This was followed by
X-ChIP/qPCR analysis that determined the DNA binding pref-
erences of six (TCF1, FOXA1, FOXA2, HNF4A, ONECUT1, and
RXRA) of the above TFs. If a TF was found on the promoter of
a target gene in the X-ChIP experiment, then the later was con-
sidered to be potentially regulated by the former. A second set of
potential gene regulations (GXChIP) were identified based on the
X-ChIP measurements. The set of interactions (Gref ) that were
common to both the above networks (GRNAi and GXChIP) were
then considered to represent the GSN (Gref =GRNAi ∩GXChIP).
The networks inferred by the proposed BVS frameworks with dif-
ferent prior setting were then compared with the above GSN. Since
the GSN contains information regarding the regulatory activities
of only six (out of 21) TFs, I compared only the interactions involv-
ing these TFs. The activities of the remaining 15 TFs were excluded
from the comparison.

Recall that the proposed BVS algorithm uses MCMC sampling
to estimate the posterior interaction probabilities. These poste-
rior probabilities represent the a posteriori confidence on each
interaction based on the perturbation response, TFBS and PPI
data. If the posterior probability of an interaction is higher than
a certain threshold (pτh), then the corresponding interaction is
considered to be a true interaction. On the other hand, if a pos-
terior probability is less than or equal to this threshold, then the
corresponding interaction is thought to be absent in the GRN.
This implies that the topology of the reconstructed GRN depends
on the threshold probability (pτh) and therefore, any comparison
between the reconstructed GRN and the true GRN also depends
on the choice of this threshold. For a more objective assessment,
multiple GRNs are constructed from the above posterior prob-
abilities using multiple different thresholds. Each reconstructed
GRN is then compared with the true GRN and the number of
correctly and incorrectly inferred interactions are counted. These
counts are used to calculate the true positive rates (TPRs), false
positive rates (FPRs), and precisions (PREs) of the reconstructed
GRNs. The TPR is the ratio of total number of the correctly iden-
tified interactions to the total number of interactions present in
the GSN (Fawcett, 2004; Powers, 2011); the FPR is the ratio of
the total number of incorrectly identified interactions and the
total number of possible interactions that are absent in the GSN
(Fawcett, 2004; Powers, 2011); PRE is the ratio of the total number
of correctly identified interactions to the total number of inter-
actions present in the inferred network. Then, the TPRs (Y -axis)
are plotted against the FPRs (X -axis), and the PREs (Y -axis) are
plotted against TPRs (X -axis) in two separate plots, commonly
known as receiver operating characteristic (ROC) and precision
recall (PR) curves, respectively (Fawcett, 2004; Powers, 2011). The
areas under these curves, denoted by AUROC and AUPR, give an
objective assessment of the accuracy of the GRNs reconstructed by
the BVS algorithms (Fawcett, 2004; Powers, 2011). Both AUROC
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FIGURE 2 | Integrating external data to infer liver-specific transcription
regulatory network (Tomaru et al., 2009). (A) Prior network constructed
from TFBS information. (B) PPI among transcription factors. (C) Network
inferred by flat prior (P (Ai)= γ). (D) Network inferred using sparse prior.
(E) Network inferred using prior network constructed from TFBS information
only. (F) Network inferred using prior network constructed from TFBS and PPI

information. The interactions that occur with high and low posterior
probabilities are represented by darker/thicker and lighter/thinner edges,
respectively, in (C), (D), (E), and (F). (G) Average ROC curves of the inferred
networks. (H) Average PR curves of the inferred networks. (I) mean and
standard deviation of the area under the ROC and PR curves of the inferred
networks.

and AUPR can have values between 0 and 1, and the closer these
values are to 1, the better is the accuracy of the inferred networks,
with AUROC= 1 and AUPR= 1 being the ideal case. To perform a
robust comparison, the proposed BVS algorithm was executed 50

times under each prior setting, producing 50 posterior networks
for each prior network (see Figures 2C–F for sample posterior
networks inferred from different priors). ROC, PR curves, and the
areas under these curves (AUROC and AUPR, respectively) were
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calculated from each posterior network. The average ROC and PR
curves of the networks that were inferred from the same network
prior was then calculated for each prior setting (Figures 2G,H).
The mean and standard deviations of the corresponding AUROC
and AUPR values, calculated under different prior settings, are
shown in Figure 2I. The AUROC values calculated under differ-
ent prior settings were then compared using Mann–Whitney U
test (Mann and Whitney, 1947) to assess the effects of different
network priors on the accuracy of the proposed BVS algorithm.
These results suggest that the BVS framework that incorporates
both the TFBS and PPI data performed better than those which
incorporate no prior information (p= 0.99× 10−6), only TFBS
information (p= 2.05× 10−4) as prior knowledge, and the sparse
prior (p= 2.4× 10−6). These results support our hypothesis that
TFBS and PPI data can be collectively more predictive of potential
GRNs than TFBS data alone.

Finally, I assessed the sensitivity of the BVS framework to the
confidence parameter (αc) by looking at the agreement between
results obtained under different values of this parameter. For this
purpose, five different values (αc= 1, 2, 3, 4, 5) of the confidence
parameters were used to formulate a total of 10 prior distributions,
five of these use only TFBS information and the remaining five use
both TFBS and PPI information. A GRN was reconstructed using
each of these prior distributions, leading to 10 inferred networks.
These networks were then compared with each other to determine
whether different values of the confidence parameter (αc) had
significant effect on the network inference process. The inferred
networks were then compared with the networks inferred from
no prior knowledge (NPK) and sparse priors, the prior networks
(ΓTFBS, ΓTFBS+PPI), and the reference network (REF). Pearson
correlation coefficient was used for comparing these networks.
The resulting correlation coefficients are shown in Figure 3. Val-
ues close to unity indicate high degree of similarities between
networks. The networks inferred from the same type of prior dis-
tribution are in close agreement with each other, despite different
values of the confidence parameter αc. This suggests that the pro-
posed BVS framework is relatively insensitive to different values
of αc. However, the networks inferred from different types of pri-
ors are mostly different from each other. Additionally, the inferred
networks are also considerably different from the prior networks
suggesting that the proposed Bayesian framework indeed strikes a
balance between prior information and observed data.

Encouraged by the above results, I implemented the proposed
BVS framework to infer the regulatory mechanisms of the human
breast epithelium and compared its performance with a state-of-
the-art network inference method, which relies on LASSO regres-
sion. The results of this comparison are described in detail in the
next section.

INFERRING GRN OF HUMAN BREAST EPITHELIUM AND
COMPARISON WITH LASSO
For large-scale GRN inference, I used a set of mRNA expression
measurements obtained from human epithelium at different stages
of cancer development (Graham et al., 2010). The dataset was pro-
duced by Graham et al. (2010) who performed gene expression
analysis of breast epithelium tissue samples obtained from 42
patients (18 cancer free, 18 had prophylactic mammoplasty,

and 6 had reduction mammoplasty) in order to understand the
differences in expression profiles of histologically normal breast
epithelium and usual-risk controls undergoing reduction mam-
moplasty. These expression profiles were used to infer the GRN
that governs the regulatory mechanisms of human breast epithe-
lium. The natural genetic variations caused by SNP, copy number
variations, mutation, epigenetic regulation, etc., were considered
to be genetic perturbations that led to different gene expression
profiles among different patients. To save computational time, only
top 2000 probe sets (1337 genes) with the highest between-sample
variances were selected (Table S4 in Supplementary Material).
Among the selected probes, there were 93 known TFs (Table S5 in
Supplementary Material) which were used as potential regulators
of the selected genes for network inference.

Four different prior settings were used for the BVS framework.
The parameter settings for the flat and sparse priors were left the
same as before. TFBS information were collected from ENCODE
(Hughes et al., 2000; Ernst et al., 2010), MEME (Bailey et al., 2009),
TRANSFAC (Bryne et al., 2008), and JASPER (Matys et al., 2006)
to construct the prior network (ΓTFBS) that contains only direct
gene regulations (Figure 4A). This network (ΓTFBS) contains 4963
number of potential gene regulations between 93 TFs and 1317
target genes (Table S6 in Supplementary Material). Information
regarding PPI among TFs (Figure 4B) was collected from physi-
cal TF binding data published by Ravasi et al. (2010) (Table S7 in
Supplementary Material). This information along with the TFBS
data were used to construct a second prior network (ΓTFBS+PPI)
which contains 16,372 potential regulatory interactions supported
by both types of data (Table S8 in Supplementary Material). The
confidence parameter (αc) was set to 2 and the restriction para-
meter (k) were assigned a value of 12

(
k = 16,372

1317 ≈ 12
)
. The

above prior settings, when used with the proposed BVS frame-
work led to four different posterior networks that were then used
for performance evaluation and comparison purposes.

For performance comparison, a LASSO regression-based GRN
inference algorithm (Wang et al., 2013) was selected due to recent
popularity of LASSO-based methods in the network inference
community (van Someren et al., 2003; Li and Yang, 2004; van
Someren et al., 2006; Shimamura et al., 2007; Hecker et al., 2009,
2012; Lee et al., 2009; Charbonnier et al., 2010; Gustafsson and
Hornquist, 2010; James et al., 2010; Pan et al., 2010; Peng et al.,
2010; Wang et al., 2013). LASSO is a regularized version of least-
square regression which uses the constraint that ||β||1, the L1-norm
of the regression coefficients, is no greater than a given value.
This is equivalent to an unconstrained minimization of the least-
squares penalty with an added penalty λ||β||1, where λ is a con-
stant. As the penalty is increased, LASSO regression drives more
and more of the regression coefficients (β) to 0, leaving fewer and
fewer non-zero coefficients. Both LASSO and BVS share some sim-
ilarities in their core formulations but differ in some key aspects
in their implementations. For instance, both these algorithms rely
on linear regression models, but LASSO uses absolute shrinkage
regularization to deal with curse of dimensionality where BVS
uses MCMC sampling for the same purpose. Therefore, compar-
ing the results obtained from LASSO- and BVS-based techniques
may reveal the strengths and weaknesses of algorithms which
rely on regularization and MCMC sampling. Similar to the BVS
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FIGURE 3 |The sensitivity of the BVS framework to the confidence
parameter (αc). Here, REF represents the reference/gold standard
network. TFBS represents the prior network that uses only TFBS
information. TFBS+PPI represents the prior network that uses both TFBS
and PPI information. No prior knowledge (NPK) represents the network
that was inferred using flat prior. SPARSE represents the network that was
inferred using sparse prior. TFBS α= x represents the posterior network
inferred from ΓTFBS with the confidence parameter set to αc = x.
TFBS+PPI α= x represents the posterior network inferred from ΓTFBS+PPI

with the confidence parameter set to αc = x. The above heatmap
represents the similarities (in terms of Pearson correlation coefficients)

among the reference, prior, and posterior networks. Values close to 1 (dark
red) represent close agreement and values close to zero (dark blue)
represent a lack of agreement between network topologies. This figure
suggests that the prior networks (TFBS and TFBS+PPI) do not have
significant overlap with the reference network (correlation coefficients
0.42, 0.31, respectively). This is due to the fact that only 19 and 16% of the
interactions that are present in the prior networks (TFBS and TFBS+PPI)
are also present in the reference network (REF). Additionally, posterior
networks inferred from the same prior network have a high degree of
topological similarity (correlation coefficients 0.6–0.95), regardless of the
value of the confidence parameter (αc).

framework, three different prior settings were used for the LASSO-
based algorithm. In the first case, no prior information was used,
and in the second and third cases, ΓTFBS and ΓTFBS+PPI were
used, respectively, as prior networks. The values of the regular-
ization parameters were kept at their default values (λ1= 0.2,
λ2= 0.8). This led to three different networks that were inferred
by the LASSO-based algorithm.

To evaluate the accuracy of the inferred networks, I compared
these to a GSN which consists of a collection of 1726 known gene
regulatory interactions obtained from the HTRIdb, Consensus-
PathDB and KEGG databases (Figure 4C, see Table S9 in Sup-
plementary Material for details). The GSN contains interactions
between only 27 (out of 93) TFs and their target genes. There-
fore, only the regulatory activities of these 27 TFs were compared
and the activities of the remaining 66 TFs were excluded from the

comparison. The comparison was done using ROC and PR curves
as mentioned in the previous section. The resulting AUROC and
AUPR values are shown in Figures 4D,E. These results suggest
that the performance of the proposed BVS algorithm increased
significantly when prior information was incorporated into the
inference method. In particular, TFBS and PPI data collectively
were more predictive of regulatory interactions than TFBS infor-
mation alone. Moreover, BVS algorithm performed better than
the LASSO-based method under all circumstances. As in the pre-
vious section, the performance of BVS algorithm was found not
to be sensitive (Figure 4F) to different values of the confidence
parameter (αc).

A possible reason behind the poor performance of LASSO can
be low precision of the prior networks. The prior networks used
in this study have many more interactions (≈5000, 16,000) than
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FIGURE 4 | Reconstructing GRN of human breast epithelium and
comparison with LASSO. (A) Prior network based on TFBS information.
(B) PPI among TFs. (C) The gold standard network. (D) AUROCs of LASSO
and BVS algorithms under different prior settings. (E) AUPRs of LASSO and
BVS algorithms under different prior settings. (F) Sensitivity of the BVS

algorithm to the confidence parameter (αc). Here, TFBS represents the prior
network constructed from TFBS data, TFBS+PPI represents the prior
network constructed from both TFBS and PPI information, α=1, 2, 3, 4
represents the networks inferred from ΓTFBS+PPI with confidence parameters
αc =1, 2, 3, 4, respectively.

www.frontiersin.org May 2014 | Volume 2 | Article 13 | 181

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Santra Data integration for network inference

the REF (≈1700 interactions) and therefore have very low preci-
sion. It was shown before that the performance of LASSO degrades
rapidly as the precision of the prior information decreases (Wang
et al., 2013). Additionally, the above results depend largely on the
quality of the GSN which is a generic network consisting of the
interactions involving the selected genes and TFs. This network
does not necessarily reflect the tissue-specific behavior of the gene
regulatory programs in breast cancer cells and therefore may not be
ideal for performance evaluation purposes. However, this network
was used as gold standard due to unavailability of information
regarding tissue-specific GRNs.

DISCUSSION
In this study, I presented a new approach that incorporates TFBS
data along with protein interactions among TFs in a BVS frame-
work to infer GRNs. The main hypothesis behind this approach
was that integrating protein interactions among TFs with TFBS
data increases the predictive power of the inference process, espe-
cially in a variable selection setting. This was demonstrated by
inferring a liver-specific transcription regulatory network and the
gene regulation program of human breast epithelium, and eval-
uating the accuracy of the inferred networks based on known
interactions. However, there are several shortcomings of the pro-
posed data integration method. For instance, adding all indirect
interactions, predicted from TF–TF PPIs, may result in a very large
number of potential interactions, leading to a very low precision
prior which may not contribute to the predictive power of the
inference process. This issue can be mitigated by using informa-
tion on protein complexes from relevant databases when these
databases mature. The precision of the prior network can also be
improved by removing unlikely edges that can be determined by
other types of data, e.g. eQTL data.

Moreover, the proposed BVS framework relies on a linear
regression model of gene regulation. Although linear regression
models are extensively used by network inference community due
to ease of implementation, it was recently shown that tree-based
regression models may be better suitable than linear regression
models in network reconstruction problems (Huynh-Thu et al.,
2010). Therefore, a possible upgrade of the proposed Bayesian
framework will be to replace the linear regression-based gene reg-
ulation models by tree-based regression models. Additionally, in
this study, I focused mainly on two types of external data sources,
consensus motif data, and PPI data. There are a plethora of other
functional genomics data, e.g. GO, SNP, gene orthology, etc., which
can also be predictive of potential gene regulatory interactions.
Our next objective is to find a meaningful way of incorporating
such information into the BVS framework.
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When inferring networks from high-throughput genomic data, one of the main challenges
is the subsequent validation of these networks. In the best case scenario, the true network
is partially known from previous research results published in structured databases
or research articles. Traditionally, inferred networks are validated against these known
interactions. Whenever the recovery rate is gauged to be high enough, subsequent
high scoring but unknown inferred interactions are deemed good candidates for further
experimental validation. Therefore such validation framework strongly depends on the
quantity and quality of published interactions and presents serious pitfalls: (1) availability
of these known interactions for the studied problem might be sparse; (2) quantitatively
comparing different inference algorithms is not trivial; and (3) the use of these known
interactions for validation prevents their integration in the inference procedure. The
latter is particularly relevant as it has recently been showed that integration of priors
during network inference significantly improves the quality of inferred networks. To
overcome these problems when validating inferred networks, we recently proposed a
data-driven validation framework based on single gene knock-down experiments. Using
this framework, we were able to demonstrate the benefits of integrating prior knowledge
and expression data. In this paper we used this framework to assess the quality of
different sources of prior knowledge on their own and in combination with different
genomic data sets in colorectal cancer. We observed that most prior sources lead to
significant F -scores. Furthermore, their integration with genomic data leads to a significant
increase in F -scores, especially for priors extracted from full text PubMed articles, known
co-expression modules and genetic interactions. Lastly, we observed that the results are
consistent for three different data sets: experimental knock-down data and two human
tumor data sets.

Keywords: prior knowledge, validation, colon cancer, knockdown, network inference

1. INTRODUCTION
Whilst it is now widely accepted that cellular processes are
in general not only governed by single genes but instead also
by networks of interacting genes (Barabási and Oltvai, 2004),
there is no gold-standard for validating these biological net-
works (Yngvadottir et al., 2009; Fernald et al., 2011). However,
as network inference is increasingly used in biomedical research
such as drug discovery or disease classification (Barabási et al.,
2011), also the subsequent validation needs to be revisited.
The most commonly used approach consists in comparing the
inferred network to known interactions stored in biological
databases and research articles (Altay et al., 2013). However, this
approach has three major drawbacks: Firstly, these interactions

are rarely complete, secondly they might not be appropriate for
the studied problem and lastly, their quality has not yet been
evaluated.

An alternative use for this prior knowledge is its integra-
tion into the network inference algorithms in order to improve
the quality of inferred networks. Indeed, we and others showed
that the combination of data and prior knowledge significantly
improves the quality of networks compared to networks inferred
from data only (Djebbari and Quackenbush, 2008; Mukherjee
and Speed, 2008; Olsen et al., 2014). However, if prior knowl-
edge is used to improve the inference process its subsequent use
in the quality assessment would dramatically increase the risk of
overfitting.
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Recently, we proposed a purely data-driven approach relying
on experimental perturbation data to identify the set of relevant
genes for a given problem (Olsen et al., 2014). This validation
framework not only provides the possibility to compare different
inference algorithms but furthermore allows us to independently
assess different sources of prior knowledge by themselves and in
combination with expression data.

In this follow-up paper to Olsen et al. (2014), we use the
proposed validation framework to evaluate the quality of a vari-
ety of prior sources, both in combination with different pub-
licly available tumor data sets and by themselves. We retrieved
the prior knowledge using the two web applications Predictive
Networks (Haibe-Kains et al., 2012b) and GeneMANIA (Mostafavi
et al., 2008), for a total of eight different sources. After the assess-
ment of the different prior sources’ quality, we infer networks
using three different microarray data sets: experimental knock-
down data from cell line experiments and two publicly available
human tumor data sets. We quantitatively assess their quality
through the estimation of F-scores, a well established quality
metrics in network inference.

We observe that most prior sources lead to significant F-scores.
Their integration with genomic data leads to a significant increase
in F-scores, especially for priors extracted from full text PubMed
articles, known co-expression modules and genetic interactions.
We also observe that the results are consistent for three differ-
ent data sets: experimental knock-down data and two human
tumor data sets. Furthermore, we observe that combining dif-
ferent sources can be beneficial compared to using a single prior
source.

2. MATERIALS AND METHODS
2.1. METHOD—VALIDATION OF INFERRED NETWORKS
The best case scenario in most real-world application is partial
knowledge of the true, data-generating network. Therefore, the
assessment of any inferred network cannot depend on this knowl-
edge alone. As an alternative, we proposed a purely data-driven
validation framework proposed in Olsen et al. (2014). This val-
idation framework depends on the availability of experimental
intervention data such as knock-down experiments. This type of
data allows us, for each knock-down experiment separately, to
statistically evaluate whether or not a gene in the data set was
significantly affected by the experiment. In this case, this rela-
tion should be reflected in any inferred network in the sense
that the affected gene can be found downstream of the knocked
down gene. This in turn then allows us to quantitatively assess
the quality of inferred gene interaction networks by computing
quality measures such as precision, recall or F-score (Sokolova
et al., 2006). The outline of the framework is depicted in Figure 1.
Suppose that a number of single gene knock-down experiments
were carried out. Then one can use these experiments in a five
step procedure:

1. Select a single knock-down and all corresponding replicates
from the collection.

2. Use these samples to determine the set of genes that were sig-
nificantly affected by the perturbation experiments by means
of statistical tests.

FIGURE 1 | Quantitative validation framework for network inference.

The framework relies on a set of single-gene knock-down experiments in a
leave-one-out cross-validation scheme.

3. Use the remaining independent samples to infer a directed
network.

4. Classify the knock-down’s descendants (in the inferred net-
work) into true positives, false positives and false negatives
with respect to the affected genes identified in step 2. The
descendants of a node in the network are defined to be the set
of its children and grandchildren.

5. Repeat steps 1–4 until all perturbations have been used to
assess the network’s local predictive power.

In Olsen et al. (2014), a network was inferred from the sam-
ples not related to the single knock-down experiment (step
3). However, in the same article it was shown that these
knock-down samples from cell line experiments can be used
for validation not only in such a cross-validation scheme
but also for networks inferred from independent tumor sam-
ples, which demonstrates the generalizability of our validation
approach.

The classification of the nodes in the network (step 4) follows
the rationale that statistically significantly affected genes should
be found in a directed network downstream of the perturbed
gene, its descendants (Figure 1). Therefore all genes in the set
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of descendants which are significantly affected by the perturba-
tion can be classified as true positives (TP) and all significantly
affected genes that are inferred outside of the set of descendants
as false negatives (FN). Genes that are part of the descendants
in the inferred network but are not significantly affected by the
perturbation are then false positives (FP).

This classification then allows us to compute the F-score, the
harmonic average of precision and recall

F = 2 · TP

2 · TP + FP + FN
∈ [0, 1], (1)

where F = 0 corresponds to no correctly identified affected genes
and F = 1 corresponds to perfect classification.

To control for the density of the network and thus guarantee-
ing that the F-scores are meaningful, we generated 1000 random
networks. Each random network is obtained from the inferred
network by shuffling the genes in this network.

2.2. MATERIAL—DATA
Throughout this study, we use the perturbation data described
in Olsen et al. (2014), which are publicly available in the NCBI
Gene Expression Omnibus (GEO) repository (Barrett et al.,
2005), under accession number GSE53091. The samples of this
data set consist of eight single gene knock-downs, namely CDK5,
HRAS, MAP2K1, MAP2K2, MAPK1, MAPK3, NGFR, and RAF1.
These genes belong to the RAS signaling pathway which has
been showed to play a key role in colorectal cancer (Zenonos
and Kyprianou, 2013). The knockdown experiments were per-
formed in two colon cancer cell lines, SW480 and SW620 (NCBI
Gene Expression Omnibus (GEO) repository (Barrett et al., 2005)
accession number GSE53091). For each knock-down, six biolog-
ical replicates were obtained together with controls in both cell
lines, in total 125 samples. The data set furthermore consists of
the 339 variables over expressing RAS as identified in Bild et al.
(2005) and used in Olsen et al. (2014).

For each of the knocked down genes we identify the
significantly affected genes by comparing the expression of
genes in control versus those of the knock-down experi-
ments with a Wilcoxon Rank Sum test, using a false dis-
covery rate (FDR, Benjamini and Hochberg, 1995) <10% as
a threshold for statistical significance. In Table 1 we present
the number of affected genes for each of the knock-down
experiments.

We will use two publicly available tumor cancer data
sets (expO, 2009; Jorissen et al., 2010) to infer the networks. The
first data set (expO) contains 292 human tumor samples and is

Table 1 | Number of genes significantly affected by KD (out of 339

genes) based on gene expression data with FDR <10%.

KD CDK5 HRAS MAP2K1 MAP2K2

Number of affected genes 73 122 33 38
MAPK1 MAPK3 NGFR RAF1

117 59 99 61

accessible from GEO under accession number GSE2109. The sec-
ond (jorissen) data contains 290 samples and is accessible from
GEO under accession number GSE14333.

2.3. MATERIAL—SOURCES OF PRIOR KNOWLEDGE
Possible sources of prior knowledge are manifold and include
published articles, interactions stored in biological databases or
similarity of gene expression values, also referred to as gene
co-expression, from published data sets. To efficiently access
this information a number of different tools have been imple-
mented including GeneMANIA (Mostafavi et al., 2008) and
Predictive Networks (Haibe-Kains et al., 2012a). The former
allows to upload a set of genes and returns a network of the
known interactions distinguishable by source (Table 2) whereas
the latter uses text mining to retrieve known interactions from
PubMed abstracts and furthermore queries structured biolog-
ical databases. Both tools allow to download the interactions
as flat text files, which enables further use of these priors into
advanced genomic analyses such as gene interaction network
inference.

Here we will use the complete prior set retrieved by Predictive
Networks (PN) and priors separated by source from GeneMANIA.
The different number of known interactions identified by each
tool and source are presented in Table 2. These can be roughly
grouped into three categories: (1) Co-expression and genetic
with >1000 interactions; (2) PN and co-local, pathway and
shared with 100 to ∼400 interactions; and (3) physical and
predicted with <50 interactions.

3. RESULTS
In this section we use the proposed validation framework
(Figure 1) to independently assess the quality of the different pri-
ors retrieved with Predictive Networks and GeneMANIA (Table 2)
in isolation and in combination with three different genomic
data sets.

We use the inference procedure introduced in Haibe-Kains
et al. (2012a,b) which is a two-step procedure implemented in
the R/Bioconductor package predictionet. The first step is a fea-
ture selection step based on the minimum redundancy, maximum
relevance (mRMR, Ding and Peng, 2005; Meyer et al., 2007) cri-
terion whose robustness is improved by the integration of prior
knowledge. The subsequent step is an arc orientation procedure
using a criterion based on interaction information (McGill, 1954)
in which prior integration is used to help orient the edges which
could not be oriented from the genomic data. Given the central
role of priors in predictionet, we implemented a hyperparame-
ter, referred to as prior weight (w), enabling users to tune their
confidence in the prior knowledge incorporated into the network
inference procedure. Prior weight w can take value from 0 to 1;
low w stands for low confidence in prior data. Note that w = 0
forces predictionet to ignore priors (only genomic data are taken
into account), while predictionet with w = 1 will infer networks
solely based on prior information, therefore ignoring genomic
data.

We use each of the three different data sets (kd, expO
and jorissen) to build networks integrating the different
prior knowledge sources with different prior weights w ∈
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Table 2 | Specifications of prior knowledge retrieval tools:

GeneMANIA (GM) and Predictive Networks (PN).

Tool Source # interactions

PN PubMed and databases (PN) 419

Co-expr (GM2) 2760

Co-local (GM3) 292

Genetic (GM4) 1546

GM Pathway (GM5) 100

Physical (GM6) 38

Predicted (GM7) 29

Shared (GM8) 199

{0, 0.25, 0.5, 0.75, 0.95, 1}. The validation is then carried out for
each of the eight knocked down genes. We thus obtain eight F-
scores, one for the descendants of each KD. These F-scores are
then further assessed by comparing them to F-scores of 1000
random networks.

3.1. PRIOR INFORMATION ONLY
The first step in the assessment of the different prior sources’ qual-
ity is the evaluation of the networks inferred using only these
sources (prior weight w = 1). In Figure 2, we present the results
in terms of F-scores and significance compared to random net-
works. When assessing this figure with respect to the number of
significant results obtained by each prior source, we can observe
that PN performs best with seven out of eight significant results.
The next best prior sources are GM6 and GM5 with six signifi-
cant KDs. With the exception of GM3, all prior sources have at
least two significant results. Furthermore, the F-scores obtained
using prior source PN are amongst the highest values for all KDs
except NGFR. On the contrary, GM6 obtains six significant KDs
but the F-scores are all below those obtained by PN.

Assessing the prior sources’ performance with respect to the
eight knock-downs, it can be observed that some KDs are in gen-
eral better predicted than others. Whilst most prior sources are

able to obtain significant results for HRAS, MAP2K1, MAPK1,
and RAF1, significant results for half the prior sources for CDK5
and MAPK3 they struggle to provide meaningful information for
inference of gene interactions in the context of colorectal cancer
with the remaining two knock-downs (MAP2K2 and NGFR).

3.2. COMBINATION OF DATA AND PRIOR INFORMATION
In this section we assess the networks inferred from genomic
data (KD data in cross-validation; Figure 1) and prior knowledge
with equal weight (w = 0.5). In a first analysis, we compare these
F-scores to those obtained when inferring networks from data
only (w = 0) and from prior knowledge only (w = 1). A statis-
tical test (Wilcoxon rank test) shows that the combination of data
and prior significantly improves the networks (p-values <0.05)
compared to data only (Supplementary Table 1) and prior only
(Supplementary Table 1, with exception of GM2).

In Figure 3, we present these F-scores for each knock-down
and for each of the eight prior sources. For each knock-down, the
results are ordered by F-score values, starting with the best result
and color-coded by prior source. The best prior source for four
out of the eight knock-downs in PN: MAP2K2, MAPK1, MAPK3,
and RAF1. The second highest number of best knock-downs is
reached by GM2: CDK5, HRAS, and MAP2K1. The best prior
source for NGFR is GM4. On the contrary, the performance of
GM3, GM6, and GM7 prior sources is amongst the lowest.

3.3. MOST CONSISTENT PRIOR SOURCE ACROSS THREE DIFFERENT
DATA SETS

In this section, we will show that the results presented in the
previous section for the KD data also hold true when the net-
works are inferred in combination with the two human tumor
data sets. In Table 3, we present the prior source that yielded the
highest F-score for each of the eight knock-downs (prior weight
w = 0.5). This table summarized the results in Supplementary
Figures 9 and 10.

The main observation is that the best prior source is consis-
tent for all three data sets for four of the eight knock-downs:
MAP2K1, MAPK1, MAPK3, and NGFR. For the remaining four

FIGURE 2 | Results when inferring networks with predictionet using only prior knowledge (w = 1). The height of each bar corresponds to the obtained
F -score, colored by prior source. The x-axis specifies the prior source and includes ∗ if the F -score is significant with p-value <0.05 and − for p-values < 0.1.
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FIGURE 3 | Results when inferring networks with predictionet using data and prior knowledge (w = 0.5). The height of each bar corresponds to the
obtained F -score, colored by prior source. The x-axis specifies the prior source and includes ∗ if the F -score is significant with p-value <0.05 and − for p-values < 0.1.

Table 3 | Best single prior source across three large colorectal cancer

data sets (kd for knock-down experiments in colorectal cancer cell

lines, expO and jorissen for large human colon tumor data) when

combined with microarray gene expression data (prior weight

w = 0.5).

KD KD data expO Jorissen

CDK5 GM2 PN PN

HRAS GM2 GM4 GM2

MAP2K1 GM2 GM2 GM2

MAP2K2 PN PN GM7

MAPK1 PN PN PN

MAPK3 PN PN PN

NGFR GM4 GM4 GM4

RAF1 PN GM8 PN

knock-downs, the best prior source is consistent for two out of
the three data sets: PN for CDK5, MAP2K2, and RAF1 and GM2
for HRAS.

3.4. COMBINING DIFFERENT PRIOR SOURCES
In this section we investigate whether the combination of prior
sources (from a single prior source upto all eight sources) is
beneficial to the quality of the inferred networks. For each knock-
down, we infer a network using the best prior source, then we add
the second best, etc. (Figure 3). We test this procedure on the two
independent human tumor data sets expO and jorissen, the cor-
responding results are presented in Figure 4 and Supplementary
Figure 11, respectively.

When combining expO data and with an increasing number of
prior sources, the results are better than those obtained using only
one source for six out of the eight KDs. For the other two, namely
MAP2K1 and NGFR, we have already observed in section 3.1
that most prior sources are not informative. The number of prior
sources that need to be combined to obtain the highest significant
F-scores depends on the knock-down and range between three
and eight. It is therefore not only important to determine whether

prior sources are relevant by themselves but also which combina-
tion of sources will lead to the best results. Similar observations
can be made for the jorissen data set (Supplementary Figure 11).

4. DISCUSSION
Using the quantitative validation framework we recently intro-
duced in Olsen et al. (2014), we assessed the relevance of dif-
ferent sources of prior information for the inference of large
gene interaction networks from high-throughput gene expres-
sion data sets. Our results suggest that most prior sources,
which include known interactions extracted from research arti-
cles, genetic and physical interactions, co-expression and path-
way databases yield significant networks in colorectal can-
cer when used in isolation. Furthermore, concurring with
our previous results, we demonstrated that the vast majority
of prior sources significantly improves the inference of gene
interaction networks when combined with microarray gene
expression data.

In our case study we showed that priors extracted from
the Predictive Networks web application and the co-expressions
reported in GeneMANIA are the most relevant prior sources in
colorectal cancer as they yield the best networks in our valida-
tion study. We also showed that these results are consistent across
three data sets, composed of a set of knock-down experiments in
colorectal cancer cell lines and large collections of human colon
tumor samples.

As expected, the quality of inferred gene interaction networks
is not uniform over the network topology. For the eight genes
we knocked down to investigate their effects in colorectal cancer
cell lines, we were able to infer statistically significant subnet-
works for most, but not all of them. For instance, we observed
that the effects of NGFR, and MAP2K2 knock-downs are partic-
ularly difficult to model. Interestingly, genetic interactions and
co-expression prior data enabled to build high quality networks
for NGFR, which suggests that priors extracted from diverse
sources are highly complementary.

Our study supports the use of prior information into net-
work inference and we are now working on improving methods
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FIGURE 4 | Results when inferring networks with predictionet

using expO data and prior knowledge (w = 0.5). The height of
each bar corresponds to the obtained F -score, colored by which

prior source was added. The x-axis specifies the prior source and
includes ∗ if the F -score is significant with p-value < 0.05 and −
for p-values < 0.1.

to extract high-quality, context-specific prior information, as
well as developing novel approaches to integrate these priors to
generate better large-scale gene interaction networks. A second
aspect that requires further development is the implementa-
tion of tools to better combine different prior sources with the
hope to significantly improve the local quality of large biological
networks.
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