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Editorial on the Research Topic 

Genetic and Epigenetic Control of Immune Responses



Introduction

Cancer, traditionally viewed as a disease driven by genomic alterations, is now perceived as an accumulation of genetic mutations as well as global epigenetic changes to the chromatin that regulate gene expression (1, 2). Genetic alterations to either tumor suppressors or oncogenes can result in dramatic gene expression changes leading to cancer; however, changes in the epigenome are rather subtle. Despite similar genomic sequences in all the cell types, the epigenome can vary considerably, resulting in distinct gene expression patterns and, therefore, distinct cellular functions. Epigenetic modifications to chromatin include DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs that can regulate access of DNA to transcription factors and other cis-regulatory elements, thereby affecting gene expression (3). It is now recognized that genetic and epigenetic components complement each other to drive tumor initiation and progression (4). Recent technical advances in high throughput sequencing have improved understanding of the epigenomic landscape at a higher resolution. Massive datasets and databases, including the encyclopedia of DNA elements (ENCODE) (5), The Cancer Genome Atlas (TCGA) ((https://www.cancer.gov/tcga), the NIH Roadmap Epigenomics Mapping Consortium (6), the Epigenome browser (7), have enhanced our ability to understand the interplay between cancer cells, tumor microenvironment (TME) and immune cells. Therefore, a new classification of molecular epigenetic modifications is needed to differentiate “cancer intrinsic” and “cancer extrinsic” mechanisms influencing anti-tumor immune responses. The schematic shows a graphical representation of various intrinsic and extrinsic factors affecting the cancer cells and thereby regulate the TME (Figure 1). The International Human Epigenome Consortium (IHEC) provides high-resolution reference epigenomes of major primary human cell types (8). Based on the data from these projects, genetic and epigenetic crosstalk in cells is evident, and it has led to the identification of novel biomarkers and the development of novel therapeutic strategies. The articles in this Research Topic on Genetic and Epigenetic Control of Immune Responses address both cell-intrinsic and cell-extrinsic mechanisms controlling the immune response to tumors.




Figure 1 | Tumor intrinsic and extrinsic factors regulating immune responses in the tumor microenvironment. Cancer cell intrinsic factors such as genomic mutations, chromatin modifiers and non-coding RNA regulate tumor initiation, propagation as well as immunogenicity. Epigenetic modifications such as DNA methylation, histone acetylation and methylation regulate gene expression. Non-coding RNA including long non-coding RNA, microRNA, circular non-coding RNA regulate gene transcription as well as mRNA stability. Other mechanisms intrinsic to cancer cells include expression of immunosuppressive cytokines to facilitate escape from anti-tumor immunity, expression of immunosuppressive molecules such as PD-L1 and PD-L2, suppression of antigen processing and presentation machinery and tumor associated antigens. Cancer cell extrinsic factors include tumor infiltrated immune cells, fibroblasts, stromal cells and endothelial cells. Extrinsic factors also include secretory factors such as cytokines, chemokines, metabolites, growth factors and immune checkpoint molecules. Tumor associated antigens presented by antigen presenting cells such as macrophages, dendritic cells activate CD8 T-cells for effective anti-tumor immunity. However, immune checkpoint molecules expressed by cancer cells regulate the inflammatory status of the tumor tamping down the inflammation. Use of epigenetic modifiers such as DNMT inhibitors, HDAC inhibitors, BET inhibitors etc. can alter these reversible modifications to enhance anti-tumor immunity. Figure created with BioRender.com.



Several articles utilized publicly available databases to investigate the relationship between tumor and immune cells in the microenvironment and, consequently, response to immune therapies. In this Research Topic, Zhuang et al. investigated the relationship between immune-related genes and the outcome of lung squamous cell carcinoma (LUSC) using datasets from TCGA and defined an immune gene risk index. The immune gene risk index served as an independent prognostic factor indicating that infiltration of neutrophils and dendritic cells was strongly associated with the high-risk group. Another prognostic model in this Research Topic designed by Xu J et al., with machine learning, indicated that LYN, C3, COPG2IT1, LA.DQA1 and NFRSF17 may serve as novel biomarkers to assess the prognosis of patients with non-small cell lung cancer and ICB therapy. Systematic analysis of skin cutaneous melanoma data from TCGA by Qu et al. indicated that ETS family member ETV7 transcription factor expression was downregulated in melanoma tumors and associated with poor prognosis. Further gene enrichment analysis and immune profile analysis indicated that ETV7 regulates differentiation and activation of T cells (Qu et al.).

Regarding immune-related features, the triggering receptor expressed on myeloid cells 2 (TREM2), a transmembrane receptor of the immunoglobulin superfamily, played an important role in tumor progression by modulating immune responses of TAMs in the TME (9). Meta-analysis of TREM2 by Cheng et al., across 33 different cancer types from various databases, including TCGA, indicated that TREM2 gene expression negatively correlated with the level of infiltration of most immune cells but positively correlated with infiltration levels of M1 and M2 macrophages in 6 different cancer types. Integrative pan-can analysis of cancer datasets by Xu W-X et al. concluded that Lipocalin 2 (LCN2), a novel innate immune protein, is a potential biomarker for immune infiltration and poor prognosis in cancers. Analysis of TCGA datasets for Hepatitis B virus-related hepatocellular carcinoma also indicated a significant difference in prognosis based on immune phenotypes associated with higher expression of metabolic and stem cell-related genes (Zhang et al.). Based on the aforementioned research studies in this Research Topic, it can be concluded that cancer genomic and transcriptomic databases have revolutionized the computational approach to understanding the tumor microenvironment.

Due to the reversible nature of epigenetic changes, epigenomic modulators as therapeutic agents are gaining more attention to influence the TME towards antitumor immunity. In this editorial, we will highlight the latest studies on genetic and epigenetic factors that influence the fate of cancer cells and immune cells as well as the factors that shape the TME. Finally, we will discuss unique epigenetic profiles of cancer cells and immune cells with exciting possibilities that link the TME and changes in the gene expression profiles of the immune cells. Finally, we will explore the possibility of using epigenetic modifiers as drug targets either alone or in combination with immunotherapies.



Tumor Immunology and Cancer Immunotherapy

The immune system plays a major role in both the eradication and the establishment of tumors. Active immune surveillance by the innate immune system can identify and eliminate nascent tumor cells, eradicating cancer (10). However, the establishment of cancer indicates that tumor cells successfully evade host immune defenses through a process called immunoediting, which is divided into three phases: elimination, equilibrium, and escape (11). An early study indicated that IFNγ producing lymphocytes prevented tumorigenesis in mice with an intact immune system. However, tumors that developed by escaping immune detection were less immunogenic than those developed in immunodeficient mice, supporting the concept of cancer immunoediting (12). Recent advances in immunotherapy have revolutionized cancer therapies. The basic premise of cancer immunotherapies is to potentiate the ability of T-cells to recognize and eliminate cancer cells. Based on the infiltration of immune cells, tumors can be classified as hot or cold tumors. Tumors with poorly infiltrated immune cells are often called “cold tumors” whereas tumors with inflammation resulting from heavy infiltration of immune cells are called “hot tumors” (13). Patients with so-called cold tumors are non-responsive to immunotherapy resulting in primary resistance.

On the other hand, patients exhibiting an initial response to immunotherapy can eventually acquire resistance due to immunoediting (1). The differentiation of naïve T-cells into anti-tumor effector T-cells, as shown in the schematic, begins with the formation of an immune synapse between the T-cell receptor (TCR) and the antigenic peptide presented by major histocompatibility complex (MHC) of antigen-presenting cells (APCs), which serves as signal 1 (14). Signal 2 involves binding co-stimulatory molecules like the interaction between CD28 and B7 molecules for complete T-cell activation. Lack of signal 2 despite effective antigen presentation leads to T-cell anergy (15). This step is tightly regulated by countering immune checkpoint molecules to prevent prolonged activation and autoimmunity (16). Finally, signal 3 involves cytokine stimulation that facilitates proliferation and clonal expansion of effector T-cells (17).

The impetus for cancer immunotherapy was derived from ipilimumab’s phase 3 clinical study, which blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), an immune checkpoint molecule, to potentiate T-cell mediated anti-tumor response. Anti-CTLA-4 treatment improved overall survival in a large cohort of metastatic melanoma patients (18). CTLA-4, due to its high affinity for B7 ligands, competes with CD28 and inhibits T-cell proliferation and IL-2 secretion (19). Another immune checkpoint molecule expressed by reactive T-cells is programmed death 1 (PD-1), and its ligands PD-L1 and PD-L2 expressed by tumors cells and other immune cells when engaged result in T cell dysfunction (20). The subsequent discovery of other immune checkpoint molecules such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), and V-domain Ig suppressor of T cell activation (VISTA) has led to the exploration of ICB therapy for numerous cancer types (21).

Epigenetic modifications play a critical role in regulating the expression of immune checkpoint molecules. DNA methylation (5-methylcytosine) is an epigenetic silencing mark associated with hemimethylated CpG palindrome sequences (approximately 1 kb CpG-rich regions) known as CpG islands (22). Analysis of breast tumor tissue and normal breast tissue for the expression of immune checkpoint molecules indicated that CpG islands in the promoter regions of PD-1, CTLA-4, and TIM-3 were hypomethylated (loss of DNA methylation) in tumor tissues compared with normal tissues. CpG islands of PD-L1 and LAG-3 were hypomethylated, whereas TIGIT was hypermethylated in both normal and breast tumor tissues. This methylation data was inversely correlated with gene expression. H3K9me3 and H3K27me3 marks were reduced in the promoter loci of PD-1, CTLA-4, TIM-3, and LAG-3 in breast tumor tissues suggesting that epigenetic mechanisms affecting the cancer cell side of the equation can affect immune cells and vice versa (23). In the presented Research Topic Wagner et al. further provided an extensive analysis of immune checkpoint molecules and inherited variations as a marker for cancer risk and indicate that the variants in genes encoding these molecules might be considered as low-risk variants (OR<2) for cancer development, which has been well documented by numerous reports for CTLA-4, PDCD1, PD-L1 genes, while still more studies are needed for BTLA, TIM3, LAG3 and TIGIT.



Cancer Intrinsic Epigenetic Mechanisms

As described by Hanahan and Weinberg, Hallmarks of cancer comprise six cellular processes that include sustaining proliferative signaling, resisting cell death, enabling replicative immortality, evading growth suppressors, inducing angiogenesis, and activation of invasion and metastasis (1). Underlying genomic instability further expedites the ability of cancer cells to attain these hallmarks. Epigenomic deregulation adds another layer of complexity to tumorigenesis (24); for example, genome-wide DNA hypomethylation can induce genomic instability (25). Stage IV metastatic colon cancer patients often have tumors with defective DNA mismatch repair and high microsatellite instability (MSI-High) (26). In this Research Topic Lin et al. report that analysis of gene expression and mutational data of colon and rectum adenocarcinomas from TCGA reveals that MSI-High tumors had higher infiltration of immune cell, expression of immune-related genes, and better immunogenicity than MSI-Low or microsatellite stable tumors. Therefore, patients with MSI-High colorectal cancer having MSI-High respond better to ICB therapy (27). Chromosomal instability is mediated by the loss of telomeres which protect the ends of chromosomes and prevent chromosome fusions (28). The expression of telomerase reverse transcriptase (TERT), a catalytic subunit of telomerase, regulated by multiple genetic and epigenetic alterations that affect tumors’ telomerase activity is presented as well in this Research Topic (Dratwa et al.). Therefore, tumor cell intrinsic genomic features mentioned above can significantly influence the initiation and propagation of cancer cells.

In this issue, a comprehensive analysis of the mutational status of tumor suppressor genes that include TP53, CDKN2A, PTEN, RB1, BRCA1, BRCA2, and immune-related gene expression in lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database indicated that infiltration of immune cells was suppressed by tumors harboring mutations to the tumor suppressor genes (Kim et al.). This underscores the impact of the mutational status of tumor cells in shaping the TME and potentially dictating the usage of immunotherapeutic strategies in patients with mutations of tumor suppressor genes. Another study in this Research Topic by Wu et al. identified a prognostic TP53 associated immune signature in muscle-invasive bladder cancer based on differentially expressed immune-related genes between patients with or without TP53 mutations (29). The TP53 associated immune signature identified a high-risk group of patients characterized by increased infiltration of immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. This high-risk group of patients also had higher expression of CTLA4, LAG3, PDCD1, TIGIT, and HAVCR2, suggesting that they were more likely to respond to anti-PD-1 and neoadjuvant chemotherapy (Wu et al.).

A global survey of tyrosine kinase signaling identified c-ros oncogene 1 (ROS1) chromosomal rearrangements non-small-cell lung cancer (NSCLC) (30). ROS1 fusion NSCLCs are sensitive to crizotinib, a receptor tyrosine kinase MET inhibitor (31) but eventually develop resistance (32), and the effect of ROS1 fusion on ICB therapy is not known. In this Research Topic, Cai et al. reported that ROS1 fusion upregulated PD-L1 through activation of ROS1-SHP2 pathway using ROS1 fusion and crizotinib-resistant cell lines, suggesting that oncogenic driver mutations play a direct role in the expression of checkpoint PD-L1 molecule and facilitate the immune escape of NSCLC tumors.

Another mechanism of immune escape is downregulation of MHC-I molecules of antigen presentation machinery (33) through promoter hypermethylation (34), binding of polycomb repressive complex 2 (PRC2) at H3K27me3 repressive marks (35). Somatic mutations or loss of expression of the beta 2-microglobulin (B2M) gene in lung cancer cells can result in defective MHC class I expression, allowing the cancer cells to escape recognition by cytotoxic T cells (36). Due to genomic instability, mutated proteins expressed by tumor cells function as tumor-associated antigens (TAAs). In colorectal premalignant polyps, an estimated 11,000 genomic events per cell were detected (37). Most importantly, epigenetic driver mutations often dictate the success of immunotherapeutic approaches. For example, ARID1A driver mutations resulted in condensed chromatin of IFN responsive genes, reduced T-cell infiltration, and thereby anemic anti-tumor immunity (38). Epigenetic mechanisms in tumor cells also control the immune status of the TME as polycomb repressive complex 2 (PRC2) repressed the expression of Th-1 chemokines CXCL9 and CXCL10, resulting in poor T-cell infiltration in colon cancer (39), highlighting the complex interplay between tumor cells and immune cells in the TME. In the triple-negative breast cancer (TNBC) subtype with hypomethylated IDO1 gene promoter compared to the estrogen receptor-positive breast cancer subtype with hypermethylated IDO1 gene promoter resulted in the expression of IDO1 enzyme in the presence of activated CD8 T-cells, suggesting a counteractive mechanism employed by tumor cells to escape anti-tumor immunity (40, 41). Metabolic deregulation is often associated with epigenomic deregulation in cancer cells (42). Myeloproliferative neoplasms are not driven by BCR-ABL mutations in hematological malignancies, rather due to somatic mutations in JAK2 and exhibit metabolic vulnerabilities due to a high dependence on glucose metabolism. Here, Sharma et al. discuss the role of histone methylation and acetylation in metabolic deregulation of myeloproliferative neoplasms.

Moreover, in this Research Topic, increasing evidence indicates the role of non-coding RNA, including long non-coding RNAs (lncRNAs), in the immunomodulation of the TME (43). Hu et al. analyzed the gene expression data of patients with adenocarcinoma of esophagogastric junction from TCGA, identified 1470 differentially expressed lncRNAs, and narrowed them to an immune-related risk signature that can effectively predict the response to immunotherapy and chemotherapy. Li J-P et al. reported a seven lncRNA signature out of 331 immune-related genes (AC022784-1, NKILA, AC026355-1, AC068338-3, LINC01843, SYNPR-AS1, and AC123595-1) as a predictive model to forecast the progression of lung adenocarcinoma. Fang et al. discuss the regulatory roles of circular RNAs in the context of tumor immunology and immunotherapy.



Cancer Extrinsic Epigenetic Mechanisms

Cancer extrinsic mechanisms constitute factors contributing to tumor initiation and progression not by the tumor cells but due to factors such as tumor-associated immune cells, stromal cells, and fibroblasts. These cells can directly influence epigenetic outcomes in tumor cells by secreting factors such as cytokines, chemokines, metabolites, growth factors, and other soluble factors. As shown in the schematic, we will discuss the role of predominant immune cells in the TME, including tumor-associated macrophages and infiltrated lymphocytes.


Macrophages

Macrophages are a heterogeneous population of cells that play a critical role in enforcing both innate and adaptive arms of the immune system. Macrophages are terminally differentiated from circulating monocytes with their origin in the bone marrow, whereas evidence indicates that tissue macrophages progenitors are derived from the yolk sac and fetal liver during early embryonic hematopoiesis (44) with self-renewal capabilities (45). An extremely simplistic classification of macrophages based on the phenotypes is pro-inflammatory or classically activated (M1) macrophages and anti-inflammatory or alternatively activated (M2) macrophages (46). The M1/M2 nomenclature is originally linked to Th1/Th2 lymphocytes producing IFNγ or IL4 for activation of M1 or M2 macrophages, respectively. Macrophages are highly adaptable cells capable of responding to cues from the microenvironment and exhibit properties that make it difficult to strictly assign M1 or M2 phenotypes. Such plasticity of phenotypes demands remarkable changes in the epigenome resulting in distinct gene expression patterns (47). In the context of the TME, pro-inflammatory M1 macrophages are attributed to the anti-tumor activity, whereas anti-inflammatory M2 macrophages are deemed to be tumor-promoting. The complexity is even higher with tumor-associated macrophages (TAMs).

Macrophages differentiate from monocytes in the presence of colony-stimulating factors, resulting in significant gene expression changes (48). Epigenetic profiling of monocyte to macrophage differentiation uncovered approximately 8000 dynamic regions associated with at least 11000 DNase I hypersensitive sites suggesting a profound remodeling of chromatin (49). Differentiation was associated with demethylation catalyzed by ten-eleven translocation (TET) methylcytosine dioxygenases enzymes (50) of at least 114 Differentially methylated regions (DMRs) belonging to genes of the ERBB2, PDGFRβ, CXCR4, and PIK3 signaling pathways. Demethylated DMRs were also nucleosome depleted and enriched with activating histone marks H3K27ac and H3K4me1 in macrophages compared to monocytes (51). Exposure of macrophages to TLR ligands such as LPS and/or Th-1 cytokines such as IFNγ leads to M1 polarization by activating several epigenetic modifiers leading to transcription of pro-inflammatory cytokine genes mediated through the NF-κB (52), STAT1, HIF1α, IRF4 (53), and MAPK (54) pathways. Enhancer regions of loci that encode inflammatory genes are poised for gene expression with an open chromatin state marked by H3K4me1 and binding of macrophage lineage determining PU.1 and C/EBP transcription factors (55, 56). Upon activation signal, these cells readily express pro-inflammatory cytokines. Another epigenetic modifier, histone lysine methyltransferase EZH2, a member of the repressive PRC2 complex, increases H3K27me3 marks on the SOCS3 gene leading to suppression of SOCS3 gene expression in activated M1 macrophages (57). Similarly, DNMT1-mediated hypermethylation of SOCS1 resulted in decreased expression of SOCS1 and therefore increased expression of LPS-induced pro-inflammatory TNF and IL-6 cytokines in macrophages (58). Both SOCS1 and SOCS3 are negative regulators of the JAK/STAT pathway (59). On the contrary, repressive mechanisms mediated by negative histone marks H3K9me3, H3K27me3, H4K20me3, and repressors that bind inflammatory loci exist to prevent uncontrolled and chronic inflammation (60, 61). Jmjd3, an H3K27 demethylase deficiency, affected trimethylation of Irf4, a key transcription factor that regulated M2 macrophage polarization (62).



Lymphocytes

IL-17 producing Th-17 cells, a subset of CD4 T-cells, are usually associated with proinflammatory function. Binding of Cxxc finger protein 1 (Cxxc1), a transcription factor with high affinity to unmethylated CpG sites at the IL6R gene promoter, retained H3K4me3 marks and regulated IL-6Rα expression, which mediates IL-6/STAT3 pathway and thereby controls the fate of CD4 differentiation towards T-regs or Th-17 CD4 T-cells (63). Lymphocytes isolated from HDAC11 knockout mice exhibited increased expression of Eomes and Tbet transcription factors and displayed enhanced proliferation, increased production of pro-inflammatory cytokines, and effector molecule expression suggesting that HDAC11 acts as a negative epigenetic regulator of T-cell effector function and phenotype (64). HDAC11 is shown to regulate the expression of OX40L and IL-10 producing T-regs in Hodgkin lymphoma (65). Entinostat, a synthetic benzamide-derived Class I HDAC inhibitor (66), enhanced NK cells’ ability to kill cancer cells by increasing the expression of MIC in tumor cells and NKG2D in primary human NK cells (67).

Inflammasomes are multiprotein complexes that sense danger signals emanated from cancer cells and mediate a pro-inflammatory response resulting in cell death through activation of cysteine proteases called caspases (68). Deregulation of inflammasome and chronic inflammation often damages healthy tissue along with tumor cells (69). Epigenetic mechanisms such as DNA methylation (70) and epigenetic readers such as BRD4 regulate NLRP3 gene expression (71). In this Research Topic, Zhong et al. reported that activation of NLRP3 inflammasome in an IL-1β dependent manner in AML cells promoted proliferation of leukemia cells by inhibiting apoptosis, resulting in resistance to chemotherapy. Another epigenetic mechanism to regulate inflammation described in this issue is mediated by microRNAs. MiR-124, which targets STAT3 and subsequently binding of STAT3 to the IL17 gene promoter to activate it, in a Citrobacter rodentium infection and AOM/DSS induced colon cancer murine model, was shown to inhibit TH17 cell polarization and blocked colitis-related cancer (Lin et al.). Additionally, Zhang et al. reported that targeting miR-148b-5p in gastric cancer tumors reprogrammed the metabolic properties and altered the TME by shifting the lymphocyte and myeloid populations and rendered them sensitive to chemotherapeutic agents. These studies indicate modulation of tumor infiltrated immune cell properties and function through genetic and epigenetic mechanisms thereby affecting the TME.




New Immunotherapeutic Opportunities With Pharmacological Inhibitors of Epigenetic Modifiers

The reversible nature of epigenetic marks has immense implications in the prevention and treatment of cancers. When combined with immunotherapeutic approaches, they provide an opportunity to design targeted therapies to affect a positive clinical outcome. Epigenetic modifiers have been tested in various preclinical and clinical studies with varying degrees of success. Saleh et al. provide a comprehensive review of epigenetic modifications on the regulation of immune checkpoint molecules, therapeutic approaches to epigenetic modifiers as therapy in clinical trials.

DNMT inhibitors, 5-azacytidine, and decitabine degrade and inhibit DNA methyltransferases, resulting in hypomethylation and re-expression of tumor suppressor genes such as CDKN2A in cancer cells (72, 73). DNMT inhibitors also increase the expression of PD-L1 and PD-L2 in melanoma. A similar effect was observed with class I HDAC inhibitors and, when combined with anti-PD1 therapy, suppressed the tumor progression and improved survival (74). As mentioned earlier, DNA methylation and repressive histone marks regulate the expression of immune checkpoint molecules in breast cancer and colorectal cancer (23, 75). In ovarian cancer cells, treatment with DNMT inhibitors through upregulation of previously hypermethylated endogenous retroviruses activated cytosolic sensing of double-stranded RNA, causing a type I interferon response and apoptosis (76). Combining DNMT inhibitor with HDAC6 inhibitor resulted in increased type I interferon response, leading to profound cytokine and chemokine expression and higher expression of the MHC I antigen presentation complex in human and mouse ovarian cancer cell lines (77). Approval of DNMT inhibitors for hematological malignancies has renewed interest in epigenetic therapy despite limited success in solid tumors (78, 79). A combination of low dose azacytidine and HDAC inhibitor entinostat in patients with non-small cell lung cancer resulted in durable responses and improved long-term survival (80).

Genetic abrogation or pharmacological inhibition of HDAC6 in melanoma cells decreased cell proliferation by inducing G1-cell cycle arrest without triggering apoptosis. This was also associated with increased expression of TAAs and MHC-1 molecules, indicating a greater role of HDAC6 in modulating anti-tumor immunity (81). HDAC6 is also reported to interact with STAT3 to regulate the expression of immunosuppressive cytokine, IL-10, by binding to the IL10 gene promoter in antigen-presenting cells (82). Furthermore, inhibition of HDAC6 decreased STAT3 mediated expression of PD-L1 in primary melanoma samples and a panel of melanoma cell lines (83). Finally, using a murine melanoma model, pre-treatment with HDAC6 inhibitor prior to anti-PD1 immunotherapy resulted in decreased pro-tumor macrophages associated with increased infiltration of effector T-cells in the TME, providing evidence to the potential use of epigenetic modifiers as therapeutic agents for immunotherapy (84). In this Research Topic, similar results are presented in CLL whereby inhibition of HDAC6 augmented anti-PD1 and anti-PDL1 immunotherapy by increasing cytotoxic CD8 T-cell phenotype (Maharaj et al.). HDAC inhibitors also enhanced the expression of T-cell chemokines CXCL9 and CXCL10 and augmented anti-PD-1 immunotherapy response in lung adenocarcinoma (85).



Future of Epigenetic Therapies

One of the downsides to using pharmacological approaches to inhibit or activate epigenetic modifiers is the lack of targeted effects, resulting in undesirable global changes that can discourage their usage as long-term cancer therapies. For example, treatment with HDAC inhibitors, despite having better toxicity profiles than traditional chemotherapeutic agents, caused patients’ suffering from gastrointestinal, hematological, and cardiac effects (86). Despite the limitations, epigenetic modifiers have been tested in the clinic in combination immunotherapeutic strategies. Several examples are as follows: BET inhibitor and atezolizumab (anti-PD-L1) combination is in a phase Ib open label trial in patients with advanced ovarian cancer or triple negative breast cancer (ClinicalTrials.gov Identifier: NCT0329217). Vorinostat which is an FDA-approved drug for cutaneous T-cell lymphoma is currently is under consideration to assess the early signals anti-tumor activity in combination with pembrolizumab (anti-PD1) in patients with advanced prostate, renal or urothelial cell carcinoma (ClinicalTrials.gov Identifier: NCT02619253). Phase I clinical trail to study the side effects and identify the best dose of class I HDAC inhibitor entinostat and nivolumab (anti-PD1) when given together with ipilimumab (anti-CTLA4) in treating patients with metastatic or unrescetable solid tumors that have spread to lymph nodes or other organ sites in human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients (ClinicalTrials.gov Identifier: NCT02453620). In this Research Topic, Saleh et al. has provided an extensive list of latest clinical trials highlighting the increasing prominence of epigenetic drugs as immunomodulators of TME.

However, this issue can be addressed by developing highly selective isoform-specific HDAC inhibitors. Chronic, high doses of DNMT induce chromosomal instability and induce tumors in mice (87, 88). Therefore, a better approach would be to target a specific locus of chromatin to influence a desirable outcome. Targeted epigenetic modifications can be achieved by combining sequence-specific DNA binding domains with an epigenetic modifier. An early study showed that using synthetic zinc finger proteins fused to a library of about 223 yeast chromatin regulators can target specific locus (89).

Another example is an engineered transcriptional repressor fused to the catalytic domain of DNA methyltransferase (90). However, this in itself is a limiting factor as targeting different DNA sequences will require corresponding site-specific DNA binding domains. Other technologies include transcription activator-like effectors (TALEs) and RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) for precise epigenome editing (91, 92). With the advent of CRISPR technologies, we are entering a new frontier of targeted epigenomic therapies for cancer treatment.
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A balance between co-inhibitory and co-stimulatory signals in the tumor microenvironment (TME) is critical to suppress tumor development and progression, primarily via maintaining effective immunosurveillance. Aberrant expression of immune checkpoints (ICs), including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can create an immune-subversive environment, which helps tumor cells to evade immune destruction. Recent studies showed that epigenetic modifications play critical roles in regulating the expression of ICs and their ligands in the TME. Reports showed that the promoter regions of genes encoding ICs/IC ligands can undergo inherent epigenetic alterations, such as DNA methylation and histone modifications (acetylation and methylation). These epigenetic aberrations can significantly contribute to the transcriptomic upregulation of ICs and their ligands. Epigenetic therapeutics, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert these epigenetic anomalies acquired during the progression of disease. These discoveries have established a promising therapeutic modality utilizing the combination of epigenetic and immunotherapeutic agents to restore the physiological epigenetic profile and to re-establish potent host immunosurveillance mechanisms. In this review, we highlight the roles of epigenetic modifications on the upregulation of ICs, focusing on tumor development, and progression. We discuss therapeutic approaches of epigenetic modifiers, including clinical trials in various cancer settings and their impact on current and future anti-cancer therapies.
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INTRODUCTION

Epigenetics involves heritable and long-term changes in gene expression, which are mediated by various mechanisms, without altering the DNA sequence. In physiological and pathological settings, epigenetics plays profound, and ubiquitous roles in the regulation of gene transcription (1, 2). Epigenetic alterations in genes encoding tumor suppressors, suppressive cytokines and inhibitory immune checkpoints (ICs) can lead to impaired activation of anti-tumor immunity, tumor growth, immune escape and drug resistance, and significantly contribute to cancer development and progression (3, 4). Genetic and epigenetic modifications acquired by the tumor microenvironment (TME) play an indispensable role in tumorigenesis and result in uncontrolled growth of malignant cells (5). As cancer cells divide, they acquire genetic and epigenetic alterations giving rise to new cancer clones with different genetic and epigenetic make-ups, and inheritable traits favoring growth and survival of malignant cells (4).

The contribution of ICs to cancer pathogenesis and progression is well-recognized and has rationalized the development of monoclonal antibodies that target ICs and their ligands for cancer therapy (6, 7). Inhibitory ICs and their ligands are immunomodulatory molecules, and their physiological expression is crucial to maintain immune hemostasis and immunosurveillance to avoid potential risks of autoimmunity (8). Over expression of inhibitory ICs has been recognized as one of the major contributing factors to cancer development and progression, as well as autoimmune/chronic inflammatory diseases. Inhibitory ICs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can negatively influence the activation of antigen-presenting cells (APCs) and T effector cells (Teffs), and enhance the function of T regulatory cells (Tregs) and myeloid-derived suppressive cells (MDSCs) (9).

Immune checkpoints and their ligands are differentially expressed by immune cells (Table 1). The binding of CTLA-4 to CD80 and CD86 causes inhibitory signals toward T cell activation (10). PD-1 is expressed by multiple types of immune cells, including activated T cells. Upon its interaction with its ligands, programmed cell death-ligand 1 or 2 (PD-L1 or PD-L2), inhibitory signals are generated to inhibit T cell activation/proliferation (11, 22, 23). The interaction between TIM-3 and galectin-9 has also been reported to suppress T cell function (14). The binding of LAG-3 to its ligand reduces antigen-specific CD4+ Teff responses and suppresses cytokine production (24–26). The interaction between TIGIT and its ligands inhibits Teff activation (19–21).


Table 1. Expression of immune checkpoints and their ligands.
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Despite the success of ICIs in treating various cancer types, a large proportion of patients show low response rates due to primary or acquired resistance mechanisms. Primary resistance mechanisms are mainly dependent on the existing immune response, while acquired resistance mechanisms are governed by tumor heterogeneity/plasticity, immunosuppressive cells (including Tregs and MDSCs), T cell exhaustion and increased expression of inhibitory ICs (6, 8, 9, 27).

The overexpression ICs and their ligands, within the TME, can be mediated by different forms of epigenetic alterations, including DNA methylation, histone modifications and microRNAs (3, 28, 29). Epigenetic modifiers, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert the changes acquired during cancer onset or progression (30). The use of combined therapies targeting epigenetic modifications and ICs could serve as a highly promising therapeutic strategy to restore the physiological epigenetic profile and to boost anti-tumor immunity. In this review, we focus on the role of epigenetic modifications regulating IC expression, and promoting cancer development and progression. We discuss the different therapeutic approaches of utilizing epigenetic modifiers, including clinical trials in various cancer settings and their impact on anti-cancer therapies.



ROLE OF EPIGENETICS IN CANCER DEVELOPMENT AND PROGRESSION

Epigenetics controls the transcriptional and post-transcriptional regulations of a vast array of genes, which mediate various cellular processes and functions ranging from proliferation, differentiation, invasion, survival, growth, metabolism, and immune responses (31). The development and progression of many pathological conditions, including cancer, trauma, and infectious and autoimmune diseases can be driven by aberrant epigenetic modifications (1–3, 5). Cancer was initially considered as a “genetic disease” due to gene mutations associated with loss of gene function or gene overexpression; these mutations were initially thought to be the main driving force behind disease pathogenies and progression (32). However, there is emerging evidence implicating a crucial role for epigenetics in carcinogenesis. During tumorigenesis, the epigenome is subjected to various alterations such as global changes in histone modifications, dysregulation in the non-coding RNA networks, global loss of DNA methylation, and regional hypermethylation particularly in the promoter regions of tumor suppressor genes (33). Using whole-genome sequencing, Mack et al. showed very low mutation rates, and no recurrent somatic single nucleotide variants were associated with 47 cases of pediatric brain cancer (hindbrain ependymomas) (34). In addition, the authors showed that poor prognosis of hindbrain ependymomas exhibit a CpG island methylation phenotype, which is known to induce transcriptional silencing of differentiation genes through trimethylation of lysine 27 on histone H3 (H3K27) (34). Moreover, genetic alterations in genes encoding enzymes that regulate DNA methylation and histone modifications are also responsible for predisposing individuals to cancer (35, 36). For instance, mutations in DNA methylation enzyme DNMT3a are found in ~22% of patients with acute myeloid leukemia (AML) and T cell lymphoma have been associated with poor disease outcomes (36–38). Another study showed that mutations in ten-eleven translocation 2 (TET2) methylcytosine dioxygenase, which mediates DNA demethylation, are present in ~15% of myeloid cancers (39). Mutations in genes encoding proteins that facilitate histone demethylation on H3K27, such as ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) and additional sex combs like 1 (ASXL1), have been detected in 11% of patients with myelodysplastic syndromes and 43% of chronic myelomonocytic leukemia (40, 41). Furthermore, mutations in histone lysine acetyltransferases (HATs) and histone deacetylases (HDACs) have been associated with hematological malignancies and solid tumors (42).

Global DNA methylation and histone modifications are closely linked with cancer development and progression. The level of DNA methylation (hypo or hyper) and levels of histone methylation or acetylation can vary across different cancer types. For instance, development of breast cancer has been associated with global DNA hypermethylation, while prostate cancer pathology has been linked with DNA hypomethylation and increased active histone methylation (43). Therefore, these findings suggest that DNA methylation could occur in a tissue-specific manner depending on the TME. Certain patterns of DNA methylation, hypermethylation or hypomethylation, targeting specific genes in a particular TME could have a profound impact on cancer development and/or progression (44, 45). Based on this and since DNA hypermethylation is associated with transcriptional silencing (46), it could be anticipated that development of particular cancer types is driven by DNA hypermethylation causing reduced expression of genes related to tumor suppression and activation of anti-tumor immunity (47). On the other hand, transcriptional activation mediated by DNA hypomethylation could result in the overexpression of genes favoring tumor growth, angiogenesis, metastasis and immunosuppression, leading to the development of cancer types, which have been linked with DNA hypomethylation (44, 48).



ROLE OF IMMUNE CHECKPOINTS IN CANCER DEVELOPMENT AND PROGRESSION

Increased expression of CTLA-4 and PD-1/PD-L1 and their negative correlations with overall survival (OS) in various cancer cases have been well-established (49–51). Toor et al. reported a positive correlation between tumor-node-metastasis (TNM) staging and increased expression of CTLA-4 in circulating CD4+ T cells of colorectal cancer (CRC) patients (52). Elevated co-expression of LAG-3 and PD-L1 in tumor tissues from triple negative breast cancer (TNBC) patients treated with adjuvant therapy has been associated with poor disease prognosis (53). Zhang et al. demonstrated that TIM-3 expression, in colorectal tumor tissues, was positively correlated with TNM staging, lymph metastasis and shorter OS (54). Furthermore, overexpression of TIM-3 on tumor-infiltrating cells showed a positive correlation with poor prognosis and shorter OS in hepatocellular carcinoma (HCC) patients (55, 56).

More recently, soluble forms of ICs/IC ligands, generated by alternative splicing and circulating in the plasma of cancer patients, have been implicated in cancer development and poor prognosis, and were suggested to serve as prognostic biomarkers. Simon et al. reported that serum soluble CTLA-4 (sCTLA-4) in pediatric patients with acute lymphoblastic leukemia can be used as a prognostic biomarker (57). High levels of sPD-1 in the plasma of patients with hepatitis B virus (HBV) were associated with high viral load and increased risk of hepatocellular carcinoma (HCC) (58). Increased levels of sPD-L1 have also been associated with poor clinical outcomes in various cancers including HCC, diffuse large B-cell lymphoma, renal cell carcinoma, and gastric and lung cancer (59–63). Additionally, poor prognosis and short OS have been linked with elevated levels of sTIM-3 in HCC patients (64). The mechanisms by which ICs and IC ligands (membrane-bound or soluble forms) mediate immunosuppression and promote tumorigenesis have been reviewed elsewhere (7, 9, 65). Collectively, the interactions between ICs and their ligands impair APC function, reduce T cell proliferation and cytokine release, induce T cell apoptosis, and enhance suppressive activity of Tregs and MDSCs (6, 27).



EPIGENETIC MECHANISMS REGULATING THE TRANSCRIPTION OF IMMUNE CHECKPOINTS IN CANCER

The epigenetic machinery is mainly comprised of three components: DNA methylation, histone modifications (e.g., acetylation, methylation, phosphorylation, and ubiquitylation) and non-coding RNAs/microRNAs (miRNAs) (66). In this section, we discuss how these mechanisms control the expression of IC and IC ligand genes in the TME of various cancer types.


DNA Methylation

DNA methylation is defined as the covalent transfer of a methyl group to the C-5 position of the cytosine ring of DNA mediated by DNA methyltransferases (DNMTs) (67). DNA methylation patterns are governed by the action of DNMTs: DNMT1, DNMT3a, and DNMT3b (67, 68). Mechanistically, transcriptional silencing is mediated by a methylated cytosine by eliminating components of transcriptional regulation from their target sites (67).

DNA methylation can be passively lost or actively driven by TET family of dioxygenases, which catalyze the oxidation of methylcytosine to hydroxymethylcytosine (69, 70). While transcriptional silencing is driven by the action of DNMT(s) leading to DNA methylation, transcriptional activation is caused by hypomethylation or demethylation facilitated by the action of TET enzyme(s) (46). Indeed, the imbalance between the activity of DNMTs and TETs can affect the expression of many genes favoring transcriptional silencing or activation during many pathological conditions, including cancer (71). For example, the upregulation of TET enzymes and downregulation of DNMTs in the circulation and tumor tissues of breast cancer (BC) and colorectal cancer (CRC) patients could be associated with DNA hypomethylation causing the upregulation of ICs/IC ligands (Figure 1) (28, 29, 72).
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FIGURE 1. Role of DNA methylation in the transcriptional regulation of immune checkpoint expression. Under physiological conditions, the CpG islands in the promoter region of immune checkpoints are methylated by DNMTs, which leads to the transcriptional repression of ICs. However, in the TME, the activity of DNMTs could be override by the action of TETs causing TET-mediated active demethylation and favoring IC transcription. TET inhibitors could be used as a therapeutic agent to block TET-mediated active demethylation and retain the physiological condition by downregulating the transcription of genes, including ICs.


Restoring normal patterns of DNA methylation, especially in genes related to immune modulation and tumorigenesis, has been recognized as one of the goals for cancer therapy improvement (as described in Section Epigenetic Modifiers Targeting DNA Methylation). Aberrant DNA methylation patterns have been associated with immune evasion in cancer patients. For instance, Jung et al. reported that genomic methylation in lung and melanoma patients correlates with the immune escape signatures, independently of mutation burden and aneuploidy (73). Additionally, authors found significant negative correlations between genomic demethylation, and immunomodulatory-related pathways/immune cell markers (73), suggesting that demethylation could be responsible for silencing the transcription of these genes in patients with lung cancer and melanoma. Interestingly, they reported that global hypomethylation in these cancer patients correlated with poor clinical responses following immunotherapy, indicating that alterations in DNA methylation can be used to predict clinical benefits of immunotherapies (73). In another study, global DNA hypomethylation in human melanoma cell lines was associated with elevated expression of PD-L1, implicating a therapeutic potential for targeting PD-L1 using DNA methylation modifying agents (74).

The role of DNA methylation in regulating the expression of several ICs/IC ligands in the circulation and tumor tissues of BC and CRC patients has been addressed previously. Elashi et al. reported that increased expression of TIM-3, PD-L1, and TIGIT in the peripheral blood of both BC and CRC patients (72). DNA methylation has no role in regulating the expression of TIM-3 in the circulation of BC and CRC patients, while PD-L1 upregulation was found to be mediated by DNA hypomethylation (72). Elevated level of TIGIT in the circulation of CRC patients was mediated by DNA hypomethylation; however, DNA methylation has no role in regulating the expression of TIGIT in the circulation of BC patients (72).

Elevated expression of PD-1, CTLA-4, and TIM-3 genes in breast tumor tissues was found to be mediated by DNA hypomethylation in the CpG islands of their promoter regions (28). In the same study, authors found that the promoter regions of LAG-3 genes were completely hypomethylated in breast tumor tissues, and paired-normal tissue, suggesting that DNA methylation has no role in the upregulation of these genes in BC (28). In another study, it was reported that elevated expression of CTLA-4 and TIGIT genes in human CRC tumor tissues is driven by DNA hypomethylation (29). Additionally, authors demonstrated that DNA methylation plays no role in the overexpression of PD-1, PD-L1, galectin-9, and TIM-3 in colorectal tumor tissues (29).

A study by Marwitz et al. demonstrated that elevated expression of PD-1 and CTLA-4 in tumor tissues of non-small-cell lung cancer (NSCLC) patients is driven by DNA hypomethylation (75). However, increased expression of PD-L1 in NSCLC tumor tissues was not associated with DNA methylation (75). In contrast, elevated level of PD-L1 expression in tumor tissues of head and neck squamous-cell carcinoma (HNSCC) was a resultant of DNA hypomethylation (76). Goltz et al. demonstrated that PD-L1 promoter methylation predicts the survival rate and disease prognosis of various cancer settings, including CRC, HNSCC and AML (77–79). Another study by Rover et al. showed that increased expression of CTLA-4, PD-1, PD-L1, and PD-L2 was associated with DNA hypomethylation in patients with lower-grade gliomas (80). Altogether, these data suggest that DNA hypomethylation is responsible for increasing the expression of ICs/IC ligands in cancers; however, the set of genes regulated by DNA methylation differ from one cancer type to another.



Histone Modifications
 
Histone Methylation

Histone methylation is another mechanism by which epigenetic modifications occur to cause transcriptional and post-transcriptional alterations in many genes, including those related to cancer development and immune evasion. These alterations affect chromatin compaction/structure, recruitment and binding of transcription factors, initiation and elongation factors with target DNAs, and RNA processing (81). Histone methylation is a dynamic process which takes place on the side-chain nitrogen atoms of lysine (K) residues, mainly on H3 followed by H4 (82). It is controlled by the activity of six major family classes of histone lysine methyltransferase complexes (KMT1, KMT2, KMT3, KMT4, KMT5, and KMT6). Lysine residues can be mono- di-, or tri-methylated by the action of KMTs (83). Lysine methylation can be reversed by lysine demethylases (KDMs), which also comprised of at least six families with distinct and overlapping functions (KDM1, KDM2, KDM3, KDM4, KDM5, and KDM6) (84, 85). The regulation of histone methylation and demethylation is a complex process (86); each KMT or KDM family consists of several enzymes that target a specific lysine residue. Additionally, different methylation states on lysine residues are controlled by different family classes of KMT or KDM, and have a different impact on transcriptional regulation.

Histone methylation on lysine residues appears to be a more stable mark; its loss on histones H3 and H4 causes transcriptional repression or silencing. Mono-, di- or trimethylation of lysine 4 in histone H3 (H3K4me1/2/3) and H3K36me3/me2 correlates with transcriptional activation (87, 88). On the other hand, trimethylation of lysine 9 and 27 in histone H3 (H3K9me3 and H3K27me3) correlates with repression (Figure 2A) (87, 88). The contribution of histone methylation to the regulation of IC transcription in breast and colorectal tumor tissues has been previously demonstrated. We have shown that upregulation of PD-1, CTLA-4 and LAG-3 in breast tumor tissues is associated with low enrichment of repressive histones, H3K9me3 and H3K27me3, in their promoter regions (Figure 2B) (28). In contrast, the expression of TIM-3 gene in breast tumor tissues was associated with low enrichment of H3K27me3 in its promoter region (28). In another study, increased expression of PD-1 and TIGIT in colorectal tumor tissues was shown to be associated with the low abundance of H3K9me3 in their promoter regions (29). Moreover, transcriptional upregulation of CTLA-4 in colorectal tumor tissues was found to be driven by the low abundance of H3K27me3 in its promoter region, while the low abundance of both H3K9me3 and H3K27me3 repressive histones was associated with the upregulation of TIM-3 in colorectal tumor tissues (29). Based on the above findings, it could be anticipated that targeting the activity of enzymes (KDMs) on repressive histones, H3K9me3 and H3K27me3, to maintain their trimethylation can result in the transcriptional repression of IC/IC ligand, thereby offering a therapeutic strategy for cancer treatment. The contribution of some of lysine demethylases (such as KDM3B, KDM4A, and KDM5B) to the development and/or progression of different cancer types, including breast cancer, prostate cancer and AML, have been reported, thus rationalizing the development of drugs targeting the activities of these enzymes [as reviewed in (89)].
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FIGURE 2. Role of histone methylation in the transcriptional regulation of immune checkpoints. Schematic diagrams simplify the complexity of gene transcription via histone methylation. Histone methylation depends on the interplay between KMTs (lysine methyltransferases) and KDMs (lysine demethylases). KMTs transfer methyl group to the histone tails. Under physiological conditions, histone methylation on the 9th and 27th lysine residues of H3 tail (H3K9me3 and H3K27me3, respectively) leads to transcriptional repression of ICs (A). In tumor conditions, the low abundance of H3K9me3 and H3K27me3 leads to transcriptional activation of ICs such as PD-1, CTLA-4, LAG-3, and TIM-3. Meanwhile, utilization of KDM inhibitor (KDMi) could be beneficial in restoring the normal levels of ICs (B).




Histone Acetylation

The importance of histone acetylation in regulating gene transcription and cellular processes, such as immune response, apoptosis, autophagy, cell cycle arrest, DNA damage repair, and metabolism, has been shown in cancer (86, 90). It is a highly reversible process, which involves the catalytic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) (91). Histone acetylation occurs on lysine residues at the N-terminus induced by the activity of HATs, resulting in the removal of the basic charge at unmodified lysine residues, and leading to active transcription (92, 93). HDACs and HATs control histone acetylation act in opposite directions causing an altered structure of the chromatin, and dictate the accessibility of DNA to transcription factors (sequence-specific DNA-binding factors) and other elements of the transcriptional machinery, such as co-activators. Disrupting the equilibrium of histone acetylation or deacetylation is also reported to be associated with tumorigenesis and poor prognosis (94).

HDACs stabilize the nucleosomal DNA-histone interaction causing transcriptional silencing (Figure 3A), while the action of HATs mediates transcriptional activation (Figure 3B) (91). HDACs can be divided into four classes: class I, II, III, and IV (95). The role of HDACs in cancer epigenetics and disease development is receiving an increasing attention, and targeting their activity has recently been postulated as potential therapeutic strategy for cancer treatment. HDACs repress the transcription of genes associated with immune responses and tumor suppression by restricting the accessibility of transcription factors to their binding sites and inducing a closed chromatin confirmation (96). Preclinical models of melanoma and lung adenocarcinoma showed that the expression of PD-L1 and T cell chemokines can be upregulated by HDAC inhibitors to enhance the sensitivity of the immune response to anti-PD-1/PD-L1 therapy and improve clinical outcomes (97, 98). Recently, Fan et al. reported that upregulated levels of HAT1 is associated with poor prognosis of pancreatic cancer (99). Using in vitro and in vivo models, authors also demonstrated that knockdown of HAT1 reduced the proliferation of pancreatic tumor cells, and downregulated PD-L1 expression (99). Furthermore, it was shown that PD-L1 expression positively correlated with HAT1 expression in pancreatic tumor tissues (99). Altogether, these findings suggested that HAT1 transcriptionally regulate PD-L1 expression in cancer settings, and implicated that targeting HAT1 activity could be used as a therapeutic approach for cancer treatment (99) (Figure 3B, i). Alternatively, the use of ICIs targeting PD-1/PD-L1 axis in patients with acquired resistance (97, 100) due to aberrant expressions of HAT1 and PD-L1 (99) could be beneficial in maximizing the anti-tumor immune response, enhancing the sensitivity to ICI, and overcoming resistance (Figure 3B, ii). Collectively, these findings suggest that HDACs act opposite to HATs in terms of IC regulation, and that HDAC inhibition in combination with ICIs could be beneficial in enhancing the therapeutic efficacy of cancer treatment by increasing the sensitivity of the host immune response to ICIs. This particular therapeutic strategy could be favorable for cancer patients who developed acquired resistance to ICIs.
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FIGURE 3. Role of histone acetylation in the transcriptional regulation of immune checkpoints. The transcriptional regulation of ICs by means of acetylation relies on the balance between HATs and HDACs on lysine residues at histone tails. A set of HDACs can keep the heterochromatin structure and downregulate the transcription of ICs in physiological conditions (A). However, via tumor-acquired mechanisms, HAT activity is dominated resulting in the conversion of heterochromatin (closed chromatin) to euchromatin (open chromatin) by transferring acetyl molecules to the histone tails, thereby favoring gene transcription. Overexpression of HAT1 can lead to increased expression of PD-L1 in cancer tissues by enhancing histone acetylation. The use of HAT1 inhibitor (HAT1i) could be useful in restoring the normal expression of PD-L1- (i) (B). Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 axis could be used in patients with aberrant expression of HAT1 and PD-L1 (ii).


Given the complexity of epigenetic regulations and knowing the fact that HATs and HDACs can alter the transcription of multiple target genes, it is crucial to take this into consideration during the development of HAT and HDAC inhibitors and the design of therapeutic protocols. For instance, HDAC inhibitors, valproic acid (VPA; class I HDAC inhibitor) and trichostatin-A (TSA; class I and II inhibitor), could induce apoptosis and alter the acetylation status of p53, on ETS Related Gene (ERG)+ prostate cancer cells (101, 102). In addition, VPA and TSA were able to repress the transcription of ERG, which its overexpression has been associated with poor prognosis and unfavorable clinical outcomes in prostate cancer patients (101).




Long Non-coding RNAs and MicroRNAs

Long non-coding RNAs (lncRNAs) are a series of non-coding RNAs comprised of more than 200 nucleotides. lncRNAs are pointed to as potential candidates to evaluate the prognosis, diagnosis, and development of cancers, even though their capacity of protein-coding is very little (103). MicroRNAs (miRNAs) are small non-coding RNAs (19–25 nucleotides long), which complementary pair with the 3′ untranslated region of target mRNAs, resulting in the repression of transcription and/or the degradation of target mRNAs (104). Studies demonstrated that miRNAs can regulate more than 30% of human genes involved in many cellular processes, including cell cycle arrest and cell growth/proliferation/differentiation/apoptosis (105–107).

miRNAs in various cancers can influence the transcriptional regulation of immunomodulatory genes, including ICs and their ligands (108). Wei et al. showed that transfection of human CD4+ T cells with miR-138 abolished the expression of CTLA-4, PD-1 and FoxP3 expression in glioma mouse models (109). Another miRNA with tumor-suppressive functions is miR-28. Li et al. reported that the expression of miR-28 is downregulated ~30% in exhausted PD-1+ T cells from melanoma patients (110). Authors reported that miR-28 inhibits the expression of the TIM-3 and PD-1 in T cells upon the binding to their respective 3′ UTRs (110). In ovarian carcinoma, signaling pathways mediated by the interactions of CTLA-4 with CD80 and PD-1 with PD-L1 are negatively regulated by mi-R424(322) (111), suggesting the importance of mi-R424 in the downregulating of CTLA-4 and PD-1 signaling pathways. In support of this, it was shown that high levels of mi-R424(322) in tumors are positively correlated with progression-free survival in patients with ovarian carcinoma (111). More recently, Richardsen et al. demonstrated that low levels of miR424-3p in prostate cancer (PC) tissues associated with an aggressive phenotype of PC, poor disease prognosis and low survival rate (112). Authors also reported a negative correlation between CTLA-4 expression and miR424-3p expression in PC tissues (112), highlighting the role of miR424-3p in regulating CTLA-4 expression in PC as it has been reported in other cancer types (111, 113).

A study by Cortez et al. demonstrated that PD-L1 expression in NSCLC is negatively regulated by p53 via miR-34, suggesting that miRNA delivery could serve as a novel therapeutic approach for lung cancer therapy (114). Studies indicated that miRNAs can affect the progression of AML by modulating the expression of target genes such as TIM-3. Based on bioinformatics, it was predicted that miR-330-5p may silence the transcription of TIM-3 in the AML cell line, HL-60 (115). Acquired resistance against anti-PD-1 therapy has been associated with the upregulation of TIM-3 on T cells in lung cancer and HNSCC patients (116, 117). Another study by Oweida et al. showed that response to anti-PD-L1 mAb and radiotherapy was compensated by the increased expression of TIM-3 on CD8+ T cells and Tregs, associated with tumor relapse, poor survival rate in a mouse model of head and neck tumor (118). Collectively, these studies suggest that the use of ICIs in combination with miRNA therapy to target alternative ICs, could be beneficial in preventing the development of acquired resistance in response to anti-PD-1 or anti-PD-L1 therapies.

In lymphoma, the expression of CTLA-4, PD-1, PD-L1, TIM-3 and LAG-3 are negatively regulated by miR-146 (119). The expression of PD-L1 on tumor cells and the suppression of anti-tumor immunity in human lung cancer are negatively regulated by miR-200 (120). Another miRNA with tumor suppressive functions is miR-34a. Its expression is induced by p53, which in turn suppresses the expression of PD-L1 (120). In line with this, it was reported that low levels of miR-34a in AML and NSCLC are positively correlated with the overexpression of membrane–bound PD-L1 (53, 114). Overexpression of PD-L1, and low levels of p53 and miR-34a have been associated with poor clinical outcomes in patients with NSCLC (120). On the other hand, overexpression of miR-34a can dysregulate the activation of PD-1/PD-L1 signaling pathway, causing the reversal of CD8+ T cell exhaustion, and triggering T cell activation and cytokine expression, such as IFN-γ and TNF-α (121). In CRC, low levels of miR138-5p, a tumor suppressive miRNA, positively correlates with advanced disease stages, lymph node metastasis and poor clinical outcomes (122). miR138-5p negatively regulates PD-L1 expression in CRC, which is associated with reduced cell proliferation and cell cycle progression (122).

Collectively, these findings clearly imply the importance of miRNAs in regulating the expression of genes related to tumorigenesis, immune evasion and cancer progression. One miRNA may have several mRNA targets, and therefore could influence the function of many genes, pathways and cellular processes. The overall role of various miRNAs on the regulation of ICs and their ligands are summarized in Figure 4. The above findings also suggest the potential therapeutic benefit of including miRNAs in cancer therapy as it will be discussed below.


[image: Figure 4]
FIGURE 4. miRNA-mediated interruption of interactions between immune checkpoints and their ligands in the tumor microenvironment. miRNAs which contribute to the blockade of PD-1/PD-L1 interactions are miR-146, miR-34a, miR-128, miR-28, miR-146, and miR-424. miR-146 and miR-34a expressed on tumor cells, and miR-128, miR-28, miR-146, and miR-424 expressed on T cells. Likewise, miR-424 expressed on APCs, and miR-128, miR-424, miR-424-3p, and miR-146 expressed on T cells interfere with CD80/CTLA-4 interactions. Furthermore, miR-28, miR-330-5p, and miR-146 expressed on T cells interfere with TIM-3/galectin 9 interaction. These miRNA-mediated interruptions could lead to the blockade of downstream pathways, which ultimately favor anti-tumor immunity.





POTENTIAL THERAPEUTIC APPLICATIONS OF EPIGENETIC MODIFIERS FOR CANCER TREATMENT

Studies have shown that cancers exploit epigenetic mechanisms mainly in two ways: (1) to delineate the normal transcriptional regulation of gene expression to assist tumor progression; and (2) to deactivate anti-tumor immune responses, and regulate oncogenes and tumor suppressor genes. Dysregulated transcription of co-activators or suppressors of oncogenes/proto-oncogenes and tumor suppressor genes leads to the development of various human cancers. Hypomethylation leads to genomic instability, while hypermethylation may lead to silencing of tumor suppressor genes (123). Therefore, the development and use of epigenetic modifiers aiming to modulate the activity of enzymes involved in these epigenetic pathways, including DNMTs, TETs, HATs and HDACs, may offer therapeutic benefits (96, 124). However, it is important to consider the complexity of epigenetic regulations and take into consideration the tumor type, nature of the TME, and all the target genes that can be altered upon the inhibition of epigenetic mediators (DNA/histone modifiers) during the development of epigenetic drugs and the design of therapeutic protocols. The communication between immune cells and tumor cells via IC/IC ligand interactions results into immunosuppression and tumor progression (Figure 5A). Some epigenetic drugs can be used to enhance anti-tumor immunity by downregulating the expression of ICs/IC ligands (99) (Figure 5B), while others could be used in combination with ICIs to improve the sensitivity of the host response to therapy by upregulating the expression of IC ligands (97, 100) (Figure 5C). This should be useful during the assignment of therapeutic protocols for cancer patients.
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FIGURE 5. Effect of epigenetic modifiers on the expression of immune checkpoints and their ligands in the tumor microenvironment. The interaction between co-inhibitory immune checkpoints on immune cells and their ligands on tumor cells or myeloid cells results in tumor progression, immunosuppression and T cell exhaustion characterized by increased expression of immune checkpoints, including PD-1, CTLA-4, TIM-3, and LAG-3, and loss of effector functions, such as cytokine release and cell-mediated cytotoxicity. The interactions between PD-1, TIM-3, CTLA-4, and LAG-3 on T cells with their respective ligands PD-L1/PD-L2, galectin-9, B7 ligands or MHC II on tumor cells/myeloid cells or APC, generate signals that inhibit T cell activation/proliferation (A). Depending on the tumor microenvironment and tumor type, the application of epigenetic modifiers can downregulate or upregulate the expression of immune checkpoints and their ligands. The application of HDAC6 inhibitor (HDAC6i) can downregulate the expression of PD-L1/2, PD-1, TIM-3, and LAG-3, and EZH2 inhibitor (EZH2i) can downregulate the expression of galectin-9 and TIM-3 (B), indicating the potential benefits of using these modifiers to enhance anti-tumor immune responses and promote tumor cell killing. On the other hand, application of DNMT inhibitor (DNMTi; azacytidine or decitabine) can upregulate the expression of PD-L1/2, PD-1 and CTLA-4, and HDAC inhibitor (HDACi; vorinostat; or panobinostat) can upregulate the expression of PD-L1/2 (C), suggesting the potential benefit of combining epigenetic modifies with immune checkpoint inhibitors, such as anti-CTLA-4, anti-PD-1 or anti-PD-L1, to increase the sensitivity of the host immune response and promote more potent anti-tumor immunity.



Epigenetic Modifiers Targeting DNA Methylation

DNA methylation may lead to silencing of suppressor genes, such as TP53 and CDKN2A, thereby increasing susceptibility to cancer onset. Inhibition of DNMTs has been shown to correlate with increased expression of tumor suppressor genes and reduction in tumorigenicity (125). Hypomethylating agents, which inhibit DNMT, target the methylation patterns of tumor cells to reinstate normal methylation signatures. DNMT inhibitors (DNMTis), such as 5-azacytidine (AZA/5AC) and decitabine, have been developed to inhibit and degrade DNMTs, reverse hypermethylation and promote transcriptional activation (126). Several signaling pathways such as those related to double-stranded RNA (ds-RNA) response, type I interferon response and apoptosis are induced upon the application of DNMTis. In a preclinical melanoma model, DNMTi treatment was able to increase the sensitivity to anti-CTLA-4 therapy by affecting hypermethylated endogenous retrovirus genes (127). DNMTis, azacytidine and decitabine, have also been shown effective in increasing PD-L1 and PD-L2 levels in melanoma (97) (Figure 5C). Animal studies showed that combining azacytidine or decitabine with anti-CTLA-4 in ovarian cancer and melanoma is beneficial in improving the immune response to anti-CTLA-4 and reducing tumor burden (128, 129). Altogether, these data rationalized the use of DNMTis in combination with ICIs to maximize the therapeutic efficacy and clinical outcomes in cancer patients (129). Azacytidine and decitabine serve as the most commonly used DNMTi in oncology for the treatment of chronic myelomonocytic leukemia (CMML), myelodysplastic syndromes (MDS) and AML (130). Treatment of MDS with decitabine increased the mRNA expression of PD-1, its ligands (PD-L1 and PD-L2) in addition to CTLA-4 (131), rationalizing the potential synergy between DNMTi and ICIs in enhancing the therapeutic efficacy of combined treatment, as hypomethylation may increase the expression of ICs/IC ligands, and subsequently sensitize tumor cells to the ICIs (Figure 5C). Several trials are currently underway to investigate DNMTi use in treating different solid malignancies (132–134). However, DNMTi therapies are frequently associated with severe side effects, no or partial treatment responses and therapy resistance in a significant patient cohort. Therefore, identifying novel, more specific targets against DNMTi are currently being explored.

TET-mediated DNA demethylation contributing toward developmental processes including disease progression and its dysregulation may lead to tumorigenesis (135). As previously discussed in Section DNA Methylation, TET-mediated DNA demethylation could be associated with the overexpression of IC/IC ligand in the circulation and tumor tissues of patients with breast and colorectal cancers (28, 29, 72). Therefore, the inhibition of TET activities can have a therapeutic potential and could be beneficial in restoring the normal transcriptomic expression and methylation patterns of IC/IC ligand. Furthermore, TET mutations have been associated with various hematological malignancies; however, specific TET protein inhibitors have not been tested till present in clinical oncology (124, 136). Nevertheless, upstream targets for TET-associated pathways have been identified in different malignancies and have been the focus of numerous preclinical studies. For instance, mutations in genes encoding isocitrate dehydrogenase 1 and 2 lead to TET1 inactivation in gliomas (137).



Epigenetic Modifiers Targeting Histone Modifications

HATs modify chromatin histones to exert their effects of epigenetic modulation of gene transcription, and are dysregulated in various human diseases including cancers (138). For instance, HAT1 has been implicated in the transcriptional upregulation of PD-L1 in pancreatic cancer (99). Additionally, it has been demonstrated that knockdown of HAT1 reduced the proliferation of pancreatic tumor cells, and expression of PD-L1 (99). These findings suggest that targeting HATs could be beneficial in reducing the expression of IC ligands, and ultimately could have clinical benefits for cancer patients. However, in contrast to HDAC inhibitors (HDACis), HAT inhibitors (HATis) are yet to be explored in preclinical/clinical trials (139). Significance of HATi is mainly overshadowed by the well-established HDACi. However, studies have shown that HATi can be equally potent blockers of tumorigenesis as HDACi (140).

Vorinostat (class I and II) and romidepsin (class I) are FDA-approved HDACi commonly used to treat several malignancies. HDACi promote acetylation of histones and modulate expression of ~2–10% of cellular genes via effects on chromatin structure and transcription factor/cofactor binding, leading to either increase or decrease in expression (141). It has been shown that the use of vorinostat and panobinostat (pan-HDACi) is able to increase the expression of PD-L1 in TNBC, and PD-L1 and PD-L2 in melanoma by altering chromatin compaction on their promoter regions (100, 142) (Figure 5C).

Other non-canonical effects of HDACis on the regulation of immune responses are also evident from numerous studies. Reports have shown that HDACis can inhibit tumor growth and enhance the host immune response against cancer cells via the suppression of Tregs and FoxP3 expression (143), upregulation of NK cell activating ligands, MHC molecules (class I and II), enhancement of NK and CD8+ T cell cytotoxicity and production of pro-inflammatory cytokines (143–145). Class II HDACi (entinostat) in combination with DNMTi (azacytidine), anti-CTLA-4 and anti-PD-1 mAbs improved treatment outcomes, associated with tumor regression and absence of metastasis in murine models of CT26 colorectal tumors and 4T1 metastatic breast cancer (146). The number of tumor-infiltrating FoxP3+ Tregs was significantly reduced upon treatment with epigenetic modulators, compared to ICIs; however, the effect of epigenetic modulators on tumor-infiltrating CD8+ T cell number was similar to that induced by ICIs alone (146). A study by Orillion et al. demonstrated that the use of entinostat (class I HDACi) suppressed the function of MDSC and enhanced the anti-tumor effects of anti-PD-1 therapy in murine models of lung and renal cell carcinoma, suggesting a rationale for combining HDACi and ICIs in clinical trials (147). Other studies showed that using HDACis in combination with anti-PD-1 therapy enhances the anti-tumor immune response, reduces tumor burden and increases survival in murine tumor models (97, 100). Woods et al. demonstrated that the treatment with HDACi increases the expression of PD-L1 in murine melanoma mouse model, thereby enhancing the sensitivity to anti-PD-1 therapy and overcoming resistance to therapy (97). Similarly, Briere et al. showed that class I/IV HDACi increased the expression of PD-L1 in syngeneic tumor models, and demonstrated that the HDACi in combination with anti-PD-L1 enhanced the anti-tumor immune response compared to their use as a monotherapy (148).

Preclinical studies demonstrated that the upregulation of ICs/IC ligands can be epigenetically modulated. Inhibition of HDAC activity has been reported to modulate PD-L1 expression in chronic lymphocytic leukemia (CLL) and melanoma (97, 149). Recently, Knox et al. demonstrated that the use of HDAC6i significantly reduced the upregulation of PD-L1 and PD-L2 (Figure 5B) in SM1 murine melanoma model, increased expression of IFN-γ and IL-2, and improved survival rates (150). Notably, Kim et al. have recently shown that CG-745, a class I and HDAC6i, induced IL-2 and IFN-γ expression, promoted cytotoxic T cell/NK cell proliferation and inhibited Treg proliferation, which consequently promoted effects of anti-PD-1 therapy in syngeneic mouse models (151). Furthermore, Laino et al. showed that HDAC6 inhibition downregulated the expressions of TIM-3, PD-1, and LAG-3 on expanded T cells from the circulation of melanoma patients (152), indicating the potential benefits of blocking HDAC6 activity to alleviate T cell suppression. Additionally, Bae et al. showed that HDAC6 inhibition reduced the expression of PD-L1 on multiple myeloma bone marrow cells and PD-1 expression on CD8+ T cells (153) (Figure 5B).

The regulation of gene transcription by histone methylation/demethylation is a complex process, which is controlled by the activity of different family classes of enzyme complexes, KMTs (83) and KDMs (84, 85). Different classes of KTMs and KDMs act on different lysine residues on histone H3 or H4 and regulate the expression of various target genes. H3K27me3 is known as a transcriptional repressor for many genes including those associated with tumor resistance to therapy (147). Methylation of H3K27me3 is positively regulated by polycomb repressive complex 2 (PRC2), a member of the KMT family, and its enzymatic subunit, enhancer of zeste homolog 2 (EZH2) (147, 154, 155). Together, these data suggest that targeting EZH2 could interfere with the transcriptional repression mediated by H3K27me3, and therefore overcome tumor resistance to therapy and improve disease outcomes. EZH2 has been implicated in various cancers including melanomas, ovarian, prostrate, and breast cancers (136, 156).

Increased expression of EZH2 has been associated with the development of acquired resistance against recombinant IL-2 (rIL2) and anti-CTLA-4 therapies in melanoma mouse model (154). On the other hand, co-inhibition of EZH2 with rIL-2/anti-CTLA-4 immunotherapies resulted in the downregulation of PD-L1 expression in melanoma cells, increased number of intratumoral PD-1lowTIM-3lowLAG-3lowCD8+ T cells expressing high levels of IFN-γ and suppression of tumor growth (154). Using in vitro and in vivo models, EZH2 activity has been reported to be responsible for the progression of hepatocellular carcinoma by enhancing the expression of galectin-9, TIM-3 ligand, via the trimethylation of H3K27 (157), suggesting that inhibition of EZH2 could be useful for targeting galectin-9 and TIM-3 expression (Figure 5B). Collectively, these results suggest the potential therapeutic benefits of targeting EZH2 in cancer to downregulate IC/IC ligand expression and enhance anti-tumor immunity, and rationalized for the development of histone methylase inhibitors targeting EZH2 in cancer (136), which are currently under different clinical trials for treating different malignancies.



Long Non-coding RNAs and microRNAs as Potential Therapeutic Strategies for Cancer

A recent study by Ma et al. showed that lncRNA, lnMX1-215, negatively regulates PD-L1 and galectin-9 in HNCC and its overexpression significantly reduces tumor cell proliferation /metastasis in vitro and in vivo (158). Authors proposed lnMX1-215 as a potential therapeutic target for HNCC by interfering with PD-1/PD-L1 and TIM-3/galectin-9 signaling pathways and restoring anti-tumor immunity (158).

miRNAs are aberrantly expressed in many types of cancer and malignancies; they regulate the expression of tumor suppressor genes, oncogenes, ICs and immune checkpoint ligands (108). miRNAs have a great advantage over other non-coding RNAs, and mRNAs; they are more stable in biopsy specimens and body fluids, allowing their use as biomarkers (159–161). Moreover, miRNA expression profiles are tissue-specific, which is helpful in speeding up the diagnosis of specific cancer types (160, 161). By upregulating the expression of ICs and IC ligands, miRNAs can contribute to cancer development/progression and compromise the anti-tumor immune responses (108, 162). Targeting this regulatory function of miRNAs can be used to improve clinical responses and enhance the sensitivity of cancer patients' response to immune checkpoint inhibitors (ICIs).

The single blockade of IC commonly results in the upregulation of alternative ICs, suggesting the emergence of compensatory mechanisms which ultimately leads to resistance to ICIs (27, 117, 118, 163). Single miRNA can target multiple ICs/IC ligand in multiple cell types in the same tumor tissue. Hence, this will mimic the effect of the treatment with multiple ICIs and could be used as a therapeutic agent. For instance, tumor suppressive miRNA, miR-138, can be used to reduce the expression of PD-1, and CTLA-4, induce tumor cell apoptosis and impair invasion and tumor metastasis (109, 164, 165). Zhao et al. reported SHNG14/ZEB1/miR-5590-3p positive feedback loop in diffuse B cell lymphoma (DBCL) is associated with attenuated CD8+ T cell activation through PD-1/PD-L1 axis, suggesting that targeting SHNG14 holds the promise of enhancing anti-tumor immunity and restrain tumor progression (166). Another therapeutic strategy that could be employed in cancer treatment is targeting the function of tumor promoting miRNAs using anti-miRNAs (167, 168).

The use of miRNA as a monotherapy is not beneficial and may result in adverse immunologic effects, given that each miRNA can act on multiple target genes, including those encoding immune modulatory molecules (169). Therefore, small doses of anti-miRNAs can be used in combination with chemotherapy or immunotherapies to minimize the risk of adverse effects (108). In addition, miRNAs could be more beneficial if used in combination with ICIs. They may increase the sensitivity of the host immune response to a particular ICI and overcome tumor acquired resistance. In other words, this combination therapy would convert non-responder patients into responders. For instance, Li et al. demonstrated that miR-28 induces T cell exhaustion by upregulating the expression of PD-1, TIM-3, and BTLA (110). This potentially suggests that use of miR-28 in addition to ICIs, especially those targeting PD-1 and/or TIM-3 could result in beneficial outcomes and enhance anti-tumor immunity. Studies have shown negative correlations between miR-138-5p and PD-L1 expression (122), miR-138 and PD1/CTLA-4 expression (109), and miR-424 and PD-L1 expression (111), suggesting that targeting these miRNAs increase the expression of ICs. Thus, we could rationalize that targeting particular miRNAs could be useful in upregulating the expression of ICs, which increases the sensitivity and efficacy of ICIs.




CLINICAL TRIALS FOR COMBINED THERAPEUTIC STRATEGIES OF EPIGENETIC MODIFIERS AND ICIS

Epigenetic modifiers have the potential to increase the sensitivity to ICIs and restore more potent anti-tumor immune responses and enhance the clinical responses in cancer patients. Several preclinical models have supported the rationale for combining epigenetic modifiers with ICIs, and implicated the need to design clinical trials to assess the efficacy of targeting DNA methylation and HDAC activity, in combination with ICIs, in different cancers (details of ongoing clinical trials are listed in Table 2). Results from completed phase II clinical trial of pembrolizumab (anti-PD-1) in combination with azacytidine in microsatellite stable (MSS) metastatic colorectal cancer patients showed that the combined therapy had mild anti-tumor effects associated with some adverse effects such as anemia, leukopenia and constipation (171).


Table 2. Examples of preclinical models and ongoing clinical trials for combination therapies utilizing ICIs and epigenetic modifiers.

[image: Table 2]



CONCLUSIONS AND FUTURE DIRECTIONS

Epigenetic modifiers have thus seen important advances in recent years, and currently several are being explored in combination with established ICIs in various clinical trials (172). The rationale for these studies is based on the recent success of ICIs in different cancers, and the unresponsiveness of some cancer patients to current therapies, which is believed to be associated with acquired resistance mechanisms mediated by epigenetic alterations. However, it is noteworthy that several epigenetic enzymes also contribute to cancer progression via other non-epigenetic mechanisms, and ultimately combination therapies to tackle cancer on different fronts with more targeted precision medicine approaches may provide the most effective anti-cancer therapy. It is important to note the complexity of epigenetic regulations while designing epigenetic drugs, and take into consideration all the target genes, which their transcription can be regulated by a specific epigenetic drug. In addition, epigenetic modifiers may have different effects on cancer cells and different types of immune cells, depending on the target genes (173). Further investigations are required to assess the clinical efficacy of using miRNAs in combination with ICIs, and the risk of adverse effects related to toxicity and potential development of autoimmunity.
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APC, Antigen-presenting cell; BC, breast cancer; CEACAM-1, carcinoembryonic antigen cell adhesion molecule 1; CRC, colorectal cancer; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DC, dendritic cell; DNMT, DNA methyltransferase; HAT, histone aceyltransferase; HDAC, histone deacetylase; HMGB1, high-mobility group protein B1; IC, Immune checkpoints; ICI, immune checkpoint inhibitors; LAG-3, Lymphocyte-activation gene 3; MDSC, myeloid-derived suppressor cells; miRNA, micro RNA; NK, natural killer cell; PBMC, peripheral blood mononuclear cells; PC, prostate cancer; PD-1, programmed cell death-1; PD-L1/2, programmed cell death-ligand 1/2; PS, phosphatidylserine; Teff, T effector cell; TET, ten-eleven translocation; TIGIT, T cell immunoreceptor with Ig and ITIM domains; TIM-3, T-cell T cell immunoglobulin and mucin-domain containing-3; TILs, tumor-infiltrating cells; TME, tumor microenvironment; Treg, T regulatory cell.
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Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC.
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INTRODUCTION

In recent years, anti-PD-(L)1 antibodies have served as representative immune checkpoint inhibitors (ICIs) and have brought a new dawn in the treatment of advanced melanoma, non-small cell lung cancer, bladder cancer, and other solid tumors (1–3). The frequency of deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors in Colorectal cancer (CRC) is approximately 15%, and stage IV dMMR/MSI-H tumors constitute only ∼2–4% of all metastatic CRCs (mCRCs) (4, 5). CRC patients may also benefit from immunotherapy, especially CRC patients with dMMR/MSI-H tumors, who are significantly more sensitive to ICIs than CRC patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors (6, 7). The KEYNOTE-016 study showed that 62% (7/13) of patients with MSI-H CRC pretreated with ICIs achieved an objective response and did not reach the median for progression-free survival (PFS) or overall survival (OS) (6). Moreover, no MSS/MSI-L patients achieved an objective response, but they had median PFS and OS times of only 2.2 and 5.0 months, respectively. Another study showed that patients with MSI-H CRC had a 60% objective response rate (ORR) and an 84% disease control rate (DCR) after receiving ICIs. At the cutoff time, 82% of tumor responses were ongoing, and 74% of treatment responses lasted more than 6 months; the median PFS of all 45 patients had not yet been reached, the 12-month PFS rate was 77%, and the 12-month OS rate was 83% (8). Therefore, the FDA approved dMMR/MSI-H as a biomarker for MSI-H/dMMR tumors (5).

The MSI status may change the tumor microenvironment (TME) of CRC patients from multiple aspects, thereby affecting the efficacy of ICIs in CRC patients. With a deeper understanding of the factors influencing CRC immunotherapy outcomes, we note that compared with MSS/MSI-L CRC, with a low tumor mutational burden (TMB; <8 mutations/106 DNA bases), MSI-H CRC has a higher TMB (>12 mutations/106 DNA bases) (5). In addition, MSI-H CRC has more immune cell infiltration [especially tumor-infiltrating lymphocytes (TILs) and type I interferons], which is associated with a better prognosis (5, 9). A Th17-type, IL-17-dominant TME indicates a poor prognosis (10). However, most studies have not systematically evaluated differences in the immune microenvironment between MSI-H and MSS/MSI-L CRCs (5).

In this article, we systematically analyzed the differences between MSI-H and MSS/MSI-L CRCs and their subtypes [colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ)] in regard to the TME, immunogenicity, immune-related gene expression profiles (GEPs), and signaling pathways. Consistent with previous studies, patients with MSI-H CRC benefited more from ICIs than patients with MSS/MSI-L CRC. Combined with gene set enrichment analysis (GSEA) of the MSI status, antitumor immunity and the possible mechanism underlying the prognostic differences among CRC patients receiving ICIs in relation to the TME were elucidated to provide theoretical guidance for further improving the curative effect of ICI treatment on MSI-H CRC patients in the future and solve the problems underlying why MSS/MSI-L CRC patients do not benefit from ICIs.



MATERIALS AND METHODS


Data Sources

To explore the factors that affect the prognosis of ICIs in patients with different MSI statuses, we used cBioPortal1 to download a published clinical cohort (11) of CRC patients receiving ICIs (Samstein et al.). Mutation data sequenced by the MSK-IMPACT panel and clinical data were used for further analysis. In the ICI-treated cohort, we defined MSI scores ≥10 as MSI-H and MSI scores <10 as MSS/MSI-L (12). The R package “TCGAbiolinks” (13) was used to download the clinical and sample information (mRNA expression profile, MSI status, and somatic mutation data) of The Cancer Genome Atlas (TCGA)-COAD and TCGA-READ datasets from the Genomic Data Commons2. The gene expression units of both the TCGA-COAD and TCGA-READ datasets were log2[FPKM] + 1 (13). Subsequently, TCGA-COAD and TCGA-READ were combined into a TCGA-CRC dataset for subsequent analysis.

In addition, we downloaded microarray data (GSE24551) from the NCBI Gene Expression Omnibus (GEO) database. The annotation of gene symbols was based on the corresponding probe in the GPL5175 platform. We used the “normalizeBetweenArrays” function in the “limma” (14) R package to normalize the microarray data.

Whole-exome sequencing (WES), gene expression, drug response, and MSI data for CRC cell lines were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database (15). The unit of drug response was the ln(IC50) value.



Immune-Related Analysis

We used the CIBERSORT web portal3 (16) with default parameters to analyze mRNA expression data to estimate the abundances of 22 immune cell types in TCGA-CRC. Immune-related scores and the neoantigen load (NAL) for TCGA-CRC (17) and immune-related genes and their functional classifications were obtained from articles published by Thorsson et al. and Rooney et al. (17, 18). The MANTIS score, which predicts the MSI status of tumors, was published by Bonneville et al. (19). Non-synonymous mutations in the TCGA-COAD, TCGA-READ, and GDSC-CRC cohorts were used as the raw mutation count and divided by 38 Mb to quantify TMB (20). The R package “ComplexHeatmap” was used to visualize the genetic characteristics of the ICI-treated CRC, TCGA-CRC, and GDSC-CRC cohorts (21).



GSEA and DNA Damage Repair Mutation Number Analysis

Gene expression data for the TCGA-CRC, TCGA-READ, TCGA-COAD, and GDSC-CRC cohorts were normalized with the R package “edgeR” and analyzed by GSEA; microarray data (GSE24551) were normalized with the R package “limma” and analyzed by GSEA. GSEA was performed with the “clusterProfiler” R package and the Molecular Signatures Database (MSigDB) to annotate the dataset, where Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome terms were considered significant at P < 0.05. The gene sets generated by GSEA and DNA Damage Repair (DDR) analysis were obtained from the MSigDB of the Broad Institute (22) (Supplementary Table S1).



Statistical Analysis

The Mann–Whitney U test was used to compare differences between two independent groups when the dependent variable was not normally distributed (including TMB, NAL, DDR mutations, immune-related gene expression levels, and immune-related scores). Fisher’s exact test was used to compare the mutation status of the genes with the top 20 mutation rates, sex, sample type, and drug type in the ICI-treated CRC cohort between patients with MSI-H and those with MSS/MSI-L. Fisher’s exact test was also used to compare differences in the mutation status of the top 20 mutation rates, sex, race, ethnicity, clinical stage, and histological type in the TCGA-CRC cohort between MSI-H and MSS/MSI-L patients. Kaplan–Meier and log-rank tests were used to analyze OS under different MSI statuses (ICI-treated cohort: MSI scores ≥ 10/MSI scores < 10) and TMB levels (cutoff: median). The Spearman rank correlation was used to test associations between the MANTIS score and other immune-related variables. P < 0.05 was considered statistically significant, and all statistical tests were two sided. The chi-square test was applied to compare the difference in the proportion of MSI-H and MSS/MSI-L CRCs between the high and low DDR mutation groups. All statistical tests and visualization analyses were completed with R software.



RESULTS


MSI-H Was Related to Prolonged OS After ICI Treatment

Consistent with previous research, the results obtained from the ICI-treated CRC cohort from Samstein et al. (11) showed that the MSS/MSI-L group was not sensitive to ICI treatment [log-rank test p = 0.002; hazard ratio (95% CI): 3.31 (1.78–6.14); Figure 1A]. With OS as the focus, the TCGA-CRC cohort survival analysis showed no significant difference between the MSI-H group and the MSS/MSI-L group (Figure 1B). Most TCGA-CRC treatments are traditional treatments, such as surgery or chemoradiation. The KEYNOTE-177 trial (NCT02563002), a randomized trial, compared first-line pembrolizumab with standard of care chemotherapy in MSI-H/dMMR mCRC. Differences in PFS were observed between CRC patients treated with chemotherapy and CRC patients treated with pembrolizumab (23). We further explored the impact of TMB on the prognosis of patients with different MSI statuses. Patients with MSI-H CRC had a higher TMB than those with MSS/MSI-L CRC (Figures 1C,D). As expected, the MSI-H CRC group was associated with a better prognosis for immunotherapy than was the MSS/MSI-L tumor mutational burden-low (TMB-L) group (P = 0.002; Figure 1C). However, in the TCGA-CRC cohort, compared with the MSS/MSI-L + tumor mutational burden-high (TMB-H) group, the MSI-H group experienced prolonged OS (P = 0.015; Figure 1D). The process of our analysis is shown in Supplementary Figure S1.
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FIGURE 1. Survival curves for patients with CRC stratified by MSI status and mutational characteristics of CRC patients or cell lines stratified by MSI status. (A,B) Kaplan–Meier estimates of OS in the ICI-treated CRC cohort (A) and TCGA-CRC cohort (B) comparing patients with MSI-H CRC with their respective counterparts with MSS/MSI-L CRC. (C,D) Kaplan–Meier estimates of OS in the ICI-treated CRC cohort (C) and TCGA-CRC cohort (D) comparing patients with MSI-H CRC with their respective counterparts with MSS/MSI-L + TMB-H or MSS/MSI-L + TMB-L CRC. (E) Top 20 frequently mutated genes in CRC in the Samstein cohort (ICI-treated cohort). Genes are ranked by their mutation frequency in CRC patients. Mutation rates, sex, drug type, and sample type were tested by Fisher’s exact test. TMB and age were tested by the Mann–Whitney U test. Asterisks indicate a significant difference between MSI-H and MSS/MSI-L CRCs. (F) Top 20 frequently mutated genes in the TCGA-CRC cohort. Genes are ranked by their mutation frequency in CRC patients. Mutation rates, clinical stage, race, sex, cancer type, and ethnicity were tested by Fisher’s exact test. TMB, NAL and age were tested by the Mann–Whitney U test. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; OS, overall survival; TMB, tumor mutational burden; MSS/MSI-L, microsatellite-stable/microsatellite instability-low; MSI-H, microsatellite instability-high; and ICI, immune checkpoint inhibitor; (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001; Mann–Whitney U test).




Mutational Characteristics Based on the MSI Status

MSI is one of the important reasons for the development of CRC. It refers to an alteration or deletion of DNA repeat sequences caused by mutations in MMR genes such as MSH2, MSH6, MLH1, PMS1, and PMS2, which may result in tumor formation (24, 25). Due to the accumulation of microsatellite sequence mutations and frame shift mutations during protein translation, tumor cells produce a large number of abnormal polypeptide fragments that are relatively easily recognized by the immune system and stimulate an antitumor immune response (26). Based on the MSI status, we compared the clinical characteristics of patients to assess differences between the MSI-H and MSS/MSI-L groups. In the immunotherapy cohort, there were no significant differences in sex, sample type, drug type, or age between the MSI-H and MSS/MSI-L groups. In the TCGA-CRC cohort, COAD (93.0% vs 70.0%, P < 0.0001), female sex (59% vs 44%; P < 0.05), and early-stage disease were more often observed in the MSI-H group than in the MSS/MSI-L group.

Figure 1E shows the mutational landscape of gene mutations in ICI-treated CRC patients, indicating that MSI-H has a higher frequency of mutations than MSS/MSI-L. Except for the APC and TP53 genes, the other top 20 genes had higher mutation frequencies in the MSS/MSI-L group; however, there was no significant difference in KRAS. The types of mutations were mainly missense and frameshift mutations. Similarly, the gene mutational landscape of TCGA-CRC also showed that the genome of MSI-H was more unstable than that of MSS/MSI-L (Figure 1F). The mutation frequencies of the APC, TP53, and KRAS genes were higher in the MSS/MSI-L group; in contrast, the other genes had higher mutation frequencies in the MSI-H group. Regardless of the MSI status, the gene mutation class was mainly missense mutations. Similarly, the gene mutation landscape of the GDSC-CRC cell line also suggested that except for APC, TP53, and KRAS, the remaining genes with the top 20 mutation frequencies were more likely to be mutated in the MSI-H group than in the MSS/MSI-L group (Supplementary Figure S2A).



Association of MSI-H With Enhanced Tumor Immunogenicity and Increased Numbers of Genetic Alterations in the DDR

Increased immunogenicity can cause the recruitment of dendritic cells (DCs), T cells and other immune cells to further activate the immune response, thereby exerting antitumor effects; furthermore, enhanced tumor immunogenicity (such as an increased TMB and NAL) predicts that patients can obtain long-term clinical benefits from ICIs (27, 28). Therefore, we compared the differences in tumor immunogenicity between the MSI-H group and the MSS/MSI-L group. Regardless of whether the ICI-treated, TCGA, or GDSC-CRC dataset was analyzed, the MSI-H group had a higher TMB than the MSS/MSI-L group (all P < 0.0001; Figures 2A–C). In addition, in the TCGA-CRC cohort, the NAL in the MSI-H CRC group was significantly higher than that in the MSS/MSI-L group (P < 0.05; Figure 2D). Upon exploring the relationships between the MSI status and TMB or NAL in COAD and READ, the analysis r showed that the TMB of MSI-H COAD in the ICI-treated and TCGA cohorts was significantly higher than that of MSS/MSI-L COAD (all P < 0.0001; Figures 2E,F). Similarly, the TMB of MSI-H READ was significantly higher than that of MSS/MSI-L READ (all P < 0.05; Figures 2G,H). Subgroup analysis of the NAL showed that the NAL of MSI-H COAD was significantly higher than that of MSS/MSI-L COAD (Figure 2I); however, there was no significant difference in READ (Figure 2J). The DDR system is essential for maintaining genomic integrity, and gene mutations in the DDR will result in mutations/deletions in DNA that cannot be effectively corrected and the accumulation of incorrect DNA sequences. The number of genetic mutations involved in several important pathways in the DDR system was significantly higher in the MSI-H group than in the MSS/MSI-L group for both CRC patients and CRC cell lines (all P < 0.0001; Figure 2K). Subgroup analysis revealed that for both COAD and READ, MSI-H patients had more mutations in genes involved in the DDR pathway than did MSS/MSI-L patients (Supplementary Figure S2B). As expected, patients with MSI-H tumors had more DDR mutations than patients with MSI-L tumors in the ICI-treated CRC, TCGA-CRC, and TCGA-COAD cohorts (all chi-square test P < 0.05) but not in the TCGA-READ cohort (Supplementary Figure S3).
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FIGURE 2. MSI-H CRC was associated with enhanced tumor immunogenicity, enriched immune cells and enhanced immune scores. (A–C) Comparison of TMB between MSI-H and MSS/MSI-L tumors in the ICI-treated CRC (A), TCGA-CRC (B), and GDSC-CRC (C) cohorts. (D) Comparison of the NAL between MSI-H and MSS/MSI-L tumors in the TCGA-CRC cohort. (E,F) Comparison of TMB between MSI-H and MSS/MSI-L tumors in the ICI-treated COAD (E) and TCGA-COAD (F) cohorts. (G,H) Comparison of TMB between MSI-H and MSS/MSI-L tumors in the ICI-treated READ (G) and TCGA-READ (H) cohorts. (I,J) Comparison of the NAL between MSI-H and MSS/MSI-L tumors in the TCGA-COAD (I) and TCGA-READ (J) cohorts. (K) Comparison of DNA damage-related gene set alterations between MSI-H and MSS/MSI-L tumors in the ICI-treated CRC, TCGA-CRC, and GDSC-CRC cohorts. (L–N) Comparisons of immune cells between MSI-H and MSS/MSI-L tumors in the TCGA-CRC (L), TCGA-COAD (M), and TCGA-READ (N) cohorts. (O–Q) Comparisons of the leukocyte fraction (O), lymphocyte infiltration signature score (P), and IFN-gamma response (Q) between MSI-H and MSS/MSI-L tumors in the TCGA-CRC cohort. GEPs were prepared using standard annotation files, and data were uploaded to the CIBERSORT web portal (http://cibersort.stanford.edu/), with the algorithm run using the LM22 signature and 1,000 permutations. FA, Fanconi anemia; HR, homologous recombination; NHEJ, non-homologous end joining; BER, base excision repair; MMR, mismatch repair; NER, nucleotide excision repair; DSB, double strand break; SSB, single strand break; TMB, tumor mutational burden; CRC: colorectal cancer; TCGA: The Cancer Genome Atlas; TMB: tumor mutational burden; MSS/MSI-L: microsatellite-stable/microsatellite instability-low; MSI-H: microsatellite instability-high; ICI: immune checkpoint inhibitor; GDSC: The Genomics of Drug Sensitivity in Cancer Project; NAL: neoantigen load; COAD: colon adenocarcinoma; and READ: rectum adenocarcinoma (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001; Mann–Whitney U test).




Association of MSI-H With an Inflamed TME

The immune microenvironment, including components such as CD8 + TILs, CD4 + TILs, Th1-type cells, and Tregs, has become one of the most important factors affecting clinical benefits in patients receiving ICIs. We used the CIBERSORT algorithm to evaluate differences in immune cells between MSI-H and MSS/MSI-L CRCs. The results showed that both MSI-H CRC and COAD had an inflammatory TME, as indicated by significantly increased numbers of plasma cells, CD8 + T cells, activated memory CD4 + T cells, follicular T helper cells, NK cells, M1 macrophages and neutrophils and significantly decreased numbers of Tregs (Figures 2L,M, all P < 0.05). In contrast, except for Tregs, which exhibited a significantly upregulated frequency in MSS/MSI-L READ, there were no significant differences in the remaining immune cell types between MSI-H and MSS/MSI-L CRCs (Figure 2N). Furthermore, immune-related scores were used to compare the immune status between the MSI-H and MSS/MSI-L groups (Figures 2O–Q), with the results showing that the MSI-H group had a higher leukocyte fraction score [0.24 (0.14–0.36) vs 0.14 (0.083–0.22); P < 0.0001], leukocyte infiltration signature score [0.38 (−0.15–0.88) vs −0.081 (−0.66–0.49); P < 0.0001] and IFN-gamma response [−0.0086 (−0.33–0.65) vs −0.48 (−0.87–0.0021); P < 0.0001].



MSI Status and Immune GEPs

Specific GEPs have become one of the most important factors influencing clinical benefits in patients receiving ICIs. Immune gene sets were used to compare GEPs between the MSI-H and MSS/MSI-L groups. We observed that the expression levels of genes related to MSI-H CRC-activated immune cells (such as B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and NK cells) were significantly increased (Figures 3A,B). MSI-H CRC exhibited higher expression of genes involved in antigen presentation and cytolytic activity (CYT; CD8A, PRF1, GZMA, and GZMB) and the IFN response (Figure 3C). The results of an analysis of stimulatory immune-related genes (Figures 3D,E), such as chemokines (CX3CL1, CXCL9, and CXCL10), cytokines (IFNG, IL1B, etc.), and tumor necrosis factor receptor superfamily (TNFRSF)-related genes, indicated significant upregulation in MSI-H CRC (all P < 0.05). The expression of immune checkpoint genes, such as LAG3, CTLA4, CD274, PDCD1, TIGIT, IDO1, and PDCD1LG2, in MSI-H CRC was significantly higher than that in MSS/MSI-L CRC (Figure 3F; all P ≤ 0.05), while MSI-H CRC exhibited lower expression of VEGF. Subgroup analysis showed that regarding immune-related GEPs, MSI-H COAD was very similar to MSI-H CRC; however, MSI-READ and MSI-H CRC were completely different, and there was no significant difference in the expression of immune-related genes between MSI-H READ and MSS/MSI-L READ (Supplementary Figure S4).
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FIGURE 3. MSI-H CRC was associated with activated antitumor immunity. The expression levels of immune-related genes, such as those indicative of immune cells (A,B), antigen presentation, cytolytic activity, the IFN response (C), stimulation (D,E), and inhibition (F) in MSI-H tumors vs MSS/MSI-L tumors in the TCGA-CRC cohort (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001; (A–F): Mann–Whitney U test]. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; MSS/MSI-L, microsatellite-stable/microsatellite instability-low; MSI-H, microsatellite instability-high; and IFN: interferon.




The MANTIS Score Was Linked to Improved Immune Characteristics

The MANTIS score is a score that predicts a patient’s MSI status and was presented in an article published by Bonneville et al. (19). The higher the MANTIS score is, the more likely a patient is to have the MSI-H status. In the ICI-treated CRC cohort, the MANTIS score was positively correlated with TMB (P < 0.001; Figure 4A). Similarly, in the TCGA-CRC dataset, the MANTIS score was positively related to increased immunogenicity (such as an increased TMB, NAL, or number of mutations in the DDR pathway; Figure 4B), the abundances of immune cells (such as M1 macrophages, neutrophils, activated NK cells, CD8 + T cells, and macrophages; Figure 4C), immune correlation scores (Th1 cells, Th2 cells, leukocyte fraction, leukocyte infiltration signature score, and IFN-gamma response; Figure 4D), the expression of antigen presentation-related genes (Figure 4E), the expression of CYT-related genes (Figure 4F), and the expression of immune checkpoint genes. In contrast, the MANTIS score was negatively correlated with Tregs (R = −0.14; P = 0.0022; Figure 4C).
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FIGURE 4. Correlations of the MANTIS score and immune-related characteristics. Correlation of the MANTIS score and TMB in the ICI-treated CRC cohort (A). Correlations of the MANTIS score and tumor immunogenicity (B), immune cells (C), the immune score (D), an APP-related gene (E), a CYT-related gene (F), and an ICP-related (G) gene in the TCGA-CRC cohort. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; MSS/MSI-L, microsatellite-stable/microsatellite instability-low; MSI-H, microsatellite instability-high; IFN, interferon; CYT, cytolytic activity; APP, antigen processing and presentation; and ICP, immune checkpoint.




Comparison of Transcriptomic Traits Between MSI-H and MSS/MSI-L CRCs

To further analyze the differences in potential biological mechanisms between MSI-H and MSS/MSI-L tumors (Figure 5), we performed GSEA on the TCGA-CRC and GEO-CRC cohorts (GSE24551-GPL5175) and intersected the enriched pathways. Figure 5A shows that the immune response-related pathways in the TCGA and GEO datasets, such as leukocyte migration involved in the inflammatory response, cellular response to IFN-gamma, and T cell activation involved in the immune response, were significantly enriched in MSI-H CRC. Pathways and metabolism-related pathways were significantly downregulated in MSS/MSI-L CRC. Figure 5B shows that immune response pathways involved in lymphocytes and T cells were significantly enriched in MSI-H CRC in the TCGA and GEO datasets [all enrichment scores (ES) > 0, P < 0.05]. In addition, immune response pathways involved in antigen presentation, cytokine- or chemokine-related processes and macrophage or neutrophil activity were significantly enriched in MSI-H CRC in the TCGA and GEO datasets (all ES > 0, P < 0.05). In contrast, lipid localization, lipid transport, and steroid metabolism processes were significantly downregulated in MSI-H CRC in the TCGA and GEO datasets (all ES < 0, P < 0.05). Subsequently, we analyzed COAD using GSEA or different MSI statuses in READ. The enrichment in functional signaling pathways under normal conditions showed that similar to MSI-H CRC, MSI-H COAD also showed significant upregulation of immune-related pathways and significant downregulation of metabolic pathways. In contrast, MSI-H READ behaved differently from MSI-H COAD or CRC (Supplementary Figure S5).
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FIGURE 5. Transcriptomic analysis of the biological function traits of MSI-H and MSS/MSI-L tumors in the TCGA-CRC cohort and another CRC cohort (GSE24551). (A) Differences in pathway activities scored by GSEA between MSI-H and MSS/MSI-L tumors in the TCGA-CRC cohort. Enrichment results with significant differences between MSI-H and MSS/MSI-L tumors are shown. A blue bar indicates that the ES of the pathway is more than 0, while a green bar indicates that the ES of the pathway is less than 0. (B) GSEA of hallmark gene sets downloaded from the MSigDB. All transcripts are ranked by the log2 (fold change) between MSI-H and MSS/MSI-L tumors in the TCGA-CRC cohort and another CRC cohort (GSE24551). Each run was performed with 1,000 permutations. Enrichment results with significant differences between MSI-H and MSS/MSI-L tumors are shown. GSEA, gene set enrichment analysis; CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; MSS/MSI-L, microsatellite-stable/microsatellite instability-low; MSI-H, microsatellite instability-high; ES, enrichment score; and MSigDB, Molecular Signatures Database.




DISCUSSION

Colorectal cancer is a common tumor of the digestive system. Although OS has been improved in recent years through combinations of treatments such as surgery, radiotherapy, chemotherapy, and targeted therapy, the overall therapeutic efficacy is still poor, and the 5-year survival rate of patients with advanced mCRC is approximately 12.5% (29). In recent years, ICIs [such as anti-PD-(L)1 antibodies] have demonstrated significant clinical effects on patients with MSI-H CRC but little effect on patients with MSS/MSI-L CRC. At present, the mechanism underlying the difference in the curative effect of ICIs between MSI-H and MSS/MSI-L CRCs is unclear. Therefore, we analyzed differences in the TME, immunogenicity, immune-related GEPs, and signaling pathways between MSI-H and MSS/MSI-L CRCs (CRC, COAD, and READ). ICI-treated MSI-H CRC was associated with a better prognosis than ICI-treated MSS/MSI-L CRC. We further explored possible factors affecting the prognostic difference in the effects of ICIs on different MSI statuses. We found that the prolonged OS of MSI-H patients after ICI treatment might be related to increased tumor immunogenicity (such as increased NAL, TMB, number of DDR pathway mutations and the expression of antigen processing and presentation-related genes), the significantly upregulated expression of immune-related genes (immune cell-, CYT-, cytokine-, chemokine-, and immune checkpoint-related genes), and elevated immune-related scores (leukocyte fraction score, leukocyte infiltration signature score, and IFN-gamma response). In addition, GSEA results for different MSI statuses showed that immune response-related pathways were significantly upregulated in MSI-H CRC or COAD, while metabolism-related pathways were significantly downregulated. Therefore, we summarized the possible mechanisms underlying the improved efficacy and prognosis in MSI-H patients receiving ICIs (Figure 6A).
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FIGURE 6. (A) Possible mechanism underlying the difference in the efficacy of ICI treatment in CRC patients with different MSI statuses. (B) The high expression of immune checkpoints in the GEP of MSI-H CRC indicates targets for ICIs.


One of the factors affecting ICI treatment outcomes is tumor immunogenicity (e.g., TMB, NAL, MSI status, genetic mutations in the DDR pathway and the presentation of neoantigens by HLA) (30–35). MSI is one of the most important causes of CRC. It refers to mutations in MMR genes, which result in the expansion or deletion of DNA repeat sequences (microsatellites) that then cause tumorigenesis (24, 25). Our research is consistent with previous research and shows that whether in CRC, COAD or READ, MSI-H tumors have a significantly higher TMB, NAL, and number of gene mutations in the DDR pathway than MSS/MSI-L tumors, as well as the upregulated expression of antigen presentation-related genes. The ORR of ICIs indicates a positive correlation with TMB in a variety of solid tumors (P < 0.001, R = 0.74). Similarly, the effect of the NAL on ICI treatment is also predictive (36). In addition, increased numbers of genetic mutations in the DDR pathway can lead to increased TMB, while relatively high non-synonymous mutation burdens indicate an improved ORR, prolonged PFS, and a long-lasting clinical response to immunotherapy (28). In addition, a large number of antigen processing and presentation-related genes exhibit significantly increased expression in MSI-H CRC and COAD, which play an important role in the recruitment of effector T cells and lymphocytes to neoantigen-expressing tumor cells and thus stimulates the body’s antitumor immune responses (26).

The TME has also become one of the most important factors affecting immunotherapy, and it includes TILs, antigen-presenting cells, Tregs, chemokines, cytokines, etc. In MSI-H CRC, chemokines such as CXCL9, CXCL10 and CXCL11 recruit and activate cytotoxic T lymphocytes (CTLs), DCs, and NK cells in the tumor tissue to exert an antitumor effect. For example, NK cells and CD8 + TILs secrete TNF, perforin and granzyme to exert cytotoxic effects (37), and CD4 + TILs secrete IL-1, IL-6, IFN-γ, and other cytokines, further activating other immune cells (38, 39). In addition, CXCL3 attracts neutrophils in vivo and inhibits tumor growth (40). Additionally, IL-1, IL-6, and TNF play important roles in macrophage polarization, converting myeloid-derived suppressor cells (MDSCs) into M1-like macrophages with antitumor functions (41). In contrast, MSS/MSI-L CRC has a VEGF-rich TME. For example, VEGF recruits MDSCs and promotes their conversion into M2-like macrophages, which inhibit T cell function-like macrophages (42). Similarly, VEGF plays important roles in Treg recruitment and proliferation, and Tregs inhibit the response and function of CTLs through a variety of direct or indirect mechanisms (42). VEGF promotes angiogenesis, invasion, and metastasis in tumor cells (42). In addition, M2-like macrophages and Tregs secrete inhibitory cytokines (such as IL-10 and TGF-β) and further suppress T cells (CD4 + T cells and CD8 + T cells) and antigen-presenting cells (such as DCs and NK cells) (5).

A specific GEP predicts some functions in the TME and is related to the therapeutic efficacy of ICIs (43). Consistent with previous results, the elevated expression of CD8A, GZMA, PRF1, CD8B, and GZMB in MSI-H CRC predicted increased CYT and an improved immunotherapy prognosis (43). In addition, the high expression of immune checkpoints in a GEP often suggests an improved immunotherapy prognosis (44, 45). The high expression of immune checkpoints in the GEP of MSI-H CRC indicates targets for ICIs (Figure 6B).

Evidence suggests that left-sided and right-sided CRCs exhibit different TME landscapes, further leading to distinct benefits of ICI treatment (46). Zhang et al. reported a higher proportion of NK cells associated with left-sided CRC than with right-sided CRC (46). NK cells are associated with the prolonged survival of CRC patients (46). Additionally, there are various biological and clinical differences that may affect mutational characteristics and immune infiltration between different CRC locations (such as right-sided and left-sided CRCs) (47). Consistent with a previous study, our findings indicate that the TME and immune characteristics of MSI-H COAD might be somewhat different from those of MSI-H READ (48). For example, Shen et al. revealed different molecular subtypes of CRC (48). Based on carefully collected and curated genomic and clinical data and immune-related algorithms, we determined that MSI-H CRC was significantly associated with enhanced tumor immunogenicity (including NAL, TMB, and DDR mutations) and an inflamed TME (including high expression levels of inflammatory immune-related genes, increased infiltration levels of immune cells, and upregulated immune-related pathways). There is a clear unmet need for exploring the mechanism of primary/secondary resistance to ICI treatment in some MSI-H CRCs in the future. Recently, single-cell RNA sequencing (scRNA-seq) was extensively developed, which allows the expression profiles of individual cell types to be obtained rapidly (49). It also plays an important role in identifying cell subtypes and illustrating molecular differences.

There are still some limitations to this study. First, we analyzed only one ICI-treated CRC cohort and the TCGA-CRC cohort. For MSI-H and MSS/MSI-L CRCs, there may be some bias in the comprehensive assessment of immune characteristics and the immune microenvironment. Second, the lack of transcriptomic, copy number variation, and protein-level data for the ICI-treated CRC cohort and the lack of relevant animal experiments in this study did not allow us to directly prove our hypothesis. Third, the number of CRC patients treated with ICIs was unfortunately very small. Fourth, we did not explore the mechanism of primary/secondary resistance to ICI treatment in some MSI-H CRCs, and more research involving large sample sizes and diverse ethnic groups is needed for subsequent analysis and verification. Additionally, scRNA-seq might help us reveal distinct cell subtypes and illustrate molecular differences in the future (49).



CONCLUSION

Microsatellite instability-high CRC had a better immunotherapy prognosis than MSS/MSI-L CRC. MSI-H CRC was related to an inflammatory TME, the increased expression of immune-related genes, enhanced immunogenicity, and elevated immune-related scores. In contrast, MSS/MSI-L CRC was related to an inhibitory TME and the reduced expression of immune-related genes, immunogenicity, and immune-related scores. In addition, the TME and immune characteristics of MSI-H COAD might be somewhat different from those of MSI-H READ. Furthermore, we aimed to elucidate the possible mechanisms by which the TME of MSI-H and MSS/MSI-L affect the prognostic difference in CRC patients receiving ICI therapy to further improve the efficacy of ICI treatment in MSI-H CRC patients and provide theoretical guidance to address the problem of MSS/MSI-L patients not deriving clinical benefits from ICI treatment. In addition, the possible mechanism underlying the difference in the efficacy of ICI treatment based on different MSI statuses requires a series of prospective clinical studies and mechanistic explorations.
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Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world with a very poor prognosis. Immunotyping is of great significance for predicting HCC outcomes and guiding immunotherapy. Therefore, we sought to establish a reliable prognostic model for HBV-related HCC based on immune scores. We identified immune-related modules of The Cancer Genome Atlas LIHC and GSE14520 data sets through weighted gene co-expression network analysis and evaluated HCC through a non-negative matrix factorization algorithm. Through further bioinformatics analyses, we identified causes for prognostic differences between subtypes. The results illustrate a significant difference in prognosis based on immunotypes, which may stem from metabolic disorders and increased tumor invasion associated with the high expression of genes related to stem cell characteristics. In conclusion, we identified a novel HBV-related HCC immune subtype and determined its immunological characteristics, which provides ideas for further individualized immunotherapy research.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most widespread cancers globally and it has an extremely poor prognosis. Approximately 800,000 people die each year from HCC worldwide (1). Although great progress has been made in the treatment of HCC, the prognosis for HCC patients is still largely negative due to difficulties surrounding the early diagnosis and high recurrence of HCC (2–5). Hepatitis B virus (HBV) infection is one of the most significant causes of HCC in East Asia, especially in China (6, 7). Therefore, identifying reliable prognostic factors for HBV-related HCC is of great importance for the treatment of HCC.

Immune-related genes (IRGs) are a class of genes closely related to the activation and intensity of immune responses. Many studies confirm that IRGs are involved in the pathogenesis of HCC and are closely related to the survival outcome of HCC patients (8, 9). Related literature confirms the prognostic value of IRGs in HCC and establishes a molecular subtype model for HCC based on this (4, 10). However, some models focus on a single gene, and some models have overfitting problems, posing a barrier to consistent, wide-ranging clinical use. Therefore, a more complete molecular subtype model of HCC is extremely necessary.

Recent studies show that the tumor microenvironment (TME) plays an important role in tumor development and metastasis by affecting gene expression and biological behavior in tumor cells (11–16). The TME encompasses the cellular environment of the tumor, including fibroblasts, immune cells, endothelial cells, extracellular matrix, and various cytokines (17). Immune cells and stromal cells are the main components of the TME and greatly influence tumor prognosis. Currently, researchers have developed a set of algorithms called ESTIMATE that utilize gene expression data in The Cancer Genome Atlas (TCGA) database to estimate immune cell presence in malignant tumors and determine reliable molecular subtypes related to immune characteristics (14, 18). So far, this algorithm has been applied to colon cancer (19), breast cancer (20), prostate cancer (21), and glioma (22) and found to be effective. However, existing models for HCC prognosis based on immune score are still limited.

In this study, we use the ESTIMATE algorithm to analyze HBV-related HCC patient data from the TCGA and GSE14520 databases. Using weighted gene co-expression network analysis (WGCNA), immune-related modules and genes were identified, and functional enrichment analysis was performed. Subsequently, two immune subtypes were determined using a non-negative matrix factorization (NMF) algorithm based on immune-related genes related to prognosis. Our analysis highlights a significant difference in prognosis between these two subtypes. Based on key differentially expressed genes (DEGs) and functional enrichment analysis, we conclude that the prognostic differences between the two immune subtypes is due to metabolic dysfunction and increased tumor invasion associated with the high expression of genes related to stem cell characteristics of the C2 subtype. Our research provides a new model for HCC immunotyping and verifies its effectiveness, which contributes to further research on the difference of immunotherapy effects and provides a new perspective for immunotherapy.



MATERIALS AND METHODS


Databases

All gene expression and clinical follow-up data were obtained from TCGA and Gene Expression Omnibus GSE14520 databases. Data preprocessing using screening criteria included only tumor samples containing HBV, removing samples without clinical follow-up information, removing samples without data on survival time, and removing samples without survival status. There were 145 TCGA samples and 156 GSE14520 samples after data preprocessing.



WGCNA Analysis Based on ESTIMATE

We used the R software package ESTIMATE (1.0.13) to calculate the immune scores of 145 TCGA samples according to the published method (14). In brief, gene expression values were rank-normalized and rank-ordered, and then, empirical cumulative distribution functions of characteristic genes and other genes were calculated based on this. A statistic was calculated by integrating the differences between empirical cumulative distribution functions. We defined ssGSEA as an immune score based on characteristics related to immune cell infiltration (23, 24). The expression profiles for protein-coding genes in these 145 samples were then extracted and underwent hierarchical clustering. Five outlier samples were removed for a total of 140 remaining samples. The Pierre coefficient was used to calculate the distance between each gene and construct a weighted co-expression network using the R software package WGCNA. To ensure a scale-free network, we set the soft threshold equal to 14 and screened the co-expression module. Next, the expression matrix was converted into an adjacency matrix, and then, the adjacency matrix was converted into a topological overlap matrix (TOM). Based on TOM, an average-linkage hierarchical clustering method was used to cluster genes with 40 as the minimum number of genes for each gene network module. After determining gene modules using the dynamic shear method, we calculated the eigengenes of each module in turn and then performed cluster analysis on the modules to merge those modules closer to each other into new modules (height = 0.25, deep split = 2, and minimodule size = 40). GSE14520 data were processed using the same method. In addition, we selected genes related to immunity in the two data sets separately and used the R software package WebGestaltR (0.4.3) for KEGG and GO functional enrichment analysis.



Identification of Molecular Typing Based on Immune Score–Related Genes

For genes related to immune scores in the two data sets, we used the coxph function in the R software package to perform single-factor cox analysis using overall survival (OS) time and survival status, respectively, and identified genes related to prognosis in both data sets. Further, we clustered HCC samples in the two data sets by NMF based on the expression levels of these genes. We selected the standard “brunet” and performed 50 iterations. The number of clusters was set as 2 to 10, and the R package NMF was used to determine the average contour width of the shared member matrix. The minimum number of members in each subclass was set to 10. The optimal number of clusters was determined according to indicators such as cophenetic, dispersion, and silhouette and was set as 2 (Supplementary Figures S1–S4).



Functional Enrichment Analysis of DEGs in Molecular Subtypes

Differentially expressed genes between molecular subtypes were calculated separately using the limma (3.40.6) package. False discovery rate (FDR) <0.05 and log2FC > 1 were the thresholds for the TCGA data set and FDR < 0.05 and fold change (FC) >1.5 were the thresholds for the GSE14520 data set. Through the R software package WebGestaltR (0.4.3), KEGG and GO functional enrichment analysis was performed on DEGs of different molecular subtypes in the TCGA and GSE14520 data sets. Items with FDR < 0.05 were considered significantly enriched.



Ethical Approval

This study was approved by the ethics committee at the First Affiliated Hospital of Zhengzhou University.



RESULTS


WGCNA

Consistent WGCNA identified 14 and 17 HCC modules in the TCGA and GSE14520 data sets, respectively, (Figures 1A,B). The gray module is a collection of genes that cannot be aggregated into other modules. We further analyzed the correlation of each module with patient gender, age, TNM state, stage, grade, and immune score (Figures 1C,D). Results show that these modules in the TCGA database had no strong correlation with gender, age, TNM state, stage, or grade (cor < 0.4) although immune scores had a significantly positive correlation with the tan, blue, green, purple, and red modules (cor > 0.4, p < 0.00001). Gene numbers in each module included 53 in tan, 558 in blue, 261 in green, 70 in purple, and 173 in red, totaling 1115 genes. In GSE14520, in addition to a significantly negative correlation with stage in the blue module (cor < −0.4, p < 0.00001), the other modules had no significant correlation with gender, age, or stage (cor < 0.4) although immune scores had a significantly stronger correlation with black, green, and purple modules (cor > 0.4, p < 0.00001) in which the correlation between green module genes and immune score reached 0.97. Gene numbers in each module included 424 in black, 756 in green, and 320 in purple, totaling 1500 genes.
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FIGURE 1. Correlation between WGCNA-based modules and sample information in HCC samples in TCGA and GSE14520 data sets. (A) Gene co-expression modules of the TCGA database obtained by consistent WGCNA. (B) Gene co-expression modules of the GSE14520 database obtained by consistent WGCNA. (C) Relationship between modules in the TCGA database and clinical follow-up information and immune score. (D) Relationship between modules in the GSE14520 database and clinical follow-up information and immune score.




Functional Enrichment Analysis of Genes Related to Immune Score

Genes in the modules related to immune score in the above two databases were merged, totaling 2167 genes (Figure 2A). There were 448 genes at the intersection, accounting for 39.73% (448/1115) of genes related to immune score in TCGA and 29.87% (448/1500) of genes related to immune score in GSE14520. To identify the functions of these 2167 immune score–related genes, we performed KEGG and GO functional enrichment analysis through the R software package WebGestaltR (0.4.3). Terms with FDR < 0.05 were considered significantly enriched. For biological process (BP) immune-related functions, activation of immune response, immune response regulatory signaling pathway, and regulation of T cell activation were significantly enriched (Figure 2B). For KEGG pathway enrichment analysis, there were 69 significantly different pathways (FDR < 0.05), including natural killer cell–mediated cytotoxicity, B cell receptor signaling pathway, NF-kappa B signaling pathway, toll-like receptor pathway, T cell receptor signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, and other immune-related pathways. Some of the annotated results are shown in Figure 2C.
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FIGURE 2. Functional enrichment pathways of immune-related genes and differential prognosis between immune subtypes. (A) Venn diagram of immune co-expression-related genes. (B) GO function annotation for BPs of immune score–related genes. (C) KEGG analysis of immune score-related genes. (D,E) The immune subtypes T-C1 and T-C2 in TCGA have significant differences in OS and PFS time. (F,G) The immune subtypes G-C1 and G-C2 in GSE14520 have significant differences in OS and RFS time.




Molecular Typing Based on Immune Score–Related Genes

We extracted the expression profiles of 2167 immune score–related genes in TCGA and GSE14520 databases and used OS time and survival status to perform single factor cox analysis through the coxph function in the R software. A total of 592 genes in the TCGA data set were related to HCC prognosis (p < 0.05), of which 566 genes were risk factors [Hazard Ratio (HR) > 1] and 26 were protective factors (HR < 1). For the GSE14520 data set, 264 genes were related to HCC prognosis (p < 0.05), of which 104 genes were risk factors (HR > 1) and 160 were protective factors (HR < 1). There were 84 genes related to prognosis in both data sets.

Based on the expression levels of the 84 prognostic-related genes, the NMF algorithm was used to cluster the samples in TCGA and GSE14520. Accordingly, we divided the samples in TCGA into T-C1 and T-C2 subtypes and those in GSE14520 into G-C1 and G-C2 subtypes. Further analysis of prognostic relationships between subtypes found that by OS time and progression-free survival (PFS) time, T-C1 and T-C2 had significant differences (Figures 2D,E; log rank p < 0.001). Similarly, G-C1 and G-C2 had significant differences in OS time and relapse-free survival (RFS) time (Figures 2F,G; log rank p < 0.001). Principal component analysis (PCA) showed significant differences between different immune subtypes (Figure 4A).



Correlation Between TNM Stage and Immune Molecular Subtype

Through further analysis, we determined the correlation between immune molecular subtype, immune score and survival status, TNM stage, and grade. We found that, in TCGA-LIHC, T-C1 was associated with higher M. Stage (p < 0.05), and T-C2 was significantly correlated with high dead events, T. Stage, Stage, and Grade (p < 0.05). A higher immune score was significantly related to T. Stage (Figure 3). In the GSE14520 database, G-C2 was significantly associated with higher death events and stage (Supplementary Figure S5).
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FIGURE 3. The correlation between molecular subtype, immune score, and tumor stage in TCGA-LIHC. (A–F) Analysis of the correlation between molecular subtypes and survival status, TNM staging, stage, and grade in TCGA-LIHC. (G–I) Correlation analysis between immune score and gender, tumor grade in TCGA-LIHC. *p < 0.05, “NS” means no statistical difference.




Functional Enrichment Analysis of DEGs in Molecular Subtypes

Differentially expressed genes between molecular subtypes were calculated using the limma (3.40.6) package. After filtering the TCGA data set (FDR < 0.05, log2FC > 1), there were a total of 1004 DEGs, including 656 up regulated and 348 down regulated genes. The difference between T-C2 and T-C1 was mainly up regulated differential expression (Figure 4B). The GSE14520 data set was filtered according to thresholds FDR < 0.05 and FC > 1.5 yielding 696 DEGs, including 253 up regulated and 443 down regulated genes. The difference between G-C1 and G-C2 was down regulated differential expression (Figure 4C).
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FIGURE 4. Gene expression and functional enrichment pathways between immune subtypes. (A) PCA diagrams of different molecular subtypes. (B) Volcano map of DEGs between TCGA molecular subtypes. (C) Volcano map of DEGs between molecular subtypes of GSE14520. (D,E) GO function analysis of biological processes (BPs) and KEGG analysis of genes up regulated in the T-C2 subtype in TCGA. (F,G) GO function analysis of BPs and KEGG analysis of genes down regulated in the T-C2 subtype in TCGA.


KEGG and GO functional enrichment analysis was performed using the R software package WebGestaltR (0.4.3) on the 656 up regulated genes in the T-C2 molecular subtype from the TCGA data set, of which 230 terms were annotated to BP with significant differences (FDR < 0.05; Figure 4D). Among them, cell division, chromosome segregation, nuclear division, DNA replication, and other BPs were significantly annotated. For KEGG pathway enrichment, there were 10 significant differences (FDR < 0.05; Figure 4E), among which tumorigenesis pathways, such as mismatch repair, DNA replication, cell cycle, and p53 signaling pathway, were significantly enriched. Functional enrichment results of the DEGs down regulated in T-C2 showed that metabolic-related pathways, such as carbon metabolism, PPAR signaling pathway, tryptophan metabolism, retinol metabolism, and drug metabolism, were significantly enriched (Figures 4F,G).

Functional enrichment analysis of the DEGs up regulated in G-C2 showed that 89 terms were significantly enriched in BP (Figure 5A), including cell division, chromosome segregation, nuclear division, and DNA replication. For KEGG pathway analysis (FDR < 0.05, Figure 5B), DNA replication, cell cycle, p53 signaling pathway, oocyte meiosis, and other oncogenic and development pathways were significantly enriched with the p53 signaling pathway and oocyte meiosis having significance (p < 0.01). Functional enrichment analysis of DEGs down regulated in G-C2 showed that tryptophan metabolism, fatty acid degradation, drug metabolism, carbon metabolism, and other metabolic-related pathways were significantly enriched (Figures 5C,D).
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FIGURE 5. Functional enrichment pathways between immune subtypes in GSE14520. (A,B) GO function analysis of BPs and KEGG analysis of genes up regulated in the G-C2 subtype in GSE14520. (C,D) GO function analysis of BPs and KEGG analysis of genes down regulated in the G-C2 subtype in GSE14520. (E) Results of GSEA of immune subtypes in TCGA. (F) Results of GSEA of immune subtypes in GSE14520.




Gene Set Enrichment Analysis Between Molecular Subtypes

We performed a gene set enrichment analysis (GSEA) for the subtypes in the two databases using c2.cp.kegg. v7.0 according to published methods (25). Results show that metabolic-related pathways, such as fatty acid metabolism; PPAR signaling pathway; tyrosine metabolism; glycine, serine, and threonine metabolism; and other pathways were significantly enriched in the T-C1 and G-C1 subgroups (p < 0.05; FDR < 0.25). Meanwhile, DNA replication, mismatch repair, homologous recombination, spliceosome, and others were found to be enriched in T-C2, and the spliceosome, cell cycle, and others were enriched in G-C2 (p < 0.05, FDR > 0.25; Figures 5E,F).



Identification of Key Genes in Molecular Subtypes

In the analysis of DEGs between molecular subtypes, we found that SPP1, AFP, CD24, CA9, and others showed significant differential expression and were highly expressed in T-C2 and G-C2. Further analysis showed that these genes were related to phenotypes associated with tumor stem cell characteristics. This indicates that molecular subtype C2 may be related to stem cell characteristics. Therefore, we screened genes related to stem cell characteristics and compared expression levels between molecular subtypes. The results showed that not only SPP1, AFP, CD24, and CA9, but also MMP9, SOX4, SOX9, GPC3, and KRT19, which are related to stem cell characteristics, were expressed in C2 subtypes higher than C1 subtypes (Figures 6A,B).
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FIGURE 6. Expression differences of stem cell characteristics–related genes among immune subtypes and comparison with existing subtypes. (A) The expression of stem cell–related genes in molecular subtypes in the TCGA data set. (B) The expression of stem cell–related genes in molecular subtypes in the GSE14520 data set. (C,D) Proportional distribution of existing immune subtypes in T-C1 and T-C2. (E) KM curve of OS time of existing immune subtype in TCGA data set; (F) KM curve of PFS time of existing immune subtype in TCGA data set. *p < 0.05, **p < 0.01, and ***p < 0.001.




Comparison Between TCGA Molecular Subtypes and Existing Immune Subtypes

Thorsson et al. performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Six immune subtypes were identified: wound healing (C1), IFN-gamma dominant (C2), inflammatory (C3), lymphocyte depleted (C4), immunologically quiet (C5), and TGF-beta dominant (C6) (26). Interestingly, we found that the proportion of C1 and C2 immune subtypes of the T-C2 subtype in TCGA increased significantly and was associated with poor prognosis, and C3 had tumor suppressive effects and a better survival rate. In our studies, C1 and C2 subtypes account for only 7.7% of the T-C1 subtype, and C1 and C2 subtypes in the T-C2 subtype account for 27.63% (Figures 6C,D). And C1 and C2 in this existing immune subtype were related to poor prognosis (Figures 6E,F). This result verifies the stability of our model.



Comparison of Immune Scores in Molecular Subtypes

We compared the immune scores of the two subtype samples in the TCGA and GSE14520 data sets using the MCPcounter tool (27). The results show that T cells, B lineage, monocytic lineage, myeloid dendritic cells, endothelial cells, and NK cells had significant differences between T-C1 and T-C2 (p < 0.05). Neutrophils showed marginal differences (p = 0.064), and CD8 T cells, cytotoxic lymphocytes, and fibroblasts were not statistically different between the two molecular subtypes (p > 0.05; Figure 7). Among these immune cells, T-C2 had higher immune scores in T cells, B lineage, monocytic lineage, myeloid dendritic cells, and endothelial cells compared to T-C1, and NK cells and neutrophils in T-C1 had higher immune scores than T-C2. For the GSE14520 data set, only endothelial cells and fibroblasts had significant differences in immune scores with both having higher immune scores in G-C1 than in G-C2 (Supplementary Figure S6).
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FIGURE 7. Comparison of 10 kinds of immune cells in T-C1 and T-C2. (A–J) Differences in immune cell scores between subtypes. T cells, B lineage, monocytic lineage, myeloid dendritic cells, endothelial cells, and NK cells had significant differences between T-C1 and T-C2 (p < 0.05). Neutrophils showed marginal differences (p = 0.064).




Differences in Somatic Mutations Between Immune Subtypes in TCGA

We drew a waterfall chart of the top 20 genes with the highest mutation frequency detected by the mutect software in the TCGA data set in two molecular subtypes, and the main type of mutation was missense mutation. The results show that the mutation rates of TP53, TTN, CTNNB1, CACNA1E, and MUC16 are quite different among different subtypes. Among them, the mutation rate of TP53, TTN, and MUC16 increased in T-C2, and the mutation rate of CTNNB1 and CACNA1E were upregulated in T-C1 (Figure 8).
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FIGURE 8. Waterfall plots of the top 20 genes with the highest frequency of somatic mutations in TCGA-LIHC in two molecular subtypes. (A) The mutations of the 20 genes with the highest frequency of somatic mutations in T-C1. (B) The mutations of the 20 genes with the highest frequency of somatic mutations in T-C2.




DISCUSSION

Studies have shown that HCC can induce an immunosuppressive TME and promote tumor progression and metastasis through multiple mechanisms (28). Immunotherapy, such as immune checkpoint inhibitors, has been shown to have effective antitumor effects. However, only a small percentage of people respond to immunotherapy (29, 30). Although there have been some studies that have conducted immunophenotyping of the prognosis of HCC, some of the research models are not stable and some have the limitation of overfitting. These studies fail to further study the immune landscape of HCC. Therefore, it is extremely necessary to explore the immunological landscape of the differential prognosis of HCC patients.

In this study, we screened hundreds of HCC samples from TCGA and GSE14520 databases. Through WGCNA analysis, we identified 14 modules and 17 modules, respectively. Further analysis showed that these modules have little correlation with patient gender, age, TNM state, stage, and grade although some of these modules had a strong correlation with immune score. This suggests that the immune score has a key role in the development and evolution of HCC. Gene enrichment analysis of genes in these immune-related modules shows that immune-related functions were significantly enriched, further confirming the above results and in accordance with previous reports (31–33).

Through single-factor analysis of immune genes, we screened 84 immune genes related to survival and then performed cluster analysis by the NMF method to divide the TCGA and GSE1450 data sets into two categories. These two subtypes had significant differences in OS and PFS (RFS) time status, and the prognosis for the T-C1 and G-C1 subtypes was obviously better than that of the T-C2 and G-C2 subtypes. Through functional enrichment analysis of DEGs between subtypes, we find that, regardless of data set, both GO and KEGG analysis show that up regulated differential genes in the C2 subtype are related to mismatch repair, DNA replication, and cell cycle functions, and down regulated differential genes are related to metabolic function. Meanwhile, we used GSEA to analyze the functions of C1 and C2 in the TCGA and GSE14520 data sets and obtained similar results to the functional enrichment of differential genes: the C2 subtype was related to mismatch repair, DNA replication, and cell cycle function, and the C1 subtype was related to metabolic function. This means that, in the C2 subtype, pathways related to tumorigenesis and development are activated, and pathways related to normal metabolism are inhibited. Many studies confirm that changes in the immune state of the TME can affect tumor metabolism and cause changes in tumor biological behavior (34–38). Based on this, we speculate that one possible reason for the poor prognosis of the C2 subtype is that normal metabolic function is inhibited, causing metabolic disorders.

Thorsson et al. analyzed the immunological characteristics of more than 10,000 samples of 33 types of cancer and showed that immunohistochemical characteristics are an important factor in predicting cancer prognosis, identifying six immune subtypes: C1 (wound healing), C2 (INF-r predominant), C3 (inflammation), C4 (lymphocyte depletion), C5 (immunologically silent), and C6 (TGF-beta predominant) of which C1, C2, and C6 are related to poor prognosis and C3 has a tumor suppressor effect and better survival rate (26). Compared with our model, we find that the proportion of C1 and C2 types (associated with poor prognosis) in T-C2 samples was significantly higher than in T-C1. This result further validates the stability of our model.

In the somatic mutation data, the mutation rate of TP53, TTN, and MUC16 in the T-C2 subtype were up regulated of which TP53 and MUC16 were related to immune status. TP53 mutations have been shown to show inflammation-related functional gains in non-small cell lung cancer and breast cancer, etc. (39, 40). MUC16 has also been shown to be an important part of the immune genetic landscape. Its mutation is related to the increase of tumor mutation burden and may become a potential target for immune checkpoint inhibitor (ICI) therapy (41). CTNNB1, which has an up regulated mutation rate in T-C1, was initially shown to be associated with ICI resistance, and its evidence needs to be further studied (42).

Furthermore, we analyzed the most significant DEGs between subtypes in the two data sets and found that SPP1, AFP, CD24, CA9, and others showed the most differential expression and were highly expressed in molecular subtypes T-C2 and G-C2. Interestingly, the functions of these genes are related to tumor stem cell characteristics. As a crucial gene in tumor pathogenesis, SPP1 is related to the stem cell characteristics of HCC and is involved in PD-L1-mediated immune escape in HCC (43). AFP expression mainly occurs in fetal liver cells, and although AFP disappears from the blood about 2 weeks after birth, its overexpression can be detected in liver cancer patients. As a marker of hypoxia, CA9 is also a marker for poor prognosis in HCC, and recent studies show that its expression is related to stem cell phenotypes (44, 45). This indicates that molecular subtype C2 may be related to stem cell characteristics. Additionally, in the TCGA and GSE14520 data sets, the expression of genes MMP9, SOX4, SOX9, GPC3, and KRT19 in the C2 subtypes were higher than those in the C1 subtype. All of these genes are also related to characteristics found in stem cells (44, 46, 47). Thus, we define the C2 subtype as a subtype related to stem cell characteristics. Studies show that the expression of such characteristics in tumor stem cells enhances the aggressiveness of the tumor, leading to poor prognosis. This explains the poor prognosis of the T-C2 and G-C2 subtypes, which is likely due to increased tumor invasiveness caused by increases in genes related to stem cell characteristics.

Our independent analysis of the TCGA-LIHC and GSE14520 data sets confirms that our immunophenotyping model is reliable and effective. Through bioinformatics analysis, we identified two immune subtypes with significant prognostic differences and determined the reasons. Furthermore, we demonstrated the inherent immunological characteristics of the two immune subtypes, including the differences in various immune cells and somatic mutations. This model provides a comprehensive perspective for the study of molecular subtypes of HBV-related HCC patients, and provides new ideas and basis for further research on individual differences in immunotherapy.



CONCLUSION

We conducted an in-depth bioinformatic analysis on HCC samples from the TCGA and GEA14520 databases and determined new immune subtypes based on differences in immune genes. Among them, T-C2 and G-C2 subtypes have a poor prognosis, which may be due to metabolic dysfunction and increased tumor aggressiveness caused by stem cell characteristics. This is of great significance for the diagnosis of immune characteristics of patients with HBV-related HCC and the further research on personalized immunotherapy.
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FIGURES S1, S2 | The parameters of 2–10 clusters in NMF algorithm clustering in TCGA-LIHC. According to the co-correlation coefficient and other parameters, the number of clusters is determined to be 2.

FIGURES S3, S4 | The parameters of 2–10 clusters in NMF algorithm clustering in GSE14520. According to the co-correlation coefficient and other parameters, the number of clusters is determined to be 2.

FIGURE S5 | The correlation between molecular subtype, immune score, and tumor stage in GSE14520.

FIGURE S6 | Comparison of 10 types of immune cells in G-C1 and G-C2.
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Background: Recent research has shown that immune-related lncRNA plays a crucial part in the tumor immune microenvironment. This study tried to identify immune-related lncRNAs and construct a robust prediction model to increase the predicted value of lung adenocarcinoma (LUAD).

Methods: RNA expression data of LUAD were download from the Cancer Genome Atlas (TCGA) database. Immune genes were acquired from the Molecular Signatures Database (MSigDB). The immune gene related lncRNAs were acquired by the “limma R” package and Cytoscape3.7.1. Cox regression analysis was applied to construct this forecast model. The prognostic model was validated by the testing cohort which was acquired by the bootstrap method.

Results: A total of 551 lncRNA expression profiles including 497 LUAD tissues and 54 non-LUAD tissues were obtained. A total of 331 immune genes were acquired. The result of the Cox regression analysis showed that seven lncRNAs (AC022784-1, NKILA, AC026355-1, AC068338-3, LINC01843, SYNPR-AS1, and AC123595-1) can be performed to construct the prediction model to forecast the prognosis of LUAD. Kaplan–Meier curves indicated that our prediction model can distribute LUAD patients into two different risk groups (high and low) with significant statistical significance (P = 1.484e-07). Cox analysis and independent analysis illustrated that the seven-lncRNAs prediction model was an isolated factor by comparing it with other clinical variables. We validated the accuracy of our model in the testing dataset. Furthermore, the prognostic model also showed higher predictive efficiency than three other published prognostic models. The two different survival groups represented diverse immune features according to principal components analysis. GSEA analysis (gene set enrichment analysis) indicated that seven-lncRNAs signatures may be involved in the progression of tumorigenesis.

Conclusions: We have established a seven immune-related lncRNAs prediction model. This prognostic model had significant clinical significance that increased the predicted value and guided the personalized treatment for LUAD patients.

Keywords: lung adenocarcinoma, immune-related lncRNAs, GSEA analysis, prognosis, predicted model


INTRODUCTION

Lung cancer belongs to the malignant tumor group and has becoming the primary killer in tumor-related disease (1, 2). Lung cancer is separated into two important categories including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) (3, 4). Lung adenocarcinoma (LUAD) is the major type of NSCLC and the morbidity of LUAD has surpassed lung squamous carcinoma in recent years (5). Due to the deficiency of tumor diagnosis using the traditional bronchoscopy and computed tomography techniques, patients in the early stage of cancer are difficult to be detected (6, 7). Therefore, it is imperative to find prognostic biomarkers that instruct the treatment of lung cancer. Currently, a lot of attention has been given to the field of immune therapies that could regulate the tumor microenvironment (8–10). For example, a study shows the relationship between the lncRNA signature of tumor-infiltrating B lymphocytes and the immune therapies of bladder cancer (11). Additionally, lncRNAs have several significant biological functions. For example, they participate in high-order chromosomal dynamics and mediate epigenetic changes (12, 13). Furthermore, lncRNA has an important value in evaluating the immune infiltrate of the tumor (14). Recently, Song et al. found that a gene signature including 30 immune-related genes could predict prognosis and reveal the relationship between the tumor and the immune microenvironment (15). Li et al. found that the clinical immune signature can act as a conspicuous marker to evaluate the overall survival rate in NSCLC and patients in the early phase (16). Prognostic biomarkers based on the immune-related lncRNA model for LUAD is still lacking.

In this study, our efforts concentrated on obtaining lncRNA expression profiles and immune genes to establish a prediction model to enhance the prognosis ability of LUAD. Then we identified whether our prognostic model was connected with the survival time of LUAD patients and independent of other clinical variables. Finally, we aimed to show the possible biological pathway of the prediction model.



MATERIALS AND METHODS


Publicly Attainable Expression Datasets

The RNA-seq FPKM (reads per kilobase per million) data of 551 LUAD patients (including 497 LUAD tissues and 54 non-LUAD tissues) were download from The Cancer Genome Atlas (TCGA) database.1 Non-LUAD tissue refers to adjacent normal material. There were 445 LUAD patients, including their clinical follow-up information, who were taken into consideration. We chose patients whose survival data >30 days in order to improve the accuracy of our study (17). Patients whose survival data <30 days may die of other diseases rather than LUAD.



Immune-Related lncRNAs

The immune genes were download from the Molecular Signatures Database (MSigDB).2 The “limma R” package was used to detect immune lncRNAs. The immune-related lncRNAs were identified by the correlation analysis between the immune genes and lncRNA expression levels in the LUAD samples. We used the function of cor. test () to calculate the correlation coefficient. We set the coefficient of the cor-Filter >0.6 and P value < 0.001.



Prognosis Model Development

Cox regression analysis was used to build a prognosis signature of survival using the “survival R” package. lncRNAs with prominently statistical significance in univariable Cox regression were chosen and put into multivariable Cox regression. The risk score of every LUAD patient was computed based on the expression quantity of the model lncRNAs and their coefficient. The risk score was calculated as: risk score = βgene1 × Expressiongene1 + βgene2 × Expressiongene2 + βgene3 × Expressiongene3 + … + βgenen × Expressiongenen (18). Then we divided the LUAD patients into high and low risk groups according to the median risk score.



Prognostic and Independent Analysis

A Kaplan–Meier survival curve were performed to identify the difference of overall survival in the two different risk groups in the training set. We used the “survival R” package and “survminer R” package to make the K–M survival curve. Then independent analysis was applied to verify the independence of our prediction model by comparing age, gender, stage, and TNM (pathological T stage, pathological N stage, and pathological M stage) pathological stage.



Validation and Assessment of the Prognostic Signature

In order to validate the validity of the prognosis model, the testing dataset was acquired by a bootstrap method based on resampling of 1000 times (19). The original dataset acted as a training set. In the testing set, we calculated the risk score based on the expression quantity of the model lncRNA and their coefficient according to the training set. Additionally, we compared our prognostic model with existing gene prognostic models by receiver operating curve (ROC) and C-index analysis. The R package of “survival ROC” and the R package of “survcomp” were used to make the ROC curve and calculate the C-index respectively.



Immune Status and GSEA Analysis

Principal components analysis (PCA) was used to show the different immune statuses of LUAD patients based on the whole gene expression profiles and the prediction model. The “limma R” package and “scatterplot3d R” package were used to complete the PCA analysis. Gene set enrichment analysis (GSEA4.0.3) was used to identify the biological function of the prediction model.



Statistical Methods

Cox regression analysis, survival analysis, and PCA analysis were achieved in the R software (version 3.6.0). Kaplan–Meier survival analyses were performed by the “survival R” package and “survminer R” package in R software. We verified the prediction model with the “survival R” package, “survminer R” package, “survival ROC R” package, “pheatmap R” package, and the “ggpubr R” package. Gene set enrichment analysis analysis results whose NOM-P value < 0.05 was thought to be statistically significant.



RESULTS


Establishment of Immune-Related lncRNA

Figure 1 presents the flow diagram of this research. A total of 14,144 lncRNAs sequencing data were obtained from TCGA database and 331 immune genes were detected from MSigDB (20). Immune-related lncRNAs were received by building the immune lncRNAs co-expression network through the “limma package” in R studio and Cytoscape3.7.1 (Figure 2A). The co-expression network refers to the relationship between the immune genes and the lncRNAs. Finally, 554 lncRNAs were identified (P ≤ 0.001).


[image: image]

FIGURE 1. The flow diagram of the whole study base on TCGA database.
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FIGURE 2. Co-expression network and the result of Cox regression analysis. (A) Co-expression network between immune genes and lncRNAs. (B) The forest plot of univariate cox regression identified twelve immune-related lncRNAs associated with OS. (C) The forest plot of multivariate Cox regression analysis of seven immune-related lncRNAs associated with OS.




Construction and Validation of the Immune-Related lncRNA Signature of LUAD

Univariate cox regression analysis was first applied to recognize the predictive model. A total of 12 immune-related lncRNAs had a conspicuous connection with the overall survival rate (P < 0.001). The forest plot of the univariate cox regression is shown in Figure 2B. Then, 12 immune-related lncRNAs were selected and put into the multivariate Cox regression analysis. The result revealed that seven immune-related lncRNAs can act as independent prognostic factors for LUAD. The forest plot of the multivariate cox regression is shown in Figure 2C. Finally, the seven immune-related lncRNAs were selected as our model to predict LUAD’s prognosis (Table 1). The risk score of each patient was computed according to the following formula. Risk score = 0.167 × expression quantity of AC022784-1 + 0.274 × expression quantity of NKILA + (−0.401) × AC026355-1 + (−0.487) × expression quantity of AC068338-3 + 0.171 × expression quantity of LINC01843 + (−0.168) × expression quantity of SYNPR-AS1 + (−0.472) × expression quantity of AC123595-1. We obtained a high-risk group (n = 222) and a low-risk group (n = 223) according to the median risk scores. The overall survival (OS) of patients in the high-risk group are shorter than in the other group (P-value = 1.484e-7; Figure 3A). In our survival analysis, the survival rate of the LUAD patients in the low-risk group was 66% after 3 years, 46% after 6 years, however, the survival rate in the high-risk group was only 48% after 3 years, 17% after 6 years, respectively. The risk score curve and survival status data of these two different groups are shown in Figure 3B. The abscissa axis of the risk score curve and survival status data were ranked by the risk score value. This result showed that the mortality of LUAD patients in the high-risk group was much higher than patients in the other group. To show the expression difference of our model lncRNAs, we used a heat-map plot (Figure 3C). The heat-map showed that the expression of lncRNAs (NKILA, AC022784-1, LINC01843) were obviously up-regulated in patients in the high-risk group, whereas the model lncRNAs (SYNPR-AS1, AC026355-1, AC068338-3, AC123595-1) were down-regulated. In the low-risk group, the expression of NKILA, AC022784-1, and LINC01843 were correspondingly decreased. The accuracy of the prognostic model was shown in the ROC curve. The area under the curve (AUC) values of the ROC curve of the 1-, 3-, and 5-year OS were 0.747, 0.678, and 0.702, respectively (Figure 3D). Then, the prognostic model was verified in the testing dataset, the OS in the high-risk group was significantly worse than that in the low-risk group (P-value = 9.853e-10; Figure 3E). The risk score curve and survival status data of the two different groups in the testing dataset are shown in Figure 3F. The heat-map plot of the testing dataset is shown in Figure 3G. Similarly, the AUC values of the 1-, 3-, and 5-year OS in the testing dataset were 0.847, 0.696, and 0.747, respectively (Figure 3H). The C-index for OS predictions in the training dataset and testing dataset were 0.687 (95% CI, 0.639–0.735) and 0.749 (95% CI, 0.707–0.791) (Figure 4).


TABLE 1. The seven immune-related lncRNAs detected from multivariable Cox regression analysis.
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FIGURE 3. Kaplan–Meier curve survival analysis, risk score analysis, heatmap, Time–ROC curve analysis. (A) Kaplan–Meier curve, (B) risk score, (C) heatmap, (D) time–ROC curve of the immune-related lncRNA signature in the training cohort. (E) Kaplan–Meier curve, (F) risk score, (G) heatmap, and (H) time–ROC curve of the immune-related lncRNA signature in the testing cohort.
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FIGURE 4. C-index of the immune-related lncRNA signature in the training cohort and the testing cohort.




Independent Analysis Between the Prognostic Model and the Other Clinical Variables

In order to evaluate whether the survival prognosis of these lncRNAs were independent of other clinical factors. We used cox regression analysis to analysis LUAD clinical characteristics based on the predictive model. Univariate independent prognostic analysis illustrated that the risk score, stage, pathological T stage, and pathological N stage have statistical difference when connected with overall survival (P < 0.001) (Figure 5A). Multivariate independent prognostic analysis illustrated that stage and risk score can be considered as independent predicted factors of LUAD (P < 0.05) (Figure 5B). In conclusion, univariate and multivariate independent prognostic analysis illustrated that the prediction model was an independent predicted factor (P < 0.05) (Table 2). Furthermore, we used stratification analysis to identify the independence of the prediction model (Figures 5C,D). For stage, AC068338-3 was significantly up-regulated in early stage LUAD (P < 0.001). AC022784-1 was determined to be over expressed in patients of later stage LUAD (P < 0.05). SYNPR-AS1 was significantly up-regulated in early stage LUAD (P < 0.05). AC068338-3 had obviously statistical significance comparing with the pathological T stage (P < 0.001). The expression of AC068338-3 was down-regulated with the development of the pathological T stage.


[image: image]

FIGURE 5. Stratification analyses of clinicopathological characteristics. (A) Univariate independent prognostic analysis forest map of the prognostic model and LUAD clinicopathological characteristics. (B) Multivariate independent prognostic analysis forest map of prognostic model and LUAD clinicopathological characteristics. (C) Stratification analyses of all patients adjusted to stage using the signature of seven immune-related lncRNAs. (D) Stratification analyses of all patients adjusted to T stage using the signature of seven immune-related lncRNAs.



TABLE 2. Univariate and multivariate Cox regression analyses among other clinical factors.
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Comparison With Other Existing Prognostic Signatures

We compared our prognostic model with other published prognostic signatures (21–23). In Figure 6A, the AUC of ROC for 5-year OS in our seven immune-related lncRNA model was 0.702. The C-index is 0.687. Comparing with other prognostic models, our model has superior predictive sensitivity and specificity. The AUC of the eight-lncRNA signature of Miao, seven-lncRNA signature of Lin, and five lncRNA signature of Zeng are 0.627, 0.542, and 0.542, respectively. The C-index of the eight-lncRNA signature of Miao, seven-lncRNA signature of Lin, and five lncRNA signature of Zeng are 0.613, 0.531, and 0.530, respectively (Figure 6B).
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FIGURE 6. Comparison of the receiver operating characteristic (ROC) curve (A) and c-index (B) for different prognostic signatures.




The Immune State of Different Risk Groups and Functional Enrichment Analysis

In order to identify the discrepancy between the two risk groups based on our model lncRNAs and the total gene expression, PCA analysis was applied to our progression (Figure 7). The result illustrated that patients in these two groups were spread in different directions. However, the model lncRNAs divided LUAD patients into two specific sections, showing that the immune status of LUAD patients were quite different in the two groups. To identify the unknown function of the seven-lncRNAs model, we used GSEA analysis to find possible biological functions of the seven-lncRNA model of LUAD (Figure 8). The GSEA analysis showed that five tumor gene sets (“P53_SIGNALING_PATHWAY,” “DNA_REPLICATION,” “CELL_CYCLE,” “SMALL_CELL_LUNG_CANCER,” “PATHWAYS_IN_CANCER”) were obviously enriched in the high-risk group. The result indicated that these associated biological pathways can significantly affect the tumorigenesis of LUAD.
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FIGURE 7. Low- and high-risk groups displayed different immune status. (A) Principal components analysis between low- and high-risk groups based on whole gene expression profiles. (B) Principal components analysis between low- and high-risk groups based on the signature of seven immune-related lncRNAs.



[image: image]

FIGURE 8. Gene set enrichment analysis (GSEA) between high and low immune risk groups. (A) CELL_CYCLE; (B) SMALL_CELL_LUNG_CANCER; (C) P53_SIGNALING_PATHWAY; (D) DNA_REPLICATION; (E) PATHWAYS_IN_CANCER.




DISCUSSION

Lung adenocarcinoma is the most common pathological subtype and it has been widely detected over the years via unique genetic changes and various prognostic factors (24–26). Due to unknown pathogenesis, the mortality of LUAD patients is still high and the treatment outcome is also unsatisfactory (27). In recent years, lncRNAs have played a more significant role in the development of tumors and the disorder of lncRNA may be considered as a crucial factor in the activities of tumors (28, 29). We have found that lncRNA participated in 33 kinds of cancers. Moreover, the importance of immune-related genes in tumor progression and immunotherapies has become apparent (30–32). Immune-related lncRNA helps to prioritize cancer-related lncRNA and distinguish cancer subtypes based on specific immunological characteristics. In addition, in recent years, prognostic biomarkers combined with the tumor immune microenvironment have already emerged (33–36). The value of immune-related lncRNA has been shown in many cancers such as hepatocellular carcinoma (HCC), anaplastic glioma (37), glioblastoma multiforme (38), diffuse large B cell lymphoma (39), and breast cancer. In the research of HCC, Zhang et al. identified that the immune-related lncRNA signature not only had a significant effect on survival prognosis but also had the possible role of evaluating the response to ICB (immune checkpoint blockade) immunotherapy (40). Shen et al. discovered the 11-lncRNA signature of breast cancer and analyzed the correlation between the lncRNA prognostic signature and the infiltration of immune cell subtypes (41). This novel field can improve patient treatment in the era of immunotherapy. Although the preciseness of survival prediction has still not reached its potential and many limitations remain. Therefore, it is necessary to identify accurate markers and to choose suitable immune therapies to enhance the survival rate of LUAD.

Recently, several studies have revealed prognostic markers of the tumor immune microenvironment that are capable of predicting the prognosis of the tumor. Shen et al. found that an immune gene model can act as a possible marker to predict the prognosis of clear renal clear cell cancer (42). Yang et al. revealed that a prediction immune model can forecast the survival outcome of cervical cancer (43). Chen et al. reflected that a nine immune gene model has prognostic value for HCC (44). Nowadays, prognostic biomarkers related to tumor immunity in lung cancer are still lacking. In our research, we tried to detect the prognostic model of LUAD based on immune-related lncRNA.

In our study, we demonstrated that a seven immune-related lncRNA can improve prognosis prediction in LUAD. Gene set enrichment analysis analysis revealed that these lncRNAs were enriched in the pathways of “P53_SIGNALING_PATHWAY,” “DNA_REPLICATION,” “CELL_CYCLE,” “SMALL_CELL_LUNG_CANCER,” and “PATHWAYS_IN_CANCER,” A recent study illustrated that an immune regulatory protein can induce apoptosis of lung carcinoma cells through the P53 signaling pathway (45). The P53 signature pathway is closely connected to the progression of lung carcinoma. César Muñoz-Fontela et al. indicated that the p53 signaling pathway has an extensive impact on immune responses (46). For example, it can regulate the immune signal to participate in the immune reaction and effect autoimmunity by restraining inappropriate response of inflammatory cytokines (47–49). DNA replication is a significant molecular mechanism of tumorigenesis. Macheret et al. indicated that the enhancement of DNA replication is an important symbol of cancer progression (50). A recent study revealed that ailanthone can suppress NSCLC growth by restraining DNA replication through reducing RPA1 (replication protein A1) (51). In our research, the prediction signature was not only connected with the immune response but also with tumorigenesis. Compared with previous studies, our study first constructed the prognostic model based on immune-related lncRNAs.

In this study, the immune-related lncRNAs prediction model was established by univariate and multivariate Cox regression analysis. In order to verify the efficiency of our model, we used a K–M survival curve to illustrate the survival time of the two groups. The P value of the K–M survival curve was 1.484e-7, which indicated that our predicated model had a strong correlation with the survival outcomes of LUAD patients. Furthermore, we validated our prognostic signature in the testing set. The AUC of ROC of 5 years were 0.702 and 0.747, respectively in the training dataset and the testing dataset, which showed that this model had superior accuracy. Our prognostic model was also more superior than other prognostic signatures by comparison. Principal components analysis indicated that the prediction model was equipped to separate LUAD patients into different groups according to their immune status. Finally, we used GSEA analysis to detect the biological functions of our prediction model. The result powerfully identified that these lncRNAs participated in the progression of the tumors.



CONCLUSION

In conclusion, in this study, we constructed an immune-related lncRNAs model of LUAD. The finding illustrated that the seven immune-related lncRNAs prognosis model was efficient in predicting the clinical prognosis. Furthermore, studies based on the immune response and lncRNA not only enhanced the diagnosis rate but also gave us a new direction for immune therapy.
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Objective

To find new immune-related prognostic markers for non-small cell lung cancer (NSCLC).



Methods

We found GSE14814 is related to NSCLC in GEO database. The non-small cell lung cancer observation (NSCLC-OBS) group was evaluated for immunity and divided into high and low groups for differential gene screening according to the score of immune evaluation. A single factor COX regression analysis was performed to select the genes related to prognosis. A prognostic model was constructed by machine learning, and test whether the model has a test efficacy for prognosis. A chip-in-chip non-small cell lung cancer chemotherapy (NSCLC-ACT) sample was used as a validation dataset for the same validation and prognostic analysis of the model. The coexpression genes of hub genes were obtained by pearson analysis and gene enrichment, function enrichment and protein interaction analysis. The tumor samples of patients with different clinical stages were detected by immunohistochemistry and the expression difference of prognostic genes in tumor tissues of patients with different stages was compared.



Results

By screening, we found that LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 is closely related to prognosis. After machine learning, we constructed the immune prognosis model from these 5 genes, and the model AUC values were greater than 0.9 at three time periods of 1, 3, and 5 years; the total survival period of the low-risk group was significantly better than that of the high-risk group. The results of prognosis analysis in ACT samples were consistent with OBS groups. The coexpression genes are mainly involved B cell receptor signaling pathway and are mainly enriched in apoptotic cell clearance. Prognostic key genes are highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. The immunohistochemical results showed that the expression of COPG2IT1 and HLA.DQA1 in stage III increased significantly and the expression of LYN, C3, and TNFRSF17 in stage III decreased significantly compared with that of stage I. The experimental results are consistent with the previous analysis.



Conclusion

LYN, C3, COPG2IT1, LA.DQA1, and NFRSF17 may be new immune markers to judge the prognosis of patients with non-small cell lung cancer.





Keywords: machine learning, model building, immune-related prognostic markers, immunohistochemistry, non-small cell lung cancer



Introduction

Non-small cell lung cancer is the most common type of lung cancer, accounting for about 80–85% of the total lung cancer (1). According to statistics from the American Cancer Society, lung cancer accounted for 26% of all cancer deaths in women and 29% of all male deaths in the United States in 2012 (2), and lung cancer is still the number one killer of human cancer-related deaths. In the past few decades, with various surgical methods including surgical resection, chemotherapy, radiation therapy and molecular targeted therapy, the survival rate of patients diagnosed with NSCLC has significantly improved (3). The emergence of gene-targeted therapies such as: EGFR(epidermal growth factor receptor) gene changes and EML4-ALK(spinous cortex microtubule-associated protein-like 4 and anaplastic lymphoma kinase) gene rearrangements has promoted the development of TKI targeted therapy. And tyrosine kinase inhibitors and crizotinib have come to be the important targeted therapies (4–7). But the current effect is still unsatisfactory, and the 5-year overall survival rate of lung cancer is still less than 15% (8, 9). In recent years, immunotherapy has been developed and increasingly used for patients with lung cancer. For example: PD-L1 is overexpressed in many tumor cells including lung cancer cells,and it plays an important role in regulating the immune response of tumor cells (10–12). Currently, there are several clinical trials involving FDA-approved immune checkpoint inhibitors. These trials attack by blocking PD-L1/PD-1 signaling pathway tumor cells expressing PD-L1. However, the current research on prognostic genes related to immune checkpoints is very scarce. Therefore, finding immune prognostic markers in NSCLC is of great significance for the prediction and targeted treatment of NSCLC.



Materials and Methods


Data Acquisition and Immune Score

The gene expression profile data set GSE14814 was obtained from the National Biotechnology Information Center (NCBI) GEO (Gene Expression Omnibus) database, which contained 62 samples of untreated cancer patients with non-small cell lung cancer and 62 patients with non-small cell lung cancer after chemotherapy. Samples of 62 untreated patients with non-small cell lung cancer were evaluated for tumor purity scores and immune scores using the Estimate software, and the distribution of immune score was plotted using the ggstatsplot software package in R language. The NSCLC-OBS patients were divided into high and low groups based on the immune scores, using the R language limma package to compare the two groups to obtain differentially expressed genes. “Ggplot2” “heatmap” package in the R software package was used to draw the volcano map and heat map of the difference gene expression.



Screening of Prognostic Related Genes and GSEA Analysis

For the clinical information of patients with differential genes combined, the unidimensional COX regression analysis was used to reduce the dimension for the first time, and then the second dimension reduction was carried out by 1000 minimum depth method in random forest to obtain the marker with the highest prognostic value gene. Random forest is a method of machine learning, and its purpose is to obtain prognostic value. The largest variable has more accurate results than the conventional multi-factor COX hazard ratio model. The model kernel is a non-linear model, which is closer to the biological reality than the linear model kernel of multi-factor COX regression. In order to obtain a wider range of random forest explanatory variables, and due to the inaccurate biological fitting of single-factor COX regression, the first dimension reduction result was selected, with a P value of 0.1, and the obtained variables were included in the second dimension reduction analysis. In order to obtain a more stable learning result, the tree of the random forest was set to 1,000. The result of the learning data also outputs the risk score value of each patient for the next step to show the effect of risk stratification.

Then, GSEA analysis of prognostic marker was performed, and GO and KEGG data sets on the GSEA official website were used for functional enrichment and pathway enrichment. The significant enrichment criteria are that: the absolute value of NES is greater than 1, and the NOMp value is less than 0.05.



Prediction Model Construction and Evaluation

According to the previous calculation results of COX, GSEA, and random forest model, the immune prognosis model construction and risk assessment were performed for the patients in the OBS group, and the risk scores were ranked. The survminer package in R language was used to find out the best cutting point, and the patients were divided into high and low risk groups for subsequent evaluation of the model efficiency. The expression of five key prognostic genes in the high-risk group and the low-risk group was analyzed and compared, and a heat map was drawn. Based on the results of the high and low risk grouping, the prognostic difference of the K-M survival curve by comparing high and low risk group was plotted, and then the ROC analysis was performed to verify the above results.



Verification of Prediction Models

The constructed prediction model was applied to a sample of NSCLC-ACT patients, and the score calculations were performed on ACT patients. The expression of five key prognostic genes in the high-risk group and the low-risk group was analyzed and compared, and a heat map was drawn. K-M survival analysis and ROC calculation model accuracy were performed respectively.



Invasion of Hubgene in Immune Cells and Immune Targets

The GSVA package was used to score the relative infiltration of 24 immune cells in NSCLC-ACT patients, and the NSCLC-ACT patients were divided into high and low risk groups according to the risk grouping results of the random forest model. The infiltration of 24 immune cells in high and low risk groups was compared. Hubgene co-expressed genes were also calculated based on pearson analysis (screening method P < 0.05, sorted by R value from small to large). Then, we used R software (3.6.1) cluster analysis package cluster profiler to perform functional enrichment and pathway enrichment analysis on hubgene and its co-expressed genes. After that, we analyzed and calculated the significance of enrichment of 5 prognostic genes and their co-expressed genes in each signal pathway through a hypergeometric distribution exact test, and assessed the signal pathways that were significantly affected (P < 0.05). The protein database and the cytoscape software were used to analyze the protein interactions of the hub gene co-expressed genes. In order to further evaluate the relationship between immune factors at the non-cellular level and hubgenes, the correlation analysis between hubgenes and immune checkpoints in the model was performed, and immune targets that were highly correlated with hubgene were screened according to the pearson correlation coefficient.



Experimental Verification of Prognostic Genes

100 patients diagnosed with stage I and stage III non-small cell lung cancer were selected from our hospital and were divided into two groups. The selected patients had underwent surgery. The general conditions of the two groups of patients are shown in Table 1. All patients were diagnosed by pathological examination, and were diagnosed by two senior pathologists. Tissue chips were taken from their tumor tissues. Those tissue chips were first dewaxed for 20 min in xylene and then in fresh xylene. This step was repeat for 1 time. Then, we soaked the dewaxed chip in 100% ethanol for 5 min twice, and then 95% ethanol, 80% ethanol, and distilled water for 5min. Basic antigen repair solution (Tris-E DTA, pH = 9) was used. Then, we put the chips into a pressure cooker to boil them for 2 min, and naturally cool them to room temperature. Then, the chips were incubated for 10 min at room temperature in the dark with 3% H2O2, blocked with normal sheep serum working solution for 30 minutes at room temperature. Then, we added primary antibody RP215, at 4°C overnight. In the next morning, we added HRP-labeled secondary antibody at room temperature for 30 min. DAB coloration and hematoxylin counterstaining was carried. After that, we observed the chips with microscope. We randomly selected 5 high-power fields, and two pathologists independently read the film. The cytoplasmic staining score used four intensity levels: 0: negative; 1, weak positive; 2, moderate positive; 3, strong positive. And four percentage of positive cells: 0, 0%; 1, 1–5%; 2, 6–25%; 3, 26–50%; 4, 51–100%. The final score was the product of intensity grade and positive cell rate (percentage) grade, 0-3 for low expression and 4–9 for high expression.


Table 1 | Basic information of patients in the stage I lung cancer group and stage III lung cancer group.





Statistical Analysis

Data analysis was performed using SPSS 20.0 statistical software. Comparison of gene expression levels in different tissues was performed using the χ2 test and independent sample t test, and clinical pathological characteristics were analyzed using the χ2 test. Survival analysis was performed using Kaplan-Meier method. P <0.05 was defined as a statistically significant difference.




Results


NSCLC-OBS Sample Grouping and Differential Gene Screening

We divided 62 NSCLC-OBS samples into high and low score groups according to their tumor purity and immune scores using the estimation software and the “ggstatsplot” package in R. The violin distribution map of the immune scores (Figure 1A), and the T-test results showed the high and low score groups. There were significant differences in tumor heterogeneity (p <0.01) (Figure 1B). A differential gene analysis was performed on 62 samples of the high and low score groups, and the results showed that there were 38 differential genes. The R software package was used to draw the volcanic map of the difference results (Figure 1C) and heatmap (Figure 1D).




Figure 1 | (A) Violin distribution of immune scores for OBS samples. (B) Comparison of tumor heterogeneity between high and low score groups. (C) Volcano map of differential genes in OBS samples. (D) Heat map of differential genes in OBS samples. (E) Single factor regression analysis of differential genes to screen for key genes for prognosis.





Screening and GSEA Analysis of Prognostic Related Genes

A single factor COX regression analysis was performed on the differential genes based on the patient’s clinical information, and a total of 95 variables were obtained. After including them in the secondary dimension reduction analysis, we obtained LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 (Figure 1E). Expression of these five hubgenes that were most relevant to the prognosis of patients will reduce the survival time of patients (Figures 2A–E). The results of GSEA for each prognostic relevant marker were shown in Figures 2F–G. As we can see that the GO analysis results of prognostic genes are mainly enriched in ADAPTIVE_IMMUNE_RESPONSE, and the KEGG analysis results are mainly in CHEMOKINE, HEDGEHOG and JAK signaling pathways.




Figure 2 | (A–E) Prognostic analysis of 5 key prognostic genes. (F) GO results of GSEA analysis of five key prognostic genes. (G) KEGG results of GSEA analysis of five key prognostic genes.





Construction and Evaluation of Prediction Models

According to the previous calculation results, we identified LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 as genes that affected immune prognosis. According to the difference in the expression of these five genes, we divided 62 NSCLC-OBS samples into high and low risk groups (Figures 3A, B). Compared with the low-risk group, the gene expression of COPG2IT1 and HLA.DQA1 increased and the gene expression of LYN, C3, and TNFRSF17 decreased in the high-risk group (Figure 3C). The K-M survival curve results showed that the survival time and survival rate of patients identified as high-risk group were significantly lower than those of low-risk group (Figure 3D). Using ROC to calculate the model, we found that at 1, 3, and 5 years, the AUC values of the prediction models for these three time periods over 5 years were all greater than 0.9 (Figure 3E), which proved that this prediction model had a high accuracy in the NSCLC-OBS sample.




Figure 3 | (A) The abscissa is the number of patients in OBS group, and the high and low risk groups are divided by the risk score. (B) The abscissa is the number of patients, and the division of high-score and low-risk groups is verified by survival. (C) Heatmap of the expression of five key prognostic genes in high-risk and low-risk patients in OBS group. (D) Comparison of survival analysis between high-risk and low-risk patients; (E) ROC analysis test results of model sensitivity and specificity.





Verification of Prediction Models

This prediction model was applied to 62 NSCLC-ACT samples. The results showed that the high and low-risk groups divided by the model had significant differences (Figures 4A, B). Compared with the low-risk group, the gene expression of COPG2IT1 and HLA.DQA1 increased and the gene expression of LYN, C3, and TNFRSF17 decreased in the high-risk group (Figure 4C). The survival time and survival rate of patients in the high-risk group were significantly lower than those in the low-risk group. (Figure 4D), the ROC curve showed that the AUC value of the prediction model in the three time periods of 1, 3, and 5 years was greater than 0.9 (Figure 4E), which proved that this prediction model had high accuracy.




Figure 4 | (A) The abscissa is the number of patients in ACT group, and the high and low risk groups are divided by the risk score. (B) The abscissa is the number of patients, and the division of high-score and low-risk groups is verified by survival. (C) Heatmap of the expression of five key prognostic genes in high-risk and low-risk patients in ACT group. (D) Comparison of survival analysis between high-risk and low-risk patients. (E) ROC analysis test results of model sensitivity and specificity.





Model Hubgene Infiltration and Immune Targets in Immune Cells

The NSCLC-ACT patient samples were evaluated to obtain the relative infiltration scores of 24 immune cells in the NSCLC-ACT patient group. According to the prediction model, the ACT patients were divided into high and low risk groups. After comparing the 24 types of immune cell infiltration in the high and low risk groups, we found that hubgene of the prediction model was most expressed in fibroblasts, but there was no significant difference in immune infiltration between the high and low risk groups in 24 immune cells (Figure 5A).




Figure 5 | (A) Hubgene infiltration in 24 immune cells in high-risk and low-risk groups of ACT patients. (B) Functional enrichment results of co-expressed genes of five key prognostic genes. (C) Pathway enrichment results of co-expressed genes for five key prognostic genes. (D–F) Protein-protein interaction network of co-expressed genes of five key prognostic genes.



According to pearson calculation, 100 genes co-expressed with LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 were obtained (p < 0.05, sorted from small to large). Functional enrichment and pathway enrichment analysis of the five hubgenes and 100 co-expressed genes showed that the co-expressed genes were mainly involved in B cell receptor signaling pathway. And these genes were mainly enriched in biological processes such as apoptotic cell clearance, Leishmaniasis, Hematopoietic cell lineage and Intestinal immune network for IgA production (Figures 5B, C). Protein interaction analysis of the co-expressed genes of the hub gene yielded three significantly associated protein interaction networks (Figures 5D–F). Through the correlation analysis of five hubgene and immune checkpoints in the prediction model, we found that LYN, C3, COPG2IT1, HLA.DQA1, TNFRSF17 were highly correlated with PDCD1, PDCD1LG2, LAG3, CTLA4 immune checkpoints (p <0.05) (Figure 6).




Figure 6 | (A–T) Correlation analysis results of LYN, C3, COPG2IT1, HLA.DQA1, TNFRSF17 with PDCD1, PDCD1LG2, LAG3 and CTLA4 immune checkpoints.





Experimental Verification of Prognostic Related Genes

Except for the staging of lung cancer, there was no significant difference in general information between the two groups of patients (P < 0.05). The expression levels of five prognostic related genes in the tumor tissues of the two groups of patients are shown in Table 2. The results of immunohistochemical analysis showed that compared with the stage I lung cancer group, the expression levels of COPG2IT1 and HLA.DQA1 in the stage III lung cancer group were significantly increased, and the expression levels of LYN, C3 and TNFRSF17 were significantly decreased (Figure 7). The results of the immunohistochemical experiments are consistent with the conclusions obtained in the previous analysis.


Table 2 | Expression of five prognostic related genes in the stage I lung cancer group and stage III lung cancer group.






Figure 7 | Expression levels of five key prognostic genes in tumor tissues of two groups of patients with NSCLC.






Discussion

Non-small cell lung cancer (NSCLC) accounts for about 80–85% of all lung cancers, and the main pathological types include adenocarcinoma and squamous cell carcinoma. For the most part, the treatment of NSCLC depends on the stage at which it is treated. Patient’s surgery resection rate is about 25% (13). However, many patients are still at risk of recurrence of lung cancer after surgical resection. Among patients with NSCLC after surgical resection, the 5-year survival rate of patients in stage I exceeds 70%, but patients in stage IIIA, the 5-year survival rate is only 25% (13–16). Despite the improvement of surgical methods, the combination of radiotherapy and chemotherapy, and the emergence of molecular targeted therapy, the overall 5-year survival rate of lung cancer remains less than 15%. In recent years, emerging immunotherapy performs well in a variety of cancers, including lung cancer. Blocking the PD-L1/PD-1 signaling pathway to attack tumor cells expressing PD-L1 is the current mainstream method. Currently, there are only four types of PD-1/PD-L1 blockers in the clinic, and it is now preferred to use immunotherapies alone or in combination therapy, for example: in one study, TMB was used to predict the effect of PD1 blocker pembrolizumb (keynote-028) on cancer. The results showed that TMB could help to screen patients with more effective anti PD1 treatment (17). Although the anti-cancer activity of PD-1 and PD-L1 inhibitors is exciting, this type of immunotherapy is not effective for all patients, and meta-analyses indicate that a higher risk of rash, thyroid dysfunction, pruritus, pneumonia, and colitis in patients treated with PD-1/PD-L1 inhibitors (18–20). Large amounts of long-term use of PD-1/PD-L1 inhibitors can easily lead to adverse effects such as the expansion of the MDM2 family or distortion of EGFR and resistance to PD-1/PD-L1 inhibitors (21). At present, more and more studies have reported on the prognostic genes of tumors. For example, blocking siglec-15 can amplify the anti-tumor immunity in TME and inhibit tumor growth in some mouse models (22). According to Monkman et al., after high-plex and high-throughput digital spatial Profiling analysis, EpCAM, cytokeratin, ICOS were significantly associated with survival in patients with non-small cell lung cancer (23). However, these are preliminary studies, and for cancer diseases, multi-gene analysis seems to be more effective. Therefore, predicting and finding more biomarkers that may be related to immune prognosis is important for non-small cell lung cancer significance.

We performed immune assessment on untreated NSCLC patient samples and grouped them for differential gene analysis, single-factor COX regression analysis, Receiver Operating Characteristic (ROC) analysis and survival analysis. We identified LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17, these five genes may be important immune prognostic genes in NSCLC. We modeled these five genes and applied this model to chemotherapy-treated NSCLC samples, and the results showed that the survival and survival of patients identified as high risk group were significantly lower than those of low-risk group, and ROC analysis of the model shows that AUC values are greater than 0.9, which proves that the model has great credibility. Some literatures show that LYN in allergic airway inflammation can reduce inflammatory cell infiltration and levels of IL-13 and IL-4 and downregulate allergen-induced airway inflammation (24). And C3, HLA.DQA1 has been reported in many reports with glomerular nephropathy, idiopathic membranous nephropathy, steroid-sensitive nephrotic syndrome in children, and other immune system diseases (25–28). It is worth noting that B-cell maturation antigen (BCMA) is a transmembrane glycoprotein in TNFRSF17, and current targeted immunotherapy for BCMA has been used in clinical trials of multiple myeloma with satisfactory results (29–31). Immune checkpoint molecules (immune checkpoint) is a regulatory molecule in the immune system that plays a suppressive role in the immune system and are essential for maintaining autotolerance, preventing autoimmune reactions and minimize tissue damage by controlling the time and intensity of the immune response. The expression of immune checkpoint molecules on immune cells will inhibit the function of immune cells and prevent the body from producing effective anti-tumor immune response, tumor formation immune escape. PDCD1, PDCD1LG2 are the key targets in the treatment of widely used PD-1/PD-L1 inhibitors and plays an important role in adolescent idiopathic arthritis, diffuse large B-cell lymphoma, head and neck squamous cell carcinoma, colorectal cancer and other diseases (32–36). LAG3 is the third clinically targeted inhibitory receptor pathway, it can increase the expression of CD4 +, CD25- and promote T cell dysfunction in tumor microenvironment (37, 38), and is significantly expressed in immunohistochemistry of solid tumors including pancreatic cancer, gastric cancer, colorectal cancer, melanoma, urogenital tract cancer, etc (39). It is worth noting that CTLA4, LAG3, and PD1 seem to interact (40, 41). The combination of anti-PD-1-CTLA4 in the treatment of prostate cancer is gratifying (42); meanwhile, antagonizing LAG3 and PD1 can enhance tumor-specific cellular response and induce tumor rejection (43, 44). However, some studies have shown that the expression of LAG3 in TME of NSCLC samples is decreased (23, 45). Whether this indicates that LAG3 plays a unique role in NSCLC, but its specific mechanism and target are still unknown. Correlation analysis of the five hubgene genes and immune checkpoints, LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. This indicates that these five hubgene genes may affect the disease progression of NSCLC patients by regulating immune checkpoints expression. Co-expression analysis of these five hubgene genes yields 100 co-expressed genes (p < 0.05). Performing functional enrichment and pathway enrichment analysis of hubgene and its co-expressed genes, we found that the GO prognostic gene were mainly enriched in ADAPTIVE_IMMUNE_RESPONSE, and KEGG was mainly enriched in CHEMOKINE, HEDGEHOG, and JAK signal pathways. Co-expressed genes are mainly involved in the B cell receptor signaling pathway, and are mainly enriched in apoptotic cell clearance, leishmaniasis hematopoietic cell lineage, intestinal immune network for IgA production, and other biological processes. Among them, CHEMOKINE is an emerging family of chemokine cytokines, which shows a wide range of functions, such as regulating steady-state leukocytes flow and development, and activating the innate immune system. Inappropriate balance of chemokine synthesis or chemokine receptor expression can lead to a variety of pathological diseases. Some drugs containing chemokine-derived peptides may exert antitumor activity in lung cancer, prostate cancer, colon cancer, melanoma, and breast cancer by affecting the tumor microenvironment (46). And adaptive immune response B cell receptor signaling pathway and adaptive cell clearance all play important roles in the process of tumorigenesis and development.

The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies. We found that screened five prognosis-related genes were all closely related to immunity response and mainly involved in B cell receptor signaling pathway. Tyrosine protein kinase Lyn is a protein encoded by the LYN gene in humans and a member of the Src protein tyrosine kinase family. Among various hematopoietic cells, Lyn has become a key enzyme involved in the regulation of cell activation. In these cells, a small amount of LYN is associated with cell surface receptor proteins, including B cell antigen receptor (BCR), CD40 or CD19. Yang et al. (47) found that SHP-1 deficiency in B-lineage cells was associated with heightened lyn protein expression and increased lyn kinase activity. In their study, a modest increase in p56/53lyn protein expression was detected in primary spleen B cells of motheaten mice. Their study suggested that SHP-1 deficiency in B-lineage cells, especially pre-B cells, played an important role in regulating lyn through a post-transcriptional mechanism.

Yamamoto et al. (48) found that the Src-family protein tyrosine kinase Lyn (p56lyn and p53lyn) was expressed preferentially in B cells and Lyn was likely to participate in B-cell antigen receptor-mediated signaling. Yamanashi et al. (49) reported that the Src-like protein-tyrosine kinase p56/p53lyn associates with cell membranes and transduces signals from activated cell surface receptors. p56lyn and p53lyn, products of alternatively spliced lyn mRNA, had differential responses on stimulation of B-cell antigen receptor. Werner et al. (50) firstly described a B cell population containing high levels of intracellular C3, suggesting a new role of B cells in the maintenance of the inflammation by complement C3. Kulik et al. (51) found that when CR2 was bound by its primary C3 activation fragment-derived ligand, designated C3d, it coassociated with CD19 on B cells to amplify BCR signaling. Spaapen et al. (52) firstly reported the hematopoietic mHag presented by HLA class II (HLA-DQA1*05/B1*02) molecules to CD4(+) T cells. This antigen was encoded by a single-nucleotide polymorphism (SNP) in the B cell lineage-specific CD19 gene, which was an important target antigen for immunotherapy of most B cell malignancies.

Mutations in the HLA class II genes could lead to loss of expression of HLA-DR and HLA-DQ in diffuse large B-cell lymphoma (53). In current study, differential expression of HLA-DQA1 gene alleles was analyzed in three different cell populations isolated from peripheral blood B lymphocytes, monocytes, and whole-blood cells. DQA1*03 alleles were among the most expressed in all cell types, whereas DQA1*05 alleles were least expressed in whole blood and monocytes and among the most expressed in B cells (54). It was reported (55) that TNFSF13 could support leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Kampa et al. (56) had already overviewed the whole tumor necrosis factor system and focused on A proliferation-inducing ligand (APRIL, TNFSF13) and B cell-activating factor (BAFF, TNFSF13B) and their receptors transmembrane activator and Ca modulator (CAML) interactor (TACI, TNFRSF13B), B cell maturation antigen (BCMA, TNFRSF17), and BAFF receptor (BAFFR, TNFRSF13C).



Conclusion

In conclusion, our research indicates that LYN, C3, COPG2ITL, HLA.DQAL, and TNFRSFL17 are potential prognostic markers for non-small cell lung cancer. The results of immunohistochemical experiments of patients’ pathological tissues are consistent with this conclusion. These prognosis-related genes are mainly enriched in B cell receptor signaling pathways and are highly related to PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints; this suggests that immunotherapy may improve the prognosis of non-small cell lung cancer patients by regulating these prognosis-related genes.
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Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
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Introduction

In most human cancers, telomerase is reactivated during carcinogenesis by expression of the catalytic subunit telomerase reverse transcriptase (TERT). TERT plays a key role in cancer formation, ensuring chromosomal stability by maintaining telomere length, and allowing cells to avert senescence. It constitutes a limiting factor for formation of the telomerase complex in cancer cells (1). TERT is one of two major components of the larger telomerase complex, which extends telomeres by adding specific short repetitive DNA sequences. These tandem repeats are bound by the shelterin complex, which is composed of six proteins: telomere repeat factor 1 and 2 (TRF1, TRF2), protection of telomeres 1 (POT1), TRF1-interacting nuclear protein 2 (TIN2), tripeptidyl peptidase I (TPP1), and repressor/activator protein 1 (RAP1) (Figure 1) (2). The Shelterin complex plays a fundamental role in protecting chromosome ends and in telomere length regulation (3, 4).




Figure 1 | Telomerase reverse transcriptase (TERT) is the most important telomerase subunit and plays a major role in telomerase activity and in other telomere-unrelated processes in cancer development. Telomerase is a complex reverse transcriptase that comprises, besides TERT, an RNA template for telomere repeats (TERC), and a group of proteins called shelterin complex (upper panel). While the primary function of TERT is telomere lengthening (canonical function, lower panel, on the right), there are also other, telomere-unrelated functions (non-canonical functions, lower panel, on the left).



The TERT gene is situated at chromosome 5p15.33 in humans, and is an integral and essential part of the telomerase holoenzyme. TERT gene is 42 kb long and consists of 15 introns and 16 exons with a 260 bp promoter core (5). The reverse transcriptase domain is encoded by 5–9 exons. The TERT transcript can be spliced into 22 isoforms (6). TERT promoter (TERTp) region contains GC boxes that bind the zinc finger transcription factor Sp1, which increases TERT transcription, and E-boxes that bind both transcriptional enhancers and repressors. TERTp lacks a TATA box but it contains binding sites for many different transcription factors (7).

Another major component of the telomerase complex is telomerase RNA component (TERC). It is an RNA sequence, which functions as a template for synthesis of telomeres by TERT. These two main components of telomerase are accompanied by a host of auxiliary proteins, including dyskerin (DKC1), telomerase Cajal body protein 1 (TCAB1), non-histone chromosome protein 2 (NHP2), nucleolar protein 10 (NOP10), glycine arginine rich 1 (GAR1), heat shock protein 90 (HSP90) and serine and arginine rich splicing factor 11 (SRSF11) (8). This complex is essential for maintaining telomere homeostasis, which is crucial in regulation of aging and cancer development (9).

Over 80% of tumors adopt various regulatory strategies, known as telomere maintenance mechanisms (TMMs). They maintain telomere length by reactivating telomerase, and therefore are known as TERT canonical functions (10). Individual TMMs are specific for cancer type, tissue histotype, and cell lines. The most important TMMs are (1) TERT gene rearrangements and TERT and TERC gene amplification, (2) TERTp somatic mutations, (3) epigenetic alterations, (4) transcription factor binding, (5) polymorphic variants within TERT gene body and TERTp, and (6) alternative splicing (Figure 1). Each of these mechanisms will be described in detail in subsequent sections of this manuscript.

Approximately 10–15% of tumor cells acquire immortality through a telomerase-independent mechanism, namely alternative lengthening of telomeres (ALT) (11). On the other hand, the so called non-defined telomere maintenance mechanism (NDTMM) are activated when both telomerase (or TERT) expression and ALT are absent (10, 12). While telomere lengthening is considered a major function of telomerase, it can also modulate expression of various genes, such as nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Wnt/β-catenin signaling pathway genes (13, 14). Such alternative, non-telomere-related roles are known as non-canonical functions of TERT. They will be presented in the last two chapters of this review (Figure 1), together with potential consequences of TERT telomere-unrelated functions for the development of anti-cancer strategies and applications of TERT as a potential therapeutic target.



Chromosomal Rearrangements

Chromosomal rearrangements are a type of mutation that results in a change in chromosome structure. They may involve duplications, amplifications, insertions, interchromosomal changes, inverted orientations, or deletions (15). A concept associated with chromosomal rearrangements is copy number variation (CNV). CNV describes the fact that some sections of the genome may be repeated and the number of these repeats may be different between individuals. CNVs involve 50 bp to over 1,000,000 bp fragments of gene regulatory regions (16). They are associated with gene expression and phenotype by affecting gene copy number (17). Chromosomal rearrangements may affect TERT gene copy number and are a known TMM. They may involve insertion of active enhancers close to the TERT gene and increasing TERT expression. A common process is TERT amplification, which can arise from telomere dysfunction (18). It results from a dysfunctional telomere, promoting fusion of chromosome ends, and subsequently forming a dicentric chromosome (19). Several studies showed that chromosomal rearrangements at the TERT locus may be associated with cancer development and as was observed, e.g., in the case of neuroblastoma (20–22). Furthermore, a major study specifically focusing on TERT gene amplification found it to occur in many cancers, such as esophageal, ovarian cancer, and squamous cell carcinoma (12). In addition, other authors found telomerase activity to be the highest in tumors with TERT amplification (22, 23). Gay-Bellile et al. observed increased number of TERT gene copies in breast cancer cells, and upregulation of TERT gene was associated with worse prognosis in breast cancer, thyroid carcinoma, and lung adenocarcinoma (24). This suggests that TERT rearrangement could be a critical step in cancer development.



TERT Promoter Hot-Spot Mutations

TERT somatic mutations are the most common non-coding mutations in human cancer cells. While they are documented to occur in the coding region, they are far more common in the promoter region. Some TERTp mutations were shown to affect TERT expression, telomere length and telomerase activity by abrogating telomerase silencing (25). TERTp mutations occur in specific clinical and phenotypic subtypes of various cancers and cell lines, and recurrent mutations have been identified in 19% of cancers (26). In cancer cells, TERTp mutations are generally associated with higher TERT expression level.

The two most common TERTp mutations are C>T transitions, located at -124 bp, and -146 bp from the transcription start site (TSS). They are also referred to as C228T and C250T, respectively (27, 28). These mutations result in an 11 bp nucleotide fragment providing a new consensus binding site for E-twenty-six (ETS) transcription factors (29). Many other somatic mutations were detected that occur in the TERTp in cancer, although less frequently than C228T and C250T and they also may contribute to increased TERT transcription. A group of CC>TT substitutions, located at −124/−125 and −138/−139 bp relative to the TSS, result in an ETS binding site in skin cancers (30). In melanoma patients, the −138/−139 mutation correlated with more adverse survival (31). In basal cell carcinoma, Maturo et al. observed additional TERTp alterations other than the recurrent TERTp hotspot mutations (32).

TERTp mutations were found in several tumor types with different frequencies. Generally, two types of tumors can be distinguished: those with low and high proliferative potential (33). Tumors with high levels of TERTp mutation, such as, melanoma, glioblastoma, bladder cancer or hepatocellular carcinoma (somatic mutation levels of 64–80%, ~84%, ~65%, and 32–45%, respectively) are characterized by low proliferative potential (28, 33–36). Tumors with low or undetectable level of TERTp mutation have high proliferative potential, e.g., breast cancer 0.9% (37), testicular cancer 3% (38), intestinal cancer (34) and acute myeloid leukemia and non-Hodgkin’s lymphoma (39, 40). It is important to note that TERTp mutation was not detected in hematological cell lines cultured in vitro (41), as well as in a group of patients with hematological malignances, with the exception of mantle cell lymphoma patients (42). In the case of cancers with low proliferative potential, TERTp mutation is considered a late tumorigenic event (33). In some other cancers, e.g., basal cell carcinoma, TERTp mutations may appear as a result of environmental factors, such as contact with carcinogens, in which case it is considered as an early tumorigenic event (10, 26). TERTp mutations are thought to contribute to tumorigenesis in two distinct phases. In the first phase, TERTp mutations heal the shortest telomeres, thus extending life span of cells containing them, but they fail to avert general telomere shortening. This leads to the second phase, where the critically short telomeres result in genomic instability, causing further increase in telomerase expression needed for continued cell proliferation (43).

Another interesting aspect of TERTp mutation is the possible cooperation with mutations, such as those in genes coding for BRAF, FGFR3, and IDH (44–48). BRAF is a serine/threonine kinase and its mutation results in activation of the mitogen-activated protein kinase (MAPK) and/or phosphatidylinositol 3-kinase–serine threonine protein kinase (PI3K-AKT) pathways. This leads to upregulation of the ETS system and induction of TERT expression. Out of a variety of BRAF mutations, V600E (a glutamic acid to valine substitution) is the most frequent. This mutation leads to increased GABPA-GABPB complex formation and activation of TERT expression (29, 49). Co-existence of TERTp mutation and V600E is associated with poor prognosis in patients with thyroid cancer, particularly papillary thyroid cancer (8, 50). Fibroblast growth factor receptor 3 (FGFR3) is another example of genetic alterations interacting with TERTp. Its mutation is well described in urothelial carcinoma (51). FGFR3 belongs to the tyrosine kinase receptor family and stimulates the RAS-mitogen-activated protein kinase and PI3K-AKT pathways. TERTp and FGFR3 mutations are more often present together than alone (47). Co-occurrence of these mutations may support creation of tumors with poor prognosis (10). Additionally, tumors with TERTp and/or FGFR3 mutations had shorter telomeres when compared to tumors without these mutations (47). Malignant gliomas, acute myeloid leukemia and cholangiocarcinoma, are often associated with mutations in isocitrate dehydrogenase 1 and/or 2 (IDH1 and/or IDH2) (52). These somatic mutations occur at arginine residues of the IDH active site (namely, IDH1R132H, IDH2R140Q, and IDH2R172K) (53). According to Diplas et al., TERTp and IDH mutation status can be used together to classify over 80% of all diffuse gliomas (54). A previous study suggested that presence of TERTp mutation and additional 1p/19q co-deletion and also mutation within the IDH gene led to a better response to chemotherapy and better outcome in glioma patients (55).

In conclusion, TERTp mutation status, alone or in combination with mutations in other genes, can be used to characterize distinguish various types of tumors, as well as predict prognosis and outcome. While TERTp mutation status appears to significantly impact cancer development, some cancers, such as prostate, lung, breast, colorectal, and hematological malignancies display telomerase activity, even though they contain few TERTp mutations (24, 39, 40, 56, 57). Consequently, other undefined or epigenetic mechanisms of TERT-upregulating are expected to exist.



Epigenetic Modifications


DNA Methylation

Epigenetics describes stable, and possibly heritable changes in activity and expression, which are not associated with any underlying changes in DNA sequence (58). DNA methylation is a common epigenetic mechanism that is essential for regulation of gene expression. It occurs primarily at non-coding regions of DNA characterized by high frequency of CG repeats. Such regions, called CpG islands, are most commonly found in gene promoters. 60–70% of genes contain promoters with these CpG islands (59).

Tissue-specific DNA hypo- or hypermethylation is considered to be important in regulation of gene expression during development. Such tissue-specific DNA hypermethylation is present at promoters rich in CpG islands (60, 61). Promoter DNA methylation is ubiquitous in human cells and is one of the most commonly encountered mechanisms of gene expression regulation. Promoter methylation generally causes gene silencing by interfering with transcription factor bindings sites. Therefore, promoters of actively transcribed genes are normally unmethylated (62). However, DNA hypermethylation may occur at introns/exons (rather than promoters) of actively transcribed genes, as well as at intra- and intergenic enhancers (63). Having an important role in tissue-specific regulation of transcription, DNA hypermethylation may be considered as a marker for a broad variety of diseases and cancers (64, 65).

Promoter methylation is also a major regulatory element of TERT expression, correlating both with TERT mRNA levels and telomerase activity (66). An approximately 300 bp part of TERTp situated on either site of the TSS is unmethylated in actively transcribed TERT. However, Castelo-Branco et al. and, more recently, Lee et al. documented that hypermethylation of the TERT gene correlates with telomerase activity in different types of cancers (67–69). A study on patients with pediatric brain tumors brought to light a new group of 5 CpG islands located upstream of the TSS, which were hypermethylated and correlated with TERT expression. On the other hand, healthy tissues without TERT expression did not have this hypermethylation (59). This pattern is counter to the generally established functions of DNA methylation (63). Lee et al. discovered that it is due to presence of a new, larger region known as the TERT Hypermethylated Oncological Region (THOR). It is located distal to the TSS and is composed of 52 CpG islands (69, 70). This means that there are two regions of TERTp regarding methylation status in telomerase-positive cells: the unmethylated proximal TERT core promoter, which is where transcription factors are usually bound, and the hypermethylated THOR, located further away from the core promoter (67, 69, 71) (Figure 2). The unusual nature of THOR methylation is due to it acting as a transcription repressor in its unmethylated state. Recently, several authors documented an association between THOR hypermethylation and cancer progression coupled with TERT upregulation in pancreatic and gastric cancers (72, 73). Interestingly, both THOR and the TERTp region proximal to TSS were mostly unmethylated in normal thyroid tissue (49).




Figure 2 | Mechanisms of TERT transcription regulation. The figure shows various mechanisms regulating TERT expression at the transcriptional level. Transcription factors: activators (e.g., c-MYC, SP1, STAT3, NF-κB, and ETS), repressors (e.g., MAD, p53, and WT1), and their respective binding sites are shown. Binding of these transcriptional agents to TERT could be controlled by DNA methylation (CpG sites) in the TERT Hypermethylation Oncological Region (THOR). Two main hotspot mutations within TERTp, -146C > T (C250T) and -124C > T (C228T) upstream of the transcription start site (TSS) generate new E-twenty-six (ETS) binding sites, leading to GABP recruitment and, eventually, TERT transcription. Alternatively spliced variants of TERT, which do not have telomerase activity, could be also generated. Most tissues and organs express no or very low levels of TERT mRNA, dependent on histone markers that are correlated with passive or active transcription in many cells. The figure also shows different miRNAs at the 3’UTR that inhibit translation of TERT.



Regarding TERTp mutation status, it appears that it does interfere with effects of THOR hypermethylation in cancers where TERTp mutation is common. Furthermore, presence of both of these factors may have a synergistic effect on TERT expression. In a study on urothelial bladder cancer patients, co-occurrence of THOR hypermethylation and TERTp mutation was a marker of higher risk of disease recurrence and progression (74). Likewise, a study on melanoma patients showed a similar effect on reduced recurrence-free survival (75). These and other examples show that TERTp mutation coupled with THOR hypermethylation is a better marker of disease progression than TERTp mutation alone. Nevertheless, it should be noted that THOR hypermethylation does not associate with progression in a small group of cancers such as esophageal cancer, meningioma or pituitary adenoma (76).

Another interesting issue is the possible interplay between TERTp mutation, methylation, and histone modifications, which constitute yet another epigenetic mechanism affecting chromatin accessibility. A study by Stern et al. on monoallelic cancers showed that cancers without a specific TERTp mutation at −124 from the TSS had promoter hypermethylation, which was accompanied by repressive histone H3K27me3 methylation, leading to gene inactivation. They hypothesized that presence of this mutation coupled with low TERTp methylation discourages H3K27me3 histone methylation in transcriptionally active TERT (70). Interestingly, one study showed that TERTp hypermethylation was present in both melanoma and normal skin cells. However, only in melanoma cells with TERTp mutation did this hypermethylation correspond to increased TERT expression and chromatin accessibility (77). A further study by McKelvey et al. on thyroid cancer cell lines heterozygous for TERTp mutation demonstrated conclusively that TERTp methylation was allele-specific, whereby TERTp with mutation was significantly less methylated than wildtype promoter. Moreover, MYC, a transcription activator, bound only to the hypomethylated mutated TERTp, resulting in monoallelic expression (MAE) in heterozygous cells (29). MAE is one of two TERT expression categories as described by Huang et al., the other being biallelic expression (BAE, both alleles transcriptionally active). These two expression patterns appeared to be specific for many cancers, although some cancers exhibited variation between MAE and BAE in differed cell lines (34). However, a later study by Rowland et al. showed that this simple classification into MAE and BAE-specific cancer cell lines does not sufficiently describe the complex nature of TERT expression. In a study conducted on a single cell-level, they found great heterogeneity in TERT expression between various cells, within both the cell lines described as MAE, and those described as BAE by Huang et al. (78).



micro-RNA

Most recent studies focus on TERT regulation at the transcriptional level. Meanwhile, post-transcriptional regulation by microRNAs (miRNAs), has not been expensively studied. miRNAs are a class of small non-coding RNAs (~22–24 nucleotides) (79). miRNA recognition sites are typically located in 3′ untranslated regions (3′UTRs) of mRNA (Figures 1 and 2). miRNAs binding to 3’UTR generally silences the transcript, thus reducing gene expression. miRNAs are ubiquitous elements of gene regulation, and control many different biological processes. In cancer, miRNAs function as gene regulatory molecules, acting as tumor suppressors or oncogenic drivers (18, 80).

Various miRNAs are known as regulators of TERT. In particular let-7g-3p, miR-128, miR-133a, miR-138-5p, miR-498, miR-541-3p, and miR-1182, downregulate expression of TERT and telomerase activation (18, 81). Functional analyses indicated that overexpression of miR-138-5p and miR-422a significantly inhibit TERT expression through interaction with TERT 3’UTR in colorectal cancer cells (79, 82). Moreover, miR-138-5p represses TERT protein expression in human anaplastic thyroid carcinoma and cervical cancer cells (79, 83). Likewise, miR-1182, miR-1266, miR-532, miR-1207-5p, and miR-3064 suppress gastric, bladder, ovarian cancer growth and invasion by binding to the TERT 3’UTR (10, 79, 84, 85). Furthermore, miR-128 was found to control TERT expression in HeLa and teratoma cell lines (81, 86).

miRNAs can also regulate TERT indirectly by controlling expression of various transcription factors. Accordingly, c-MYC, a major regulator of TERT, was regulated by miR-494 and miR-1294 in esophageal squamous cell carcinoma and pancreatic cancer. Additionally, c-MYC and FoxM1 were targeted by a known tumor suppressor, miR-34a, causing senescence in cells (18). Interestingly, the study of Lassmann et al. suggested that TERT is able to regulate miRNA levels at the early phase of miRNA processing. They demonstrated that deletion of TERT resulted in a decrease of most mature miRNAs (87).




Transcription Factors


Transcriptional Activators

TERTp contains binding sites for a huge number of transcriptional activators and repressors that directly or indirectly regulate gene expression. Multiple pathways, such as RAS/RAF/MEK/MAPK, PI3K/Akt/mTOR, IKK/NF-κB, transforming growth factor β/Smads, PKC, and the JAK-STAT pathway regulate TERT expression and telomerase enzymatic activity (88). In fact, most transcription factors have been identified as possible TERT gene regulators, such as protein kinases, growth factors, and oncogenic proteins. Canonical positive regulators of TERT transcription include the oncogene c-MYC, Sp1, NF-κB, STAT family of proteins, AP-2, and GSC. These activatory transcription factors will be described in detail in the following section.

MYC encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcriptional factor called c-MYC (89, 90). The MYC gene family regulates expression of genes implicated in many processes, such as proliferation, cell growth, differentiation, self-renewal, apoptosis (91, 92). It is essential for embryonic development and it is expressed in normal somatic cells. There are several ways for healthy cells to control MYC levels, such as targeted degradation by the ubiquitin-proteasome system (92). Chromosome translocations, gene amplification, retroviral insertion or mutations of MYC gene are tumorigenic in mice and correlate with development of most human cancers (93, 94). c-MYC functions is dependent on heterodimerization with MAX (90, 95). While MYC gene contains a transcription activation domain, no such regulatory domain has been reported for MAX (96). The c-MYC/MAX heterodimers can bind to specific DNA sequences located within the core promoter region, known as E-box motifs (5′-CACGTG-3′), thus activating various genes (90, 92). c-MYC activates telomerase by inducing expression of TERT (90, 94). In addition, TERT is responsible for maintenance of c-MYC levels and regulates c-MYC proteasomal degradation (97).

The core promoter of TERT also contains specificity protein 1 (Sp1) binding sites that are necessary for TERT expression. Sp1 belongs to the family of nuclear proteins called Sp/KLF (specificity protein/Krüppel-like factor) that binds GC-(GGGGCGGGG) and GT-(GGTGTGGGG) rich elements (98, 99). It is one of the best characterized transcriptional activators of housekeeping genes and other TATA-less genes (89, 99). Sp1 regulates processes such as inflammation, carcinogenesis, senescence, hormonal activation, apoptosis and angiogenesis (98). Transcriptional activity of Sp1 is regulated by a few post-translational modifications (glycosylation, acetylation, phosphorylation) and by direct interaction with other proteins, including other transcription factors, nuclear factors, oncogenes, and tumor suppressors. Sp1-silencing completely inhibits telomerase activity by suppressing TERT expression, leading to apoptosis. Furthermore, mutations in Sp1 binding sites (GC‐boxes) significantly decrease transcriptional activity of TERTp, suggesting that Sp1 protein is involved in TERT transcription (100). Some reports indicated that cooperation between Sp1 and c-MYC drives cell type-specific TERT expression. This is further substantiated by the fact that normal cells have lower levels of Sp1 and c-MYC than cancer cells. However, Sp1 would be a weak candidate for a biomarker of cancer‐specific TERT expression because of its ubiquitous expression in normal cells (89, 100).

NF-κB is well known for playing a major role in inflammation, tumorigenesis, cytokine and chemokine expression, stress regulation, cell division and transformation (101, 102). NF-κB regulates expression of apoptosis inhibitors. The NF-κB signaling pathway is a master regulator of TERT activation in cancer cells. It initiates expression of TERT by binding to either of two potential motifs in TERTp (101). Additionally, TERT can directly regulate expression of NF-κB-dependent genes through binding to the p65 subunit. Studies have demonstrated that telomerase can directly regulate recruitment to promoters of NF-κB target genes, such as those encoding interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF‐α) that are critical for inflammation and cancer progression (103).

The signal transducer and activator of transcription (STAT) family of cytoplasmic proteins are direct mediators of signaling from the extracellular environment to the nucleus (104). Seven STAT proteins have been identified as STAT 1–4, 5A, 5B, and 6 (105–107). They are normally inactive, but can be activated by phosphorylation. Of the seven human STAT encoding genes, STAT3 has drawn the most interest for its association with a wide variety of human cancers (104, 108).

In addition, these proteins are able to regulate TERT expression in tumor and normal cells (104). TERTp contains binding sites STAT3 and is overexpressed in prostate, breast, head, neck, and hematologic cancers, which implicates STAT3 as an important anticancer target (105).

The adipocyte protein 2 (AP-2) family of transcription factors contains five isoforms: AP-2α, AP-2β, AP-2γ, AP-2δ, and AP-2ϵ (109, 110). They are encoded by the FABP4 gene. These isoforms have a major role in gene regulation and have different biological functions. They are required for morphogenesis during embryonic development (109). AP-2β specifically binds to the TERTp and activates telomerase in human cancer cells, but not normal cells. Two E-box sites in a 320-bp region of TERTp (320 bp upstream of the translational ATG site) have been observed to regulate promoter activity in human rhabdomyosarcoma cells (110).

A recent showed that goosecoid homebox protein (GSC) may be a new potential activator of TERT expression (49). It is normally involved in embryonic development and interacts with TGF-β and Wnt/β-catenin signaling pathways, which are implicated in tumor invasion (111). It was found to be overexpressed and to correlate with metastasis in patients with breast carcinoma (112), and was also associated with poor prognosis and chemoresistance in ovarian carcinoma (111). An analysis of TERTp areas with locally decreased methylation in thyroid cancer cells revealed a GSC biding site. GSC is a TERT activator and was variously expressed in both thyroid cancer and normal thyroid cells. Additionally, GSC was overexpressed in thyroid cancer (49).



Transcriptional Repressors

Transcriptional repressors are proteins that attach to DNA at specific silencer sites and block transcription of nearby genes. In the following section, we are going to briefly discuss repressors that have been shown to downregulate TERT transcription, such as MAD1/2, p53, WT1, CTCF, and MZF-2.

The mitotic checkpoint is a crucial mechanism in maintaining chromosomal stability. It guarantees precise chromosome segregation by delaying separation of replicated sister chromatids (113, 114). Mitotic arrest deficient 1 (MAD1) is a major element of the mitotic checkpoint, and it recruits its binding partner MAD2 to nuclear pores (113, 115). During mitosis, MAD1 localizes to unattached kinetochores, where it serves as a docking site for MAD2. Kinetochore-bound MAD1–MAD2 act as a catalyst for conformational change of free MAD2 (114, 116). MAD1 upregulation serves as a marker of poor prognosis, as it tends to be overexpressed in cancers (116). Upregulation of MAD1 leads to chromosomal instability and resistance to microtubule poisons that are currently used as chemotherapeutic agents (116). MAD1 is recognized as an important cellular antagonist of c-MYC (117, 118). In addition, c-MYC and MAD1 are involved in regulation of TERT expression because they bind to the same promoter sites (E-box) to activate TERT expression (119). There two E-boxes in TERTp, and both of them constitute binding sites for c-MYC/MAX or MAD1/MAX heterodimers (117, 120). A switch from c-MYC/MAX to MAD1/MAX, triggers decrease in H3 and H4 histone acetylation at TERTp (119, 120).

p53 is the best known human tumor suppressor which is a member of a larger p53 family of tumor suppressors (121, 122). Other than p53, this family also includes p63 and p73 (123, 124). p53 acts primarily as an inducer of cell cycle arrest, cell differentiation, senescence, and apoptosis in response to numerous intrinsic and extrinsic stress signals (122, 125). It has a major role in the control of genomic stability, DNA replication, and DNA repair. The p53 encoding TP53 gene is mutated in approximately 50% of human cancers. TERTp contains two p53 binding motifs (123). Several findings showed that p53 suppresses telomerase activity by inhibiting TERT expression (125). This inhibition may be caused indirectly, by an interaction between Sp1 and overexpressed p53 (125, 126). Furthermore, this inhibition of TERT could be possibly independent of other p53 functions, such as those associated with apoptosis (125).

Another protein implicated in inhibition of TERT is the Wilms’ tumor 1 (WT1) tumor suppressor (125). It contains four zinc fingers and an RNA-binding protein that directs the development of several organs (heart, diaphragm) and genitourinary tissues (127, 128). It is normally expressed in kidney, testes, ovaries, and spleen (129). Most neoplasms, including lung carcinomas, renal cell carcinoma, pediatric sarcomas, and breast, ovarian, colon, melanoma, and pancreas cancers, and exhibit a possible oncogenic activity of WT1 (130, 131). In addition, it is overexpressed in most acute myeloid leukemia patients, and is considered to be an independent marker of minimal residual disease (132). A WT1 binding site is located in TERTp (−352 upstream of the TSS), and its mutation significantly reduced telomerase activity and TERT mRNA expression in 293 embryonic kidney cells but not in HeLa cells (1, 89, 125). Additionally, WT1 inhibited TERT transcription during differentiation. This inactivation may influence activation of telomerase in the tumorigenesis phase. Furthermore, WT1 binding to TERTp suppresses c-MYC level at both protein, and mRNA level (1, 2).

CCCTC-binding factor (CTCF) is a zinc finger transcription factor which is ubiquitously expressed in human (133). Its binding sites are located in the first two exons of the TERT gene, and are located in a CpG island. Earlier studies showed that CTCF does not bind to TERT in telomerase-positive cells, which is correlated with methylation of exon 1 in these cells (134). Hypermethylation in this exonic region is common in most cancers, and CTCF is considered a major TERT repressor in normal cells. Methylation at specific CpG dinucleotides in exon 1 results in a change in secondary structure of DNA and creation of a four-strand structure known as G-quadruplex, which disrupts CTCF binding (135). Interestingly, CTCF was observed not to bind to TERT in normal thyroid tissue despite the presence of methylation, while thyroid cancer cell lines exhibited both partial methylation and CTCF binding (49).

The myeloid zinc finger protein (MZF)-2 is a Krüppel-like C2H2 zinc finger protein expressed predominantly in myeloid progenitor cells and involved in growth, differentiation, and tumorigenesis (136). The mechanisms involved in MZF-2-induced suppression of TERTp activity are still unclear (137). There are multiple binding sites for MZF-2 within the TERTp region, and upregulation of MZF-2 inhibits TERTp activity. This suggests a role for MZF-2 in transcriptional downregulation of TERT (125, 137).




TERT Gene Polymorphisms


Single Nucleotide Polymorphism

Single nucleotide polymorphisms (SNPs) have been described as being associated with increased risk for developing various cancers. They may be located both in intronic and exonic sequences of TERT, as well as in TERTp. Some common TERT SNPs found may modify survival and prognosis of certain cancers. A number of studies have recently been conducted to identify new SNP loci related to telomere length, which have shown a relationship between the risk of disease, its severity and the survival time in various cancers (138–140). In this section, we will discuss four common TERT polymorphisms that may be associated with gene expression.

Located at intron 2 of the TERT gene, rs2736100 A>C is a important non-coding SNP (141, 142). It has been associated with multiple cancers, especially with lung adenocarcinoma, which is characterized by significantly increased TERT gene expression, telomerase activity and gene copy number (143). Other solid cancers that are associated with this SNP include gliomas, bladder cancer, melanoma. rs2736100 has been identified as a major predisposing factor to sporadic and familial myeloproliferative neoplasms (MPNs), independently of the major diagnostic and molecular MPN subtypes. The C allele of rs2736100 and JAK2 46/1(GGCC) haplotype are major factors predisposing to MPN (141–143). Interestingly, the two alleles of rs2736100 seem to be associated with different types of diseases. While the C allele is primarily associated with cancers, the A allele, which is linked to shorter telomeres, is generally associated with predisposition to degenerative diseases (144). Furthermore, rs2736100 C is linked to increased blood cell count in the Japanese population (145).

Another TERT SNP, rs2853669 A>G is located in the TERTp region. It obstructs an ETS2 binding site, located close to an E-box. Previous studies showed that TERTp mutations creating a putative binding site for ETS, resulted in TERT upregulation and increased telomerase activity, while mutations at the ETS2 binding site suppressed c-MYC binding to the E-box (146, 147). Studies on rs2853669 showed that it is significantly associated with poor survival and increased cancer risk rate in hepatocellular carcinoma patients (146). In contrast, it was also observed to correlate with improved survival in patients with clear cell renal cell carcinoma, melanoma and glioblastoma (148). The C variant of this functional polymorphism results in decreased telomerase activity. Several studies suggest that rs2853669, in the presence of certain TERTp mutations, may also affect development of cancers (149). It was reported that it could influence telomere length and telomerase activity (150, 151). Furthermore, a study by Rachakonda et al. demonstrated that, in patients with urothelial bladder carcinoma, TERT rs2853669 may correlate with survival, prognosis, and tumor recurrence (152).

The two SNPs described above were located in non-coding regions of TERT, there are however also SNPs situated in exonic regions, of which rs2736098 G>A is a notable example. It is a synonymous A305A substitution located in exon 2, and was found to correlate with telomere length (153). Genotype GG was found to be associated with longer telomeres and decreased cancer susceptibility in patients with renal cell carcinoma (154). In another study, Xiao et al. showed that Chinese males harboring allele rs2736098 A had a greater risk of developing lung cancer than those with allele G (155). Allele A was also found to be significantly associated with risk of bladder cancer in the North Indian population (156). Further studies showed that it may impact risk for many other cancers, such as breast, esophageal, prostate, and basal cell carcinoma (153, 157).



Variable Number of Tandem Repeats Polymorphism

It was demonstrated that TERT may be regulated via a variable number of tandem repeats (VNTR) polymorphism named MNS16A (Figure 1). It is located upstream of promoter region of an antisense TERT transcript. Depending on the number tandem repeats, promoter activity is affected differently. There are two MNS16A variant alleles: short (S) and long (L). The L allele correlates with higher promoter activity in the antisense strand and increased expression of the antisense TERT transcript. This increased expression of antisense TERT leads to silencing of functional TERT (158). As a result, the S allele is associated with higher telomerase activity, while LL homozygotes have lower telomerase activity (158). Our previous work showed that the S variant was more frequent in non-Hodgkin’s B-cell lymphoma patients how did not respond to treatment, as well as those with intermediate/high International Prognostic Index (159). In contrast, the S variant was less frequent in chronic lymphocytic leukemia patients with high disease stage (160).




Alternative Splicing

TERT regulation is a multifarious process, which involves not only the transcriptional mechanisms described in the previous sections, but also posttranscriptional ones. This includes pre-mRNA alternative splicing of the TERT gene (161–163). There as many as 22 potential alternative splicing sites in the TERT gene, but the function of many of them is unclear (164–168). One of the most commonly studied splicing sites are deletions at two sites, α and β (Figure 2). The β splice site results in a major deletion (182 bp) and creates a non-functional, truncated protein. The α splice site generates a smaller (36 bp) deletion, which produces an impaired protein. Both of these splice sites result in TERT proteins that are incapable of telomere elongation (169–172). In many cancers, the full length TERT transcript (α+β+) correlated with tumor development and shorter survival in patients (173). However, the α variant alone is known to cause decreased telomerase activity and shorter telomeres, while the β splice variant was reported to not only inhibit telomerase activity but also the ability of cancer cells to induce apoptosis (174, 175). Another splice TERT variant may be generated by a deletion of exons 4–13, resulting in an inactive protein lacking its catalytic domain. This deletion was observed in both telomerase-negative and -positive cells, and was associated with increased cell proliferation (6).



Involvement of TERT in Non-Telomere-Related Mechanisms

In the previous sections, we described TERT regulation and telomerase reactivation mechanisms that are involved in telomere maintenance. Telomere-related functions of TERT, also known as canonical, may likewise entail prevention of chromosome fusions (176, 177). However, telomerase also has non-canonical (telomere-independent) roles (Figure 1). These roles can be grouped into two broad categories: a) involving telomerase activity but not telomere elongation and b) involving neither telomere elongation nor telomerase activity (177). The telomere-independent roles contribute to the regulation of metabolic mechanisms, epigenetic regulation of chromatin, stress response, RNA silencing, signal transduction pathways (Wnt and c-MYC signaling pathways), enhanced mitochondrial function, cell adhesion, and migration (176, 178, 179).

TERT is found in cytoplasm and mitochondria, alongside its usual nuclear localization (176, 180) (Figure 1). In humans, mice and rats, TERT contains two specific targeting sequences that regulate its transport in and out of organelles: a nuclear targeting signal sequence, and a mitochondrial targeting sequence (181). In inactive CD4+ lymphocytes, TERT is mainly cytoplasmic but after activation it is transported to the nucleus in a process controlled by the kinase Akt (182). Additionally, shuttling TERT out of the nucleus may be promoted by oxidative stress, and this mechanism is dependent on phosphorylation of tyrosine 707 by Src kinase. Translocation of TERT into mitochondria improves mitochondrial potential which eventually leading to cancer cell survival (183). The extra-nuclear TERT functionalities are generally thought of as non-telomere related, i.e. non-canonical, and will be described below (179).

Cytoplasmic TERT exhibits many functions, including interacting with signaling pathways such as Wnt/β-catenin signaling. In addition, TERT binds to stress particles under non-stress conditions, and in lymphocytes, it is stored outside the nucleus without stimulation. TERT may also form a part of a TERT–NF-κB subunit p65 complex, which can move from the cytoplasm to the nucleus in multiple myeloma cells, upon TNF‐α induction (184). NF-κB, in turn, controls expression of a variety of genes involved in inflammation, immune responses, and cell differentiation (179). Zhou et al. demonstrated that the endoplasmic reticulum transiently activates the expression of TERT in cancer cell lines (185).

As much as 10–20% of total TERT is localized in mitochondria (176, 179). Therein, TERT binds to mitochondrial DNA (mtDNA) and improves respiratory chain activity, protecting mitochondrion from environmental damage and decreasing reactive oxygen species (mtROS) production (180, 186). mtROS production leads to mitochondrial damage and telomere shortening. Neutralization of mtROS does not recover the mitochondrial function but reduces telomere shortening (187). Additionally, telomere and mitochondrial disfunction is mediated by p53, which induces growth arrest, senescence and apoptosis in cells (188). TERT import depends on membrane potential and it is located close to the inner membrane (181). TERT binds to mtDNA in the region coding for NADH ubiquinone oxidoreductase subunits 1 (ND1) and 2 (ND2) and protects mtDNA from environmental damage (181). Mitochondrial TERT plays a role in decreasing apoptosis and improving mitochondrial membrane potential. Furthermore, it has unusual DNA- and RNA-dependent RNA polymerase activities, upon interaction with tRNAs (189). TERT can also interact with mitochondrial RNA processing endoribonuclease (RMRP) and use the RNA-dependent RNA polymerase to synthesize dsRNA. Mutations in RMRP can interfere with RMRP-TERT binding, contributing to pleiotropic syndrome cartilage–hair hypoplasia (190).



TERT as a Potential Therapeutic Target

The unique feature of telomerase is its low or nonexistent expression in somatic cells, but overexpression in most cancer cells (191). Thus, telomerase and other telomere components offer a highly attractive diagnostic and prognostic biomarker of cancer and a target for development of therapeutics. Several strategies have been devised to target telomerase functions: telomerase inhibition, telomerase peptide vaccines, and suicide gene therapy. Epigenetic processes were suggested as another promising target for therapeutic purposes (192). Some of these are already used in treatment of patients as part of clinical trials (193).

TERT inhibition has been regarded as a promising therapeutic strategy, as earlier in vitro studies showed that TERT silencing cell proliferation (194, 195). An early approach was to design compounds that would interact with DNA at the 3’ overhang, stabilizing telomeric G-quadruplex secondary structures, and thus blocking telomerase access to DNA. Telomestatin, BRACO-19, RHPS4, TMPyP4 are some of the most commonly studied G-quadruplex binding proteins (191, 196, 197). Telomestatin (OBP-301) is a natural product isolated from Streptomyces anulatus (198). The primary mechanism of telomestatin action involves a highly specific interaction with the G-quadruplex to stabilize its structure (199). These DNA-binding compounds are now less popular due to discovery of better molecular strategies, such as targeting the TERT active site directly. Studies on such inhibitors led to discovery of 2-[[(E)-3-naphthalen-2-ylbut-2-enoyl]amino]benzoic acid (BIBR1532), which inhibits telomerase by binding non-competitively to the TERT active site (197, 200). This binding leads to increased oxidative stress and decreased nitrogen monoxide bioavailability in favor of H2O2. However, BIBR1532 has not yet progressed to clinical tests (201). Aside from synthetic compound, various naturally occurring compounds, such as allicin (from garlic), curcumin (from turmeric), silibinin (from thistle), and epigallocathechin gallate (EGCG, from tea) were found to have telomerase inhibitory properties (202). A synthetic, more stable derivative of EGCG, MST-312, was shown to inhibit telomerase in various cancer, although its mechanism of action remains unknown (203–205).

Some peptide vaccines can possibly target the telomerase active site (199). GV1001 (KAEL-GemVax Co. Ltd., Gangnam-gu Seoul, Republic of Korea) is the only such vaccine to enter clinical trials (206). Its structure is based on a peptide sequence from TERT active site and it capable of binding multiple HLA class II molecules. It functions by stimulating tumor-reactive CD8+ and CD4+ T-cell immunity specific for TERT (199, 207, 208). GV1001 is used in treatment of patients with advanced stage melanoma, lung, hepatocellular carcinoma and pancreatic cancer (196). Two other TERT-based peptide vaccines, p540 and p675 were also observed to elicit TERT-specific cytotoxic T cell HLA-A*02:01- restricted immunity (208, 209). Other TERT-based vaccines are composed of more than one separate peptide sequence. An example of such a vaccine is GX301, composed of four peptides. This multi-peptide character means that it recognizes more HLA haplotypes, binding to both class I and II HLA molecules (210). GX301 is currently (October 2020) in phase II of a clinical trial on patients with prostate cancer (211). GRNVAC1 is a dendritic cell vaccine, which was created by transfecting dendritic cells with mRNA encoding TERT-chimeric protein, and then returning the transfected cells to the patient (196). These cells would then target telomerase-expressing tumor cells. The clinical trial is in phase I/II, and the vaccine is currently used in treatment of patients with metastatic prostate cancer (196, 207).

Another strategy are the suicide gene therapies. They include oncolytic virotherapy, the predominantly used strategy to treat cancer, which has potential to specifically lyse the tumor, and not healthy cells. This approach involves adenoviruses replicating selectively in cancer cells, and subsequently killing them (212). This viral system relies on the highly active TERC/TERT promoter controlling expression of a bacterial protein nitroreductase. Neither this nor any other suicide gene therapy has entered into clinical trials (193).

Recent studies increasingly suggest that epigenetic mechanisms may be targeted in new therapeutic strategies. Chidamide, an inhibitor of the enzyme histone deacetylase, was shown to decrease telomerase expression through miR-129-3p up-regulation in non-small cell lung cancer cells. This leads to subsequent ROS accumulation and subsequent cell cycle arrest (213). Epigenetic mechanisms may also be exploited in potential therapies using personalized approach. A study on effects of all-trans retinoic acid (ATRA) in treatment of ovarian carcinoma patients showed that the efficacy of therapy correlated inversely with methylation level of TERTp. This was of particular interest in a large subgroup of serous ovarian carcinoma patients, who had hypomethylated TERTp, and could therefore be treated effectively with ATRA (214).

As shown by the examples described above, telomerase is an attractive target for cancer immunotherapy. The main advantage of TERT is its high cancer-specific expression. Results from clinical trials have been encouraging, because of the safety and good tolerability of telomerase inhibitors (215). As a final point, it should be noted that using just one type immunotherapy may not suffice to eliminate cancer cells. Therefore, new studies should focus on strategies integrating various types of therapies (216).



Summary

TERT is normally actively transcribed only in early embryonic development and in cells with high proliferative potential, while it is inactive in most somatic cells in adults. However, in most cancers, TERT undergoes reactivation, and by extending telomeres (the canonical function of TERT) it contributes to cancer formation and progression. There are many regulatory mechanisms involved in telomerase reactivation and adjustment of TERT expression, among which TERTp mutation is perhaps the most important. Other major TERT regulation mechanisms (also known as telomere maintenance mechanisms) are: chromosome rearrangements, methylation, miRNA interference, binding of transcription factors, genetic polymorphism, and alternative splicing. Some of these mechanisms may interact with each other, having a synergistic effect on TERT expression. Aside from the better-known telomere lengthening function, TERT also has many secondary, telomere-independent roles (non-canonical functions of TERT). Taking in to account its major importance in cancer, TERT has become a target of various therapeutic strategies in cancer treatment and continues to be an interesting object of research.

The following features of TERT described in this manuscript can be highlighted:

	TERT is a functional catalytic protein subunit of telomerase, which lengthens telomeres by adding short DNA repeats, consequently averting chromosomal instability;


	Its regulation is a multifarious process where both transcriptional and posttranscriptional mechanisms are involved;


	TERT is also a major component of various oncogenic signaling pathways, and its overexpression often contributes to tumorigenesis;


	TERT gene is often overexpressed in cancers, and this overexpression can be induced by a variety of mechanisms, such as: TERT gene amplification, TERT gene polymorphism, TERTp mutation and methylation, and miRNA interference, alternative splicing of the TERT;


	Aside from its primary nuclear localization, TERT can also be transported to cytoplasm and mitochondria;


	It has many non-canonical, i.e. telomere-unrelated, functions these include: interaction with signaling pathways, stress protection, regulation of chromatin structure, binding to and protection of mitochondrial DNA;


	TERT and its gene may also act as an attractive target for therapeutic interventions with a diagnostic and prognostic impact.
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Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.
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Introduction

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world, usually affecting older adults (1). Currently, it remains incurable unless bone marrow transplant is feasible. CLL is characterized by accumulation of leukemic CD5+ B cells in lymph nodes, blood, and bone marrow, resulting in severe immune dysfunction. Although recent clinical developments in B-cell receptor (BCR) inhibitors, B-cell lymphoma 2 (BCL-2) inhibitors, and immunotherapies have revolutionized treatment strategies, patients may be intolerant, become resistant, or ultimately fail therapy (2, 3). CLL cells depend on crosstalk with a unique, immunosuppressive microenvironment that ultimately contributes to progression and plays a role in response to therapy. In the microenvironment, dysfunctional CLL T cells support malignant B cells by providing extrinsic survival signals (4). T-cell exhaustion and upregulation of immune checkpoints permit tumor immune evasion (5). Increased regulatory T cells (Tregs) suppress effector responses. Based on these observations, it has been postulated that reversal of T-cell dysfunction may restore T-cell mediated antitumor activity. Detailed reviews of CLL T-cell dysfunction can be found here (6, 7).

Several studies have explored the idea of reversing T-cell exhaustion in CLL. Brusa et al. initially identified that the PD-1/PD-L1 axis drives T-cell exhaustion in CLL (8). This study reported that PD-L1hi CLL cells and associated closely with PD-1+ T cells in lymphoid tissue. Gassner et al. found that pretreatment of Eμ-TCL1 splenocytes with recombinant PD-1 blocking fragments reduced CLL engraftment when these cells were adoptively transferred to wildtype recipients (9). This study concluded that antitumor effects were due to T-cell mediated tumor cell lysis. In another study, McClanahan et al. characterized CLL-specific PD-1 induction on Eμ-TCL1 T cells. Interestingly, PD-1+ T cells exhibited variable effector function (10). This group also reported antitumor efficacy of PD-L1 blocking antibody in the Eμ-TCL1 model and suggested that combination with immunomodulatory agents should be explored (11).

Anti-PD-1 antibodies pembrolizumab and nivolumab have demonstrated clinical activity in solid tumors and are currently in trial for B-cell malignancies. Although CLL cells express immune checkpoints, anti-PD-1 antibodies have not been efficacious in all patients, and the reason is suspected to be a complicated, chronically suppressed immune microenvironment. In a Phase II trial, pembrolizumab elicited responses in 4 out of 9 CLL patients who had undergone Richter transformation (RT), but 0 out of 16 patients who had relapsed after prior therapy with ibrutinib without RT (12). Increased PD-L1 on B cells and a trend of increased PD-1 on T cells were detected in responders versus non-responders before therapy. However, expression of other checkpoints before and after therapy was not determined. Nivolumab, in combination with ibrutinib, also elicited responses in CLL patients that underwent RT (13). These results suggest that PD-1 blockade may be useful for RT patients. For the non-RT, relapsed CLL patients, further optimization will be required. Anti-PD-L1 antibody atezolizumab is currently undergoing clinical trial for CLL patients in combination with anti-CD20 antibody obinutuzumab, and BCL-2 inhibitor venetoclax (14); however, final results are not yet reported. We speculated that in relapsed CLL patients, multiple mechanisms of B-cell driven immune suppression might overwhelm responses to immune checkpoint therapy. We, therefore, hypothesized that novel combination approaches that target immune suppression could maximize efficacy of immune checkpoint blockade.

Roles for histone deacetylases (HDACs) in immunobiology of cancer have been reported by our group and others. Although HDACs were initially described to epigenetically modulate histone proteins, it is now well documented that they also interact with and modulate the function of non-histone proteins. Histone deacetylase 6 (HDAC6) inhibition has been found to augment immunogenicity of melanoma cells through inhibition of STAT3-mediated PD-L1 transcription (15). HDAC6 was also found to regulate the activity of the STAT3/IL-10 pathway in professional antigen-presenting cells (APCs), leading to increased antigen presentation (16). More recently, we have described upregulation of HDAC6 protein levels in CLL patients’ B cells and direct antitumor activity of selective HDAC6 inhibition in murine CLL (17). Whole exome sequencing analysis showed that silencing of HDAC6 in Eμ-TCL1 B cells elicited changes in immune-related signaling networks, including antigen presentation and cytokine signaling (17). In the current study, we therefore sought to investigate the immunomodulatory role of HDAC6 in CLL and test the rational combination of a selective HDAC6 inhibitor with PD-1/PD-L1 blockade in the Eμ-TCL1 adoptive transfer model of murine CLL.



Materials and Methods


Ethics

The studies involving laboratory animals were reviewed and approved by the Institutional

Animal Care and Use Committee, Research Integrity and Compliance, University of South Florida, Tampa, FL. CLL patient samples: All participants gave written Institutional Review Board-approved informed consent for blood to be used for research. Blood was collected at the H. Lee Moffitt Cancer Center and Research Institute. CLL patients were diagnosed according to the guidelines of the International Workshop on Chronic Lymphocytic Leukemia (1). Patient characteristics are detailed in Table 1


Table 1 | CLL patient characteristics.





Cell Culture

Cells were cultured in RPMI supplemented with 10% fetal bovine serum, 5% penicillin-streptomycin, 5% non-essential amino acids and 1% Mycozap, incubated at 37°C with 5% CO2. OSU-CLL was authenticated before use. Cell isolations were performed using magnetic separation kits (StemCell Technologies, Vancouver, CA).



Reverse Transcriptase Quantitative Polymerase Chain Reaction

Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA). Complementary DNA was synthesized from RNA using iScript Reverse Transcriptase (BioRad, Hercules, CA). Primers against human T-bet, Eomes, IL-2 (Qiagen, Venlo, Netherlands) were used together with iScript Reaction Mix (BioRad, Hercules, CA).



Cytotoxicity Assay

CD8+ effector cells and CD19+ target cells were isolated from splenocytes by magnetic separation via negative selection using anti-mouse isolation kits (StemCell Technologies, Vancouver, CA). Ligand-loaded CD19+ target cells were cocultured together with effectors in various ratios for 4 h. Supernatant was removed from culture and europium reagent was added to detect released ligand. Cytotoxicity was measured by the DELFIA time-resolved fluorescence cell cytotoxicity assay according to manufacturer’s instructions (PerkinElmer, Waltham, MA).



Antigen Presentation Assay

Eμ-TCL1 B cells from 6-month old transgenic leukemic mice were isolated from splenocytes by magnetic separation and pre-treated with ACY738 for 24 h at concentrations that elicited less than 35% cell death, leaving a majority of viable cells (determined by trpan-blue exclusion) in accordance with previously published data (17). Eμ-TCL1 B cells were then centrifuged and washed in PBS to remove drug and non-viable cell content. An equal number of viable Eμ-TCL1 B cells from each dose condition were then loaded with ovalbumin (OVA) peptide, and co-cultured with isolated transgenic OTII CD4+ T cells in a 1:2 B cell to T cell ratio at a final density of 3 × 106 cells per ml. IFNγ secretion into supernatant was quantified by cytokine bead array analysis (BD CBA Mouse Th1/Th2, BD Biosciences, San Jose, CA).



CLL Mouse Model

An HDAC6-deficient CLL murine model (Eμ-TCL1/HDAC6KO) was generated by crossing HDAC6KO (18) and Eμ-TCL1 (19) (C57BL/6 background) mice. Eμ-TCL1 mice are referred to as euTCL1 or euTCL1/HDAC6KO in figures. All Eμ-TCL1 and Eμ-TCL1/HDAC6KO mice were homozygous for T-cell leukemia 1 (TCL1) gene, and all mice harboring HDAC6KO were homozygous for the knockout as confirmed by genotyping. For the accelerated CLL model, several aged leukemic Eμ-TCL1 mice (aged leukemic was defined as >9 months of age and showing >70% CD5+ B cells of total viable lymphocytes by flow analysis) were euthanized, and their splenocytes were pooled. Freshly obtained splenocytes were then resuspended in phosphate-buffered saline and adoptively transferred via tail vein into 6- to 8-week-old C57BL/6 wildtype (WT) mice at 25 × 106 splenocytes per mouse. CLL induction was confirmed at 3 weeks after adoptive transfer by high complete blood count and a significantly greater CD19+ B220+ CD5+ B lymphocyte population in peripheral blood than in peripheral blood from a healthy age-matched WT cohort. Groups were randomized before treatment. For survival analyses, mice were monitored until death or euthanasia resulting from disease symptoms such as lethargy, difficulty moving, lack of grooming, and enlarged spleen and/or lymph nodes. Mice were kept in pathogen-free conditions and handled in accordance with Guidelines for Animal Experiments requirements.



Flow Cytometry

For murine CLL immunophenotyping, 100 ul of peripheral blood was freshly obtained from submandibular bleeds. Spleen tissue was also freshly obtained from mice sacrificed for immunophenotyping analysis. Spleens were homogenized into a single-cell suspension, washed in PBS and resuspended in FACS buffer for staining. Red blood cells were lysed prior to staining with ACK lysis buffer (Lonza, Walkersville, MD) according to manufacturer’s protocol. Cells were stained with surface antibodies for 1 h at room temperature. AccuCheck Counting Beads (Life Technologies, Frederick, MD) were utilized to obtain cell counts according to manufacturer’s protocol. For phosphorylated proteins, cells were stimulated then fixed in 1% paraformaldehyde (BD Phosflow Fix Buffer I) and permeabilized in ice-cold 90% methanol/PBS prior to staining with phospho-specific antibody or isotype control for 1 h at 4°C. For cytoplasmic proteins, cells were stimulated with PMA/ionomycin in the presence of GolgiStop for 5 h, fixed/permeabilized with BD Cytofix/Cytoperm kit prior to staining for 1 h at room temperature. Cytokines were determined with BD CBA Mouse Th1/Th2, BD Biosciences, San Jose, CA and protocol was conducted according to manufacturer’s instructions. Assays were run on LSRII (BD Biosciences, Franklin Lakes, NJ) or iQue Screener (Intellicyt, Albuquerque, NM) flow cytometers and analyzed with FlowJo software version 10.6.1 (Becton, Dickinson and Company, Ashland, OR). tSNE and xshift plugins were utilized within FlowJo software. A list of antibodies used can be found in Supplemental Table 1.



Immunoblotting

Samples were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by transfer to nitrocellulose membrane, blocking with 5% nonfat milk and incubation with the indicated antibodies overnight at 4°C. Blots were developed using LI-COR system. Cell lysis was performed with radioimmunoprecipitation assay buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, and 10% glycerol) supplemented with protease inhibitors (Roche, Basel, Switzerland). Protein quantities were determined using the Qbit 4 fluorometer and the Invitrogen Qbit Protein Assay Kit according to manufacturer’s instructions (Thermofisher Scientific, Waltham, MA). A list of antibodies used can be found in Supplemental Table 1.



Inhibitors and Blocking Antibodies

ACY738 (20) and ACY1215 (15) was supplied by Acetylon Pharmaceuticals. Anti-PD-1 and anti-PD-L1 monoclonal antibodies were commercially obtained (BioXcell, Lebanon, NH). For in vitro assays, inhibitors were dissolved in sterile dimethylsulfoxide (DMSO) and stored at −20°C until used. ACY738 was administered orally in chow at 25mpk (mg/kg) per day. Anti-PD-1 and anti-PD-L1 antibodies were diluted in sterile phosphate buffered saline and administered by intraperitoneal injection at 3 mpk, 3 times per week, for a total of 2 weeks.



Statistical Analysis

Statistical significance between data sets was determined by unpaired, two-tailed, or Student’s t test if data were normally distributed, or using a Mann-Whitney U unpaired test if the data were not normally distributed. For groups of 3 or more, one-way ANOVA followed by Tukey’s multiple comparisons test was used if the data were normally distributed, or a Kruskal-Wallis test was used if the data were not normally distributed. Two-way ANOVA followed by Tukey’s multiple comparisons test was used for groups with more than 1 time point. Kaplan-Meier survival curves were compared using the log-rank test. Overall survival was defined as time from adoptive transfer of leukemic cells until death or euthanasia. A p value <.05 was considered significant. All analyses were conducted using GraphPad Prism software version 8 or Microsoft Excel version 16.




Results


HDAC6 Silencing or Inhibition Disrupts Regulatory CLL B Cell Characteristics

CLL B cells exhibit a regulatory phenotype that suppresses immune cell responses in the tumor microenvironment, similar to the normal regulatory B cell (Breg) subset (21). Both CLL B cells and normal Bregs suppress effector T-cell function through interleukin (IL)-10 secretion and expression of immune checkpoint PD-L1. The Eμ-TCL1 transgenic murine model spontaneously develops CLL over its lifetime due to expression of the TCL1 gene, specifically in B cells (22). This model recapitulates immune dysfunction typical of CLL patients and has revealed insights into development of the CLL microenvironment. Eμ-TCL1 B cells exhibit Breg characteristics and retain immunoregulatory function when adoptively transferred (23). To examine the immunomodulatory role of HDAC6 in CLL, we utilized the Eμ-TCL1 adoptive transfer murine CLL model. Aged-matched Eμ-TCL1 or Eμ-TCL1/HDAC6KO splenocytes from transgenic leukemic mice were adoptively transferred into syngeneic immunocompetent wildtype recipients. After CLL engraftment was established, mice were randomized, and Eμ-TCL1 recipients were treated orally with a selective HDAC6 inhibitor, ACY738 (20), or vehicle (Figure 1A). Malignant CLL cells were gated as previously reported (17) according to surface expression of CD19, B220, IgM, and CD5 in peripheral blood mononuclear cells (PBMCs). Both ACY738-treated mice and Eμ-TCL1/HDAC6KO recipient mice (HDAC6KO) demonstrated delayed CLL progression over time compared to vehicle-treated mice (Figure 1B), in agreement with our previous report (17). PD-L1 expression was found to be downregulated on malignant B cells of ACY738 and HDAC6KO groups compared to the vehicle group at 6 and 10 weeks post-adoptive transfer (Figure 1C). Plasma levels of IL-10 were also found to be lower in ACY738 and HDAC6KO groups compared to the vehicle group (Figure 1D). Additionally, a separate cohort of CLL-bearing mice treated as in Figure 1A were sacrificed at Week 7. Tumor burden analysis in fresh splenocytes confirmed reduced tumor burden and reduced percentages of PD-L1+ CLL cells of ACY738-treated and HDAC6KO groups (Figures S2A, B). To assess whether PD-L1 downregulation was independent of tumor burden, mice with similar tumor burden from the 10-week time point in Figure 1B were compared. Percentages of PD-L1+ CLL cells were also significantly downregulated in ACY738-treated and HDAC6KO mice of similar tumor burden compared to vehicle controls (Figure S3C).




Figure 1 | Immunomodulatory effects of HDAC6 on CLL B cells (A) Timeline showing experimental protocol. (B) Flow cytometry to detect tumor burden in fresh murine PBMCs. CLL B cells were gated as CD3- CD19+ B220lo IgMhi CD5+ cells. Total B cells were gated as CD3- CD19+ B220+ cells. (C) Percentages of PD-L1+ CLL B cells and expression of PD-L1 on CLL B cells. gMFI: geometric mean fluorescence intensity. Percentages are compiled from 2 independent experiments, n = 12–14 mice per group. Counts are shown from 1 representative experiment, n = 8 mice per group. (D) Plasma was collected from submandibular bleeds and IL-10 was quantified by cytokine bead array assay, n = 3 mice per group. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.005. ns, not significant.





HDAC6 Silencing or Inhibition Alleviates the Dysfunctional CLL T-Cell Phenotype

Previous studies demonstrated longitudinal development of CLL-induced T-cell subset changes in the adoptive transfer Eμ-TCL1 model compared to aged-matched wildtypes (10). Documented changes included skewing of CD4/CD8 ratio, naïve/antigen-experienced ratio, T helper (Th)1/2 ratio, increased exhaustion, and decreased effector function. However, some studies suggest that CLL T cells can be reprogrammed by therapeutic intervention to exert antitumor function (24, 25). Here, we sought to examine the T-cell compartment of adoptive transfer mice described in Figure 1. T cells were gated according to the strategy depicted in Figure S1. Relative to the vehicle group, increases in CD3+ T-cells and alterations to CD4/CD8 ratio were observed in HDAC6KO and ACY738-treated groups (Figures 2A–C). Treg percentages and absolute counts were also decreased in ACY738 and HDAC6KO groups compared to vehicle group (Figure 2D). Similar T-cell changes were noted in splenocytes of mice sacrified at Week 7 (Figures S2C–F). Next, Th1/2 subsets were evaluated. q-RT-PCR was performed to assess expression of Th lineage-specific factors in isolated splenic CD4+ T cells. Compared to vehicle, ACY738 and HDAC6KO groups favored the Th1 phenotype, showing increased expression of Th1 differentiation factor T-bet, as well as Th1 cytokine IL-2. Expression of Th2 differentiation factor Eomes was decreased on T cells from the HDAC6KO and ACY738 groups (Figure 2E) compared to vehicle. These changes to the T-cell compartments were overall indicative of a lower tumor burden in these mice.




Figure 2 | Effects of HDAC6 deficiency on CLL T-cell dysfunction. Flow cytometry to detect immune populations in fresh PBMCs of mice in Figure 1. (A–C) Percentages and counts of CD3+, CD4+ and CD8+ T cells. (D) Percentages and counts of Tregs out of CD4+ gate. Tregs were gated as CD4+ CD25HI CD127LO. Percentages are compiled from 2 independent experiments, n = 12–14 mice per group. Counts are shown from 1 representative experiment, n = 8 mice per group. (E) Relative mRNA expression (ddCT) of T-bet, Eomes, and IL-2 in isolated splenic T cells of mice from indicated groups, n = 3 mice per group. Normalized to 18s control gene. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.0005. ns, not significant.



To assess antigen-experienced and exhausted T cells, CD44+ PD-1+ and LAG-3+ cells were gated. Compared to vehicle, the antigen-experienced CD44+ fraction was consistently increased by approximately 1.5-fold in CD4+ and CD8+ T cells of ACY738-treated mice (Figures 3A, B), but not HDAC6KO recipients. This difference may be evidence of an ongoing antitumor T-cell response in the ACY738 group. PD-1+ and LAG-3+ percentages and cell counts were significantly decreased in both CD44+ CD4+ and CD44+ CD8+ T cells of ACY738 and HDAC6KO groups (Figures 3C–F), indicating a less exhausted phenotype in the antigen-experienced fraction. Represenative flow plots are shown in Figures S3A, B. Similar trends were noted in splenocytes of mice sacrificed at Week 7 (Figures S2G–J). To assess whether the CD44+ T-cell changes were independent of tumor burden, mice with similar tumor burden from the 10-week time point represented in Figure 1B were compared. Percentages of CD4+ CD44+ and CD8+ CD44+ T cells were increased ACY738-treated mice of similar burden compared to vehicle group (Figure S3D). CD44+ LAG-3+ T cells, but not CD44+ PD-1+ T cells, were decreased in ACY738-treated group compared to vehicle group (Figures S3E, F).




Figure 3 | Effects of HDAC6 deficiency on antigen-experienced CLL T-cell compartment. (A) Percentages and counts of antigen-experienced CD44+ out of CD4+ gate. (B) Percentages and counts of antigen-experienced CD44+ out of CD8+ gate. (C, D) Percentages and counts of PD-1+ and LAG3+ cells out of CD44+ CD4+ gate. (E, F) Percentages and counts of PD-1+ and LAG3+ cells out of CD44+ CD8+ gate. Percentages are compiled from 2 independent experiments, n = 12–14 mice per group. Counts are shown from 1 representative experiment, n = 8 mice per group. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.0005. ns, not significant.





HDAC6 Inhibition in CLL Cells Promotes T-Cell Engagement

To further investigate the direct effects of HDAC6 inhibition on CLL B cell engagement with T cells, the patient-derived cell line, OSU-CLL, was utilized for in vitro assays. We examined the expression of functional surface proteins involved in T-cell engagement, including antigen presentation, B-cell activation, co-stimulatory, and coinhibitory markers (26). In OSU-CLL cells treated with ACY738, expression of MHCI, MHCII, and CD86 were increased, while expression of PD-L1 and 41BB-L were consistently decreased compared to DMSO-treated cells (Figure 4A and Figure S4A). Our results were confirmed with ACY1215 (ricolinostat), a less potent, but clinically available selective HDAC6 inhibitor (15). Additionally, CLL patient B cells treated with ACY738 and ACY1215 were analyzed for expression of surface markers. Expression of MHCII and MHCI were notably increased in ACY-treated cells, while PD-L1 expression was decreased (Figure 4B and Figure S4B). CLL patient characteristics are shown in Table 1. The observed differences support a less inhibitory B-cell phenotype with increased antigen presentation capability. To confirm this hypothesis, we conducted an antigen presentation assay adapted from Cheng et al. (16). Aged leukemic Eμ-TCL1 B cells were isolated from splenocytes and pre-treated with ACY738. An equal number of viable Eμ-TCL1 B cells from each dose condition were then loaded with OVA peptide, and co-cultured with transgenic OTII CD4+ T cells, which only recognized OVA peptide presented through MHCII by the leukemic B cells. T-cell activation was then quantified by interferon gamma (IFNγ) secretion. Eμ-TCL1 B cells pre-treated with ACY738 dose-dependently elicited greater T-cell activation compared to DMSO control (Figure 4C). These results support the notion that HDAC6 inhibition can improve antigen presentation by CLL B cells, thereby eliciting increased T-cell activation.




Figure 4 | Effects of HDAC6 inhibition on T-cell engagement and JAK/STAT signaling in CLL (A) Surface expression of antigen presentation and co-stimulatory/co-inhibitory markers in OSU-CLL cell line incubated with selective HDAC6 inhibitors or DMSO for 24 h. Data is compiled from 4 independent experiments. All values are expressed as fold change normalized to the mean of DMSO controls. Graph displays mean + SD. (B) Surface expression of antigen presentation and co-stimulatory/co-inhibitory markers on the surface of CLL patient B cells (n = 8 patients) incubated with selective HDAC6 inhibitors or DMSO for 24 h. CLL cells were denoted by expression of CD19, CD20 and CD5. All values are expressed as fold change normalized to DMSO controls. Each patient sample was normalized to its own DMSO control to account for inter-patient variability in antigen expression. Graph displays mean + SD. (C) Antigen presentation assay. Eμ-TCL1 B cells were pre-treated with ACY738 at indicated concentrations for 24 h. They were then washed and an equal number of viable cells from each dose condition were loaded with OVA peptide and co-cultured with OTII CD4+ T cells for 24 h in a 1:2 B cell:T cell ratio. IFNγ secretion into supernatant was quantified by cytokine bead array. Representative of 3 independent experiments. Graph displays mean + SD. (D) Phospho-STAT3 protein levels in OSU-CLL treated with ACY738 for 24 h were detected by flow cytometry. Cells were plated at a density of 1 × 106 per ml and stimulated with soluble anti-human IL-6 at 20 ng/ml for 15 min or plate-bound anti-human IgM at 10 ug/ml for 50 min. All values are expressed as a percentage of DMSO controls. Data are compiled from 3 independent experiments. Graphs display mean + SD. (E) Immunoblotting analysis for JAK2 protein in OSU-CLL cells treated with ACY738 at 0.5uM collected at indicated time points. (F) Densitometry quantifying JAK2 expression, normalized to histone 3 loading control. (G) Immunoblotting analysis for acetylation of HSP90 and α-tubulin in OSU-CLL cells treated with ACY738 at 0.5uM collected at indicated time points. (H, I) Densitometry quantifying acetylation of HSP90 and α-tubulin. Normalized to total protein control. Immunoblots shown are representative of three independent experiments and densitometry graphs display data compiled from 3 independent experiments. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.0005. ns, not significant.





HDAC6 Inhibition Alters JAK/STAT Signaling in CLL Cells

We then investigated the role of HDAC6 in molecular pathways sustaining the Breg phenotype. Studies by other groups suggest mechanistic involvement of STAT3 signaling in CLL B cell immunoregulatory function (27). These studies report that elevated IL-6 and IL-10 cytokine levels provoke JAK/STAT signaling in CLL B cells, activating STAT-driven transcription of PD-L1 and IL-10. JAK/STAT signaling is also activated downstream of BCR signaling in CLL cells (28), and ibrutinib, a BTK/ITK inhibitor, has been shown to downregulate STAT3 phosphorylation in CLL patient B cells (29). Considering this data, we stimulated OSU-CLL cells with IL-6 or IgM to mimic intrinsic and extrinsic survival signals, inducing STAT3 phosphorylation at serine 727 and tyrosine 705. Following previously established protocols, we performed intracellular flow cytometry analysis to detect phosphorylation of STAT3 (30). Selective HDAC6 inhibition decreased STAT3 phosphorylation at both residues compared to DMSO-treated controls in OSU-CLL cells (Figure 4D). Prior literature has reported that acetylation of chaperone heat shock protein 90 (HSP90) drives degradation of JAK2 protein through endoplasmic reticulum (ER) stress pathway (31), and that HDAC6 deacetylates HSP90 (32) in other cell types. We then hypothesized that HDAC6 inhibition induces HSP90 hyperacetylation and provokes JAK2 degradation, preventing STAT3 activity in CLL cells. In agreement with this hypothesis, JAK2 protein was decreased over time in OSU-CLL cells treated with ACY738 (Figures 4E, F), while acetylation of HSP90 at lysine 294 was increased (Figures 4G, H). This occurred concurrently with hyperacetylation of α-tubulin, a known cytoplasmic target of HDAC6 (Figures 4H, 4I).



Combination of HDAC6 Inhibition and PD-1/PD-L1 Blockade Augments Antitumor Efficacy and T-Cell Cytotoxicity

Given the results showing that HDAC6 inhibition relieved CLL T-cell dysfunction in vivo, we rationalized that it may be therapeutically beneficial to combine HDAC6 inhibition with immune checkpoint blockade in CLL in order to augment T-cell mediated antitumor activity. To test this hypothesis, Eμ-TCL1 adoptive transfer mice were treated first with ACY738 or vehicle for 2 weeks, followed by anti-PD-1 or anti-PD-L1 for 2 weeks. The experimental protocol is summarized in Figure 5A. Both ACY738/anti-PD-1 and ACY738/anti-PD-L1 combination treatments significantly delayed CLL progression compared to vehicle. Tumor burden in ACY738/anti-PD-L1 group was decreased compared to anti-PD-L1 group (Figure 5B) in peripheral blood, and both ACY738/anti-PD-1 and ACY738/anti-PD-L1 groups exhibited decreased tumor burden compared to anti-PD-1 or anti-PD-L1 groups, respectively, in spleen tissue (Figure S5A), suggesting that these combinations elicited a beneficial antitumor effect. Notably, each single agent treatment demonstrated survival advantage compared to vehicle group, and the combination of ACY738/anti-PD-1 or ACY738/anti-PD-L1 increased survival probability more than anti-PD-1 or anti-PD-L1 alone (Figure 5C).




Figure 5 | Combinatorial antitumor efficacy of ACY738 and PD-1/PD-L1 blockade in CLL. (A) Timeline showing experimental protocol. (B) Flow cytometry to detect tumor burden in fresh PBMCs. CLL B cells were gated as CD3- CD19+ B220lo IgMhi CD5+ cells. Total B cells were gated as CD3- CD19+ B220+ cells. (C) Kaplan-Meier curve showing survival analyses for mice in panel (A). n = 8 mice per group. Representative of three independent experiments. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.0005.



Immune checkpoint blockade via anti-PD-1 treatment has been shown to elicit antitumor activity in a CLL model by increasing tumor-specific cytolysis (9). To investigate the effects of combination treatments on cytotoxic T-cell activity, groups of mice were sacrificed upon completion of treatment, and stimulated splenocytes were assessed by flow cytometry for functional markers of cytotoxicity. Unbiased clustering analysis by t-stochastic neighbor embedding (tSNE) and xshift algorithms showed several clusters with high expression of CD44 (Figure 6A). These CD44HI cells also contained the majority of cells with high expression of CD107a (clusters 6, 8, 11), granzyme B (cluster 6), perforin (cluster 6), and IFN-γ (clusters 5 and 9). Relative expression of each marker in each identified cell cluster is visualized in the heatmap corresponding to the xshift analysis (Figure 6A). We therefore inferred that these clusters may represent cells with cytotoxic potential. Quantification of these populations based on xshift analysis demonstrated that some clusters with cytotoxic potential (6, 9, 10, 11, 12) appeared enriched in treatment groups (Figure S5B). The expression distribution of each marker in the tSNE plot is shown in Figure S6.




Figure 6 | Combination of ACY738 and PD-1/PD-L1 blockade enhances cytotoxic CLL T-cell response. (A–F) Mice treated as in Figure 4 were sacrificed at week 7 post-adoptive transfer and splenocytes were stimulated with PMA/ionomycin in the presence of GolgiStop for 4 h. Cytotoxic cellular proteins were detected by flow cytometry. (A) Unbiased clustering analysis by tSNE. Xshift analysis was performed to determine clusters of cells based on differential expression of markers. (B) Antigen-experienced CD44+ fraction out of CD8+ T cells. (C–F) Percent positive for indicated cytotoxic markers out of antigen-experienced CD8+ CD44+ fraction. n = 6–8 mice per group. (G) Europium-release cytotoxicity assay. CD8+ effector T cells were incubated with CD19+ ligand-loaded target B cells for 4 h. Fluorescence was quantified to detect ligand released into supernatant by dead target cells. % lysis is expressed normalized to positive control wells containing target cells treated with lysis buffer, and background fluorescence was subtracted using negative control wells containing viable, ligand-loaded target cells only. n = 4 mice per group. Comparisons indicated in (G) are versus vehicle group. Graphs display mean + SD. *p < 0.05, **p < 0.005, ***p < 0.0005. Cl, cluster.



Traditional gating of antigen-experienced CD44+ CD8+ cells, the fraction containing tumor-specific T cells, was then performed. Compared to vehicle, percentages of granzyme B+, perforin+ and IFNγ+ cells were increased in mice treated with single agent anti-PD-L1, but not anti-PD-1 (Figures 6B–F). Combination of ACY738 with anti-PD-1 or anti-PD-L1 further increased expression of these markers compared to anti-PD-1 or anti-PD-L1 alone, suggesting that pretreatment with ACY738 augmented the ability of T-cells to mount a cytotoxic response. p values for multiple comparisons of each marker among treatment groups can be found in Table 2. Finally, we performed a functional cytotoxicity assay utilizing splenocytes from all treatment groups. Isolated effector CD8+ Eμ-TCL1 T cells were cocultured with autologous target CD19+ Eμ-TCL1 B cells. Results showed that tumor cell lysis increased significantly in anti-PD-L1 and both combination treatment groups compared to vehicle group (Figure 6G). Altogether, these analyses support the notion that combination of ACY738 with PD-1/PD-L1 blockade potentiated T-cell cytotoxicity in murine CLL, leading to greater antitumor effects and survival benefit.


Table 2 | Multiple comparisons analysis for T cells expressing cytotoxic markers depicted in Figures 6B–F.






Discussion

CLL B cells employ multiple tumor immune evasion strategies, including loss of antigen presenting function, upregulation of coinhibitory surface ligands, and secretion of suppressive cytokines. Several reports suggest bi-directional crosstalk between CLL B cells and immune cells in the microenvironment, resulting in a unique immune landscape not only permitting immune evasion, but actively supporting malignant cell transformation, propagation and survival (4). The mechanisms controlling the immunoregulatory functions of CLL B cells and their targetable vulnerabilities are yet to be fully understood, and this is an ongoing area of research. Previous literature has established roles for HDAC family members in control of the immune response (33), and the ability of HDACs to regulate the immune system suggest potential immunotherapeutic avenues. Previous studies by our group and others have demonstrated increased expression of HDAC6 in CLL B cells (17, 34). In the current study, we demonstrated an immunomodulatory role for HDAC6 in CLL B cells. Genetic silencing of HDAC6 in Eμ-TCL1 B cells delayed disease progression, downregulated PD-L1 expression, and reduced plasma IL-10 plasma levels in recipient mice when compared to controls. Similar results were seen in mice administered with the HDAC6 selective inhibitor, ACY738. Further analysis demonstrated that HDAC6 inhibition in CLL cells promoted antigen presentation and T-cell engagement.

Prior literature has described constitutive phosphorylation of STAT3 in CLL cells, and there is a known role of JAK/STAT in regulating PD-L1 and IL-10 expression (28). In an interesting recent report, Kondo et al. characterized the ability of ibrutinib to suppress CLL Breg function through STAT3-mediated inhibition of the PD-1/PD-L1 pathway. In other cell types, it has been demonstrated that HSP90 acetylation facilitates ER stress-mediated JAK2 degradation (31), and HSP90 is a known target of HDAC6 (32). In light of these studies, we focused on whether HDAC6 inhibition could affect JAK/STAT signaling in CLL cells. Indeed, selective HDAC6 inhibition lead to hyperacetylation of HSP90 in CLL cells, alongside reduction of JAK2 and phospho-STAT3. This highlights one possible mechanism to explain the immunomodulatory effects of HDAC6 on the CLL Breg phenotype. This study does not rule out other possible mechanisms, such as direct interaction of HDAC6 with STAT3 or localization of HDAC6 to the PD-L1 promoter which has been presented in other studies (16, 35).

Accumulation of dysfunctional T cells alongside CLL development has been well documented, but the specific roles of CLL T-cell subsets as supporters or drivers of disease are still debated (7). Recent studies offer evidence that dysfunctional CD8+ T-cell phenotype is driven by a CLL-specific response, leading to chronic antigen exposure and activation-induced exhaustion (5, 36–38). These studies note expression of multiple inhibitory receptors on CD8+ T cells in CLL, and suggest that strategies to restore CD8+ T-cell function could have therapeutic value. Many reports describe the ability of targeted therapies to beneficially reshape the T-cell microenvironment. Long et al. reported that ibrutinib treatment markedly increased total T cell numbers in CLL patients and enriched effector/effector memory proportions (39). These investigators also noted reduced percentages of PD-1 and CTLA-4-expressing T cells in CLL patients treated with ibrutinib or acalabrutinib. Weerdt et al. reported that after 1 year of venetoclax-based therapy, frequencies of tumor-supportive T-follicular helper cells, Tregs and PD-1+ CD8+ T cells were significantly decreased in CLL patients (40). Other studies have demonstrated that inhibition or silencing of PI3Kδ in preclinical CLL models modulates T-cell subsets, particularly Tregs (41–43).

Prior studies in solid tumors show that selective HDAC6 inhibition can influence tumor cell immunogenicity and beneficially alter T-cell phenotypes, reducing suppressive populations and enhancing effector function (35, 44). These studies also demonstrate that HDAC6 inhibition can induce expansion of memory subsets in tumor-infiltrating T lymphocytes (35, 44, 45). In our current work, T-cell subset analyses indicated a less exhausted, Th1 driven, effector T-cell phenotype in Eμ-TCL1/HDAC6KO mice and ACY738-treated Eμ-TCL1 mice. Despite changes to immunoregulatory B-cell phenotype, HDAC6 silencing or inhibition did not induce tumor-free survival in CLL-bearing mice, but rather delayed tumor progression. Since CLL cells depend on multiple survival and immune evasion strategies, we speculate that CLL cells in this model may eventually develop resistance mechanisms that allow disease progression, such as (1) clonal evolution of CLL B cells to depend on survival signaling unaffected by HDAC6 (2) mutation in BCR signaling kinases or (3) compensatory mechanisms through HDAC family members or epigenetic modulators with overlapping function. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. Taken together, these data support a model where CLL cells in the HDAC6i-treated and Eμ-TCL1/HDAC6KO groups exerted less immunoregulatory pressure on the microenvironment, preventing typical CLL-induced T-cell dysfunction and allowing tumor immune surveillance to some extent (visually summarized in Figure 7).




Figure 7 | Schematic representation summarizing the effects of HDAC6 inhibition on immunosuppressive mechanisms within the CLL microenvironment. HDAC6 inhibition disrupts regulatory CLL B-cell phenotype and function via JAK/STAT signaling, allowing T-cell activation and antitumor responses.



The contribution of the PD-1/PD-L1 axis to CLL progression has been thoroughly documented in preclinical and clinical studies (8). Although anti-PD-1 treatment has been shown to elicit beneficial responses in solid tumors and some B-cell lymphomas, this is not yet the case for CLL patients (46). Novel methods to target multiple mechanisms of immune suppression to stimulate T-cell responses and studying the role of the microenvironment in response to immunotherapy will be valuable to improve clinical benefit in the future. Several groups are exploring this concept in preclinical models. Wierz et al. utilized adoptively transferred Eμ-TCL1 mice to identify and characterize immune cell composition from the tumor microenvironment by mass cytometry (47). These authors found that dual PD-1/LAG-3 blockade in Eμ-TCL1 mice effectively reduced tumor load and restored an antitumor immune response. Hanna et al. found that ibrutinib in combination with PD-1/PD-L1 blockade in Eμ-TCL1 mice reduced tumor burden and increased percentage of cytotoxic CD8+T cells over ibrutinib single agent treatment (48). In our current work, we found that HDAC6 inhibition downregulated, but did not fully ablate PD-L1 expression on CLL B cells, and simultaneously enhanced MHC-restricted antigen presentation. We therefore tested the rational combination of HDAC6 inhibition and PD-1/PD-L1 axis blockade in the adoptive transfer Eμ-TCL1 model. Results demonstrated that pretreatment with ACY738 in combination with anti-PD-1 or anti-PD-L1 elicited better antitumor responses and survival benefit. T cells derived from vehicle-treated mice demonstrated a cytolytic response ex vivo, which was not improved by ACY738 or anti-PD-1 alone. Conversely, anti-PD-L1 treatment alone induced a more potent cytolytic T-cell response, which was further augmented in both sets of combination-treated mice. This study therefore highlights an integral role for HDAC inhibitors in combination with immunotherapeutic agents and provides rationale to test selective HDAC6 inhibitors in combination with immune checkpoint blocking antibodies in CLL patients.
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The drug resistance of first-line crizotinib therapy for ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) fusion non-small cell lung cancer (NSCLC) is inevitable. Whether the administration of immune checkpoint inhibitor (ICI) therapy is suitable for ROS 1 fusion NSCLCs or after the development of crizotinib resistance is still unknown. In this study, five different crizotinib resistant concentration cell lines (HCC78CR1-5) from primary sensitive HCC78 cells were cultured. Ba/F3 cells expressing crizotinib sensitive ROS1 fusion and crizotinib resistant ROS1-G2032R mutation were used to explore the relationship between ROS1 fusion, ROS1-G2032R mutation and programmed death-ligand 1 (PD-L1) expression and the clinical potential of anti-PD-L1 ICI therapy. The signaling pathway net was compared between HCC78 and HCC78CR1-5 cells using RNA sequencing. Anti- PD-L1 ICI therapy was performed on mouse xenograft models with Ba/F3 ROS1 fusion or ROS1-G2032R mutation. HCC78CR1-5 showed more immunogenicity than HCC78 in immune-related pathways. The PD-L1 expression level was remarkably higher in HCC78CR1-5 with ROS1 fusion upregulation than HCC78 primary cell. Furthermore, the expression of PD-L1 was down-regulated by RNA interference with ROS1 siRNAs and up-regulated lower in Ba/F3 ROS1-G2032R resistant mutation than ROS1 fusion. Western blotting analysis showed the ROS1–SHP2 signaling pathway activation in HCC78CR1-5 cells, Ba/F3 ROS1 fusion and ROS1-G2032R resistant mutation. Mouse xenograft models with Ba/F3 ROS1 fusion showed more CD3+PD-1+ T cells both in blood and tissue, and more sensitivity than the cells with Ba/F3 ROS1-G2032R resistant mutation after anti-PD-L1 therapy. Our findings indicate that PD-L1 upregulation depends on ROS1 fusion more than ROS1-G2032R mutation. We share our insights of NSCLCs treatment management into the use of anti-PD-L1 ICI therapy in ROS1 fusion and not in ROS1-G2032R resistant mutation.
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Introduction

At present, molecular targeted therapy is an important strategy for the treatment of non-small cell lung cancer (NSCLC) (1, 2). Driver genes play central roles in tumorigenesis and tumor cell survival and proliferation. Chromosomal rearrangement involving the Solute Carrier Family 34 Member 2 (SLC34A2) and ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) genes defines a distinct molecular subset of NSCLCs which possess over 14% of all ROS1 fusion type, with the resulting fusion gene manifesting pronounced transforming activity. Crizotinib is the first-line treatment for ROS1 fusion rearrangement positive NSCLCs.

ROS1 fusion NSCLCs are sensitive to crizotinib, but their development of drug resistance is inevitable. As a new drug class, immunology checkpoint inhibitor (ICI) therapies, such as those involving anti-CTLA4 (3), anti-programmed cell death protein 1 (PD-1) (4) and anti-programmed death-ligand 1 (PD-L1) (5), show promise in the clinical treatment of several cancer types, especially melanoma and lung cancer (6), and they cause cancer to become a chronic disease by activating tumor immune cells in the tumor microenvironment (TME). In anti-PD-L1 therapy, the expression level of PD-L1 on tumor cells especially on tumor cells’ surface, is a key biomarker that correlates with the likelihood of an effective clinical response (7). PD-L1 expression in NSCLCs is up-regulated by epidermal growth factor receptor (EGFR) mutation, implicating oncogenic drivers in the regulation of the expression of PD-L1, which is an important immunosuppressive molecule (8, 9). NSCLCs exhibiting upregulated PD-L1 expression showed improved responses to nivolumab (anti-PD-1) and pembrolizumab (anti-PD-L1) compared with patients with undetectable or low expression of PD-L1 (4, 10, 11). Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) fusion is a key trigger in the upregulation of PD-L1 (12). No study reported the relationship of ROS1 fusion with PD-L1 expression despite its high similarity with ALK.

Currently, the pembrolizumab (anti-PD-1) is approved for use as first- and second- line therapy in patients with advanced NSCLC whose tumors express PD-L1 in immunohistochemistry analysis (10, 13). Nivolumab (anti-PD-1) and atezolizumab (anti-PD-L1) are both indicated for use as second-line therapies (10, 14). Durvalumab (anti-PD-L1) is approved as a maintenance therapy in patients with unresectable, stage 3 NSCLC whose disease has not progressed following concurrent platinum-based chemoradiotherapy (15). However, many issues are still not resolved regarding the biomarker status, choice in the first-line setting, immunotherapy in oncogene-addicted tumors, and how to combine immunotherapy with other agents.

The mechanism of the regulation of PD-L1 expression in ROS1 fusion primary tumor and acquired resistance to crizotinib is still unknown. Although many options are available for molecular targeted therapies of primary sensitive or secondary mutation of ROS1 tyrosine kinase domain drug resistance mutation, it remains unclear about the clinical potential of anti-PD-L1/PD-1 ICI therapy on ROS1 fusion and ROS1-G2032R crizotinib resistant mutation. Our aims of this study were 1) to explore the relationship between ROS1 fusion, ROS1 G2032R crizotinib resistant mutation and PD-L1, and 2) the clinical potential of anti-PD-L1 ICI therapy in ROS1-driven and drug-resistant ROS1 fusion G2032R mutation cell lines and mouse models. In this research, we share our insights related to ICI therapy by examining the role of ROS1 fusion and ROS1 G2032R resistance mutation on PD-L1 expression in NSCLCs by in vitro and in vivo experiments.



Materials and Methods


Cell Culture and Reagents

HCC78 (Cat NO.: CBP60100) and IL-3 producing WEHI-3 (Cat NO.: CBP60532) cell lines were obtained from Cobioer Company (http://www.cobioer.com/). The cell lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Biological Industries) with 10% fetal bovine serum (FBS). Crizotinib (Cat NO.: S1086), Lorlatinib (Cat NO.: S7536), TPX-0005 (Cat NO.: S8583) and SHP099 (Cat NO.: S8278) purchased from Selleckchem. The HCC78 cell line was maintained in RPMI-1640 medium that contained Crizotinib at a starting concentration of 100 nM until a ﬁnal concentration of 2 mM over 10 months. Then, the resulting resistant cells were maintained in RPMI-1640 medium with 0.5 mM crizotinib and were designated as HCC78CR1, -2, -3, -4, and -5 cell lines. HCC78 and HCC78CR1-5 cell lines were authenticated by detecting the SLC34A2–ROS1 fusion using next-generation RNA sequencing. All cells were maintained under a humidified atmosphere of 5% CO2 at 37°C. For in vitro studies, crizotinib was dissolved in dimethyl sulfoxide (Sigma Aldrich) at 10 mM and stored at -80°C. Ba/F3, Ba/F3 ROS1 fusion harboring SLC34A2-ROS1 (Cat NO.: CBP73191) and Ba/F3 ROS1-G2032R harboring both ROS1 fusion and G2032R mutation (Cat NO.: CBP73192) were also obtained from Cobier Company. The Ba/F3 ROS1 fusion, Ba/F3 ROS1-G2032R harboring SLC34A2-ROS1 with G2032R crizotinib resistant mutation and IL-3 producing WEHI-3 cell lines were cultured in RPMI 1640 medium (Biological Industries) with 10% FBS. The IL-3-dependent mouse pro-B cell line, Ba/F3, was cultured in 10% FBS and 10% WEHI-3-conditioned medium as a source of IL-3. To obtain the WEHI-3-conditioned medium, WEHI-3 cells were seeded into culture medium (107/100 mL) in the T75 culture flask and cultured for about 4 days until the color of medium turned almost yellow. The IL-3 containing medium was harvested, centrifuged, filtered with a microfilter system (0.2 μm), and kept frozen at –80°C.



RNA Sequencing

Libraries for transcriptome sequencing (RNA sequencing) were constructed with NEB Next Ultra RNA Library Prep Kit for Illumina (NEB). Poly(A) tailed mRNA molecules were enriched from 1 μg total RNA with NEB Next Poly(A) mRNA Magnetic Isolation Module (NEB) kit. The mRNA was fragmented into approximately 200 base pair pieces. The first-strand cDNA was synthesized from the mRNA fragments reverse transcriptase and random hexamer primers, and then the second-strand cDNA was synthesized using DNA polymerase I and RNase H. The end of the cDNA fragment was subjected to an end repair process that included the addition of a single ‘A’ base, followed by ligation of the adapters. Products were purified and enriched by polymerase chain reaction (PCR) to amplify the library DNA. The final libraries were quantified using KAPA Library Quantification kit (KAPA Biosystems, South Africa) and an Agilent 2100 Bioanalyzer. After quantitative reverse transcription-polymerase chain reaction (RT-qPCR) validation, libraries were subjected to paired-end sequencing with pair end 150-base pair reading length on an Illumina HiSeq sequencer (Illumina). First, the sequenced reads in raw fastq format data were mapped to the hg19 Homo sapiens genome and transcriptome (gencode v19) using RNA STAR software (v2.4.0). The RNAseq datasets presented in this study can be found in online repositories. The names in the National Omics Data Encyclopedia and Project ID OEP000975 can be reached.



RNA Interference

The HCC78 cell lines were plated at 40% to 50% confluence in 12-well plates and incubated for 24 h before transient transfection for 72 h with siRNAs mixed with Lipofectamine reagent (Invitrogen). The siRNAs specific for ROS1 mRNA (ROS1-1, 5′-ACACCCAAAUUAAUACCAA-3′; ROS1-2, 5′-UCAGCAAAUUCAACCACCA-3′) and a nonspecific siRNA (5′-GUUGAGAGAUAUUAGAGUU-3′) were obtained from RUIBIO Inc.



Flow Cytometric Analysis

Cells were stained with biotinylated monoclonal antibodies against human PD-L1 (Biolegend) and with phycoerythrin-labeled streptavidin (eBiosciences) for flow cytometric analysis with Cytoflex instrument (Beckman coulter). The data were analyzed using FlowJo software.



Western Blotting Analysis

Western blotting analysis was performed as most described. Protein estimation was performed by using Thermo Pierce™ BCA Protein Assay Kit (cat NO.: 23225). Rabbit polyclonal antibodies against human phosphorylated ROS1 (Y1604), phosphorylated EGFR (Y1068), phosphorylated ERK, phosphorylated signal transducer and activator of transcription 3 (STAT3), and glyceraldehyde-3-phosphate dehydrogenase were obtained from Cell Signaling Technology. All antibodies were used at a 1:1000 dilution. Horseradish peroxidase-conjugated goat antibodies against rabbit immunoglobulin G were obtained from Abcam. Immune complexes were detected with the use of Pierce Western Blotting Substrate Plus (Thermo Scientific) and Las-mini 4000 system (GE Inc.).

Ba/F3 Tumor Model: Ba/F3 ROS1 fusion and Ba/F3 ROS1-G2032R resistant mutation cell lines were implanted subcutaneously into the right flank of female C3H mouse (100 µl 107 cells in cell suspension in phosphate-buffered saline (PBS) buffer). Mice were treated once daily by oral gavage with vehicle (PBS buffer) or crizotinib (25 mg/kg) was administered orally to tumor-bearing mice daily for 28 consecutive days, and tumor volumes were monitored every 2 days for 4 weeks. L×W2×0.5 was used to calculate tumor volume (mm3). For the analysis of the effect of ICI therapy on ROS1 fusion or ROS1 G2032R resistance mutation, tumor-bearing animals were treated with a single dose of 100 µg per mouse by intratumoral injection.




Results


PD-L1 Expression Is Induced by ROS1 Fusion

In this study, HCC78 cell line was selected for its SLC34A2–ROS1 fusion gene, whereas the other lung cancer cell lines are wild type for ROS1. To investigate the effect of ROS1 fusion on PD-L1 expression, we conducted two cell experiments by transfecting HCC78 cells with siRNA specific for SLC34A2–ROS1 fusion or treating HCC78 cells with crizotinib. Immunoblot analysis with antibodies of the total forms of ROS1 confirmed the downregulation of ROS1 and PD-L1 expression after using siRNA specific for SLC34A2–ROS1 (Figure 1A). Flow cytometric analysis showed low PD-L1 expression on HCC78 cell surface treated by crizotinib (Figure 1B). Altogether, these results show that the expression of PD-L1 is closely associated with ROS1 fusion and its phosphorylation.




Figure 1 | Programmed death-ligand 1 (PD-L1) expression induced by ROS1 fusion. (A) Western blot analysis of PD-L1 expression after specific interference of ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) fusion; (B) Flow cytometry analysis of PD-L1 expression on the surface of HCC78 cells after 6 h of treatment with crizotinib at 1 µM.





Expression of PD-L1 in Crizotinib-Sensitive and Resistant HCC78 Cell Line

To further explore the relationship of PD-L1 expression and ROS1 fusion in crizotinib resistance, we cultured five HCC78 crizotinib resistant cell lines (HCC78CR1–5). Crizotinib resistance of HCC78CR1–5 was detected by Cell Counting Kit-8 with half maximal inhibitory concentration (CCK8 IC50) (Figure 2A). PD-L1 expression in HCC78 and HCC78CR1–5 was analyzed by flow cytometry (Figure 2B) and immunoblotting (Figure 2C) to confirm the cell surface and total expression, respectively. The HCC78CR1–5 sublines showed remarkably higher levels of PD-L1 than their parental HCC78 cell line. HCC78CR1–5 cell lines showed higher levels of PD-L1 protein compared with the HCC78 cell line, as shown by Western blotting, along with the upregulated expression of ROS1 fusion. These data overall suggest that the increased expression of PD-L1 is associated with ROS1 fusion.




Figure 2 | Crizotinib-resistant cells showing high ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) and programmed death-ligand 1 (PD-L1) expressions. (A) Analysis of HCC78 and HCC78CR1–5 cell resistance characteristics by CCK8; (B) Flow cytometric analysis of PD-L1 surface expression in HCC78 and HCC78CR1–5 cells; (C) Western blot analysis of protein expression of ROS1 and PD-L1 in HCC78 and HCC78CR1–5 cells; (D) The number of upregulated and downregulated genes in HCC78CR1–5 compared with HCC78; (E) Venn plot analysis of HCC78CR1–5 differential genes; (F) Signal net of HCC78CR1–5.



To depict the complex relationship, we conducted the RNA sequencing experiment on HCC78 and HCC78CR1–5 sublines. The fusion and mutation status of ROS1 in HCC78 and HCC78CR1–5 cell lines were then assessed by RNA sequencing data. Although HCC78 harbors the ROS1 fusion, the HCC78CR1–5 sublines in our study lacked secondary drug resistance mutation. Every cell line harbored its own differential expression genes (Figure 2D), whereas 145 genes were shared by HCC78CR1–5 as indicated by Venn plot analysis (Figure 2E). HCC78CR1 harbored the most genes, of which 234 were upregulated, and 466 were downregulated. HCC78CR1–5 shared 145 genes, which were speculated to be related to the expression of PD-L1 in acquired drug resistance without resistant mutation. Enrichment analysis of the pathway showed that the HCC78CR1–5 cell lines are more immune sensitive to PD-1 signaling, cytokine signaling in immune system, and immune system compared with the HCC78 cells (Figure 2F).



ROS1 Fusion Induces Increased PD-L1 Expression Than ROS1 G2032R Mutation

The ROS1 secondary resistance mutation, ROS1 G2032R, is associated with acquired crizotinib resistance in ROS1 fusion NSCLCs. To investigate the effect of ROS1 fusion and acquired drug resistance ROS1 G2032R mutation on PD-L1 expression, Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R resistance mutation stable cell line were constructed. Crizotinib resistance in Ba/F3, Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R resistance mutation cell was detected by CCK8 IC50 (Figure 3A). Flow cytometric analysis results revealed that ROS1 fusion also increased the level of PD-L1 expression at the surface of Ba/F3 ROS1 fusion, but a lower level was noted in ROS1 G2032R mutation (Figure 3B). To further explore this effect, we conducted flow cytometric analysis on the PD-L1 expression after treatment using 0, 0.1, and 1 µm crizotinib for 6 h. The PD-L1 expression was lower in Ba/F3 ROS1 fusion than the control group in Figure 3C, whereas no changes were observed in Ba/F3 and Ba/F3-ROS G2032R in Figure 3D.




Figure 3 | Effect of ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) fusion and G2032R mutation resistance on programmed death-ligand 1 (PD-L1) expression. (A) Analysis of Ba/F3, Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R crizotinib resistant characteristics by CCK8; (B) Flow cytometric analysis of PD-L1 surface expression in Ba/F3, ROS1 fusion, and ROS1 G2032R mutation resistance cell lines; (C) Flow cytometric analysis of PD-L1 surface expression in Ba/F3, ROS1 fusion, and ROS1 G2032R mutation resistant cell lines; (D) The protein expression of PD-L1 in ROS1 fusion and ROS1 G2032R mutation resistant cell lines after treatment with crizotinib; (E) PD-L1 expression after ROS1 inhibition by crizotinib, Lorlatinib, and TPX-0005 at 1 μM for 6 h or SHP2 (10 μM) by SHP099 for 10 h. Red line represents control group and Green line represents treatment group.



We further confirmed this result in Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R mutation. To exclude the possibility that these results were due to nonspecific effects of crizotinib, we further investigated the effect of the phosphorylation of ROS1 and SHP2 on PD-L1 expression in Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R cells by crizotinib, TPX-0005 and Lorlatinib at 1 um for ROS1 and SHP099 at 10 um for SHP2 (Figure 3E) after 6 h. The inhibition of the phosphorylation of SHP2 resulted in a decrease in the abundance of PD-L1 surface expression in Ba/F3 ROS1 fusion cells. Altogether, these findings indicate that PD-L1 expression increased because of the increased ROS1 tyrosine kinase activity and SHP2 phosphorylation.



ROS1–SHP2 Pathway Regulates PD-L1 Expression

To identify the signaling pathways and further validation the role of ROS1-SHP2 pathway in the PD-L1 expression regulation, we detected the expression of SHP2, c-Jun, ERK1/2, and EGFR after the examination of published papers involving HCC78, crizotinib, and the regulation mechanism of PD-L1 expression (16). In HCC78CR1–5, the phosphorylations of SHP2 and the downstream targets of c-Jun were higher than those of the HCC78 cell line (Figure 4A). We further confirmed this result in Ba/F3, Ba/F3 ROS fusion, and Ba/F3 ROS G2032R (Figure 4B). As mentioned, we examined the effect of crizotinib on endogenous PD-L1 expression in the HCC78 cell line. Crizotinib blocked the phosphorylation of ROS1 and SHP2 in Ba/F3 ROS1 fusion cells (Figure 4C), and this effect was accompanied by the downregulated amounts of PD-L1 surface protein. Altogether, these findings indicated that PD-L1 expression increased because of the increased ROS1 tyrosine kinase activity and SHP2 phosphorylation.




Figure 4 | Phosphorylation of epidermal growth factor receptor (EGFR), c-JUN, SHP2, STAT3 and Erk1/2. (A) Phosphorylation of EGFR, c-JUN, SHP2, STAT3, and Erk1/2 in HCC78CR1–5 cells compared with HCC78 cell line; (B) phosphorylation of ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) and SHP2 with programmed death-ligand 1 (PD-L1) expression in Ba/F3, ROS1 fusion, and ROS1 G2032R mutation resistance cell lines; (C) The effect of crizotinib on SHP2 and ROS1 phosphorylation.





Ba/F3 ROS1 Fusion-Bearing Mouse Shows Stronger Immunogenicity in Immune Micro-Environment Than Ba/F3 ROS1 G2032R

Immune micro-environment is a key component of TME, especially in the context of ICI therapy. To explore the effect of the upregulation of PD-L1 between Ba/F3 ROS1 fusion and ROS1 G2032R resistant mutation on immune micro-environment, we constructed Ba/F3 ROS1 and ROS1 G2032R bearing C3H mice with complete immune capacity. Flow cytometric analysis of common immune checkpoint PD-1, lymphocyte activation gene 3 (LAG-3), and T-cell immunoglobulin mucin-3 (TIM3) on Th and Tc cells was performed in blood and tissue (Figure 5A). A significant difference was found in PD-1, LAG-3 and TIM3 on T cells of tissue samples between Ba/F3 ROS1 fusion and ROS1 G2032R bearing C3H mice, and the same trend was observed in blood samples with PD-1, LAG-3 and TIM3 (Figure 5B). The ROS1 fusion group showed tumor shrinkage after treatment with crizotinib and anti-PD-L1 but not the G2032R group (Figure 5C). Western blotting analysis showed that after the ROS1 fusion group was treated with crizotinib and anti-PD-L1, the expression of PD-L1 in the tumor immune micro-environment decreased, whereas the expression was up-regulated in the G2032R group (Figure 5D).




Figure 5 | Ba/F3 ROS1 fusion bearing mouse showed an increased response to ant- programmed death-ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapy than Ba/F3 ROS1 G2032R resistant mutation. (A) Flow cytometry and analysis strategies used in this study; (B) Flow cytometric analysis of PD-1, lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin mucin-3 (TIM3) in Ba/F3 in ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) fusion and Ba/F3 ROS1 G2032R mutation of blood and tissue samples based on T cell type; (C) Tumor size changes in Ba/F3 ROS1 fusion in Ba/F3 ROS1 G2032R mutation C3H mice (n = 5) after crizotinib or anti-PD-L1 therapy. ROS1+CRI: Ba/F3 ROS1 fusion+crizotinib; ROS1: Ba/F3 ROS1 fusion; ROS1+PD-L1: Ba/F3 ROS1 fusion+anti-PD-L1; GR: Ba/F3 G2032R mutation; GR+CRI: Ba/F3 G2032R mutation+crizotinib; GR+PD-L1: Ba/F3 G2032R mutation+ anti-PD-L1; (D) Western blotting analysis of ROS1 and PD-L1 in Ba/F3 ROS1 fusion and Ba/F3 ROS1 G2032R mutation of tissue samples after crizotinib and anti-PD-L1 ICI therapy. p < 0.05 was considered statistically significant and denoted as follows: *p < 0.05, ***p < 0.001.






Discussion

Given its convenient detection of targets and high screening rate among beneficial population, molecular targeted therapy plays an important role in the treatment of NSCLCs. Despite the lack of suitable biomarkers, accumulating evidence suggests that PD-L1 is a good indicator for anti-PD-L1/PD-1 ICI therapy. In general, the expression of PD-L1 in lung cancer tissue is still an effective predictor for the anti-PD-L1 checkpoint inhibitor therapy. For PD-L1 > 50%, single-agent pembrolizumab (pembro) is the standard (17); combination of chemotherapy (chemo)/pembro for patients who needs rapid response; nivo/ipi for high TMB is discouraged unless comparative data are available. For PD-L1 between 1%–49%, the combination of chemo/pembro is pending for approval; chemo/bev/atezo is an option; nivo/ipi combination for patient with high TMB is unsuitable for chemotherapy. For 0% PD-L1, chemo may still be the standard; TMB testing is the option for this group for the selection of patients with nivo/ipi or chemo/nivo combination treatment (18). Our study showed that the treatment by crizotinib of HCC78 cells resulted in the downregulated PD-L1 surface expression at the protein level. Conversely, the specific ROS1 RNA interference suppressed the expression of PD-L1 in HCC78 cell line positive for SLC34A2–ROS1 fusion. Our results thus indicate that PD-L1 expression is induced in NSCLC cells by the ROS1 fusion, with this induction being a key event in the pathogenesis of ROS1 fusion NSCLCs. Our study further showed the upregulation of PD-L1 in HCC78 crizotinib resistant cell lines (HCC78CR1–5) with none drug resistant mutation on ROS1 fusion. Our study further confirmed a recent study (19) by Zheng et al. published on 30 March 2020, which shows that ROS1 fusion primary NSCLC tumor was significantly associated with the up-regulation of PD-L1 expression.

Expression of PD-L1 is induced via oncogenic signaling pathways, such as RAS/RAF/MEK/mitogen-activated protein kinase-ERK (20–23), phosphatidylinositol-3 kinase/phosphatase and tensin homolog/Akt/mammalian target of rapamycin (24–28), EGFR (8, 29–31), and EML4-ALK pathways (23, 32), in many cancer types. In our study, the expression of PD-L1 depended on the ROS1 fusion along with the over-phosphorylation of SHP2 in ROS1 fusion or ROS1 G2032R resistant mutation Ba/F3, and was higher in ROS1 fusion than the ROS1 G2032R resistant mutation. Given that the ROS1 tyrosine kinase activates the SHP2 signaling pathway (33), we focused on the possible role of the SHP2 pathway and its downstream signaling pathways in the induction of PD-L1 expression in ROS1 fusion NSCLCs. The results show that SHP2 and c-Jun pathways regulate PD-L1 expression in ROS1 fusion crizotinib resistant lung cancer cells, indicating that distinct oncogene ROS1 possesses signaling pathways for the regulation of PD-L1 expression in NSCLCs. A immunohistochemical analysis showed that PD-L1 expression was higher in NSCLC tumor specimens positive for ALK rearrangement than in those negative for ALK translocation (23). Given that PD-L1 expression in tumors is correlated with the likelihood of a response to therapies that target the PD-1–PD-L1 interaction, further studies are warranted to evaluate the efficacy of immunotherapies, such as treatment with ICI therapy, for such oncogene-driven NSCLCs. PD-1 has an important role in regulating T cell responses and have proven to be effective targets in NSCLCs where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to anti-PD-1 therapy. Lag-3 and Tim-3 being explored in clinical trials were the next wave of co-inhibitory receptor targets. Increased understanding of the specialized functions of these receptors after different oncogenic background will inform the rational application of therapies that target these receptors to the clinic.

Although, it has been designed carefully, our study has some limitations which can be listed as follows. Firstly, we focus on the change of TME on crizotinib of PD-L1 expression or on crizotinib resistance not at the combination of crizotinib with anti-PD-L1 ICI therapy. Secondly, we conduct the study on ROS1 fusion type NSCLCs, whether it can be referred to other fusion type or molecularly target is unknown. Thirdly, we demonstrated the distribution of exhausted T cells in subcutaneous xenograft mouse models. This subcutaneous tumor model is lack of vessel formation and underestimating the impact of the lung environment. Additionally, Ba/F3 based ROS1 fusion cells might have a different transcriptional background compared with pulmonary epithelial cells. Therefore, further pulmonary metastasis tumor models are needed in the future further study. A clinical treatment line for advanced ROS1-rearranged lung cancer was summarized by Alice T. Shaw et al (34). Our study gives a new insights of ICI therapy of this line mainly of ROS1 fusion and G2032R NSCLCs, so we choose Ba/F3 cell lines as the control group. The crizotinib was still the only first-line choice for ROS1 fusion type NSCLCs. Our study focused on the tumor microenvironment changes and its clinical potential for anti-PD-L1 therapy on ROS1 fusion NSCLCs. The results show that ROS1 fusion NSCLCs may have a good clinical response to anti-PD-L1 therapy because of the upregulation of PD-L1 and the increase of CD3+PD-1+ T cells, ROS1 G2032R resistant mutation NSCLCs may not benefit from anti-PD-L1 therapy. Based on our findings, anti-PD-1/PD-L1 ICI treatments should be applied as the first line therapy for NSCLC patients with ROS1 fusion while not in ROS1 G2032R mutation type NSCLCs. In our study, HCC78CR1-5 cell lines did not harbor the secondary resistant mutation detected by RNA-sequencing which indicate a non-mutation acquire crizotinib resistance mechanisms. And based our findings, anti-PD-1/PD-L1 ICI immunotherapy would be a more effective treatment modality for this type NSCLCs patients.

In conclusion, by preclinical experiment using SLC34A2–ROS1 fusion HCC78 and crizotinib-resistant cell lines, we have identified ROS1-positive fusion as a key determinant of PD-L1 expression in NSCLCs after crizotinib acquired resistant mutation G2032R. We further showed that ROS1 modulates PD-L1 expression via common downstream pathways mediated by the ROS1–SHP2 pathway. Our findings indicate that oncogenic drivers play a direct role in the induction of PD-L1 expression and thereby contribute to immune escape of NSCLCs. Our results also indicate that ROS1 fusion NSCLCs show a beneficial ICI therapy response, which lessens in ROS1 G2032R resistance mutation, thus implying that driver genes should be considered when conducting anti-PD-L1/PD-1 ICI therapy to manage lung cancer treatment.
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The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are associated with clonal myelopoiesis, elevated risk of death due to thrombotic complications, and transformation to acute myeloid leukemia (AML). JAK2 inhibitors improve the quality of life for MPN patients, but these approved therapeutics do not readily reduce the natural course of disease or antagonize the neoplastic clone. An understanding of the molecular and cellular changes requisite for MPN development and progression are needed to develop improved therapies. Recently, murine MPN models were demonstrated to exhibit metabolic vulnerabilities due to a high dependence on glucose. Neoplastic hematopoietic progenitor cells in these mice express elevated levels of glycolytic enzymes and exhibit enhanced levels of glycolysis and oxidative phosphorylation, and the disease phenotype of these MPN model mice is antagonized by glycolytic inhibition. While all MPN-driving mutations lead to aberrant JAK2 activation, these mutations often co-exist with mutations in genes that encode epigenetic regulators, including loss of function mutations known to enhance MPN progression. In this perspective we discuss how altered activity of epigenetic regulators (e.g., methylation and acetylation) in MPN-driving stem and progenitor cells may alter cellular metabolism and contribute to the MPN phenotype and progression of disease. Specific metabolic changes associated with epigenetic deregulation may identify patient populations that exhibit specific metabolic vulnerabilities that are absent in normal hematopoietic cells, and thus provide a potential basis for the development of more effective personalized therapeutic approaches.




Keywords: myeloproliferative neoplasm, metabolism, epigenetic, EZHZ2, HDAC11, JAK2, therapy, stem cell



Introduction

Myeloproliferative neoplasms (MPN) are BCR-ABL-negative hematological malignancies where mutations in hematopoietic stem cells (HSCs) give rise to aberrant production of myeloid clones leading to three distinct clinical phenotypes. Polycythemia vera (PV) is characterized by trilineage myeloproliferation and extramedullary hematopoiesis, notably leading to elevated red blood cells and hematocrit, while essential thrombocythemia (ET) is characterized in part by dysregulated megakaryopoiesis. In addition to aberrant myeloid cell production, myelofibrosis (MF) is characterized by reactive fibrosis in the bone marrow (1, 2). MPN patients show various symptoms including spleen and liver enlargement, fatigue, pruritus, fever, night sweats, and bone pain. PV and ET can progress to MF and MF patients are at an increased risk of developing acute myeloid leukemia (AML) and have the poorest survival (2, 3). For this reason, clinical assessment of treatment paradigms in MPN have largely been focused on MF patients (4, 5). Advances in our understanding of MPNs from both clinical and pre-clinical studies have defined cell signaling driving mutations which can co-occur with mutations in other genes, including genes that encode epigenetic regulators, that correlate with differential severity of disease (6). Diverse outcomes and responses to current targeted therapies suggest that multiple factors play prominent, yet undefined, roles in MPN pathology, and thus a better understanding of aberrant cellular processes that contribute to MPN remains needed in order to develop effective therapies. Recent preclinical work has suggested significant alterations in metabolic processes may contribute to the development and progression of MPN (7). Herein we highlight and speculate how MPN driving mutations and epigenetic regulators may contribute to reprogrammed metabolism that may provide potential liabilities that can be exploited by future therapeutic intervention for MPN.



MPN Driving Mutations, Cell Signaling, and Targeted Therapies

Somatic driver mutations in three genes account for about 90% of all MPN cases. These include mutually exclusive activating mutations in the genes that encode Janus Kinase 2 (JAK2) and the thrombopoietin receptor (encoded by the myeloproliferative leukemia virus gene, MPL), as well as inactivating/neo-functional mutations in the gene that encodes the ER chaperone protein calreticulin (CALR) (6, 8). A gain of function mutation encoding JAK2-V617F is the most commonly occurring single mutation, present in more than 95% of patients with PV and 50% to 60% of patients with ET and PMF. The frequency of frameshift mutations in CALR is about 30% in ET and 25% in PMF. Activating mutations in MPL are present in ∼ 2% to 4% of ET patients and ~ 3% to 5% of PMF patients (6, 8). These mutations are designated drivers of human MPN in part because they induce MPN phenotypes in mouse models (9–11). As a common signaling event induced by MPN driving mutations, JAK2 activation is the critical signaling node in MPN, with MPL playing a requisite role in driving myeloproliferation driven by mutant JAK2 and CALR (12–18).

Deregulated JAK2 signaling in MPNs leads to cytokine hyper-sensitivity and enhanced activity of downstream signaling effectors such as the STAT transcription factors, as well as the ERK/MAPK and the PI3K/AKT pathways which play roles in regulating cell survival, proliferation, and apoptosis (1). Genetic removal of STAT5 impedes the MPN phenotype in MPN mouse models, and small molecule inhibitors of the ERK/MAPK pathway and the PI3K/AKT/mTOR pathway antagonize disease, further defining JAK2-mediated signals as playing important roles in MPN (19–27).

Among the current therapies, only allogenic stem cell transplantation is curative, capable of resolving bone marrow fibrosis and the malignant clone (28). Interferon-alpha is similarly promising, and while initially associated with treatment-limiting toxicities, the development of pegylated-interferon has made cytogenetic remission with this agent a real possibility (29, 30). The JAK1/2 kinase inhibitor ruxolitinib was approved by the United States Food and Drug Administration in 2011 for high risk MF patients and in 2014 for certain PV patients (31–33). Ruxolitinib provides symptomatic relief and can improve survival but generally fails to resolve the malignant clone (33–42). Fedratinib, a JAK2 and FLT3 inhibitor approved in 2019 for higher risk MF patients has similar quality of life improvement benefits as seen with other JAK2 inhibitors, but importantly can be effective in some patients who failed ruxolitinib (43–46). Time will determine the extent to which fedratinib improves critical parameters of MPN and survival. However, results from clinical experience suggest targeting JAK2 may not be sufficient or even the best option to reverse the course of disease in MPN patients, and a plethora of pre-clinical studies have suggested a potential benefit of therapeutic combinations. Many of these studies have focused on combining JAK2 inhibitors with inhibitors of signaling proteins associated with JAK2 activation with the hope of enhancing the efficacy of JAK2 inhibitor mono-therapy, which could provide therapeutic opportunities for additional patients, as well as potentially overcome JAK2 inhibitor resistance. Several of these combinations are being assessed in clinical trials (5).



Altered Epigenetic Regulation in MPN—Opportunities for Therapeutic Targeting?

Commonly co-occurring mutations with MPN drivers are in genes that encode epigenetic regulators (6, 8). While such mutations have contributed to refining MPN patient prognostication, studies have also highlighted the potential of epigenetic regulators, or the pathways they affect, as potential therapeutic targets in MPN (6, 8, 47–51).

Some of these epigenetic regulators include DNMT3A, TET2, EZH2, ASXL1, and IDH1/2 (via effects on TET2-mediated methylation). In some cases, concomitant mutation of these genes with MPN driving mutations can enhance disease phenotypes in MPN mouse models (47, 48, 52–57). These studies suggest mutations, most often loss of function, of these epigenetic regulators may contribute to disease progression in MPN patients. In fact, the prognosis and patient response to ruxolitinib is negatively impacted by the presence of many of these mutations, with worse prognosis associated with a greater numbers of mutations present (58–62).

However, other epigenetic regulators have emerged as possible therapeutic targets in MPN. For example, targeting the activity of LSD1 in mouse models of MPN antagonizes disease development (49). The LSD1 inhibitor IMG-7289 is currently being assessed in myelofibrosis patients. Co-expression of mutant IDH1 or IDH2 with JAK2-V617F enhances MPN progression in mice, and a small molecule IDH inhibitor along with ruxolitinib provides enhanced antagonism of disease (48). Inhibitors of BET proteins, which bind acetylated histones to promote gene expression, are effective in MPN models and cooperate with ruxolitinib by antagonizing pro-inflammatory gene signatures, and such inhibitors are under clinical assessment in MF patients (63–66). The loss of EZH2 promotes the progression of MPN in mouse models and confers enhanced sensitivity of disease to BET inhibition (47). Finally, we have recently shown a role for HDAC11 in MPN, but not normal, hematopoiesis, in one of the first reports that shows isoform selective HDAC targeting specifically impedes malignant hematopoiesis without affecting the steady state and transplantation reconstitution of normal bone marrow cells. This suggests HDAC11 may be a therapeutic target to antagonize MPN with minimal adverse effect on normal hematopoiesis (50).



MPN Drivers Deregulate Metabolic Processes

Understanding specific disease-driving effects of aberrant JAK2 signaling in hematopoietic stem and progenitor cells (HSPCs) may provide critical information regarding targets for novel therapies. Inhibition of JAK2 signaling in MPN mouse models elicits a reduced phenotypic disease burden, but it does not readily eradicate the MPN-driving and MPN-initiating cells, reminiscent of JAK2 inhibitor effects in human MPN (67–69). This suggests the HSPC signaling that drives MPN pathogenesis is resistant to the effects of direct JAK2 inhibition and that further understanding the molecular and cellular forces that drive disease are needed to identify potential vulnerabilities that can be targeted to effectively antagonize disease-driving cells. However, in addition to intrinsic abnormalities in MPN-driving cells, microenvironmental contributions play a significant role to malignant hematopoiesis in MPN, including critical roles of megakaryocytes in shaping a disease-driving hematopoietic compartment (16, 63, 70–76). Thus, understanding both intrinsic and extrinsic contributions to MPN-driving HSPCs may be critical for the development of a therapy that effectively induces remission from the neoplastic MPN clone.

Disease-driving HSPCs reside in bone marrow niche microenvironments that become remodeled during malignancy and aging (77). Characteristic of leukemic stem cell survival and expansion are metabolic changes that lead to altered sources of energy production (77, 78). For example, AML leukemia stem cells, unlike leukemic blast cells, depend on oxidative phosphorylation driven by amino acid metabolism, creating a significant therapeutic vulnerability for this disease-driving cell populations (79, 80). Interestingly, this dependency was lost in leukemia stem cells from relapsed patients, where fatty acid metabolism provided the requisite energy source, demonstrating that metabolic changes may drive malignancy and relapse (80). Perhaps more relevant to chronic phase MPN is the report of HSPC subsets that exhibit increased glycolysis associated with myeloid skewing in older people, and the possibility that this may correlate with the natural clonal hematopoiesis associated with aging (81, 82). In addition to JAK2 mutations in DNMT3A, TET2, and ASXL1 are amongst the most commonly detected mutations associated with aging-dependent clonal hematopoiesis in populations not exhibiting hematologic malignancy (83–86). The role of metabolic reprogramming in MPN stem and progenitor cells is not well understood, although several studies have provided important observations.

The JAK2-V617F MPN-driving kinase was shown to enhance the expression the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) (87). PFKFB3 regulates 6-phosphofructo-1-kinase activity which is a rate limiting enzyme of glycolysis (88). JAK2-V617F-expressing cells exhibited enhanced glucose uptake which correlated with elevated levels of the glucose transporter Glut1, both of which were shown to be under the control of the activity of JAK2-V617F (87). This study demonstrated that JAK2-V617F-dependent regulation of glucose uptake and PFKFB3 have the potential to contribute to enhanced lactate production and metabolic activity. Importantly, significantly elevated PFKFB3 mRNA levels were detected in PV patients compared to healthy controls. The authors demonstrated that PFKB3 expression and activity were required for optimal growth of JAK2-V617F-expressing cells in vitro and as tumors in mice (87). Another study evaluated the previously known increased dependence of cancer cells on free amino acids such as glutamine (89, 90). This study indicated glutaminase (GLS), an enzyme that converts glutamine into glutamate, was not found to be upregulated in primary MPN cells but provides some evidence that targeting its activity may enhance the effect of JAK2 inhibition (91). While these studies provide initial insight into the potential metabolic enzymes may provide a target to improve MPN therapies, they were mostly limited to cellular models.

More recently, Rao et al. elegantly described a reprogramming of metabolic activity in mouse models of JAK2 mutant MPN (7). This report demonstrated that elevated expression of glycolytic enzymes in stem and progenitor cells of JAK2-mutant MPN mice correlated with enhanced glucose uptake, glycolysis and oxidative phosphorylation as well as use of the pentose phosphate pathway (7) (Figure 1A). In fact, enhanced erythropoiesis was so highly dependent on glucose that JAK2-mutant MPN mice became hypoglycemic with disease progression, leading to a state of “energy crisis” that likely contributed to the observed elevation of lipid catabolism. Interestingly, the survival of JAK2-exon 12 mutant MPN model mice was significantly lengthened by a high fat diet, suggesting disease could be impacted by the nutritional energy source. Rao et al. also demonstrated that PFKFB3 was elevated in cells from JAK2-mutant mice. The PFKFB3 inhibitor 3-PO induced apoptosis in MPN model cell lines and primary cells from patients, but only showed additive effects with ruxolitinib in cell lines. Similarly, therapeutic treatment of JAK2-mutant MPN mice with 3-PO modestly antagonized the MPN phenotype, and only showed modest effects in combination with ruxolitinib. Upregulation of proteins that promote enhanced glycolysis may be regulated by HIF1-α, which could provide a therapeutic target to antagonize metabolic dependencies in MPN-driving cells (93). MPN patients often gain weight during ruxolitinib treatment and Rao et al. also suggests PV patients undergoing cytoreductive therapy display increased blood sugar levels (7). Although many factors many contribute to such observations, such as effects on leptin signaling due to JAK2 inhibition or perhaps increased appetite due to reduced splenomegaly, these observations suggest a link between altered metabolic stasis and MPN (94). Ruxolitinib treatment may antagonize enhanced metabolism in MPN progenitor cells, leading to an imbalance of caloric intake and utilization, leading to weight gain (95). Targeting metabolic processes to selectively antagonize malignant progenitor cells thus could have other health concerns for patients. Nonetheless the study by Rao et al. suggests that aberrant metabolic activity of disease-driving MPN progenitor cells may provide a therapeutically targetable liability that may spare cells that aren’t dependent on aberrant metabolic regulation (7).




Figure 1 | Metabolic reprogramming in MPN development and progression. (A) MPN driving mutations lead to aberrant JAK2 signaling that leads to metabolic reprogramming and MPN development (7). (B) Epigenetic alterations such as loss of EZH2 function in MPN may contribute to progression of disease severity via reprogramming of BCAA metabolism (92).



Numerous signaling pathways activated by JAK2 could impinge on metabolic control in MPN. Induction of PFKFB3 and glycolysis by JAK2-V617F is mediated by STAT5 activation, but other pathways likely contribute to metabolic changes induced by aberrant JAK2 signaling (87). Notably, the mTOR pathway, a well-known regulator of metabolic processes, is regulated by PI3K/AKT signaling, a downstream effector pathway of JAK2 (1, 96). mTOR inhibitors are effective in MPN models, but clinical assessment has not gained much traction, with a more recent focus on PI3K inhibitors, which target mTOR activating signals (5, 19, 23–26, 96, 97). Such signaling pathway inhibitors of course would not affect metabolism specifically. Further understanding of the deregulated metabolic processes that contribute to driving MPN is needed to determine the extent to which these could be targeted more directly, for example, with specific metabolic enzyme inhibitors.



Epigenetic Regulator-Mediated Control of Metabolic Processes in MPN

Evidence suggests that deregulated metabolic programs are manifested by altered regulation of gene expression of key proteins in glycolytic processes as well changes of lipid and amino acid metabolism (98–100). Metabolic changes induced in MPN model mice suggest aberrant JAK2 signaling may drive these effects (7). However, other mutations or deregulated signaling associated with MPN may contribute to altered metabolic pathways in MPN driving cells. For example, recent studies have suggested altered epigenetic control of methylation and acetylation have the potential to contribute to the control of metabolic processes, such as amino acid metabolism and glycolysis in MPN.


Methylation and Branched-Chain Amino Acid Metabolism

EZH2, as the enzymatic component of the polycomb repressive complex-2 (PRC2), catalyzes methylation of H3K27 which leads to suppression of gene expression (101). The frequency (~5–10%) of inactivating EZH2 mutations found in MF suggests loss of EZH2-mediated methylation contributes to neoplastic disease (6, 60, 102, 103). Genetic loss of EZH2 leads to a more advanced MPN phenotype and decreased survival in MPN mouse models, suggesting EZH2 plays a tumor suppressive role in MPNs (47, 55, 56, 92).

EZH2 loss/inactivation in an N-RAS-driven mouse model of MPN led to enhanced branched-chain amino acid metabolism (BCAA) during the progression of disease (92). This is consistent with a known role of EZH2 in the regulation of metabolic processes such as glucose, fatty acid, and amino acid metabolism in cancer cells (104). BCAA metabolism plays roles in a variety of cancer types and has been identified as a metabolic vulnerability in myeloid leukemia (105, 106). BCAA metabolism is regulated by branched chain amino acid transaminase 1 (BCAT1) in reversible reactions generating branch-chain alpha-keto acids and glutamate from BCAAs and alpha-ketoglutarate (α-KG) (105). The loss of EZH2 led to the loss of repressive methylation of the BCAT1 promoter, leading to enhanced BCAT1 expression, sustained BCAA levels, progression of MPN (e.g., enhanced myelofibrosis) and transformation to AML (92) (Figure 1B). BCAT1 is generally low or not expressed in hematopoietic cells and exogenous expression of BCAT1 mimics the effects of the loss of EZH2 on leukemia initiating cells (92, 106). Importantly, leukemia initiating cells that lacked EZH2 were more sensitive to BCAT1 inhibition than normal HSPCs, which are unaffected by loss of BCAT1 (92). Thus, the loss of EZH2 can drive MPN severity and the aberrant control of post-MPN leukemic-initiating cells via BCAT1-mediated alteration of metabolic processes. Loss of function EZH2 mutations in human MPN are associated with higher levels of BCAT1 mRNA compared to patients with wildtype EZH2 (92). Therefore, the loss of EZH2-mediated inhibition of BCAT1 expression may contribute to altered metabolic profiles in MPN-driving cells, which may explain the poor prognosis of MPN patients who harbor EZH2 mutations (60).

The increase in BCAT1 levels associated with inactivating mutations of EZH2 could contribute to the available pool of α-KG, an important component of the TCA cycle that also functions as a co-factor for the TET2 methylcytosine dioxygenase that promotes DNA demethylation (107, 108). Loss of function mutations in TET2 are present in 10% to 20% of MPN patients where they contribute to clonal dominance and disease initiation and associate with poor outcomes (6, 61, 109, 110). Loss of TET2 leads to distinct gene expression profiles and enhances disease in an MPN mouse model (53). Likewise, IDH1/2 mutations lead to the production of 2-hydroxyglutarate instead of α-KG, which effectively inhibits the function of TET2, and thus such mutations mimic loss of function of TET2 (111, 112). This is a clear example of the interconnectivity between alterations in metabolic pathways leading to deregulation of epigenetic regulatory mechanisms in cancer. Mutations of IDH1/2 are present in 1% to 3% of MPN patients, are enriched in post-MPN leukemia (~20%) where they associate with poor survival, and enhance the progression of disease in MPN model mice (48, 62). In the MPN model driven by activated N-RAS and loss of EZH2, with subsequent elevation of BCAT1, changes in cellular α-KG levels were not detected (92). However, BCAT1 expression in non IDH or TET2 mutant AML stem cells correlates with decreased α-KG levels and gene expression profiles similar to IDH mutant cells, suggesting deregulation of methylation regulated by TET2 (113). Whether BCAT1 levels affect the activity of TET2-mediated regulation of DNA methylation and gene expression in MPN patients is unknown.

Loss of EZH2 function has been proposed to play a role in the effects elicited by other mutations found in MPN, including ASXL1 and SRSF2, suggesting EZH2 loss of function may contribute to the biology of disease in patients beyond those that have EZH2 mutations (57, 114). As normal HSPCs do not require BCAT1 and these cells have low BCAT1 expression, BCAT1 levels may define subsets of MPN patients that could exhibit BCAT1-driven therapeutic liabilities. BCAT1 inhibition could provide a therapeutic strategy for MPN patients who have elevated BCAT1 (e.g., patients with EZH2, and possibly ASXL1 and SRSF2 mutations) to shift malignant myeloproliferative hematopoiesis back to normal hematopoiesis.

Moreover, the associated decrease in H3K27 methylation with EZH2 loss of function leads to an increase in H3K27 acetylation, providing binding sites for BRD4 and enhancement of gene expression. This epigenetic switch reverts a transcriptional inhibitory mark (methylation) to an activation mark (acetylation), effectively creating a synthetic lethal interaction between loss of function EZH2 mutations and BET inhibition in mouse models (47). As such, loss of EZH2 function in MPN patients may provide enhanced sensitivity to BET inhibitors, which are currently in clinical testing for myelofibrosis patients. It will be interesting to see the relative bromodomain inhibitor responses of MPN or post-MPN AML patients who have inactivating EZH2 mutations, or ASXL1 or SRSF2 mutations which antagonize PRC2/EZH2 function (57, 114).

Finally, BCAA metabolism has recently been associated with tyrosine kinase inhibitor resistance in lung cancer, suggesting such metabolic reprogramming may also contribute to the inefficacy or resistance to JAK2 inhibition (115). In fact, MPN patients with multiple mutations, including in EZH2 and ASXL1, in addition to a JAK2 activating mutation tend to respond poorly to JAK2 inhibitor therapy (59). The possibility exists that BCAA metabolism may affect response to JAK2 inhibition or may contribute to an adaptive response in cells exposed to chronic JAK2 inhibition. If so, inhibition of BCAA metabolism may enhance the efficacy of current targeted therapies in subsets of MPN patients.



Metabolic Control by Histone Deacetylases

Protein lysine acetylation is not limited to histones as it is a key modification found throughout the human proteome, affecting most major cellular processes including metabolism (116–118). One study indicates that almost every enzyme within major metabolic pathways is acetylated, clearly suggesting a likely role of acetylation in metabolic control (118). For example, phosphoenolpyruvate carboxykinase is a gluconeogenic enzyme whose protein stability and levels are antagonized by acetylation (118). Given the breadth of the acetylated proteome and the non-selectivity of clinically assessed HDAC inhibitors, it is likely specific functions of individual HDAC family members need to be identified, along with the development of HDAC-isoform specific inhibitors, in order to selectively target HDACs to impede specific regulatory mechanisms of acetylation. While pan-HDAC inhibitors (e.g., vorinostat, givinostat, pracinostat, panobinostat) have been assessed in clinical trials and some have displayed efficacy in MPN patients, toxicity concerns may limit their potential (119–126). This suggests the development of more specific HDAC inhibitors may minimize adverse effects and allow this class of epigenetic regulators to be therapeutically targeted.

Recent reports have also highlighted a significant role for HDAC11, which has roles in immune tolerance, in regulating metabolic processes (127–130). We, along with our collaborators, demonstrated a role for HDAC11 in HSPCs in a transplantation mouse model of MPN driven by MPL-W515L. Data obtained using HDAC11-null mice and MPN patient samples treated with selective HDAC11 inhibitors suggest that HDAC11 contributes to the neoplastic nature of MPN cells but not normal hematopoiesis (50). Subsequent studies using global acetylomic profiling following HDAC11 inhibition identified glycolytic enzymes (e.g., enolase-1 (ENO-1)) as potential substrates of HDAC11. Pharmacological inhibition as well as knockdown of HDAC11 increased the acetylation of ENO-1, decreased the activity of ENO-1, and reduced the rate of glycolysis as well as oxidative phosphorylation in MPN model cell lines and primary cells from MPN patients but not healthy controls (131). These observations are supported by previous studies linking acetylation to metabolic processes and potentially provide HDAC11-specific functions in regulating metabolic pathways (118).

Therefore, HDAC11 may contribute to the MPN-driver associated metabolic changes that contribute to MPN pathogenesis (7). However, specific metabolic effects of HDAC11 depletion in MPN mouse models have yet to be determined. Similarly, the efficacy of a selective anti-HDAC11 therapeutic in such models and the effects of such a therapeutic on the metabolic profiles of MPN-driving cells are unknown. Continued development of such inhibitors are required to ascertain the extent to which HDAC11 inhibition may provide a therapeutic option to disrupt control of cellular processes requisite for MPN-driving HSPCs, and to determine if the observed metabolic vulnerabilities that have been identified in MPN-driving HSPCs are regulated by HDAC11 (7). HDAC11 also displays a recently identified deacylase activity and the role of this activity in MPN formation is unknown (132–134). Interestingly, HDAC11 was the most highly induced HDAC in response to a variety of HDAC inhibitors in AML cells, suggesting it indeed may have unique and critical properties compared to other HDAC family members (135). HDAC11 inhibition has been suggested to overcome therapy resistance in lung cancer models, and while its role in resistance to targeted therapies such as approved JAK2 inhibitors in MPN is unknown, current data suggest potential for the combination of JAK2 inhibition and HDAC11 inhibition as a possible future therapeutic strategy (136).




Discussion

MPN-driver mutations enhance JAK2 signaling which promotes neoplastic HSPC expansion, and altered epigenetic control mechanisms play an etiologic role in the development and progression of MPN. Recent studies provide evidence that altered metabolic control may play an important role in MPN and that altered epigenetic regulation may contribute to neoplastic metabolic profiles. Deregulated metabolic processes that support and drive MPN phenotypes may reveal novel vulnerabilities that can be targeted to suppress the malignant clone while sparing healthy HSPCs. The role of disease-associated metabolic states in the upfront inefficacy of JAK2 inhibitors, as well as whether or not JAK2 inhibitor therapy induces changes in metabolic states that contribute to JAK2 inhibitor failure, are questions that remain important to address. Further understanding the metabolic profiles of MPN HSPC clones in MPN subtypes, genotypes, responses to JAK2 inhibitor therapy, and disease progression are required in order to understand the potential relationship between deregulated epigenetics and metabolism in MPN, which could lead to the development of much needed remission-inducing personalized therapies for patients.
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Background

TP53 gene mutation is one of the most common mutations in human bladder cancer (BC) and has been implicated in the progression and prognosis of BC.



Methods

RNA sequencing data and TP53 mutation data in different populations and platforms were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database to determine and validate a TP53-associated immune prognostic signature (TIPS) based on differentially expressed immune-related genes (DEIGs) between muscle-invasive bladder cancer (MIBC) patients with and without TP53 mutations.



Results

A total of 99 DEIGs were identified based on TP53 mutation status. TIPS including ORM1, PTHLH, and CTSE were developed and validated to identify high-risk prognostic group who had a poorer prognosis than low-risk prognostic group in TCGA and GEO database. The high-risk prognostic group were characterized by a higher abundance of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages than the low-risk prognostic group. Moreover, they exhibited a lower abundance of CD56bright NK cells, higher expression of CTLA4, LAG3, PDCD1, TIGIT, and HAVCR2, as well as being more likely to respond to anti–PD-1, and neoadjuvant chemotherapy than the low-risk prognostic group. Based on TIPS and other clinical characteristics, a nomogram was constructed for clinical use.



Conclusion

TIPS derived from TP53 mutation status is a potential prognostic signature or therapeutic target but additional prospective studies are necessary to confirm this potential.





Keywords: muscle-invasive bladder cancer, TP53 mutation, immune prognostic signature, nomogram, the cancer genome atlas (TCGA) and gene expression omnibus (GEO) database



Introduction

Bladder cancer (BC) is one of the most prevalent urothelial tumors and the leading cause of morbidity and mortality globally (1). Out of all the BC patients, about 25% are diagnosed with muscle-invasive bladder cancer (MIBC), which is characterized by rapid progression, metastasis, and poor prognosis (2). There are two different subtypes of MIBC, i.e., intrinsic basal and luminal subtypes (3). Reports have shown that MIBC is the more aggressive type, matched with lymph-node metastases and associated with a poorer survival rate (4). Increasing lines of evidence support the idea that the malignant phenotype of tumors is related to the tumor microenvironment (TME) (5, 6). Notably, MIBC is an immune-sensitive malignancy with multiple tumor-infiltrating lymphocytes (TILs), including, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) (7, 8). Therefore, advancements in detection, therapy, and prognosis of BC necessitate the integration of various new methods, including, genomic profiling, development of biomarkers, and immunotherapy (4). However, only a few studies have systematically investigated the association between the immunophenotype of TME and the prognosis of MIBC.

As the most studied tumor suppressor gene, TP53 (P53) is one of the most common mutated genes in human cancer (9). TP53 gene functions by binding directly to chromatin, it can sense cellular stress or damage, which in turn triggers cell apoptosis after DNA damage or causes cell cycle arrest (10, 11). Nonetheless, when the TP53 gene is mutated (mostly missense), it loses its function as a tumor suppressor gene and simultaneously promotes tumorigenesis (12). Subsequently, cells escape from DNA damage resulting in the unlimited proliferation of tumor cells and ultimately causing cancer (12). Germline mutations in TP53 induce a rare high penetrance cancer syndrome (13). A pan-cancer analysis of the frequency of DNA alterations across cell cycle activity levels revealed that TP53 mutations were prevalent in all cell cycle scores (14). Also, it has been argued that the high mutation rate of the TP53 gene is a potential target for gene therapy (15). Currently, molecular strategies of drugs targeting TP53 mutations are undergoing clinical trials (16). It was reported that TP53 genes are the most common drivers of mutations in MIBC (17, 18), also, BC patients with TP53 mutation displayed a shorter overall survival (OS) (18, 19, 20). As a result, it is fundamental to precisely explore the role of the TP53 gene in the pathogenesis of MIBC.

Interestingly, several recent studies reported that TP53 gene mutation property is closely linked to TME as well as different immune responses in multiple tumors (21–23). Therefore, we conjectured that the poor prognosis of MIBC patients with TP53 mutations can potentially be associated with TME. In this study, a comprehensive analysis of TP53 gene mutation and expression was performed to explore the association between TP53 mutations and immune phenotype in MIBC. Differentially expressed immune-related genes (DEIGs) were explored in patients with TP53 mutations (TP53mut) and without TP53 mutations (TP53wt). Importantly, we developed a TP53-associated immune prognostic signature (TIPS) with immune-related genes whose expression was affected by TP53 mutation, which has been confirmed to be a reliable biomarker and predictor of prognosis.



Materials and Methods


RNA Sequencing Data

The RNA sequencing data (HTSeq-Counts), MuTect2-based somatic mutation data, and the corresponding clinical data of 412 urinary bladder cancer patients were downloaded from The Cancer Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/). The selection criteria of these patients included; (1) MIBC tissue samples; (2) having TP53 mutation data; (3) having gene expression data; (4) having follow-up data and survival status. A total of 402 MIBC patients were enrolled in the TCGA cohort. Then, HTSeq-Counts data were converted to transcripts per kilobase million (TPM) data and were log2-transformed (log2TPM) for subsequent analysis, which showed more comparability between samples (24). This study used the average expression value of genes in instances where gene duplication was detected.



Microarray Data

The matrix files of the gene expression profile and clinical information of GSE32894, GSE48075, and GSE52219 data sets were extracted from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Gene expression data of GSE48075 was log2-transformed. Notably, the average gene expression was used if multiple probes matched a single gene. Batch effects were removed through the “sva” package (version: 3.36.0; http://bioconductor.org/packages/release/bioc/html/sva.html). Then, GSE32894 (MIBC patients: 51) and GSE48075 (MIBC patients: 73) based on the same platform GPL6947 with follow-up data and survival status were integrated into the GEO cohort (n = 124). Twenty-three MIBC patients with information regarding their response to neoadjuvant chemotherapy (NAC) (NAC type: MVAC=methotrexate, vinblastine, adriamycin, and cisplatin) in the GSE52219 data set were included into this study. Data from the present study are publicly available from The Cancer Genome Atlas (TCGA) and GEO databases.



Gene Set Enrichment Analysis of TP53 Mutation

To identify potential differences in immunological pathways between TP53mut (n=196) and TP53wt (n=212) MIBC patients, GSEA (Version: 4.0; http://software.broadinstitute.org/gsea/index.jsp) was performed in TCGA cohort based on the reference gene set “c5.bp.v7.1.symbols.gmt.” The threshold was set at |Normalized Enrichment Score (NES)| > 1 and P < 0.01.



Association Between the TP53 Mutation and Tumor Mutation Burden

TMB is defined as the total number of deletions, insertions, base substitutions, or somatic gene coding errors detected per million bases. To explore the association between TP53 mutation and TMB, Perl scripts (version 5.30.2; http://strawberryperl.com/) were used to calculate the mutation rate with number of variants/the length of exons (38 million) for each sample of the TCGA cohort based on MuTect2-based somatic mutation data.



Differentially Expressed Immune-Related Genes Analysis

To identify DEIGs between TP53mut (n=196) and TP53wt (n=212) MIBC patients in the TCGA cohort, the “edgeR” package (version 3.30.0; http://www.bioconductor.org/packages/release/bioc/html/edgeR.html) was used with thresholds being false discovery rate (FDR) < 0.05 and |log2-fold change (FC)| > 1.0. The list of immune-related genes was downloaded from the ImmPort database (http://www.immport.org), which contains 17 immune categories based on different molecular function, such as TNF family receptors, B cell receptor signaling pathway, T cell receptor signaling pathway, and cytokines (25).



Function Enrichment Analysis of Differentially Expressed Immune-Related Genes

Gene Ontology (GO) enrichment analysis, including biological processes (BP), cellular components (CC), and molecular functions (MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using “clusterProfiler” package (version 3.16.1; http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html) (26).



Development and Validation of TP53-Associated Immune Prognostic Signature for Muscle-Invasive Bladder Cancer

Univariate Cox regression analysis was performed using “survival” package (version 3.1-12; https://cran.r-project.org/web/packages/survival/index.html) to assess the relationship between DEIGs and OS of MIBC patients in the TCGA cohort. DEIGs with P < 0.05 were considered prognostic immune-related genes. Further, the least absolute shrinkage and selection operator (LASSO) analysis was performed using the “glmnet” package (Version: 4.0; https://cran.r-project.org/web/packages/glmnet/index.html) to further screen prognostic DEIGs, which can resolve the collinearity problem and overfitting problem. Finally, TIPS was constructed by a multivariable Cox regression model based on the result from LASSO analysis, and the risk score of each patient was calculated by weighted estimators corresponding to the expression level of each gene. The patients in the TCGA cohort were divided into low- and high-risk prognostic groups as per the best cut off value determined by X-tile 3.6.1 software. To obtain the same formula and the uniform cutoff value to divide MIBC patients into low- and high-risk prognostic groups, a normalization for expression values of TIPS genes was conducted in the TCGA cohort and the GEO cohort with standard deviation (SD) = 1 and mean value = 0. To validate the TIPS, the risk score for each patient of the GEO cohort was calculated using the same formula and the patients were stratified into low- and high-risk prognostic groups following the same cutoff value obtained from the TCGA cohort. Of note, Kaplan-Meier survival analysis with the log-rank test was used to evaluate the survival difference between the low- and high-risk prognostic groups. Area under the curve (AUC) of time-dependent receiver operating characteristic (tROC) curve and the discrimination was used to evaluate prognostic performance of TIPS. The discrimination of TIPS was determined by a concordance index (C-index) using 1000 bootstrap resamples.



Gene Set Enrichment Analysis of the Tp53-Associated Immune Prognostic Signature Genes

GSEA was performed to explore the enriched KEGG pathways of the TIPS genes. According to the median expression of each gene, 408 MIBC samples were divided into low- and high-expression groups. The gene set “c2.cp.kegg.v7.1.symbols.gmt” was chosen as the reference set, which was obtained from the Molecular Signatures Database V7.1 (MSigDB). |NES| > 1 and P < 0.01 were considered as statistically significant.



Estimation of Tumor-Infiltrating Lymphocytes Abundance

To investigate the association between TIPS and TILs, single sample gene set enrichment analysis (ssGSEA) was performed to determine the relative abundance of 28 subpopulations of TILs in the MIBC immune infiltrates, including Tregs, MDSC, TAMs, CD56bright NK cells (NK) cells, etc (27, 28).



Correlation Between Tp53-Associated Immune Prognostic Signature and Biomarkers for Immunotherapy

Notably, the immune checkpoints are the biomarkers for selecting patients with MIBC for immunotherapy. Therefore, this study analyzed the correlation between TIPS and critical immune checkpoints (PD1, CTLA4, LAG3, HAVCR2, and TIGIT).



Prediction of Chemotherapeutic and Immunotherapeutic Response

Chemotherapy is effective for treating MIBC. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) website, the clinical response to chemotherapy of each MIBC patient was estimated to explore whether there were differences in the response of low- and high-risk prognostic groups to chemotherapy and immunotherapy. Two commonly used chemotherapy drugs, gemcitabine and cisplatin, were selected for the chemotherapeutic response prediction, which involved the ridge regression based on the “pRRophetic” R package (https://github.com/paulgeeleher/pRRophetic20) to predict the half-maximal inhibitory concentration (IC50) of each TCGA-MIBC patient and the 10-fold cross-validation based on the GDSC training set was used to assess the prediction accuracy (29). To validate the feasibility of the TIPS to predict response to NAC, 23 MIBC patients with NAC in GSE52219 data set were included into this study. A normalization for the expression of TIPS genes was conducted in GSE52219 data set with a standard deviation (SD) = 1 and mean value = 0. The risk score for each patient was calculated using the same formula.

The immune checkpoint inhibitor has evolved to be the most potent tool for cancer therapy, such as anti-PD1 and anti-CTLA4, which activate the immune system to play an anti-tumor role (30). Here, subclass mapping on GenePattern website (https://cloud.genepattern.org/gp) was used to predict the anti-PD1 and anti-CTLA4 response of each MIBC patient as described previously (31, 32).



Independence of Tp53-Associated Immune Prognostic Signature From Clinical Characteristics

Out of the 402 MIBC patients in the TCGA cohort with follow-up and survival status data, 342 MIBC patients with complete clinical data, including age, gender, T stage, N status and TMB, were selected for subsequent analyses. Univariate and multivariate Cox regression analysis was performed to identify whether the prediction of TIPS was independent from other clinical characteristics (age, gender, T stage, N status and TMB). To further identify whether the TIPS was a statistically significant prognostic factor regardless of clinical data, the patients were stratified based on age, T stage and TMB, and Kaplan-Meier survival analysis was used to assess the difference in the OS between low- and high-risk prognostic groups of different subgroups.



Development and Evaluation of the Nomogram Based on the Tp53-Associated Immune Prognostic Signature

To facilitate the prediction of 1-, 3-, and 5-year OS probability in MIBC patients, a nomogram was developed based on the results from multivariate Cox regression analyses using the “rms” R package (version 6.0-0; https://cran.r-project.org/web/packages/rms/index.html). The commonly used methods i.e., AUC of tROC, C-index using 1000 bootstrap resamples, and calibration plot were used to validate the performance of the nomogram. Calibration plots were used to assess the consistency between nomogram-predicted probabilities and observed probabilities using 500 bootstrap resamples, with the 45degree line representing the ideal predicted values. Moreover, decision curve analysis (DCA) was used to determine the net benefits derived from the use of the nomogram, TIPS, age, T stage, N status and TMB (33).



Statistical Analysis

The 95% confidence interval (CI) and HR (Hazard Ratio) were generated by Cox regression analysis and Kaplan-Meier survival analysis. Cox regression analysis assume that the HR is constant over time, therefore, is significant to assess the validity of the proportional hazards assumption (PH assumption). The scale Schoenfelder residual test based on the “survival” R package (Version 3.2-7; https://cran.r-project.org/web/packages/survival/index.html) was performed to evaluate whether clinical variables violated the PH assumption (34). The FDR method was used to control for multiple testing, which is the percentage of important tests that can lead to a false positive (35). Spearman correlation analysis was performed to access the existence of a correlation between variables. Mann-Whitney-Wilcoxon Test or Student’s t test was used to evaluate the comparison between groups for continuous variables. Categorical variables were compared between groups using Chi-square or Fisher’s exact tests. All statistical analyses were performed in R software (version 3.6.2; https://www.r-project.org/) and they were 2-sided, with a P-value of less than 0.05 considered statistically significant.




Results


Association Between TP53 Mutation and Immunophenotype and Tumor Mutation Burden in Muscle-Invasive Bladder Cancer

As shown in Figure 1A, TP53 mutation was the most frequent type in TCGA-MIBC cohort (47%), with missense mutation being the main type. In order to determine the prognosis of different types of TP53 mutation, we conducted stratification analysis based TP53 patterns which combined the nonsense mutation, frameshifts (deletions and insertions), in frame shift deletion, splice site and multi-hit mutations to non-missense mutations. The Kaplan-Meier survival analysis suggested that patients with missense mutations have a poorer prognosis when compared with non-missense mutations (Figure 1B). Previous studies found that TP53 mutation is associated with the pathological staging and prognosis of MIBC. However, research on the association between TP53 mutation and immunophenotype in MIBC has not matured. Therefore, for the first time, this study used RNA sequencing data and clinical information of TCGA-MIBC patients to identify immune-related biological processes related to TP53 status. GSEA analysis showed that TP53mut MIBC patients were significantly enriched in 657 biological processes, out of these, five were immune-related biological processes (Figure 1C). In contrast, no immune-related biological processes were enriched in the TP53wt MIBC patients. In addition, the proportion of TP53mut MIBC patients was significantly high among high-TMB group compared with low-TMB group (Chi-square test, P value <0.001; Figure S1A). The TMB of TP53mut MIBC patients was higher than TP53wt TMB patients (Student’s t test, P value = 0.038; Figure S1B), suggesting that the TP53 mutation was closely associated with high TMB.




Figure 1 | Association between TP53 mutation and immunophenotype in MIBC. (A) Overview of somatic mutations in all TCGA-MIBC samples. (B) Kaplan-Meier survival analysis of the different types of TP53 mutations. (C) Significant enrichment of immune-related biological processes in TP53MUT MIBC patients compared with that in TP53WT MIBC patients. (TCGA, The Cancer Genome Atlas; MIBC, muscle-invasive bladder cancer; MUT, mutation; WT, wild type.)





Identification of Differentially Expressed Immune-Related Genes Between TP53mut and TP53wt Muscle-Invasive Bladder Cancer Patients

Based on the results obtained from the GSEA analysis, the TP53 mutation was closely related to immune-related biological processes, hence, MIBC patients were subdivided into TP53mut and TP53wt groups, then DEIGs were explored to further identify the correlations between the TP53 mutation and immunophenotype in MIBC. A total of 50 upregulated genes and 49 downregulated genes were identified (FDR < 0.05 and |log2- FC| > 1.0) (Figures 2A, B). The differentially expressed gene analysis using the “edgeR” package is shown in supplement Table S1. As shown in Figure S2A, significantly enriched BP of DEIGs were detected, including B cell proliferation, second messenger mediated signaling and humoral immune response. Several CC GO terms were detected, including external side of plasma membrane, secretory granule lumen and cytoplasmic vesicle lumen (Figure S2B). In GO terms of MF, receptor ligand activity, signaling receptor activator activity and cytokine activity were significantly enriched terms (Figure S2C). According to the KEGG pathway analysis, cytokine-cytokine receptor interaction, IL−17 signaling pathway and natural killer cell mediated cytotoxicity were mostly associated with the DEIGs (Figure S2D).




Figure 2 | Identification of DEIGs between TP53MUT and TP53WT MIBC patients. The heatmap (A) and a volcano plot (B) were used to visualize the identified DEIGs. (DEIGs, differentially expressed immune-related genes; MUT, mutation; WT, wild type; MIBC, muscle-invasive bladder cancer.)





Construction and Evaluation of TP53-Associated Immune Prognostic Signature in the The Cancer Genome Atlas Cohort

Univariate Cox regression analysis was performed, where 13 of the 99 DEIGs were identified to be significantly associated with OS in TCGA-MIBC patients (Table S2). For further screen the 13 prognostic DEIGs, LASSO analysis was applied (Figures 3A, B). The LASSO analysis was used to shrink all regression coefficients toward zero and to select variables simultaneously; and the optimal lambda value were determined through 10-fold cross-validations. Finally, we identified TIPS using multivariate Cox regression analysis that was significantly associated with OS in MIBC patients. The risk score of each TCGA-MIBC patient was calculated as follows: [−0.42 × Expression value of ORM1] + [0.17 × Expression value of PTHLH] + [−0.39 × Expression value of CTSE] (Table S3). Figure 2B showed the differential expression of these three genes between TP53mut and TP53wt MIBC patients. Further, the TCGA-MIBC patients were divided into either low- or high-risk prognostic group based on −0.037 determined by X-tile 3.6.1 software (Figures S3A, B). The risk score distribution, gene expression, and OS status of TCGA-MIBC patients were shown and ranked based on risk score values of the TIPS (Figure 3C).




Figure 3 | Development and validation of TP53-associated immune prognostic signature (TIPS) for MIBC. (A) LASSO coefficients profiles of 13 genes. (B) LASSO regression with 10-fold cross-validation obtained three prognostic genes that error is within one standard error of the minimum (lambda.1se). (C) The distribution of risk scores (a), survival status (b) and genes expression levels of MIBC patients (c) in the TCGA cohort. (D) Kaplan-Meier survival analysis of TIPS in the TCGA cohort. (E) Time-dependent ROC analysis of TIPS in the TCGA cohort. (F) The distribution of risk scores; (a) survival status; (b), and genes expression levels of MIBC patients; (c) in the GEO cohort. (G) Kaplan-Meier survival analysis of TIPS in the GEO cohort. (H) Time-dependent ROC analysis of TIPS in the GEO cohort. (TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; MIBC, muscle-invasive bladder cancer).



In addition, Kaplan-Meier survival analysis showed that high-risk prognostic group with the higher risk score had a significantly poorer prognosis than low-risk prognostic group with the low-risk score (HR = 2.22, 95% CI = 1.62–3.06, P < 0.0001) (Figure 3D). The AUCs for 1-, 3-, and 5-year OS predictions for TIPS were 0.625, 0.643, and 0.640 respectively, indicating that TIPS had a satisfactory sensitivity and specificity (Figure 3E). C-index of the TIPS was 0.62 (95%CI: 0.57–0.66, P<0.0001). As shown in Figures S4A to C, the AUCs for 1-, 3- and 5-year OS predictions of TIPS were higher than AUCs of age, gender, T stage, N status and TMB in the TCGA cohort.



Validation and Evaluation of TP53-Associated Immune Prognostic Signature in the Gene Expression Omnibus Cohort

To evaluate the robustness of TIPS, its performance was assessed in the GEO cohort, which consisted of 124 MIBC patients. The patients in the GEO cohort were stratified into low- and high-risk prognostic groups using the same formula and the same cutoff value (−0.037) obtained from the TCGA cohort (Table S4). The risk score distribution, gene expression, and OS status of patients in the GEO cohort are shown in Figure 3F. In comparison with the high‐risk prognostic group in the GEO cohort, a significantly higher survival rates were observed in the low-risk prognostic group (HR = 2.05, 95% CI= 1.26–3.33, P = 0.0084) (Figure 3G). This was in line with the results of the TCGA cohort. Moreover, the TIPS achieved an AUC of 0.650 at 1 year, 0.691 at 3 years, and 0.671 at 5 years (Figure 3H). C-index of the TIPS was 0.61 (95%CI: 0.55–0.67, P<0.0001). The above results demonstrate the TIPS is effective in predicting the OS of MIBC patients.



Gene Set Enrichment Analysis of the TP53-Associated Immune Prognostic Signature Genes

To further investigate enriched KEGG pathways of CTSE, ORM1 and PTHLH in MIBC, GSEA was performed based on TCGA-MIBC RNA-seq data. As shown in Figure S5, genes in the high expression groups of CTSE (A) were mainly enriched in the metabolism-related pathway, such as “alpha linolenic acid metabolism,” “arachidonic acid metabolism” and “drug metabolism cytochrome P450.” Meanwhile, the “Natural killer cell mediated cytotoxicity,” “complement and coagulation cascades,” and “cytokine-cytokine receptor interaction” were enriched in the high expression groups of ORM1 (B) and PTHLH (C), whereas “T cell receptor signaling pathway” and “Nod like receptor signaling pathway” were enriched in ORM1 and PTHLH high-expression groups, respectively. The results of GSEA revealed that ORM1 and PTHLH correlated with immune signaling pathways.



Immune Landscape Between the Low- and High-risk Prognostic Groups

Using the ssGSEA method, the differences in 28 subpopulations of TILs in the MIBC immune infiltrates between low- and high-risk prognostic groups were identified. Figures 4A, B are a summary of the results obtained from the 402 MIBC patients, showing that multiple subpopulations of TILs were significantly different between low- and high-risk prognostic groups. Among them, it was worth noting that the high-risk prognostic group had a significantly higher abundance of Tregs, TAM, and MDSCs as well as significantly lower abundance of CD56bright NK cells compared to the low-risk prognostic group (P < 0.05). The heterogeneity of TILs in the MIBC immune infiltrates indicated that the TILs may be served potential prognostic biomarkers, immunotherapy targets, and might exhibit important clinical significance. Besides, it was found that the risk score was positively related to the expression of critical immune checkpoints in the TCGA cohort, including PD1, CTLA4, LAG3, HAVCR2, and TIGIT (P<0.05) (Figure 5A). Also, the differential expression of PD1, CTLA4, LAG3, HAVCR2, and TIGIT between the low- and high-risk prognostic groups were analyzed. Results showed that the expression of PD1, CTLA4, LAG3, HAVCR2, and TIGIT was significantly higher in high-risk prognostic group than in low-risk prognostic group (Figures 5B–F), implying that the bad prognosis of high-risk prognostic group might be associated with the immunosuppressive microenvironment.




Figure 4 | Immune landscape between the high- and low-risk MIBC patients. (A) The risk score, age, gender, T stage, N status and overall survival were used as patient annotations. Red represented high abundance and blue represented low abundance. (B) The abundance of each TIL in high- and low-risk MIBC patients. The asterisks indicated the statistical P value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). (TIL, tumor-infiltrating lymphocytes; MIBC, muscle-invasive bladder cancer). ns, no significance.






Figure 5 | Association between TIPS and biomarkers for immunotherapy. (A) Correlation between risk score and the expression of PD1, CTLA4, LAG3, HAVCR2, and TIGIT. PD1 (B), CTLA4 (C), LAG3 (D), HAVCR2 (E), and TIGIT (F) gene expression differences between high- and low-risk MIBC patients. (TIPS, TP53-associated immune prognostic signature; MIBC, muscle-invasive bladder cancer).





Association Between TP53-Associated Immune Prognostic Signature and APOBEC-signature Mutation

The high APOBEC-signature mutation load may stimulate a natural host immune reaction to curb tumor growth and metastasis and was associated with better prognosis of MIBC (36). The expression of APOBEC3A and APOBEC3B positively correlated with levels of APOBEC-signature mutagenesis, which was ubiquitous and carcinogenic (36, 37). The file including the information of the APOBEC-signature mutation load was downloaded from the study of Robertson et al. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687509/#) to analyze the association between TIPS and APOBEC-signature mutation. Low-risk prognostic group had a high APOBEC-signature mutation load and low expression of APOBEC3A and APOBEC3B, but this was not statistically significant (Figures S6A–C).



Chemotherapeutic and Immunotherapeutic Responses of Low- and High-risk Prognostic Groups

Given that chemotherapy is a common approach in the treatment of MIBC, this study attempted to evaluate the response of low- and high-risk prognostic groups to the treatment by gemcitabine and cisplatin. The IC50 of each TCGA-MIBC patient was estimated and as shown in Figures 6A, B, it resulted in a significant difference in the estimated IC50 between low- and high-risk prognostic groups for the two chemotherapy drugs, where the high-risk prognostic group was more sensitive to the treatment (P = 0.009 for cisplatin, P = 0.001 for gemcitabine). As shown in Figure 6C, the proportion of NAC responders was significantly high among high-risk prognostic group compared with the low-risk prognostic group in GSE52219 data set (Fisher’s exact test, p value < 0.001). High-risk prognostic group were more sensitive to NAC and may benefit from it which was consistent with the above predictions. To determine the potential of the risk score as a biomarker for immunotherapy, the difference in the estimated immunotherapeutic response of low- and high-risk prognostic groups was identified. Interestingly, the analysis suggested that high-risk prognostic group might be more responsive to anti–PD-1 therapy (Bonferroni corrected P = 0.023) (Figure 6D).




Figure 6 | Chemotherapeutic and immunotherapeutic responses of high- and low-risk MIBC patients. The box plots of the estimated IC50 for cisplatin (A) and gemcitabine (B) indicated differential chemotherapeutic response between the high- and low-risk MIBC patients. (C) The proportion of patients with response to NAC in low- or high-risk prognostic groups in GSE52219 data set. Response, blue; Non-response, red. (D) Immunotherapeutic responses to anti-PD-1and anti-CTLA-4 treatments of high- and low-risk MIBC patients. CR/PR, blue; SD/PD, red. (NAC, neoadjuvant chemotherapy; MIBC, muscle-invasive bladder cancer).





The TP53-Associated Immune Prognostic Signature Is Independent of Clinical Characteristics

Baseline characteristics of 342 MIBC patients in the TCGA cohort are summarized in Table 1. TMB was stratified into low and high TMB groups according to 5.55/Mb determined by X-tile 3.6.1 software (Figure S7). Regarding the Schoenfeld Individual Test, the P value of five clinical characters, including age (A), gender (B), T, stage (C), N status (D), TIPS (E) and TMB (F) was >0.05 and the PH assumption could not be considered violated (Figure S8). Univariate and multivariate Cox regression analyses were performed to explore the independence of TIPS to clinical characteristics in the TCGA cohort. After adjustment for clinical characteristics and multiple testing using FDR method, the TIPS remained an independent prognostic signature indicating its robustness in independently predicting the OS of MIBC patients (Figures 7A, B). Subsequently, Kaplan-Meier survival analysis was used to analyze the predictive value of the TIPS in different subgroups stratified by age, T stage and TMB, showing that the high-risk prognostic group had a poorer OS compared to low-risk prognostic group in ≤65 years, >65 years, T2, T3&T4, low and high TMB subgroups (Figures 7C–H). We further analyzed the relationship between the risk score and the clinical characteristics of MIBC (including age, T stage and N status). In terms of T stage, T3&T4 stage patients had higher risk scores than T2 stage patients in the TCGA data set but the risk scores for the N1 status and >65 years patients were not higher than those for the N0 status and ≤65 years patients (Figures S9A–C).


Table 1 | Baseline characteristics of 342 MIBC patients in the TCGA cohort.






Figure 7 | Identifying the independent clinical characters. Forrest plot of univariate (A) and multivariate (B) Cox regression analysis in the TCGA cohort. Kaplan-Meier survival analysis of TIPS in different subgroups including <=65 years (C) >65 years (D) T2 (E) T3&T4 (F) low TMB (G) and high TMB (H) subgroups. (FDR, false discovery rate; TCGA, The Cancer Genome Atlas; MIBC, muscle-invasive bladder cancer; TMB: tumor mutation burden).





Development and Evaluation of the Nomogram Based on the TP53-Associated Immune Prognostic Signature

To facilitate the clinical decision making, a nomogram was developed based on the TIPS to predict 1-, 3-, and 5-year OS of the TCGA-MIBC patients. The risk score, age, T stage, N status and TMB were selected into the nomogram by a stepwise Cox regression model (Figure 8A). And as shown in Figure S4A-C, the AUC for 1-, 3- and 5-year OS predictions of the nomogram was higher than AUC of the TIPS, age, gender T stage, N status and TMB in the TCGA cohort. The C-index of the nomogram was 0.69 (95% CI, 0.64–0.73), while that of the risk score was 0.62 (95% CI, 0.57–0.66) in the TCGA cohort and 0.61 (95% CI, 0.55–0.67) in the GEO cohort. The calibration plots showed consistency in predicting OS of the nomogram with the actual probability of OS at 1-, 3- and 5-year (Figure 8B). Moreover, the DCA for 5-year OS prediction showed that the nomogram had the highest net benefit across 0% to 80% threshold probabilities (Figure 8C). Meanwhile, the net benefit of the TIPS was higher than age, T stage, N status and TMB.




Figure 8 | Development and evaluation of the nomogram based on the TIPS. (A) Nomogram integrated the risk score, age, T stage, N status and TMB to predict 1-, 3-, and 5-year OS of MIBC. (B) The calibration plot for internal validation of the nomogram. (C) DCA for 5-year OS prediction shows that the nomogram has the highest net benefit across 0% to 80% threshold probabilities. (DCA, decision curve analysis; TCGA, The Cancer Genome Atlas; MIBC, muscle-invasive bladder cancer; TIPS, TP53-associated immune prognostic signature; TMB: tumor mutation burden).






Discussion

MIBCs are primarily characterized by their rapid progression, high metastatic potentials, and poor prognosis (38). Evidence from recent literature revealed that a high abundance of NK cells, T cells, and B cells correlate with an inflammatory response targeting MIBC whereas the abundance and spatial distribution of TILs are associated with a favorable prognosis of MIBC patients after standard treatment (39). TP53 gene is the most common mutation types in MIBC (17). BC patients with TP53 mutation showed a poorer prognosis and higher grade of pathology compared to patients without TP53 mutation (18, 40). In addition, TP53 mutation has been confirmed as an indicator of anti-PD1 therapy in lung cancer (41) and can be associated with upregulated interferon-gamma levels and expression of immune checkpoints, as well as activation of effector T cells in lung adenocarcinoma (21). Although, Stadler et al. (42) confirmed that neither the prognostic value of p53 nor the benefit of combination methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) adjuvant chemotherapy in patients with p53-positive tumors, whereas this study exist some limitations such as the number of patients randomly assigned and, more importantly, who received treatment as assigned, was much lower than anticipated. In addition, the mechanism of TP53 mutation in regulating TME and prognosis of MIBC is unclear. Hence, it is vital to explore the role of the TP53 mutation in regulating TME and further reveal the relationship between the prognosis of MIBC and the TP53 mutation.

In this study, DEIGs were identified in MIBC patients with the TP53 mutation, and novel prognostic signatures and therapeutic targets were provided for the management of MIBC. GSEA based on TP53 status revealed that GO-BP terms of TP53mut MIBC patients were significantly associated with immune-related biological processes. The TIPS was established based on three genes (ORM1, PTHLH, and CTSE) to identify high-risk prognostic group with a poorer OS and having more potential to respond to anti-PD1, gemcitabine and cisplatin therapies. Furthermore, we successfully validated the feasibility of the TIPS to predict chemotherapeutic benefit in the available observed data. Previous analysis suggested that p53 alteration was not a suitable prognostic or predictive biomarker (42) due to the limitation of the power of a single biomarker and lack of comprehensive p53 pathway analysis. The current data promises to fill these gaps, combined TP53 mutation with TIPS may be useful to predictive benefit from NAC.

Functional enrichment analyses were conducted to identify the potential molecular mechanisms of the three TIPS genes (ORM1, PTHLH, and CTSE). As expected, the results revealed that ORM1 and PTHLH were associated with tumor immunity, such as antigen processing and presentation, T cell receptor signaling pathway and cytokine-cytokine receptor interactions. Nevertheless, the CTSE was related to lipid metabolism. ORM1 plays an important role in modulating the activity of the immune system during the acute-phase reaction. Fan et al. (43) reported that ORM1 and other acute reactants may function as blocking factors to protect tumor cells against immunological attack, thus contributing to the "immune escape" of the tumor. Moreover, elevated urine ORM1 was positively correlated with the clinicopathological parameters of BC, which indicated ORM1 as a potential biomarker in BC (44). PTHLH is a member of the parathyroid hormone family, which is responsible for most cases of humoral hypercalcemia of malignancy (45). PTHLH functions as a critical regulator of cellular and organ growth, development, migration, survival and of epithelial calcium ion transport (45). Recently, Chen et al. revealed that silencing of transforming growth factor-β-activated kinase 1 (TAK1) in BC cells promote the development of cancer cells by upregulating PTHLH (46). CTSE is involved in antigen processing and the maturation of secretory proteins, which can regulate the processing of antigenic peptides during MHC class II-mediated antigen presentation. In RNA sequencing analysis, CTSE expression in BC organs was higher than that in normal bladder tissues (47). In addition, the expression of CTSE was significantly correlated with the progression to stage T2 to T4 BC (48). Taken together, previous investigations and our results suggest that the three genes (ORM1, PTHLH, and CTSE) may act as potential biomarkers and therapeutic targets for MIBC.

BC promotes the formation of a highly immunosuppressive microenvironment through various mechanisms geared toward preventing the production of effective anti-tumor immune response (49). Mechanisms of immune evasion in BC mainly include elevated immunosuppressive cells (e.g., Tregs, TAM, and MDSC) (49) and high expression of immune checkpoints (e.g., CTLA-4 and PD-1) (50). Notably, PD1 (Programmed cell death protein 1) is highly expressed on Treg cells of many cancers, suppressing the effector function of T cells, thus causing its exhaustion (51–53). Therefore, we speculate that low- and high-risk prognostic groups would exhibit a unique immune landscape and immunotherapeutic responses. Generally, our results demonstrated that a higher abundance of Tregs, TAM, and MDSCs and a lower abundance of CD56bright NK cells was observed in high-risk prognostic group than low-risk prognostic group. The high abundance of CD56bright NK cells was associated with improved survival of MIBC patients (54). Interestingly, our study suggested that high-risk prognostic group showed high expression of PD1, CTLA4, LAG3, HAVCR2, and TIGIT and were more sensitive to anti-PD1 treatment. Being one of the most used chemotherapy regimens for BC (55), this study demonstrated that high-risk prognostic group were more sensitive to gemcitabine and cisplatin than low-risk prognostic group. The above findings revealed that the poor prognosis of high-risk prognostic group might be linked to a high degree of immunosuppression and low immunoreactivity in TME, thereby promoting tumor recurrence and metastasis. As a consequence, high-risk prognostic group might benefit from immunotherapy and chemotherapy.

It was demonstrated that risk score, age, pathological T stage, N status and TMB were significantly associated with OS of TCGA-MIBC patients, and further established TIPS as an independent prognostic factor of OS for MIBC. Additionally, age, pathological T stage, N status and TMB are important prognostic determinants for MIBC. However, prognosis differ among patients with similar clinical characteristics, implying that conventional clinical characteristics are insufficient to precisely predict prognosis. As a result, it is vital to explore more biomarkers that serve as prognostic signature and therapeutic targets. Moreover, our study is the first to identify TP53-associated immune prognostic signature for MIBC. TIPS provide a novel method to predict prognosis and offer guidance for therapeutic decisions of MIBC. TIPS can even predict the prognosis of MIBC patients with different subgroups stratified by clinical characteristics. Moreover, we constructed a nomogram combining TIPS with clinical characteristics to effectively predict prognosis. The nomogram demonstrated that TIPS is an effective signature in predicting OS of MIBC patients.

Our study has several limitations. This study was a retrospective design and existed heterogeneity due to comparisons between patients from different cohorts. Hence, the validation of the prospective cohort is even more necessary in this study. Nonetheless, our study showed that the benefits from NAC and immunotherapy differed between low- and high-risk prognostic groups.

In summary, we developed and validated TIPS based on three genes (ORM1, PTHLH, and CTSE) that exhibited an independent prognostic significance for MIBC patients. Further, a nomogram was constructed combining TIPS, age, pathological T stage, N status and TMB to accurately identify high-risk prognostic group. We found that high-risk prognostic group might benefit from NAC and anti-PD1 therapy. The use of TIPS could help clinicians make advanced personalized treatment decisions. Notably, our study provides a foundation for researchers to explore novel treatment strategies of MIBC. Nonetheless, clinical trials involving a larger cohort with longer follow-up are essential to validate our findings. Further insights regarding the functional role of ORM1, PTHLH, and CTSE in carcinogenesis might offer fundamental approaches in the treatment of MIBC.



Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: TCGA database (https://cancergenome.nih.gov/) and GEO database (https://www.ncbi.nlm.nih.gov/geo/).



Author Contributions

Data analyses were performed by XW and DL. CC, ZZ, MW, and WC assisted in collecting data. Funding was obtained by YL and DL. The manuscript was written by XW and DL, and was commented and revised by YL, CC, and ZZ. All authors participated in preparing the manuscript and approved the final submitted and published version. YL supervised the study. All authors contributed to the article and approved the submitted version.



Funding

This study was supported by grants from the National Natural Science Foundation of China (81600542 and 81670643), the Natural Science Foundation of Guangdong Province (2020A1515010464), the Guangdong Basic and Applied Basic Research Foundation (grant 2019A1515110033), the Distinguished Young Talents in Higher Education Foundation of Guangdong Province (grant 2019KQNCX115 and 2020KZDZX1168), the China Postdoctoral Science Foundation (grant 2019M662865), and the Achievement cultivation and clinical transformation application cultivation projects of the First Affiliated Hospital of Guangzhou Medical University (grant ZH201908).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.590618/full#supplementary-material

Supplementary Figure 1 | Association between TP53 mutation and TMB. (A) The proportion of patients with and without TP53 mutations in low- or high- TMB patients in the TCGA cohort. (B) Differences of risk score between high- and low- TMB patients. (TMB, tumor mutation burden; TCGA, The Cancer Genome Atlas).

Supplementary Figure 2 | GO and KEGG analysis of DEIGs. (A) Chord plot shows the relationship between DEIGs and GO terms of biological process. (B) Chord plot shows the relationship between DEIGs and GO terms of cellular component. (C) Chord plot shows the relationship between DEIGs and GO terms of molecular function. (D) Chord plot shows the relationship between DEIGs and KEGG pathways. (GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEIGs, differentially expressed immune-related genes).

Supplementary Figure 3 | A, B. Estimation of the best cut off value for the risk score stratification as determined by the X-tile software.

Supplementary Figure 4 | Comparison of the predictive power among nomogram, risk score, age, gender, T stage, N status and TMB in the TCGA cohort. 1- (A), 3- (B), and 5-year (C) time-dependent ROC analysis of nomogram, risk score, age, gender, T stage, N status and TMB. (TCGA, The Cancer Genome Atlas; TMB: tumor mutation burden).

Supplementary Figure 5 | GSEA of KEGG pathway gene sets in CTSE (A), ORM1 (B) and PTHLH (C). High expression versus low expression samples from TCGA database. Normalized enrichment score (NES) is shown in each plot. (GSEA, Gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes).

Supplementary Figure 6 | Association between TIPS and APOBEC-signature mutation. (A) Differences of APOBEC-signature mutation load between high- and low- MIBC patients. (B-C) Differences expression of APOBEC3A (B) and APOBEC3B (C) between high- and low- MIBC patients. (MIBC, muscle-invasive bladder cancer; TIPS, TP53-associated immune prognostic signature).

Supplementary Figure 7 | (A, B) Estimation of the best cut off value for TMB stratification as determined by the X-tile software. (TMB: tumor mutation burden).

Supplementary Figure 8 | The Schoenfeld Individual Test of six clinical characters, including age (A), gender (B), T, stage (C), N status (D), TIPS (E) and TMB (F). (TIPS, TP53-associated immune prognostic signature; TMB: tumor mutation burden).

Supplementary Figure 9 | Show the distribution of the risk score in different T stage (A), N status (B) and age (C) in TCGA cohort. (TCGA, The Cancer Genome Atlas).
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The ETS family modulates immune response and drug efficiency to targeted therapies, but their role in melanoma is largely unclear. In this study, the ETS family was systematically analyzed in multiple public data sets. Bioinformatics tools were used to characterize the function of ETV7 in melanoma. A prognostic model was constructed using the LASSO Cox regression method. We found that ETV7 was the only differentially expressed gene with significant prognostic relevance in melanoma. Enrichment analysis of seven independent data sets indicated ETV7 participation in various immune-related pathways. ETV7 particularly showed a strong positive correlation with CD8+ T cell infiltration. The prognostic model based on ETV7 and its hub genes showed a relatively good predictive value in training and testing data sets. Thus, ETV7 can potentially regulate the immune microenvironment in melanoma.
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Introduction

Melanoma, originating from pigment-producing melanocytes, comprises 75% of deaths related to skin cancer (1). In 2019, a total of 96,480 new cases of melanoma of the skin reported were in the United States (2). At its early stage, the disease could be surgically removed, with a relatively good prognosis; however, when it spreads to distant organs, the 5-year survival rate of patients with this disease sharply declines to roughly 10%, as indicated by a recent review (3). Targeted therapies and immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic melanoma. However, numerous problems still need to be addressed. For instance, current evidence suggests that 40 to 65% of patients with advanced-stage metastatic melanoma show minimal or no RECIST response to ICIs at the outset (de novo resistance), and 43% of responders acquire resistance by 3 y (4, 5). Moreover, melanoma patients receiving mitogen-activated protein kinase (MAPK)-targeted therapy also develop resistance, which leads to relapse (6). Several underlying mechanisms have been revealed, such as NRAS mutations and BRAF amplification, but 40% of them present unknown resistance mechanisms beyond genetic alterations (6–8).

Recent studies find that transcriptional factors (TFs) relevant to the MAPK pathways modulate drug efficiency to MAPK inhibitors (9, 10). For instance, overexpression of ETV1, ETV4, or ETV5 can sufficiently restore cell proliferation in the presence of trametinib, a MEK inhibitor (9). An early study also observes that overexpression of ETV1 confers resistance to MAPK inhibitors in BRAF-mutant melanoma (11). ETV1, ETV4, and ETV5 are members of the E26 transformation-specific or E-twenty-six (ETS) family, which is one of the largest transcriptional factor families and participates in multiple biological processes such as cellular differentiation, cell cycle control (12), cell migration (13), and cell proliferation (14). The family consists of 28 TFs in humans and binds to similar DNA sequences of MAPK (15). Various studies have revealed that aberrant expression of many ETS family members is strongly associated with tumor initiation, progression, and metastasis in cancer (16–18). Some ETS inhibitors, such as VPC-18005 and BRD32048, exert antitumor effects in pre-clinical studies (19, 20). In skin melanoma, the function of the ETS family is poorly studied. ETS1 can promote aggregation and invasion of melanoma (21, 22), and ETV2 is required during tumor angiogenesis (23); meanwhile, the role of the rest of the ETS family members is largely unclear.

In addition, the ETS family has been shown to play a role in immunity (24–26). ELF1, ETV4, ETV3L, ETS1, and ETS2 can up-regulate the expression of leukocyte-associated immunoglobulin-like receptor-1, which inhibits the maturation, differentiation, and activation of immune cells (25, 27). ELF4 can inhibit the proliferation of naive CD8+ T cells by increasing the expression of KLF4 (24, 28). However, the regulation of immune response in cancer by ETS family members, as well as the mechanism underlying this regulation, has yet to be determined.

In the current study, we systematically assessed the expression profile, prognostic significance, and role of ETS family members in human skin cutaneous melanoma (SKCM) by integrating data from The Cancer Genome Atlas (TCGA) database, the Genotype–Tissue Expression (GTEx) Project, Oncomine database, cBioPortal database, and Gene Expression Omnibus (GEO) database. Our results indicate that ETV7 is markedly downregulated in melanoma, and low ETV7 expression is related to the poor prognosis of SKCM patients. Enrichment analysis and immune profile analysis indicate that ETV7 may regulate the differentiation and activation of T cells. This finding suggests a previously unrecognized involvement of ETV7 in immunity and the potential of the gene to modulate the immune response to the disease.



Materials and Methods


Data Acquisition and Processing

The workflow of this study is presented in Figure 1. The TCGA_SKCM data set and GEO data sets (GSE65904 and GSE19234) were acquired and processed using the method described in our previous study (29). After data filtering was conducted, 448 tumor samples with survival data in the TCGA_SKCM data set, 210 tumor samples in GSE65904, and 44 samples in GSE19234 were used for further analysis. The single-cell RNA sequencing data (GSE72056) were downloaded and analyzed directly in the current study because the data had been processed and normalized (30). All data used in the present study were acquired from public databases, requiring no further approval by an ethics committee.




Figure 1 | Workflow of this study.





Online Database Analysis

The Oncomine database (https://www.oncomine.org/resource/login.html) was used to validate the transcription level of the genes of interest in skin melanoma by retrieving expression data (log2-transformed) in three cohorts of melanoma vs. normal tissues for statistical comparison, with the following default thresholds: P-value < 1E-4, fold change >2, and gene ranks in the top 10%.

The GEPIA2 (http://gepia2.cancer-pku.cn/) database was also used to compare the transcript level of the genes of interest between melanoma tumors and normal samples from TCGA and GTEx projects.

The cBioPortal for Cancer Genomics (http://www.cbioportal.org/) was used to identify genes that exhibit a strong positive correlation (R > 0.5, q-value < 0.05) with ETV7 in all available melanoma-related data sets with gene expression data.

The human protein atlas (https://www.proteinatlas.org/) was used to analyze the expression of ETV7 across a set of normal human cells or tissues.



Functional Analysis and Enrichment Analysis

The co-expressed genes of ETV7 shared in five independent data sets were constructed into a protein–protein interaction (PPI) network in the STRING database (http://string-db.org). Cytoscape version 3.7.2 was used to visualize these networks. Hub genes were identified as the top 10 nodes, based on the score generated by the cytoHubba plugin in Cytoscape (ranked by degree).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the clusterProfiler package in R version 3.6.2 (18).

Gene set enrichment analysis (GSEA) was used to investigate pathways enriched in the high- and low-ETV7 groups. C2.cp.kegg.v7.1.symbols.gmt was chosen as the gene set database. The pathways were considered significantly enriched with the following criteria: nominal p-value < 0.05, false discovery rate q-value < 0.25, and normalized enrichment score > 1.



Immune Profile Analysis

The immune and stromal scores of each sample were estimated using the ESTIMATE algorithm in the ‘estimate’ package in R version 3.6.2 (31). Immune cell infiltration in each sample of the TCGA_SKCM data set was conducted by preparing and uploading gene expression data into the TIMER2.0 website (http://timer.cistrome.org/) in accordance with the instruction on the website (32).



Construction of the Prognostic Model

The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted using the glmnet package in R. The analysis generated key gene signatures and their corresponding coefficients, which were used to calculate the novel score, as follows: score = −0.08241781*CCR5 − 0.01208383*IFNG − 0.13002695*TBX21 − 0.04765633*CXCL10 − 0.33444001*CXCR3-0.05630411*CCL5. To facilitate the interpretation of results from different data sets, the risk score was calculated by subtracting the minimum score of the cohort from this score, and dividing the difference by the absolute value of the maximum score of the cohort—that is, namely, risk score = (score − Min)/absolute(Max).



Statistical Analysis

The data collected were analyzed by default as described using web resources. The remaining data were analyzed using R version 3.6.2. The median expression of genes or the median value of the risk score was used as cutoff value in dividing patients into two subgroups. Univariate Cox regression and multivariate Cox regression were conducted using the survminer package in R. The survival analyses were compared using the Kaplan–Meier method with the logrank test. Time-dependent receiver operator characteristic (ROC) analyses and subsequent calculation of the area under the curve (AUC) were performed using the timeROC package in R. Correlation analysis between the gene expression of ETV7 and that of the remaining genes was conducted by R software version 3.6.2 with spearman method. Wilcoxon test was conducted to compare gene expression between groups. Packages in R used for data analysis and graph plotting included ggplot2, ggpubr, limma, vennDiagram, tidyverse, rms, org.Hs.eg.db, dplyr, Rtsne, and plyr. P < 0.05 was considered statistically significant (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).




Results


Identification of Differentially Expressed ETS Family Members in Melanoma

The TCGA_SKCM project has only one normal sample. Thus, we first investigated the expression of all ETS family members in melanoma and normal skin by manipulating the data from the GTEx database. GEPIA2 integrates gene expression data from the TCGA and GTEx projects via a standard processing pipeline (33). Using the default cutoff value of GEPIA2 (|Log2FC| cutoff = 1, and q-value cutoff = 0.01), we found that 13 of the 28 family members were differentially expressed (Figures 2A–M, Supplementary Figures 1A–O). In particular, ELK3, ETS1, ETV1, ETV4, ETV5, and SPI1 were significantly upregulated in melanoma (Figures 2A–F), whereas EHF, ELF3, ELF5, ERG, ETS2, ETV7, and SPDEF were significantly downregulated in the tumor (Figures 2G–M). Further, the expression profiles of ETV1, ETV5, ETV7, ELF3, ETS1, ETS2, ELK3, ELF5, and SPDEF were validated by comparing their transcriptional level between melanoma and normal tissues across three independent cohorts from the Oncomine database (Figures 2N–V). However, the remaining members were not differentially expressed between tumor and normal tissues (Supplementary Figures 1P–S).




Figure 2 | Expression profile of the ETS family in melanoma. (A–M) Expression levels of ELK3 (A), ETS1 (B), ETV1 (C), ETV4 (D), ETV5 (E), SPI1 (F), EHF (G), ELF3 (H), ELF5 (I), ERG (J), ETS2 (K), ETV7 (L), and SPDEF (M) in melanoma and corresponding normal tissues, based on the GEPIA2 database. (N–V). Data from the Oncomine database verifying that ETV7 (N), ETV5 (O), ETV1 (P), ELF3 (Q), ETS2 (R), ELK3 (S), ELF5 (T), ETS1 (U), and SPDEF (V) were differentially expressed between tumor and normal tissues across three cohorts.





ETV7 as an Independent Prognostic Predictor in Melanoma

We subsequently evaluated the prognostic significance of the above nine differentially expressed ETS family members in TCGA_SKCM. Analysis suggested that EVT7 exhibited prognostic significance in melanoma patients (Figures 3A–H). Moreover, melanoma patients with high ETV7 showed significantly longer disease-specific survival (DSS) than those with low ETV7 (p < 0.0001, Figure 3I). We further evaluated the prognostic relevance of these nine differentially expressed genes (DEGs) in the GSE65904 data set and found a similar result for ETV7 (p = 0.038, Figure 3J). By contrast, the remaining genes showed no prognostic significance (Supplementary Figures 2A–H). In addition, data from the GSE19234 data set showed that melanoma patients with low ETV7 had significantly shorter survival time since metastasis (p = 0.045, Figure 3K).




Figure 3 | Prognostic analysis of DEGs of the ETS family in melanoma. (A–H) Kaplan–Meier plot of overall survival (OS) in melanoma patients in the TCGA_SKCM cohort with high and low expression of ETV7 (A), SPDEF (B), ETS2 (C), ETV5 (D), ETV1 (E), ELF3 (F), ETS1 (G), and ELK3 (H). (I) Kaplan–Meier plot of DDS of melanoma patients in the TCGA_SKCM cohort with high and low expression of ETV7. (J) Kaplan–Meier plot of DDS of melanoma patients in the GSE65904 cohort with high and low expression of ETV7. (K) Kaplan–Meier plot of survival time since metastasis of melanoma patients in the GSE19234 cohort with high and low expression of ETV7.



As shown in Table 1, univariate Cox regression analysis indicated that low ETV7 (p < 0.001), age > 60 y (p < 0.001), Breslow depth >2 cm (p < 0.001), Clark level IV–V (p < 0.001), non-White patients (p = 0.004), advanced stage (III–IV, p < 0.001), advanced T stage (T3–Tx, p < 0.001), and advanced N stage (N1–Nx, p < 0.001) are associated with shorter OS. In addition to the M stage, these factors underwent multivariate Cox regression analysis. The result showed that ETV7 and the N stage remained to be independent risk factors (Table 1).


Table 1 | Univariate and multivariate Cox regression analyses of ETV7 and clinicopathologic features in melanoma patients.



We then investigated the prognostic relevance of ETV7 in different subgroups of melanoma patients. As shown in Figures 4A, B, low ETV7 expression was correlated with a significantly short OS in melanoma patients younger than 60 y (Figure 4A, p = 0.0017) or older than 60 y (Figure 4B, p=0.031). A similar association between ETV7 and survival time was also observed in both male and female patients (Figures 4C, D), patients with different T, N, and M stages (Figures 4E, F), and patients with melanoma at the early (Figure 4K, p = 0.0047) or advanced (Figure 4L, p = 0.015) stage.




Figure 4 | Prognostic analysis of ETV7 in different subgroups of melanoma patients. (A, B) Kaplan–Meier plot of OS in high and low-ETV7 subgroups of melanoma patients < 60 y (A) or older than 60 y (B). (C, D) Kaplan–Meier plot of overall survival (OS) in female (C) or male (D) melanoma patients with high and low expression of ETV7. (E, F) Kaplan–Meier plot of OS in high and low-ETV7 subgroups of melanoma patients at early (Tis–T2, E) or advanced (T3–T4, F) T stage. (G, H) Kaplan–Meier plot of OS in high and low-ETV7 subgroups of melanoma patients with (G) or without (H) lymph node metastasis. (I, J) Kaplan–Meier plot of OS in high- and low-ETV7 subgroups of melanoma patients with (I) or without (J) distant metastasis. (K, L) Kaplan–Meier plot of OS in high- and low-ETV7 subgroups of melanoma patients at the early (K) or advanced (L) stage.





Coexpression and Enrichment Analysis

The aforementioned analysis indicated that ETV7 was significantly downregulated in melanoma and was associated with the prognosis of melanoma patients. To understand the function of ETV7 in melanoma, we first identified the ETV7related genes, which were defined as those exhibiting strong correlation (coefficient >= 0.5, p < 0.05) with ETV7 at the transcriptional level in melanoma. A total of 623 ETV7-related genes were found in the TCGA_SKCM data set (Supplementary Table 1). GO analysis indicated that these genes were enriched in immune-related biological processes and molecular functions such as T cell activation, regulation of T cell activation, regulation of lymphocyte activation, response to interferon-gamma, regulation of leukocyte proliferation, MHC protein binding, cytokine receptor activity, chemokine receptor binding, MHC class II receptor activity, and CCR chemokine receptor binding (Supplementary Figure 3A). KEGG analysis suggested that these genes were enriched in antigen processing and presentation, cell adhesion molecules, cytokine–cytokine receptor interaction, Th1 and Th2 cell differentiation, Th17 cell differentiation, chemokine signaling pathway, natural killer (NK) cell-mediated cytotoxicity, and PD-L1 expression and PD-1 checkpoint pathway in cancer (Figure 5A, Supplementary Table 2).




Figure 5 | KEGG analysis of ETV7-related genes in TCGA_SKCM (A), MSKCC NEJM (B), DFCI Science (C), UCLA Cell (D), TGEN Genome Res (E), and GSE19234 (F) data sets.



We further searched the cBioportal database and found that in addition to the TCGA_SKCM data set, four of nine melanoma-related data sets contained gene expression data: MSKCC NEJM, DFCI Science, UCLA Cell, and TGEN Genome Res. Coexpression analysis of ETV7 in these four data sets identified 1 021 ETV7-related genes in the MSKCC NEJM cohort, 981 genes in the DFCI Science cohort, 440 genes in the UCLA Cell cohort, and 667 genes in the TGEN Genome Res cohort. The GO and KEGG analyses of these genes in each cohort consistently indicated that they were enriched in similar immune-related processes or pathways (Figures 5B–E, Supplementary Figures 3B–E). The coexpression and subsequent GO and KEGG analyses of GSE19234 further verified the association between ETV7 and immune-related pathways (Figure 5F, Supplementary Figure 3F).

In addition, GSEA was applied to investigate the difference in signaling pathways between the low and high ETV7 expression subgroups in the TCGA_SKCM and GSE65904 data sets. The results inferred that various immune-related pathways were enriched in the high ETV7 expression subgroups. These pathways included antigen processing and presentation, Toll-like receptor signaling pathway, T cell receptor signaling pathway, RIG-I like receptor signaling pathway, JAK-STAT signaling pathway, B cell receptor signaling pathway, NK cell-mediated cytotoxicity, cytokine–cytokine receptor interaction, and Fc gamma R-mediated phagocytosis (Figures 6A–I, Supplementary Table 3).




Figure 6 | GSEA between melanoma patients with high and low ETV7 expression in the TCGA_SKCM and GSE65904 cohorts (A–I).





Immune Profile

The aforementioned analysis suggests a close link between ETV7 and immune-related pathways. We thus employed the ESTIMATE method to evaluate the overall TME status in the high- and low-ETV7 subgroups of melanoma patients. In the TCGA_SKCM and GSE65904 cohorts, the immune and stromal scores were significantly higher in the high-ETV7 subgroups than in the low-ETV7 subgroups (Figures 7A, B). All phenotypic and functional markers of T cells—CD3E, CD4, CD8B, FOXP3, GZMB, PRF1 and TBX21—were expressed at higher levels in melanoma patients with high ETV7 expression (Figure 7C). Notably, the inhibitory immune receptors or ligands (CTLA4, LAG3, and PDCD1) and activating immune receptors (CD27, CD40, CD80, ICOS, TNFRSF4, and TNFRSF9) were significantly elevated in patients with high ETV7 expression, indicating a complex immune response in this subgroup (Figures 7D, E). Among the immune modulators, ENTPD1 was highly expressed in the high-ETV7 subgroup of melanoma patients, whereas NT5E showed no significant difference (Figure 8F). Moreover, IFNγ signatures (CXCL10, CXCL9, IDO1, IFNG, and STAT1) and myeloid lineage phenotypic and functional markers (CD14, CD163, CD33, and CD68) were also significantly increased in melanoma patients with high ETV7 (Figures 7G, H). However, ARG1, a previously reported M2 macrophage marker, was not differently expressed in the two subgroups (Figure 7H).




Figure 7 | Immune profile of melanoma patients with high and low ETV7 expression. (A, B) Immune and stromal scores of melanoma patients with high and low ETV7 expression in the TCGA_SKCM (A) and GSE65904 (B) cohorts. (C–H) Comparison of the expression of T cell markers (C), inhibitory immune receptors or ligands (D), activating immune receptors (E), immune modulators (F), IFNγ signatures (G), and myeloid lineage phenotypic and functional markers (H) between melanoma patients with high and low ETV7 expression. ****: p < 0.0001. ns, no significant.






Figure 8 | Correlation between the expression of ETV7 and abundance of CD8+ T cells (A–I).



Further, multiple immune deconvolution methods—namely, TIMER, QUANTISEQ, CIBERSORT, MCPCOUNTER, XCELL, and EPIC—were manipulated to estimate the abundances of immune cells infiltrating into melanoma (34, 35). Analyzing the relationship between ETV7 and the abundance of different immune cells, we observed a strong positive correlation between ETV7 and CD8+ T cells, as determined by TIM (Figure 8A, r = 0.56, p < 2.2*e−16), QUANTISEQ (Figure 8B, r = 0.6, p < 2.2*e−16), CIBERSORT (Figure 8C, r = 0.6, p < 2.2*e−16), CIBERSORT-ABS (Figure 8D, r = 0.66, p < 2.2*e−16), MCPCOUNTER (Figure 8E, r = 0.58, p < 2.2*e−16), EPIC (Figure 8F, r = 0.41, p < 2.2*e−16), and XCELL (Figure 8G, r = 0.63, p < 2.2*e−16). In addition, ETV7 exhibited a strong positive correlation with CD8+ effector-memory T cells (Figure 8H, r = 0.6, p < 2.2*e−16) and CD8+ central memory T cells (Figure 8I, r = 0.66, p < 2.2*e−16).

Previous studies indicate that ETV7 is predominantly expressed in hematopoietic tissues (36, 37); thus, the strong positive correlation between ETV7 and CD8+ T cell infiltration may be attributed to ETV7 expression in this subgroup of T cells. To test this hypothesis, we analyzed the GSE72056 data set, a public single-cell RNA sequencing (scRNA-seq) data set of melanoma patients (30). In this data set, the tumor cells were designated by copy number variation analysis, whereas the non-malignant cells were annotated as six types of cells—T cells, B cells, macrophages, endothelial cells, cancer-associated fibroblasts, and NK cells—based on preferentially or uniquely expressed marker genes (30). The remaining unresolved cells were referred to as undefined cells in the current study. Consistent with the original study by Itay Tirosh et al. (30). non-linear dimensionality reduction (t-distributed stochastic neighbor embedding (t-SNE)) analysis revealed that these eight clusters of cells could be distinguished separately (Figure 9A). Tumor cells exhibited markedly elevated expression of MLANA, a widely used biomarker of melanoma (Figure 9B). CD2 was exclusively expressed in T cells (Figure 9C), macrophages had distinct CD163 expression (Supplementary Figure 4A), and B cells were marked by CD19 expression (Supplementary Figure 4B) (30). As shown in Figure 9D, ETV7 was not exclusively expressed in T cells but could be detected in several types of cells, including tumor cells (green circle), T cells, and macrophages. ETV7 was also not detected in most CT8+ T cells (labeled as CD8A+ and/or CD8B+, Figures 9D–F), and a negligible fraction of ETV7-positive T cells (Figures 9D–F, blue circle) were not recognized as CD8+ T cells. Collectively, these results indicate that the strong positive correlation between ETV7 and infiltration of CD8+ T cells cannot be attributed to ETV7 expression in these cells. In addition, we found that skin (green block, Figure 9G) showed the highest ETV7 expression across a set of normal human cells or tissues, including T cells (denoted by a blue block, Figure 9G, Supplementary Figure 4C).




Figure 9 | Single-cell RNA sequencing (scRNA-seq) analysis of ETV7 in melanoma. (A) t-Distributed stochastic neighbor embedding (t-SNE) analysis of different clusters of cells in the GSE72056 data set. (B) The average expression of MLANA for tumor cells overlaid on the tSNE plot. (C) Average expression of CD2 for T cells overlaid on the tSNE plot. (D) Average expression of ETV7 for cells overlaid on the tSNE plot. (E) Average expression of CD8A for CD8+ T cells overlaid on the tSNE plot. (F) Average expression of CD8B for CD8+ T cells overlaid on the tSNE plot. (G) Expression of ETV7 across a set of normal human cells. (A green circle denotes cluster of tumor cells; a blue circle indicates a specific fraction of T cells).





Construction of an ETV7-Related Prognostic Model

As shown in Figure 10A, 98 genes are commonly shared among the ETV7-related genes in the five aforementioned data sets. A PPI network was constructed in the STRING database and visualized in Cytoscape (Figure 10B). Consistent with the results of GO, KEGG, and GSEA analyses, ClueGo analysis demonstrated that these 98 genes were predominantly involved in immune-related biological processes such as T cell activation, chemokine-mediated signaling pathway, T cell differentiation, and response to interferon-gamma (Figures 10C, D), as well as in immune-related pathways such as the T cell receptor signaling pathway, cytokine–cytokine receptor interaction, and TNF signaling pathway (Figures 10E, F) (38). The 10 hub genes were identified as CCR5, IFNG, TBX21, CXCL10, PRF1, CD2, CXCR3, CXCL9, CCL5, IL15 (Figure 10B). All melanoma patients exhibiting low expression of these hub genes showed a significantly shorter OS (Supplementary Figures 5A–J).




Figure 10 | Identification of hub genes of ETV7-related genes. (A) A Venn diagram of ETV7-related genes of the five data sets. (B) A protein–protein interaction network constructed using STRING and visualized with Cytoscape (yellow modules denote hub genes). (C, D) Biological process analysis of the 98 ETV7-related genes by using the ClueGo plugin in the Cytoscape. (E, F) KEGG analysis of the 98 ETV7-related genes by using the ClueGo plugin in Cytoscape.



To construct an ETV7-related prognostic model for the disease-specific survival of melanoma patients, ETV7 and 10 hub genes were input into a LASSO Cox regression model in the GSE65904 data set (n = 210). Six genes were selected using the partial likelihood deviance method (Figures 11A, B). These genes were CCR5, IFNG, TBX21, CXCL10, CXCR3, and CCL5. The risk score was calculated by inputting the selected signature genes into the aforementioned formula. The median value of the risk score was set as the cutoff value, dividing patients into low- and high-risk subgroups. Prognostic analysis with the Kaplan–Meier method showed that melanoma patients with low risk scores had a significantly longer DSS (Figure 11C, p = 0.0047) in the GSE65904 cohort. Time-dependent ROC analysis in this cohort demonstrated that the risk score had a favorable predictive value (Figure 11D, AUC at 1 year = 0.64, AUC at 3 y = 0.69). The prognostic value of the established risk score was validated in the TCGA cohort (Figure 11E, p < 0.0001). The ROC analysis in this data set showed that the AUC at 1 y reached 0.7 and at 3 y was 0.65 (Figure 11F). Further, melanoma patients with high risk scores showed significantly shorter survival times since metastasis than those with low risk scores in the GSE19234 cohort (p = 0.021, Figure 11G). The ROC analysis in this data set indicated that the AUC at 1 y reached 0.69 and at 3 y was 0.98 (Figure 11H).




Figure 11 | Construction of an ETV7-related prognostic model. (A, B) A LASSO Cox regression model constructed from ETV7 and the 10 hub genes, with the tuning parameter (λ) calculated based on partial likelihood deviance with tenfold cross-validation. An optimal log λ value shown by the vertical black line in the plot. (C) Kaplan–Meier plot of DDS in the high- and low-risk groups of the GSE65904 cohort. (D) Time-dependent ROC analysis of the risk score for DDS and survival status in the GSE65904 cohort. (E) Kaplan–Meier plot of DDS in the high- and low-risk groups of the TCGA_SKCM cohort. (F) Time-dependent ROC analysis of the risk score for DDS and survival status in the TCGA_SKCM cohort. (G) Kaplan–Meier plot of survival time since metastasis in the high- and low-risk groups of the GSE19234 cohort. (H) Time-dependent ROC analysis of the risk score for survival time since metastasis and survival status in the GSE19234 cohort.






Discussion

In this systematic analysis of the ETS family in melanoma, we first integrated the data from the TCGA and GTEx databases and three available cohorts of melanoma patients in the Oncomine database; we then found that ELK3, ETS1, ETV1, and ETV5 were significantly upregulated in melanoma, whereas ELF3, ELF5, ETS2, ETV7, and SPDEF were significantly downregulated in the tumor. Prognostic analysis of these DEGs in the TCGA_SKCM and GSE65904 data sets consistently showed that only ETV7 had significant prognostic relevance in melanoma (Figures 3A, J). Moreover, the gene could serve as an independent prognostic predictor after correcting for other confounding factors (Table 1). Indeed, all patients in various subgroups of melanoma with low ETV7 expression showed a significantly shorter OS than those with high ETV7 expression (Figure 4). Several studies reported that ETS1 supported cell growth (39), prevented apoptosis (40), and facilitated the invasion of melanoma (22); however, an early study demonstrated that the gene was widely expressed in benign and malignant melanocytes, and immunohistochemical analysis indicated that its expression had no significant association with the clinical outcome (41), supporting the results of the current study. Two studies also observed that 5.3–18% of melanoma patients exhibited an increase in ETV1 expression. Overexpression of ETV1, combined with oncogenic NRAS (G12D), can transform primary melanocytes and promote tumor formation in mice (42, 43). Although ETV1 showed no significant prognostic relevance in melanoma in the present study, its importance in a subset of melanomas with ETV1 amplification could not be underestimated and ignored. In addition, no studies have reported on the expression and function of ELK3, ETV5 ELF3, ELF5, ETS2, and SPDEF in melanoma. Although in this study, their expression was not correlated with prognosis, their involvement in the development of certain cases of melanoma could not be excluded, and future research has to be conducted.

As a member of the ETS transcription factor family, ETV7 in melanoma has not been previously investigated. Our knowledge of the gene under physiological and pathological conditions is considerably limited. Initially identified at the beginning of this century, ETV7 was found to be highly related to the oncogenic ETV6 (36). However, recent studies have found that the two genes exerted opposite biological effects, and ETV7 can inhibit the transcriptional activities of ETV6 (44, 45). ETV7 has earlier been reported to act as a hematopoietic oncoprotein; however, three recent studies found that the gene could suppress the proliferation, migration, and invasion of some solid tumors such as oral squamous cell carcinoma and nasopharyngeal carcinoma (45–49). To explore the role of ETV7 in melanoma, we analyzed seven independent melanoma-related data sets (TCGA_SKCM, GSE65904, GSE19234, and four data sets from the cBioportal database) by conducting GSEA, GO, and KEGG analyses, which are widely used bioinformatics tools in the functional characterization of specific genes (50–53). All of these enrichment analyses suggest broad ETV7 involvement in immune-related processes and pathways, including the following: T cell activation; Th1, Th2, and Th17 cell differentiation; PD-L1 expression and PD-1 checkpoint pathway in cancer; and antigen processing and presentation (Figures 5–7). Melanoma patients with high ETV7 expression had significantly higher immune scores than those with low ETV7, suggesting higher immune cell infiltration in the tumor microenvironment. Indeed, when the infiltration of various immune cells in melanoma was estimated, ETV7 showed a strong positive correlation with the infiltration of CD8+ T cells (Figure 9). Moreover, melanoma patients with high ETV7 exhibited a significantly higher expression of various T cell markers, such as CD3E, CD4, CD8B, and TBX21 (54); this finding verified the close link between ETV7 and T cell infiltration. With the ETV7 expression in hematopoietic cells considered, the strong correlation between ETV7 and the infiltration of CD8+ T cells may be attributed to ETV7 expression in T cells rather than tumor cells. Thus, we first evaluated ETV7 expression across a set of normal human cells or tissues in the human protein atlas; the skin was found to exhibit the highest ETV7 expression. We then analyzed the public scRNA-seq data set (GSE72056) and found that most of the CD8+ T cells showed no ETV7 expression, and some ETV7-positive T cells were not CD8+ T cells (Figures 9C–F). ETV7 could be detected in some melanoma tumor cells (Figure 9D). ETV was highly expressed in normal skin and showed markedly decreased expression in melanoma (Figures 2L, N and 9G); thus, not all melanoma cells might be expected to express ETV7 (Figure 9D).

Moreover, early studies inferred a positive regulatory role of ETV7 in T and B cells (45, 48). In the study by Cintia Carella et al., all mice that received transplants with TEL2-expressing bone marrow died from T-cell lymphoma, whereas none of the control mice developed hematopoietic malignancy with the chemical carcinogen N-ethyl-N-nitrosourea (45). Monica Cardone et al. showed that ETV7 could inhibit apoptosis and promote B cell proliferation by targeting the cell cycle and apoptotic regulators (48). The results obtained from the present study, combined with other studies, highly suggest that ETV7 can have an essential role in T cell differentiation, proliferation, infiltration, and activation in melanoma.

Notably, several members of the ETS family regulate the immune system (55, 56). ETS1 regulates the differentiation of several types of immune cells, such as T helper cell subsets and cytotoxic T cells; it also directly controls the expression of cytokine and chemokine genes (57). The mechanism by which ETV7, a member of the ETS family, regulates the immune process and response in melanoma has yet to be determined. However, 10 hub genes were identified in the current study (Figure 10B). Among them, CD2 is a transmembrane glycoprotein typically known for its participation in the costimulatory pathway of T cell activation (58). TBX21 is essential for naive T lymphocyte development and interferon-gamma production (59). IL15 is identified as a cytokine that stimulates the proliferation of T lymphocytes (60). PRF1 encodes the protein perforin, which is present in T and NK cells and facilitates the release of granzymes and subsequent cytolysis of target cells (61). CCR5, CXCL10, CXCR3, CXCL9, CCL5, and IFNG also participate in the migration, trafficking, or differentiation of T cells (61–65). Whether ETV7 binds the promoter of these genes and stimulates their expression remains unknown, but our analysis showed a high correlation between them and ETV7 at the transcriptional level. To clarify this concern, future studies have to be conducted.

We further constructed a prognostic model by using LASSO Cox regression, a broadly selected machine learning algorithm to minimize the risk of overfitting (66). The model had a relatively good predictive value in training and testing cohorts (Figures 11D, F). All six gene signatures were immune-related and regulated the proliferation, differentiation, migration, or activation of T cells (59, 60, 62, 63, 65). In addition, melanoma patients with low expression of these six gene signatures had a significantly shorter OS (Supplementary Figure 5). T cells, particularly CD8+ T cells, demonstrate a predominant role in the anticancer effects of ICIs. Thus, the model can potentially help select patients who can be responsive to ICIs; however, this hypothesis should be tested by prospective analysis in multicenter cohorts.



Conclusions

A systematic analysis of the ETS family in melanoma identified an essential role of ETV7 in regulating the immune microenvironment of the disease. Further studies are recommended to explore the exact mechanism that allows ETV7 to regulate the proliferation, migration, infiltration, and activation of immune cells, particularly CD8+ T cells.
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Supplementary Figure 1 | Expression profile of the ETS family in melanoma. (A–O) Expression of ELF1 (A), SPIC (B), SPIB (C), GABPA (D), FLI1 (E), ETV3L (F), ETV3(G), ETV2 (H), FEV (I), ETV6 (J), ERF (K), ELK4 (L), ELK1 (M), ELF4 (N), and ELF2 (O) in melanoma and corresponding normal tissues, based on the GEPIA2 database. (P–S). Data from the Oncomine database show that EHF (P), SPI1 (Q), ETV4 (R), and ERG (S) are not differentially expressed between tumor and normal tissues across three cohorts.

Supplementary Figure 2 | Prognostic analysis of the differentially expressed genes of the ETS family in melanoma. (A–H) Kaplan–Meier plot of overall survival in melanoma patients in the GSE65904 cohort with high and low expression of ELF3 (A), SPDEF (B), ETV5 (C), ETV1 (D), ETS2 (E), ETS1 (F), ELK3 (G), or ELF5 (H).

Supplementary Figure 3 | GO enrichment analysis of ETV7-related genes in the TCGA_SKCM (A), MSKCC NEJM (B), DFCI Science (C), UCLA Cell (D), TGEN Genome Res (E), and GSE19234 (F) data sets.

Supplementary Figure 4 | Single-cell RNA sequencing (scRNA-seq) analysis in melanoma. (A) Average expression of CD163 for macrophages overlaid on the tSNE plot. (B) Average expression of CD19 for B cells overlaid on the tSNE plot. (C) Expression of ETV7 across a set of normal human tissues.

Supplementary Figure 5 | Prognostic analysis of ETV7-related hub genes in melanoma. (A–J) Kaplan–Meier plot of overall survival of melanoma patients in the TCGA_SKCM cohort with high and low expression of CCL5 (A), TBX21 (B), PRF1 (C), IL15 (D), IFNG (E), CXCR3 (F), CXCL10 (G), CXCL9 (H), CD2 (I), or CCR5 (J).
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Background

Lipocalin 2 (LCN2), an innate immune protein, plays a pivotal role in promoting sterile inflammation by regulating immune responses. However, the role of LCN2 in diverse cancers remains poorly defined. This research aimed to investigate the correlation between LCN2 expression and immunity and visualize its prognostic landscape in pan-cancer.



Methods

Raw data in regard to LCN2 expression in cancer patients were acquired from TCGA and GTEx databases. Besides, we investigated the genomic alterations, expression pattern, and survival analysis of LCN2 in pan-cancer across numerous databases, including cBioPortal and GEPIA database. The correlation between LCN2 expression and tumor immune infiltration was explored via TIMER, and we utilized CIBERSORT and ESTIMATE computational methods to assess the proportion of tumor-infiltrating immune cells (TIICs) and the amount of stromal and immune components from TCGA database. Protein–Protein Interaction analysis was performed in GeneMANIA database, and gene functional enrichment was performed by Gene Set Enrichment Analysis (GSEA).



Results

On balance, tumor tissue had a higher LCN2 expression level compared with that in normal tissue. Elevated expression of LCN2 was related to poor clinical regimen with OS and RFS. There were significant positive correlations between LCN2 expression and TIICs, including CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. Moreover, markers of TIICs exhibited different LCN2-related immune infiltration patterns. GSEA analysis showed that the expression of LCN2 was related to retinol metabolism, drug metabolism cytochrome P450 and metabolism of xenobiotics by cytochrome P450.



Conclusions

These findings suggested that LCN2 might serve as a biomarker for immune infiltration and poor prognosis in cancers, shedding new light on therapeutics of cancers.





Keywords: lipocalin 2, pan-cancer, database, immune infiltration, tumor microenvironment



Introduction

Lipocalin 2 (LCN2), a novel immune-related gene, belongs to the lipocalin family and has emerged as a pleiotropic modulator during physiological and inflammatory conditions (1). LCN2 has several synonyms including oncogenic lipocalin, neutrophil gelatinase-associated lipocalin (NGAL), uterocalin, 24p3, and siderocalin. The different names are denominated by the tissue where its expression was initially detected or its predicted functions (2). Besides, it can be secreted by adipocytes (3, 4), tumor cells and immune cells (neutrophils and macrophages) (5). Upregulation of LCN2 was observed in a variety of cancers, such as lung cancer, breast cancer, prostate cancer, pancreatic cancer and esophageal cancer (6–9). Currently, LCN2 has received considerable attention as both a promising biomarker and vital mediator of various human cancers, but the relevance of LCN2 function with the tumorigenesis is still unknown.

Cancer is a complicated disease involving interactions between tumor and immune system. Tumor microenvironment (TME) comprises a variety of cells, among which infiltrating immune cells make up a large proportion (10). TME plays a pivotal role in the initiation and development of human cancers. However, it still remained an elusive challenge in comprehending the dynamic regulation mechanism of the stromal and immune components in TME. The tumor–immune cell interaction came into focus as the development of the immunotherapies with immune checkpoint blockade and other strategies, such as therapeutic vaccines and engineered T cells (11),. As an alternative to classic anticancer therapies, immunotherapy has demonstrated efficacy in multiple cancer types and been developed to reactivate adaptive and innate immune systems, which targets interactions between immune cells and tumor cells (12). Currently, a myriad of checkpoint-blocking drugs are applied in cancers, such as anti-CTLA-4, anti-PD-L1, and anti-PD-1 (13). In consequence, there is an urgent need to clarify the immunophenotypes of tumor-immune interactions and validate the new immune-related therapeutic targets in cancers.

In this research, data-mining analysis based on various databases, we comprehensively analyzed the expression of LCN2 and its association with tumor-infiltrating immune cells (TIICs) and related immune markers, and further visualized its prognostic landscape in pan-cancer. This study was designed and performed according to the flow chart (Figure S1) The findings implied that LCN2 influenced the prognosis of cancer patients, probably through its interaction with TIICs. LCN2 showed an oncogenic effect on pan-cancer, and elevated LCN2 expression was detrimental to the survival time of human cancer patients. Taking these facts together, LCN2 was not only a marker of immune infiltration and poor prognosis, but also a candidate and promising therapeutic target for cancers.



Materials and Methods


Raw Data Acquisition and Processing

TCGA (The Cancer Genome Atlas) research network has profiled and analyzed a large collection of clinical and molecular data of over 10,000 tumor patients across 33 different tumor types (14, 15). Transcriptome RNA-seq data of 33 cancers were extracted from TCGA database (https://portal.gdc.cancer.gov/). 33 cancer types were included: ACC, BLCA, BRCA, COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, READ, SKCM, STAD, TGCT, THCA, THYM, UCEC, and UCS.



Genomic Alterations of LCN2 in Cancers

Alteration of LCN2 status in cancer patients was acquired from the online cBioPortal database (http://www.cbioportal.org/) for cancer genomics (16). The genomic alterations of LCN2 included copy number amplification, deep deletion, missense mutation with uncharted significance and mRNA upregulation.



Analysis of LCN2 Expression in Cancers

The information of differential expression of LCN2 between tumor and matched normal tissue was from TCGA and Genotype Tissue Expression (GTEx) projects. GTEx (http://gtexportal.org) is a tissue bank and data resource set up by the National Institutes of Health (NIH) Common Fund, and 53 human normal tissues in the aggregate from approximately 1,000 individuals have been studied by genetic variation, RNA sequencing, and other molecular phenotypes (17). Regarding parameter selection, we chose log2 (TPM+1) transformed expression data for plotting.



Survival Analysis and Relationship With Clinical Stage

Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn) (18) database is an online platform for dissecting the RNA sequencing expression data from the TCGA and the GTEx projects, using a standard processing approach. “Survival” module of GEPIA was utilized to assess the correlation between LCN2 expression and prognosis of cancers. GEPIA also provided interactive functions such as profiling according to pathological stages (18).



Relationship Between LCN2 Expression and Immunity

TIMER (Tumor Immune Estimation Resource) database (https://cistrome.shinyapps.io/timer/) (19) is an integrated web server to evaluate of the abundance of TIICs across diverse cancer types. We next explored the relationship between the level of LCN2 expression and the abundance of TIICs, including CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic cells (DCs), and macrophages. Moreover, the database can also accurately quantify the purity of tumors. In addition, we explored the differences of immune cell subtypes. Cell-type identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was applied to assess relationship between LCN2 expression and 22 immune cell subtypes based on expression file. Gene markers of TIICs were analyzed including the markers of T cells (general),CD8+ T cells, B cells, monocytes, TAMs, M1 macrophages, M2 macrophages, DCs, neutrophils, natural killer (NK) cells, follicular helper T (Tfh) cells, T-helper 1 (Th1) cells, T-helper 2 (Th2) cells, T-helper 17 (Th17) cells, exhausted T cells, Tregs, and Mast cells (20). These gene markers include BLTA, CD200, TNFRs94, NRP1, LAIR1, TNFs9, CD244, LAG3, ICOS, CD40LG, CTLA4, CD48, CD28, CD200R1, HAVCR2, ADORA2A, CD276, KIR3DL1, CD80, PDCD1, LGALS9, CD160, TNFs94, IDO2, ICOSLG, TMIGD2, VTCN1, IDO1, PDCD1LG2, HHLA2, TNFs98, BTNL2, CD70, TNFs9, TNFRs9, CD27, TNFRs95, VSIR, TNFRs9, CD40, TNFRs98, TNFs95, TIGIT, CD274, CD86, CD44, and TNFRs9.

Tumor mutation burden (TMB) is emerging as a new and profound biomarker for predicting immunotherapy effect and is calculated as total amount of mutations per DNA megabases, in which the detected variants are defined as insertions, base substitutions, or deletions across bases (21). Microsatellite instability (MSI), a molecular tumor phenotype, referred to the spontaneous loss or gain of nucleotides from short tandem repeat DNA tracts (22). Analysis regarding relationship between TMB and MSI was conducted by Sangerbox (http://www.sangerbox.com/tool).

Accumulating evidence suggested that tumor immune microenvironment played an important role in development of cancers. In order to set up the association of the estimated proportion of immune and stromal with LCN2 expression, we used Sangerbox online platform to estimate the ratio of immune-stromal component in TME. In addition, results were exhibited in the form of these three kinds of scores: ImmuneScore, StromalScore, and ESTIMATEScore. The higher score estimated in ImmuneScore or StromalScore positively correlated with the ratio of immune or stromal, and it referred to the higher the respective score and the larger the ratio of the corresponding component in TME. ESTIMATEScore was the sum of both, denoting the integrated proportion of both components in TME.



Protein–Protein Interaction Network Construction

GeneMANIA (http://www.genemania.org) is an interactive and intuitive website for constructing protein-protein interaction (PPI) network, which generates hypotheses about gene function prediction and detects genes with similar functions (23, 24). This network integration algorithm features the following bioinformatics methods: physical interaction, coexpression, colocalization, gene enrichment analysis, genetic interaction and website prediction. In this study, GeneMANIA was applied for PPI analysis of LCN2.



Gene Set Enrichment Analysis

In order to explore the biological signaling pathway, Gene set enrichment analysis (GSEA) was performed in the high-expression and the low-expression groups compared with the median level of LCN2 expression respectively. The top five terms of KEGG and HALLMARK analyses were exhibited. KEGG pathways with significant enrichment results were demonstrated on the basis of NES (Net enrichment score), gene ratio, and P value. Gene sets with |NES|>1, NOM p <0.05, and FDR q <0.25 were considered to be enrichment significant (25).



Statistical Analysis

Gene expression data from the TCGA and GTEx databases were analyzed using Student’s t-test. The correlation analysis was evaluated in the TIMER database using Spearman’s correlation analysis. The correlations between LCN2 expression and abundance scores of immune cells evaluated by Spearman’s correlation. All analyses were performed with the R software (version 3.5.1, www.r-project.org) loaded with R package (ggplot2, circlize, clusterProfiler, DOSE and enrichplot) to visualize the results. Results with P <0.05 were considered as statistically significant, providing credibility for the data analysis.




Results


The mRNA Expression and Genetic Alteration Differences of LCN2 in Cancers

Due to the fact that LCN2 has a potential role as a sensitive indicator in saliva, it might represent an important new target or biomarker for cancer diagnosis. To figure out whether LCN2 expression correlates with cancer, we evaluated LCN2 expression in different tumors and adjacent normal tissues. Data from the TCGA and GTEx database showed that LCN2 mRNA expression was significantly higher in ACC, BLCA, CESC, CHOL, COAD, ESCA, KIRP, LIHC, LUAD, PAAD, READ, STAD, THCA, UCEC, and UCS tumor tissues compared to that in normal tissues, indicating that it might function as an oncogenic molecule in the development of diverse tumors (Figure 1A). It has been widely acknowledged that genomic mutation is closely associated with tumorigenesis. To figure out genomic mutation of LCN2 in cancers, comparative analysis of LCN2 was performed. We firstly checked the genetic alterations of LCN2 genes in cancer patients using cBioPortal database. The genetic alteration profiling of LCN2 showed that its amplification was one of the most important single factors for alteration in ACC, cervical adenocarcinoma, ESCC, PAAD, ovarian epithelial tumor, diffuse glioma, HNSC, HCC, BRCA, glioblastoma, renal non-clear cell carcinoma and PAAD. In addition, LCN2 mutation frequencies are the highest in UCEC, Melanoma, NSCLC, BLCA, COAD, and CHOL (Figure 1B).




Figure 1 | (A) Expression level of LCN2 in different cancer types from TCGA and GTEx data. It is clear that there is significant upregulation of LCN2 in ACC, BLCA, CESC, CHOL, COAD, ESCA, KIRP, LIHC, LUAD, PAAD, READ, STAD, THCA, UCEC, and UCS. The red fusiformis represents tumor tissue, and the blue fusiformis represents normal tissue. T, tumor; N, normal; n, number. X axis, number of tumor and normal samples. Y axis, transcript per million [log2(TPM + 1)]. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) The genetic alteration type and frequency of LCN2 in various cancers. The cBioPortal database was applied to study the LCN2 mutation in cancers. The results are displayed as a histogram of the alteration frequencies of LCN2 across cancer studies. Color images are available online.





Prognostic Value of LCN2 in Cancers

Next, we further assessed the prognostic value of LCN2 for pan-cancer (OS and RFS) in GEPIA. Elevated expression of LCN2 is significantly correlated with poor OS and RFS. Particularly, compared with a low expression level, a high expression level of LCN2 was correlated with a worse OS in BLCA (HR = 1.6, P = 0.0024, Figure 2A), KIRC (HR = 1.4, P = 0.015, Figure 2B) and GBM (HR = 1.6, P = 0.009, Figure 2C), and DFS in GBM (HR = 1.6, P = 0.0035, Figure 2D). The above data suggested that LCN2 expression level was a great factor affecting the survival of cancers, though their relationship may vary depending on tumor type. In addition, based on the GEPIA dataset, we verified that LCN2 expression had a forceful positive association with advanced cancer stages (P < 0.001, Figure 2E).




Figure 2 | Kaplan–Meier survival curves comparing high and low expression of LCN2 in different cancer types in GEPIA. (A) OS in BLCA (B) OS in KIRC (C) OS in GBM (D) DFS in GBM. (E) LCN2 expression was positively correlated with advanced stages of cancers (based on GEPIA database). OS, overall survival; DFS, disease-free survival.





Correlation Between LCN2 Expression and Immune Infiltrating Level in Cancers

TIICs are a significant part of the complex microenvironment that regulate development and progression of diverse cancers (26). The quantity and activity status of tumor infiltrating lymphocytes are important predictive criterion for cancer survival times (27). Hence, we explored the correlation between immune infiltration and LCN2 expression. We determined whether LCN2 expression was associated with the immune infiltration level in various cancers by exploring the coefficient of LCN2 expression and immune infiltration level based on TIMER database. The results indicated that LCN2 expression had significant correlations with tumor purity in 14 cancer types. In addition, LCN2 expression was notably correlated with the infiltration levels of CD4+T cells in 13 cancer types, B cells in 12 cancer types, CD8+T cells in seven cancer types, macrophages in 10 cancer types, neutrophils in 12 cancer types, and dendritic cells in 20 cancer types. The results also revealed that BRCA, PRAD and THCA were three cancer types most strongly correlated with LCN2 expression in immune infiltrating level. In BRCA, the level of LCN2 expression negatively correlated with tumor purity (r = −0.219, P = 3.17e-12), and positively correlated with B cells (r = 0.074, P = 2.08e-02), neutrophils (r = −0.127, P = 8.14e-05), and dendritic cells (r = 0.134, P = 3.27e-05). In PRAD, LCN2 expression negatively correlated with tumor purity(r = −0.39, P = 1.38e-16) and positively correlated with CD4+ T cells (r = 0.288, P = 2.62e-09), macrophages (r = 0.114, P = 2.00e-02), neutrophils (r = 0.275, P = 1.20e-08), and dendritic cells (r = 0.142, P = 3.82e-03). In THCA, LCN2 expression negatively correlated with tumor purity(r = −0.099, P =2. 93e-02), and positively correlated with B cells (r = 0.222, P = 8.73e-07) CD4+ T cells (r = 0.221, P = 8.03e-07), CD8+ T cells (r = 0.16, P = 3.91e-04), macrophages (r = 0.232, P = 2.22e-07), neutrophils (r = 0.433, P = 1.06e-23), and dendritic cells (r = 0.439, P = 2.89e-24) (Figure 3B). Further analysis using Sangerbox online tool also showed the correlation between infiltration of 28 kinds of immune cell subtypes and LCN2 expression (Figure 3A). Neutrophils and Type 17 T helper cell were two immune cell types most strongly correlated with LCN2 expression across 32 cancer types. Moreover, LCN2 expression in TGCT related positively with activated CD4+ T cell and activated CD8+ T cell infiltration. In addition, UVM, GBM, and PRAD were positively correlated with ImmuneScore, StromalScore, and ESTIMATEScore. On the contrary, KIRC was negatively correlated with these three scores. UCEC, KIRP, LIHC, and THCA were positively correlated with ESTIMATEScore and ImmuneScore. HNSC was negatively correlated with ESTIMATEScore and StromalScore (Figure 4A). The top three tumors most significantly correlated with expression of LCN2 were THCA, GBM and TGCT (StromalScore), PRAD, THCA and BRCA (ImmuneScore), THCA, PRAD and BRCA (ESTIMATEScore) respectively (Figure 4B). Therefore, the results indicated that LCN2 expression was tightly correlated with the extent of immune infiltration in cancers. Further information was available in the Supplementary Files 2 and 4.




Figure 3 | Correlation of LCN2 expression with immune infiltration level in cancers. (A) Correlation of LCN2 expression with infiltration level of immune cells by xCell in TCGA. Immune cells positively correlating with LCN2 expression in TCGA dataset were labeled in red, and immune cells negatively correlating with LCN2 expression in TCGA dataset were labeled in violet. (B) Correlation of LCN2 expression with immune infiltration level in BRCA, PRAD, and THCA. LCN2 expression has significant negative correlation with tumor purity, and significant positive correlation with infiltrating levels of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell. No relation with infiltrating levels of B cell and CD8+ T cell. *p < 0.05, **p < 0.01, and ***p < 0.001.






Figure 4 | Correlation of scores with LCN2 expression in cancers (A) Correlation of the estimated proportion of immune and stromal with LCN2 expression in cancers, and analysis was used by ImmuneScore, StromalScore, and ESTIMATEScore. (B) Top three cancers by ImmuneScore, StromalScore, and ESTIMATEScore, respectively. Correlation of ImmuneScore and StromalScore.





Correlations Between LCN2 Expression and Immune Marker Sets, TMB, and MSI in Cancers

The importance of immunosurveillance in determining the prognosis of various types of cancers is widely accepted. Tumors could evade immune responses via taking advantage of immune checkpoint genes, including PD-1 and CTLA-4. To further examine the association between LCN2 and the extent of immune infiltration in different subtypes of breast cancer, we analyzed the correlation between LCN2 and immune checkpoint gene expression. In PRAD, LCN2 expression was positively correlated with expression of CD244, CD48, LGALS9, TNFs94, TMIGD2, VTCN1, TNFs9, TNFRs9, CD27, TNFRs95, VSIR, TNFRs9, CD40, TNFRs95, CD86, and CD44 (Figure 5A). These results suggested that high expression of LCN2 potentially played a vital role in mediating immune evasion. In addition, LCN2 was positively correlated with TMB in BRCA, ESCA, LGG, THCA, and negatively correlated with TMB in OV, PRAD, and SKCM (Figure 5B). LCN2 was positively correlated with MSI in KIRC, SARC and TGCT, and negatively correlated with MSI in HNSC, PRAD, and SKCM (Figure 5C). Association between LCN2 expression and TMB varied markedly among cancer types. Higher expression of LCN2 was correlated with higher TMB in BRCA, ESCA, LGG, and THCA. Higher somatic TMB was correlated with better OS and an optimal subgroup for ICI therapy in cancer patients (28, 29). All these data together indicated that high LCN2 expression was widely associated with immunity in cancers. The correlations were explored in more detail in Supplementary Files 3, 5 and 6.




Figure 5 | Correlations between LCN2 expression and immunity, including immune marker sets, TMB and MSI in cancers. (A) Correlation between LCN2 expression and immune marker sets. (B) Radar map of correlation between LCN2 expression and TMB. (C) Radar map of correlation between LCN2 expression and MSI.





PPI Network of LCN2 in Cancers and Enrichment Analysis

Next, to explore the potential mechanisms that LCN2 participated in the carcinogenesis of cancers, we used GeneMANIA online tool to construct a PPI network for LCN2, and the result is shown in Figure 6. As vividly shown in the picture, LCN2 had strong physical interactions with MMP-9, which is crucial in cancer metastasis. LCN2 constitutes a complex with matrix metalloproteinase-9 (MMP-9), thus increasing its stability and protecting this enzyme from degradation (30). This happens to be consistent with the results of the coexpression. Furthermore, LCN2 was predicted to have significant association with S100A9 and S100A8. Then, GSEA was performed to identify the functional enrichment of high LCN2 expression and low LCN2 expression (Figure 7). KEGG enrichment term exhibited that high expression of LCN2 was mainly associated with metabolic-related activities, including metabolism of xenobiotics by cytochrome P450, retinol metabolism and drug metabolism cytochrome P450. However, there was no significant enrichment in HALLMARK terms.




Figure 6 | PPI network for LCN2 was constructed in GeneMANIA. Different colors of the network edge indicate the bioinformatics methods applied: physical interaction, coexpression, predicted, colocalization, pathway, genetic interaction, and shared protein domains. PPI, protein–protein interaction.






Figure 7 | GSEA for samples with high LCN2 expression and low expression. (A) The enriched gene sets in KEGG collection by the high LCN2 expression sample. (B) The enriched gene sets in KEGG by samples with low LCN2 expression. (C) Enriched gene sets in HALLMARK collection, the immunologic gene sets, by samples of high LCN2 expression. (D) Enriched gene sets in HALLMARK by the low LCN2 expression. Each line representing one particular gene set with unique color, and up-regulated genes located in the left approaching the origin of the coordinates, by contrast the down-regulated lay on the right of x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.06 were considered significant. And only several leading gene sets were displayed in the plot.






Discussion

The biological function of LCN2 was proved to be involved in innate immune responses and inflammation tumor microenvironment and promoted malignant development in a wide variety of cancer types (31–33). In addition, the differential expression of LCN2 was especially higher in a series of human epithelial cancers, such as pancreatic, breast, ovarian, thyroid, and colon (9). In pancreatic ductal adenocarcinoma (PDAC), depletion of LCN2 could diminish extracellular matrix deposition, immune cell infiltration, and tumor growth (31). LCN2 was regarded as a vital regulator of tumorigenesis, invasiveness, and metastasis in breast cancer (32, 34). LCN2 secretion by neutrophils and CXCL1-LCN2 paracrine axis conferred malignant phenotypes to prostate cancer cells via the Src activation and epithelial-mesenchymal transition (EMT) (35).

Enrichment analysis showed high expression of LCN2 was mainly associated with metabolic-related activities. Metabolic inflammation is distinguished by the dysregulation of cytokine and adipocytokine expression in adipose tissue. Notably, LCN2 can be secreted by adipocytes. LCN2 is an adipokine increased in the visceral adipose tissue and serum of obese individuals (36). Obesity is relevant to increased macrophage infiltration of adipose tissue (37). LCN2 could protect MMP-9 from degradation as previously mentioned (38), and the more active pool of MMP-9 was available to promote angiogenesis by remodeling extracellular matrix (39). In this case, EMT is primarily induced via MMP-9-independent pathways.

Under normal circumstances, the immune system can recognize and eliminate tumor cells in tumor microenvironment. However, tumor cells can adopt different strategies to survive and grow, making the immune system restrained. Tumor immunotherapy can restore the body’s normal antitumor immune response, including monoclonal antibody class immune checkpoint inhibitors, cancer vaccines, therapeutic antibodies and cell therapy. TIICs have a clinical impact on patient’s outcome in diverse cancers (13). Here we collected more than 40 common immune checkpoint genes, analyzed the expression relationship between our gene expression and immune checkpoint genes, extracted these immune checkpoint genes respectively, and calculated the correlation with the expression of our target genes. Elevated expression of PD-1 and PD-L1 by TIICs was correlated with poor prognosis and histological grade in cancer patients (40). LCN2 was positively correlated with tumor purity and negatively correlated with TIICs. Up-regulation of LCN2 was correlated with unfavorable prognosis in BLCA, KIRC and GBM. The results revealed that the expression of LCN2 was correlated with the infiltration levels of cancers. MSI was correlated with higher risk of cancer with distinct clinicopathological characteristics, including increased TMB and higher numbers of tumor-infiltrating lymphocytes (41). TMB was a latent biomarker to predict the response to immune checkpoint blockade (29, 42). Additionally, Thomas et al. reported that TMB determined immune-related survival results of breast cancer patients (43). Therefore, our research shed light on understanding the latent role of LCN2 in tumor immunology and its use as a prognostic biomarker of cancers.

However, even though we investigated and integrated information from different databases, there were still some limitations in the current study. To begin with, although the bioinformatic analysis provided us some meaningful insights of LCN2 in cancers, biological experiments in vitro or in vivo are needed to verify our findings and promote clinical utility. Further mechanistic studies will be beneficial for elucidating the role of LCN2 at the molecular and cellular levels. Secondly, posttranslational modifications are of great significance in regulating intracellular signaling and the activity of regulatory factors (44, 45), but post-translational modification information of LCN2 is not available in these databases. Furthermore, despite the finding that LCN2 expression was correlated with immunity and clinical survival in human cancers, we were not sure that LCN2 influenced clinical survival via immune pathway.

In summary, the data in this study elucidated the close correlation and the prognostic significance of LCN2 expression in diverse human cancers. LCN2 might be considered as a novel target for cancer therapy since they showed upregulation in multiple cancers and correlated with worse prognosis. In addition, our results provided insights in the significant role of LCN2 in tumorigenesis and metastasis, providing a potential mechanism that LCN2 expression might modulate tumor immunity, metabolic activity and EMT in cancers. Future prospective studies focusing on LCN2 expression and tumor immune microenvironment could be helpful in giving a definitive answer, thus providing an immuno-based anti-cancer strategy.
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In recent years, immunotherapy has been revolutionized by a new approach that works by blocking receptors called immune checkpoints (IC). These molecules play a key role in maintaining immune homeostasis, mainly by suppressing the immune response and by preventing its overactivation. Since inhibition of the immune response by IC can be used by cancer to avoid recognition and destruction by immune system, blocking them enhances the anti-tumor response. This therapeutic approach has brought spectacular clinical effects. The ICs present heterogeneous expression patterns on immune cells, which may affect the effectiveness of immunotherapy. The inherited genetic variants in regulatory regions of ICs genes can be considered as potential factors responsible for observed inter-individual differences in ICs expression levels on immune cells. Additionally, polymorphism located in exons may introduce changes to ICs amino acid sequences with potential impact on functional properties of these molecules. Since genetic variants may affect both expression and structure of ICs, they are considered as risk factors of cancer development. Inherited genetic markers such as SNPs may also be useful in stratification patients into groups which will benefit from particular immunotherapy. In this review, we have comprehensively summarized the current understanding of the relationship between inherited variations of CTLA-4, PDCD1, PD-L1, BTLA, TIM-3, and LAG-3 genes in order to select SNPs which can be used as predictive biomarkers in personalized evaluation of cancer risk development and outcomes as well as possible response to immunotherapy.
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Introduction

Immune checkpoints (ICs) are key receptors that inhibit the immune response and prevent from its overactivation. Under normal conditions, this mechanism is responsible for maintaining tolerance to its own antigens; however; it can be used by cancer cells to avoid recognition and destruction (1). A discovery made by prof. Allison and prof. Honjo (2, 3) (Nobel Prize in 2018), indicating that blocking these molecules elicits an anti-cancer response, has opened up new perspectives for cancer treatment.

Recently, a number of receptors belonging to the immune checkpoint family have been discovered. However, only two of them CTLA-4 and PD-1 are primarily and broadly explored and their blockade is used as a therapeutic procedure in the routine treatment of several cancers: among others, in the treatment of advanced melanoma, non-small cell lung cancer, non-Hodgkin’s lymphoma, and kidney cancer (4).

The unique benefits of IC blocking include: efficacy against a broad panel of tumors, extended survival, and long-term healing effect after treatment (even over 10 years).

In spite of the evidence of considerable clinical relevance of anti-CTLA-4 and anti-PD-1 antibodies there is still a need for deeper understanding of the relation between the host’s genetics and mechanisms involved in the regulation of these pathways; especially when considering that only some patients (20–40%) respond to therapy, while a small proportion of patients experience rapid progression or an increased risk of death (5). In addition, some patients develop severe, sometimes fatal, adverse effects associated with the autoimmune response (5).

Therefore, in recent years new inhibitory pathways have started to be intensively studied as promising targets for immune checkpoint blocking therapy. Several potential molecules as well as their ligands are considered (4), among them: the B and T lymphocyte attenuator (BTLA), the Lymphocyte activation gene 3 (LAG-3), the T cell Immunoglobulin 3 (TIM-3) and the T cell immunoglobulin and ITIM domain (TIGIT) (4).

The immune status of cancer is modulated by many factors including patients’ immune reactivity which may be affected by single nucleotide polymorphisms (SNPs) of immune related genes (6). These SNPs may occur in regulatory regions and cause changes leading to damaging or introducing binding sites for transcription factors (TFs) or miRs, and in that way exert the influence on the expression level of encoded molecules as well as affect chromatin accessibility or DNA-looping (7). They may also introduce changes to protein structure which may affect function of these molecules. Hence, genetic polymorphism may impair function of molecules important for effective activity of anti-tumor response, such as CTLA-4; the SNPs of CTLA-4 and other immune checkpoints molecules have been studied in the context of variety types of cancers.

This review will summarize current knowledge about the impact of the genetic variants of CTLA-4, PDCD1, PD-L1, BTLA, TIM-3, and LAG-3 on cancer risk. In case of the CTLA-4, PDCD1 as well as PD-L1 genes, a considerable number of meta-analyses combining the results of numerous studies are available in the literature and in the next paragraphs their results will be preferentially analyzed. In the case of other IC molecules, the results of individual studies in particular cancers will be presented. Of note, we omitted those reports that analyzed only a small number of individuals in case-control groups.



Cytotoxic T Lymphocyte-Associated Antigen-4

The cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) was discovered in 1987 by Brunet and colleagues (8). CTLA-4 is an inhibitory cell surface receptor belonging to the immunoglobulin-like receptor superfamily, structurally similar to CD28 (9). It is comprised of four domains, including a signal peptide, an extracellular ligand-binding domain, a transmembrane domain, and a short cytoplasmic tail (Figure 1) (8). CTLA-4 forms a covalently linked heterodimer that binds to the same ligands as CD28 - CD80 (B7.1) and CD86 (B7.2) (10–12), although with significantly higher affinity and avidity (12). CTLA-4 is expressed by conventional effector T cells (Teff) upon activation, and constitutively by the regulatory T cells (Tregs) (13). Although expression of CTLA-4 is primarily restricted to T cells, its presence on B cells and other cell types has been also described [reviewed in (13–15)]. The expression of CTLA-4 on different types of tumor cells has been also demonstrated (16, 17).




Figure 1 | Schematic CTLA-4 gene and protein structure. Top: CTLA-4 gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: CTLA-4 protein structure. The colors indicate which region of the protein is encoded by which exon.



CTLA-4 engagement, upon TCR activation, decreases T cells response through the inhibition of co-stimulatory signals coming from CD28. This molecule is vital for regulation of T-cell homeostasis and self-tolerance (18).

From an “oncological” point of view, the most important feature of CTLA-4 is its engagement in evading immune surveillance by cancer cells, since cancer cells may employ mechanisms leading to upregulation of CTLA-4 and as consequence repression of immune response toward tumor cells (18). The discovery made by Prof. Allison’s group showing in murine model of tumor that the blocking of CTLA-4 caused an enhanced antitumor immunity (3), gave a new perspective on therapeutic approaches to cancer.

After more than decade later the idea of Prof. Allison’s team achieved an enormous success, when it was proved that antibody against CTLA-4 – ipilimumab, was active in patients with metastatic melanoma. Moreover, a long-term response to this treatment was observed in patients with prolonged stable disease (19). Finally, in 2011 FDA approved ipilimumab for treatment in advanced melanoma.

The human CTLA-4 exists in two main isoforms: the full length CTLA-4 (flCTLA-4) and soluble CTLA-4 (sCTLA-4), which is devoid of the transmembrane domain (20). The flCTLA-4 is responsible for inhibition of T cell activation which leads to T-cell anergy. The sCTLA-4 by antagonizing this process maintains the immune response in balance (21). Some of genetic polymorphisms of CTLA-4 gene may have impact on the ratio between these two isoforms and in consequence on T cell activity (22, 23).

The CTLA-4 gene is located between the CD28 and ICOS genes on chromosome 2q33.2. The structure of CTLA-4 gene is presented in Figure 1.

The transcriptional regulation of CTLA-4 gene expression is not fully understood. It is regulated by the NFAT TF, since it has been shown that NFAT binds to the CTLA-4 promoter region (24) and CTLA-4 expression directly correlated with NFAT level. Also, FoxP3 is a direct activator of the CTLA-4 gene (25). In addition, GATA3 binds to the CTLA-4 proximal promoter in bortezomib-treated CD4+ T cells, and GATA3 expression can enhance CTLA-4 promoter activity in a dose-dependent manner (26). Recently, was shown that Zfp281 TF belonging to the zing finger family, negatively regulated CTLA-4 expression by direct binding to GC rich sites in its promoter (27). The expression of CTLA-4 is also regulated by different miRNAs. The regulations of ICs by miRs have been recently described in the review by Omar et al. (28).


CTLA-4 Gene Polymorphisms

As mentioned earlier, the upregulation of CTLA-4 expression is one of the mechanisms adopted by tumor cells to evade anti-tumor immune response. These mechanisms may be modulated by inherited genetic variants. Below we described the most intensively examined genetic variants of CTLA-4 in human tumors together with their functional relevance, if such data were available in literature. The frequency of the CTLA-4 genetic variants described below in different populations is presented in Table 1.


Table 1 | Frequency of genetic variants of CTLA-4, PDCD1, PD-L1, BTLA, HAVCR2, and LAG3 genes (in different human populations) for which the association with cancer risk has been investigated.



rs4553808 (CTLA-4c.-1661A>G) and rs733618 (CTLA-4c.-1722T>C) are located in the upstream regulatory region and may impact the transcription-associated binding activity of CCAAT-enhancer binding protein C/EBPβ and nuclear factor 1 (NF-1) TFs, respectively. The in silico analysis suggested that the change of adenine to guanine at -1661 position may lead to creation of a new binding site for a C/EBPβ TF (29, 30). The C/EBP family of TFs plays an important role in the regulation of many essential processes like cell cycle, hematopoiesis, and host immune response (31), the C/EBPβ is implicated in cell proliferation, apoptosis and transformation (30). Therefore, it can be anticipated that an extra C/EBPβ binding motif created by CTLA-4c.-1661A>G may increase the transcriptional activity and lead to higher expression of CTLA-4. Such a phenomenon was recently described for the rs975484C>G located in a protein arginine methyltransferase 1 gene (PRMTI) (32). This assumption has to be experimentally validated, however, if it appears to be correct, the CTLA-4c.-1661*G allele may be considered as potential cancer risk factor.

In contrast, the substitution of thymine to cytosine at position -1722 was predicted to destroy a binding site for a NF-1 TF. It has been suggested that the NF-1 TF and element surrounding -1772 position may regulate CTLA-4 alternative splicing, since CTLA-4c.-1722*C allele was associated with higher expression of sCTLA-4 (29). Hence, sCTLA-4 antagonize anergy of T cells, the CTLA-4c.-1722*C allele may be considered as protective allele in terms of developing cancer, and opposite effect should be observed for CTLA-4c.-1722*T allele (higher risk).

rs11571317C>T (CTLA-4c.-658C>T) is located in 5’ UTR region. In silico analysis revealed that this polymorphism is located in potential binding site for a SP1 TF (C allele), and that presence of thymine at this site may lead to disruption of the SP1 binding motif. This observation suggests that CTLA-4c.-658*T allele may be associated with lower expression of CTLA-4 molecule (33). Hence, in the context of cancer, CTLA-4c.-658*C allele (higher expression of CTLA-4 molecule) may confer increased risk of cancer development.

rs5742909C>T (CTLA-4c.-319C>T) is located in the promoter region. It has been demonstrated that this variant modified a binding site for a LEF1 TF. The presence of cytosine or thymine at position -319 has been shown to have an impact on regulatory potential of the LEF1, which led to differential activation of the -319C>T variant by LEF1. More precisely, it has been demonstrated in the reporter assay that in the presence of LEF1, the activity of the reporter gene was higher for thymine at -319 position in activated Jurkat cells (34). The CTLA-4c.-319*T allele has also been associated with significantly increased expression of CTLA-4 mRNA and surface CTLA-4 expression on unstimulated peripheral blood mononuclear cells (PMBC) and CD4+ T cells, but not on CD8+ T cells (35, 36). Based on that, it may be assumed that CTLA-4c.-319*T allele is associated with higher expression of CTLA-4, and therefore, may increase a risk of cancer development and progression. Xiong and colleagues (37) investigated functional relevance of CTLA-4c.-319C>T and found that upon stimulation PBMCs derived from subjects with CTLA-4c.-319 T/T genotype had significantly lower proliferation ability, produced lower levels of IL-2 and IL-4, but on the contrary higher levels of TGF-β compared with PBMCs derived from subjects with CTLA-4c.-319 C/T or CTLA-4c.-319 C/C genotypes. Furthermore, the authors demonstrated, that stimulated PBMCs with CTLA-4c.-319 T/T genotype were significantly less cytotoxic towards CaSki cell line cells (HPV 16-positive cervical cancer cell line) than PBMCs from individuals with CTLA-4c.-319 C/T or C/C genotypes. The authors concluded, that the carriers of CTLA-4c.-319*T allele “have stronger negative regulation of T-cell proliferation and function, which might be the underlying mechanisms conferring cervical cancer susceptibility” (37).

rs231775A>G (CTLA-4c.49A>G) is a non-synonymous SNP which leads to an amino acid change from threonine to alanine in position 17 of CTLA-4 leader peptide (Thr17Ala). The presence of the CTLA-4c.49 A/A (Thr17) genotype, as opposed to the G/G genotype (Ala17), was associated with significantly lower levels of T cells activation and lower proliferation of these cells. It has been also demonstrated that CTLA-4 molecule with (Thr17) had a higher capacity to bind CD80 and a stronger inhibitory effect on T cell activation compared to (Ala17) (38). Moreover, it was presumed that (Ala17) homozygotes may express one-third less CTLA-4 on the surface of T-cells than (Thr17) homozygotes (38). It was also postulated that the CTLA-4c.49A>G in the leader sequence alters the inhibitory function of CTLA-4 by influencing the rate of endocytosis or surface trafficking (35, 39). Taking into consideration the aforementioned observation it is reasonable to consider the CTLA-4c.49*A allele as a risk factor of cancer development.

rs3087243G>A (CTLA-4CT60G>A) is situated in the 3’ UTR. The CTLA-4CT60 G/G genotype has been shown to be associated with lower expression of sCTLA-4 transcript (23). Xiong and colleagues (37) in work described above investigated also functional relevance of CTLA-4CT60G>A SNP and observed the same functional effects for the CTLA-4CT60*G allele as for CTLA-4c.-319*T allele (37). On the other hand, the CTLA-4CT60 A/A genotype was associated with the approximately 40% increase in Treg frequency in the peripheral blood (PB) of healthy donors (40). Based on data obtained from results mentioned above it can be inferred that the CTLA-4CT60*G allele constitutes cancer risk factor. The possible functional relevance of CTLA-4 SNPs was summarized in Table 2.


Table 2 | The possible functional relevance of polymorphisms in genes encoding immune checkpoint molecules.






CTLA-4 Polymorphisms and Cancer Risk

The associations between CTLA-4 polymorphisms and cancer were studied extensively. Five out of the aforementioned polymorphisms mainly focused researchers’ attention: CTLA-4c.-1722T>C, CTLA-4c.-1661A>G, CTLA-4c.-319C>T, CTLA-4c.49A>G, and CTLA-4CT60G>A. The association of these polymorphisms with susceptibility to various types of cancers were investigated in many case-control studies and their results were analyzed in several meta-analyses. In the next paragraphs the reported relationships between genetic variants of the CTLA-4 gene and particular cancers were described.



Overall Cancer Analysis

Several meta-analyses combining data from different studies have been performed over the recent years. The most current meta-analysis by Fang et al. (61) included 67 different studies analyzing CTLA-4c.49A>G (23,617 cases, 27,261 controls), CTLA-4c.-319C>T (7,741 cases, 9,611), CTLA-4CT60G>A (9,675 cases, 9,623 controls), CTLA-4c.-1661A>G (3,635 cases, 4,104 controls), and CTLA-4c.-1722T>C (in 14 studies). According to this analysis, three SNPs were significantly associated with overall cancer risk: CTLA-4c.-1661A>G (G/G vs. A+, OR = 1.38; G+ vs. A/A OR = 1.48); CTLA-4c.-319C>T (T+ vs. C/C OR = 1.33); CTLA-4c.49A>G (A/A vs. G+, OR = 1.1; A+ vs. G/G OR = 1.16), while CTLA-4CT60G>A and CTLA-4c.-1722T>C were not associated with overall cancer risk. In analyses stratified by ethnicity, both CTLA-4c.49A>G and CTLA-4c.-1661A>G were significant susceptibility polymorphisms in Asians, but not in Caucasians, while CTLA-4c.-319C>T was associated with overall cancer susceptibility in Caucasians (T+ vs. C/C, OR = 1.63). When stratify by cancer type, the strong associations between the CTLA-4c.49A>G and bone, liver and pancreatic cancers (A/A vs. G+, OR = 2.04, OR = 1.41 and OR = 1.67, respectively) as well as breast and head and neck cancers (A+ vs. G/G, OR = 1.27 and OR = 1.33, respectively) were observed. Additionally, CTLA-4c.-1661A>G was associated with significantly increased susceptibility to breast and head and neck cancers (G+ vs. A/A, OR = 1.44 and OR = 1.99, respectively). Previous meta-analyses by Geng et al. (2014), Sun et al. (2008) and Zhang et al. (2011) (38, 62, 63) demonstrated similar results. In particular, Geng et al. (62) showed that the possession of CTLA-4c.49*A allele, while Sun et al. and Zhang et al. (38, 63) that the possession of CTLA-4c.49 A/A genotype increased susceptibility to cancer development. The association of CTLA-4c.49*A allele with susceptibility to breast and lung cancers was noticed by Zhang et al. and Geng et al. (62, 63). When stratified by ethnicity the association seemed to be particularly relevant to Asians (62). On the contarary, the presence of CTLA-4c.-319*T allele was associated with an increased overall cancer risk exclusively in Europeans (63).

Three meta-analyses evaluated the relationship between CTLA-4CT60G>A and the susceptibility to overall cancer risk (63–65). The obtained results did not confirm association of CTLA-4CT60G>A with overall cancer susceptibility, but showed the association between this SNP and particular cancer types. The presence of CTLA-4CT60 A/A genotype increased the risk of skin cancer (65), while presence of CTLA-4CT60*G allele the risk of breast and cervical cancers (64). The results of previous studies also indicated association between CTLA-4c.-1661*G allele and an increased cancer risk, this observation was particularly relevant to gastric (65) and breast cancers (62, 65) in Asian population (65, 66). The results of latest meta-analysis (61) confirmed previous reports about lack of associations between CTLA-4c.-1722T>C and overall cancer risk (62, 67).



Cervical Cancer

The most recent meta-analysis (68) summarizing the results of 11 studies (37, 69–78) (3,899 cases, 4,608 controls) indicated significant association between CTLA-4c.-319*T allele and T/T genotype and cervical cancer risk (T/T vs. C+, 1.96; T+ vs. C/C OR = 1.47, respectively). In a stratified analysis by ethnicity, a significant association was observed for CTLA-4c.-319*T allele in Asian, but not in Caucasian women. This meta-analysis confirmed the results of the previous studies (79, 80). Of note, in study by Pawlak et al. (73) the significant association between CTLA-4c.-319*T allele and G1 grade of tumor was found.

It has been conclusively established that CTLA-4c.49A>G is associated with the risk of cervical cancer. Several meta-analyses (79–81), including (71–76, 82), proved that the A/A genotype of CTLA-4c.49A>G and the possession of CTLA-4c.49*A allele confer the increased susceptibility to this cancer type of about 20% (OR = 1.20). In the study by Xiong et al. (365 women - cases and controls) the carriage of CTLA-4CT60*G allele was associated with increased cervical cancer risk (OR = 1.92), and with more advanced stages of this disease (37), whereas the other studies did not demonstrate such association (73, 75, 80).

The protective role of the CTLA-4CT60 A/A genotype was confirmed by a meta-analysis by Zhao et al. (64), who examined data from two reports (the carriage of CTLA-4CT60*G allele was associated with higher risk) (37, 75). However, due to a limited number of studies, future investigations are needed to establish the role of this SNP in susceptibility to cervical cancer. Collectively, the findings of presented studies suggest that women possessing CTLA-4c.49* A allele and CTLA-4c.-319*T allele are more prone to develop cervical cancer.



Breast Cancer

The association between CTLA-4c.49A>G and breast cancer (BC) was evaluated in two meta-analyses (83, 84) including the data from 5 studies (38, 85–89). The obtained results demonstrated that the presence of CTLA-4c.49*A allele increased the susceptibility to BC (OR = 1.26). The most recent study examining relationship between CTLA-4c.49A>G and BC outcome was performed by Babteen and colleagues among Egyptian women (90). The authors demonstrated that women being the carriers of CTLA-4c.49*G allele were 1.8 times less likely to develop BC than women with A/A genotype. Moreover, the authors indicated the association between this SNP and nodal infiltration, metastasis, advanced clinical stages, and risk for recurrence. However due to limited number of patients within compared groups the result should be treated with caution. Additionally, this group explored pooled effect of CTLA-4c.49A>G in BC based on 9 studies, and found that the carriage of CTLA-4c.49*G allele decreased 1.3 times risk of BC, whereas the CTLA-4c.49*A allele conferred an increased risk of BC developing, what was in agreement with previous analyses (90).

The CTLA-4c.-319C>T was analyzed only in one meta-analysis performed by Chen et al. (84), based on three studies (86, 91, 92). This analysis indicated that the presence of the CTLA-4c.-319 C/T genotype conferred susceptibility to BC (C/T vs. C/C, OR = 1.65).

Three meta-analyses: the meta-analysis by Zhao et al. (64) [comprised four papers (86–88, 93)], the meta-analysis by Dai et al. (83) [contained an additional study (89)], as well as the meta-analysis by Chen et al. (84) (the same studies as in Zhao et al. (64); examined the relationship between CTLA-4CT60G>A and the risk of BC. These studies revealed that A/A genotype was associated with lower risk of BC developing, while CTLA-4CT60*G allele increased the risk. Such association was not found in the study by Goske and colleagues (258 cases, 258 controls) (33), however the authors noted relationship between CTLA-4CT60G>A and tumor growth. The G/G genotype was associated with restricted tumor growth, while G/A and A/A genotypes promote tumor growth (33). This group also investigated relationship between CTLA-4c.-658C>T and BC and demonstrated that C/C genotype significantly increased the risk of BC development in comparison to C/T genotype (33). Moreover, the meta-analyses by Dai et al. (83) and by Chen et al. (84) revealed association between the CTLA-4c.-1661*G allele and susceptibility to BC development, while CTLA-4c.-1772T>C was not associated with BC risk in these studies.



Gastric Cancer

The most recent meta-analysis published in 2020 (94) which relates to digestive system malignancies (among them gastric cancers) summarizes the results from available studies concerning the following CTLA-4 SNPs: CTLA-4c.-1772T>C, CTLA-4c.-1661A>G, CTLA-4c.-319C>T, CTLA-4c.49A>G, CTLA-4CT60G>A and gastric cancer (GC) risk (38, 95–100). According to this meta-analysis, CTLA-4c.49A>G was not associated with GC risk, despite the fact that such association was demonstrated in some of individual studies included in this analysis. In contrast, examination of CTLA-4c.-319C>T revealed significant association between the possession of CTLA-4c.-319 C/C genotype and increased risk of GC (OR = 1.58). This finding is inconsistent with results for other types of cancer, where the CTLA-4c.-319*T allele has been identified as a tumor risk factor. Additionally, this meta-analysis indicated that the carriage of the CTLA-4c.-1661*A allele may predispose to GC development (OR = 1.78) (94).



Hepatocellular Cancer

There is only a limited number of studies investigating CTLA-4 gene polymorphisms and risk of hepatocellular cancer (HCC) available in the literature. One of such study was published in 2018 by Wang et al. (101), and analyzed data from four studies (82, 102–104). This meta-analysis showed that in the Chinese population the CTLA-4c.49 A/A genotype increased the risk of HCC of about 1.5-fold. On the other hand, the most recent meta-analysis by Li et al. (94) [analyzing data included in work by Wang et al. (101), except one study published in Chinese language (104), and data from two additional studies (105, 106)], did not confirm previous observations and suggested a lack of association between the CTLA-4c.49A>G and HCC risk.

Yang et al. (105) investigated association between CTLA-4c.49A>G, CTLA-4CT60G>A, CTLA-4c.-1722T>C, CTLA-4 rs16840252C>T, and HCC risk in a group of 584 patients and 923 control subjects of an Eastern Chinese Han population. This study revealed that the carriers of CTLA-4CT60*A allele were about 1.5 times more prone to develop HCC than individuals being homozygotes G/G (105). An opposite association was obtained by Wang et al. (106) on 554 HCC patients and 612 control subjects from Chinese population. The authors observed about 1.5 increased risk of HCC cancer for individuals with CTLA-4CT60 G/G genotype as compared to carriers of CTLA-4CT60*A allele. Additionally, this study demonstrated that carriers of CTLA-4-319*T allele had 1.6 times higher risk of HCC in comparison to individuals with C/C genotype, this risk increased to 2.6 in case of T/T homozygotes. Similarly, to results obtained by Xiong and colleagues (37), these authors observed that the CTLA-4c.-319 C/T and T/T genotypes were associated with lower production of interleukins IL-2 and IL-4, an increased production of TGF-β and lower cell proliferation, what was demonstrated for PBMCs with these genotypes stimulated with PHA. These cells were also less cytotoxic to HepG2 liver cancer cells (106).



Colorectal Cancer

The evaluation of association between CTLA-4 polymorphisms and colorectal cancer (CRC) risk was the subject of several studies.

The meta-analysis by Jiang et al. (2013) (107) [based on data from (96, 108–110)] did not show association between the CTLA-4c.49A>G and CRC risk. Importantly, most of the studies included in this work were performed on Caucasians.

Two meta-analyses: one by Wang et al. (2015) (111) (7 studies (96, 108, 110, 112) and 2 articles in Chinese) and another performed by Zhang et al. (2018) (113). (9 common studies (96, 108, 110–112, 114) and 4 articles in Chinese) as well as 2 additional studies (109, 115) showed that the possession of the CTLA-4c.49*G increased the risk of CRC about two-fold (111). Moreover, Zhang et al. (113) established that A/A genotype protected against CRC in the Asian population.

The most recent meta-analysis by Li et al. (94) [analyzing data from 8 out of 11 reports included in paper by Zhang et al. (113)] reported that CTLA-4c.49 G/G genotype decreased risk of colorectal cancer about 1.8 times in comparison to G/A and A/A genotypes. Due to discrepancies observed in aforementioned publications future well designed studies are needed to resolve ambiguities between published results. For CTLA-4c.-1722T>C, CTLA-4c.-1661A>G, CTLA-4c.-319C>T, and CTLA-4CT60G>A, there was no evidence of associations with CRC risk (94, 114).



Bone Cancer

In 2015 Fan at al. (116) published results of meta-analysis exploring association between CTLA-4c.-1661A>G, CTLA-4c.49A>G, CTLA-4CT60G>A, and the risk of bone sarcoma based on data from four case-control studies (117–120) performed on Asians. The authors demonstrated that CTLA-4c.49 A/A genotype increased 2 times risk of bone sarcoma development. The other SNPs were not associated with the risk of this cancer.

The relationship between CTLA-4c.-319C>T and CTLA-4c.49A>G and susceptibility to osteosarcoma was examined most recently in a meta-analysis by Wang et al. (121) (based on 3 reports: Wang et al. (117, 118), Liu et al. (117) and Qiqo et al. (study published in 2016 in Chinese a detailed reference was not provided in publication). The authors showed that CTLA-4c.49*A allele as well as CTLA-4c.-319*T allele conferred about 2-fold increased risk of developing osteosarcoma in Chinese population. Bilbaoilbao-Aldaiturriaga and colleagues (122) investigated association between CTLA-4c.49A>G and osteosarcoma (99 patients, 125 controls) and concluded that carriers of CTLA-4c.49*G allele had 2-fold lower risk of osteosarcoma in comparison to homozygotes A/A in Spanish population. They also performed a meta-analysis based on their results and 2 other studies performed on Chinese population (117, 118), and concluded that in spite of different frequency of CTLA-4c.49*A allele between Spanish and Chinese population (63 vs. 33 and 35%) the A allele and A/A genotype were associated with 1.36 and 2.07 times higher risk of osteosarcoma in both populations (122). Collectively, the results of these studies suggest that CTLA-4c.49 A/A genotype increased about 2 times risk of osteosarcoma development.



Hematological Malignances

The associations of CTLA-4 polymorphisms and susceptibility to hematological malignances were relatively frequently investigated in Asian and Caucasian populations.

Dai and colleagues (123) performed a meta-analysis [based on data from 9 case-control studies performed on Caucasians (7 reports) and Asians (2 reports) (95, 124–131)] aimed at evaluation of association between CTLA-4c.-319C>T, CTLA-4c.49A>G, CTLA-4CT60G>A, and susceptibility to lymphoid malignancies. None of investigated SNPs were associated with overall risk of developing lymphoid malignancy. Furthermore, a stratified analysis by ethnicity (Asian or Caucasian) and histopathological subtype (non-Hodgkin lymphoma) also failed to detect an association between the studied polymorphisms and risk of lymphoid malignancy. Hui et al. (132) examined CTLA-4c.-319C>T, CTLA-4c.49A>G, and CTLA-4CT60G>A SNPs in childhood acute lymphoblastic leukemia (ALL) and demonstrated that the presence of CTLA-4c.-319*T allele conferred susceptibility to this disease (132). The other SNPs were not associated with risk of ALL in children.



Lung Cancer

There are a very limited number of studies on the association between the CTLA-4 polymorphisms and lung cancer risk. Furthermore, available studies demonstrated inconsistent results, and they were not collectively analyzed recently. The only published so far meta-analysis (62) [including data from three studies (38, 133, 134)] showed that the possession of CTLA-4c.49*A allele slightly increased risk of lung cancer (1.2-fold). Similar results were obtained in meta-analyses by Zhang et al. (63) and Geng et al. (62), however in the study by Geng et al. (62) this association was restricted only to Asians. Two other investigated SNPs of CTLA-4, namely CTLA-4c.-1722T>C and CTLA-4c.-1661A>G were not associated with lung cancer risk (62). The association between carriage of CTLA-4c.49*A allele and increased risk of lung cancer was not confirmed in two other studies (135, 136). The CTLA-4c.-319C>T (133, 136) and CTLA-4CT60G>A (133) were not associated with the risk of lung cancer development.



Urological Cancers

The literature data on urological cancers are limited. There is only one study considering associations between CTLA-4c.49A>G and CTLA-4CT60G>A and bladder cancer risk in North Indian population (200 cases, 200 controls) (137). The authors found that the G/G genotype of CTLA-4c.49A>G was associated with almost 4-fold higher risk of bladder cancer in comparison to A/G and A/A genotypes. This group also demonstrated that CTLA-4CT60 G/G genotype increased almost 1.4 times susceptibility to develop bladder cancer (137).

The relationship between CTLA-4c.-319C>T, CTLA-4CT60G>A and prostate cancer (PC) (301 cases, 301 controls) was investigated by Karabon et al. The authors observed overrepresentation of the carriers of the CTLA-4c.49*A allele and the carriers of the CTLA-4c.-319*T allele in patients as compared to controls. Moreover, the individuals possessing both susceptibility alleles CTLA-4c.49*A and CTLA-4c.-319*T had 1.78-fold increased risk of PC than individuals with protective G/G and C/C genotypes, respectively (138).

Two studies analyze relationship between CTLA-4 SNPs and renal cell cancer (RCC) risk and reported results contradicting each other (109, 139). In the Spanish study (127 cases, 176 controls) (109) the CTLA-4c.49 A/A and CTLA-4CT60 A/A genotypes were associated with about 2-fold increased risk of RCC. Additionally, the authors observed overrepresentation of this genotypes in RCC patients, particularly with higher grade tumors. In Polish case-control study (323 patients, 518 controls) the following SNPs: CTLA-4c.49A>G, CTLA-4c.-319C>T, CTLA-4CT60G>A were investigated. The authors reported that the presence CTLA-4CT60*G allele increased 1.5 times risk of clear cell renal cancer. Furthermore, the presence of CTLA-4CT60*G allele was significantly associated with necrosis and advanced stages of a clear cell renal cell cancer (139). Due to inconsistent results further study are needed to resolve the ambiguity.



Pancreatic Cancer

Only two studies evaluated the potential association between CTLA-4 polymorphisms and pancreatic cancer (PC) risk. Lang et al. (140) examined association between CTLA-4c.49A>G and PC and reported that CTLA-4c.49*A allele conferred the risk of PC and that the homozygotes A/A were 2.2 times more prone to develop PC in comparison to homozygotes G/G and heterozygotes A/G. The second study by Yang et al. (141) confirmed this observation by demonstrating that the homozygotes A/A had 2.5-fold increased risk of PC development (141). The most recent meta-analysis, mentioned in part overall cancer risk, by Fang et al. (2018) confirmed that homozygotes A/A were more prone to develop PC (OR = 1.67). Based on these findings the CTLA-4c.49*A allele may be considered as risk factor of PC. The summary of above presented associations between CTLA-4 polymorphisms and cancer risk is shown in Supplementary Table 1.




Programmed Cell Death Protein 1

PD-1 was identified in 1991 at Kyoto University by a group led by Tasuku Honjo, and the first article about this molecule was published one year later (2). In 1999, the same research team demonstrated the role of the PD-1 molecule—negative regulation of the immune response (142). Finally, three years later was shown that the blockade of interaction between PD-1 and its ligand (PD-L1) may provide a promising strategy for cancer immunotherapy (143).

PD-1 (CD279) is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily (Figure 2). The expression of PD-1 is strictly and dynamically regulated. Low basal levels of PD-1 are observed on resting naïve T cells as well as in certain populations of developing thymocytes (which has been linked to immune tolerance). After immune stimulus, PD-1 can be transiently expressed on CD4+ and CD8+ T cells, B cells, macrophages and its expression can be also detectable on natural killer T (NKT) cells and some subset of dendritic cells (DCs) (44, 144, 145). Downregulation of PD-1 is noticed during acute antigen exposure, whereas in the case of chronic immune stimulation (e.g. when T cells are exposed persistently to tumor cells) PD-1 is overexpressed (144). This high level of PD-1 expression can lead to functional impairment - tumor resident T cells frequently present signs of exhaustion.




Figure 2 | Structure of PDCD1 gene and protein. Top: PDCD1 gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: PD-1 protein structure. The colors indicate which region of the protein is encoded by which exon.



PD-1 binds two different ligands—PD-L1 (CD274, B7-H1) and PD-L2 (CD273, B7-DC). PD-L2 affinity for PD-1 is 3-fold higher than PD-L1; however, PD-L1 is expressed on more cell types than PD-L2 (44). Like in the case of CTLA-4/CD80, PD-1/PD-L1 interactions play an opposite role to CD28-CD80 costimulatory pathway (146).

In normal tissue, binding of PD-L1 by PD-1 has been shown to play a pivotal role in maintaining immune homeostasis and prevention from autoimmunity during infection and inflammation (147). In the tumor microenvironment (TM), interaction between PD1 and PD-L1 (expressed on tumor cells) provides an immune escape mechanism for tumor cells (147).

Given the tumor immunology, PD-1 mainly inhibits T cell activation in TM at later stages of tumor growth, whereas signaling via CTLA-4 regulates T cell activation in the early stage of T cell response in the lymph nodes (LNs) (147).

PD-1 is encoded by the PDCD1 gene (also known as PD-1) located on chromosome 2q37.3 in reverse (REV) orientation (148). The gene structure is presented in Figure 2.

Regulatory elements of PDCD1 expression are located inter alia in two conserved regions 100bp and 1.1kb upstream of the transcription start site (TSS). They contain multiple TFs binding sites: activator protein-1 (AP-1) binding site, interferon-stimulated response element (ISRE), as well as binding sites for nuclear factor of activated T cells (NFATc1), a FoxO1, NF-κB and Notch. Two additional regulatory elements (-3.7 and +17.1kb form the TSS) contain STAT binding sites and contribute to the enhanced transcriptional activity after TCR and IL-6 or IL-12 cytokine stimulation. The mammalian transcriptional insulator CCCTC-binding factor (CTCF) is bound by elements located at -26.7 and +17.5kb that form constitutively interacting chromatin loops (144).


PDCD1 Gene Polymorphisms

Table 1 includes the frequency of PDCD1 polymorphisms described below in different populations.

rs36084323C>T (PD-1.1, G>A REV) is located in the promoter, in the putative binding site for the UCE-2 transcription regulators. According to literature (149), promoter activity in the construct containing PD-1.1*G allele was significantly higher than that with the PD-1.1*A allele. Given the above, one can assume that carriers of PD-1.1*G allele could have a higher expression of PD-1 and in consequence inhibited activation and proliferation of T cells, which in turn can lead to poor ability to fight/remove cancer cells (41). However, some literature data [among others: (41, 150, 151)] described the PD-1.1*G allele as associated with a decreased risk of cancers (detailed description below) and therefore further functional studies are necessary.

rs11568821C>T (PD-1.3, G>A REV) is located in intron 4, in an enhancer-like structure where four imperfect tandem repeats are placed. This region contains binding sites for TFs involved in hematopoietic differentiation and inflammation (among others RUNX1, E-box–binding factors and NFκB1). According to Prokunina et al. (43) the presence of PD-1.3*A allele disrupted the binding site for RUNX1 TF in the first repeat, which in consequence may lead to aberrant PD-1 expression and deregulated lymphocyte activity (44).

rs2227981G>A (PD-1.5, C>T REV) is located in exon 5. This synonymous variation (Ala268Ala) does not modify the amino acid structure of the protein. Therefore, it is speculated that this SNP may be in LD with another polymorphism, which may alter PD-1 expression (44). It was shown that PD-1 expression (% PD-1+CD4+ T cells) was significantly lower in individuals with PD-1.5 C/C genotype than those with the PD-1.5 C/T and PD-1.5 T/T genotypes (46). From the aforementioned observation it may be concluded that subjects with PD-1.5 C/C genotype could have lower risk of cancer development.

rs10204525C>T (PD-1.6, G>A REV) is located in the 3’UTR region, in a putative miRNA binding site. According to a study by Zhang et al. (47) miR-4717 may allele-specifically regulate PD-1 expression. In lymphocytes from chronic HBV patients with PD-1.6 G/G genotype (but not in lymphocytes from patients with PD-1.6 A/A) miR-4717 mimic significantly decreased PD-1 expression and increased TNF-α and IFN-γ production, whereas miR-4717 inhibitor acted in opposite way (47). Moreover, Zhang et al. showed that PD-1 mRNA levels were the highest in individuals with PD-1.6 A/A genotype and decreased as the number of G allele increased; in HBV patients PD-1 expression in individuals with PD-1.6 G/G genotype was significantly lower in comparison to subjects with PD-1.6 A/A genotype (48). Since inhibition of PD-1 promotes an effective immune response against cancer cells (152), PD-1.6*G could be considered as protective allele in cancer development.

rs2227982G>A (PD-1.9, C>T REV) is a nonsynonymous SNP, located in exon 5, causing an amino acid substitution from alanine to valine in the extracellular domain of PD-1 leading to a different structure and possibly altering the function of PD-1 (42, 44).

rs7421861A>G (T>C REV) is located in intron 1, where a number of regulatory elements and splicing control elements exist. Due to the disruption of the splice site or alteration of the mRNA secondary structure, PD-1 rs7421861T>C may induce aberrant splicing, and lead to translational suppression (42).

rs41386349G>A (C>T REV) is located in intron 4. According to data presented by Zheng et al. (45) this SNP is placed in a putative enhancer-like region. Rs41386349*T allele created a negative cis-element for transcription and had lower PD-1 transcriptional activity in human T cells than rs41386349*C allele (45). Therefore, it can be concluded that rs41386349*T allele conferring higher risk for autoimmune diseases could be considered as protective factor against cancer development. The possible functional relevance of PDCD1 SNPs was summarized in Table 2.



PDCD1 Polymorphisms and Cancer Risk


Overall Cancer Risk

Recent comprehensive meta-analysis regarding the association of PDCD1 polymorphisms with overall cancer risk was performed by Hashemi et al. in 2019 (153). Having regard to 16 studies (5,622 cases, 5,450 controls) (71, 136, 150, 151, 154–163) the authors concluded that the PD-1.5 was associated with susceptibility to cancer development, with the PD-1.5 T/T genotype decreasing the overall risk (OR = 0.82). A similar conclusion concerning PD-1.5 was drawn by the authors of three earlier meta-analyses (42, 164, 165). Admittedly, in the literature there is one meta-analysis (166) that did not show association between PD-1.5 and total cancer risk, however, according to our best knowledge that was the first meta-analysis regarding PD-1.5, performed on relatively small number of subjects (1,427 patients, 1,811 controls) (166).

The findings of the meta-analysis by Hashemi et al. (153) revealed that in addition to PD-1.5, also PD-1.3 was associated with overall cancer risk. On the basis of 9 articles (136, 154, 156, 157, 160, 167–170) (1,846 cases, 1,907 controls), a decreased risk of cancer was observed for carriers of PD-1.3*A allele (OR = 0.82). Two earlier meta-analyses: by Zhang et al. (164) and by Dong et al. (42) (in the case of the PD-1.3, both including the same 4 studies) indicated an association of PD-1.3 G/A genotype with lower overall cancer risk.

Furthermore, the results of the latest meta-analysis (3,576 patients, 5,277 controls) (153) revealed that the carriers of T/C genotype of rs7421861T>C had an increased risk of cancer (OR = 1.16). Given the results of this study, it can be assumed that higher risk of cancer concerned carriers of rs7421861*C allele (OR = 1.14) (153). Despite the results of two previous meta-analyses (42, 164) being similar to that obtained by Hashemi et al. (153) significant differences for rs7421861T>C were not observed, probably, due to the small effect size of this polymorphism and a small number of patients and controls included in both meta-analyses.

No evidence of association between PD-1.1 and overall cancer risk was observed in two additional meta-analyses (41, 153). However, analysis stratified by ethnicity (performed as part of the meta-analysis by Da et al., 4,445 cases, 5,126 controls), revealed an increased risk of cancer for individuals with PD-1.1 A/A genotype in the Asian population (OR = 1.15). Of note, taking into consideration the completely different genotype distribution among populations (Table 1), in the case of this polymorphism it would be more appropriate to perform analyses stratified by ethnicity. No associations with overall cancer risk were found for the remaining SNPs of the PDCD1 gene (quite broadly examined in the context of cancers)—PD-1.9 (42, 153, 164) and PD-1.6 (153, 164).



Cervical Cancer

As far as we know, only PD-1.5 SNP was investigated in the context of cervical cancer. Ivansson et al. (71), based on the study conducted on 1,306 patients and 811 controls, reported the PD-1.5 T/T genotype as being associated with reduced cervical cancer susceptibility (OR = 0.69). Whereas, in the study by Li et al. (256 cases, 250 controls) (158) PD-1.5 C/T genotype was indicated as being associated with an increased risk of cervical cancer (OR = 2.18). However, given the fact that in the study by Li et al. genotype distributions both in controls and cases were not in HWE, these results should be treated cautiously. In the study by Guzman et al. (171) PD-1.5 separately was not associated with susceptibility to cervical cancer. The association with increased risk was observed only for a combination of genotypes CD28(rs3116496TT)/IFNG (rs2430561AA)/PDCD1(rs2227981CT), although a major contribution to the observed association was suggested for CD28 and IFNG SNPs.



Breast Cancer

Polymorphisms of the PDCD1 have been studied also in breast cancer. Two meta-analyses (153, 165) investigating the association between PDCD1 SNPs and overall cancer risk, in a subgroup analysis by cancer type (951 patients, 806 controls), indicated an association between PD-1.5 and susceptibility to BC. A decreased risk of BC (OR = 0.8) was observed for carriers of the PD-1.5*T allele (increased for PD1.5 C/C genotype). This observation is in line with the results obtained for overall cancer risk, however it is worth mentioning that two subgroup analyses for BC (performed as part of meta-analyses) were conducted on the same two studies. Two original research articles on the basis of which the analyses were made (150, 157), presented inconsistent results. Namely, from the results of the study by Hua et al. (486 patients, 478 controls) (150) one can conclude that carriers of the PD-1.5*T allele had lower susceptibility to BC, OR = 0.68 (however the distribution of genotypes in the control group was not in Hardy-Weinberg equilibrium although the manuscript stated otherwise), whereas in the study by Haghshenas et al. (435 patients, 328 controls) (157) there was no evidence indicating association between the PD-1.5 and susceptibility to BC. Conflicting results were also noted for the PD-1.9. Hua et al. (150) suggested no associations of this SNP with BC risk, just as in the case of overall cancer risk. However, Ren and colleagues (172) in the study conducted on 560 patients and 583 individuals observed a decreased risk for BC in individuals carrying the PD-1.9*T allele (OR = 0.69). A similar association was observed in a subgroup analyses by cancer type (combining the results of two above mentioned studies) performed by Hashemi et al., as part of meta-analysis (153). Apart from PD-1.5 and PD-1.9, also PD-1.1 was investigated in the context of BC. This SNP was considered to be associated with susceptibility to BC. Increased risk of BC was identified for PD-1.1*A allele carriers (decreased for PD-1.1 G/G genotype, OR = 0.71) (150), which is in accordance with the results obtained for overall cancer risk in Asians. No association with breast cancer risk was suggested for rs7421861T>C (150, 153, 172), PD-1.6 (172), and PD-1.3 (157).



Ovarian Cancer

According to our best knowledge, only two studies (151, 173) have assessed the potential association between PDCD1 polymorphisms and ovarian cancer. The results of a case-control study (164 patients, 170 controls) by Tan et al. demonstrated that possession of PD-1.9*T allele was associated with increased risk of ovarian cancer (OR = 1.67). The same allele was also associated with higher FIGO stage and higher differentiation grade (173). It is worth recalling here that in the case of BC, it was showed (172) that the PD-1.9*T allele was associated with decreased risk. Furthermore, Li et al. (151) reported that the PD-1.1 is associated with susceptibility to ovarian cancer, with increased risk for individuals with PD-1.1 A/A genotype (decreased risk for subject with PD-1.1*G allele carriers, OR = 0.70), as in the case of overall cancer risk in Asians. Additionally, from data obtained by Li et al. it can be concluded that the PD-1.5*T allele was associated with a reduced risk of ovarian cancer (OR = 0.82) (151).



Gastrointestinal Cancers

Stratified analysis carried out as part of the meta-analysis by Hashemi et al. mentioned above (153) was aimed inter alia at evaluation of association between PDCD1 polymorphisms and the risk of gastrointestinal cancer (a cancer group that affects the digestive system which contains inter alia esophageal cancer, esophagogastric junction adenocarcinoma, gastric cancer, hepatocellular carcinoma and colorectal cancer, which are separately described below). Just as in the case of overall cancer risk, decreased risk of gastrointestinal cancer was observed for individuals with the PD-1.5 T/T genotype (OR = 0.60), whereas increased risk was noted for subjects with rs7421861 T/C genotype (OR = 1.19) (153). A higher susceptibility to gastrointestinal cancer was also identified for carriers of PD-1.9*T allele (OR = 1.16) (153). It is noteworthy that similar association was observed for ovarian cancer, however no evidence of association was found between PD-1.9 and overall cancer risk.

As for particular types of gastrointestinal cancer, according to our best knowledge, in the literature there are only three studies (163, 174, 175) aimed at investigating the PDCD1 SNPs as potential risk factors for esophageal cancer, more precisely esophageal squamous cell carcinoma (ESCC). In all three studies the PD-1.6 was suggested to be associated with susceptibility to esophageal cancer. However, two of them (163, 174) showed a decreased risk for PD-1.6 G/G individuals (OR = 0.59 and OR = 0.68, respectively) (in the study by Qiu et al. (174) deviation from HWE was observed in controls), while Zang et al. (175) reported the opposite effect—carriage of PD-1.6*G allele was associated with increased risk of esophageal cancer (OR = 1.26). Moreover, in this study individuals with PD-1.6 G/G genotype and carriers of PD-1.6*G allele had, respectively, higher TNM stage (OR = 1.81) and higher risk of distant metastasis (OR = 1.67) (175). Taking into consideration the inconsistent results presented above as well as the fact that there was no evidence of association between this SNP and overall cancer risk—more research on this issue is needed. The results regarding the rs7421861T>C are also inconsistent. Some evidence suggests increased risk of esophageal cancer (OR = 1.24) and higher TNM stage (OR = 1.37) for rs7421861*T allele carriers (decreased for individuals with rs7421861 C/C genotype) (175) while another shows no association of this SNP with ESCC at al. (174). As was described above, analysis conducted for gastrointestinal cancers pointed to association between rs7421861*C allele with increased risk. Due to such inconsistent results, further study will be required in order to solve this issue. For the PD-1.9 no association with ESCC susceptibility was found in two studies for overall population (163, 174), however, the PD-1.9 C/T genotype was pointed out as associated with increased ESCC risk in females (OR = 1.71) (163). Moreover, the PD-1.5 C/T allele was associated with increased ESCC risk in the group of smokers (OR = 1.48) (163). This observation is not in line with the results of analysis regarding gastrointestinal cancers and overall cancer risk, demonstrating association of the PD-1.5 T/T genotype with decreased susceptibility. Also, the PD-1.1 was investigated in the context of ESCC (163, 175), however, there was no evidence for association between this SNP and susceptibility to ESCC.

To the best of our knowledge, only Tang et al. (176) made an attempt to find a potential association between PDCD1 polymorphisms (PD-1.1, PD-1.6, PD-1.9, and rs7421861T>C) and risk of esophagogastric junction adenocarcinoma (EGJA) (however it is worth mentioning that 1,063 patients and 1,677 controls were enrolled in this study). Increased risk of EGJA (similarly as in the case of overall cancer risk) was noted for carriers of rs7421861*C allele (OR = 1.43) (176). Higher susceptibility to EGJA was also observed for carriers of the PD-1.9*T allele (lower for the PD-1.9 C/C genotype, OR = 0.81) and this observation was in accordance with the results obtained for gastrointestinal cancer (153), ESCC in females (163) as well as for ovarian cancer (173). Moreover, according to the authors’ suggestion, for individuals with the PD-1.1 C/C decreased risk of EGJA was noted (OR = 0.86) (176). No association with susceptibility to EGJA was found for the PD-1.6 (176).

Savabkar et al. in their study aimed at determining the potential association between PD-1.5 and gastric cancer indicated that the presence of PD-1.5 C/T genotype may be a risk factor for GC (OR = 1.77) (161). From this study one can conclude, that increased risk of GC concerned PD-1.5*T allele carriers. However, these observations are in opposition to that for overall cancer, for gastrointestinal cancers as well as for other types of cancer (breast, cervical, ovarian). Given the inconsistency with the results of other research and the fact that only 122 GC patients and 166 controls were enrolled to this study, further examination of this SNP in the context of GC will be required.

The PD-1.9, PD-1.6, and rs7421861T>C were studied in gastric cardia adenocarcinoma (GCA) (177), however, for none of them the difference in genotype distribution between 330 GCA patients and 608 controls were found. The authors indicated a possible association between the presence of PD-1.9*T allele with increased risk of GCA among ever drinking cases (OR = 2.04) (177).

According to our best knowledge, only Bayram et al. (167) and Li et al. (178) made an attempt to find out whether PD-1.3 and PD-1.6 may be considered as risk factors for HCC. There was no evidence of association between the PD-1.3 and HCC risk in the study carried out by Bayram et al. on 236 patients and the same number of control subjects (167). However, for individuals with PD-1.6 A/A genotype, Li et al. in the study conducted on 271 patients and 574 non-HCC subjects observed a higher susceptibility to HCC (OR = 1.47) (178).

Genetic variations in the PDCD1 were also investigated in colorectal cancer (54, 159, 170, 179). No evidence of association between PD-1.5 and overall CRC risk was found in the study (200 patients, 200 controls) by Mojtahedi et al. However, after patients subdivision for cancer location, it was observed that PD-1.5 C/T genotype was significantly more frequent in colon cancer patients as compared with healthy controls (OR = 1.74) (159). Moreover, decreased risk of colon cancer was observed for PD-1.1*A allele carriers (OR = 0.09) (179). However, taking into consideration the sample size (76 patients, 73 controls), this result should be treated with caution (especially having in mind the inconsistency in the results for other cancers). Of the four SNPs (rs6710479, rs7421861T>C, PD-1.9, PD-1.6) examined by Ge et al. (601 patients, 627 controls), only rs7421861T>C was shown to be associated with susceptibility to CRC, with the rs7421861 T/C genotype increasing risk of CRC development (OR = 1.31) (54). Additionally, from the study conducted by Yousefi et al. it can be concluded that the PD-1.3*A allele was associated with increased CRC risk (OR = 2.18) (170), however, it should be stated that only a small number of patients and controls (80 and 110, respectively) were enrolled in this study and further investigations will be needed. Furthermore, it is also noteworthy to mention that in the group of Korean patients (N = 688), individuals with PD-1.6 A/A genotype had shorter overall survival as compared to PD-1.6*G allele carriers (HR = 1.47) (180).



Hematological Malignancies

The potential association of PDCD1 polymorphisms with hematological malignancies was evaluated in several studies including multiple myeloma and leukemia.

According to Kasamatsu et al. (181), none of the three investigated SNPs (PD-1.1, rs41386349, PD-1.9) individually were associated with multiple myeloma (MM). However, the authors observed higher frequency of the haplotype combination (PD-1.1 rs41386349 PD-1.9/PD-1.1 rs41386349 PD-1.9) G C C/G C C in the group of MM patients (N = 124) as compared with controls (N = 211). In the study by Grzywnowicz et al. (182), no associations between five SNPs of PDCD1 (PD-1.1, PD-1.3, PD-1.5, PD-1.9, and rs41386349C>T) and susceptibility to chronic lymphocytic leukemia (CLL) were found in the group of 114 patients and 150 controls (182). Ramzi et al. reported the PD-1.9 C/T genotype as associated with a decreased risk of leukemia (OR = 0.43) (169), however, taking into consideration the fact that only 59 leukemia patients (28 acute myeloid leukemia, 20 acute lymphocytic leukemia, 11 chronic myelogenous leukemia) and 46 controls were enrolled in this study, these results should be interpreted warily.



Non-Small Cell Lung Cancer

The evaluation of potential associations between the PDCD1 SNPs and lung cancer was performed only in few studies. In a subgroup analysis performed on 1,058 patients and 1,103 controls [being part of the above mentioned meta-analysis by Hashemi et al. (153)] carriage of PD-1.5*T allele was associated with decreased risk of lung cancer (OR = 0.84). It is worth noting, that this meta-analysis was performed on the basis of three studies on lung cancer (136, 154, 162), two of which did not show association (136, 154). In two of them (136, 162) the distribution of genotypes in the control group was not in Hardy-Weinberg equilibrium (although the manuscripts state otherwise). Of note, the PD-1.5 T/T genotype decreased the risk of advanced NSCLC (TNM stage III and IV). Lack of association with non-small cell lung cancer (NSCLC) was found for the remaining studied polymorphisms PD-1.1 (136, 183), PD-1.3 (136, 154), and PD-1.9 (136).



Other Cancers

According to our best knowledge, there are only individual articles regarding PDCD1 polymorphisms in relation to thyroid cancer (156), head and neck squamous cell carcinomas (168), brain tumor (160), cutaneous melanoma (155) and basal cell carcinoma (184). It was found that PD-1.5*T allele was associated with increased risk of thyroid and brain cancers, while PD-1.3*A allele with decrease risk of basal cell carcinoma. However, most of the studies were conducted on small groups of patients and controls, therefore further studies will be required to verify and confirm described associations. Supplementary Table 2 shows the summary of above presented associations between PDCD1 SNPs and cancer risk.





Programmed Death Ligand 1

Programmed death ligand 1 (PD-L1) was discovered in 1999 by Chen’s group, but at first it was not identified as PD-1 ligand (185). One year later, a group led by Gordon Freeman collaborating with the Genetics Institute at Cambridge established that the newly discovered molecule was a PD-1 ligand. Engagement of PD-1 with this newly identified molecule decreased the proliferation and cytokine production of T cells upon stimulation with anti-CD3 antibody. Then it became clear that PD-1/PD-L1 pathway prevents autoimmunity by inhibiting the activation of T cells (186, 187).

PD-L1, similarly to PD-1 is type I transmembrane protein (consisting of 290 aa) and belongs to the Ig superfamily (Figure 3). PD-L1 expression can be constitutive or inducible. Under physiological conditions, PD-L1 is expressed constitutively at a low level on T cells, B cells, DCs, monocytes, mesenchymal stems cells, bone marrow derived mast cells, vascular endothelial cells, keratinocytes, pancreatic islet cells, astrocytes as well as various immune privileged tissues and organs (such as the placenta, testis and the anterior chamber of the eye), where exogenous antigens are tolerated without induction of inflammation and/or infection (145, 188, 189). In the context of inflammation and/or infection PD-L1 expression can be induced on hematopoietic, endothelial, and epithelial cells. PD-L1 can be also expressed by tumor cells and tumor stroma (188). Therefore, the interaction between PD-1 and PD-L1 results in an activation of self-tolerance pathways not only in immune cells but also in tumor cells, and in this way provides an immune escape mechanism for the tumor (145).




Figure 3 | Structure of PD-L1 gene and protein. Top: PD-L1 gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: PD-L1 protein structure. The colors indicate which region of the protein is encoded by which exon.



There are two mechanisms by which tumor cells can express PD-L1: 1) “innate immune resistance” which refers to constitutive PD-L1 expression on tumor cells. This type of expression can be the result of inter alia PD-L1 gene amplification or aberrant activation of oncogenic signaling pathways and 2) “adaptive immune resistance” which refers to PD-L1 expression in response to inflammatory factors secreted in the TM during the immune response against a tumor (189).

PD-L1 is encoded by the PD-L1 gene (PDCDL1, CD274) located on chromosome 9p24.1. The gene structure is shown in Figure 3. PD-L1 transcriptional activation is regulated by such transcription factors as: STAT3, MYC, NF-κB, AP-1, and HIF-1 (147, 188). The mechanisms regulating PD-L1 expression are described in detail in a review by Sun et al. (188).


PD-L1 Polymorphisms

The frequency of the PD-L1 polymorphisms (described below) in different populations is presented in Table 1.

rs4143815G>C is located in 3’UTR. In silico analysis predicted that rs4143815G>C is situated in putative binding site for miR-7-1*, miR-495, miR-298 (51) and miR-570 (51, 52). According to Wang et al. (52) in luciferase reporter assay rs4143815*G allele was associated with a higher expression of PD-L1 due to disruption of the miR-570 binding site, hence this allele may be considered as potential cancer risk factor.

rs2297136A>G is located in 3’UTR, in potential binding site for miR-296-5p (51) and miR-324-5p (51, 52). The study by Du et al. (51) showed that the expression in constructs containing rs2297136*G allele was significantly inhibited by miR-296-5p. From these data it can be concluded that rs2297136*G can be considered as protective allele in the context of cancer development, due to its association with decreased PD-L1 expression.

rs10815225G>C is located in the promoter region in the SP1 consensus sequence. According to data presented by Tao et al. (49), SP1 bounds to the rs10815225*G allele with higher affinity than to the rs10815225*C allele. Moreover, PD-L1 mRNA expression was higher in rs10815225 G/G homozygous gastric cancer patients in comparison to patients with the rs10815225 G/C genotype (49). Based on that, it can be inferred that rs10815225*C may be associated with lower cancer risk, due to the lower PD-L1 expression.

rs4742098A>G is located in 3’UTR, in the miR binding site. According to literature data, the expression in constructs containing rs4742098*A allele was significantly suppressed by miR-138 (51). The rs4742098*A allele may be considered as protective in cancers overexpressing miR-138, due to promotion of lower PD-L1 expression. The possible functional relevance of PD-L1 SNPs was summarized in Table 2.



PD-L1 Polymorphisms and Cancer Risk


Overall Cancer Risk

Polymorphisms in the PD-L1 gene were not as broadly explored in the context of cancer as those in PDCD1. According to our best knowledge, two meta-analyses were conducted to estimate the potential association between PD-L1 SNPs and overall cancer risk.

A meta-analysis by Zou et al. (190), including 11 articles (49–53, 173, 191–195) (3,711 cases, 3,704 controls), revealed association between the rs4143815C>G and overall susceptibility to cancer, with increased risk for rs4143815*G allele carriers (OR = 1.28). Similar results were obtained in a meta-analysis performed by Hashemi et al. (153). Additionally, Hashemi et al. (153) investigated the rs2890658C>A, however no evidence of association between this polymorphism and overall cancer risk was found.



Ovarian Cancer

According to our best knowledge, association between PD-L1 SNPs and ovarian cancer was evaluated only in one study. Similarly, as in the case of overall cancer risk, increased susceptibility to ovarian cancer was observed for carriers of rs4143815*G allele (OR = 2.00) in the study performed on 164 patients and 170 control subjects (173). The carriers of rs4143815*G allele showed also higher differentiation grade.



Gastrointestinal Cancers

Stratified analysis performed as part of a meta-analysis by Hashemi et al. (153) (pooling gastrointestinal cancers together) revealed lower risk of gastrointestinal cancer for rs4143815*C allele carriers (OR = 0.64) (higher for rs4143815 G/G genotype), while no evidence of association was found for rs2890658A>C (153).

As far as particular types of gastrointestinal cancers are concerned, PD-L1 SNPs have been investigated inter alia in esophageal squamous cell carcinoma. Zhou et al. examined two polymorphisms of PD-L1: rs2890658A>C and rs4143815C>G (195) (575 patients, 577 controls) and found association only for rs2890658A>C in smokers. In this subgroup the rs2890658 A/C genotype seemed to increase the risk of ESCC (OR = 1.51).

According to our best knowledge, in the literature there are also two articles that examined the potential associations between PD-L1 SNPs and gastric cancer (49, 52). Both of them were included in the above mentioned subgroup analysis performed by Hashemi et al. (153). Of the two polymorphisms (rs2297136A>G and rs4143815C>G) examined by Wang et al. (52) on the group of 205 patients and 393 controls, only rs4143815C>G was reported as associated with susceptibility to GC, with the rs4143815 G/G genotype increasing risk (over 3.5-fold, OR = 3.73) (52). In an extended study carried out by the same research team (350 patients, 500 subjects) (49) the association of rs4143815C>G was confirmed, however this study revealed that the presence of one rs4143815*G allele was sufficient to cause an increased risk of gastric cancer (OR = 1.86). Moreover, in the study by Tao et al. (49) the association between rs10815225G>C and GC was observed. The presence of rs10815225*C allele decreased the risk of GC (OR = 0.60). It is worth noting that in this study was stated that both rs4143815C>G and rs10815225G>C were in HWE, however it can be calculated that for both of SNPs deviations from HWE exist in controls.

Also, in the case of HCC, the evaluation of potential associations between polymorphisms of PD-L1 (rs2297136A>G, rs4143815C>G, rs2890658A>C, rs17718883C>G) and risk of developing this type of cancer was conducted (225 patients, 200 controls) (50). The results of this study indicated an association between rs2297136 A/A as well as rs4143815 G/G genotypes and increased risk of HCC (OR = 1.44 and OR = 1.62, respectively), while a decreased risk of HCC was observed for carriers of minor rs17718883*G allele (OR = 0.15). Since the frequency of alleles at rs2297136A>G polymorphic site in databases (Ensembl and dbSNP) for all populations (including Asian) is opposite to that presented in the article i.e., the minor allele at rs2297136 is the G allele (not A), the results described by Xie et al. should be treated with caution.

An attempt to find evidence on a potential association between PD-L1 genetic variations (rs2890657G>C, rs822338T>C, rs10815225G>C, rs4143815C>G, rs866066C>T) and another type of gastrointestinal cancer—colorectal cancer, was made by Catalano et al. (53) in the Czech population (1,424 CRC patients, 1,114 controls). Unfortunately, none of these polymorphisms was associated with risk of CRC in single SNP analysis. However, it is worth mentioning that the authors suggested the existence of interactions between PD-L1 and NLRC5 genes (53).



Non-Small Cell Lung Cancer

Polymorphisms of PD-L1 gene were also examined in NSCLC. In a subgroup analysis by cancer type [being part of meta-analysis by Hashemi et al. (153)], including 3 articles (136, 196, 197), (1,109 cases and 1,193 controls), the association between rs2890658A>C and NSCLC was revealed. According to this analysis, carriers of the rs2890658*C allele possessed more than 1.5-fold higher susceptibility to NSCLC (OR = 1.77) in comparison to individuals with the rs2890658 A/A genotype (153). Such association was observed in each study included in the meta-analysis (136, 196, 197). Moreover, it was demonstrated by Ma et al. that NSCLC patients carrying rs2890658*C allele had increased risk of regional LN metastasis as compared to individuals with rs2890658 A/A genotype (OR = 5.65). However, all the aforementioned results concerning NSCLC should be treated cautiously since the frequency of alleles at rs2890658 in databases (Ensembl and dbSNP) for all populations (including Asian) as well as in the study by Zhou et al. (for ESCC; describe below) is opposite to that presented in these articles i.e., the minor allele at rs2890658 is A allele (not C).

Additionally, three SNPs in 3’UTR of PD-L1 (rs4143815C>G, rs2297136A>G, and rs4742098A>G) were examined in NSCLC in the study performed on 320 patients and 199 control individuals by Du et al. (51). In the case of 2297136A>G and rs4742098A>G, significant differences in genotype distribution between cases and controls were found. Increased risk of NSCLC was noted for rs2297136 A/G (OR = 2.29) as well as for rs4742098 A/G heterozygotes (OR = 1.60) (51). Furthermore, from this study it can be concluded that individuals with rs2297136 G/G genotype were less likely to exhibit LN metastasis (OR = 0.27) and more likely to exhibit distant metastasis (OR = 3.83) in comparison to subject with the rs2297136 A/A genotype. In case of rs4742098A>G, carriers of rs4742098*G allele had greater depth of tumor infiltration as compared to individuals with rs4742098 A/A (OR = 2.30). Taking into consideration the fact that this is the only study considering 3’UTR polymorphisms and NSCLC, further investigations are needed (especially since in this study deviations from HWE in control group existed for rs2297136A>G and rs4143815C>G, although in the manuscript is stated otherwise).

Although rs4143815G>C did not show the association with NSCLC risk and progression in the aforementioned study by Du et al. (51) it was demonstrated by Lee et al. (on 354 NSCLC patients) (135) that individuals with rs4143815 G/G genotype (G allele is a minor allele in Korean population) had shorter overall survival as compared to rs4143815*C allele carriers. Similar effect was also observed for two promoter polymorphisms of PD-L1 gene—rs822336G>C and rs822337T>A. In details, subjects with rs822336 C/C as well as subjects with rs822337 A/A genotypes showed shorter overall survival as compared to rs822336*G and rs822337*T allele carriers, respectively. The above described associations between PD-L1 polymorphisms and cancer risk are summarized in Supplementary Table 3.





B- and T-Lymphocyte Attenuator

BTLA was discovered in 2003 by Gavrieli et al. (198) as a third co-inhibitory molecule being member of the CD28 family, similar to CTLA-4 and PD-1. In the same year, the first data regarding its expression and function were published (199). In 2005, BTLA’s ligand was identified. Surprisingly, in contrast to CTLA-4 and PD-1 ligands, the BTLA ligand - herpes virus entry mediator (HVEM) belongs to the TNF receptor (TNFR) superfamily (200). HVEM binds with many co-stimulatory and co-inhibitory molecules. The role of both types of co-signaling molecules are opposite, and are known as the “molecular switch” model of activation and inhibition. Crosslinking of LIGHT or LIGHT–α with HVEM provides a positive signal for lymphocyte proliferation, activation and inducing inflammatory reactions. Binding of HVEM to BTLA or CD160 exerts an adverse effect, and results with inhibition of T and B lymphocyte activation, proliferation and cytokine production (201).

Similarly, to CTLA-4 and PD-1, BTLA (also known as CD272) is a type 1 transmembrane glycoprotein comprising 289 amino acids (Figure 4) (199). BTLA differs from the CD28 family members (CD28, CTLA-4, ICOS, PD1) by having an extracellular C-like-domain, instead of a V-like-domain (148). On the cell surface, BTLA is presented as a monomer with a single IgC domain (148). It binds to the cysteine-rich domain (CRD)-1 of HVEM in stoichiometry 1:1 on the opposite face from the LIGHT (co-stimulatory receptor of HVEM) (200, 202).




Figure 4 | Structure of BTLA gene and protein. Top: BTLA gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: BTLA protein structure. The colors indicate which region of the protein is encoded by which exon.



BTLA is expressed almost exclusively on immune cells (199). BTLA expression on B cells is low in bone marrow during pro and pre B cell maturation, higher in immature B cells and high on resting peripheral B cells (203). Otsuki et al. (204) reported constitutive BTLA expression on the majority of CD4+ and CD8+ T cells, however upon T cell activation expression progressively decreased. In contrast to CTLA-4 and PD-1 which are highly expressed on Treg cells, BTLA expression is weak, while it is highly expressed on anergic T cells generated by chronic exposure to antigens (205). Moreover, high expression of BTLA was observed on T follicular helper cells and DCs [reviewed in (203)].

Resting T cell inhibition by BTLA is stronger than the positive signal by HVEM which prevents the excessive activation of T cells (206). BTLA//HVEM binding inhibits antigen specific TCR signaling-mediated proliferation, activation (CD25, CD38) and production of cytokines: IL-2, IL-4, and IL-10. BTLA crosslink HVEM on Treg cells facilitate their immunosuppressant effect. Similarly, to T and B lymphocytes, BTLA is expressed by NKT cells, and its expression inhibits cytokine (IL-2, IL4, and IFN-γ) secretion (207). Moreover, it was shown on mice models of breast cancer that blocking of BTLA pathway promotes the anticancer activity of NKT cells, which infiltrate tumors and inhibit tumor growth (208).

The BTLA gene is located on chromosome 3 in q13.2 in a reverse orientation. The BTLA gene structure is shown in Figure 4. BTLA has three splicing variants: full length BTLA has five exons and possess a Ig-C like domain; the BTLA isoform with 70% extracellular domain missing due to a skipped exon 3 and soluble BTLA which lacks a fragment of exon 4 due to alternative 3’ splice site caused by a premature stop codon (209).


BTLA Gene Polymorphisms

As compared to CTLA-4 and PDCD1, the BTLA gene polymorphisms has not been well studied yet. At the beginning in literature, there were only a few studies that addressed BTLA gene polymorphisms, and majority of them have investigated its role in susceptibility to autoimmune diseases, such as rheumatoid arthritis (RA) (55, 210), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (211). Below we described the most intensively examined genetic variants of BTLA in human diseases together with their functional relevance, if such data were available in literature.

The frequency of the described below BTLA genetic variants in different populations is presented in Table 1.

rs1844089C>T (G>A REV) and rs2705535C>T (G>A REV) are located in first intron, the exact functional role of these SNPs was not established yet, however Ge at al. postulated that rs2705535 may affect splicing of BTLA gene (54).

rs9288953C>T (G>A REV) is situated in the first intron. Ge et al. (54) postulate based on the human splicing finder software analysis, that rs9288953*T allele may potentially activate six new splice sites in splicing enhancer motifs and break one splicing sites in the silencer motif and in this way may perhaps promote higher BTLA expression (54).

rs76844316T>G (BTLAc.590A>C REV) is located in exon 4, and leads to the exchange of asparagine to threonine at position 197 in the intracellular domain. Oki and colleagues (55) performed in vitro study in order to evaluate functional relevance of BTLAc.590A>C in Jurkat T cells transfected with construct with BTLAc.590*A or BTLAc.590*C allele. The transfected cells did not express different levels of surface BTLA. Stimulation of infected Jurkat cells with concanavalin A (ConA) indicated that IL-2 production was strongly inhibited in cells expressing BTLA with BTLAc.590*A, whereas in cells with BTLAc.590*C the IL-2 production was enhanced. Moreover, transfected cells were stimulated with anti-CD3 and anti-BTLA antibodies (Ab). Anti -BTLA Ab inhibited IL-2 production only in Jurkat expressing BTLAc.590*A. The authors suggest that BTLAc.590*C had not ability to inhibit IL-2 production by Jurkat cells.

Even though the amino acid exchange is not within the ITIM motifs of BTLA, it is hypothesized that this substitution may alter the posttranslational modifications of BTLA, such as glycosylation of asparagine, or phosphorylation of threonine by serine/threonine kinase, which may influence the strength of BTLA signaling by SHP1/SHP2 (212). Hence, BTLAc.590*A allele was associated with decreased inhibitory activity of BTLA in Jurkat cells it may potentially constitute cancer risk factor.

rs9288952T>C (BTLAc.800G>A REV) is a non-synonymous SNP causing an amino acid substitution from proline to leucine at position 267 in exon 5, which was initially described as associated with susceptibility to RA (210).

rs1982809T>C (A>G REV) is situated in 3’ nearby gene region of BTLA (73 bp). In silico analysis with application of SNPinfo (213) and FastSNP (214) databases did not provide data regarding potential biological implication of this SNP. However, it was shown that the presence of rs1982809*C allele was associated with lower mRNA expression level of BTLA in the subset of T cells of the CLL patients (56). Although, it can be postulated that BTLA rs1982809*T allele may confer increased susceptibility to cancer development, the published already data indicated that C allele confers susceptibility to several cancers (CLL, renal and lung cancer). Further studies are needed to established the functional role of this SNP.

rs2705511A>C is located in the intragenic region between genes encoding CD200 and BTLA (-97820bp||-3334bp). Rs2705511 and rs1982809 are in moderate linkage disequilibrium with each other (215). In two databases SNPinfo (213) and FastSNP (214) there were no data about functional role of this polymorphism. The possible functional relevance of BTLA SNPs was summarized in Table 2.



BTLA Gene Polymorphisms and Cancer Risk


Breast Cancer

Five SNPs of BTLA gene: rs1844089C>T, rs2705535C>T, rs2633562T>C, rs2931761T>G, and rs9288952A>G were investigated in Chinese women (592 patients, 506 controls) in relation to malignant BC risk (216). It was found that rs1844089 C/T and rs2705535 C/T genotypes increased the risk of BC 1.3 and 1.5 times respectively, while rs1844089 C/C genotype rs2705535 C/C genotype and rs9288952 G/G genotypes conferred 1.3, 1.4, and 1.7 times lower risk of BC, respectively. Moreover, the haplotype (rs9288952, rs2931761, rs2633562, rs2705535, rs1844089) GTTTT was associated with the three times increased risk of BC in this population. These authors analyzed also association between these SNPs and some clinical features. The frequency of rs1844089 C/T genotype was higher in patients with tumor size over 5 cm, while (rs9288952, rs2931761, rs2633562, rs2705535, rs1844089) GTCTC haplotype was significantly more frequent in patients with metastasis to LNs (216).



Gastrointestinal Cancers

Association between four BTLA SNPs (rs16859629T>C, rs1982809A>G, rs2171513G>A, and rs3112270T>C) and esophageal squamous cell carcinoma was investigated by Cao et al. (217) in 721 patients and 1,208 control subjects. None of the examined BTLA SNPs were associated with ESCC risk. However, it was shown that T/C genotype of rs3112270T>C slightly lowered (1.2 times) risk of ESCC development in males. In a stratified analysis by age, BMI, smoking status, and alcohol consumption it was noticed that rs3112270 T/C genotype may protect lean individuals with BMI<24 from ESCC (T/C vs. T/T; OR = 0.72). Opposite effect was observed for rs3112270 C/C genotype in subjects with BMI>24. In this group C/C genotype increased 2 times risk of ESCC (C/C vs. T/T). Additionally, the G/A genotype of rs2171513G>A (G/A vs. A/A) was associated with lower risk of ESCC (OR = 0.61) in individuals’, who overused alcohol (217).

Tang et al. examined relationship between BTLA SNPs (rs16859629T>C, rs1982809A>G, rs2171513G>A, and rs3112270T>C) and EGJA risk in 1,234 patients and 1,540 control subjects (218). None of these SNPs alone were associated with EGJA risk. However, haplotype analysis revealed that haplotype (rs16859629, rs1982809, rs2171513, rs31122708) TAAG increased three times risk of EGJA development. Moreover, after adjustment for gender, age, alcohol consumption and smoking, the A/A genotype of rs1982809A>G was associated with two times higher risk of EGJA in heavy smokers.

As mentioned previously Ge and coworkers (54) analyzed association between SNPs of genes encoding co-inhibitory molecules such as CTLA-4, PD-1 and BTLA and CRC risk (601 patients, 627 controls). Three SNPs within the BTLA gene were investigated: rs1844089G>A, rs2705535C>T, and 9288953C>T. The T/T genotype of rs2705535C>T was associated with 2 times increased risk of rectal cancer development (in comparison to C/T+C/C), while the presence of rs9288953 T/T genotype decreased 1.4 times the risk of rectal cancer (in comparison to C/T+C/C) (54).



Hematological Malignancies

As far as potential association between BTLA polymorphisms and hematological malignancies is concerned, such evaluation was performed only for CLL. The association of BTLA gene polymorphisms and CLL risk were evaluated by Karabon et al. (56) in 321 patients and 470 control subjects. Among the investigated BTLA SNPs were: rs2705511A>C, rs1982809A>G, rs9288952A>G, rs76844316T>G, rs16859633T>C, rs9288953C>T, rs2705535A>C, rs1844089G>A, rs2705565C>T, and rs2633580C>G. The carriers of rs1982809*G allele and rs2705511*C allele were more prone to CLL development (OR = 1.5 and OR = 1.6, respectively). Additionally, the T/T genotype of rs9288953C>T was associated with 1.7 times higher risk of CLL.



Renal Cancer

Partyka et al. (219) carried out a case-control study on the group of 282 patients and 480 control subjects in order to evaluate association between the following BTLA SNPs rs1844089G>A, rs2705535A>C, rs9288953C>T, rs9288952A>G, rs16859633T>C, rs1982809A>G, rs2705511A>C, and renal cell carcinoma (RCC). The presence of rs1982809*G allele (G/G + A/G) was associated with 1.4 times higher risk of RCC, while G/G genotype was associated with higher risk (OR = 2.75) of the clear cell RCC (ccRCC) high grade tumors (219).



Lung Cancer

The association of the following genetic variants of BTLA rs1982809A>G, rs9288952A>G and rs9288953C>T with lung cancer risk was studied recently in the Tunisian population (196 patients, 300 controls) (220). The possession of rs1982809*G allele was associated with 1.5 increased risk of lung cancer development. The rs1982809*G allele was also associated with T4 tumor size (OR = 1.8), metastasis to LNs (OR = 3.71), and development of adenocarcinoma subtype of lung cancer (OR = 2.8) (220). The summary of above-described associations between BTLA polymorphisms and cancer risk is shown in Supplementary Table 4.





T Cell Immunoglobulin and Mucin-Domain Containing-3

T Cell Immunoglobulin And Mucin-Domain Containing-3 was discovered in 2002 (TIM-3) (59). TIM-3 also known as HAVCR2 (hepatitis A virus cellular receptor 2) belonging to the T cell transmembrane immunoglobulin and mucin domain (TIM) family is a type I transmembrane protein composed of 281 amino acids (Figure 5) (221). TIM-3 is an immune checkpoint receptor constitutively expressed on innate immune cells such as monocytes/macrophages, DCs, mast cells, and NK cells and on CD4+ (Th1), CD8+ (Tc1), and Th17 cells (222). TIM-3 expression by T cells is related to activated and terminally differentiated states.




Figure 5 | Structure of HAVCR2 (TIM-3) gene and protein. Top: HAVCR2 gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: TIM-3 protein structure. The colors indicate which region of the protein is encoded by which exon.



TIM-3 is an important IC in terms of cancer, since it is highly expressed on TILs (Tumor Infiltrating Leukocytes). The PD-1+ TIM-3+ CD8+ T cells are considered to be the most dysfunctional T cells—a “deeply” exhausted T cell subset (222). CD8+ T cells with high expression of TIM-3 have been related to tumor progression (222). As mentioned earlier, TIM-3 is also expressed by NK cells and Tregs, and its important role in regulating functions of these cells in carcinogenesis has been recently demonstrated. TIM-3 is considered as a marker of exhausted NK cells and may be also responsible for their dysfunctional phenotype in cancer settings. Apart from suppressing immune response directly, TIM-3 is also able to inhibit it indirectly by fostering generation of myeloid-derived suppressor cells (MDSC) in a TIM-3/galectin-9 dependent manner (222). TIM-3 is also expressed by CD4+FoxP3+ Treg cells and it has been demonstrated that it enhances the regulatory function of those cells (222).

Several ligands have been proposed for TIM-3: phosphatidyloserine (PtdSer) on apoptotic cells; high-mobility group box1 (HMGB-1) - a damage associated molecular pattern protein that is secreted by stressed innate immune cells; and galectin-9. It has been demonstrated that interaction between galectin-9 and TIM-3 resulted in inhibition of Th1 and Th17 response including peripheral tolerance (222, 223).

Human TIM-3 is encoded by the HAVCR2 (minus strand) gene located on chromosome band 5q33.3 together with genes HAVCR1 and TIMD4 for other members of the TIM family, TIM-1 and TIM-4 respectively (222) and consists of seven exons encoding its full-length protein sequence comprising 301 aa. The HAVCR2 gene structure is shown in Figure 5.

In silico analysis of 5’ upstream and the promoter region of HAVCR2 gene predicted localization of putative binding sites for the TFs: GATA-1, YY-1, p300, HNF-3b, Pbx-1, RARa, NFE2, MZF-1, and GATA-3 (57). The T-bet and NFIL3 (Nuclear Factor, Interleukin 3 Regulated) TFs have been reported as being involved in the regulation of HAVCR2 gene in T cells (224).


TIM-3/HAVCR2 Gene Polymorphisms

The frequency of the HAVCR2 polymorphisms (described below) in different populations is presented in Table 1.

rs891246256G>A (-1541C>T REV) and rs10053538C>A (-1516G>T REV) are the 2 kb upstream SNPs. The function for rs891246256G>A has not been established yet. The rs10053538 is situated at the putative binding site of p300 TF (57). The presence of -1516*T allele (G/T+T/T) of this SNP has been shown to be associated with higher expression of TIM-3 on liver infiltrating lymphocytes in tumor tissue of HCC patients in comparison to -1516 G/G genotype as determined by immunohistochemistry (58)

rs1036199A>C (+4259T>G REV) is located in exon 3. This is a missense polymorphism causing substitution from arginine to leucine in position 140 (R140L). The functional consequence of this change has not been reported so far but it can be postulated that this variant may affect the mucin domain (59). A meta-analysis aimed at evaluation of association between the rs1036199 and autoimmune diseases (ADs) mainly in Asian populations pointed to the rs1036199*G allele as a risk factor increasing susceptibility to ADs (225). The possible functional relevance of HAVCR SNPs was summarized in Table 2.



TIM-3/HAVCR2 Gene Polymorphisms and Cancer Risk


Overall Cancer Risk

The -1516G>T, -574G>T, and +4259T>G of the HAVCR2 gene are the most studied polymorphisms in terms of association with overall cancer risks. The published meta-analyses are related to Asian populations. In 2016, the first meta-analysis concerning these SNPs has been published by Gao et al. based on six published studies (178, 226–231) (2,039 cases, 2,372 controls) evaluating the association between -1516G>T, -574T>G, and +4259T>G and cancer risk in the Chinese Han population (232). This analysis revealed that the minor alleles in investigated SNPs: -1516*T (OR = 1.40), -574*T (OR = 1.99), and +4259*G (OR = 2.21) were associated with a higher overall cancer risk (232). The authors also analyzed association between those variants and cancer risk based on human systems. A potential association between higher risk of cancers of the digestive system was found for the -1516*T (789 cases, 992 controls) (OR = 1.79) and for the -574*T (722 cases, 856 controls) (OR = 1.77) alleles (232). The authors postulated that minor alleles of investigated variants may potentially cause higher individual risk of cancer by increasing TIM-3 expression or enhancing its function (232). Similar results were obtained in a meta-analysis performed by Fang et al. (233) based on eight studies (178, 226–228, 231, 234–236) (2,229 cases, 2,623 controls) concerning the Han Chinese population. Of note, five studies were also included in the report by Gao et al. (232). This meta-analysis took into consideration the following SNPs: -1516G>T, -822C>T, -574G>T, and +4259 T>G. Analysis for -1516G>T in terms of overall cancer risk was carried out for 2,229 cases and 2,623 controls. The pooled estimate suggested association between -1516*T allele and increased overall risk of developing cancer (OR = 1.33). This allele was also associated with digestive system cancer risk (OR = 1.61) (233) [based on three studies (228, 231, 234)]. As for -822C>T the authors did not make a pooled estimate due to only two available studies investigating this variant, however according to both of them (432 cases, 466 controls (231); 322 cases, 402 controls (234), the carriers of -822*T allele seemed to be more susceptible to the cancer development (OR = 2.21) (233). In the case of -574G>T, 2,074 cases and 2,385 controls were analyzed. The analyzed data showed that the -574*T allele might confer increased risk of overall cancer risk (OR = 2.39) (233). This study did not confirm association of allele -574*T with increased risk for the digestive system (233) which was described by Gao et al. (232). The association between the +4259T>G and overall cancer risk was assessed for 1868 cases and 2566 controls and it has been found that carriers of allele +4259*G possessed slightly higher risk of developing cancer in general (OR = 1.23). The authors concluded that their study clearly demonstrated involvement of HAVCR2 gene polymorphisms (minor alleles of examined SNPs) in conferring higher risk for development of different human cancers (233).



Cancers of Digestive System

The association between HAVCR2 genetic variants and the risk of gastric cancer (GC) development was published in 2010 by Cao at al (231). The authors investigated five SNPs: -1541C>T, -1516 G>T, -822C>T, -574G>T, and +4259T>G in 212 patients and 252 control subjects of the Chinese Han population. This study reported association between increased GC risk and the following genotypes: -1516 G/T (OR = 2.03), -822 C/T (OR = 3.19), and -547 G/T (OR = 2.74) (231). Additionally, the authors reported that the presence of -1516*T allele was associated with distant metastasis (OR = 2.21) in GC patients (231). Tong et al. (228) conducted a case-control study on 306 patients with pancreatic cancer (PC) and 422 control subjects of Han Chinese ethnicity in order to examine any possible association between -1516G>T, -574G>T, and +4259T>G and susceptibility to PC. The association was found only for +4259T>G, namely the carriers of the +4259 T/G genotype had almost three times higher risk (OR = 2.82) of PC development in comparison to subjects with the G/G genotype (228). To the best of our knowledge, so far only one study investigating an association between predisposition to colorectal cancer (CRC) development and SNPs of HAVCR2 has been published. Zhang et al. (237) examined -822C>T and +4259T>G in a group of 258 patients and 246 control subjects from the Chinese population. The study revealed association between the -882 T/T (OR = 6.16) genotype and +4259 G/G (OR = 5.11) and an increased risk of CRC (237).



Breast Cancer

The first study attempting to examine relations between the HAVCR2 gene polymorphisms and susceptibility to breast cancer were carried out on 560 BC patients and 583 control subjects of Northwest China descent (238). The authors investigated the following HAVCR2 SNPs: -1516G>T, +4259T>G, and rs4704846A>G and found that the carriers of the -1516*T allele had higher risk of BC development (OR = 1.37) in comparison to the G/G genotype. Among patients, possession of -1516*T allele was associated with increased risk of LN metastasis (OR = 1.68) (238). Additionally, immunohistochemical analysis demonstrated that -1516 G/T and T/T genotypes were associated with increased TIM-3 protein expression as compared to G/G genotype (238). In another published report Cheng et al. (239) assessed association between-1516G>T, -574G>T, +4259T>G, and risk of invasive BC in a group of 301 patients with invasive BC and 151 control individuals of Chinese Han ethnicity. The authors, unlike in the previously described publication, demonstrated that the T/G genotype of +4259T>G was associated with a higher risk of BC development (OR = 7.64) (of note G/G genotype was not detected in this study) as well as with the LN or distant metastasis in BC patients (OR = 3.16). The two remaining genetic variants were not associated with BC risk or clinical parameters (239).



Hematological Malignancies

As for hematological malignancies, the -1516G>T, -574G>T, and +4259T>G polymorphisms were investigated in non-Hodgkin lymphoma (NHL). A case-control study was performed on 496 NHL patients and 512 control subjects enrolled from the Han Chinese Population. The study demonstrated that subjects with the -574 G/T or +4259 T/G genotypes had more than two times higher risk for NHL development (OR = 2.72 and OR = 2.59, respectively) in comparison to subjects possessing wild type genotypes -574 G/G and +4259 T/T (226).



Non-Small Cell Lung Cancer

To the best of our knowledge so far only one report assessing the association of HAVCR2 with NSCLC susceptibility has been published. Bai and colleagues (227) examined -1516G>T, -574G>T, and +4259T>G in 432 NSCLC patients and 466 control subjects from the Han Chinese population. The study revealed that +4259 T/G (G/G genotype was not determined neither in patients nor in the control group) genotype was associated with increased risk of NSCLC (OR = 2.81) (227). Moreover, patients carrying the +4259 T/G genotype had shorter survival in comparison to those with T/T genotype (15.2 vs. 27.7 months, respectively) (227).



Renal Cell Carcinoma

Cai and colleagues (230) investigated -1516G>T, -574G>T, and +4259T>G polymorphisms in 322 RRC patients and 402 control subjects of Chinese descent. Of the examined SNPs, association with increased RCC cancer risk was found for the -574 G/T (OR = 2.85) genotype and +4259 T/G genotype (OR = 3.34) (the -574G>T T/T and the +4259 G/G genotypes, were not determined in the investigated groups). Additionally, the +4259*G allele was associated in RCC patients with metastasis (OR = 2.18) (230). The summary of above presented associations between HAVCR2 genetic variants and cancer risk is shown in Supplementary Table 5.





Lymphocyte Activation Gene 3

Lymphocyte activation gene 3 is a heavily glycosylated type I transmembrane protein which shares significant homology with the CD4 molecule—in particular in its extracellular part, which consists of four immunoglobulin superfamily-like domains (D1-D4) (Figure 6).




Figure 6 | Structure of LAG-3 gene and protein. Top: LAG-3 gene structure. The figure shows the polymorphisms described in the review and the lengths of the exons and introns. Bottom: LAG-3 protein structure. The colors indicate which region of the protein is encoded by which exon.



LAG-3 is displayed on the surface of activated CD4+ and CD8+ T cells, B cells, NK cells, but also on plasmacytoid DCs (223). LAG3+ TILs have been identified in many tumor types, including lung, colon, breast, and pancreatic cancers and associated with aggressive clinical outcomes (240). LAG-3 is a negative regulator of CD4+ and CD8+ T cells. Tregs constitutively display the LAG-3 molecule and present increased suppressive activity. The LAG-3 expression on CD8+ TILs is associated with decreased proliferation rates and production of effector cytokines in cancer (241). A soluble LAG-3 (splice variant cleaved by metaloproteinases) is secreted in the cellular microenvironment and has immune-activating properties after binding to MHC-II expressed on APC (240). LAG-3 interacts with high affinity with its ligand—major histocompatibility complex class II (MHC II), Galectin 3 (soluble lectin expressed in a wide variety of cell types including tumor cells) and cell surface resident liver sinusoidal endothelial lectin (LSECtin, is expressed in the liver and on tumor cells) (223).

LAG-3 gene was for the first time characterized by Triebel and colleagues in 1990 (242). The LAG-3 gene is located on the 12p13.31 band, on the plus strand and spans about 5,952 bases. The LAG-3 gene structure is shown in Figure 6.


LAG-3 Gene Polymorphisms

To the best of our knowledge, there is only one study available in the literature related to evaluation of association between cancer risk development and LAG-3 genetic polymorphisms.

Lee and colleagues (243) performed a case-control study aimed at investigation of association between common SNPs in immunoregulatory genes and a risk of multiple myeloma in women. Genotyping was carried out in a group of 108 patients with MM and 482 control subjects. For two intronic variants of LAG-3 gene rs2365094G>C and rs3782735A>G the potential association with MM risk was found. The carriers of rs2365094*C allele were more likely to develop (OR = 1.57) MM, whereas carriers of rs3782735*A allele were less likely to develop MM (OR = 0.69) (243).

The frequency of the LAG-3 genetic variants (described below) in different populations is presented in Table 1.




Conclusions and Future Perspectives

As was mentioned in the Introduction, the association between inherited variants in genes for ICs and cancer risk has been extensively investigated for CTLA-4 and broadly for PD-1/PD-L1 in a wide spectrum of cancers. Whereas, the potential targets for immune checkpoint blockers, like BTLA, TIM-3, and LAG-3 have been significantly less frequently investigated in such context. Moreover, there has been no publication to date that summarizes the knowledge on this subject. Therefore, our publication aims to fill this gap and collect currently available data and present the state of the art on that topic.

Our general impression derived from analysing of available literature survey is that SNPs may be considered as useful risk biomarkers in terms of cancer. From numerous studies it might be concluded that the CTLA-4c.49*A allele is associated with higher overall cancer risk alongside the risk of developing particular types of cancers, including breast, bone, and cervical cancers. Similarly, the CTLA-4c.-319*T increased an overall cancer risk in Caucasians, and predisposed to breast, cervical and hepatocellular cancers and bone cancer in Asian. The CTLA-4CT60*G allele was associated with higher risk of breast and hepatocellular cancers, while the CTLA-4c.-1661*G allele with overall, breast and gastric cancer risk.

As for PDCD1 gene polymorphisms, the PD1.1*A allele seems to be associated with susceptibility to overall cancer in Asians as well as with susceptibility to ovarian, breast, and EGJA cancers (all studies in Asian populations). The available data suggest that the PD-1.5*T allele may protect from cancer development in general, and specifically against ovarian and breast cancers. The rs7421861*C allele increased overall cancer risk as well as the development of colorectal and EGJA cancers. Finally, it may be suggested that the PD-1.9*T allele may confer higher risk of ovarian and EGJA cancers development.

Only one polymorphism in the PD-L1 gene, namely rs4143815G>C has been shown to be associated with cancer risk, in particular the rs4143815*G allele increased risk of overall, hepatocellular, ovarian, and gastric cancers.

Since the number of studies concerning BTLA gene polymorphisms and cancer risk is limited and since a meta-analysis of published results has not been performed yet, future research in this field is needed. On the basis of available literature, it can be however postulated, that rs1982809*G confer higher risk of lung cancer, CLL and renal cancer. The rs9288953 G/G genotype can be considered as a factor increasing risk of CLL and colorectal cancer, whereas rs1844089*T allele as a risk factor of breast cancer. Finally, rs2705535*A allele seems to be associated with higher risk of breast cancer and rs2705511*C with higher susceptibility to colorectal cancer and CLL.

Similarly, to BTLA gene polymorphisms, genetic variants of the HAVCR2 gene for TIM-3 have also been rarely investigated so far, however two meta-analyses have been published. According to them, the minor alleles of -1516G>T, -822C>T, -574G>T, and +4259T>G can be considered as overall cancer risk factors. In particular, the +4259*G allele was associated with the increased risk of lung cancer, colorectal cancer, and NHL; the -574*T allele with NHL and gastric cancer; -822*T allele with gastric cancer and colorectal cancer and -1516*T with gastric cancer. The associations between variants of genes encoding LAG-3 and TIGIT and cancer risk has not been evaluated yet and this area is almost unexplored. Figure 7 summarized the main results of our review of literature.




Figure 7 | Graphical presentation of the association between inherited variations in genes encoding immune checkpoint (IC) molecules and risk of different types of cancers. Table presents association between polymorphisms and expression of ICs (↑↓ arrows indicate lower and higher expression, respectively; the question mark,?, no data on expression level are available). Figure was created with BioRender.com.



A limitation of any conclusion arising from this literature survey is that most of the individual studies and meta-analysis were performed on Asian populations. It is worth mentioning that significant differences in distribution of genotypes between populations are observed and some of the presented associations are true only for individuals of Asian origin (Table 1).

As association between particular ICs’ SNPs and cancer risk seems to be relevant to specific population there is the urgent need to perform well designed studies on large scale in different populations in order to elucidate variants important in terms of risk estimation and selection of patients to the immunotherapy for particular ethnicities.

The next issue concerns the quality of some studies, as well as numbers of patients and controls in compared cohorts. We observed the following negligence in carrying out case-control studies and meta-analyses which may influence the reliability of published data. In several reports we noted deviation from HWE in control subject which was not mentioned, and even worst the authors stated that such deviation was not observed. We came across a meta-analysis which was published in the same form in another journal. Another issue which created considerable difficulties in proper interpretation of analyzed data was serious inconsistency in describing SNPs and their alleles. The authors use the old, common names of SNPs without providing SNP reference numbers. Some of analyzed genes are located in minus orientation and we noticed that authors do not pay attention to that describing alleles in relation to plus or minus strand even within one work. This is particularly valid for SNPs causing G to C or C to G substitution if their frequency is similar in the population (~50% for both alleles).

As a conclusion from this study, we propose future directions of the research broadening and complementing presented topic.

We think that in the future the researchers should analyze SNPs which will cover the whole genes of interest. The analysis of constellation of SNPs will allow to evaluate the phenotypic effect of particular haplotypes on immune cells which may allow evaluate if particular haplotype is associated with higher, lower or neutral risk of cancer development (34). Moreover, examination of potential interactions between SNPs, particularly in the context of receptor-ligand interaction may provide new interesting data of clinical significance.

It is also worth to analyze the impact of variation within genes encoding IC in context of tumor progression (among others impact on metastasis and overall survival).

Very important, but relatively poorly investigated is functional relevance of inherited variations not only in context of gene transcription, but also on gene translation. Little is also known about influence of SNPs on epigenetic gene regulation.

TIGIT is considered as a new target for immunotherapy due to its important role in maintenance of immunosuppressive phenotype of T cells in TM. Nonetheless, to the best of our knowledge, in the literature there is no data concerning TIGIT polymorphisms in relation to cancer risk. The future research will need to fill this gap in our knowledge.

In conclusion, the variants in genes encoding the molecules which regulate the immune surveillance might be considered as low-risk variants (OR<2) for cancer development, which has been well documented by numerous reports for CTLA-4, PDCD1, PD-L1 genes, while more studies are needed for BTLA, TIM3, LAG3, and TIGIT.
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Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes with features of high stability, tissue-specific and cell-specific expression. According to their biogenesis, circRNAs are mainly classified into five types, i.e. exonic circRNAs (EciRNAs), exon-intron circRNAs (EIciRNAs), intronic RNAs (CiRNAs), fusion circRNAs (f-circRNAs), and read-through circRNAs (rt-circRNAs). CircRNAs have been emerging as important non-coding regulatory RNAs in a variety of human cancers. CircRNA4s were revealed to exert regulatory function through multiple mechanisms, such as sponges/decoys of miRNAs and proteins, enhancers of protein functions, protein scaffolds, protein recruitment, or protein translation templates. Furthermore, some circRNAs are intensively associated with immune cells in tumor immune microenvironment (TIME), e.g. circARSP91 and natural killer cells. Through regulating immune checkpoint genes, circRNAs are demonstrated to modulate the immune checkpoint blockade immunotherapy, e.g. circCPA4 could up-regulate PD-L1 expression. In summary, we reviewed the molecular features of circRNAs and mechanisms how they exert functions. We further summarized functional implications of circRNA regulations in tumor immunology and immunotherapy. Further understanding of the regulatory roles of circRNAs in tumor immunology and immunotherapy will benefit tumor treatment.
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Introduction

Circular RNAs (circRNAs) are single-stranded circularized RNA molecules produced from back-splicing. Accumulating evidence has shown that circRNA dysregulations are involved in a variety of human disorders, including viral infection (1), cardiac fibrosis (2), diabetes (3), and cancer (4). Advances in high-throughput sequencing technologies and computational algorithms have driven the systematic detection and investigation of circRNAs. Through diverse mechanisms, circRNAs have shown important roles in tumor immunology and immunotherapy. In this review, we summarized the molecular characteristics of circRNAs and how they exert functions through various mechanisms. We further reviewed and discussed the prospective of circRNAs utilities in tumor immunology and immunotherapy.



The Regulatory Roles of circRNAs in Human Cancers


Molecular Properties of circRNAs

Circular RNAs (circRNAs) are single-stranded covalently closed RNA molecules, which are generated by “back-splicing” where the spliceosome joins the 3’ end of an exon with an upstream 5’ end of the same or different exons (5). Briefly, the length of circRNAs can be ranging from hundreds of nucleotides to more than 1,000 nucleotides dependent on their host genes. They are highly stable in general due to their covalently closed ring structure. While the turnover of circRNAs are still in investigation, one report indicated that circRNAs with N6-methyladenosine (m6A) modification could be cleaved by the ribonuclease P (RNase P) multi-drug resistance-associated protein 1 (MRP) complex in a way that dependent on YTH domain-containing family protein 2 (YTHDF2) and heart-responsive protein 12 (HRSP12) (6). In another report, CDR1AS could be cleaved by protein argonaute 2 (AGO2) which plays an important role in RNA interference (7). It was initially considered as byproducts generated from aberrant splicing events (8–11). In recent years, the rapid development of high-throughput RNA sequencing (RNA-seq) and bioinformatics methods has promoted the extensive identification of circRNAs in eukaryotes (12–16). CircRNAs are characterized by high stability, widespread expression in diverse species, and high specificity among different species.


CircRNA Classification

Most circRNAs are generated from protein-coding genes, which are processed in the exon skipping during pre-messenger RNA (pre-mRNA) transcription to form a lariat structure containing single or multiple exons. This is called exonic circRNAs (EciRNAs) (17–19). Some circRNAs contain both exonic and intronic sequences that are derived from internal intron retention, which are called exon-intron circRNAs (EIciRNAs) (20). Circular intronic RNAs (CiRNAs) are generated from intronic lariats that are kept during canonical splicing process (21). In addition, circRNAs can also be produced from exon joint of different genes located in different or the same chromosomes, which are called fusion circRNAs (f-circRNAs) (22) and read-through circRNAs (rt-circRNAs) (4), respectively.



CircRNA Biogenesis

CircRNAs are generated from canonical splice sites from back-splicing, which is partly dependent on the canonical splicing machinery (14, 23) and have been shown to compete with linear RNAs (24). The biogenesis of most circRNAs is affected by cis-acting elements and trans-acting factors (17). In general, circRNAs are produced from looping intron sequences flanking the downstream splice-donor site and upstream splice-acceptor site. This process could be mediated by base pairing between inverted repeat elements or RNA-binding proteins (RBPs), such as QKI and FUS (25, 26). Additionally, during the process of exon skipping, some of excised lariats could undergo internal back-splicing, which would lead to circRNA formation (27). CiRNAs could also be produced from intronic lariats that escape from debranching (21). Other factors influencing circRNA biogenesis include epigenetic changes, such as histone modification and DNA methylation status variations within gene bodies (28, 29).




The Functional Mechanisms of circRNA Regulation in Human Cancers

Accumulating studies have shown that perturbations of circRNAs is prevalent in human cancers (4, 30), including thyroid cancer (31), ovarian cancer (32), and gastrointestinal cancers (33). Recently, a global analysis of circRNA landscape using clinical tumor samples (>2,000) was performed across more than 40 cancer types (4). Notably, this study identified over 160,000 circRNAs that showed expression in at least one cancer type. Another recent study, specifically in localized prostate cancer, identified 76,311 circRNAs through analyzing RNA-seq data derived from prostate tumor specimens (34). Furthermore, they also found a variety of circRNAs were functionally dysregulated in cancer. In particular, Chen et al. identified 171 circRNAs that were essential to prostate cancer cell proliferation. Collectively, these studies demonstrated the high prevalence of circRNA expression and their perturbations in cancers.

CircRNAs can exert their regulatory roles in cancer via different ways (17, 35) (Figure 1), i.e. protein sponges/decoys (Figure 1B) (23), protein recruitment (Figure 1C) (36), and templates for translation (Figure 1D) (37), miRNA sponges/decoys (Figure 1E) (38), protein scaffolding (39), and enhancer of protein function (Figure 1F) (20).




Figure 1 | Multiple regulatory mechanism of circRNAs. (A) The biogenesis of circRNAs mainly involves the complex of PolII, RBPs and other factors. (B) CircRNAs that harbor RNA binding protein (RBP) binding motifs may serve as sponges/decoys of the corresponding proteins and regulate their functions. (C) CircRNAs may also recruit specific proteins to certain loci or subcellular compartments. (D) Some circRNAs harbor internal ribosome entry site elements and AUG sites, which enables circRNAs to be translated to unique peptides under certain circumstances. (E) Many circRNAs were found to act as miRNAs sponges, which sequester miRNAs via complementary RNA base-pairing and thus prevent miRNAs from binding their target. (F) Some circRNAs have been shown to facilitate the colocalization of enzymes and their substrates through acting as protein scaffolds. CircRNAs may also enhance the function of particular proteins through circRNA-protein interactions.




CircRNAs as miRNA Sponges

Many circRNAs were found to act as miRNAs sponges, which sequester miRNAs via complementary RNA base-pairing and thus prevent miRNAs from binding their target. For example, circTP63, a cell cycle related circRNA, is up-regulated in lung squamous cell carcinoma (LUSC) tissues and its up-regulation is correlated with larger tumor size and higher TNM stage in LUSC patients. Mechanically, circTP63 competitively binds to miR-873-3p and prevents miR-873-3p to decrease the level of FOXM1, which up-regulates CENPA and CENPB, and finally facilitates cell cycle progression (40). In colorectal cancer (CRC), circHIPK3 acts as the sponge of miR-7, which is a well-known tumor suppressor, to promote colorectal cancer growth and metastasis (41). In breast cancer, circFBXW7 acts as the sponge of miR-197-3p, which induces c-Myc degradation by up-regulating FBXW7 expression, to inhibit the malignant progression of triple-negative breast cancer (42). In bladder cancer, circ-ACVR2A could directly interact with miR-626 and acts as a miRNA sponge to regulate EYA4 expression, thus inhibiting bladder cancer cell proliferation and metastasis (43).



CircRNAs as Protein Decoys

CircRNAs that harbor RNA binding protein (RBP) binding motifs may serve as sponges/decoys of the corresponding proteins and regulate their functions. For example, Abdelmohsen et al. identified circPABPN1 in human cervical carcinoma HeLa cells, which suppressed the translation of nuclear poly(A) binding protein 1 (PABPN1) mRNA through sequestering the RBP Hu-antigen R (HUR) (44). By binding prescadillo homologue 1 (PES1, an essential 60S pre-ribosomal assembly factor), circANRIL was found to impair pre-rRNA processing and ribosome biogenesis, which further led to nucleolar stress and p53 activation (45). YAP (yes-associated protein), a key component of Hippo pathway which plays crucial roles in tumorigenesis, can inhibit apoptosis and promote proliferation and metastasis of cancer cells. Wu et al. showed that circYAP could bind with YAP mRNA and translation-associated protein eIF4G and PABP to negatively regulate the expression of YAP. Moreover, the malignant phenotypes can be reversed by the ectopic expression of circYAP, which is similar to silencing endogenous Yap (46).



CircRNAs Enhancing Protein Functions

CircRNAs may also enhance the function of particular proteins through circRNA-protein interactions. Sun et al. demonstrated that circMYBL2, generated from the cell cycle check point gene MYLB2, could promote the proliferation of FLT3-ITD+ cells in vitro and in vivo through enhancing the translational efficiency of FLT3 kinase via increasing the binding of polypyrimidine tract-binding protein 1 (PTBP1) to FLT3 messenger RNA (47). In addition, circEIF3J and circPAIP2 were demonstrated to be able to positively regulate the expression their parental genes through enhancing the function of transcription factors (20). Both circEIF3J and circPAIP2 were EIciRNAs residing in the nucleus, they could promote RNA polymerase II (Poll II)-mediated transcription by interacting with the U1 small nuclear ribonuleoprotein (snRNP)



CircRNAs as Protein Scaffolds or Recruitment

Some circRNAs have been shown to facilitate the colocalization of enzymes and their substrates through acting as protein scaffolds. Circ-Foxo3 physically binds to mouse double-minute 2 (MDM2) and mutant p53 through acting as protein scaffolds (48). Circ-Foxo3 was further demonstrated to facilitate MDM2-mdiated ubiquitylation of mutant p53, leading to proteasome-mediated degradation. CircRNAs may also recruit specific proteins to certain loci or subcellular compartments. For instance, Chen et al. found that circ-FECR1 could induce demethylation of CpG sites and promote transcription of FLI1 through recruiting TET1 to the promoter region of FLI1 (36).



CircRNAs Translating Into Peptides

Some circRNAs harbor internal ribosome entry site elements and AUG sites, which enables circRNAs to be translated to unique peptides under certain circumstances. Zhao et al. suggested that circE7, generated by oncogenic human papillomaviruses (HPVs), can be translated to produce E7 oncoprotein which is biologically functional and linked to the transforming properties of some HPV (49). Zhang et al. suggested that an 87-animo-acid peptide, encoded by circular form of the long intergenic non-protein-encoding RNA p53-induced transcript (LINC-PINT), directly interact with polymerase associated factor complex (PAF1c) and inhibited the transcriptional elongation of multiple oncogenes to suppresses glioblastoma cell proliferation in vitro and in vivo (50). Liang et al. showed that a novel 370-amino acid β-catenin isoform encoded by circRNA circβ-catenin could stabilize full-length β-catenin by antagonizing GSK3β-induced β-catenin phosphorylation and degradation, leading to activation of Wnt pathway, thus promoting liver cancer cell growth (51).



Interactions Between circRNAs and m6A Modification

N6-methyladenosine (m6A), which has been discovered in the early 1970s, and whose predominant accumulations around stop codons and 3’ untranslated regions (3’  UTRs) of mRNA with a typical consensus sequence RRACH (R = G or A and H = A, C, or U) have been reported (52–57), is one of the most common RNA modifications. Accumulating studies show that m6A play crucial roles in many different aspects including circadian rhythm, gene expression, cell differentiation, stress response, tumorigenesis, development, and inflammatory response (54, 58–63). Recently, Zhou et al. defined thousands of m6A circRNAs that showed cell-type-specific expression patterns (64). These circRNAs interact with m6A reader proteins YTHDF1 and YTHDF2, and m6A writer protein METTL3. Besides, Chen et al. also presented that the m6A reader YTHDC1 increase the cytoplasmic export of circRNA NOP2/Sun RNA methyltransferase 2 (circNSUN2), forming a circNSUN2-IGF2BP2-HMGA2 RNA-protein ternary complex in the cytoplasm contributing the stabilization of HMGA2 mRNA and the enhancement of colorectal liver metastasis (65). In addition, m6A writer protein METTL3 was reported to impact m6A modification of circZNF609, and the m6A reader proteins YTHDF1 was reported to regulate the backsplicing of circZNF609, suggesting the role of m6A in the biogenesis of circZNF609 (66). Besides, the translation of circRNAs was affected by m6A methylation (64), and the m6A modification on circRNAs can be recognized by mammalian cells to inhibit innate immunity by abrogating immune gene activation (67). All these studies expand our knowledge on the complex interactions between m6A modification and circRNAs.

In conclusion, circRNAs are prevalently expressed in human cancers and can exert its regulatory roles by acting as sponges/decoys for miRNAs and proteins, enhancing protein functions, protein scaffolds, recruiting proteins, or protein translation templates.





Tumor Immunology and Immunotherapy


Immune System in Human Cancers

The first indication of the immune system involvement in cancer was discovering the links between inflammation and cancer in 1863 (68). Endeavors have focused on how the immune system can be able to recognize and ultimately destroy cancer, which is made up of tumor and “self” cells. Cancer cells can express two types of tumor antigens: tumor-specific antigen (TSAs) and tumor-associated antigens (TAAs). TSAs are highly tumor-specific and are expressed only in tumor cells, while TAAs are more widely expressed in both tumor and normal cells (69). The immune system can respond to cancer cells in two ways, i.e. against TSAs or against TAAs. In immunosurveillance hypothesis, immune system recognizes malignant tumor cells as foreign agents and eliminates them (70). However, in the past decades, scientists found that cancer could actively deploy various tactics, which collectively termed “immune evasion mechanisms” and continuously develop diversity and complexity in late-stage, to delay, alter, or even stop anti-tumor immunity.

Interference on tumor immunology to intensify the immune response to eliminate tumor cells has provide novel insights on tumor therapy, i.e. immunotherapy, which includes immune checkpoint blockade (ICB) therapy, CAR T cell adoptive therapy, cancer vaccines, and oncolytic virus therapy.



Immune Checkpoint Blockade Therapy

Tumor cells can overexpress some specific molecules such as PD-L1 and CTLA-4 to silence the immune response and these molecules are collectively termed as “immune checkpoints.” Programmed cell death (PD) pathway is the first and most characterized “immune checkpoints.” PD-1, a co-inhibitory receptor, is highly expressed on activated T cells, B lymphocytes, natural killer cells, and MDSCs. PD-1 expression can be induced by TCR-antigen engagement and common γ-chain cytokines like interleukin (IL)-2, IL-7, IL-15, and IL-21 in the effector phase of the immune response (71). PD-L1 and PD-L2 are two known ligands of PD-1 and their expression on healthy tissues are relatively low (72). Effector T cell exhausted and could be triggered apoptosis upon engaging with PD-L1 (73). Multiple cancers including melanoma, non-small cell lung cancer (NSCLC), breast cancer, and squamous cell head and neck cancer has been documented with up-regulated expression of PD-L1 (74–76). Therapeutic monoclonal antibodies directly against PD-1 and PD-L1, with avelumab for PD-L1 and nivolumab for PD-1, respectively, have been proven effective for treating multiple solid tumors. CTLA-4, mainly expressed on T cells, acts as a negative regulatory receptor of T cells. Upon the TCR engaging with antigens, the expression of CTLA-4 rapidly up-regulates. CTLA-4 can compete with CD28, a key co-stimulatory receptor on T cells, for the binding of the same ligands, CD80 and CD86. And CTLA-4 has a higher affinity than CD28 for both ligands, resulting in interference with the immune synapse and T-cell inactivation. Therapeutic anti-CTLA-4 monoclonal antibodies, such as ipilimumab, have achieved promising clinical outcomes in advanced melanoma. Although ICB are considered as a revolution of cancer treatment, many patients including microsatellite stable colorectal cancer (CRC), ovarian cancer, prostate cancer, and pancreatic ductal adenocarcinoma (PDA) rarely exhibit objective responses to ICB (77). There must be other mechanisms leveraged by tumor cells to suppress the immune response.



Chimeric Antigen Receptor T Cell Adoptive Therapy

Chimeric antigen receptor T (CAR T) technique was first reported to transduce T cells with chimeric genes encoding single-chain antibodies that are linked to a transmembrane region and an intracellular domain encoding the signaling adaptor for the T cell receptor (78). CAR T cells could recognize tumor antigens independent of MHC presentation. By adopting CAR T technology, CAR T therapeutics genetically modified autologous T cells isolated from patients to express the CAR construct. After expansion, patient-derived genetically modified T cells were returned to patients to kill malignant cells. CAR T immunotherapy was demonstrated to redirect T cell killing to cells that express the antibody’s cognate antigen (79–81). Currently, the major targets of CAR T therapy is CD19, the B cell costimulatory receptor widely expressing on B cell leukemias and lymphomas (80, 82), showing highly therapeutic effects even in otherwise refractory diseases and can induce durable remissions (79, 83). Despite of impressive clinical outcomes in treating tumor patients, especially for those with lymphoma, CAR T therapy still have many problems, particularly for solid tumors (84). As CAR T therapy is based on direct recognition of tumor cells expressing CD19, deletion of the CAR-binding epitope frequently induces disease relapse (85). Beyond CD19, next-generation CAR T therapy will include novel targets such as CD22, which is a B cell regulatory receptor expressed by many B cell malignancies (83, 86). CD70 is also considered as a novel CAR T therapy target (87, 88).



Cancer Vaccines

Efforts of cancer vaccines have been made to promote cancer-specific immune response, which generate antitumor immunity, especially cytotoxic CD8+ T cells that are specific to tumor antigens. Administration of tumor antigens (e.g. overexpressed antigens, cancer-testis antigens, oncofetal antigens, and mutated antigens) with antigen-presenting cells (APC, e.g. DCs, B cells, and monocytes) shows therapeutic promise (83, 89–91). Current cancer vaccination includes four major types, i.e. peptide-based vaccines, APC-based vaccines, tumor-based vaccines, and virus-based vaccines. The most commonly used cancer vaccine is the MHC class I restricted peptide epitopes that are from shared TAAs aiming to activate rare specific CD8+ T cells, which has shown substantial therapeutic effects (92–94). Peptide vaccines with adjuvant formulation, such as cytokines and toll-like receptor (TLR) ligands, showed significant clinical benefits (94–96). Multiple peptides can be given at the same time (97, 98) and combinations of multi-peptide vaccines and chemotherapy also indicated benefits (99). Among various types of APCs (e.g. peripheral blood mononuclear cells, activated B cells and dendritic cells), the heterogeneous populations of dendritic cells could efficiently process and present antigens to CD4+ and CD8+ T cells. Application of dendritic cells vaccines offered clinical efficiency (100–102). Tumor cells from killed mice could be used to immunize other mice by expressing immune stimulatory cytokines (e.g. GM-CSF) (103, 104). These findings offered the possibility of tumor cell- based immunotherapy. Tests using allogeneic cell lines or autologous tumor cells exhibited capability to activate immunity killing tumor cells (105, 106). Although huge endeavors have been made in cancer vaccinations, the effects of cancer vaccines are limited due to the difficulty in target antigens selection and immunosuppression from tumor microenvironment. Improvements in antigen choice and vaccine design will obtain better clinical outcomes.



Oncolytic Virus Therapy

In the context of presenting tumor antigens, pathogens involvement can largely increase immune stimulation of tumor patients. Oncolytic viruses selectively replicate in tumor cells and kill them without harming normal cells, which can be genetically engineered or naturally occur (107). The most widely known virus vaccines for cancer are the human papillomavirus vaccines that are designed to prevent human papillomavirus (HPV) mediated cervical cancers. The oncolytic viruses have been used for decades, including adenoviruses, vaccinia viruses, and herpesviruses (91). Adenoviruses drive the transactivator early genes E1a and E1b and viral replication from tumor specific promoters. Taking advantage of natural infectivity, adenoviruses have been used to directly immunize with tumor antigens, where they are injected into muscle tissue as vectors (108, 109). The therapeutic efficacy of vaccinia viruses can be improved by genetically engineering with chemokine genes or combinations with costimulation (110). Oncolytic virus therapy has shown promising therapeutic values, but needs further exploration.

In conclusion, tumor immunology advances our understanding of the development of malignant tumor cells and their interactions with host, and immunotherapy has achieved great efforts in some malignant cancers. But tumor are a highly heterogeneous disease and tumor micro-environment are also complicated in different cancers. In the future, we should get more insights into complicated interplay between immune cells and tumor microenvironment, which will develop strategies to break the tumor evasion from immunosurveillance.




CircRNAs and Tumor Immune Microenvironment


Tumor Immune Microenvironment

Studies over several years has demonstrated that tumor cells could evade immune surveillance by establishing an immune-privileged microenvironment, which is functionally analogous to that of certain normal tissue (111, 112). Tumor immune microenvironment (TIME) is composed of various cell types except cancer cells, including tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), dendritic cells, cancer-associated fibroblasts cells, NK cells, tumor-associated neutrophils, and tumor-infiltrating lymphocytes. Over the past years scientists has realized that tumor cells could turn these cells to favor their progression and contribute to the immune escape. Firstly, accumulating evidences suggested that the vessels of TIME could control the extravasation of effector T cells from the circulatory system into tumors. Upon activated by the antigen present cells, the effector T cells traffic to the tumor via the circulatory system. For example, the apoptosis inducer Fas ligand (FAS-L) is highly expressed in the tumor vasculature of multiple tumor types including ovarian, colon, prostate, breast, bladder, and renal cancer, which substantially reduces the number of CD8+T cell infiltration into tumors. Accordingly, inhibition of Fas-L in preclinical models resulted in a significant increase of effector T cells in tumors and led to T cell dependent tumor suppression (113). Secondly, dendritic cells and MDSCs within the TIME can inhibit the immune response within the tumor via multiple mechanisms. After extravasation of cancer-specific T cells into tumor, it must locally replicate to further increase their numbers to kill the tumor cells effectively and also overcome barriers that restrict their distribution and the hostile elements of the TIME. MDSCs, key components of TIME, are broadly defined as myeloid cells and are different from mature myeloid cells (i.e. macrophages, DCs, neutrophils), which are terminally differentiated. MDSCs are consisted of myeloid progenitors, immature mononuclear cells (M-MDSCs), which are morphologically and phenotypically similar to monocytes, and immature polymorphonuclear (PMN-MDSCs), which are morphologically and phenotypically similar to neutrophils. M-MDSCs and PMN-MDSCs utilize different mechanisms to inhibit tumor immune response. M-MDSCs primarily utilize mechanisms associated with production of NO and cytokines to suppress both antigen-specific and nonspecific T cell response and have stronger suppressive activity than PMN-MDSCs (114). Other studies indicated that MDSCs and tumor-associated macrophage cells (TAMs) could also produce arginase-1, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) to suppress the proliferation of T cells within the tumor. Arginase-1 produced by MDSCs and TAMs within the TIME converts L-arginine, essential for the proliferation of T cells, to urea and L-ornithine, exhausting the pool of L-arginine within the TIME and thus impairing the proliferation of T cells. And MDSC-derived iNOS converts L-arginine to citrulline and NO, which suppresses T cell function by inhibiting JAK/STAT signaling, reducing MHC class II expression and inducing T cell apoptosis. While ROS and NO produced by MDSCs and TAMs result in nitration of the T cell receptor, which impairs the recognition of peptide antigens presented by MHC. Additionally, MDSCs can directly inhibit T cell response in a contact-dependent manner via membrane-bound TGF-β (115, 116). Furthermore, cancer associated-fibroblasts (CAFs) can prevent the effector T cells from accumulating in the vicinity of cancer cells within the TIME. Cancer-associated fibroblasts can leverage two methods to mediate this restriction. For the one hand, CAFs can produce extracellular matrix to exclude effector T cell. And studies found increased T cells movement out of the stromal regions and into contact with cancer cells when collagenase was added to reduce matrix rigidity. CAFs can also produce CXCL12 and IL-6 to exclude the effector T cells. Accordingly, administering an inhibitor of CXCR4, the receptor for CXCL12, to the PDA-bearing mice led to the rapid accumulation of effector T cells within the tumor and blockage IL-6 could improve T-cell trafficking, migration and tumor immunosuppression (117).



The Relation Between circRNAs and Tumor Immune Microenvironment

Emerging studies showed that circRNAs played an important role in key components of tumor immune microenvironment (89, 118). Here we briefly review the interactions between key components of tumor immune microenvironment and circRNAs. One study suggested that circSLC8A1, derived from the SLC8A1 gene, could act as a sponge of miR-494, which is crucial for migration of MDSCs into tumor site and regulation of the production of ARG1 and iNOS, thus enhancing the tumor immune response. This evidence indicated that circRNAs could serve as potential targets by modulating the MDSC-mediated immune response. Natural killer cells (NK cells) play an important role in tumor immune surveillance, which possesses the ability to direct against tumor and infected cells without stimulation like B or T lymphocytes. They simultaneously express activating and inhibitory receptors that encounter target cells by the subtle balance of transmitted signals for activation or inhibition. NK cells primarily leveraged two tactics to against tumors. One is that NK cell can express apoptotic ligands such as TNF-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF) family members Fas-L and then interact with their related receptor on tumor cells which inducing the apoptosis of tumor cells. The other is that NK cell secrete perforin and granzyme to direct lyse tumor cells. In addition to direct against tumors, NK cells can exert “helper role” to against tumor cells. It was reported that NK cells could contribute to the accumulation of T-bet+ CD4+ T cells in the tumor site, promote the production of TNF-αand IFN-γ by tumor infiltrating CD8+T cells, suppress the expression of exhaustion marker PD-1 on these CD8+ T cells and promote the induction of tumor-specific T cell memory in the mouse model. Dysfunction of NK cells has been documented over the several years in TIME (119–122). And some studies suggested that circRNAs can enhance or attenuate the function of NK cells. Ma et al. showed that overexpression of circARSP91 (circRNA of AR-suppressed PABPC1 91bp) could enhance cytotoxicity of NK cells to HCC cells via up-regulating UL16 binding protein 1 (ULBP1) expression in HCC cells at the mRNA and protein levels (123). Interestingly, in the another study, Zhang et al. demonstrated that HCCs could secrete circUHRF1 in exosomal manner to inhibit NK cells-derived IFN-γ and TNF-α secretion by up-regulating the expression of TIM-3 via degradation of miR-449c-5p. Additionally, circUHRF1 could mediate the resistance to anti-PD1 immunotherapy in HCC patients (124). Macrophages, key components of innate immunity, mainly derived from embryonically and seeded in tissues, serve as the first-line defense against pathogens and antigen-presenting cells for cellular immunity (125). Macrophages can be divided into M1 and M2 macrophages based their catabolism of L-arginine. The M1 macrophages has a function of eliciting inflammation, while the M2 macrophages show anti-inflammatory effect. This concept may explain the heterogeneity of macrophages. M2 phenotype macrophages, primarily derived from circulating bone marrow monocytes, is induced by soluble factors secreted by cancer stem cells (CSCs) (126, 127). Studies over human tumor samples have indicated that a high number of macrophages, especially M2 macrophages, is closely related to worse clinical prognosis in numerous malignant cancers (128). Accumulating evidence suggested that tumor-associated macrophages could inhibit cytotoxic T cell response by the following mechanisms: depletion of essential metabolite required for T cell proliferation, inhibition of T cell functions via producing anti-inflammatory cytokines and activation of T cell checkpoint blockade via inhibitory receptors. One study indicated that the expression levels of circRNA-003780, circRNA-010056, and circRNA-010231 were high in M1 cells, while the expression levels of circRNA-003424, circRNA-013630, circRNA-001489, and circRNA-018127 were five times than those of M1 macrophage. Different expression levels of specific circRNAs in different polarization state of macrophages suggested that circRNAs may play an important role in the polarization of macrophages (129). Additionally, another study demonstrated that high expression level of circ-CDR1as was correlated with higher ratio of M2 macrophage, suggesting circ-CDR1as may be involved in the polarization of macrophages in TIME (130). Tumor infiltrating lymphocytes, considered as selected population of T-cell with a higher specific immunological reactivity against tumor cells than the non-infiltrating lymphocytes, are mainly composed of CD3+CD4+T cells and CD3+CD8+T cells. Multiple studies have showed that higher proportion of tumor infiltrating lymphocytes (TILs) predicted a better prognostics (131). It was reported that HCC patients with higher percentage of TILs displayed better clinical outcomes, suggesting the prognostic value of TILs for HCC patients. In addition, Weng et al., performed global circRNA microarray between plasma of HCC patients with high TILs and low TILs. The results suggested HCC patients with high TILs had lower expression of hsa_circ_0064428 and was negatively correlated with overall survival, tumor size and metastasis. It can be concluded that hsa_circ_0064428 functioned as a novel immune-associated prognostic biomarker for HCC patients (132).

In conclusion, reprogrammed TIME provides a “shield” for tumor cell and contributes immune therapy resistance. CircRNAs play an important role in tumor progression. Aberrant functions in the TIME caused by circRNAs can be valuable new targets to treat cancer or become novel biomarkers for immunotherapy.




CircRNAs and Immunotherapy

Cancer immunotherapy have achieved therapeutic advances in recent years and was named as 2013’s breakthrough of the year by Science. It highlights the importance of human immune system in treating cancer. Immune checkpoint inhibitors, using therapeutic antibodies including anti-CTLA4 and anti-PD1/L1 mAb, to unleash cytotoxic T cells in tumor microenvironment, has achieved great success in clinical practices. Accumulating studies suggested that B7-H1/PD-1 interaction was the major ways used by tumor cells to suppress immune response in both preclinical and clinical settings (133, 134). Anti-PD1 therapy have achieved higher objective response rates in patients and with much fewer immune-related adverse events (irAEs), which is the most characterized feature of this approach. It is effective in more than 25 different types of solid tumor and has favorable response-to-toxicity profile, with a 40% objective tumor response rate and a 7–12% grade 3–5 irAEs immune across multiple tumor types (135). Although anti-PD1 therapy has achieved great clinical success in most solid cancers, a considerable portion of patients did not benefit from anti-PD1 therapy. The reason is that the tumor microenvironment of different cancers of different patients are heterogeneous (136). For a successful immune-mediated elimination, it requires substantial leukocytes to infiltrate into tumor tissue and recognize the malignant cells. However, there exists significant difference across numerous tumors. For example, it was reported that effector T cells infiltrated in melanoma and breast cancer, but rarely infiltrated in pancreatic ductal adenocarcinoma. So pancreatic ductal adenocarcinoma did not response to anti-PD1 therapy. Clinically, cancer patients are broadly classified into three categories based on the level of tumor infiltrating leukocytes and B7-H1 expression level: (1) Types I and IV: There is lack of significant TILs in the TIME. (2) Types II: There exist many TILs in the TME and these TILs were over-regulated due to the effect of the B7-H1/PD-1 pathway. (3) Type III: there are many TILs in the TIME which are dysfunctional due to suppression by other molecular pathways (non-B7-H1/PD-1). Only patients classified as Types II can benefit from the anti-PD1 therapy (135). Thus understanding the dominant immune defects in TIME of patients is critical for cancer immunotherapy. And immune defects induced by tumor cells are highly heterogeneous (136). With the rapid development of cancer immunotherapy, there are many novel immune checkpoints including LAG3 (CD233), TIM, TIGIT (T cell immunoglobulin and ITIM domain), VISTA, B7-H3, BTLA, and siglec-15 emerging (137). And inhibitors targeting these checkpoints are on clinical trials. Interestingly, a study indicated that when the mice treated with anti-PD-1 mAb, the level of LAG-3 and CTLA-4 increased and treated with anti-LAG-3 mAb, the level of PD-1 were up-regulated. This suggested that blockade of a single immune checkpoint targets may led to the compensatory up-regulation of other checkpoint receptors in TME (138). This compensatory mechanism of immune checkpoints may be another mechanism of anti-PD1 therapy resistance in patients and also indicated that there existed common compensatory mechanism across different types of cancers. CircRNAs, as novel non-coding RNAs in the past few years, have been implicated in multiple physiological and pathophysiological conditions. And they can also play a regulatory role of immune checkpoints and have the potential to serve as a predictive biomarker of immune checkpoint therapy (Figure 2). One study suggested that hsa_circ_0020397 can regulate CRC cell viability, apoptosis, and invasion by promoting the expression of miR-138 target genes, telomerase reverse transcriptase (TERT), and programmed death-ligand 1 (PD-L1) (139). CircCDR1-AS is representative circular RNA that is associated with poor prognosis in gastrointestinal cancers including colon, liver, and pancreatic cancers. Tanaka et al. demonstrated that CircCDR1-AS can significantly increase the expression of PD-L1 at the surface of colon cancer cells via CMTM4 and CMTM6 and led to the poor prognosis of CRC cancer patients (140). In another study, Hong et al. indicated that circ-CPA4 could promote cell growth, mobility and epithelial-mesenchymal transition and inhibited cell deaths of NSCLC cells by up-regulating expression levels of PD-L1 via acting as an RNA sponge for let-7 miRNA. Moreover, circ-CPA4 could positively regulate exosomal PD-L1 derived from NSCLC cells, which promoted cell stemness and inactivated CD8+ T cells (141). Additionally, Li et al. found that circ_0000284 could up-regulate the expression of PD-L1 via binding miR-377-3p and thus promoting the progression of NSCLC (142). TIM-3, also called hepatitis A virus cellular receptor 2 (HAVCR2), is another intriguing immune checkpoint. The gene TIM, located on human chromosome 5q33.2, expresses a protein of 302 amino acid which belongs to Ig superfamily (IgSF). It was expressed on different immune cells including B cells, T cells, NK cells, DCs, Tregs, monocytes, and macrophages. And higher expression of TIM-3 was closely associated with poor prognosis in solid malignant. More importantly, accumulating evidence have verified that therapeutic benefit of TIM-3 blockade and inhibit tumor growth especially combined with anti-PD therapy. For the time being, there are at least eight anti-TIM-3 mAbs has been registered on clinicaltrials.gov. Anti-TIM-3 therapy combined with TSR-042 are already on phase II clinical trial for liver cancer (137). Zhang et al. reported circUHRF1, circular ubiquitin-like with PHD and ring finger domain 1 RNA (circUHRF1), is highly expressed in human HCC tissues and closely related to poor clinical prognosis of HCC patients. Mechanically, hepatocellular carcinoma (HCC) can secreted circUHRF1 in an exosomal manner, inhibiting the secretion of NK cell-derived IFN-γ and TNF-α and inhibiting NK cell function by up-regulating the expression of TIM-3 through degradation of miR-449c-5p (124).




Figure 2 | The regulatory roles of circRNAs in immunotherapy. CircRNAs have been implicated to play a regulatory role of immune checkpoints and have the potential to serve as a predictive biomarker of immune checkpoint therapy.



One challenge for cancer immunotherapy is that tumor-induced immune defects not only occur among different patients but also extend to different areas in a single tumor lesion. It is important to evaluate immune response at the TIME level which require sequential tumor tissue collection and analyses. CircRNAs, presented as a stable covalently closed single RNA and can also be secreted in exosomal manner, can play a regulatory role in some of these immune checkpoints and have the potential to serve as a biomarker of immune checkpoint therapy response. Hence, more regulatory roles of circRNAs playing in these immune checkpoints need further investigation.



Conclusions and Future Perspective

Due to the rapid progress of high-throughput sequencing and bioinformatics methodologies, researchers have unveiled the biogenesis and biological characteristics of circRNAs. Accumulating evidences exhibited that circRNAs are closely linked to immune cells in the tumor immune environment and are potentially to modulate or mark the infiltrating abundance of immune cells. Through regulating immune checkpoint genes, circRNAs are potentially capable to mediate therapeutic efficacy of immune checkpoint blockade therapy. The regulatory roles of circRNAs in cancer biology and therapy, especially tumor immunology and immunotherapy, need to be further explored. Several FDA-approved anti-cancer drugs were reported to be able target non-coding oncogenic RNAs. For example, miR-21 could be inhibited by compounds and its function could be ablated upon overexpressing pre-miR21. This finding indicates that onco-ncRNAs are druggable. However, there are no drugs specifically targeting onco-ncRNAs been clinically approved by FDA. Accumulating endeavors have been made to find small molecules targeting onco-ncRNAs. In terms of circRNA treatment, although no clinical trials have been reported, siRNAs targeting their unique conjunction cite, which can avoid targeting host gene, could be used to down-regulate specific onco-circRNAs to treat cancers. The major problem would be how to construct an efficient vector to deliver these siRNAs to tumor. Thus, ncRNAs treatment, we believe, will come true with the development of vector deliver system in the near future. To our best knowledge, the major possible negative effect of circRNA treatment could be mis-targeting. And this problem could be addressed by carefully designed siRNAs targeting the conjunction sites of circRNAs. In speaking of translational study of circRNAs, one study suggested that artificially designed circRNA could act as a miRNA sponge to sequester miR-122, which plays an important role in the transfer of hepatitis, to inhibit the replication of HCV (143). And another study showed that artificially designed circRNA sponging miR-132 and miR-212 could attenuate pressure overloaded-induced cardiac hypertrophy (144). These studies show a great potential for translational application of circRNAs. As we all known, there are many miRNAs associated with human diseases has been unraveled in the past years and one major functions of circRNA is to act as miRNA sponge to sequester miRNAs. In the future, not only circRNAs could be “druggable,” but also it could be “drug.” CircRNAs are characterized by their covalently closed loop structures and conjunction cites. When a siRNA specifically targeting conjunction cites of onco-circRNAs are used to treat cancer, it wouldn’t target mRNAs of host genes and this could be more precise than traditional ones. In addition, not only circRNAs could be targeted by siRNAs, but also artificially designed circRNAs could be delivered into cells to sponge onco-miRNAs to treat cancers.

Utilization of cutting-edge biotechnologies, such as single cell sequencing, the regulatory roles of circRNAs in tumor progression and immunology will be clearer. Thus, circRNAs will be employed in modulating the abundance or activity of immune cells and immune checkpoints expression, which will enhance the clinical efficiency of tumor immunotherapy.
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Triggering receptor expressed on myeloid cells-2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily and a crucial signaling hub for multiple pathological pathways that mediate immunity. Although increasing evidence supports a vital role for TREM2 in tumorigenesis of some cancers, no systematic pan-cancer analysis of TREM2 is available. Thus, we aimed to explore the prognostic value, and investigate the potential immunological functions, of TREM2 across 33 cancer types. Based on datasets from The Cancer Genome Atlas, and the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and Human Protein Atlas, we employed an array of bioinformatics methods to explore the potential oncogenic roles of TREM2, including analyzing the relationship between TREM2 and prognosis, tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and immune cell infiltration of different tumors. The results show that TREM2 is highly expressed in most cancers, but present at low levels in lung cancer. Further, TREM2 is positively or negatively associated with prognosis in different cancers. Additionally, TREM2 expression was associated with TMB and MSI in 12 cancer types, while in 20 types of cancer, there was a correlation between TREM2 expression and DNA methylation. Six tumors, including breast invasive carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney renal clear cell carcinoma, lung squamous cell carcinoma, skin cutaneous melanoma, and stomach adenocarcinoma, were screened out for further study, which demonstrated that TREM2 gene expression was negatively correlated with infiltration levels of most immune cells, but positively correlated with infiltration levels of M1 and M2 macrophages. Moreover, correlation with TREM2 expression differed according to T cell subtype. Our study reveals that TREM2 can function as a prognostic marker in various malignant tumors because of its role in tumorigenesis and tumor immunity.

Keywords: TREM2, pan-cancer, prognosis, immune infiltration, TMB, MSI


INTRODUCTION

Cancer is a leading cause of death and major obstacle affecting the quality of life in every country globally, and to date, there are no absolute cures for cancer (1). In recent years, cancer immunotherapy has become a prominent cancer treatment, especially immune checkpoint blocking therapy (2). With the continuous development and improvement of public databases such as The Cancer Genome Atlas (TCGA), it is possible to discover new immunotherapy targets by performing pan-cancer expression analysis of genes and evaluating their correlations with clinical prognosis and related signaling pathways (3).

Triggering receptor expressed on myeloid cell 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily, which can inhibit the phagocytic function of dendritic cells and macrophages, thereby affecting related immune signaling pathways (4). TREM2 has vital roles in Alzheimer's disease and other neurodegenerative diseases, and is involved in numerous immune and inflammatory pathways that contribute to the etiology of these diseases (5, 6). Recently, accumulating evidence has suggested that TREM2 also has an impact on the occurrence and development of tumors. TREM2 affects the prognosis and clinical phenotype of tumors through its role in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) (7, 8). TREM2 can alter the morphology of tumor-infiltrating macrophages, inhibit tumor growth, and enhance checkpoint blocking therapy (9).

Furthermore, recent scRNA-seq studies of the tumor microenvironment (TME) have revealed that TREM2 is expressed in several subgroups of myeloid cells, some of which overlap with MDSCs according to various definitions (10). TREM2 is generally considered to be an anti-tumor factor, acting through the Sky and Wnt1/β-catenin pathways in multiple cancers, including hepatocellular carcinoma (11), colorectal cancer (12), and lung cancer (13); however, TREM2 is expressed at higher levels in gastric cancer (14), and its up-regulation is related to poor patient prognosis. Similar results have been reported in renal cell carcinoma (15). In summary, increasing evidence suggests that TREM2 is an emerging immunosuppressor in the TME, and that its expression can impact patient prognosis.

Nevertheless, most research studies into the role of TREM2 in tumors to date have been limited to a specific type of cancer. There has been no pan-cancer study of the association between TREM2 and various cancers. Therefore, we used multiple databases, including TCGA, Cancer Cell Line Encyclopedia (CCLE), Genotype Tissue-Expression (GTEx), cBioPortal, and Human Protein Atlas (HPA), to analyze TREM2 expression levels and their relationship with prognosis in different types of malignancy. We also explored the potential associations between TREM2 expression and microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune infiltration levels across 33 types of cancer. Further, we conducted co-expression analyses of immune-related and mismatch repair (MMR) genes with TREM2 and enrichment analysis to study the biological functions of TREM2 in tumors. Our results show that TREM2 can be used as a prognostic factor for a variety of cancers, and TREM2 can play an important role in tumor immunity by affecting tumor infiltrating immune cells, TMB, and MSI. This study can provide insight into the role of TREM2 in tumor immunotherapy.



METHODS


Data Processing and Differential Expression Analysis

RNA sequencing, somatic mutation, and related clinical data were downloaded from TCGA (contains 11069 samples from 33 types of cancer) using UCSC Xena (https://xena.ucsc.edu/), an online tool for exploration of gene expression, clinical, and phenotype data. Data from each tumor cell line downloaded from the CCLE database (https://portals.broadinstitute.org/ccle/) and expression levels in 21 tissues were analyzed according to the tissue source. Gene expression data from 31 different tissues were downloaded from GTEx (https://commonfund.nih.gov/GTEx). Strawberry Perl (Version 5.32.0, http://strawberryperl.com/) was used to extract TREM2 gene expression data from these downloaded data sets and plot it into a data matrix for subsequent analyses.

The expression of TREM2 was evaluated in 31 normal tissues, each of 21 tumor cell lines, and 33 tumors, using the downloaded data and expression levels compared between cancer samples and matched standard samples in 33 cancers. Expression data were Log2 transformed and two sets of t-tests conducted on these tumor types; P < 0.05 were considered to indicate differential expression between tumor and normal tissues. Data analysis was conducted using R software (Version 4.0.2; https://www.R-project.org), and the R package “ggpubr” used to draw box plots.



Immunohistochemistry (IHC) Staining

To evaluate differences in TREM2 expression at the protein level, IHC images of TREM2 protein expression in normal tissues and seven tumors tissues, including liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), breast invasive carcinoma (BRCA), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), were downloaded from the HPA (http://www.proteinatlas.org/) and analyzed.



Analysis of the Relationships Between TREM2, Prognosis, and Clinical Phenotype

Survival and clinical phenotype data were extracted for each sample downloaded from TCGA. Four indicators, overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI), were selected to study the relationship between TREM2 expression and patient prognosis. The Kaplan-Meier method and log-rank test were used for survival analyses (p < 0.05) of each cancer type. Survival curves were drawn using the R packages “survival” and “survminer.” Moreover, Cox analysis was conducted using the R packages “survival” and “forestplot” to determine the pan-cancer relationship between TREM2 expression and survival.

Two clinical phenotypes, tumor stage and patient age, were selected and their relationship with TREM2 expression explored. Patients were divided into two groups, with 65 years old as the cutoff value. Clinical phenotype correlation analyses were conducted using the R-packages “limma” and “ggpubr”; p < 0.05 were considered significant.



Correlation of TREM2 Expression With Tumor Mutation Burden, Tumor Microsatellite Instability, and Mismatch Repair Gene Expression

TMB is a quantifiable immune-response biomarker that reflects the number of mutations in tumor cells (16). MSI results from MMR deficiency and is associated with patient outcomes (17). TMB scores were calculated using a Perl script and corrected by dividing by the total length of exons. MSI scores were determined for all samples based on somatic mutation data downloaded from TCGA (https://tcga.xenahubs.net) and the relationship between TREM2 expression and TMB and MSI analyzed using Spearman's rank correlation coefficient. Results are presented as heatmap, generated using the R-package “reshape2” and “RColorBrewer.” MMR is a DNA repair mechanism in cells. Down-regulation or functional defects in MMR genes lead to DNA replication errors that cannot be repaired, resulting in higher frequencies of somatic mutations (18). Expression profile data from TCGA were used to evaluate the levels of the MMR genes, MutL homologous gene (MLH1), MutS homologous gene (MSH2), MSH6, increased separation after meiosis (PMS2), epithelial cell adhesion molecule (EPCAM), in different cancers and determine the correlation between levels of MMR gene expression and that of TREM2. Data were visualized as heat maps generated using the R-packages, “reshape2” and “RColorBrewer.”



Relationship Between TREM2 Expression and Immunity

Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) is a method for inferring the degree of infiltration of stromal or immune cells into tumors using existing gene expression profiles (19). The ESTIMATE algorithm was used to calculate immune and stromal scores for each tumor sample and the relationship between TREM2 expression and these two scores evaluated according to the degree of immune infiltration using the R software packages “estimate” and “limma.”

Moreover, we used CIBERSORT, a metagene tool which can predict the phenotypes of immunocytes, to calculate relative scores for 26 immune cells in 32 cancers [except acute myeloid leukemia (LAML)] (20). Correlations between TREM2 levels and each immune cell infiltration level in cancer were evaluated using the R-packages “ggplot2”, “ggpubr,” and “ggExtra” (P < 0.05 as significant).

In addition, we conducted a co-expression analysis of TREM2 and immune-related genes, including genes encoding major histocompatibility complex (MHC), immune activation, immunosuppressive, chemokine, and chemokine receptor proteins, using the R-package “limma”; the “reshape2” and “RColorBreyer” packages were used to visualize the results.



Correlation of TREM2 Expression With DNA Methylation

DNA methylation is a form of DNA chemical modification, and as an essential regulator of gene transcription, can be carcinogenic (21). HM450 methylation data from cBioPortal (www.cbioportal.org) were used. Analysis of the correlation between TREM2 expression and gene promoter methylation was conducted for each tumor. Correlation of TREM2 methylation with prognosis was conducted using Kaplan-Meier survival analysis, including OS, DSS, DFI, and PFI (P < 0.05 as significant).



The Biological Significance of TREM2 Expression in Tumors

Gene Set Enrichment Analysis (GSEA) and the Gene Set Variation Analysis (GSVA) were conducted to investigate the biological functions of TREM2 in tumors. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets were downloaded from the official GSEA website (https://www.gsea-msigdb.org/gsea/downloads.jsp). Functional analysis was performed using the R-packages “limma,” “org.Hs.eg.db,” “clusterProfiler,” and “enrichplot.” The GSVA gene set was from the MSigDB database (v7.2 updated September 2020; https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). GSVA scores were generated for all tumors, and then samples in each tumor divided into two groups with high and low expression, using the median of differential genes with the R-package “limma.” Correlation of TREM2 expression with more than 20,000 pathways in each tumor was analyzed and the 15 pathways with the most significant positive and negative correlations visualized.



Statistical Analysis

All the data of gene expression was normalized by log2 transformation. Comparison of normal tissue and cancer tissue used two sets of t-test; P < 0.05 was indicated the statistical significance. The Kaplan-Meier curve, log-rank test and Cox proportional hazard regression model were used for all survival analyses in this study. The correlation analysis between the two variables used Spearman's or Pearson's test; P < 0.05 were considered significant. All statistical analyses were processed by the R software (Version 4.0.2).




RESULTS


Differential Expression of TREM2 Between Tumor and Normal Tissue Samples

We analyzed physiologic TREM2 gene expression levels across tissues, using the GTEx data set (Figure 1A). Expression levels were highest in lung tissue, while most other normal tissues expressed low levels of TREM2. Relative TREM2 expression levels across different cell lines from CCLE data are presented in Figure 1B. In most normal cells, TREM2 expression levels were relatively low (p < 0.001), consistent with the results of analysis of GTEx data.


[image: Figure 1]
FIGURE 1. Differential expression of TREM2. (A) TREM2 expression in normal tissues. (B) TREM2 expression in tumor cell lines. (C) TREM2 expression in 33 types of cancer. (D) Comparison of TREM2 expression between tumor and normal samples. *P < 0.05, **P < 0.01, ***P < 0.001.


Next, we analyzed TREM2 expression levels in various cancers and ranked them from low to high (Figure 1C). All cancers expressed TREM2, with the highest levels in glioblastoma multiforme (GBM) and the lowest in LAML. We also compared TREM2 expression levels between cancer and matched normal samples from 33 cancers, based on TCGA data (Figure 1D). Except for those cancers where no normal tissue data was available, significant differences in TREM2 expression were detected between tumor and normal tissue in 18 types of cancer. Among them, TREM2 was highly expressed in HNSC, COAD, uterine corpus endometrial carcinoma, LIHC, cholangiocarcinoma (CHOL), stomach adenocarcinoma (STAD), prostate adenocarcinoma (PRAD), kidney renal clear cell carcinoma (KIRC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), kidney renal papillary cell carcinoma (KIRP), CESC, thyroid carcinoma (THCA), kidney chromophobe (KICH), GBM, and esophageal carcinoma (ESCA). In contrast, TREM2 levels were downregulated in tumor relative to normal tissues in LUSC and LUAD. Notably the largest difference between expression of TREM2 in cancer and normal tissues was for KIRP and KIRC; however, there was no significant difference in TREM2 levels between rectum adenocarcinoma (READ) and non-tumor tissues. Some cancers only had very few normal samples (for example, there were only data from two normal tissue samples in the sarcoma (SARC) dataset) and differences were not significant, likely because of the small number of samples.

Furthermore, to evaluate TREM2 expression at the protein level, we analyzed IHC results provided by the HPA database and compared the results with TREM2 gene expression data from TCGA. As shown in Figures 2A–G, the results of analysis of data from these two databases were consistent with one another. Normal liver, colon, skeletal muscle, and breast tissues had moderate TREM2 IHC staining, while tumor tissues had strong staining. Normal cervix tissue samples had weak TREM2 staining, while tumor tissues had moderate staining. Conversely, normal lung tissues had moderate TREM2 staining, while LUSC and LUAD had weak or no TREM2 staining.


[image: Figure 2]
FIGURE 2. Comparison of TREM2 gene expression between normal and tumor tissues (left) and immunohistochemistry images in normal (middle) and tumor (right) tissues. TREM2 protein expression was significantly higher in liver hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and breast invasive carcinoma (BRCA) tissues than normal tissues. (A) Liver. (B) Colon. (C) Skeletal muscle. (D) Cervix. (E) Breast. (F,G) Lung. ****P < 0.0001.




Prognostic Value of TREM2 Across Cancers

To study the association between TREM2 expression level and prognosis, we performed a survival association analysis for each cancer, including OS, DSS, DFI, and PFI. Cox proportional hazards model analysis showed that TREM2 expression levels were associated with OS in CESC (p = 0.030), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) (p = 0.009), KIRC (p = 0.022), KIRP (p = 0.009), brain lower grade glioma (LGG) (p = 0.001), LIHC (p = 0.002), LUAD (p = 0.036), skin cutaneous melanoma (SKCM) (p = 0.027), and THCA (p = 0.045) (Figure 3A). Further, TREM2 was a high-risk gene in KIRC, LGG, and LIHC, while it was a low-risk gene in other types of cancer, particularly DBLC (hazard ratio = 0.3000). Kaplan-Meier survival analysis also demonstrated that among patients with CESC (Figure 3D; p = 0.021), DLBC (Figure 3E; p = 0.009), LUAD (Figure 3H; p = 0.020), THCA (Figure 3I; p = 0.013), and SKCM (Figure 3G, p = 0.029), those with high levels of TREM2 had longer survival times, while in patients with LGG (Figure 3B; P = 0.003), LIHC (Figure 3C; p = 0.006), and KIRC (Figure 3F; p = 0.014), high TREM2 expression was associated with poor OS.


[image: Figure 3]
FIGURE 3. Association between TREM2 expression and overall survival time in days (OS). (A) Forest plot of OS associations in 33 types of tumor. (B–I) Kaplan-Meier analysis of the association between TREM2 expression and OS.


Moreover, analysis of DSS data (Figure 4A) revealed associations between low TREM2 expression and poor prognosis in patients with CESC (P = 0.007), KIRP (p = 0.006), and THCA (p = 0.001); however, in patients with LGG (p < 0.001) and LIHC (p = 0.036), TREM2 expression exhibited the opposite relationship with prognosis. Kaplan-Meier survival analysis revealed a correlation between TREM2 expression level and poor prognosis in patients with CESC (Figure 4B; p = 0.002), THCA (Figure 4C; p = 0.003), and LGG (Figure 4D; p = 0.002). No correlation was detected between TREM2 expression and DFI in any type of cancer (Figure 4E; all p > 0.05); however, significant relationships were detected in KIRP (Figure 4F; p = 0.020), CESC (Figure 4G; p = 0.037), and PCPG (Figure 4H; p = 0.028) by KM survival analysis. Regarding associations between TREM2 expression and PFI, forest plots showed associations between high expression and poor PFI in LGG (p < 0.001) and PRAD (p < 0.001), while low expression was associated with poor PFI in patients with CESC (p = 0.007) and DLBC (p = 0.007) (Figure 5A). KM analysis showed that individuals with in CESC (Figure 5B; p = 0.001) and DLBC (Figure 5E; p = 0.003) and high levels of TREM2 expression had longer survival times, while patients with LGG (Figure 5C; p = 0.005) and PRAD (Figure 5D; p < 0.001) and high TREM2 expression had poor PFI.


[image: Figure 4]
FIGURE 4. Association between TREM2 expression levels and disease-specific survival (DSS) and disease-free interval (DFI). (A) Forest plot of association of TREM2 expression and DSS in 33 types of tumor. (B–D) Kaplan-Meier analysis of the association between TREM2 expression and DSS. (E) Forest plot of association of TREM2 with DFI for 33 types of tumor. (F–H) Kaplan-Meier analysis of the association between TREM2 expression and DFI.
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FIGURE 5. Association between TREM2 expression and progression-free interval (PFI). (A) Forest plot of PFI association with TREM2 expression in 33 tumor types. (B–E) Kaplan-Meier analysis of the association between TREM2 expression and PFI.




Correlation of TREM2 Expression With Clinical Phenotypes in Various Cancers

Next, we examined the differential expression of TREM2 according to age for patients with each tumor type and found that those aged ≥ 65 years with LUAD (Figure 6B; p = 0.036), BRCA (Figure 6C; p = 0.0036), PRAD (Figure 6D; p = 0.0006), SARC (Figure 6E; p = 0.015), and thymoma (THYM) (Figure 6F; p = 0.035) had higher expression levels, while patients with CHOL < 65 years had higher TREM2 expression levels (Figure 6A; p = 0.0032). No significant correlations between age and TREM2 expression were detected in patients with other cancers.
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FIGURE 6. Association between TREM2 expression and age in (A) cholangiocarcinoma (CHOL), (B) lung adenocarcinoma (LUAD), (C) breast invasive carcinoma (BRCA), (D) prostate adenocarcinoma (PRAD), (E) sarcoma (SARC), and (F) thymoma (THYM).


We also analyzed the relevance of tumor stage, and found that TREM2 expression significantly correlated with tumor stage in thirteen types of cancer, including BLCA, BRCA, COAD, ESCA, KICH, KIRC, KIRP, LUAD, mesothelioma (MESO), READ, STAD, testicular germ cell tumors (TGCT), and THCA (Supplementary Figure 1). Notably, the majority of significant differences in TREM2 expression were between stage I and II tumors (Figure 7). Interestingly, as shown in Figure 7, TREM2 expression increased from stage I to stage II, other than in patients with KICH (Figure 7C; p = 0.031) and THCA (Figure 7G; p = 0.0041). Although the difference between stage I and II tumors was significant, differences between higher stage tumors were relatively small and not statistically significant in most types of cancer.
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FIGURE 7. Association between TREM2 expression and tumor stage in (A) colon adenocarcinoma (COAD), (B) esophageal carcinoma (ESCA), (C) kidney chromophobe (KICH), (D) rectum adenocarcinoma (READ), (E) stomach adenocarcinoma (STAD), (F) testicular germ cell tumors (TGCT), and (G) thyroid carcinoma (THCA).




Correlations of TREM2 Expression Levels With Tumor Mutation Burden, Tumor Microsatellite Instability, and Mismatch Repair Genes

Subsequently we investigated whether there were correlations between TREM2 expression levels and TMB and MSI, which both have essential connections with the sensitivity of immune checkpoint inhibitors. Hence, we studied the relationships between levels of MMR genes, including MLH1, MSH2, MSH6, PMS2, and EPCAM, and those of TREM2. The results demonstrated that, in 12 types of tumors, including breast cancer, colorectal cancer, lung cancer, glioma, and kidney cancer, TREM2 expression was related to TMB (Figure 8A). In another 12 types of tumor, including colorectal cancer, lung cancer, stomach cancer, and lymphoma, TREM2 expression was related to MSI (Figure 8B). Figure 8C illustrates the correlations between TREM2 expression levels and those of separate MMR genes. In most tumors, except for LIHC, MMR gene expression was clearly and significantly negatively correlated with TREM2 levels.


[image: Figure 8]
FIGURE 8. Associations between TREM2 expression and tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR). (A) Heatmap illustrating the relationship between TREM2 and TMB. The top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient *p < 0.05, **p < 0.01, and***p < 0.001. (B) Heatmap illustrating the relationship between TREM2 and MSI. The top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient *p < 0.05, **p < 0.01, and ***p < 0.001. (C) Heatmap illustrating the association between TREM2 expression and MMR genes. For each pair, the top left triangle represents the P-value, and the bottom right triangle represents the correlation coefficient *p < 0.05, **p < 0.01, and ***p < 0.001.




Relationship Between TREM2 Expression and the Tumor Microenvironment

An increasing number of reports indicate that the tumor immune microenvironment has a vital role in tumor occurrence and development (22, 23). Hence, it is important to further explore the pan-cancer relationship between TME and TREM2 expression. The ESTIMATE algorithm was used to calculate the stromal and immune cell scores in 33 types of cancer, and the relationships between TREM2 expression levels and these two scores analyzed. Our results reveal that, in DLBC, LAML, and THYM, TREM2 expression was significantly positively correlated with immune scores, as well as with stromal scores in pan-cancer analysis, except for in CHOL, DLBC, MESO, and LAML. The five tumors with the highest correlation coefficients are presented in Figure 9; the results for other cancers are shown in Supplementary Figures 2, 3.


[image: Figure 9]
FIGURE 9. Five tumors with the highest correlation coefficients between TREM2 expression and the tumor microenvironment. (A) Correlation between TREM2 and immune scores in kidney chromophobe (KICH), brain lower grade glioma (LGG), thyroid carcinoma (THCA), bladder urothelial carcinoma (BLCA), and kidney renal papillary cell carcinoma (KIRP). (B) Correlation between TREM2 and stromal scores in BLCA, colon adenocarcinoma (COAD), rectum adenocarcinoma (READ), kidney chromophobe (KICH), and LGG.




Relationship Between TREM2 Expression Levels and Levels of Tumor Immune Cell Infiltration

We next examined the relationship between TREM2 expression levels and the levels of infiltration of 26 immune-related cells. Our data demonstrate that levels of immune cell infiltration were significantly associated with TREM2 expression in most types of cancer (Supplementary Table 1). Six tumors, including BRCA (n = 18), CESC (n = 19), KIRC (n = 15), LUSC (n = 18), SKCM (n = 18), and STAD (n = 15), with the highest levels of correlation between TREM2 expression and degree of immune cell infiltration were screened for further analyses (Table 1). TREM2 expression levels were negatively correlated with levels of infiltrating memory B cells, naïve B cells, dendritic cells, eosinophils, lymphocytes, and NK cells in the six tumors analyzed. Further, TREM2 expression levels were correlated with multiple different subgroups of infiltrating macrophages. For example, TREM2 expression was negatively correlated with the levels of infiltrating M0 macrophages in BRCA and CESC, while it was positively associated with levels of infiltrating M1 macrophages, except in patients with BRCA. Similarly, there were positive correlations between TREM2 expression and levels of infiltrating M2 macrophages in these six tumors.


Table 1. Relationship between TREM2 expression and immune cell infiltration in different cancers.

[image: Table 1]

Moreover, diverse correlations were detected between TREM2 expression levels and different subsets of tumor infiltrating T cells. TREM2 expression was negatively correlated with the levels of infiltrating CD4 memory T cells (except in LUSC) and of infiltrating CD4 naïve T cells, and follicular helper T cells; however, it was positively correlated with levels of infiltrating CD8 and regulatory T cells (Tregs). Tumors with the highest correlation coefficients between the degree of infiltration and TREM2 expression for each type of immune cell are presented in Figure 10; data for other tumors are included in Supplementary Table 1.


[image: Figure 10]
FIGURE 10. Relationship between TREM2 expression and tumor infiltration of different immune cells.


Furthermore, we conducted gene co-expression analyses to explore the relationships between TREM2 expression and immune-related genes in 33 tumors. The analyzed genes encoded MHC, immune activation, immunosuppressive, chemokine, and chemokine receptor proteins. The resulting heatmap indicated that almost all immune-related genes were co-expressed with TREM2 (Figure 11) and the majority were positively correlated with TREM2 in all types of tumor, except DLBC and LAML (p < 0.05).


[image: Figure 11]
FIGURE 11. Co-expression of TREM2 and immune-related genes. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.




Correlation of TREM2 Expression With DNA Methylation

We calculated the levels of correlation between TREM2 promoter methylation using the cBioPortal data set and identified significant correlations between gene expression and methylation in 20 tumors (Supplementary Figure 4). In STAD, LUAD, LUSC, and TGGT, there were negative correlations between TREM2 expression and promoter methylation levels. The five strongest positive correlations (LGG, GBM, uveal melanoma (UVM), KICH, and MESO) and one negative correlation (LUSC) are presented in Figure 12A. Further, we conducted Kaplan-Meier survival analysis to research the relationship between TREM2 promoter methylation and patient prognosis. TREM2 methylation level was a protective factor in patients with mesothelioma, uveal melanoma, and liver cancer, in terms of OS (Figure 12B). Regarding DSS, TREM2 methylation was a protective factor in patients with UVM and KIRP (Figure 12C), while TREM2 methylation level was only positively correlated with DFI in patients with KIRP (Figure 12D). Moreover, analysis of PFI data revealed an association between low TREM2 methylation level and poor prognosis in patients with KICH, kidney renal papillary cell carcinoma, LGG, MESO, and PRAD (Figure 12E).
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FIGURE 12. Correlation between TREM2 expression and gene promoter methylation. (A) Correlation between TREM2 expression and gene promoter methylation in brain lower grade glioma (LGG), glioblastoma multiforme (GBM), uveal melanoma (UVM), kidney chromophobe (KICH), mesothelioma (MESO), and lung squamous cell carcinoma (LUSC). (B) Correlation between TREM2 methylation overall survival in MESO, UVM, and liver hepatocellular carcinoma (LIHC). (C) Correlation between TREM2 methylation and disease-specific survival in UVM and kidney renal papillary cell carcinoma (KIRP). (D) Correlation between TREM2 methylation and disease-free interval in KIRP. (E) Correlation between TREM2 methylation and progression-free interval in KICH, kidney renal papillary cell carcinoma (KIPR), LGG, MESO, and prostate adenocarcinoma (PRAD).




GSVA and GSEA

To investigate the biological significance of TREM2 expression in different tumor tissues, we conducted GESA and GSVA. The results of GO functional annotation and KEGG pathway analysis are shown in Figure 13. The data indicate that TREM2 positively regulates cell adhesion and several immune-related functions in LGG and KICH, including B/T cell activation, immune responses, and immune regulation and signaling pathways. In contrast, TREM2 is predicted to be a negative regulator of the ribosome, RNA binding, snRNA, and other metabolic processes in CESC, STAD, KIRP, ovarian serous cystadenocarcinoma (OV), READ, and SKCM (Figure 13A). In CESC, KICH, KIRP, LGG, READ, and SKCM, TREM2 expression was positively correlated with hematopoietic cell lineage, Leishmania infection, chemokine signaling pathway, and some immune-related pathways, including allograft rejection, B/T cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, and intestinal immune network for IgA production. Contrasting results were found for ascorbate and alternate metabolism and olfactory transduction in STAD and OV tumor cells (Figure 13B).


[image: Figure 13]
FIGURE 13. Results of GSEA. (A) GO functional annotation of TREM2 in various cancers. (B) KEGG pathway analysis of TREM2 in multiple cancers. Curves of different colors show different functions or pathways regulated in different cancers. Peaks on the upward curve indicate positive regulation and peaks on the downward curve indicate negative regulation.


We also performed GSVA to further explore the biological significance of TREM2 expression in the above eight tumors. The top 15 pathways significantly positively and negatively associated with TREM2 expression in each tumor are presented in Figure 14. The results demonstrate that TREM2 expression is positively associated with several immune cell-related pathways, including B, CD4 T, and CD8 T cells, and immune factor-related pathways such as TNF, cell migration, and synaptic pruning. In contrast, TREM2 expression was negatively correlated with cell cycle-related pathways and specific metabolic pathways, such as glucose, glycosylation.
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FIGURE 14. Results of GSVA. Yellow bars show the 15 pathways with the most significant positive correlation and blue bars show the 15 pathways with the most significant negative correlations. Horizontal axis represents the correlation coefficient. (A) Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). (B) Kidney chromophobe (KICH). (C) Kidney renal papillary cell carcinoma (KIRP). (D) Brain lower grade glioma (LGG). (E) Ovarian serous cystadenocarcinoma (OV). (F) Rectum adenocarcinoma (READ). (G) Skin cutaneous melanoma (SKCM). (H) Stomach adenocarcinoma (STAD).





DISCUSSION

Our research shows that the TREM2 gene is highly expressed in 16 types of cancer, and IHC analysis confirms this tendency at the protein level. The results for glioma, gastric cancer, renal cancer, and liver cancer were similar to those of previous research (14, 15, 24, 25); however, Tang et al. (11) showed that TREM2 expression was decreased in hepatoma cells and most human HCC tissues, which contradicts our current results, possibly because more of the samples analyzed in our study were derived from tumors in situ, rather than metastases. Regarding colorectal carcinoma, our findings challenge those of previous research (12), which indicated that TREM2 is a potential prognostic biomarker, with expression downregulated in tumor tissues. This discrepancy may be due to differences in tumor samples, as the previous research included more highly proliferative colon cancers, with a focus on metastases. Interestingly, TREM2 expression levels in LUSC and LUAD were lower than those in normal tissues. Although the expression level of TREM2 was generally low in the entire tumor tissue, Yao et al. (26) reported that TREM2 expression was up-regulated on monocytes from patients with lung cancer compared with those from healthy individuals.

Our Kaplan-Meier survival analysis using TCGA data demonstrated that high TREM2 expression was linked to poor prognosis in LGG. Similarly, TREM2 expression was previously reported as associated with shorter survival time in patients with gastric cancer (14). Moreover, a recent study showed that TREM expression in peripheral blood mononuclear cells can serve as a prognostic indicator in patients with high-grade glioma (27). Our results also clarified that up-regulation of TREM2 expression is associated with poor prognosis in patients with renal cancer, and previous studies have demonstrated that TREM2 acts as an oncogene in the development of renal cell carcinoma (15). In contrast, high TREM2 expression is associated with good prognosis in patients with CESC, LUAD, and THCA. Regarding LIHC, our research reached the opposite conclusion from those of previous studies (25, 28).

In addition, we discovered that TREM2 expression is related to age in some types of cancer. TREM2 expression was lower in younger patients with LUAD, BRCA, PRAD, SARC, and THYM, while lower TREM2 expression was associated with older age in patients with CHOL. These results may have significance in guiding the choice of immunotherapy options in patients from different age groups. Our study also revealed that TREM2 expression was correlated with tumor stage in the majority of cancers, and was particularly different between stage I and II tumors. TREM2 expression on lung macrophages was previously reported to be positively correlated with pathological stage in lung cancer (13). These findings clearly demonstrate that TREM2 can be used as a biomarker to determine the prognosis of various cancers. Further, our study explored the relationship between TREM2 promoter methylation and cancer for the first time. We found that TREM2 expression was correlated with DNA methylation, and that TREM2 methylation level could serve as a biomarker of prognosis in patients with cancer.

TMB is a promising pan-cancer predictive biomarker (29) and can guide immunotherapy in the era of precision medicine (30). Previous research has shown that TMB can be used as a biomarker to improve immunotherapy efficacy in non-small-cell lung (31) and colorectal (32) cancers. Further, TMB can also predict prognosis after immunotherapy in pan-cancer patients (33). MSI is also an important biomarker in immune-checkpoint inhibitors (ICI) (32, 34). High-frequency MSI in colorectal cancer is an independent predictor of clinical characteristics and prognosis (35). Our study demonstrated that TREM2 expression is correlated with TMB in 12 cancer types and with MSI in 12 cancer types. This may indicate that the level of TMER2 expression will affect the TMB and MSI of cancer, thereby affecting the patient's response to immune checkpoint suppression therapy. This will provide a new reference for the prognosis of immunotherapy. We also found that, in most tumors, except for LIHC, TREM2 expression is negatively correlated with MMR gene expression. Based on existing research and our findings, we infer that tumors with high TREM2 expression, and high TMB and MSI may have a better prognosis after ICI treatment in cancers where TREM2 expression is positively correlated with TMB.

Our results show that TREM2 plays an essential role in cancer immunity. TME features serve as markers for evaluating tumor cell responses to immunotherapy and influence clinical outcomes (22). According to ESTIMATE scores, there were positive correlations between TREM2 expression and both stromal and immune cell content in the TME of 30 cancers. Tumor-infiltrating immune cells have important impacts on the occurrence and development of tumors and can antagonize or promote tumor occurrence and development (23). Previous research has reported that TREM2 expression functions in intracellular immunosuppression, and TREM2 expression can be induced in myeloid cells (36, 37). Xiong et al. (38) identified TREM2 overexpressing macrophage subpopulations and gamma delta T cell subpopulations in patients with melanoma who did not respond to immunotherapy. Trem2 gene knockout model mice are more resistant to the growth of various cancers, and checkpoint immunotherapy can be improved by the TREM2 function of modifying tumor myeloid infiltrates (9). Our research further clarifies that TREM2 has a broader range of tumor applicability and confirms that TREM2 expression is closely involved in the biological processes of immune cells and immune-related molecules across most cancers. Further, our study also revealed the co-expression of TREM2 with genes encoding MHC, immune activation, immunosuppressive, chemokines, and chemokine receptor proteins. These results all indicate that expression of TREM2 is closely related to immune infiltration of tumor cells, affects patient prognosis, and proposes new targets for the development of immunosuppressants.

Furthermore, our enrichment analyses indicated that TREM2 can potentially impact cancer etiology or pathogenesis by functioning in cell adhesion; B/T cell activation, immune response, immune regulating, and signaling; RNA metabolism; and metabolic pathways. These data are consistent with previously published articles, indicating that expression of the TREM2 receptor signal on myeloid cells is regulated by the B cell activation linker and non-T cell activation linker proteins, and affects the macrophage inflammatory response (39) and activating Wnt/β-Catenin pathway (40).

In summary, our first pan-cancer analyses of TREM2 indicates that this factor is differentially expressed between tumor and normal tissues and reveals correlations of TREM2 expression with clinical prognosis and DNA methylation. Our findings suggest that TREM2 can be served as an independent prognostic factor of many tumors and for different tumors, the level of its expression level will bring different prognostic outcomes, which needs to be further studied for the specific role of TREM2 in each cancer. Moreover, TREM2 expression was associated with TMB, MSI, and immune cell infiltration across various cancer types. Its impact on tumor immunity also varies with tumor types. These findings may help to elucidate the role of TREM2 in tumorigenesis and development, and can provide a reference for the realization of more precise and personalized immunotherapy in the future.
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Background

MicroRNAs (miRNAs) have been discovered to dictate the development of various tumors. However, studies on the roles of miRNAs in the progression of gastric cancer (GC) are still lacking.



Methods

Herein, by analyzing GC cell lines and patients samples, we observed that miR-148b-5p was significantly downregulated in GC. We also confirmed that miR-148b-5p overexpression significantly inhibited GC cell proliferation and invasion in vitro and in vivo.



Results

Overexpression of miR-148b-5p not only reprogrammed the metabolic properties of GC but also regulated the immune microenvironment by shifting lymphocyte and myeloid populations. Mechanistically, ATPIF1, an important glycolysis-associated gene, was identified as a direct target of miR-148b-5p and mediated the effect of miR-148b-5p. Notably, the low level of miR-148b-5p was significantly related with poor prognosis of GC patients (P < 0.001). Importantly, the levels of miR-148b-5p significantly changed the sensitivity of GC cells to several anti-cancer drugs (Doxorubicin, P < 0.05, Paclitaxel, P < 0.01, Docetaxel, P < 0.05).



Conclusions

Targeting miR-148b-5p inhibits immunity microenvironment and gastric cancer progression.
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Background

Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer death in the world (1). Even though its overall mortality rate significantly reduced in the last decade, GC has been shown to be still the third primary cause of tumor-associated death with approximately 720,000 deaths annually (2). In order to decrease the incidence and mortality of GC, improve the techniques of diagnosis and staging, and develop efficient therapeutic methods, the most important thing we first need to do is to further elucidate the underlying mechanisms of the carcinogenesis of GC.

The mitochondrial F1Fo-ATPsynthase catalyzes the synthesis of cellular ATP and is the master of oxidative phosphorylation (OXPHOS) (3). The ATPase inhibitory factor 1 (ATPIF1) is the most characterized biological inhibitor of the F1Fo-ATPsynthase (4). We previously reported that ATPIF1 upregulation resulted in an increased aerobic glycolysis in hepatocellular carcinoma (HCC) cells (4). By contrast, inhibition of ATPIF1 promoted OXPHOS due to reversal of the F1F0-ATP synthase, thus inhibiting HCC development (4). Thus, the control of ATPIF1 expression and activity is crucial as a strategy for producing novel agents to inhibit cancer development. However, very little is known about its role and regulation in GC.

MicroRNAs (miRNAs) are a group of endogenously short (about 17–26 nucleotides in length) conserved non-coding RNAs (5). Via binding to the 3′untranslated region (3′UTR) of their target gene mRNA, miRNA inhibits protein expression (6). Many literatures have summarized the roles of miRNAs in almost all pathological and physiological and pathological conditions, including the progression of tumors (7). Intriguingly, up to the difference of genes they target, miRNAs can switch from oncogenes to tumor suppressors (8). Recently, miR-148b-5p was suggested to play a critical role in tumor (9). However, the role, action mechanism, and potential significance of this miRNA in GC treatment are not clearly elucidated.

In this study, we aimed to reveal the effects of miR-148b-5p on GC cell proliferation, migration, metabolism, and immune microenvironment which remain unclear so far. Our new findings about the effects of miR-148b-5p on GC progression will certainly be helpful to elucidate and confirm several promising therapeutic targets for GC.



Methods


Cell Culture, Cell Counting, and Reagents

GES-1, NCI-N87, MKN28, SGC7901, AGS, MKN45, MGC803, and KATOIII cell lines were collected from Rutgers University. Almost all of these cells were cultured in Hyclone™ RPMI-1640 media (Invitrogen) containing 10% fetal bovine serum (FBS) except SGC7901, and GES-1 cells were cultured in Dulbecco’s modified Eagles medium (DMEM, Invitrogen) containing 10% FBS and KATOIII was supplemented with 20% FBS. All mediums were added with 1% penicillin/streptomycin (Invitrogen). These cells were grown in a humidified incubator under 5% CO2 at 37°C. Doxorubicin, Paditaxel, and Docetaxel were obtained from Sigma. Indicated GC cells were plated at 5.5 × 104 and 1.5 × 105 cells per well within 12-well plates, respectively. 16 h later, the indicated reagents were added, and cells were grown for 4 days, and then cell numbers were counted.



Oligonucleotide, Plasmid Transfection, shRNA, and Bioinformatics Analysis

To figure out the possible downstream target genes of miR-148b-5p, three online software programs such as miRDB, TargetScan, and miRNA.org were used to predict the possible target genes of miR-148b-5p. MiR-148b-5p, miR-148b-5p inhibitor, short interfering RNA (siRNA) against ATPIF1 and negative control were purchased from Sigma and OriGene Technologies, respectively. Lipofectamine 3000 (Thermo Fisher Scientific) was used to transfect control vector and vector without the 3′-UTR of ATPIF1 or other plasmids in accordance with the manufacturer’s instructions. The lentiviral vectors were transfected into GC cells with a multiplicity of infection (MOI) of 40 to 50 in the presence of polybrene (5 μg/ml). At 48 h after transfection, stable cell lines were generated after puromycin (Sigma) selection (2 μg/ml), and gene silencing was verified by RT-qPCR and Western blot analysis. Then these cells were collected to perform western blot analysis assays and other biological assays. The ATPIF1 targeting sequences for the successfully knocking down ATPIF1 expression are:

5′-GGCGCTGGCTCCATCCGAGAAGCTGGTGG-3′ (cat#TG709527B) and 5′-ACTCGTCGGAGAGCATGGATTCGGGCGCT-3′ (cat# TG709527C).



ELISA

The supernatants of indicated cell culture were collected, and the levels of TNFα, IL6, and CSF1 were quantified using Qauantikine ELISA Kit (R&D Systems).



Profiling of Immune Cells

The cells from the indicated tumor tissue were isolated as described previously with some modifications (10). Briefly, single-cell suspensions were pre-incubated with anti-Fc receptor antibodies (BD Biosciences), stained for 30 min at 4°C, washed twice, and analyzed by flow cytometry to profile all immune cells. The anti-mouse antibodies used for flow cytometry were as follows: Gr-1 (RB6-8C5), CD45 (30-F11), TCRβ+CD11b (M1/70), F4/80 (BM8), CD11c (N418), (H57-597), CD8 (53-6.7), NK1.1 (PK136), Foxp3 (MF-14), (N418), Ly6G (1A8), CD206 (CD68C2), CD4 (RM4-5), and Ly6C (HK1.4).



Oxygen Consumption Rate and Extracellular Acidification Rate Measurements

Cells were plated in XF24 cell culture microplates, and ECAR and OCR were assessed using an XF24 Analyzer (Seahorse Bioscience) as described (7). Briefly, the indicated cells were plated into the polystyrene cell culture plates of XF24 at 30,000/well. After incubation for 24 h with DMEM medium in a humidified 37°C incubator with 10% CO2, trypsin was added, and the cell number in each well was determined. OCR (pmoles/min) and ECAR (mpH/min) were reported as absolute rates or indicated as a percentage of the baseline oxygen consumption and normalized against cell counts. Each result was shown in triplicate minimally. And all results were normalized according to the total protein contents. The Bradford Protein Analysis reagents (Thermo Fisher Scientific) were used to measure the protein levels.



Quantitative Reverse Transcription-Polymerase Chain Reaction

QRT-PCR was carried out according to previous publications (8). Briefly, RNA extraction was performed with TRIzol (Invitrogen) according to the manufacturer’s protocol. Ultraviolet spectrophotometry was used to determine the concentration and purity of RNA. A TaqMan Reverse Transcription Kit (Applied Biosystem) was used to perform reverse transcription (RT). ATaqMan miRNA Assay (Applied Biosystem) was used to perform qRT-PCR such as measuring the expression of miR-148b-5p gene. A SuperScript III One-Step RT-PCR kit (Applied Biosystem) was performed to examine ATPIF1 gene expression. The RT-PCR reaction mixture (20 µl) was subjected to 38 cycles: 30 s at 96°C, 30 s at 58°C, and 30 s at 72°C. For normalization, GAPDH, or U6 snRNA, and 18Ss RNA were used. The 2−ΔΔCt methods were used to analyze relative levels of gene expression. TNFα, IL6, ATPIF1, and CSF1 primers are as follows:

ATPIF1:5′-TTCGGTGTCGGGGTATGAAG-3′ and 5′-GCCCGTATCCATGCTATCCG-3′;

GAPDH:5′GACAAGCTTCCCGTTCTCAG-3′ and 5′-GAGTCAACGGATTTGGTCGT-3′;

IL6:5′-AGACAGCCACTCACCTCTTCAG-3′;5′-TTCTGCCAGTGCCTCTTTGCTG-3’;

TNFα: 5′-CTCTTCTGCCTGCTGCACTTTG-3′; 5′-ATGGGCTACAGGCTTGTCACTC-3′.

CSF1:5′-ATGGACACCTGAAGGTCCTG-3′;5′-GTTAGCATTGGGGGTGTTGT-3′.

U6:5′-GCTTCGGCAGCACATATACT-3′; 5′-GGTGCAGGGTCCGAGGTATT-3′; and 18S:5′-CCATCCAATCGGTAGTAGCG-3′and 5′-GTAACCCGTTGAACCCCATT-3′.



Assays of Luciferase Reporter

Wild type (WT) or ATPIF1 3′-UTR mutant with or without putative miR-148b-5p seed sequence was subcloned into the psiCHECK-2™construct (Promega). Then these reporters were transfected into indicated GC cells along with either miR-148b-5p mimic or control. Lipofectamine 3000 reagent was used for transfection. 48 h later, the Dual Luciferase Reporter Assay System was used to analyze the luciferase activity as described previously (6).



Performing Western Blotting

Ice-cold lysis buffer (4% sodium dodecyl sulfate, 0.1M Tris, pH 6.8, and 0.2 M dithiothreitol, and 20% glycerol) was used to collect the indicated cells or tissue samples. Then cell lysates were loaded onto 8–12% SDS-polyacrylamide gels, which was electrophoretically transferred onto PVDF membrane (Sigma). After blocking for 1 h using 10% non-fat milk in Tris-buffered saline with 1‰ Tween-20 (TBST), specified primary antibody such as ATPIF1 (1:500) from Santa Cruz and β-Actin (1:1,000) from Sigma as a loading control, respectively, was incubated in TBST containing 5% non-fat milk for overnight. Then secondary horseradish peroxidase (HRP)-linked antibodies (Bio-Rad) (1:1,000) was added for 1 h. Enhanced chemiluminescent substrate (Pierce) was used to detect the indicated proteins. ImageQuant TL software (Nonlinear Dynamics limited) was used to assay relative band intensities.



Xenograft Model of Mice GC

BALB/C nude mice (six-week old) were obtained from Nanjing Animal Center. Following the National Institute of Health Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee and the Affiliated Hospital Ethics Committee of Jilin University, we performed all animal experiments. Briefly, GC cells with the indicated lentivirus expression plasmid against miR-148b-5p or negative control (scramble) were subcutaneously injected into the flanks of nude mice. After seven weeks, the nude mice were killed through cervical dislocation, and the tumors were measured, and experiments such as western blots and IHC were performed as described previously (11).



Mice Metastasis Model

Indicated GC cells were injected into tail veins of female NOD/SCID mice (7 weeks old, 2 × 106 cells/mice). 8 weeks after inoculation, mice were sacrificed. The lungs and livers were collected and tumor nodules were counted. Hematoxylin and eosin (H&E) staining and immunohistochemistry with the above tissues were performed.



Patient and Tissue Samples

Tissue samples with GC were obtained from the First Affiliated Hospital, Jilin University from 2015 to 2018. All tissue samples from GC patients were kept at −80°C. The included patients gave their informed consent. The whole project was approved by the Ethics Committee of the First Affiliated Hospital of Jilin University.



Proliferation, 3D Cell Culture, Migration, and Invasion Assays

Cells were directly counted using a TC20 Automated Cell Counter (Bio-Rad). Cell proliferation was measured with the CellTiter-Glo Luminescent Cell viability Assay (Promega).

For 3D cell cultures, cells were seeded onto growth factor reduced Matrigel (Life science). Spheroid growth was monitored, and the dimensions were measured as described previously. Spheroids were stained using LIVE/DEAD Viability/Cytotoxicity Kit (Molecular Probes) for microscopic visualization.

Migration and invasion experiments were performed as described previously through using a Transwell inserts (8 µm pore, BD Falcon) with or without Matrigel (12). Briefly, the indicated cells were plated in top chambers. The lower chamber was put into with 500 µl of DMEM containing 10% FBS. After incubation for 48 h, a cotton swab was used to scrape off the cells in the upper chamber. 0.1% Crystal Violet was used to stain the fixed migrated cells. For quantification, the stained cells were extracted with 10% acetic acid, and the absorbance was determined at 570 mm.



Immunohistochemistry

Briefly, citric acid was used to incubate tissue sections for antigen retrieval. Then the sections were incubated with 3% H2O2 for 15 min to block the endogenous peroxidase. The primary antibody such as CD11b (1:500) or ATPIF1 (1:500) was added into the sections and incubated for overnight at 4°C. After washing, the appropriate secondary antibody was added into the tissue sections and incubated for I h at room temperature. Then staining with 3,3-diaminobenzidine and counterstaining with hematoxylin were carried out as previously described (13). Normal rabbit/mouse IgG antibodies functioned as negative control.



Statistical Analysis

GraphPad Prism was used for generating graphs and performing statistical tests. All statistics were calculated using SPSS software (version 17.0; SPSS Inc., USA). For 2 × 2 tables, we used the Fisher’s exact test. To compare the significance of two groups, two-way assay of variance analysis and Student’s t-test were used. In addition, two-tailed Student’s t-test was used to measure differences among groups. Most data represent the mean ± SD. A p <0.05 was considered significant statistically. *, **, or *** indicate P <0.05, P <0.01, P <0.001, respectively. All experiments were at least repeated three times.




Results


The Level of miR-148b-5p Is Significantly Decreased in GC and Associated With Poor Prognosis

To elucidate the roles of miR-148b-5p in GC, we first compared the expression levels of miR-148b-5p in the GC cell lines and normal stomach cells respectively. The qRT-PCR analysis indicated that compared with its expression in the normal gastric epithelial tissue, the level of miR-148b-5p was significantly decreased in all of GC cell lines (P < 0.001, Figure 1A). Additionally, we used qRT-PCR to analyze the paired GC tissues and non-tumor tissues in 12 patients. We found that the level of miR-148b-5p in tumor tissue was significantly lower than that in normal gastric epithelial tissue (P < 0.05, Figure 1B). It was also found that non-metastatic GC tissues had higher levels of miR-148b-5p when compared with metastatic GC tissues (P < 0.05, Figure 1C). Moreover, patients with lower level of miR-148b-5p exhibited shorter survival time, whereas the opposite results were observed with those with higher miR-148b-5p levels (P < 0.001, Figure 1D). Together, these findings strongly suggest that miR-148b-5p may be not only related to GC initiation and metastasis, but also taken as an importantly prognostic marker for GC patients.




Figure 1 | The level of miR-148-5p is significantly reduced in GC and tightly associated with poor prognosis. (A) The qRT-PCR analysis to measure the expression levels of miR-148b-5p in normal gastric epithelial cells and four GC cell lines. The result was normalized to the U6 expression. (B) The expression levels of miR-148b-5p in 12 pairs of GC patients. (C) The expression levels of miR-148b-5p in non-metastatic (N = 20) and metastatic tissues of GCs (N = 20) were analyzed by qRT-PCR. (D) Assays of Kaplan–Meier survival of 46 GC patients indicated that the lower expression of miR-148b-5p was associated with poor patient prognosis. *P < 0.05, ***P < 0.001.





MiR-148b-5p Reprograms Metabolic Pathways and Inhibits GC Development

To clarify the function of miR-148b-5p in the development of GC, we first used GC cell lines to perform the gain- and loss-of-function experiments of miR-148b-5p, respectively. The data indicated that miR-148b-5p overexpression significantly reduced the growth rate and the size of 3D-cultured tumor spheroids (P < 0.001, Figures 2A, B). Also, high levels of miR-148b-5p significantly reduced the migratory activity of GC cells (P < 0.0001, Figure 2C).




Figure 2 | MiR-148b-5p reprograms metabolic pathways and inhibits GC development. (A) CellTiter -Glo methods and reagents were used to examine the effects of miR-148b-5p on GC cell growth. (B) The effect of miR-148b-5p on 3D spheroid growth at day 10. (C) The effect of miR-148b-5p on GC cell migration at 24 h. (D) The effect of miR-148b-5p on GC by injecting the indicated cells into the fat pads of nude mice (n = 10/group). (E) The representative images of H&E staining and Ki67 IHC from tumors. (F) H&E staining indicates liver and lung metastatic nodules from GC. (G) OCR assay was performed as indicated. (H) ECAR assay was performed as indicated. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.



In vivo, we performed the injection of GC cells transfected with control and miR-148b-5p respectively into the flanks of nude mice. We found that miR-148b-5p overexpression not only inhibited the xenograft tumor growth but also decreased the number of Ki67+ cells (P < 0.001, Figures 2D, E). Furthermore, as compared with those from cells overexpressing miR-148b-5p, the tumors of mice xenograft from control cells often developed liver or lung metastases (Figure 2F).

Since glycolysis and oxidative phosphorylation determined the development of GC (14), we also examine the metabolic characteristics associated with miR-148b-5p. We found that as compared to the control groups, overexpression of miR-148b-5p significantly downregulated oxygen consumption rate (OCR) as well as extracellular acidification rate (ECAR) (Figures 2G, H).

Together, these data indicate that miR-148b-5p significantly inhibits GC growth and metastasis in vitro and in vivo.



ATPIF1 Is Identified as a Downstream Target of miR-148b-5p in GC Cells

Next, three miRNA databases (Target Scan, miRBD, and miRNA.org) were used to predict common downstream targets of miR-148b-5p in GC (15). It was found that ATPIF1, a mitochondrial ATPase inhibitor, might be a predicted target gene (Figure 3A). And analysis predicted a possible miR-148b-5p binding element within the 3′-untranslated region (3′-UTR) of ATPIF1 (Figure 3B). To test this hypothesis, we determined the effect of miR-148b-5p on the protein level of ATPIF1 in GC cells. Western blot data showed that the expression of ATPIF1 was remarkably higher in several GC cell lines than in normal control cell lines (Figure 3C). However, reconstitution of miR-148b-5p using an increasing-mimic significantly decreased the levels of ATPIF1 protein, while there was no notable change in the levels of beta-actin protein in SGC-7901 cells, indicating that ATPIF1 is a specific downstream target of miR-148b-5p (Figure 3D). Western blot analysis in AGS, MKN72, and MKN45 cells also indicated similar observation (Figures 3E–G). Furthermore, miR-148b-5p reconstitution significantly reduced the levels of ATPIF1 protein in dysplastic gastric organoids, as compared with controls (Figure 3H).




Figure 3 | ATPIF1 is identified as a downstream target of miR-148b-5p in GC cells. (A) Target gene of miR-148b-5p by predicted using three online databases. (B) One predicted binding motif of miR-148b-5p on the 3′-UTR of ATPIF1 was presented. (C) Western blot presented ATPIF1 protein expression levels in five GC cell lines (AGS, SGC-7901, MKN74, MKN45, and SNU-16) and four normal human gastric cells. (D) Western blot data indicated the effect of transient reconstitution of miR-148b-5p using a mimic (0–40 pmol) on the expression of ATPIF1 in SCG-7901 cells. The effects of reconstitution of miR-148b-5p on the expression of ATPIF1 in AGS cells (E), MKN74 cells (F), MKN45 cells (G), and mice GC organoids (H). The effects of of miR-148b-5p on WT or mutant ATPIF1-3′-UTR luciferase reporter in AGS (I) or MKN45 cells (J–L) The effects of miR-148b-5p on ATPIF1 mRNA gene expression level using qRT-PCR analysis in AGS and MKN45 cells. ***P < 0.001; n. s., no statistical difference.



In addition, we found that the mutation of ATPIF1 3′-UTR (lacking miR-148b-5p binding site) did not significantly affect luciferase reporter activity, while WT-ATPIF1 3′-UTR reporter luciferase value was decreased in these in AGS and MKN45 cells compared with control cells (P < 0.001, Figures 3I, J). Moreover, the significant differences in the levels of ATPIF1 mRNA were not observed after reconstitution of miR-148b-5p in MKN45 or AGS cells, compared with control cells (Figures 3K, L). These data suggest that miR-148b-5p directly binds to the 3′-UTR of ATPIF1, thereby reducing its protein levels in GC cells.



Restoration of ATPIF1 Significantly Rescues the Effects of miR-148b-5p on GC Progression

To verify that ATPIF1 mediated the downstream effects of miR-148b5p in GC cells, we first downregulated ATPIF1 level in MKN45 cells using siRNA (P < 0.001, Figures 4A, B), which results in the inhibition of GC cell proliferation, 3D tumor growth, and migratory activity (P < 0.001, Figures 4C–E). In contrast, ATPIF1 overexpression resulted in increased cell proliferation and migration in SCG-7901 cancer cells (data not shown). However, overexpression of ATPIF1 in miR-148b-5p–overexpressing SGC-7901 cells failed to induce such changes, indicating that the inhibitory effect of miR-148b-5p on GC cells depends on the protein levels of ATPIF1 (Figures 4F–H). Given that ATPIF1-mediated metabolic pathways such as glycolysis and OXPHOS had been reported to be widely involved in chemotherapeutic resistance (4), we examined the possible response to three chemotherapeutic agents in GC cells with miR-148b-5 overexpression. We found that miR-148b-5p overexpression significantly increased sensitivity to Doxorubicin (P < 0.05), Paditaxel (P < 0.001), and Docetaxel (P < 0.05) as compared with control cells (Figure 4I). These findings demonstrate that ATPIF1 is a key downstream effector of miR-148b-5p and that miR148b-5p transfection sensitizes GC cells to several cytotoxic chemotherapeutic agents.




Figure 4 | Restoration of ATPIF1 significantly rescues the effects of miR-148b-5p on GC progression. (A, B) The levels of ATPIF1 mRNA and protein after siRNA treatment. Three days after transfection, GC cell proliferation (C), 3D tumor growth (D) and migration assay (E) were examined respectively. (F) Western blots of ATIF1 levels were performed. And the proliferation (G) and migration assays (H) were conducted. (I) The effects of Paclitaxel, (100 nmol/L), Doxorubicin (0.3 mmol/L), and Docetaxel (10 nmol/L) on the cell viability of GC cells were examined after hours. The relative growth rate or viability after drug treatment was shown. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001; n. s., no statistical difference.





MiR-148b-5p Overexpression Reprograms GC Immune Microenvironment

Since the immunity microenvironment affects the progression of GC (16), we then performed the in vivo xenograft experiments. As shown by Figure 5A, the spleens of the mice injected with control-overexpressing GC cells indicated spleen enlargement while mice bearing miR-148b-5p-overexpressing tumors had significantly reduced spleen volumes (P < 0.01). Consistent with these findings, mice bearing the miR-148b-5p-overexpressing tumors were observed having a marked decrease of splenic CD11b+ myeloid cells as compared with the control group (P < 0.0001, Figure 5B). Furthermore, we found that several immune-related genes within GC tissues such as TNFa, IL-6, and Csf1 showed significantly negative association with the miR-148b-5p levels (Figure 5C). Downregulation of these cytokines at protein levels significantly decreased and was observed in tumor tissues (Figure 5D). The downregulation of above cytokines in the cells overexpressing miR-148b-5p were validated in AGS cells (Figure 5E). Meanwhile, the infiltration of CD11b+ myeloid cells was significantly reduced in cancers with miR-148b-5p-overexpressing GC cells (Figure 5F).




Figure 5 | MiR-148b-5p overexpression reprograms GC immune microenvironment. (A) Representative spleen pictures were presented and weight was measured from BALB/c nude mice xenograft bearing indicated GC cells. (B) Spleens tissues were stained by using CD11b antibody and its percentage was shown. (C) The levels of TNFa, IL-6, and CSF1 mRNA were analyzed using qRT-PCR in GC tissues of mice bearing mir-148b-5p overexpressing-MKN45 cells or not. (D) Secreted TNFα, IL-6, and CSF1 in GC cells were measured. (E) The levels of TNFα, IL-6, and CSF1 mRNA were analyzed using qRT-PCR in mice bearing mir-148b-5p overexpressing-AGS cells or not. (F) IHC staining were performed with TNFα and CD11b antibodies in GC tissues of mice bearing miR-148b-5p overexpressing-MKN45 cells or not. (G) Profiling of immune cell populations in in GC tissues of mice bearing miR-148b-5p overexpressing-MKN45 cells or not were performed using FACS analysis. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.001.



To more comprehensively examine the effects of the miR-148b-5p on the reprogramming of GC immune microenvironment, we collected the allograft tumors with miR-148b-5p overexpression in a syngeneic mouse GC model and used polychromatic flow cytometry to perform immune profiling. As compared with the control tumors, the miR-148b-5p-overexpressing GC tissues indicated the significant reductions in myeloid-derived suppressor cells (MDSCs), macrophages, and T regulatory cells in the miR-148b-5p-overexpressing GC tissues whereas the NK cells, CD4+ T cells, and CD8+ T cells were significantly increased (Figures 5Gi, ii), suggesting the effects of miR-148b-5p on the composition of various immune cells in the tumor microenvironment. Therefore, our data suggest that miR-148b-5p might promote GC growth and metastasis through reprogramming GC immune microenvironment beyond its role in metabolism.




Discussion

Dysregulation of miRNAs was known to play important roles in the pathological processes of various tumors, including GC (17). By analyzing the expression of miRNAs in GC patient samples and cell lines, we found that miR-148b-5p expression was downregulated in GC tissues and GC cell lines as compared to the controls, and that low levels of miR-148b-5p were related to poor prognosis for patients with GC. Loss-of-function experiments confirmed that the depletion of miR-148b-5p markedly increased the proliferation and invasion abilities of GC cells. In vivo, mice xenograft model demonstrated an inhibitory ability of miR-148b-5p in GC development. Furthermore, the infiltrating population of MDSC and macrophage and GC metabolism reprogramming were positively correlated with miR-148b-5p deficiency. Then we indicated that miR-148b-5p targeted ATPIF1 and inhibited GC cell proliferation. Importantly, a miR-148b-5p mimic or ATPIF1 inhibitor upregulated the therapeutic efficacy of anti-GC drugs in a subgroup of GC patients. Collectively, our results demonstrate that miR-148b-5p deficiency-mediated development of GC is partially attributed to the aberrant reprogramming in metabolism and tumor immunity microenvironment in GC, and that the miR-148b-5p/ATPIF1/TNFa plus IL6 and CSF1 axis establishes the groundwork to further develop more-personalized therapeutic methods for GC patients.

Human epidermal growth of receptor 2 (HER2, p185) overexpression has been shown to significantly contribute to the proliferation and survival of cancer cells (18). Although in GC, HER2 is not frequently expressed, clinicopathologically, its levels have been demonstrated to correlate strongly with GC types (19). Data provided herein elucidated that the downregulation of miR-148b-5p was mainly observed in GC cell lines (AGS, MKN45, MKN74, MGC803, and SGC7901 cell lines), which lack the HER2 protein. However, this change of miR-148b-5p was not observed in HER2-positive cell lines such as NCI-N87, MKN-7 and KATO-III (data not shown) (20). The similar findings were confirmed in the clinical samples. Therefore, we further investigated the effect of miR-148b-5p on HER2-negative GC cells. For the first time, our results indicate that miR-148b-5p acts as a tumor suppressor microRNA in HER2-negative GC cells. Moreover, we further identified ATPIF1 as a novel critical downstream effector of miR-148b-5p in GC even though one previous study demonstrated miR-29 regulating ATPIF1 level in breast cancer (21). In future study, we need to examine whether or not miR-148b-5p has similar effects on the HER2-positive GC cells.

This study also reveals another interesting finding that the miR-148b-5p reprograms the immune microenvironment in GC. Although most previous studies about tumor microenvironment primarily focused on molecules, cytokines, or other proteins secreted by cancer cells or immunological cells, the roles of miRNAs have recently gained increasing attention and greater emphasis (22). That is because the bidirectional infiltration of miRNAs between tumor cells and stromal cells has been shown playing critical roles and taken as a key factor in cancer progression (23). For example, the aberrant miRNA levels dictated the imbalance of Treg/Th17 cell ratio in epithelial ovarian cancer (24). The colon cancer cell migration and invasion were mainly ascribed to the aberrant miR-155 and miR-21 levels contained in the exosomes (25). Consistent with these previous findings, in this study, we identified a novel miR-148b-5p as a critical regulator of tumor immunity environment.

In addition, our data provided direct evidence which further reinforces the notion that tumor metabolism and cytokine-related pathway are associated with tumor immune inhibition (26). For the first time, we demonstrated that GCs with miR-148b-5p deficiency had not only lower levels of TNFa, IL6, and CSF1 but also less infiltration of CD8+T and NK cells than the control GCs. Moreover, we also observed a negative relationship between miR-148b-5p and MDSC cells while a positive relationship between TNFa or ATPIF1 and CD11b in GC tissues. All these findings reveal a close relationship between the miR-148b-5p/ATPIF1 axis and the tumor immunosuppressive microenvironment. In future study, we need to further determine that the administration of a miR-148b-5p mimics or ATPIF1 inhibitor could function with anti-PD1 treatment synergistically in immunocompetent GC models. Simultaneously, TNFa, IL6, and CSF1 were downregulated by the miR-148b-5p mimic administration. Thus, we can indicate that the miR-148b-5p/ATPIF1/TNFa plus IL6 and CSF1 axis is a vital mechanism regulating GC immunosuppression, suggesting that a subgroup of patients might benefit from miR-148b-5p mimics or ATPIF1 inhibitor administration.

Notably, our current study still has several limitations to be taken into account. Although a prominent difference in miR-148b-5p expression was demonstrated between GCs and the controls, we did not clarify the profiles of whole cellular miRNA in GCs. Another limitation is that our analysis on the mouse microenvironment in GC xenograft tumors might not fully represent the human microenvironment because we used severely immunocompromised mice. Thirdly, we did not describe one more comprehensive profiling of tumor microenvironment related to the different levels of miR-148b-5p. Further characterization of immune microenvironment in response to miR-148b-5p including characterization of diverse immune cell infiltration is needed to obtain more clear roles of miR-148b-5p in GC progression. Additionally, although our data identified ATPIF1 as a downstream effector, we cannot rule out miR-148b-5p possibly functioning through other target genes or other signal pathways. Therefore, to provide a rationale for therapies, the identification and verification of other targets, and their effects, are imperative.

In summary, this study provides the first evidence that miR-148b-5p acts as a tumor suppressor miRNA, and that miR-148b-5p deficiency induces GC development and immune tolerance via the miR-148b-5p/ATPIF1/TNFa plus IL6 and CSF1 axis. Importantly, a miR-148b-5p mimic or ATPIF1 inhibitor was shown to promote the efficacy of anti-GC drug treatment in a subgroup of GC patients.



Conclusions

These findings reveal previously unrecognized roles of tumor suppressor miR-148b-5p in GC development, suggesting the miR-148b-5p/ATPIF1 axis as a therapeutic target and potential prognostic biomarker for patients with GC.
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Non-small-cell lung cancers (NSCLCs) are largely classified into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), which have different therapeutic options according to its molecular profiles and immune checkpoint expression, especially PD-L1, which is a suppressive factor in the tumor microenvironment. The tumor microenvironment can be altered by the genomic mutations on specific innate immune genes as well as tumor suppressor genes, so it is essential to comprehend the association between tumor microenvironment and tumor suppressor genes to discover the promising immunotherapeutic strategy to overcome the resistance of immune check point blockade. In this study, we aimed to analyze how the somatic mutations in tumor suppressor genes affect the tumor immune microenvironment through a comprehensive analysis of mutational profiling on the representative tumor suppressor genes (TP53, CDKN2A, PTEN, RB1, BRCA1, BRCA2) and immune gene expression in The Cancer Genome Atlas (TCGA) 155 lung squamous cell carcinoma (LUSC) and 196 lung adenocarcinoma (LUAD) samples. Several microenvironmental factors, such as the infiltrating immune and stromal cells, were suppressed by the mutated tumor suppressor genes in LUSC, unlike in the LUAD samples. In particular, infiltrating immune cells such as macrophage, neutrophil, and dendritic cells were significantly reduced in tumors with mutated tumor suppressor genes’ group. In addition, the gene expressions for interleukin production and lymphocyte differentiation and PGC, C7, HGF, PLA2G2A, IL1RL1, CCR2, ALOX15B, CXCL11, FCN3 were significantly down-regulated, which were key immune genes for the cross-talk between LUSC microenvironment and tumor suppressors. Therefore, we generated evidence that TSG mutations in LUSC have an impact on tumor immune microenvironment, which suggests that TSG non-mutated patients will have the more inflamed tumors and are more likely to respond to immune checkpoint blockade therapy.




Keywords: tumor suppressor gene, tumor microenvironment, The Cancer Genome Atlas, lung squamous cell carcinoma, lung adenocarcinoma



Introduction

Lung cancer is one of the most common cancers and the cause of more than 25% of all cancer related deaths in men and women around the world (1, 2). Non-small-cell lung cancers (NSCLCs) consist of approximately 80% of lung cancers, which is classified into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and they have distinct molecular profiles and therapeutic options according to the genotypes (3). Especially, epidermal growth factor mutation (EGFR) tyrosine kinase inhibitor, which is widely used for the targeted therapy option and combination therapy with chemotherapy, has emerged as a promising treatment in LUAD patients, whereas LUSC has no targetable treatments for predisposed specific genetic alterations owing to the largely unknown underlying molecular mechanisms of LUSC pathogenesis (4–7).

The progression of cancer can be altered by the activity of specific innate immune cells, which have a significant association with the presence of tumor suppressors (8). The tumor-associated macrophages (TAMs) and regulatory B cells have proven to have a strong association with cancer progression and metastasis, and the mutations in the tumor suppressor genes could regulate the function of immune cells, particularly macrophage in preinvasive lesions (9–11). Additionally, the macrophages, which were differentiated from immature monocytes by cytokine, could enhance tumor suppressor activity via NF-kB pathways (12). The tumor mutation burden (TMB) and neoantigen burden are closely correlated with immune response including cytolytic activity and immune checkpoints (13, 14). Moreover, recent studies suggest that immunogenic gene expression is correlated with the response to therapy (15, 16).

The genomic alterations on tumor suppressor genes as well as mutational burden considering the immune gene expression profiles could provide the potential consequence of genomic alterations in TSG on the tumor microenvironment (TME) and immune checkpoints (17–19). Understanding the link between TME and tumor suppressors is indispensable to find the immune interaction between infiltrating immune and stromal cells and explore strategies to optimize immune checkpoint blockade therapy in NSCLC.

Therefore, we focused on the role of tumor suppressors on the immunity in TME to understand the fundamental mechanism of tumor suppressors in cancer immunity and predict the patient’s response to immunotherapy.



Materials and Methods


Samples and Pre-Processing

We used whole exome and transcriptome data of TCGA 155 LUSC and 196 LUAD samples, respectively. The 101 Korean LUSC cohort data which was previously published (20), was used for the validation of the study. IRB review for use of the TCGA patients data was exempted under TCGA policies which were in accordance with Common Rule. Also, the 101 Korean LUSC cohort was previously approved by the Institutional Review Board of Seoul National University Hospital

The data preprocessing was performed by the previously reported pipeline (20–22). The number of raw reads (HTSeq count for Ensembl annotated gene) was transformed to variance transformed data (R package ‘DESeq2’) for transcriptomic sequencing analysis. The HTseq count values were converted to Fragments Per Kilobase Million (FPKM) by R package ‘edgeR’. Also, the annotated VCF mutation files through the Genomic Data Commons Data Portal (GDC Data Portal) were assessed and downloaded for genomic analysis.



Classification of TSG Subtype and Mutational Profiling

The subtypes considering tumor suppressor genes (TSGs) were classified based on the presence and number of the non-synonymous somatic mutations (missense, nonsense, frame shift insertion, frame shift deletion, In-frame insertion, In-frame deletion, and splice site mutation) in several key TSGs (TP53, CDKN2A, PTEN, RB1, BRCA1, BRCA2), which were previously reported as the representative TSGs (23).

Considering the presence of mutated TSGs, we defined TSG non-mutated group as patients having no mutated TSGs, and TSG mutated group as patients having equal to or greater than one mutated TSGs. In addition, four subgroups were further defined as non-TSG group (no mutated TSGs), TSG-1 (one TSG mutation), TSG-2 (two TSG mutations), and TSG-3 (equal to or greater than three TSG mutations) by considering the number of the mutations on TSGs.

The mutation profiling on representative TSGs was categorized and visualized with the mutation types and frequency. The number of non-synonymous somatic mutations for each patient was computed and compared between defined subgroups across 155 TCGA LUSC samples.



Analysis of Differentially Expressed Genes

The up- or down-regulated differentially expressed genes (DEGs) of TSG mutated group compared to TSG non-mutated group and the adjusted p value were estimated by previously reported method and significance criteria (adjusted P  <  0.05, |Log2 (fold change)| ≥ 1, and base mean ≥ 100)(R package ‘DESeq’) (21). The gene enrichment analysis was performed by using the computed DEGs in the TSG loss subtype via Gene Ontology (GO) gene sets in the Molecular Signatures Database (MSigDB) (GSEA web version).



Estimation of Infiltrating Immune Cells and Immune Activity

Several immune factors such as the infiltrating immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophil, macrophages, and dendritic cells) and immune activity (stromal, immune, cytolytic score, and tumor purity) were predicted by Tumor IMune Estimation Resource (TIMER) and Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm (24, 25). The computed values for immune factors were statistically analyzed between subtypes considering the distribution and number of samples in each group.



Calculation of Gene Expression Level of Immune Genes

To represent the gene expression value, the variance stabilized transformations (VST) normalized expression level were converted from raw read counts (HTseq) by R package ‘DESeq2’, and the VST normalized expression of the selected immune genes in TSG subtypes was box-plotted with the corresponding Mann–Whitney U or unpaired Student t-test depending on the sample distribution with Shapiro–Wilk normality test (R package ‘ggplot2’) (26).



Characterization of Tumor Microenvironment and Clinical Association in TSG Loss Group

The clinical features such as TSG subtypes, gender, race, age, stage, smoking status, site of resection, location in lung parenchyma, new tumor event after initial treatment, person neoplasm cancer status, pT, pN, pM, dimension of sample/specimen (longest, shortest, and intermediate) were additionally summarized (Supplementary Table 1). The association of TSG subtypes with the immune checkpoint genes, clinical outcome, and parameters was analyzed and visualized with the statistical analysis and R package ‘ggplot2’. The expression (FPKM) of signature immune genes was adjusted to median-centered and log2 transformed by R package ‘edge R’ and Cluster 3.0.

Using the 144 TCGA LUSC samples who were provided with all clinical information, overall survival rate and hazardous ratio in TSG subtypes were computed by Kaplan–Meier estimates and a log-rank test (R packages ‘survival’ and ‘surviminer’) from the obtained TCGA clinical file (TMN stage, survival, age, sex, smoking status, location in lung parenchyma, dimension of sample/specimen, new tumor event after initial treatment), mutation load, and identified immune genes such as KLK5, PGC, C7, HGF, PLA2G2A, IL1RL1, CCR2, ALOX15B, CXCL11, and FCN3. Univariate and multivariable Cox regression models for overall survival were estimated by using the R package ‘surviminer’ in LUSC patients.




Results


Identification of TSG Subtypes in TCGA LUSC

In this study, the distribution of somatic nonsynonymous mutations and the classification of TSG subtypes according to the number of mutations in TSG were described across 155 TCGA LUSC samples, and the somatic mutations located on tumor suppressor genes were categorized with its mutational types and frequency (Figure 1).




Figure 1 | Identification of TSG subtypes in TCGA LUSC (n = 155). (A) The distribution of somatic nonsynonymous mutations (missense, nonsense, frame shift insertion, frame shift deletion, In-frame insertion, In-frame deletion, and splice site mutation) and TSG subtypes according to the number of mutations in TSGs were described across 155 TCGA LUSC samples, and the mutations on tumor suppressor genes were categorized with the mutation types and frequency. The four different indicators for the immune response (stromal and immune score, tumor purity, and cytolytic score) and infiltrating immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophil, macrophages, and dendritic cells) across the samples were displayed in each column. (B) The correlation between immune score and stromal score along with the mutation burden was plotted in each of the four TSG subtypes with Pearson’s correlation coefficient. (C) The immune factors (immune and stromal scores, tumor purity, mutation load, and cytolytic score) were box-plotted in four TSG subtypes. Each p-value was indicated by each of the subtypes (Kruskal–Wallis or one-way ANOVA test).



The TSG subtypes were defined by using the presence of the mutations in the six different tumor suppressor genes such as TP53, CDKN2A, PTEN, RB1, BRCA1, and BRCA2, which were previously reported as the representative TSGs (23). Two different subgroup classifications were applied to the LUSC samples according to the presence and the number of mutated TSGs.

Among the mutations in TSGs, the mutations encoding TP53 had the highest mutation frequency (78%), followed by CDKN2A (15%), PTEN (8%), BRCA1 (6%), BRCA2 (6%) in the order of frequency. Each TSG mutated and TSG non-mutated groups had different patterns in four indicators for the immune response [stromal score, immune score, tumor purity, and cytolytic activity score (CYT score)], which CYT score represented the degree of cell destruction by immune cells (27).

In order to identify the impact of TMB on the tumor microenvironment, the correlation between immune and stromal scores along with the TMB values was plotted according to the number of mutated TSGs, and each immunogenic and microenvironmental factor was compared in each four TSG subtypes (Figures 1B, C). The tumor microenvironment factors as represented by immune and stromal score, tumor purity as well as mutation burdens were statistically different between subtypes. However, there was no significant difference in correlations between stromal and immune scores among the four TSG subgroups (non-TSG: Pearson’s r  =  0.78; TSG-1 Pearson’s r  =  0.69; TSG-2: Pearson’s r  =  0.68; TSG-3: Pearson’s r  =  0.7).

In the case of the TSG non-mutated and TSG mutated subtypes according to the presence of mutated TGS, the TSG mutated subgroup, which had equal to or greater than one mutation in TSGs (n = 128), had lower stromal and immune score than the TSG non-mutated subgroup (n = 27) which also had higher tumor purity. Also, the overall infiltrating immune cells [CD8+ T cells, CD4+ T cells, macrophage, dendritic cells (DCs), and B cells, neutrophils] were more abundant in the TSG non-mutated subgroup. In addition, the correlation between the number of mutations in the TSG and the immune score was investigated, and there was a negative association between them (Spearman’s correlation r = −0.18, P < 0.05) (Supplementary Figure 1).



The Association Between Tumor Microenvironment and Immune Response

The different patterns of immune response in LUAD and LUSC according to the presence of TSG mutation were identified, and all factors representing immune response (stromal and immune score, ESTIMATE score, tumor purity, CYT score, B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) had no significant difference between TSG mutated and TSG non-mutated groups in LUAD whereas the majority of immune factors such as stromal and immune score, and ESTIMATE score as well as infiltrating immune cells (macrophage, dendritic cells, and neutrophils) were significantly lower in the TSG mutated group in LUSC (Supplementary Figure 2).

In order to analyze the impact of TSG mutations on the TME of LUSC, the association between infiltrating immune cells and TME factors was investigated in each TSG subtype. The correlation coefficient (r) between stromal and immune scores was 0.78 in the TSG non-mutated group and 0.69 in the TSG mutated group, and the tumor purity was lower as the stromal and immune scores were increasing in both groups (Figure 2A), and this revealed that the stromal scores of the TSG non-mutated group were more positively associated with the immune scores.




Figure 2 | The immune landscape of the microenvironment in TSG subtypes. (A) Scatterplots between stromal and immune scores with tumor purity gradient were shown, and its correlation coefficient was indicated by each of the subtypes. The color grading corresponds to the tumor purity, indexed as shown on the color bar at the bottom right of the panel. The median scores for stromal and immune scores were indicated by dashed lines under the horizontal (x) and vertical (y) axis. (B) Several indicators for immune response and abundance of infiltrating B cells, CD4+ T cells, CD8+ T cells, neutrophil, macrophages, and dendritic cells in two subtypes were estimated, and each p-value was indicated by each of the subtypes (Mann–Whitney U test and unpaired t-test). Box represents the median (thick line) and the quartiles (line).



Especially, the immune factors for presenting TME (stromal score, immune score, estimate score, and tumor purity) were significantly lower in the TSG mutated group than in the TSG non-mutated group (Figure 2B). Also, the infiltrating immune cells such as neutrophils, macrophage, dendritic cells were significantly increased in the TSG non-mutated group, and these results accorded closely with the result of previous LUSC cohorts (Supplementary Figure 3).



Gene Enrichment Analysis in TSG Subtypes

The top 25 Gene Ontology (GO) gene sets in either down- and up-regulated gene sets were investigated in the TSG mutated group compared to the TSG non-mutated group based on the rank of enrichment –log10(q value) of the pathway and the matched significance criteria (P-value < 0.05 and FDR q value < 0.1) (Figure 3A). Through the enrichment analysis, the immune related gene sets such as regulation of humoral immune response, regulation of inflammatory response, regulation of chemokine secretion, and T cell migration were significantly down-regulated whereas the tissue development, neurogenesis, and neuron part gene sets were significantly up-regulated in the TSG mutated group.




Figure 3 | Gene enrichment analysis in TSG subtypes. (A) Top 25 GO gene sets in either down- and up-regulated GO gene sets were determined based on the rank of enrichment –log10(q value) of the pathway and the matched significance criteria (P-value < 0.05 and FDR q value < 0.1) (B) Network visualization based on gene enrichment analysis. Blue nodes represent the down-regulated gene sets in TSG subtype. Genes in significant networks were annotated and grouped with simplified GO terms. Networks meeting the cut-off conditions detailed at the bottom of the figure (right) were visualized with the Enrichment Map plugin for Cytoscape (P ≤ 0.05, FDR q value ≤ 0.01, and similarity ≤ 0.5).



When we conducted the network visualization on gene enrichment analysis, the gene sets for interleukin production and leukocyte and lymphocyte differentiation were down-regulated in the TSG mutated group as well as the regulation of biosynthetic process (P ≤ 0.05, FDR q value ≤ 0.01, and similarity ≤ 0.5) (Figure 3B). Next, we visualized each network of down-regulated GO gene sets in TP53 and CDKN2A mutated group via gene enrichment analysis. Similarly, the interleukin production, leukocyte and lymphocyte differentiation, and mediated immunity were significantly down-regulated in both TP53 and CDKN2A-mutated groups (Supplementary Figure 4).



Impacts of TSG Loss on TME and Immune Response in LUSC

The down-regulated immune genes in the TSG mutated group were classified by each enriched GO immune gene sets and indicated with the p and q values (Figure 4A). Statistically, KLK5, PGC, C7, HGF, PLA2G2A, IL1RL1, CCR2, ALOX15B, CXCL11, and FCN3 were selected for the immune genes which could affect the TSG activity, and those immune gene expressions except for KLK5 and CXCL11 were significantly down-regulated in the TSG mutated group compared to the TSG non-mutated group (Figure 4B and Supplementary Figure 5). Among the emerging immune checkpoint receptors and their respective ligands, the expression of immune checkpoints such as VISTA and CD28 and ligands on APCs such HVEM were significantly up-regulated in the TSG mutated group, whereas other immune checkpoint molecules such as PD-1 and PD-L1 were not affected (28).




Figure 4 | Impacts of mutated TSGs on immune response in LUSC. (A) The down-regulated immune genes in TSG subtype were classified by each enriched GO immune gene sets and indicated with the p and q values. (B) The expression of the selected immune genes was depicted in the heatmap with the computed p-value between TSG subtypes. The expression of immune checkpoint genes was analyzed and indicated with the p-value between TSG subtypes. All p-values were computed by Mann–Whitney U test or unpaired t-test based on the sample distribution.





The Association of TSG Subtype and the Clinical Outcome and Parameters

Kaplan–Meier survival analysis for 144 TCGA LUSC patients indicated that there was no significant difference in overall survival between the TSG non-mutated and TSG mutated subtypes as well as four TSG subtypes (Kaplan–Meier estimates; P = 0.11 for two TSG subtypes; P = 0.23 for four TSG subtypes, Supplementary Figure 6). In fact, subgroup classification was not a significant factor in determining the clinical association in LUSC samples. Also, the hazardous ratio along with the TSG subtypes, gender, age, stage, smoking status, TMB, pT, pN, pM, dimension of sample/specimen (longest, shortest, and intermediate), location in lung parenchyma, and selected immune gene expressions was analyzed, and several parameters such as PLA2G2A, FCN3, and new tumor event after initial treatment in these clinical factors had some prognostic value with univariate analysis (PLA2G2A: HR = 1.6, P = 0.046, FCN3: HR = 1.8, P = 0.024, and new tumor event after initial treatment: HR = 1.8, p = 0.034, Table 1). Also, it was confirmed that PLA2G2A and new tumor event after initial treatment were statistically significant prognostic value with multivariable analysis (PLA2G2A: HR = 1.8, p = 0.04 and new tumor event after initial treatment: HR = 2.1, p = 0.01).


Table 1 | Cox proportional hazards model analysis of overall survival in LUSC patients.






Discussion

The predictive and prognostic biomarkers for immune checkpoints inhibitors (ICIs) have been developed by estimating the PD-L1 expression level as well as the mutational burden in the TME, but these were not sufficient to predict response to the efficacy of immune checkpoint inhibitors, and it has not considered the relative contribution of each immune cells in the anti-tumor response (29–31). The cancer cells have heterogeneous PD-L1 expression, and the small biopsies and microarray could not detect the entire PD-L1 expression, which finally could give rise to the inconsistency with the surgically resected tissue samples (32). Also, previous studies demonstrated that the tumor suppressor inactivation enhanced inflammation and altered TME (33).

In our study, the genomic and transcriptomic analyses were useful in determining the impact of TSG loss on the TME and immunity in LUSC.

The correlation between immune and stromal scores along with the TMB values among four TSG subgroups indicated that the stromal and immune cells were strongly correlated with the mutational burden regardless of subtype, which was consistent with previous results that the tumor cells with high TMB and the formation of neoantigens had a decisive effect on the defective immune system and TME including tumor immunogenicity (22, 34).

Also, the negative association between the number of mutations in TSG and the immune score confirmed that the dysfunction in tumor suppressor genes such as p53 could have an impact on stromal and immune cells in the TME, which may accelerate tumor immune evasion, as described previously (35). The TME of LUSC considering mutational profiling was more useful in classifying TSG mutation mediated immune-deficient subtype and establishing personalized immunotherapy treatment options in LUSC patients (36, 37).

The abundant infiltrating immune cells such as neutrophils, macrophage, dendritic cells in the TSG non-mutated group demonstrated that the abundance of infiltrating immune cells was decreased by inactivation of tumor suppressor genes, which could lead to result in the malignant transformation in cancer cell (38). The infiltrating neutrophils in inflammatory environments could attract the macrophages and dendritic cells for enhancing tumor cell invasion and metastasis (39).

The interleukin production and lymphocyte differentiation were significantly down-regulated in the TSG mutated LUSC group. This suggests that several TSGs such as RB1, TP53, and CDKN2A in LUSC, which are involved in various cellular processes, including signaling pathways and DNA damage repairing system, could have disturbed the interleukin-5 pathway, PD-1 signaling, cytotoxic T lymphocyte pathway (40).

Previously, it was confirmed that the overexpression of interleukin 12 (IL12) induced the tumor-suppressive effect by mediating antitumor activity, and mutated tumor suppressor genes such as TP53 potentially regulated the immune cell infiltration through its interaction with NF-kB and prevented activation of cytotoxic T cells, NK cells, and macrophages (38, 41, 42).

In addition, the newly identified PGC, C7, HGF, PLA2G2A, IL1RL1, CCR2, ALOX15B, CXCL11, and FCN3 genes, which were down-regulated in the TSG mutated group, were key immune genes which might be involved in the crosstalk between cancer microenvironment and tumor suppressors. These detected immune response genes could be involved in regulating the immune cell proliferation upon TSG inactivation in cancer cells (18, 35, 40). Among the significantly up-regulated immune checkpoint expression in the TSG mutated group, VISTA, which is previously known as a PD-1 homolog and shares a sequence homology both to CD28 and B7 families, could be an immunotherapeutic target in the TSG non-mutated group by regulating the T cell function (43). Further validation of the function of key immune genes is needed to understand the impact on the TME of LUSC.

Unexpectedly, the number of mutations in TSGs had weak association with the survival, stage, and several clinical parameters similar to previous study (44). However, immune genes such as PLA2G2A and FCN3 had a statistically significant association with overall survival, and the genomic alterations in TSGs had an impact on the reduction in interleukin production, leukocyte, and lymphocyte differentiation in TME, and understanding the interaction between TSG and TME will be useful to successfully treat LUSC patients.

Although we identified that TSG non-mutated patients may have more inflamed tumors, our study is limited in that we have not validated our findings in an independent patient cohort. We presume that patients without TSG mutation are more likely to respond to immune checkpoint blockade therapy, and this hypothesis needs to be further validated in a separate analysis involving LUSC patients who received anti-PD-1 or PD-L1 therapy. If these findings are proven, we may design a clinical trial using immune checkpoint inhibitor and designate TSG mutation status as a stratification factor or only include the patients without TSG mutation to improve the efficacy outcomes.

In conclusion, we showed that TSG mutations in LUSC may impact tumor immune microenvironment in that TSG non-mutated patients will have more inflamed tumors and are more likely to respond to immune checkpoint blockade therapy.

Establishing the role of tumor suppressor genes on the tumor immune environment could be useful to distinguish LUSC patients who may respond or not respond to immune checkpoint inhibitors if these findings are validated in prospective LUSC patient cohorts.
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Background: Lung squamous cell carcinoma (LUSC) is one of the most common histological subtypes of non-small cell lung cancer (NSCLC), and its morbidity and mortality are steadily increasing. The purpose of this study was to study the relationship between the immune-related gene (IRGs) profile and the outcome of LUSC in patients by analyzing datasets from The Cancer Genome Atlas (TCGA).

Methods: We obtained publicly available LUSC RNA expression data and clinical survival data from The Cancer Genome Atlas (TCGA), and filtered IRGs based on The ImmPort database. Then, we identified risk immune-related genes (r-IRGs) for model construction using Cox regression analysis and defined the risk score in this model as the immune gene risk index (IRI). Multivariate analysis was used to verify the independent prognostic value of IRI and its association with other clinicopathological features. Pearson correlation analysis was used to explore the molecular mechanism affecting the expression of IRGs and the correlation between IRI and immune cell infiltration.

Results: We screened 15 r-IRGs for constructing the risk model. The median value of IRI stratified the patients and there were significant survival differences between the two groups (p = 4.271E-06). IRI was confirmed to be an independent prognostic factor (p < 0.001) and had a close correlation with the patients' age (p < 0.05). Interestingly, the infiltration of neutrophils or dendritic cells was strongly upregulated in the high-IRI groups (p < 0.05). Furthermore, by investigating differential transcription factors (TFs) and functional enrichment analysis, we explored potential mechanisms that may affect IRGs expression in tumor cells.

Conclusion: In short, this study used 15 IRGs to build an effective risk prediction model, and demonstrated the significance of IRGs-based personalized immune scores in LUSC prognosis.

Keywords: immune-related genes, prognosis, lung squamous cell carcinoma (LUSC), TCGA, transcriptome


INTRODUCTION

Lung squamous cell carcinoma (LUSC) is one of the most common subtypes of non-small cell cancer (NSCLC), which is based primarily on tobacco exposure (1). Compared with lung adenocarcinoma (LUAD), LUSC has a poor clinical prognosis and limited treatment progress. Due to the lack of available targeted agents, traditional platinum-based chemotherapy remains the main therapeutic regimen for LUSC (2). However, the emergence of drug resistance has compelled more optimized remedies. Recently, immunotherapy has shown encouraging treatment results in some cancers including NSCLC (3, 4). And thus far, pembrolizumab combined with platinum-based chemotherapy has been extended as the first-line therapy to LUSC patients with a PD-L1 tumor proportion score (TPS) of 1% or greater and without a sensitizing EGFR mutation or ALK translocation (5, 6). Furthermore, some PD-1/PD-L1 blockades, including nivolumab, pembrolizumab, and atezolizumab have been approved as the second-line settings for advanced patients (7).

Biomarkers, especially gene expression in tumor tissues, can reliably predict disease prognosis and patients' survival, which are tremendously valuable to advise rational clinical treatment of cancer (8). It is necessary to classify the subgroup of patients with a high risk of relapse and to give them targeted surveillance and other systemic therapies. The existence of large-scale public cohorts and sound gene expression databases has laid the foundation for identifying prognostic biomarkers (9, 10). Various components of the immune system have been considered as determinants of the occurrence and progress of cancer (11, 12). Therefore, studying the differential expression of immune-related genes (IRGs) in tumor tissue samples is of great significance for exploring the tumor microenvironment, improving clinical diagnosis, optimizing immunotherapy, and assessing the prognosis of patients (13).

Li et al. thoroughly explored the prognostic value of IRGs in patients with non-squamous non-small cell lung cancer (14). However, the clinical relevance and prognostic value of IRGs in lung squamous cell carcinoma (LUSC) remain unknown. In this study, we integrated the IRGs' expression profiles with clinical information to build and validate an individualized prognostic index for LUSC. We systematically analyzed the potential clinical utility of IRGs in prognostic stratification and their enlightening significance as a composite index to guide the treatment of LUSC, which could establish a foundation for subsequent immunotherapy and increase the predicted accuracy for overall survival (OS).



MATERIALS AND METHODS


Data Collection

Transcriptome RNA-sequencing data and the corresponding clinical follow-up information with respect to lung squamous cell carcinoma patients were downloaded from the Genomic Data Commons Data Portal of TCGA (https://portal.gdc.cancer.gov/). The expression data was obtained via HTSeq-FPKM and contained 502 LUSC tissues and 49 adjacent non-tumorous tissue samples as of February 2020. Next, immune-associated genes were obtained from the immunology database and analysis portal (ImmPort) (https://www.immport.org/shared/home).



Differential Gene Analysis and Filtering

Differential gene expression was investigated using the edgeR package, and the parameters log fold change (FC)>2 or < -2, and false discovery rate (FDR) < 0.05. Then, differential IRGs were filtrated from all of the differentially expressed genes. Moreover, univariate Cox regression analysis was applied to opt for the IRGs associated with the survival time, using the R software “survival” package.



Functional Enrichment Analysis

Functional enrichment was investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to explore the potential functions of IRGs. The false discovery rate (FDR) was set as < 0.05 as the threshold.



Exploration of the Molecular Mechanism of Immune Genes

It is well-known that transcription factors (TFs) play a key role in the degree of gene expression. Here, we performed a correlation analysis between prognosis-related IRGs and differential TFs. The list of 318 (TFs) was downloaded from the Cistrome Cancer database (http://www.cistrome.org/). For the analysis, the corFilter was set to 0.4 and the P-value was set to 0.001. Additionally, we also obtained the regulatory network of these IRGs and TFs, using the Cytoscape software version 3.7.2.



Construction and Validation of the IRGs-Based Prognostic Risk Model

Multivariate Cox regression analysis was performed on the IRGs; the weighted score was calculated as the risk score for each patient. The score of the predictive model was determined as = (exprIRG1×coef1) + (exprIRG2×coef2) +. + (exprIRGn×coefn). According to the median risk score as the cut-off value, LUSC patients were divided into the low-risk group and high-risk group. The “survival” and “survminer” R packages were used for Kaplan-Meier analysis and the visualization of the survival curves. Furthermore, a ROC curve was plotted and the area under the curve (AUC) was calculated to verify the predictive power of this risk model; the “survivalROC” R package was used. Subsequently, following the trend of risk scores, the patients' survival status and the expression of the IRGs involved in this model were observed. Univariate and multivariate analyses were further performed to understand whether the risk score could be an independent prognostic predictor. The relationship between the expression of IRGs and other clinicopathological factors was also investigated.



Correlation Analysis of Immune Cells Infiltration

The TIMER database (https://cistrome.shinyapps.io/timer/) was used to evaluate the abundance of tumor-infiltrating immune cells, including B cells, CD4 T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells. Briefly, we downloaded the immune infiltration level of LUSC patients using the TIMER online tool and calculated the correlation between the immune gene risk score and each type of infiltrating immune cells.



Statistical Analysis

All analyses were conducted using R software (version 3.6.2). The differential expression of genes in the TCGA cohorts was evaluated by the Wilcox test. Univariate and multivariate analyses were performed via Cox regression. Survival analysis was performed using the log-rank test. The correlation was performed by Pearson correlation analysis. Differences among clinicopathologic features were tested by Student's t-tests. P values < 0.05 were considered significant in all statistical tests.




RESULTS


Screening and Identification of IRGs

Based on the TCGA database, we compared gene expression in tumor tissues and non-tumorous tissues in LUSC transcriptome RNA data and screened 3599 differential genes, of which 2604 genes were up-regulated in tumors and 995 genes were down-regulated in tumors (Figures 1A,B). Later, downloading IRGs from the ImmPort database and performing a differential analysis revealed that 223 candidate genes were differentially expressed between the tumor and the adjacent tumor, of which 110 genes were up-regulated in the tumor and 113 genes were down-regulated (Figures 1C,D). The survival time and survival status are the chief clinical outcomes of patients. By integrating the differential immune gene matrix and the clinical outcome matrix, 31 prognosis-associated IRGs (p-IRGs) were obtained, using univariate Cox regression analysis (Figure 1E).


[image: Figure 1]
FIGURE 1. Differentially expressed immune-related genes. Heatmap (A) and volcano plot (B) of differentially expressed genes between lung squamous cell carcinoma (LUSC) and adjacent non-tumor tissues. Heatmap (C) and volcano plot (D) demonstrating differentially expressed immune-related genes (IRGs). The black dots represent the undifferentiated genes, while the red and green dots represent the differentiated genes. (E) Forest plot of hazard ratios showing the prognostic values of immune-related genes.




Function Enrichment Analysis

As far as we know, Gene Ontology (GO) is divided into three parts: Molecular Function (MF), Biological Process (BP), and Cellular Component (CC) (15). We performed functional enrichment analysis on 223 differentially expressed IRGs and identified 1,245 GO terms and 21 important KEGG pathways. The results showed that the eight main GO terms were: receptor-ligand activity, leukocyte migration, cell chemotaxis, cytokine activity, cytokine receptor binding, humoral immune response, leukocyte chemotaxis, and myeloid receptor (Figure 2A). Furthermore, the top six KEGG pathways were Cytokine-cytokine receptor interaction, Neuroactive ligand-receptor interaction, Viral protein interaction with cytokine and cytokine receptor, Chemokine signaling pathway, PI3K-Akt signaling pathway, and MAPK signaling pathway (Figure 2B). Unsurprisingly, gene function enrichment analysis showed that inflammation-related pathways were the most common. Next, we performed similar enrichment analysis on p-IRGs and found that these p-IRGs were most abundant in terms of GO terms related to biochemical processes (Figure 2C). Moreover, the Neuroactive ligand-receptor, Cytokine-cytokine receptor interaction, and MAPK signaling pathway were the most commonly identified KEGG pathways (Figure 2D).
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FIGURE 2. Gene functional enrichment of IRGs. Gene ontology analysis (GO) of differentially expressed immune-related genes (A) and the significant Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) (B). Gene ontology analysis (GO) of prognostic-associated immune-related genes (C) and the most significant Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) (D).




Association Between Differential IRGs and Transcription Factors

Gene expression is regulated by transcription factors (TFs). Therefore, we explored the regulatory relationship between IRGs and TFs to explore the possible molecular mechanisms affecting p-IRGs expression. First of all, we isolated 46 out of the 318 transcription factors with differential expression in tumors and adjacent tissues (Figures 3A,B). According to the correlation analysis of p-IRGs and TFs, it can be concluded that 9 TFs, including EPAS1, ERG, FLI1, FOXA2, FOS, GATA6, NR4A1, RXRG, and TCF21 were mutually regulated with 18 immune genes. We then established a regulatory network based on the above results and exhibited this network via Cytoscape software (Figure 3C). Notably, NR4A1 dominated the network. It was a transcription factor of the regulatory nuclear receptor family, which was positively correlated with the expression of NR4A3, NR4A2, FOS, CYR61, EDNRB, and ACVRL1. It was also a prognostic high-risk gene in the model and can be positively regulated by TCF21 and itself.


[image: Figure 3]
FIGURE 3. Transcription factor-mediated regulatory network. Heatmap (A) and volcano plot (B) showing differentially expressed transcription factors (TFs). (C) Regulatory network based on clinically relevant TFs and IRGs.




Construction of an IRGs Risk Model for LUSC Patients

Since the 31 p-IRGs are not the common driver genes for lung squamous cell carcinoma, we speculated that abnormal expression of these IRGs may be a prognostic factor. Next, we put 31 p-IRGs into the multivariate Cox regression analysis and obtained 15 risk-related immune genes (r-IRGs) and their coefficients involved in the construction of the risk model (Table 1). The 15 r-IRGs included MMP12, PLAU, RNASE7, IGKV1D-33, CYR61, LTB4R2, AMH, APLN, JAG1, AGTR2, ENG, FGFR4, FLT4, GCGR, and NR4A1. The risk score in the model was calculated as ∑coefficients * expression values. Here, we defined this risk score as the “Immune gene Risk Index” (IRI). The median value of IRI was 1.020488, which was set as a cut-off value, and patients were stratified into two groups: high-risk group and low-risk group. The survival status and r-IRGs expression of the two groups were shown in the Figures 4A–C.


Table 1. Risk immune-related genes (r-IRGS) names and coefficients in the risk model.
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FIGURE 4. Construction of the prognostic risk model based on immune-related genes. (A) Rank of prognostic risk score and distribution of groups. (B) Survival status of patients in different groups. (C) Heatmap of expression profiles of included genes.




Performance of r-IRGS Risk Model in Predicting the Prognosis of LUSC

Kaplan–Meier (KM) survival analysis showed significant differences in overall survival between the high-risk and the low-risk groups (Figure 5A, p = 4.271E-06). Subsequently, to validate the reliability of this risk model, we applied ROC analysis to the cohort. The area under the curve (AUC) of the ROC curve is 0.666, indicating that the r-IRGs risk model has a certain degree of applicability for predicting prognosis in patients with LUSC (Figure 5B). Besides, both univariate (Figure 5C, p=6.00E-16) and multivariate (Figure 5D, p = 3.47E-13) Cox survival analysis indicated that IRI could be used as an independent prognostic factor for lung squamous carcinoma patients' survival (Table 2).


[image: Figure 5]
FIGURE 5. The prognostic value of the risk score. (A) The overall survival (OS) time of patients in the high-risk group and low-risk group. (B) The ROC curves of OS for the 15-gene immune-related risk score. Forest plot of hazard ratios showing the prognostic values of immune-related genes involved in the risk model based on Univariate analysis (C) and multivariate analysis (D).



Table 2. Univariate and multivariate regression analysis of lung squamous cell carcinoma.
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Association Between IRI and Other Clinicopathologic Factors in LUSC

To explore the more clinical relevance of IRI and r-IRGs, we analyzed the relationship between them and clinical pathology, including age, gender, American Joint Committee On Cancer (AJCC) stage, tumor burden (T), regional lymph node metastasis (N), and distant metastasis (M). IRI was positively correlated with patient age, but there were no significant differences between other factors (Figure 6A, p=0.021). AGTR2 was positively correlated with advanced cases (Figure 6B), distant metastases (Figure 6C), and no lymph node metastases (Figure 6D). AMH (Figure 6E), FGFR4 (Figure 6F), and GCCR (Figure 6G) were correlated with no distant metastasis. APLN (Figure 6H) and MMP12 (Figure 6I) were also associated with older age. ENG (Figure 6J) was higher expressed in male patients, while FGFR4 (Figure 6K) was higher expressed in female patients. PLAU was positively correlated with the elderly (Figure 6L), advanced T-stage cases (Figure 6M), and cases without lymph node metastasis (Figure 6N). However, RNASE7 was negatively correlated with advanced cases (Figure 6O) and distant metastatic cases (Figure 6P).


[image: Figure 6]
FIGURE 6. The relationships between the risk immune gene and clinicopathologic characters. (A) The correlation between the Immune gene Risk Index (IRI) and patients' age. The relationships between AGTR2 and (B) tumor stage; (C) distant metastasis; (D) lymph node metastasis. The relationships between distant metastasis and (E) AMH; (F) FGFR4; (G) GCCR. The relationships between patients' age and APLN (H) and MMP12 (I). The relationships between patients' gender and ENG (J) and FGFR4 (K). The relationships between PLAU and (L) age; (M) T stage; (N) lymph node metastasis. The relationships between RNASE7 and (O) tumor stage and (P) distant metastasis.




Correlation Between IRI and Immune Cell Infiltration

Immune infiltration in the tumor microenvironment (TME) is necessary to study the interaction between tumors and immunity (16). To investigate the capability of IRI to predict the state of the immune microenvironment, we explored the correlation between IRI and immune cell infiltration. Our analysis indicated that the IRI was significantly positively correlated to the infiltration of neutrophils and dendritic cells (Figures 7A,B). However, there was no statistical significance in the correlation between IRI and the abundance of the other four types of immune cells (Figures 7C–F).


[image: Figure 7]
FIGURE 7. Relationships between the Immune gene Risk Index (IRI) and infiltration abundances of immune cells. (A) neutrophils; (B) dendritic cells; (C) B cells; (D) CD4 T cells; (E) CD8 T cells; and (F) macrophages.





DISCUSSION

It is indispensable to search for reliable prognostic biomarkers that can identify patients with a higher risk of poor survival. There are a lot of researches on the prognosis-related biomarkers of lung squamous cell carcinoma, but the applicability and accuracy of these indicators are not satisfactory (17). So far, clinical guidelines are still based on tumor staging (AJCC/UICC-TNM classification), which contains data on tumor burden (T), the presence of cancer cells in draining and regional lymph nodes (N), and evidence of metastasis (M) to assess disease stage and predict survival (18). With the exciting development of tumor immunotherapy, the role of tumor-associated immunology in the development of cancer has once again been taken into consideration. Galon et al. first proposed a concept of immune scores, and then the immune score was described as a prognostic marker for patients with early colorectal cancer (19–21). Recently, several studies have established a risk model based on immune-related genes (IRGs) to distinguish patients with different risk levels, which enables patients to receive more optimized and rational treatment. Such studies include colorectal cancer (22, 23), breast cancer (24, 25), head and neck squamous cell cancer (26), thyroid cancer (13), and so on. Based on the TCGA-LUSC dataset, we developed a prognostic risk model that incorporates 15 r-IRGs selected according to multivariate regression analysis. We also explored the relevance of this model score to clinicopathological features and immune cell infiltration in the immune microenvironment. Furthermore, the potential molecular mechanisms that affect immune gene expression were discussed.

The characteristics of tumor development depend on a succession of alterations in the genome (27). We concentrated our research on the alterations of the immunogenomic profiles (28). Massive RNA-sequencing weighted immune-related gene expression can reflect the status of tumor cells. In KEGG analysis, the most significant pathway was enriched in the Cytokine-cytokine receptor interaction process. In terms of biological process and molecular function, the top enriched GO terms were highly related to receptor-ligand activity and leukocyte migration. As expected, the functional enrichment analysis showed that these genes were indeed primarily involved in immune-related signaling pathways. Additionally, these enriched signaling pathways frequently participate in tumorigenesis driving, invasion, and metastasis, thus inferring that immune-related genes have potential value in predicting clinical outcomes.

To explore potential molecular mechanisms, we constructed a TF-mediated network to uncover the significant TFs regulating the IRGs in this risk model. NR4A1 was dominant in the network and positively correlated with the expression of NR4A3, NR4A2, FOS, CYR61, EDNRB, and ACVRL1. Recently, it was also found that NR4A1 is associated with T cell tolerance and anergy. In anergic T cells, the chromatin binding site of NR4A1 was consistent with the site of AP-1, a key transcription factor that regulates T cell activation. Next, it was found that NR4A1 can competitively bind to the binding site of AP-1 in chromatin, thereby suppressing the expression of target genes regulated by AP-1. At the same time, the NR4A1 binding site was positively correlated with the level of histone acetylation (H3K27ac) in the chromatin super-enhancer region. Overexpression of NR4A1 enhances the level of H3K27ac in this region, thereby up-regulating the transcription of immune tolerance and exhaustion-related genes; while knocking out NR4A1 down-regulates H3K27a at these sites. The above studies have identified a new transcriptional regulatory T cell tolerance and exhaustion mechanism with NR4A1 as the core. TTCF21 and GATA6 also performed conspicuously in this network. The transcription factor TCF21 is involved in the differentiation of mesenchymal cells into epithelial cells, and its abnormal methylation occurs in lung and head and neck tumors (29). NSCLC samples showed that the TCF21 promoter was hypermethylated and TCF21 protein expression was reduced. Multivariate analysis showed that TCF21 expression was lower than normal in both histological types (LUSC and LUAD) and was not correlated with gender, smoking, and EGFR mutation status. These results indicated that DNA methylation plays a key role in the development of lung tumors, and TCF21 may be a potential candidate methylation biomarker for early NSCLC screening (30). Previous studies calculated aberrantly expressed lncRNAs based on TCGA RNA-seq data, and found that GATA6-AS1 was of extremely high diagnostic value and played vital parts in the survival and development of LUSC. GATA6-AS1 was also closely related to the mitogen-activated protein kinase (MAPK) signaling pathway, which may be an important way for it to affect the prognosis of patients with LUSC (31, 32). However, these two transcription factors were rarely reported in tumor immunology, suggesting that epigenetic changes of TFs may affect immune gene expression and tumor characteristics to a certain extent. The TF-IRG regulatory networks we constructed will help to inform and guide future mechanism analysis.

To develop a manageable method to monitor the immune status of LUSC patients and predict clinical outcomes, we created a prognostic marker based on IRGs. Aramburu et al. combined alterations and expression of gene copy numbers, together with clinical parameters to establish a new comprehensive bioinformatics strategy as a more sophisticated prognostic approach (33). Since then, increased studies have begun to integrate immune-related genetic alterations and clinicopathologic parameters to predict survival. Recently, Xiaoshan S et al. established an IRGs prognostic risk model in lung adenocarcinoma based on TCGA data and validated it with GEO data. This study revealed the potential value of the IRGs model in improving TNM staging for survival predictions in LUAD (10). In our study, we filtered out 15 immune genes through multivariate analysis and calculated the immune gene Risk Index (IRI) based on these genes to stratify patients with LUSC and judge their prognosis. It is impressive that IRI can successfully distinguish patients, show excellent clinical feasibility, and perform moderately in clinical applicability and accuracy. Moreover, IRI can be used as an independent prognostic risk indicator and was positively correlated with patients' age.

Furthermore, IRI could be used not only as a prognostic marker but also as an indicator of immune status. The level of immune cell infiltration reflected by IRI enables us to adjust the treatment plan. In 1863, Virchow detected the infiltration of white blood cells in tumor tissues and proposed the relationship between inflammation and cancer. The importance of this cancer-related inflammation was gradually recognized. During the chronic inflammatory immune response, the complex interactions between tumor cells, immune cells, and inflammation gradually produce a tumor microenvironment that is conducive to angiogenesis and immunosuppression (34, 35). Eventually, tumor cells escape the control of the immune system and cancer occurs (36). Currently, the role of tumor-associated neutrophils (TANs) is still controversial, and neutrophils are the most abundant immune cell type in NSCLC (37). TANs may have high functional plasticity, which can not only fight cancer but also promote cancer in tumors (38). Previous studies have proposed that TANs have a two-sided phenotype similar to tumor-associated macrophages (TAMs), with both the “N1” type inhibiting tumor growth and the “N2” type promoting tumor growth and malignant metastasis (39). Then some studies proposed that TANs can maintain functional plasticity, that is, they can “alternately activate” when exposed to the tumor microenvironment. For example, the presence of transforming growth factor-β (TGF-β) promoted the proto-tumor phenotype (N2-TANs), while the presence of interferon-β (IFN-β) or the suppression of the TGF-β signaling pathway led to an anti-tumor (or N1) phenotype in TANs (39, 40). Our study found that IRI was positively correlated with the level of neutrophils infiltration, suggesting that the combination of existing PD-1 related therapy with TGF-β inhibition or IFN-β activation could be considered in the treatment of patients in the high-risk group, thereby exerting the potential antitumor effect of TANs. A strong cancer antigen presentation is a crucial step of the Cancer-Immunity Cycle, and also a necessary prerequisite for PD-1 blockade therapy to be effective (41). Dendritic cells (DCs) are the most powerful professional antigen-presenting cells (APCs) in the immune system, which play a key role in the initiation and regulation of immune response (42). In our study, the infiltration level of DCs was positively correlated with IRI. These results indicated that higher DCs might be observed in high-risk patients. Additionally, although there was no significant statistical difference in the infiltration of CD8 T cells, it was not difficult to find that there was a trend of higher levels of CD8 T infiltration in the high-risk groups. Based on the above results, we speculated that perhaps the high-risk group was more likely to benefit from immunotherapy. IRI may have the potential to serve as a predictor of increased immune cell infiltration and as a screening index for predominant populations for immunotherapy. Our research confirmed and expanded the discovery of IRGs that are essential for the treatment and prognosis of lung squamous cell carcinoma.

However, the present research still has several limitations and deficiencies. First of all, our study was only based on TCGA data and lacked validation with some other independent cohorts. Secondly, this study only analyzed the data in bioinformatics, and some of the hypotheses proposed need to be verified and discussed in subsequent in vitro and in vivo experiments. We also look forward to addressing these issues in future experiments.



CONCLUSIONS

In summary, based on the TCGA-LUSC database and the ImmPort database, we have identified and verified the immune-related prognostic risk score, which can be used as an independent prognostic marker for evaluating the survival of patients with lung squamous cell carcinoma. Secondly, this score can partly reflect the tumor infiltration immune microenvironment status, which is closely related to the response rate of immunotherapy and can provide a reference for patients with lung squamous cell carcinoma, especially in advanced patients, to choose whether to immunotherapy.
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The incidence of adenocarcinoma of the esophagogastric junction (AEG) has markedly increased worldwide. However, the precise etiology of AEG is still unclear, and the therapeutic options thus remain limited. Growing evidence has implicated long non-coding RNAs (lncRNAs) in cancer immunomodulation. This study aimed to examine the tumor immune infiltration status and assess the prognostic value of immune-related lncRNAs in AEG. Using the ESTIMATE method and single-sample GSEA, we first evaluated the infiltration level of 28 immune cell types in AEG samples obtained from the TCGA dataset (N=201). Patients were assigned into high- and low-immune infiltration subtypes based on the immune cell infiltration’s enrichment score. GSEA and mutation pattern analysis revealed that these two immune infiltration subtypes had distinct phenotypes. We identified 1470 differentially expressed lncRNAs in two immune infiltration subtypes. From these differentially expressed lncRNAs, six prognosis-related lncRNAs were selected using the Cox regression analysis. Subsequently, an immune risk signature was constructed based on combining the values of the six prognosis-associated lncRNAs expression levels and multiple regression coefficients. To determine the risk model’s prognostic capability, we performed a series of survival analyses with Kaplan–Meier methods, Cox proportional hazards regression models, and the area under receiver operating characteristic (ROC) curve. The results indicated that the immune-related risk signature could be an independent prognostic factor with a significant predictive value in patients with AEG. Furthermore, the immune-related risk signature can effectively predict the response to immunotherapy and chemotherapy in AEG patients. In conclusion, the proposed immune-related lncRNA prognostic signature is reliable and has high survival predictive value for patients with AEG and is a promising potential biomarker for immunotherapy.
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Introduction

Adenocarcinoma of the esophagogastric junction (AEG) refers to adenocarcinoma within 5cm of the esophagogastric junction (EGJ). The broadly accepted definition of AEG was proposed by Siewert et al. (1). AEG is one of the most typical causes of cancer mortality worldwide and remains a challenging issue in oncology. Although AEG is less common than squamous cell carcinoma, for reasons unknown, the frequency of AEG has dramatically increased annually in both Western and Eastern countries over the last three decades for uncertain reasons (2). Emerging therapeutic strategies such as immunotherapy and targeted therapy have brought hope for patients with cancers such as gastrointestinal tumors (3). However, the response to existing immune-based treatments varies among individuals.

Modulation of diverse cells in the digestive tract tumor microenvironment (TME) influences tumorigenesis, and immunosuppressive microenvironments are associated with digestive tract tumor progression and poor prognosis (4, 5). Moreover, immunosuppressive TME remains a major obstacle for effective cancer immunotherapy. There are numerous invading immune cells in cancer tissues comprising T-cells, natural killer cells, and B-cells. In gastric cancer, NK infiltration is associated with better outcomes (6). In addition, studies have shown that the weakening of T-cell immune function after radiotherapy will affect the host’s immune response, which might be a critical factor affecting the prognosis of esophageal cancer (7). Strong implications between TME immune cells and cancer cells play a crucial role in tumorigenesis and cancer progression. Thus, enhancing immune cell function has emerged as an immunotherapy strategy in AEG. Therefore, to improve immune therapy response rates, there is a pressing need to provide a precisely screening program and get accurate and credible predictive biomarkers for efficacy of immunotherapy and prognostic of AEG patients.

LncRNAs are non-coding transcripts with >200 nucleotides. The mechanism underlying the function of lncRNA in cancer is very complicated. For instance, lncRNA H19 facilitates glioma angiogenesis via the miR-138/HIF-1α/VEGF cascade (8), while lncRNA TUC338 promotes invasion of lung cancer by activating MAPK signaling (9). LINC01094 was reported to promote carcinoma development in renal clear cell carcinoma and glioma cancer (10, 11). Another study on lncRNA gene cluster MIR100HG showed that two microRNAs (miR-100 and miR-125b) derived from this cluster can lead resistance to chemotherapeutic drugs through the Wnt pathway (12). A recent study further indicated that lncRNAs modulated immune function (13). The lncRNA NRON has been shown to maintain a resting state of T cells by sequestering phosphorylated NFAT in the cytoplasm (14). The oncogenic lncRNA LINK-A downregulates cancer cell antigen presentation and intrinsic tumor suppression (15). In addition, several studies have shown that immune-related lncRNA is a novel prognostic marker with prognostic value for cancer patients (16–18).

In the present study, we identified two immune infiltration subtypes of AEG based on 28 immune cell types and calculated the differently expressed lncRNAs between these two immune subtypes. Furthermore, we demonstrated the six immune-associated lncRNAs correlated with AEG prognosis and constructed an immune risk model using these six lncRNAs. Finally, we evaluated the predictive role of immune risk signature, both in immunotherapy and chemotherapy cohorts.



Materials and Methods


Collection and Grouping of AEG Data

This study used public data from the TCGA and UCSC Xena databases. According to Siewert classification, we included 201 histology confirmed AEG samples with complete survival information from stomach cancer(STAD) and esophageal cancer(ESCA) samples. Detailed patient characteristics of AEG are given in the Supplementary Table S1. The fragments per kilobase per million (FPKM) and counts data of the AEG RNA-seq were extracted from the TCGA program (https://portal.gdc.cancer.gov/). FPKM values were then transformed into transcript per million (TPM) values to estimate immune cells’ infiltration. Corresponding AEG clinical and mutation data were extracted from the UCSC Xena web data resource (https://xenabrowser.net/datapages/). Based on the lncRNA information in the GENECODE data resource V22 (https://www.gencodegenes.org/), we extracted the lncRNA expression profiles from the RNA-seq cohort. A set of biomarker genes for 28 types of immune cells was acquired from a past study (19). Next, we used ssGSEA to evaluate AEG infiltration by the 28 immune cells using the R package, GSVA (gene set variation analysis). Based on the ssGSEA results, AEG samples were clustered into the high (Immunity_H) or low immune cell infiltration (Immunity_L) groups using the R package, ConsensusClusterPlus. All resource, software, R packages, and protocols used herein are detailed in the key resource table and protocol workflow in Supplemental Material.



Validation of the Effectiveness of Immune Subtypes

ESTIMATE R package was used to calculate Stromal Score, Immune Score, ESTIMATE Score, and Tumor Purity with TPM values of RNA-seq data. These analyses were used to evaluate the effect of ssGSEA grouping and draw a statistical map. Gene expression levels of various genes including members of the major histocompatibility complex (MHC), immune co-stimulator checkpoint (ICP), and immune co-inhibitor checkpoint (IAP) were also used to assess differences between two immune subtypes.



Gene Sets Enrichment Analysis

We performed gene set enrichment analysis (GSEA) using “clusterProfiler” in R package to investigate the biological process difference between immune infiltration subtypes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) results are exhibited by a GSEA plot.



Significantly Mutated Genes Landscapes in AEG and Mutation Patterns in Two Immune Subtypes

We recognized the significantly mutated genes (SMG) with the GenVisR tool in R package. Mutation signature analysis of two immune subtypes was conducted using R package MutationalPatterns and Maftools. We extracted the mutational signature of AEG data and compared them with the mutation database (COSMIC V2) by using the cosine similarity method (https://cancer.sanger.ac.uk/cosmic/).



Determination of Immune-Linked lncRNAs in AEG

The Bioconductor edgeR package was employed to calculate differential gene expression based on RNA-seq counts data of differential immune subtypes. Differentially expressed lncRNAs (DElncRNAs) called immune-related lncRNAs, were determined using the cut-off thresholds of P<0.05 and |log2 fold change| > 1. The selected lncRNAs were employed to construct a prognostic signature.



Risk Assessment Model Construction and Survival Analysis

We used the entire AEG dataset (201/201, 100%) as the training set. Then, the whole dataset was randomly split into a validation dataset (140/201, 70%) and a test dataset (61/201, 30%). The immune-related lncRNAs were subject to univariate Cox regression assessment to identify those linked to AEG overall survival (OS). Only those lncRNAs that were statistically significant (P<0.05) were enrolled in multiple stepwise regression analysis. A risk assessment model for the patients was then developed using multivariate regression coefficients of lncRNA expression. Thus, we constituted the risk score by combining the expression value of included lncRNAs weighted by the linear regression model coefficients. Patient risk scores were calculated as previously described (20) and by using the following equation:

	

The risk scores of AEG patients were computed using the risk-assessment model. The patients were assigned to a high- and a low-risk group based on the cut-off values calculated using the survminer package in R. The Kaplan–Meier method was used to assess the efficiency of OS in high- and low-risk patients. The log-rank test was used to assess statistical significance at P<0.05.



Chemotherapy and Immunotherapy Response With Immune-Linked lncRNAs Signature

The R package “pRRophetic” (21) was used to predict chemotherapeutic response in AEG patients. An immunotherapeutic data set of advanced urothelial cancer (IMvigor210 cohort) and a non-immunotherapeutic cohort of bladder cancer (BLCA) were used to validate the efficiency of immune risk signatures (22). Clinical information and gene expression data were extracted from the IMvigor210 data set (http://research-pub.gene.com/IMvigor210CoreBiologies). The non-immunotherapy cohort of bladder cancer (BLCA) was obtained from TCGA.



Statistical Analysis

All statistical analyses were carried out in R (version 4.0.0; https://www.r-project.org). Mean ± SD was used to describe continuous variables that were normally distributed. Median (range) was used for continuous variables in non-normal distribution. Categorical variables were described as counts as well as percentages. P<0.05 (two-tailed t-test) represented statistical significance.




Result


Development and Validation of AEG Immune Subtypes

We extracted data from the TCGA and UCSC Xena resources. A total of 201 AEG samples accompanied with complete survival information were retained for our study. The consensus cluster analysis indicated that the optimal number of clusters was two, which was defined by CDF curves (Figures 1A–C). According to the immune infiltration score, AEG samples were clustered into the high- and low- immune cell infiltration groups (N=93 and 108, respectively) (Figure 1D).




Figure 1 | Construction of AEG immune infiltration. Single-sample gene set enrichment analysis (ssGSEA) identified the relative infiltration of 28 immune cell type subpopulations with different immune infiltration subtypes. The relative infiltration of each cell type was normalized into a Z-score. (A–C) The optimal number of clusters (K=2) was determined from cumulative distribution function (CDF) curves, and the classification effect is the best. (D) Patients with a low level of immune cell infiltration were named as the low immune cell infiltration subtype (Immunity_L), and those with a high level of immune cell infiltration were named as the high immune cell infiltration subtype (Immunity_H).



To determine the feasibility of this grouping strategy, we used the ESTIMATE algorithm to compute Immune Score, Stromal Score, ESTIMATE Score, and Tumor Purity (P<2.2e-16) (Figures 2A–C). The Boxplot analysis showed that there was a significant positive correlation between the high immune cell infiltration group (Immunity-H) and ESTIMATE Score, Immune Score, and Stromal Score, respectively. In contrast, there was a positive correlation only between the low immune cell infiltration group (Immunity-L) and Tumor Purity (P<2.2e-16) (Figure 2D). Furthermore, we found that MHC, IAP, and ICP expression in the two immune cell infiltration groups were different (P<0.05) (Figures 2E–G).




Figure 2 | Validation of the effectiveness of immune subtypes. (A–D) The boxplot showed that there was a statistical difference in Immune Score, Stromal Score, ESTIMATE Score, and Tumor Purity between the two immune infiltration subtypes (P<2.2e-16). (E–G) The gene expression level of the gene set, including major histocompatibility complex (MHC), immune co-inhibitor checkpoints (IAP), and immune co-stimulator checkpoints (ICP) were all significantly different in the two immune infiltration subtypes (P<0.05).





Functional Annotation Related to the Two Immune Subtypes

The GSEA enrichment analysis demonstrated that many of these pathways are linked to the immune response in carcinoma (Figures 3A, B). With Padjust<0.05 as the cut-off threshold, GO term enrichment analysis revealed that the genes were abundant in various processes, including adaptive immune response, positive modulation of cell activation, and positive modulation of leukocyte cell-cell adhesion. The KEGG pathway analysis indicated that these genes participated in cell adhesion molecules, cytokine-cytokine receptor cross-talk, and intestinal immune network for IgA production. The detailed GSEA results of two immune subtypes are provided in Supplementary Table S2.




Figure 3 | Functional annotation of the two immune infiltration subtypes. (A, B) Top enriched gene pathways/functions in distinct immune risk signature groups from the AEG cohort were assessed by using the GSEA algorithm.





Analysis of Mutation Pattern Between High- and Low- Immune Cell Infiltration Groups

To explore the association between immune cell infiltration and mutation pattern, we performed SMG analysis for AEG samples. The SMG mutational landscapes of AEG sample showed a distinct mutation ratio in TP53 (112/197 [56.6%]), TTN (102/197 [51.8%]), MUC16 (65/197 [33.0%]), and LRP1B (50/197 [25.4%]) (Figure 4A).




Figure 4 | Mutational landscape of SMGs (A) in the TCGA AEG cohort. Mutation patterns (B, C) in the two immune infiltration subtypes.



To gain further insights into the operative mutational processes in two immune infiltration subtypes, we performed SMC and extracted the mutational signatures from the COSMIC database by using genomic somatic mutation data of AEG (Figures 4B, C). The result revealed that immunity_L had the independent characteristics of signature 5 and signature 13, while immunity_H had the independent characteristics of signature 3 and signature 18. These results also showed that the mutation pattern of immunity_H was associated with DNA damage and repair pathways such as failed DNA double-strand break-repair through homologous recombination and AID/APOBEC pathway activity.



Analysis of DElncRNAs between high- and low- immune cell infiltration subtypes

We used the edgeR package to compare differential lncRNAs expression in high vs. low immune cell infiltration subtypes based on RNA-seq counts data. According to the cut-off thresholds of |Log2 Fold Change|>1 and FDR < 0.05, a total of 1470 lncRNAs that were differentially expressed were obtained, of which 1016 were upregulated and 454 were downregulated. (Figure 5A and Supplementary Table S3).




Figure 5 | Analysis of differentially expressed lncRNAs and identification of immune-related lncRNA prognostic signature for AEG. (A) The volcano plot showed that 1016 lncRNAs were up-regulated and 454 down-regulated between the two immune infiltration subtypes. Each red dot showed an up-regulated lncRNA, and each blue dot shows a downregulated lncRNA (|Log2 Fold Chage| > 1 and FDR < 0.05). (B) The multiple stepwise regression analyses identified six lncRNAs correlated with prognostics. Patients in the high-risk group (red) exhibited worse overall survival (OS) than those in the low-risk group (green). (C) The receiver operator characteristic (ROC) curves to predict the sensitivity and specificity of 1-, 3-, and 5- years survival according to the 6-lncRNA signature-derived risk scores. (D) Kaplan–Meier analysis of the high versus low immune risk subgroup in validation dataset. (E) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5- years survival in validation dataset. (F) Kaplan–Meier analysis of the high versus low immune risk subgroup in test dataset. (G) ROC curves to predict the sensitivity and specificity of 1, 3, and 5 years survival in test dataset. (H) The expression of six lncRNAs in AEG patients.





Analysis of lncRNAs as Prognostic Biomarkers

A total of 1470 lncRNAs, which were differentially expressed, were analyzed via univariate Cox regression. Through univariate Cox proportional hazards regression analysis, 10 lncRNAs with prognostic significance (P<0.01) were identified. Using stepwise multiple regression analysis on these selected lncRNAs, we finally obtained six lncRNAs, namely LINC01502, FLJ38122, C15orf32, LINC00706, LINC01348, and BCAR4 (Supplementary Table S4). Based on multiple stepwise regression analyses, a risk score was constructed as follows:

	

The cut-off value for the low-risk and high-risk groups was 0.1080, which was calculated by the R package survminer. Our data showed that the mortality rate of the high-risk group was markedly higher than that of the low-risk group (Figure 5B), indicating that six lncRNAs played critical roles in AEG. The AUC for the 3- and 5-year survival was 0.695 and 0.742, respectively (Figure 5C). We performed survival analyses (Kaplan-Meier test) on validation datasets and obtained similar results (P < 0.05) (Figure 5D). The AUC for the 3- and 5-year survival was 0.73 and 0.75, respectively in validation datasets (Figure 5E). Moreover, we performed survival analyses (Kaplan-Meier test) on test datasets and obtained similar results (P < 0.05) (Figure 5F). The AUC for the 3- and 5-year survival was 0.719 and 0.7, respectively in test datasets (Figure 5G). Heatmap analysis was used to visualize the expression of the six lncRNAs in AEG patient samples (Figure 5H).



Assessment of 6 Immune-Linked lncRNAs as Independent AEG Prognostic Factors

Univariate Cox regression, multivariate Cox regression, and ROC analysis were employed to determine whether the six immune-related lncRNAs have prognostic value in AEG cancer independently of clinicopathological indicators such as age, pathological stage, and sex. The hazard ratio (HR) of risk score and 95%CI were 2.724 and 1.983–3.741 in the univariate Cox regression assessment (P<0.001), and 3.154 and 2.251–4.419 in the multivariate Cox regression assessment (P<0.001), respectively (Figures 6A, B). Compared with the classic risk factor for pathological stage (AUC=0.655), the risk score (AUC=0.731) showed a better predictive power for survival in the TCGA AEG cohort (AUC=0.731) (Figure 6C), which suggests that the six lncRNAs are independent AEG prognostic factors.




Figure 6 | Univariate and multivariate analysis shows the prognostic value of 6-lncRNA signature. Univariate (A) and multivariate (B) Cox regression analyses of the association between clinicopathological factors and OS of AEG patients. (C) The receiver operator characteristic (ROC) curves to predict the sensitivity and specificity of clinicopathological factors and 6-lncRNA signature-derived risk scores in AEG patients.





6-lncRNA Signature Can Predict the Response of Immunotherapy and Chemotherapy

First, we performed a prediction analysis of response to chemotherapy in the two risk groups by applying the “pRRophetic” method. Patients in the low-risk group had a lower estimated IC50 than those in the high-risk groups for the following chemotherapy drugs: bleomycin, cisplatin, dasatinib, doxorubicin, gemcitabine, midostaurin, shikonin, and paclitaxel (Figures 7A-H) (P<0.05).




Figure 7 | The IC50s of chemotherapeutic agents with 6-lncRNA signature. (A) cisplatin, (B) doxorubicin, (C) gemcitabine, (D) paclitaxel, (E) bleomycin, (F) dasatinib, (G) midostaurin, (H) shikonin.



We further tested the predictor efficiency of the lncRNA risk model in the urothelial carcinoma (UC, the most common type of bladder cancer) cohort with immunotherapy (IMvigor210). The results on this validation set showed that the high-risk group had a higher immunotherapy response rate (P<0.05) and neoantigen burden (P=0.0009618) than the low-risk group, based on the 6-lncRNA signature (Figures 8A, B). Interestingly, the Kaplan-Meier curves revealed that the high-risk group had improved survival than the low-risk group, contrary to the AEG non-immunotherapy cohort (Figure 5B).




Figure 8 | The 6-lncRNA signature in the role of immunotherapy. (A) The proportion of immune response to immunotherapy in high versus low immune risk score subgroups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (B) Neoantigen burden in the UC cohort was compared among the distinct 6-lncRNA signature subgroups. (C) Kaplan–Meier analysis of the high versus low immune risk subgroup in the UC cohort. (D) Kaplan–Meier analysis of the high versus low immune risk subgroup in the BLCA cohort.



To verify the hypothesis that the prognosis of the high-risk group may be remarkably improved by immunotherapy, we employed the bladder cancer (BC) TCGA cohort as the control dataset based on the 6-lncRNA signature. Moreover, those BC patients who did not receive immunotherapy were selected for survival analysis. As expected, a trend toward unfavorable prognosis in the high-risk group was observed in the UC immunotherapy cohort (P=0.11) (Figure 8D), which was opposite to the result in the UC immunotherapy cohort (P=0.012) (Figure 8C).




Discussion

Globally, AEG is the most common and fatal malignant tumor, with highly heterogeneous biological features (23). This study distinguished two novel immune subtypes in AEG samples based on the immune infiltration score. We observed apparent heterogeneity between two immune subtypes. It is known that the high heterogeneity of AEG exists not only in the genotypes and phenotypes of tumor cells but also in the TME (24). The TME is comprised of numerous cell types including cancer cells, immune cells, stromal cells, and fibroblasts. Therefore, this high complexity of immune cells may be the main reason for the heterogeneity in two immune infiltration subtypes. This finding was consistent with previous reports. Derks et al. (25) confirmed substantial heterogeneity in the TME between distinct subtypes in gastroesophageal adenocarcinomas. They also elucidated tertiary lymphoid structures(TLSs) in half of diffuse/genome-stable (GS) gastric cancers. It is worth noting that the subjects in Derks et al.’s study included those with gastric cancer and esophageal cancer, while our subjects had AEG.

Tumor immune cell infiltration is known to be associated with the outcome of gastroesophageal adenocarcinomas. For instance, Zhang et al. proved that high tumor-infiltrating lymphocytes (TIL) levels were associated with a favorable prognosis and that TIL reflected a protective host antitumor immune response (26). High levels of myeloid-derived suppressor cells (MDSCs) were associated with poor prognosis and therapeutic resistance in esophageal cancer (27, 28). However, there is a lack of such prognosis studies in AEG patients. In the current research, we found no significant difference in the overall survival of AEG patients between two immune infiltration groups (Supplementary Figure S1). This result has been confirmed by Derks et al. (25).

Further investigation on the relationship between TME and prognosis in AEG may improve the outcome for AEG patients. In addition, interestingly, we found that the immune infiltration situation was different in male and female patients (Supplementary Table S1). Female patients seemed to have a higher immune infiltration state in AEG. This result implied that sex-based differences should be considered for personalized antitumor immunotherapy in AEG patients. The study on detailed characteristics of tumor immune infiltration can provide personalized guidance and potential candidates for the immunotherapy of cancer patients. In the current study, we focused on the heterogeneity of AEG and the interaction between tumor-infiltrating immune cells and tumor cells, which was necessary to study the mechanism of tumor progression and develop new diagnostic and antitumor immune therapeutic approaches. Multiple genomic features such as tumor non-synonymous mutation load (TML) and mutational signatures have shown a strong correlation with clinical response to ICI treatment (29). To our knowledge, this is the first study on the tumor immune infiltration landscape in AEG samples. A key finding of the current study is that we revealed a different mutational signature profile between the two immune subtypes of AEG patients.

There is emerging evidence in the literature indicating that dysregulation of lncRNAs involved in the regulation of the immune system (30). Further, several lines of evidence identified these lncRNAs as immune-related lncRNA (31). For instance, Li et al. introduced an integrated algorithm, ImmLnc, which was employed to identify immune-related lncRNA. It is worth noting that even though the subjects in the above research spanned more than 30 cancer types, while AEG samples did not include in their study. Moreover, Li et al. performed a correlation analysis between the immune pathway and lncRNA to identify immune-related lncRNA in low-grade glioma (13). In addition, Shen et al. performed a similar approach as in our study to evaluated immune-related lncRNAs in breast cancer (32). Indeed, experimental supporting evidence is considered the gold standard for judging lncRNA function.

LncRNAs have been increasingly identified as a prognostic signature for cancer patients. For instance, Shen et al. evaluated prognosis using 11 immune-related lncRNAs in breast cancer (32). Numerous studies indicated that lncRNAs had been increasingly identified as prognostic signatures in cancer patients (33, 34). Using the transcriptome sequencing data and immune infiltration scores of AEG, we identified 6-lncRNA prognostic signatures related to immune cell infiltration in this study. The 6-lncRNA prognostic signature can predict the outcome and response to immunotherapy in AEG patients. BCAR4 is one member of the six lncRNAs. Recent studies have shown that BCAR4 can promote the migration and proliferation of tumor cells in various cancers (35–38). Notably, Godinho et al. found that BCAR4 related tamoxifen resistance in breast cancer patients (39). The functions of the other five lncRNAs, however, have not been reported so far. Further studies are warranted to assess the immunomodulatory role of BCAR4 and the other five lncRNAs in AEG.

The adenocarcinomas of gastroesophageal junction, either in the distal esophagus or gastric cardia, were considered to have a similar etiology. However, the adenocarcinomas arising in this site are heterogeneous and aggressive tumors with distinct malignant biological behaviors. We hypothesized that identifying the immune-related lncRNA risk model of AEGs might reveal novel molecular subgroups and may be beneficial to predict the prognosis and response to immunotherapy. There is growing evidence suggesting that AEG is a highly complex malignancy, comprising distinct subtypes associated with genetic and epigenetic alterations (24, 40, 41). For instance, the incidence of chromosomally unstable tumors was increased in gastro-esophageal junction adenocarcinomas (42). Our study addresses for the first time the features of lncRNA -related subgroup in AEG. Notably, our results did not converge well with the classical Siewert classification in AEG, which has implications for lymph node spread (43). Those results may explain apparently differ phenotypically or genetically between high- and low- risk groups.

Our study has some limitations. First is the modest sample size of AEG. We still need more AEG samples to verify the reliability of our conclusions. We still need more AEG samples to verify the reliability of our conclusions. Another pitfall is that the immune-based therapies data of AEG patients were not available now. More validation datasets of received immunotherapy are needed to verify the stability of immune-related lncRNA prognostic signature. Finally, the lncRNAs we mined have complications with the outcome of AEG patients, whereas the function of these novel non-coding RNAs is unclear. More experiments are desired to elucidate the underlying mechanism of these lncRNAs in tumor progression and immune escape.

In conclusion, we believe our findings highlight the critical implications of the tumor immune infiltration landscape and shed light on establishing a prediction model based on immune-related lncRNAs to predict the clinical outcome and immunotherapy responses.
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NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
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Highlights

	NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow, and correlates with poor prognosis in AML.

	NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner.





Introduction

Acute myeloid leukemia (AML) is a hematopoietic stem cell malignancy characterized by ineffective hematopoiesis and excessive proliferation of immature myeloid cells (1). With the enormous cytogenetic and molecular heterogeneity of AML identified, targeted therapy has made great progresses; however, the overall survival of AML patients remains unsatisfied, highlighting the urgent need for novel therapeutic strategies. Abnormalities of immune system have been recognized in AML, and our previous studies have demonstrated that imbalanced T-helper (Th) cells contribute to AML pathogenesis (2, 3). Nevertheless, the detailed immunological mechanism of AML remains unclear.

Inflammasomes are cytosolic multi-protein complexes involved in innate immune response. NLRP3 inflammasome containing NLRP3, ASC, and pro-caspase-1 is one of the best-characterized inflammasome (4, 5) and has been proven to be involved in AML in our previous study (3). The exact mechanism of NLRP3 inflammasome activation is still under investigation, and a spatially and temporally separated two-signal process including priming and activation has been generally accepted (6). Signal one up-regulates transcription of pro-IL-1β and NLRP3 via NF-κB activation by sensing PAMPs/DAMPs in a TLRs-, NLRs-, TNFR1- and IL-1R1-dependent manner, and signal two is the assembly of the inflammasome complex and activation of caspase-1 (4, 7). When stimulated, the NLRP3 inflammasome formation results in caspase-1 activation and subsequently converts pro-inflammatory cytokine pro-IL-1β or pro-IL-18 into its mature bioactive form. Mature IL-1β or IL-18 is then released outside the cell (4, 7). Lipopolysaccharide (LPS) can trigger the NLRP3 inflammasome activation in human cells via TLR4 pathway (8). In addition, IL-1β itself induces synthesis of pro-IL-1β through IL-1RI-MyD88-NF-κB pathway, resulting in a positive feedback loop (9).

Though, the controversial role of NLRP3 inflammasome in the carcinogenesis has been debated (10–12), increasing evidences emphasize that NLRP3 inflammasome promotes chronic inflammatory response which contributes to cancer initiation, development and progression (13–16). NLRP3 inflammasome effector cytokine IL-1β or IL-18 is also proved to be involved in cell proliferation, differentiation and considered to play a pivotal role in tumorigenesis (9, 17–21). It was reported that high concentrations of serum IL-1β and IL-18 are strictly correlated to poor prognosis of cancer patients (10, 12). Moreover, multiple studies showed that inflammasomes and IL-1 signaling manifested carcinogenic roles in head and neck squamous cell carcinoma, gastric carcinoma, breast cancer, lung cancer, and other cancers (9, 13, 16, 22–26). Therefore, antagonists, such as small molecules or antibodies targeting components of the inflammasome complex are developed (9, 27). Our previous studies also demonstrated that the polymorphisms of NLRP3 inflammasome might be involved in the pathogenesis of hematological malignancies, such as lymphoma (28), multiple myeloma (29), myelodysplastic syndromes (30) and AML (31). Moreover, we found that aberrant NLRP3 expression associated with Aryl hydrocarbon receptor (AHR) may contribute to Th cells imbalance in AML patients (3). However, the detailed role of NLRP3 inflammasome in the progression of AML remains to be investigated.

Here, we showed for the first time that highly activated NLRP3 inflammasome in AML cells plays carcinogenetic roles in an IL-1β dependent manner. Furthermore, inhibition of NLRP3 inflammasome activation manifests anti-leukemia effects both in vitro and in vivo. In conclusion, our results identify that activated NLRP3 is a critical biological actor in the pathogenesis of AML and suggest novel strategies for therapeutic intervention.



Materials and Methods


Patients and Specimens

Bone marrow aspirates included in this study were from 84 newly diagnosed (ND) AML patients and 16 age- or gender-matched controls. Because bone marrow aspiration is an invasive procedure, healthy donors and individuals with mild iron deficiency anaemia without immunological changes were used as controls. These specimens were collected at Qilu Hospital of Shandong University. Bone marrow mononuclear cells (BM-MNCs) were isolated by density-gradient centrifugation with Ficoll-Hypaque (Haoyang biotechnology company, Tianjin, China). If red cell contamination from BM-MNCs was more than thirty percent, red blood cell lysis was performed. A total of 2×106 BM-MNCs were stabilized in TRIZOL and stored at -80°C for RNA extraction. BM-MNCs obtained from ND AML patients with high marrow blast counts (20 patients with >70%, 8 patients with 60~70% BM blasts, respectively) were used as primary leukemia cells immediately for cell culture experiment. All studies were performed with the patients’ written informed consent at the beginning of the trial and were approved by the Medical Ethical Committee of Qilu Hospital of Shandong University (KYLL-2016-300). The related clinical characteristics for AML patients in our study are presented in Table 1.


Table 1 | Clinical characteristics of ND AML patients and controls.





Cells and Reagents

THP-1 and U937 cells were purchased from Shanghai Institutes for Biological Sciences of China, and murine AML cell line C1498 was obtained from ATCC (Cat. TIB-49). THP-1, U937 or primary leukemia cells were cultured in RPMI 1640 culture medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, USA) and 1% penicillin/streptomycin (Gibco, USA). C1498 cells were cultured in DMEM medium containing 10% FBS and 1% penicillin/streptomycin. And cells were incubated at 37°C in humidified atmosphere with 5% CO2. The NLRP3 lentiviral over expression system was established by inserting the cDNA of NLRP3 in the open reading frame of the vector Ubi-MCS-3FLAG-SV40-EGFP-IRES-puromycin (GeneChem Company, Shanghai, China) using Age I/Nhe I digestion. Recombinant human IL-1β, IL-18, anti-IL-1β and anti-IL-18 were purchased from R&D Systems (Minneapolis, MN, USA). LPS and ATP were purchased from Sigma-Aldrich. The caspase-1 inhibitor Z-YVAD-FMK was purchased from Alexis Biochemicals (Heidelberg, Germany). The NF-κB inhibitor Bay11-7082 was purchased from Selleck chemicals (Selleckchem, USA). Dimethylsulfoxide (DMSO) was purchased from Sigma (USA). The chemotherapy drugs we used are nucleic acid synthesis inhibitors [Aadriamycin (ADR) and Daunorubicin (DNR)] and cell cycle inhibitor [Cytosine Arabinoside (Ara-C)]. They were dissolved in normal saline and diluted in RPMI 1640 medium immediately before use. Primary antibodies against NLRP3 (#15101), NF-κB p65(# 8242), phospho-NF-κB p65 (NF-κB pp65) (#3033), caspase-1 (#3866), pro-IL-1β (#12703), cleaved IL-1β (#83186), Bcl-2 (#3498), C-myc (#5605), and cleaved PARP (#9548) used for Western blot were obtained from Cell Signaling Technology (Beverly, MA, USA); and antibodies against caspase-9 (ab202068), β-tubulin (ab0039), cleaved caspase-3 (ab13847), BAX (ab199677) and β-actin (ab227387) were purchased from Abcam (Cambridge, UK). The secondary antibodies were obtained from Millipore (USA). All reagents were dissolved and preserved following the manual’s instructions.



NLRP3 Activation and Inactivation in Leukemia Cells

NLRP3 inflammasome can be activated by LPS or LPS+ATP (8). Therefore, in our study, NLRP3 activation for THP-1 or primary leukemia cells was conducted with LPS (1μg/mL) or followed by ATP (5 mmol/L). NLRP3 effector cytokine IL-1β (10 ng/mL) or IL-18 (10 ng/mL) was also added into leukemia cells to investigate the role of NLRP3 inflammasome in AML. NLRP3 inactivation was performed by inhibiting caspase-1 or NF-κB pathway. To inhibit caspase-1, leukemia cells were pretreated with caspase-1 inhibitor Z-YVAD-FMK at 10 umol/L for 1 hour. For the inhibition of NLRP3 inflammasome activation via NF-κB signaling pathway, NF-κB inhibitor Bay11-7082 (10 umol/L) was used to treat leukemia cells for 1hour. Moreover, ADR (200 μg/L) or DNR (20 μg/L) was added into leukemia cells to determine the role of NLRP3 inflammasome in antitumor activity of chemotherapy drug. After being incubated for 24, 48, 72 or 96 hours, cells were collected for cell proliferation and apoptosis analysis. In addition, cells were harvested for qRT-PCR and Western blot analysis and the supernatants were collected for ELISA analysis.



Cell Co-Culture Experiments

THP-1 cells were stimulated with LPS (1μg/mL) for 6 hours followed by ATP (5mmol/L) for 1 hour to activate NLRP3 inflammasome. After being washed with normal saline for three times, a total of 100uL NLRP3-activated THP-1 cells (5 × 104 cells/mL) in the upper chamber were co-cultured with 600µL primary leukemia cells (1 × 106 cells/mL) in the bottom chamber using Transwell chamber (24-well, 0.4 µm, Corning, NY, USA). Anti-IL-1β or anti-IL-18 was added for neutralization. After being incubated for 48 hours, primary leukemia cells in the bottom chamber were harvested for apoptosis assay.



siRNA Knockdown of IL-1β

THP-1 cells were plated into 24-well plates (2.5× 105 cells/well) and transfected with IL-1β siRNA (2.0 µmol/L) using exfect 2000 (VAZAME, China) for 8 hours according to manufacturer’s protocol. The IL-1β siRNA (Genepharma, China) was as below: sense 5’ GGU GAU GUC UGG UCC AUA UTT 3’, antisense 5’ AUA UGG ACC AGA CAU CAC CTT 3’, while the negative control sequence was: sense 5’ UUC UCC GAA CGU GUC ACG UTT 3’, antisense 5’ ACG UGA CAC GUU CGG AGAATT 3’. The IL-1β expression, cell proliferation and drug sensitivity were determined 48 hours later.



NLRP3 Lentiviral Infection of C1498

C1498 cells were infected with NLRP3-GFP or Ctrl-GFP lentivirus (Ubi-MCS-3FLAG-SV40-EGFP-IRES-puromycin). Puromycin was used to gain the stable infection cells and fluorescence microscope was used to determine the infection efficiency after 48 hours. The expression of NLRP3 was analyzed at both the mRNA and protein levels to verify the efficiency of infection. Then the lentivirus infected C1498 cells were stimulated with LPS (1μg/mL) to activate NLRP3 inflammasome and the expressions of NLRP3 components were examined by Western blot and qRT-PCR.



AML Murine Models


NLRP3-Upregulated AML Murine Model

Female WT C57BL/6J mice were obtained from the Laboratory Animal Center, Shandong University. C1498 cells were intravenously injected into mice to establish the AML model. The experimental mice were injected with 1 × 106 NLRP3-GFP C1498 cells, and mice injected with Ctrl-GFP C1498 cells were used as controls, and normal mice were injected with PBS. AML mice were sacrificed 21 days later. The complications (spleen, the liver and bone barrow invasion) were analyzed and the expressions of NLRP3 related molecules were determined. The survival was also observed for another cohort of AML mice.



NLRP3-Knockout AML Murine Model

NLRP3-/- mice of C57BL/6J background were kindly provided by Dr. Rongbin Zhou (Chinese University of Science and Technology). The retrovirus vector with intracellular domain of MLL-AF9 (MSCV-MLL-AF9-IRES-GFP) was kindly provided by Dr. Hui Cheng (Institute of Hematology, Chinese Academy of Medical Sciences). C-kit+ cells from NLRP3-/- mice transfected with MSCV-MLL-AF9-IRES-GFP (107 cells/host) and BM-MNCs from C57BL/6J mice (107 cells/host) were transplanted into lethally irradiated C57BL/6J recipients. In control group, recipients were transplanted with 107 C-kit+ cells from WT C57BL/6J mice transfected with MSCV-MLL-AF9-IRES-GFP and 107 BM-MNCs from C57BL/6J mice. BM-MNCs from C57BL/6J mice were used as protective cells for lethally irradiated C57BL/6J recipients in experimental and control group. On day 30 after transplantation, NLRP3-/- AML mice were verified by using peripheral blood from the lateral tail vein with FACS Aria II sorter (BD Biosciences).

All mice were six to eight week old and were maintained in a specific pathogen-free environment. Animal protocols were approved by the Animal Ethics committee of Qilu Hospital, Shandong University.




Cell Proliferation Assays

After different treatments, the cells were incubated with 10uL CCK8 (Beyotime, China) for 3 hours. The absorbance was measured at 450 nm. Each sample was conducted in triplicate.



Apoptosis Assays

Apoptosis was performed with the Annexin V/PI apoptosis detection kit (BestBio, Shanghai, China) according to the manufacturer’s protocol. Cells were harvested after different treatments and washed twice with PBS. Then cells were re-suspended in 400 μL binding buffer, and stained with 5μL Annexin V for 15 minutes, 10μL PI for another 5 minutes in the dark at 4°C. The percentages of apoptotic cells (Annexin V+/PI- as early apoptosis, and Annexin V+/PI+ as late apoptosis) were analyzed immediately by Galios flow cytometry (Beckman Coulter, CA, USA).



Quantitative Reverse Transcriptase PCR (qRT-PCR)

Total RNA was extracted from AML primary leukemia cells or THP-1 U937 and C1498 cell line cells using TRIZOL (Invitrogen, USA). The total RNA concentration and purity were quantified by spectrophotometer (Eppendorf, GER). Reverse transcription was performed at 37°C for 15 minutes followed by 85°C for 10 seconds using Prime Script RT reagent Kit Perfect Real Time (Takara Bio Inc, Japan). Quantitative PCR was operated in duplicate on Light Cycler 480II real-time PCR system (Roche, Switzerland) with SYBR Green Real-time PCR Master Mix kit (Toyobo, Japan). The PCR contained 3.2 μL ddH2O, 5 μL of 2×SYBR Green Real-time PCR Master Mix, 0.4 μL of the forward and reverse primers, and 1 μL of cDNA in a final volume of 10 μL. PCR conditions were performed as follows: 95°C for 10 minutes followed by 40 cycles (95°C for 20 seconds and 60°C for 1 minutes). The primer sequences for the relevant genes were shown in Table 2. To determine the specificity of the PCR reaction, melting curves were routinely analyzed. All experiments were conducted according to the manual’s instructions. Relative gene expression was expressed relative to endogenous control GAPDH and calculated using 2 –ΔCT method.


Table 2 | The sequences of PCR primers.





Enzyme-Linked Immunosorbent Assay (ELISA)

The BM plasma samples were collected from EDTA stabilized bone marrow of 70 ND AML patients and 15 controls, and supernatants of primary leukemia cells or THP-1 cells were collected and stored at -80°C for determination of cytokines. Human IL-1β ELISA kit was purchased from R&D Systems (Minneapolis, MN, USA) and IL-18 ELISA kit was purchased from eBioscience (San Diego, CA). ELISA was performed in accordance with the manufacturer’s instructions.



Western Blot Analysis

Cells were collected, washed twice with PBS, and then lysed with RIPA buffer (Beyotime, China) containing protease inhibitor compound (Beyotime, China) on ice. Bicinchoninic acid (BCA) protein assay Kit (Beyotime, China) was applied to measure the concentration of proteins. Proteins extracts (30 μg) were loaded onto 10% SDS-PAGE and then electro-transferred onto nitrocellulose membranes (Millipore, Bedford, Massachusetts, USA). After being blocked with 5% nonfat milk for 1 hour at room temperature, the membranes were incubated overnight with specific primary antibodies at 4°C followed by being incubated with HRP-conjugated secondary antibodies at room temperature for 1 hour. Protein bands were detected by FluorChem E Chemiluminescent imaging system (ProteinSimple, San Jose, CA, USA) after washing.



Statistical Analysis

GraphPad Prism 5.0 was applied in diagrams drawing. Statistical analysis was conducted with raw data using SPSS 20.0 software. Shapiro-Wilk test was used for normality tests. Data normally distributed were analyzed by Student’s t-test or paired t tests. Otherwise, comparisons between groups were performed using Mann-Whitney U test for non-paired data and Wilcoxon signed rank test for paired data. Data in results are expressed as the mean ± s.e.m, except where stated otherwise. To represent the complicated correlation structure among the genes in NLRP3 inflammasome, score-based hill-climbing greedy search algorithm using mRNA expression data was applied to learn the Bayesian network (32). * P <.05, ** P <.01 and *** P<.0001 were considered statistically significant.




Results


NLRP3 Inflammasome Is Over-Expressed and Highly Activated in AML, Which Plays Leukemia-Promoting Effects In Vitro

To determine the expression of NLRP3 inflammasome in AML patients, we examined NLRP3 inflammasome associated molecules in BM-MNCs isolated from 63 newly diagnosed AML patients by qRT-PCR. The inflammasome transcripts from AML samples were significantly up-regulated compared with those from controls, including NLRP3, IL-1β, NF-κB and IL-1R, whereas the expression of ASC, caspase-1 or IL-18 showed no significant difference between two groups (Supplementary Figure 1A). The protein level of NLRP3 inflammasome was further quantified by western blot, in which NLRP3, NF-κB, pro-caspase-1 and pro-IL-1β were dramatically increased in BM-MNCs of ND AML patients, while they were hardly detected in BM-MNCs of controls (Figure 1A, Supplementary Figure 1E). Furthermore, as the activation of NLRP3 inflammasome is associated with the secretion of cytokines IL-1β and IL-18 (7), we measured the concentrations of IL-1β and IL-18 in the supernatants of BM from 70 ND AML patients and 15 controls using ELISA. The results confirmed that the concentration of IL-1β was significantly elevated in ND AML patients compared with controls, whereas the level of IL-18 was similar to controls (Figure 1B).




Figure 1 | NLRP3 inflammasome is over-expressed and highly activated in AML, which plays leukemia-promoting effects in vitro. (A) The western blot results of NLRP3, NF-κB, caspase-1, pro-IL-1β and ASC in BM-MNCs from ND AML patients (n=3) and controls (n=3). (B) The concentrations of IL-1β and IL-18 in BM supernatant from ND AML patients (n=70) in comparison to controls (n=15). (C) The Western blot results of pNF-κB, pro-caspase-1, pro-IL-1β, cleaved caspase-1 and cleaved IL-1β were showed in primary leukemia cells after different treatment. β-actin is used as a loading control. (D) LPS stimulated the secretion of IL-1β and IL-18 into the supernatants from cultured leukemia cells. (E) CCK8 analysis was performed to detect the proliferation of leukemia cells 24, 48 and 72 hours after LPS stimulation (n=10). (F) The quantified apoptosis rate was shown (n=10). (G) The western blot results of PARP, C-myc and Bcl-2 in primary leukemia cells after LPS stimulation. (H) CCK8 analysis for the proliferation of primary leukemia cells with or without LPS 24, 48 and 72 hours after treatment with ADR, DNR (n=10). (I) The apoptosis results of primary leukemia cells with or without LPS after treatment with ADR, DNR (n=6). (J) The expression of NLRP3 in U937 cell line was enhanced after being transfected with lentivirus (n=3). (K) The IC50 value of ADR for U937 cells was higher after upregulating NLRP3 expression (n=3). (L) PARP, C-myc and Bcl-2 in primary leukemia cells after LPS stimulation (n=1). β-actin is used as a loading control. *P < 0.05; **P < 0.01; ***P < 0.001.



The effect of NLRP3 activation in AML has not been evaluated. To clarify this effect, we firstly activated the NLRP3 inflammasome using LPS in primary AML leukemia cells as described previously (8). The result showed that LPS significantly increased the transcription levels of caspase-1 and IL-1β (Supplementary Figure 1B). Moreover, LPS upregulated the protein expression of pNF-κB, pro-caspase-1, pro-IL-1β, cleaved caspase-1 or cleaved IL-1β (Figure 1C, left two columns, Supplementary Figure 1F), and promoted the secretion of IL-1β or IL-18 into culture medium (Figure 1D). After verifying the successful activation of NLRP3 inflammasome, CCK8 was used to determine the cell proliferation and flow cytometry analysis was performed to analyze apoptosis. Our results demonstrated that NLRP3 activation significantly promoted the cell proliferation and decreased the cell apoptosis of AML cells (Figures 1E, F, Supplementary Figure 1C). After determining the proliferation related protein by western blot, we found LPS stimulation upregulated the expression of onco-protein Bcl-2 or C-myc (Figure 1G). Furthermore, we explored the role of NLRP3 inflammasome activation in AML chemotherapy, and found that the killing effect of ADR or DNR on leukemia cells was reversed by LPS-induced NLRP3 activation (Figures 1H, I, Supplementary Figure 1D). Moreover, we upregulated NLRP3 expression by lentivirus transfection in leukemia cells to study its effect on drug resistance (Figure 1J). The result showed that NLRP3 overexpression increased the IC50 of ADR in U937 leukemia cells (from 114.03 to 143.06 µg/L), indicating the response to ADR was inhibited by increased NLRP3 expression and activation (Figure 1K). Mechanistically, NLRP3 activation significantly inhibited the drug-induced expression of PARP-1, and promoted C-myc and Bcl-2 expression (Figure 1L, Supplementary Figure 1G). These results indicated that NLRP3 inflammasome activation plays a leukemia-promoting role in AML.



Up-Regulation of NLRP3 Promotes AML Progression and Shortens Survival in AML Mice

To further investigate the role of NLRP3 inflammasome in AML in vivo, we up-regulated NLRP3 expression in AML murine cell line C1498 and explored their progression in mice. After successful transfection of C1498 cells with NLRP3-GFP or Ctrl-GFP lentivirus (Supplementary Figure 2A), we found that NLRP3-GFP lentivirus significantly up-regulated NLRP3 expression at both mRNA and protein levels (Supplementary Figures 2B, C). Moreover, after LPS stimulation, the mRNA or protein level of IL-1β was much higher in NLRP3-GFP transfected C1498 cells than Ctrl-GFP control (Supplementary Figures 2D, E).

A total of 1×106 C1498 cells transfected with NLRP3-GFP or Ctrl-GFP were intravenously injected into female WT C57BL/6J mice to establish AML mice. The AML mice were sacrificed after 21 days, and the expressions of NLRP3 related molecules were determined. Our results showed that the mRNA level of NLRP3, IL-1β or NF-κB was significantly elevated in BM of NLRP3-GFP AML mice compared with Ctrl-GFP AML mice (Supplementary Figure 2F). Moreover, the NLRP3-GFP AML mice presented with more severe hepatomegaly and splenomegaly in comparison to Ctrl-GFP mice (Figure 2A). The liver and spleen showed higher weight in NLRP3-GFP AML mice (Figure 2B). Leukemia cells in bone marrow or liver were examined by microscopy, and we observed that liver and bone marrow sections showed more leukemia cells infiltration in NLRP3-GFP AML mice compared with control mice (Figure 2C). Single-cell suspensions from spleen, liver or bone marrow were determined using flow cytometry analysis, and the results showed that the percentages of GFP+ leukemia cells in these organs from NLRP3-GFP AML mice were significantly higher than those from Ctrl-GFP AML mice (Figure 2D, Supplementary Figure 2G). Furthermore, NLRP3 up-regulation in C1498 led to a statistically shorter survival than Ctrl-GFP AML mice [median 22 (range 21-24) days vs median 27 (range 25-28) days (P=0.0188)] (Figure 2E). These results suggested that NLRP3 up-regulation in leukemia cells induces an expansion of leukemia cells in the BM, liver and spleen, and causes the poorer survival.




Figure 2 | Up-regulation of NLRP3 promotes AML progression and shortens survival in AML mice. (A) Representative photographs of spleen and liver from NLRP3-GFP mice (n=3), Ctrl-GFP mice (n=4) are compared, (B) with the analysis of the weight of spleens and livers of NLRP3-GFP (n=3) and Ctrl-GFP mice (n=4). (C) Hematoxylin and eosin–stained histopathology sections of a representative liver and bone marrow from Ctrl-GFP and NLRP3-GFP mice (100× or 400×). (D) The leukemia cells (GFP+ cells) in spleen, liver and bone marrow from NLRP3-GFP (n=3) and Ctrl-GFP (n=4) mice. (E) Kaplan-Meier survival curve of mice leukemia model (n=5 per group). *P < 0.05; **P < 0.01.





Inactivation of NLRP3 Inflammasome by Caspase-1 or NF-κB Inhibitor Suppresses AML Leukemia Cells In Vitro

As caspase-1 is pivotal for the activation of NLRP3 inflammasome (7), we treated primary AML leukemia cells with caspase-1 inhibitor Z-YVAD-FMK. As expected, our results showed that Z-YVAD-FMK decreased the secretion of IL-1β and IL-18 into culture medium of leukemia cells (Figure 3A). CCK8 analysis showed Z-YVAD-FMK suppressed the proliferation of AML leukemia cells or LPS-activated AML cells (Figure 3B), and apoptosis analysis by flow cytometry showed Z-YVAD-FMK increased apoptosis rate of leukemia cells (Figures 3C, D). Our results confirmed that inhibiting caspase-1 in AML cells suppressed the pro-survival effect of NLRP3 inflammasome activation.




Figure 3 | Inactivation of NLRP3 inflammasome by caspase-1 or NF-κB inhibitor suppresses AML leukemia cells in vitro. (A) The concentration of IL-1β (n=5) and IL-18 (n=4) in supernatants of cultured leukemia cells following Z-YVAD-FMK treatment. (B) Cell proliferation was analyzed by CCK8 assay in primary leukemia cells 24, 48 and 72 hours after treatment with LPS or/and Z-YVAD-FMK (n=8). (C) The apoptosis rate of leukemia cells in primary leukemia cells 48 hours after treatment with LPS or/and Z-YVAD-FMK (n=5). (D) Representative scatter plots of apoptosis. (E) ELISA results of secreted IL-1β (n=3) and IL-18 (n=4) by AML primary leukemia cells after treatment with Bay11-7082. (F) Cell proliferation was analyzed by CCK8 assay in primary leukemia cells 24, 48 and 72 hours after treatment with LPS or/and Bay11-7082 (n=7). (G) The apoptosis rate of leukemia cells in primary leukemia cells 48 hours after treatment with LPS or/and Bay11-7082 (n=3). (H) Representative scatter plots of apoptosis. (I) The results of NLRP3 mRNA expression in THP1 cells after being transfected with lentivirus (n=3). (J) The IC50 values of ADR for THP1 cells after downregulating NLRP3 expression (n=3). *P < 0.05; **P < 0.01; ***P < 0.001.



In addition, NF-κB signaling pathway is crucial for the NLRP3 inflammasome activation (7). We applied AML leukemia cells with NF-κB inhibitor Bay11-7082, and found that Bay11-7082 significantly decreased the protein levels of LPS+ATP induced pNF-κB, pro-caspase-1, pro-IL-1β, cleaved caspase-1 and cleaved IL-1β (Figure 1C, right column 1 and 3, Supplementary Figure 1F). Moreover, ELISA results showed that Bay11-7082 inhibited the secretion of IL-1β and IL-18 from AML primary leukemia cells (Figure 3E). CCK8 assay showed that Bay11-7082 inhibited the proliferation of AML leukemia cells or LPS-activated AML cells (Figure 3F). In addition, we found that the apoptosis in primary leukemia cells with or without LPS activation was apparently enhanced in the presence of Bay11-7082 (Figures 3G, H). Furthermore, to explore the endogenous deficiency of NLRP3 in AML, we knocked down NLRP3 in leukemia cells by using siRNA transfection (Figure 3I). The result showed that the deficiency of NLRP3 increased the drug sensitivity with the decreasing IC50 of ADR (from 160 to 127 µg/L) (Figure 3J). These observations collectively indicated that inactivation of NLRP3 inflammasome suppresses the progression in leukemia cells.



Knockout of NLRP3 Attenuates Leukemia Burden in AML Mice

Furthermore, we continued to investigate the effect of NLRP3 in AML murine model. The NLRP3-/- AML mice or control AML mice were successful constructed and certificated (Supplementary Figure 2H). Then, we designed two groups of C57BL/6J AML mice, one for injection with NLRP3-/- AML leukemia cells and one for injection control AML leukemia cells. We found that NLRP3-/- AML mice exhibited a milder splenomegaly and a lighter spleen weight compared to control AML mice (Figures 4A, B). Moreover, the results showed that the percentage of GFP+ cells in the spleen and bone marrow of NLRP3-/- AML mice was lower than that in the control AML mice (Figure 4C). As shown by microscopy, leukemia cells infiltration in spleen and bone marrow showed alleviated tendency in NLRP3-/- mice compared with those in control AML mice (Figure 4D). Furthermore, our results found that NLRP3-/- murine bone marrow cells showed less IL-1β expression at mRNA and protein levels (Figure 4E).




Figure 4 | Knockout of NLRP3 attenuates leukemia burden in AML mice. (A) Representative photographs of spleen from WT mice (n=3) and NLRP3-/- mice (n=4). (B) The weight of spleens of WT mice (n=3) and NLRP3-/- mice (n=4). (C) The leukemia cells (GFP+ cells) in spleen and bone marrow from WT mice (n=3) and NLRP3-/- mice (n=4). (D) Hematoxylin and eosin-stained histopathology sections of a representative spleen and bone marrow from WT and NLRP3-/- mice (100× or400×). (E) The mRNA and protein expressions of IL-1β by qRT-PCR and western- blot in bone marrow of WT and NLRP3 -/- mice. *P < 0.05.





The Leukemia-Promoting Effect Induced by NLRP3 Activation Acts Through IL-1β but Mot IL-18

Bayesian network analysis is usually used to analyze the relationship among many molecules. To clarify the complicated correlation structure and potential signaling pathway among the genes in NLRP3 inflammasome, we used score-based hill-climbing greedy search algorithm based on mRNA expression data to learn the network structure in AML patients and controls respectively. By comparison with that for control group, the end of network for AML patients was pointed from IL-1β to IL-1R and from NLRP3 to NF-κB (Figure 5A). Furthermore, significantly higher expression of caspase-1 or IL-1β was found in AML intermediate/poor risk classification compared with favorable risk group (Figure 5B). All these findings illustrate the evidence that highly activated NLRP3 inflammasome in AML bone marrow leukemia cells correlates with poor prognosis and may act through IL-1β pathway in AML.




Figure 5 | The leukemia-promoting effect induced by NLRP3 activation acts through IL-1β but not IL-18. (A) Bayesian network model diagram was designed according to qRT-PCR results of NLRP3 inflammasome in controls and ND AML patients. (B) The mRNA expressions of NLRP3 inflammasome components caspase-1 and IL-1β in favorable (n=13) and intermediate/poor-risk (n=32) groups. (C) The mRNA expressions of NLRP3 inflammasome components caspase-1, IL-1β, NLRP3 and NF-κB in THP-1 cells were compared before and after LPS stimulation. (D) The concentrations of IL-1β and IL-18 in supernatants of cultured THP-1 cells following LPS or LPS+ATP treatment. (E) The apoptosis rate of primary leukemia cells after being co-cultured with LPS-activated THP1 cells with or without adding anti-IL-1β or anti-IL-18 antibody (n=6). (F) Representative scatter plots of apoptosis. (G) CCK8 assay was applied to analyze the proliferation of primary leukemia cells after adding IL-1β or/and IL-18 for 24, 48, 72 and 96 hours (n=21). (H) Flow cytometry analysis of Annexin V-FITC/PI-staining method was performed to analyze apoptosis of primary leukemia cells after adding IL-1β or/and IL-18 for 48 hours (n=24). (I) Results were plotted as the percentage of cells in each quadrant. (J) Cell apoptosis was analyzed by flow cytometry 48 hours after adding ADR (200 μg/L) or DNR (20 μg/L) with or without IL-1β or IL-18 (n=8). (K) Representative scatter plots of flow cytometry. *P < 0.05; **P < 0.01; ***P < 0.001.



To further investigate the role of IL-1β in the leukemia-promoting effect by NLRP3 inflammasome activation, we first activated NLRP3 inflammasome of THP-1 cells with LPS or LPS+ATP and found that the mRNA expression of caspase-1 or IL-1β and the secreted IL-1β and IL-18 were significantly increased after NLRP3 activation (Figures 5C, D). Then, we co-cultured NLRP3-activated THP-1 cells with primary leukemia cells using Transwell chamber. Our results showed that the culture medium of NLRP3-activated THP-1 cells inhibited primary leukemia cells apoptosis, and the inhibitory effect had partially reversed after neutralization with anti-IL-1β, while anti-IL-18 had no this effect (Figures 5E, F). Furthermore, human recombinant IL-1β and/or IL-18 were added into the culture medium of primary AML leukemia cells. CCK8 results showed that IL-1β or IL-1β+IL-18 significantly stimulated the proliferation and inhibited the apoptosis of leukemia cells, but IL-18 alone had no obvious effects (Figures 5G-I). As for the influence on the efficacy of chemotherapy, our results showed that IL-1β significantly attenuated the antitumor effect of ADR or DNR. In contrast, IL-18 had little effect on antitumor effect of chemotherapeutic drugs (Figures 5J, K). These findings verified that IL-1β but not IL-18 is critical for the resistance to the cytotoxicity of ADR and DNR in AML leukemia cells.



Down-Regulation of Endogenous IL-1β Suppresses the Growth of Leukemia Cells

To further clarify the role of endogenous IL-1β in AML leukemia cells, IL-1β siRNA was transfected into THP-1 leukemia cells, which significantly decreased the mRNA or protein level of IL-1β (Figures 6A, B). CCK8 assay showed that the proliferation was inhibited in IL-1β siRNA transfected leukemia cells compared with controls after treatment with Ara-C or DNR, though IL-1β knockdown alone has no statistical effect on THP-1 cells (Figures 6C, D). Moreover, IL-1β knockdown significantly increased the apoptosis rate of leukemia cells after treatment of chemotherapy (Figures 6E, F). Mechanistically, we determined the expression of signaling molecules associated with proliferation and apoptosis by western blot. Our results showed that the apoptosis proteins, cleaved caspase 3, cleaved caspase 9 and Bax, were aberrantly over-expressed after knocking down IL-1β in leukemia cells by siRNA, while Bcl-2 onco-protein was down-regulated (Figure 6G). These findings suggested that endogenous knockdown of IL-1β suppresses leukemia cells.




Figure 6 | Down-regulation of endogenous IL-1β suppresses the growth of leukemia cells. The mRNA expression of IL-1β was determined by qRT-PCR in THP1 cells after IL-1β siRNA transfection (n=3) (A) and the protein level of IL-1β by western blot in THP1 cells after IL-1β siRNA transfection was also shown (n=3) (B). The proliferation results by CCK8 assay for leukemia cells 24, 48, 72 hours after knocking down IL-1β by siRNA transfection (n=3) (C) and treatment with drugs (n=3) (D). The apoptosis of THP1 cells was quantified 48 hours after IL-1β knockdown by siRNA (n=3) (E) and the representative scatter plots of apoptosis (F). (G) The western blot results of pro-caspase-9, cleaved caspase-9, and β-tubulin is a loading control. Representative western blot bands of Bcl-2, BAX, cleaved caspase-3, and GAPDH is a loading control (n=3). *P < 0.05; **P < 0.01; ***P < 0.001.






Discussion

Chronic inflammatory responses were reported to be associated with many cancers (13–15). The NLRP3 inflammasome is one of the best-characterized inflammasomes that is involved in chronic inflammatory responses (4, 5). NLRP3 inflammasome has also been found related to tumor pathogenesis, but its role in cancer is versatile and sometimes controversial (9, 12–14). The biological relationship between inflammasome and cancer may provide a novel approach for anticancer therapies. AML is one of the most malignant diseases threatening the health worldwide and our previous study found that the genetic polymorphisms of IL-18 rs1946518 and IL-1β rs16944 are associated with prognosis and survival of AML patients (31). However, the exact functional role or production mechanism of NLRP3 inflammasome in the development and treatment of AML remains to be fully identified. In this study, we uncovered a previously unknown and unexpected role of NLRP3 inflammasome in AML.

Overexpression of inflammasome components has been reported in various types of cancer, such as head and neck squamous cell carcinoma (23, 33) lung cancer (34), gastric cancer (35) and breast cancer (33). In the present study, we documented that primary AML leukemia cells over-expressed NLRP3 inflammasome associated molecules at the mRNA and protein levels which were correlated with poor risk of AML patients. Further, the secreted IL-1β level in BM plasma was also found up-regulated. All these findings suggested that the higher expression and activity of NLRP3 inflammasome in bone marrow leukemia cells may play a vital role in AML.

As shown in the scope of solid tumors, the effects of NLRP3 inflammasome are cell- and tissue-specific (13–15). Though the inflammasome activation and IL-18 signaling pathways are largely beneficial in colitis-associated colorectal cancer (32, 36), it has been widely accepted that inflammasome can promote the development of many malignant tumors, including head and neck squamous cell carcinoma, fibrosarcoma, melanoma, gastric carcinoma and lung metastasis (9, 10, 12–14, 37). Recent evidences suggested that activation of NLRP3 inflammasome by mycoplasma hyorhinis promotes gastric cancer migration and invasion (38), and this gastric tumor-promoting effect by NLRP3 may be due to the activating CCND1 transcription (35). Another study indicated that NLRP3 expression in infiltrating macrophages was significantly associated with survival and metastasis in human breast tumor via S1PR1 signaling (33). As NLRP3 inflammasome agonists are structurally heterogeneous, most researchers activated NLRP3 inflammasome pathway via classical combination of LPS+ATP (4, 7). It was reported that LPS+ATP induced activation of NLRP3 inflammasome in A549 lung cancer cells, and NLRP3 inflammasome activation enhanced the proliferation and migration of A549 cells by secreting IL-1β and IL-18 (17). In human monocytes, LPS alone can activate an alternative NLRP3 inflammasome pathway and stimulate IL-1β secretion (8). In this study, in primary AML leukemia cells, LPS or LPS+ATP induced NLRP3 inflammasome activation and the activation of NLRP3 inflammasome promoted proliferation, inhibited apoptosis and increased drug-resistance of primary leukemia cells. Additionally, we up-regulated the expression of NLRP3 in the murine leukemia cell line C1498 by lentivirus. At the same time, we also transplanted the bone marrow of the NLRP3-/- mouse into normal mice. We found that NLRP3 inflammasome caused a worse outcome and more leukemia infiltration. These results indicated that NLRP3 activation may play a carcinogenetic role in AML.

In this study, we further explored the effect of inhibition of NLRP3 inflammasome activity in AML. Many studies suggested that inhibition or inactivation of NLRP3 inflammasome plays an antitumor role in many cancers. It was reported that the inhibition of NLRP3 inflammasome by MCC950 delayed the progression of tumor growth in mice with head and neck squamous cell carcinoma (23). And a recent study demonstrated that inhibiting NLRP3 inflammasome and limiting IL-1β secretion were the main mechanisms of miR-22-induced decreased gastric cancer cells proliferation (35). As caspase-1 was the major downstream molecule of NLRP3 inflammasome, its inhibitor Z-YVAD-FMK attenuated LPS+ATP-induced A549 lung cancer cells proliferation (17). Our results showed that caspase-1 inhibitor Z-YVAD-FMK down-regulated IL-1β and IL-18 secretion, suppressed proliferation and enhanced apoptosis of primary leukemia cells. Additionally, NFκB is involved in NLRP3 inflammasome activation and its pro-tumorigenic role has been widely described in cancer (14). The NF-κB inhibitor Bay 11-7082 is a potent and selective inhibitor of NLRP3 inflammasome activation independent of their inhibitory effect on the NF-κB activity (39). Here, we demonstrated that NF-κB inhibitor Bay11-7082 decreased the secretion of IL-1β and IL-18 from leukemia cells and down-regulated the protein expression of pNF-κB, pro-caspase-1, pro-IL-1β, active caspase-1 and IL-1β. And inactivation of NLRP3 inflammasome by inhibiting NF-κB can also inhibit the proliferation and induce the apoptosis of AML cells.

NLRP3 inflammasome pathway is a complex signal network consisting of many interactive molecules. We used bioinformatics methods to clarify the relationship among these molecules determined in our cohort of AML patients. Bayesian networks consist of nodes and arcs that represented variables of relationships between them (40, 41). Given its advantage of visual presentation and network structures that were more appropriate to describe interactions between variables, Bayesian networks were used in medical (42), biological (43), and social research to study the conditional dependencies between random variables. Therefore, we used score-based hill-climbing greedy search algorithm to learn the Bayesian network of NLRP3 inflammasome. Compared with the controls, the end of network for AML patients was pointed from IL-1β to IL-1R and from NLRP3 to NF-κB, which indicates that NLRP3 inflammasome may act through IL-1β or NF-κB in AML leukemia cells.

IL-1 affects the process of carcinogenesis, tumor growth and invasiveness at tumor sites in many kinds of cancers (44). As the main effectors of NLRP3 inflammasome, IL-1β and IL-18 belong to the IL-1 superfamily and have the potential to promote an immune-suppressive tumor microenvironment. IL-1β is one of the critical pro-inflammatory cytokines involved in tumor pathogenesis (17–21). IL-1β has been reported to contribute to the development and progression of melanoma (45). It was also demonstrated that IL-1β enhances migration and invasion in oral cancer (46) and gastric cancer (47) by down-regulating E-cadherin and up-regulating Snail. Moreover, IL-18 enhances angiogenesis and promotes tumor cell proliferation and migration in gastric cancer (48–50). Our previous study found IL-18 mRNA expression and plasma IL-18 level were increased in lymphoma patients. Moreover, IL-18 promoted proliferation, inhibited apoptosis and reduced the anti-tumor effect of dexamethasone for lymphoma cells (24). In this study, we found IL-1β accelerated proliferation and inhibited apoptosis of AML cells, and significantly attenuated the antitumor effect of ADR and DNR, but IL-18 showed little effect. It is speculated that NLRP3 inflammasome promotes tumorigenesis in AML mainly via IL-1β pathway.

In conclusion, our results suggested that a hallmark of AML is activation of the NLRP3 inflammasome and NLRP3 inflammasome functions as an oncogenic factor through IL-1β pathway in AML. Regulating NLRP3 inflammasome activity especially targeting IL-1β may provide a novel approach for AML therapy.
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