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Objectives: The specific intrinsic network coupling abnormalities in mild traumatic brain

injury (mTBI) patients are poorly understood. Our objective is to compare the correlations

among the default mode, salience, and central executive networks in patients with mTBI

and healthy controls.

Methods: This 2-year prospective study included 32 acute mTBI patients and 37

healthy comparisons. We calculated the functional connectivity scores among the

default mode, salience, and central executive networks. Then we conducted multilevel

correlation analysis to investigate component correlations, global graph, and local

functional connectivity changes.

Results: Patients with mTBI showed significant increased functional connectivity

between the anterior part of the default mode network and the salience network

compared with controls (p = 0.013, false discovery rate correction). Hyper-connectivity

between the default mode and salience network was significantly positively correlated

with the dimensional change card sort score in patients with mTBI (r = 0.40, p = 0.037).

The average path length of mTBI patients was significantly higher than that of controls

(p = 0.028).

Conclusions: Aberrant functional coupling between the default mode and salience

networks were identified in acute mTBI patients. Our finding has great potential to

improve our understanding of the network architecture of mTBI.

Keywords: mild traumatic brain injury, intrinsic network, multilevel analysis, default mode network, salience

network, network coupling

KEY POINTS

- Aberrant correlation between the default mode and salience networks in acute mTBI.
- Hyper-connectivity significantly positively correlated with the dimensional change card
sort score.

- Understanding of the network architecture of mTBI.
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INTRODUCTION

Worldwide, traumatic brain injury affects about 10 million
individuals annually (Hyder et al., 2007). Traumatic brain injury
is associated with long-term disabilities including cognitive,
psychological, motor, and sensory deficits. About 80% of
traumatic brain injury patients are classified as mild traumatic
brain injury (mTBI) (Kushner, 1998). Approximately 15% of
mTBI patients have persistent neurological symptoms (Shenton
et al., 2012).

fMRI is a non-invasive imaging technique for examining
brain function. It uses changes in the BOLD signal to identify
neuronal activity changes. Resting-state fMRI examines intrinsic
functional connectivity in task-free conditions by mapping
temporally synchronous, spatially distributed, spontaneous low-
frequency BOLD signal fluctuation (Fox and Raichle, 2007).
Resting-state fMRI provides a good signal to noise ratio and
requires minimal patient compliance (Fox and Greicius, 2010).
It has revealed a set of intrinsic connectivity networks. Voxels
in an intrinsic connectivity network exhibit a coherent BOLD
fluctuation pattern.

Many studies aimed at detecting changes in intrinsic
connectivity networks in patients with traumatic brain injury
(Sharp et al., 2014). Disruption of intrinsic connectivity networks
could be a core mechanism of cognitive impairment in patients
with traumatic brain injury. Resting-state fMRI studies have
demonstrated complex patterns of intrinsic connectivity network
abnormalities (Sharp et al., 2011; Shumskaya et al., 2012; Palacios
et al., 2013; Pandit et al., 2013; Arenivas et al., 2014; Iraji
et al., 2015). For example, Zhou et al. reported abnormal default
mode network connectivity patterns in patients with mTBI which
may provide insight into how neuronal communication and
information integration are disrupted after mild head injury
(Zhou et al., 2012).

The triple network model offers a theory for understanding
cognitive dysfunction in brain disorders (Menon, 2011). The
triple network model involves three intrinsic connectivity
networks: the default mode network, the salience network,
and the central executive network. The default mode network
is anchored in the posterior cingulate cortex (PCC) and
the medial prefrontal cortex (mPFC). It plays an important
role in monitoring the internal mental landscape and is
typically deactivated during most stimulus-driven tasks. The
salience network is anchored in the dorsal anterior cingulated
cortex (dACC) and frontoinsular cortex (FIC). It is involved
in detecting, integrating, and filtering relevant interoceptive,
autonomic, and emotional information. The central executive
network is anchored in the dorsolateral prefrontal cortex (dlPFC)
and posterior parietal cortex. It plays an important role in

Abbreviations: AUC, Area under the curve; BOLD, blood oxygen level-

dependent; BSI-18, Brief Symptom Inventory-18; dACC, dorsal anterior cingulated

cortex; dlPFC, dorsolateral prefrontal cortex; FA, fractional anisotropy; DTI,

diffusion tensor imaging; FIC, frontoinsular cortex; fMRI, functional magnetic

resonance imaging; GCS, Glasgow Coma Scale; mPFC, medial prefrontal cortex;

mTBI, mild traumatic brain injury; PCC, posterior cingulate cortex; ReHo,

regional homogeneity; ROI, region of interest; RPQ, Rivermead Post-Concussion

Questionnaire; TBSS, tract-based spatial statistics.

higher-order cognitive function and attention control. The triple
network model states that the couplings among the default mode,
salience, and central executive networks are responsible for the
cognitive impairment in many brain disorders. This model has
been examined in autism, schizophrenia, and frontotemporal
dementia (Uddin, 2014).

Although many studies examined intrinsic connectivity
network abnormalities in mTBI, no studies focused on the
triple network model and examined correlations among the
default mode, salience, and central executive networks in acute
mTBI patients. Our study investigates correlations among the
default mode, salience, and central executive networks in acute
mTBI patients. We use multilevel correlation analysis, which
examines functional connectivity changes across different scales,
to analyze resting-state fMRI data. Understanding correlations
among intrinsic connectivity networks holds great potential
to improve our knowledge of the neuropathology of mTBI.
Identifying neuroimaging features may lead to more accurate
diagnosis and effective treatments.

MATERIALS AND METHODS

Participants
From August 2012 to July 2014, mTBI patients and healthy
comparisons were recruited in Shanghai Dongfang Hospital.
mTBI patients were enrolled in the emergency department.
For a comparison group, health subjects were recruited from
the nearby community through advertisements. The hospital’s
institutional review board approved this study. All individuals
provided written informed consent.

The diagnosis of mTBI was established based on the criteria of
the American Congress of Rehabilitative Medicine for mild brain
injury (American Congress of Rehabilitation Medicine, 1993). A
subject was considered to have mTBI if any one of the following
symptoms was evident following external application of force
to the brain: (1) any period of loss of consciousness, (2) loss
of memory for events immediately before or after the accident,
(3) alteration in mental state at the time of the accident, or (4)
focal neurologic deficits that may or may not be transient. The
inclusion criteria were: (1) loss of consciousness of 30min or
less, (2) Glasgow Coma Scale (GCS) score of 13–15 at 30min
post-injury, and (3) duration of post-traumatic amnesia no
longer than 24 h. The exclusion criteria were: (1) penetrating
head injury, (2) uremia, liver cirrhosis, heart failure, pulmonary
edema, coagulopathy, or renal dysfunction, (3) pregnancy, (4)
in vivo magnetic implants (such as iron, cochlear implants,
vascular clips, etc.) or pacemaker, (5) patient either died or had
already received cardiopulmonary resuscitation before arrival
at the hospital, (6) positive CT findings, (7) history of other
neurological diseases, (8) history of neuropsychological diseases.

The comparison group included healthy subjects who had no
history of neurological, psychiatric, or central nervous system
disease, and no prior TBI. All participants (mTBI and healthy
subjects) were right-handed. Healthy subjects were matched to
mTBI subjects by age, sex, education, and handedness at the
group level.
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FIGURE 1 | Diagram of multilevel correlation analysis.

Among 71 participants, two subjects with significant MRI
motion problems were excluded. The final dataset included 32
acute stage mTBI patients and 37 healthy comparisons.

MRI Protocol
MR imaging was performed in mTBI patients within 7 days of
the injury. MR data were acquired with a Philips Achieva 3.0T
TX MRI scanner (Royal Philips, Amsterdam, Netherlands). The
MR protocol included anatomical imaging (T1 and T2), resting-
state fMRI, and DTI. High-resolution T1-weighted structural
images were acquired with a MPRAGE sequence. The imaging
parameters were TR/TE = 8.2/3.5ms; flip angle = 8 degree;
slice thickness = 1mm, voxel size = 1 × 1mm, FOV = 256
× 256. The T1 acquisition time was 4.56min. Resting-state
fMRI data were acquired with a FE-EPI sequence. The sequence
parameters were: TR/TE = 1,500/35ms, flip angle = 90 degree,
slice thickness = 5mm, voxel size = 3.75 × 3.75mm, FOV
= 240 × 240mm, acquired matrix = 64 × 64, dyn = 210.
Participants were asked to keep their eyes focused on cross-hairs
projected onto a screen, and not think of anything during image
acquisition. The total resting-state fMRI acquisition time was
5.35min. Diffusion tensor images were acquired with a single-
shot echo-planar sequence (TR/TE= 9,000/90ms, slice thickness
= 2mm, voxel size= 2× 2mm, field of view= 256× 256mm).
Diffusion gradients were set in 32 non-collinear directions by
using two b-values (b = 0 and 1,000 s/mm2). The total DTI
acquisition time was 5.5 min.

Neuropsychological Assessment
Neuropsychological tests were administrated within 24 h of MR
imaging. We used the Dimensional Change Card Sort test
(DCCS) to assess executive functioning (Zelazo, 2006). The
DCCS is a standard procedure for measuring executive function,
specifically tapping cognitive flexibility. In the DCCS, two target
pictures are presented that vary along two dimensions (e.g.,
shape and color). Participants match a series of bivalent test
pictures to the target pictures, first according to one dimension
(e.g., color) and then, after several trials, sort the same cards
a new way (e.g., shape). In “switch” trials, the participant must

change the dimension being matched. Scoring is based on a
combination of accuracy and reaction time. This combination
score is converted to a scale score with mean 100 and standard
deviation (SD) 15. Higher scores indicate higher levels of
executive functioning. DCCS was chosen because subjects with
TBI often suffer impairments in their cognitive flexibility as a
result of brain damage (Whiting et al., 2017).

Multilevel Correlation Analysis
Our data analysis and modeling method, called multilevel
correlation analysis, is summarized in Figure 1. Multilevel
correlation analysis centers on modeling correlations among
the default mode, salience, and central executive networks.
It includes the following modules: preprocessing, independent
component analysis, component correlation analysis, graph
analysis, and local connectivity analysis. Multilevel correlation
analysis examines connectivity changes across different scales.
Component correlation analysis focuses on localized changes
in correlations among components. Graph analysis examines
distributed, global level changes in information communication
among components. Local connectivity analysis probes local
functional connectivity changes.

Image Preprocessing
Our resting-state fMRI data preprocessing pipeline was based
on FMRIB Software Library (FSL) (Jenkinson et al., 2012)
and Analysis of Functional NeuroImages (AFNI) (Cox, 1996).
This pipeline (Chen et al., 2016) included the following
steps: skull stripping, slice-timing, and motion correction,
Gaussian spatial smoothing, temporal filtering, regressing out
nuisance parameters, and spatial normalization to the Montreal
Neurological Institute (MNI) space.

We first dropped the first ten volumes to remove T1
equilibration effects. Thenwe performed slice-timing andmotion
correction followed by skull-stripping. Skull-stripping results
were verified by visual inspection. We smoothed fMRI volumes
using a Gaussian kernel with a full width at half maximum =

6mm, and temporally filtered fMRI volumes with bandwidth =

[0.005Hz 0.1Hz]. We extracted a base volume from the 4D fMRI
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volume and registered this base volume to the subject’s T1 volume
using themutual information-based registration in FSL. Based on
the subject’s T1 image segmentation results, we obtained white
matter and CSF masks. We calculated the mean white matter and
CSF signals. Then we regressed out the six motion parameters,
the mean frame-wise displacement (FD), and the mean white
matter and CSF signals. We registered the preprocessed 4D
volume to the MNI space by applying the composite deformation
field which combined the deformation field from the base volume
to the subject’s T1 volume, and that from the subject’s T1 volume
to the MNI space.

Excessive head motion is known to induce artifacts and
false-positive correlations among brain structures in resting-state
fMRI (Power et al., 2012).We employed relatively strict criteria to
address the head motion problem. First, we excluded all subjects
with mean FD of more than two standard deviations above the
sample mean. Second, we regressed out head-motion parameters
and mean FD from the BOLD signal.

Independent Component Analysis
We used Independent Component Analysis (ICA) to identify
intrinsic networks. We performed probabilistic ICA (Beckmann
and Smith, 2004) by applying MELODIC (Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components) implemented in FSL to the preprocessed resting-
state fMRI data from the comparison group. A multi-session
temporal concatenation tool in MELODIC was used; variance
normalization also was used. We detected component masks
based on comparison group data for two reasons: first, applying
ICA to data from both the mTBI and comparison groups is less
sensitive in detecting differences in network changes (Rytty et al.,
2013). Second, ICA results based on the comparison group are
a more robust match with previous healthy subject group ICA
templates (Rytty et al., 2013). The number of components used
was 30 because previous studies found ICA with 30 components
can reliably identify intrinsic networks (Shumskaya et al., 2012).
MELODIC converted the estimated ICA maps to Z statistic
images using a mixture model approach. The Z statistic images
were thresholded with Z = 4 (Beckmann et al., 2009). Based on
visual inspection of spatial maps and the related time courses
and power spectrums, we identified components as ventricular,
vascular, susceptibility, or motion-related artifacts (Kelly et al.,
2010); these noise components were excluded from the analysis.

For an ICA component spatial map, we determined to which
intrinsic network it belonged by using template matching. We
used the Allen intrinsic network template (Allen et al., 2011)
as the intrinsic network template because it is widely used to
examine brain networks in health and disease. We calculated the
cross-correlation between a component and a reference network
and determined to which reference network the component
belonged. We selected ICA components that were in the default
mode, salience, and central executive networks. Subject-specific
time courses relating to ICA component maps were extracted
using dual regression. For each subject, the group-average set
of spatial maps was regressed into the subject’s 4D volumes.
This resulted in a set of subject-specific time courses for ICA
component spatial maps.

Component Correlation Analysis
Component correlation analysis centers on studying correlations
among components. Each ICA component constituted a node.
For each subject, we calculated the node time course; then
calculated the Pearson correlation coefficient between a time
course pair. We converted it to a Z score using Fisher’s Z
transformation. This Z score was referred to as a functional
connectivity score. For a study with K components, we generated
a K × K functional connectivity matrix for each subject.

For a functional connectivity score, we used the Wilcoxon
rank-sum test to determine whether there was a significant
difference between mTBI patients and healthy subjects. We used
the False Discovery Rate (FDR) to address multiple comparisons.
If the FDR corrected p-value was smaller than 0.05, there was a
significant difference across groups. Such a score was a feature
characterizing mTBI. Let F denote the detected feature set.

To assess the stability of our findings, we conducted a
Jackknife resampling-based analysis. We removed one sample
from the original dataset and then conducted the analysis based
on the remaining samples. This resulted in a resampling based
feature set. If our dataset has n samples, we will generate
n resampling-based feature sets. We compared the original
feature set with resampling based feature sets and calculated
a stability metric λ. The stability metric was defined as
N[original=resampling]/n, whereN[original=resampling] was the number
of times that the original feature set was the same resampling
based feature set, and n was the sample size. λ was between 0 and
1. Greater λ represented a more stable model.

Association With Executive Function
To investigate brain-behavior associations, we performed two
association analyses. First, we conducted a correlation analysis
between the detected feature and the DCCS score for mTBI
subjects. Second, for all subjects (healthy and mTBI subjects),
we conducted a regression analysis with the DCCS score as
the dependent variable and the detected feature and the group-
membership variables as predictors. This analysis detected group
differences in the association between the DCCS score and the
detected imaging feature. Normality was checked by the Shapiro-
Wilk test.

Graph Analysis
Graph analysis uses graph theoretical methods to analyze
functional connectivity matrices. Relative to component
correlation analysis, it can generate global graph descriptors
to characterize the topological or information-theoretical
complexity of a graph. Graph analysis and component
correlation analysis provide complementary information
about couplings among the default mode, salience, and central
executive networks.

An ICA component in the default mode, salience, and central
executive networks was a node in a graph. We calculated
the Pearson correlation coefficient between a component-time
course pair; and converted it to a Z score. We generated a
connectivity matrix for each subject. To generate a graph, we
thresholded the connectivity matrix based on graph density. The
density threshold was chosen as 0.35 < graph density < 0.4
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(step size was 0.02). The lower limit was chosen to prevent a
disconnected graph; and the upper limit was chosen because
brain networks in general are not densely connected and have
a density <0.4 (Sporns, 2011). The thresholding step generated a
weighted graph. Then we calculated two graph descriptors: the
global clustering coefficient and average path length (Rubinov
and Sporns, 2010). The clustering coefficient of a node was
defined as the likelihood of the neighborhoods being connected
with each other. The global clustering coefficient was the average
of the clustering coefficient over all the nodes. The path length
between the nodes was the sum of the edge length along the
path. The average path length was the average of the shortest path
length across node pairs. Both the global clustering coefficient
and average path length were calculated based on the weighted
graph. For each threshold, we calculated a graph descriptor. An
aggregated graph descriptor was generated by calculating the
area under the curve (AUC) across graph density thresholds
(Bullmore and Bassett, 2011).

Stability Relative to ICA Component Mask
Generation
We examined whether our findings were sensitive to the method
generating ICA componentmasks. LetMask(control) denote that
ICAmasks are generated based on controls. Let Mask(all) denote
that ICA masks are generated based on all subjects (controls and
mTBI). We rerun the whole ICA workflow using Mask(all). We
used fslcc (Jenkinson et al., 2012) to match Mask(control) and
Mask(all). If a component in Mask(controls) matched multiple
components in Mask(all), we merged these component masks in
Mask(all). With this transformation, we can compare results in
the Mask(control) and Mask(all) spaces.

Local Functional Connectivity Analysis
Local functional connectivity quantifies local functional
couplings among spatially adjacent voxels. Regional homogeneity
(ReHo) is widely used to examine local functional connectivity
(Zang et al., 2004). In ReHo, Kendell’s coefficient of concordance
was used to measure regional homogeneity or similarity of the
ranked time series of a given voxel with its nearest 26 neighbor
voxels in a voxel-wise way. The intracranial voxels were extracted
to generate a mask. Then 3D ReHo in AFNI was used to generate
the ReHo map. Each subject’s ReHo map was divided by its own
mean ReHo within the brain mask for standardization purposes
(Zang et al., 2004). Then voxel-wise t-test analysis was performed
to detect voxels whose ReHo values were significantly different
across groups. Monte Carlo simulation in AFNI was used for
multiple comparison correction. Voxels with corrected p-value
< 0.05 were significantly different across groups.

Anatomical Connectivity Analysis
To investigate anatomical connectivity underlying functional
connectivity, we used Tract-Based Spatial Statistics (TBSS)
implemented in FSL to detect changes in brain anatomical
connectivity. We analyzed fractional anisotropy (FA) which
quantifies local tract directionality and integrity. TBSS projects
a subject’s FA map to a common space, creates an FA skeleton,
and projects each subject’s FA onto the skeleton to generate

a skeletonized FA image for each subject. This skeletonized
FA image represents brain anatomical connectivity. The white
matter integrity differences were investigated by using the
threshold-free cluster enhancement at p-value < 0.05 (5,000
permutations) fully corrected for multiple comparisons. If a
voxel’s corrected p-value was smaller than 0.05, we considered
this voxel’s FA changed across groups.

We also performed ROI based anatomical connectivity
analysis. ROIs were defined using the Johns Hopkins University
white matter tractography atlas. There was a total of 20 ROIs in
our analysis representingmajor whitematter fiber tracts. For each
ROI, we calculated the average FA value in the skeletonized FA
map. Then we used independent two-group Mann-Whitney U-
test to identify ROIs whose FA values were different between the
mTBI and comparison subjects. The FDR correction was used to
correct for multiple testing.

RESULTS

Participant Characteristics
Participant characteristics are summarized in Table 1. Mean
ages were 30 years (SD 6.0) and 31 years (SD 8.7) for mTBI
patients and comparisons, respectively. There were no significant
difference in age across groups (p-value = 0.37, two-sample
t-test); no significant difference in the female:male ratio (p-
value = 0.81, chi-square test); and no significant difference
in education (p-value = 0.11, two-sample t-test). All subjects
were right-handed.

For mTBI patients, the cause of injury included traffic
accidents (Nine patients), falls (Two patients), sports-related
accidents (Two patients), and objects striking the head (19
patients). The injury severity in mTBI patients was mild: 97%
with GCS = 15. The RPQ measures severity of 16 post-
concussion syndrome symptoms, as compared to the premorbid
level. The mean RPQ was 16 (SD 13.2). The BSI-18 is a tool
to assess the level of psychological distress after mTBI. It covers
somatization, depression, and anxiety. The mean BSI-18 was 15
(SD 14.4).

TABLE 1 | Demographic (age, sex, education), neurocognition (DCCS), and

disease severity (Rivermead post-concussion questionnaire and brief symptom

inventory-18) of participants.

mTBI (n = 32) Controls (n = 37) P

Mean (SD) Mean (SD)

Age (years) 30 (6.0) 31 (8.7) 0.37

Sex (female/male) 12/20 16/21 0.81

Education (years) 15 (2.2) 16 (2.2) 0.11

Dimensional change card sort test 98 (12.8) 103 (10.9) 0.01

Glasgow coma scale 15 (0.2) − −

Rivermead post-concussion questionnaire 16 (13.2) − −

Brief symptom inventory-18 15 (14.4) − −

SD, standard deviation.
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FIGURE 2 | Intrinsic connectivity networks identified by group ICA. The results are in the Mask(control) space.

T1- and T2-weighted images were reviewed by an experienced
neuroradiologist to identify structural abnormalities,
including assessment for evidence of hemorrhage. The
neuroradiologist was blinded to the group membership
and clinical information. The images were found to be
free of structural abnormalities for both mTBI patients
and comparisons.

Component Correlations
We performed a 30-component group ICA using resting-
state fMRI data from 37 comparison subjects. The component
masks were in the Mask(control) space. Five components were
identified as noise or artifact components. The remaining
components were intrinsic connectivity networks. Our study
centered on seven components in the default mode, salience,
and central executive networks. These components are depicted
in Figure 2. Components 2 and 9 are in the central executive
network; components 3, 8, 11, 17 are in the default mode

network; and component 15 is in the salience network. The
central executive network includes two components. Component
2 is in the dlPFC and posterior parietal cortex, and component
9 is in the posterior parietal cortex. The default mode network
includes four components. Components 3, 8, 11 are in the
posterior part of the default mode network including the PCC
and precuneus. Component 17 is in the anterior part of the
default mode network anchored in the mPFC. The salience
network is represented by component 15 which is primary in the
dACC and the anterior insular.

Functional connectivity matrices for comparisons and
mTBI patients are depicted in Figure 3. Correlations between
component time courses revealed connectivity patterns
consistent with known functional relationships. We observed a
positive correlation between components in the same intrinsic
network. We also found negative correlations between the
default mode network components and components in the
salience and central executive networks.
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FIGURE 3 | The component correlation analysis results in the Mask(control)

space. Top and bottom are the mean functional connectivity correlation

matrices for controls and mTBI subjects, respectively. C2ce, C9ce—the

central executive network; C3dm, C8dm, C11dm, C17dm—the default mode

network; C15s—the salience network.

The correlation between a component in the default mode
network (component 17) and a component in the salience
network (component 15) was significantly different between
mTBI and healthy subjects with corrected p-value = 0.013
(Figure 4). Let [C17dm – C15s] denote the connection between
component 17 (part of the default mode network) and 15 (part of
the salience network). The mean functional connectivity scores
of [C17dm – C15s] were 0.037 (SD 0.22) and 0.201 (SD 0.18) for
comparisons and mTBI patients, respectively.

We compared the resampling based feature sets to the
original feature set and found that the original feature
set was remarkably stable. For all 69 resampling based
feature sets, we detected [C17dm – C15s] were significantly
higher in mTBI patients than comparison subjects (corrected
p-value < 0.05).

FIGURE 4 | Boxplot of connectivity between components 17 and 15 [C17dm

– C15s]. C17dm is in the default mode network and C15s is in the

salience network.

FIGURE 5 | The association between the DCCS score and [C17dm – C15s].

Data points with circle shape are controls and data points with triangle shape

are mTBI patients.

Association With Executive Function
The results of the association analysis are depicted in Figure 5.
For mTBI patients, we performed Pearson’s correlation analysis
between the DCCS score and [C17dm – C15s]. The DCCS score
was positively associated with [C17dm – C15s]. The correlation
coefficient was 0.40 (p-value = 0.037). To assess whether the
association between DCCS and [C17dm – C15s] was related to
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FIGURE 6 | ReHo analysis results, overlaid in the MNI brain. (A) Voxels

demonstrating significant ReHo increases in the mTBI group (two-sample

t-test; p-value < 0.05, corrected). (B) Voxels demonstrating significant ReHo

decreases in the mTBI group (two-sample t-test; p-value < 0.05, corrected).

mTBI severity, we built a regression model with DCCS as the
dependent variable and [C17dm –C15s] andmTBI severity (Brief
symptom inventory-18) as the independent variables. The mTBI
severity term was not significant.

For mTBI patients and comparisons, we performed a
regression analysis with the DCCS score as the dependent
variable and [C17dm –C15s] and the groupmembership variable
(comparisons and mTBI) as independent variables. The DCCS
score was significantly associated with [C17dm – C15s] (p-value
= 0.013) and the group membership variable (p-value= 0.0207).
Then we added an interaction term ([C17dm – C15s] × group
membership) to the regression model. This interaction term
([C17dm – C15s] × group membership) was not significant
(p-value= 0.325).

DCCS is one task of the NIH Toolbox cognition measures
which have seven tasks. All of them were administrated. The p-
value of the association between DCCS and [C17dm – C15s] was
not adjusted for multiple tasks (seven tasks in the NIH Toolbox
cognition measures).

Graph Analysis
The nodes in our graph were components in the default
mode, salience, and central executive networks. The average
path length quantifies the ability for information to propagate
in parallel. The AUC of the average path length of mTBI
patients was significantly higher than that of controls. The mean
AUCs were 2.02 (SD 0.50) and 2.29 (SD 0.64) for controls
and mTBI patients, respectively. The two-sample t-test p-value
was 0.028. The global clustering coefficient indicates the extent
of the local interconnectivity or cliquishness in a graph. We
found the AUC of the global clustering coefficient of mTBI
patients was not significantly different from that of controls
(p-value= 0.54).

Because there were two graph descriptors (the average path
length and the global clustering coefficient), we conducted
multiple comparisons correction using the false discovery
rate. The average path length was marginally significant after
correction (adjusted p-value= 0.056).

ReHo Analysis
ReHo results are shown in Figure 6. Compared to controls,
mTBI patients showed significant ReHo decreases in the bilateral
calcarine fissure and surrounding cortex, left cuneus, left lingual
gyrus, and bilateral thalamus. These regions are in the visual
and thalamus networks. Compared to controls, mTBI patients
showed significant ReHo increases in the left rolandic operculum,
left heschl gyrus, and left superior temporal gyrus. These regions
are in the auditory network. No voxels in the default mode,
salience, and central executive networks showed significant ReHo
differences between controls and mTBI patients.

Anatomical Connectivity Analysis
Using DTI and TBSS, we found no significant anatomical
connectivity differences in mTBI patients and comparisons.
No voxels in the skeletonized FA space had a corrected
p-value < 0.05. In ROI-based anatomical connectivity analysis,
no ROIs had a corrected p-value < 0.05. We found no ROIs
that demonstrated significant FA differences in mTBI patients
and comparisons.

Stability Relative to ICA Component Masks
We examined whether our findings were sensitive to the method
to generate ICA component masks. Let C2con denote the
component mask 2 in the Mask(control) space. We found that
C2con matched C2all, C9con matched C4all, C3con matched C17all,
C8con matched C8all, C11con matched C9all and C20all, C17con

matched C19all, C15con matched C4all and C10all.
Our main finding was that [C17dm – C15s] was significantly

higher in mTBI patients than controls in the Mask(control)
space. We calculated the component coupling in the Mask(all)
space which was correspondent to [C17dm – C15s] in
the Mask(control) space. This component coupling was still
significant (p-value = 0.032). The mean functional connectivity
scores were 0.179 (SD 0.039) and 0.317 (SD 0.050) for controls
and mTBI patients, respectively. The difference in the value
of functional connectivity scores in the Mask(control) and
Mask(all) spaces may reflect the component mask differences.
The finding that [C17dm – C15s] in the Mask(control) space was
significantly higher inmTBI patients than controls is not sensitive
to the method to generate ICA component masks.

We assessed whether graph analysis results were sensitive to
the method to generate ICA component masks [Mask(control)
or Mask(all)]. In the Mask(all) space, we found that AUC of the
average path length of mTBI patients was still higher than that
of controls. The mean AUCs were 1.74 (SD 0.077) and 1.79 (SD
0.087) for controls and mTBI patients, respectively. This pattern
was consistent with that in theMask(control) space. However, the
difference was not significant (p-value > 0.05). In the Mask(all)
space, the AUC of the global clustering coefficient of mTBI
patients was not significantly different from that of controls. This
was consistent with the finding in the Mask(control) space.

DISCUSSION

In this study, we examined whether correlations among three
intrinsic networks (the default mode, salience, and central
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executive) were altered in acute mTBI patients. Using component
correlation analysis [in the Mask(control) space], we found a
pattern of hyper-connectivity between the anterior part of the
default mode network and the salience network in acute mTBI
patients. This finding was stable across data resampling. For
all resampling datasets, we consistently detected this hyper-
connectivity pattern; this was a localized pattern. Using graph
analysis [in the Mask(control) space] to investigate a graph
including nodes in the default mode, salience, and central
executive networks, we found a global graph pattern change that
indicated altered information propagation ability among nodes;
this was a distributed pattern. Together, our study indicated
altered couplings among the default mode, salience, and central
executive networks in acute mTBI patients.

Our finding of hyper-connectivity between the anterior part of
the default mode network and the salience network is consistent
with other functional connectivity studies of TBI. In a meta-
study of moderate and severe TBI (Hillary et al., 2015), 12 of
14 TBI studies reported hyper-connectivity in different brain
regions such as structures in the default mode and salience
networks. Shumskaya et al. (2012) analyzed resting-state fMRI
data of 35 acute mTBI and 35 age-, gender-, and handedness-
matched controls and found a cluster of increased functional
connectivity in the right frontoparietal attention network in
the mTBI group. In a study to investigate whether thalamic
intrinsic connectivity networks are disrupted in patients with
mTBI (Tang et al., 2011), Tang et al. analyzed resting-state fMRI
data of 24 mTBI patients with mean 22 days post-injury and
17 controls, and found significantly increased thalamic intrinsic
connectivity networks in mTBI patients. Hyper-connectivity
is also observed in other neurological disorders such as
Alzheimer’s disease, mild cognitive impairment, and multiple
sclerosis (Hillary et al., 2015).

The mechanism underlying hyper-connectivity between the
anterior part of the default mode network and the salience
network could be a compensatory or maladaptive response
(Pievani et al., 2014). In the compensatory theory, hyper-
connectivity in acute mTBI is a mechanism to meet cognitive
demand. A maladaptive response might reflect an unsuccessful
attempt to recruit brain regions to compensate for pathology,
as well as a disrupted excitatory-inhibitory balance of damaged
networks.We found that the hyper-connectivity inmTBI patients
was positively correlated with the DCCS score which measures
executive function (Figure 5). This hyper-connectivity predicted
better performance in an executive functioning task. This finding
suggests that hyper-connectivity between the anterior part of
the default mode network and the salience network could be
compensatory to meet cognitive demand.

The triple network model centers on the default mode,
salience, and central executive networks. The default mode
network shows decreased activation in stimulus-driven cognitive
and affective information processing tasks, while the salience
and central executive networks show increased activation in
such tasks. In the triple network model, the salience network
is an integral hub in mediating dynamic couplings between
the default mode and central executive networks. Inappropriate

assignment of saliency to external stimuli or internal mental
events is observed inmany psychiatric and neurological disorders
(Uddin, 2014). In this study, we found the salience network
was excessively coupled to the default mode network. This
hyper-connectivity may be a response to brain injury to meet
cognitive demand.

In our graph analysis, we found that the average path
length of mTBI patients was significantly higher than that of
healthy subjects. The average path length quantifies the ability
for information to propagate. Short path lengths ensure inter-
node effective integrity and promote the transfer of information
among nodes (Sporns, 2011). Thus, the mTBI-related increase
in the average path length represents a distributed and global
degeneration of functional connectivity among nodes in the
default mode, salience, and central executive networks.

In our ReHo analysis, we found no significant ReHo
differences in mTBI patients in voxels in the default mode,
salience, and central executive networks. Therefore, the observed
hyper-connectivity between the default mode and salience
network may not reflect the local functional connectivity changes
in the three intrinsic networks.

In our study, no significant anatomical connectivity
differences were detected in mTBI patients. Acute mTBI
was not associated with DTI-based anatomical connectivity
abnormalities detectable with TBSS or ROI-based analysis.
This suggests that the observed hyper-connectivity between
the default mode and salience network may not reflect the
anatomical connectivity changes in acute mTBI patients. Our
finding is in accordance with (Ilvesmaki et al., 2014) which
analyzed DTI data from 75 patients with acute mTBI and 40
age- and gender- matched controls. Using TBSS, they found no
significant differences in FA between mTBI patients and controls.
However, TBSS has limitations in that it is a univariate analysis
method and cannot model tract couplings. It is possible that the
effect of injury on a specific white matter tract is weak. Therefore,
TBSS will detect no FA differences between mTBI patients and
controls. Using multivariate analysis, the couplings among white
matter tracts may provide complementary information about
white matter integrity.

Our study used resting-state fMRI and ICA to examine
correlations among the default mode, salience, and central
executive networks. A related study Jilka et al. (2014) analyzed
fMRI data of the Stop Signal Task (SST) of 44 moderate/severe
and 13 mTBI and 25 controls. Jilka and colleagues found
that for controls, functional connectivity between the salience
network and the default mode network transiently increased
during stopping; and this change in functional connectivity
was not observed in traumatic brain injury patients with
impaired cognitive control. Their study revealed abnormal
coupling between the salience and default mode networks in
traumatic brain injury. The major differences between Jilka’s
study and our study are: (1) Jilka’s study examined the functional
connectivity using task-based fMRI while our study used resting-
state fMRI; (2) the patient population of Jilka’s study was
primarily moderate/severe traumatic brain injury while our study
focused on mTBI.
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This study has several limitations. First, our study is cross-
sectional. Investigating brain functional and structural changes
in acute mTBI patients is important for predicting prognosis
and treatment optimization. Brain connectivity damages in the
acute period can result in deterioration of cognitive function
that may persist for years. Predicting outcomes based on
baseline imaging features is an important problem (Chen and
Herskovits, 2015). Future work using a longitudinal design
and predictive modeling can address this problem. Second, our
study is hypothesis-driven and examines correlations among
the default mode, salience, and central executive networks in
acute mTBI patients. We cannot exclude the possibility that
other network correlations are also changed in mTBI. For
example, we didn’t examine correlations among the visual and
thalamus networks and other networks, despite the visual and
thalamus networks showed aberrant ReHo patterns. With the
increasing number of intrinsic connectivity networks, we need
a large sample size in order to achieve a statistical power to
reveal changes in their correlations. We plan to conduct a
large-scale network correlation analysis with a large sample size
mTBI dataset.

In conclusion, we identified aberrant functional coupling
between the default mode and salience networks in
acute mTBI patients. Our finding has great potential to
improve our understanding of the network architecture
of mTBI, leading to accurate diagnosis and more
effective treatments.
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Neuroimaging studies suggest disrupted connections of the brain white matter (WM)
network in bipolar disorder (BD). A group of highly interconnected high-density
structures, termed the ‘rich club,’ represents an important network for brain functioning.
Recent works have revealed abnormal rich club organization in brain networks in
BD. However, little is known regarding changes in the rich club organization of
the hemispheric WM network in BD. Forty-nine BD patients and fifty-five age- and
sex-matched normal controls (NCs) underwent diffusion tensor imaging (DTI). Graph
theory approaches were applied to quantify group-specific rich club organization
and nodal degree of hemispheric WM networks. We demonstrated that rich club
organization of hemispheric WM networks in BD was disrupted, with disrupted feeder
and local connections among hub and peripheral regions located in the default mode
network (DMN) and the control execution network (CEN). In addition, BD patients
showed abnormal asymmetry in the feeder and local connections, involving the hub
and peripheral regions associated with emotion regulation and visuospatial functions.
Moreover, the clinical symptoms of BD showed a significant correlation with the aberrant
asymmetry in the regional degree of peripheral regions. These findings reveal that BD is
closely associated with disrupted feeder and local connections but no alteration in rich-
club connections in the rich club organization of hemispheric WM networks and provide
novel insight into the changes of brain functions in BD.

Keywords: bipolar disorder, white matter connections, graph theory approach, hemispheric lateralization, rich
club organization

INTRODUCTION

Hemispheric lateralization refers to the asymmetry of the two brain hemispheres in terms of
their anatomy and function (Toga and Thompson, 2003; Parker et al., 2005; Yasser et al., 2011).
This feature is thought to have originated from evolutionary, developmental, experiential and
pathological factors (Toga and Thompson, 2003) and is a prominent characteristic of human brain
development. Abnormal hemispheric lateralization has long been proposed to be a consequence
of altered neurodevelopment in individuals with psychotic disorders (Ho et al., 2017). Studies on
white matter (WM) have shown that aberrant brain region asymmetries are highly correlated with
disturbed functions such as executive function (Yin et al., 2013), emotion (Schwartz et al., 1975;

Frontiers in Neuroinformatics | www.frontiersin.org 1 August 2020 | Volume 14 | Article 3916

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00039
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2020.00039
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00039&domain=pdf&date_stamp=2020-08-26
https://www.frontiersin.org/articles/10.3389/fninf.2020.00039/full
http://loop.frontiersin.org/people/572497/overview
http://loop.frontiersin.org/people/499230/overview
http://loop.frontiersin.org/people/599094/overview
http://loop.frontiersin.org/people/222228/overview
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00039 August 24, 2020 Time: 17:8 # 2

Li et al. Disrupted Rich Club in Bipolar

Schulte et al., 2012), and language (O’Donoghue et al., 2017).
Moreover, neuroimaging studies (Torgerson et al., 2013) have
indicated that the WM structure in the brain is fundamental
and crucial to brain function. Therefore, analyzing WM
lateralization abnormalities might benefit the understanding of
the underlying nature of brain function abnormalities in patients
with psychiatric disorders and potentially help to elucidate
disorder etiologies.

As one of the most distinct syndromes in psychiatry, bipolar
disorder (BD) is mainly characterized as episodic elevations
in emotion and disturbances in cognition function (Quraishi
and Frangou, 2002; Saunders and Goodwin, 2010), affecting
approximately 1% of the population (Belmaker, 2004; Collin
et al., 2016). Accumulated structural studies (Bruno et al., 2008;
Vivian et al., 2009; Mahon et al., 2013) have revealed abnormal
asymmetries in the WM volume in BD patients. Moreover, lower
fractional anisotropy (FA) in the right anterior cingulate gyrus
[ACG] (Liu et al., 2010) and the right precuneus [PCUN] (Elisa
et al., 2016) regions were observed in BD patients compared with
normal controls (NCs). Notably, the ACG region is involved in
cognitive and emotional processing (Bush et al., 2000), and the
PCUN plays a role in regulating the memory function (Cavanna
and Trimble, 2006). These studies may suggest that abnormal
WM lateralization is a key factor in the manifestation of BD
symptoms (Torgerson et al., 2013).

Complex network analysis combines diffusion tensor imaging
(DTI) to model the brain as two hemispheric WM networks
and examine the differences in WM organization between the
left and right hemisphere networks (Yasser et al., 2011). Using
graph theory approaches, accumulated evidence has revealed
hemispheric asymmetries in the graph metrics of the brain
WM network (Karen and Alexander, 2014; Zhong et al., 2016).
Moreover, previous studies (Silk et al., 2016; Yang et al., 2017;
Zhong et al., 2016; Li et al., 2018) have hypothesized that
abnormal brain network asymmetry is linked to neuropsychiatric
disorders. Accordingly, our prior study (Wang B. et al., 2018)
using graph theory showed reduced hemispheric asymmetry in
the topological organization of the brain WM networks of BD
patients, such as global efficiency and small-worldness, suggesting
the disrupted asymmetry of WM connections in BD.

The rich club organization, defined as a tendency for hub
(high-degree) regions to be more densely connected among
themselves than to peripheral (low-degree) regions (Power et al.,
2013; Van den Heuvel and Sporns, 2013), is one of the key
graph theory metrics that provides important information on
the higher-level topology of brain networks (Van den Heuvel
and Sporns, 2011; Collin et al., 2013). Recent studies on whole-
brain WM networks (Collin et al., 2016; O’Donoghue et al.,
2017; Wang Y. et al., 2018) have reported that the putamen
[PUT], PCUN and insula [INS] are defined as hub regions
and the rolandic operculum [ROL], inferior temporal gyrus
[ITG], superior occipital gyrus [SOG], and lingual gyrus [LING]
regions are defined as peripheral regions in BD patients. Notably,
decreased asymmetry in the nodal efficiency of the ROL, ITG,
SOG and LING has been revealed in BD patients (Wang B. et al.,
2018). These findings may imply that abnormal hemispheric
asymmetry in the rich club organization in BD occurs mainly

through reduced WM connectivity in peripheral brain regions.
However, it is unknown whether there are changes in the rich club
organization of the hemispheric WM networks in BD patients.

This work used DTI data from 49 BD patients and 55 age-
and sex-matched NCs to construct hemispheric WM networks.
Graph theory approaches were used to analyze the network
topology. Two connectivity measures (density and strength) and
the nodal degree were used to assess the property of rich club
organization. We aimed to investigate how the patterns of rich
club organization change in hemispheric WM networks in BD
patients. This study may serve a functional role in clinical trials
and interventions for BD.

MATERIALS AND METHODS

Subjects
All the subjects participating in the current study, including 49
BD patients and 55 age- and sex-matched NCs, were screened
from the LA2K study. The detailed demographic and clinical
characteristics for all the subjects are presented in Table 1. The
Handscore described the handedness of subjects. It was obtained
using a formula (Right + Left)/(Right - Left). Patient symptoms
were evaluated using the 17-item Hamilton Depression Rating
Scale (HAMD) (Hamilton, 1960) and the Young Mania Rating
Scale (YMRS) (Young et al., 1978). The neuroimaging dataset
was obtained via the publicly available OpenfMRI database1.
This study was approved by Institutional Review Board of the
University of California, Los Angeles (UCLA).

Data Preprocessing and Network
Construction
Structural MRI data were obtained using 3T Siemens Trio
scanners located at the Ahmanson-Lovelace Brain Mapping
Center and the Staglin Center for Cognitive Neuroscience at
UCLA. High-resolution 3D echoplanar imaging was acquired
with the following parameters: repetition time (TR) = 1.9 s,
echo time (TE) = 2.26 ms, flip angle = 90◦, field of view
(FOV) = 250 × 250 mm2, acquisition matrix = 256 × 256,
sagittal plane, slice thickness = 1 mm, and 176 slices. Diffusion
weighted imaging (DWI) data were collected using an echoplanar
sequence with the following parameters: 64 directions, slice
thickness = 2 mm, TR = 9 s, TE = 93 ms, 1 average,
acquisition matrix = 96 × 96, flip angle = 90◦, axial slices, and
b = 1000 s/mm2.

Data preprocessing and network construction were performed
using the MATLAB toolbox named pipeline for analyzing brain
diffusion images (PANDA_1.3.1, http://www.nitrc.org/projects/
panda). The data preprocessing procedure includes corrections
for simple head movements and eddy current distortions. The
FA of each voxel was computed, with higher values indicating
more directionally restricted diffusion of water molecules. Briefly,
individual T1-weighted images were coregistered to the b0
images in the DTI space. The transformed T1 images were
segmented into WM and then non-linearly transformed to the

1https://www.openfmri.org/
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TABLE 1 | Demographic and clinical characteristics of the samples.

Demographic characteristics NC BD Statistics

n = 55 n = 49

Age (years) 21–49 (33.7 ± 9.1) 22–50 (33.9 ± 9.0) F = 0.209a p = 0.649

Male/Female 27/28 28/21 F = 0.674b p = 0.412

Duration of illness (months) N/A 0–24 (2.1 ± 5.2)

Medication dose (mg/day) N/A 0–6210 (784.8 ± 1035.3)

Handscore 0.80–1 (0.95 ± 0.09) 0.75–1 (0.93 ± 0.1) F = 0.926a p = 0.338

YMRS N/A 0–41 (11.9 ± 11.0)

HAMD N/A 0–32 (12.0 ± 8.4)

aStatistical comparison was performed using analysis of variance; bStatistical comparison was performed using a chi-square test.

International Consortium of Brain Mapping (ICBM) 152 T1
template in the Montreal Neurological Institute (MNI) space.
The inverse transformations were used to warp the automated
anatomical labeling (AAL) atlas from the MNI space to the
DTI native space. Finally, for each individual DTI dataset,
deterministic fiber tracking algorithms were used to reconstruct
the WM pathways. In the brain mask, 7 seeds followed the
main diffusion direction from voxel to voxel. The tractography
was terminated when it reached a voxel with an FA value less
than 0.1 or when the angle was greater than 35◦. Based on the
reconstructed fiber tracts, the WM connection between a pair of
nodes was adopted if the fiber number (FN) was larger than 3
(Shu et al., 2011; Li et al., 2018; Wang et al., 2019). We selected the
threshold value for the FN > 3 was to reduce pseudo-connections
due to possible noise effects on the whole-brain WM tractography
(Sun et al., 2015).

The whole-brain WM network was constructed for each
subject based on AAL (Tzourio-Mazoyer et al., 2002) atlas.
We normalized the AAL atlas to eliminate the hemispheric
asymmetry effect of brain structure according to the methods
proposed by Yan et al. (2009). Using the normalized AAL atlas,
the whole-brain was divided into 90 regions (45 regions in
each hemisphere). The node of structural network was defined
as one region of the normalized AAL atlas. The weights of
the structural network was defined the mean FA values of the
connected fibers between 2 regions (Li et al., 2018; Yan et al.,
2018; Wang et al., 2019). The reason for choosing FA is that
it is an important indicator commonly used to examine the
microstructure aspects of brain WM connections (Cui et al.,
2013). Finally, a weighted 90 × 90 whole-brain anatomical
network was constructed for each subject.

Graph Theory Analysis of the
Hemispheric Network
Based on the weighted 90 × 90 whole-brain WM network, we
discarded inter-hemispheric WM connections and separated the
whole-brain network into two 45 × 45 hemispheric networks
for each subject. The graph metrics including the rich club
organization and nodal degree were computed to evaluate the
topological structure of all hemispheric WM networks. The nodal
degree measures the number of edges connected to the node.

This work used the GRETNA toolbox2 (Wang et al., 2015) in
MATLAB to analyze the network topology. The results of the
network analyses were visualized using the BrainNet Viewer
toolbox3 (Xia et al., 2013).

Description and Measurement of Rich Club
Organization
Rich club organization describes the central backbone for global
communication in the brain network (Van den Heuvel and
Sporns, 2011, 2013), which refers to nodes with higher degrees
within brain networks (Van den Heuvel and Sporns, 2011). The
rich club organization was described based on the normalized
rich club coefficients (RCs). The normalized RC was greater
than 1 over a range of degrees, indicating the existence of a
rich club organization in the brain connectome. The RC is
computed as the sum of the weights of the subset of connections
larger than k in the network divided by the sum of the set of
the strongest connections in the total network. The normalized
RC was computed by normalizing the RC relative to a set of
1000 comparable random networks for each subject. In order to
preserve the same number of row and column as a real weighted
structural network, this paper used the Maslovs wiring algorithm
(Maslov and Sneppen, 2002) to generate a random network. In
addition, the strength and the degree distribution of structural
network was preserved in the random network.

The current study selected hub regions based on the
group-average FA network. The top 7 high-degree regions
corresponding to the highest-ranking 16% of nodes were
identified as hub nodes for each individual subject. The
remaining 38 regions were identified as peripheral nodes.
Once the nodes were classified into hub nodes and peripheral
nodes, the edges of the network were classified as rich-club
connections between two hub nodes, feeder connections from
one hub node to one peripheral node, or local connections
between two peripheral nodes (Van den Heuvel and Sporns,
2011; Van den Heuvel et al., 2012). Notably, the present study
used two connectivity measures, the connectivity density and
connectivity strength, to distinguish three types of connections
in the rich club organization of hemispheric WM networks. The
connectivity density describes the proportion of connections out

2http://www.nitrc.org/projects/gretna/
3http://www.nitrc.org/projects/bnv
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of the total number of possible edges in the hemispheric WM
network. The connectivity strength is calculated as the total
sum of the weighted FA values of all the connections in the
hemispheric WM network.

Hemispheric Asymmetry in the Graph Metrics
This paper applied the formula AS(X) = 100 × [X(R)-
X(L)]/[X(R) + X(L)] (Yasser et al., 2011; Wang et al., 2019) to
estimate the hemispheric asymmetry of the network topology
graph metrics, where X(R) and X(L) refer to the graph metric for
the right and left hemispheric networks, respectively. A negative
AS(X) value indicates leftward asymmetry in the graph metric
of X, while a positive AS(X) value demonstrates a rightward
advantage in the graph metric of X.

Statistical Analysis
All statistical analyses were performed using the Statistical
Package for Social Science (SPSS, v19.0)4. For the group
differences in the demographic characteristics, two-sample two-
tailed t-tests were used for age and the handscore of subjects,
and chi-square tests were used for sex. For both hemisphere
and group differences in the graph metrics, repeated-measures
analysis of variance (ANOVA) was employed with group as a
between-subject factor and hemisphere (left and right) as the
repeated-measures factor. Moreover, the hemisphere-by-group
interaction was also considered. When the value of p < 0.05 (no
correction for connectivity measures and Bonferroni-correction
for nodal degree), the effect was statistically significant and
post hoc tests (paired t-tests for hemisphere differences and
independent t-tests for group differences) were performed. In this
paper, the symbol ∗ indicates the value of p is smaller than 0.05.
The symbol ∗∗ indicates the value of p is smaller than 0.01. The
symbol ∗∗∗ indicates the value of p is smaller than 0.001.

This work also examined the correlation between the graph
metrics and the symptom severity of BD patients by calculating
Spearman correlation coefficient. Relationships were considered
significant for uncorrected values of p < 0.05 because these
correlations were exploratory in nature. For all statistical
analyses, age, sex and handscore were treated as covariates.

RESULTS

Rich Club Organization
We examined the hemisphere and group effects on the RCs
and the normalized RCs, as shown in Figure 1. The Figure 1
described the mean degree of per group after running RC
procedure per subject. Notably, we reported the degree levels only
for the two groups in which the rich club effects were detected
across all subjects. As shown in Figure 1A, the values of the
RC in the right hemisphere are significantly larger than those
in the left hemisphere at the degree k = 5–6. The values of the
RC in the NC group were higher than those in the BD group
at degrees k = 4–5, as shown in Figure 1B. The normalized
RCs increased with increasing nodal degrees k greater than 1

4http://www.spss.com/

(Figures 1C,D), indicating that the rich-club organization existed
in the hemispheric networks of both the NC and BD groups.
Specially, we observed a specific k degree of 4 where normalized
RC begin to be larger than 1. At degrees k = 5–8, significant group
differences were observed in the normalized RCs as described in
Figure 1D. However, we did not find any significant hemisphere
differences in the normalized RCs, as presented in Figure 1C.

In this work, 16% of most consistently ranked nodes
corresponding to the top 7 regions were defined as hub
nodes across the two groups of subjects. In order of nodal
degree, the seven regions were as follows: PUT, INS, PCUN,
postcentral gyrus [PoCG], precentral gyrus [PreCG], temporal
pole (superior) [TPOsup], middle occipital gyrus [MOG],
illustrated in Figure 2A. The remaining 38 regions were classified
as peripheral nodes. Based on the classification of the network
nodes, the network edges were classified into three types of
connections: rich-club connections linking two hub nodes,
feeder connections linking hub and peripheral nodes, and local
connections linking two peripheral nodes (Figure 2B).

Group and Hemisphere Effects on Rich
Club Organization
Three Classifications of Connections
For connections in rich club organization, significant group and
hemisphere effects on the connectivity density and strength are
depicted in Table 2 and Figure 3. As shown in Table 2, we found
no significant group and hemisphere difference in the rich-club
connections. Further analysis (Figure 3) showed smaller values
for the connectivity measures in the BD patients than in the NCs,
indicating disrupted feeder and local connections in BD. Table 2
shows that feeder and local connections exhibited significant
hemisphere-by-group interactions. The post hoc analysis revealed
that the hemisphere-by-group interaction resulted from different
patterns of hemispheric asymmetry in the feeder and local
connections in the two groups of subjects. Figures 3C,D shows
that BD patients exhibited a significant left hemisphere advantage
in the two connectivity measures of feeder connections. However,
the NC group exhibited significant rightward asymmetry in both
the connectivity density and strength of local connections, as
shown in Figures 3E,F.

The statistical analysis results of the asymmetry scores in the
two connectivity measures of the rich club organization in the
two groups are shown in Table 3. For the NCs, only the local
connections exhibited a significant right hemisphere advantage
(positive AS, p < 0.001) in the connectivity density and strength.
For the BD patients, the rich-club connections and feeder
connections showed significant a left hemisphere advantage in
the connectivity density and strength. In addition, the feeder
and local connections showed evident group differences in the
asymmetry scores of the connectivity density and strength. This
group-difference finding is in accordance with the significant
group-by-hemisphere interaction observed in the connections of
the rich club organization.

To examine whether connections is distributed among three
classification of connections in the BD group compared to the NC
group, and the left hemisphere compared to right hemisphere, an
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FIGURE 1 | Hemisphere and group differences in both the RCs and normalized RCs. (A,B) depicted significant hemisphere and group differences in RC,
respectively. (C,D) depicted significant hemisphere and group differences in normalized RC, respectively. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 2 | Hub nodes and the three types of connections in the rich club organization. (A) depicted hub nodes (red nodes) across all NC and BD groups. (B)
depicted a simplified example of the three types of connections.

additional analysis was performed. Abnormal WM connectivity
was observed in the BD group relative to the NC group, with 161
connections (5 rich-club, 33 feeder, and 123 local connections;
Figure 4A). Significant differences between the left and right
hemisphere were observed in 58 connections (3 rich-club, 11
feeder, and 44 local connections; Figure 4B). A significant
group difference between NC and BD group was observed
in the hemispheric asymmetry of WM connectivity, with 32
connections (2 rich-club, 7 feeder, and 23 local connections;

Figure 4C). The proportion (100% × observed/total) of each
classification of aberrant WM connections was illustrated in
Figure 4D. These findings tend to suggest that the rich-club
connections might be stable.

Nodal Degree of the Hub and Peripheral Regions
Figure 5 shows significant (Bonferroni-corrected, p < 0.05)
group and hemisphere differences in the regional degree.
Specifically, several regions including the PCUN hub region

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2020 | Volume 14 | Article 3920

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00039 August 24, 2020 Time: 17:8 # 6

Li et al. Disrupted Rich Club in Bipolar

FIGURE 3 | Post hoc analysis of the rich club organization. (A,C,E) depicted both significant hemisphere and group differences in the density of rich-club, feeder
and local connections, respectively. (B,D,F) depicted both significant hemisphere and group differences in the strength of rich-club, feeder and local connections,
respectively. NC: normal control. BD: bipolar disorder. *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2 | Differences in the connectivity measures of the rich club organization.

Connectivity measure Rich club organization Group difference F1,99

(p-value)
Hemisphere difference

F1,99 (p-value)
Interaction F1,99

(p-value)

Density Rich-club 3.499 (0.064) 0.016 (0.901) 2.173 (0.144)

Feeder 0.456 (0.501) 8.268 (0.005) 4.328 (0.040)

Local 11.651 (0.001) 8.931 (0.004) 11.192 (0.001)

Strength Rich-club 0.268 (0.606) 0.218 (0.642) 0.044 (0.835)

Feeder 17.758 (<0.001) 4.122 (0.045) 5.765 (0.018)

Local 47.759 (<0.001) 5.138 (0.026) 9.660 (0.002)

Significant differences (p < 0.05) were indicated by the bold text.

showed significant group differences in nodal degree, shown in
Figure 5A. Figure 5B illustrated that eight regions including the
MOG hub region exhibited prominent hemisphere differences
in the nodal degree. Among these regions, the ACG, middle
cingulate and paracingulate gyri [DCG], posterior cingulate gyrus

[PCG], MOG and inferior parietal lobule [IPL] showed evident
left-greater-than-right asymmetries in the nodal degree, whereas
the ROL, the supramarginal gyrus [SMG] and the angular
gyrus [ANG] exhibited more advantageous nodal degrees in the
right hemisphere than the left hemisphere. Figure 5C showed
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TABLE 3 | Analysis of the asymmetry scores for the connectivity measures.

Connectivity measure Rich club organization NC group t54 (p-value) BD Patients t48 (p-value) BD versus NC t1,102 (p-value)

Density Rich-club 0.068 (0.946) −2.687 (0.010) 1.710 (0.090)

Feeder −1.382 (0.173) −4.096 (<0.001) 2.114 (0.037)

Local 8.363 (<0.001) 2.064 (0.044) 2.972 (0.004)

Strength Rich-club −1.849 (0.070) −2.638 (0.011) 0.101 (0.752)

Feeder 0.019 (0.985) −3.283 (0.002) 5.782 (0.018)

Local 6.837 (<0.001) 1.695 (0.097) 7.220 (0.008)

Significant differences (p < 0.05) were indicated by the bold text.

FIGURE 4 | Aberrant WM connections (A) depicted aberrant WM connections with group differences between NC and BD. (B) Depicted aberrant WM connections
with hemisphere differences between the left and right hemisphere. (C) Depicted aberrant WM connections with group difference in the hemispheric asymmetry of
connection measures. Red edges indicate affected rich-club connections, blue edges indicate affected feeder connections, and green edges indicate affected local
connections. The classification of hub nodes and peripheral nodes is depicted by the inner ring (black squares indicating hub nodes and white squares indicating
peripheral nodes). (D) Proportion of significantly aberrant connections (100% × observed/total) illustrated by rich-club, feeder and local edges.
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FIGURE 5 | Bonferroni-corrected group and hemisphere differences in the nodal degrees of the hub regions (red nodes) and peripheral regions. (A) Depicted regions
with significant group differences in nodal degree. (B) Depicted regions with significant hemisphere differences in nodal degree. (C) Depicted regions with significant
group-by-hemisphere interactions in nodal degree.

significant group-by-hemisphere interactions in nodal degree of
eight peripheral regions. The post hoc analysis indicated that these
interaction effects resulted from significant group differences in
the asymmetry score of regional degree between the two groups,
as shown in Figure 6.

Correlation With Symptoms of BD
This work investigated the relationship between the asymmetry
score of abnormal nodal degrees of peripheral regions and the
clinical symptoms of BD patients. Significant correlations are
depicted in Figure 7. The ROL and SMG regions exhibited a
positive relationship between the asymmetry score of the nodal
degree and the YMRS score. Evident negative correlation was
revealed between the asymmetry score of the LING regional
degree and the HAMD score.

DISCUSSION

This work employed graph theory approaches to analyze
abnormalities in the rich club organization of hemispheric WM
brain networks in BD. Disrupted feeder and local connections
were revealed in BD patients compared to NCs, which resulted
in significantly leftward asymmetry in the feeder connections
and decreased rightward asymmetry in the local connections in

BD patients. Moreover, we found that the asymmetry scores of
the abnormal nodal degrees were significantly correlated with
the symptoms of BD.

Rich Club Organization
The normalized RCs of the hemispheric WM networks increased
and were greater than 1 over a range of degrees for the two groups
of subjects, reflecting the existence of a rich club organization
in the hemispheric WM networks (Yan et al., 2018; Wang et al.,
2019). Moreover, the current work revealed a group of seven
strongly interconnected hemispheric hub nodes comprising the
PUT, INS, PCUN, PoCG, PreCG, TPOsup, and MOG regions
for the two groups, largely consistent with previous studies on
whole-brain networks (Collin et al., 2016; O’Donoghue et al.,
2017; Wang Y. et al., 2018). Our findings suggested that the rich
club organization existed in not only the whole-brain networks
but also the hemispheric-brain networks (Wang et al., 2019).

Disrupted Connections in the Rich Club
Organization in BD
Disruption of the Feeder and Local Connections
This work defined the FA as the weight of the network edge. We
showed that feeder connections exhibited significantly reduced
the connectivity strength but not the density in BD patients,
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FIGURE 6 | Significant group differences in the asymmetry score of the nodal degree. *p < 0.05; **p < 0.01; ***p < 0.001 (Bonferroni-corrected).
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FIGURE 7 | Significant correlations between the asymmetry score of the nodal degree and the symptoms of BD patients. (A) Depicted a positive relationship
between the nodal degree of SMG region and the score of YMRS symptom. (B) Depicted a positive relationship between the nodal degree of ROL region and the
score of YMRS symptom. (C) Depicted a negative relationship between the nodal degree of LING region and the score of HAMD symptom.

suggesting significantly decreased FA in BD patients compared
with the NC group. Our finding is consistent with previous work
(Collin et al., 2016; Collin et al., 2017), showing no disruptions
in the rich-club connections. Moreover, previous DTI studies
(Serene et al., 2010; Collin et al., 2016) on BD have reported FA
reductions in the brain WM related to the NC group, suggesting
our results are reasonable. The FA value expresses the coherence
of the organization of fibers within a voxel and provides an
index of the structural integrity of WM (Keller et al., 2007;
Pierpaoli and Basser, 1996). Hence, disrupted feeder connections
may provide evidence of decreased WM integrity in BD patients.
Prior studies (Sussmann et al., 2009; Benedetti et al., 2011)
have revealed disruptions of the WM integrity is a possible
structural marker of BD.

In addition, BD patients showed significantly decreased
connectivity density of local connections compared with the
NC group, reflecting disrupted WM connections. As one of
the graph indexes, the clustering coefficient measures the
existing number of connections between the node and its
nearest neighbors out of all possible connections (Bullmore and
Sporns, 2009). Previous studies on structural networks have
reported disrupted, lower clustering coefficients (Leow et al.,
2013; O’Donoghue et al., 2017) in BD patients than NCs,
suggesting disrupted WM connections. Moreover, this work
revealed decreased connectivity strength of local connections
in BD patients, reflecting reduced WM integrity. The network
efficiency measures the integration ability of connections in brain
networks (Yasser et al., 2011). Lower values of the network
efficiency were observed in the WM networks of BD patients
(Wang Y. et al., 2018), demonstrating reduced WM integrity.
In summary, this study divided all the WM connections into
three classifications and found significant disruption in both the
feeder and local connections in BD patients. Our findings reflect
that disruptions of feeder and local connections may result in
abnormal WM connectivity in BD patients.

Disconnections in Hub and Peripheral Regions
We found that the hub region PCUN and several peripheral
regions showed decreased nodal degrees in BD patients,
suggesting that disconnections linked these regions. Functional
(Strakowski et al., 2000) and structural (O’Donoghue et al.,
2015) studies have revealed disconnections in the PCUN region.
Moreover, previous WM studies (Cui et al., 2011; Martinot
et al., 2014) have revealed a significant reduction in the FA in
the PCUN region in BD patients. Notably, the PCUN region

has an important role in the default mode network (DMN),
which involved neurocognitive functions such as memory and
attention (Delano-Wood et al., 2012). Combined with reduced
nodal degree in the PCUN in BD, our findings may suggest
that cognitive deficits may be more representative of BD
(Maalouf et al., 2010).

This work revealed significant decrease in nodal degrees
of several peripheral regions in BD patients. We observed
that these abnormal regions (the ANG, middle temporal gyrus
[MTG], inferior frontal gyrus (orbital part) [ORBinf], middle
frontal gyrus (orbital part) [ORBmid], PCG, parahippocampal
gyrus [PHG], rectus gyrus [REC], and middle temporal
gyrus [TPOmid]) were predominantly located in the DMN.
Consistently, studies (Forde et al., 2015; Wang et al., 2017)
have reported aberrant connections in the DMN of BD patients.
The DMN is believed to be involved in affective regulation
(Kaiser et al., 2015). Aberrant connections in the DMN indicated
impaired affective regulation function. Other abnormal regions,
including inferior frontal gyrus (triangular) [IFGtriang], IPL, ITG
and superior parietal gyrus [SPG] regions, are mainly located
in control execution network (CEN). The CEN is responsible
for high-level cognitive functions, such as attention and working
memory (Menon, 2011). Our findings may reflect disrupted
cognitive function in BD patients. Impairments in the function
of the DMN and CEN in BD were revealed in previous structural
(Wang Y. et al., 2018) and functional (Goya-Maldonado et al.,
2016; Wang et al., 2016) studies. Hence, decreased nodal degrees
of peripheral regions in the DMN and CEN may contribute to
core deficits in cognitive and affective functioning in BD patients.

Abnormal Asymmetry of Feeder and
Local Connections in BD
This work revealed significant group differences in the
hemispheric asymmetry of the feeder and local connections.
We observed that feeder connections showed evident leftward
asymmetry in the two connectivity measures in BD patients but
disappeared in the NCs, as shown in Figure 3. Consistently,
our previous work (Wang et al., 2019) on NCs did not find
hemispheric asymmetry in connectivity measures of feeder
connections. Significantly decreased rightward asymmetry in the
two connectivity measures of local connections was found in BD
patients compared with NC, suggesting evident disruption of
WM connections of the right hemisphere. The predominantly
right hemispheric disconnections in BD patients were consistent
with the abnormal right lateralization of WM in BD patients
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(Vederine et al., 2011; Ho et al., 2017). It has been suggested
that the right hemisphere is preferentially involved in emotions
(Schwartz et al., 1975; Wheeler et al., 1993), visuospatial abilities
(Cullen et al., 2016) and that disturbances of the right hemisphere
underlie emotion dysregulation and visuospatial processing
deficits (Caligiuri et al., 2004).

In addition, we found that several peripheral regions,
including the IPL, ROL, LING, SOG, SMG and ITG, showed
evident group differences in the asymmetry score of the nodal
degree. Both feeder and local connections are linked to peripheral
regions. Hence, asymmetry differences in these peripheral
regions might contribute to abnormal hemispheric asymmetry
in the feeder and local connections. Specifically, we found
that the IPL, ITG and DCG regions showed evident leftward
asymmetry of the nodal degree in BD patients. Accordingly,
prior research (Liu et al., 2012) has shown left asymmetry in
the regional homogeneity in the IPL region in BD. Structural
researches (Hallahan et al., 2011; Lisy et al., 2011) have revealed
left asymmetry of gray matter in the ITG region of BD
patients. Functional research (Wang et al.) has showed increased
functional connectivity in the left cingulate cortex and left
temporal gyrus. These studies may provide support for our
above-mentioned findings of leftward asymmetry in regional
degree. Moreover, this work revealed that BD patients showed
decreased rightward asymmetry in the nodal degree of the ROL,
SOG, and SMG, suggesting that these regional degrees in the right
hemisphere were disrupted. Notably, it has been demonstrated
that the right ROL and SMG regions are involved in emotional
regulation (Silani et al., 2013). A reduction in the nodal degree
of these two regions may reflect impaired emotional regulation
in BD. It was proven that alteration of emotional regulation
is one of significant symptoms in BD patients (Pavuluri et al.,
2006), demonstrating that our findings are reasonable. The SOG
is associated with visuospatial processing (Green, 2006; Bearden
et al., 2015). The reduced rightward asymmetry of the nodal
degree in these regions might be associated with deficits in
emotional and visuospatial functions (Bearden et al., 2015).

Clinical Correlation
We found that the asymmetry score of the ROL and SMG
regional degree showed a positive relationship with the YMRS
symptom score. Consistent with our findings, Gao et al. (2017)
found that connectivity in the right ROL was positively associated
with BD features. One research (Jie et al., 2015) reported that
connections linking the ROL and SMG regions correlated with
the BD feature. The LING region showed a negative relationship
with the HAMD score of HAMD, suggesting that the number of
LING-based connections decreases with increasing HAMD score.
A previous research (Lv et al., 2016) revealed that the decreased
connectivity strength linked to the right LING region showed a
significant positive correlation with the scores on the HAMD.
These studies show that our findings are reasonable and correct.
Specially, these three regions are defined as peripheral regions in
this work. Hence, our correlation results may provide support
for our findings of no disruption in rich-club connections and
abnormal hemispheric asymmetries as a marker of BD.

CONCLUSION

This work examined changes in the rich club organization of the
hemispheric WM networks in BD. We revealed no disruption
in the rich-club connections but significantly disrupted feeder
and local connections in BD patients. Moreover, these abnormal
connections involving regions in DMN and CEN supported
impaired attention, working memory and affective functioning
in BD patients. In addition, aberrant asymmetry in the feeder
and local connections was found in BD patients, which might
be related to emotional regulation and visuospatial functions.
The correlation results showed that the abnormal asymmetry of
peripheral regional degree was related to clinical symptoms in
BD patients. These findings highlight the potential for stable rich-
club connections but not feeder and local connections in the rich
club organization of hemispheric WM networks in BD patients.
This work provides another perspective for understanding the
pathological mechanisms of BD.
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Chronotherapy is a treatment for mood disorders, including major depressive disorder,

mania, and bipolar disorder (BD). Neurotransmitters associated with the pathology of

mood disorders exhibit circadian rhythms. A functional deficit in the neural circuits related

to mood disorders disturbs the circadian rhythm; chronotherapy is an intervention that

helps resynchronize the patient’s biological clock with the periodic daily cycle, leading

to amelioration of symptoms. In previous reports, Hadaeghi et al. proposed a non-linear

dynamic model composed of the frontal and sensory cortical neural networks and the

hypothalamus to explain the relationship between deficits in neural function in the frontal

cortex and the disturbed circadian rhythm/mood transitions in BD (hereinafter referred

to as the Hadaeghi model). In this model, neural activity in the frontal and sensory lobes

exhibits periodic behavior in the healthy state; while in BD, this neural activity is in a

state of chaos-chaos intermittency; this temporal departure from the healthy periodic

state disturbs the circadian pacemaker in the hypothalamus. In this study, we propose

an intervention based on a feedback method called the “reduced region of orbit” (RRO)

method to facilitate the transition of the disturbed frontal cortical neural activity underlying

BD to healthy periodic activity. Our simulation was based on the Hadaeghi model. We

used an RRO feedback signal based on the return-map structure of the simulated

frontal and sensory lobes to induce synchronization with a relatively weak periodic signal

corresponding to the healthy condition by applying feedback of appropriate strength.

The RRO feedback signal induces chaotic resonance, which facilitates the transition to

healthy, periodic frontal neural activity, although this synchronization is restricted to a

relatively low frequency of the periodic input signal. Additionally, applying an appropriate

strength of the RRO feedback signal lowered the amplitude of the periodic input signal

required to induce a synchronous state compared with the periodic signal applied alone.

In conclusion, through a chaotic-resonance effect induced by the RRO feedbackmethod,
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the state of the disturbed frontal neural activity characteristic of BD was transformed into

a state close to healthy periodic activity by relatively weak periodic perturbations. Thus,

RRO feedback-modulated chronotherapy might be an innovative new type of minimally

invasive chronotherapy.

Keywords: bipolar disorder, neural network, chaotic resonance, feedback control, chaos-chaos intermittency,

chronotherapy

1. INTRODUCTION

Mood disorders, including major depressive disorder, mania,
and bipolar disorder (BD), exhibit high morbidity, high suicide
rates, and multiple relapses during long-term treatment; effective

treatments and diagnostic methods are long-standing unmet
needs (reviewed in Drevets, 2000; Kessler et al., 2003; The
Wellcome Trust Case Control Consortium, 2007; Price and
Drevets, 2010). Accumulating neuroimaging evidence reveals
the multiple and complex pathologies of mood disorders
(reviewed in Baskaran et al., 2012; Vargas et al., 2013; Chiapponi
et al., 2016; Arnone, 2019). Particularly, functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG)
have revealed region-specific enhancements and depressions in
neural activity in regions such as the amygdala, hippocampus,

and prefrontal cortex associated with major depressive disorder
(reviewed in Baskaran et al., 2012; Arnone, 2019) and BD
(Vargas et al., 2013). Furthermore, deficits in the excitatory
and inhibitory neural pathways, typified as employing the

neurotransmitters glutamic acid and gamma-aminobutyric acid
(GABA), respectively, and abnormal cortical neural networks are
reportedly also associated with mood disorders (Brambilla et al.,
2003; Hasler et al., 2007; Sanacora et al., 2012; Schloesser et al.,
2012; reviewed in Chiapponi et al., 2016). For the treatment
of mood disorders, antidepressants (e.g., selective serotonin
reuptake inhibitors, serotonin, and norepinephrine reuptake
inhibitors) and mood stabilizers (e.g., lithium carbonate and
clozapine) are widely used (Hirschfeld et al., 2003; López-Muñoz
et al., 2006; Tobe et al., 2017). However, in the treatment
of BD, mood stabilizers in particular exhibit troublesome side
effects, such as progressive renal failure and a narrow therapeutic
index (Hirschfeld et al., 2003; López-Muñoz et al., 2006).
Therefore, alternative treatments are needed, either to relieve
symptoms directly or to enhance the effects of conventional
pharmacological therapy, allowing dosages to be minimized.

As an alternative treatment, chronotherapy has been
garnering research attention (reviewed in Abreu and Bragança,
2015). The release of neurotransmitters associated with the
pathology of mood disorders, such as serotonin, noradrenaline,
glutamic acid, GABA, and dopamine, exhibits circadian rhythms
(Weiner et al., 1992; Castaneda et al., 2004; Weber et al., 2004;
Hampp et al., 2008; Cain et al., 2017). In mood disorders,
dysregulated neural circuits disturb these circadian rhythms
(Yeragani et al., 2003; Glenn et al., 2006; Bonsall et al., 2011;
Moore et al., 2014; reviewed in Albrecht, 2013). Chronotherapy
promotes the transition of the disturbed circadian rhythms
to periodic ones, consequently leading to the improvement of

symptoms (Abreu and Bragança, 2015). Chronotherapies include
light therapy and combination therapy (light therapy with drugs;
Leibenluft et al., 1995; Terman and Terman, 2005). However,
light therapy must be individualized, and customization of
the luminance and wavelength of the light for each patient is
difficult. Moreover, the use of inappropriate parameters in light
therapy carries a risk of inducing mixed states, hypomania, and
autonomic hyperactivation in cases of BD (Terman and Terman,
2005; Sit et al., 2007; Abreu and Bragança, 2015).

Circadian rhythms are a phenomenon in which biological
signals exhibiting oscillations synchronize with the daily cycle;
to describe these temporal behaviors at multiple hierarchical
levels, from the molecular to the synaptic network, non-linear
dynamic models have been proposed (Pavlidis, 1969; Goldbeter,
1995; Kurosawa et al., 2006; reviewed in Pikovsky et al., 2003;
Herzog, 2007; Pavlidis, 2012). In addition to circadian rhythms,
non-linear dynamic modeling has been considered key for
understanding the pathology of the transition of mood between
mania and depression with a view to treatment (Daugherty et al.,
2009; reviewed in Hadaeghi et al., 2013a,b). Daugherty et al.
and Hadaeghi et al. have demonstrated that the mood transition
is caused by the phenomenon of chaos-chaos intermittency,
in which the orbit of an oscillator in the phase plane hops
between separated chaotic attractor regions. Hadaeghi et al.
demonstrated the effect using the forced Duffing oscillator and
the Liénard oscillator (Daugherty et al., 2009; Hadaeghi et al.,
2013a). Furthermore, to explain the relationships between deficits
in neural networks in the frontal cortex and disturbances of
circadian rhythm/mood transitions in BD, Hadaeghi et al. and
Bayani et al. proposed a non-linear dynamic model (referred
to as the Hadaeghi model in this study) composed of frontal
and sensory cortical neural networks interacting with the
hypothalamus (Hadaeghi et al., 2016; Bayani et al., 2017). In this
model, activity in the neural networks of the frontal and sensory
cortices exhibits periodicity in the healthy state but is transferred
to a state of chaos-chaos intermittency in patients with BD.
The temporal fluctuation based on the healthy periodic state
reflects the controlling parameter of the circadian pacemaker
in the hypothalamus (Hadaeghi et al., 2016). Consequently,
disturbances in the circadian rhythm, which are observed in
BD because of mood transitions, appear (Hadaeghi et al., 2016;
Bayani et al., 2017). The circadian rhythms reproduced by
the model are highly congruent with actual clinically observed
disturbances of circadian rhythms (Hadaeghi et al., 2016).

Accumulating research on the effect of fluctuations on
synchronization phenomena in non-linear systems reveals that
fluctuations induce many types of synchronization, such as chaos
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synchronization, coherence resonance, stochastic resonance,
and chaotic resonance (reviewed in Pikovsky et al., 2003;
Anishchenko et al., 2007; Rajasekar and Sanjuán, 2016). The
mechanism of stochastic resonance in particular, in which
synchronization to a weak input signal is enhanced by additive
noise, has biomedical applications, such as the development
of devices and methods for enhancing human tactile sensory
performance (Enders et al., 2013; Kurita et al., 2013, 2016; Seo
et al., 2014). Similar to the synchronization phenomenon of
stochastic resonance, in chaotic resonance, the synchronization
to a weak input signal is enhanced by the internal chaotic
dynamics instead of additive noise (reviewed in Anishchenko
et al., 2007; Rajasekar and Sanjuán, 2016). Chaotic resonance has
been widely studied in many types of systems, including neural
systems (Nishimura et al., 2000; Nobukawa and Nishimura,
2016; Nobukawa et al., 2016, 2017; Baysal et al., 2019; reviewed
in Nobukawa and Nishimura, 2020). In these fluctuation-
enhanced synchronization phenomena, the strength of the
external perturbation required for the development of a periodic
state is weaker than that required for forced oscillations (Sinha,
1999; reviewed in Pikovsky et al., 2003; Anishchenko et al.,
2007; Rajasekar and Sanjuán, 2016). Therefore, using these
synchronization phenomena may be a strategy for administering
minimally invasive chronotherapy.

According to the Hadaeghi model, in patients with BD, the
presence of chaos-chaos intermittency in the neural activity of
the frontal cortex disturbs the circadian rhythm (Hadaeghi et al.,
2016; Bayani et al., 2017). Therefore, methods that promote the
transition from chaos-chaos intermittency to periodic behavior
may stabilize the disturbed circadian rhythm. As the best
candidate, we proposed a chaos controlling method known as
the “reduced region of orbit” (RRO) method, in which chaos-
chaos intermittency is synchronized to an external, weak periodic
signal using a feedback principle (Nobukawa et al., 2018b).
The RRO feedback signals reduce the absolute values of local
maximum and minimum values of the return-map functions,
causing a bifurcation called attractor merging, which underlies
the chaos-chaos intermittency (Nobukawa et al., 2018b). Because
the synchronization of chaos-chaos intermittency is maximally
facilitated around the attractor-merging bifurcation (review in
Anishchenko et al., 2007; Rajasekar and Sanjuán, 2016), an
appropriate strength of the RRO feedback signal can induce
synchronization, i.e., RRO feedback signals induce chaotic
resonance (Nobukawa et al., 2018b). Initially, the RRO feedback
signal was applied to simple cubic map systems to induce chaotic
resonance (Nobukawa et al., 2018b). Subsequently, the use of
an RRO feedback signal has been applied to several types of
systems, such as coupled cubic maps (Nobukawa et al., 2019a)
and Chua’s circuit (Nobukawa et al., 2020). These studies revealed
that chaotic resonance induced by RRO feedback possesses
advantages over other forms of synchronization induced by
fluctuations (Nobukawa et al., 2019b, 2020). Particularly, the
chaotic resonance induced by the RRO feedback method
exhibits higher sensitivity than stochastic resonances induced
by additive noise and are more adaptable to various types
of attractor conditions (Nobukawa et al., 2019b). Studies on
chaotic resonance induced by the RRO feedback method have

been applied to neural systems (Nobukawa and Shibata, 2019;
Nobukawa et al., 2019b). Therefore, in addition to stochastic
resonance controlled by additive noise in neural systems (Enders
et al., 2013; Kurita et al., 2013, 2016; Seo et al., 2014), chaotic
resonance controlled by RRO feedback is at the stage where
biomedical applications can be considered.

In this context, we hypothesized that the chaotic resonance
induced by RRO feedback will facilitate chronotherapy by
adapting to the daily neural activity of each patient, allowing
for minimally invasive treatments. To verify this hypothesis, we
applied chaotic resonance induced by RRO feedback signals to a
model of a patient with BD based on the Hadaeghi model and
evaluated the transition to periodic behavior of the disturbed
frontal cortical neural activity. In detail, we first developed
the RRO feedback method using the Hadaeghi model from
the return-map structure of the frontal and sensory cortical
neural system. Second, the chaotic resonance induced by an
RRO feedback signal in combination with a weak periodic signal
was evaluated. Third, the amounts of perturbation required for
entrainment were compared between chaotic resonance induced
by RRO feedback and synchronization induced by the application
of a periodic signal alone, i.e., a forced oscillation.

2. MATERIALS AND METHODS

2.1. Neural System Composed of the
Frontal and Sensory Cortices
The pathology of BD involves multiple complex neural pathways
(Sanacora et al., 2012; Schloesser et al., 2012; Tobe et al., 2017).
Hadaeghi et al. (2016) focused on the pathological consequences
of competition between excitatory (glutamatergic) and inhibitory
(GABAergic) neurons in the frontal cortex (Tretter et al., 2011;
Montague et al., 2012) as major etiological factors in BD. They
constructed a neural system composed of the frontal and sensory
cortices to reproduce healthy and disturbed BD-associated neural
activities on a diurnal timescale (Hadaeghi et al., 2016; Bayani
et al., 2017). Figure 1 shows an overview of this system. This
neural system has two neural pathways, excitatory and inhibitory,
from the sensory cortex to the frontal cortex; the neural activity
produced by the interaction between these pathways is fed back
to the sensory cortex (Hadaeghi et al., 2016).

The daily neural activity of the frontal cortex x(n) (n =

1, 2, · · · days), which represents the long-term firing rate
dynamics, is controlled by the competition of the excitatory and
inhibitory neural populations (Hadaeghi et al., 2016):

x(n+ 1) = F(x(n)), (1)

F(x) = B tanh(w2x)− A tanh(w1x), (2)

where w1 and w2 are the synaptic weights of inputs to the
inhibitory and excitatory neural populations, respectively. A and
B correspond to the synaptic weights of the outputs of the
inhibitory and excitatory neural populations, respectively, as
overall neurotransmitter levels. The parameters used in this study
were determined by previous research (Hadaeghi et al., 2016;
Bayani et al., 2017) as follows: w1 = 0.2223,w2 = 1.487, and
B = 5.82. In this study, as well as in the previous research, A
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is the main bifurcation parameter (Hadaeghi et al., 2016; Bayani
et al., 2017).

2.2. Controlling Frontal Cortical Neural
Activity by RRO Feedback
Hadaeghi et al. demonstrated that healthy circadian rhythms
and the disturbed circadian rhythms associated with BD are
produced by a period-p state in the periodic window and a
chaos-chaos intermittency state in the frontal cortical neural
activity, respectively (Hadaeghi et al., 2016). The concrete
behaviors of frontal neurons x(n) given by Equations (1) and

FIGURE 1 | Overview of the neural system proposed by Hadaeghi et al.,

composed of the frontal and sensory cortices and reproducing neural activity x

on a diurnal timescale (Hadaeghi et al., 2016).

(2) corresponding to healthy and BD states are demonstrated
in section 3.1. In this study, we developed a feedback signal
to facilitate the transition of the chaos-chaos intermittency
of x(n) to the period-p state using an RRO-type chaotic
resonance. An overview of the system for this control method
is presented in Figure 2. The daily neural activity of the
frontal cortex x(n) is controlled by RRO feedback signals
Ku(x) and a periodic input signal S(n) = α sin(2πn/p),
as follows:

x(n+ 1) = F(x(n))+ Ku(x(n))+ S(n), (3)

u(x) = −(x− xd) exp(−(x− xd)
2
/(2σ 2)). (4)

Here, K, xd, and σ represent the RRO feedback strength, the
merging point of two chaotic attractors, and a parameter to
determine the region of the RRO feedback effect, respectively.
In this study, xd = 0 and σ = 1.0 were used, because the
return-map structure has a point symmetry at around x = 0
with local maximum and minimum values of the map function
located within the region −σ < x < σ (σ = 1.0) (Nobukawa
et al., 2018b). We used four values, 4, 8, 16, and 32, for the
period p.

To explain the effect of the RRO feedback signal Ku(x) in the
absence of the periodic input signal (α = 0), Figure 3A shows
the map function of F(x) + K(u(x)) and the orbit x(n) in the
presence/absence of RRO feedback signals. Attractor merging
(chaos-chaos intermittency) occurs if F(fmax) + Ku(fmax) < 0
and F(fmin) + Ku(fmin) > 0, where fmax and fmin are the local
maximum and minimum of the map function, respectively. For
an inhibitory synaptic weight A = 9.8, 12.0 in the absence
of feedback (K = 0), the attractor merging conditions are
satisfied (left graph in Figure 3A). The orbit x(n) hops between

FIGURE 2 | Overview of the Hadaeghi model stimulated by a reduced-region-of-orbit (RRO) feedback signal and a periodic signal.
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FIGURE 3 | (A) Map function F (x)+ Ku(x) for A = 9.8, 12.0 with and without external feedback signals in the return map between x(n) and x(n+ 1). The left and right

graphs indicate, respectively, map functions satisfying attractor merging conditions with K = 0.0 and not satisfying attractor merging conditions with K = 0.2 in the

(Continued)
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FIGURE 3 | A = 9.8 case and K = 0.7 in the A = 12.0 case. Red and green circles indicate F (fmax)+ Ku(fmax) and F (fmin)+ Ku(fmin), respectively. RRO feedback

separates the merged attractors by decreasing the absolute values of fmax and fmin. (B) RRO feedback signal K(u(x)) for K = 0.2, 0.7. The local maximum and

minimum of K(u(x)) are located at the local minimum and maximum of the F map function, respectively.

FIGURE 4 | System behaviors in the neural network comprised the frontal and sensory cortices as a function of the synaptic weight from the inhibitory neural

population, A, in the absence of feedback and periodic signals (K = 0,α = 0). (Top) Bifurcation diagram of the frontal neural activity x(n) represented by Equation (1)

as a function of A. Blue and red dots indicate positive and negative initial values of x(0), respectively. (Middle) Lyapunov exponent λ as a function of A. (Bottom)

F (fmin,max)+ Ku(fmin,max) as a function of A. The frontal neural behavior in the periodic window 12.5 . A . 13.5 corresponds to that of healthy controls (HC), while the

chaos-chaos intermittent behavior in 9.8 . A . 12.5 and A & 13.5 corresponds to that of patients with BD (Hadaeghi et al., 2016).

positive and negative x regions, i.e., chaos-chaos intermittency
arises. With positive feedback (K = 0.2 in the A = 9.8 case
and K = 0.7 in the A = 12.0 case, Figure 3B), the absolute

values of fmax and fmin are reduced, and the attractor merging
conditions are not satisfied; the orbit x(n) is constrained to
lie within either the positive or negative x region, depending
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FIGURE 5 | (Upper) Map function F (x) (the orbit in the return map) and (Lower) a time series showing frontal cortical neural activity x(n) in the absence of external

feedback or periodic input signals (K = 0,α = 0). (left) Healthy control (HC) (weight from the inhibitory neural population A = 13.0) and (middle and right) bipolar

disorder (BD) (A = 9.8, 12.0). In the return maps, the red and green circles indicate F (fmax)+ Ku(fmax) and F (fmin)+ Ku(fmin), respectively. In both HC and BD, the

attractor merging condition is satisfied with F (fmax)+ Ku(fmax) < 0 and F (fmin)+ Ku(fmin) > 0; the periodic and chaos-chaos intermittent states correspond to HC and

BD, respectively.

on the initial value of x(0), as shown in the right graph
of Figure 3A.

2.3. Evaluation Indices
For the evaluation of the attractor-merging bifurcation,
the conditions F(fmax) + Ku(fmax) and F(fmin) + Ku(fmin)
were utilized. F(fmax,min) + Ku(fmax,min) = 0 corresponds
to the attractor-merging bifurcation point. To judge
the chaotic state of frontal cortical neural activity
x(n), the Lyapunov exponent was calculated as
(Parker and Chua, 2012):

λ =

1

τM

M∑

k=1

ln(
dk(tl = τ )

dk(tl = 0)
). (5)

Here, dk(tl = 0) = d0 (k = 1, 2, · · · ,M) denotes
M perturbed initial conditions to x(n) applied at n =

n0 + (k − 1)τ . Their time evolution for tl ∈ [0 : τ ]
is dk(tl = τ ) = (x(n) − x′(n))|n=n0+kτ . Furthermore,
x′(n) is a perturbation applied to the orbit. λ > 0
and λ < 0 correspond to the chaotic and periodic
states, respectively.

The synchronization between x(n) and S(n) was evaluated
using their correlation coefficient at time delay τ as follows:

C(τ ) =
Csx(τ )
√

CssCxx
, (6)

Csx(τ ) = 〈(S(n+ τ )− 〈S〉)(x(n)− 〈x〉)〉, (7)

Css = 〈(S(n)− 〈S〉)2〉, (8)

Cxx = 〈(x(n)− 〈x〉)2〉, (9)

where 〈·〉 denotes the average in n. In this study, τ is set to the
value for maxτ C(τ ) in each time series of x(n). The values for
maxτ C(τ ) are measured against ten trials with different initial
values of x(0).

To evaluate the amount of the perturbation due to the RRO
feedback signal Ku(x) plus the periodic input signal S(n), we used
the temporal mean value of the squared perturbations:

4 = 〈(Ku(x(n)))2 + (S(n))2〉, (10)

where 〈·〉 denotes the average in n. The values for4 are measured
against ten trials with different initial values of x(0).
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FIGURE 6 | System behaviors in the neural net comprised of the frontal and sensory cortices as a function of the RRO feedback strength K, in the absence of a

periodic signal (α = 0), for BD (A = 9.8, 12.0). (Top) Bifurcation diagram of the frontal neural activity x(n) represented by Equation (3) as a function of K. Blue and red

dots indicate positive and negative initial values of x(0), respectively. (Middle) Lyapunov exponent λ as a function of K. (Bottom) F (fmin,max )+ Ku(fmin,max) as functions

of K. The positive and negative regions of the merged chaotic attractor (λ > 0) were separated by breaking the attractor merging conditions: F (fmin)+ Ku(fmin) > 0 and

F (fmax)+ Ku(fmax) < 0 in K & 0.1 for the A = 9.8 case and in K & 0.7 for the A = 12.0 case.

3. RESULTS

3.1. Frontal Cortical Neural Activity on a
Diurnal Timescale
We demonstrated activity in a neural system composed of the
frontal and sensory cortices. Figure 4 shows the bifurcation
diagram of the frontal neural activity x(n), Lyapunov exponent
λ, and F(fmin,max)+Ku(fmin,max) as functions of synaptic weights
from the inhibitory neural population A in the absence of a
feedback or periodic signal (K = 0,α = 0). With an increase
in the A value, x(n) exhibits a period-doubling bifurcation and
enters a chaotic state A & 8.1 (λ > 0). In 8.1 . A . 9.8, x(n)
is trapped in either the negative or the positive region, depending
on the initial values of x(0), F(fmin)+Ku(fmin) < 0, and F(fmax)+
Ku(fmax) > 0. The attractor merging conditions F(fmin) +

Ku(fmin) > 0 and F(fmax)+Ku(fmax) < 0 are satisfied in A & 9.8;
consequently, x(n) hops back and forth between negative and
positive regions, which is known as chaos-chaos intermittency.

This effect corresponds with the merger of attractors in the
negative and positive regions of the bifurcation diagram. The
window of periodicity is 12.5 . A . 13.5. Hadaeghi et al.
considered that frontal neural activity in the periodic window
corresponds to that of healthy subjects (healthy control [HC]),
whereas chaos-chaos intermittent activity corresponds to that of
patients with BD (Hadaeghi et al., 2016). Figure 5 shows typical
examples of the frontal neural activity x(n) governed by Equation
(1) in HCs and in patients with BD. At A = 13.0, corresponding
with typical HC behavior, x(n) exhibits the periodic-4 state, where
the parameter set is located in the periodic window in the top
part of Figure 4. In this periodic window, various period-p states
exist through period-doubling bifurcation; therefore, as healthy
period-p states, we used p = 4, 8, 16, 32 in this study. At A =

9.8, 12.0, corresponding to BD behavior, x(n) exhibits chaos-
chaos intermittency. In both HC and BD cases, the attractor
merging condition is satisfied with F(fmax) + Ku(fmax) < 0 and
F(fmin)+ Ku(fmin) > 0.
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FIGURE 7 | Synchronization of neural activity x(n) to a weak periodic input signal S(n) (α = 0.01, 0.15, 0.3 and p = 4, 8, 16, 32) and perturbations of the RRO

feedback signal and the periodic input signal in BD cases (A = 9.8, 12.0). Here, the period p values are chosen based on the healthy periodic-p states locating in the

(Continued)
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FIGURE 7 | periodic window in 12.5 . A . 13.5 in Figure 4. Dependence of (Upper) maxτ C(τ ) and (Lower) 4 on the RRO feedback strength K. Solid black lines

and error bars show the mean and standard deviation across ten trials. In the lower panels, the scales of the vertical axes differ. In the case with α = 0.15 and p = 32

(represented by red arrows), maxτ C(τ ) exhibits a unimodal maximum (maxτ C(τ ) ≈ 0.3 in A = 9.8 and maxτ C(τ ) ≈ 0.4 in A = 12.0) at around the attractor-merging

bifurcation at K ≈ 0.06 in A = 9.8, and K ≈ 0.63 in A = 12.0. At this K condition, the perturbation amounts 4 are 0.012, 0.049 in the A = 9.8, 12.0 cases, respectively.

3.2. Transition From Disturbed Neural
Activity to a Periodic State by RRO
Feedback Plus Periodic Input Signal
To enhance synchronization to weak input signals, the system
parameters must be adjusted to those of the attractor-merging
bifurcation (Nobukawa et al., 2018b). Figure 6 shows the
behavior of the neural system composed of the frontal and
sensory cortices as a function of RRO feedback strength K,
in the absence of a periodic signal (α = 0), for BD (A =

9.8, 12.0). Shown are the bifurcation diagram of the frontal neural
activity x(n) given by Equation (3), the Lyapunov exponent λ,
and F(fmin,max)+Ku(fmin,max). The separation of merged chaotic
attractors (λ > 0) into positive and negative regions arises at
the region for F(fmin) + Ku(fmin) < 0, F(fmax) + Ku(fmax) > 0
in K & 0.1 for the A = 9.8 case and in K & 0.7 for the
A = 12.0 case.

Subsequently, synchronization of x(n) to a weak periodic
input signal S(n) (α = 0.01, 0.15, 0.3 and p = 4, 8, 16, 32) and the
evaluated perturbations of the RRO feedback and periodic signals
are shown. Here, the p values are chosen based on the healthy
periodic-p states locating at the periodic window in 12.5 . A .

13.5. Figure 7 shows the dependence of maxτ C(τ ) and 4 on
the RRO feedback strength K. In the case with α = 0.15 and
p = 32, maxτ C(τ ) exhibits a unimodal maximum (maxτ C(τ ) ≈
0.3 in A = 9.8 and maxτ C(τ ) ≈ 0.4 in A = 12.0) at
around the attractor-merging bifurcation defined as F(fmin,max)+
Ku(fmin,max) = 0 at K ≈ 0.06 in A = 9.8 and K ≈ 0.63 in
A = 12.0 (see Figure 6), i.e., chaotic resonance is induced by
the RRO feedback signal. Therefore, applying the RRO feedback
signal together with a weak periodic signal brings the neural
activity x(n) of BD close to the healthy periodic state. This chaotic
resonance is induced when the perturbation 4 = 0.012, 0.049, at
A = 9.8, 12.0, respectively. This perturbation is relatively small
in comparison to the variation range: −2.5 . x(n) . 2.5, as
shown in the bifurcation diagram of Figure 6. Under conditions
of higher input frequency (p = 2, 4, 8, 16) or weaker signal
strength (α = 0.01), the values of maxτ C(τ ) are significantly
reduced. At stronger signal strength (α = 0.3), the values of
maxτ C(τ ) exhibit a tendency to decrease monotonically with
increasing K. Thus, chaotic resonance can be induced by RRO
feedback signals at an appropriate signal strength and frequency.
Figure 8 shows a typical time series of frontal neural activity x(n)
in synchronization with a weak periodic input signal S(n) under
conditions that induce chaotic resonance in Figure 7, i.e., p =

32,α = 0.15, and K = 0.06 in the A = 9.8 case; and K = 0.63 in
the A = 12.0 case. The result shows synchronization between the
chaos-chaos intermittency of x(n) and the periodic input signal
S(n), with hopping between positive and negative x(n) regions.
Additionally, Figure 9 shows the bifurcation diagram of x(n)
represented by Equation (3) as a function of K under a weak

periodic input signal S(n) (p = 32,α = 0.15) in BD, in (A =

9.8, 12.0) cases. The chaos-chaos intermittency between positive
and negative x(n) regions is maintained until around the peak of
maxτ C(τ ) (represented in Figure 7) in K . 0.18 for the A = 9.8
case and inK . 0.79 for theA = 12.0 case. Therefore, the chaotic
resonance confirmed in Figure 7 produces synchronization of
the chaos-chaos intermittency with the periodic input signal S(n).

To evaluate the effect of the RRO feedback signal on
synchronization, we compared the synchronization induced by
RRO feedback with that in its absence (K = 0). Figure 10
shows the dependence of maxτ C(τ ) and4 on the signal strength
α in the case of no RRO feedback under the condition where
chaotic resonance is induced by the RRO feedback signal at
p = 32 in Figure 7. In the A = 9.8 case with α & 0.22,
maxτ C(τ ) exceeds 0.3, which corresponds to the maximum
value of maxτ C(τ ) under RRO feedback presented in Figure 7.
Moreover, the perturbation amount 4 at α ≈ 0.22 required
for accomplishing maxτ C(τ ) ≈ 0.3 is approximately 0.025;
however, under RRO feedback, it is 4 ≈ 0.012 at K ≈ 0.06
for a peak correlation of maxτ C(τ ) ≈ 0.3. Therefore, the RRO
feedback signal reduces the amount of perturbation needed for
the transition to the periodic state. In the A = 12.0 case, the
same tendency seen in the A = 9.8 case is confirmed. That is, the
perturbation amount 4 at α ≈ 0.95 required for accomplishing
maxτ C(τ ) ≈ 0.4 is approximately 0.41; however, under RRO
feedback, it is 4 ≈ 0.049 at K ≈ 0.63 for a peak correlation
of maxτ C(τ ) ≈ 0.4.

4. DISCUSSION AND CONCLUSIONS

In this study, we verified our hypothesis that chaotic resonance
induced by RRO feedback signals can enable the delivery of
chronotherapy by minimally invasive treatments. In a simulation
based on the Hadaeghi model, we evaluated the transition
of the disturbed frontal cortical neural activity corresponding
to BD to the periodic behavior found in the HCs that was
induced by RRO feedback signals. We found that the RRO
feedback signal, which is based on the return-map structure of
the modeled frontal and sensory cortical neural system, induced
synchronization to weak, periodic signals corresponding to the
healthy condition at appropriate feedback strength, although this
synchronization was restricted to a relatively low frequency of
the input signal. Thus, the chaotic resonance induced by the
RRO feedback signal facilitates the transition to a state that
is close to healthy, periodic frontal neural activity in the case
where this activity has a relatively low frequency. Additionally,
the combined amount of perturbation due to the RRO feedback
signal and the periodic input signal was significantly smaller than
that required for inducing a synchronous state by applying only
the periodic signal.
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FIGURE 8 | Typical time series of frontal neural activity x(n) in synchronization with a weak periodic input signal S(n) under the conditions for inducing chaotic

resonance shown in Figure 7. Synchronization between the chaos-chaos intermittency of x(n) and the periodic input signal S(n) is shown, which features hopping

between positive and negative x(n) regions (maxτ C(τ ) ≈ 0.3, 0.4 in A = 9.8, 12.0 cases, respectively).
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FIGURE 9 | Bifurcation diagram of the frontal neural activity x(n) represented

by Equation (3) as a function of RRO feedback strength K under a weak

periodic input signal S(n) (p = 32,α = 0.15) in BD (A = 9.8, 12.0) cases. Blue

and red dots indicate positive and negative initial values of x(0), respectively.

The chaos-chaos intermittency between positive and negative x(n) regions is

maintained in K . 0.18 for the A = 9.8 case and in K . 0.79 for

the A = 12.0 case.

First, we must consider the reason the RRO feedback signal
facilitates synchronization by small perturbations. Over the past
few decades, studies of non-linear control aimed at stabilizing
chaotic activity have proposed many methods such as the
Ott-Grebogi-Yorke method, the delay feedback method, and
the H∞ method (Ott et al., 1990; Pyragas, 1992; Nakajima,
1997; Jiang et al., 2005; reviewed in Schöll and Schuster,
2008). These conventional chaos control methods stabilize
the chaotic orbit to equilibrium points and periodic orbits.
In contrast, the RRO feedback method does not eliminate
chaotic behavior but adjusts local maximum and minimum
values of the map function; consequently, the feedback strength
at which chaotic behavior is maintained in RRO is smaller
than that of conventional chaos control methods, in which
chaotic behavior is completely suppressed (Nobukawa et al.,
2018b). Moreover, by virtue of chaotic resonance at around
the attractor-merging bifurcation induced by the RRO feedback
signal, chaos-chaos intermittency synchronizes with input signals
even at low input-signal strength (Sinha, 1999; Nishimura
et al., 2000; reviewed in Anishchenko et al., 2007; Rajasekar
and Sanjuán, 2016). Utilizing these advantages of the RRO
feedback method and of chaotic resonance should facilitate the

transition of the disturbed neural activity of BD to a healthy
periodic state.

Furthermore, the application of RRO feedback signals
with periodic input signals shows great promise for actual
chronotherapy practice. In current chronotherapy, the
administration of the light stimulus and the medication
occurs at a fixed time each day to enable the transition of neural
activity to a periodic state with a circadian period (Yeragani
et al., 2003; Glenn et al., 2006; Bonsall et al., 2011; Moore
et al., 2014; reviewed in Albrecht, 2013). This treatment may
correspond to the case we consider here, in which neural
activity is stabilized by applying only a periodic input signal (see
Figure 10). The application of the light stimulus and medication
on a schedule modulated by the daily frontal neural activity
of each patient would correspond to the application of RRO
feedback signals in combination with the periodic input signal,
in which the amount of perturbation needed for the transition
to the periodic state is expected to be significantly reduced.
That is, this strategy may lead to a reduction in the amounts of
stimulus and medication necessary to transition from a disturbed
frontal neural activity to a healthy periodic state. Furthermore,
this effect might also contribute to a reduction in mixed states,
hypomania, and autonomic hyperactivations that can occur
in BD chronotherapy due to overapplication of light stimuli
and medication. Additionally, methods for measuring the daily
variation of frontal neural activity are now under development,
with a focus on EEG approaches (Croce et al., 2018; González
et al., 2019). These methods might contribute to the realization
of a form of chronotherapy modulated by RRO feedback.

The following limitations of this study must be considered.
First, only the neural system composed of frontal and sensory
cortices was considered. However, the circadian rhythms targeted
in chronotherapy are produced not only by the frontal and
sensory cortices but also by the hypothalamus (Hadaeghi et al.,
2016; Bayani et al., 2017). Therefore, the evaluation of chaotic
resonance induced by the RRO feedback method in a neural
system comprising both the frontal/sensory cortex and the
hypothalamus is important for evaluating its applicability to
chronotherapy. Second, we used competition between excitatory
and inhibitory neurons in this study to describe long-term
neural dynamics in the frontal cortex. However, the questions
of what reflects the long-term dynamics of brain activity and
what mechanism produces it are currently controversial (Croce
et al., 2018; González et al., 2019). Therefore, it is important that
our proposed method be verified with models based on other
neural mechanisms for producing long-term neural dynamics
in the frontal cortex. In such evaluations, the use of spiking
neuron models, which exhibit highly realistic neurodynamics
(Nobukawa et al., 2017, 2018a, reviewed in Ma and Tang, 2017),
would enhance the pathological validity of the neural network
used to simulate BD (Brambilla et al., 2003; Hasler et al.,
2007; Sanacora et al., 2012; Schloesser et al., 2012; reviewed in
Chiapponi et al., 2016). Third, from the viewpoint of chaotic
resonance, the disturbed neural activity described as chaotic
dynamics in this study was close to the healthy periodic state.
However, to stabilize more challenging forms of chaotic behavior,
other candidate chaos control methods must be considered; we
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FIGURE 10 | Synchronization of neural activity x(n) to a periodic input signal S(n) (p = 32) and perturbation by this signal in the absence of RRO feedback.

Dependence of (Upper) maxτ C(τ ) and (Lower) 4 on signal strength α. Solid black lines and error bars show the mean and standard deviation across ten trials.

Horizontal red dashed lines in the upper figure indicate the maximum values of maxτ C(τ ) observed for the RRO feedback signals shown in Figure 7. Vertical blue

dotted lines in the lower figures give the minimum signal strengths α needed for exceeding the maximum value of maxτ C(τ ) in the presence of the RRO feedback

signals given in Figure 7. Horizontal red dashed lines in the lower figures indicate the values of 4 at K, where maxτ C(τ ) peaks in Figure 7. Compared with runs

having an RRO feedback signal, a larger perturbation (4 & 0.025 in the A = 9.8 case and 4 & 0.41 in the A = 12.0 case) is needed to achieve the synchronous state

with maxτ C(τ ) & 0.3 in the A = 9.8 case and maxτ C(τ ) & 0.4 in the A = 12.0 case.

plan to research these points in the future. In addition to model-
based studies, the methods of measuring the daily-timescale
variation in the frontal neural activity that have recently been
proposed (Croce et al., 2018; González et al., 2019) will be crucial
for applications and will aid in the estimation of the controlling
parameters required by RRO feedback methods.

In conclusion, in this simulation study, chaotic resonance
induced by the RRO feedback method enabled the disturbed
frontal neural activity characteristic of BD to be transitioned
close to a healthy periodic state by relatively weak perturbations.
Despite its limitations, this study demonstrated that
chronotherapy modulated by the RRO feedback method
might be a new type of minimally invasive therapy for BD.
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Objective: To study the effect of directional deep brain stimulation (DBS) electrode

configuration and vertical electrode spacing on the volume of tissue activated (VTA) in

the globus pallidus, pars interna (GPi).

Background: Directional DBS leads may allow clinicians to precisely direct current fields

to different functional networks within traditionally targeted brain areas. Modeling the

shape and size of the VTA for various monopolar or bipolar configurations can inform

clinical programming strategies for GPi DBS. However, many computational models of

VTA are limited by assuming tissue homogeneity.

Methods: We generated a multimodal image-based detailed anatomical (MIDA)

computational model with a directional DBS lead (1.5mm or 0.5mm vertical

electrode spacing) placed with segmented contact 2 at the ventral posterolateral

“sensorimotor” region of the GPi. The effect of tissue heterogeneity was examined

by replacing the MIDA tissues with a homogeneous tissue of conductance 0.3

S/m. DBS pulses (amplitude: 1mA, pulse width: 60 µs, frequency: 130Hz) were

used to produce VTAs. The following DBS contact configurations were tested:

single-segment monopole (2B-/Case+), two-segment monopole (2A-/2B-/Case+ and

2B-/3B-/Case+), ring monopole (2A-/2B-/2C-/Case+), one-cathode three-anode bipole

(2B-/3A+/3B+/3C+), three-cathode three-anode bipole (2A-/2B-/2C-/3A+/3B+/3C+).

Additionally, certain vertical configurations were repeated with 2mA current amplitude.

Results: Using a heterogeneous tissue model affected both the size and shape of the

VTA in GPi. Electrodes with both 0.5mm and 1.5mm vertical spacing (1mA) modeling

showed that the single segment monopolar VTA was entirely contained within the

GPi when the active electrode is placed at the posterolateral “sensorimotor” GPi. Two

segments in a same ring and ring settings, however, produced VTAs outside of the GPi

45
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border that spread into adjacent white matter pathways, e.g., optic tract and internal

capsule. Both stacked monopolar settings and vertical bipolar settings allowed activation

of structures dorsal to the GPi in addition to the GPi. Modeling of the stacked monopolar

settings with the DBS lead with 0.5mm vertical electrode spacing further restricted VTAs

within the GPi, but the VTA volumes were smaller compared to the equivalent settings of

1.5 mm spacing.

Keywords: VTA, DBS, GPi, heterogeneous, Parkinson’s disease, directional, segmented, current steering

INTRODUCTION

Deep brain stimulation (DBS) is an established therapy
for treatment of advanced movement disorders including
Parkinson’s disease, tremor, and dystonia. In Parkinson’s disease,
in addition to the subthalamic nucleus (STN), the posterolateral
“sensorimotor” region of the globus pallidus pars interna (GPi)
is also targeted due to its larger size and demonstrated efficacy
to improve tremor, bradykinesia, rigidity, and drug-induced
dyskinesia (Bejjani et al., 1998; Williams et al., 2014; Mirza et al.,
2017; Wong et al., 2019). While several studies have reported
similar motor benefits when comparing GPi to STN DBS, others
have reported less improvement in rigidity and bradykinesia with
GPi DBS compared to STNDBS (Krack et al., 1998; Houeto et al.,
2000; Okun et al., 2009; Volkmann et al., 2009). In dystonia, GPi
is the DBS target of choice with demonstrated long-term efficacy
and cost-benefit (Volkmann et al., 2012).

More recently, studies showing significant improvement in
bradykinesia with GPi DBS examined the location of the DBS
lead within the pallidum and noted that superior outcomes were
associated with active contacts located in the dorsal portion
of the GPi near the medial medullary lamina (Bejjani et al.,
1998; Krack et al., 1998; Yelnik et al., 2000). In addition,
stimulation of the external segment of the globus pallidus (GPe)
has also been demonstrated to improve bradykinesia and rigidity
symptoms (Vitek et al., 2004; Johnson and McIntyre, 2008;
Johnson et al., 2012). Therefore, stimulating at the level of
medial medullary lamina between GPi and GPe is an emerging
concept in GPi programming. The exact mechanisms of GPi
DBS-induced symptom relief are still under active investigation.
It is likely that, similar to STN DBS where stimulation appears
to activate axons leaving and adjacent to the STN (Hashimoto
et al., 2003; Xu et al., 2008), a similar mechanism exists for GPi
DBS (Johnson et al., 2012; Zhang et al., 2012; Muralidharan et al.,
2017). Thus it is likely that stimulation of this region near the
medial medullary lamina activates not only GPi motor efferents,
but also axons passing through or adjacent to GPi (Parent et al.,
1995; Sato et al., 2000).

Computational modeling of the volume of tissue activated
(VTA) in DBS is a widely accepted technique that facilitates
visualization of the affected or activated tissue areas surrounding
the DBS electrode. Though it is a simplified method that
does not differentiate between the activation of different neural
components (i.e., cell body vs. fiber), or account for the different
cell types and orientations, the VTA is generally considered to
represent an “averaged” response that can be correlated with

programming settings and clinical results (Dembek et al., 2017;
Johnson et al., 2019; Reich et al., 2019).

Traditional VTA studies have focused on monopolar settings
with ring electrodes, where a sphere-shaped activation profile
is generated (Butson and McIntyre, 2008). The segmented DBS
lead, which has multiple electrode segments around the lead
circumference, was recently approved by the FDA for targeting
STN, GPi, and the ventral intermediate nucleus of the thalamus
(VIM). Recent modeling studies have now extended the VTA
calculation to segmented DBS leads. Activation of a single
electrode segment of these leads resulted in a shift in laterality
of the VTA, sometimes known as directional DBS (Buhlmann
et al., 2011; Zhang et al., 2019). However, there have been very few
studies where bipolar settings have been used to model the VTA
(Buhlmann et al., 2011; Duffley et al., 2019), and among those
that have, homogeneous tissuemodels were used. Additionally, to
date there has been a lack of computational modeling studies that
incorporate both heterogeneous tissue properties and bipolar
settings in this space.

Incorporating tissue heterogeneity and anisotropy plays an
important role in shaping the VTA (Butson et al., 2007;
Gunalan et al., 2017, 2018; Howell and McIntyre, 2017;
Ineichen et al., 2018). When incorporating tissue heterogeneity,
the electric field changes from spherical to irregular shapes
that are stimulation target-dependent (Ineichen et al., 2018).
Additionally, according to vector analyses of electric field
isolevels, compared to other DBS targets, the GPi has the
greatest angles of deviation as a result of tissue heterogeneity and
anisotropy (Aström et al., 2012). Taken together these findings
provide compelling evidence to suggest that the actual VTA
is not spherical, and more physiologically and anatomically
accurate models are necessary to more precisely model
tissue activation.

By leveraging our previous work calculating VTAs in the
STN (Zhang et al., 2019), we hereby report a computational
model for VTAs in the globus pallidus (GP) using directional
leads. Here, we demonstrate the utility and potential advantages
of using two vertical electrode spacing options (0.5mm and
1.5mm) with various monopolar and bipolar settings, and
their effects on the size and shape of the resultant VTA in
a heterogeneous tissue model. This study provides a simple
framework to guide the selection of lead segments/contacts
and programming parameters to sculpt the VTA in order to
target two example regions of the pallidum: the posterolateral
“sensorimotor” GPi, or GPi and GPe at the level of medial
medullary lamina.
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METHODS

Finite Element Models
A finite element model (FEM) of the human head was
implemented in Sim4Life v4.0 with the multimodal image-based
detailed anatomical (MIDA) model following the methodology
described in our previous publication (Zhang et al., 2019). Since
in the original MIDA model, the GP was not segmented into
the internal and external segments, we performed a manual
segmentation by overlaying the MNI atlas onto the MIDA
GP (performed with FSL), and then segmenting the region
into 3 sub-regions: GPi, GPe, and medial medullary lamina
(area between GPe and GPi). A segmented DBS lead (Infinity,
Abbott) with 0.5mm or 1.5mm vertical inter-electrode spacing
was placed in the globus pallidus (23 degrees toward anterior
direction in sagittal plane and 11 degrees toward lateral direction
in coronal plane with segmented electrode 2A facing anterior),
with segmented contact 2 in the ventral posterolateral portion of
the left GPi. The surface of contact 2 was ∼2.25mm away from
the lateral boarder and 2.3mm from the posterior boarder of the
GPi (Supplementary Figure 1). A 0.5mm thick encapsulation
layer was added around the lead (Anderson et al., 2019). The
electrical conductivity of the brain tissues, platinum-iridium
contacts on the DBS lead, and polyurethane insulation on the
lead were determined from the IT’IS database 3.1.1 (DATABASE
≫ IT’IS Foundation)1. To demonstrate the effect of tissue
heterogeneity on the FEM, as an example, a homogeneous tissue
model was also used to calculate VTAs for configuration 4 (see
next section) by replacing the entire internal structures of the
head with homogeneous tissue with a 0.3 S/m conductance
(Geddes and Baker, 1967).

Electrical potentials were calculated using various contact
configurations by setting the boundaries of the active contacts
to a voltage-controlled condition (Dirichlet boundary condition).
The return electrode (anode) of the monopolar stimulation
was represented using the boundaries of the epidermis layer in
the MIDA head model. A bounding box of size 175.2 x 227.5
x 251.5mm that encompassed all other model structures was
modeled with zero normal current density (Neumann boundary
condition). To determine the equivalent current delivered, the
total current flux was calculated over the boundary of the
cathode(s). Given the input voltage and the current flux on
the cathode(s), an impedance of the electrode-tissue interface
(ETI) was calculated and the equivalent current delivered
was computed.

A rectilinear, volumetric mesh grid was generated from the
model geometries with 0.04mm maximum edge size for the
electrodes, 0.1mmmax edge size for structures near the electrode
(in a region of interest of 27 x 20 x 23mm3), and 5mmmaximum
step size elsewhere (over 98 million elements total). Convergence
was set to a relative value of 1e-8 and an absolute value of 1e-
10. Finally, an electromagnetic ohmic quasi-static solver was used
to solve the following equation at the mesh nodes at the given

1DATABASE. IT’IS Foundation. Available online at: https://itis.swiss/virtual-

population/tissue-properties/database/ (accessed August 31, 2018).

current amplitude and frequency:

∇ · ǫ ∇ϕ = 0 (1)

where ǫ is the complex electric permittivity, ϕ is the electric
potential, and:

ǫ = ǫRǫ0 +
σ

jω
(2)

where ǫR is the relative permittivity, ǫ0 is the relative permittivity
of perfect vacuum, and σ is the electrical conductivity.

Multi-compartment axons that were 20mm in length and
5.7µm diameter were distributed on axonal planes that were
perpendicular to the lead and 0.5mm apart from one another.
Within each plane, the axons were arranged parallel to one
another with 0.25mm spacing and rotated 5 times by 30 degrees
per rotation. The electrical potentials from the FEM were
interpolated along each neuron and delivered as extracellular
stimulation to determine which axons were activated for a
given contact configuration and stimulation set. All neuronal
activations were computed in Sim4Life.

DBS Parameters and Configurations
DBS pulses of 1mAwith 60µs pulse width (biphasic with passive
discharge) and 130Hz were used when modeling VTAs. Since
electrode 2A was facing anterior, electrode 2B was determined to
be the most optimal electrode for activation of posterolateral GPi.
Therefore, the following common DBS contact configurations
were tested (Figure 1):

1. single-segment monopole (2B-/Case+)
2. two-segment monopole

a. row (2A-/2B-/Case+)
b. vertically stacked (2B-/3B-/Case+)

3. ring monopole (2A-/2B-/2C-/Case+)
4. one-cathode-ring-anode bipole (2B-/3A+/3B+/3C+)
5. ring-cathode-ring-anode bipole (2A-/2B-/2C-/3A+/3B+/

3C+).

Configuration 2b, 4, and 5, which contain vertically activated
segments, were repeated for a directional DBS lead with 0.5mm
vertical electrode spacing. In addition, all configurations were
repeated using an amplitude of 2 mA.

All configurations that contained two or more segments were
simulated as if the electrodes were connected via hardware
parallel connections. This is sometimes referred to as “co-
activation” and is a common method of activation when the DBS
system only has a single current source.

Volume of Tissue Activated Generation
The volumes of tissue activated (VTA) were calculated in Matlab
R2017b according to previously described methods by bounding
the action potential initiation (API) sites in space to form a 3D
volume (Zhang et al., 2019). The 3D volumewas then sub-divided
into four volumes: (1) inside GPi, (2) between GPi and GPe, (3)
inside GPe, and (4) outside GP, by partitioning the VTA into
voxels in each region.
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FIGURE 1 | Illustrations of the DBS programming configurations tested.

RESULTS

Effect of Tissue Heterogeneity
Consistent with previous findings, replacing the heterogeneous
MIDA model with a homogeneous model for configuration 4
resulted in VTAs that were 42.9% larger in size and more regular
in shape at the cross sections (Butson et al., 2007; Gunalan
et al., 2017, 2018; Howell and McIntyre, 2017; Ineichen et al.,
2018). The VTA for configuration 4 in a homogeneous and
heterogeneous model is shown in Figure 2 and the transverse
cross-sectional outline in 2B. We used the heterogeneous tissue
model to calculate all remaining VTAs in this study.

VTA Volume
When the active electrode was placed near the ventral
posterolateral “sensorimotor” GPi, and at low current settings
such as 1mA current, the VTAs produced by configurations 1,
2a, and 3 (Figure 1) were entirely within the GPi (Figure 3A).
However, as the current increases from 1 to 2mA, VTAs
enlarged and exceeded the GPi boundary from the ventral side
(and sometimes medial side) into undesired side effect regions
such as the optic tract or the internal capsule (Figure 3C,
blue). Consistent with previous findings, the VTAs with the
single-segment monopole (configuration 1) generated the most
axially asymmetric and largest VTA at the cathodic contact
(Zhang et al., 2019).

FIGURE 2 | (A) Examples of overlapping VTA volumes calculated with

homogeneous tissue and heterogeneous tissue conductance, blue =

homogeneous tissue, black = heterogeneous tissue. (B) A transverse view

showing boundaries of VTAs shown in (A).

For the vertically stacked two-segment monopole
configuration (configuration 2b), at 1mA current amplitude,
the VTA elongated dorsally along the lead and activates more
structures dorsal to the GPi such as the medial medullary lamina
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FIGURE 3 | VTAs for various configurations: (A) 1.5mm vertical spacing with 1mA current, settings 1, 2a, and 3 (see methods), (B) 1.5mm vertical pacing with 1mA

current, settings 2b, 4, and 5, (C) 1.5mm vertical spacing with 2mA current, settings 1, 2a, and 3, (D) 1.5mm vertical pacing with 2mA current, settings 2b, 4, and 5,

(E) 0.5 mm vertical spacing with 1mA current, settings 2b, 4, and 5, (F) 0.5mm vertical spacing with 2mA current, settings 2b, 4, and 5, marron = VTA inside of GPi,

orange = VTA between GPe and GPi (medial medullary lamina), yellow = VTA inside of GPe, blue = VTA outside of GP.

(Figure 3B, orange) and GPe (Figure 3B, yellow). Note that
because the vertical electrodes segments are stacked facing the
same direction, the directionality of the VTA was the same for
stacked two-segment configuration 2b as the single segment
configuration 1. A similar activation profile was also observed
for vertical bipolar settings (configurations 4 and 5), where
VTAs extended to dorsal structures to the GPi (for 1.5 mm
spacing: Figure 3B, and for 0.5 mm spacing: Figure 3E). At
2mA, the VTA volume expanded, also exceeding the ventral
border involving regions associated with the development of
side effects (blue regions in Figures 3D,F). However, the VTAs
of regions associated with side effects were on average 86.6%
smaller in configurations 2b, 4, and 5 (Figures 3D,F) than those
in configurations 1, 2a, and 3 (Figure 3C).

A detailed volume break-down of the VTAs in each of the sub-
regions is summarized in Figure 4 (Supplementary Table 1).
Because configurations 1, 2a, and 3 did not engage any vertical
electrode combinations, these three configurations produced the
same VTA distribution between the 1.5mm DBS electrode and
the 0.5mm DBS electrode (Figure 4A, Supplementary Table 1).
In configurations 2b, 4, and 5, compared to the 1.5mm lead, the
0.5mm DBS lead produced smaller VTAs with the same current
amplitude. The resulting VTA was much more concentrated in
GPi. At 1mA, configurations 2b, 4, and 5 with 0.5mm vertical
electrode spacing produced a VTA that was on average 95.39%

within the GPi, while 1.5mm vertical spacing produced a VTA
that was on average 85.01% in GPi. Similarly, at 2mA current
amplitude, configurations 2b, 4, and 5 with 0.5mm vertical
electrode spacing produced a VTA that was on average 85.45%
in the GPi, while a 1.5mm vertical spacing produced VTA that
was on average 79.86% in GPi.

In the bipolar configurations, switching from configuration
4 to 5, the 1.5mm vertical spacing DBS lead produced
similar VTAs (1.31% increase in volume for 1mA current,
−1.48% decrease in volume for 2mA current, see Figure 4A

and Supplementary Table 1). However, the composition of
volumes activated changed switching from configuration 4 to
5, as the % volume in GPi increased from 77.47 to 94.15%
for 1mA, and from 78.17 to 85.83% for 2mA (Figure 4A,
Supplementary Table 1). For the 0.5mm DBS lead, both the
volume and the % volume within GPi increased when switching
from configurations 4 to 5. The % volume in GPi increased from
93.53 to 97.71% for 1mA current amplitude, and from 84.79
to 88.16% for 2mA. The VTA volumes increased an average of
35.31% switching from configuration 4 to 5.

DISCUSSION

This study explored the effect of tissue heterogeneity and
various electrode montages on the VTA to help inform
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FIGURE 4 | (A) VTA volume for various configurations in different structures. (B) A segmented DBS lead showing various vertical spacing. (C) A visual example of VTA

volume distribution.

directional programming of the GPi. In particular, the effects
of vertical electrode spacing in combination with commonly
used monopolar and bipolar settings on VTAs in both GPi and
structures dorsal to the GPi were examined.

Strategies of Programming GPi DBS Based
on VTAs
To maximize therapeutic response when targeting the
posterolateral GPi, the goal is to maximize the VTA within
the GPi while minimizing VTA extension to off target regions
that are associated with side effects, such as the internal capsule
or optic tract. In this study, we found that if a DBS electrode is
placed well within the sensorimotor territory of the GPi, using a
single segment of the DBS electrode (configuration 1), two active
segments (configuration 2a), or ring mode (configuration 3) can

all produce VTAs that are entirely within the GPi at low current
amplitudes (1mA in this study). Among the three configurations,
single segment activation (configuration 1) produced the largest
VTA. We also observed that if the electrode was placed closer
to regions that could cause side effects we could restrict the
VTA by use a single segment (configuration 1) to steer the
VTA toward the desired region of interest since single segment
activation produced a VTA with maximum axial asymmetry
(Zhang et al., 2019).

Another way to maximize GPi activation without extension
into neighboring structures such as GPe, optic tract or internal
capsule, while offering more flexible selections of configurations
may be to use a DBS lead with 0.5mm vertical spacing.
At low current amplitudes, in addition to the 3 above
mentioned configurations, users can also use vertical stacked
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monopolar settings (configuration 2b) and vertical bipolar
settings (configurations 4, 5).

Vertical configurations (configurations 2b, 4, 5) are generally
helpful to stretch the VTA and involve a greater dorsal-to-
ventral extent of the target that could include the dorsal pallidum
structures such as the medial medullary lamina and/or ventral
portions of GPe. Additionally, one can opt to use a 1.5mm
vertically spaced DBS lead to further elongate and enlarge the
VTA to reach the dorsal pallidum structures. Correspondingly, if
the user wants to increase volume of VTA inside of GPi compared
to dorsal structures, one can switch to the 0.5mm vertical spacing
DBS electrode, or switch from using a monopole as cathode in
a bipolar setting (configuration 4) to using a ring as cathode in
a bipolar setting (configuration 5), as doing so will increase the
VTA volume at the level of the cathode located inside of GPi.
Table 1 summarized these findings.

Note that the electrode with 1.5mm vertical spacing
consistently resulted in larger VTA volume than the one with
0.5mm vertical spacing for the parameters tested. This can
potentially mean that using a DBS lead with 1.5mm vertical
spacing can activate a given volume of GPi and dorsal pallidal
structures with less current amplitude compared to the lead with
0.5mm vertical spacing.

Limitations of Bipolar VTA
The VTA method used in this paper was a direct bounding
method, which bounded the API of axons of various orientations.
This is different from the “center node remapping” method,
where the APIs were remapped to the center node of the activated
axons. The two methods did not differ significantly for cathodal
stimulation, as the API tend to be the node that is closest to
the cathode (Anderson et al., 2019), but because of the virtual
cathode effect, the axons near the anode tend to initiate APIs
that are further toward the distal ends, rather than the node that
is closest to the anode (Slopsema et al., 2018; Anderson et al.,
2019). The direct bounding VTA method used here therefore
resulted in VTAs that were larger at the anode than previously
reported. There was evidence that previously reported method
likely underestimated the activations near the anode (Slopsema
et al., 2018; Anderson et al., 2019; Duffley et al., 2019), therefore,
the method used here that incorporates multiple orientations
orthogonal to the lead offered a more directly interpretable
VTA activation profile, especially for a larger target such as the
globus pallidus, and especially with a lead with larger vertical
spacing (1.5mm). However, a bigger VTA produced by bipolar
stimulations does not directly translate to better therapy or
equate with lower side effect threshold—the shape of the VTA
matters more in terms of overlapping with therapy regions and
side effect pathway activations.

Axonal fiber orientation also matters for bipolar stim
(Slopsema et al., 2018; Anderson et al., 2019). The axonal grid
used in this study contained axons that were perpendicular to
the DBS lead, but in the GP, there are fibers that run parallel to
the lead, and future simlations should certainly include parallel
fibers in the model. This resulted in an under-estimation of the
axonal activation. However, this effect could be compensated by
the choice of using 4.7 um axon fibers, where most of the fibers
in GP have smaller fiber diameter. Overall, The effects of using

TABLE 1 | Summary of strategies of programming GPi DBS based on VTAs.

Desired activation

target

Additional criteria Recommended

vertical spacing

Recommended

configurations

Posterolateral

“sensorimotor” GPi

only

- 0.5mm or 1.5mm 1, 2a, 3

- 0.5mm 2b, 4, 5

GPi, medial medullary

lamina and/or GPe

less GPi

activation

1.5mm 2b, 4

more GPi activation 0.5mm 2b, 5

the direct bounding VTA method, not including parallel fibers,
and using 4.7 um axons should counter-balance each other and
produce a reasonable VTA estimation.

Other Limitations and Future Directions
In this study, we examined commonly used electrode activation
configurations for DBS in the GP. We did not examine many
other possible activation configurations such as multipolar
stimulation or using one segment as the anode, as those
configurations are not commonly practiced in the clinic. Future
studies might include those configurations for a complete
assessment of the VTAs in GPi DBS. Additionally, this current
study only used 1mA and 2mA as stimulation current
amplitudes as examples to offer guidance on the VTA size and
inform programming. The clinician will still need to increase
and titrate the current levels to obtain the best therapeutic
effects, and the end results will be highly dependent on the
location and orientation of the electrode. Additionally, the
parameters simulated here alone were not enough for visually
aided programming—since VTA is not linearly correlated to
the input current amplitude, further subdivision of current
is needed to produce the finer VTAs that can be used for
visual programming.

One other limitation of this study is that only tissue
heterogeneity was reflected with different conductance values.
Tissue anisotropy was not incorporated, which might play an
even bigger role than tissue conductance alone (Aström et al.,
2012). In future studies we plan to introduce tissue anisotropy
into the MIDA model. Additionally, we plan to implement a
patient-specific version of the MIDA model that is extracted
based on the patient’s imaging data. The electrode location
and orientation will be detected by postoperative CTs and co-
registered to theMRIs to produce a more accurate representation
of the VTA in individual patients.

CONCLUSION

We demonstrated for the first time using a heterogenous
tissue conductance computational model that if the traditional
posterolateral “sensorimotor” GPi is the target, depending on
lead placement, using one or more electrode segments of the
same ring with the optimal current level can achieve a VTA the
incorporates a significant region of the sensorimotor GPi without
current spread into adjacent areas. Using a single segment also
produced a VTA with the largest volume. Using stacked vertical

Frontiers in Computational Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 56118051

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zhang et al. Heterogeneous VTA Modeling in GPi

two-cathode settings produced a VTA that expanded the VTA
in the dorsal-to-ventral direction and could be used to include
regions dorsal to the GPi. Alternatively, vertical bipolar settings
can also effectively enlarge the VTA at the anode without
activating areas ventral to the cathode. We also showed that with
these settings and a lead well placed within the sensorimotor
territory of the GPi, using a DBS electrode with 0.5mm vertical
electrode spacing would be beneficial for restricting a greater
percentage of the VTA to the GPi, while a 1.5mm vertical
electrode spacing could be used to expand the VTA volume and
extend the VTA to more dorsal regions.
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Drowsiness is a leading cause of traffic and industrial accidents, costing lives

and productivity. Electroencephalography (EEG) signals can reflect awareness and

attentiveness, and low-cost consumer EEG headsets are available on the market.

The use of these devices as drowsiness detectors could increase the accessibility

of safety and productivity-enhancing devices for small businesses and developing

countries. We conducted a systemic review of currently available, low-cost, consumer

EEG-based drowsiness detection systems. We sought to determine whether consumer

EEG headsets could be reliably utilized as rudimentary drowsiness detection systems.

We included documented cases describing successful drowsiness detection using

consumer EEG-based devices, including the Neurosky MindWave, InteraXon Muse,

Emotiv Epoc, Emotiv Insight, and OpenBCI. Of 46 relevant studies, ∼27 reported an

accuracy score. The lowest of these was the Neurosky Mindwave, with a minimum

of 31%. The second lowest accuracy reported was 79.4% with an OpenBCI study.

In many cases, algorithmic optimization remains necessary. Different methods for

accuracy calculation, system calibration, and different definitions of drowsiness made

direct comparisons problematic. However, even basic features, such as the power

spectra of EEG bands, were able to consistently detect drowsiness. Each specific

device has its own capabilities, tradeoffs, and limitations. Widely used spectral features

can achieve successful drowsiness detection, even with low-cost consumer devices;

however, reliability issues must still be addressed in an occupational context.

Keywords: electroencephalography (EEG), drowsiness detection, low-cost, consumer EEG, fatigue detection,

device portability

INTRODUCTION

Drowsiness is defined as the transition between the states of responsiveness and sleep, during
which reaction times are reduced (US Dot National Highway Traffic Safety Administration, 2018).
Drowsiness or fatigue is a major cause of road accidents and has significant implications for
road safety, due to clear declines in attention, the recognition of dangerous drivers, and the
diminished vehicle-handling abilities associated with drowsiness (Wang, 2011; Solaz et al., 2016).
In addition, drowsiness-related accidents cost billions of US dollars and result in the loss of lives in
industry, including transportation, manufacturing, mining, maritime, and aerospace sectors. Thus,
developing a reliable, non-invasive method for drowsiness detection can save both money and lives
(US Dot National Highway Traffic Safety Administration, 2018).
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Key economic sectors, such as transportation, construction,
security, and manufacturing, reported loss of productivity and
lives due to drowsiness (Wang, 2011; Solaz et al., 2016). In
the transportation sector, drowsiness-influenced road accidents
represent social and economic problems worldwide. In the
European Union (EU), 25% of road accidents have been
associated with fatigue and drowsiness, compared with 40% of
fatal accidents in the United States (US) (Solaz et al., 2016;
Wei et al., 2018). According to a National Highway Traffic
Safety Administration (NHTSA) report, ∼83,000 road accidents
reported annually in the US are caused by driver fatigue. Their
analysis showed that ∼416,000 crashes were caused by drowsy
driving during the 5-year period from 2005 to 2009 (Wang et al.,
2017; US Dot National Highway Traffic Safety Administration,
2018). In 2017, the NHTSA report reported that 3,166 fatalities
resulted from distraction-affected crashes (US Dot National
Highway Traffic Safety Administration, 2018). The factors that
contributed to drowsiness included long working hours, the use
of medication, lack of sleep, and continuous driving (Zhang
et al., 2017). However, the exact definition of drowsiness is
highly variable.

The term drowsiness is sometimes used interchangeably
with the term fatigue in the literature. Although physiological
state detection has been used to detect either (or both)
states, researchers have defined certain differences between
drowsiness and fatigue. Fatigue was defined as the decrease
in physical and mental performance resulting from exhaustion
(Vuckovic et al., 2002; Cabrall et al., 2016). Drowsiness can
be a symptom of fatigue, which can occur without drowsiness
(Vuckovic et al., 2002). Other concepts, such as microsleep,
can be used to describe a similar lack of responsiveness but
have mechanisms distinct from those associated with fatigue
and drowsiness (Davidson et al., 2007; Izquierdo-Reyes et al.,
2016). Electroencephalography (EEG) has been used to identify
these mechanisms, but the body of such work examining these
other concepts is less well-defined than the total body of
work associated with drowsiness research (Bryan Van Hal and
Bossemeyer, 2014; Cabrall et al., 2016; Wang et al., 2017; Rundo
et al., 2019).

The prediction of drowsiness using EEG is a well-defined
research topic. Approaches that utilize conventional EEG systems
have advantages for the quantitative assessment of alertness
levels, which requires expensive computational signal processing
(Mard et al., 2011; Correa et al., 2014; Shabani et al., 2016; Zhang
et al., 2017). Observing changes in the power spectra or spatio-
temporal features of EEG frequency bands have commonly been
used to detect subject drowsiness, but other methods have been
investigated (Ayala Meza, 2017; Min et al., 2017; Majkowski et al.,
2018). EEG-based drowsiness detection systems could be easily
integrated into protective or occupational headgear for use in
occupations that require such equipment (Wilaiprasitporn and
Yagi, 2016).

Research- and medical-grade EEG systems rely on the use of
dozens of channels, rendering such systems impractical for real-
world occupational use (Ries et al., 2014). In contrast, low-cost
EEG systems offer potential solutions for drowsiness prediction.
These systems typically include fewer electrodes than medical

and research headsets, but their low prices make them accessible
to hobbyists, small businesses, and developing countries. The
use of consumer EEG headsets as drowsiness detectors has
been previously investigated (Rodríguez et al., 2013; Van Hal
et al., 2014; Salehi et al., 2015). A review of consumer EEG
headsets as research tools was investigated, but it did not include
occupational contexts (Sawangjai et al., 2019).

This review was conducted to evaluate the feasibility,
complexity, and difficulty of using low-cost EEG systems
for occupational drowsiness detection, such as drivers and
security guards. PRISMA standards for systematic reviews were
considered (Moher et al., 2009). The initial problem was the
cost of drowsiness on economic productivity and safety. The
implementation of low-cost, EEG-based detection could make
the technology more accessible. Drowsiness detection systems
implemented with low-cost EEG devices were compared. The
successful outcomes were low-cost, robust implementations.
A validation required study designs replicating occupational
conditions with multiple subjects. A systematic search was
conducted investigate prior implementations of low-cost EEG-
based drowsiness detection systems.

SEARCH METHODOLOGY

Summary
In recent years, the number of portable, low-cost EEG-based
systems available on the market has increased (Wei et al., 2018).
Research examining the use of low-cost EEG systems has focused
on the continuous recording of EEG data and/or the replication
of larger EEG analytical systems using portable devices. In
this review, we surveyed research papers that described the
use of low-cost EEG devices, focusing on the devices where
the headset was below $1,000 USD in price, independent of
licensing fees: the InteraXon Muse, the Neurosky MindWave,
the Emotiv Epoc, the Emotiv Insight, and the OpenBCI. These
devices represent a sample of widely-used commercial models.
Although other devices and suppliers have been used (Li and
Chung, 2015), the search was focused on those non-invasive EEG
devices that were below $1000, not marketed as medical devices,
accessible to consumers, prominent in the hobbyist community,
and have provided tools or options for brain-computer interface
(BCI) applications. Table 1 presents a comparison of these
commercial, low-cost EEG headsets. Most low-cost headsets use
dry electrodes, which are more convenient for casual users.
Similarly, most headsets come bundled with software that
includes research tools, open-source software, and additional
hardware (Lin et al., 2014; Farnsworth, 2017).

Headset Information
The primary investigated headsets were the InteraXon Muse,
the Neurosky MindWave, OpenBCI, and the Emotiv Epoc
and Insight.

InterAxon Muse
The InteraXon Muse is a compact EEG system that measures
brain activity via 4 EEG sensors (Muse, InteraXon) and can utilize
Bluetooth to send data to nearby devices. Muse claimed that
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TABLE 1 | Comparison of consumer EEG headsets.

Device Electrodes Sampling Rate External Information References

InteraXon -Rigid electrode placement - 256Hz - Research Tools for Windows, Mac,

and Linux

Doudou et al., 2018

Muse v1, v2 - 4 channels: AF7, AF8, TP9, TP10 - 12 bits - Source Developer Kit (SDK) for

Android, IOS, Windows

- Cost: $200 USD

Neurosky MindWave - Rigid electrode placement - 512Hz -SDK Available Doudou et al., 2018

- 1 channel: AFz - 12 bits - Cost: $99.99 USD

OpenBCI - Up to 16 channels - 256Hz -Open-source software, firmware,

and hardware

Doudou et al., 2018

- Flexible electrode placement at 35

locations

- 24 bits -Cost: $500 USD for 8 channels,

$949 USD for 16

Emotiv Epoc, Flex, and Insight - Rigid electrode placement - 128Hz -Research Tools for Windows, Mac,

and Linux

Doudou et al., 2018

- Epoc: 14 channels (AF3, F7, F3, FC5,

T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4)

- 14 bits -Cost: $799 USD (Epoc), $299 USD

(Insight)

-Insight: 5 channels (AF3, AF4, T7, T8, Pz)

the headband could assist the user to achieve a state of deep
relaxation. Based on the 10–20 International electrode placement
convention, the dry electrodes were located at FPz, AF7, AF8,
TP9, and TP10 (Krigolson et al., 2017). Electrode FPz was utilized
as the reference electrode. The specifications detailed correspond
to the original Muse device.

Neurosky Mindwave
Neurosky developed the single-channel MindWave as a low-cost,
single-channel, dry EEG headset that is able to wirelessly transmit
EEG via Bluetooth Low Energy or classic Bluetooth (Doudou
et al., 2018). TheMindWave device consists of a headset, with a T-
shaped headband, a wider ear clip, and a flexible arm. The device’s
reference and ground electrodes are placed on the ear, while
the EEG electrode is positioned on the forehead above the eye.
Neurosky EEG headsets come with training software, educational
apps, and software developer information. Free developer tools
are also available for researchers. While Neurosky makes other
models, the MindWave was the most frequently used model in
the relevant studies (Lin et al., 2014; Doudou et al., 2018).

OpenBCI
The OpenBCI Ultracortex Mark IV is an open-source, 3D-
printable headset intended to work with any OpenBCI board.
It is capable of recording research-grade brain activity EEG.
The Ultracortex Mark IV headset is capable of sampling up
to 16 channels of EEG from up to 35 different locations,
based on the 10–20 International System (Mohamed et al.,
2018b). The OpenBCI boards include options for 4 channels,
8 channels, and 16 channels. The OpenBCI is an open-source
assemblage of parts, requiring assembly prior to use (Murphy
and Russomanno, 2016). Therefore, it is not as widely used as
readily-purchased consumer devices, but it theoretically allows
greater customization. It has previously been used for drowsiness
detection in a driving simulator.

Emotiv Insight and Epoc
Emotiv offers both the smaller, cheaper Insight and the
larger, more expensive Epoc (and its upgraded counterpart,
the Epoc+). The Emotiv Epoc is the most expensive of the
investigated EEG headsets, containing more electrodes than
the others (de Lissa et al., 2015). It has two electrode arms,
each containing sensor electrodes and two reference electrodes.
The locations provide coverage of the temporal, parietal,
and occipital lobes. Emotiv provides a free companion app
for users to monitor their emotions. They also offer pay-
to-download games, such as Arena, which allows users to
experience mental commands. Emotiv provides a two-tiered
SDK for the Epoc. The headset has been used in research,
from BCI to brain state detection (Badcock et al., 2013, 2015;
Manolova et al., 2016). However, the Epoc and Epoc+ were the
most common models found. Results returned using “Insight”
as a keyword instead yielded results referencing the Epoc
and Epoc+.

Scope
The purpose of this review is to identify examples and
reports that described the successful use of specific, low-
cost, consumer EEG headsets for drowsiness detection. These
headsets will be referred to as “low-cost” for simplicity for the
remainder of this paper. The scope and aims of the review
process were not designed to comment on the algorithms
and approaches used for drowsiness detection. Even single-
channel EEG headsets, including custom-made headsets, have
been successfully used for drowsiness detection in a research
context (Ogino, 2018). For this review, a successful study
was defined as a system that achieved greater than random
accuracy in detecting drowsiness using EEG. Simple, robust
algorithms for both drowsiness detection and general EEG
processing were preferred, as these are likely to be more
easily implemented by resource-constrained small businesses,
individuals in developing countries, and others who are
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FIGURE 1 | Review search process and winnowing.

unable to afford more complex EEG headsets or purpose-
built systems. To facilitate comparisons and ensure search
replicability, the PRISMA convention on systematic reviews
and meta-analyses was followed (Moher et al., 2009). The

PRISMA conventional facilitates the process and replication
of research reviews. A prior review focused on the broader
viability of low-cost EEG as research tools, but not narrower
occupational contexts (Sawangjai et al., 2019). Thus, the primary
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aim of this review was to determine whether commercial,
low-cost EEG headsets can easily be used for occupational
drowsiness detection.

Eligibility Criteria
This review focused primarily studies related to low-cost EEG
headsets that those non-invasive EEG devices that were below
$1,000 USD, not marketed as medical devices, accessible to
consumers, prominent in the hobbyist community, and have
provided tools or options for brain-computer interface (BCI)
applications. Because commercial EEG systems have been
publicly available for approximately one decade prior to the
current date, only papers published within this period were
included, starting from 2009. This year was shortly before the
commercial release of the Emotiv, the earliest of the listed
systems. Similarly, the total body of relevant results was thought
to represent only a fraction of the total work on drowsiness
detection; therefore, conference papers, completed dissertations,
and validation studies were included. However, conference
papers were excluded if they were published within 1 year of a
journal paper on the same topic and by the same authors.

Data Combination
Two independent searchers, co-authors M. and J., gathered
their findings in a reference document. Redundant results were
eliminated, and information on each study was gathered. Data
items included the authorship and publication of each work, the
study design, experimental implementation, reported results, and
concluding analysis. Specific preprocessing, feature extraction,
and classification techniques were recorded, as was any statistical
analysis performed on the results. Information on the computing
platform used was also recorded. The primary information
sought by each searcher included the work’s criteria of “success,”
“accuracy,” and other performance metrics. Numerical values,
such as the confusion matrix, were used to calculate statistical
measures, if provided by the work in question.

Search Strategy and Parameters
Google Scholar, IEEE Xplore, and PubMed were used as primary
sources, due to the large databases available using these sources
and their prior use in other reviews. All three search resources
have been used in prior literature reviews in the field of
biomedical engineering; however, many of the results could be
accessed by multiple search engines. The resulting papers were
grouped according to the model of EEG headset used. Duplicate
results were removed by software.

The use of low-cost EEG headsets for drowsiness detection
was described by only a limited number of studies, as the
relevant results were those that utilized a low-cost EEG headset
as the primary EEG recording system. The search included three
phases. The first was the search for keywords, which included the
terms: electroencephalography (EEG), drowsiness, and the device
name. Second, the three keywords were joined by “AND.” During
the third phrase of the search, specific words were sought in the
title: (encephalography OR EEG) AND (drowsiness OR fatigue
OR tired) AND ([device name]). The filter words included:
drowsiness, fatigue, and tired.

Results from each source were combined, and duplicates were
removed. These “filter words” were selected based on their use in
prior papers and literature reviews (Vuckovic et al., 2002; Cabrall
et al., 2016; Guo et al., 2017; Min et al., 2017). Similarly, any
paper that did not include any of the filter words in the title
was eliminated.

The remaining papers were included in the review. The
removal of papers through the search process is depicted in
Figure 1.

Table 2 summarizes the final results, according to the specific
brand of EEG device used.

The final papers are further detailed in search results.
However, potential bias and limitations had to be accounted for.

Bias and Error Sources
Possible sources of error included the ranking algorithms used
by the search and indexing processes of Google Scholar, PubMed,
and IEEE Xplore. The ranking processes of each search engine
potentially missed relevant material. The primary purpose of
this review was to identify examples describing the use of
each consumer EEG headset for drowsiness detection, rather
than performing a model-specific critique of each and every
device. Similarly, the primary biases in published works would
be toward positive results, potentially limiting insights from less
successful studies.

A less clear topic was managing potentially relevant studies
in affective computing and emotion recognition. Drowsiness has
a range of definitions in the research literature, and a range
of nearly synonymous terms used interchangeably in different
contexts. There was the potential of drowsiness being one
of several discrete states detected in an emotion recognition
study, rather than an exclusively binary classification (Tan,
2012). Similarly, other studies integrated other signals than EEG
(Polosky et al., 2017). In such cases, each study’s structure was
evaluated to determine if the system, as reported, could be used
as to estimate drowsiness. If not, it was excluded from the
final review (Alchalabi et al., 2018).

Data Management
Each search result would be evaluated for relevant
data items. These include system parameters and
study parameters. System parameters are those relevant
to the drowsiness detection system, including the
algorithms used for feature extraction and classification.
Study parameters include those relevant to the entire
study, including experimental design, cohort size, and
performance results. The reported classifier accuracy,

TABLE 2 | Relevant results after search process.

Brand Papers

InterAxon 11

Neurosky 16

OpenBCI 5

Emotiv 17
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how reliably a device rates drowsiness, was the primary
performance result.

RESULTS

Overview
The use of low-cost EEG headsets represents a logical
progression based on the accomplishments reported using
clinical and research-grade systems. These tasks range
from brain-computer interfaces (BCIs) to brain-state rating
to drowsiness detection. Much of the reported work has
been context-specific, necessitating a thorough look at
each study, and some works listed multiple headsets or
lacked an experimental component, requiring that they
be listed separately. The experimental use of each headset
is described.

Crowley et al. (2010) performed psychological tests to induce
stress and correlated the results with measured attention and
meditation signals, using a Neurosky Mindset. They were able
to detect when a subject’s emotions changed using the Stroop
and Towers of Hanoi tests. Both tests used in this study resulted
in clear indications of subject stress and alertness changes,
based on the attention and meditation parameters measured by
the headset. However, this study would be cited as the basis
for others.

Wei (2017) wrote a doctoral dissertation on drowsiness
detection based on the detection of neural activity. The document
largely described the real-life challenges faced by drowsiness
detection in the context of BCI. In addition, experimental work
on calibration was performed. Despite the research relevancy,
a research 32-channel Quik-Cap Neuroscan EEG headset
was used.

Wei et al. (2018) described the potential advantages
of smaller, non-hair bearing (NHB) dry electrode
headsets relative to larger ones. Smaller headsets that
did not offer full coverage of the head were less
affected by hair than larger ones. Specific devices named
included the Neurosky and InterAxon devices. Potential
advantages, including cost and ease of occupational use,
were discussed.

Doudou et al. (2018) listed a number of consumer
and portable EEG headsets (including all of the headsets
reviewed here) and rated them using a number of parameters.
Their particular focus was driver-based drowsiness detection.
However, the authors did not perform any direct, experimental
comparisons. The complete omission of any results was explicitly
mentioned in their future work sections, however.

Lakhan et al. (2019) used consumer headsets in affective
computing. With a study of 200 healthy subjects, they claimed
predictive accuracies approximating those on costlier EEG
systems. They used an OpenBCI EEG system for their work.
The separate tasks included affective video selection and emotion
recognition. No other low-cost headsets were investigated for the
study, although they were mentioned in the article. The article
lacked extensive discussion of potential context-specific specific
advantages or limitations.

Majumder et al. (2019) performed a review of drowsiness
detection. The review covered both consumer EEG devices
and more purpose-built devices. It was found that power
spectral densities of EEG bands were the most commonly
utilized features across studies. The final conclusion was that
identifying the specific EEG bands and brain sites would limit the
need for EEG electrodes, reduce processing requirements, and
improve accuracy.

Wexler and Thibault (2019) took a critical view of consumer
EEG headsets and many of the claims made regarding their use.
In particular, the authors reported that such consumer devices
could serve as drowsiness detectors, despite a lack of reliability
with regards to the identification of other brain states. They also
discussed the legal and ethical complexities of such devices. Many
issues were raised, but not all fully addressed.

InteraXon Muse
Bashivan et al. (2015) collected EEG data from 16 individuals.
The authors used support vector machines (SVMs), sparse
logistic regression, and deep belief networks (DBN) to
discriminate among states of mind induced by different
video inputs. The results demonstrated the significant potential
for wearable, consumer EEG devices to differentiate among
different cognitive states in different situations.

Krigolson et al. (2017) used a Muse for their BCI research.
The authors used t-tests to observe and quantify statistically
significant differences in event-related potentials in 60 subjects,
including the N200 and the P300, during both a visual oddball
task and a reward-learning task. Statistical tests were conducted
for each case.

Rohit et al. (2017) used a Muse for real-time drowsiness
detection. Spectral features were used with an SVM classifier on
a total of 23 subjects. The study also investigated a blink-based
method of drowsiness detection but found this method to be less
accurate than the spectral power-based method.

Almogbel et al. (2018) investigated a single subject in a
simulated driving task. Temporal feature vectors, from each of
the Muse headset’s 4 channels, were fed into a convolutional
neural network (CNN). Various cognitive workloads were
compared in both urban and rural driving scenarios. The CNN
was used to estimate the workload based on EEG. The highest
accuracy across scenarios was 95.3%. However, no field testing
was conducted.

Bakshi (2018) detailed a system to detect cognitive workload
through EEG. A Muse headband was used to collect EEG from
28 subjects, and spectral features were calculated for each band.
For classification, a linear SVM, a radial basis SVM, a logistic
regression model, and a shallow artificial network were used. The
linear SVM was easily able to achieve an average accuracy of
99.1%. However, the system was not validated in live trials.

Teo and Chia (2018) proposed using EEG to detect interest
and monotony while subjects were immersed in a virtual
reality (VR) simulation. Users were exposed to a VR roller-
coaster experience while wearing an EEG headset. Using a deep
learning approach, accuracy rates of 78–96% were achieved.
While “detecting interest” was a novel concept, more supporting
research could have been cited.
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TABLE 3 | InterAxon Muse Studies.

Paper Year Features Classification Accuracy Size

Bashivan et al. 2015 Spectral Features SVM, Regression, DBN N/A 16

Krigolson et al. 2017 Amplitude t-test N/A 60

Rohit et al. 2017 Spectral Features SVM 87% 23

Almogbel et al., 2018 Raw EEG CNN 95.30% 1

Bakshi 2018 Spectral Features SVM, Regression, NN 99.10% 28

Teo and Chia 2018 Spectral Features Deep NN 96% 24

Araújo 2019 Spectral Features NN 81.10% 3

Foong et al. 2019 Spectral Features NU (RBF+SVM) 93.80% 29

Mehreen et al. 2019 Spectral Features, Gyro Linear SVM 92% 50

Dunbar et al. 2020 Spectral Features N/A N/A 25

Hoffman 2020 Spectral Features ANOVA N/A 19

Araújo (2019) used a second version Muse for drowsy driver
detection in a thesis. A scaled artifact rejection was implemented
based on the measured spectral power, prior to bandpass
filtering. The features used were the power spectral density of
different EEG bands. An artificial neural network was used for
classification. Three subjects were used for model generation,
training, and testing. Final testing accuracies included 70.8, 75.8,
and 96.7% for a total average of 81.1% on testing data. In addition
to the small sample size, the age of subjects was not addressed.

Foong et al. (2019) used EEG band-based power spectra
to identify drowsiness in 29 subjects. Decreases in alpha and
beta band power and increases in the theta band power were
cited as signature features of drowisiness detection. The final
reported accuracy was 93.8 ± 8.2%. A negative-unlearned (NU)
algorithim, consisting of a combination of SVM and radial
basis function (RBF) was positively reported on. However,
the offline implementation precluded assessments for real-
time performance.

Mehreen et al. (2019) used multimodal signals from a Muse
headset for drowsiness detection. In addition to EEG power
spectral features and blink detection, they used accelerometer and
gyroscope data to detect head movements, with head nodding
corresponding to drowsiness periods. They reported a 92%
accuracy, using leave-one-out cross-validation with 50 subjects.

Dunbar et al. (2020) simulated a driving task with 25 subjects.
A Muse was used in a driving task. Spectral band power was used
for the automated classification. Unlike algorithm-based papers,
the purpose was to investigate if self-reported measures were
consistent with documented electrophysiological changes. The
electrophysiological changes and self-reported measures were
consistent across subjects. However, a larger population subject
size would be required for decisive confirmation.

Hoffmann (2020) combined gamification with EEG-based
drowsiness detection. The dissertation consisted of an evaluation
of a Muse headset, a companion app, and a larger study. Alpha
and beta band power were the main feature used, calculated after
filtering. A total of 19 subjects were used in validating the EEG
headset. A combination of the EEG headset and app using self-
reported measures were used in the larger studies. Analysis of
variance (ANOVA) was used for a comparison of EEG across

different states. A limitation was studying the app’s effect on stress
outside of the evaluated metrics, as well as the relatively low size.

Of the entries reporting accuracy, the minimum was 83.3%,
and the maximum was 99.1%. As shown in Table 3, these
results suggested that the InteraXon Muse could be sufficiently
reliable for use as a drowsiness detection system, due to both
its convenience and its successful use during physiological
state detection.

Neurosky MindWave
Jones and Schwartz (2010) wrote a short article reviewing several
low-cost EEG devices, including a Neurosky device, and their
abilities to detect drowsiness. The signal frequency content
was divided into the following clinically relevant frequency
bands: alpha (8–13Hz), beta (14–30Hz), and theta (4–7Hz)
waves. When comparing the power spectra, the alpha and
beta waves decreased when drowsy, while the theta waves
remained constant.

AlZu’bi et al. (2013) reported on three feature extraction
methods using EEG: power spectral density, log variance, and
statistical features. These features were fused into a single fatigue
index; however, no accuracy scores were reported.

Shin et al. (2013) used EEG signals combined with an SVM
classifier. A total of 5 subjects wore the MindWave for 3 h each
night, to capture the onset of sleep and drowsiness. Analysis
of variance (ANOVA) was performed on the extracted features,
identifying statistically significant (p < 0.001) differences
between the alert and the drowsiness states. The results reported
an accuracy of 88.9% from a single subject, preventing larger
validation of the system.

Lim et al. (2014) examined changes in the low alpha EEG
band during eye closure. A total of 50 subjects were rated, with
periods denoted by the Karolinska scale. The system had a lower
accuracy rate than comparable systems, with an accuracy of 31%
per second. However, the reported false alarm rate was 0.5%.
Comparable MindWave-based systems reported accuracy higher
than the reported rate, such as Suprihadi and Karyono (accuracy
of 68.11%).

Suprihadi and Karyono (2014) used a MindWave device as a
drowsiness detection system. An alarm was triggered when the
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classifier detected a drowsy state, based on low alpha, high alpha,
and theta spectral features. They reported an accuracy of 68.11%.

Abdel-Rahman et al. (2015) designed a mobile app to work
with the MindWave EEG headset. They reported a 98% accuracy
rate, using a spectral feature-based detection method during a
simulated driving task. However, they used a binary state to
determine whether the subject was in Stage 1 sleep, rather than
other drowsiness markers used in other work.

Dunne et al. (2015) investigated a real-time, Stage 1 sleep
detection system. The EEG signal was filtered into low alpha,
high alpha, high beta, and low beta bands and then used to
predict potential sleep onset. The results suggested that even
single-channel systems, such as the Neurosky MindWave, may
be sufficient for real-time drowsiness detection schemes.

Joshi et al. (2015) performed a limited literature review
describing EEG-based drowsiness and fatigue detection. Their
review covered specific examples of the MindWave being used,
due to its low cost. The low-cost EEG examples described in
this review are also described here. However, they did not detail
their searchmethodologies, nor did they include any EEG devices
beside the MindWave.

Lin et al. (2015) used a Neurosky device as a real-
time, EEG-based drowsiness detection device. The paper
detailed a combined approach to drowsiness detection,
integrating drowsiness detectors with other automobile safety
features. However, no quantifiable results, such as accuracy,
were summarized.

Putra et al. (2016) reported the development of an EEG-
based microsleep detector for driving. The device used features
from the different EEG spectral bands. However, no experimental
results were reported in the paper.

Sadeghi et al. (2016) detailed the use of EEG-based drowsiness
detection by passing data to wearable devices for processing.
To scale the proposed SafeDrive app, the authors propose the
HumaNet framework, which integrates both model-related and
context-related information. The system was intended to work
with both the Neurosky MindWave and the Emotiv Epov. The
average performance values reported included an accuracy of
91%, a sensitivity of 83%, and a specificity of 99%.

Patel et al. (2017) evaluated the Neurosky MindWave
specifically as a drowsiness detector. Using a driving simulator,
a total of 7 subjects had EEG recorded. These 10 s sessions
were divided into attentive driving and drowsy driving, and a
paired t-test was performed on them. No statistically significant
differences (p > 0.05) were found between averaged epochs for
each category.

Anwar et al. (2018) used a Neurosky MindWave to record a
meditating subject’s EEG output and compared this with that of
a 19-channel conventional EEG setup. Similar spectral changes
were observed using both devices, although the measured
amplitudes were different. Spectral data from different phases of
meditation, such as the beginning and end, were also compared.
Changes in the alpha and delta bands were noted.

Sethi et al. (2018) used a Mindwave device for assessing e-
learning outcomes. EEG data was gathered from each subject
(out of 42), without feedback. Following this, the subject was
exposed to feedback for subsequent EEG recording sessions.

Spectral features and proprietary parameters of attentiveness
and meditation were compared for the same person, and then
compared to the subject’s EEG afterwards.

Aboalayon and Faezipour (2019) investigated a wireless EEG
sleep stage detection system with a single channel Mindwave
device. The system evaluated a real-time simulated driving
task. However, the study was limited by its scope and length,
precluding a definitive result on the device’s performance.

Nissimagoudar and Nandi (2020) detailed an EEG detection
system using alpha power, and using SVM for classification.
The study used 10 subjects. The work detailed the expansion
of a driver assistant, aimed at improving performance and
safety behind the wheel. A range of classification results were
reported from 74 to 89%, although highly dependent upon
spatio-temporal features corresponding to drowsiness states.

Of those entries reporting accuracy, the performance ranges
from 31 to 97.6%. As shown in Table 4, these results suggested
that the Neurosky MindWave may be used for an EEG-based
drowsiness detection system, although additional processing and
feature extraction may be required.

OpenBCI Ultracortex
Karuppusamy and Kang (2017) used a 14-channel custom EEG
headset with anOpenBCI board. Theymanually rated drowsiness
periods using manually tagged videos of eye closure. The highest
performing classifier reported was an SVM with a Gaussian
kernel, with an accuracy of 81.2%.

Shen et al. (2017) reported a method of drowsiness detection
beyond a binary state classifier. They did not report a specific
accuracy, but they described a testing method that returned
results that were independent of a subject’s age and were based
on the channels C4 and P3. They used a hybrid OpenBCI
and Emotiv-based system to quantify spectral power across 50
test cases. According to the authors, the “depth of drowsiness”
method described in this study was the first implementation of
a non-binary drowsiness detector using a low-cost EEG system.
They reported an accuracy of 82%, over a prior reported accuracy
of 70% (Yin et al., 2011).

Mohamed et al. (2018a,b) used theMark IV headset to analyze
EEG output during driver behavior, based on spectral features.
The input signal was divided into standard bands (delta, theta,
alpha, and beta). To estimate the alertness level, the following
feature extraction techniques were evaluated: the periodogram,
Lomb-Scargle, multi-taper, and Welch’s method. A multilayer
neural network was used to evaluate the performance across
all extracted features, with 10-fold cross-validation. The highest
average classification accuracy was obtained using Welch’s
method, with 85.0% for testing accuracy. As the averaged sum
of multiple periodograms, Welch’s method was robust and not
computationally intensive.

As shown in Table 5, these results suggested that the OpenBCI
may be utilized for drowsiness detection, but the entire system
must be assembled from component parts. Of the reported
accuracies, the minimum was 79.4%, and the maximum was
96.4%. The additional complexity may decrease the accessibility
relative to other systems.
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TABLE 4 | Neurosky MindWave Studies.

Paper Year Features Classification Accuracy Size

Jones and Schwartz 2010 Spectral Features N/A N/A 5

AlZu’bi et al. 2013 PSD, log variance, stats Fatigue index N/A 1

Shin et al. 2013 Spectral Features SVM 88.90% 1

Lim et al. 2014 Alpha band power Triggering window 31% 50

Suprihadi and Karyono 2014 Spectral Features Spectral threshold 68.11% 1

Abdel-Rahman et al. 2015 Periodogram Neural network 97.60% 60

Dunne et al. 2015 Alpha and Beta Features Threshold 81% 3

Joshi et al. 2015 Spectral Features Threshold N/A 1

Lin et al. 2015 Spectral Features Threshold N/A 1

Putra et al. 2016 Spectral Features Threshold N/A 0

Sadeghi et al. 2016 Alpha, Beta, Theta Power Markov Chain Model 91% 1

Patel et al. 2017 Spectral Features Paired t-test N/A 7

Anwar et al. 2018 Spectral Features Averaged threshold 75% 20

Sethi et al. 2018 Spectral Features, eSense N/A N/A 42

Aboalayon and Faezipour 2019 Spectral Features N/A N/A 1

Nissimagoudar and Nandi 2020 Spectral Features SVM 74-89% 10

TABLE 5 | OpenBCI Studies.

Paper Year Features Classification Accuracy Size

Karuppusamy and Kang 2017 PCA Gaussian SVM 81.20% N/A

Polosky et al. 2017 Spectral Features Neural Network N/A 1

Shen et al. 2017 Spectral Features Threshold 82% 10

Mistry et al. 2018 Spectral Features Threshold 79.40% 4

Mohamed et al. 2018 Spectral Features Multilayer NN 96.40% 25

Emotiv Insight and Epoc
Li and Chung (2014, 2015) used a combination of EEG and
eyelid closure degree (ECD) to detect drowsiness. A smartphone
was used as a processor, in conjunction with an Emotiv headset,
resulting in a multimodal drowsiness detector. The phone’s
camera was used to detect ECD. The combined EEG-ECD
detection system achieved an accuracy rate of up to 87.5%. They
noted that the combination of the two measurements was able to
overcome the shortcomings of each individual measurement.

Pomer-Escher et al. (2014) used spectral features from the
alpha and theta bands of EEG. No real time classification
was performed, but an ANOVA was conducted across features,
channels, and conditions. In particular, the alpha power and ratio
of theta to alpha were found to be measurements of fatigue.

Wang et al. (2015) proposed the use of sample entropy and
rhythm energies for EEG-based mental fatigue estimation. A
wavelet transformwas used to find non-linear features in the EEG
segment.Wavelet features and a backpropagation neural network
(BPNN) were combined for classification. However, no accuracy
was reported.

Dkhil et al. (2015, 2017) used an Epoc to validate a
Fast Fourier Transform (FFT)-based method. A fuzzy logic
system was used to assess drowsiness. This technique was
also tested on Physionet sleep samples, but no accuracy value
was reported.

Chen et al. (2016) compared four devices for drowsy driver
detection: an Emotiv Epoc, a Neurosky MindWave, a camera,
and a gyroscope. A total of three subjects were investigated. EEG
spectral features were combined with regression for classification.
The MindWave had an accuracy of 71%, but a high rate of
misclassifications. The Emotiv Epoc had a reported accuracy of
92%, attributed to the greater number of electrodes. Compared
with the other devices, EEG was found to be the most cost-
effective means of driver detection.

Nugraha et al. (2016) and Sarno et al. (2016) used an Emotiv
headset for drowsiness detection. Data from 30 volunteers were
collected during driving simulator sessions that ranged from 33
to 60min in length. A cross-channel correlation between spectral
features was calculated for each subject. Both k-nearest neighbor
(KNN) and SVM classifiers were used to detect drowsiness. The
KNN system achieved a mean accuracy of 96%, whereas the SVM
classifier achieved a mean accuracy of 81%.

Sawicki et al. (2016) examined a new measure for drowsiness
detection, based on the maximum differences between the alpha
band and the theta band, and a combined alpha-theta spectral
power. An ANOVA was used to find significant differences
between the feature under different lighting conditions. However,
no accuracy value was reported.

Damit et al. (2017) developed a multi-modal fatigue
estimation system for soldiers. The EEG of 10 subjects was
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gathered. Features extracted included spectral power and the
discrete wavelet transform (DWT). In particular, the peak alpha
frequency (PAF) was the primary EEG feature. No classification
was performed, but a paired t-test was performed.

Alchalcabi et al. (2017) investigated the use of the Epoc+ as a
tool for treating attention deficit hyperactivity disorder (ADHD)
and attention deficit disorder (ADD). A virtual reality game was
controlled using the headset. Instead of detecting drowsiness,
the system was used to increase focus, and the authors reported
an increase of 10% in healthy subjects that used the EEG-
based controls.

Pham et al. (2018) directly examined real-time drowsiness
detection using an Emotiv Epoc. The primary features extracted
were spectral features, and classification was performed with
SVM. The reported accuracy was 70%, with a single subject.

Poorna et al. (2018) investigated drowsiness detection in a
driving simulation. Two feature sets were collected, spectral
band powers and temporal characteristics. Principal component
analysis (PCA) was used to reduce the number of features.
Two algorithms were used for classification: k-nearest neighbor
(KNN) and an artificial neural network (ANN). Reported
classification accuracies were 80% for KNN and 85% for ANN.

Bajwa et al. (2019) tested a distracted driver detection
system. A total of 13 subjects were investigated. Features include
time-domain features and frequency-domain features, including
spectral band power and wavelets. A multilayer perceptron
(MLP) and Bayesian network were used for classification. Testing
was performed while driving in a controlled an environment,
an isolated parking lot. The reported accuracies include 91.54%
for distraction detection, and 76.99% in identifying the cause
of distraction.

Chen et al. (2019) explored the EEG of fatigue affecting
drivers. Fourteen participants provided data for the study. EEG
data was decomposed into band-based features using the wavelet

packet transform (WPT). A parameter called phase-lag index
(PLI) was proposed for network activity rating. Classification was
performed with an SVM, and resulted in a reported accuracy
of 94.4%.

Li et al. (2019) proposed fourmethods to identify fatigue.Most
were derived from spectral features, which were used to establish
a mental fatigue level (MFL). A simulated excavator task was
used to validate the experiment with 15 participants. However, no
classification was performed. However, an MF-based threshold
was established from experimental data.

Rahma and Rahmatillah (2019) used an Epoc+ device
for drowsiness data acquisition. EEG features were converted
to discrete wavelet transforms (DWTs) and then subjected
to common spatial patterns (CSP). The authors reported an
average accuracy ranging from 91.67 to 93.75%, whereas the
exclusion of CSP processing reduced the accuracy to no more
than 87%.

Saichoo and Boonbrahm (2019) detailed a real-time
driver drowsiness detection system used EEG band based
spectral features, using the Emotiv Epoc+. Spectral band
power was calculated using wavelets, Fourier transforms,
and autoregressive estimates. Spatial filtering techniques,
such as principal component analysis, were used for signal
enhancement. Five volunteers were used. The system was
able to correctly identify drowsiness at a rate of up to
83.33%, but had an overall accuracy of 70%. However,
the system had difficulties with correct identification of
non-drowsy states.

Tan et al. (2020) used data from a 40-min simulated driving
task with 18 subjects, gathered with an Emotiv Epoc. Feature
extraction involved band-based spectral power with a 2 s window.
A time series classification (TSC) model was used, which
assigned a label to each time segment. A Long-term Recurrent
Convolutional Network (LCRN) was used for classification. As

TABLE 6 | Emotiv Insight, Flex, and Epoc Studies.

Paper Year Features Classification Accuracy Size

Li and Chung 2014–2015 Spectral, Eye Closure SVM 82.71% 6

Pomer-Esche et al. 2014 Spectral Features ANOVA N/A N/A

Dkhil et al. 2015–2017 Spectral Features Fuzzy Logic Controller N/A 1

Wang et al. 2015 Spectral, Wavelets, Entropy BPNN N/A 3

Chen et al. 2016 Spectral Features Regression 92% 3

Nugraha et al. 2016 Spectral Features, Gyro KNN, SVM 81–90% 6

Sawicki et al. 2016 Spectral Features ANOVA N/A 50

Alchalcabi et al. 2017 Spectral Features State-based BCI N/A 4

Damit et al. 2017 Wavelets, Spectral Features Paired t-test N/A 10

Pham et al. 2018 Spectral Features SVM 70% 1

Poorna et al. 2018 Spectral Features KNN, ANN 80–85% 18

Bajwa et al. 2019 Wavelets, Spectral Features MLP, Bayesian Net 91.54% 13

Chen et al. 2019 PLI, Wavelet Transform SVM 94.40% 14

Li et al. 2019 Spectral Features MF Threshold N/A 15

Rahma and Rahmatillah 2019 DWT CSP 91.67–93.75% 1

Saichoo and Boonbrahm 2019 DWT, FT, AR Thresholding 70% 5

Tan et al. 2020 Spectral Features LCRN 83.33% 18
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a preprint, the work still awaited peer review when discussed by
the authors.

As shown in Table 6, the results suggest that the Emotiv
Epoc and Epoc+ may be used for drowsiness detection,
but proprietary firmware and software represent a potential
issue. All entries reporting accuracy have a minimum of at
least 80%. Support for Emotiv devices is difficult without the
appropriate license.

DISCUSSION

Findings
Examples of EEG-based drowsiness detection were found for
each examined brand, including the Emotiv Epoc, the Neurosky
MindWave, the OpenBCI, and the InteraXon Muse, and all
examined EEG systems were utilized in at least one successful
example of real-time drowsiness detection (Abdel-Rahman et al.,
2015; Nugraha et al., 2016; Mohamed et al., 2018b; Teo and
Chia, 2018). A total of 27 surveyed studies reported an accuracy
score. In terms of evaluated average accurate performance, the
least consistent of these was the Neurosky MindWave, but the
minimum of reported from the others was an OpenBCI study
with 79.4% (Mistry et al., 2018). Although these systems may not
be as accurate as research- or medical-grade systems, they may
be sufficient for deployment in certain occupational contexts. For
example, these systems could be deployed by smaller businesses
in developing countries or by professions with the urgent need
for easily available drowsiness detection systems. However, the
different experimental designs utilized by each study make direct
comparisons among these systems challenging.

Furthermore, several successful studies utilized relatively
simple algorithms and spectral features, including FFT, EEG
band powers, and linear classifiers (Abdel-Rahman et al., 2015;
Nugraha et al., 2016;Mohamed et al., 2018b; Teo and Chia, 2018).
The use of “complex” algorithms requiring more processing
power, such as SVM, convolution neural networks, and deep
learning systems, may constrain the ability to implement these
systems (Nugraha et al., 2016). Even these more “complex”
algorithms can easily run on an external device, such as a
smartphone. Thus, even a single-electrode Neurosky Mindwave,
when providing data to a properly trained classifier in controlled
conditions, can achieve high accuracy in certain cases (Abdel-
Rahman et al., 2015).

The usage of proven classification techniques and features
demonstrates the relative ease of designing a drowsiness
detection system, although low levels of accuracy, sensitivity,
and specificity and the necessity of training are likely issues
that may be encountered. However, the “best” headset depends
on the user-specific trade-offs among algorithm complexity,
performance, and price (AlZu’bi et al., 2013; Abdel-Rahman
et al., 2015; Chen et al., 2016).

Limitations
The current review had several limitations. First, the scope of the
investigation was constrained by the small sample size. Second,
the implementations and evaluation criteria greatly differed
across the investigated papers, often using similar terminology

for different concepts. For example, “drowsiness” was defined
differently across studies, which included fatigue, microsleeps,
and sleep stages (Vuckovic et al., 2002; Cabrall et al., 2016).
In addition, the review included validation studies, conference
results, and graduate dissertations, in addition to peer-reviewed
journal articles. Future work would likely require alterations to
the search and inclusion criteria.

Future Work
Further steps are necessary to further examine the viability of
using low-cost consumer EEG headsets as drowsiness detectors.
First, the eligibility and search criteria should be further refined
to more thoroughly cover the published literature. In addition,
common performance metrics and definitions would ideally
be described and consistently maintained. Comparisons of
the data acquisition systems, feature extraction methods, and
classification algorithms would be required. Finally, several
additional brands and models of EEG headsets would need to
be examined. Combining all of these steps would allow a more
thorough meta-analysis to be performed.

CONCLUSIONS

Traditional medical- and research-grade EEG systems have been
successfully used for drowsiness and brain state estimation
but are less versatile outside of a controlled laboratory
environment. Between medical and consumer systems, innate
limitations include a reduced number of electrodes, computation
complexity, and noise removal capabilities. Low-cost EEG
headsets show greater design convenience for “real world”
occupational use. Several of these devices, including the Emotiv
Epoc, Neurosky Mindwave, InterAxon Muse, and OpenBCI,
have been utilized as drowsiness detectors, to varying degrees
of success. However, open-source software and occupational
refinement may boost the capabilities of these systems over time.
This flexibility is advantageous to developing countries, small
businesses, and hobbyist users; however, the final selection of
optimal models and algorithms will be highly context-specific.
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Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective invasive treatment

for advanced Parkinson’s disease (PD) at present. Due to the invasiveness and cost of

operations, a reliable tool is required to predict the outcome of therapy in the clinical

decision-making process. This work aims to investigate whether the topological network

of functional connectivity states can predict the outcome of DBSwithout medication. Fifty

patients were recruited to extract the features of the brain related to the improvement

rate of PD after STN-DBS and to train the machine learning model that can predict the

therapy’s effect. The functional connectivity analyses suggested that the GBRT model

performed best with Pearson’s correlations of r = 0.65, p = 2.58E−07 in medication-off

condition. The connections between middle frontal gyrus (MFG) and inferior temporal

gyrus (ITG) contribute most in the GBRT model.

Keywords: deep brain stimulation (DBS) surgery, Parkinson’s disease, machine learning, brain network, rs-fMRI

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder with a wide range of motor and
non-motor symptoms, such as cognitive impairment, autonomic dysfunction, disorders of sleep,
depression, or hyposmia, which lead to a severe burden for the patients and their caregivers (Poewe
et al., 2017). It is considered that PD arises from dysfunction in several neural networks. Thilo
van Eimeren et al. confirmed that the medial prefrontal cortex and rostral ventromedial caudate
nucleus were functionally disconnected in PD (Thilo van Eimeren et al., 2009). Hammond et al.
found that PD patients showed abnormally synchronized oscillatory activity at multiple levels of
the basal ganglia (BG)–cortical loop (Hammond et al., 2007).

To cure PD, highly efficacious therapies, such as pharmacological dopamine substitution, have
been adapted widely (Poewe et al., 2017). The use of levodopa as dopamine-replacement therapy is
highly effective in ameliorating the symptoms of the disease (Fahn et al., 2004) through changing
the motor cortex hypoactivation in the supplementary motor area and the primary motor cortex
(Buhmann et al., 2003). Deep brain stimulation (DBS) at high frequency was firstly used in 1997
to replace thalamotomy in treating the characteristic tremor of PD and has subsequently been
applied to the pallidum and the subthalamic nucleus (STN) (Benabid, 2003). It is reported that
neurostimulation of STNwasmore effective thanmedical management alone (Deuschl et al., 2006).

DBS therapy is an invasive and costly procedure, and its outcome differs in patients with PD
(Cury et al., 2014). While a growing body of research suggests that variability in treatment response

68
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links up with individual differences in neurological function
(Hartmann et al., 2016), the search for brain network-based
biomarkers can yield a reliable indicator for future treatment
response in this respect. The identification of brain-based
predictors of PD can not only expand existing biological
knowledge of neurodegenerative pathophysiology but also
inform real-world clinical practice by assignment of patients to
make decisions based on individual patterns of neural function
or biomarkers.

Nowadays, powerful neuroimaging methods, such as
magnetic resonance imaging (MRI), establish accurate and
high-precision observation from the view of neuronal activities
(Cohen et al., 1993). In particular, the application of functional
magnetic resonance imaging (fMRI) in neuroscience has offered
a way to assess the status of functional systems, which can reveal
relationships between brain activity and treatment response, such
as obsessive–compulsive disorder (Figee et al., 2013), depression
(Guo et al., 2012), pediatric anxiety disorders (McClure
et al., 2007), etc. Neuroimaging studies have also identified
impairments in the corticostriatal network pathways and the
related neural circuits in patients with PD (Hacker et al., 2012).

Moreover, studies of large-scale network analysis using graph
theory-based approaches revealed disruptions in the topological
properties of brain networks in PD patients. For example, it
was found that PD patients had lower clustering coefficient and
local efficiency than control subjects, which can contribute to
identifying and tracking PD (Luo et al., 2015). Kim et al. found
that PDwas related to the temporal properties of brain functional
connectivity states as well as the variability of network topological
organization using resting state fMRI (rs-fMRI) (Kim et al.,
2017). These findings of graph theory-based analysis of fMRI in
PD give us insights into the possibility of predicting the outcome
after DBS with brain networks.

It is confirmed that specific connectivity profiles
encompassing frontothalamic streamlines correlated with
clinical response, which can guide surgeons to locate DBS
electrode in surgery (Horn et al., 2017). There is also a series of
specific patterns of the brain that can enhance the clinical care of
DBS, such as frontal white matter architecture in curing major
depression (Coenen et al., 2019) and posterior thalamus (Tha)
in treating essential tremor (Al-Fatly et al., 2019). With these
approaches, surgery can be utilized easily, and the sophisticated
relationship between the effectiveness of operation and the
intrinsic brain connectome can be discovered.

Machine learning as a data-driven technique can use
spatiotemporal information to extract the stable whole-brain
patterns that are present in MRI data. Because machine learning
is effective in automating the process of building models that
relate neural activity to symptoms, it has been attempted to use
machine learning for predicting response after DBS (Bermudez
et al., 2019; Habets et al., 2019).

In this paper, we aimed at building a model to predict
the outcome (percentage change in the Unified Parkinson’s
Disease Rating Scale (UPDRS)-III score) after DBS through
functional brain connectivity. We hypothesized that the outcome
of stimulation based on whole-brain networks; thus, functional
connectivity profiles would predict the individual outcomes of

DBS for PD. The results suggested that the model was capable
to predict the DBS outcome, and that the most contributive
connections to the prediction were detected.

MATERIALS AND METHODS

Participants and Assessment
This study included 50 patients aged from 50 to 77 (mean
age = 60.24 ± 7.84 years) with a final clinic diagnosis of
PD. They were recruited from Tsinghua University Yuquan
Hospital, Beijing, China, and their disease severities were assessed
according to the motor section of the Movement Disorder
Society (MDS) UPDRS-III (Antonini et al., 2013). All of them
received preoperative MRI and evaluation of dopaminergic
responsiveness, and they were considered suitable to DBS surgery
according to acute levodopa challenge test (Defer et al., 1999;
Rodriguez et al., 2007). The assessing procedure was conducted
by a specialist with more than 10 years of experience. All
participants were informed about the procedures in this protocol
and provided informed consent before the experiment. The
research protocol was approved by the Ethics Committee of
Tsinghua University Yuquan Hospital.

To be noted, the DBS outcome measure was measured as
percentage change in UPDRS-III score comparing postoperative
ON DBS to preoperative baseline. The baseline UPDRS-III score
was 43.9± 12.1, and the UPDRS improvement rate with DBS was
65.2± 20.6%.

Surgical Procedure
DBS surgery was performed under local anesthesia, using the
Leksell stereotactic frame (Elekta AB, Stockholm, Sweden). Two
STN-DBS electrodes (PINS L301; Beijing, China) were placed
in both hemispheres. During the operation, a single unit of
microelectrode kept stimulating and recording continuously to
evaluate and confirm the site with the best clinical results. After
the lead placement was confirmed, the electrodes were connected
to a pulse generator (G102R; Pinchi, Beijing, China), which was
implanted subcutaneously in the right subclavian region. During
surgery, MRI scanning was used for both preoperative targeting
and immediate postoperative verification (Foltynie and Hariz,
2010). It was ensured that electrode contacts were well-sited
within the STN.

Image Acquisition
MRI scans were conducted 2–3 days before the operational
therapy for all PD patients, and each patient was scanned after
withdrawal from levodopa for more than 12 h.

Imaging data were collected on a 3T Philips Achieva MRI
scanner (Philips Healthcare, Best, The Netherlands) with a 32-
channel head coil. Participants were instructed to keep their eyes
open and not to think about anything specific during the rs-fMRI
scan. Head motion was controlled by fixing their heads using
headphone and sponge during scanning. Resting state blood
oxygenation-level-dependent (BOLD) signals were collected
using the following parameters: 35 axial slices, repetition time
(TR) = 2,000 ms, the number of volumes = 240, echo time
(TE) = 30ms, flip angle (FA) = 90◦, slice thickness = 4.0mm,
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gap = 0.8 mm, acquisition matrix = 64 × 64, and field of view
(FOV)= 224× 224 mm2.

Image Preprocessing and Brain Network
Construction
Whole-brain functional networks were constructed using SPM
12 and GRETNA software (Wang et al., 2015). The following
pre-processing steps were taken: (1) the first 10 volumes of each
scan were discarded for magnetization equilibration, (2) data
were realigned to the first volume to correct for head motions,
(3) bottom-up slice-timing correction was applied, (4) functional
images were co-registered to subject-space (the same participant’s
T1-weighted structural image), then spatial normalization was
conducted to acquire Montreal Neurological Institute (MNI)
template space, and (5) spatial smoothing was performed at 4mm
full-width half maximum (FWHM) Gaussian kernel. According
to the Brainnetome Atlas (BNA) (Fan et al., 2016), we segmented
the whole brain into 246 regions, including 210 cortical and 36
subcortical regions. Each region served as one node of functional
brain networks, and it can also be regard as a region of interest
(ROI). The mean time series of each ROI was obtained by
averaging the BOLD time series over all voxels within that
region. The edges of functional brain networks were computed
by Pearson correlation coefficients between ROIs.

The T1-weighted volume MRI data and fMRI data were used
for DBS lead localization, and this protocol followed the steps
in the manual of Lead-DBS (Horn and Kühn, 2015). Images
were normalized into ICBM 2009b NLIN asymmetric space
using the DISTAL Minimal atlas (Ewert et al., 2017), and DBS
electrode contacts were localized within MNI space using Lead-
DBS software (www.lead-dbs.org) (Horn and Kühn, 2015).

Connectome-Based Predictive Modeling
According to the BNA, we acquired 30,135 connectivities
between ROIs, and the dimension space of connectivity matrix
is so large that it can lead to a serious overfitting problem.
Therefore, feature preparation was conducted on connectivity
between ROIs. To be more specific, we narrowed down
the feature space of sparse matrixes through random forest
algorithm, which is a multivariate supervised approach that can
retain essential pre-surgical features.

As shown in Figure 1, our process of learning and predicting
mainly includes four parts: (1) all participants were scanned by
an MRI scanner to acquire BOLD time series in rs-fMRI, (2)
the functional connectivity network was constructed through
computing the Pearson correlation coefficients between ROIs,
(3) feature selection was applied, and (4) use machine learning
method to train the predictive model.

Six predictive models were implemented in this study,
including linear regression models with Ordinary Least Squares
(OLS) (Goldberger, 1964), ridge regression (Tibshirani, 1996b),
or least absolute shrinkage and selection operator (lasso)
(Tibshirani, 1996a) and non-linear regression models with
Support Vector Regression (SVR) (Drucker et al., 1997), Gradient
Boost Regression Tree (GBRT) (Friedman, 2001), or reformed
random forest named Extremely Randomized Trees (ERT)
(Geurts et al., 2006). We used nested cross-validation, which

included outer Leave-One-Out-Cross-Validation (LOOCV) and
inner 5-fold cross-validation (5F-CV), to quantify the prediction
accuracy. The inner 5F-CV was used to determine the optimal
parameters (e.g., α, λ) for six machine learning algorithms, and
outer LOOCV was applied to evaluate the generalizability of
the model.

In the inner 5F-CV, we used grid search method to find the
best estimator for six models and evaluated each estimator by
measuring the prediction error of the model. Then, we acquired
six models with suitable estimator to predict the outcome of
DBS surgery and choose the most predictive model to conduct
connection analysis accordingly.

Because the dataset size is limited compared with tens of
thousands of features in PD patients’ brain, a Leave-One-
Out-Cross-Validation (LOOCV) was used in the outer loop to
maximize the prediction model to learn existing data (Kohavi,
1995). In the LOOCV, one sample was used as validation data,
and the other samples were used as training data. In the dataset
with n subjects, the data of n−1 subjects were used as input
to train the model, and this process was repeated n times
with different left-one-out subjects, generating the estimated
percentage changes of UPDRS-III score, identified functional
connectivity and their corresponding weights in the training
model. This allows us to investigate the biological characteristic
of these connections between ROIs by analyzing important
connections and nodes chosen by machine learning model.

RESULTS

DBS Lead Placement
The electrode contacts were well-sited within the STN, and
DBS lead localization was reconstructed using Lead-DBS. The
reconstruction image of #36 patient was shown as an example
in Figure 2.

Feature Selection and Connection Analysis
By choosing BNA-based functional connectivity matrix, we
acquired 30,135 pairs of connections by removing the repeated
connections from the 246 × 246 combinations in whole-
brain connections for each subject. As mentioned in the
Materials and Methods section, we used random forest to
exclude redundant connections. Finally, the data showed that
there were 242 connections for predicting the outcome of DBS
without levodopa.

Predicting the Individual Outcome of DBS
With PD
Six models (OLS/ridge regression/lasso/SVR/GBRT/ERT) were
implemented for the prediction of the DBS outcome. To test the
reliably of our connectome-based predictive model, we employed
an outer LOOCV analysis to predict the improvement rate
in UPDRS-III score after DBS. Four indicators [i.e., Pearson’s
r, Pearson’s p, mean absolute error (MAE), and mean square
error (MSE)] were utilized to measure the performance of
each predicting model, shown in Table 1. Pearson’s r is an
indicator to measure the correlations between two objects,
whereas Pearson’s p-value corresponds to a test for whether
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FIGURE 1 | The process of our work, which includes learning the significant features in functional brain network and predicting the outcome after DBS.

FIGURE 2 | The reconstruction image of #36 patient’s DBS lead localization. Gpe, globus pallidus externus; GPi, globus pallidus internus; STN, subthalamic nucleus;

RN, red nucleus (blue: GPe, green: GPi, orange: STN, red: RN).

the correlation was significantly different from zero (p <

0.05 was considered statistically significant). We also used
MAE (Willmott and Matsuura, 2005) and MSE (Imbens et al.,
2005) to describe the average model-performance error. The
correlations between predicted percentage change in UPDRS-
III score and actual percentage change in UPDRS-III score
were significant in our model based on functional connectivity.
The best fitting model came from the GBRT model with
Pearson correlations of r = 0.65, p = 2.58E−07 in medication-
off condition, shown in Figure 3. In addition, the Bonferroni
correction (Abdi, 2007) was used in performing multiple
tests, and the Pearson’s p was less than the stricter threshold
of 0.001.

Connections Contributing to Prediction
Based on stable prediction, further brain analysis could be
conducted by the GBRT model. For better interpretation, we
grouped the 246 ROIs into 24 gyri as defined by BNA and
calculated the top 11 predictive connections between 24 gyri,
shown in Figure 4A. The gyri of each brain hemisphere were
further divided into five lobes, and the predictive connections
selected by the GBRT model from the perspective of the lobes
were shown in Figure 4B.

TABLE 1 | Performance of six models in predicting the improvement rate in

UPDRS-III score by using nested cross-validation.

Model MAE MSE r p-value

OLS 21.14 862.94 0.05 0.75

Ridge regression 17.57 573.95 0.14 0.35

Lasso regression 14.29 411.83 0.33 0.02

GBRT 12.40 240.74 0.65 2.58E−07

SVR 16.06 398.57 0.28 0.05

ERT 13.12 282.13 0.59 6.67E−06

In predicting the outcome of DBS without levodopa, middle
frontal gyrus (MFG), inferior temporal gyrus (ITG), superior
frontal gyrus (SFG), and Tha show more connections than
other regions. The top 11 predictive connections were shown in
Table 2. The connections of cross-brain regions, such as MFG
and ITG, precuneus (Pcun), and posterior superior temporal
sulcus (pSTS), exerted an enormous function on medication-
off condition.
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DISCUSSION

The actual outcome of PD patients was based on their
motor and non-motor symptoms. To assess the condition
of PD patients, there were the Hoehn and Yahr (H&Y)
scale (Ramaker et al., 2002) for quantifying disease stage,
MDS-UPDRS (Goetz et al., 2008) for assessing the patient’s
condition clinically, Beck Depression Inventory (Beck et al.,
1988) for measuring the patient’s degree of depression, andMini-
Mental State Examination (Folstein et al., 1983) for intellectual
impairment. The objective of this study was to explore the

FIGURE 3 | The GBRT model with the most predictive performances of

Pearson correlations r = 0.65, p = 2.58E−07 in medication-off condition.

relationship between brain connectivity and DBS outcome
regarding the motor symptoms among PD patients. UPDRS-III
provides a useful severity measure on the motor symptoms of

TABLE 2 | The top 11 connections in the prediction of improvement rate in

UPDRS-III score after the deep brain stimulation operation in medication-off

condition.

ID Node name ID Node name

1 Superior frontal gyrus

(SFG)

9 Inferior temporal gyrus (ITG)

1 Superior frontal gyrus

(SFG)

10 Fusiform gyrus (FuG)

2 Middle frontal gyrus

(MFG)

4 Orbital gyrus (OrG)

2 Middle frontal gyrus

(MFG)

9 Inferior temporal gyrus (ITG)

2 Middle frontal gyrus

(MFG)

14 Inferior parietal lobule (IPL)

5 Precentral gyrus (PrG) 24 Thalamus (Tha)

8 Middle temporal gyrus

(MTG)

8 Middle temporal gyrus (MTG)

9 Inferior temporal gyrus

(ITG)

13 Superior parietal lobule (SPL)

11 Parahippocampal

gyrus (PhG)

22 Hippocampus (Hipp)

12 Posterior superior

temporal sulcus (pSTS)

15 Precuneus (Pcun)

18 Cingulate gyrus (CG) 24 Thalamus (Tha)

1–6: fontal, 7–12: temporal, 13–16: parietal, 17: insular lobe, 18: limbic lobe, 19–20:

occipital lobe, 21–24: subcortical nuclei.

FIGURE 4 | (A) The top 11 predictive connections of 24 macroscales brain designed by BNA in medication-off condition. (B) The distribution of predictive

connections selected by the GBRT model without levodopa, which is divided into the left and right brain hemispheres. The range of color bar in (B) is from 0 to 1, and

it represents the importance of connections between regions in prediction.
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PD (Tison et al., 2002), and it was reliable (Metman et al., 2004).
Therefore, the DBS outcome in this study was measured as the
percentage change in UPDRS-III score.

Based on the results of 50 PD patients in this study, we were
able to characterize networks that can predict the recovery after
the DBS therapy. These network features played significant roles
in training the machine learning model. In PD patients treated
by DBS without levodopa, the connections of the MFG to ITG,
Pcun to pSTS, and internal connection in middle temporal gyrus
(MTG) were found to provide top contribution in the GBRT
model to the prediction of operation therapy. These findings
provide new evidence that the functional connectivity has an
effect on predicting the DBS operation outcome in PD patients
before the operation. This progress may potentially help reduce
the loss of money and the trauma of body in patients with
unsatisfactory DBS response (Ellis et al., 2008).

As a white matter lesion associated with motor and
cognitive symptoms (Gattellaro et al., 2009), PD is related to
topological properties (Olde Dubbelink et al., 2013), through
which the effectiveness of DBS can be assessed (i.e., global
efficiency, clustering coefficient, and small-worldness) (van
Hartevelt et al., 2014). Moreover, the predictive value of
connectivity-informed brain stimulation for DBS can be seen
in obsessive–compulsive disorder (Baldermann et al., 2019),
resistant depression (Johansen-Berg et al., 2007), and tremor
disorder (Middlebrooks et al., 2018). These results indicated that
it might be feasible to predict the outcome of PD patients treated
by DBS.

There are already previous studies related to PD that present
results similar to our work. Brain activity in the right ITG and
MFG was also found related to gait in PD (Wang et al., 2016).
Comparing with healthy controls, PD patients showed increased
functional connectivity in ITG (Yang et al., 2016). Furthermore,
Grafton et al. found that effective DBS can smoothen the
overactivity in bilateral rostral ITG of PD patients toward a
more normal pattern (Grafton et al., 2006), which suggested that
the pattern of ITG may be a biomarker indicating the outcome
of DBS. It was reported that gray matter atrophy or cortical
thinning in MFG is related to PD (Brenneis et al., 2003; Biundo
et al., 2015), and that it can also be a predictor of conversion
to dementia in PD patients (Song et al., 2011). These findings
were consistent with our results that ITG andMFG showed more
connectivity with other gyri and the connections between ITG
and MFG have significant contribution in the model predicting
the outcome of DBS in medication-off condition.

It has been confirmed that PD patients exhibited decreased
short-range functional connectivity densities in SFG (Zhang
et al., 2015). SFG is one of the most important gyri for executive
control (Kendi et al., 2008), and cortical atrophy in SFG can
affect the motor cortex (Possin et al., 2013). Similar to SFG, Pcun
is also associated with network modulation in the treatment of
PD patients. In PD patients, the functional connectivity between
Pcun and motor system is decreased (Thibes et al., 2017), and
the metabolic in Pcun increased after STN-DBS according to
the study based on PET (Asanuma et al., 2006). The association
between DBS outcome and SFG and Pcun is congruent with the
results of prior studies.

The current study indicated that the frontal lobe and temporal
lobe play an important role in predicting DBS’s effect. Among
the top 11 predictive connections, there are one or both ends
of 17 connections distributed in the frontal lobe and temporal
lobe. Kostić et al. have also found that a specific pattern of
brain network damage involving the frontal and parietal cortices
occurs in patients with freezing of gait (Kostić et al., 2012).
It was also reported that a lack of adequate frontal activation
was found to be related to PD patients (Jahanshahi et al.,
2010), and that the modulation by STN-DBS was found to
be correlated to the suppression of alpha and beta oscillations
in the temporal area based on a MEG study (Cao et al.,
2017). By comparing six machine learning models, the GBRT
regression model was able to estimate the improvement rate
of UPDRS-III score after DBS most accurately. The GBRT
regression model (Friedman, 2001) is an ensemble of weak
prediction models (decision trees) based on gradient boosting.
GBRT sequentially adds small trees (low depth) with high
bias, so that it can better fit target. It has been widely used
in many fields of regression problems because of its high
prediction accuracy. To conclude, GBRT regression offers many
advantages over the traditional multiple-regression models, with
the ability of processing non-linear data. Besides the GBRT
model, the ERT model also showed excellent prediction. In the
two collections of top 11 connections selected by the GBRT and
ERT regression models, respectively, 10 connections were the
same (Supplementary Table 1), which also verified the accuracy
of the GBRT model in prediction.

It has several limitations when interpreting the findings
in our study. First, there are some factors that influence
variables during the operation, such as surgical instruments,
doctors’ operations, etc. These factors have not been fully
considered. Second, due to the difficulty in obtaining the
data clinically, the amount of sample is still small from the
perspective of machine learning, which may cause errors.
In further research with larger dataset of more PD patients
carried out DBS surgery, more predictive patterns can be
found, and there can be more comprehensive evaluation
before surgery.

CONCLUSION

In this study, we investigated the relationship between functional
connectivity and outcome of DBS therapy in 50 PD patients.
Using machine learning models, we demonstrated that the
functional network can predict the outcome of operation therapy.
The GBRT model is the most effective machine learning model
with Pearson correlations r = 0.65, p= 2.58E−07 in medication-
off condition, and the most contributable connections for models
were identified.
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Auditory sensory memory indexed by mismatch negativity has been broadly studied
over the past century, but far less attention has been directed to tactile sensory
memory. To investigate whether tactile sensory memory is affected by attention, we
recorded somatosensory mismatch negativity (sMMN) from 24 healthy adults in two
experiments to distinguish sustained attention from non-sustained attention. Using the
roving somatosensory oddball paradigm, we analyzed the average dynamic changes in
the amplitude and latency of sMMN amplitude and found a clear sMMN component
at the central region at a 100–300 ms interval. The sMMN amplitude, which indexes
the early detection of tactile stimuli with the sensory memory trace, was larger in the
tactile attentional task. Additionally, the sMMN latency increased with the increasing
visual attentional load, which indicates a decay of tactile sensory memory. Our results
indicate that the more attention resources are allocated for a tactile sensation, the more
favorable it is to the generation of tactile sensory memory.

Keywords: tactile sensory memory, attention, somatosensory mismatch negativity (sMMN),
electroencephalogram (EEG), perceptual load theory

INTRODUCTION

The skin covering the body’s surface contacts the external environment directly, and tactile
sensations have large influences on human perception (Gallace et al., 2007). The human brain
automatically encodes information from multiple tactile sensations over a short period in a
real-time buffer. The tactile sensory memory described above allows us to focus on one event while
still being aware of and able to process tactile events in the wider surroundings. Additionally, tactile
sensory memory can be used in clinical applications (e.g., developmental coordination disorder,
paralysis, and coma) to help patients improve tactile sensations or to predict the recovery of
awareness. However, little attention has been paid to the topic of tactile sensory memory.
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Sensory memory was originally described by Atkinson and
Shiffrin (1968) using a multistore model of memory. Compared
to short and long-term memory, sensory memory is an
automatic and parallel preconscious response that temporarily
stores incoming sensory information. This type of memory
lasts only seconds and appears to show a rapidly decaying
effect (Gallace and Spence, 2009). Electroencephalography (EEG)
can provide high temporal information of neural components
related to perception and represent various stages of information
processing, and studies have usedMMN to research the temporal
dynamics of sensory memory (Bartha-Doering et al., 2015).

Since mismatch negativity (MMN) was first discovered by
Näätänen et al. (1978), it has been suggested that MMN is
generated by an automatic neural mismatch process, which
consists of a memory trace that encodes the physical features
of the standard stimulus (Näätänen et al., 1978, 1993; Näätänen
and Michie, 1979). The MMN can be recorded when the
memory trace of a repeated stimulus has not decayed (Bartha-
Doering et al., 2015). Consistent with this view, previous studies
showed that increasing the interstimulus offset-to-onset interval
(ISI) leads to a reduction in MMN amplitude (Mantysalo and
Naatanen, 1987; Bottchergandor and Ullsperger, 1992; Cowan
et al., 1993; Winkler et al., 2002). So, the MMN operates at the
sensory memory level.

Usually, tactile sensory memory is accessed by behavioral
tasks, for example, using a sensitivity index to measure the
accuracy rate on a memory set (Creelman and Macmillan,
2004; Ito et al., 2020). However, when involving in these tasks,
sufficient motivation and adequate attention would be needed.
So, a more objective indicator is proposed as an index of
sensory memory is the MMN. Previous studies showed that the
MMN is elicited irrespective of where the subject or patient’s
attention is directed (Näätänen et al., 1993, 2007). Similar to
the results of adult studies, prominent MMN signals can also
be obtained from all waking and sleep states in infants (Cheour
et al., 2000). Therefore, this pre-attentive and sensory-specific
neural component provides a relatively independent relationship
between attention and the sensory memory neural pathway
for research.

Tactile sensory memory is considered to be outside of
cognitive control; therefore, whether it is affected or modulated
by attention remains unknown. Based on the comparison of
sensory memory representations from preceding stimuli with
that of a current deviant stimulus, some studies have proposed
thatMMN is unaffected by attention (Näätänen et al., 1978, 1980;
Sams et al., 1984). However, Woldorff et al. (1991) carried out
a dual dichotic listening experiment and found that attended
tones can be distinguished from unattended tones by both
ears of entry and pitch cues. They found that MMN in the
unattended-channel deviant was markedly reduced compared
with that in the attended-channel deviant (Woldorff et al., 1991).
Subsequently, Näätänen et al. (1993) also found that the MMN
intensity deviation was attenuated in the absence of attention.
These studies provided the first evidence that an early sensory
level in unattended channels can be attenuated or gated under
highly focused attention. However, the attention of a different
modality set has not been established. Other research has focused

on the effects of visual attention load on auditory MMN.
In that study, subjects performed a speeded letter-detection
task under different attentional loads in visual modality and a
simultaneous auditory oddball task. The results did not show an
effect of attention on MMN. However, a follow-up meta-analysis
study suggested that demanding visual tasks do reduce auditory
MMN (Wiens et al., 2016). In support of these findings, recent
studies found that a high visual attention load strongly reduced
auditory sensory detection ability (Macdonald and Lavie, 2011;
Raveh and Lavie, 2015; Szychowska et al., 2017). Moreover,
somatosensory ERP studies showed that high metal workload
would decrease exogenous tactile stimuli processing, but the
tactile analysis was about the late positive potential component
or somatosensory P2 (Sugimoto and Katayama, 2013; Mun et al.,
2017). Nevertheless, other studies have reached the opposite
opinion. Zhang et al. (2006) evaluated a task in which the visual
attention load was parametrically manipulated by varying the
number of tracked targets (Zhang et al., 2006). They found
that increasing visual attention load increased auditory MMN.
Overall, evidence concerning the effect of attention load on
sensory memory is mixed. A large body of empirical studies
over the past century has focused on the neural mechanisms
associated with auditory and visual sensory memory, but few
studies have focused on tactile sensory memory, particularly the
effect of attention on tactile sensory memory.

In this experiment, the somatosensory mismatch negativity
(sMMN) was used to measure the effects in two visual attentional
tasks in case that an overlap exists between the attention pathway
and the sensory memory process in a single modality (Näätänen
and Gaillard, 1983). By using roving somatosensory oddball task
(RSOT), which is a variant of oddball paradigm, the sMMN
can be obtained by subtracting the event-related response to
the standard event from the response to the deviant event
(Garrido et al., 2009). To consider both sustained attention and
non-sustained attention, weighting pictures and tracking balls
were included in visual stimuli (Zhang et al., 2006; Debettencourt
et al., 2015). And different difficulties of the visual target were
used to better manipulate the process of attracting attention. The
current study was aimed to investigate whether tactile sensory
memory is affected by attention and analyze which pattern exists
between tactile sensory memory and attention.

MATERIALS AND METHODS

Experiment 1
Participants
Twelve healthy right-handed volunteers (mean age
25.3 ± 3.2 years, three females and nine males) participated
in the experiment. One participant was rejected due to poor
data caused by head movements. None of the participants had
a history of neurological disorders or other illnesses. All the
participants had either normal or corrected-to-normal vision
and normal hearing. All the participants provided written
informed consent before the experiment, which was approved
by the ethical committee at the Beijing Institute of Technology
(2017SY38).
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Stimuli and Experiment Paradigm
Visual stimuli consisted of grayscale photographs of male
or female faces and outdoor scenes. These images were
combined into composite stimuli by averaging pixel intensities
using various weightings (for example, 20% face–80% scene;
Debettencourt et al., 2015). There were three types of pictures:
20% face–80% scene, 50% face–50% scene, and 100% face
(Figure 1A). In addition to female faces, there were also male
faces integrated with the picture, and distinguishing the gender
face was a key task. Every picture was presented for 1 s. All the
visual stimuli were displayed in the center of the screen at a visual
angle of 10◦

× 10◦ from a viewing distance of 55 cm.
The tactile stimuli were delivered by a self-designed rigid

string pressure device. The stimulus onset asynchrony (SOA) was
fixed at 1 s, and the duration of each stimulus was 0.1 s. The
output pressure was 1.5 N and the diameter of the rigid string
was 1.5 mm. Only the rigid string part was used for delivering
the stimulus to participants, the other part of the device (e.g., the
pump) was placed outside the shielding room, effectively reduce
the experimental irrelevant interference.

A RSOT was performed on participants in parallel with the
visual stimuli. Trains of stimuli were delivered consecutively
and alternatively between the subjects’ index and little fingertips
of the left hand (Figure 1B). And the number of successive
same-stimulus trials in a train was presented varied pseudo-
randomly between four to seven. The first stimulus in each new
train was modeled as ‘‘deviant,’’ after four to seven repetitions,
the last stimulus was modeled as ‘‘standard.’’ So deviant and
standard stimuli have the same physical properties, differing only
in the number of repetitions, eliminating the interference of
stimulating physical characteristics on brain responses.

Experiment Procedure
Participants performed the rapid gender face detection task.
Whenever a target face (e.g., female face) was shown in the
picture, they were instructed to press a left mouse button with
their right hand as soon as possible but to ignore the tactile
stimuli delivered on the left hand. To avoid any influence on
tactile stimuli from pressing the button, no key tasks (female
faces) appeared during the standard stimulus, deviation stimulus,
and the stimulus preceding the standard stimulus. The total
percentage of key task responses was 20%. In the control group,
participants were instructed to fixate on the cross at the central
site of the screen while counting the number of stimuli changes
between their index and little fingers.

The experiment included four types of blocks (20%
face, 50% face, 100% face, cross); each block consisted of
600 tactile trials (60 standard tactile stimuli and 60 deviants
in each block, respectively). The first trial delivered on
the index or little fingertip was randomized within each
block and counterbalanced between blocks to eliminate
order effects. In all the blocks, participants were seated
in a chair in a sound-attenuated and electrically shielded
room. Participants rested for 2 min between blocks. Within
the task blocks, participants were asked to ignore the
tactile stimuli and focus on the center of the visual field to
attempt to detect the face stimuli as accurately as possible.

They were also asked to minimize eye movements during
the experiment.

Experiment 2
Participants
Twelve healthy right-handed volunteers (mean age 25.1 ± 3.6,
two females and 10 males) participated in the experiment. Two
participants were rejected due to poor data caused by head
movements. The participants had no history of neurological
disorders or other illnesses. All participants had normal or
corrected to normal vision and normal hearing. All the
participants provided written informed consent before the
experiment, which was approved by the ethical committee at the
Beijing Institute of Technology (2017SY38).

Stimuli and Experiment Paradigm
The tactile stimuli settings were the same as those in experiment
1. For the visual stimuli, we attracted attention by presenting
visual targets of varying difficulty in a visual stream. Ten
bouncing balls (each 1◦ in diameter) moved independently at a
constant velocity (2◦ per second) within a dark gray square (10◦

in both width and height). The balls moved smoothly, and there
was no sudden shift in their motion. The green balls continued
to move along their original path when they collided with each
other but were reflected at the original speed when they impacted
a screen boundary (with the reflection angle equal to the incident
angle). An eye-fixation point was presented in the center of the
square. Ten green balls in Brownian motion moved during the
first 2.5 s of each block to engage the subject’s attention. A
variable number (1, 3, or 5) of balls then turned red for 2 s
and then turned back to green for the next 21 s. Therefore,
the attentive tracking period lasted for 21 s (Figure 2). Then,
the previously reddened balls turned red again for 2.5 s, and
the participants were instructed to press the mouse button to
respond whether they were tracking the right target. The entire
block lasted for 30 s (2 s for rest).

Experiment Procedure
The participants needed to remember which ball(s) turned red,
and followed ball(s) during the tracking period. And participants
were instructed to press the mouse button (the left mouse button
for yes, the right mouse button for no) with the right hand to
respond whether they were identical to the tracked targets when
the ball(s) turned red again. And they were instructed to fixate
their gaze on the fixation point and to avoid eye shaking far away
from the square during the attentive tracking period.

The entire experiment consisted of two task sessions and
one control session (no red ball). Each task session consisted of
30 blocks (10 blocks per task condition) and lasted for 15 min.
There were no differences between the two task sessions. The
standard and deviant tactile stimuli were administered only
during the tracking period. During the task sessions, they were
asked to ignore the tactile stimuli and focus on the center of the
visual field to track the balls as accurately as possible. The control
session included ten green moving balls and the participants
were instructed to keep their eyes on the screen but count
the number of stimuli exchanges between their index and little
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FIGURE 1 | (A) Experiment 1 consisted of four types of blocks according to the different difficulties of visual materials. The house images were photos taken in
Okayama City. The face images were obtained from the FEI face database (https://fei.edu.br/∼cet/facedatabase.html). (B) Each block consisted of 600 trials,
including 60 deviant stimuli and 60 standard stimuli. The visual stimuli and tactile stimuli were presented simultaneously.

FIGURE 2 | Schematic depiction of the attentive tracking task. Experiment 2 consisted of tracking three different numbers of balls during a task session lasting for
30 s. The task session was repeated twice. The participants were instructed to maintain sustained attention on the tracking tasks, ignoring the tactile stimuli.

fingers. They were also asked to minimize their eye movements
during the experiment.

EEG Recording and Processing
The subjects’ EEGs were recorded continuously (at a sampling
rate of 1,000 Hz) with a SynAmps RT amplifier system using an
electrode cap with 64 Ag/AgCl electrodes placed according to
the 10-20 system (NeuroScan Labs, EI Paso, USA). VEOG and
HEOG were recorded with two extra pairs of electrodes, one
placed above and below the left eye, and the other placed on
the lateral sites of eyes. The electrode impedance was kept below
5 kΩ.

Preprocessing and initial analysis of the EEG signals
was performed using the EEGLAB 13.5.4b toolbox1 (Swartz
Center for Computational Neuroscience, La Jolla, CA, USA;

1http://sccn.ucsd.edu/eeglab/

Delorme and Makeig, 2004) implemented in MATLAB
R2014a (MathWorks Inc., Natick, MA, USA). A bandpass
filter (zero phase shift, cutoff frequency 30 Hz, roll-off
12 dB/octave) was used offline on the continuous data. The
reference was converted to bilateral mastoids. One and two
subjects were rejected in experiment 1 and experiment 2,
respectively, due to poor data caused by head movements.
Independent component analysis (ICA) was used to identify
and remove eye movements and other artifacts (Jung et al.,
2001). Then, epochs with a duration of 1,000 ms were
extracted from the continuous EEG data; each epoch extended
from −200 to 800 ms relative to stimulus onset. Baseline
correction was applied in a time window of 200 ms before
stimulus onset. Finally, ERPs were generated separately
for the index and little fingers by averaging the preprocess
data epochs.
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ERP Analysis
The sMMN was calculated by subtracting the ERP waveform
elicited by the standard stimuli from those elicited by the deviant
stimuli. RSOT was used to avoid the difference in the physical
properties between the deviant and standard stimuli. According
to previous studies (Hu et al., 2013), the analysis of sMMN
focused on the central scalp regions between 100 and 300 ms,
and specific electrodes were selected. Point-wise paired t-tests
were used between responses to standards and deviants in the
100–300 ms time window. For sMMN peak amplitude analysis,
the negative peak in the difference wave was identified after
point-wise paired t-tests for each participant. For sMMN latency
analysis, sMMN peak latency was quantified as the latency from
stimulus onset to the negative peak for each participant. And the
peak amplitude and latency of sMMN were compared between
conditions. In experiment 1, facial stimuli were shown to the
participants, so the ERP component of N170 was extracted in a
time window of 150 to 200 ms of standard stimuli to assess the
degree of participants’ attention.

Statistical Analysis
SPSS version 20.0 was used for the statistical analyses. The
average sMMN waveforms of four conditions were compared.
For each condition, point-wise paired t-tests were performed
on the standard and deviant stimuli to verify that sMMN was
elicited. The peak amplitudes and latency between different
visual attentional conditions were tested for normality and
normalized before statistical analysis and assessed via one-way
ANOVA with Bonferroni corrections at p < 0.05.

RESULTS

Experiment 1
Behavioral Data
To determine the degree of attention, the accuracy and reaction
time to the target stimuli were evaluated. As expected, an
increase in task difficulty was associated with a decline in
accuracy (mean ± SD: 20% face, 0.745 ± 0.200; 50% face,
0.962 ± 0.029; and 100% face, 0.977 ± 0.023) and an increase
in reaction time (mean ± SD: 20% face, 637 ± 37.4; 50% face,
519 ± 26.8; and 100% face, 488 ± 21.3). There were significant
effects on accuracy, reaction time and ratio of them (accuracy:
F(2,30) = 14.96, p < 0.001; reaction time: F(2,30) = 141.05,
p < 0.001; ratio: F(2,30) = 70.48, p < 0.001), as illustrated in
Figure 3.

Event-Related Potentials
N170
Figure 4 shows the grand averaged N170 at the electrode of
CPZ. All three conditions elicited the N170 component in the
standard stimuli. The one-way ANOVA for the N170 of peak
amplitude showed a significant difference between the task
conditions and the control condition for both the index and
little fingers (index finger: F(3,40) = 7.118, p = 0.001; little finger:
F(3,40) = 4.395, p = 0.009, respectively). Neither the index nor the
little finger data showed any significant difference between task
conditions, but there was an ascending tendency of N170 as the

facial intensities increased. These results indicated that the visual
stimuli were effective and that the attention load might increase
with decreasing facial intensities.

sMMN
Figure 5 presents the responses to the standard and deviant
stimuli and different waves at FC4 for the index and little fingers
and their scalp topographic distributions in the 100–300 ms
interval. A clear negative-trending ERP response to the tactile
deviant stimuli was observed approximately 100–300 ms after
stimulus onset. The difference between deviant and standard
stimuli was tested by paired-samples t-tests in the time range
of 100–300 ms to verify the generation of sMMN. The sMMN
was generated in both four conditions as shown in gray zones
in Figure 5. As shown in the scalp topographic distributions,
sMMN is also distributed at the frontal and central regions.

As shown in Figure 6, there was a significant main effect
between the task conditions and the control condition, showing
that the control condition elicited larger sMMN than did the
task conditions in the index finger (F(3,40) = 8.982, p < 0.001).
Regarding the sMMN latency, there was a significant difference
in the little finger (F(2,30) = 7.169, p = 0.003). A Bonferroni-
corrected pairwise comparison indicated significant differences
in 50% face and 100% face (p < 0.05). Although we did not find
significant latency differences for the index finger, we did find a
similar tendency across the task conditions. Therefore, for both
index and little fingers, there is a tendency that the sMMN latency
becomes longer as the task becomes more difficult.

Experiment 2
Behavioral Data
To determine the degree of attention, the accuracy and reaction
time of target stimuli were evaluated. As shown in Figure 7,
increasing task difficulty was associated with declining accuracy
(mean ± SD: 5 balls 0.675 ± 0.165; 3 balls, 0.830 ± 0.132; and
1 ball, 0.973 ± 0.045) and increasing reaction time (mean ± SD:
5 balls 1.383 ± 0.507; 3 balls, 1.206 ± 0.415; and 1 ball,
1.192 ± 0.441). There were significant effects on accuracy,
reaction time and ratio of them (accuracy: F(2,27) = 15.67,
p < 0.001; reaction time: F(2,27) = 4.01, p = 0.36; ratio:
F(2,27) = 16.83, p < 0.001), as illustrated in Figure 7.

Event-Related Potentials
Figure 8 presents the responses to standard and deviant stimuli
and different waves at FC4 for index and little fingers with their
scalp topographic distribution in a time window of 100 to 300ms.
The difference between deviant and standard stimuli was tested
by paired-samples t-tests in the time range of 100–300 ms to
verify the generation of sMMN. The sMMN was generated in
both four conditions as shown in gray zones in Figure 8. As
shown in the scalp topographic distributions, sMMN is also
distributed at the frontal and central regions. Compared with
experiment 1, the negative-going ERP response to the tactile
deviant stimuli was smaller.

As illustrated in Figure 9, there was a significant main effect
of the amplitude of sMMN between task conditions and control
condition, showing that control condition elicited larger sMMN
than any task conditions (index finger: F(3,36) = 30.124, p< 0.001;
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FIGURE 3 | Visualized behavioral data. Statistical analysis for accuracy, reaction time, and the ratio of accuracy to reaction time (∗∗p < 0.01; ∗∗∗p < 0.001).

FIGURE 4 | (A) Grand averaged responses to facial stimuli for the index and little fingers in the occipital lobe (electrode CPZ). The gray dotted lines frame the ERP
component of N170, which is a facial-specific component. (B) Statistical analysis for the N170 peak amplitude (*p < 0.05; **p < 0.01; ***p < 0.001).

little finger: F(3,36) = 13.134, p < 0.001). For the latency of
sMMN, neither the index nor little fingers differed between
task conditions. However, they’re also a tendency that the more
difficult the task was, the longer latency was, as in experiment 1.

DISCUSSION

This study aimed to investigate the effect of attention on tactile
sensory memory. We conducted two experiments and recorded

sMMN at three different difficulty levels of visual target tasks.We
found that the sMMN amplitude was the largest when subjects
focused on the tactile stimuli in both types of experiments but
there was no significant difference based on the visual attention
load tasks. However, there is an increasing latency tendency of
sMMN under increasing visual task loads.

The first study of sMMN was reported that it can be
elicited in the response to a change in vibration frequency (24
and 240 Hz) or spatial location (middle finger and thumb;
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FIGURE 5 | Grand average ERPs of standard (dotted line) and deviant (solid line) stimuli at the FC4 electrode site. Somatosensory mismatch negativity (sMMN; red
line) obtained by subtracting the waveforms of the standard stimuli from waveforms of the deviant stimuli. The gray area superimposes on the waveform represent
the time window of sMMN, showing the significant differences between the standard and deviant stimuli as revealed by the point-wise paired t-tests (p < 0.05). The
scalp topographic distributions are shown beside the waveforms of ERPs for time windows of 100–300 ms.

Kekoni et al., 1997). Also, different durations of vibrotactile
stimulus pairings to the fingertip can elicit an sMMN (Spackman
et al., 2007). In our study, the sMMN was elicited by a
change between the index and little fingertips. So, the sMMN
could be stimulated by multiple stimuli of different physical
characteristics, which facilitates the study of tactile sensory
memory. Previous studies have investigated whether sMMN is
elicited by changes to the fingers in the frontal and central regions
between 100–300 ms (Hu et al., 2013; Strommer et al., 2014;
Naeije et al., 2018; Zhang et al., 2019). The sMMN responses
and topographies presented in this study are similar to those of
previous studies. Additionally, the facial specificity component
of N170 decreases as the facial intensities decrease (Bentin
et al., 1996). In both sustained attention and non-sustained
attention, the sMMN was elicited, tactile sensory memory can

emerge in both states. But compared with experiment 1, the
standard stimulus of high visual attention load in experiment 2 is
nearly zero. One possible explanation is that the visual attention
components continue to activate during the entire task.

Given that sMMN represents a sensory memory, we
hypothesized that attention affects tactile sensory memory.
Consistent with previous studies (Woldorff et al., 1991; Näätänen
et al., 1993), the sMMN is significantly more negative when
attention is focused completely on the tactile stimuli. This
indicates that tactile sensory memory can be enhanced under
a highly focused attentional state. In the non-attention task,
subjects were instructed to focus on the visual targets, ignoring
the tactile stimuli. That attentional resources are transferred to
the visual modality to avoiding the overlapping of attention
and tactile memory sensory resources in the same modality.
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FIGURE 6 | The minimum amplitude and latency of the grand averaged sMMN for the index and little fingers. The sMMN-min compares the differences between
task conditions and control conditions. The sMMN latency compares differences between task conditions and the latency trend of all participants are shown
(*p < 0.05; ***p < 0.001).

FIGURE 7 | Visualized behavioral data. Statistical analysis for accuracy, reaction time, and the ratio of accuracy to reaction time (∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001).

Under different visual attentional task loads, auditory MMN
may be either increased or decreased, as reported in previous
studies. Here, we might have found a new and different
pattern in the somatosensory system: rather than attenuating
or enhancing neural responses to the task-irrelevant, the tactile
sensory memory process was prolonged, and attention had no

effect on their intensity. The relationship between MMN latency
and pre-attentive sensory memory was reported by Tiitinen et al.
(1994), who found thatMMN latency could be used to predict the
behavioral response latency, which was explained as originating
from the pre-attentive sensory memory mechanism. MMN
latency has been shown to indicate a recognition of the time

Frontiers in Neuroinformatics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 57507883

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


He et al. Tactile Sensory Memory

FIGURE 8 | Grand average ERPs of standard (dotted line) and deviant (solid line) stimuli at the FC4 electrode site. The sMMN (red line) was obtained by subtracting
the waveforms of the standard stimuli from waveforms of the deviant stimuli. The gray area superimposes on the waveform represent the time window of sMMN,
showing the significant difference between standard and deviant stimuli as revealed by the point-wise paired t-tests. Scalp topographic distributions are shown
beside the waveforms of ERPs with time windows of 100–300 ms.

of the difference between deviant and standard representations
(Picton et al., 2000). Thus, reduced MMN latency may indicate
a briefer involvement of the comparison process (Horton et al.,
2011). And the other way around increased sMMN latency may
suggest a decay of the sensory memory trace (Bartha-Doering
et al., 2015). When fewer attentional resources are allocated
to the tactile modality, the sMMN latency is longer, which
indicates that attention may contribute to the formation of tactile
sensory memory.

In both the attention and non-attention tasks, the results
are broadly consistent with perceptual load theory: attention
resources distributed between targets and distractors are
limited (Woldorff et al., 1991; Lavie, 1995, 2010; Lavie
et al., 2004). The distractors are processed less when the

main task consumes all the available attention resources.
Previous studies also showed that early somatosensory
processing was diminished under visual load (Jones and
Forster, 2013). In the present study, when subjects were
instructed to count the number of stimuli exchanges between
their index and little fingers during the attention task, more
resources were allocated to predict errors. In this case, the
sMMN amplitude, which indexes the early detection of
irregular changes, would be larger. Consistently, increasing
the attention load on the visual stimuli leads to increasing
somatosensory memory coding time associated with detecting
the incoming information regularities. It seems that our brain
continues to monitor the environment, but it postpones
task-irrelevant information.
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FIGURE 9 | The minimum amplitude and latency of the grand averaged sMMN for the index and little fingers. The sMMN-min compares the differences between
task conditions and control conditions. The sMMN latency compares differences between task conditions and the latency trend of all participants are shown
(**p < 0.01; ***p < 0.001).

Previous work showed that tactile memory can be subdivided
into several functionally distinct neurocognitive subsystems,
and a multi-sensory information processing network appears
to play a leading role in the storage of tactile information
(Gallace and Spence, 2009). Another study revealed that memory
adapting properties and sensorymemory capacities are presented
in both the SI and SII areas, which can be considered as a
model of sensory memory construction (Bradley et al., 2016).
Early studies utilized a cross-modal visuo-haptic delay task
to record the spikes from Brodmann’s areas 3a, 3b, 1, and
2 of monkeys and found that certain cells changed their firing
frequency when they reacted to tactile objects during the
presentation of a visual cue (Zhou and Fuster, 1997, 2000).
The authors suggested that certain neurons are involved in
responding to both tactile and visual information and that
these might form part of the cross-modal memory network,
which indicates that at least part of the neural network involved
in the memory storage of tactile stimuli might be shared
among different sensory modalities. So, some of the neurons
in this cross-modal memory network might be involved in
forming the generators of sMMN, and these might be the
sources of multi-sensory attention that affect tactile sensory
memory. However, this inference is based on previous studies,

further research can operate at a neural level to investigate
this assumption.

To summarize, our results demonstrate that the more
attentional resources that are allocated to tactile sensation, the
more favorable conditions are for generating tactile sensory
memory. Here, we acknowledge some limitations: there are
no significant correlations between the behavioral results and
sMMN features, we will continue to further study the brain
mechanism of tactile sensory memory, hoping to find better
features to explain the relationship between behavioral results
and brain mechanisms. Although we set up a gradient for the
visual attention load and found the tendencies of N170 and
sMMN in our results, a better understanding of the effects
on attention and sensory memory requires further research
using a better method for attracting attention. To date, the
brain mechanism of tactile sensory memory has not been fully
elucidated. Our research provides some evidence; however, this
area still requires further exploration.
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The traditional P300 speller system uses the flashing row or column spelling paradigm.

However, the classification accuracy and information transfer rate of the P300 speller are

not adequate for real-world application. To improve the performance of the P300 speller,

we devised a new spelling paradigm in which the flashing row or column of a virtual

character matrix is covered by a translucent green circle with a red dot in either the upper

or lower half (GC-RD spelling paradigm). We compared the event-related potential (ERP)

waveforms with a control paradigm (GC spelling paradigm), in which the flashing row or

column of a virtual character matrix was covered by a translucent green circle only. Our

experimental results showed that the amplitude of P3a at the parietal area and P3b at the

frontal–central–parietal areas evoked by the GC-RD paradigm were significantly greater

than those induced by the GC paradigm. Higher classification accuracy and information

transmission rates were also obtained in the GC-RD system. Our results indicated that

the added red dots increased attention and visuospatial information, resulting in an

amplitude increase in both P3a and P3b, thereby improving the performance of the P300

speller system.

Keywords: brain-computer interface (BCI), P300 speller, visuospatial information, spelling paradigm, event-related

potential

INTRODUCTION

Brain–computer interface (BCI) systems allow people to communicate without using their muscles,
which provides a direct communication pathway for patients with severe amyotrophic lateral
sclerosis (ALS) and other locked-in syndromes (LIS) (Sellers and Donchin, 2006; Kubler and
Birbaumer, 2008). An ERP is a response of the brain to an external stimulus, which is generally used
to implement a BCI system. The P300 is an ERP component generated from the observation of a
rare or odd event and manifests as a positive waveform appearing around 300 ms after presentation
of the stimulus (Bernat et al., 2001). In 1988, Farwell and Donchin described a BCI system, known
as the P300 speller, which allows the patient to spell characters by detecting the P300 potential
(Farwell and Donchin, 1988). In the P300 speller, a 6 × 6 matrix of characters is displayed on a
screen, and the rows and columns of the matrix are intensified (flashed) one after another in a
pseudo-random order. When users wish to output a target character, they need to only focus on
the desired target character. When the row or column containing the target character is intensified,
which has a one-sixth probability and constitutes a rare event, a P300 potential is elicited. Thus,
the target character is determined by the row and the column that elicited a P300 potential. Several
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studies have attempted to improve the spelling accuracy and
speed of the P300 speller. However, its performance is still unable
to meet the requirements of a real-world application (Kaufmann
et al., 2011; Aya et al., 2018; Philip and George, 2020; Xu et al.,
2020).

Eliciting larger amplitudes of ERP such as P300, to improve
the performance of character recognition, is a key direction
for optimizing BCIs (Aya et al., 2018; Xiao et al., 2019).
Previous studies have indicated that focusing attention on
external stimuli improves the processing of visual information
in the nervous system and can significantly modulate the visual
stimulus response (Posner, 1980; Mangun, 1995). Further, the
resource quantity expended on concentrating attention directly
affects the excitability of brain activity and resulting features
of the evoked waveform (Berti, 2016). Lakey et al. (2011)
reported that heightening subjects’ attention with a short session
of mindfulness meditation can elicit larger P300 amplitude.
Additionally, researchers have shown that there is a reciprocal
relation between the concentration of attentional resources and
the scope or size of the attentional focus (Eriksen and Yeh,
1985; Xu et al., 2018). When attention is paid to a small
spatial scope, the stimulus is allocated more visual processing
resources, resulting in a greater ability of the brain to process and
discriminate the stimulus (Rincover and Ducharme, 1987).

Stimuli containing spatial information can elicit larger ERP
amplitudes than those without. A previous study found that
a stimulus located above or below the central fixation point
elicited a larger P300 amplitude than one located at the central
fixation point (Abramov et al., 2017). Several studies reported
that when the appearance of the target was predictable, subjective
efforts in perceptual processing and attention orientation were
small, resulting in the reduction of the target P300 amplitude
(Sutton et al., 1965; Hugdahl and Nordby, 1994). Therefore,
we speculated that changing the visuospatial location to reduce
the probability of the target appearance could also increase the
P300 amplitude.

Green has been shown to be a color that helps the perceivers
maintain attention on a task (Xia et al., 2018). Studies have
investigated the combining of characters or stimulus images with
green backgrounds to modify spelling paradigms and found that
they improved not only the comfort level of subjects but also the
performance of the P300 speller (Li et al., 2015; Lu et al., 2019).

In the present study, we proposed a new spelling paradigm
to attract more attention from subjects and increase visuospatial
information, in which the flashing row or column of a virtual
character matrix was overlaid with a translucent green circle
in which a red dot was positioned in either the upper or
lower half (GC-RD spelling paradigm). The red dot resulted
in a smaller focus scope, and its appearance in either the
upper or lower half of the green circle reduced the probability
of its manifestation. The control spelling paradigm was that
the flashing row or column of the virtual character matrix
was covered by a translucent green circle only (GC spelling
paradigm). We compared ERP waveforms and the spelling
performances of the P300 speller between the two paradigms to
verify whether the GC-RD spelling paradigm would improve the
performance of the P300 speller system.

MATERIALS AND METHODS

Participants
Eleven college student volunteers (two female and nine male;
mean age, 20± 2 years old) participated in the study. Participants
signed their written informed consent after receiving a full
explanation of the purpose and requirements of the study. All
participants were right handed and had normal or corrected-
to-normal vision. Two of the participants had previously
participated in a similar experiment, while the others had no
prior BCI experience. The study was approved by the ethics
committee of Changchun University of Science and Technology.

The Spelling Paradigm
In both the GC-RD and GC paradigms, a 6 × 7 character matrix
with 26 letters, 10 numerals (0–9), and four symbols is presented
on a monitor (Figure 1). The size of each character is 1.2◦ × 1.2◦

(1.5× 1.5 cm), and the distance between each character is 3.5◦ ×
2.5◦ (4.5× 3 cm). To mitigate the problem of adjacency flashing,
we pseudo-randomly intensified a set of characters (six or seven)
that scattered as far away as possible. The intensified characters
were selected according to the rows and columns of a virtual 6×
7 character matrix as shown in Figure 2.

In the GC-RD paradigm, characters are covered by green
circles with a red dot while intensified. The red dot appears in
the upper (Figure 1A, left) or lower (Figure 1A, right) half of
the green circle. The position of the red dots is the same for all
intensified stimuli in each flash. The GC paradigm is similar to
the GC-RD paradigm but without the red dot (Figure 1B). The
interstimulus interval (ISI) was 250ms, in which each character
was covered by a green circle with (GC-RD paradigm) or without
(GC paradigm) a red dot for 200ms and then reverted to a gray
character for 50 ms.

Procedure
The study was conducted in a dimly lit, sound-attenuated, and
electrically shielded room. Participants sat ∼90 cm in front of a
monitor. Each participant participated in two experiments: Exp.
1 (GC-RD spelling paradigm) and Exp. 2 (GC spelling paradigm).
Each experiment consisted of four sessions in which the subjects
were required to output four words with five different characters;
each session included five runs to output the five characters. Eight
sessions of two experiments were conducted in a pseudo-random
order to avoid learning effects. Thirteen flashes corresponding
to the six rows and seven columns were defined as a sequence.
In each run, the sequence was repeated eight times. Thus, each
run consisted of 104 flashes of row or column to output a target
character (Figure 3). In Exp. 1, the 13 flashes in a sequence
comprised six occasions when the red dot was in the upper half
of the green circle and seven when it was in the lower half.

During the experiments, subjects were instructed to avoid
unnecessary movement including blinking, to pay attention to
the target character, and to silently count the number of target
character flashes. In Exp. 1, participants were specifically told to
concentrate their attention on the red dot rather than on the
whole green circle. Subjects were allowed to take a 5-min break
between two sessions.
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FIGURE 1 | The spelling paradigms. (A) The GC-RD spelling paradigm: the red dot appears in the upper (left picture) or lower half (right picture) of the green circle. (B)

The GC spelling paradigm.

FIGURE 2 | The 6 × 7 virtual character matrix.

Data Acquisition
Electroencephalograph (EEG) data from 14 channels (F3, Fz, F4,
C3, Cz, C4, P3, Pz, P4, P7, P8, O1, Oz, and O2) were recorded
by a SynAmps2 EEG amplifier (SynAmps 2, NeuroScan Inc., and
Abbotsford, Australia) with the left mastoid as the ground and
the right mastoid as reference. Horizontal eye movements were
measured by placing two horizontal electrooculogram (HEOG)
electrodes at the corners of the left and right eyes. Two vertical
electrooculogram (VEOG) electrodes were placed ∼1 cm above
and 1 cm below the left eye to record vertical eye movements. In
data preprocessing, the EEG signals that were contaminated by
EOG were corrected using a regression analysis algorithm. The

FIGURE 3 | The procedure of the two experiments.

impedance of these electrodes was kept below 5 kΩ . All data were
digitized at a rate of 250 Hz.

Data Processing and Analysis
The raw EEG data were filtered between 0.1 and 30Hz using
a third-order Butterworth band pass filter. The EEG signals
were then divided into epochs from 100ms before the onset of
each flashing to 800ms after the onset, and baseline corrections
were made against −100–0ms. Amplitudes of the P3a and P3b
components in the two time windows at 14 of the electrode
channels were analyzed with a 2 (spelling paradigms: GC-RD
vs. GC) × 14 (electrode channels) repeated measures analysis of
variance (ANOVA). The Greenhouse–Geisser Epsilon correction
was applied to adjust the degrees of freedom of the F ratios,
if necessary. Because a greater difference between target and
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FIGURE 4 | Superimposed grand average waveforms elicited by target trials from 11 students in the GC-RD and GC spelling paradigms. The P300 potential (Pz) and

N200 component (P7) are circled.

nontarget trials simplifies their classification, the difference
waveforms (ERPTarget – ERPnontarget) for both experiments were
obtained by subtracting ERP waveforms elicited by nontarget
trials from those elicited by target trials.

Classification Scheme
The EEG data were classified using Bayesian linear discriminant
analysis (BLDA). BLDA is an extension of Fisher’s linear
discriminant analysis, which avoids overfitting due to high-
dimensional and possibly noisy datasets (Jin et al., 2010, 2015).
The details of the algorithm have been published (Lei et al., 2009),
and many studies have shown that BLDA achieves perfect results
in P300 detection (Jin et al., 2012, 2014). We used fourfold cross-
validation to calculate individual spelling accuracy, successively
choosing one of the four sessions as the test set and the remaining
three as the training sets, thus obtaining the accuracy of the
test set. Individual accuracy was obtained by averaging the four
results for each participant.

Information Transfer Rate
The information transmission rate (ITR) was first described by
Wolpaw et al. (1998) and is used to evaluate the communication
performance of a BCI system. ITR (bit/min) refers to the amount
of information that can be transmitted per minute, with the

calculation formula as follows:

B = log2 N + P log2 P + (1− P) log2
1− P

N − 1
(1)

ITR
(
bits/min

)
= B×

60

T
(2)

whereN is the number of possible choices within a sequence, and
P is the target identification accuracy. B (bit/trial) is the number
of bits per trial transmission, and T (seconds/character) is the
time needed to output each character.

In addition, because of low signal-to-noise ratios, we
calculated and compared the classification accuracy and ITR with
different sequence numbers to investigate the effects of changing
the number of averaged sequences.

RESULTS

Figure 4 shows the grand-average waveform elicited by target
trials from 11 students in two spelling paradigms. Positive
deflections were clearly observed at the central area (C3, CZ,
and C4), parietal area (P7, P3, PZ, P4, and P8), and occipital
area (O1, OZ, and O2) in both paradigms, indicating the P300
potential ERP component (Polich, 2007). In addition, a clear
negative waveform was observed around 200ms at the bilateral
temporal area (P7 and P8) and occipital area (O1, Oz, and O2)
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FIGURE 5 | Comparison of difference waveforms of event-related potential (ERP) by subtracting the ERPs of the GC spelling paradigm from those of the GC-RD

spelling paradigm (ERPTarget – ERPNontarget ) and scalp topographies for double difference waveforms obtained by subtracting the (ERPTarget – ERPNontarget ) waveforms

for the GC spelling paradigm from those of the GC-RD spelling paradigm. (A) Parietal area at 300–480ms; (B) Frontal–central–parietal areas at 480–600ms.

in both paradigms; this is likely to be the N200 component (Reza
et al., 2007).

The GC-RD spelling paradigm stimulus elicited a higher P300
potential than the GC spelling paradigm at the central, parietal,
and occipital areas (Figure 4). A biphasic positive component
between 250 and 500ms was visible with two peaks: the first peak
between 250 and 350ms and the second peak between 350 and
450ms. The first positive deflection may be P3a potential and the
second may be P3b potential (Berti, 2016).

Analysis of the difference waveforms (ERPTarget –
ERPNontarget) between the GC-RD and GC spelling paradigms
showed significant differences for P3a in 300–480ms at P7, P3,
Pz, P4, and P8 [F(1,10) = 25.5111, P = 0.001] and for P3b in 480–
600ms at F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 [F(1,10) = 6.654,
P = 0.03]. The significant difference amplitudes of P3a were
mainly at the parietal areas (Figure 5A), while the significant
difference amplitudes of P3b were at the frontal–central–parietal
areas (Figure 5B).
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FIGURE 6 | Individual and average accuracies of the P300 speller from 11 subjects with different sequence number in the GC-RD and GC spelling paradigms.

Based on the ERP analysis, we intercepted 160–688ms from
the −100–800ms data for feature extraction from 11 channels
(F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, P7, and P8) to reduce the
computational time, in which the significant differences of the
ERP waveforms were observed (Li et al., 2015). The intercepted
EEG data were downsampled from 250 to 62.5Hz by selecting
every fourth sample from the filtered EEG signals. This decreased
the number of waveform points to 33. Therefore, the size of
the feature vector was 33 × 11, with 11 denoting the number
of electrodes and 33 denoting the number of sample points in
each flashing.

Figure 6 shows the individual and average accuracies;
accuracy increased as sequence number increased for both
spelling paradigms. The average classification accuracy of the
GC-RD spelling paradigm was higher than that of the GC
spelling paradigm at all sequence numbers. In the GC-RD

spelling paradigm, the classification accuracy of five subjects
(subjects 1, 2, 5, 6, and 8) reached 100% with an average
sequence of 3.2. Before statistically comparing classification
accuracy and ITR, we verified that the data were normally
distributed by a one-sample Kolmogorov–Smirnov test (Jin
et al., 2014). A paired sample t-test was then conducted
to compare the accuracy between GC and GC-RD spelling
paradigms at each sequence. Results of the t-tests showed
that the GC-RD spelling paradigm was significantly more
accurate than the GC spelling paradigm at sequences 1–7
(Table 1).

The mean ITR of the GC-RD spelling paradigm was higher
than that of the GC paradigm for all sequences (Figure 7). The
paired sample t-test for the ITR at each sequence betweenGC-RD
and GC spelling paradigms was also conducted. Results showed
that the differences were significant for sequences 1–7 (Table 2).
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TABLE 1 | Results of paired sample t-tests comparing accuracy between the GC-RD and GC spelling paradigm at each sequence time.

Sequence

1** 2** 3** 4** 5* 6* 7* 8

GC 33.64 (±3.99) 53.18 (±6.00) 67.73 (±5.89) 73.18 (±6.88) 79.09 (±6.10) 85 (±4.57) 86.82 (±4.17) 89.55 (±4.07)

GC-RD 47.27 (±5.74) 75 (±5.18) 81.82 (±5.10) 87.73 (±3.59) 92.27 (±2.17) 95.45 (±1.84) 95.91 (±1.63) 97.27 (±0.79)

**p < 0.01, *p < 0.05.

FIGURE 7 | Mean information transfer rate (ITR) of 11 subjects in the GC-RD

and GC spelling paradigms.

DISCUSSION

Larger ERP amplitudes improve the performance of the P300
speller system. Our new GC-RD spelling paradigm is designed
to enhance the attention of subjects on the target stimulus
and to increase the visuospatial information. We compared
the ERP amplitude, classification accuracy, and ITR between
the GC-RD spelling paradigm and control paradigm (GC
spelling paradigm).

A previous work has found that the P300 speller system’s
performance can be improved by enhancing the difference
between target and nontarget trials (Jin et al., 2012). Therefore,
we compared the waveforms (ERPTarget – ERPNontarget) elicited
in the GC-RD and GC spelling paradigms (Figure 5) and
found two significant differences. The first was between 300
and 480ms at the parietal area (Figure 5A), which is thought
to be the P3a subcomponent of P300 (Polich, 2007). The P3a
waveform usually occurs when subjects react to novel or small
probability stimuli and is found at the frontal–central–parietal
areas between 200 and 500ms (Daffner et al., 2003; Berti, 2016;
Li et al., 2019). The target stimuli in both the GC-RD and
GC spelling paradigms elicited clear P3a components at the

frontal–central–parietal areas, which is consistent with results of
previous studies (Polich, 2007; Berti, 2016). The amplitude of P3a
with a significant difference between GC-RD and GC spelling
paradigms was found only at the parietal areas. Studies have
suggested that the parietal area is activated when visual stimuli
with spatial information are presented (Baumgartner et al., 2018)
and when stimuli are located at the left and right sides of the
screen (Wang et al., 2015), indicating that the parietal area
is activated by visuospatial features. In a study of visuospatial
information processing during attentional tasks, Abramov et al.
(2017) found that target stimuli above or below the central
fixation point elicited larger P300 amplitude at Pz (parietal area)
than those without spatial information. At the same time, the
analog ERP component was detected at Fz (frontal area) for
stimuli with and without spatial information. This indicates
that the increased P300 amplitude at Pz reflects the processing
of visuospatial information about the target position during
attentional tasks. In our GC-RD spelling paradigm, the red dot
appeared randomly above or below the center of the green circle.
This elicited a significantly increased P3a amplitude at parietal
areas compared to the GC spelling paradigm. The increased
P3a amplitude at the parietal area reflects brain processing of
visuospatial information.

The second significant difference between GC and GC-
RD was during 480–600ms at the frontal–central–parietal
areas (Figure 5B); this may be the P3b component, another
subcomponent of P300. An early study showed that P3b appears
in the frontal–central–parietal areas when attentional resources
activate working memory, and the amplitude of P3b is influenced
by the allocation of attentional resources to update working
memory (Stevens, 1999), i.e., the P3b amplitude increases
when cognitive demands are related to working memory (Li
et al., 2019). Compared with the GC spelling paradigm, the
positioning of the red dot in GC-RD imposed additional
cognitive demands for the updating of working memory, which
translated to significantly increased P3b amplitudes. Our findings
are consistent with the study of Li et al. (2019), in which subjects
were asked to pay attention not only to the number of target
flashes but also to the color of the stimulus. Our GC-RD spelling
paradigm deliberately added a red dot to the green circle to help
subjects focus better on a small scope stimulus.

In addition, because the upper and lower positioning of the
red dots in the green circle were random in the GC-RD paradigm,
the probability of the target stimulus manifesting, decreased.
Specifically, inclusion of the dots reduced the probability of the
target stimulus manifesting from 2/13 (six rows or seven columns
flashing) by 50%, to 1/13. Studies have consistently shown that
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TABLE 2 | Paired sample t-test results of information transmission rate (ITR) between the GC-RD and GC spelling paradigms at each sequence time.

Sequence

1** 2** 3** 4** 5* 6* 7* 8

GC 17.85 (±3.37) 18.44 (±3.15) 17.81 (±2.50) 15.36 (±2.21) 13.72 (±1.61) 12.65 (±1.09) 11.18 (±0.85) 10.35 (±0.77)

GC-RD 30.80 (±5.94) 31.12 (±3.51) 23.96 (±2.46) 19.86 (±1.39) 17.16 (±0.74) 15.19 (±0.52) 13.13 (±0.42) 11.74 (±0.20)

**p < 0.01, *p < 0.05.

the smaller the probability of the target stimulus appearing,
the higher the level of the elicited P300 amplitude (Katayama
and Polich, 1996). This is likely to be the reason that the GC-
RD spelling paradigm elicited an increased P300 amplitude and
improved the performance of the P300 speller system.

The ERP amplitude evoked by the GC-RD spelling paradigm
was higher than that induced by the GC spelling paradigm. In
addition the GC-RD spelling paradigm enhanced the difference
between target and nontarget waveform and improved the
classification accuracy (Jin et al., 2014). As expected, the average
accuracies of the GC-RD spelling paradigm were higher than
those of the GC spelling paradigm at each sequence (Figure 6).
Moreover, there were significant differences in accuracy between
the paradigms at all sequences (p < 0.05, Table 1) except
sequence 8. Similarly, the ITR of the GC-RD spelling paradigm
was significantly greater than that of the GC spelling paradigm
at all sequences except sequence 8 (p < 0.05, Table 2). We
also found that the improvements in ITR were even stronger
at the first four sequences (p < 0.01), especially at sequence
2 (p < 0.0005). Thus, our results indicated that the GC-RD
spelling paradigm significantly improved the performance of the
P300 speller. Moreover, the results of accuracy and ITR further
verify that the increased amplitude of waveforms (ERPTarget –
ERPNontarget) can improve the performance of the P300 spelling
system. The ITR is an important statistical metric for the
performance of the P300 speller system (Zhang et al., 2012). As
we know, the ITR depends on both classification accuracy and the
time to output a character based on the ITR calculation formula.
The time to output a character is determined by the number
of averaged sequences. As the number of averaged sequences
reduces, the signal-to-noise ratio inevitably decreases and results
in a decrease in classification accuracy. Therefore, classification
accuracy and the number of averaged sequences must be weighed
for obtaining a higher ITR (Li et al., 2015).

CONCLUSION

This study investigated whether the new GC-RD spelling
paradigm with small size and visuospatial information could

improve the performance of the P300 speller. The results
demonstrated that the GC-RD spelling paradigm enhanced the
amplitude of the P300 potential and improved the classification
accuracy and ITR at most sequence numbers compared with the
GC spelling paradigm.
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Methods by which to achieve non-invasive deep brain stimulation via temporally

interfering with electric fields have been proposed, but the precision of the positioning

of the stimulation and the reliability and stability of the outputs require improvement.

In this study, a temporally interfering electrical stimulator was developed based on a

neuromodulation technique using the interference modulation waveform produced by

several high-frequency electrical stimuli to treat neurodegenerative diseases. The device

and auxiliary software constitute a non-invasive neuromodulation system. The technical

problems related to the multichannel high-precision output of the device were solved

by an analog phase accumulator and a special driving circuit to reduce crosstalk. The

function of measuring bioimpedance in real time was integrated into the stimulator

to improve effectiveness. Finite element simulation and phantom measurements were

performed to find the functional relations among the target coordinates, current ratio, and

electrode position in the simplified model. Then, an appropriate approach was proposed

to find electrode configurations for desired target locations in a detailed and realistic

mouse model. A mouse validation experiment was carried out under the guidance of a

simulation, and the reliability and positioning accuracy of temporally interfering electric

stimulators were verified. Stimulator improvement and precision positioning solutions

promise opportunities for further studies of temporally interfering electrical stimulation.

Keywords: electrical stimulation, temporally interfering, finite element method, simulation, mouse

INTRODUCTION

Considering the challenges associated with an aging society, brain diseases have increasingly
serious negative effects on human life (Cole and Franke, 2017). Continued investigation into
therapies for brain diseases should be encouraged to expand indications and improve effectiveness
(Buss et al., 2019). As a typical neurosurgical procedure, DBS has been used to cure abnormal
neuronal firing patterns that result from certain diseases, such as Parkinson’s disease, essential
tremors, and dystonia (Flora et al., 2010; Miocinovic et al., 2013). However, careful wound care
and personal hygiene are needed to protect DBS hardware and to avoid additional negative
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impacts after the surgery (Umemura et al., 2003; Blomstedt
and Hariz, 2006; Batra et al., 2016). Studies on non-invasive
brain stimulation that does not require built-in hardware are
accumulating rapidly. Transcranial direct current stimulation
(tDCS) and transcranial alternating current stimulation (tACS)
are common non-invasive tools that use weak electric currents
to painlessly and non-invasively regulate human neural activity
and are widely employed in many research areas (Ali et al.,
2013; Schulz et al., 2013; Tavakoli and Kyongsik, 2017). Due to
the characteristics of current transmission, these non-invasive
electrical stimulation methods have a qualified stimulation effect
on superficial brain areas, but it is difficult to reach deep targets
accurately via these techniques.

In 2017, Cell magazine reported a temporally interfering
electrical stimulation technology using multiple high-frequency
alternating currents to recruit neural firing (Grossman et al.,
2017). Compared with common non-invasive electrical
stimulation, time-interfering electrical stimulation can directly
reach deep brain regions without affecting shallow brain
regions. However, as a new technology, the stimulator needs
to be improved to help researchers make it more efficient
and convenient to use for temporally interfering electrical
stimulation. The stimulus effect is based on the envelope
modulation of the electric field, and the envelope will appear
seriously distorted or too small if one of the loads is too
large. Therefore, for the stimulator, real-time measurements
of biological impedance between electrodes and warnings of
potential overloading are necessary. In addition, the positional
accuracy of temporally interfering electrical stimulation is jointly
determined by the electrode position and the current amplitude
ratio. An existing study has described methods by which to move
the position of the target of temporally interfering electrical
stimulation, and a helpful rule for adjusting the location of
the electrical stimulation target was proposed—the wider the
electrode spacing is, the deeper the stimulation target depth
(Grossman et al., 2017). However, an accurate positioning
scheme for specific targets is lacking, and the qualitative rule
cannot be directly used to calculate the location of the electrode.
Several studies have used arrays of scalp electrodes, with each
electrode optimized to target a desired location in the human
brain (Huang and Parra, 2019). The electrode array optimization
method may not be appropriate in a mouse model because of
the small size of the mouse head and the fact that the electrodes
cannot be shrunken indefinitely. The number of electrodes in the
preset electrode array is not large enough.

In this study, a powerful temporally interfering stimulator was
developed. In terms of accuracy, we did the following work. First,
we solved the problem of crosstalk between channels through
a circuit design and improved the accuracy of each circuit
stimulation signal. Second, to avoid the waveform distortion
and amplitude decrease caused by excessive impedance, a
bioimpedance measurement module was designed. Due to
these two developments, the stimulator has advantages in
terms of precision. To form modulation envelope waves with
accurate frequency characteristics through the interference of
kHz differential frequency currents, the kHz-level sinusoidal
electrical stimulation signal of the electrical stimulator must

have ultrahigh parameter control accuracy. The device that we
designed adopts graphical user interface control and integrates a
bioimpedance measurement function. The amplitude, frequency,
sinusoidal phase, and transition time can be precisely controlled
to ensure the stability and controllability of the complex
intracranial electric field interference. Based on the idea that
biological impedance varies with the excitation frequency (Stroud
et al., 1995), the appropriate carrier frequency can be selected to
achieve a small current loss.

We conducted a simulation analysis and a phantom
measurement proof to study the functional relationships among
the target location, the electrode location, and the current ratio
in temporally interfering stimulation. The functional relationship
between the electrode spacing and the stimulus depth was
fitted to locate the longitudinal coordinate of the target. In
addition, the functional relationship between the amplitude ratio
of the currents and the transverse coordinate of the target was
fitted to assist in locating the transverse target coordinate. By
solving these functions, the electrode arrangement can be directly
determined according to the coordinates of the target. Then, we
formed a set of feasible schemes by which to achieve accurate
positioning in a simplified and realistic mouse model. Based on
the positioning functions and the mouse model simulation, the
auxiliary software was designed to help target the desired location
in the mouse brain. In this way, it is convenient to use the
temporally interfering stimulation system in mouse experiments
for those who are not interested in modeling and simulation.
Finally, a small region of the mouse motor cortex associated
with shoulder movement was successfully located and activated
in themouse experiment. The experiments demonstrated that the
electrical stimulator could effectively modulate mouse neurons
by enveloping the electric field, and the localization accuracy was
as expected.

MATERIALS AND METHODS

The experimental protocol was approved by the ethics committee
of Capital Medical University and was in accordance with the
Declaration of Helsinki.

Implementation of the Temporally
Interfering Stimulation System
Figure 1 shows the conceptual block diagram and photos of
the temporally interfering neuromodulation system, including
the auxiliary software, electrical stimulator, and experimental
platform. The auxiliary software can control the stimulus
parameters, record experimental data, and assist in target
navigation (Figure 1A). The stimulation parameters, such as the
frequency, amplitude, and offset, can also be set on the touch
panel of the stimulator. There are two main functions of the
stimulator (Figure 1B). One is to provide multichannel, high-
precision, and high-frequency output. The other is tomeasure the
bioimpedance synchronously between the stimulation electrodes.
When the system works, two sets of high-frequency electrical
stimuli are applied to mice via the electrodes, and feedback
signals are concurrently collected for impedance measurement
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FIGURE 1 | Illustration of the neuromodulation system. (A) The auxiliary software. (B) The electrical stimulator. (C) The experimental platform.

(Figure 1C). The electrical stimulator has a modular design, with
extra functionality loaded on demand (Figure 2).

Implementation of High-Precision Output
The temporally interfering electrical stimulation scheme in this
study is based on two high-frequency, accurate alternating
currents. In this study, an analog phase accumulator was used
to achieve a high-precision sine wave. Since STM32 MCU has no
special phase accumulator digital-to-analog converter (DAC), the
principle of the phase accumulator can be simulated by software.
This process was performed by a system that contained the
following main components: a numerically controlled oscillator
(NCO), a frequency and phase modulator, SIN ROM, a digital-
to-analog converter, and a regulator. The DAC was configured
for single-ended operation. The simulation process was achieved
by continuously updating the output data to the direct memory
access (DMA). After optimization, the test could be performed in
1,000 ns for each output but in 522 ns for each data-generation

instance. Up to 52.2% of the CPU was utilized. When using two
channels, the output frequency could be reduced to 250 kHz.
To prevent the user from reducing the frequency too much, all
subordinatemachines were cross-connected; that is, the output of
the original 1–2 channels was provided by subordinate machine
1, whose output was jointly provided by subordinate machines 1
and 4 after using this algorithm.

Implementation of Bioimpedance Measurements
The biologically complex impedance measurement technique
used in this study collects the potential signal produced
by the corresponding frequency stimulation. The measured
bioimpedance was the sum of the tissue impedance and the
electrode contact impedance. The process used to implement
the bioimpedance measurement function was as follows. First,
the electrical signal output module of the electric stimulator
was programmed to provide a weak sinusoidal signal to the
electrode group attached to the subject, and the feedback
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FIGURE 2 | Hardware modular architecture.

signal was collected at the same time. Then, discrete Fourier
transform arithmetic was used to calculate the real and imaginary
parts of the signal (Yang et al., 2017). The real part R and
imaginary part I can be converted into amplitude and phase
information by Equations (1) and (2). Using this method, the
device can measure the impedance of 100 �-10M � values
and achieve a system accuracy as high as 0.5% (Analog Devices
Inc, 2005–2011). The function of bioimpedance measurement
helps ensure the accuracy of the waveform in the electrical
stimulation experiment, thus ensuring the effect of the electrical
stimulation. The circuit design details are shown in the
Supplementary Figure 2.

Magnitude =
√
R2 + I2 (1)

Phase = Tan−1
(I/R) (2)

Inhibition of Crosstalk Between Channels
The output circuit of the temporally interfering electrical
stimulator consists of three parts: an amplifying circuit, a
reverse dual-current pump, and a limiter circuit. In the temporal

interfering electrical stimulation, the current flows not only from
the output electrode to the reference electrode but also from the
electrodes of the other channels, which results in serious current
crosstalk between channels. To maintain the independence of
the channel outputs, anti-phase current drive technology was
used as shown in the Supplementary Figure 3. Each channel
contains two current sources that remain in the opposite phase.
In this way, the current between the channels can be balanced to
eliminate crosstalk.

Electrical Stimulator Test
First, a resin phantom was made to test the output performance
of the electrical stimulator. The phantom was a 50 mm-diameter
cylindrical container filled with a solution with a conductivity
set to ∼0.333 S m−1, and the bottom was covered with holes as
fixing points for electrodes. The crosstalk between channels was
obtained by analyzing the potential data from the stimulating
electrodes (Figures 4Ai,Bi). Second, the load capacity of the
electrical stimulator was tested with resistors. We selected 0.5,
1, 1.5, and 2mA as the current output amplitudes and used
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gradually increasing resistance as the load. In this process, an
ammeter was used to measure the real current output. The
critical load values were also recorded. To test the bioimpedance
measurement function of the device, we performed three
types of load tests—resistance, resistance–capacitance, and
mouse—and measured the impedance changes under different
excitation frequencies (Figures 5A–C). The first two loads were
standard models, and the impedance changes followed physical
characteristics that made it easy to determine whether the
device measurements were accurate. Third, by comparing the
simulated distribution of the electric field envelope amplitude
with the measured distribution, the reliability of the temporally
interfering electrical stimulator could be confirmed. To obtain
the simulated envelope amplitude distribution map, a two-
dimensional 50 mm-diameter circular model containing 1,222
grids and 652 nodes was established (Figure 6Ai). The model has
been validated for grid independence. The material of the model
was set to be uniform and isotropic, and the conductivity was
set to 0.333 S m−1, which was consistent with the phantom. Two
pairs of electrodes were symmetrically placed on the periphery of
the model. A sinusoidal waveform current (0.5mA, 1 kHz) was
applied to the electrodes on the left. Another current (0.5mA,
1.01 kHz) was applied on the right. The measured electric field
strength was calculated by Equation (3) to obtain the electric field
envelope amplitude.
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E1 and E2 represent the fields generated by the first and the
second electrode pairs, respectively; n is a unit vector along the
direction studied; and r represents the location. Then, we drew
the simulated distribution map of the envelope amplitude of the
electric field intensity.

To obtain the measured envelope amplitude distribution map
of electric field intensity, a phantom and an oscilloscope were
used (Figure 6B), an alternating current (0.5mA, 1 kHz) was
applied to the left two electrodes. Another current (0.5mA,
1.01 kHz) was applied on the right. The potential difference 1V
of every two adjacent positions was measured by an oscilloscope,
and the electric field intensity E was calculated by equation
E (t) = V(t)/S, where S is the distance between the two electrodes
inserted at the tested positions. We used the Hilbert transform
to process the data of the electric field intensity along the X
and Y directions and calculated the envelope amplitude. Then,
the measured distribution map of the envelope amplitude could
be drawn.

Accurate Control of the Electrical
Stimulation Target
A study of electrical stimulation simulation showed that CSF
had a shunt effect on the stimulating current, and the higher
the conductivity of CSF, the more obvious the shunt effect was.
However, there was no gross change in the current flow patterns
through the brain (Jiang et al., 2020). Therefore, even with CSF
shunting, electrical stimulation could still reach the target in

FIGURE 3 | Schematic diagram of the animal experiments.

the brain and showed little effect on the intensity distribution
of stimulation in the brain regions. Considering that the CSF
layer in mice is too thin to be modeled, we constructed a layered
finite element model containing 56,000 grids, including the scalp,
skull, and brain, based on the MRI and CT data of the mouse
(Figure 8A). The material of each layer was set to be uniform
and isotropic, and the conductivity was set to 0.333, 0.0083,
and 0.333 S m−1, corresponding to the scalp, skull, and brain,
respectively (Grossman et al., 2017). To reduce the computational
load, a layered elliptic cylinder model was constructed according
to the shape of the coronal plane of the mouse head (Figure 7).
The major axis of the ellipse was 2a, the minor axis was 2b, and
the thickness of the first layer was 0.44mm, as in the mouse
skull. Afterward, the layered elliptic cylinder model was further
simplified into a layered circular cylinder model by keeping
the curvature radius unchanged, with the radius R = a2/b.
Taking the radial electric field stimulation as the most important
part, we analyzed the distribution diagram of the electric field
enveloping intensity in this direction. We conducted multiple
sets of simulations to find the relationship between the target
depth and the electrode distance of the electrical stimulation in an
ideal layered circular cylinder model. In addition, the transverse
coordinates of the target were expected to be correlated with
the electrode position. The results of the simplified model were
applied to the individual mouse model to verify the validity of
the rule. The simulation results were used in the software of a
temporally interfering electrical stimulation system, with which
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FIGURE 4 | Crosstalk testing between channels. (A) i, Schematic diagram of a single-current source drive. ii, The waveform between the two electrodes of a

single-current source output channel. iii, Spectrum analysis result of a single-current source output channel. (B) i, Schematic diagram of the reverse dual-current

source drive. ii, The waveform between the two electrodes of the dual-current source output channel. iii, Spectrum analysis result of the dual-current source output

channel.

we predicted and adjusted the electrode positions to accurately
stimulate the target.

Mouse Experiment
Ten male C57BL/6 mice were subjected to electrical stimulation
in the motor cortex to activate neurons to cause evoked
movements. The motor cortex area related to the shoulder is ∼1
× 1mm, and we selected it as a target of temporally interfering
electrical stimulation (Tennant et al., 2011). The target position
relative to the bregma was AP −0.5mm and ML 0.75mm.
Overall swinging of the mouse front paw should be observed
as the target phenomenon. To prepare for the experiment,
the mice were anesthetized with isoflurane, and surgery was
performed to expose the skull and bregma. In addition, the
cheeks of the mice were shaved. The electrical stimulation
experiment was performed immediately after preparation, and
the mice were maintained under continuous anesthesia with 1–
1.5% (vol/vol −1) isoflurane in oxygen. Two 1 mm-diameter
head electrodes with conductive paste were attached to the
surface of the skull. Two 2 mm-diameter body electrodes with
conductive gel were attached to the cheek of the mouse, spaced
∼1 cm apart. Two 5 mm-diameter grounding electrodes were
placed on the shaved chest, spaced ∼0.8 cm apart. The electrode
configurations were determined through simulation in themouse
model. The two head electrodes were set mediolaterally at −0.55
and 2.05mm and anteroposteriorly at −0.5mm relative to the
bregma. Each of the two kHz alternating currents were applied
to the mouse simultaneously through the head electrode and the
body electrode connected to the electrical stimulator (Figure 3).

First, we performed a stimulation experiment with alternating
currents of I1 and I2 (1 kHz 50 µA, 1.002 kHz 50 µA). If a

2Hz overall swing of the contralateral forepaw was not observed,
the sum of the current amplitudes I1 + I2 was increased
by a gradient of 50 µA. In the process, the positioning of
the target could also be finetuned by adjusting the proportion
between the two currents. Then, we recorded the lowest I1 + I2
that evoked contralateral forepaw movement. Movement of the
ipsilateral forepaw during stimulation was also recorded. Finally,
we changed the frequency of I2 to 1.005 kHz and 1 kHz and
recorded the experimental phenomena.

RESULTS

Performance Test of the Electrical
Stimulator
Implementation of High-Precision Output
Four electrodes were applied in the phantom (Figure 4Ai), and
an electrical stimulator channel was used to output 2 kHz on
the left and 2.1 kHz on the right via another channel. The
waveform shows the interference state of two sine waves between
the two electrodes (Figure 4Aii). After spectral analysis, the
two components of 2 and 2.1 kHz could be clearly observed,
indicating that there was mutual interference between the two
channels (Figure 4Aiii).

The waveform between the two electrodes presented a
relatively standard sine wave (Figure 4Bii), and only the
composition of 2 kHz was seen after spectral analysis, indicating
that the crosstalk between the two channels was reduced
significantly (Figure 4Biii). In this way, channel-to-channel
isolation for high-quality current output was achieved. A
single-channel current source drive can remain stable when
stimulated by a single channel, but serious crosstalk occurs
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FIGURE 5 | Output and impedance measurement performance of the stimulator. (A) Schematic diagram of measuring the resistance by the stimulator. (B) Schematic

diagram of measuring the resistance-capacitance by the stimulator. (C) Schematic diagram of measuring the bioimpedance of a mouse by the stimulator. (D) The

curve of impedance by excitation frequency. (E) The load curve of the stimulator.

FIGURE 6 | Measured and simulated distribution of the envelope amplitude. (A) i, Two-dimensional finite element model. ii, Simulated distribution of the envelope

amplitude of the electric field intensity in the X-axis direction. iii, Simulated distribution of the envelope amplitude of the electric field intensity in the Y-axis direction. (B)

i, Phantom. ii, Measured distribution of the envelope amplitude of the electric field intensity in the X-axis direction. iii, Measured distribution of the envelope amplitude

of the electric field intensity in the Y-axis direction.

when it is stimulated by dual channels simultaneously, as
temporally interfering electrical stimulation occurs. Reverse
dual-current pump drive technology successfully solved the
crosstalk problem.

Output Performance Testing
The output waveform of the electric stimulator produced
accurate signals when the load did not exceed the range
(Figure 5E). The electrical stimulator could provide a standard
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FIGURE 7 | Initial target positioning via a simplified columnar model. (A) i, The ellipse model constructed with MRI data. ii, Further simplified circular model. (B) i,

Distribution of the electric field envelope amplitude in the elliptic cylinder model. ii, Distribution of the electric field envelope amplitude in the circular cylinder model. (C)

Functional relationship between the depth of the temporally interfering stimulation target and the distance between the head electrodes. (D) Relationship between the

amplitude ratio (I1/I2) and the peak envelope amplitude position.

sinusoidal signal of 2mA amplitude within the load range
of 0–5.4 k�. Waveform distortion occurred if the load was
exceeded, as shown by a series of tests with various resistances.
The load capacity decreased as the set current increased. In
terms of the biological impedance measurement function of
the device, three types of impedance—resistance, resistance-
capacitance, and mouse body—were tested (Figures 5A–C).
Electrodes were placed on the skull and body of the mice, which
was consistent with the electrical stimulation. The impedance of
8 k� resistance did not change with the excitation frequency,
and the impedance of the resistor-capacitor load decreased with
increasing excitation frequency and closely matched the result
of the calculation formula Z = R/(1+j×R×ω×C). This result
indicates that the biological impedance measurement function
of the equipment is qualified. Impedance measurements in
mice showed that impedance values decreased as the frequency
increased, somewhat similar to the resistance-capacitance
model (Figure 5D).

Comparison of Simulation Calculations and

Stimulation Measurements
In this study, we simulated the envelope amplitude on a 2-
dimensional circular model and compared the distribution
map with the phantom-measured result. The simulated and
measured results were based on the model and the phantom
(Figures 6Ai,Bi). The X-axis direction and the Y-axis direction
were chosen as the focus directions of the electric field
intensity. Upon comparing the measured distribution map of
the envelope amplitude of the electric field (Figures 6Aii,iii)
with the simulated one (Figures 6Bii,iii), similar distributions
and the same legend were found. The unification of the
two types of envelope amplitude distributions demonstrated

the accuracy of the electrical stimulator output. This result
confirmed the reliability of the electrical stimulator from a
comprehensive perspective.

Mouse Experiment
Simulation Prediction of Electrode Positions
The motor cortex target position of the mouse experiment
relative to the bregma was AP −0.5mm and ML 0.75mm, and
the depth was 0.44 + 0.8mm (the thickness of the mouse skull
was 0.44mm, and 0.8mm corresponded to the mid-layer to
deep-layer V) (Tennant et al., 2011; Lapchak et al., 2015). We
simplified the coronal plane of mice into a two-layer elliptic
model and then further simplified it into a circular model by
keeping the maximum curvature radius unchanged and radius
R = a2/b (Figure 7A). The major axis of the ellipse was 2a,
the minor axis was 2b, and the radius of the circular model
was R. According to the MRI images of the mouse brain, we
measured the coronal section at AP 0.5mm and determined that
a = 4.1mm, b = 3.6mm, and R = 4.7mm. The thickness of
the first layer was 0.44mm, which was the same as that of the
mouse skull, and the conductivity was 0.0083 S m−1. The second
layer represented the brain, with a conductivity of 0.333 S m−1.
The simulated targets of the elliptic and circular models were
the same as the same electrode position and current parameters
(Figure 7B). In addition, when two current amplitudes are
the same, the radial electric field envelope distribution will be
in the middle of the two nearest electrodes. In the circular
model, there is a linear relationship between the depth of the
target of the electrical stimulation and the distance between two
relatively close electrodes. The specific functional relationship
was established (Figure 7C), with a1 = 0.6343 and b1 =

−0.0773. According to the functional relationship, the electrode
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FIGURE 8 | Relationship between the head electrode positions and the distribution of the envelope amplitude. (A) Individual simulated mouse model. (B) Distribution

of the electric field intensity. (C) Distribution of the electric field envelope amplitude intensity.

distance should be 2.6mm to stimulate a target with a depth
of 1.24mm. Therefore, the two head electrodes should be set
mediolaterally at −0.55mm and anteroposteriorly at −0.5mm
and mediolaterally at 2.05mm and anteroposteriorly at−0.5mm
relative to the bregma.

In contrast to ordinary electrical stimulation, in which
the stimulation target can only be changed by adjusting the
electrode position, temporally interfering electrical stimulation
can conveniently adjust the coordinates of the stimulation area
by changing the amplitude ratio between the two currents.
A cylindrical simulation model was built to study the effect
of the current amplitude ratio on the location of the peak
envelope amplitude area. Upon keeping the electrode position
unchanged and adjusting the ratio of the current amplitude,
the peak stimulation area moved along the X-axis and
maintained a stable position along the Y-axis. Through the
function-fitting analysis of the ratio of the current amplitude
and peak area position, a function with good coincidence
was found (Figure 7D), with a2 = −0.1906 and b2 =

0.1853. Based on this finding, adjusting the current ratio is
proposed to control the lateral location of the peak stimulation
region. Together with the rule indicating that the longitudinal
depth position is controlled by adjusting the spacing of the
head electrodes, the function can make target positioning
more convenient.

The above simulation results regarding electrode positions
in the simplified model require simulation verification in an
individualized mouse model. The individualized mouse model
uses the mouse bregma as the coordinate origin. According to
the simulation results of the simplified model, 1mm diameter
electrodes were placed at positions (2.05, 0, −0.5) and (−0.55,
0, 0.5). Two body electrodes were placed symmetrically on the
cheeks of the mice. The simulation results show that the radial
electric field envelope amplitude was the largest in the section

in which the electrode was placed (Figures 8B,C). The electric
field of the electric stimulation under the head electrode was the
largest, but the maximum amplitude of the electric field envelope
as an effective stimulation occurred in the middle between the
head electrodes. The simulation results show that the coordinates
of the region with the largest envelope amplitude were (0.71,
−1.12,−0.57), with a deviation of 0.15mm from the target point
(0.75,−1.25, 0.5).

Mouse Stimulation Experiment
Electrodes were placed according to the simulation result to
stimulate the target in a mouse stimulation experiment. I1
(1 kHz) and I2 (1.002 kHz) were supplied by the stimulator.
The experimental phenomena and electrical stimulation
parameters are shown in Table 1. The result shows that
every mouse experienced evoked movements in the forepaw
on the contralateral side, and the frequency of the periodic
movement was equal to the frequency difference between the
two channels. The mouse forepaw moved only as a whole,
and smaller joints such as the wrist or elbow did not move.
This finding suggests that the electrical stimulator activated
mouse neurons and successfully targeted the 1 × 1mm
motor cortex related to shoulder movement. In addition,
I1 (1 kHz) and I2 (1.005 kHz) were also used to stimulate
the mouse, and higher-frequency evoked movements were
observed. However, I1 (1 kHz) and I2 (1 kHz) caused no
experimental phenomena.

DISCUSSION

In this study, we developed amultichannel temporally interfering
electrical stimulation system with a target positioning function.
The real-time bioimpedance measurement function of the
stimulator ensures that the actual stimulation is accurate and

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2020 | Volume 14 | Article 574189105

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wang et al. Precise Positioning Temporally Interfering Stimulator

TABLE 1 | Experimental data of mice.

No. Current amplitude

I1/I2 (µA)

Whether contralateral

forepaw shook

Whether ipsilateral

forepaw shook

1 200/150 YES NO

2 200/200 YES NO

3 150/150 YES NO

4 150/150 YES NO

5 200/150 YES NO

6 150/150 YES NO

7 150/150 YES NO

8 200/200 YES NO

9 150/200 YES NO

10 200/200 YES NO

as expected. In terms of the accurate target positioning, we
constructed individualized mouse models, performed finite
element analysis of the electric field, and successfully simplified
the simulation using cylinder models of layered ellipses and
layered circles. We found the functional relationship between
the stimulus depth and the electrode spacing, as well as the
relationship between the target abscissa and amplitude ratio.
These findings can help users achieve target positioning in mice
without the heavy work of modeling and simulation. The mouse
experiment showed that the stimulation system could indeed
activate mouse neurons, and the accuracy of target localization
was satisfactory.

In most studies of tACS, 10–40Hz and 0.4–1mA currents are
used (Antal et al., 2008; Zaehle et al., 2010; Paulus, 2011). In
addition, 140Hz tACS on the primary motor cortex has been
shown to result in nonlinear excitatory modulation of cortical
tissue (Moliadze et al., 2012). All these studies used a one-channel
electrical stimulator (Version DC-Stimulator-Plus, NeuroConn)
to provide stimulation with adjustable frequencies up to 250Hz.
In addition, tRNS can also be considered a type of tACS, with
frequencies varying from 0.1 to 640Hz (Terney et al., 2008).
The sampling rate of the electrical stimulator (Version Eldith
DC-Stimulator-Plus, NeuroConn) used in this tRNS study was
1,280 samples/s, with frequencies adjustable up to half of the
sampling rate, i.e., 640Hz. These stimulators can only provide
low-frequency signals. Later studies found that stimulation at
2 and 5 kHz produced lasting changes in the motor cortical
excitability, which was attributed to the modulation of neuronal
membrane activity (Herrmann et al., 2013). The kHz stimulation
was applied over the M1 using a DS5 isolated bipolar constant
current stimulator (Digitimer, Welwyn Garden City) connected
via a cable to the input of a waveform generator (Peak Tech,
Ahrensburg) (Chaieb et al., 2011). These existing devices cannot
provide temporally interfering stimulation due to the weaknesses
of the frequency range, channel number, and resolution,
etc. Since the real modulating effect of time-interfering
electrical stimulation on neurons is the modulating wave of
two different kHz sinusoidal signals, this modulation process
should not take place between the circuits of the equipment.
In this work, high-quality current output was achieved

using a reverse dual-current pump to restrain the crosstalk
between channels.

The bioimpedance between electrodes during temporally
interfering stimulation affects the actual distribution of the
amplitude of the electrical stimulation. Theoretically, the
electrical stimulation provided by the electric stimulator is a
constant current source. However, due to the limited driving
voltage, the biological impedance of each electric stimulation
must be less than the limit load to ensure the signal stability
of the constant current source, which is a feature of any
electrical stimulation device. If the biological impedance between
the two electrodes in one circuit exceeds the load limit, the
actual current amplitude will be smaller than the preset current,
and the target of the differential frequency stimulation will
also be shifted toward this circuit current, as shown in the
Supplementary Figure 3. In addition, if the bioimpedance is
increased significantly during the electrical stimulation, this
indicates that part of the electrode has bad contact, which will
also affect the accuracy of the target location of the electrical
stimulation, as shown in the Supplementary Figure 4. The
bioimpedance measurement function can detect this condition
early in the experiment and monitor the changes in impedance
during the process of electrical stimulation in real time to ensure
the effect of electrical stimulation. In the mouse experiment,
we observed that the stimulation effect was better when the
bioimpedance of each channel was small and not significantly
different. In addition, bioimpedance decreased with an increase
in the stimulation frequency in the common case (Rodriguez
et al., 2016), indicating that the method of using a high-
frequency current to modulate a low-frequency stimulation
signal may be conducive to penetrating the barriers of the scalp,
skull, and CSF.

In research on the mouse brain, the usual anchor point of
the mouse head is a vertex on the skull called bregma. The
bregma was also used as a reference point for the location of
electrodes in the mouse electrical stimulation experiment in this
study, so invasive treatment of the mouse scalp was required.
However, the electrical stimulation itself is non-invasive, and in
experiments on larger animals or humans, non-invasive methods
can be used to stimulate the target. The following simulation
results can be used as evidence. The simulation results shown
in Supplementary Figure 5 show that the effects of non-invasive
and invasive stimulation are similar.

Accurate stimulation of the target brain region is crucial
for the application of electrical stimulation, and numerous
studies on simulation localization for tDCS and tACS have
been published (Datta et al., 2009; Edwards et al., 2013). In
some studies, hundreds of electrodes are calculated to find
optimal electrode configurations (Huang and Parra, 2019). The
positioning accuracy depends on the use of a large number
of electrodes, but only a few electrodes can be placed on
the mouse skull, even if the electrodes are designed to be
1mm in diameter. Based on the shape characteristics of the
mouse head and brain, we found that the most effective
point of stimulation always appeared on the same plane
as the electrodes, so the three-dimensional individualized
simulation navigation could be simplified into a columnar
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model simulation calculation according to the shape of
the coronal plane. In this way, we could obtain electrode
position prediction results by the functional relationship
between the target coordinates, the electrode position and
the amplitude ratio. Then, the target was further navigated
in a three-dimensional, individualized model of the mouse,
and the electrode positions were fine-tuned according to the
simulation results.

Previous studies have shown that high-frequency electrical
stimulation has an activating effect on neurons, which is based
on its effect on cell membranes (Chaieb et al., 2011; Herrmann
et al., 2013). The regulatory effect of low-frequency electrical
stimulation on brain rhythms and networks has been recognized
(Ali et al., 2013; Fröhlich, 2015), but kHz stimulation has shown
no such effect. Time-interfering electrical stimulation, with
the characteristics of both high-frequency and low-frequency
electrical stimulation, may provide many opportunities for
future research and is expected to more efficiently regulate
brain function. Further studies, such as fMRI and behavioral
experiments, will be meaningful and necessary for analyzing
the changes in brain rhythms and networks derived from time-
interfering electrical stimulation.

CONCLUSION

In this study, we designed a temporal interference electrical
stimulator in which technologies such as analog phase
accumulation, reverse current pump driving, and spectral
analysis were used to solve the problems of accurate output,
crosstalk between channels, and bioimpedance measurements.
The output performance of the device was confirmed by testing
the load capacity and SNR of the device. A functional test of the
bioimpedance measurement was performed under resistance
and resistance-capacitance loads and in the mouse body. The
uniformity of the measured and simulated distributions of
the envelope amplitude exhibited the feasibility of temporally
interfering electrical stimulation and the reliability of the
stimulator. Through the simulation of idealized models
and individualized mouse models, we achieved the precise
positioning of temporally interfering stimulation targets.
The functional relationship between the stimulus depth and the
electrode spacing and the relationship between the target abscissa
and amplitude ratio that we found can help users achieve target
positioning in mice without modeling and simulation. Finally,
we conducted a mouse experiment, and evoked movement was
observed in the contralateral forepaw; that is, the temporally
interfering stimulator succeeded in activating mouse neurons
and achieved positioning accuracy in the mouse experiment.
In summary, the performance and experimental effectiveness
of the electrical stimulator have been verified in this study,
and this type of stimulation, with both high-frequency and
low-frequency electrical stimulation characteristics, provides
many opportunities for future research. Further research should
be carried out utilizing this electrical stimulator. If necessary,

we will be able to provide equipment to research teams
that need it.
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Supplementary Figure 3 | Influence of additional impedance on the target

location.

Supplementary Figure 4 | Influence of poor electrode contact on electrical

stimulation. (A) There was complete contact between the electrodes and the

mouse. (B) The condition in which a portion of the area between the electrodes

and the mouse was in poor contact led to a decrease in the stimulus amplitude.

(C) The condition in which a portion of the area between the electrodes and the

mouse was in poor contact led to a right shift of the target.

Supplementary Figure 5 | Comparison between non-invasive and invasive

temporally interfering electrical stimulation. (A) Non-invasive model. (B) Invasive

model. (C) Distribution of the stimulus intensity of the non-invasive model. (D)

Distribution of the stimulus intensity of the invasive model.
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In themain control room (MCR) of a nuclear power plant (NPP), the quality of an operator’s

performance can depend on their level of attention to the task. Insufficient operator

attention accounted for more than 26% of the total causes of human errors and is the

highest category for errors. It is therefore necessary to check whether operators are

sufficiently attentive either as supervisors or peers during reactor operation. Recently,

digital control technologies have been introduced to the operating environment of an

NPP MCR. These upgrades are expected to enhance plant and operator performance.

At the same time, because personal computers are used in the advanced MCR, the

operators perform more cognitive works than physical work. However, operators may

not consciously check fellow operators’ attention in this environment indicating potentially

higher importance of the role of operator attention. Therefore, remote measurement of an

operator’s attention in real time would be a useful tool, providing feedback to supervisors.

The objective of this study is to investigate the development of quantitative indicators

that can identify an operator’s attention, to diagnose or detect a lack of operator

attention thus preventing potential human errors in advanced MCRs. To establish a

robust baseline of operator attention, this study used two of the widely used biosignals:

electroencephalography (EEG) and eyemovement.We designed an experiment to collect

EEG and eye movements of the subjects who were monitoring and diagnosing nuclear

operator safety-relevant tasks. There was a statistically significant difference between

biosignals with and without appropriate attention. Furthermore, an average classification

accuracy of about 90% was obtained by the k-nearest neighbors and support vector

machine classifiers with a few EEG and eye movements features. Potential applications

of EEG and eye movement measures in monitoring and diagnosis tasks in an NPP MCR

are also discussed.

Keywords: electroencephalography, eye movements, machine learning, attention, human error, nuclear safety

1. INTRODUCTION

Attention is an important cognitive resource for information processing directly affecting
the quality of task performance (Wickens et al., 1998). According to the Nuclear Event
Evaluation Database (NEED), a database developed by Korea Institute of Nuclear Safety (KINS),
approximately 20% of the unplanned nuclear power plant (NPP) shutdowns between 2000 and
2011 in Korea were due to human errors (Lee et al., 2017). The operator’s insufficient attention
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accounted for more than 26% of the total cause of human errors,
which takes the biggest portion. Hence, the decreased attention
of an NPP main control room (MCR) operator could lead to a
decrease in their situational awareness, which could result in a
poor reactor operating performance and ultimately cause critical
human errors.

Recently developed NPP designs include fully digitalized
instrumentation and control (I&C). These upgrades are expected
to enhance plant and operator performance. Advanced MCRs
based on digital I&C technology create a completely different
operating environment from the existing MCR configurations
(Choi et al., 2019).

MCR operators are required to monitor several information
sources, such as indicators, alarms, controllers, and mimic
displays, but they have a limited capacity of attention (Wickens
et al., 1998; Ha et al., 2016). Selective attention to important
information is therefore required to effectively understand
the current reactor operating status (Mumaw et al., 2000).
MCR operators therefore allocate their attention resources and
selectively pay attention to relevant and important information
to understand the system status.

MCR operators’ tasks involve cognitive activities of
monitoring and detecting the environment, diagnosing
situations, and decision making (Yang et al., 2017; Kim and
Seong, 2019). MCR operators generally monitor the plant status
and diagnose and respond to the plant status for abnormal
operation (Kim et al., 2020b).

There is a direct relationship between operation and attention,
and that is why either a supervisor or peers observe other
operators to check whether they are sufficiently attentive.
However, this method requires significant labor and may be
subjective. The problem could be exacerbated in an advanced
MCR, where personal computer-based workstations make it
difficult for a supervisor to detect fellow operators’ attention
states (Savchenko et al., 2017). In this situation, remote
measurement of attention would be a useful tool providing real-
time feedback to the supervisor.

Recently, the analysis of electroencephalography (EEG) and
eye movements have been used to assess variations in the
attention state of subjects during the execution of cognitive tasks
in various fields (Jung et al., 2017, 2019; Kim et al., 2018; Pei et al.,
2018).

Liu et al. (2013) determined whether students remain attentive
throughout instruction during the learning process based on
their EEG signals. To describe the learning environment,
Standard English class material was used as experiment material.
A classification accuracy of 76% was obtained through the
support vector machine. The authors explained that if teachers
identify whether students are attentive, they can remind students
to remain focused, thereby improving students’ learning effects.

Heuer and Hallowell (2015) suggested the eye movement
method to index attention allocation in people with aphasia.
Auditory sentence comprehension and visual search tasks
were performed. The authors observed differences in
attention allocation between groups with and without
aphasia depends on task complexity in single- and dual-
task conditions. They suggested that utilizing information

from eye movements has promising potential for clinical
assessment applications.

Pallavi and Harish (2016) implemented a driver’s attention
monitoring system using EEG signals. The EEG signals were
monitored and analyzed by using a brain sense headband that
transmits the information to the controller wirelessly using the
Bluetooth module. The warning tone would be triggered to
prevent accidents when the drowsiness condition occurred to
the driver. The authors explained that their EEG based-attention
monitoring system can be used to indicate driving attention
and drowsiness.

To date, the potential benefits of studying EEG and eye
movements together to understand operator’s attention in NPP
tasks has not been pursued. As MCR operators perform cognitive
activities by using information obtained through visual channels,
we evaluated the use of both EEG signals and eye movements (as
supportive biosignal) to establish a robust baseline to determine
the plausibility of developing an attention monitoring system in
this paper. Using two sets of data to monitor human attention
may help to improve the accuracy in model predictions and
contribute to overall human error reduction.

In this research, performing nuclear tasks based on the use
of a nuclear simulator was investigated. Although this is not
completely the same as with the tasks of a professional MCR
operator in NPP, this could provide similar environment of an
MCR operator and raise the level of psychological involvement
of the subjects during the experiments. To reflect and mimic
operations in an advanced MCR, this study designed general
tasks and nuclear simulator tasks as the basis for collecting
relevant EEG and eye movement data. The collected data
were analyzed for feature extraction and classification model
development based on the use of machine learning algorithms.

2. METHODS

This study constructed a hypothesis to investigate the
identification of the attention of advanced MCR operators.
The hypothesis is that there will be a significant difference in
an operator’s biosignals between the presence and absence of
attention while performing general tasks as well as the tasks
related to nuclear reactor operations.

2.1. Experimental Design
To test this hypothesis, study subjects were asked 38 questions
as general tasks and 72 questions specific to nuclear reactor
operations based on the use of the nuclear simulator. EEG and eye
movement data were collected during the experimental sessions
and analyzed with respect to the testing hypothesis.

2.1.1. General Tasks
Oh and Lee (2013) investigated the potential causes of human
errors in an advanced MCR where PC-soft controls are heavily
relied on for reactor operation. They found that observation,
omission, search and decision, and memory and decision failures
are four major factors related to human errors. The authors
also designed four experimental tasks to investigate the role of
these factors. These tasks were used with slight modification
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FIGURE 1 | Examples of general tasks.

in the current study as general task questions. Examples of
these questions are illustrated in Figure 1. For example, the
observation trial questions ask the subject how many words
in a list (“taost,” “traet,” “trust,” “twist”) have typographical
errors [answer: two words (toast and treat) have typographical
errors]. The omission trial questions ask the subject to find the
omitted numbers from a matrix where the numbers between
1 and 9 are presented in a random order. The search and
decision trial questions ask the subject to check the number
in a specific position in a 5X5 matrix. The memory and
decision trial questions ask the subject to recall a specified
number in a 5X5 matrix and compare it with the number
provided. A total of 38 questions were used in the general
task session, including eight observation trials, six omission
trials, 16 search and decision trials, and eight memory and
decision trials.

As shown in Figure 2, each trial followed the same sequence
of screen changes: a fixation cross to prepare the subject for
the trial, a blank screen, a question (e.g., “What is the number
in row 3, column 5?”), a blank screen, a picture related to
the question (e.g., a matrix of numbers with 5 rows and 5
columns), a blank screen, an answer to the question provided
by the instructor (in each trial, the subjects answered the
trial questions and were given an opportunity to compare
their answer with the answer provided by the instructor.),
and a blank screen followed by a two checklist questions to
be answered by the subject via keyboard. The first checklist
question was “Was there an error in the instructor’s answer?”
with the choice of yes or no. The second question was
“How attentive were you in answering the previous question?”
with these multiple-choice options: very attentive, moderately
attentive, somewhat attentive, only slightly attentive, or not at
all attentive.

2.1.2. Nuclear Simulator Tasks
The second group of trials used soft controls in an advancedMCR
mock-up called the Windows-based Nuclear Plant Performance
Analyzer (Win-NPA). Win-NPA is a compact nuclear simulator
capable of simulating 53 malfunctions in nuclear reactor
operations (Kim et al., 2000; Sohn et al., 2011). Although the
simulator is not a full scope simulator, many researchers have
used it to simulate operations in an advanced MCR (Choi et al.,
2018; Kim et al., 2020c). The interface of the Win-NPA is fully
digitalized to make the experimental environment similar to the
environment in an advanced MCR.

Various types of human error can occur in an advanced NPP
MCR. This study examines operation omission, wrong object
selection, and wrong operation as part of conducting nuclear
simulator tasks (Kim et al., in press). Operation omission can
be defined as failing to execute a step in an operating procedure
(e.g., mistakenly taking steps 1, 2, 4, and 5 in a procedure, leaving
out step 3). Wrong object selection is a failure to select a target
object and instead select a different object. An example of the
wrong operation is pressing an “OPEN” button instead of a
“CLOSE” button.

The types of scenarios used in the experiment in association
with identifying human error occurrence were normal operating
scenarios (i.e., startup and shutdown) as well as two accident
scenarios [i.e., a loss of coolant accident (LOCA) and a steam
generator tube rupture (SGTR)]. If a LOCA occurs in an NPP, the
pressurizer’s (PZR’s) pressure, temperature, and the water level
will decrease, and containment radiation will increase. Similarly,
if an SGTR occurs in an NPP, the PZR’s pressure, temperature,
and the water level will decrease, and the steam generator (SG)
water level will increase. Prior to the experiment, the subjects
were instructed that it was training session for education to avoid
the higher workload or decision burden for accident scenarios.
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FIGURE 2 | Experiment paradigm of general tasks.

To focus on evaluating the attention of the subjects, the scenarios
used in the experiment was not required to recover the accident
but was required to monitor and diagnose the situation.

To analyze the cognitive behavior of the subjects during the
trials, this study defined four groups of areas of interest (AOI,
or specific operating parameters of interest) as shown in the red
rectangles of Figure 3; these are (1) pressure, wide-range water
level, and narrow-range water level of SG1, (2) pressure, wide-
range water level, and narrow-range water level of SG2, (3) PZR
pressure and water level, and (4) reactor power. Furthermore,
there is an additional condition that insert a broken indicator
(BI) to make deviations from the training contents. While faced
with a scenario (normal operation, LOCA, or SGTR), the subject
must focus on the four groups of AOI to monitor indicators or
find a BI. Collectively, this study provides 18 startup scenarios,
18 shutdown scenarios, 18 LOCA scenarios, and 18 SGTR with
each having six scenarios of finding BIs.

Each subject acted as an operator, specifically a reactor
operator or a turbine operator. Each subject took part in a session
of 72 operator action trials, 36 involving normal scenarios, and 36
involving the two accident scenarios. As shown in Figure 4, each
trial followed this screen sequence: a fixation cross to prepare the
subject for the trial, a blank screen, a question (e.g., “Can you
find a broken indicator?”), a blank screen, a video related to the
question (e.g., a video of the LOCA scenario), a blank screen,
the instructor’s answer [e.g., PZR pressure indicator is broken
(PZR P is BI)], a blank screen, a checklist with two questions to
be answered by the subject via keyboard. As in the case of the
general task session, the first checklist question was “Was there
an error in the supervisor’s answer?” with the choice of yes or no.
The second question was “How attentive were you in answering
the previous question?” with these multiple-choice options: very
attentive, moderately attentive, somewhat attentive, only slightly
attentive, or not at all attentive.

As the study requires labeling of the experimental data as
either presence of attention (PoA) or absence of attention (AoA)
for classificationmodel development, the answers to the checklist
questions were used to identify the attention levels of the subjects
during the experimental sessions.

2.2. Subjects of the Experiment
Because the tasks performed in this study require sufficient
knowledge in nuclear reactor systems, the experimental subjects
were recruited among the college/graduate students majoring
in nuclear engineering. It was required for the subjects to have
completed one of the two courses: “Introduction to Nuclear
Engineering” or “System Engineering of Nuclear Power Plants.”
In the end, 30 volunteer students (27 male and three female)
from the Department of Nuclear and Quantum Engineering at
Korea Advanced Institute of Science and Technology (KAIST)
participated in the experiments. They were also screened against
a history of eye problems, neurological disorders, mental
disorders, or alcohol or drug dependence. None of the students
were disqualified from the screening.

Before conducting the experimental sessions, the research
staff explained the experimental procedures to the subjects,
as required by the KAIST Institutional Review Board (IRB)
guideline. The subjects read an information sheet and signed an
agreement regarding the data collection process. All subjects were
required to sleep more than 6 h and not to drink caffeine or
alcohol for at least 24 h before the experiment.

Prior to performing the experiment, there was a 30 min
training session by the experiment instructors, who have
considerable expertise with the Win-NPA system. This training
session included conducting simple tasks to show how tomonitor
and diagnose simulator scenarios. The actual experiment was
conducted only for the subjects who answered more than six out
of eight questions correctly in the pre-test. It turned out that one
student did not pass the pre-test. After further studies, the student
was qualified and participated in the experiment.

2.3. System Architecture for Classification
2.3.1. Data Acquisition
Studies indicate that among various frequency bands of EEG, an
increase in the gamma band and a decrease in the alpha band
are associated with subjects’ paying attention to tasks (Pascucci
et al., 2018). In eye movements, an increase in the fixation
count and fixation duration is often referred to as an increase
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FIGURE 3 | Schematic diagram of nuclear simulator tasks with four groups of AOI.

FIGURE 4 | Experiment paradigm of nuclear simulator tasks.

in the attention level (Holmqvist et al., 2011). Based on these
observations, we acquired the relevant EEG and eye movement
data to evaluate the attention status of the subjects.

EEG signals were measured using a Neuron-spectrum 4/P
(Neurosoft Ltd., Russia). Each subject was fitted with an Ag/AgCl
electrode cap arranged with an extended international 10-20
system. The EEG data from 21 channels (Fp1, Fp2, Fpz, F3, F4,
F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1, O2, and Oz)
were recorded, as shown in Figure 5, at a sampling rate of 500
Hz. Reference electrodes were placed on both earlobes. During

the experiment, the electrode impedances of all the channels were
kept below 5 k�.

The eye movements were measured by using a Tobii X120
eye tracker. The eye tracker was located beneath the computer
monitor, monitoring the subject’s field of vision. The seating
position was adjusted according to the subject’s height. Since the
eye tracker is non-invasive and operates remotely, the device did
not interfere with the subject’s task performance.

After adjusting the seating position, the Tobii X120 was
calibrated. Calibration required the subjects to move their eyes
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FIGURE 5 | Brain areas corresponding to the 10/20 electrode positions.

to five specific spots, i.e., each of the four corners and the
center of the monitor screen. These eye movements were tracked
using a standard five-point calibration option in the Tobii Eye
Tracker Extension for Presentation software. Eye movement was
recorded with a sampling frequency of 120 Hz. Because EEG and
eyemovement data collection are sensitive to light and sound, the
experimental environment blocked light and sound to support
the subject’s concentration. The EEG and eye movement data
were synchronized in time by using the Neurobehavioral Systems
presentation software.

2.3.2. Channel Selection
The EEG signals are generally categorized as delta (δ), theta (θ),
alpha (α), beta (β), and gamma (γ ) based on signal frequencies
(Zeng et al., 2015). The δ frequency (1–4 Hz) appears in
cognitive processes related to the detection of salient stimuli in
the environment. The θ frequency (4–8 Hz) is related to visual
selective attention. The α frequency (8–13 Hz) primarily reflects
visual processing in the brain (Klimesch et al., 2011). The β

frequency (13–30 Hz) focuses on neural correlates of attention
and concentration (Wang et al., 2017). The γ frequency (30–
50 Hz) reflects working memory and attention (Klimesch et al.,
2008). These EEG indicators were measured on various parts
of the brain to represent different brain functions. This study
focused on describing functions related to the frontal, temporal,
and parietal lobes as well as the Brodmann Areas (BAs).

As shown in Figure 5, each area of the brain is responsible
for a specific function. The frontal lobes play a role in
many processes, such as motivation, intention, attention, and
concentration. The temporal lobes are believed to be of
central importance in memory processing and discrimination of
complex visual stimuli (Klimesch et al., 1994). The parietal lobes
are associated with the detection of salient new events in the
environment and in sustaining attention on task goals. BA 10 is
the frontopolar area responsible for central executive processes
such as memory, emotion, and integration of the information
(Peng et al., 2018).

The brain areas that correspond to the 10/20 electrode
positions can vary and include the frontal area (with Fp1, Fp2,
Fpz, F3, F4, F7, F8, Fz, C3, C4, and Cz), the temporal area (with
T3, T4, T5, and T6), the parietal area (with C3, C4, Cz, P3, P4,
and Pz), and the BA 10 area (with Fp1, Fp2, and Fpz).

2.3.3. EEG and Eye Movement Preprocessing
To remove artifacts in the collected EEG data, data preprocessing
was performed based on Makoto’s preprocessing pipeline using
EEGLAB (Delorme and Makeig, 2004). The line noise was
removed by the CleanLine plugin (Mullen, 2012). Bad channels
were rejected using the Clean Rawdata plugin, and continuous
data were corrected using artifact subspace reconstruction
(ASR). The Adaptive Mixture Independent Component Analysis
(AMICA) program and the postAmicaUtility toolbox were used
for independent component analysis (ICA) (Palmer et al., 2012).
The artifacts from body movement, rolling eyeballs, and blinking
were excluded from the analysis based on visual inspections of
each component.

The preprocessed data were divided into 38 epochs of 5 s for
each general task and 72 epochs of 5 s for each nuclear simulator
task. A total of 110 epochs of 5 s per channel were collected and
used for subsequent analysis.

The eye movement data are made up of x, y coordinates with
each data point’s associated timestamp. These raw data were used
to obtain information about fixation count and fixation duration.
Preprocessing of eye movement data includes conversion of gaze
position data from pixels to millimeters, removal of blinks and
artifacts, and removal of outliers.

2.3.4. Feature Extraction
To support the development of a machine learning algorithm,
this study extracted a set of features that describe subjects’
EEG and eye movement responses. These features were then
used to classify the presence and absence of attention using the
classification model. The EEG features used were extracted from
the frequency domain (Tang et al., 2013).

The frequency domain features were calculated using the
Discrete Fourier Transform (DFT). The transformed data were
categorized into five frequency bands, δ, θ , α, β , and γ . A relative
power value was calculated for each channel by dividing the
power of each frequency band by the total power from the five
frequency bands.

In the case of eye movement data, fixation was defined as a
pause, of 150 ms, in eye movement over a specific region of the
visual field. In the nuclear simulator tasks, a question was asked
referring to four groups of AOI (SG1, SG2, PZR, and reactor
power). All fixations occurring during the 5 s video relevant to
the question were measured but only the fixations on specific
group of AOI were considered for analysis. If the subject looked
at other groups of AOI, these fixations were not included in the
analysis. The analysis consisted of calculating the total number of
fixations on the relevant group of AOI and the time duration of
these fixations per task.

This study used each of the five frequency domain features
from each channel of the EEG measurements and two features
extracted from the eye movement data as summarized in Table 1.
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TABLE 1 | Features extracted from the EEG and eye movement data.

Biosignals Feature types Extracted features

EEG Frequency domain Relative power of δ, θ , α, β, and γ

Eye movements Fixation domain Total number of fixations in the

relevant AOI (fixation) and total time

spent on the relevant AOI fixation

(duration)

TABLE 2 | P-values for the EEG indicators showing differences between the AoA

class and the PoA class for all general tasks while viewing pictures.

Indicator Frontal Temporal Parietal BA 10

Relative power of δ 0.633 0.587 0.545 0.535

Relative power of θ 0.420 0.597 0.606 0.011*

Relative power of α 0.008* 0.521 0.242 0.587

Relative power of β 0.010* 0.229 0.304 0.143

Relative power of γ 0.372 0.521 0.457 0.592

P-values less than 0.05 are identified with an asterisk.

3. RESULTS

3.1. Statistical Analysis
Using the answers to the two checklist questions in both the
general and nuclear simulator task sessions, this study labeled the
collected EEG signals and eye movement data into the PoA class
and the AoA class. Trials with the answer “very attentive” and
“moderately attentive” with correct responses for the task were
labeled as the PoA class, and those with “somewhat attentive”
were not used in the classification. The AoA class was defined
for the following two conditions. First, the trials with the answer
“only slightly attentive” or “not at all attentive” in the second
question of the checklist were labeled as the AoA class regardless
of the correctness of the answer to the first question. Also,
the cases with incorrect responses to the first question of the
checklist were also labeled as the AoA class by assuming that the
wrong answer was due to a lack of attention. This may involve
misclassification as the subject could have answered the question
wrong under full attention. But the number of cases under this
category was very small and is not expected to affect the outcome
of the study. In summary, there were 2656 PoA cases, 578 AoA
cases, 12 cases of potential misclassification, and 54 removed
cases due to artifact removal. To examine the effect of possible
misclassification with the 12 cases, this set was treated as both the
AoA class and the PoA class in the analysis. The results showed
statistically insignificant difference with and without these 12
cases both in the analysis of the general tasks and the nuclear
simulator tasks.

The results from the Welch’s t-test for the general task
questions are shown in Table 2. Results indicated that statistically
significant differences exist in several of the EEG signals between
the AoA class and the PoA class. These EEG signals were the
relative power of the α and β bands from the frontal lobes and the
relative power of the θ band from the BA 10. Asmentioned above,
frontal lobes are related to attention and concentration, and BA

TABLE 3 | P-values for the EEG indicators showing differences between the AoA

class and the PoA class for all Win-NPA tasks while watching videos.

Indicator Frontal Temporal Parietal BA 10

Relative power of δ 0.214 0.051 0.036* 0.546

Relative power of θ 0.576 0.995 0.638 0.131

Relative power of α 0.662 0.051 0.619 0.039*

Relative power of β 0.598 0.003* 0.041* 0.462

Relative power of γ 0.443 0.015* 0.057 0.019*

P-values less than 0.05 are identified with an asterisk.

10 is responsible for memory and integration of information. The
α, β , and θ bands are related to visual processing, concentration,
and visual selective attention, respectively. As shown in Figure 6,
the θ band was significantly increased across the BA 10 in the
AoA class. Also, the α band was significantly increased and the
β band was significantly decreased across frontal lobes in the
AoA class.

The EEG signals collected during the Win-NPA tasks also
showed significant differences (based on the Welch’s t-test)
between the AoA class and the PoA class as shown in Table 3.
Because visual processing of information is important cognitive
activities during the nuclear simulator session, EEG signals
recorded from the brain regions related to visual processing,
such as on temporal lobes and parietal lobes, showed significant
differences between the AoA class and the PoA class. Also,
EEG signals from BA 10, which is associated with memory
and integration of information showed a significant difference
between the AoA class and the PoA class, similar to the
observations from the general tasks. As shown in Figure 7, the
δ band was significantly decreased across parietal in the AoA
class while watching the videos. The α band was significantly
increased across BA 10 in the AoA class. This result is
consistent with previous studies that alpha desynchromization
promotes information processing in the brain (Klimesch,
2012). Similarly, the β band was significantly increased across
temporal and parietal lobes in the AoA class. The γ band
was significantly decreased across temporal and BA 10 in the
AoA class.

As shown in Tables 2, 3, the number of statistically significant
indicators was three in the general tasks and six in the nuclear
simulator tasks. The fact that the nuclear simulator tasks
required professional knowledge and higher concentration levels
compared to the general tasks may have resulted in a larger
number of significant indicators between the AoA class and
the PoA class in the nuclear simulator tasks. Additionally, it is
noticeable that, unlike the general tasks, the nuclear simulator
tasks showed statistically significant differences in the EEG
signals from the temporal and parietal lobes, which are related
to visual attention.

The observed differences in the attention level between the
AoA class and the PoA class during the general tasks and
nuclear simulator tasks were utilized for classification model
development by applying machine learning algorithms.
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3.2. Classification
Feature selection is the process of selecting a subset of features
that contribute the most to the construction of the classification
model through including and excluding features present in the
data. The feature selection was achieved by using the default
parameters of the Variable Selection using Random Forests
(varSelRF) technique (Diaz-Uriarte, 2007). The varSelRF uses
both backwards variable elimination and selection based on the
potentially highly correlated variables. As described in the feature
extraction section, five features from the frequency domain in the
EEG data and two features from eye movement data were used
for classification.

To classify the data, both the classifiers of the k-nearest
neighbors (kNN) and support vector machine (SVM) were used.
Theses classifiers are widely used in various fields to classify EEG
data (López-Gil et al., 2016). The kNN is a supervised learning
algorithm for classifying objects based on the closest training data
in the feature space. As a non-parametric method, it performs
classification based on comparing testing data with training data.
The SVM is a supervised learning algorithm and formulates a
separating hyperplane. Themethod is applied to solve a quadratic
optimization problem in the feature space. Kernel SVM finds
the optimum hyperplane into a higher dimensional space, which
ensures that the distance between margins is maximum. This
study specifically used the radial basis function (RBF) kernel to
project input vectors into a Gaussian space.

30% of the study observations were randomly selected and
used as testing data, and 70% of the observations were used as

training data for classification model development. The average
classification accuracy using the developed model was calculated
through the classification results of testing data.

Table 4 summarizes the results as classification accuracy of
the developed model for the case of the general tasks. The
classification accuracy was calculated as an average across the
total brain, frontal lobes, and BA 10 based on statistical analysis.
When the five EEG frequency domain features were used, the
average classification accuracies of the kNN and SVM classifiers
were 84.6–86.7 and 87.0–87.4%, respectively. From the results, it
is noticeable that the average classification accuracy of using BA
10 data only is comparable to that of using the total brain and
frontal lobes data, which use a greater number of channels.

Table 5 summarizes the average classification accuracy of the
developed model between the AoA class and the PoA class
in the nuclear simulator tasks. The classification accuracy was
calculated as an average across the total brain, temporal lobes,
parietal lobes, and BA 10 based on statistical analysis. When

TABLE 4 | Average classification accuracy of the AoA class and the PoA class in

the general tasks using the frequency domain features (Unit: %).

Brain areas kNN SVM

Total brain 85.8 87.4

Frontal lobes 86.7 87.0

BA 10 84.6 87.2

FIGURE 6 | The relative power of EEG frequency bands between the AoA class and the PoA class in different regions of the brain for all general tasks. Blue bars

represent the PoA class and the red bars represent the AoA class. Brain areas with P-values less than 0.05 are identified with an asterisk. (A) Relative power of delta,

(B) relative power of theta, (C) relative power of alpha, (D) relative power of beta, and (E) relative power of gamma.
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FIGURE 7 | The relative power of EEG frequency bands between the AoA class and the PoA class in different regions of the brain for all Win-NPA tasks. Blue bars

represent the PoA class and the red bars represent the AoA class. Brain areas with P-values less than 0.05 are identified with an asterisk. (A) Relative power of delta,

(B) relative power of theta, (C) relative power of alpha, (D) relative power of beta, and (E) relative power of gamma.

TABLE 5 | Average classification accuracy of the AoA class and the PoA class in

the nuclear simulator tasks using the frequency domain features (Unit: %).

Brain areas kNN SVM

Total brain 86.5 87.8

Temporal lobes 86.5 87.6

Parietal lobes 86.2 87.4

BA 10 86.8 87.2

the five EEG frequency domain features were used, the average
classification accuracies of the kNN and SVM classifiers were
86.2–86.8 and 87.2–87.8%, respectively. From the results, it is
also noticeable that the average classification accuracy of using
the BA 10 data is comparable to that of using the data from the
total brain, temporal lobes, and parietal lobes which use a larger
number of channels. The BA 10 is related to visual processing and
attention functions.

The results again confirm that visual processing and attention
play an important role in understanding visual-based nuclear
relevant tasks. On the basis of statistical analysis and classification
results from the general tasks and the nuclear simulator tasks, the
null hypothesis is rejected.

This study also compared the average classification accuracy
between the case of using only the EEG data and the case of using
both the EEG and eye movement data. Table 6 summarizes the
comparison of the average classification accuracy of the AoA class

TABLE 6 | Average classification accuracy in the total brain when using EEG only

and when using EEG with eye movements in the nuclear simulator tasks using the

frequency domain features (Unit: %).

Biosignals kNN SVM

EEG 86.5 87.8

EEG with eye movements 89.1 90.1

and the PoA class between the two cases in the nuclear simulator
tasks. The average classification accuracy was calculated for the
total brain area.

The average classification accuracies of the kNN and SVM
classifiers were about 86-87% for the use of EEG data only, and
89–90% for the combined use of the EEG and eye movement
data, respectively. The average classification accuracy of using
both the EEG and eye movement data is about 3% higher than
using only the EEG data. Although the increase is not great, these
results may indicate the potential of the eyemovement data as the
supportive biosignal to evaluate MCR operators’ attention.

4. DISCUSSION

4.1. Applications
The proposed system could be utilized to provide a real-time
monitoring of the attention levels of nuclear reactor operators
during operations in the MCR. Such monitoring capability may
help to enhance overall performance of the reactor operating
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team without interfering with their operating duties or functions.
Such capability may also provide opportunities to prevent or
detect human errors, particularly in terms of an advanced
NPP MCR.

Applying the proposed concept in an NPP MCR requires
a high degree of information security in data utilization. The
process of obtaining and transmitting EEG and eye movement
data should be protected to prevent tampering or unauthorized
acquisition of the data. For this reason, application of the
proposed system to an advanced MCR can be through wired
data transmission in conjunction with a secure USB or using the
Intranet or using one-way data transmission and reception (this
is because Wi-Fi and Bluetooth tools are not allowed in NPPs).

Another application of the proposed approach is to support
operator training. The operators’ performance during training
sessions can be monitored in real-time as suggested in the
study. Based on the analysis of the data, individually tailored
recommendations can be provided to the trainees conserving the
privacy of the data. Also, effectiveness of the existing training
programs can be assessed by using the proposed approaches for
program enhancement.

4.2. Biosignal and Channel Selection
In this study, use of all the available EEG channels and their
potentially associated features were not considered under the
consideration of avoiding overfitting of the machine learning
algorithm. In fact, taking economic and ergonomic aspects into
consideration, recording a full set of EEG data may not be
desirable (Kim et al., 2020a). To examine this point, this study
compared the EEG results from the total brain (21 channels) to
the BA 10 (three channels: Fp1, Fp2, and Fpz).

Comparison of the classification accuracies from using various
brain channel data indicated that using all available data or
channels was not necessary for the given task, i.e., classification
of attention levels. As shown in Table 5, the average classification
accuracies of using only the BA 10 data are comparable to
those of using the total brain data. This suggests that an
EEG measurement implementation in the form of helmets may
be possible with the use of only the BA 10 channels. Such
implementation could suffice the data required for the advanced
MCR application.

Furthermore, the average classification accuracy of the
developed model from the combined use of the EEG and eye
movement data was just 3% higher than the case of using the
EEG data only (Table 6). Although the increase in classification
accuracy is not significant from the use of additional eye
movement data, the use of eye movement data may be important
for human error reduction as looking at the right AOI is an
important part of decision making by a nuclear operator.

While this study indicated the plausibility of using the EEG
and eye movement data for attention monitoring based on
mockup tasks with students as subjects, future study will consider
using a full-scale simulator with professional reactor operators.

5. CONCLUSION

This study investigated the development of biosignal-based
attention monitoring system for the purpose of preventing
human error at NPP MCR. The system is based on a
classification model for the presence or absence of operator
attention. We designed general tasks and nuclear simulator
tasks mimicking the situations in NPP MCR as the basis of
model development. During these tasks, each subject’s attention
levels were examined and analyzed from their biosignals to
develop the classification model. The biosignals used were
the five frequency band EEG data and eye movement data.
Through the use of the developed model, we demonstrated that
the presence or absence of human attention can be classified
with up to 90% in accuracy. The proposed methods could be
adopted to other industrial applications for the purpose of human
performance enhancement and/or human error reduction based
on attention monitoring.
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Excessive glucocorticoids (GC) may lead to the aggravation of several basic

diseases including myopia, due to plasma hormone imbalances associated with the

hypothalamic–pituitary–adrenal axis (HPAA). Electroacupuncture (EA) is an effective

therapeutic method to treat many diseases, although it remains unclear whether EA at

acupoints on the foot or back would be effective in treating eye diseases. It was recently

found that visual cortex activity for responses to visual stimuli with spatial frequency

and resting-state functional connectivity (FC) between the supramarginal gyrus and

rostrolateral prefrontal cortex was significantly reduced in patients with high myopia.

The present study aims to investigate the role of the alternation of resting-state FC

among the bilateral visual cortex and hypothalamus in exerting anti-myopia effects of

EA in GC-enhanced lens-induced myopic (LIM) guinea pigs such that the mechanisms

of EA to treat GC-enhanced myopia at Shenshu (BL23) acupoints can be probed. To

confirm the effects of EA, ocular parameters including axial length and GC-associated

physiological parameters such as animal appearance, behavior, bodyweight, and

levels of four HPAA-associated plasma hormones [free triiodothyronine (FT3), free

thyroxine (FT4), estradiol (E2), and testosterone (T)] were also collected. Increased

resting-state FC between the left and right visual cortex was detected in GC-enhanced

lens-induced myopic guinea pigs with EA at BL23 acupoints (LIM+GC+EA) guinea pigs

compared to GC-enhanced lens-induced myopic guinea pigs with EA at sham acupoints

(LIM+GC+Sham) guinea pigs, as well as suppressed myopia and recovery of symptoms
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initially caused by overdose of GC. Recovered symptoms included improved animal

appearance, behavior, bodyweight, and HPAA-associated plasma hormone levels were

observed after 4 weeks of EA treatment. In contrast, the LIM+GC+Sham group showed

decreased FC with elongation of axial length for myopization as compared to the control

group and LIM group and exhibited a deterioration in physiological parameters including

reduced body weight and balance disruption in the four measured HPAA-associated

plasma hormones. Our findings suggest that EA could effectively treat GC-enhanced

myopia by increasing resting-state FC between the left and right visual cortices, which

may be pivotal to further understanding the application and mechanisms of EA in treating

GC-enhanced myopia.

Keywords: functional connectivity, resting-state fMRI, neuroimaging, electroacupuncture, glucocorticoid, myopia

INTRODUCTION

High myopia is a major public health concern, often
accompanied by several severe comorbidities, including retinal
detachment, cataracts, and glaucoma due to the elongation
of axial length (Rudnicka et al., 2016; Morgan et al., 2018).
Currently, excessive myopic axial length elongation and
increased risk of irreversible visual impairment have been found
in experimental lens-induced myopia after intraperitoneal
injection of the glucocorticoids (GC) (Ding et al., 2018).
The imbalance of four plasma hormones associated with the
hypothalamic–pituitary–adrenal axis (HPAA), including free
triiodothyronine (FT3), free thyroxine (FT4), estradiol (E2), and
testosterone (T), is often caused by excess GC. Excess GC also
causes deteriorated physical conditions as well as a reduction in
body weight and then resulted in enhancement of basic disorders,
such as arthritis and diabetes (De Bosscher and Haegeman, 2009;
Lu et al., 2011; Vieira et al., 2011; Wang et al., 2015; Ferreira et al.,
2016; Oray et al., 2016; Xia et al., 2017; Yan et al., 2017; Hasona,
2018; Panettieri et al., 2019). Interestingly, electroacupuncture
(EA) has been proven to be an effective therapeutic method to
treat GC-induced diseases at the Shenshu (BL23) acupoint which
was located adjacent to the second lumbar vertebra on the back
(Wang et al., 2015; Feng et al., 2018).

Using resting-state functional MRI (rsfMRI), functional
connectivity (FC) between brain regions can be assessed by
analyzing the temporal relationships of blood oxygen level-
dependent (BOLD) fluctuations between brain regions (Chong
et al., 2019; O’Neill et al., 2019). In recent years, various studies
utilized rsfMRI to investigate the underlying mechanisms of
eye diseases including myopia and amblyopia (Hu et al., 2018;
Dai et al., 2019). Previous studies reported that visual cortex
activity for responses to visual stimuli with spatial frequency,
and resting-state FC between the supramarginal gyrus and the
rostrolateral prefrontal cortex, was significantly reduced in high-
myopia patients (Zhai et al., 2016; Mirzajani et al., 2017). It
was also reported that FC density significantly decreased in the
posterior cingulate cortex/precuneus (PCC/preCun) (Zhai et al.,
2016). However, the role of resting-state FC between the left and
right visual cortex on the treatment of high myopia has not yet
been explored.

Consequently, there is considerable interest in discovering
means to explore whether EA would affect brain function in
treating GC-enhanced eye diseases at BL23 acupoints located
on the back. In the present study, we aimed to investigate
alternation of resting-state FC between the visual cortex and
hypothalamus to assess the effects of EA at BL23 acupoints
on the treatment of GC enhanced myopia in guinea pigs. We
also measured myopia-related ocular parameters including axial
length, and GC-associated physiological parameters including
animal appearance, behavior, body weight, and levels of four
plasma hormones related to the HPAA (FT3, FT4, E2, and T).
Our study may provide insights in deepening understanding
of the mechanisms of acupuncture in the treatment of GC-
enhanced eye diseases at acupoints far from the eyes.

MATERIALS AND METHODS

Animals
Sixty male pigmented guinea pigs (Cavia porcellus) at the age of
2–3 weeks were obtained from the Jinan Xijueling Laboratory
Animal Ltd. (Jinan, China) and raised in the animal lab center
within the Eye Institute of Shandong University of Traditional
Chinese Medicine. Food and water for the guinea pigs were
available ad libitum, and the room temperature wasmaintained at
22◦C. The guinea pigs were reared in plastic cages (15 cm× 26 cm
× 32 cm) under a 12/12 h light–dark cycle. The average light in
the cage was ∼300 lux. All experimental protocols and animal
handling procedures were approved by the ethics committee of
the Eye Institute of Shandong University of Traditional Chinese
Medicine (2017-002)s and were in accordance with the statement
of the Association for Research in Vision and Ophthalmology for
the use of animals in vision and ophthalmological research.

GC Administration and LIM Establishment
The guinea pigs were randomly divided into four groups: control,
LIM, LIM+GC+Sham, and LIM+GC+EA. The control group
includes animals with no treatment (n= 15), and the LIM group
comprises of animals with lens-induced unilateral myopization
by goggles with a refractive power of−10 diopters glued onto the
orbital rim of right eyes (n = 15). The LIM+GC+Sham group
includes animals with lens-induced unilateral myopization of the
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right eyes and intraperitoneal injection of hydrocortisone in a
dose of 10 mg/kg once daily (8:00–10:00 a.m.) for 2 consecutive
weeks and then followed in a dose of 5 mg·kg−1 for the next
4 consecutive weeks to maintain the treatment effect, with EA
at sham acupoints (n = 15), and the LIM+GC+EA group
includes animals with lens-induced unilateral myopization of the
right eyes and intraperitoneal injection of hydrocortisone in a
dose of 10 mg/kg once daily (8:00–10:00 a.m.) for 2 consecutive
weeks and then followed in a dose of 5 mg·kg−1 for the next 4
consecutive weeks to maintain the treatment effect, with EA at
bilateral BL23 acupoints (n= 15).

The animals underwent body weight measurement at baseline
and at each follow-up examination. The sonographic ocular
biometry for axial lengthmeasurement was also collected by A/B-
mode scan (oscillator frequency: 11 MHz; Quantel Co., Les Ulis,
France) at these time points. One drop of 1% cyclopentolate
hydrochloride (Alcon, USA) was applied to both eyes to achieve
a completely dilated pupil and cycloplegia.

Electroacupuncture
After the combined treatment of lens-induced myopia and
intraperitoneal injection of hydrocortisone for 2 consecutive
weeks, the guinea pigs in the LIM+GC+EA group received EA at
the bilateral BL23 point for 30min a day for 4 consecutive weeks.
BL23 is located adjacent to the second lumbar vertebra on the
back (Xiang et al., 2019). The guinea pigs in the LIM+GC+Sham
group were treated with EA at a sham point, which was set to the
“degenerated tail” on the gluteus muscle, a point further away
from the traditional meridians (Wang et al., 2007). The animals
were lightly immobilized using a manufactured apparatus to
minimize restraint stress, and acupuncture needles (40mm in
length, 0.30mm in diameter) were bilaterally inserted to a depth
of 8mm at BL23 once a day (2:00 p.m.). Acupuncture needles
were stimulated with an electrical-stimulator (Suzhou Medical
Appliance Factory of China, Model SDZ-V), and parameters
were set as continuous wave electrical pulses (0.1ms duration),
with a frequency 2Hz and an intensity of 2 mA.

Serum Collection and Radioimmunoassay
The blood was drawn by cardiac puncture under anesthesia
at 2 p.m. at the 0, 2, and 6 week intervals. Plasma FT3,
FT4, E2, and T concentrations were determined in duplicate
using standard radioimmunoassay (RIA) techniques by means
of 125I-RIA kits with detection limits of 5 × 10–13M, 1 ×

10–12M, 7.7 × 10–12M, and 6.6 × 10–11M, respectively. The
different concentrations of the various hormones were measured
using a gamma counter (GC-911, Anhui Ustc Zonkia Scientific
Instruments Co., Ltd, China). The experimental steps were
performed according to the protocols of the kits: (1) 125I FT3 and
FT4 RIA kits (North Biotechnology Research Institute, Beijing)
and (2) 125I E2 and T RIA kits (Tianjin JiuDing Medicine
Bio-Engineering Co., Ltd, Tianjin).

MRI
Each group included six randomly selected guinea pigs for MRI
after 4 weeks of EA. MRI was performed on a BioSpec 70/20
animal MRI system (Bruker BioSpin) equipped with a 7.0-T

magnet with a horizontal bore 20 cm in diameter. The operating
systemwas ParaVision 6.0.1, and the maximum gradient strength
of the gradient system was 100 mT/m, using a low-temperature
phased array receiver coil. During MRI, low-dose isoflurane
(Ruiward Life Technology Co., Ltd., Shenzhen, China) was used
(3.5% for induction and 1.5% for maintenance), which was
slightly adjusted throughout the experiment to maintain a stable
breathing frequency of 90 bpm. The animal respiratory rate
was monitored using a PC-SAM Small Animal Monitor (SA
Instruments). The four groups of guinea pigs were each placed
in a separate animal bed equipped with circulating warm water
to ensure that body temperature was maintained at 37–38◦C
through the heated animal bed.

Anatomical images covering the entire guinea pig brain were
acquired using a multislice rapid acquisition with a relaxation
enhancement sequence with repetition time (TR)= 175ms, echo
time (TE)= 4.5ms, effective echo time (TE eff) 36ms, number of
averages (NA) = 1, and number of repetitions (NR) = 4, matrix
dimension (MD) = 256 ∗ 256, pixel dimensions (V) = 50 ∗ 50
mm2, slice thickness (STH) = 1mm, interslice distance (ISD) =
1mm, and number of slices (NSl)= 30.

For fMRI, gradient-echo echo-planar imaging (EPI) was used
with TR = 1,500ms, TE = 20ms, number of repetition (NR) =
180, NA= 1, MD= 256∗ 256, pixel dimensions= 25 ∗ 220 mm2,
slice thickness = 1mm, interslice distance = 1mm, number of
slices= 30.

MRI Data Analysis
We segmented the label of the visual cortex and hypothalamus
manually according to the sixth edition of The Rat Brain
in Stereotaxic Coordinates (Figure 1). For a subject’s high-
resolution T2 anatomical image, we manually performed skull-
stripping to remove non-brain tissues. The next step was
inhomogeneity correction. Subsequently, a control subject’s brain
was chosen as the brain template. We registered each subject’s
T2 volume to the brain template using non-linear registration.
Using the transformation generated by the registration algorithm,
the subject’s visual cortex region (left and right) and the
hypothalamus were segmented (Valdes-Hernandez et al., 2011).

The rsfMRI images were realigned and corrected for slice
timing. Afterward, a base EPI volume was extracted and skull
stripping was performed to remove non-brain tissues. Linear
detrending was applied for the removal of a systematic linear
trend (Zerbi et al., 2014). The data was then band-pass filtered
using a range between 0.01 and 0.3Hz (Zerbi et al., 2018), and the
subject’s T2 volume was co-registered to the subject’s fMRI base
EPI volume. The visual cortex and the hypothalamus in the native
fMR space were labeled based on the transformation generated
by the registration algorithm. The left and right visual cortex and
the hypothalamus were region-of-interests (ROIs), and the mean
time courses of these three ROIs were extracted. The pairwise
correlation coefficient among the ROIs was calculated to assess
the functional connectivity between a brain region pair.

Statistical Analysis
SPSS software (Version 21.0) was used to perform statistical
analyses. All data were expressed as mean ± SEM. An
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FIGURE 1 | Anatomical locations of the visual cortex ROI (A), based on Paxinos et al., 1980. Anatomical locations of the hypothalamus ROI (B), based on Papp et al.,

2014 [control (n = 6), LIM (n = 5), LIM+GC+Sham (n = 4), and LIM+GC+EA (n = 6)].

independent sample t-test was used to detect differences between
groups. Statistical significance was considered when P < 0.05.

RESULTS

Changes in Morphological Behavior, Body
Weight, and Hormone Levels
At baseline, all groups had similar morphological behavior,
body weight, and hormone levels of FT3, FT4, T, and E2
(Figures 2B–F). After 2 weeks of treatment, GC-treated groups
(LIM+GC+Sham and LIM+GC+EA) showed deteriorated
animal appearance such as dull coats, shivering, and decreased
activity when compared to the LIM group and the control
group. In addition, the GC-treated groups (LIM+GC+Sham
and LIM+GC+EA) showed significantly decreased body
weight when compared to the LIM group and the control
group (Figure 2B). No significant differences were observed
between LIM and controls (Figure 2B). The GC-treated groups
(LIM+GC+Sham and LIM+GC+EA) also had significantly
decreased concentrations of FT3, FT4, and T and significantly
increased concentrations of E2 compared to LIM and control
groups (Figures 2C–F).

After 4 weeks of EA treatment (at the time point of “6
weeks,” as EA treatment was conducted after 2 weeks of LIM+GC
treatment), the LIM+GC+EA group showed significantly
increased body weight compared to the LIM+GC+Sham group,
suggesting the GC-induced symptoms were ameliorated by
EA (Figures 2A,B). In addition, the LIM+GC+EA guinea
pigs also showed significantly increased FT3, FT4, and T
concentrations with significantly decreased E2 when compared
to the LIM+GC+Sham group (Figures 2C–F).

Changes of Axial Length
At baseline, a similar mean axial length of right eyes (treated)
and left eyes (untreated) was observed in all groups (Table 1,
Figure 3). In the control group, mean axial length of right
(treated) eyes increased from 7.77 ± 0.07mm (mean ± standard
deviation) at baseline to 8.62 ± 0.12mm at the end of follow-
up, and mean axial length of left (untreated) eyes increased from
7.79 ± 0.03 at baseline to 8.64 ± 0.07mm at the end of follow-
up. There was no significant difference between treated and

untreated eyes (Table 1). In the LIM group, the mean axial length
of right eyes (treated) was significantly longer after 2 weeks of
treatment compared to the control group (LIM group vs. control
group, 8.20 ± 0.04mm vs. 8.11 ± 0.04mm, P < 0.001) and
this increase continued in a time-dependent manner (Table 1,
Figure 3A).

In groups with unilateral lens-induced myopization and
intraperitoneal injection of hydrocortisone (LIM+GC+Sham
and LIM+GC+EA), the mean axial lengths of the right
eyes (treated eyes) were significantly longer compared to
the LIM group after combined treatment of GC and lens-
induced myopization for 2 weeks, thus suggesting that excess
GC significantly increased the degree of lens-induced myopia
[(LIM+GC+Sham group vs. LIM group, 8.26± 0.10mm vs. 8.20
± 0.04mm, P < 0.05; LIM+GC+EA group vs. LIM group, 8.26
± 0.07mm vs. 8.20 ± 0.04mm, P < 0.05] (Table 1, Figure 3A).
However, there was no significant difference in axial length
between LIM+GC+Sham and LIM+GC+EA at that time point
(LIM+GC+EA vs. LIM+GC+Sham, 8.26 ± 0.10mm vs. 8.26 ±
0.07mm, P= 0.833) (Table 1, Figure 3A).

Interestingly, after the treatment of EA at BL23 for 4 weeks,
the axial length of the right eyes was significantly shorter in
the LIM+GC+EA group compared to the LIM+GC+Sham
group (LIM+GC+EA vs. LIM+GC+Sham, 8.79 ± 0.07mm vs.
8.87 ± 0.04mm, P < 0.05) (Table 1, Figure 3A). No significant
difference was found in the axial lengths of the left eyes (untreated
eyes) among each group at any time interval (Table 1, Figure 3B).

Altered Resting-State FC
Among the four groups, control (n = 6), LIM (n = 5),
LIM+GC+Sham (n = 4), and LIM+GC+EA (n = 6), there
were significant differences across the groups, as shown through
linear regression modeling (p = 0.05). As shown in Figure 4, we
found that the FC between the left and right visual cortices of
the LIM group was significantly lower than that of the control
(p = 0.02). The FC of the visual cortex of the LIM+GC+Sham
group was also lower than that of control (p = 0.03). Of note,
the FC of visual cortex of the LIM+GC+EA group is higher than
that of LIM and LIM+GC+Sham groups. The difference in FC
between the visual cortices was not significant between control
and LIM+GC+EA; no significant difference between the LIM
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FIGURE 2 | The change in morphological behavior, body weight, and hormone level (n = 15 for each group). The changes in morphological behavior after the

treatment for 6w (A), and alterations of body weight (B) and hormones, including FT3 (C), FT4 (D), T (E), and E2 (F) in serum in all time intervals. #P < 0.05

compared with the LIM group; &P < 0.05, compared with LIM+GC+Sham group.
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TABLE 1 | Sonographic biometric measurements (mean ± standard deviation; OD: right eyes; OS: right eyes).

Group Time (week) OD (mm) OS (mm)

Vitreous

cavity

length

Anterior

chamber

depth

Lens

thickness

Axial

length

Vitreous

cavity

length

Anterior

chamber

depth

Lens

thickness

Axial

length

Control 0 3.42 ± 0.05 1.16 ± 0.01 3.18 ± 0.05 7.77 ± 0.07 3.43 ± 0.06 1.17 ± 0.02 3.19 ± 0.02 7.79 ± 0.03

2 3.49 ± 0.03 1.22 ± 0.03 3.40 ± 0.02 8.11 ± 0.04 3.50 ± 0.05 1.20 ± 0.03 3.40 ± 0.04 8.10 ± 0.07

4 3.58 ± 0.09 1.23 ± 0.02 3.60 ± 0.05 8.40 ± 0.11 3.59 ± 0.04 1.23 ± 0.01 3.59 ± 0.04 8.41 ± 0.03

6 3.63 ± 0.07 1.26 ± 0.02 3.73 ± 0.06 8.62 ± 0.12 3.67 ± 0.06 1.25 ± 0.03 3.72 ± 0.04 8.64 ± 0.07

LIM 0 3.42 ± 0.05 1.16 ± 0.03 3.18 ± 0.04 7.78 ± 0.08 3.44 ± 0.04 1.17 ± 0.02 3.20 ± 0.04 7.81 ± 0.05

2 3.55 ± 0.04* 1.21 ± 0.04 3.45 ± 0.03 8.20 ± 0.04* 3.50 ± 0.05 1.20 ± 0.03 3.41 ± 0.03 8.11 ± 0.05

4 3.65 ± 0.03* 1.22 ± 0.03 3.63 ± 0.04 8.50 ± 0.04* 3.57 ± 0.06 1.23 ± 0.02 3.61 ± 0.03 8.41 ± 0.08

6 3.74 ± 0.02* 1.26 ± 0.02 3.75 ± 0.03 8.75 ± 0.03* 3.65 ± 0.09 1.25 ± 0.03 3.73 ± 0.03 8.63 ± 0.09

LIM+GC+Sham 0 3.43 ± 0.08 1.16 ± 0.03 3.18 ± 0.07 7.78 ± 0.10 3.43 ± 0.05 1.16 ± 0.03 3.20 ± 0.07 7.79 ± 0.10

2 3.57 ± 0.04*, # 1.21 ± 0.02 3.47 ± 0.08* 8.26 ± 0.10* 3.50 ± 0.04 1.21 ± 0.03 3.41 ± 0.04 8.11 ± 0.07

4 3.69 ± 0.03*,# 1.24 ± 0.02 3.64 ± 0.05 8.56 ± 0.05* 3.57 ± 0.03 1.24 ± 0.02 3.59 ± 0.04 8.40 ± 0.06

6 3.85 ± 0.04*,# 1.26 ± 0.02 3.77 ± 0.03 8.87 ± 0.04*,# 3.64 ± 0.05 1.26 ± 0.02 3.73 ± 0.06 8.63 ± 0.07

LIM+GC+EA 0 3.43 ± 0.06 1.16 ± 0.03 3.19 ± 0.05 7.78 ± 0.10 3.42 ± 0.05 1.16 ± 0.03 3.20 ± 0.05 7.78 ± 0.07

2 3.57 ± 0.04*,# 1.20 ± 0.02 3.48 ± 0.06* 8.26 ± 0.07* 3.52 ± 0.06 1.19 ± 0.02 3.41 ± 0.06 8.12 ± 0.08

4 3.68 ± 0.03* 1.23 ± 0.02 3.63 ± 0.04 8.54 ± 0.03* 3.56 ± 0.06 1.23 ± 0.02 3.60 ± 0.06 8.39 ± 0.06

6 3.79 ± 0.05*,& 1.26 ± 0.04 3.74 ± 0.05 8.79 ± 0.07*,& 3.66 ± 0.08 1.25 ± 0.03 3.73 ± 0.06 8.63 ± 0.08

*P < 0.05 compared with the control group; #P < 0.05 compared with the LIM group; &P < 0.05, compared with the LIM+GC+Sham group (n = 15).

FIGURE 3 | Changes in axial length at various intervals (n = 15 for each group). The changes in axial length of right eyes (A) and left eyes (B) in control, LIM,

LIM+GC+Sham, and LIM+GC+EA group at the 0, 2, 4, and 6 week interval (n = 15 per group). *P < 0.05 compared with the control group; #P < 0.05 compared

with the LIM group; &P < 0.05, compared with LIM+GC+Sham group.

group and the LIM+GC+Sham group was found either (p >

0.05). Meanwhile, we did not find any significant difference for
FC between the hypothalamus and each side of the visual cortex
among all the four groups.

To further elucidate the relationship of FC between the visual
cortex and parameters of animals, we conducted regression

analyses between them. Results from the analyses showed
a positive association between FC of the visual cortex and
bodyweight, FT3 and T, whereas a negative association was found
between FC of the visual cortex and E2 or axial length (Figure 5).
However, no significant relationship was found between FC of
the visual cortex and FT4.
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FIGURE 4 | The boxplot of functional connectivity in the visual cortex; *compared with the control group, P < 0.05; #compared with the LIM group, P < 0.05;
&compared with LIM+GC+Sham group, P < 0.05 [control (n = 6), LIM (n = 5), LIM+GC+Sham (n = 4), and LIM+GC+EA (n = 6)].

DISCUSSION

The prevalence of myopia has markedly increased within the
past three decades, especially in China. The main characteristic
of myopia is the irreversible elongation of axial length, resulting
in many severe visual impairments including myopic macular
degeneration, glaucoma, and even blind (Rudnicka et al., 2016;
Morgan et al., 2018). In addition, overdose of GC could also
induce excessivemyopic axial length elongation and imbalance of
four plasma hormones associated with hypothalamic–pituitary–
adrenal axis (HPAA), including E2, T, FT3, and FT4 (Ding et al.,
2018). The receptors of E2 and T are widely expressed in various
ocular tissues (Wickham et al., 1998, 2000; Suzuki et al., 2001).

The guinea pigs have been a classic model to evaluate the
effects of various therapeutic methods on myopia as well as
its complications. Similar to the process of eye development in
human beings, guinea pigs show hyperopia at birth and then
rapidly become emmetropia within the first 3 weeks (21 days) of
age (Shan et al., 2018). Their eyes have a more similar structure
and biometric changes in the development of myopia as human
beings, compared to other experimental model animals such as
chicks and mice as well (Wu et al., 2020). In the present study,

a low dose of isoflurane was used to maintain stable breathing
frequency in anesthetized animals, and low-dose isoflurane
maintained the resting-state networks of anesthetized animals
to be similar to wake ones in rats and mice. The protection in
resting-state neuron activitymay result from amoderate systemic
vasodilator effect due to increasing resting blood flow from low-
dose isoflurane (Iida et al., 1998; Guilfoyle et al., 2013; Zhou
et al., 2014). Moreover, isoflurane was not reported to be a
risk factor for GC signaling or myopiazation, suggesting that it
would be suitable for the application in the present study. Due to
the relative ease in signal acquisition and proficiency of rsfMRI
technology to measure the functional connectivity (FC) between
functional areas of the brain in different populations, we choose
the axial length and the resting-state functional connectivity
using rsfMRI technology to assess the effects of EA at BL23 on
GC-enhanced myopia. It strongly suggested that FC between the
visual cortices played an important role in myopization.

FC in the Myopic Guinea Pig’s Brain
It has been demonstrated that the amplitude of low-frequency
fluctuation values in high-myopia patients are reduced
in the right cerebellum anterior lobe/calcarine/bilateral
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FIGURE 5 | Regression analyses between the functional connectivity in the visual cortex, and body weight, axial length, and four plasma hormones (FT3, FT4, T, E2).

(A) Regression analyses between the functional connectivity in the visual cortex and body weight (A) and axial length (B). (C–F) Regression analyses between the

functional connectivity in the visual cortex and the concentrations of FT3 (C), FT4 (D), T (E), and E2 (F) [control (n = 6), LIM (n = 5), LIM+GC+Sham (n = 4), and

LIM+GC+EA (n = 6)].

parahippocampal gyrus, bilateral posterior cingulate cortex,
and bilateral middle cingulate cortex, while they are
significantly increased in the left optic radiation, bilateral
frontal parietal cortex, and left primary motor cortex
(M1)/primary somatosensory cortex (S1) (Huang et al.,

2016; Cheng et al., 2020). Meanwhile, it was found that
the high myopia exhibited significantly decreased short-
and long-range FC densities in the posterior cingulate
cortex/precuneus (PCC/preCun), with a similar result
reported in amblyopia patients, which showed decreased
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FC between the PCC/preCun and bilateral primary visual areas
(Ding et al., 2013; Zhai et al., 2016).

Our results indicated that FC between the visual cortex in
the LIM+GC+Sham group and LIM group was significantly
lower compared to the control group with the elongation of
axial length. It exhibited many similarities with previous studies.
It was reported that expression of neurotransmitters and their
receptors changed in the primary visual cortex during the
development of myopia (Zhao et al., 2017). Researches found that
induced high myopia caused a significant reduction in the visual
cortex activity by presenting a high range of spatial frequencies
using functional MRI compared to the normal vision state
(Mirzajani et al., 2017). Meanwhile, a resting-state functional
magnetic resonance imaging study also demonstrated that
low/moderate myopia and high myopia will lead to decreased
neuronal and physiological activities in the primary visual
cortex by studying the amplitude of low-frequency fluctuations
(Cheng et al., 2020).

Effect of Excess GC on HPAA and Myopia
Evidence has shown that excessive GC resulted in deterioration of
various diseases including arthritis and myopia through affecting
secretion of certain hormones including FT3, FT4, E2, and T
secreted from the hypothalamic pituitary target gland (adrenal,
thyroid, and gonad) axis into target gland (Yang et al., 2008; Pace
et al., 2009; Ding et al., 2018). It was found that concentrations of
FT3, FT4, and T decreased while E2 elevated after the treatment
of GC in the present study. These findings are consistent with
previous studies that intraperitoneal injection of hydrocortisone,
a type of GC, results in deteriorated animal appearance and
a reduced body weight, accompanied with the suppression of
the HPAA function by affecting the HPAA plasma hormone
expression (Yang et al., 2008; Zhao et al., 2013, 2016). Besides, E2,
as a member of estrogen, was reported to be a modulating factor
that maintains the biomechanical properties and stability of the
cornea and upregulate MMP-2 activity and protein expression
in human retinal pigment epithelium cells, whereas T acted
as an androgen of the steroid family and was reported to be
associated with the biochemical characteristics of the sclera, the
aqueous outflow pathway, and the iris/ciliary body (Knepper
et al., 1985; Marin-Castano et al., 2003; Song et al., 2014). Also,
cortisol administration elevated both the default mode network
and salience network activity to a normal level to treat traumatic
stress disorder and anxiety (Soravia et al., 2018). Also, it was
found that intraperitoneal injection of GC can enhance myopic
shift and axial elongation in guinea pigs with lens-induced
myopia (Ding et al., 2018). These symptoms were also defined as
“kidney-yang deficiency” in traditional Chinese medicine, which
could be effectively treated by EA (Shen, 1999).

Previous studies showed that rapid intravenous infusion of
hydrocortisone significantly increased the fMRI BOLD signal
within the hippocampus in a time-dependent manner (Symonds
et al., 2012). Additionally, it was also found that increased
endogenous GC can elevate the resting-state FC of brain
regions highly expressing GC receptors, such as the medial
prefrontal cortex and medial temporal lobe (Stomby et al., 2019).
Nevertheless, only FC between visual cortices was found to

be significantly associated with alteration of levels of HPAA-
associated hormones including FT3, T, and E2 in the serum,
instead of FC between the hypothalamus and each side of the
visual cortex. It might also be suggested that neuron signals
between the hypothalamus and visual cortex may be through
some unknown intermediate medium. Moreover, FT3 rather
than FT4 played an important role in the relationship between
GC and FC of the visual cortex.

Effects of EA on the Brain
Increasing evidence demonstrates that acupuncture at acupoints
located in the body such as the limbs and trunk could effectively
treat nervous system diseases including stroke, migraines, motor
system diseases, and other diseases such as functional dyspepsia
hypertension, overweight and Crohn’s disease (Cai et al., 2018). It
was reported that acupuncture could effectively enhance the FC
between left primary motor area and left inferior frontal gyrus
to promote the compensatory response to treat refractory facial
paralysis, and enhance the functional connectivity between the
precentral gyrus and the hippocampus in the Alzheimer disease
patients (Zheng et al., 2018; Ma et al., 2019). Acupuncture could
effectively enhance the FC between the left primary motor area
and left inferior frontal gyrus to promote the compensatory
response, increase connectivity between the periaqueductal
gray, anterior cingulate cortex, left posterior cingulate cortex,
right anterior insula, limbic/paralimbic, and precuneus, and
adjust the limbic-paralimbic-neocortical network, brainstem,
cerebellum, and subcortical and hippocampus brain areas
(Cai et al., 2018).

Researches have shown that EA at acupoints located near
the eyes, including Hegu (LI4) and Taiyang (EX-HN5), was
effective to improve myopia by downregulating the level of
retinal GABA in a myopic guinea pig model (Sha et al., 2015).
It was also found that the stimulation of acupoints in the
body, such as LR3 located on the feet, activated some areas
of the visual cortex (Liu et al., 2012). With the development
of rsfMRI technology, more research has focused on exploring
different mechanisms of treatment including acupuncture for
eye diseases such as high myopia, amblyopia, and blindness,
by measuring FC between brain regions (Huang et al., 2016;
Mendola et al., 2018;Wen et al., 2018). It was well established that
the development of myopia is highly associated with alteration
of function of visual cortex (Mirzajani et al., 2017). In the
present study, our data revealed that EA at BL23 acupoints,
located adjacent to the second lumbar vertebra on the back, could
effectively suppress the elongation of axial length induced by
a combination of treatment of GC and negative lens through
recovering the balance of HPAA-associated plasma hormones
and effectively recovering FC between the visual cortex of
LIM+GC animals to normal levels, providing strong support to
the notion that FC is related to the mechanism of acupuncture.
It was consistent with the previous studies that acupuncture
at a group of acupoints including BL23 as one of the major
acupoints could relieve the symptoms of many disorders by
improving the cerebral hemodynamics and cognitive deficits in
the hippocampal CA1 region and rebalancing HPA-associated
plasma hormones including E2, T, CORT, LH, and GnRH, or

Frontiers in Neuroinformatics | www.frontiersin.org 9 January 2021 | Volume 14 | Article 579769128

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zhang et al. Functional Connectivity Visual Cortex Myopia

inhibiting the expression of orexin in the lateral hypothalamus
(Wang et al., 2017, 2020; Zhang et al., 2017; Ji et al., 2019;
Jing et al., 2020). Despite the limited research conducted on
elucidating the effects of stimulating the BL23 acupoint as a
single point to cure Kidney Yang deficiency-associated disorders,
it was once reported that acupuncture at BL23 could effectively
treat senescence-accelerated mice by increasing levels of serum
hormone T (Zhang et al., 2009). These results would provide
further evidence for the hypothesis that acupuncture could
treat visual impairments including high myopia, through the
alteration of the function of the visual cortex at acupoints located
far from the eyes.

Nevertheless, several limitations of the study should be
mentioned. First, there have been no brain atlases on guinea pigs
so far. We therefore performed the MRI data analysis according
to the rat brain atlas. Second, the fMRI image in this study
was relatively low, so a higher image resolution would definitely
strengthen our conclusion. Third, the specific mechanism of
glucocorticoids aggravating the development of myopia needs
further exploration.

In summary, EA could effectively treat GC-enhanced myopia
by increasing resting-state FC between the left and right visual
cortices at BL23, which may be pivotal in understanding
the underlying mechanisms of EA in the treatment of GC-
enhanced myopia.
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Neuronal excitation and inhibition occur in the brain at the same time, and brain

activation reflects changes in the sum of excitation and inhibition. This principle has been

well-established in lower-level sensory systems, including vision and touch, based on

animal studies. However, it is unclear how the somatosensory system processes the

balance between excitation and inhibition. In the present ERP study, we modified the

traditional spatial attention paradigm by adding double stimuli presentations at short

intervals (i.e., 10, 30, and 100ms). Seventeen subjects participated in the experiment.

Five types of stimulation were used in the experiment: a single stimulus (one raised pin for

40ms), standard stimulus (eight pins for 40ms), and double stimuli presented at intervals

of 10, 30, and 100ms. The subjects were asked to attend to a particular finger and detect

whether the standard stimulus was presented to that finger. The results showed a clear

attention-related ERP component in the single stimulus condition, but the suppression

components associated with the three interval conditions seemed to be dominant in

somatosensory areas. In particular, we found the strongest suppression effect in the

ISI-30 condition (interval of 30ms) and that the suppression and enhancement effects

seemed to be counterbalanced in both the ISI-10 and ISI-100 conditions (intervals

of 10 and 100ms, respectively). This type of processing may allow humans to easily

discriminate between multiple stimuli on the same body part.

Keywords: traditional spatial attention paradigm, ERP, interstimulus interval, enhancement and suppression,

primary somatosensory cortex

INTRODUCTION

When spatial attention to auditory (Alho et al., 1999; Karns and Knight, 2009) or visual stimuli
(Noesselt et al., 2002; Macaluso et al., 2005) was modulated, evoked potentials were generated in
the primary auditory or visual cortices. Regarding the somatosensory system, studies have been
conducted using fMRI and event-related potentials (ERPs) in humans (Meador et al., 2002; Forster
and Eimer, 2004; Schubert et al., 2008), and they found that attention enhances activity in the
primary somatosensory cortex (SI) when using a single stimulus. Animal studies (Pilz et al., 2004;
Braun et al., 2005; Reed et al., 2010) used double stimuli to show that the second stimulus suppresses
the response to the first stimulus. This suggested that spatiotemporal interactions modulate the
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response magnitude in human SI. However, it remains unclear
how the balance between attentional enhancement and double
asynchronous stimulation-induced suppression is maintained.

Many previous studies examining the effects of spatial-
selective attention have found that attentional effects occur
in the early stage, but they did not find modulation of
somatosensory evoked potential (SEP) components generated in
S1. Some ERP studies used a mechanical tactile stimulus and
found a contralateral N80 component with sustained attention
and a bilateral P100 component with spatial attention in the
early stages (Eimer and Driver, 2000; Eimer and Forster,
2003b; Zopf et al., 2004). Other electroencephalography (EEG)
studies using tactile spatial sustained attention to mechanical
stimuli found that the earliest somatosensory component
(P50) was significantly increased for attended stimuli (Zopf
et al., 2004). In a simultaneous EEG-fMRI study, Schubert
et al. (2008) used Braille stimulation and found significant
effects of spatial-selective attention on P50 and P100 with
left tactile stimuli and on N80 with right tactile stimuli in
SI. Other ERP and SEP studies of mechanical tactile stimuli
(Eimer and Forster, 2003a; Eimer et al., 2004; Forster and
Gillmeister, 2011; Katus et al., 2012) showed that amplitudes
of mid-latency components such as N140 and P200 were
enhanced in response to tactile stimuli presented to the
attended hand.

In addition, an electrophysiological study in owl monkeys
(Reed et al., 2010) selected paired skin sites and delivered
pulses simultaneously (0ms delay) or with onset asynchronies
of 10, 30, 50, 100, and 500ms to investigate the effects of
varying the temporal proximity of stimuli. This study indicated
that maximal suppression of firing rates occurred when the
stimulus onset times were 30–50ms. The owl monkeys were
sedated in this study, so a suppressed effect was observed under
unattended conditions.

The underlying attention and temporal processes in the
human somatosensory cortex remain unclear when paired
mechanical stimuli are presented. Thus, we hypothesized that
enhancement and suppression occur as follows in human
somatosensory areas: (1) The enhancement effect of sustained
spatial attention will be stronger than the suppression effect
of paired stimulation. (2) The suppression effect of paired
stimulation will be stronger than the enhancement effect of
sustained spatial attention. (3) The enhancement effect of
sustained spatial attention and the suppression effect of paired
stimulation will exist at the same time.

The present experiment was designed to determine whether
the enhancement from sustained spatial attention or suppression
from paired stimulation affects neurophysiological responses
in human SI. We extended the work of previous studies to
investigate the temporal dynamics of neural responses when
mechanical tactile stimulation is delivered to the left or right
index finger at different interstimulus intervals with attention
focused on one hand. Participants were asked to focus their
spatial attention on tactile stimulation of one hand (on a finger),
and we instructed them to detect rare tactile target stimuli on the
index finger of the attended hand. To achieve this aim, ERPs were
computed in response to tactile stimulation.

MATERIALS AND METHODS

Participants
Nineteen undergraduate students were recruited as volunteers.
With further analysis, two participants were excluded from
the statistical analysis because of low performance. Seventeen
participants (age range: 21–25; mean age: 22.5) remained
in the sample. All participants had normal or corrected-
to-normal vision and were right-handed. They had no
neurological/psychiatric disorders and no hearing problems. The
experimental protocol was approved by the ethics committee of
Okayama University.

Material and Procedure
The experiment was conducted in a dimly lit, sound-attenuated
room, with participants facing a computer screen (17 inch, LG,
FLATRON) at a viewing distance of 60 cm. Tactile stimuli were
applied to the distal phalanx of the left or right index finger
using a piezoelectric Braille stimulator (KGS, Saitama, Japan).
Each stimulator had eight individually controllable plastic pins
grouped in a 2 × 4 array. The diameter of each pin was 1.3mm.
The distance between pins was 2.4mm. Using a custom-built
electrical drive, pins could be elevated from the resting position
by 0.7mm with a tactile force of 0.177 N/pin. The mechanical
onset from the trigger to the highest position was ∼38ms, as
measured by a high-speed camera, so we set the tactile stimuli
presentation time to 40 ms.

Tactile stimuli were included for the standard and target. The
target was 8 pins and was presented only on the side indicated
by the visual instructions. The standard was one pin in the lower
left (or right) when stimuli were presented on the left (or right)
index finger. The stimulus presentations were composed of single
and double conditions. The temporal proximity of stimulus
presentations in the double condition consisted of three different
interstimulus intervals (10, 30, and 100ms). The interstimulus
interval (ISI) is the time interval between the first tactile stimulus
offset and second tactile stimulus onset (Figure 1A).

Visual and tactile stimuli were presented by using Presentation
software (Neurobehavioral Systems Inc., Albany, California,
USA) housed outside of the dimly lit room. A block design was
used for this experiment in which the standard and target stimuli
were randomized in blocks of 10 trials, with 15 blocks in one
session (for a total of 150 trials). In summary, the experiment
comprised 16 separate sessions, consisting of 240 blocks for a
total of 2,400 trials. Visual instructions indicating the left or right
index fingers (each instruction angle was 5 × 7◦ flat at 3.5◦ left
or right from the fixation) changed to red and were presented
for 300ms at the beginning of each block. The instructions asked
the participants to keep their attention on the left or right index
finger for that block. A fixation (a white cross of 1.7 × 1.7◦ of
visual angle) was located between both instructions (Figure 1B).
Each session contained four experimental conditions: a single
condition and three types of double conditions (ISI-10 condition,
ISI-30 condition and ISI-100 condition).

Figure 1B illustrates the experimental stimulation procedure
for the attended left hand. Each block began with the visual
instruction, which was presented for 300ms. Within the 300ms,
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FIGURE 1 | (A) The types of tactile stimulation: standard (1 pin) and target (8 pins). (B) Illustration of attended left hand. The visual instruction was presented for

300ms, and participants were instructed to direct their attention to the left index finger until the next instruction appeared. Standard stimuli presented on the left hand

as attended stimuli. Stimuli delivered to the other hand were unattended stimuli. After the 1,500ms interval, tactile stimuli (including two target stimuli and eight

standard stimuli per block) were presented unilaterally to the left or right hand within 600ms (total 2,100ms). The target was presented only on the left side, and the

participant responded vocally when it was detected.

the index finger of the left hand turned red in the visual
instructions, and the subjects kept their attention on the finger
position indicated by red (i.e., left index finger) until the
next block. They were required to respond vocally when the
target stimulus was detected on the left index finger. Thus, the
participants had to direct their attention to the attended hand.
A standard stimulus presented to this hand was named the
attended stimulus. In contrast, stimuli delivered to the other
hand were named unattended stimuli. After a 1,500-ms interval,
tactile stimuli (including two target stimuli and eight standard
stimuli per block) were presented unilaterally to the left or
right hand within 600ms (for a total of 2,100ms as indicated
in Figure 1B). Visual instructions and tactile stimulation were
presented in pseudorandom order. During the entire experiment,
the participants were also instructed to avoid movements of the
body, in particular, the eyes and fingers.

EEG Recording and Data Analysis
An EEG system (Brain Amp MR plus, Germany) was used to
record signals through 28 electrodes mounted on an electrode
cap (Easy cap, Herrsching Breitbrunn, Germany) as specified by
the International 10–20 System. All electrodes were referenced
to the combined signals from the bilateral earlobes. A horizontal
electrooculogram (HEOG) was recorded from the outer canthus
of the left eye. Eye blinks and vertical eye movements were
recorded from an electrode placed 1.5 cm below the left eye. The
impedance of all electrodes was below 5 kΩ . The raw signals were
digitized with a sample frequency of 500Hz with a 60-Hz notch
filter. The bandpass of the amplifiers was DC to 250 Hz.

Brain Vision Analyzer software (version 1.05, Germany) was
used to analyze the ERPs, which were averaged separately for each
stimulus type offline. To remove the target stimulus, we analyzed
only ERPs elicited by standard stimuli. The continuous EEG
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signals were segmented offline from 100ms before to 500ms after
tactile stimulus onset. Baseline corrections were made against the
data from −100 to 0ms. We rejected artifact trials in which the
amplitude reached±80 µν from−100 to 500ms, and we filtered
the data with a bandpass filter retaining frequencies between 0.01
and 30Hz. The data from each electrode were then averaged, and
a grand average ERP was computed across all participants for
each stimulus type.

For further analysis, the mean amplitude data were computed
within the following time windows relative to stimulus onset:
P50 (34–62ms), N80 (64–92ms), P100 (94–122ms), N140 (124–
172ms), P200 (174–242ms), and P300 (244–342ms). In each
time window, the mean amplitude data were analyzed using
repeated measures analyses of variance (ANOVAs) with two
factors (attended vs. unattended) × 4 conditions (single, ISI-10,
ISI-30 and ISI-100 conditions), and data from electrodes C3 and
C4 were analyzed separately. RStudio (Version 1.1.383) was used
for all statistical analyses.

RESULTS

Figure 2 shows the grand averaged waveforms for the single
condition and double conditions (ISI-10 condition, ISI-30
condition and ISI-100 condition). The electrode sites were C3/4,
approximately overlying the contralateral SI. The black solid
line represents the attended state, and the black dotted line
represents the unattended state. In the single condition, attended
stimuli elicited more positive responses than the unattended
state. The double conditions resulted in the following: in the ISI-
10 condition, the attended stimuli elicited activity similar to the
unattended state; in the ISI-30 condition, the unattended stimuli
elicited more positive activity than the attended state; and in
the ISI-100 condition, the attended stimuli elicited activity levels
close to the unattended state once again.

The left column in Figure 2 shows the ERPs elicited in the
four conditions by tactile stimuli presented on the right index
finger at contralateral electrodes (C3, right hand). All subjects
demonstrated a clear P45 component in their responses to tactile
stimuli presented to the right index fingers. ANOVA of the mean
amplitudes of P45 revealed a main effect [F(1,16) = 4.740; p
< 0.05] of attention at C3, which was not accompanied by an
attention × condition interaction; ANOVA of mean amplitudes
of P100 revealed a main effect [F(1,16) = 6.175; p < 0.05] of
attention at C3, which was not accompanied by an attention
× condition interaction. There was a main effect of conditions
[F(3,16) = 3.230; p < 0.05] at C3 for the P300 component.

The right column of Figure 2 shows the ERPs elicited in
the four conditions by a tactile stimulus presented to the left
index finger at contralateral electrodes (C4, left hand). The
analysis of the left side for P45 and N80 revealed no main
effect or interaction between attention and conditions, and only
a weak significant difference in the t-test was found between
the attention states in the ISI-30 condition (p < 0.05). There
was a significant interaction between attention and conditions
[F(3,16) = 6.589; p < 0.001] for P100; paired t-tests found
the most significant difference between the unattended and

FIGURE 2 | The grand averaged waveforms for the (A) single condition (a, b)

and (B) double conditions: (c,d) ISI 10ms; (e,f) ISI 30ms; (g–f) ISI 100ms. The

electrode sites were C3/4 approximately overlying the contralateral SI. Black

solid line: attended. Black dotted line: unattended. The red arrow marks the

onset of the second stimulus. The shaded areas indicate the periods used for

the pointwise running t-tests comparing attended to unattended for all

participants (p < 0.05).

ISI-30 conditions (p < 0.001). No main effects of attention and
conditions were found for N140, P200 and P300.

Figure 3 shows the mean amplitudes for the P45, N80, and
P100 components. This result represents the attended minus
unattended conditions on the left hand and right hand. Three
components showed the lowest amplitude in the ISI-30 condition
with the left-hand stimulus. The main effect of attention on the
mean amplitudes of the P45 component was significant [F(1,16)
= 6.14, p < 0.05]. Post hoc comparisons between the single
and ISI-30 conditions showed that most activation occurred at
the C4 electrode (p < 0.05). Regarding the N80 component,
the interaction between attention and ISI was clear [F(3,48) =

5.88, p < 0.05], and the mean amplitudes in the single and
ISI-10 conditions were significantly higher than that in the ISI-30
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condition (p < 0.05). ISI-30 and ISI-100 were also significantly
different (p < 0.05). These results were also limited to the C4
electrode (left hand). In the last component, P100, there was
no main effect or interaction at the C3 electrode, although an
effect similar to the attention main effect was found [F(1,16) =
3.77, p = 0.07], but at the C4 electrode, an interaction effect
between attention and ISI was clearly found [F(3,48) = 6.6,
p < 0.05]. The mean amplitude in the single condition was
higher than that in the ISI-10 and ISI-30 conditions (p < 0.01).
Additionally, there was a significant difference between ISI-30
and ISI-100 conditions (p < 0.05). For the right hand, there
were no significant differences between conditions for P45, N80,
and P100.

DISCUSSION

This study used double asynchronous stimulation to investigate
the relationship between spatial attention enhancement and
double asynchronous stimulation-induced suppression of brain
activity in human SI. The participants were asked to focus
their spatial attention on tactile stimulation of one hand (on
a finger), and we instructed them to detect rare tactile target
stimuli at the index finger of the attended hand. In double
stimulation conditions, as the interstimulus intervals increased,
a V-shaped effect was observed. We suggest that this occurs
through an attention enhancement and a double stimulation-
suppression effect.

We found a suppression effect in the ISI-30 condition,
supporting a hypothesis from previous studies that multisensory
stimulation shortens the response latencies of neurons and that
post-activation inhibition of neurons is stronger than single
stimulation. Research in monkeys found that the suppressive
effect of paired stimulation activation on the interphalangeal
nerve was stronger than that on the adjacent phalanges. The
inhibition of interphalangeal nerve activity was caused by the
proximity of receptor-related nerve cells in area 3b, which
leads to nerve post-activation inhibition. As was observed in
monkeys, neural response intensity was generally suppressed by a
preceding conditioning stimulus when the test stimulus occurred
after a 30- or 50-ms delay (Reed et al., 2010). Other similar
studies (Fanselow and Nicolelis, 1999) examining rat whisker
nerve reflexes found nerve post-activation inhibition following
paired stimulation in quiet and movement states. In addition,
Christian 2017 used double visual stimuli to investigate repetition
suppression and suggested that stimulus-specific expectations
about objects modulated the LOC and propagated back to the
earliest cortical station processing visual input (Grill-Spector
and Malach, 2001; Utzerath et al., 2017). In the present study,
the visual input was equivalent to cues to improve sensitivity
to the tactile input, and the stimulus was repeatedly presented
in the same location of the fingers. It was more intuitive to
find nerve post-activation inhibition in area 3b. This experiment
extended previous studies inmonkeys and verified that the paired
stimulation suppression effect in human primary somatosensory
cortex 3b is similar to that in monkeys. The time of nerve
post-activation inhibition may be∼30–50 ms.

FIGURE 3 | Mean amplitudes of attended minus unattended conditions on the

left hand and right hand. The analysis time window for (A) P50 was 34–62ms;

(B) N80 was 64–92ms; and (C) P100 was 94–122ms. Black line: left hand.

Dotted line: right hand. *p < 0.05, **p < 0.01, ***p <0.001.

In the single condition, we found some significant ERP
components in the contralateral hemisphere by comparisons
with the unattended side. The P50 and P100 components at
the C4 electrode were significantly stronger on the attended
side than on the unattended side (Figure 2). An fMRI-EEG
study used braille stimulation to investigate attentional effects
on S1, and it found that left tactile stimulation (P50) was
significantly enhanced by spatial-selective attention, suggesting
that attention enhances the sensory signal during its early passage
in S1(Schubert et al., 2008). This study also showed that P50
was the earliest component to be modulated by spatial-selective
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attention using stimuli similar to braille stimulation. Thus, the
asymmetric effects of spatial selective attention on the two sides
could also be found in the early andmiddle processing stages. For
stimuli on the left hand, P50, P100, and P300 were found when
comparing the attended vs. unattended hand, but on the other
side, only the P300 attentional effect was found in the attended
vs. unattended hand comparison. These asymmetric hemispheric
activations may be explained by Mesulam’s modality-non-
specific model of spatial attention (Mesulam, 1999). That is,
higher-order areas in the left hemisphere control attention for
events only on the right side, whereas the right hemisphere
controls attention for both the left and right sides. Both theories
may explain the asymmetric attentional effects on the SEPs,
leading to earlier attentional modulation for left stimuli (i.e., P50
and P100 only for left and not for right stimuli).

We found some attentional enhancement in the single
condition only. In the double stimuli conditions, the attentional
effect was partially decreased as the interstimulus interval
increased. A previous study suggested that when two or
more stimuli were presented, the inhibition effects in based
on the preferred stimulus (Reed et al., 2010). In the ISI-10
condition, we did not observe any enhancement or suppression
effect. There are two possibilities that explain these results:
the interval may be too short, such that the subject cannot
recognize the double stimuli, and when the stimulus is changed
to double, the suppression effect is activated much more
strongly than the attentional enhancement effect. According
to the interaction of spatial attention enhancement and
double asynchronous stimulation-induced suppression, when

the enhancement and suppression effects are equal, there was
no difference between attended and unattended states in terms
of the neurophysiological responses to double asynchronous
stimulation (Figures 2, 3). We suggest a tentative explanation
that may account for this finding: the attention enhancement
and double asynchronous stimulation-induced suppression

effects decreased as the interstimulus interval increased. The
stimulatory effect of attention is mutually competitive with
the inhibitory effect of double stimulation. Moreover, the
enhancement of spatial attention may be modulated by double
stimulation suppression.
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Recently, several deep learning methods have been applied to decoding in task-related
fMRI, and their advantages have been exploited in a variety of ways. However, this
paradigm is sometimes problematic, due to the difficulty of applying deep learning to
high-dimensional data and small sample size conditions. The difficulties in gathering
a large amount of data to develop predictive machine learning models with multiple
layers from fMRI experiments with complicated designs and tasks are well-recognized.
Group-level, multi-voxel pattern analysis with small sample sizes results in low statistical
power and large accuracy evaluation errors; failure in such instances is ascribed to
the individual variability that risks information leakage, a particular issue when dealing
with a limited number of subjects. In this study, using a small-size fMRI dataset
evaluating bilingual language switch in a property generation task, we evaluated the
relative fit of different deep learning models, incorporating moderate split methods to
control the amount of information leakage. Our results indicated that using the session
shuffle split as the data folding method, along with the multichannel 2D convolutional
neural network (M2DCNN) classifier, recorded the best authentic classification accuracy,
which outperformed the efficiency of 3D convolutional neural network (3DCNN). In this
manuscript, we discuss the tolerability of within-subject or within-session information
leakage, of which the impact is generally considered small but complex and essentially
unknown; this requires clarification in future studies.

Keywords: brain decoding, cross-subject modeling, cross-validation, deep learning, fMRI, model selection, MVPA

INTRODUCTION

In cognitive neuroscience, the framework for predicting the stimuli given to subjects or the tasks
they perform based on their neural activity is called “decoding.” From a modeling perspective,
we can evaluate predictive power and identify the brain regions that are the most informative for
specific stimuli or tasks. Decoding has also been studied extensively in the context of mind-reading.

Abbreviations: 3DCNN, three-dimensional convolutional neural network; ANOVA, analysis of variance; CV, cross-
validation; FWHM, full width at half maximum; Leave One Subject Out, leave-one-subject-out cross-validation; M2DCNN,
multichannel two-dimensional convolutional neural network; MNI, Montreal Neurological Institute; MVPA, multi voxel
pattern analysis; Permutation, permutation test; PLR, penalized logistic regression; SVM, support vector machine; Test, test
set; Train, training set; Valid, validation set.
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The most widely used decoding strategy is a pattern classification
method called Multi Voxel Pattern Analysis (MVPA; Cohen
et al., 2017). Haxby et al. (2001) showed that visual categories
of stimuli can be classified based on neural activity, distributed
and not clustered in small areas of the ventral temporal lobe.
Subsequently, the feasibility of decoding has been explored
using a variety of machine learning methods. Typically,
these include various types of classifiers such as the logistic
regressions, the Support Vector Machine, and the Gaussian
Naive Bayes.

More recently, with the increasing interest in deep learning,
studies applying non-linear multi-layer network models to
decoding have been reported (Koyamada et al., 2015; Gao et al.,
2019b; Thomas et al., 2019). Deep learning has the advantage of
being able to simultaneously learn end-to-end, overcoming the
previous faults of multi-step learning processes; previously, the
classifier was learned after extracting brain regions as features,
but it has now become possible to perform feature extraction
and classifier learning from the whole brain at once (Wang
et al., 2020). However, there remain some problems, such as
the difficulty in applying deep learning to high-dimensional
data and small sample size conditions (Cho et al., 2016;
Yang et al., 2017).

In cognitive neuroimaging research, there tends to be a paucity
of data due to experimental costs in terms of participant selection
or session length, due to the complex demands of such research.
When using machine learning for data analysis in sporadic
experiments of this type, low statistical power and large errors
in the evaluation of predictive accuracy often result. There is no
clear solution to this issue, since it is important to exclude any
unavoidable information leakage from a within-subject analysis.
This is a crucial issue, especially when applied to a clinical context
(Varoquaux et al., 2017; Varoquaux, 2018; Cearns et al., 2019).

In this study, in using a small-sized neurocognitive dataset,
several cross-validation methods with different split units were
used to evaluate the relative fit of different models. The models
were used to analyze the results of a neurolinguistic experiment,
from which a multi-site large-scale dataset is unlikely to be
produced. In detail, we adopted a complicated task design for the
experiment (conceptual association involving language switch),
with an idiosyncratic subject group (early bilinguals familiar with
two heterogeneous orthographic systems). This problem setting
is particularly problematic for deep learning models because
of the high-dimensional and small sample size dataset. At this
point, we also identified the best method to adjust for and
minimize information leakage to obtain desirable performance in
the presence of a small-sized neurocognitive dataset.

METHODS

This study was performed in accordance with the Declaration
of Helsinki and was approved by the Ethics Committee of
the Tokyo Institute of Technology (approval number: B13001).
Written informed consent was obtained from all subjects before
participation. The details of the experiment are described in the
Supplementary Material.

Datasets
Five Korean-Chinese early bilinguals participated in the
functional magnetic resonance imaging (fMRI) experiments,
which involved six repeated runs of a total of 20 mammal or 20
tool object images with name captions given in either Korean or
Chinese, depending on the run numbers. The dataset consisted of
1,200 trials (6 runs × 40 items for each subject; 600 trials for each
class) produced by a rapid event-related design with stimulus
randomization. For each trial, response data were obtained by
using boxcars for 5–8 s after the stimulus onset (Akama et al.,
2012); hence, there were four boxcars for which the magnitudes
were averaged to generate data in each trial (except for one
classifier described below). The target of the group-level MVPA
was focused on the discrimination of the conceptual categories
(“mammal” versus “tool”), although the language difference
could result in a small degree of interference.

Using SPM8 (Friston et al., 1994), we performed a
series of pre-processing steps including head movement
correction, superimposing anatomical images, gray matter
segmentation, conversion to Montreal Neurological Institute
(MNI) coordinates, and resolution correction, after which a
gray mask was applied using Nipy (Millman and Brett, 2007).
Furthermore, each volume was cropped to exclude areas that
were not part of the brain before z-scoring the entire image.

Classifiers
Based on previous studies, we used four classifiers: penalized
logistic regression (PLR), support vector machine (SVM),
multichannel 2D convolutional neural network (M2DCNN), and
3D convolutional neural network (3DCNN). The codes for PLR
and SVM were implemented using the Python package scikit-
learn (Pedregosa et al., 2011), while those for M2DCNN and
3DCNN employed Pytorch (Paszke et al., 2019; both available at:
https://github.com/sn0422j/mt_deep).

The PLR (L2 norm) and SVM (Linear SVM) were used,
respectively, as the most popular classifiers. Regularization
parameters were optimized with nested cross-validation (Nested-
CV); for the activity vector, the boxcars were averaged, and 500
voxels were selected by analysis of variance (ANOVA).

For the M2DCNN model, we referred to the work of Hu
et al. (2019), which meant that the model consisted of three two-
dimensional convolutional layers corresponding to the axes of
three orthogonal planes, a merge layer that concatenates features,
and a fully connected layer for classification. Figure 1A shows
the architecture of this model. A Mish function (Misra, 2019) was
used for the activation function to prevent overfitting. To train
our model, we used cross-entropy as a loss function and Adam
[learning rate = 0.001, beta = (0.9, 0.999)] for optimization; 300
epochs were performed with exponential learning rate decay. The
average images of the boxcars were used as the input to the model.

The 3DCNN model was based on the report of Wang et al.
(2020; Figure 1B) to capture local spatiotemporal changes by
applying three-dimensional convolutional filters over a time
series. This training configuration was the same as the M2DCNN
model, and the boxcars were used as the input to the model.
It should be noted that the 3DCNN model allowed us to input
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FIGURE 1 | The architecture of Two deep learning models: (A) the multichannel 2D convolutional neural network (M2DCNN) model and (B) the 3D convolutional
neural network (3DCNN) model. Dropout rate of the fully connected layer was set to 0.5 in both (A) and (B).

without averaging the magnitudes of the critical boxcars as
a single 4D data.

Evaluation of Accuracy
With a view to comparing the effectiveness of the following three
cross-validation (CV) methods, we performed a five-fold CV for
each method to calculate the classification accuracy of the test set
split out from the small boxcar data: leave-one-subject-out CV,
session shuffle split, and sample shuffle split. Note that for these
CV methods, the data for the folds were subtracted from the six
runs in each experiment, since we did not leave out any run(s) as
a unit in this modeling.

When using the leave-one-subject-out CV as a splitting
strategy, each subject was assigned a particular fold pattern so
that only one individual’s data was included in each test set
(abbreviated hereafter as Test) and another one in the validation
set (abbreviated as Valid) at every CV step (Figure 2A). Hence,
each fold contained three subjects as providers of a training
set (Train for short), one subject for the Valid, and another
one for the Test.

In the session shuffle split, a fold was created in a run-by-
run manner, regardless of subject identification, and by selecting
20% of the trials (taken as blocks) included in each run as
Test or Valid at random (Figure 2B). The proportion of the
numbers of data randomly assigned to the Train, Valid, and Test
sets was identical throughout all folds (3:1:1). In other words,
in each fold we had 18 runs for Train, 6 runs for Valid, and
6 runs for Test.

In the sample shuffle split method, a fold was set in a trial-
by-trial manner, without considering data attribution to subject
and runs, and by randomly selecting 144 trials for Train, 48 trials
for Valid, and the remaining 48 trials for Test (Figure 2C). The
proportion of the three subsets was kept at 3:1:1 as was the case
with the session shuffle split method.

Additionally, we performed a permutation test in which labels
were randomly re-labeled 100 times, to calculate the chance level
for each cross-validation method. With regards to the classifier,
the PLR with the above settings was used as the baseline. We
calculated the p value for each combination of classifiers and
CV methods using the Wilcoxon rank-sum test. The statistical
analyses were conducted using Scipy.stats Version 1.4.1. A p value
of less than 0.005 was the threshold for statistical significance.

RESULTS

The accuracy and p values for the three cross-validations and
the four classifiers are shown in Figure 3 and Table 1. PLR,
SVM, and M2DCNN elicited significantly higher accuracy (p
value < 0.0005) than the chance level for the session shuffle
split and sample shuffle split. 3DCNN recorded almost the same
accuracy as the chance level.

In general, the accuracy of the classifier was improved with, in
ascending order, leave-one-subject-out CV, session shuffle split,
and sample shuffle split. In the leave-one-subject-out CV, the
best precision rate (0.511) was obtained with the PLR classifier,
but this was not significant (p value > 0.005). In the session
shuffle split and sample shuffle split, the best precision rate (0.640,
0.751, respectively) was obtained with the M2DCNN classifier.
We regarded the value of 0.640 using session shuffle split as the
authentic accuracy, which is discussed below.

DISCUSSION

Comparison of Methods
In this section, we review the properties of all of the split methods,
respectively, and then assess the performance and structure of
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FIGURE 2 | Three splitting methods for the evaluation of accuracy: (A) Leave-one-subject-out cross-validation; (B) session shuffle split; and (C) sample shuffle split.
The training set (green), validation set (blue), and test set (orange) are colored differently.

several deep learning models. Each CV method has a different
data distribution within each of the splits. For the leave-one-
subject-out CV, the breakdown of a fold composed of Train,
Valid, and Test was limited to 3, 1, and 1 subject(s), respectively.
Thus, we assume that the classifiers would be insufficient to
achieve good generalization performance in the classification of
further unknown subjects. The data were under-sampled from
a large population of subjects, since the individual variability
between subjects should be significantly larger than within-
subject fluctuations in terms of functional activity (Miller et al.,
2009). As a result, statistical machine learning methods were far
from a good fit.

When it comes to the session shuffle split and sample
shuffle split methods, for which within-subject leakage was
unpreventable, statistical machine learning was likely to be

successful by reducing the effect of individual functional
differences. Further improvement in the accuracy of the sample
shuffle split may be dependent on the leakage caused in a time
series due to the higher similarity of functional activity within
runs than between runs (Varoquaux et al., 2017; Varoquaux,
2018). Moreover, it should be considered that two types
of session-wise stimuli were provided to each subject with
orthographic variability by language switch, which might have
had a significant impact on his/her task performance.

Individual functional differences have traditionally limited
the application of classifiers; solutions addressing this include
functional alignment (hyperalignment; Haxby et al., 2011), the
use of large datasets (Varoquaux et al., 2017; Varoquaux, 2018),
and some few-shot learning techniques like transfer learning
in deep learning (Gao et al., 2019a,b; Wang et al., 2020),
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FIGURE 3 | The mean accuracy for each split method and classifier. The permutation accuracy represents the chance level for each split method. 3DCNN,
three-dimensional convolutional neural network; M2DCNN, multichannel two-dimensional convolutional neural network; PLR, penalized logistic regression; SVM,
support vector machine.

TABLE 1 | The mean accuracy and the associated p value for each split
method and classifier.

Split method Training method Accuracy p value

Leave-One-Subject-Out CV PLR 0.511 0.1529

SVM 0.500 0.9760

M2DCNN 0.500 0.9700

3DCNN 0.500 0.9700

Session Shuffle Split PLR 0.617 0.0002**

SVM 0.626 0.0002**

M2DCNN 0.640 0.0002**

3DCNN 0.500 0.9101

Sample Shuffle Split PLR 0.720 0.0002**

SVM 0.680 0.0002**

M2DCNN 0.751 0.0002**

3DCNN 0.555 0.0017*

A single asterisk (*) indicates p < 0.005; double asterisks (**) indicate p < 0.0005.
CV, cross-validation. The highest accuracy in each split method is highlighted
in bold.

transfer learning in shared response modeling (Zhang et al.,
2018; Yousefnezhad et al., 2020), and meta-learning. It is
difficult, however, to use these methods for deep learning with
a limited sample size and a unique experimental condition.
Therefore, leaking information to some extent as referenceable
prior knowledge and discussing end-to-end models appears to
be one of the better solutions to address this issue. The session
shuffle split model appears to be the best way to evaluate the
accuracy of the models in this case, since the individual functional

differences are referenceable without being affected by the time-
series correlation.

The M2DCNN model, which achieved the highest accuracy
with little information leakage, was evaluated using gradients
to locate what the model learned for classification. This
analysis resulted in consistency with prior research describing
similar experimental tasks (see Supplementary Material for
analytical details). In this regard, a deep learning end-to-end
model could detect category-specific responses that are common
to the subjects.

The unexpectedly poor efficiency of the 3DCNN model for the
present analysis is worthy of discussion. Prior studies that applied
the 3DCNN model to task fMRI (Hu et al., 2019; Wang et al.,
2020) showed high accuracy in block designs, with sustained
and homogeneous task characteristics. The rapid event-related
design that we employed in our experiment might promote
greater variability within the time series. Given this, a model
that explicitly incorporates time series information, such as long
short-term memory (LSTM), may fit better (Thomas et al., 2019)
for a checkered experiment session.

Limitations and Future Directions
In this section, we provide some limitations of this study and
discuss the best method to adjust the information leakage level.
There are some limitations to this study. The accuracy reported in
this study is not an indicator of the generalizable performance of
the entire subject population, due to the leakage of information.
Here, we define information leakage as the phenomenon where
the i.i.d. split units for each split strategy have dependence as
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a consequence of the structured property of data distribution.
There are several levels of information leakage, which should be
separated out in terms of legitimacy (Kaufman et al., 2012). Based
on this idea, we propose readily attributing levels as “heavy” or
“light” for those actions.

In the fMRI decoding framework, heavy leakage has been
considered to be so serious that it affects the authenticity of
accuracy indicators, such as that seen in supervised feature
selection prior to splitting or hyperparameter optimization with
Test data (Kaufman et al., 2012). In contrast, light leakage is
likely to occur when the Train and Test data are not completely
independent, with their indirect and hidden relationship being
difficult to scrutinize; its impact is generally taken as small but
complex and essentially unknown.

In this study, we presented an example of training a complex
model by allowing light information leakage. For group analysis,
the sample shuffle split method ignored the leakage likely to be
caused in a time series and hypothesized the independence of
trials within runs. We believe that under this condition, the rate
of 0.651 obtained by the session shuffle split and the M2DCNN
classifier was the authentic limit of classification accuracy in
this study. Beyond this scope, some results of multivariate
analysis based on heavy leakage might be considered to work
entirely outside the context of machine learning; for example,
an adaptive reuse of them is possible, such as that seen with
a brain semantic map reflecting the representational similarity
of concepts. However, open questions remain unanswered in
relation to the utility of such rich information handling.

In regards to the underestimation of cross-validation loss,
our research indicated a need to demonstrate how we could
control the data independence and support the significance of
the indicator in a non-parametric way; for example, by using
a permutation test (Varoquaux et al., 2017; Varoquaux, 2018).
However, when investigating cognitive processes specific to a
narrow population as in the case of this study, it is important to
model within-subject variability by taking more data, even with
fewer subjects, and reducing within-subject errors (Smith and
Little, 2018). Future studies are required to develop and train
a more reliable classifier for each subject and to stably as well
as precisely detect consistent shared effects across subjects with
higher statistical power.

CONCLUSION

In this study, we examined the application of complex models for
the decoding of fMRI under the constrained condition of a small

sample size in a unique cognitive experiment. It was shown that
even when data bias was caused by functional variability across
subjects, in spite of greatly limited performance of the classifiers,
the complex model could be successfully applied by taking a
moderate split to control information leakage. This might be
a key to success in deep learning for overcoming a paucity of
fMRI data. In this study, we have discussed the tolerability of
within-subject or within-session information leakage, of which
the impact was generally considered to be small but complex and
essentially unknown; this requires clarification in future studies.
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